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Preface 

 

In writing this book I have particular readers in mind: Postgraduate research students or 
researchers who do not have a mathematical or statistical background but who want to 
understand and use statistics. This book provides an introduction to the use of statistical 
tests and has three main aims. First, to help readers learn statistical concepts, to think 
statistically and thereby become a more astute consumer of research papers and reports. 
As consumers of research, they will want to understand statistics as they appear in other 
researchers’ reports, theses and so on. The second aim is to enable potential producers of 
statistics to become judicious users of them. Producers of statistics will need to choose 
and apply appropriate statistical tests to a wide range of research problems typically 
encountered by social science researchers. A further aim of this book is to help 
researchers use statistical software effectively. The present-day researcher has a number 
of sophisticated computer programmes available for data analysis. Examples of the SAS1 
system programming language are used to show how data is entered into a proprietary 
package and how this data is then analyzed. Printouts of results are illustrated with 
interpretive comments and where appropriate suggestions for further analysis. 

Put simply this book is intended to help non-mathematical researchers to understand 
statistical ideas, to apply statistical thinking to research design, to choose and use 
appropriate statistical procedures and to interpret their own or other researchers’ data 
analysis. Those readers wishing simply to confirm an appropriate statistical procedure for 
their research problems should refer directly to the fifth chapter in the book. 

The approach adopted in this book is based on ten years’ experience of teaching 
statistics to research students. My past students have been my most valuable critics and 
my present students continue to be my guide as to what works and why. Based on their 
evaluations this book is grounded on three general premises. To use statistics 
appropriately one has to understand basic concepts of research design and probability. 
Appropriate use requires judgment which develops with experience. There is no 
substitute for practical use of statistics with real data for those seeking to enhance their 
understanding and polish their skills of analysis and interpretation. 

An understanding of key concepts can be obscured by unnecessary formulae and 
accordingly these have been kept to a minimum, and where used are explained in full. 
Statistical tests are introduced using description and examples from the literature of 
Psychology and Education. Understanding is thereby facilitated by familiarity with the 
general kinds of research questions and issues discussed. The text is judiciously 
punctuated with questions that encourage reflection. 



New statistical concepts are distinguished from other concepts and these ideas are 
related to real research examples drawn from the literature. This practical orientation 
helps to relate statistical ideas to the use of statistics in real life research problems. 
Choice of appropriate statistical procedures and skill in analysis and interpretation are 
developed through an awareness of what other researchers do and by practice in 
application. Each statistical test is explained with a worked example. Excerpts from 
papers, reports and theses are used as illustrative material throughout. 

Note 
1 SAS is the registered trademark of SAS Institute, Inc Cary, NL, USA. 



Chapter 1 
Statistics and Research Design 

 

In everyday use the word statistics has two meanings. In one sense it refers to the way we 
collect, analyze and interpret numerical facts which are termed data. Second, statistics 
are in themselves the raw numerical data resulting from observations or measurements, or 
are the results of calculations derived from such data. The term statistical analysis is 
often used and in general this may refer to the descriptive use of statistics to present and 
summarize data, or it may mean the way in which these statistics are used to make 
statistical inferences. This is the process whereby statistical information obtained from a 
sample is used to draw conclusions which have wider applicability than solely to the 
sample of observations or measurements obtained and is referred to as the inferential use 
of statistics. 

Statistical inferences are described in terms of probability; the likelihood or chance in 
the long-run of occurrence of an event. In statistical jargon an event means any 
outcome(s) from among a set of all possible outcomes. The concept of probability is used 
in statistical modelling which compares patterns of variability and frequency of 
outcomes in real data with the idealized frequency of outcomes that would be expected 
from a statistical probability model. We can think of such a probability model as a 
mathematical representation to describe and predict phenomena such as patterns and 
relationships in data and outcomes of experiments. Interpretation of the fit or match of 
data to a particular statistical model can provide insight into the phenomena being 
investigated. 

Data, however, do not interpret themselves and may be meaningless unless descriptive 
statistics are used to arrange numbers into a coherent and more meaningful summary of 
information. Inferential statistical techniques are the tools which can then be used to 
analyze data, answer specific questions, draw trustworthy conclusions and thereby gain 
information which might not be apparent from an initial scrutiny of data. 

In this chapter we begin by emphasizing the importance of statistical thinking in 
research design and then go on to examine the role which statistics plays in the planning 
and data collection stages of a study. Next, we review the general principles and 
distinguishing features of survey and experimental designs and then present statistical 
guidelines which can be referred to during the design stage of a study or which can be 
used in the assessment of research papers, reports and manuscripts.  



1.1 Why Consider Research Design in a Text About Statistics? 

It is important to appreciate that statistics is much more than a collection of techniques 
for data analysis. Statistical ideas can and should be used to advantage in the design and 
data collection stages of a study. A well designed study that has generated reliable data 
but which has been poorly analyzed can be rescued by appropriate reanalysis. A poorly 
designed study, however, that has generated data of dubious quality, is beyond 
redemption, no matter how sophisticated the statistical analysis. 

Use of Statistical Ideas in Research Planning 

Sample size and statistical power 

When planning a survey or an experiment a common problem for researchers is the 
determination of sample size or number of subjects in experimental groups. It is possible 
to estimate the number of subjects required either in a sample survey or in experimental 
design so that sample or treatment differences would be detected at a specified 
significance level. The significance level of a statistical test is the likelihood of 
concluding there is a difference (rejecting a hypothesis of no difference) when in fact 
there is a difference (the hypothesis of no difference is refuted). The estimation of sample 
size is achieved through statistical power analysis. Given certain assumptions, a statistical 
test is said to be powerful if it is able to detect a statistically significant difference should 
one exist (statistical power analysis is considered in Chapter 5). The point of doing a 
power analysis for a research plan based on a particular sample size is that if the design 
turns out to have insufficient power, that is one is unable to detect any statistically 
significant difference, then the researcher can revise the plan. One option would be to 
increase the sample size. There are other options, including, at the extreme, dropping the 
proposed study. Clearly, as little can be done after data has been collected, consideration 
of sample size and statistical power is crucial at the planning stage. 

It should also be emphasized that statistical significance does not always imply 
educational significance. For example, a small gain in maths scores after an experimental 
maths programme may be statistically significant but may be considered to be of no 
educational importance. The researcher in planning an evaluation of this maths 
programme would have to determine what maths gain score would be considered a 
significant educational gain and design a study to be able to detect this magnitude of 
treatment effect. 

Validity and reliability of measurement 

Attention should be given to the construction of measuring instruments like 
questionnaires and sociometric indices. A common problem encountered with self-
completion questionnaires is missing responses, often referred to as ‘missing data’. The 
best answer to this particular problem is to have none. If you do have missing data, this 
often tells you as much about the design of your questionnaire as the knowledge, 
opinions or thoughts of the respondent. The pattern of missing responses is also 
informative. Descriptive analysis of pilot study data may reveal selective non-response or 
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indeed returned blank questionnaires for certain individuals. It is therefore sensible to 
spend time at the planning stage considering strategies to ensure complete responses and 
subsequently to complete a pilot study. 

If there are problems with the specific method that generates the data, such as, 
ambiguous questions, then the data will not be valid. That is, the data will not be 
trustworthy because we have not measured what we think we have measured. In this case 
the questionnaire is said to have poor construct validity. Messick (1989) suggests that 
construct validity encompasses three other forms of validity often referred to in the 
measurement literature as content, concurrent and predictive validity. A questionnaire 
survey that has dubious construct validity is also likely to yield erroneous conclusions 
about differences that appear in the sample data. Researchers refer to the issue of drawing 
false conclusions from statistical tests of differences or relationships as a problem of 
statistical conclusion validity. Cook and Campbell (1979) suggest it is appropriate to 
establish whether differences or relationships exist before considering the magnitude or 
strength of any effects. Another aspect of statistical conclusion validity is the reliability 
of measurement, the idea that consistent results will be given by a measurement 
instrument when a subject is measured repeatedly under near identical conditions. Lack 
of reliability increases the amount of observed variation which has the effect of making it 
more difficult to detect significant covariation among variables. Larger sample sizes can, 
to some extent, compensate for this increase in variability of measures. However, as 
Henry, (1990) comments, ‘to compensate for the inflation of the variance [variability of 
observations] due to the lack of reliability of the instrument, it must be recognized and 
accounted for early in the design process’ p. 13. 

Procedures for data collection 

Data generated in a quantitative investigation should be the product of a research design, 
which is a plan specifying what information will be collected, how this will be done and 
how it should be analyzed. Quantitative studies such as surveys and experiments, if 
systematically planned, should make use of the idea of chance when data is collected 
because the role that chance plays in data generation influences the trustworthiness of any 
statements we make about research findings. For example, chance is involved when 
selecting subjects for a survey or allocating subjects to an experimental group. If data are 
collected in a systematic rather than in a haphazard way then knowing the role that 
chance plays in generating the data allows valid conclusions to be drawn about your 
results—or the results of others. 

A random sampling procedure is often used in survey design. This means choosing 
subjects at random from a defined population. When random sampling is used each 
member of the target population has a known chance of being selected for the sample. In 
experimental research the principle of randomization is used as a means of assigning 
subjects to treatment groups on the basis of chance. Random assignment, which should 
not be confused with random sampling, is intended to produce experimental groups that 
are similar in all respects prior to any treatment. The randomization process, which does 
not mean a haphazard one, uses the laws of chance to assign subjects to treatment groups 
in a way which eliminates any systematic differences that might exist among subjects. 
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Whereas survey methods vary, for example, postal self-completion, class administered 
questionnaires, telephone, interview and observational surveys, the one feature most are 
likely to share is the need to obtain a sample. A survey sample is usually intended to 
represent the population from which it is drawn. If the sample is faulty or is not designed 
to be representative, then it is not reasonable to generalize beyond the achieved sample. 
This presents the researcher with a problem of external validity or generalizability. The 
ability to generalize findings relates to the definition of the population of interest, the 
sampling method used and the validity and reliability of measurement. 

Sources of variability 

A good sample design will minimize the amount of variability in observations or 
measurements to an acceptable level given the purpose and required precision of a survey 
or experiment. Variability is inherent in measurements on subjects. For example, consider 
a teacher who selects a sample of school children and measures for each child his or her 
assertiveness behaviour using the School Motivation Analysis Test (SMAT instrument 
described by Boyle and Houndoulesi, 1993) and then estimates an average assertiveness 
score. If on the following day the teacher repeats the testing, it is very likely that the two 
measurements for each child will vary as will the two averages of the first and second set 
of measurements. Such variability may be due to random variation in measurement, a real 
change in the children’s assertiveness (a dynamic trait) or a combination of both. 

In designing a survey to estimate teenagers’ assertiveness, for example, consideration 
should be given to three potential sources of variability or error. The full inventory has 
190 items, and some students may become bored or tired and not answer all items. This 
would introduce a measurement error which is an example of nonsampling bias. If the 
teacher had selected a non-probability sample that is a non-random sample, then the 
sample may not be representative of all teenagers (not every teenager would have an 
equal or known chance of being selected). This would introduce a selection bias and is 
an example of sampling bias. Finally any sample is subject to sampling error or 
sampling variability. Put simply this means that any particular sample average, given 
certain assumptions, will vary from another independent sample average. This idea of a 
distribution of sample averages and how it relates to sampling error will be explored in 
Chapter 4. The implication for planning is that the precision of a sample statistic such as 
an average assertiveness score is related to sampling error. In fact the precision of a 
sample statistic decreases as sampling error increases. Sampling error is influenced by 
sample size and variability of what is being measured in the population, in this case 
assertive-ness. In this example, the smaller the population variability in assertiveness 
(more homogeneous) the smaller will be the sampling error; this will provide a more 
precise average assertiveness score. Larger sample sizes also reduce sampling error, 
which is one reason why larger samples are preferable to smaller ones. ‘Small’ in survey 
and experimental research is generally taken to mean less than 30 subjects, but this is 
only a guideline. Generally for both experiments and surveys more subjects are better 
than fewer subjects up to a point. The more subjects that participate in an experiment, the 
more it is likely that randomization to treatment groups will be effective. Consequently, 
on average groups will be similar because any individual differences among subjects will 
be averaged out by the random allocation of subjects to groups. 
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Choice of statistical tests 

After data collection, descriptive statistics are used to summarize data. The research 
questions addressed and the nature of the data will influence the choice of summary 
statistics. For example, if more scores are at one extreme rather than in the middle of a 
distribution, the median may be a more appropriate measure of central tendency than the 
average. If differences between mean scores are to be estimated then the laws of chance 
may be used to say whether differences among the means of treatment groups are 
statistically significant and to indicate whether differences are too large to be 
attributable to chance alone. Thought should also have been given to appropriate analyses 
at the planning stage. A common significance test for comparison of two independent 
groups is the independent t-test, which makes certain assumptions about how data is 
generated: the sampling, how the data is measured and the variability of the data (these 
considerations are discussed in Chapter 8). In other studies, for example, in the evaluation 
of a maths programme it may be more appropriate to measure individual change, that is 
the difference between before and after scores. The important statistic in this example 
would be the mean of the difference scores (after ‘minus’ before) rather than the 
difference between means of independent groups. 

Being a critical research consumer 

Most empirical researchers will be consumers of research reports and papers. It is 
necessary to be able to discern good studies from poor ones, to be able to identify 
limitations in design and interpretation and hence judge the dependability of conclusions. 
As we will see in later chapters, not all studies published in educational research journals 
meet the statistical standards that we might expect, therefore publication should not be 
seen as a guarantee of quality and trustworthiness. The novice researcher may find this 
difficult to believe but as researchers become more experienced and knowledgable they 
also become more critical and rely more on their own judgments than on the judgments 
of others. 

Whenever we encounter research findings we need to consider their trustworthiness. A 
particular sample statistic such as the sample average may be calculated and used to 
estimate the mean for the population from which the sample was drawn. As one 
particular sample average is likely to vary from a second independent sample average, 
even if exactly the same procedure for selection and calculation is used (all sampling 
results are subject to sampling errors), then the laws of chance can be used to provide an 
estimate of precision or a confidence interval for the obtained sample average. When 
reading a research report we should consider the confidence intervals around any sample 
statistics given. It is good practice to report the confidence interval or to give sufficient 
information for the confidence interval to be calculated (see Chapters 6 and 8). 

Survey research is seldom confined to drawing conclusions only about the subjects in 
an achieved sample. Even if this is intended, often implicit generalizations will be made, 
if not by the researcher then by the research consumer, to the parent population, or to 
similar subjects. In this case the trustworthiness of the results will depend not only upon 
the precision of the sample statistic but also on the extent to which the picture given by 
the sample represents the situation in the population. Clearly the survey design, that is 
how the data were measured, collected and recorded, will influence estimates of precision 
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and the veracity of any generalizations. A good research report would provide 
information on all important aspects of the study design and data collection procedures. 
An informed reader can then judge whether or not the results claimed are reasonable. 

Similarly, the validity of experimental conclusions will need to be judged against the 
extent to which results are attributed solely to the causes identified in the experiment. 
Again the laws of chance are involved. They allow the outcomes of an experiment to be 
explained by taking into account what outcomes would be expected by the laws of chance 
alone. Observation of differences among treatment groups which are too large to be 
attributable to chance alone are said to be statistically significant. Data which is 
generated from an experiment is the product of an experimental design. The quality of 
that design, the adequacy and accuracy of data measurement and recording procedures, 
the effectiveness of randomization of subjects to treatment groups, and the choice of the 
number of subjects or treatments will influence the validity of experimental results. 

The most important overall message to be gleaned thus far is that consideration of 
statistical principles is crucial to good research design and that statistical ideas are 
involved as much in data collection as in data analysis. Any data analysis will be 
influenced by the method of data collection. For example, if data are collected in a 
haphazard way then it may not be worth spending any time on data analysis. Clarity of 
purpose and statistical awareness at the design stage of a study should lead to the 
avoidance of typical problems such as small numbers of observations, missing responses 
for key variables, large sampling errors, and unbalanced experimental designs. These 
problems make any subsequent analysis and interpretation more difficult and possibly 
less powerful. Do not leave consideration of data analysis until after data has been 
collected. It may be too late at this stage to rectify a fundamental design problem which 
would render impossible the answering of the research question you had in mind.  

1.2 Surveys 

Many studies are labelled as surveys, ranging from Charles Booth’s classic poverty 
surveys of the working-class population of London (Booth, 1889–1902) to modern day 
Gallup Polls, Government Surveys (General Household Survey, Labour Force Survey, 
Family Expenditure Survey, British Household Panel Study, Child Development Study, 
Youth Cohort Study) and opinion and market research surveys. Surveys are usually 
designed to collect data from a population of interest. A population in a statistical sense 
refers to a complete set of subjects, values or events that have some common 
characteristic. In many survey designs the population of interest—all those to whom you 
would like to generalize your findings—may be indeterminable in number or impossible 
to enumerate. In this sense the term population is a theoretical concept because all 
members could never be observed or counted. Most surveys involve the selection of 
samples, unless they are censuses or total population surveys. A sample is usually a 
collection of subjects, values or events which is finite in size, therefore quantifiable, and 
represents a subgroup of a population. The idea of sampling is to use characteristics of a 
selected sample to infer properties of the population from which the sample was drawn. 
Rarely is it feasible or necessary to include the total population of interest in a study. 
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Surveys may be classified in at least two ways based on how data is collected and 
when data is collected. These are not the only ways to classify survey researeh but they 
are convenient ones. From a methodological standpoint survey data may be collected by 
questionnaire, interview or observation. As well as method, the time when data is 
collected may be used to distinguish among survey type. In a cross-sectional study the 
sample would consist of different subjects representing all relevant subgroups in a 
population measured at one moment in time. In a longitudinal study the sample may 
consist of one group of subjects who are studied over time and each subject may be 
measured more than once. 

Longitudinal surveys can be subdivided into studies which look backward in time, 
retrospective studies and those which look forward, prospective studies. Retrospective 
studies determine the effect of exposure, retrospectively, on an outcome of interest. For 
example, a researcher may set up a retrospective longitudinal survey to investigate 
bullying in school. A sample of school children would be selected and then divided into 
two groups on the outcome of interest. Here one group would consist of children who 
report that they have been bullied in school and the other group would comprise those 
children who say they have not been bullied. A potential exposure effect such as type of 
school attended, public or state school, is then determined retrospectively by examining 
the proportions of children in each school type who were bullied. This design is also 
called a causal comparative survey design because it attempts to determine the causes 
or reasons for existing differences between groups of individuals, in this case those 
children bullied and those not. The inference in this example would be that school type 
leads to the observed differences in bullying. Both the outcome, bullying, and the 
suggested causal factor, school type, have already occurred and are studied 
retrospectively. Causal comparative research is distinguished from experimental research 
because variables are not under the control of the researcher and effects or outcomes are 
observed and possible causes sought. In experimental research causal factors are 
deliberately manipulated with the intention of observing particular outcomes. In causal 
comparative research suggested causal factors, such as the type of school, could not be 
manipulated because they have already occurred. Caution should be used when 
interpreting causal relationships from causal comparative studies. Such studies may lead 
to the setting up of ‘true’ experimental designs. 

In prospective studies, subjects would be grouped according to exposure or some other 
factor and individuals would be followed up and outcomes of interest observed. In the 
bullying example, two groups of children, those attending public schools and those 
attending state schools, would be followed up over a number of years and the proportion 
of those who report being bullied would be observed at different points in time in both 
groups. The National Child Development Study (NCDS) is an example of a longitudinal 
prospective survey. This study is intended to follow the lives of individuals living in 
Great Britain who were born between the 3rd and the 9th of March 1958. Obstetric data 
was collected from the first sample of approximately 17,000 children. The first follow-up 
of these children took place in 1965 and this gave the study its name, the NCDS. A 
second follow-up was in 1969 when the children were aged 11, and futher observations 
occurred in 1974, 1981 and 1991. 

An alternative approach to describing surveys is to focus on purpose. Surveys may be 
primarily descriptive or explanatory. In a descriptive survey a sample would be drawn 
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from a defined population with a view to describing prevalence (total number of 
occurrences), incidence rate (new occurrences in specified time period) or, for example, 
what subjects think or feel about an issue, such as the Gallup Polls. In an explanatory 
survey the purpose and subsequent analysis would focus on explaining interrelationships 
between or among phenomena. 

Sampling 

Selection of a sample is an integral part of most survey designs. Samples may be 
characterized as one of two main types, probability samples, sometimes called random 
samples, where every member of the population has some probability of being selected 
for the sample (not necessarily equal probability) and non-probability samples in which 
some section of the population may not be represented (non-random). Statistical 
techniques for estimating precision of sample statistics which are based on probabilistic 
reasoning should be used cautiously with non-probability samples. Examples of non-
probability sampling approaches include: 

• Convenience subjects selected on basis of availability 
• Quota subjects sampled in proportion to population proportions on key variables 
• Purposive subjects selected on the basis that they are known to have certain attributes 
• Dimensional subjects selected to represent similar or dissimilar 

dimensions 
• Snowball subjects identified by sample members 
• Critical case subjects selected that will give an overall assessment 

The degree of representativeness of a sample depends upon how the sample is selected. If 
the population was not carefully specified or a non-probability sampling procedure was 
used then a non-representative sample may be drawn and one’s confidence in estimating 
characteristics of the target population from the selected sample would be limited. 

Survey and correlational studies are generally characterized by the absence of planned 
change and control of variables. They cannot therefore show cause-effect relationships. 
In these studies variables are not manipulated and it is unwise to attribute causality to 
variables that change jointly or covary. Variables are said to covary if, say, high values 
on variable ‘A’ are associated with (but do not cause) high values on another variable ‘B’ 
or, alternatively, if lower values on variable ‘A’ are associated with (but do not cause) 
higher values on variable ‘B’. Correlation is a special case of covariation when the 
degree of relationship between two variables is expressed on a common scale of 
measurement or standard scores (see Chapters 7 and 8). If values of two variables covary 
in survey and correlational designs then the relationship is said to be concomitant rather 
than causal. Covariation of two variables in surveys could be attributed to a common 
third variable, the effect of a number of confounding variables or causation. Only an 
experimental design would be able to establish causation as an explanation for the 
observed covariation. Correlational surveys are designed with the specific purpose of 
gaining insight into the extent of the relationship between two or more quantifiable 
variables and in this sense are distinct from typical self-report questionnaires or 
observational studies. If variables are found to be related or correlated then scores on one 
variable may be used to predict scores on another variable. This would be an example of 
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a prediction study. A researcher, for example, may be interested in whether A-level 
grades predict degree performance. The variable predicted, in this example degree 
performance, is called the criterion or response variable. The variable(s) upon which 
the prediction is made are called predictor or explanatory or independent variables. 
See for example the study described by Peers (1994). The most common failings in 
survey designs are i) the use of non-probability and non-representative samples of 
subjects when the researcher wishes to generalize findings to a wider population and ii) 
small sample sizes which provide imprecise sample statistics with large sampling errors. 

Example 1 

A research student was interested in investigating provision and practice for staff 
development in secondary schools. This is an extract from the student’s research plan. 

The overall purpose of the study will be to inform national policy on staff 
development in secondary schools. As part of the study a structured 
interview 

schedule will be designed to determine what principals think of school-
based staff development, the importance they attach to it and their 
willingness to involve themselves in staff development. Information will 
also be collected on respondents’ age, sex, years of experience in post and 
academic qualifications. A sample of 15 principals, personally known to 
the researcher, in one of four geographical regions will be selected for 
inclusion in the study. 

Given the purpose of the study, this was not an appropriate design. A probability-based 
sampling strategy would have been preferable, possibly using region as a stratification 
factor. This involves taking a random sample from each of the four regions (the 
stratification factor). The number of interviews would need to be increased if the 
sampling error were to be kept to a reasonable level. The sampling design chosen, a non-
probability convenience sample, may also introduce bias into the study. It is possible that 
colleagues would give favourable responses. Any generalizations beyond this 
convenience sample would not be reasonable and therefore the main purpose of the study 
would not be addressed. 

This example illustrates the importance of matching design and methods to research 
purpose. It also demonstrates the value of planning prior to data collection. Given the 
problems identified with this design a number of alternatives exist: 

• Use a probability sampling strategy and increase sample size, that is the number of 
interviews, to obtain reasonable precision on the most important variables. 

• Use the convenience sample but change the aims of the study from descriptive to 
explanatory. For example, research questions might include exploration of 
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relationships between principals’ attitudes and involvement in staff development and 
the gender, age, job related experience and academic qualifications of staff. 

• Use a probability sampling strategy with a survey questionnaire. Either develop or 
choose an appropriate attitude questionnaire and follow up selected respondents with 
interviews for validation of attitude responses and additional in-depth information. 

At the design stage of a survey it is useful to consider: 

• purpose of the study, whether it is intended to answer specific questions or is 
exploratory; 

• target population and any subpopulations of special interest; 
• variables of most interest; 
• appropriateness of data collection procedure; 
• type of sampling and sample size; 
• whether analysis is likely to be descriptive or analytical. 

Example from the Literature 

Cullingford (1994) surveyed 370 7–11-year-old children’s responses to advertisements 
on TV. Data was collected by lengthy semi-structured interviews. Descript-ive statistics 
were used to show that 75 per cent of 7-year-old children when asked whether their 
favourite advertisements were true answered that they were. This was compared with 90 
per cent of 11-year-old children who, in answering the same question, said that the 
advertisements were not true. In the interviews children were given a chance to reflect 
upon their responses and the author goes on to say that whereas the 7-year-olds’ first 
response was that the adverts were true, because the products existed, their second 
response (presumably on reflection) was that adverts were essentially fantasy. Similarly, 
the 11-year-olds’ first response was to say the adverts were fantasy, and their second 
response was to say that they were a fantasy about a real thing so were true. The author 
concludes that interviews allow in-depth exploration of answers and children show a 
clear shift in explaining their responses at the age of eight. The shift is in the order of 
their responses, putting greater emphasis on social awareness rather than on pragmatic 
facts. 

1.3 Experimental Research 

Experimental research is distinguished from non-experimental research by the critical 
features of manipulation and control of variables to determine cause and effect 
relationships. Researchers select and manipulate independent variables (sometimes 
called explanatory variables) to observe the effect they have on response variables 
(sometimes called dependent variables). Whereas in a general sense a variable represents 
a property or characteristic of an object which varies from one object to another, when 
designing a study researchers make distinctions among different types of variables 
depending on the role they play in a study. For example, in one experimental study the 
variable ‘degree classification’ may be the response variable or outcome variable of 
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interest. In another regression study degree classification may represent an explanatory or 
independent variable such as in predicting the starting salary of a first job. 

The essence of experimental design is a research situation in which at least one 
independent variable is deliberately manipulated or varied by the researcher with the 
purpose of observing the effect this has on at least one response variable. Other variables 
which could influence the response variable are controlled. Variables can be controlled 
by three main strategies, singly or in combination: allocation of subjects to conditions, 
holding variables constant and statistical control (adjustment). Good experimental design 
should allow a situation to be set up so that plausible alternative hypotheses can be ruled 
out. The extent to which plausible alternatives have been explained or ruled out, a cause 
and effect can be implied, i.e., ‘X’ was responsible for ‘Y’, and internal validity has 
been established. 

A variable which is not effectively controlled and which changes along with the 
independent variable may account for an alternative explanation of the observed 
experimental effect. This is called a confounding variable and it confounds or confuses 
the effect of the independent variable on the response variable. This would threaten any 
causal inference and hence any internal validity of an experiment. In many experimental 
studies we may want to make statements about effects that apply beyond the particular 
situation studied. This raises the question of external validity, the extent to which the 
study findings can be generalized from the particular experimental setting to other similar 
settings.  

Example 2 

A researcher may be interested in the effectiveness of different ways of teaching 
vocabulary to 6-year-old children. Three teaching methods could be compared: silent 
reading of a story by children, story-telling by a teacher and storytelling by a teacher 
which is also enhanced by pictures. Teaching method, an independent variable, could be 
manipulated by the researcher, and pupils would be randomly assigned to one of three 
independent teaching method groups. Sometimes groups in an experiment are referred to 
as treatments. Randomization means that each pupil has an equal probability of being 
assigned to any treatment. 

If different teachers were involved in each teaching method group, then any effect of 
teaching method may be confounded by teacher effects see Figure 1.1.  

  Treatment (Group)   
Silent reading Storytelling Storytelling enhanced by 

pictures 
Teacher 1 (35 pupils 
randomly assigned to 
treatment) 

Teacher 2 (35 pupils 
randomly assigned to 
treatment) 

Teacher 3 (35 pupils 
randomly assigned to 
treatment) 

Figure 1.1: Effect of teacher 
confounded with treatment (group) 
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It is possible that one of the teachers was more enthusiastic than the others and that this 
was responsible for the results. One way to control for this confounding effect is to hold 
the confounding variable teacher constant, that is to use one teacher for all three methods. 
Any effect of teacher would be equally represented in all treatment groups, see Figure 
1.2.  

  Treatment (Group)   
Silent reading Storytelling Storytelling enhanced by 

pictures 
Teacher 1 (35 pupils 
randomly assigned to 
treatment) 

Teacher 1 (35 pupils 
randomly assigned to 
treatment) 

Teacher 1 (35 pupils 
randomly assigned to 
treatment) 

Figure 1.2: Effect of teacher controlled 

The researcher may believe, based on previous studies, that storytelling enhanced by 
pictures is a more effective method of teaching vocabulary than either of the other two 
methods. It is posited that pictorially enhanced storytelling will have a greater effect on 
pupils’ vocabulary acquisition, measured by a score representing correct understanding of 
a number of target words. This vocabulary score is known as the dependent or response 
variable because these response scores are dependent on the experimental manipulation 
of teaching method, the independent variable. 

A factor is a discrete or categorical variable which is used to define experimental 
groups. In the teaching methods experiment because there are three experimental or 
treatment method groups, these different groups correspond to levels of the factor 
teaching method. Here there are three levels of the factor. In this example the three levels 
of the factor teaching method are deliberately selected or fixed by the researcher and this 
is known as a fixed-factor or fixed-effect design. Another way a factor could be fixed is 
by natural circumstances not under the direct control of the researcher. Such a factor 
could be sex. In both the fixed-effect example of teaching method and the fixed-effect 
sex, any experimental manipulations would be the same in any replications of the 
experiment because they are fixed and do not change randomly from one replication to 
another. Note, however, that we could only draw general conclusions from the methods 
experiment to sets of the three methods used and not from any other methods of teaching 
vocabulary. In some circumstances it may be appropriate to select the levels of a factor at 
random from a population of treatments or levels. This is known as a random effects 
design. For example, a random sample of three ways of teaching vocabulary could have 
been selected and methods selected may include peer teaching, storytelling and silent 
reading in the reading corner. Given the random process whereby the teaching methods 
were selected it would be unlikely that the same methods would be selected in a 
replication of the experiment. Note, however, that we could draw more general 
conclusions about the effectiveness of teaching methods if our experimental design were 
based on a random effects design. If data from a fixed-effect design were analyzed by 
analysis of variance procedures this would be referred to as a fixed-model ANOVA. The 
term One-way ANOVA may also be used to refer to analysis of a one-factor design even 
though it has in this case three treatment levels. Analysis of a random effects design 
would be referred to as a random-model ANOVA. This distinction between random and 

Statistical analysis for education and psychology researchers      12



fixed effects designs is important because it influences the choice of denominator error 
term in the F test (see for example Chapter 8). 

The term subjects usually refers to individuals taking part in an experiment. All 
subjects who are allocated to a particular level of treatment within a factor are referred to 
as being in a cell in the experimental design. In the fixed-effects teaching methods 
example all subjects allocated to the storytelling experimental condition would belong to 
one cell. This would be a one-factor experimental design. Experimental designs are more 
efficient (more powerful for the same number of subjects) if the designs are balanced 
which means having equal numbers of subjects in each cell of the design. A one-factor 
fixed ANOVA design could be extended if pupils were classified by sex, thus introducing 
a second factor. If every level of every factor is crossed with every level of every other 
factor, this is called a completely crossed factorial design and is an example of what is 
called a two-factor design. In the methods by sex experiment this would be a 3×2 
factorial design with six cells (see Figure 1.3).  

  Factor 2: Method   Factor 1: 
Sex Level 1 (Silent 

reading) 
Level 2 

(Storytelling) 
Level 3 (Storytelling enhanced 

by pictures) 
Level 1 
(female) 

Cell 1 Cell 2 Cell 3 

Level 2 
(male) 

Cell 4 Cell 5 Cell 6 

Figure 1.3: Two-way (unrelated) 
completely crossed factorial design 
(one-factor ‘sex’ with 2 levels and one-
factor ‘method’ with 3 levels) 

The term two-way ANOVA may be used to refer to analysis of the two factors. It is 
possible to have an experimental design with both fixed and random effects. This is 
known as a mixed-model design. 

In the example of a two-factor experimental design, methods by sex, if the researcher 
examines only differences among the three teaching methods, ignoring the other factor, 
sex, this is looking at the main effects of teaching method. The researcher may then 
decide to look at the other main effect in this design, sex, ignoring any effects of teaching 
method. If the researcher were to look at the effect of a factor at one level of another 
factor, for example, to compare differences among three teaching methods (teaching 
methods factor) for females only (at one level of factor, sex), this is looking at the simple 
effects for females. If the effects of one factor are different at different levels of the other 
factor then an interaction between the two factors is said to exist. For example, if the 
differences in vocabulary score due to teaching method were much greater for males than 
females then an interaction exists between the factors teaching method and sex 
(interaction effects are explained in Chapter 8). 

All the examples referred to thus far are examples of between subject designs 
because different subjects appear in each cell of the experimental design, which is the 
same as different subjects being allocated to each combination of experimental 
conditions. When the experimental design requires the same subjects to be included 
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under more than one treatment combination, this is referred to as a repeated measures 
design.  

Example 3 

Involvement of friends and relations in the completion of a hearing handicap inventory 
(HHI) prior to rehabilitative audiological assessment and hearing aid fitting is believed to 
increase clients motivation to use a hearing aid. A research student wanted to know 
whether clients who used the HHI were on average well motivated to use their hearing 
aid. The researcher chose to investigate this question for her thesis study. She decided to 
do a survey to study the impact of the pre-assessment HHI on clients’ motivation to use 
their hearing aids. 

The first 15 clients who were scheduled to attend a hearing aid centre were sent a brief 
explanatory letter and the HHI with their appointment card. They were asked to bring 
along the completed inventory to their appointment. The next 25 clients 

scheduled to attend the clinic received a brief explanatory letter inviting them to 
participate in the study to form a comparison group. They did not receive the HHI. 

At the clinic assessment, clients in both groups completed a motivation questionnaire 
relating to their use of hearing aids. A motivation score was computed for each client. 
The researcher expected there to be a statistically significant difference in mean 
motivation score in favour of the HHI group. After data had been collected the researcher 
sought advice on which statistical test to use. 

The study in Example 3 is an experiment and not, as the researcher thought or intended a 
survey. It is an experiment because the clients, the experimental subjects, had something 
done to them. The intention was to observe a response and attribute cause and effect 
relations. In a survey the subjects in a sense are passive, that is they are not exposed to 
treatments. The intention is usually to estimate a population characteristic, in this 
example clients’ average motivation to use their hearing aids. 

The experimental design chosen did not address the original research question, and in 
any case has a number of design flaws which render any subsequent analysis at best 
tenuous. Some of the problems with this design include: 

• no random allocation of subjects to experimental groups; 
• no inclusion or exclusion criteria specified, that is control for potentially confounding 

influences, such as previous hearing aid users, stroke patients, age of clients; 
• no control over the intervention, that is how the HHI was used by clients; 
• not a balanced design, that is unequal numbers of subjects in the two groups; 
• no mention of what would be a meaningful difference in average motivation scores, that 

is the magnitude of the expected effect. 

This example illustrates the importance of considering statistical principles at the design 
stage. Here thought should have been given to questions such as: 

• How many individuals do we need in total for this study? 
• How will individuals be selected to participate? 
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• How many individuals should be allocated to each experimental group? 
• How will individuals be allocated to experimental groups? 

These questions involve the idea of chance. Provided a study is designed systematically 
we know the role that chance plays in the generation of data. This enables assumptions to 
be made, such as the equivalence of experimental groups before any treatment. Prior to 
data analysis and preferably prior to data collection, consideration should be given to the 
general issue of how data will be collected. In Example 3 an unbalanced design is used; a 
balanced design would have been better. Balanced designs are the most efficient, because 
they have most statistical power for a given number of subjects. Statistical power in 
experimental research is the chance of detecting a treatment difference should one exist. 
To maintain the same statistical power, the total number of subjects in an unbalanced 
design needs to be greater than in a balanced design.  

Summary 

It is important to stress that at the design stage before you collect any data—or if given 
data before you begin analysis—use your judgment to consider the context which 
generated the data. For example, certain questions might usefully be asked: Were the data 
collected to answer a specific question or for some other reason? How were subjects 
included in the study? What exactly was observed, counted or measured? How was 
measurement carried out and was it valid and reliable? What are the sources of error? Put 
simply, you should assess the quality and structure of the data. Statistical guidelines are 
presented in Figure 1.4 as a summary of the main points covered in this chapter. The last 
two points in these guidelines relate to more detailed statistical concepts which will be 
covered in later chapters. The guidelines should not be seen as definitive but as an aide-
mémoire to important aspects of statistical design that should be considered when 
planning an empirical quantitative study. 

1. Is the purpose of the study clear? e.g., Is it exploratory, predictive, 
causal? 

2. Are the proposed method(s) commensurate with the main aims of the 
study? e.g., Is probability sampling to be used so that generalizations 
can be made? 

3. Are criteria specified for recruitment of subjects? e.g., What is the 
sampling frame, who is included and who is excluded? 

4. How will subjects be selected or allocated to groups? e.g., Will there be 
random/ non-random sampling, randomization, comparison groups not 
randomly allocated (nonequivalent groups)? 

5. Are procedures for data generation clearly specified? e.g., Will 
questionnaires be constructed and if so are they valid and reliable or 
will fidelity of treatments in experimental designs be checked? 

6. Have sample size and power been considered? e.g., What is the 
expected magnitude of effect and is the design sensitive enough to 
detects this? 
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7. Is the design efficient? e.g., Is the design balanced, is sampling error 
reasonable and will precision be adequate, have potential sources of 
error been identified? 

8. What strategies will be used to deal with missing or incomplete data? 
e.g., Are missing and not applicable responses distinguished in data 
coding? 

9. Are proposed statistical procedures appropriate? e.g., Have levels of 
measurement, data distributions been checked and transformations 
been considered? 

10. If inferential tests or estimation of parameters are intended has an 
underlying statistical model been specified? e.g., Have model 
assumptions such as homogeneity of variance for ANOVA been 
checked? 

Figure 1.4: Statistical guidelines for 
planning a quantitative study 
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Chapter 2 
Measurement Issues 

 

Educational researchers are often interested in students’ knowledge, abilities, aptitudes or 
personality characteristics. Many of these variables are not directly observable and this 
creates particular measurement problems, which is an important consideration for 
researchers reviewing other researchers’ studies or designing their own study. 
Fortunately, many measurement procedures, such as intelligence tests, tests of reasoning, 
or tests of verbal ability have been developed and evaluated and are accessible to 
researchers. Whereas these tests and scales can be applied in many research contexts, the 
proper use of these techniques requires an understanding of the fundamentals of 
measurement and familiarity with statistical ideas which underpin test design and 
interpretation of test data. Important concepts to be introduced or reinforced in this 
chapter include classification and measurement, validity, reliability, criterion and norm-
referenced tests and standard error of measurement scales. 

This chapter begins by considering measurement issues in education and the 
classification and measurement of statistical variables, and goes on to consider properties 
and assumptions of measurement scales, practical measurement decisions faced by 
researchers, statistical ideas underpinning the use of psychological tests and scales and 
finally concludes with advice on choosing a standardized test and interpreting test and 
scale scores. 

2.1 Measurement in Educational Research 

Many observations in education can be described in comparative assessments such as 
‘this group is better at reading than that group’, ‘this child’s verbal reasoning ability is 
well above average for his or her age’, or ‘this child’s work is not good enough’. 
Statements such as these require judgment. One application of statistics in education is in 
the use of numerical characteristics to replace such wordy descriptions and thereby to put 
data into a context in which its meaning can be better evaluated and communicated. Put 
simply, measurement means the rules that are used to assign numbers to statistical 
variables. That is the process whereby particular properties or attributes of a variable are 
given a numerical value. Educational researchers, whatever their interest, will invariably 
be concerned with measurement; either how to measure variables in their own study or 
how to interpret other researchers’ measurements. 



A statistical variable is one which is measured or enumerated (counted). When 
interest focuses on physical measurements, such as the height or weight of an individual, 
the indications as to what should be done and what measurement scales should be used 
are obvious. In educational research, however, the measurement of statistical variables 
such as attitude score, verbal reasoning scores and achievement scores is not so obvious. 
When designing a study a researcher has to operationalize abstract ideas or concepts of 
interest. For example, a consideration of the concept of self-image includes defining the 
term and how it will be observed or measured so that numerical values for the 
constructed statistical variable self-image can be recorded. A student’s self-image cannot 
be measured directly as can, for example, his or her height. Instead it is measured 
indirectly by the researchers’ constructed variable. The extent to which constructed 
variables do actually measure the concept of interest, which in this instance is that of self-
image, is referred to as the construct validity of the measure. This idea was referred to in 
Chapter 1. 

It is important to recognize that measurement, in this example, relates to an attribute of 
the student which is abstract. Measurement in education is a means whereby abstract 
attributes are quantified and used to describe, for example, the amount of self image, 
ability, achievement, or understanding possessed by an individual. The development of 
educational and psychological measures with construct validity presents a challenge to 
educational researchers. 

Whenever an attribute is quantified, that is when a number is used to quantify the 
amount or type of an attribute (variable of interest), then the statistical variable so formed 
is classified according to the following convention: 

 

As a discerning parent what variables might you consider important in 
choosing a new secondary school for your daughter? 

The following variables might be included in a check list when visiting the school: 

– Distance from home (kilometres) 
– Whether sibling attends the school (yes/no) 
– State of school buildings (general appearance of buildings is excellent, average, poor) 
– Position of school in Education Authority league tables of school examination results 

(e.g., 1, 33, 56) 
– Denomination of school (e.g., Roman Catholic, Jewish, Church of England) 
– Average turn-over time for staff (time staff remain in post in months) 
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– Number of pupils in sixth form (e.g., 120) 

Each of these variables represents a property or characteristic of a school which is likely 
to vary from one school to another. Variables may represent characteristics of objects 
(such as schools), or attributes of individuals (height, sex and exam score) or other 
entities. 

Numbers are used to represent properties of variables and impart information about 
them. When used in this way the values associated with each variable are called data. 
One such piece of information is a datum. Many observations in education involve 
categorizing and measuring data. An important first distinction to make when examining 
data is to decide whether observed quantities have been obtained by enumeration (which 
is categorical or frequency data) or by measurement (which gives quantitative data). 
This distinction has important implications for the choice of statistical methods used. 

Categorical Variables 

When observations are categorized, they are not merely placed indiscriminately into 
categories; qualitative judgments based on similarities and differences are made. 
Numbers which are used in a qualitative way have no more than a labelling role. A 
number used in a categorical labelling role carries no implied order, amount or quantity 
and is used simply as a description. For example, each school might be categorized by 
religious denomination: 1 representing Roman Catholic; 2 representing Jewish; 3 
representing Church of England; etc. Numbers are used here to label observations about 
the categories of schools. The category variable in this case ‘school denomination’, is 
referred to as a nominal variable. This qualitative use of numbers is the most limited 
form of data classification. It simply takes advantage of the property of identity, and the 
assignment of numbers is arbitrary. The only rule to apply is that objects must be 
assigned to categories on a logical basis. For example, Jewish schools do not belong to 
the same denominational class of schools as Roman Catholic schools. The fact that 
Roman Catholic schools are assigned a value of 1 and Jewish schools a value of 2 is 
purely arbitrary and these numbers cannot be used in any meaningful mathematical way. 

Whereas ‘sibling attends the school’ and ‘state of buildings’ are also categorical type 
variables, the latter variable is different from the other nominal variables because it 
implies ordering of qualitative difference. A school may be judged according to how 
much (more or less) repair work is required. ‘State of buildings’ is an ordinal variable. If 
schools were classified as belonging to one of the three ordered categories of state of 
buildings (excellent, average, poor) then this would be an example of an ordered 
category type of variable with the number 1 perhaps representing an ‘excellent 
condition’ category, 2 representing an ‘average condition’ category and 3 a ‘poor 
condition’ category. The assignment of numbers to categories in this instance reflects the 
order of the qualitative difference.  

The statistical variable ‘position of school in league tables of school examination 
results’ is an ordinal variable of individual rank type, rather than of category rank type, 
because each school has an individual ranked position (or possibly a joint ranking). A 
school’s individual ranked position might, for example, be based on the percentage of 15-
year-old pupils achieving 5 or more GCSEs at grades A to C. Every school could be 
listed in order using the percentage of achievers as the criterion. For example, in 
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November 1994, the School League Table of Examination results was published. 
Selecting at random Bolton Education Authority in the NW of England, and excluding 
maintained special schools and independent schools, the school in the Authority with the 
lowest rank position had a percentage pass rate of 21 per cent and the school which was 
ranked the highest had a percentage pass rate of 66 per cent. 

In this example, numbers are used to label and to rank in order individual schools. 
Ranking of individual schools in this way necessitates the availability of examination 
information from each and every school. Similar to ordered categories, the numbers 
assigned to individually ranked schools serve as labels and show only differences in 
qualitative order. 

What do you think the statistical variable ‘position of school in league 
table’, based on the percentage of 15-year-olds achieving 5 or more 
GCSE passes at grade C or better, is meant to measure? What do you 
think about the construct validity of this measure? 

It is possible that examination passes are thought to be a measure of school performance. 
If this is the case one should consider precisely what is being measured or counted and 
then ask yourself what other factors might account for the number of examination passes 
in a school. 

A non-exhaustive list is as follows: 
the ability of pupils on entering the school; 

the number of pupils entered for exams and the number of exams taken; 

the comparability of exams in terms of difficulty; 

the effectiveness of teaching; 

the school examination policy, for example, a school that only enters pupils 
who are thought to have a good chance of obtaining at least a grade C. 

As numbers are assigned to individual schools on the basis of ranked position, these 
numbers should only be used in certain ways. For example, non-parametric or 
distribution free statistics should be used rather than parametric statistics. These terms 
will be explained in more detail in later chapters. For the time being, it is sufficient to 
consider non-parametric statistics as statistical procedures which do not depend upon 
certain distributional and measurement assumptions. Non-parametric statistics are often 
used when data are considered to be categorical, that is when statistical variables are at 
the nominal or ordinal level of measurement or when a data distribution is not equally 
dispersed around its mid-point. 

Ranking scores is a simple procedure which sometimes causes confusion. Scores are 
ranked in terms of their size, which establishes their relative location. Each score is 
assigned a rank of 1, 2, 3, 4, 5, etc, in order of its magnitude. It does not matter whether 
the smallest score is given the highest or lowest rank unless the value has some intuitive 
meaning. For example, a rank position of 1st in a school league table makes most sense if 
it is related to the school which has the best examination pass rate. Sometimes schools 
may achieve the same examination pass rate. When this occurs the schools share a ranked 
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position. If two schools have the same pass rate they are both assigned a rank, but this 
rank is calculated as the average of the ranks that each of the schools would have 
occupied. 

To use a simplified example, consider the following list of numbers of A-level passes 
achieved at one sitting for 10 schools: 

School A B C D E F G H I J 
No. of A-level passes 29 18 0 56 52 60 18 52 85 52

To make these data more meaningful they are first displayed in a table in order of 
magnitude with the highest rank placing given to the school with the greatest number of 
A-level passes.  

Table 2.1: Ranking of A-level passes by school 
School Number of A-level passes School rank
I 85 1
F 60 2
D 56 3
E 52 5
H 52 5
J 52 5
A 29 7
B 18 8.5
G 18 8.5
C 0 10

The three schools with 52 A-level passes in Table 2.1 would have been assigned ranks 4, 
5 and 6 because they came after rank score 3 and are the next three possible ranked 
places. It would be unfair to give either school E, H or J a higher ranked position because 
they all obtained 52 A-level passes. These schools are therefore given the average of the 
three ranks, i.e., 5. When scores are equal they are referred to as tied scores. Similarly, 
the two schools with 18 A-level passes are given a rank of 8.5, the average of the two 
ranks 8 and 9. 

Quantitative Variables 

Up to now the use of numbers for categories and ranks only has been considered. 
Numbers, however, can also be used quantitatively to measure amount. Technically, 
measurement is when numbers are assigned to data according to a set of logical rules. 
Numbers when used for measurement make use of the logical properties of the number 
system and therefore can be manipulated mathematically. 

The number system is entirely logical and numbers are unique, in the sense that no 
two numbers are exactly identical. Numbers also have the properties of order, additivity 
and can be subtracted, multiplied or divided. Whenever numbers are manipulated they 
result in new unique numbers. For example, the subtraction of one particular number 
from another particular number always yields a unique number. The usefulness of 
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numbers in measuring phenomena is dependent upon properties that apply to the 
phenomena. It is not essential that a measurement scale has all the properties of numbers, 
but the more properties that apply to a measurement scale, the more useful that scale 
because of the more precise interpretation of meaning. 

Similar to the way in which qualitative observations are subdivided, quantitative 
observations are often subdivided into two types, discrete and continuous measurements. 
Discrete measurements are those for which possible values are distinct and clearly 
separated from one another: for example, the school variable ‘number of pupils in sixth 
form’. It is impossible to have 43.5 pupils. Discrete measurements are usually counts 
which must comprise of positive whole numbers called integers. 

Continuous measurements are those which can, at least in theory, assume a 
continuous and uninterrupted range of values. Examples include the variables ‘distance 
from home to school in kilometres’ and ‘the average point score of pupils aged 16, 17 or 
18 entered for 2 or more GCE A-levels or AS equivalent’. This latter example is in fact 
one of a number of criteria used in the compilation of national school league tables. 

2.2 Properties of Measurement Scales 

In many texts measurement scales are referred to and four scales of measurement are 
generally distinguished: nominal; ordinal; interval; ratio. Nominal and ordinal scales of 
measurement equate to categorical classification. Interval and ratio are true scales of 
continuous measurement 

Nominal Scale 

The nominal scale is used to label and hence classify observations into categories. The 
procedure adopted for forming categories should be: well defined, mutually exclusive and 
exhaustive. Numbers should not be used mathematically. Frequency counts may, 
however, be compiled for different categories. When frequency counts on two or more 
qualitative variable are tabulated the frequency table produced is called a contingency 
table. Data in the contingency table may be treated statistically, for example, by use of 
the Chi square test (see Chapter 6).  

Ordinal Scale 

The ordinal scale incorporates the properties of the nominal scale, labelling and 
classification, and in addition introduces the meaning of order—either through ordered 
categories or individual ranks. Numbers are used as labels in ordinal scales and do not 
indicate amount or quantity. It should not, therefore, be assumed that intervals between 
numbers are equal. For example, if a teacher places pupils in rank order in terms of their 
maths achievement scores, from the pupil with the highest score to the pupil with the 
lowest score, then it cannot be assumed that the difference in maths ability between 
pupils ranked 2nd and 3rd is the same as that between the pupils ranked 1st and 2nd. 
Moreover, it cannot be supposed that the pupil ranked 1st in the class has three times as 
much maths ability as the 3rd ranked pupil. Statistical tests that are based on ordinal type 
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data include Spearman’s Rho and Wilcoxon Mann-Whitney (see Chapter 7). These tests 
are frequently used with higher levels of measurement (interval and ratio) and the data 
are then ranked. 

Interval Scale 

An interval scale, in addition to labelling and ordering has the essential requirement of 
equality of units of measurement. That is, a given numerical distance on an equal interval 
scale of measurement, is associated with the same empirical distance on a real 
continuum. Interval scales are amenable to certain mathematical manipulations, such as 
addition (and subtraction). One limitation of the equal interval scale of measurement is 
that it has no absolute zero point. Numbers cannot therefore be multiplied or divided. 
Many educational tests and psychological measures such as IQ, provide data that achieve 
or approximate to this level of measurement. 

Ratio Scale 

The highest type of measurement is a ratio scale. This scale has all the properties of an 
interval scale but also has a meaningful absolute zero point where zero means no part at 
all of the quantity being measured, for example, a weight of 0 kg means no weight (mass) 
at all. Ratio scales of measurement are almost exclusively confined to use in physical 
sciences. Most statistical tests that can be used with ratio scales can also be used with 
equal interval scales so the distinction in applied statistics is not as important as is often 
emphasized.  

Example 1 

It was mentioned earlier in this chapter that a school’s individual rank position in the 
national school league tables might, for example, be based on the percentage of 15-year-
old pupils achieving 5 or more GCSEs at grades A to C. To show how conclusions 
derived from data are dependent upon measurement assumptions, an example 

based on the schools’ league table of examination results is described. For the time being 
it can be assumed that league position is meant to reflect the schools’ academic standing 
based on examination results. The school which is first in the league would be considered 
to be the most academic school and the school which is last would be considered to be 
the one demonstrating least academic excellence. 

If four schools were selected at random from the national school league table where a 
ranking at the top of the league, that is 1st position, indicates the best exam performance 

School League Position (Based on GCSE exam performance)
St. James RC (45th) 
Gill Road (55th) 
Mount Secondary (65th) 
St. John Moore (90th) 

with which of the following statements would you agree? 
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A Do you agree that St. James’ RC School has twice as good an exam performance as St. 
John Moore’s School? The St. John Moore School position is twice that (90th) of St. 
James’ (45th) in a league in which 1st position indicates a best exam performance. 

B Do you agree that the difference in academic excellence between Mount Secondary 
School and Gill Road School is the same as the difference in academic excellence 
between St. James RC School and Gill Road School? There are only 10 league places 
separating Gill Road School from both the Mount Secondary School and St. James RC 
School. 

C Do you agree that St. John Moore School is lowest in academic excellence, that Mount 
Secondary School is second, that Gill Road School is next, and St. James RC School is 
the best in terms of academic excellence? It should be observed that St. John Moore 
School has the lowest individual rank position of all four schools because lower rank 
positions are indicated by larger numbers, in this instance 90th position (the top of the 
league is 1st rank position). Similarly, Mount Secondary is ranked second from 
bottom or 65th, Gill Road School is ranked third from bottom or 55th and St. James 
RC, which has the smallest rank number 45th, is the highest individually ranked 
school. 

D Do you agree that whereas all four schools differ in academic excellence, you cannot 
say anything about their relative levels of academic excellence? The ranked positions 
of the schools shows only that the schools are not all of the same academic standard. 

These four statements correspond to four different assumptions about the 
relationship between the results of the measurement and the variable that 
is being measured. Statistical tests incorporate similar assumptions so it 
is important to understand these assumptions. What are they? 

If you agree with statement A, you are assuming that a rank position score in the 
school league table is measured on a ratio scale. 

If you agree with statement B, you are assuming that rank position in the school 
league table is measured on an interval scale. Unlike ratio measurements, a score of 0 
does not imply absence of exam performance but you are assuming that it is as easy 

to move 10 rank positions at the top of the league as it is from lower down the league 
table, that a given interval or one rank position represents an equal amount of academic 
excellence. 

If you agree with statement C, you are assuming that individual rank position is 
measured at an ordinal level. You can say nothing about the size or amount of the 
difference between two rank positions. Equal differences between rank positions do not 
correspond to equal differences between amounts of academic excellence. You can only 
infer that some schools are better or worse on the characteristic being observed—the 
school’s academic excellence in this instance. 

If you agree with statement D, you are assuming that academic excellence is measured 
at a nominal level. You are willing to place the four schools in different categories of 
academic excellence but are unwilling to state which school has a better or worse 
academic performance. 
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Many educators would not agree with the initial assumption that number of 
examination passes is indicative of a school’s academic excellence. However, if you 
accept this contentious idea then agreement with statement C and the measurement 
assumption of individual ranked scores would seem most appropriate. Many educators, 
because of the problems of construct validity, would be happier with statement D because 
it makes the fewest measurement assumptions. It does, however, also tell us the least 
about the schools. 

2.3 Practical Decisions about Measurement 

Should an underlying continuum exist theoretically, it does not necessarily mean that it 
can be measured. Such measurement depends upon the availability of a suitably sensitive 
or refined measurement device. For example, common constructs such as attitudes and 
motives may be measured by scoring individual responses on a rating scale, from say 1 to 
5. Here it would be assumed that individuals vary continuously along a continuum but on 
which one can not make direct refined measurements. Discrete measurements are 
therefore used by which individuals score either 1 or 2 or 3, etc. It is further assumed that 
individuals who score, 2 on a 5-point attitude scale are distinguishable only by the fact 
that subjects having a similar quantity of the attribute also score 2 and these subjects 
differ in amount of attitude from those who score 1, 3, 4 or 5. 

Measurement assumptions for psychological and educational tests and scales are 
different from those appropriate to physical measures such as height and weight 
(measured on ratio scales). These different measurement assumptions lead to different 
conclusions. For example, zero marks on a test of science knowledge may not mean that 
the person tested has no science knowledge (probably the test is inappropriate for that 
individual). It would, however, be valid to conclude that a measurement of zero metres 
means no height. Whereas it would be valid to conclude that the difference between a 
child that is 1.0m tall and another that is 1.25m tall is the same as the difference between 
a child that is 0.75m tall and another that is 1.0m tall, it may not be valid to conclude that 
a person who scores 4 on a 5 point attitude scale has twice as much attitude compared to 
a person who scores only 2 on the same scale. 

Different measurement assumptions, for example, the distinction between discrete and 
continuous measurements, are often over emphasized and certainly are not always clear. 
This ambiguity between discrete and continuous measures seldom matters given that the 
same statistical methods can often be used for both types of measurement, particularly if 
the discrete measurement scale has fine gradations and care is taken when interpreting the 
results. 

Attaining at least interval levels of measurement for tests and scales is a measurement 
and interpretation problem and not a statistical one. Statistics deals with numbers whereas 
the researcher has to deal with the properties underlying any numerical measurements. 
For example, interval level measures are often tacitly assumed, even when it is obvious 
that it is not realistic to do so. Subsequent statistical analysis may then yield numbers 
which in themselves are numerically correct. It is the consumers of statistical data, who 
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have to, as Hayes (1981) comments, ‘judge the reinterpretability of the numerical results 
into a valid statement about properties of things’ (p. 64). 

The researcher may interpret results as real quantities of an attribute, or simply as test 
scores, leaving readers to judge their meaning. In either case, this amounts to a problem 
of interpretation and not of statistics. It is quite possible for statistical procedures to 
produce correct numbers but ones which have no meaning whatsoever because little 
thought has been given to what is being measured and what are appropriate levels of 
measurement. Some statistical measures do lend themselves to nominal and rank order 
levels of measurement (for example, see Chapters 5, 6 and 7). Researchers should use 
these procedures if they have serious doubts about their measurement assumptions. The 
simple message here is that one should not neglect measurement issues, but at the same 
time, one should not be over concerned about attaining interval levels of measurement for 
tests and scales. The tacit assumption of interval level of measurement is often reasonable 
provided interpretations are judicious. 

2.4 Psychological Tests and Scales 

Psychological testing is a form of measurement and many tests relating to learning are 
concerned with measures of mental processes, such as intelligence, motivation, aptitude, 
knowledge and understanding. These tests are referred to as cognitive and attainment 
tests and are frequently employed by teachers and educational psychologists. Another 
category of tests concerned with, for example, an individual’s feelings, attitudes, 
personality, creativity, anxiety or identity status are generally referred to as affective or 
personality type tests. 

In practice, none of these psychological constructs can be measured directly. Instead, 
psychological tests have been designed which produce either quantitative scores or some 
qualitative diagnostic outcome. In essence, one measures what people say about their 
feelings, mental states, traits, behaviours and what they know. These statements, which 
are usually assessed on a quantitative scale, provide raw scores which are often 
manipulated using statistical techniques. Psychological test procedures may be designed 
for either individual or group administration. If individual test procedures are used, 
different test materials are administered. 

Criterion and Norm Referenced Tests 

Psychological and, particularly, attainment tests can be categorized by the way in which 
meaning is given to the raw scores. If the questions in a test represent specific material, 
such as specified knowledge or skills, and the overall test is designed to show or describe 
what an individual knows or can do, then this is called a criterion referenced test. This 
category of tests has a long history in the United States where they are called content 
referenced or domain referenced tests. Criterion tests were developed to evaluate 
objective based curricular programmes of study. The content of such tests would be 
directly related to the objectives of a programme of study and to the criteria by which 
these objectives could be judged to have been met. Test scores would indicate what had 
or had not been achieved in a specified domain or following a specified programme of 
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study. More recently this path has been followed by the national curriculum development 
and testing programme in the United Kingdom. 

The other major category of tests based in the psychometric or psychological 
measurement tradition are norm referenced tests. The emphasis in this type of test is on 
relativity of an individual’s overall score. An individual’s score is interpreted relative to 
those of other individuals. A normative test score provides an indication of an 
individual’s standing relative to other individuals, for example an individual’s IQ 
(intelligence quotient) score. Such a score would be interpreted by comparing it with 
those of a representative sample of individuals. The researcher has to decide what is 
meant by representative. Usually this refers to individuals of similar age, gender and 
perhaps ethnicity. Representative sets of scores for defined groups of individuals, for 
example, age group 6–7 years, are usually presented in a test standardization manual and 
are referred to as tables of norms. Many norm tables present information about the 
standard reference group as the percentage of individuals in the reference group who 
score lower than the particular individual’s test score to which reference is being made. 
Standard reference scores presented in this way are called percentile norms. 

As with a standardized test score from a normative test, a single attainment mark from 
an educational test seldom has an absolute meaning. The significance of a datum point 
(single mark) can best be interpreted in the context of other marks or scores and in that 
sense is relative. These other marks may represent other pupils’ scores on the same test or 
an average normative reference score for a particular age group. A single datum point or 
achievement score for a pupil acquires meaning only when it is interpreted together with 
other data such as achievement scores obtained by individuals on the same test or when 
compared with achievement norms. To help assess the relative importance of a particular 
datum point or score one can examine a data set graphically, paying particular attention 
to both the spread of scores and summary measures of central tendency such as a mean or 
median. Measures of spread or dispersion and central tendency are examples of 
descriptive statistics and are helpful when summarizing a distribution of scores. Any 
individual score can then be compared with the average for that score. 

Choosing a Standardized Test 

Most of the tests referred to so far are existing tests which have been carefully developed 
and evaluated—what are called ‘off the shelf’ tests. Helpful sources of information about 
these tests are the Buros Mental Measurement Yearbooks produced about every five 
years and test publishers’ catalogues. Standardized, ‘off the shelf’ tests are published with 
norm tables and validity and reliability coefficients. Choice of a test should relate to the 
variables and underlying constructs one wishes to measure. One should consider both the 
characteristics of the test, the characteristics of the testees and how the test information 
will be used—to show change, for selection or prediction. For whatever purpose a test is 
selected, it should be valid and reliable. If a normative test is used it should have 
adequate norms, and if a criterion test is used the test content should be relevant to the 
purpose of testing, for example, in the case of an achievement test, it should be relevant 
to learning objectives. A good test manual should provide most of this psychometric 
information. A straightforward guide to selecting the best test is given by Kline (1990) 
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and a clear description of how to measure performance and use tests, including advice on 
test construction and interpretation is given by Morris, Fitz-Gibbon and Lindheim, 1987. 

Interpretation of Validity and Reliability 

Arguably, the most important aspect of a test or scale is its validity (see Chapter 1). Here 
the earlier description of validity is elaborated upon to determine whether a test measures 
what it is supposed to measure and to include the idea of justification of inference. For 
example, it might not be known precisely what a test or scale is measuring, but there 
might be independent evidence that if the test is used for selection or prediction, the test 
scores are known to be related to a criterion of interest. It might be, for example, that a 
potential employer asks job applicants to complete a computer programming aptitude test 
knowing that high scores on the test are related to job success. Here, the validity of the 
inferenee (generalization) justifies the appropriateness of the test. It was noted in Chapter 
1 that construct validity encompasses other forms of validity. These other forms of 
validity, concurrent, predictive and content validity are described briefly below. 

Content validity is a descriptive indication (not given as a statistic) of the extent to 
which the content of the test covers all aspects of the attribute or trait of interest. 

Predictive validity is usually measured by a correlation coefficient such as the 
Pearson Correlation Coefficient ‘r’ which has possible values ranging from −1 through 0 
to +1. Higher correlation coefficients indicate better validity. The predictive validity of a 
test is the extent to which the test score predicts some subsequent criterion variable of 
interest. For example, the predictive validity of A-level examinations is the extent to 
which A-level scores achieved by candidates predict the same candidates’ subsequent 
degree performance. In this example, A-level score is the predictor variable and degree 
performance is the criterion variable. As it happens, on average, the predictive validity of 
A-levels is poor, with r being about 0.3 (Peers and Johnston, 1994). Some authors claim, 
for example, Kline (1990), that any correlation greater than 0.3 is an acceptable 
coefficient for predictive validity of a test. This seems rather low, and only about 10 per 
cent of variation in the criterion variable would be accounted for by a predictive test with 
such a low validity coefficient. It is suggested that the minimally acceptable coefficient 
should be nearer 0.4. An obvious question to consider is, whether a test that accounts for 
only a small proportion of variation in the criterion is of any use as a predictive test? 
Again this judgment needs to be made by the researcher. 

Concurrent validity is similar to predictive validity but both the predictor and 
criterion tests are taken at the same time. If an end-of-course mathematics achievement 
test was constructed by a teacher and given to a group of students and at the same time a 
standardized numeric ability test was administered, the correlations between the two test 
scores would provide a measure of the concurrent validity of the mathematics 
achievement test. It is suggested that correlations of at least 0.5 are required for 
acceptable concurrent validity. 

Construct validity embodies both content and concurrent or predictive validity. It 
represents all the available evidence on the trustworthiness of a test. Strictly, validity and 
trustworthiness refer to the inferences drawn from a test rather than to a property of the 
test itself. Whenever validity coefficients are given, sample sizes on which the validity 
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coefficients were based should be checked. Sample sizes of at least 100 are required for 
satisfactory validity. 

Another important aspect to consider whenever choosing a test is test reliability, or 
the consistency of a test (see Chapter 1). Whenever one obtains educational or 
psychological test scores such as aptitude, personality, intelligence or achievement 
measures, these are what are called observed scores. These observed scores can be 
thought of as consisting of two parts, a true score component reflecting the amount of 
attribute of interest and a nuisance or error component which reflects various sources of 
error, such as measurement error, transcription error, anything in fact which is not the 
true score component. It can be stated that: 

Observed score=true score+error score   

The reliability of an observed measurement depends upon the relative proportions of the 
true score and error score components. When the error portion is large in comparison to 
the true score, the reliability is low. To increase test reliability all sources of error should 
be reduced. As with validity, measurement reliability is given by a reliability coefficient 
which is often presented as a correlation coefficient, ‘r’. Unlike a Pearson correlation 
coefficient which can range from −1 to +1, the reliability coefficient ranges from zero, 
total absence of reliability, to +1, perfect reliability. An obvious question to ask, but not 
easy to answer, is how large is a good reliability coefficient if the maximum is r=+1. 
Instruments designed to measure attitudes and personality traits (affective type tests) tend 
to have lower coefficients than measures of achievement or cognitive ability (cognitive 
type tests). For affective type tests coefficients as low as r=0.7 are acceptable whereas 
carefully constructed and standardized cognitive tests would be expected to have 
coefficients above r=0.9. 

There are three general types of test reliability measures, internal consistency, 
stability and equivalence, each appropriate for different circumstances. These reliability 
coefficients are summarized in Table 2.2.  

Table 2.2: Reliability coefficients 
Coefficient of 
reliability 

What is measured Comment 

Internal 
consistency 

Extent to which all test items 
measure the same construct. 

Reliability of a scale can generally be increased 
by increasing the number of items in a scale 
and by decreasing their homogeneity, that is the 
interrelatedness of items. 

Split half 
measured by the 
Pearson 
correlation ‘r’ 

Two scores are calculated for 
each person on a test. The 
Pearson correlation between 
these scores on each half of the 
test gives a measure of internal 
consistency. 

This procedure effectively reduces the number 
of items on a test by 50 per cent. The 
Spearman-Brown Prophecy Formulae can 
correct for this (see Cronbach, 1990). 

Cronbach’s 
Alpha 

A measure based on the ratio of 
the variability of item scores to 
the overall score variability. 

Requires that all test items have equal 
variability, that all items are equally 
interrelated and that a single construct is 
measured. 

Kuder- A measure of the ratio of item Equivalent to Chronbach’s Alpha, and requires 
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Richardson K-
R 20 

variability to total score 
variability. Equivalent to 
Cronbach’s Alpha but modified 
for dichotomous scoring. 

the same assumptions. Used when items are 
scored dichotomously, i.e., 1 or 0. The K-R 21 
is a simplified version of the K-R 20 formulae 
but makes the additional assumption that all 
items are of equal difficulty. 

Stability The correlation between 
measurements taken on two 
occasions. 

Not useful for attributes that are unstable, e.g., 
measures such as anxiety. 

Coefficient of 
reliability 

What is measured Comment 

Test-retest measured by 
an appropriate correlation 
coefficient, e.g., Pearson 
‘r’or rank correlation. 

Correlation between scores on the same 
test administered on two separate 
occasions. If the time interval between 
testing is no longer than 2 weeks this is 
often called coefficient of 
dependability (see Cattell et al., 1970). 

Always tends to overestimate 
test reliability. 

Equivalence The correlation between scores on 
parallel tests. 

Alternate form measured 
by an appropriate 
correlation. 

Correlation between two parallel forms 
of the same test (different items in each 
test) given on two separate occasions. 
May be called coefficient of 
equivalence. 

Parallel forms of a test 
eliminate possible memory 
effects and also have the 
advantage of covering an 
entire domain of interest 
because more items are used. 

Inter-rater measured by 
suitable statistics: per cent 
agreement, Kendall’s 
coefficients of 
concordance W, and 
Kappa K. 

The equivalence of independent 
observer rates judgments of an attribute 
or behaviour. 

The effect of agreements by 
chance can be corrected by use 
of the Scott (1955) coefficient. 

The Standard Error of Measurement of a Test 

The idea of sampling error or sampling variability was introduced in Chapter 1. We now 
consider extending this idea to look at the standard error of any set of measurements. 
Expressed simply, the variability of a set of measures is called its standard error of 
measurement (s.e.m.), and represents an index of how widely measures vary. The larger 
the variability, the larger the s.e.m., the less accurate is the measure. The idea of standard 
error is a very important statistical concept which will appear on many occasions 
throughout this book. This concept of standard error applies to sample statistics, as well 
as to scale measures and test scores. For example, a sample average has a standard error, 
that is the standard error of the mean. This idea was presented in Chapter 1 where it 
was called the sampling error (variability) of a sample average. 

To review, suppose there was a large population of school children—over 1000—and 
a random sample of 20 children was taken, it would be possible to calculate the average 
or mean reading score for this sample of 20 children. Call this figure mean 1. We could 
continue taking random samples of 20 children calculating the mean of each sample until 
there were 100 sample means. There would now be, mean(1)…mean(100), and the mean of 
these 100 sample means would be a reasonable estimate of the population mean reading 
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achievement. Each of the sample means would of course vary to some extent around the 
true population mean and this variability of the sample means or sample averages is the 
standard error of the mean. This gives an indication of the size of the error one is likely to 
make if any one sample mean is used to estimate the population mean. 

As with the standard error of the mean, a measurement scale or test also has a standard 
error and is simply called the standard error of the test or scale score. This is often 
reported in test manuals. It represents the accuracy of a test score: the larger the standard 
error of measurement for a scale, the less accurate is the scale in measuring the construct 
of interest. This measurement is provided so that researchers and other test users do not 
place undue significance on small differences in test and scale scores. Often one wishes 
to establish that there is a certain degree of confidence correctly called a ‘confidence 
interval’. It is introduced in Chapter 4. 

The standard error of measurement (s.e.m.) of a test and the test reliability (rtt) are 
closely related: 

(s.e.m. of test)2=(variability of observed scores)×(1−test reliability)   

In notational form, the relationship between s.e.m. and test reliability is, 
s.e.m.2=σ2(1−rtt)   

where: s.e.m. is the standard error of measurement of the test 
σ2, is a Greek letter, sigma squared, the variance of the total scores on the test. 

Variance (variability of scores) is explained in Chapter 3. 
rtt is the reliability of the test, that is a correlation coefficient. 
The s.e.m. of a test is often more informative than the reliability of a test because test 

reliability is likely to change when the test is administered to different groups (groups are 
likely to have different variances) whereas s.e.m. is less likely to change from group to 
group (Cronbach, 1990). 

A note of caution is introduced at this point. Most of what has been stated about 
reliability and standard errors so far applies to all raw test scores and to some 
standardized test scores. Whenever raw scores are changed or transformed, caution is 
required in the interpretation of any statistics that are the results of computations done 
with these transformed scores. Further discussion of this topic is delayed until Chapter 5. 

Summary 

Measurement is the process of representing quantitative variables with numbers. It is an 
essential component of educational and psychological research because constructed 
variables such as aptitude, motivation, anxiety and knowledge cannot generally be 
observed or measured directly. Instead tests and scales which are indirect measures of 
underlying attributes, predispositions and concepts are used. The number system used in 
quantifying test and scale scores in itself is entirely logical. It is the application and 
interpretation of numbers based on certain measurement assumptions which are often 
questionable, and at worst the system is not even considered by researchers. 

Assessment of a test’s validity and reliability and standard error of measurement 
enables a researcher to make judgments about the appropriateness and consistency of 
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measures and hence their trustworthiness. Validity should be seen more as an issue of 
validity of inference or generalizability rather than as a property of a scale per se. It is the 
appropriateness of the interpretation of measurement results which is important. 
Researchers and other readers may over-interpret results, that is, generalize findings 
beyond the context of a particular study. Researchers when writing reports and papers 
should be aware of this and use coefficients of validity, reliability and standard errors 
when reporting data derived from tests and measurement scales. 

One point often overlooked is that validity and reliability are not synonymous; it 
should be realized that valid measures are likely to be reliable but reliable measures may 
not always be valid. For example, a clock may be reliably five minutes fast, but it is not 
giving you the true time. Similarly a measurement scale may be consistent in measuring 
something it was not designed to measure. 

Finally, for a more detailed discussion of educational measurement the reader is 
referred to Ebel and Frisbie’s (1986) text on Essentials of Educational Measurement, and 
useful reviews of criterion and norm referenced testing are provided by Pilliner (1979) 
and Murphy and Torrance, (1988). An accessible and introductory guide to the use of 
psychological tests is The British Psychological Society’s Psychological Testing Guide 
(1990) which contains an introduction to testing, practical advice on what to look for in 
tests and further information on how to proceed.  
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Chapter 3 
Initial Data Analysis 

 

This chapter introduces the important, but often overlooked, topic of initial data analysis 
(IDA). The aim of IDA is to process data so that its quality can be assessed before any 
further analysis is undertaken. There are three basic steps in IDA, data processing, data 
scrutiny and ‘cleaning’, and data description. Data processing involves coding and 
entry of the data into a data set with a format suitable for subsequent exploratory analysis. 
Data scrutiny and cleaning means checking on the quality and structure of data and 
correcting any errors due to recording and processing. Data description involves 
summary and display of the main characteristics of data distributions. 

It is crucial to know the integrity of your data and to be confident that any data 
recording and processing errors have been identified and remedied. Simple frequencies, 
that is score counts for variables and range statistics, minimum and maximum values, 
will reveal any odd data values. A listing of cases will enable those cases with odd values 
to be checked against raw data as recorded on questionnaires or coding sheets. After data 
processing and cleaning, underlying distributions of variables may be examined using 
data visualization techniques. The main features of the data can then be summarized 
using appropriate descriptive statistics and possible statistical models identified. 

Concise and simple data presentation is essential for communication of research 
findings. Examples include: barcharts, stem and leaf and box and whisker plots, 
histograms and frequency tables. These represent a few of the many possible data 
visualization and presentation techniques available, most of which are illustrated in later 
sections of this chapter. 

3.1 Data Processing 

After having collected or been given some data preliminary considerations should 
include: 

• Close examination of what exactly has been measured, that is, number of observations 
and number of variables. You should also consider whether numbers used for 
statistical variables represent nominal, ordinal, interval or ratio levels of measurement. 
It should be stressed that taking numbers at face value without consideration of how 
the data were obtained can lead to wasted time in data processing and at worst 
misleading results. 



Also check whether the variable measured is appropriate for the construct of 
interest. For example, the construct ‘social class’ may have been measured by 
asking respondents what newspapers they read regularly. Certain newspapers are 
given scores which are equated with higher or lower social classes. You should 
ask yourself whether this measure of social class is likely to have any construct 
validity. 
This initial scrutiny of the raw data provides a second opportunity, the first being 
at the design stage, to consider whether all the data collected are required for 
subsequent statistical analysis. It is remarkable how often researchers collect 
information which is not central to the purpose of an investigation. It is preferable 
to have a smaller amount of data of high quality than a large amount of ‘dirty’ 
data, that is data which is incomplete or illegible. 

• Once the criteria of utility and appropriateness have been established it is advised to 
consider exactly how data were recorded. Ask yourself, were questions ticked or 
circled by respondents? Were numeric values entered by the researcher? Consistency 
is important. For example, either integers (whole numbers) should be used throughout 
(don’t change from case-to-case) or values should be recorded to the same number of 
decimal places. Make sure you can distinguish between missing values—no value 
recorded, out of range values—a value recorded but known to be impossible, and for 
questionnaire data, ‘don’t know’ and ‘not applicable’ responses. 

Beware of problems when data from different sources are combined into one data 
set. The same variable may have been measured in different ways, for example, 
by asking slightly different questions or recording to a different number of 
decimal places. 

• Consideration of what roles variables have in the overall study design is important. For 
example, whether a nominal variable was used as a stratifying factor in a sample 
design or whether a continuous variable will be turned into a categorical variable and 
used for stratification. A stratification variable or stratifying factor is a variable that 
is used to separate the target population into a number of groups or strata where 
members of each strata have a common characteristic, such as stratification of 
postgraduate students by fee-paying status, stratum i) UK fee-paying status; and 
stratum ii) Overseas fee-paying status. 

Similarly, a variable may be used as a controlling factor in an experimental 
design, as a covariate, or as a blocking variable in a factorial design. The variable 
acting as covariate would need to be a continuous measure and the blocking 
variable a categorical variable. In some designs it is important to distinguish 
between response (outcome) variables and explanatory (independent) variables. 
In a regression design, ‘A-level points score’ may be an explanatory variable and 
‘degree performance’ the response variable (sometimes called the criterion 
variable in regression analysis). More complex experimental designs, such as 
repeated measures and nested designs, may require the data to be entered in a 
particular format. You should consult appropriate manuals, such as SAS or SPSS 
Procedure Guides, for the statistical analysis procedure that you are using. 
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Coding data 

After preliminary considerations you should decide how data will be coded so that it can 
be analyzed. The initial data analyses should enable obvious errors, omissions, or odd 
values which may be errors or valid outlying values to be identified. Thought should be 
given to the choice of the variable format. That is whether the value for a variable is 
numeric or character and the number of columns that each variable occupies. 

It is helpful, for each data set, to construct a data coding sheet which contains the 
following summary information: name of researcher, data set name, date collected, and 
total number of cases/individuals. For each variable the following information is 
required: 

• full variable description; 
• short variable name (up to 7 characters for use in statistical programmes); 
• column format for variable (number of columns needed including a column, if required, 

for the decimal point); 
• possible variable range (minimum and maximum values); 
• values for missing data (Full-stop (.) for missing numeric values and a blank for missing 

character variables—these are the SAS system default values); 
• it may also be helpful to have ‘labels’ for nominal variables. For the variable religion, 

1=Jewish; 2=Roman Catholic; 3=Church of England; for the variable sex, 0=Male and 

1=Female. 

If the data on children’s reasoning ability is to be analyzed using statistical programmes 
such as SAS or SPSS it needs to be coded that is numbers need to be assigned to

Example 3.1 

Data collected by psychologists who were investigating the relationship between 
children’s reasoning ability, age and social class (SES), is shown in Table 3.1. 

Table 3.1: Data for children’s age, reasoning ability and social class 
Case Age (yrs) Sex SES Raven Score (reasoning) 
Henry Forbes 7 0 1 1 
Joyce Bishop 9 1 2 1 
Jane Hopper . 1 1 2 
John Kylivee 10 0 1 9 
Louise Green 7 1 1 6 
Jenna Maccoby 9 1 1 3 
Justin Langholm 8 0 1 1 
Heather Lochlin 7 1 1 1 
Sian Jones 10 1 . 1 
Susan Ishihara 11 1 2 1  
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particular values of variables. A coding sheet to accompany the children’s reasoning 
ability data set is shown in Figure 3.1. 

It is preferable if each case has a unique numeric case identifier—case number, patient 
reference number, or hospital number. This number may be generated by the researcher, 
or existing case numbers may be used provided they are unique. If you are creating two 
or more data sets for the same individuals the case identifier should be the same so they 
can be easily combined if required. A unique numeric case identifier simplifies editing of 
the data should any cases be identified which have odd or out of range values. SAS is 
particularly flexible when it comes to importing, exporting or combining data sets. 

Particular care should be taken with the coding of nominal variables and missing data. 
Categorical variables which are nominal serve to label values only and are therefore 
arbitrary. In this example, the variable gender is coded 0 for male and 1 for female and 
socioeconomic status coded 1 for low SES, and 2 for high SES. Numeric values used in 
this way act simply as labels and should not be used in any subsequent computations as 
they would give nonsense results. It is suggested that missing data is coded as a period 
(full stop) (.) for a numeric variables and a blank space for character variables. These are 
the SAS default options. The advantage of using these default options is that no 
additional definition of missing values is required (unless you choose to specify types of 
missing or non-valid data). Similarly, if different categories of missing data are to be 
coded, ‘don’t know’, ‘not applicable’, and ‘not valid’ then these should be assigned 
numeric values which are treated as indicators and should not be used in a numeric way 
in analyses (you may of course wish to count them).  

RESEARCHER: Joan 
Baron 

    D/O/C: 29/11/94 

DSN: ‘Child1.dat’*     NUMBER OF CASES =10 
Variable Variable 

Name 
Format Column 

Begin 
Column 

End 
Var 

Range 
Code 
Miss 

Case id caseid 3 1 3 1–10 . 
Age in years ageyrs 2 5 6 5–11 . 
Sex sex 1 8 8 0–1 . 
SES ses 1 10 10 1–2 . 
Raven score raven 1 12 12 1–7 . 
*Note the data set has been given a name DSN=child1.dat, the .dat extension is used 
throughout this text to denote a data file. 

Figure 3.1: Coding sheet for children’s reasoning 
ability data set 

Once data has been coded (often questionnaires are designed pre-coded so that data can 
be entered directly from the questionnaire without first having to enter it onto a data 
coding sheet) it is then entered into a computer data file. There are two options for this 
stage of data entry: 
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• Use of a dedicated (belonging to a particular statistical software programme) data entry 
programme to create a specially formatted data file, for example, use of 
SAS/INSIGHT programme editor or SPSS data editor. 

• Use of a DOS Text editor (or similar editor) to produce an ASCII text file containing all 
the data. 

The second option is illustrated here because it is of more general utility. The advantage 
with creating an ASCII text file for your data is that you produce an exportable data file 
that can be read by most statistical programmes and spreadsheets. Some statistical 
analysis packages have their own dedicated data entry programmes. These are useful if 
you intend using just that particular software package (although some do have facilities 
for producing ASCII text data files). A specially formatted data file produced by a 
dedicated data entry programme can only be used by that particular software package. An 
SPSS data file cannot be read directly by SAS or ML3E statistical programmes. In 
addition, use of dedicated data entry programmes requires you to have to learn another 
set of data entry instructions. 

Saving Data in a Computer Data File 

Data in a computer data file are usually arranged in a matrix consisting of rows and 
columns. For each subject or case, there is one row or line of data (it is possible to have 
more then one row of data per case). The columns of data represent variable(s). Usually 
there is more than one variable, in which case it may be helpful to separate different 
variables by a blank column. This format facilitates checking of the data file. When there 
are many variables it is better to omit the blank space because more variables can then be 
fitted onto one line. However, it is not a problem if there are more variables than there are 
spaces on a line. The recommended maximum is 72 columns of data per line. This 
suggested restriction is so that a whole row of data can be seen on a computer screen at 
once. Individual cases need not be limited to the 72 columns. If a case consisted of 130 
columns of data the first 72 characters would occupy the first 72 columns on line one of a 
data file and the remainder of 58 characters would occupy the first 58 columns on the 
second line of the data file. Similarly, the second case would occupy lines three and four, 
in this example there would be two lines of data per case. Appropriate data format 
statements could be given to ensure that SAS or SPSS reads two lines of data per case.  

Example 3.2 

An ASCII data file for the children’s reasoning ability data set, DSN=child1.dat, is 
shown in Figure 3.2. This data was entered with a DOS text editor. Any text editor that 
can produce an ASCII text file would however be suitable. (Beware, some text editors 
add control characters to the end of a file and this can cause problems when the text data 
file is read by your statistical analysis programme). 

We can see that there are 10 rows in the data file child1.dat, one row per case, hence 
10 cases are represented. For each case there are 5 variables, each variable is 

separated by a blank column The first variable here ‘caseid’ always occupies columns
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1–3. A blank column separates this variable from the second variable, ‘ageyrs’ which 
always occupies columns 5–6. The variable ‘sex’ occupies column 8, the variable ‘ses’ 
occupies column 10, and the variable ‘raven’ occupies column 12. If we count ‘caseid’ as 
the first variable, then the first case has a value of 001 for the first variable, a value of 07 
for the second variable, 0 for the third, 1 for the fourth and 1 for the fifth.  

001 07 0 1 1 
002 09 1 9 1 
003 . 1 1 2 
004 10 0 1 9 
005 07 1 1 6 
006 09 1 1 3 
007 08 0 1 1 
008 07 1 1 1 
009 10 1 . 1 
010 11 1 2 1 

Figure 3.2: Example of a data file, data set 
child1.dat 

The illustrated data set in Figure 3.2 is an example where a fixed format data entry 
procedure is used, that is, a fixed number of columns specified for each and every 
variable. This gives a fixed number of columns in total per case. Variable formats are 
possible but tend to be problematic when data sets are combined. Generally it is advisable 
to use a fixed format. 

Data Verification 

After data has been coded, typed into a suitable editing or data entry package and saved 
as a data file the next step is data verification. This means the data input procedure is 
checked for transcription errors. If possible, the data should be re-entered and any 
differences between the two versions of the data set identified and checked against the 
original data. A convenient procedure in SAS is PROC COMPARE which compares the 
values of variables in two data sets and can provide information on differences found for 
each observation and the number of variables in both data sets that were found to have 
unequal values. 

The SAS System 

In the following section the basic structure of the SAS system (Statistical analysis 
system) is introduced and the use of the SAS procedure PROC COMPARE to verify a 
data set is illustrated for the PC version of SAS. 

The SAS system, which is available on mainframe and personal computers, is a 
software system for the modification and statistical analysis of data. A great advantage of 
the SAS system is its dual function of offering both extensive ‘off the shelf’ statistical 
procedures and a high-level programming language capability. This later facility means 
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that virtually any manipulation and analysis of data is possible thereby making the SAS 
system a very flexible and powerful data analysis system. 

Statistical analysis of data using the SAS system usually takes place in three simple 
steps: a data step, a procedure step and an output step. First you create a SAS data set 
from your own raw data. This is the DATA step. You then analyse your data using any of 
the appropriate statistical procedures. This is the procedure or PROC step. Finally the 
results of your analysis are produced and directed to an appropriate location such as your 
monitor screen or a computer file. This is the output step. Schlotzhauer and Littell (1987) 
provide a straightforward guide to elementary statistical analysis using the SAS system. 
Spector (1993) presents a very readable problem-based introduction to programming 
using the SAS language. 

SAS Data Step 

Any data that is to be analyzed using SAS software, for example, the data set on 
children’s reasoning ability (see Figure 3.2), has to be turned into a SAS data set so that 
the SAS system recognizes it. This simple procedure is called the DATA step. It has three 
parts: 

• The DATA statement which assigns a name to the SAS data set. 
• The INFILE statement which tells SAS software where the ASCII data file is located. 
• The INPUT statement which describes the data format. It declares variable names, 

assigns variables as either numeric or character and tells SAS where the variables are 
to be found (usually by column locations). 

An example DATA step for the childrens reasoning ability data set, child1.dat (see 
Figures 3.1 and 3.2) is shown: 

data child1; 
     infile 'a:child1.dat'; 
     input caseid 1–3 ageyrs 5–6 sex 8 ses 10 raven 12; 

The SAS data set created is called child1. This SAS data set name is specified in the first 
line of SAS code. The data on children’s reasoning ability is located in a file called 
‘child1.dat’ on a disk in the directory a: (specified in the second line of SAS code). The 
first variable is called caseid. It is numeric and the data values are to be found in columns 
1 to 3 inclusive. If any variable was a character variable then a dollar sign ‘$’ would need 
to be placed after the variable name (leave a blank space between the variable name and 
the dollar sign). The second variable is called ageyrs, is numeric and the data values are 
to be found in columns 5 and 6. The other variables are formatted in a similar way.  

SAS Procedure Step 

The statistical procedure illustrated here is PROC COMPARE. This procedure matches 
variables and observations in what is called the base data set, here child1.dat, with the 
same variables and observations in a comparison data set, in this example child2.dat. The 
raw data was first entered using a DOS text editor into the data set child1.dat. The data 
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was then re-entered and saved as child2.dat. Both ASCII data sets as entered are shown 
below: 

Data:child1.dat    Data:child2.dat 
001 07 0 1 1       001 07 0 1 1 
002 09 1 9 1       002 09 1 9 1 
003  . 1 1 2       003  . 1 1 2 
004 10 0 1 9       004 11 0 1 9 
005 07 1 1 6       005 07 1 1 6  
006 09 1 1 3       006 09 1 1 3 
007 08 0 1 1       007 08 0 1 3 
008 07 1 1 1       008 07 1 1 1 
009 10 1 . 1       009 10 1 . 1 
010 11 1 2 1       010 11 1 2 1  

To use a SAS procedure simply add the appropriate procedure to the SAS programme 
(colloquially termed a SAS job) after the DATA step, for example, 

data child2; 
     infile ‘a:child2.dat’; 
     input caseid 1–3 ageyrs 5–6 sex 8 ses 10 raven 12; 
proc compare data=child1 compare=child2; 
  run; 

A SAS programme that uses the procedure PROC COMPARE is presented in Figure 3.3. 
The PROC COMPARE statement is used here to check that the two data sets, child1.dat 
and child2.dat, are the same.  

0001 options nodate; 
0002 data child1; 
0003    infile ‘a:child1.dat’; 
0004    input caseid 1–3 ageyrs 5–6 sex 8 
ses 10 raven 12; 
0005 
0006 data child2; 
0007    infile ‘a:child2.dat’; 
0008    input caseid 1–3 ageyrs 5–6 sex 8 
ses 10 raven 12; 
0009 
0010 proc compare data=child1 
compare=child2 transpose nolistequal 
nosummary; 
0011 title ‘PROC COMPARE OUTPUT’; 
0012 run; 

Figure 3.3: Example SAS programme 
using PROC COMPARE 

Each line of the example programme in Figure 3.3 is explained in the following 
section. Line numbers have been added to this programme to aid explanation, these 
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should not be included in your programme (although there is a screen option to turn line 
numbers on—type ‘nums on’ on the command line, see options in the appropriate SAS 
Language guide). 

Line 0001 contains OPTION statement an NODATE, which tells SAS not to print the 
date and time at the top of each page of output. 

The first DATA statement, line 0002, tells SAS to create a SAS data set called 
‘child1’. You can call your SAS data set anything you like provided the name has no 
more than 8 characters. You should notice that this SAS statement ends in a semicolon 
(;). All SAS statements must do so. For examples, look at each statement in the 
programme. 

In line 3 the INFILE statement is used to tell the SAS system where to find the 
external ASCII data file. Here the file is on the a: directory and is called ‘child1.dat’. 
Line 4 of the programme is the format statement for the variables. There are 5 variables, 
‘caseid’ in columns 1–3, ‘ageyrs’ in columns 5–6, ‘sex’ in column 8, ‘ses’ in column 10, 
and ‘raven’ in column 12. If this fixed format is used, all cases must have the these 
variables in the same column positions in the ASCII data file. 

Lines 6–8 of the programme have the same function as lines 2–4 but this time the 
child2.dat data file is read into the SAS system. In this example there are two data steps 
because we have entered two data files (in any session, SAS can handle more than one 
data file but by default always refers to the last named data set unless an alternative data 
set name is specified). 

Line 10 is the PROCEDURE step. PROC COMPARE checks the two SAS data sets, 
child1 and child2. 

A TITLE is given to the programme output in line 11. Finally, a RUN statement is 
used in line 12. This tells the SAS system to execute the statements contained in the SAS 
procedure. To actually run the job and submit the data for analysis you can use the 
SUBMIT command on the command line or the F8 key in SAS versions 6.10 and 6.08 (or 
the F10 key in SAS version 6.04). Depending on the particular procedure you choose and 
on your SAS configuration, output is sent to the output window where it can be viewed 
and printed. 

SAS Output 

When a SAS programme is submitted a LOG file is created, and the results of the 
analysis are produced in an OUTPUT file. Note, the statistical output appears by default 
in an output screen (it can be routed direct to a printer or a computer file). The LOG and 
OUTPUT files resulting from the PROC COMPARE statement are shown in Figures 3.4 
and 3.5.  

0001  NOTE:  Copyright (c) 1989 by SAS 
Institute Inc., Cary, NC USA. USA. 
0002  NOTE:  SAS (r) Proprietary Software 
6.08 
0003  Licensed to UNIVERSITY OF Site 
0020900316. 
0004 
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0005  NOTE:  AUTOEXEC processing beginning; 
‘file is 
      C:\SASWIN\AUTOEXEC.SAS.  
0006 
0007  NOTE:  Libref MYLIB was successfully 
assigned as follows: 
0008   Engine: V608 
0009   Physical Name: A:\  
0010 
0011  NOTE:  AUTOEXEC processing completed. 
0012 
0013  1      options nodate nonumber; 
0014  2      data-child1; 
0015  3         infile 'a:ehild1.dat'; 
0016  4         input; caseid 1–3 ageyrs 5–
6 sex 8 ses 10- raven 12; 
0017  5 
0018 
0019  NOTE:  The infile 'a:child1.dat' is: 
0020   FILENAME=a:\child1.dat, 
0021   RECFM=V, LRECL=132 
0022 
0023  NOTE:  10 records were read from the 
infile 'a:child1.dat'. 
0024   The minimum record, length was 12. 
0025   The maximum record length was 12, 
0026  NOTE:The data set WORK. CHILD1 has 10 
has 10 observations and 5 variables. 
0027  NOTE: The DATA statement used 3.83 
seconds. 
0028 
0029  6     data child2; 
0030  7        infile 'a:child2.dat'; 
0031  8        input caseid 1–3 ageyrs 5–6 
sex 8 ses 10 raven 12; 
0032  9 
0033 
0034  NOTE: The infile 'a: child2.dat' is: 
0035       FILENAME=\child2 .dat, 
0036       RECFM=V,LRECD=132 
0037 
0038  NOTE: 10 records read 46 
0039   The minimum record length 
0040   The maximum record length 
0041  NOTE: The data set WORK. CHILD2 has 
10 observations and 5 variables.  
0042  NOTE: The DATA statement 
0043 
0044  10    proc compare data=child1 
compare=child2 transpose nolistequal 
0045  nosummary; 
0046  11       title 'PROC COMPARE OUTPUT'; 
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0047  12    run; 
0048  NOTE: The PROCEDURE COMPARE used 0.66 
seconds. 

Figure 3.4: Log file for the PROC 
COMPARE programme 

0001 PROC COMPARE OUTPUT 
0002           
0003 COMPARE Procedure 
0004 Comparison of WORK.CHILD1 with WORK.CHILD2
0005 (Method=EXACT) 
0006           
0007 Comparison Results for Observations 
0008           
0009 _OBS_1=4 _OBS_2=4:    
0010 Variable Base Value Compare Diff. % Diff
0011 AGEYRS 10.000000 11.000000 1.000000 10.000000
0012      
0013 _OBS_1=7_OBS_2=7:    
0014 Variable Base Value Compare Diff. % Diff
0015 RAVEN 1.000000 3.000000 2.000000 200.000000
0016           
0017 NOTE: Values of the following 2 variables compare unequal:
  AGEYRS 

Figure 3.5: Output for the PROC 
COMPARE programme 

Interpretation 

It is recommended practice to always consult the Log file first to check whether there are 
any errors attributable to mistakes in the analysis programme (variables you think you 
may have created but have not, or errors due to mistyping of variables or commands). If 
there is a programme compilation error, SAS provides a diagnostic note of this in the log 
file. For example, the following is a portion of a log file with a diagnostic error. 

0010  ERROR:  Physical file does .not exist, 
a:\child1.day. 
0019  NOTE:  The SAS System stopped processing this 
step because of errors. 
0020  WARNING:   The data set WORK.CHILD1 may be 
incomplete. When this step . 
0021  was stopped there were 0 observat ions and 5 var 
iables. 
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Here SAS is saying that the data file ‘child1.day’ does not exist on a:. When entering the 
programme the name of the data file was mistyped as ‘child1.day’ instead of ‘child1.dat’. 
This lead to a critical error and no output was produced. This however is not always the 
case. Sometimes an error is not critical and output is produced but is not likely to be 
correct or what you intended. 

Once the log file has been checked the output shouled be consulted, see for example, 
Figure 3.5. Lines 1–5 simply describe what procedure was used and what data sets were 
compared. Line 9 identifies a mismatch for observation 4, in this example this coincides 
with case number 0004 in both data sets. In lines 10–11 the mismatch is identified for the 
variable AGEYRS and the values in the base data set (child1) and the compare dat set 
(child2) are given. The absolute and percentage differences are also given. A similar 
description is given for the variable RAVEN in lines 14–15. Finally, a summary of all the 
mismatches is given in line 17.  

In this example the researcher would need to check in both ASCII data sets, 
observation 4, here case number 4, to establish which if any of the data sets has the 
correct value for this variable. The original raw data would need to be consulted to 
identify the source of the error, whether the wrong value was entered on the first data 
entry in CHILD1.DAT or at the second data entry stage when CHILD2.DAT was created. 
The same procedure would be followed for case 7, this time examining the variable 
RAVEN. 

3.2 Data Cleaning 

After data verification and editing of any data input errors, the next step is scrutiny of the 
data structure and checking of any out of range or spurious data. To do this a listing of 
the data and a simple frequency count for all variables are required. 

Data Listing and Frequency Count 

A data listing is simply a print out of the raw data held in the ASCII data file which has 
been read into a SAS data file in a DATA step. A data listing is produced by the SAS 
procedure PROC PRINT. Scrutiny of the listing enables you to be certain that the data 
you are about to analyse is what you think it is. 

A frequency count of all variables should be checked against the coding sheet for any 
odd or out of range values. This can be done using PROC SUMMARY. Three simple 
checks will suffice: 

1 Check the number of observations. Sometimes data is typed in twice or a datum point 
may be omitted. 

2 Check whether the maximum and minimum values are what you might expect. For 
example, consulting the coding sheet in Figure 3.1, you would not expect a score of 8 
on the RAVEN variable because the valid score range is 1–7 and missing data is coded 
(.). This procedure is called checking out of range values and will identify impossible 
values. 

3 Check for cases which have missing values for variables. Missing values usually have 
their own special value indicator such as a period (.) for numeric values and a blank 
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space for character values. These are the default missing data codes in SAS. Most 
statistical analysis packages allow you to specify different missing value indicators for 
different variables. If the data set is complete, each variable should have one of the 
following; an allowable valid response, an impossible out-of-range response, or a 
missing response. 

Example 3.3 

SAS programmes for a data listing and a frequency count, using the children’s reasoning 
ability data set, child1.dat, are shown in Figures 3.6 and 3.8. Output from these two 
programmes are illustrated in Figures 3.7 and 3.9. The data listing resulting from the 
PROC PRINT is self explanatory (see Figure 3.7). You should compare this output with 
the original ASCII data file shown in Figure 3.2. The only difference is the column 
headed OBS (Observation number). SAS adds this. 

Output resulting from the PROC SUMMARY, illustrated in Figure 3.9, requires 
some explanation. The title is in line 0001, and in lines 0003 to 0010, for each variable, 
is a listing of the number of valid cases (N), the number of cases with missing data 
(Nmiss), and the minimum and maximum values. If these values are compared with 
what is expected (see data coding sheet, Figure 3.1) it is evident that each variable has 
10 observations, and two variables (AGEYRS, SES) have missing data. There are also 
out-of-range values for the variables SES and RAVEN. The actual case(s) which have 
these out-of-range values would need to be located in the data listing, Figure 3.7. 

From this listing it can be seen that case 2 has an out-of-range value of 9 for the 
variable SES and case 4 also has an out-of-range value of 9 for the variable RAVEN. 
The two cases with missing data are case 3 (variable AGEYRS) and case 9 (variable 
SES). These out-of-range values should be checked against the original data to see 
whether they are transcription (copying) or recording errors. In the original data (see 
Table 3.1), case number 2 had a valid response of 2 for the variable SES but this has 
been transcribed wrongly when input to the data file ‘child1.dat’. In Figure 3.2 it 
appears as the value 9. Whereas for case number 4, the response value of 9 for Ravens’s 
score is a recording error. After close scrutiny, data should be edited if appropriate. In 
the next section suggestions for dealing with missing data are given and later in this 
chapter use of a check programme is illustrated which is a more systematic way of 
checking for out-of-range and missing data values than using a frequency count. 
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0001 options nodate nonumber; 
0002 data child1; 
0003    infile 'a:child1.dat'; 
0004    input caseid 1–3 ageyrs 5–6 sex 8 
ses 10 raven 12; 
0005 proc print; 
0006 title 'Data listing for data=child1'; 
0007 run; 

Figure 3.6: Example SAS programme 
to produce a data listing, for the data 
child1 

0001 Data listing for data=child1 
0002             
0003 CBS CASEID AGEYRS SEX SES RAVEN
0004           
0005 1 1 7 0 1 1 
0006 2 2 9 1 9 1 
0007 3 3 . 1 1 2 
0008 4 4 10 0 1 9 
0009 5 5 7 1 1 6 
0010 6 6 9 1 1 3 
0011 7 7 8 0 1 1 
0012 8 8 7 1 1 1 
0013 9 9 10 1 . 1 
0014 10 10 11 1 2 1 

Figure 3.7: SAS output from PROC 
PRINT, for the data child1 
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0001 options nodate nonumber; 
0002 data child1; 
0003    infile 'acchild1.dat'; 
0004    input caseid 1–3 ageyrs 5–6 sex 8 
ses 10 raven 12; 
0005 proc summary print n nmiss min max; 
0006 var caseid–raven; 
0007 title 'Number of valid cases, missing, 
max & min for data=child1'; 
0008 run; 

Figure 3.8: Example SAS programme 
for a frequency count using PROC 
SUMMARY 
 

0001 Number of valid, missing, max & min for data=child1
0002           
0003 Variable N Nmiss Minimum Maximum 
0004          
0005 CASEID 10 0 1.0000009 10.0000000
0006 AGEYRS 9 1 7.0000000 11.0000000
0007 SEX 10 0 0 1.0000000
0008 SES 9 1 1.0000000 9.0000000
0009 RAVEN 10 0 1.0000000 9.0000000
0010          

Figure 3.9: SAS output from PROC 
SUMMARY, data=child1 

Dealing with Missing Data 

Large data sets, especially if collected by survey questionnaire methods, inevitably have 
missing data values. However, this problem is not confined to survey research. In 
experimental designs participants may become tired, bored or simply uncooperative. If 
data is missing, the researcher must decide what to do. It is sensible to follow the 
suggestion given by Chatfield (1993), namely, identify first why a value is missing. The 
seriousness of missing data depends upon why it is missing and how much is missing. An 
initial distinction would be whether missing responses were random or systematic. 
Examples of systematic missing responses include censoring or truncation of data 
perhaps because a respondent refuses to answer personal questions or a subject may 
withdraw part way through an experiment.  

How do you know whether missing data is random? Tabachnick and Fidell (1989) 
suggest you should check for this. Essentially this involves scrutiny of the data to identify 
any patterns in missing values. One approach other than simply looking for patterns in 
the raw data is to draw a missing (denoted by ‘.’) valid (denoted by blank ‘+’) table for 
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all levels of the suspect variable against other variables of interest. Initially it may be 
more informative to examine the presence/ absence of missing data than to be concerned 
with the amount. 

If missing data does appear to be non-random then those cases with missing data 
should be retained for further investigation. If missing data seems to be random then two 
general options exist, either estimate missing values or delete cases or particular variables 
that have missing data (an alternative to deleting a case is to just drop the missing 
variable for a particular analysis). 

How do you decide which of these two strategies to adopt? 
The most radical procedure is to drop any cases with missing data. This is the default 

option in many statistical programmes. If missing data are scattered at random throughout 
cases and variables, dropping a large number of cases with any missing data may result in 
loss of a substantive amount of data. The consequence of losing cases is more serious in 
some research designs, for example, balanced experimental designs with small numbers 
of subjects, than in large survey designs where a margin for data loss is designed into the 
sampling strategy. In these circumstances it may be preferable to estimate missing values 
provided it makes sense to do so. 

Deleting cases is advised when only a few cases have missing data. Dropping 
variables but retaining cases is an alternative but is generally only suitable when the 
variable is not critical to the analysis. 

Another alternative to deleting cases or dropping variables is to substitute missing 
values with ‘best estimates’. In general there are five options ranging in degrees of 
sophistication. These are substitute a missing value with: 

1 a best guess; 
2 the overall mean for that variable; 
3 a relevant group mean; 
4 a regression equation based on complete data to predict missing values; 
5 a generalized approach based on the likelihood function. 

Advice on using each of these options is: 

1 Do not use at all. 
2 and 3 Do not use with binary data. For example, if the variable sex was coded 0 for 

female 1 for male, it would not make sense to substitute a proportion because this 
represents the overall mean on that variable. Using the overall mean for a variable 
reduces the variability (variance) of that variable especially if there is a large amount 
of missing data. This is because the substituted mean is closer to itself than to the 
missing value (unless the missing value was the same value as the overall mean). A 
reduction in variability of a variable has the effect of reducing the correlation that 
variable has with other variables (see Chapter 8). The net effect of many missing data 
substitutions would be to reduce any underlying correlation between variables. This 
could have a dramatic effect in some statistical procedures such as factor analysis. 

4 Is only useful when other variables in the data set are likely to predict the variable(s) 
with missing values, the dependent variable. If there are no suitable independent 
(predictors) then use of option 2) or 3) is probably best. 
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5 Rather sophisticated and generally not necessary. It makes use of the iterative two-step, 
expectation, maximization (E-M) algorithm to derive maximum likelihood estimates 
for incomplete values (see Little and Rubin, 1987, for details and limitations). 

Spurious values, that is values that are extreme but plausible i.e. within the allowable 
range are more problematic than gross errors and need to be checked very carefully. 
Extreme data values which are possible but not consistent with the remaining data are 
called outliers. An outlier may be an error or a valid and influential observation. For 
example, caseid 5 in the child1 data set on children’s reasoning ability has an outlier 
observation for the variable Raven (see Figure 3.7). The value of this observation is 6 
which is within range (1–7) but very different to the other data (twice as large as the next 
nearest valid value). You may think that Caseid 4 has an outlier observation for the same 
variable, here the Raven score is 9. However, this is an out-of-range value. 

Both of these examples pose a dilemma, What should be done? 
If the raw data had been checked and recording, transcription and typing errors had 

been eliminated, the Raven value of 9 could be coded as a missing observation. However, 
the Raven value of 6 is within range and, provided similar editing and transcription 
checks had been made, I would suggest repeating any analyses with and without this 
value in the data set. Provided interpretation of the findings were not radically different 
for both analyses then it is not crucial whether or not the value is counted as valid or is 
treated as missing. If, however, different conclusions are drawn depending upon whether 
or not this variable is counted as valid, then this is an example of an influential 
observation. You should interpret such data with care as the influential observations may 
represent a different population to the majority of observations.  

It is of paramount importance to begin your data analysis with data whose structure 
you know and understand and in which you have confidence. The trials and tribulations 
of collecting, coding and entering data can only be appreciated by experience. 

These simple steps of data processing and data cleaning are an essential prerequisite to 
data description and subsequent analysis. Despite this, it is a neglected topic and taken for 
granted in most statistical texts. Any data errors attributable to processing errors or 
recorded out-of-range values would render subsequent analysis invalid. Gross data errors 
are likely to be identified at the early editing stage. It is possible, however, that some 
errors will remain undetected. It is important therefore to build into subsequent analyses 
diagnostic procedures to guard against erroneous data points unduly influencing your 
analysis. 

3.3 Describing Distributions 

After data processing, editing and cleaning, the final stages of IDA are data description 
and formulation of an underlying statistical model for the data. The main purpose of data 
description is to present essential and important features of the data usually in tables, 
graphs and charts. Space is limited in journal articles and final reports and besides many 
readers find it difficult to process large amounts of detailed data. Usually required are a 
small number of tables which convey a concise summary of the important aspects of the 
data and perhaps a graph or chart to convey information visually. 
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Displaying Data Distributions 

Charts, data plots and tables are the most common ways of displaying data. Charts and 
data plots in particular are an excellent means of data visualization, and a way of 
identifying particular features and patterns of variation in data.  

Example 3.4 

Educational researchers were interested in the relationship between university students’ 
A-level achievements and their degree performance. Part of a data set obtained from a 
study of university entrants is shown in Table 3.2. All students who entered a UK 
university in 1988 were included in the study, but the data shown is only for those 
students, in four separate disciplines, who graduated with a first class honours degree. 

In Table 3.2 data is listed for 8 cases. There are 7 variables in the data set and a 
description is as follows: 

Variable Description 
SUB Subject studied at university 
SEX Gender of candidate 
CASENO Unique ID of candidate 
DEGP Degree class obtained (Ist class only, coded as I/5)
ASCORE1 Total A-level points score (A=5, B=4, C=3 etc) 
NUMV Number of A-levels obtained 
AGEY Age in yrs of candidate at start of course 

The full data set is presented in Table 1, Appendix A1. 
You may recall that when beginning an analysis with data like that presented in Table 

3.2, preliminary considerations should include clear identification of what variables have 
been observed or measured, the level of measurement of each variable and whether there 
is any variation in the values of each variable. Depending upon the level of measurement 
of the variables there are a number of options for displaying visually data distributions.  

Table 3.2: Details of first class honours graduates 
OBS SUB SEX CASENO DEGP ASCORE1 NUMV AGEY
1 Phys.Sci/5 F 302 I/5 7 3 18.7500
2 Phys.Sci/5 M 303 I/5 14 3 18.7500
3 Phys. Sci/5 M 320 I/5 15 3 18.2500
4 Phys.Sci/5 M 321 I/5 12 3 20.3333
5 Phys.Sci/5 M 329 I/5 11 3 19.0000
6 Phys.Sci/5 M 330 I/5 9 4 18.7500
7 Phys.Sci/5 M 331 I/5 14 4 19.0833
8 Phys.Sci/5 M 367 I/5 20 4 18.6667 

Bar charts, stem and leaf plots, relative frequency tables and pie charts are most often 
used to depict categorical data and quantitative discrete (count) data. Grouped relative 
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frequency tables, stem and leaf plots, histograms, box and whisker plots and scatter plots 
are most often used to display quantitative continuous data. 

Although it is suggested in many introductory statistical texts that a pie chart can be 
used to display percentages and count data, this method of data display is seldom seen in 
journal articles. It is usually more difficult to compare angles and sectors of a pie chart 
than heights or lengths of bars in a bar chart. The use of pie charts is therefore not 
recommended. 

The relationship between level of measurement and possible data display method for 
the A-level data set is shown in Table 3.3.  

Table 3.3: Relationship between variable level of 
measurement and method of data display 

Level of Measurement and Variables 
Category 
nominal 
(Binary) 

  Category ranked 
(Ordinal) 

  Quantitative continuous 
(interval/ratio) 

  

SUB SEX DEGP# ASCORE1 NUMV AGEY 
Data display:             
Bar chart + +   + +   
Stem and leaf 
plot 

+ +   + + + 

Box and 
whisker plot 

      +*   + 

Frequency 
table 

+ +   + + + 

Histogram           + 
+ denotes an appropriate method of data display 
+* denotes appropriate for continuous variables but can be used with discrete variables which have 
many distinct values 
# in this example, because there is no variation in the value of DEGP, none of the methods of data 
display would be appropriate 

Bar Charts 

Bar charts can be constructed to summarize information about qualitative variables. A 
frequency bar chart shows the number of observations that fall into each category of the 
qualitative variable. Relative frequency bar charts show the proportion or percentage of 
the total number of observations that fall in each category of the qualitative variable and 
are useful when comparing data distributions which have different numbers of 
observations. 

Example 3.5 

The distribution of number of A-levels that 1 st class honours graduates had obtained on 
entry to university is shown in Figure 3 10 as a vertical bar chart and following this is a
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horizontal bar chart for the variable subject of study. These bar charts were produced by 
the following SAS code: 

proc  chart; 
   vbarnumv/discrete; /*Vertical  bar chart*/ 
   title 'Frequency of number of A levels for 1st class 
honours graduates' 
run; 
proc chart; 
hbar sub/discrete; /*horizontal bar chart*/ 
title 'Frequency of 1st class honours graduates by 
subject of study'; run; 

The discrete option is used after the vbar/hbar statements to tell SAS to produce a bar 
chart with a bar for each value (category) of the specified variable. Whenever a 
categorical variable with numeric values (nominal/ordinal) or a quantitative discrete 
variable (count) is used the discrete option is useful. 
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Figure 3.10: Vertical and horizontal 
frequency bar charts 

Interpretation 

The frequencies of 114 first class honours graduates who obtained either 2, 3 or 4 A-
levels are shown in the vertical bar chart and the same students by subject of study are 
presented in the horizontal bar chart. In both charts a bar is shown for each category of 
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the qualitative variable, NUMV or SUB. The number of graduates in each category is 
proportional to the height or length of the bar. In the horizontal bar chart the category 
variable, SUB, is shown here on the vertical axis. The length of each horizontal bar 
corresponds to the number or frequency of graduates who obtained a first class degree in 
a particular discipline of study. Here, simple visual inspection shows that a larger number 
of graduates in physical sciences gained a first class degree compared with graduates in 
education. 

Closer scrutiny of the horizontal bar chart shows that approximately 25 per cent (29) 
of graduates who obtained a first class degree graduated in engineering compared with 
only 18 per cent (21) in the social sciences. The highest percentage of first class 
graduates came from physical sciences (54 per cent, n=62). Note it is good practice, 
whenever percentages are used, to provide the base figure on which the percentage is 
based here 100 per cent=114. The width of the bars has no significance in a bar chart 
(unlike in a histogram—see later). 

Stem and Leaf Plot 

A stem and leaf plot is a useful way of looking at the shape or pattern of a distribution as 
all data values are shown for a variable.  

Example 3.6 

A stem and leaf plot for the variable ASCORE1 (A-level points score) from the student 
A-level data set is shown in Figure 3.11. These plots can be drawn easily by hand. In the 
example shown, the first two columns of figures form the stem and the adjacent row of 
figures form the leaves. Look for example at the highest stem value of 20. Moving along 
the leaf it can be seen that in this data set there are 17 values of 20 (17 zeros). Consider 
another example at the other extreme end of the distribution, one student had a total A-
level score of only 7 points and two students had a score of 8 points. The plot in Figure 
3.11 was produced by the SAS procedure UNIVARIATE using the option PLOT. 

Appropriate SAS code would be: 

proc univariate plot; 
       var ASCORE1; 
run; 

By default in SAS you multiply the stem and leaf value by 1 unless the output 
indicates otherwise. This explains why the lowest value in the ASCORE1 distribution is 
7. The stem value is 7 and the leaf value is 0 written as 7.0, this becomes (7.0×1)=7. 

Stem Leaf #
20 00000000000000000 17
19 0000000000 10
18 00000000 8
17 000 3
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16 0000 4
15 000000000000000000 18
14 00000000000 11
13 0000000000000000 16
12 0000000 7
11 000000000 9
10 000000 6
9 00 2
8 00 2
7 0 1

Figure 3.11: Stem and leaf plot of the variable 
ASCORE1 (Total A-level points score) 

It is possible when plotting a stem and leaf plot to split the stems in two thereby showing 
the distribution in more detail. Look, for example, at the distribution of the variable 
AGEY (age in years) in Figure 3.12.  

Stem Leaf #
27 2  1
26    
26    
25    
25    
24    
24 2 1
23    
23    
22    
22    
21 8 1
21 1 1
20 667789 6
20 112333 6
19 555556666667889 15
19 0000000001111112223344444 25
18 55556666666677777888888888888889999 36
18 11222222222223333444 20
17 8 1
17    
16 8  1

Figure 3.12: Split stem and leaf plot 
for the variable AGEY (age in years) 
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Interpretation 

The youngest student is 16.8 years and is represented by a stem of 16 and a leaf of 8. 
There are 114 values in the distribution (the sum of the number of values in each leaf). 
The middle value in the distribution or median is between the 57th and 58th value, 
counting up from the lowest value of 16.8. When, as in this case, there is an even number 
of data values, the middle value is taken as the average of the two centre values. This 
gives an approximate median for the distribution. When counting either up from the 
bottom or down from the top be careful to count from the correct end of the leaves. For 
example, in order, the three lowest values in the distribution are 16.8, 17.8 and 18.1. 

There are more precise methods of estimating the median but this method is adequate 
and seldom differs very much from more precise procedures. In this example, the 57th 
value is 18.9 and the 58th value is also 18.9. The median is therefore (18.9+18.9)/2=18.9. 
A stem and leaf plot seldom appears in journal articles probably because it is seen more 
as a heuristic device to examine the shape of distributions and to arrive at a ‘feel’ for the 
data. A particular advantage with this plot procedure is that it allows a quick and easy 
calculation of the quartiles of a distribution, that is the lower quartile or 25th percentile, 
the median or 50th percentile and the upper quartile or 75th percentile. Quartiles and their 
use in describing the characteristics of a distribution are referred to in a later section 
(3.4). 

Box and Whisker Plot 

An effective way to compare distributions of continuous (interval or ratio) data is with a 
box and whisker plot. Strictly, the plot is appropriate for continuous data only but is often 
used with count data provided there are a reasonable number of distinct data values. The 
main discriminatory features of a box and whisker plot are the length of the box from top 
to bottom and the length that the whiskers extend from the ends of the box. 

To understand the significance of a box and whisker plot you first have to be familiar 
with percentiles. A percentile is a measure of relative standing in a distribution of scores. 

Often in psychology and education we are concerned with comparing individual 
scores either for different students or for the same student on different tests. If you want 
to make a comparison of a student’s performance on two different tests you need a 
measure of relative standing on each of the tests. That is, a student’s test score relative to 
the distribution of scores for all other students who completed the test (or whatever 
reference group is appropriate). The percentile rank provides a convenient measure of 
relative standing in a group. 

To calculate a percentile, data values or scores are arranged in ascending order of 
magnitude using for example a stem and leaf plot. The required per cent is then counted 
up from the smallest score or data value. The 0th percentile is the smallest score in the 
distribution, the 25th percentile is a score which is larger than 25 per cent of the total 
distribution of scores, put simply 25 per cent of scores would lie at or below the 25th 
percentile. The 50th percentile or median is a score which is larger than 50 per cent of the 
scores in the distribution, half the scores are below the median and half are above. The 
75th percentile is the score which is larger than 75 per cent of scores, or in other words, 
75 per cent of the scores would fall at or below it. The 100th percentile is the largest 
score in the distribution. 
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The lower quartile, Q1, is simply the 25th percentile in a distribution. Similarly, the 
median or Q2 is the 50th percentile, and the upper quartile, Q3 is the 75th percentile. 
The distance between Q1 and Q3 is called the interquartile range and contains 50 per cent 
of all values in the distribution.  

Example 3.7 

A box and whisker plot next to a stem and leaf plot for the variable ASCORE1, from the 
student A-level data set, is shown in Figure 3.13. 

The significance of the quartiles when plotting a box and whisker chart now becomes 
apparent. The bottom and top of the box in a box and whisker plot correspond to the 
lower quartile and the upper quartile respectively. Thus the length of the box, Q3−Q1, 
gives a visual image of the spread of the middle 50 per cent of scores in the distribution. 
Here 50 per cent of scores are in the range 13 to 18, and we can say that the interquartile 
range is (18−13)=5 A-level points. 

The heavy line in the middle of the box with an asterisk at each end marks the 50th 
percentile or MEDIAN, here Q2 is 15. The+sign indicates the mean and in this example it 
is approximately 15, the same as the median because the + lies on the median line. 

Whiskers usually extend from the quartiles up to a distance 1.5 times the interquartile 
range, here up to (1.5×5)=7.5 points below Q1 or 7.5 points above Q3, or to the most 
extreme points within this range, (Q1−7.5) or 5.5 to (Q3+7.5) or 25.5. The most extreme 
values in this example are 7 and 20. Data values more extreme than 1.5 times the 
interquartile range would be plotted with either a zero or an asterisk. If the extreme value 
is between 1.5 and 3 times the interquartile range a zero is used as the plotting symbol. If 
a value is greater then 3 times the interquartile range then an asterisk is used to plot the 
data value. These are the SAS default values. Other statistical computing packages may 
have different options and may calculate the quartiles in a slightly different way. Any 
differences are however likely to be small. 

Stem Leaf # Boxplot 
20 00000000000000000 17
19 0000000000 10
18 00000000 8
17 000 3
16 0000 4
15 000000000000000000 18
14 00000000000 11
13 000000000000000 16
12 0000000 7
11 000000000 9
10 000000 6
9 00 2
8 00 2
7 0 1
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Figure 3.13: Box and whisker plot for the variable 
ASCORE1, total A-level score (stem and leaf plot 
adjacent) 

Grouped Frequency Table 

In large data sets with continuous variables a grouped frequency table may be used to 
obtain a general picture of data distributions. For example, look at the values of the 
variable AGEY (Age in years) in Figure 3.12. It is difficult to discern any pattern in the 
distribution of ages. Rearrangement of the data in a grouped frequency table may provide 
a clearer picture of the distribution of ages. 

With so many data values a frequency distribution constructed by counting the number 
of cases observed at each age value would be no more informative than looking at an 
ordered list of individual ages. It is often more convenient in these circumstances to 
group the data values and to record the frequency within each group, called a class 
interval. The only difference between a frequency distribution which has grouped data 
and one that does not is that rather than having frequencies for each possible data value 
the data values are grouped into class intervals and frequencies are stated for each class 
interval. 

In addition to a simple frequency count for each class interval, the relative number or 
percentage of observations that fall into each class interval are reported. These are called 
relative frequencies and are expressed as percentages. The percentage for a given class 
is obtained by dividing the class frequency by the total frequency of data values for all 
classes. The sum of the relative frequencies should be 100 per cent; this provides a quick 
check for any errors. The advantage of a relative frequency distribution is that it 
expresses the pattern of scores in a way that does not depend on the specific number of 
cases observed at each score value or interval of score values.  

Example 3.8 

To obtain a grouped relative frequency table for the variable AGEY in the A-level data 
set use the following SAS code: 

proc format; 
value clasfmt 
16.5–18.5='17–18' 
18.5–20.5='19–20' 
20.5–22.5='21–22' 
22.5–24.5='23–24' 
24.5–26.5='25–26' 
26.5–28.5='27–28'; 
run; 
proc freq; 
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   tables agey; 
format agey clasfmt.; 
run; 

The format procedure when used in this way automatically changes overlapping range 
values to be noninclusive, the first occurrence is included and the second occurrence is 
excluded. Your output should look similar to Table 3.4. A glance at this table reveals 
there are 114 observations (cumulative frequency total) which tallies with the expected 
number of cases, the minimum value would be located in the class interval 17–18 and the 
maximum value found in the interval 27–28. You can also see that the largest percentage 
of students, 68.4 per cent, is in the age range 19 to 20 years. The one observation in the 
interval 27–28 would appear to be an outlier. 

Percentages ought not to be used with small numbers because a small change in the 
number of cases brings about an apparently large change in percentage points. 
Percentages or relative frequencies are particularly useful when looking at two or more 
distributions with different numbers of data points in each distribution. It is then as if the 
distributions each had 100 scores. 

Tables are so often used in journal articles and reports to present data or summary 
statistics, a few comments are included here on clear presentation. First, provide a clear 
explanatory title including units of measurement if appropriate. Arrange the table so that 
columns are longer than the width of rows, it is easier to look down a column than to scan 
across a row. Round the numbers to an appropriate number of decimal places, seldom 
more than two, and arrange the data in an appropriate natural order or in order of size. 
Avoid footnotes if possible. Finally, you should summarize, in a brief paragraph, the 
main patterns and features of the data illustrated in the table. 

Table 3.4: Grouped relative frequency table for the variable age in years 
AGE IN YEARS 

AGEY Frequency Percent Cumulative Frequency Cumultative Percent
17–18 26 22.8 26 22.8
19–20 78 68.4 104 91.2
21–22 8 7.0 12 98.2
23–24 1 0.9 113 99.1
27–28 1 0.9 114 100.0 

In constructing Table 3.4 two related decisions have to be made. Namely, the number of 
class intervals and the width of each class interval. Usually the number of class intervals 
is between 5 and 20 depending upon the number of cases. Generally, the smaller the 
number of cases, then the fewer class intervals should be used. Too many class intervals 
will not summarize the data and too few may not describe the data accurately. You 
should choose natural intervals whenever possible. To estimate an approximate number 
of class intervals, divide the range of the distribution by a selected interval width so that 
you arrive at a number of intervals somewhere in the range 5 to 20. 

The inclusive range of a distribution is the maximum data value minus the minimum 
data value +1. The range for the 114 ages recorded in Figure 3.12 is 11.4 (27.2−16.8) +1. 
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If an interval width of 5 was chosen this would give 11.4/5=2.28 or 3 class intervals 
rounded up to the nearest integer. This is too few. Suppose an interval width of three is 
selected then the range of 11.4 will be covered by 11.4/3=3.8 or 4 class intervals rounded 
up to the nearest integer. Looking at the age distribution in Figure 3.12 most of the ages 
are between 18 and 20, and 4 class intervals would only be acceptable if the data were 
more evenly distributed. This is not so here, 4 intervals would not show enough detail in 
the middle of the distribution where values are bunched. It should however be borne in 
mind that a class interval frequency table presents a summary of the data distribution and 
judgment should be used in choosing either sufficient class intervals to show any 
variation or to use an alternative data display method. In this example I suggest using a 
stem and leaf plot if a visual impression of the data distribution was required. For 
illustrative purposes a grouped frequency table will be constructed with 6 class intervals. 
This is based on an interval width of 2, 11.4/2=6 to the nearest integer. 

The next step is to determine the first interval, and the upper and lower stated limits 
for the interval. All subsequent intervals can then be completed and frequencies and 
relative frequencies for each class interval evaluated. 

The first interval must obviously contain the minimum data value in the range. It is 
desirable to ensure that the minimum data value in a distribution is evenly divisible by 
the width of the interval. Since in Figure 3.12 the minimum value of 16.8 is evenly 
divisible by 2 we can select the lower stated limit of the lowest class interval to be 17, 
and the upper stated limit of the first class interval would be 18. 

It may seem odd that the lowest interval begins at the stated limit of 17 when there is 
one data value of 16.8, and that the size of the interval 17–18 is 2 and not 1. If however, 
the integer intervals are listed, there are 2 of them, e.g. 17 and 18. The stated limit of 17 
has a lower real limit of 16.5 and an upper real limit of 18.5. The width of the class 
interval is determined by subtracting its lower real limit from its upper real limit. So, the 
class interval of 17–18 is (18.5−16.5)=2. The stated limits and real limits are shown 
diagrammatically in Figure 3.14.  

 

Figure 3.14: Stated limits and real 
limits for the two lowest score intervals 
in Table 3.4 

The format procedure in SAS is a convenient way of specifying ranges of variables (see 
Example 3.8). The procedure automatically changes overlapping range values to be 
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noninclusive. For example, if the variable AGEY had a value of 18.5 then this value 
could be part of the first class interval, 16.5 to 18.5, or part of the second class interval 
18.5 to 20.5. SAS would automatically include the first occurrence of 18.5 (in the first 
class interval) and exclude the second occurrence of 18.5 (from the second class interval). 

Sometimes it is useful to calculate the mid-point of a class interval as this may be 
used to plot frequency histograms. This is the exact centre of the interval, that is half way 
between an interval’s real limits. The mid-point of an interval can be calculated by 
adding half of the size of the class interval to the lower real limit of the interval. The mid-
point of the lowest interval, 17–18, in Table 3.4 is (18.5−16.5)/2+16.5=17.5. 

Histogram 

A histogram is similar in some respects to a bar chart, it has bars which represent the 
relative values of a variable. However, it is unlike a bar chart in three important ways. 
The horizontal scale is continuous, in a bar chart it is discrete. The width of a bar or block 
in a histogram, unlike in a bar chart, is important for interpretation. In a histogram the 
bars are usually of constant width representing equal intervals on the continuous scale. A 
bar chart usually has a bar width of unity but this has no interpretative meaning. It is 
actually the area in each histogram bar that is crucial for interpretation. The area is clearly 
related to the width of each bar. The height of a bar in a histogram may represent either a 
frequency or a percentage.  

Example 3.9 

Figure 3.15 shows a histogram for the variable age in years (AGEY) from the A-level 
data set. 
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Figure 3.15: Histogram for the variable age in 
years 
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The SAS code that produced the histogram in Figure 3.15 is: 

proc format; 
   value clasfmt 
    16.5–18.5='17–18' 
    18.5–20.5='19–20' 
    20.5–22.5='21–22' 
    22.5–24.5='23–24' 
    24.5–26.5='25–26' 
    26.5–28.5='27–28'; 
run; 
proc chart; 
   vbar agey/midpoints=17.5 19.5 21.5 23.5 25.5 27.5; 
format agey clasfmt.; 
run; 

The class intervals are set up using PROC FORMAT, and the mid-points option is 
used to specify the mid-points of each bar. For example, the mid-point for the interval 
27–28 is (28.5−26.5)/2+26.5=27.5. 

The horizontal axis shows the class intervals which are centred on the mid-point 
values of each class. The vertical axis shows the frequency or number of observations in 
each class interval. Clearly the majority of subjects were in the age range 19–20 years. 

Univariate and Multivariate Analyses 

When a data distribution for one response variable of interest is displayed this is called a 
univariate distribution; univariate statistics describe essential features of the 
distribution such as the mean and the standard deviation. These summary statistics are 
introduced in a later section. 

Univariate statistical analysis does not imply analysis involving only one variable, 
there may be one or more independent variables, as well as the response variable of 
interest. For example, a researcher may want to investigate differences, in final 
examinations performance, among different groups of candidates. The response variable, 
performance in final examinations, (continuous dependent variable) may be explained by 
a candidate’s age (classified as mature candidate, not mature) and gender. Analysis of 
variance (ANOVA), which is a classical example of a univariate statistical analysis, may 
well be an appropriate statistical procedure to use. This would still be a univariate 
analysis because the research question relates to whether there are any differences 
between groups with respect to a single response variable. 

When the joint distribution of two continuous variables is shown, for example in a 
scatterplot, this is called a bivariate distribution. Calculation of statistics to assess the 
degree of relationship between two variables, neither of which is deemed to be a response 
(outcome) variable, would be an example of a bivariate statistical analysis. Univariate 
analysis is, in fact, a special case of a more general statistical model. The ideas 
underpinning univariate analysis can be extended to the analysis of two or more 
variables. Analysis of multiple response variables which may be related is called 
multivariate analysis. The response variables may be substantively different from each 
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other, for example, overall performance in final examinations could be one response 
variable and a second, may be salary in first year of employment. Number of A-levels 
(categorical) could be an independent variable. A multivariate analysis of variance, 
manova, may be an appropriate way to analyse data structured in this way. Response 
variables do not have to be different in kind, they may be substantively similar but 
measured on a number of different occasions, such as exam performance at the end of 
years one, two and three. This is a special case of multivariate analysis called repeated 
measures analysis. In summary, whenever a simultaneous single analysis is performed 
with multiple dependent variables (instead of two or more univariate analyses on each 
dependent variable) then a multivariate analysis should be used. 

The above examples of multivariate analysis are more concerned with testing 
inferences than data exploration. Other forms of multivariate analysis which are useful if 
a researcher is interested in the wider perspective of how observations on several 
variables may be related include principal component analysis, cluster analysis, and 
correspondence analysis. Multiple regression analysis, although usually presented in text 
books as a way of evaluating the effect that independent variables have on the prediction 
of a response variable, can be used in an exploratory way to identify which independent 
variables are important (i.e. have explanatory power). 

3.4 Descriptive Statistics 

An important part of IDA and data description is the use of summary statistics to 
characterize important features of a distribution. Three essential descriptive statistics 
which help describe a data distribution are measures of central tendency or position, 
measures of shape, and measures of dispersion (spread). 

Measures of Central Tendency 

Common statistics which identify the centre of a distribution include the mode, the 
median, and the arithmetic mean. Less common measures of centrality are the 
weighted mean, the trimmed mean, and the geometric mean. 

The mode is the most frequently occurring value in a distribution. In the following 
distribution of 10 values, 

2 15 9 2 18 14 0 6 11 3, 
the mode is 2. In a grouped frequency distribution the class interval which has the 

largest frequency (largest number of values) is called the modal interval. Looking at 
Table 3.4 the modal class interval is 19–20. 

The median, you may recall, is the 50th percentile or the middle value in a set of 
observations ordered in magnitude. In an ordered series which has an odd number of 
values the median is the middle value. In an ordered series which has an even number of 
values, 

0 2 2 3 6 9 11 14 15 18,  
the median is the average of the middle two values. In this example the median is 

between the 5th and the 6th values ie (6+9)/2=7.5. 
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The arithmetic mean is equal to the sum of values in a distribution divided by the 
total number of values. For the following 10 numbers, 

2 15 9 2 18 14 0 6 11 3, 
the arithmetic mean is: 
(2+15+9+2+18+14+0+6+11+3)/10=80/10=8.   

The mean is sometimes called the first moment. This terminology stems from mechanics 
where the first moment corresponds to the centre of gravity of a distribution of mass. The 
mean corresponds to the centre of a distribution. 

The three measures of central tendency, mode median and mean will suffice for the 
majority of situations you are likely to encounter. There are however two situations when 
an arithmetic mean may not be appropriate. When all the values in a distribution do not 
have equal importance or when we want to compute an overall mean from two samples 
combined. Values may not have equal importance if, for example, some values have been 
measured more precisely. In these circumstances we should give relatively more weight 
to the more precise values. 

When combining values from two or more samples the arithmetic mean would be 
misleading unless the samples to be combined were of equal size. Each sample that is 
combined should be weighted by the number of observations in the sample. This is 
because a sample mean’s reliability is in proportion to the number of values in the 
sample. Smaller samples are less reliable than larger samples and should therefore be 
given less weight in calculation of an overall mean. Consider one sample with 10 
observations, 

2 15 9 2 18 14 0 6 11 3, 
and a second sample with 5 observations, 
17 6 21 16 15. 
The arithmetic mean for sample one is 80/10=8, and for sample two is 75/5=15. You 

may think that the overall mean is simply the average of both sample means i.e., 
(15+8)/2=11.5. However, this is incorrect because equal weight is given to both samples 
when sample one has twice as many observations as sample two. 

The weighted mean for the two samples is, the sum of, each sample mean multiplied 
by its appropriate weight, all divided by the sum of the weights. 

 

  

This value of 10.3 is the same value you would obtain if you treated the 15 observations 
as one sample. Combining the two sample means without weighting them resulted in a 
higher value of 11.5 compared with the weighted mean of 10.3. The overall mean was 
pulled upwards by the relatively larger mean of the smaller sample.  

The trimmed mean may be used with large samples and is similar to the arithmetic 
mean but has some of the smallest and largest values removed before calculation. Usually 
the bottom and top 5 per cent of values are removed and the mean is calculated on the 
remaining 90 per cent of values. The effect is to minimize the influence of extreme 
outlier observations in calculation of the mean. 

The geometric mean is useful for calculating averages of rates. Suppose a new house 
dwindles in value to 95 per cent of its original value during the first year. In the following 
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year the value reduces to 90 per cent of the value it had at the beginning of the second 
year and in the third year the value reduces still further to 80 per cent of the value it had 
at the beginning of the third year. The average rate of decrease in value over the three-
year period that would result in the same value of the house at the end of the three years 
is given by the geometric mean of the three rates. 

This can be evaluated as rate1×rate2×rate3=95×90×80=684000=rate3, so 
rate=cube root of 684000=88.1 per cent. 

  

A general notation is the nth root of the product (multiplication) of the values. The n 
refers to the number of values, for example, two values would be the square root of the 
product of the two values. A simplified way of calculating the geometric mean is to take 
the antilogarithm of the mean of the natural logarithm of the rates. 

Logarithms to the base e, denoted as logexi (where xi is any positive real number) is 
called a natural logarithm. For example, loge2 is=0.693. The geometric mean of the three 
rates, 95 per cent, 90 per cent and 80 per cent is=(loge95+ 
loge90+loge80)/3=13.436/3=4.479. The antilogarithm of this value is=88.1. 

Measures of Shape 

The shape of a distribution is often compared to what is called a normal distribution. 
This is actually a mathematically defined theoretical distribution for a population which 
when drawn is characterized by a number of properties:  

 

Figure 3.16: Theoretical normal 
distribution curve 

• The curve is unimodal, it is smooth, has one highest point which is in the centre of the 
distribution. 

• The mode, median and mean all have the same value and indicate the centre of the 
distribution. 
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• The curve is characteristically bell-shaped. The highest point of the curve is in the 
centre and the tails extend out both sides of the centre to the ends of the distribution in 
a smooth fashion. 

• The curve is symmetric. If the curve were folded in half at the centre, the left side 
would be a mirror image of the right side. 

The normal distribution is useful for not only providing a standard against which other 
empirically derived distributions can be compared, but it also plays a very important role 
in inferential statistics. The reason is because many naturally occurring phenomena, such 
as height or weight of subjects, approximate to a normal distribution in the population. 
Many statistical tests assume values in a data set represent a sample from a population 
which has an underlying normal distribution. 

When looking at a data distribution it is sometimes difficult to judge how non-normal 
the data is. Two measures of shape sometimes help, these are skewness and kurtosis. 

Skewness is an index of the extent to which a distribution is asymmetrical or non-
normal. (Recall a normal distribution is perfectly symmetrical.) A skewed distribution 
departs from symmetry and the tail of the distribution could extend more to one side than 
to the other. This would indicate that the deviations from the mean are larger in one 
direction than the other. If the tail of a distribution extends to the right it has a positive 
skew (think of positive as being on the right side). The mean is pulled to the right of the 
median. If the tail of a distribution extends to the left it has a negative skew (think of 
negative to the left side). The mean is pulled to the left of the median.  

 

Figure 3.17: Positively and negatively 
skewed distributions 
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A simple procedure for calculating a sample coefficient of skeweness is given by, 
3×((mean−median)/standard deviation). SAS uses a slightly more complex formula, 
when samples are large estimates produced by the two procedures are usually very 
similar. 

No matter which coefficient is used the interpretation is the same. If a distribution is 
symmetrical, skewness is close to zero. If a distribution is right skewed it has a positive 
skewness coefficient and if left skewed a negative coefficient. Caution is required when 
interpreting skewness coefficients especially when samples are small, <30 observations. 
Knowledge of the skewness coefficient does not provide any information about the shape 
of a curve, at best it gives an indication, provided the curve is unimodal, of how 
asymmetrical the distribution curve is. 

A fourth moment about the mean is sometimes used as an index of shape, this is 
kurtosis. This shape coefficient reflects the ‘heaviness’ of tails of a distribution and in a 
normal distribution has a value close to zero. Heavier tails are indicated by positive 
values of the coefficient and lighter tails have negative coefficients. Kurtosis, similar to 
skewness, is an unreliable estimator of the corresponding population parameter when 
samples are small. In small samples, you should pay attention only to large values of 
these coefficients. 

Measures of Dispersion 

To describe a distribution we need a measure of spread or dispersion of values as well as 
measures of central location and shape. Common statistics which indicate the dispersion 
of values are the range, inter-quartile range, and the standard deviation. Less 
common is the coefficient of variation. 

The range (non inclusive) is the difference between the largest and smallest values in 
a distribution. It is simple to calculate and easy to interpret. 

A measure of dispersion which conveys more information about the spread of scores is 
the inter-quartile range. This is the difference between the third and first quartiles 
(Q3−Q1). See the box and whisker plot presented in Figure 3.13 and following text for 
interpretation of the interquartile range. 

The stem and leaf plot provides a convenient way of finding not only the median but 
also the upper and lower quartiles of a distribution. Recall, to find the median you count 
up from the lowest value (or down from the highest) until you reach the middle value in 
the distribution. This is the median. If there are two values in the middle because there 
are an even number of observations, the averages of the two centre values is taken. If we 
say the number of values from the most extreme value is called the depth, and n is the 
total number of observations, in the sample the following general rule can be used to 
calculate the median. 

When n is odd the median is the unique values at, 1/2(n+1). 
When n is even the median is average of the two values at depth 1/2n. 
To illustrate this look again at Figure 3.12. Here n is 114. Since this is an even number 

we locate the two values at depth 1/2×(114)=57. We count 57 values from the lowest 
value. The 57th value is 18.9. The 58th value is 18.9, which is the same as counting 57 
values from the highest value. The two centre values are therefore 18.9 and 18.9. The 
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median is the average of these two values which is 18.9. This agrees with our earlier 
calculation. 

To find the quartiles we use a similar approach which is described in detail in the 
Open University Statistics in Society course text Unit A1, (Open University Press, 1986). 
The method is summarized here. The lower quartile is found by counting up from the 
lowest value a defined number of places. This is the depth of the lower quartile. The 
depth of the upper quartile is found in the same manner but counting down from the 
highest value. What we have to find is the correct depth. The depth will be approximately 
at 1/4 of n, the number of values in the distribution. The precise value will depend upon 
whether n is exactly divisible by 4. A general rule for calculating the quartiles is: 

When n/4 is not an integer, the quartiles are the values whose depth is the 
next whole number larger than n/4. 

When n/4 is an integer, the quartiles are the average of the two values 
at depth n/4 and depth (n/4 +1). The upper quartile is found by counting 
down from the highest value and the lower quartile is found by counting 
up from the lowest value. 

How do we interpret the interquartile range, how large is large? 

The inter-quartile range only really makes any sense when it is compared to the median 
and when the number of values in the distribution is known. 

To calculate the lower quartile for the data shown in Figure 3.12 we first need to 
divide n, that is 114 by 4. This gives the value 28.5 which is not an integer. We next 
identify the next whole number larger than 28.5, that is 29. The quartiles are at the 29th 
value in from the extremes of the distribution. The lower quartile is therefore 18.6 and the 
upper quartile is 19.8. This simple method gives similar results to more exact methods, 
the more precise values calculated in SAS are, Q1 =18.6, and Q3=19.5. 

The most widely used measure of dispersion is the standard deviation. This statistic 
measures the dispersion of scores around the mean. If all the values in a distribution were 
the same, each value would equal the mean, there would be no dispersion and none of the 
values would deviate from the mean and the standard deviation would be zero. The more 
values that deviate from the mean, that is the greater the variation around the mean, the 
greater is the value of the standard deviation. 

A sample standard deviation is calculated by finding the deviation of each score from 
the mean, that is by subtracting the mean from each score. If each deviation from the 
mean is then squared, add up all the squared deviations and then divide by the number of 
values in the distribution less 1, we have calculated a statistic called the variance. 
Unfortunately, the variance is in squared units (remember we squared the deviations of 
each value from the mean) and is therefore not in the same units of measurement as the 
data. To return to the original units of measurement we need to take the square root of the 
variance, this new statistic is the standard deviation. 

Instead of explaining in a verbose way how to calculate the standard deviation we can 
express these arithmetic manipulations succinctly using a kind of shorthand or algebraic 
notation. If you are unfamiliar or cannot remember how to use notation, a brief review is 
presented in Appendix A2. If you have difficulty with the following calculation you 
should read through this appendix. The following formulas differ from the explanatory 
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ideas just described because these formulas are easy to use with a pocket calculator. 
Whichever computational method is used the results will be the same. 

Sample Variance and Standard Deviation: 

The variance, S2 of n observations x1, x2,…, xn is 

 

Sample 
Variance-
3.1 

The standard deviation, S, is the square root of the variance. 

 

Sample 
Standard 
Deviation
-3.2 

Degrees of Freedom 

You may wonder why the denominator (bottom number) is n−1 in the formulae for both 
the variance and the standard deviation. The standard deviation represents the average 
deviation of each value form the mean. When we compute an average we divide by n, the 
sum of all the values. For the standard deviation we divide by n−1 because the sum of the 
deviations, (mean−xi) always equals 0. If you think about this, the last deviation can be 
found when we know the first n−1 deviations because all deviations sum to 0. Only n−1 
of the squared deviations can vary freely (the last one is fixed) and we therefore take an 
average by dividing the total by n−1. We call the number n−1 the degrees of freedom 
(df) of a statistic. 

Non-statisticians generally find degrees of freedom a difficult concept to understand 
and given its importance in design and statistical analysis it is worth explaining this idea 
in more detail. The meaning is best illustrated by considering further examples. First, it is 
important to realize that every statistic has a certain number of degrees of freedom 
associated with it. For example the mean, has n degrees of freedom. If we look at the 
formula for the mean:  

 Sample 
Mean 3.3 

we can consider which components in this formula can vary at all, and which cannot. 
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The sample size, n, does not vary. It is a fixed value for the sample. The scores xi may 
well vary, and take on different individual values. Thus the individual scores, xi are free 
to vary. 

Each xi score could assume any possible value, and knowing the values of all but one 
score does not tell us the value of the last score. If there are five scores and we know four 
of them, (2, 5, 3, 7, ?), there is no way for us to determine the value of ‘?’. We must know 
the individual values of the xi, and the total number, n, of all xi scores to calculate the 
mean. In this sense the degrees of freedom for the statistic x is simply n. It is a fixed 
value, the number of scores. 

Now consider a more complicated example, degrees of freedom for the sample 
variance. An explanatory formula for the sample variance S2 is (we would usually use 
formula 3.1 for computational purposes): 

 

  

Again, consider which components in this formula can vary and which cannot. The 

sample size, n, does not vary. It is a fixed value for the sample. The mean, does not 
vary. It is also a fixed value for the sample. The deviations between each xi score and the 
mean are free to vary and take on different values depending upon the 

individual xi scores in the distribution. The question is, How many of these 
scores are free to vary? The answer to this gives the degrees of freedom for the sample 
variance. 

The answer is all but one scores are free to vary. This is because the sum of 

the deviations of scores about their own mean is always zero, If you 
know n−1 of these deviations, you can always determine the last one because its value is 
such that the sum of all deviations is zero. 

Consider for example the distribution of scores (3, 7, 11). The mean is 7. Look what 

happens if any two of the deviations are computed: 

 

  

The third deviation must be +4 because the sum of the deviations from the mean is 
always zero. 

In this sense the last deviation is not free to vary. Knowing n−1 of the deviations, the 
last deviation can be determined. Therefore only n−1 deviations are free to vary and take 
on any value. Thus, the number of degrees of freedom for the sample variance (and the 
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sample standard deviation) is df=n−1, where n is the number of xi scores in the sample 
(sample size). 

Interpretation of Quantiles 

Most computer statistical packages are able to provide a range of data plotting facilities 
and descriptive statistics. PROC UNIVARIATE in SAS provides comprehensive 
summary statistics which are divided into four sections, moments, quantiles, extremes 
and if appropriate, missing values. 

Consider once again the A-level data set. To obtain descriptive statistics for the 
variable age in years the following SAS code is submitted: 

proc univariate; 
   var agey; 
run; 

The VAR statement lists the variables to be summarized. The output produced by this 
code is as follows: 

Variable=AGEY AGE IN YEARS 
Moments 

N 114 Sum Wgts 114
Mean 19.1769 Sum 2186.167
Std Dev 1.180186 Variance 1.392839
Skewness 3.601622 Kurtosis 20.44996
USS 42001.29 CSS 157.3908
CV 6.154207 Std Mean 0.110535
T:Mean=0 173.4924 Pr>|T| 0.0001
Num^=0 114 Num>0 114
M (Sign) 57 Pr>=|M| 0.0001
Sgn Rank 3277.5 Pr>=|S| 0.0001

Quantiles (Def =5) 
100% Max 27.16667 99% 24.25

75% Q3 19.5 95% 20.75
50% Med 18.91667 90% 20.33333

25% Q1 18.58333 10% 18.25
0% Min 16.75 5% 18.16667

    1% 17.83333
Range 10.41667     
Q3−Q1 0.916667     
Mode 18.75     

Extremes 
Lowest Obs Highest Obs 

16.75 ( 95) 20.91667 ( 69)
17.83333 ( 56) 21.08333 ( 15)
18.08333 ( 106) 21.75 ( 104)
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18.08333 ( 29) 24.25 ( 112)
18.16667 ( 72) 27.16667 ( 108)

Output in each of the sections headed moments, quantiles, and extremes is explained 
below: 
Moments   
N is the number of observations with non-missing values for the variable being 

summarized here AGEY. 
Mean is the arithmetic average. Here the mean age is 19.1769 years. This value is a case of 

spurious accuracy. Computation of the mean has introduced more apparent accuracy 
than there was in the original data. In reporting this result the age should be rounded or 
cut to one decimal place, i.e., 19.2 years. You should always be consistent when 
rounding data for reporting and either round up to the next nearest decimal place or 
round down, but do not round up on one occasion and down on another. The mean is not 
the best summary statistic of central location because the distribution is positively 
skewed, see positive skewness and kurtosis. Also the mode (18.8)<median (18.9)<mean 
(19.2). 

Std Dev is the standard deviation. This indicates the amount of dispersion about the mean, but is 
easier to interpret than the variance (also a measure of dispersion about the mean) since 
the units of measurement for the standard deviation are the same as those for the data. In 
this example the standard deviation is 1.2 years. If the data had been approximately 
normally distributed we could have used the standard deviation to estimate that the 
middle 68 per cent of observations would fall between 18.0yrs and 20.4yrs, that is within 
plus or minus 1 standard deviation from the mean. This is an example of use of one of 
the inferential properties of the normal distribution. We will look at this in more detail in 
a later chapter. 

USS is the uncorrected sum of squares and is given by: 

 
Unless specified otherwise the weight w is 1. We will mention sums of squares in later 
chapters. 

CV is the coefficient of variation. This is a less common descriptive statistic which compares 
the dispersion of observations with their magnitude. It is calculated as S/mean*100 (S is 
the sample standard deviation, see Table 3.5. Unlike the standard deviation, it is a 
unitless measure of relative variability which is sometimes useful when variables with 
different dimensions are being compared, for example, weight in kilograms and weight 
in pounds. 

  Similar to the standard deviation, a low value of this coefficient indicates greater 
precision or less variability in observations. However, this judgment is only helpful 
when there is another measure of the coefficient with which to compare. If all sample 
values are multiplied by a constant CV remains unchanged. 

T:Mean=0 is the value of the t test statistic for the null hypothesis that µ (population mean)=0yrs (in 
this example clearly a silly hypothesis to entertain). It is calculated as: 

 
which is the difference between the sample mean and the hypothesized population mean 
divided by the estimated standard error of the mean. You can base a decision rule on the 
t statistic: 
if t<–1.98 decide on H1 (Alternative hypothesis: µ<0) 
if −1.98≤t≤1.98, reserve judgment 
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if t>1.98, decide on H2 (Alternative hypothesis: µ>0) 
The value 1.98 is obtained from a table of Student’s t distribution to give a significance 
of 5 per cent (two-tailed test) for 113 (114–1) df. In this example the value of the t 
statistic is 173.5, so you reject the null hypothesis and conclude that the sample mean is 
not zero, and that in the population, the mean age of first class honours graduates is not 
zero. Clearly this is a meaningless test in this example but it may be useful in some 
applications. 
The probability, P, associated with the t statistic is given in the column next to the t 
value. 

Sgn Rank is the signed rank statistic, computed as: 

where is the positive rank of |xi|, where |xi| means the absolute 
value of xi. 
It is similar to the t statistic and is used to test the hypothesis that the median=0. This 
test is only valid if the distribution is symmetric. In this example the (Wilcoxon) Signed 
Rank test would not be valid. The sign test should be used. 

M(Sign) is the sign test and is evaluated as M(Sign)=p−(n/2), where p is the number of values 
greater than 0 and n is the number of non-zero values. Here the median sign test, 
M(Sign)=114− 114/2=57. This statistic tests the null hypothesis that the population 
median is zero. Associated with the statistic is the probability of obtaining a sign statistic 
the same as or greater than the observed sample value. In this example we can reject the 
null hypothesis and conclude that the population median is not zero. 

Num^=0 is the number of values not equal to zero. 
Sum 
Wgts 

is the sum of weights. Weights are assumed to be 1 unless defined otherwise. 

Sum is the sum of scores (values). 
Variance is a measure of variability about the mean. When the values are scattered widely about 

the mean the variance is large. It is only ever zero if all the values are the same. It is 
evaluated as: 

 
where d is the specified df which depends on whether a population or a sample variance 
is estimated. 

CSS is the sum of squares corrected for the mean. It is calculated as the variance but not 
divided by d (df). 

Std Mean 
is the standard error of the mean. This is calculated as  

Quantiles 

This section includes a selection of percentiles including the median and the upper and 
lower quartiles, the interquartile range (Q3−Q1), the non-inclusive range, and the mode. 
In this example the distribution of scores is unimodal. The mode unlike the mean and 
sometimes the median represents an actual value in the distribution. The mean in contrast 
represents a point on the distribution of values. 

Extremes 

The five lowest and highest values in the distribution are displayed along with 
corresponding observation numbers. 
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3.5 Statistics as Estimators 

Whereas this chapter is concerned with initial data analysis, in choosing appropriate 
descriptive statistics we should consider the purpose of a study and pay particular 
attention to the inferences that may be required to answer particular research questions. In 
designing a study we tacitly acknowledge that it is not feasible to measure the entire 
population of interest, instead we draw a sample from the population. Our basic research 
question may, for example, be concerned with the average A-level points score in the 
population of first class honours graduates. What we have is an average score for the 
obtained sample. To answer our research question we need to infer from our sample 
average what the population mean is likely to be. We use statistical inference to do this. 

We generally use descriptive statistics such as the sample mean and variance to 
estimate the corresponding population parameter. When descriptive sample statistics are 
used to yield estimates of yet other statistics that describe properties of populations, this 
is referred to as estimation. 

Characteristics of samples are called statistics and the comparable measures in a 
population that these statistics estimate are called parameters. By convention, and to 
help distinguish between sample statistics and population parameters, sample statistics 
are designated by Latin letters and population parameters are designated by Greek letters. 

For example: a sample average is denoted by ‘x-bar’, written as and the comparable 
population parameter is symbolized by the Greek letter µ (mu). It may help you to 
remember, that P’s go together e.g., ‘Population Parameters’, and S’s go together e.g., 
‘Sample Statistics’. This terminology and notation is summarized in the following table.  

Table 3.5: Names, notations and explanatory 
formulas for summary measures of populations and 
samples 

Summary Measures 
  Name Notation Read as Formulas 
Sample statistics: Average  x-bar 

 
  Variance S2 S-squared 

 
  Standard deviation S S 

 
Population parameters: Mean µ mu 

 
  Variance σ2 sigma squared 

 
  Standard deviation σ sigma 

 
Note: these are explanatory formulas and are not necessarily the formulas that would be used for 
computational purposes. 
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It is necessary to use the notion of expectation when considering relationships between 
samples and populations because the expectation of a sample statistic is used to estimate 
the corresponding population parameter. Sometimes a population parameter is simply the 
expected value of the corresponding sample statistic. This is the case with the mean. In 

notational form this is and in words this states that the population mean is 
equal to the expected value of the sample average. Here the sample average is an 
unbiased point estimator. A non-mathematical explanation of expectation is that if 
samples were to be repeatedly drawn at random many times from a population (with 
replacement) then the average of these sample averages would equal the population 
mean. That is in the long run the average of these sample averages is the expected 

value,   
When choosing a statistic as an estimator of a parameter four properties are desirable. 

• The statistic should be unbiased. An unbiased statistic is an estimator that has an 
expected value equal to the parameter to be estimated. The sample mean is an 
unbiased estimator of the corresponding population parameter. 

• The statistic should be efficient. An efficient statistic is one that is a better estimator in 
all respects than any other statistic. Both the median and the mean are unbiased 
estimators of the population parameter µ, but the mean is more efficient. If we select 
repeated random samples of equal size from a defined population and plot the 
averages of each sample and the medians of each sample we would find that the 
averages cluster closer around the population mean than do the medians. The sample 
average is therefore more efficient because any average is, in the long run, more likely 
to be closer to the population mean than a sample median. 

• The statistic should be sufficient. A sufficient statistic is one which uses the maximum 
amount of relevant sample information. The sample range uses only two values in a 
distribution whereas the variance and standard deviation uses all the values. Similarly 
the mean uses all the values but the mode uses only the most common observations. 
The mean and variance are more sufficient statistics than the mode and range. 

• The statistic should be resistant. A resistant statistic is the degree to which a statistic is 
influenced by extreme values in a distribution. As we have mentioned the mean is 
greatly influenced by extreme values whereas the median is relatively uninfluenced. 
The median is more resistant than the mean. 

You might think that all sample statistics are unbiased estimates of their corresponding 
parameters but this is not true. The sample variance and standard deviation are biased 
estimates of their respective population parameters. That is why the denominators in the 
formulae 3.1 and 3.2 are corrected by subtracting one from the sample size, i.e., n−1. This 
is the degree of freedom associated with the statistic. One degree of freedom is lost for 
every parameter estimated from sample data and one degree of freedom is gained for 
every independent observation. These are important considerations when designing 
studies and choosing possible statistical models. We will return to these issues when we 
consider regression and analysis of variance. 

Statistical analysis for education and psychology researchers      76



Deciding which Summary Measure to Use 

We now have considered descriptive statistics for measures of central tendency and 
measures of dispersion. At this point you may well be wondering which statistic to use 
and when. When choosing a statistic you should consider: the properties of the statistic as 
an estimator, that is whether the statistic is a biased, efficient, sufficient and resistant 
estimator; level of measurement of a variable; and subsequent inferential analyses.  

Measures of central tendency 

The sample mean is generally more widely used as a descriptive statistic than either the 
median or the mode. The mean is unbiased, efficient, sufficient but not resistant. The 
median is also unbiased, sufficient but less efficient than the mean. It has the advantage 
however of being more resistant than the mean. It is often stated in statistical textbooks 
that the mean should not be used with nominal or ordinal data. This is not true. For 
nominal data which has values 0 and 1, (say females are coded 0 and males 1) then the 
mean is simply equal to the proportion of males in the distribution. The mean may even 
be used with ordered categorical data. An implicit assumption however would be that the 
change from say 1 to 2 would be the same amount as the change from 2 to 3. Should this 
assumption seem unrealistic do not use the mean. 

In my view the mean is used more often than it should be and is widely 
misunderstood. Chatfield (1993) illustrates misunderstanding about the mean by 
reference to, ‘the apocryphal story of the politician who said that it was disgraceful for 
half the nation’s children to be under average intelligence’ (p. 33). When the mean is 
used it should be accompanied by the standard deviation. 

The mean should not be used when a distribution is skewed, instead use the median 
and interquartile range. Another situation when the mean should not be used is when data 
is censored. Educational researchers frequently ask whether and if so when events occur. 
For example, in a study of teachers’ careers, the response variable of interest might be 
‘survival time’, that is how long it is before a teacher quits teaching. A problem is that, no 
matter how long a follow-up study lasts, some teachers may not quit teaching. These 
observations are censored, the researcher does not know when, if ever, the teacher will 
quit teaching, in that sense the data is incomplete. For discussion of alternative strategies 
to summarize survival time data see a paper on discrete-time survival analysis by Singer 
and Willett (1993). 

Measures of dispersion 

The range is influenced by the sample size and interpretation is problematic. The sample 
standard deviation and variance are biased (but can be adjusted by appropriate df) and 
sufficient but are not resistant statistics. The interquartile range is more resistant than 
either the standard deviation or variance but is less efficient. The standard deviation is 
most useful with approximately normal data; when data is skewed, the interquartile range 
is more appropriate. 
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3.6 Statistical Models 

Whereas the primary aim of IDA is to describe and summarize data a secondary aim is to 
suggest an appropriate underlying statistical model for the data which will form the basis 
of subsequent inferential statistical analysis. I follow Chatfield’s thinking here (Chatfield, 
1985) and stress that IDA may be all that is required particularly if the entire population 
of interest is analyzed rather than a sample. Another situation when IDA would suffice is 
when data is of such poor quality that further inferential analysis would not be justified, 
for example, when it was evident that there were non-random errors. Sometimes visual 
scrutiny of the data and descriptive analysis is so clear-cut that further inferential 
statistical analysis is unnecessary. If none of the above situations arise then the researcher 
should indeed consider what statistical models might be appropriate for further data 
analysis. 

A statistical model is a mathematical representation of the relationship between 
variables in a population of interest or a mathematical expression for the shape of an 
underlying population distribution of a variable. In reality, there may or may not be a 
relationship between variables in a defined population. Similarly, a particular variable 
which has the values 0 or 1, where 1 denotes ‘treatment success’ and 0 denotes ‘treatment 
failure’ may or may not follow an underlying distribution such as the binomial 
distribution or binomial model. (The binomial model, see Chapter 6, depends on the 
underlying treatment success rate in the population of interest. If this were to change the 
binomial model would not be appropriate.) We collect data, usually by sampling from the 
population, to see if the data fits our simplified statistical model. If the data does not fit 
the model, we change the model not the data. 

As a further illustration consider once again the example of the vocabulary teaching 
methods experiment introduced in Chapter 1, Example 2. You may recall from this 
earlier teaching methods example that the researcher’s basic question was concerned with 
vocabulary acquisition in a population of 6-year-olds, not simply vocabulary acquisition 
in the sample itself. The use of sample statistics to estimate corresponding population 
parameters (properties of populations rather than samples) is central in this way to 
experimental design and statistical analysis. 

We could argue that the vocabulary scores are subject to random, unsystematic 
variation which makes them appear very much like random observations on a response 
variable. The population formed by such a distribution of random observations is not real, 
but can be thought of as a hypothetical population which would be generated. We could 
put forward a statistical model to account for and explain this random variation. The 
question we would need to consider is, Does this model yield an account of relationships 
in the data? In other words, Does our data fit our statistical model? 

To interpret data we search for patterns. Any systematic effects such as those 
attributable to teaching method may be blurred by other more haphazard variation. A 
statistical model contains both systematic and random effects. We can say that a general 
probabilistic statistical model has two components, a deterministic or effect component 
which represents the effects of variables in the model and a random or error component 
which allows for random fluctuation of the variables in the model. 

The value of a statistical model is that it should suggest a simple summary of the data, 
using parameters, in terms of both systematic effects and random effects. The problem 
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then is to look at the data using IDA and decide what model may best describe and 
account for observed variation and in particular what model reduces the amount of error 
variation.  

A relatively simple family of statistical models which allows for systematic and error 
or random variation is known as the general linear model. Put simply this states that 
values of a response variable are given by the weighted sum of independent variables 
specified in a model plus a term standing for error. In equation form this can be stated as, 

yij=µi+εij, where yij is the value of the jth observation from the ith treatment, µi is a 
constant representing the mean treatment score for the population and εij is a randomly 
fluctuating error term. This model is sometimes called the ‘means model’ because it 
accounts for the overall mean treatment effect and underlying variation only. 

It is possible to formulate a linear model for the one-factor vocabulary teaching 
methods experiment introduced in Chapter 1. Recall this was a fixed-effects model with 
three conditions or levels of treatment. This is important in specifying the statistical 
model. The statistical model for this design would be: 

yij=µ+αi+εij, where i=1, 2 or 3 representing the effects of one of the treatments, so yij is 
the observed value for an individual j in the ith treatment group, µ is a constant or mean 
response in the population and εij is the deviation from the mean treatment response for 
the jth individual in the ith treatment (the error term). This error term is assumed to have 
a normal distribution. This model is sometimes called an ‘effects model’ because it 
accounts for various treatment effects. 

This statistical model implies that any score can be decomposed into three parts, one 
component µ which is constant over all observations and treatments, a fixed treatment 
effect αi making the same contribution to all vocabulary scores in a given treatment group 
and an error component that will differ both between treatment groups and also within 
treatment groups. If a random effects design was used then the fixed treatment effect αi 
would be replaced by a random treatment effect ai representing the effect of the ith 
treatment (teaching method) which would be sampled at random from a population of 
teaching methods. This statistical model, sometimes referred to as a structural model, 
states, for example, that an individual in the enhanced storytelling method group (say 
method group 1) has a vocabulary score which is represented by the mean vocabulary 
score of the population, µ, plus any difference between this population mean and the 
mean score for all pupils exposed to method group 1, the treatment effect αi, plus any 
difference between the individuals score and the contribution of the treatment effect. 

Summary 

The foregoing chapter should have impressed upon you the importance of IDA. By now 
you should also realize that the choice of descriptive statistics and data display methods is 
not always as straightforward as it seems. You should by now be in a position to know 
how to describe and summarize a data set and make a preliminary decision about whether 
further inferential statistical analysis is justified. 
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Case study 

A research student collected data on secondary school pupils attributions about chance, 
mathematical self-concept and mathematical achievement as well as background 
information about what class and maths set they were in. A self-completion questionnaire 
was used and 227 useable scripts were returned by teachers to the researcher. Two class 
teachers (57 student questionnaires) did not return any questionnaires. 

Four attribution statements in the questionnaire included: ‘Winning the national lottery 
depends on chance’, ‘Getting a 6 on a normal dice depends on knowing how to throw the 
dice’, ‘Your success in life depends on chance’ and ‘If it rains in Manchester a week 
from today this is just a matter of chance’. Each statement was given a score of 1 to 5 
where 1 represents strongly disagree, 3 represents undecided and 5 represents strongly 
agree. 

Four statements used to assess mathematical self-concept included: ‘I can learn 
mathematics if I work hard’, ‘I am as talented in mathematics as other pupils in my 
class’, ‘I just cannot learn mathematics’, and ‘No matter how much I try I shall have 
problems learning mathematics’. A mathematics achievement test was specially 
constructed, based on relevant sections of the mathematics national curriculum. The 
normative test contained 30 items designed to have different facility indices (easiness 
levels). Scores could range from 0–30. The data coding sheet is shown in Table 3.6. and 
the data set, Main.dat, is given in Table 2, Appendix A1.  

Table 3.6: Coding sheet for data set on school 
children’s mathematical self-concept and 
mathematical achievement 

Researcher: DSN: 
Main.dat 

  D/O/C: 16/05/94 
Number of 
cases=227 

Variable Variable 
Name 

Number of 
Columns 

Column 
Begin 

Column 
End 

Range of 
Variable 

Missin
g Data 

Case id caseid 3 1 3 1–127 . 
Classroom class 1 4 4 1–9 . 
Maths set set 1 5 5 1–6 . 
Attribute1 attb1 1 6 6 1–5 . 
Attribute2 attb2 1 7 7 1–5 . 
Attribute3 attb3 1 8 8 1–5 . 
Attribute4 attb4 1 9 9 1–5 . 
Self-concept1 selfc1 1 10 10 1–5 . 
Self-concept2 selfc2 1 11 11 1–5 . 
Self-concept3 selfc3 1 12 12 1–5 . 
Self-concept4 selfc4 1 13 13 1–5 . 
Maths score score 2 14 15 1–30 . 
The raw data as presented for analysis is shown in Table 2, Appendix A1 
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Task 

The initial task facing an investigator would be to perform an initial data analysis. 
The first step is to scrutinize the data, assess its structure and to reflect on the data 

collection procedure. You should then summarize the data in a form suitable for 
presentation in a journal article and comment on any special features of the data. This 
task is intended to be carried out using a computer. 

The first part of this task has been completed and is intended to illustrate the use of the 
COMPARE programme. 

Data processing and cleaning 

Looking at the data as presented, it is a little messy. See Table 2, Appendix A1. This data 
needs ‘cleaning-up’. Notice missing data has been coded as character (.). Missing data 
and spurious values can be checked by using PROC SUMMARY to produce a frequency 
count; an example of the output from this procedure is shown in Figure 3.9. The 
procedure PROC SUMMARY enables any numeric variables with missing or out-of-
range values to be identified. A listing of the data is then used to find those case numbers 
(caseid) corresponding to the variables with spurious values. Once a particular caseid is 
identified this can be used to check data values on the data listing against original data. 

This process of identifying out-of-range values and corresponding caseids can be 
considerably speeded-up and completed in one step using the SAS programme Check.job 
given in Figure 1, Appendix A3. This programme produces, for all numeric variables 
(except caseid), a listing of caseids which have out-of-range values and missing data. It 
prints the caseids against each corresponding variable with missing or spurious data. 
Once caseids with missing or out-of-range values are identified, see Figure 3.18, these 
values can be checked against original data. 

Case identifiers with out-of-range values or missing data for each numeric variable 
variable name <min missing >max 
ATTB1 . 202 . 
ATTB2 37 . . 
  151 . . 
  . 188 . 
  . 202 . 
  . 221 . 
ATTB3 . . 82 
  134 . . 
  . . 157 
  . 194 . 
  . 202 . 
  . 225 . 

variable name. <min missing >max
ATTB4 118 . .
  . . 151
  . 176 .
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  189 . .
SCORE . . 3
  . 188 .
  . 191 .
  . 194 .
  . 200 .
  . 201 .
  . 207 .
  . 208 .
  . . 210
  . 214 .
  . 220 .
  . 221 .
SELFC1 . . 44
  . . 86
  . 115 .
  162 . .
  181 . .
  189 . .
  . 191 .
SELFC2 154 . .
  157 . .
  . 194 .
  . 202 .
SELFC3 154 . .
  190 . .
SELFC4 154 . .
  163 . .
  207 . .

Figure 3.18: SAS output from the 
programme check. job. (Missing and 
out-of-range values are printed) 

Once data has been cleaned and processing errors checked, descriptive analysis can 
begin. You should comment on the data collection procedure and construct appropriate 
charts and plots to help you: 

• identify outliers; 
• identify any pattern in missing data; 
• identify the shape of distributions; 
• summarize each variable using appropriate descriptive statistics; 
• present a summary of the data in the form of frequency tables that would be suitable for 

inclusion in a journal article. 

Further considerations: 
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• How have you dealt with missing values and does this affect your data summary? 
• How have you rounded your summary statistics for presentation in tables? What 

element of accuracy is implied? 
• Are you able to describe in a paragraph the main features of the data? 
• What appear to be the most important statistics? 

By simply looking at the data distributions does there appear to be any association 
between variables? To answer this you will need to compare a set of boxplots, for 
example, a series of boxplots showing maths set against the four different variables of 
self-concept (SELFC1 to SELFC4).  
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Chapter 4 
Probability and Inference 

 

In this chapter basic statistical concepts involved in the design and subsequent data 
analysis of empirical investigations are introduced. These ideas are considered in the 
context of planning and implementing a quantitative empirical research study. Unlike in 
the previous chapter where we explained that the purpose of initial data analysis was to 
describe and summarize data, in this chapter we will focus on another aspect of statistical 
analysis, namely, how statistics can help answer specific research questions and provide 
evidence on the trustworthiness of our conclusions. 

Two of the most important statistical ideas which are central to the use of statistical 
tests and indeed are fundamental to the empirical research process are probability and 
statistical inference. These statistical ideas play an essential role when a researcher’s 
interest turns from describing data to answering more specific research questions. 

4.1 Research Process 

A good way to begin an empirical investigation is with a research question, for example: 

• ‘Do teachers’ expectations of students’ abilities influence students’ performances?’ 
• ‘Is illness perceived by young children as a form of punishment?’ 
• ‘Are secondary school pupils’ academic achievements in the most part determined by 

their academic performance in primary school?’ 

Selection of focused research question(s) and definition of a population of interest is the 
first step in what is typically a four-stage empirical research process. The statistical 
concepts of probability and inference, which are often not explicitly recognized as part of 
the researeh process, are introduced in the context of these four stages of research, see 
Figure 4.1.  



 

Figure 4.1: Overview of the empirical 
research process 

Generally our research questions refer to whole populations of interest, such as all 
teachers, all young children, all secondary school pupils. However, after having specified 
a population (step 1), it is often impossible to collect data for the whole population of 
interest. Instead, a sample from the population is selected (step 2). A wise researcher 
should give careful thought to the kind of statistical inference(s) required to address the 
research question(s) at the planning and design stage, that is before data is collected. 

You may recall from the previous chapter that initial data analysis of the achieved 
sample is the first phase in our overall data analysis strategy. We used graphical 
techniques and summary statistics to describe our sample data and to identify underlying 
data distributions and possible statistical models (step 3). In so doing, we were preparing 
for the next phase of analysis which involves more formal procedures of statistical 
inference. 

Fundamentals of Inference 

The idea of statistical inference is involved whenever we go beyond the numeric 
findings obtained from sample data to suggest what the situation is, or what would 
happen, in the parent population. There are two aspects to statistical inference—
estimation and hypothesis testing. Whereas both hypothesis testing and estimation make 
use of the same concepts: sample, statistic, population and parameter, fundamentally they 
address different questions. 

Estimation addresses the question, ‘What is the value of a population parameter?’. 
For example, what is the mean maths achievement score in the specified population? 

Hypothesis testing addresses the question, ‘What is the probability or likelihood that 
the population parameter is equal to a specified value?’ For example, what is the 
probability that the mean maths achievement score is 100? A test of significance is used 
to assess the strength of evidence against the hypothesis (step 3). The central tenet of our 
research question(s) is usually concerned not so much with the findings from a particular 
sample per se, but rather with generalizing these findings beyond the immediate 
experimental or survey setting (step 4). 
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You should by now be convinced of the central role that statistical inference has in 
quantitative research. Statistical inference is, however, not an end in itself but is simply 
an aid to decision making in uncertain circumstances. Information in the form of data is 
collected, sample statistics are then calculated and used in a formal way in what is called 
estimation and hypothesis testing. The confidence we have in a sample estimate, or the 
strength of evidence we have against a hypothesis is evaluated by this formal process. 
The researcher can then draw conclusions based on the outcome(s) of statistical test(s) 
and the strength of evidence for or against a hypothesis. 

Probability: Its Role in Research 

The idea of probability is central to the process of statistical inference. Whenever a 
sample is selected an element of uncertainty is introduced. This uncertainty is a 
consequence of not collecting information from the whole population, but relying instead 
on information contained in a sample. This degree of uncertainty is numerically 
expressed as a probability or the likelihood of occurrence of an event. 

Probability can generally be thought of as the study of patterns of chance events and is 
based on the idea that certain phenomenon are random. Statistics are calculated from 
sample data and may be used not only to summarize data but also to assess the strength of 
evidence provided by sample data in favour of an assertion or statement about 
circumstances in the population, the hypothesis. Provided data is produced by a random 
process (step 2), then the sample statistics themselves, such as an average or a proportion, 
can be thought of as random variables which obey the laws of probability. We can, 
therefore, use the language of probability to make statements about the likelihood of 
outcomes such as the difference between averages or the strength of a relationship 
between two variables. We can in effect say how likely we would be to observe a given 
outcome simply by chance. 

We actually observe these outcomes in our sample only. However, because sample 
statistics are estimators of corresponding population parameters, and also because they 
behave in a probabilistic way, we can use statistical inference to draw conclusions about 
circumstances in our population of interest. 

A sample which has been produced by a random process is called a probability 
sample and subjects or sample values will be independently drawn from the population. 
This means the chance that one subject has been sampled is not dependent on the chance 
that other members of the population have been or would be sampled. A major problem 
with many quantitative research designs is that non-probability samples are used. 

A non-probability sample can arise when: 

• you do not have a sample frame, essentially a list of every subject or value that is a 
member of the target population;  

• not every member of the population has an independent chance of being selected; 
• there is no underlying probability model specified, that is we cannot work out in 

advance of sampling the chance of any member of the population being selected. It is 
not necessary that all members of the population have an equal chance of being 
selected. 
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A probability model for the values of a variable in a population is a mathematical 
description or a kind of model for randomness which gives the probabilities for all 
possible values of the variable.  

Example 4.1: Use of Non-probability Samples 

Non-probability samples are usually not representative of the population of interest and 
generally, therefore, should not be used for statistical inference. In practice however they 
often are. For example, it is not uncommon in experimental designs that involve school 
children as subjects, to use for a sample those children that were nominated by their class 
teacher. Sometimes, for administrative convenience, an entire class is used as the sample, 
for example, a common programme evaluation design involves the administration of an 
appropriate ‘before’ and ‘after’ test to an entire class of children who are all programme 
participants. 

Alternatively, teachers may not select pupils for participation in an experimental study 
on the grounds of chance alone; they may have other reasons for selecting pupils which 
the researcher may be unaware of, for example, a talkative child, a nuisance, or because a 
teacher thinks that a particular child will ‘perform’ best. 

Considering a typical ‘before’ and ‘after’ design then if all participants in the 
programme were tested, they either represent the entire population of interest and 
therefore there is no need to use statistical inference, or as is often the case, it is not clear 
whom the population of interest is, in which case it cannot be a probability sample. 

So, if in a journal article you read about a study which was similar to the 
‘before’ and ‘after’ design mentioned above, how should you interpret the 
reported results of the statistical analysis? 

In general we are asked to assume that we are dealing with a probability sample which 
is representative of an often undefined population. If this assumption is not reasonable, 
perhaps you are not convinced by the evidence provided by the author(s), then the 
statistical test(s) will be invalid, and there is a good chance the study conclusions will be 
also. 

Linking Probability and Inference 

A key link between the ideas of probability and statistical inference is the sample 
statistic, or more precisely, the sampling distribution of the sample statistic. The 
sampling distribution of any statistic is a distribution of the values of that statistic (not 
the raw scores) when separate independent random samples of equal size are drawn from 
the same population. The sampling distribution of a statistic is actually a probability 
distribution which describes the behaviour or likely values of a sample statistic in 
repeated sampling, provided the data are produced by a random process. This explains 
the importance of random sampling or randomization when collecting data. The term 
probability distribution has been slipped in here without explanation. We shall defer 
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explanation until a later section, this should not affect your grasp of how the basic ideas 
of statistical inference and probability fit into the research process. 

Estimation 

Let us return again to the research process outlined in Figure 4.1. After having defined a 
population of interest and specified research questions in terms of the variables to be 
measured, the researcher then selects a sample, where possible a random probability 
sample, from the population of interest (step 2). Both the concept of probability and the 
idea of sampling variability are involved when a random sample is chosen from a 
population. Sampling variability is sometimes referred to as sampling error when 
referring to survey designs. 

Random sampling in survey research is based on the idea of probability or chance, that 
is, in a random sample each member of the target population has a known chance of 
being selected into the sample. If an experiment was planned, the principle of 
randomization would be appropriate, (see, for example, experimental design in Chapter 
1). When a researcher selects a random sample, calculates a statistic such as a mean and 
then goes beyond the descriptive function of the statistic to use it to determine the 
population mean, this represents another aspect of statistical inference called estimation. 
Put simply, estimation is when we use sample statistics to estimate the value of 
population parameters. The formulae we use to calculate the statistic is called the 
estimator. 

For example, with reference to the research question at the beginning of this chapter 
about the relationship between academic performance in primary and secondary school, 
we could use a sample statistic the Pearson correlation, r (a measure of relationship 
between two variables), to estimate the population correlation, ρ (rho). Any one sample 
that is chosen randomly is very unlikely to be identical to another independent random 
sample selected from the same population. It follows that if, for example, correlations 
were calculated for two independent samples it is unlikely that they would be the same. 
This is because of sampling variability, also called sampling error (see Chapter 1, section 
1.1). Sampling error is a feature of quantitative empirical research studies and this 
variability needs to be estimated so that we can tell how good an estimator any one 
sample correlation is. The sampling error or standard error of a statistic also plays an 
important role in some statistical tests for example the t-test. 

Rather than using the statistic, r, to estimate the population correlation, we could use it 
to test a hypothesis, for example, ‘Is the population correlation between primary and 
secondary school performance equal to zero?’ Once again, using the idea of probability, 
we can state with a specified degree of certainty whether it is reasonable to believe that 
the population parameter is zero. We could of course propose that the population 
parameter is some other non-zero value. In reality the population parameter is likely to be 
some true non-zero value but we do not know this. The logic of hypothesis testing 
demands that we assume the population correlation is zero and that we accumulate 
evidence to refute this conjecture. The reason why we set about testing hypotheses in this 
strange and convoluted way will be explained in section 4.7 (hypothesis testing). 
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Interpretation of Statistical Analyses 

The final stage in the research process is when the researcher interprets the statistical tests 
and draws conclusions about circumstances in the parent population based on sample data 
(step 4). You may not have consciously noticed but the four steps shown in Figure 4.1 are 
interdependent, and our interpretation is therefore based on what we know about each 
stage of the study. For example, the kinds of questions addressed will influence the nature 
of the variables; how they are operationalized (observed/measured). This in turn will 
influence, amongst other considerations, the size of the sample and how it is chosen. 
Sample size and level of measurement of variables are two important characteristics that 
influence the choice of a statistical test. 

Interpretation of statistical results should also be related to limitations of the study 
design, for example, how confident are you that randomness was built into the design? 
Were there any sources of hidden systematic error (bias), for example, only certain ability 
groups of pupils were involved in a study? Was an experiment realistic—a referential 
communication task may be based on role play—is this something that 5- and 6-year-old 
children do very often? Are there any leading questions in a survey? You should of 
course relate your results to findings from similar studies. 

As you may have guessed, the research process illustrated in Figure 4.1 is 
oversimplified. Important questions have been conveniently overlooked, examples 
include: How do you know when to reject a hypothesis? What happens if you reject a 
hypothesis when you should not? What is the chance of detecting a relationship or 
difference if one really exists? What is the chance of detecting a difference which does 
not really exist? How large should my sample be? Is variability in my sample important? 
How precise is my estimate and what confidence should I have in it? What statistical test 
should I use and why? Answers to these questions affect the confidence and 
trustworthiness that we have in any conclusions we draw. 

I am sure you would like answers to these questions. We are, however, not quite at the 
point yet where such answers would be meaningful. These questions and similar issues 
are discussed in Chapter 5, ‘Choosing a statistical test’. 

Finally, it once again needs to be stressed that a statistical analysis plan should not be 
left until after data has been collected. The idea of statistical randomness should not just 
enter a study in a haphazard way, it should be deliberately planned into the research 
design if you intend to use inferential statistical tests. In the next section, the idea of 
probability and its role in the research process is explored in greater depth. 

4.2 Statistical Probability 

Statistical probability forms the basis of all tests of statistical significance. Probability is a 
way of assigning a number to the likelihood of the occurrence of an event or outcome. 
Put another way, probability is a way of measuring chance and allows us to place the 
likelihood of an outcome on a continuum ranging from certainty, which has a probability 
value of 1, to impossible which has a probability of zero. The closer a probability is to 1 
the more certain is the occurrence of the event. 
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In statistics an event refers to an observable or measurable outcome of an 
‘experiment’. The term experiment is unfortunate because it does not mean an 
experiment in the sense of research design, rather it means a conceptual experiment in 
which something is done or observed and for which there are various possible outcomes. 
For example, the sex of a child at birth is an observable outcome, counting the percentage 
of 15-year-old pupils in a school who achieve 5 or more GCSE grades A to C is an 
observable outcome, the number of children who improve their reading skills in a reading 
recovery programme is an observable outcome, and improvement in a school’s average 
A-level points score is a measurable outcome. 

Most of these events or outcomes have a degree of uncertainty attached to them and 
could be considered to be random. We use the idea of a random variable to describe 
events of interest. For example, if we role two dice, a random variable could be the value 
we obtain when we multiply the two totals on the upturned dice, another random variable 
might be the value of the sum of the two scores on the upturned dice. If we administer a 
standardized maths achievement test to a class of 8-year-old school children, a random 
variable could be the value of one pupil’s test score, yet another random variable could be 
the average test score for the class. The sex of a child, percentage of GCSEs and average 
A-level points score could all be random variables of interest. Use of the term random 
variable has gained such widespread use in probability theory it needs a mention here. 
The term random in this context does not mean outcomes that are equally likely as in the 
term simple random sample or random selection. It denotes a variable whose outcome 
is determined by an element of chance and has a degree of uncertainty associated with it. 
We can say the outcome of the experiment is not predictable but is one of many possible 
outcomes, each with a numerical value or probability. 

Probability Models 

One of the aims of educational and psychological research is to describe and predict the 
world in which we live and thereby gain an insight into all kinds of educational and 
psychological phenomena. One way to do this is by empirical quantitative research. 
When we use statistical inference, we want to model our random experiments and to be 
able to give values to the probabilities associated with each outcome. To do this we 
construct a probability model which adequately describes that part of the world we are 
interested in. 

It would be almost impossible to model the outcome of a single random event such as 
a birth, or a flip of a coin, or a single test score for an individual, because by its random 
nature the sex of a child at birth, whether a coin lands heads or tails, or an achieved test 
score is uncertain. However, in the long run, and provided the experiment is random, a 
pattern of outcomes is detectable. This predictable pattern is the basis of probability 
models and is the reason why we can use statistical inference and statistical tests. It may 
seem strange, but random uncertainty, in the long run, leads to predictability, and the 
long-run regularity of random phenomena can be described using a mathematical or 
probability model. 

In the long-run refers to repeated flips of a coin, repeated births, repeated test scores, 
that is each experiment repeated many times under the same conditions. In many flips of 
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a coin the proportion or long-term relative frequency of heads will approach 0.5, that is 
half of the outcomes will be heads and half will be tails. 

Clearly not all situations of interest would lend themselves to this long-run 
interpretation. An individual usually only takes a test once, not repeatedly under the same 
conditions, and we could never observe an infinite number of flips of a coin. The best we 
could do would be to observe a very large number of flips of the coin. In these kinds of 
circumstances we make use of a theoretical probability distribution. That is a 
mathematically determined probability distribution, which describes the relative 
frequency of outcomes in an infinite number of experiments, each possible outcome 
having a probability value on the scale 0 to 1. To be able to use the idea of probability 
and these expected long-term patterns, research designs have to have randomness or 
chance planned into them. For example, random sampling or randomization in 
experimental designs. Randomization is not designed into a study just to prevent bias, it 
is essential if statistical inference is used, that is, whenever we collect a sample of data, 
test a hypothesis using a test of statistical significance, and derive conclusions about a 
population of interest. Statistical inference relies on the laws of probability which in turn 
assume observations or random variables result from a random process. 

4.3 Sampling Distributions 

Probability theory allows us to describe mathematically the outcome of random events. 
One aspect of interest to statisticians is the behaviour of sample statistics and test 
statistics in the long-run. Provided data is generated by a random process, the values of 
sample statistics are random and we can use probability theory to describe how a statistic 
will vary with repeated samples of the same size from the same population. This idea of 
repeated sampling leads to the concept of the sampling distribution of a statistic. We can 
think of the sampling distribution of a sample statistic as the distribution of the values 
of that statistic over repeated samples of the same size from the same population. 
Although individual values of a variable may differ and individual sample statistics 
repeatedly sampled from the same population differ, it is perhaps by now no surprise that 
the sampling distribution of a sample statistic has a predictable and regular pattern. 
Statistical inference depends upon the predictable pattern of the sampling distribution. 

Sampling Distribution of Test Statistics 

Whereas each descriptive statistic, mean, proportion, median variance, etc., has its own 
sampling distribution, the shape of these distributions differ. Another group of statistics 
called test statistics also have unique sampling distributions. Test statistics such as t, F, 
and χ2, are all associated with specific statistical tests and similar to the descriptive 
statistics, each has its own computational formulas and sampling distribution. Statistical 
tables shown in the appendix of many statistical texts are simply tables of expected 
outcomes or probabilities based on theoretical sampling distributions of descriptive 
statistics and test statistics. 
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Sampling distribution of thestatistic χ2 stastistic 

If you are unfamiliar with hypothesis testing you might like to come back to this section 
after having read ‘Hypothesis testing’ (pp. 108–113). Consider the sampling distribution 
of the χ2 statistic. This statistic is often used to answer questions of the type, ‘Is there a 
relationship between two categorical variables such as school type and identity status?’ 
For example, we may select a random sample of pupils and cross classify them on two 
variables to see whether there is a statistically significant association between school 
type, (one variable, two categories private or state), and the other variable, identity status, 
four categories;—achievement, moratorium, foreclosure and diffusion. In another type of 
design the χ2 statistic can be used to compare the distribution of proportions in two 
populations. When there are two separate and independent random samples (sample size 
fixed by the research design) drawn from two populations, for example, boys and girls or 
state schools and private schools, a χ2 test of homogeneity would be appropriate. Use of 
the χ2 statistic in various research designs is discussed in Chapter 6. 

A research question addressed by investigators might be: ‘Is there a relationship 
between school type and identity status’ (See for example, an empirical study by Roker 
and Banks, 1993). The corresponding null hypothesis would be that the population 
proportions in the four identity states is equal in the two populations of students 
(private/state school). The Null Hypothesis is a hypothesis of no difference and plays a 
crucial role in statistical analysis (it is sometimes called the statistical hypothesis). This is 
the same as saying the distribution of the population proportions, the parameter pi, π, is 
the same in each population. This is illustrated in Table 4.1.  

Table 4.1: Table of parameter distribution for a 
two-way table 

  Population (columns)
Outcome (rows) 1 (Private) 2 (State)
Achievement 1 π1(1) π1(2) 
Moratorium 2 π2(1) π2(2) 
Foreclosure 3 π3(1) π3(2) 
Diffusion 4 π4(1) π4(2) 
Σ 1 1 

Looking at Table 4.1, another way of stating the null hypothesis, H0, is to say that the set 
of parameters in column 1 is the same as the set of parameters in column 2. In notational 
form: 

H0: π1(1) = π1(2) 
  π2(1) = π2(2) 
  π3(1) = π3(2) 
  π4(1) = π4(2) 

You could obtain empirically the sampling distribution of the χ2 test statistic when H0 is 
true by drawing a very large number of pairs of random samples, a random sample for 
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column 1 and a random sample for column 2, but all from one population. In this case the 
null hypothesis would have to be true because the population proportion who were at 
achievement status would be equal, ie π1(1)= π1(2). The extent of any difference between 
sample proportions P1(1) and P1(2) would be attributable to sampling variability. The χ2 

statistic could be computed from sample data arranged in a two-way table similar to that 
shown in Table 4.1. If the sampling was repeated an infinite number of times, under the 
same conditions, we could plot all the values of the obtained χ2 statistic. This would give 
the sampling distribution for χ2 when H0 is true for a fixed sample size. We could now 
select a random sample of data, the same sample size as before, compute a χ2 value, and 
compare this with what we would expect from the sampling distribution. We could reject 
the null hypothesis if our χ2 value was not what we would have expected when the null 
hypothesis is true. 

One other point that is worth noting, is that there is not one χ2 distribution, but a whole 
family of χ2 distributions which are described by a single parameter, the degrees of 
freedom (see p. 70 for an explanation of this concept). Every time we change the degrees 
of freedom we have to use a different sampling distribution. Fortunately, theoretical 
sampling distributions have been evaluated for all reasonable degrees of freedom and 
these are the χ2 tables often presented in the appendix of many statistical texts.  

4.4 Discrete Random Variables 

The way in which we assign probability to all possible outcomes of a random variable 
depends upon whether the random variable is discrete or continuous. This distinction is 
important because it will influence the choice of an underlying statistical model for the 
data. 

A discrete random variable is one in which all possible values of the random 
variable take a countable value, for example, the number of girls in a year four class, the 
number of questionnaires returned in a survey, the number of experimental tasks you 
write into your research submission. It would not make sense to count half a person, a 
proportion of a questionnaire (unless this was part of the study design) or some fraction 
of an experimental task. The distinction between discrete and continuous is not always 
clear cut in practice. For example, someone with an average IQ may have a score of 
about 100 or 101 but not 101.5. IQ is therefore discrete in a measurement sense. It is, 
however, almost always treated as a continuous measure. The reason is because IQ is 
supposed to measure an underlying and theoretically continuous dimension of 
intelligence. Many readers will be aware that the meaning of intelligence and what IQ-
like tests measure, has been, and still is an issue in which there is considerable debate. 

The probability distribution of a discrete random variable (unlike a continuous 
probability distribution, see ‘Continuous random variables’, pp. 104–08), has a 
probability attached to each and every possible outcome. If we plot a probability 
distribution for a discrete random variable it is similar to a relative frequency bar chart. 
We met this in the previous chapter when describing distributions of variables. The only 
difference is that we replace the relative frequency of an outcome with a probability 
value. 
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Discrete Probability Distribution 

Example 4.2: The Binomial Probability Distribution 

If we choose a simple random sample of 10 schools from the population of all secondary 
schools in a Local Education Authority and for each school we assigned it into a ‘better’ 
or ‘worse’ category, depending on the answer to the following question, ‘Is the 
percentage of 15-year-old pupils achieving 5 or more GCSEs at grades A to C ‘better’ or 
‘worse’ than the median national (population) pass rate of 39.9 per cent?’ We may find 
that our sample of 10 schools has the following per cent pass rates (+ or − indicates 
whether it is better or worse than the national average): 

19(−); 37(−); 52(+); 11(−); 13(−); 31(−); 100(+); 25(−); 41(+); 18(−)   

When a discrete random variable is a count, X, of the ‘successes’ in n independent 
trials or observations which each has the same probability of success, it is said to be a 
binomial random variable. If we consider a sampled school that is above the median to 
be a success then an appropriate statistical model to describe the probability 

distribution of the random variable (school=success/fail) is the binomial probability 
distribution, sometimes called the binomial model. This probability distribution enables 
determination of the probability for any number of successes r, (r=0, 1, 2…10), in n=10 
schools provided they were selected at random. 

We can use the binomial sampling distribution to answer questions like, ‘Could it 
happen by chance that we obtain 3 schools in our sample that have above the national 
median pass rate?’ 

Pascal’s Triangle 
Pascal’s triangle, named after the Mathematician Blaise Pascal who discovered it when 

he was only 16, is used to illustrate how probabilities can be calculated for a binomial 
variable. Let us consider selecting one school at random. This is equivalent to one flip of 
a coin. What is the probability that the selected school lies below the population median? 
Think about the probability of obtaining a ‘head’ with one flip of a coin. In both cases the 
answer is one-half. 

Intuitively, it is easy to answer the question about flipping the coin. Assuming the coin 
is fair there is an even chance that heads will turn up. The reason why the probability that 
the selected school lies below the median is one-half is because by definition half the 
population lies below the median. Think about it this way, there are only two possible 
outcomes, the selected school is either below or above the population median (we are 
assuming for now that none of the schools sampled has a pass rate that is equal to the 
population median). 

If we select 10 schools at random this is equivalent to flipping 10 coins. We can work 
out, for each school selected, the probability of falling above the national median pass 
rate in the following way. If one school is selected there is an even chance that it will be 
above, using (A) for above, or below, using (B) for below, the population median. If a 
second school is selected there are four possible outcomes: both schools are above the
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median AA, the first school sampled is above the median and the second school sampled 
is below the median AB, the first school is below the median and the second school is 
above BA, and both the first and second schools are below the median, BB. If three 
schools were sampled, the possible outcomes are shown in Figure 4.2.  

 

Possibility: 1 
with 3
above

3 
with 2
above

3 
with 1
above

1 
with 0
above

=8

  AAA AAB 
ABA 
BAA 

ABB 
BAB 
BBA 

BBB   

Frequency of possibility:   3 3 1 =8
Probability: 1/8 3/8 3/8 1/8 =8
to 3 decimal places 0.125 0.375 0.375 0.125 =1

Figure 4.2: Pascal’s triangle of expected outcomes 

If you look closely at Figure 4.2 you can see a pattern beginning to emerge. The total 
number of outcomes for each school selected (event) is raised by a power each time you 
move down a row. In the row for selection n=2, the middle number in the row 1 2 1 is 2. 
This is obtained by summing (1+1) from the row immediately above, row n=1. This 
pattern can be extended indefinitely. 

You should note, for a sample of n, there are n+1 possible outcomes, i.e., if n =3 there 
are 4 outcomes, 3 schools above the median, 2 schools above the median, 1 school above 
the median and 0 schools above the median. Also, the probability of each possible 
outcome is calculated by dividing the frequency of each outcome by the total number of 
possible outcomes. The probability of all outcomes sums to 1. 

The last line of Figure 4.2 are the values of the PROBABILITY DISTRIBUTION for 
the binomial variable with n=3 and p=0.5. It is analogous to the relative frequency 
distribution, if we replace relative frequencies with probabilities. This distribution could 
be plotted as a bar chart with ‘bars’ proportional in area to the probabilities The total
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area of all the bars would sum to 1 which is the sum of all the probabilities. If we extend 
Pascal’s triangle to a sample of ten schools, the probability distribution is shown in Table 
4.2  

Table 4.2: Probability distribution for a binomial sample of n=10 with 
p=0.5 

Distribution 10A 9A1B 8A2B 7A3B 6A4B 5A5B 4A6B 3A7B 2A8B 1A9B 10B 
Frequency 1 10 45 120 210 252 210 120 45 10 1 
n above median 10 9 8 7 6 5 4 3 2 1 0 
Probability 0.001 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.001 
[(n+1) outcomes=11, and a total frequency of 210=1024] 

To answer the question at the beginning of this example, ‘Could it happen by chance 
that we obtain 3 schools in our sample that have above the national median pass rate?’ 
We can see from Table 4.2 that the probability of obtaining 3 schools above the median is 
0.117, or approximately 12 per cent. This suggests that if we have chosen a random 
sample then we would expect by chance, 12 schools in every 100 to lie above the 
population median. The question now arises, ‘What is the critical probability level below 
which we cannot accept that the outcomes would be expected to arise by chance alone?’ 

This brings us to the problem of statistical significance and p values. We will deal 
with this when discussing hypothesis testing but for now we will make do with the 
generally accepted convention that if we obtain a probability of less than 0.05, 

written as p<0.05 (< means less than), then the results are deemed to be statistically 
significant and not to have arisen by chance. 

Since the observed probability p=0.117>p=0.05 we conclude that it is reasonable that 
these data represent a random sample of schools. If we had observed either 8 or more 
schools above the median, or 8 or more schools below the median, we would conclude 
that it would have been very unlikely to have obtained this kind of distribution by chance. 
We could then say that the schools did not represent a random sample of schools from the 
population. 

The Binomial Model 

A general statistical model that describes the probability of the number of successes r in a 
sample of size n is given by, 

p=nCr×pr×(1−p)n−r 
Binomial 

Probability
—4.1 

where: nCr=the binomial coefficient and generally refers to r successes in n trials (events). 
Assume that we had selected another sample of 10 schools and found 7 had a pass rate 
below the national median. Using the general notation, r=7, n=10, in notational form 
nCr=10C7. To keep the notation simple, we will call below the median a success. Success 
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could be defined as any outcome of interest, such as count of deaths in dead/alive, count 
of passes in pass/fail or count of yes in yes/no. 

pr=probability of success, here 0.5, raised to the power of the number of 
successes over all trials. In this example, pr=0.57 

(1−p)n−r=1−probability of success in any trial, raised to the power of 
number of trials less number of successes. In this example, 
(1−p)n−r=0.510−3 

To answer the question ‘Could it happen by chance that we obtain 7 schools in our 
sample that have below the national median pass rate?’ we need to recognize that the 
underlying statistical model is a binomial model and evaluate formula 4.1: 

10C7×0.57×0.510−3   

The first term is a combinatorial, nCr, that is the number of combinations of n things 
taken r at a time. This term is also known as the binomial coefficient. It is defined by, 

 

  

where n! is n factorial which is the product of all integers from 1 to n (note 0!=1 as does 
1!). We can now evaluate the binomial probability using formulae 4.1: 

 

  

We can say that the probability of choosing, at random, 7 schools out of 10 below the 
national median is 0.117. We can check this against the value derived from Pascal’s 
triangle shown in Table 4.1. 

Use of the Binomial Distribution in Research 

Any data which is discrete and can be coded 0 or 1 such as success or failure, follow a 
binomial distribution provided the underlying probability of a success, π, does not change 
over the number of trials, n. Whereas the probability distribution is symmetric for a fixed 
sample size when π=0.5, if π changes, for example, it reduces, the distribution also 
changes shape (it would become positively skewed). Knowing the underlying distribution 
of a discrete variable means we can estimate values and test hypotheses. Data in the form 
of frequencies, proportions or percentages is very common in education and 
psychological research and the variability of these sample statistics is very important in 
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estimation and inference. Typically the kinds of questions a researcher might want to ask 
include: 

‘How much confidence can we have that a sample frequency or 
proportion represents the actual proportion in the population of interest?’ 

‘Does the outcome of interest, such as number of successes, number 
surviving, pass rate or number of correct choices differ from what we 
would expect by chance?’ 

‘Are the proportions of male and female truants in a school the same?’ 

Mean and Standard Deviation of a Binomial Variable 

When a discrete random variable is a count of the successes in n independent trials which 
each have the same probability of success, we use the term binomial variable. We 
should realize that a binomial variable is a random variable or a statistic that is a count 
and therefore has a sampling distribution or probability distribution. For every count 
there is an associated probability. Just like distributions of variables described in Chapter 
3 a binomial variable has a mean and a standard deviation. If we designate the count, X, 
of a binomial variable from a binomial population, in notational form B(n, π), then the 
mean of the binomial variable is given by, 

µx=nπ 
Mean 

of a 
Binomia
l 
Variabl
e—4.2 

and the standard deviation is, 

 Standard 
Deviation of 
a Binomial 
Variable—
4.3 

When π is not known it is estimated from the sample data as the number of successes 
divided by the number of trials. It is simply a proportion, P=X/n, where X is the count for 
the binomial variable and n is the number of trials or observations.  

Example 4.3: Mean and Standard Deviation of a Binomial 
Variable 

The probability of a secondary school having an unauthorized absence rate>1 % is about 
π=0 5 This is known a priori based on Department for Education figures for the
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previous year. If we plan to select a simple random sample of 500 secondary schools, 
what will be the expected mean and standard deviation of the number of schools with 
unauthorized absence rates >1%? 

An appropriate statistical model is the binomial probability model. Each school has a 
probability of 0.5 and the binomial population from which the sample is selected is 
B(500,0.5). The mean number of schools is evaluated using equation 4.2 for the mean of 
a binomial variable. 

µx=nπ=(500).(0.5)=250   

We would expect to find 250 schools in our sample with unauthorized absence rates 
>1%, and using equation 4.3, the standard deviation would be: 

 
  

 

Sample Proportions and Percentages 

Proportions and percentages are common in education and psychological research and the 
sampling distributions of these statistics allow researchers to make statistical inferences 
about proportions and percentages in the population.  

Example 4.4: Sample Proportions and the Binomial Distribution 

Consider pupil performance on interpreting graphs. Swatton and Taylor (1994) report that 
30 per cent (total n=60) of age 11 pupils cannot correctly interpret graphs in which minor 
grid lines represent values other than 1 or 10. 

Should we wish to estimate the proportion of age 11 pupils in the population who can 
not correctly interpret graphs with complex scales, that is estimate the proportion of 
‘successes’ in the population, then we can use the binomial probability distribution 
provided we make a minor change to the data. In this example, do not confuse the term 
‘success’ which relates to ‘successes’ & ‘failures’ in a binomial sample, with the idea of 
success meaning to be able to interpret graphs with minor grid lines. 

A sample proportion does not have a binomial distribution because it is not a count. 
To estimate π, the proportion of ‘successes’ in the population, we simply restate the 
reported sample percentage as a count and use the sample proportion (P =count/n) as an 
estimator of π. The sample proportion, P is an unbiased estimator of the population 
proportion, π. More precisely, the mean of a sample proportion, µp of ‘successes’, say 
those children who can not interpret graphs, equals the population proportion of 
‘successes’, π. 

The population proportion, π, who can not correctly interpret graphs with complex scales 
is estimated by the observed proportion, P=18/60=0.3. If the 60 pupils in the study are a 
simple random sample of age 11 pupils, then on average, we would expect 30 per cent of 
the population not to be able to interpret complex scales on graphs. 

How confident should we be with the precision of this estimate? 
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To answer this question we turn to consideration of standard errors and confidence 
intervals, these are discussed in the next section. 

4.5 From Sample to Population 

Standard Errors 

The standard deviation of a sampling distribution of a statistic is the standard error of 
that statistic. It follows that the standard deviation of the sampling distribution of a 
proportion is called the standard error of a proportion, represented as σp. Just as the 
sample proportion, P, is an unbiased estimator of the population proportion (π), the 
standard deviation of a sampling distribution of a proportion, S(p), is used to estimate the 
standard error of a population proportion, σp. The standard error of a statistic is an index 
of the precision of a parameter estimate. 

The standard error of a proportion is evaluated as: 

 
Standard 

Error of a 
Proportion
—4.4 

Where P is the proportion of interest and n is the sample size.  

Example 4.5: Standard Error of a Proportion 

The standard error of the observed sample proportion of age 11 pupils who cannot 
correctly interpret graphs with complex scales (see Example 4.4) is; 

 

  

 

The standard error is an index of precision, that is an indication of the amount of error 
that results when a single sample statistic, here a proportion, is used to estimate the 
corresponding population parameter. The larger the standard error the less precise is an 
estimate. The standard error is related to both sample size and heterogeneity in the 
population. Larger sample sizes reduce the standard error; we divide by a larger 
denominator in equation 4.4. Greater heterogeneity in the population, that is a larger 
variance, increases the standard error. In this example, as the proportion of successes 
approaches 0.5, the numerator in equation 4.4 increases, thereby increasing the size of the 
standard error. As the population becomes more homogeneous, i.e., P tends towards 0 or 
1, then sampling variability will reduce. In planning a study consideration should be give 
to both sample size and the variances of important variables. 
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There is often confusion about whether a standard deviation or a standard error should 
be reported. This confusion generally stems from misunderstanding what a standard error 
is. The sample standard deviation is a measure of spread of raw scores and should 
therefore be reported, with the mean, when the purpose is to describe a data distribution. 
The standard error is an index of the precision of an estimated parameter and should be 
reported when the aim is to compare parameter estimates e.g., when comparing means for 
different treatment effects. You should put standard error bars and not standard deviation 
bars on a graph which compares treatment means. 

Confidence Intervals 

Estimation is when a sample statistic is used to estimate a population parameter; this is 
sometimes called point estimation. A confidence interval (CI) defines a range of values 
within which the parameter is likely to be found, this may be referred to as interval 
estimation. It is important to realize that it is the parameter which is fixed and the 
confidence interval which might vary from sample to sample. The idea of confidence is 
the proposition that the stated interval actually includes the population parameter of 
interest. A common confidence interval is the 95 per cent interval. We would expect the 
95 per cent confidence interval, written as CI0.95, to encompass the estimated parameter 
95 times out of 100. We can also evaluate confidence intervals for the difference between 
two parameters, for example, the difference between two means. 

In general a 95 per cent CI is defined as: 

 
  

The formula therefore for a CI0.95 of a proportion is: 

 
CI0.95 

for a 
Proport
ion—
4.5 

Example 4.6: CI0.95 for a Proportion 

The CI0.95 for the proportion of age 11 pupils who cannot correctly interpret graphs with 
complex scales, see Example 4.3, is; 

 

  

This gives a 95 per cent confidence interval for the population proportion π as 0.18 to 
0.42, that is from 18 to 42 per cent. You may think this is rather a wide range for the 
possible values of π. To narrow the range a larger sample size would be required. 

In the author’s paper standard errors were not reported When you evaluate a confidence
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interval you are in a better position to make a judgment about the author’s conclusions. 
You should read the article for yourself. 

In the previous example, individual pupils can either interpret graphs or they cannot. If 
they can, they are given a score of 1, and if they cannot, a score of 0. 

Why then do individuals always have a score (1 or 0) which lies outside 
the 95 per cent confidence intervals of 0.18 to 0.42? 

We should not forget that the confidence interval represents the probable limits around an 
AVERAGE number of pupils who can perform the task. We interpret the 95 per cent CI 
as inferring that if another random sample of sixty pupils were to complete the graphical 
task, then this sample would have an average proportion of success in the confidence 
interval 0.18 to 0.42. 

You should be aware of one small problem when estimating confidence intervals for a 
discrete random variable. When the underlying distribution is binomial, probabilities of 
events can only change one whole unit at a time. Interpretation of the confidence 
intervals, however, is on a continuous scale. This does not present a problem when 
samples are large, that is when n>30 or when the minimum value of P or 1−P≤0.10. With 
smaller samples a correction for continuity, 1/2n should be applied; 

CI0.95 
for a 
proport
ion 
with 
continu
ity 
correcti
on—4.6 

This chapter has been ‘heavy going’ so we will pause at this point to sum up. If you have 
followed the story so far you will have an understanding of the tricky ideas of probability 
and statistical inference and how they relate to research design and statistical analysis. 
The next section extends these ideas to continuous distributions and introduces the formal 
procedure of hypothesis testing. 

To summarize so far: 

1 Data are summarized by statistics such as means, standard deviations, counts, 
percentages and proportions. Statistics are stochastic or random variables, provided 
data on which they are based have been generated by a random process. 

2 Statistics can be considered to be random variables which follow the laws of 
probability. The variability of a sample statistic is shown in the sampling distribution 
of that statistic. Empirically, this is obtained by calculating the statistic for many 
samples of a fixed size, drawn at random from a specified population. In practice, with 
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a finite population, the sampling distribution is described by a theoretical probability 
model. 

3 The sampling distribution of a statistic is the link between probability and inference. 
4 The sampling distribution of a statistic, just like a sample distribution of observations, 

has a mean and variance. The standard deviation of the distribution of a statistic is 
known as the standard error. 

5 Sample statistics can be used to estimate corresponding population parameters. An 
index of the precision of the estimation is given by the standard error of the statistic. 
Standard errors are also used in calculating test statistics. 

6 The 95 per cent confidence interval captures the true population parameter for 95 
simple random samples out of a hundred (assuming the same n for each sample). 

7 You cannot be certain of estimating a population parameter, the 95 per cent CI is not 
100 per cent. There is a 5 per cent chance that the parameter of interest is not captured 
by the CI0.95. 

4.6 Continuous Random Variables 

A continuous random variable denoted as X, can take any value in a range depending 
upon the sensitivity of the measuring instrument. A continuous probability distribution 
represents the distribution of probabilities assigned to an interval of a continuous random 
variable. The idea of a discrete probability distribution where the distribution can be 
represented by a bar chart, with each bar of unit width, and the height of bars representing 
the probability of outcomes for the discrete random variable, can be extended to a 
situation where the random variable is continuous. If you could imagine having a large 
number of bars with the mid-point of the top of each bar joined, then as the number of 
bars increases towards infinity, the line joining the tops of the bars would approximate 
closer and closer to a smooth continuous curve. As we near infinity the curve becomes a 
normal curve that is the normal curve becomes the limit of the binomial distribution. 
The normal curve is a continuous probability distribution. Other examples of continuous 
probability distributions include; F, t and χ2 distributions. 

With a continuous probability distribution probabilities are assigned not to discrete 
outcomes but to an area under the density curve. This area equals the interval between 
two values of the continuous random variable. 

Normal Distributions 

Many random continuous variables in the social sciences have an approximate normal 
distribution in the population. For example, if distributions of measurements of a person’s 
height, weight and reaction times are plotted, they would approximate to a normal curve. 
Some psychological and achievement measures are specifically designed to have a 
normal distribution, for example, IQ and standardized achievement tests. 

We can think of a normal distribution as either a model describing a probability 
distribution for a defined population or an empirically determined distribution. The 
normal curve, more correctly termed a normal probability distribution, is important not 
only because many variables of interest are assumed to be normally distributed in the 
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population, but also many statistical test procedures are based on the assumption of 
normality—t-test, F-test, and Pearson correlation. The sampling distributions of a wide 
range of descriptive and test statistics have a normal probability distribution. There is a 
probability theory in statistics called the Central Limit Theorem which describes the 
sampling distribution of the mean. The theorem states that as the size of a sample 
increases, the shape of the sampling distribution approaches normal whatever the shape 
of the parent population. The significance of this important theory is that it allows us to 
use the normal probability distribution even with sample means from populations which 
do not have a normal distribution. For example, binomial samples (counts, such as 
true/false) and proportions approximate a normal probability distribution when the 
sample sizes are large. 

We can think of a normal distribution as a mathematical description of an idealized 
population with the following important characteristics: 

• It is so large that for practical purposes it can be regarded as unlimited in size. 
• Measurements must be on an interval or ratio scale and have at least an underlying 

theoretical continuous distribution. 
• Values are symmetrically distributed about the mean. 
• Values close to the mean occur relatively more frequently than those further away, the 

frequency falling off to a well defined bell-shaped curve. 
• Measurement units can be standardized in terms of standard deviation units 

(measurement of spread about the mean) sometimes called Z-scores. 
• About 68 per cent (68.26 per cent) of the measures in a normal distribution lie between 

−1.0 and +1.0 SD below and above the mean respectively. The mean is 0 if measures 
are standardized. 

• About 95 per cent (95.44 per cent) of measures lie between −2 and +2 SDs below and 
above the mean. 

• About 99 per cent (99.74 per cent) of measures lie between −3 and +3 SDs below and 
above the mean. 

A common belief is that there is one normal curve. This is not so. There are many 
different normal curves, each particular one described by specifying two parameters, 
where the curve is centred, that is the mean µ, and how much the distribution spreads out 
about its centre, σ, the standard deviation. With a specified mean and standard deviation, 
the probability that a random continuous variable, X, with a particular value falls in a 
defined interval on the X axis, is equal to the area under the normal density curve. The 
vertical axis, is referred to as density, and is related to the frequency or probability of 
occurrence of the variable X. 

The value of the mean µ is the particular value on the X axis lying directly below the 
centre of the distribution. The value of the standard deviation σ, is at the point of 
inflection (where a curve turns up, if previous it was down) on the X axis.  

Whenever we try to construct a table of normal distribution densities (probability 
values falling within a defined range) we have a problem because each normal 
distribution is dependent upon the particular µ and σ of the defining distribution. Rather 
than tabulate separate tables for each possible combination of µ and σ, statisticians have 
chosen a particular normal curve as a reference curve. This is the standard normal or Z 
curve. The normal distribution Z scores and associated probability values are shown in 
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Table 1, Appendix A4. It has a mean µ of 0 and a σ standard deviation and variance of 1. 
In notation this is N (0, 1) where N refers to Normal and 0=µ and 1=σ. This may also be 
written as N(µ, σ2).  

Example 4.7: Use of the Standard Normal Distribution to Describe 
Probabilities of Events 

The following is the distribution of pulse rate for males in the author’s statistics classes 
see Figure 4.3. The average pulse rate is 72 and the standard deviation is 12. For this 
example, consider these values to represent the population of all male students at the 
University of Manchester. We can use the sample mean and standard deviation to 
estimate the corresponding population parameters. 

We want to know the probability of observing a male with a pulse rate of 
96 or more, and the probability of observing a male student’s pulse rate of 
105 or more? 

The standard normal distribution can be used to answer questions like those above. We 
would proceed by first transforming the distribution of pulse rate scores to a standard 
normal distribution, so we can use the normal deviate or Z tables. We want to be able to 
say that a score xi from N(72, 144) is comparable to a score Zi from N(0, 1).  

 

Figure 4.3: Distribution of male pulse rates 

We can use a linear transformation, that is subtract a constant from each score and 
divide by a constant. Look at the second row of scores (xi−µ) in Figure 4.3. This 
distribution has a mean of zero. This distribution is transformed into a Z distribution by 
dividing (xi−µ) by the σ of the original distribution. 

 Equation 
for Z score 
or
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deviate—
4.7 

For a pulse rate of 84 then, Z=(84−72)/12=1. 
For a pulse rate of 72 then, Z=(72−72)/12=0. 

  

 

A linear transformation does not alter the shape of a distribution, that is the observations 
remain in the same relative position to each other. Therefore, if the shape of the 
distribution was not normal to begin with then the Z transformation will not normalize (in 
the sense of producing a normal distribution) the data. 

The total area under the standard normal curve is 1 and that areas under the curve 
translate to probabilities. To find the area under the normal curve that is above two 
standard deviations, we would look for the area above Z=2. 

To answer the first question in Example 4.7, the probability of observing a male with a 
pulse rate of 96 or more, first convert 96 to a Z score giving the value +2.0 then go to the 
table of the normal distribution (Table 1, Appendix A4), and find the column headed Z. 
Move down this column until the value 2.0 is reached. Go along the row until under the 
column headed .00 (Z to two decimal places), the value is p=0.0228. This means that 2.28 
per cent of the area under the curve is beyond the Z value of 2, that is above two standard 
deviations. The larger portion to the left of Z comprises 97.72 per cent of the area under 
the normal curve. The probability of observing a pulse rate of 96 or more is therefore 
p=0.0228. 

To answer the second question, that is to find the probability of observing a pulse rate 
of 105 or more, we again transform this score into a Z score, =2.75, and look up this 
value in the body of the normal distribution Table (Table 1, Appendix A4). The answer is 
p=0.0030. The probability is very small, p<.05 (5 per cent). In fact, a Z score of only 1.65 
would be needed to give a probability of p<.05. We would conclude that the male with a 
pulse rate of 105 is unlikely to have come from the same population of males because it 
is so different from the population mean of 72. 

A Z score or standard score indicates where any particular score lies in relation to the 
mean score of its distribution. We can convert any raw score, xi, into a Z score, all that is 
required is the mean and standard deviation of the distribution of scores. A Z score will 
show a score’s relative position above or below the mean of a distribution of scores. Z 
scores may have negative values, namely all those below the mean. Since the normal 
distribution is symmetrical we can use it to evaluate negative Z scores. For example, the 
probability of a Z score <−2 is equivalent to the probability of a Z score of >2, namely 
0.0228.  

Example 4.8: Transforming Raw Scores into Z Scores 

As part of a selection procedure a company requires graduates to take three tests 
consisting of Test 1, Numeracy; Test 2, Computer Programming Aptitude; and Test 3, 
Verbal Reasoning. Given the following test results for a candidate, and assuming 

a normal distribution for each of the test scores with mean and standard deviation given
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below, on which of the three tests did the candidate do best? 
  Raw Score Mean S.D.
Test 1 22 12 4
Test 2 42 30 5
Test 3 110 100 15

The best score is on the numeracy test, (test 1) Z=+2.5 

Example 4.9: Setting Probable Limits Using Z 

Rather than a tail area we may be interested in both directions of the distribution. If we 
wanted to know what are the pulse levels that are likely to be either larger or smaller than 
the values, we would expect for 95 per cent of all males sampled? Call these values the 
Lower and Upper probable limits. This is equivalent to finding the Z values for 5 per cent 
(100 per cent-95 per cent) of cases at the extremes of the distribution. By symmetry half 
of the area must be in each tail so we actually need the Z values for p=0.025. The Z 
values are −1.96 and +1.96. You should check these values in Table 1, Appendix A. 

These values can now be transformed into pulse rates by use of Equation 4.7 to 
determine a Z score. 

 
  

 
  

Lower limit=(12)(−1.96)+72=48.48 
Upper Limit=(12)(+1.96)+72=95.52 

  

In other words, the upper and lower limits within which 95 per cent of male pulse rates 
would fall is between 48 and 96. 

Probable Limits and Confidence Intervals 

You should not confuse describing probable limits for an observation with the 95 per cent 
confidence interval of a sampling distribution. The former is concerned with locating the 
limits within which 95 per cent of observations fall and is descriptive. Confidence 
intervals are concerned with estimating unknown parameters and are inferential. 

4.7 Hypothesis Testing 

Another important use of the normal distribution is when testing hypotheses. We can test 
hypotheses about observations or statistics. If you have understood how the concepts of 
statistics, parameters and sampling distributions are used in estimation you should find 
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the logic of hypothesis testing not too demanding. The thinking underpinning the logic of 
hypothesis testing is best illustrated with a specific example.  

Example 4.10: Hypothesis Test about Proportions 

Teachers in a Local Education Authority claim that the Authority is saving money by 
limiting the number of statemented children. They believe that the proportion of referrals 
that result in statements (an obligation for the Authority to provide special provision for a 
child) has reduced drastically and is now lower than the national average. As principal 
psychologist, you are sceptical about the teachers’ claims and decide to investigate them. 

You believe that the number of statements issued would have been much higher than 
they were if it were not for the new policy of supporting ordinary schools and thereby 
increasing their capability to manage pupils who have special needs. 

Your working assumption is that the proportion of referrals that lead to statements will 
be no different from the national average. According to the Audit Commission Report, 
Getting in on the Act, in England and Wales about 13 per cent of referrals result in a 
statement being issued (Audit Commission Report, 1992). You decide to take a simple 
random sample of referrals over the last two years and identify the proportion that have 
resulted in statements being issued. The figure you obtain is 10.92 per cent. 

The research question that you want to answer is: ‘Is the proportion of referrals 
leading to statements in the local education authority statistically less than the proportion 
nationally (13 per cent)?’ You begin the statistical investigation with a proposition or 
hypothesis; The proportion of referrals leading to statements in the LEA is equal to 13 
per cent (the national figure). 

This is a hypothesis of no difference, that is the proportion of referrals leading to 
statements in the LEA is the same as the national proportion. The hypothesis of no 
difference is also called a null hypothesis or a statistical hypothesis. The null 
hypothesis is a statement about the value of the parameter, π for the LEA population. If 
the null hypothesis is true, then the proportion of referrals leading to statements in the 
LEA would be the same as that throughout England and Wales. The null hypothesis is not 
usually explained in words in research journals, rather a special notation is used: H0. 

The statistical or null hypothesis is held to be tenable until such times as data 
collected from a sample yields results which suggest that it is no longer reasonable to 
believe the null hypothesis. Clearly there is a true value for π, the proportion of referrals 
leading to statements in the LEA and if the null hypothesis is true, this true value would 
equal 13 per cent. If the null hypothesis is not true, then the laws of logic suggest that π 
for the LEA population proportion of statements must equal some other value. Put 
another way if the null hypothesis is not true then some other alternative hypothesis 
must be true, the problem is we cannot know precisely what this alternative is. All we can 
say is that it is not 13 per cent. 

Thus far three important ideas in hypothesis testing have been introduced. The 
statistical or null hypothesis of no difference, the alternative hypothesis, and the logic 

that connects them both. The law of logic says that if the null hypothesis is not true then 
some alternative hypothesis must be true. 
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You may be thinking, why do researchers use such a circuitous procedure when testing a 
hypothesis? That is why, when the question of real interest is the alternative hypothesis, 
do we pretend to believe its opposite, the null hypothesis, and hope this can be refuted so 
that we are then able to consider the alternate hypothesis as tenable? Put simply, why not 
test the alternative hypothesis directly? 

There are at least three answers to these questions. Statisticians generally are very 
cautious and have over the years developed a tried-and-tested approach to making 
inferences about a population of interest. They work with the idea of a null hypothesis 
which describes the possible situation in the population. The accepted and proven 
convention is to assume that there is no difference between two parameters and to uphold 
this belief until we can provide evidence that it is no longer tenable. This indirect 
approach has worked well in the past and so it is used now. 

A second and more brief answer is that the statistical inferences cannot prove 
anything, they can only provide evidence, in the form of probabilities, that a proposition 
is not reasonable. A third answer is that if we test the alternative hypothesis directly we 
would be in danger of selectivity, testing hypotheses which fit in with our thinking. That 
is certain evidence would fit in with our thinking and support our selected alternative 
hypothesis. In this situation negative evidence would have no effect because absence of 
proof (i.e., we don’t test the hypotheses that are inconsistent with our beliefs) is not the 
same as proof of absence. Moreover logic would suggest that it is virtually impossible to 
prove absence of anything. The perceived wisdom is that it is better to assume absence of 
proof, i.e., null hypothesis, until we have positive evidence. 

p-values and Statistical Significance 

Statistical tests provide probabilities or p-values for test statistics. These probabilities 
indicate the likelihood that obtained results are chance differences or are significant 
differences. Results are interpreted by researchers as being statistically significant when 
differences between treatments or test scores are greater than would be expected by 
sampling error—a difference that is not attributable to chance alone. By convention, p-
values that are less than 0.05 are generally regarded as statistically significant. A p-value 
of ≤0.05 derived from a statistical test represents the chance of observing the results (or 
more extreme results and consequent rejection of the null hypothesis), given that the null 
hypothesis is true. Recall we test the null hypothesis and this is why it is sometimes 
called the statistical hypothesis. 

When we state that results are significant at p≤0.05 this implies that the conditional 
probability of obtaining such results simply by chance (given that H0 is true) is less than 
or equal to 1 in 20 (or 5 in 100−5 per cent). In education and psychology by convention 
odds of 1 in 20 (p≤0.05) or 1 in 100 (p≤0.01) are used as the basis for rejecting a null 
hypothesis. 

What p-values should count as significant is up to the researcher although there are 
conventions of 5 per cent and 1 per cent significance. The level of statistical significance 
selected by a researcher, called the ALPHA level, a, (usually 5 per cent or 1 per cent) 
should be distinguished from the p-value associated with a test statistic. This sometimes 
causes confusion when statistical packages are used because they often report the actual 
p-value for a statistical test rather than p≤ 0.05 or p≤0.01. The alpha level of significance 
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chosen by the researcher, before the statistical hypothesis is tested, is compared with the 
p-value derived from the statistical test. If the obtained p-value for the statistical test is 
less than or equal to the chosen alpha level then the null hypothesis is rejected and the 
results are said to be significant at the chosen alpha level. You should remember that 
even when we say a result is statistically significant at the 1 per cent level, there remains 
a possibility that the result is a chance result, we are only 99 per cent certain and not 100 
per cent certain. 

It is this author’s view that too much emphasis is placed on the use of p-values when 
testing hypotheses and publishing results. Statistical significance does not equate with 
educational or clinical significance. Moreover, the magnitude of any differences (or 
effect size—this is referred to in Chapter 5) is likely to be more informative than whether 
results are significant or not significant. An alternative strategy to simply reporting p-
values as significant or not significant, is to use and report confidence intervals alongside 
p-values. 

A confidence interval provides a range of plausible values in which the parameter of 
interest lies. Just as we can calculate a CI0.95 for a parameter, recall in Example 4.6 we 
estimated CI0.95 for the proportion of age 11 pupils who cannot correctly interpret graphs 
with complex scales, so it is possible to calculate a CI0.95 for the difference between two 
sample proportions (which is the best estimate of the population difference in 
proportions). Just as the 5 per cent level of significance is generally used, so the CI0.95 is 
commonly used although alternative confidence intervals can be constructed, for 
example, CI0.99. When reporting results of hypothesis tests using confidence intervals the 
following should be included: sample estimates, confidence intervals, test statistics and 
associated degrees of freedom, and associated p-values. If a confidence interval of a 
difference excludes zero then this is evidence of a significant difference and will coincide 
with a significant p-value. The advantage of reporting a confidence interval is that it 
conveys a range of values for the population difference although the actual population 
difference is likely to be near the centre of the confidence interval. For an informative 
introduction to testing hypotheses using confidence intervals with worked examples, the 
reader is referred to Gardner and Altman’s (1989) text Statistics with Confidence. 

You may wonder why discuss hypothesis testing and p-values if confidence intervals 
are more appropriate? The answer is simple, reporting of p-values is so common that you 
need to grasp the fundamental idea to be able to evaluate reports and papers. Throughout 
the remaining chapters on inferential statistical procedures, in addition to p-values, 
wherever appropriate confidence intervals will also be used.  

One-tailed and Two-tailed Significance Tests 

The null hypothesis is always contrasted with an alternative frame of reference, called the 
alternative hypothesis (sometimes called the research hypothesis). This has the special 
notation H1. Statistical significance tests can be either one-tailed or two-tailed depending 
on the nature of the alternative hypothesis. Consider the proportion of referrals that result 
in statements (Example 4.10), the null hypothesis is: 

H0: p=π=0.130 (null hypothesis, P is the sample proportion) 
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Can you state three alternative hypotheses? 

The three possible alternatives are: 

• H1:P≠π (LEA proportion of statements is not equal to (≠) the proportion in England and 
Wales) 

• H1:P>π (LEA proportion of statements is greater than (>) the proportion in England and 
Wales) 

• H1:P<π (LEA proportion of statements is less than (<) the proportion in England and 
Wales) 

The first alternative hypothesis reflects the situation when a researcher is interested in 
testing whether the proportion of referrals is different from the national proportion, either 
less than or greater than. This is a two-tailed test because consideration is given to 
proportions both less than 0.130 (π) and greater than 0.130. 

This last alternative reflects the teachers’ opinions; they were concerned about the 
LEA proportion of referrals being less than the proportion in England and Wales. If the 
researcher were to just consider this possibility, P<0.130, this would represent a one-
tailed test since there would be no interest in values of P>0.130. 

Generally it is this author’s advice not to use one-tailed tests unless there are 
compelling reasons to do so. The reason is that it is easy to introduce bias by making a 
choice prior to testing a hypothesis. The intention of hypothesis testing is not to test what 
is expected but to identify what is plausibly not true. 

The idea of hypothesis testing is so important in quantitative research design and 
analysis that at this point it is helpful to pause and to recap the logic underpinning this 
approach. The idea is that we test for a statistically significant difference between two or 
more population parameters. Sample statistics are used as estimators and this explains 
why a null hypothesis may be stated as, ‘there is no difference between sample A and 
sample B’ or ‘treatment C and treatment D are equally effective’ or ‘the proportion for 
the LEA is no different from the proportion for England and Wales’. Although we may 
be comparing sample statistics or a sample statistic with a known population parameter 
you should remember that a null hypothesis is a hypothesis about the situation in the 
population hence the importance of statistical inference, probability and sampling 
distributions. 

In summary, the general approach to hypothesis testing is based on inference and is a 
way of deciding whether data are consistent with a null hypothesis. The usual steps in 
testing a statistical hypothesis are:  

1 State the null and alternative hypotheses. 
2 Decide whether a one- or two-sided (tailed) test is appropriate and state the significance 

level, alpha, of the test. Alpha is the level of probability for rejection of the null 
hypothesis, usually in social sciences p≤.05). A one-sided test means that you are only 
concerned with one tail of the sampling distribution. 

3 Calculate a test statistic and confidence interval from the data obtained in a sample. 
4 Report whether the selected confidence interval excludes zero and compare the 

probability value associated with the test statistic with the chosen alpha level (e.g., 
p≤.05). If the obtained p-value for the test statistic is less than or equal to alpha then 
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this is evidence that the data are not consistent with the null hypothesis (the 
confidence interval will also exclude zero). You reject the null hypothesis and 
conclude that an alternative hypothesis is feasible. If the p-value associated with the 
test statistic is greater than alpha, then it is not reasonable to reject the null hypothesis 
and it remains tenable (the confidence interval will include zero). 

4.8 Errors in Decision Making 

Whenever we test a hypothesis we make a decision, either we make a decision to reject 
the null hypothesis or not to reject it. Consider, for example, a simple treatment 
effectiveness design where we have two groups, a treatment group—the reading recovery 
programme and a comparison group—with no special intervention. Further assume that 
the response variable of interest, reading score, is treated as a continuous variable. We 
could determine the effectiveness of the programme by comparing mean reading scores 
for the treatment and comparison groups. The null hypothesis we would tests is: 

H0: µt=µc   

Type I Error 

Suppose the population means really do not differ. In this case the null hypothesis would 
be true. If we performed a statistical test of the difference between two means, the correct 
finding would be to fail to reject H0—we say we failed to attain significance in the 
statistical test at a given probability level. We conclude that it is tenable, the population 
means for the treatment and comparison groups do not differ. Put simply, the reading 
recovery programme had no beneficial effects. In reaching this conclusion the decision 
was that we failed to reject H0. However, it is possible that just by chance the sample 
means differed substantially. The difference between the sample means may have been 
sufficiently large to lead us to reject H0 even though the null hypothesis is tenable (µt=µc). 
In this case we would have taken the wrong decision or made an error in our decision 
making. If you reject the null hypothesis when you should not, that is, you conclude from 
a statistical test of the sample data that population means differ, (reject this null 
hypothesis) when in reality the population do not differ, you make what is called a Type 
I Error. 

This idea is so important in hypothesis testing that we need to spend time thinking 
about it. Putting the same concept another way may help. If in reality the population 
means do not differ, H0: µt=µc, the null hypothesis is true, then there is only one error that 
could be made in these circumstances. 

What is it? 
The error is to incorrectly reject a true null hypothesis, and conclude wrongly from 

the statistical test that the population means do differ. We make a Type I Error. 
If a mistake is made it is in the decision making based on results of a statistical test of 

the null hypothesis. It is not a matter of probability whether population means actually 
differ—either they do or they do not (if we could access the entire population we could 
determine the parameters of interest and would not need a statistical test). A Type I error: 
occurs when the decision is to reject the null hypothesis when it is actually true. 
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Diagrammatically this is shown in Figure 4.4. The significance level (p-value) chosen by 
a researcher equals the probability of making a Type I error, that is when the results of a 
statistical test lead to rejection of the null hypothesis given that the null hypothesis is true. 
The selected probability (or alpha level) is in fact a conditional probability. For 
discussion of this point see Dracup (1995).  

Population Circumstances 
Conclusion from 
statistical test: 

Population means differ, i.e., 
H0 is not true 

Population means do not differ, 
i.e., H0 is true 

Significant difference 
(REJECT H0) 

Correct decision Power p=1−β Type I Error Researcher sets 
p=α (alpha) 

Figure 4.4: Statistical power and Type 
I error 

There are two notable features about Figure 4.4. The idea of statistical power is 
introduced and alpha (α) is defined as the probability of occurrence of a Type I error. The 
probability of a Type I Error, a, is set by the researcher (usually at p ≤ 0.05). It is under 
the direct control of the researcher. The power of a statistical test is the probability of 
detecting a true difference should one exist, or put another way the probability of 
rejecting a null hypothesis given that it is false. The statistical power is not set directly by 
the researcher rather it is related to the chosen α. As alpha increases so the power 
decreases and vice versa. 

Type II Error 

Another way a wrong decision could be made is to fail to reject a null hypothesis that is 
in fact not true. Suppose in reality, µt does not equal µc, that is the population means do 
differ. In this case we could make a Type II Error if we do not reject H0. The probability 
of a Type II error is denoted by beta (β). This is shown in Figure 4.5:  

Population Circumstances 
Conclusion from 
statistical test: 

Population means differ, i.e., 
H0 is not true 

Population means do not differ, 
i.e., H0 is true 

No significant 
difference 

Type II Error (Do not reject 
H0) 
p=β 

Correct decision 
p=1−α 

Figure 4.5: Type II error 

The decision-making process following a statistical test of the null hypothesis is 
summarized in Figure 4.6:  
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Figure 4.6: A summary of the possible 
outcomes of the decision-making 
process 

4.9 Statistical Inference in Context 

My reason for including this last section is to set the classic inferential, what may be 
called Fisherian (after the eminent statistician R.A.Fisher) hypothesis testing approach in 
the context of modern day use of statistics. The statistics of random sampling, survey and 
experimental design, probability theory, formal inference and test statistics, are what I 
call here, the Fisherian approach. The importance of this approach as Bartholomew 
(1995) notes is that much could be learned from little data provided attention was given 
to well designed studies. For this reason alone it is important that researchers should 
understand and be familiar with the Fisherian approach to statistical design and analysis 
and the debate that surrounds the different schools of inference.  

Fisher Neyman-Pearson Debate 

Statistical inference has a central role in hypothesis testing and thus far little reference 
has been made to different schools of inference. Fisher first put forward the idea that we 
can only show that a null hypothesis is likely to be false, we cannot prove that it is true. It 
follows from Fisher’s reasoning that the only useful result is a significant result, i.e., 
rejection of the null hypothesis. In Fisher’s view, a non-significant result, that is non-
rejection of the null hypothesis, is of little value because there is not sufficient evidence 
to make a definitive decision (to reject the null hypothesis) therefore no decision should 
be taken until sufficient evidence (data) is available (to allow rejection of the null 
hypothesis). Put simply, Fisher’s case would have been that decisions should be 
suspended until the null hypothesis can be rejected. 

Neyman and Pearson adopted a more pragmatic approach to hypothesis testing. Their 
position was more action-oriented. They claimed that a null hypothesis should either be 
rejected or not rejected. The crucial difference between their approach and Fishers’s 
position was that non-rejection should not imply suspended judgment and no consequent 
action. If the null hypothesis is deemed to be tenable, decisions should be taken as though 
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the null hypothesis were true. Clearly, the consequences following a typical hypothesis 
test of the effectiveness of, for example, a reading recovery programme would depend 
upon whether a Fisherian or a Neyman-Pearson position were adopted. Should the null 
hypothesis of no difference between reading recovery intervention and control group not 
be rejected then from a Fisherian perspective no action would follow. There is not 
sufficient evidence to conclusively reject the null hypothesis and the intervention should 
therefore not be discontinued until there was sufficient evidence to reject the null 
hypothesis. From a Neyman-Pearson position, the intervention would be discontinued. 

This debate presented here, in a somewhat simplified form, is essentially a debate 
about different schools of inference. However, it does illustrate the distinction between 
scientific and mathematical significance which is part of the long-standing tension in 
statistics between mathematics and applications (Efron, 1995). 

Since the seminal work on inference in the 1930s by Fisher and Neyman-Pearson 
developments in experimental design, multivariate analysis and non-parametric 
procedures have advanced and spread into education and psychological research. 
However, the Fisherian approach is often not well suited to the analysis of many complex 
educational and psychological relationships which can be characterized as dynamic (as 
opposed to static) stochastic processes. Complex stochastic (statistical) models are 
required to model the complex social phenomena of the real world of schools, classrooms 
and learning environments; again advances have been made using approaches such as 
LISREL and Multilevel modelling. 

More recent computational-intensive statistical techniques such as Logistic 
Regression, Gibbs Sampling, Jacknife and Bootstrap estimation procedures, to name a 
few, are procedures which are now available given the data handling capabilities of 
modern computers. However, these computer-intensive approaches are not well known 
and seldom used by educational researchers and have only recently been brought to the 
attention of psychologists (Robertson, 1991). 

This section has provided the reader with a glimpse over the statistical horizon. Should 
one choose to begin this journey, a sound statistical grounding in the fundamentals of 
probability and inference is an essential prerequisite. Even if one is not interested in 
statistics per se, as social science researchers, basic numeracy and basic statistical 
awareness should form part of your tool kit as a competent researcher. 

Summary 

You should have by now a good grasp of the ideas of probability, inference and how they 
are used in estimation and hypothesis testing. This will equip you to tackle many 
statistical procedures. All that you need to determine when considering a statistical test 
are the following points: 

• Choice of a possible underlying statistical model for the data: 

Ask yourself what are the important variables—are they random discrete 
or continuous variates? 
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• Consideration of the most appropriate test statistic: 

What aspect of the data am I interested in—mean, proportion, 
relationship? 

• Identify the sampling distribution under the null hypothesis for the chosen test statistic: 

This is shown in statistical tables. 

• Decide acceptable levels of probability for errors when drawing conclusions from a 
statistical test of the null hypothesis: 

Consider Type I and Type II errors. 

• Consider whether the statistical test has sufficient power: 

Sample size, alpha, magnitude of effect that you want to detect, and 
variability of the statistical variable all affect statistical power. 

In the next chapter we look more closely at choosing a statistical test and issues of 
statistical power.  
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Chapter 5 
Choosing a Statistical Test 

 

Having completed initial data analysis (IDA) you may now want to consider inferential 
statistical procedures. This stage of the analysis will be based on some kind of probability 
model and will more than likely involve one or more statistical tests. With a number of 
alternative statistical tests to choose from the new researcher is often unsure about which 
test to use. A few general considerations will be presented first, then a strategy for 
choosing among the possible statistical tests will be described and summarized in the 
form of a decision chart. Other considerations such as statistical power and its 
relationship to statistical tests, alpha (Type I error), sample size, effect size, and variance 
will be discussed, and the ubiquitous question about sample size will be addressed. 
Examples of sample size and power calculations are presented. Finally, testing for 
normality of distributions is illustrated and what to do when distributions are non-normal 
is considered. 

5.1 General Considerations 

The purpose of statistical inference and the use of statistical tests is to draw conclusions 
from sample data. When choosing a statistical test a number of matters should be 
considered: how data was (will be) generated, the study design, measurement issues, 
distribution of response variable(s) in the population of interest, results of IDA, 
specification of research questions and hypotheses to be tested, choice of an underlying 
statistical model, specific statistical test assumptions. Regard should also be given to 
statistical power and how this is related to the study design and choice of statistical 
test(s). It is the author’s belief that generally too much stress is placed on hypothesis 
testing and the reporting of p-values (see comments in Chapter 4). It is suggested, 
therefore, that emphasis be given to estimation and the use of confidence intervals for 
reporting tests of significance (p-values should of course also be reported). 

How a Decision About Statistical Significance is Reached 

Formal statistical inference used in hypothesis testing is based on probability theory. A 
significance test is a test of a null hypothesis (hypothesis about population parameters), 
the strength of evidence against the null hypothesis is assessed using the idea of 



probability. Probability theory is central to statistical inference and statistical tests 
because it enables the effect of chance variation to be accounted for in our decision 
making. Put simply, tests of significance are methods for assessing the strength against 
the null hypothesis and the strength of this evidence is given by the obtained p-value for 
the statistical test. The statistic that should be used in a hypothesis test or when estimating 
confidence intervals is the statistic that estimates the parameter of interest stated or 
implied in the null hypothesis. 

Any particular parametric statistic will have a known sampling distribution. Possible 
values of the test statistic and associated probability of occurrence under the null 
hypothesis are usually tabulated in statistical tables. When data is analyzed and the 
computations yield a particular test statistic value, (sometimes referred to as the observed 
test statistic), this will have an associated probability of occurrence. This observed 
probability is compared with a pre-selected probability or alpha level, commonly called 
the level of significance of a test (generally 5% p≤.05 or 1% p≤.01). 

Usually, if the observed probability, p, is ≤ the selected alpha level of probability 
(probability of making a Type I error, see Chapter 4) then the null hypothesis is rejected 
and statistical significance is attained. It is good practice to state confidence intervals, 
such as confidence intervals of a difference for a t-test, as well as the observed test 
statistic and associated probability level, and if appropriate, degrees of freedom. 

As the formal process of inference is based on the sampling distribution of a chosen 
statistic, there should be an underlying statistical or probability model for the statistical 
test. For example, the normal probability distribution is a common statistical model that 
describes probability distributions of variables and is the basic probability model 
underlying a number of statistical tests. Statistical tests whose inferences are based on the 
normal distribution are called parametric statistical procedures. Inferences using 
parametric statistical procedures are only likely to be valid when four conditions are met: 

• observations are independent; 
• they are drawn randomly from a population; 
• they have continuous levels of measurement (at least in theory); 
• and the random errors associated with observations or measures have a known 

distribution, (usually normal). 

The manner of sampling and level of measurement of variables in an empirical 
investigation therefore influences the validity of the underlying statistical model and 
hence the choice of statistical test. These three conditions mentioned above are a 
consequence of the central limit theorem (see Chapter 4). 

Some statistical tests require that additional assumptions be met; these assumptions 
vary in number and degree. Moreover, there is much debate amongst statisticians as to 
the conditions under which particular assumptions are important. For example, amongst 
the most powerful statistical tests are the t- and F-tests. The t-test (for testing a hypothesis 
about the difference between two sample means) requires in addition to assumptions 
underlying the general parametric model, the condition that the populations from which 
the two samples are drawn should have similar variances (homogeneity of variances 
assumption, see t-test Chapter 8). Different statistical tests require different assumptions 
and the practical implications of these assumptions for research design and analysis are 
discussed in later chapters when each statistical test is introduced. Generally, the more 
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extensive and the stronger the assumptions, the more powerful the statistical test. That is, 
the test is more likely to detect a true difference should one exist. (The statistical test is 
more likely to lead to rejection of the null hypothesis when it is false.) 

What do we do if the general assumptions of the parametric model and or 
specific conditions of particular statistical tests are not met? 

In the first instance we have to recognize when test assumptions are violated and be 
aware of the severity of the consequences of violating particular assumptions. This 
problem is dealt with in the sections describing particular test procedures. Assuming we 
believe distributional assumptions for a particular parametric test are not met then we can 
use other statistical test procedures called NONPARAMETRIC TESTS. These tests are 
sometimes called distribution-free tests because they do not make assumptions about the 
probability distribution of errors. These nonparametric tests have fewer and less 
restrictive assumptions. For example, when the underlying population distribution of a 
key variable is thought to be non-normal (i.e., when data is very skewed), or when 
measurement assumptions are not met, then a non-parametric test should be considered. 
The terms ‘parametric’ and ‘nonparametric’ are used in inconsistent ways (even among 
‘experts’). Nonparametric may refer to the use of statistical tests which make no 
assumptions about the distribution of errors (hence the term ‘distribution free’) or to the 
procedure of hypothesis testing based on distribution free inference (a hypothesis which 
does not make an assertion about a parameter). However, nonparametric test procedures 
are generally less powerful than comparable parametric tests (on average about 10–20 per 
cent less powerful). An alternative strategy to using nonparametric tests is to transform 
data to make it more normal. Procedures for checking normality of data distributions and 
transforming variables are discussed at the end of this chapter. 

5.2 From IDA to Inferential Analysis 

A quantitative study is often based on previous empirical studies and or theoretical 
considerations, either of which may suggest a possible class of statistical models for your 
data. The choice for the new researcher conducting his or her first study in education or 
psychology, is usually limited to three classes of models: the general parametric model 
based on the normal probability distribution, (associated parametric statistical tests might 
include t, F, Pearson r); the binomial model based on the binomial distribution 
(associated tests might include binomial and sign tests); and distribution free 
procedures (associated with nonparametric statistical tests). Other classes of models less 
frequently encountered include Poisson, Hypergeometric (discrete distributions) and 
Exponential, Gamma and Weibull (continuous distribution) models. These distributions 
and other complex multivariate and time series designs are beyond the scope of this text. 
The reader is referred to Manley (1986) for a non-mathematical introduction to 
multivariate statistical analysis and the text by Tabachnich & Fidell (1989) is an excellent 
practical guide to the use of multivariate analysis. A general introduction to time series 
designs is given by Chatfield (1984). 
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One purpose of IDA is, as Chatfield (1993) comments, ‘to help you do a “proper” 
analysis “properly”’ (p. 46). Even if a possible statistical model is identified a priori from 
previous theoretical or empirical considerations, IDA should be used to check the 
structure of the data and to identify whether variables are discrete or continuous and 
hence to confirm plausible underlying models, such as binomial, normal, bivariate normal 
(for correlations). It is good practice to use as much relevant data as possible and not to 
collapse variables and thereby transform them to lower levels of measurement. 

Outlier observations can have a drastic effect on statistical tests. For example, t-tests 
are sensitive to extreme skewness and outlier observations especially with small sample 
sizes. When fitting data to a statistical model the effect of inclusion and exclusion of 
outliers should be checked. 

Scatterplots of one variable against another will indicate, visually, the extent of 
relationship between two variables and whether it is linear (a straight line can be drawn 
through the cloud of points). Linearity is a necessary assumption for some statistical 
procedures, such as linear regression and correlation. Histograms and stem and leaf plots 
provide information on the distribution of variables and more sophisticated procedures 
for testing assumptions of normality, whether a variable is normally distributed in the 
population, are presented at the end of this chapter. 

It is a common misunderstanding amongst new researchers that a criterion variable of 
interest has to be normally distributed in your achieved sample. For example, in a two 
sample t-test it is often believed that the criterion variable should be normally distributed 
in the two samples. This is not necessary. The general parametric model makes the 
assumption that the variable (or more accurately the errors) are distributed normally in 
the population (not necessarily in your sample). More important is homogeneity of 
variance in both samples. 

Specific procedures for checking statistical test assumptions or more correctly, the 
assumptions underlying the probability model, are presented when use of the statistical 
procedures are introduced in the following chapters. For now it is sufficient to note that 
you should include checks for violations of assumptions in your inferential analysis. 
Checks on these assumptions can be considered as an extension of IDA and as a 
preliminary to inferential analysis. These checks usually take the form of residual plots. 
A residual represents the difference between an observed and an expected value based on 
the statistical model that is used. 

Statistical test assumptions often have to be made by the reader in the absence of 
evidence presented by author(s). Given the robustness of parametric procedures this is 
not usually seen to be a problem. This view, however, is not without its critics and the 
issue of robustness is discussed in a later section. Regardless of whether or not you view 
many parametric tests as being robust, it is wise when interpreting results, to remember 
that the attained statistical significance (as stated in many articles and papers) is 
dependent upon the validity of the assumptions relating to the statistical model being 
used (not usually stated in journal papers). You should consider whether the underlying 
statistical model is appropriate, as well as the statistical power of the tests used. All too 
often assumptions are made implicitly which on closer scrutiny, for example, using IDA, 
would render the statistical tests invalid and the conclusions spurious. Examples that have 
appeared in the literature include: Reporting Pearson correlations when the relationship is 
clearly non-linear, or when variables are clearly categorical, reporting t-tests for 
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independent samples when sample sizes are small, unequal and there are outlier 
observations. Another problem is performing statistical tests when they are simply not 
required. Perusal of the psychology and education periodicals indicates that it is rare for 
shape parameters (skewness and kurtosis) to be reported—a case of forgotten moments. 

Results of the IDA will indicate when statistical tests are unnecessary. Typical 
situations would be when a whole population is assessed, when means of two large 
samples are identical, or when large samples of equal size have non-overlapping 
confidence intervals for the means when plotted. Other more critical situations would be 
when there was evidence of bias, outliers, and non-constant errors perhaps due to 
inadequate randomization or non-probability samples. 

Generally one data set should not be used to both generate and test hypotheses. If the 
data set is of sufficient size it can be randomly partitioned into two equal data sets, a 
training data set and a confirmatory data set. The training set is used to generate 
hypotheses and the confirmatory set is used to test these hypotheses. It is always 
necessary to be aware that statistical significance does not equate with educational or 
clinical significance. The result of a statistical test is only an aid to decision making. For 
example, a significant mean difference of three points on a vocabulary acquisition test, 
between two groups, may not hold much educational significance when considered in the 
context of natural growth in vocabulary acquisition. 

5.3 Choosing a Statistical Test 

The problem for the new researcher when choosing a statistical test is lack of experience 
with applied statistical procedures. The reader may have studied an introductory course in 
statistics but will not have experience of applied methods. This chapter and indeed the 
whole book concentrates on, ‘the when to do this or that…and why’ rather than rote 
learning and computational detail. A series of choices when choosing a statistical test are 
presented and summarized in Figure 5.1. For those who want to check whether a 
procedure they have in mind is appropriate, they can go directly to Figure 5.1 (pp. 130–1) 
which is self explanatory. If you want to develop your applied skills then read through the 
following three-point rationale on which the decision chart shown in Figure 5.1 is based.  

When deciding what statistical test to use, three interrelated issues need to be 
considered: 

1 Research question. Is the main research question concerned with 
association/relationship, dependence/prediction between measures (same individuals), 
or comparison/differences between groups? 

2 Research design. How many groups are there in the study and is there any relationship 
between them? For example, if there are two or more groups of data are they related 
or independent? If each set of scores is obtained from a different sample of subjects, 
the groups are independent. If different measures are obtained from the same group of 
subjects on two (or more) occasions, i.e. the same subjects take two or more tests, or 
subjects take the one test on two or more occasions, then the measures are related or 
dependent. 

3 Data distributions. Are the distributions of the important variables discrete with 
inferences based on count data, for example, binomial, nominal or ranked data? Or are 
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the distributions continuous, for example, normal, bivariate normal with inferences 
based on the normal distribution? 

These three issues will now be appraised in more detail. 

Research Questions 

Correlation, relationship and association 

In many research studies more than one research question is addressed, consequently 
more than one type of statistical test may be used. If the purpose of the study is to test for 
a relationship between observations or scores then correlation type statistics are used. 
Statistics about relationships are often called correlations. They are frequently used but 
generally not well understood. The concept of significance in correlation is not very 
helpful. Correlation represents a measure of the degree of closeness (co-relation) between 
two variables. The correlation coefficient provides an indication of the strength of the 
relationship. Even very weak correlations (small correlation coefficients) can be 
statistically significant with large sample sizes, 

When data is category ranked, Spearman’s Rho, rs is an appropriate correlation 
statistic to use. When data is continuous and has an underlying normal distribution, the 
Pearson correlation r should be used. In both cases, the null hypotheses are: 

H0:ρ=0, that is the population correlation (ρ, rho) is zero. 

The one sample χ2 (Chi square) test of independence (Goodness-of-fit test) is often 
considered as a correlation type statistic for nominal data. Goodness-of-fit refers to the 
extent to which observed frequencies correspond to expected frequencies. This test 
provides a measure of the degree of statistical independence of two variables, or put 
simply a measure of the relationship between two variables when data is categorical (two 
or more categories). This procedure is appropriate when one sample from a population 
can be cross classified into two or more categories on two variables. The null hypothesis 
is that the two variables are independent that is no relationship exists between them. 

The r×2 sample χ2 test of homogeneity is actually a test of the equality of the 
distributions of two sets of proportions (the distribution of proportions in each population 
for an example see Chapter 4 Table 4.1). It is appropriate when data is categorical. The 
null hypothesis is that the distribution of proportions is the same in each population. A 
two sample χ2 refers to only two populations, the r refers to the number of categories or 
rows in an r×2 contingency table, and the 2 refers to the two populations. 

Dependence and prediction 

When the research question of interest focuses on prediction then a regression type 
analysis should be considered. The simplest form of statistical linear regression is when a 
response variable, Y, is dependent on a predictor variable X and both Y and X are 
continuous variables with a linear relationship. A regression equation can be used to 
predict the dependence of Y on X. The line which best represents the linear relationship 

Statistical analysis for education and psychology researchers      122



between X and Y in the population can be described by two parameters: beta(0), (β0) the 
intercept (value of Y when X=0) and beta(1) (β1) the regression coefficient, a measure of 
the slope of the regression line (change in Y per unit change in X). The parameters are 
estimated by the regression equation and hypothesis tests can be constructed for beta(0) 
and beta(1). Some introductory statistical texts state that the response variable in a linear 
regression has to be normally distributed; this is not strictly correct. The important 
assumption is that the residuals are normally distributed and independent (see Chapter 8). 
The response variable does not have to be normally distributed or even a continuous 
measure. 

The idea of simple linear regression can be extended to find the best fitting statistical 
model that describes the relationship between a response variable and more than one 
predictor (explanatory independent) variable. This is called multiple regression. When 
the outcome variable is binary, then an appropriate underlying probability model is the 
logistic regression model. Not surprisingly the regression approach is called a logistic 
regression, predictor variables may be continuous or binary. 

Differences between two samples 

When a research study is designed to assess treatment effectiveness, probably the first 
statistic to come to mind is the t-test. This ubiquitous statistic is generally appropriate for 
two sample comparison designs (sometimes called two group comparison designs). Being 
a parametric statistical procedure, several assumptions have to be met before the t-test 
can be properly used (see Chapter 8). Another important consideration is whether the 
two-sample comparison is between independent or related samples. If a response variable 
such as height is measured for two independent samples of individuals, for example, boys 
and girls, then to test whether there was any statistically significant difference between 
the mean height for boys and the mean height for girls (a difference between two 
independent samples) an independent t-test could be considered. However, if a group of 
boys were weighed on two occasions, for example, before and after dieting, two measures 
are taken for the one group of subjects, then a related t-test (paired, repeated measures) 
should be considered, because the measures on the two samples of weights are related or 
correlated. An alternative design would be to match pairs of subjects on certain variables. 
For a matched subjects design the paired t-test should be considered. One advantage of 
the related t-test over the independent t-test is that statistical significance is attained, at a 
specified p-level, with a smaller difference between the two means (assuming other 
important attributes are equal). The null hypothesis for the independent t-test is that the 
two means are equal, µ1=µ2, and for the related t-test the mean difference is zero, 
µ1−µ2=0. 

Should the independent t-test be considered inappropriate then an alternative 
nonparametric procedure is the Wilcoxon Mann-Whitney test. The null hypothesis is 
that the two samples have the same population distribution. An alternative nonparametric 
procedure to the repeated measures t-test is the Wilcoxon Signed Ranks test. 

A nonparametric repeated measures test for change, when any change is indicated 
simply as + or −, is the Sign test. This test makes use of medians only, has only one 
distributional assumption, the response variable, which theoretically has a continuous 
distribution. The sign test provides an indication of only the direction of any difference, 
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not a measure of any difference, between the two occasions. The null hypothesis tested 
by the sign test is that the median difference between two sets of scores is zero. Although 
theoretically the response variable should be continuous, because only the sign of any 
difference is used, the test can be treated as a binomial procedure hence its location in 
Figure 5.1. 

The Wilcoxon signed ranks test is a more powerful repeated measures test than the 
sign test because it uses more information (more of the data), that is the ranked positions 
of individual scores, rather than just the medians of the distributions. Similar to the t-test 
it is a test of no difference. The null hypothesis is stated in terms of the sum of the 
positive ranks equals the sum of the negative ranks. 

The two-sample Proportions test is a convenient test for the difference between two 
proportions or percentages. It is based on the binomial approximation to the normal 
distribution so a minimum combined sample size should be about 40 with a minimum of 
20 in each group (two-sample test). The normal approximation is also less accurate as the 
proportion P in each group moves away from 0.5. The proportions test is much underused 
in educational research. A one-sample proportions test can be used when we want to 
make an inference for a single proportion—an unknown population proportion can be 
estimated from a sample proportion. 

The Binomial test, similar to the sign and proportions tests, uses binomial data. 
Unlike these two tests, it is a single sample test, and one binomial population is classified 
into two groups. When this test is used, the two proportions (or percentages) should add 
up to 1 or 100 per cent (the total sample size). The binomial test is useful when we want 
to determine whether observed proportions—yes/no, male/female, etc.—differ from what 
would be expected by chance. When data is in a 2×2 contingency table and cell 
frequencies are small (<5), Fisher’s extact test should be considered. 

Differences between three or more samples 

When more than two samples are to be compared and the response variable is distributed 
normally then an ANOVA (Analysis of variance) type analysis should be considered in 
preference to a series of t-tests. Multiple tests on the same sample increases ‘experiment-
wise’ error. The most common multiple sample comparison procedure (sometimes called 
multiple group comparison procedure) is the F-test. This is a parametric procedure with 
similar requirements to the t-test. The null hypothesis tested with the F-test is that the 
group means are equal, i.e., H0: µ1=µ2 =µ3…=µn. Similar to the t-test there is a repeated 
measures ANOVA which also uses the F-test. In the related ANOVA unlike the 
independent ANOVA, variance in scores due to individual subjects can be treated as a 
separate source of error. This confers the same advantage that the repeated t-test has over 
the independent t-test. Nonparametric equivalents of the F-test are the Kruskal-Wallis 
one way ANOVA for independent samples, and the Friedman’s ANOVA by ranks 
procedure for related measures. Both the Kruskal-Wallis and the Friedman procedures 
test the null hypothesis that the samples (or repeated measures) come from populations 
all with the same median, effectively one population. Both procedures require data to be 
ordinal (ranked). 

When three or more samples are to be compared and data is in the form of counts 
(frequencies) then two parametric procedures should be considered. If the samples (three 
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or more groups) are independent and interest is focused on association between different 
samples (groups) then an extension of the r×2 Sample χ2 test of association, referred to as 
an r×k Sample χ2 test, should be considered. When three or more related samples are to 
be compared on, for example a true/ false or pass/fail basis, i.e., binomial data, then the 
Cochran’s Q-test should be considered. It can be thought of as an extension of the two 
sample proportions test, the null hypothesis being that the proportions are equal in each 
group. 

Research Design 

Choice of an appropriate statistical test depends upon whether the samples of scores or 
observations are independent or related. Generally a related measures design is preferable 
to an independent samples (groups) design because statistically there are fewer degrees of 
freedom. Hence statistical significance is attained, at a specified p-level, with a smaller 
difference. Also a practical benefit is that fewer subjects are required and individual 
differences between conditions can be eliminated or accounted for. A disadvantage is the 
need to counterbalance possible order effects and the requirement for a wash-out period 
between measurement occasions. The effects of measurement or participating in an 
experiment may carry over to the second measurement occasion. There are some designs 
where independent samples have to be used, for example, in an investigation of 
differences between boys and girls in their coping skills in different social settings. 

The number of samples (groups) in a design can become complex. Various 
combinations are summarized below. These descriptions are referred to in Figure 5.1. 
One 
sample 

when a single random sample of observations is obtained from a defined population. 

Two 
sample 

this design can take two forms: 

  • when two independent (separate and not related) random samples of observations are 
obtained from a defined population; 

  • when two samples of observations are obtained, but the two observations come from the 
same individuals (related). 

Multiple samples (or multiple groups) 
  when there are more than two samples of observations. These designs can be split into two 

types depending upon the number of independent variables (factors): 
  • when there is just one independent variable (factor) with different levels (categorical) 

forming groups and one response variable; 
  • when there is more than one independent variable (factor) and one response variable, i.e., 

two independent variables with two or more levels (categorical) forming the groups. For 
example, a 2×2 design would be two independent variables each with two levels forming 
four groups. 

Data Distributions 

Data distributions can be classified into: i) binomial/nominal; ii) ranked; and iii) 
continuous. These distributions have different underlying probability models and can be 
thought of as three distinct classes of statistics. Here we group binomial and nominal as 
one category of discrete measurement although they have different underlying 

Choosing a statistical test      125



distributions, for example, binomial and χ2 distributions. The remaining chapters in this 
book introduce various statistical tests and are sequenced on the basis of the type of 
inference and the type of underlying data distribution. Inferences about count data 
including binomial and χ2 distributions are presented in Chapter 6. Inferences based on 
ranked data are presented in Chapter 7, and statistical inferences and associated test 
statistics based on the normal distribution are presented in Chapter 8. 

When data is classified as binomial all data values are categorized into one of only two 
possible values, this is sometimes referred to as binary data. Nominal data is when data 
values can be classified into two or more groups. It can be thought of as an expansion of 
the binomial situation. A useful statistic for nominally classified data is the χ2 statistic 
based on the χ2 distribution. If a response variable is rank ordered, or the distribution of a 
continuous variable is asymmetrical, then the continuous variable can be treated as a 
ranked variable and nonparametric or distribution free statistics should be considered. 
This class of statistics makes very few distributional assumptions. All that is required for 
some tests is that scores can be identified as being different, other tests require that scores 
or values can be ranked. It is possible that scores may have a joint rank, in these 
circumstances the majority of tests do not include these tied scores in the computation of 
the test statistic. The value of initial data analysis in identifying possible underlying 
statistical models for the data can not be overemphasized. 

In many circumstances, probably too many, data is assumed to be normally 
distributed. When this assumption is made, either implicitly or explicitly, then it follows 
that scores should have a mean and a standard deviation. If either a mean or a standard 
deviation does not make sense, for example, a standard deviation of 0.6 ‘blue eyes’, then 
you are probably applying a continuous measure when you should not. Clearly blue eyes 
represents a discrete and probably nominal value. Apart from simple plots there are 
inferential procedures that can be used to check for normality assumptions. These are 
presented in section ‘Checking for normality’, p. 143. 

Using the Statistical Test Decision Chart 

The decisions chart shown in Figure 5.1 incorporates the three main criteria outlined in 
this section: research questions; research design; and data distributions. The chart can 
be thought of as a map with grid references consisting of statements about study design 
and research questions down the left hand side and statements relating to inferences and 
data type along the top of the chart. 

To use the chart you should first consider the research design and research 
questions(s); decisions about these are located under the column heading design on the 
left of the chart. If you move down this column you are presented first with one sample 
(group) designs, subdivided into research questions about association/ relationships, 
differences and prediction, then two sample (group) designs and research questions 
related to comparisons/differences and associations. The final choice is between types of 
multiple sample (group) designs involving questions about differences and associations 
between samples. 

Along the top of the chart under the general heading statistical inferences there are two 
main columns headed count data and continuous data. Inferences about count data are 
further subdivided into inferences relating to binomial/nominal data and inferences 
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relating to ranked data. The three types of data distributions, binomial/nominal, rank and 
continuous normal correspond to three main classes of statistics mentioned in the 
previous section. For some designs these three types of data distributions are further 
divided into independent and related measures. This gives a total of six columns: 
binomial independent/related; ranked independent/ related; and continuous normal 
independent/related. 

To decide on an appropriate statistical test start at the top of the left hand design 
column and move down this column until you reach a design and research question that is 
consistent with your study design. The type of independent vari- 

STATISTICAL INFERENCE ABOUT 
DESIGN: COUNT DATA CONTINUOUS 

DATA 
One. Sample Binomial/Nominal Rank Normal 
Research Q: 
Association/ 
relationship 

One sample χ2 test of 
Independence (6.1) Phi 
Coefficient and Cramer’s 
Phi (6.1) 

Spearman’s rank order 
rs correlation (7.2) 

Pearson correlation r 
(8.3) 

Difference Binomial test difference 
between 2 proportions (or 
%) (6.2) 

One sample Runs test 
(7.3) 

—   

Research Q: 
Prediction 
(independent 
variable is 
continuous) 

—   —   Linear Regression 
(Response variable is 
continuous (8.2)) 

Two. Sample Independent Related independent Related Independent Related 
Research Q: 
Comparison/ 
differences 

Fisher’s 
exact test 
(6.3) 

Sign test 
(6.5) 

Wilcoxon 
M-W test 
(7.4) 

Wilcoxon 
Signed 
Ranks test 
(7.5) 

t-test (8.4) t-test 
(8.5) 

  Proportions 
test* (6.4) 

          

Association 
(class variable 
is discrete 
forming 
groups) 

r×2 sample χ2

test of 
homogeneity 
(6.1) 

— — — — — 

Multiple 
Samples 

(groups) 1 
Independent 

Independent 
Related 

variable 
(factor) 
Independent

Related Independent Related 

Research Q: 
Differences 
between 
groups (class 
variable is 
discrete 
forming 
groups) 

— — Kruskal-
Wallis One-
way 
ANOVA 
(7.6) 

Friedman 
ANOVA 
by Ranks 
(7.7) 

One-way 
ANOVA 
(unrelated) 
(8.7) 

One-way 
ANOVA 
(related) 
(8.8) 
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Multiple Samples (groups) More than 1 independent variable (factors) 
Research Q: 
Differences 
between 
groups (class 
variable is 
discrete 
forming 
groups) 

  Cochran’s 
test for>2 
proportions 
(6.7) Q 

— — Two-way 
ANOVA 
(unrelated)( 
(8.9) 

Two-way 
ANOVA 
split-
plot’) 
(8.10) 

Association 
(class variable 
is discrete 
forming 
groups) 

r×k χ2 test 
(6.6) 

— — — — — 

* Can be independent or related; (6.1) indicates Chapter and section in text; † Independent 
and related 

Figure 5.1: Decision chart for 
choosing a statistical test 

ables, continuous or discrete variables are also stated under the design column. Discrete 
independent variables are sometimes called class variables because they classify subjects 
into relevant groups for analysis. 

You should then follow the row along and stop when the row intersects with an 
appropriate column heading relating to type of data and inference, for example, 
binomial/nominal; rank or normal data distributions. For some designs you need to 
choose between an independent or related measure for the response variable and also 
make a choice between discrete or continuous independent variables. At the beginning of 
each of the following chapters there is a summary of statistical tests included in that 
chapter.  

Example 5.1: Choosing an Appropriate Statistical Test 

In part of a study designed to identify whether there were any differences between 
mathematics and verbal self-concept among Norwegian school children, Skaalvik and 
Rankin (1994), sampled 165 sixth grade boys and 191 sixth grade girls. An additional 
question addressed in the study was whether any differences in self-concept were gender 
related. Two of the scales developed and used in the study were the Mathematics Self-
Concept (MSC) scale; self-perceived ability to learn mathematics, for example one item 
is ‘I have high mathematics aptitudes’, and the Verbal Self-Concept (VSC) scale; verbal 
self-concept about mathematics, an example of one item is, ‘I have no problems learning 
mathematics.’ Means and standard deviations were presented for both scales. 

In choosing a statistical test the first consideration is, 

What is the general research design, how many groups (measures) are 
involved? 
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The study is designed to investigate differences in self-concept in mathematics (MSC) 
vs verbal self-concept (VSC) so there are two measures for the same individuals MSC 
scores and VSC scores. Beginning in the left column of the decision chart under the 
heading design and moving down this column we need to decide whether this is a one-
sample, two-sample or multiple-sample design. In its simplest form, this is a twosample 
design, that is two sets of scores, MSC measures and VSC measures, for the same 
individuals. We also need to consider under the design heading, the nature of the research 
question; 

Is the research question concerned with association, prediction or 
comparison/ differences between groups (or samples of scores)? 

This part of the study was concerned with testing whether there were any differences 
between MSC and VSC measures within subjects. It is an example of a two-sample 
comparison, that is a comparison of two sets of scores for the same individuals. The 
response variables are the scale scores for MSC and VSC. Having identified the 
appropriate location in the design column ‘2 sample’, we then move along the row until 
we intersect an appropriate column describing the type of data distribution for the 
response variable, i.e., binomial rank or normal distribution. 

In this example the response variables are MSC and VSC scale scores, the authors’ 
report means and standard deviations for these scores, and, in the absence of any other 
information about score distributions, the reader is invited to make the assumption of 
continuous response measures which are normally distributed. 

The choice of statistical test has now been narrowed down to a statistical procedure 

to test for differences with two groups of scores (maths and verbal self-concept). The 
only remaining consideration is, 

Are the measures (groups of scores) independent or related? 

Considering all the criteria presented in the decision chart, the final choice of 
statistical test is between the independent t-test or the related (paired) t-test. As there are 
two sets of measures for the same subjects, this is a within subjects design, and therefore 
a related t-test is an appropriate statistical test to see whether there is any difference 
between mean MSC and VSC scores. Before using this test a number of other 
assumptions specific to the t-test need to be checked (see, Chapter 8). A point which may 
cause some confusion is how any gender differences are related to observed within 
subject differences in measures of maths and verbal self-concept. The authors simply 
completed the within subjects analysis separately for boys and girls. 

Skaalvik and Rankin (1994) reported that, ‘Paired t-tests showed that boys in sixth 
grade had significantly higher mathematics than verbal self-concept [MSC vs VSC] 
(t=3.60, p<0.001). In comparison, girls in the sixth grade had significantly higher verbal 
than mathematics self-concept (t=−3.91, p<0.001)’, (p. 424). 

Choosing a statistical test      129



Using Confidence Intervals for Significance Testing 

In a typical between-subjects design to see whether there is any difference in mean test 
anxiety scores between boys and girls, the null and alternative hypotheses might be: 

H0: µ1=µ2 
H1: µ1≠µ2 

  

If the 95 per cent confidence interval for the difference in means, µ1−µ2, does not include 
zero, then we reject the null hypothesis and conclude that there is a significant difference 
between boys and girls. As Gardner and Altman (1990) state, 

The excessive use of hypothesis testing at the expense of more 
informative approaches to data interpretation is an unsatisfactory way of 
assessing and presenting statistical findings… We prefer the use of 
confidence intervals, which present the results directly on the scale of data 
measurement pp. 15–16. 

Gardner and Altman’s book, Statistics with Confidence, although written with medical 
researchers in mind, has much to offer the social science researcher. The authors present 
in a very readable fashion worked examples for calculating confidence intervals with 
parametric and nonparametric data. 

Significance Tests—Some Caveats: 

• Remember that a 5 per cent significance level is a statement about conditional 
probability. It means that given the null hypothesis is true, then significant results (& 
consequent rejection of H0) would occur only 20 times out of every 100 tests of a true 
null hypothesis—that is the results would be unlikely.  

• Report both confidence intervals, and p-values. 
• Beware of outliers (a few outliers can produce significant results). 
• Lack of statistical significance may be important—do not ignore it. 
• When interpreting treatment effectiveness research you should report the attained 

statistical power of your test (applicable for parametric procedures). 
• There should be a probability model for the data if formal statistical inference is used. 
• Statistical inference as referred to in this chapter should not be used when data is 

collected haphazardly or is biased. 
• Generally avoid fishing expeditions that is do not go searching for statistical 

significance. Decide on your hypotheses at the design stage. Set up a level of 
significance in advance, such as p≤0.05, but use this as a guide to satisfactory 
evidence (i.e., can I reject the null hypothesis) rather than an absolute decision rule for 
the outcome of a statistical test. Only when many studies and statistical tests have been 
completed on independent samples is there really sufficient evidence in favour of a 
decision (This is the specialist topic of meta-analysis, the synthesis of results of many 
tests of significance). 

• Once data has been collected it is easy to conduct many statistical tests without thinking 
about underlying assumptions and in particular your (one) sample. Suppose you 
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choose alpha, your cut-off significance level at p≤ 0.05. Even if there was in reality no 
difference between two treatment groups, a hypothesis test based on formal statistical 
inference will give a difference by chance, 5 per cent of the time. If you were to 
conduct 5 t-tests on your sample and in reality there were no differences between 
treatments, you will detect a significant difference (spurious treatment effect) with 
probability about 0.23 (1−(0.95)5) or you would have a 23 per cent chance of detecting 
a difference somewhere. If you conduct 10 statistical tests then you will have about a 
40 per cent chance of detecting a significant difference even if one does not exist. 

Additional hypotheses may be explored but multiple significance tests should 
generally be avoided or adjusted for. If we deem it necessary to consider several 
comparisons then we should reduce the significance level for each comparison to 
make the overall experiment error level equal to 5 per cent. For example, if we 
want alpha to be 5 per cent and we make five comparisons, the p value for each 
test should be 0.01 (0.05/5). So p≤0.01 is the cut-off point for attainment of 
statistical significance at the 5 per cent level. There are special procedures for 
post hoc t-tests following a significant F-test (see Chapter 8). 

• Do not confuse statistical significance with educational or clinical significance. 

5.4 Statistical Power 

Whenever we conduct a statistical test of a null hypothesis we run the risk of making 
either a Type I error, α, (probability of attaining statistical significance falsely), or a Type 
II error, β, (the probability of not finding a population difference when one exists). For an 
explanation of Type I and Type II errors see Chapter 4. In this section we will consider 
how to influence, indirectly, the probability of making a Type II error and in so doing 
control the statistical power of a test. The power of a statistical test, 1−β, is the 
probability that statistical significance will be attained (we reject a null hypothesis) given 
there is a significant difference or relationship to detect (that is H0 is false). Put simply, 
statistical power is the ability to detect a relationship or a real difference should one exist. 

Sensitivity and Precision 

When planning a study we usually refer to the sensitivity of an experimental design or the 
precision of a survey design. Sensitivity refers to the likelihood that a real treatment 
effect, if present, will be detected. We usually refer to a significant difference or 
significant treatment effect meaning the experimental design is sufficiently sensitive to 
detect a statistically significant and meaningful difference between treatments. In survey 
design precision refers to the probable accuracy of a sample estimate. The precision of a 
sample estimator, (a method for estimating the population parameter from the sample 
data, for example, a sample mean) is influenced by the sample size and the variability in 
the population. 

Attainment of statistical significance, effect size or treatment effect (that is the 
magnitude of any detectable difference) and statistical power are closely related. 
Generally larger treatment effects are easier to detect than smaller treatment effects, other 
things being equal. Statistical power analysis is an important part of research planning. 
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The relationship between the chosen significance level alpha (usually p≤0.05 or 
p≤0.001), the effect size, statistical power and sample size is complex, but essential to 
understand, if an efficient study is to be planned. It is important to consider the statistical 
power of any inferential tests prior to collecting data because if the power is too low then 
the researcher has limited options namely: 

• increase the sample size to attain adequate statistical power; 
• increase alpha the probability of making a Type I error, that is the level of significance 

for the test (this has the effect of reducing β because α and β are inversely related); 
• or in the most drastic scenario abandon the study or completely revise the design (for 

example, change from an independent to a repeated measures design) 

What influences the sensitivity of a design and our ability to detect a 
significant difference? 

There are four interrelated features of a study design that can influence the detection of 
significant differences, hence the statistical power of a test: sample size; the population 
variability on the measures of interest; alpha Type I error rate; and the effect size 
(magnitude of difference or relationship) that we are trying to detect.  

Sample size and statistical power 

The effect of sample size is related to both variability of measures and statistical power 
(the probability of detecting a difference should one exist). These effects can be 
illustrated by considering the standard error of the mean (SEM). From the Central Limit 
Theorem, the population variance of a sampling distribution of means is normally 
distributed with mean µ, and a variance of σ2/n (standard deviation is —usually 
called the standard error, in this example it is the SEM). When computing many test 
statistics the denominator is usually a standard error, for example, in computing the t-
statistic (independent) it is evaluated as a ratio of the difference between two sample 
means divided by the standard error of the difference between the sample means. 

You can think about the standard error of the difference between two means as 
representing, under the null hypothesis, the variability expected in the differences 
between the means of pairs of samples drawn from a single population. If a t-test is 
performed and the calculated t-statistic or more correctly the obtained t-ratio is 
sufficiently large when looked up in a table of t-values (with appropriate df), then 
statistical significance is attained (at a specified α). The two sample means are said to be 
significantly different. The importance of sample size is most noticeable if we think about 
the denominator in the t-ratio, the standard error of the difference between two means. As 
the sample size, n, increases, then the value of the standard error decreases. This is easily 

shown if you consider the SEM of a single mean, i.e. If you divide by a larger 
number, the SEM is reduced. The same principle applies to the standard error of the 
difference between two means as evaluated in the t-ratio. The standard error of the 
difference forms the denominator in the t-ratio and hence a smaller value increases the 
size of t. Larger t-values increase the chance of attaining statistical significance for a 
given magnitude of effect (effect size). Larger sample sizes yield larger degrees of 
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freedom which are associated with smaller critical test statistic values for attaining a 
specified level of statistical significance. For example, a critical t-value with 10 df, α two-
tailed test and p≤0.05 is 2.228, and if df increases to 25, all other attributes remaining the 
same, then the critical t-value is only 2.060. 

Variability of population measures and statistical power 

The more homogeneous groups are (less variability), the easier it is to detect differences 
(relationships). Even when random samples are used, if the measure of interest is 
heterogeneous with respect to the population, then real treatment effects will be more 
difficult to detect than would be the case if measures were homogeneous. 

The researcher has direct control over the sample size and can therefore increase the 
statistical power of a design by increasing the sample size. A researcher can do little 
directly about the population variability, denoted by sigma squared σ2, and hence the 

standard error, When population variability is large statistical power is reduced. 
You should note that by increasing the sample size this has the effect of reducing the 
standard error and hence increasing statistical power.  

Alpha Type I error rate and statistical power 

Generally in experimental and survey designs we try to minimize α, that is the problem of 
finding a difference that does not actually exist in the population. However, the alpha 
Type I error rate is inversely related to beta Type II error rate, the problem of not finding 
a difference that does exist in the population. As we increase alpha, at the same time we 
reduce beta and hence increase statistical power (1−β). The larger the chosen α or 
significance level, for example, p≤0.10 rather than the conventional p≤0.05, then the 
smaller is the critical t-ratio required for statistical significance and hence the easier it is 
to attain significant difference. Also, the direction of any differences tested, such as a 
one-tailed or a two-tailed test influences the attainment of statistical significance. For a 
chosen alpha, a one-tailed test (one-direction test, such as H1: either µ1>µ2 or µ1<µ2) will 
be significant at a smaller critical t-ratio value than a comparable two-sided test. 

Effect size and statistical power 

The effect size for a given difference between sample means can be defined as the ratio 
of the size of difference between sample means divided by the population standard 
deviation. In notational form this is: 

 Effect 
size—
5.1 

When calculating an effect size from sample data sample means replace µ1 and µ2 and the 
pooled standard deviation replaces the population standard deviation. The pooled 
standard deviation for two samples is evaluated as: 
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pooledstandard 

deviation—52 

where and are the sample variances, and n1 and n2 are the respective sample sizes. 
For worked examples and what to do when sample sizes are substantively different see 
Lipsey (1990). 

As the population effect size increases, the t-ratio increases as does the likelihood of 
attaining statistical significance. Put simply, the power of a statistical test is related to the 
effect size, the larger the effect the more probable is statistical significance and the 
greater is the statistical power. 

To summarize, the following design attributes increase statistical power: 

• larger sample sizes; 
• homogeneous populations (low variability in population measures of interest); 
• larger alpha Type I errors (problem of finding a difference that does not actually exist in 

the population); 
• larger effect sizes. 

Estimating Sample Size and/or Power for a Design 

To compute a sample size for an investigation using charts that depict statistical power 
for various values of effect size, alpha, and sample size, the general procedure is to enter 
the power charts with any of the three parameters, say effect size, alpha and power, and 
the fourth parameter the corresponding sample size, can be determined. Alternatively, 
you could enter the power charts with a sample size and determine the statistical power of 
a test. The reader is referred to Lipsey (1990) for power charts and illustrated examples of 
how to use them. 

In this section, rather than refer to charts and tables, three SAS programmes are 
presented for sample size and power estimation calculations. These SAS programmes use 
the SAS functions PROBIT and PROBNORM to generate appropriate values and thereby 
avoid the necessity to use tables and charts. The programmes are suitable for four 
common study designs: binomial data two independent groups; binomial data (paired 
groups cross-over design); normally distributed data independent groups design; and 
normally distributed data paired groups cross-over design (or simply paired/related 
groups). These programmes are presented in Appendix A3. 

For all three programmes either sample size or power can be estimated provided three 
other parameters are entered. For example, to calculate sample size for a normally 
distributed response variable in an independent groups design the following three 
parameters would need to be specified (in the programme): Power (power), Type I error 
(alpha), difference between the two means that is to be detected (diff), pooled within 
group standard deviation (sd), and −9 for the fourth parameter, sample size. When −9 is 
entered this missing parameter is estimated by the programme. If we wanted to estimate 
power for a given sample size, then −9 would be entered for power and the given sample 
size would be substituted for the −9 in the above example. There can only be one missing 
parameter for each sample size or power calculation.  
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Example 5.2: Estimating Sample Size for Difference in Proportions 
(Independent) 

A review of the reading recovery (RR) programme literature suggests that between 5–7 
per cent of children who enter RR programmes are not significantly helped (Clay, 1990). 
The RR programme is an intervention programme designed for children who show 
difficulties in reading and writing. Pupils are screened on six subtests, and those that 
score in the bottom 20 per cent of their class are considered to be ‘poor’ readers and 
eligible for entry into a RR programme. Programme success is defined as the percentage 
of children who after 20 weeks individualized RR intervention are reading at ‘average’ 
levels for their class or school, 

A study is planned to compare poor readers’ response to a reading programme 
intervention in terms of ‘success’ or ‘failure’. A group of poor readers is to be randomly 
allocated to one of two intervention programmes. One group will receive a ‘usual’ 
remedial help reading programme (comparison group) and the other group will receive 
the RR programme. The anticipated percentage of children in the comparison 

group who are expected to fail is 12 per cent and this is compared to an expected 6 per 
cent of failures in the RR programme. 

How many children will be required in each group (comparison group 
and RR group) to detect a significant difference in the proportions of 
‘failure’ of 0.06 (0.12–0.06) with a two-sided test, a Type I error (alpha) 
of 0.05 per cent and 80 per cent power? 

Two-proportions independent-groups design 
To estimate the number of children in each group, the SAS programme POWER1 is 

used. The SAS programme calculates sample size and power for the difference between 
two proportions with independent groups (see Appendix A3, Figure 2). The required 
power is 0.80, alpha is 0.05, pie1 is the smaller proportion, 0.06 (RR proportion) and pie2 
is the larger proportion 0.12 (usual remedial programme), the parameter to be estimated 
is sample size and this is entered as −9. The output from this programme is shown in 
Figure 5.2. From this it can be seen that 354 children per group would be required.  

Comparison of Two Proportions (independent groups)
  Finding number of subjects (n) 

Power alpha pie1 pie2 Calculated value of N (per group) 
0.8 0.05 0.06 0.12 354 

Figure 5.2: Output from SAS programme POWER1 

The programme POWER1 allows a number of ‘what…if’ power and sample size 
calculations to be performed. For example, an investigator may ask what would be the 
required sample size if the anticipated percentage of failures in the remedial teaching 
group increased from 12 per cent to 25 per cent Intuitively a larger effect size (that is
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magnitude of difference) would suggest a smaller sample size is required. The following 
two lines of ‘data’ are entered in the programme POWER1: 

0.80 0.05 0.06 0.12 -9 
0.80 0.05 0.06 0.25 -9 

Notice the first line of data input is the same as the previous example but in the second 
line of data 0.25 represents the increased failure rate of 25 per cent. The output for these 
sample size estimates is shown in Figure 5.3.  

Comparison of Two Proportions (independent groups)
  Finding number of subjects (n) 

Power alpha pie1 pie2 calculated of N (per group) 
0.8 0.05 0.06 0.12 354
0.8 0.05 0.06 0.25 54

Figure 5.3: Sample size estimates for two different 
proportions 

From Figure 5.3 it is evident that to detect a larger difference in proportions requires a 
considerably smaller sample size, given the same alpha and power. 

The number of subjects in a design is related to the level of measurement and 
summary statistics being used. In general, when data can be appropriately summarized by 
means, (rather than binomial, percentage of ‘failures’ and ‘successes’) then smaller 
samples are required. 

Proportions in a Two-group Two-period Cross-over Design (Related 
Measures) 

In a two-group two-period cross-over design subjects receive both interventions, for 
example, A and B in a randomized order. This is an appropriate design when the 
intervention in the first period does not effect the intervention in the second period. In 
many educational interventions a carry-over effect, learning, is precisely what is intended 
and a cross-over design would therefore be unsuitable. However, in some psychological 
experiments and clinical settings the cross-over design is desirable because it eliminates 
subject variability and has the practical advantage of needing fewer subjects than a 
comparable independent groups design. Paired difference between treatments for each 
subject are calculated and the comparison of interest is either the average difference (the 
mean of the difference scores for normal data) or a count of those subjects who have a 
‘difference’ and those who have ‘no-difference’ between treatments (for count data).  

Example 5.3: Estimating Sample Size for Difference in Proportions 
with a Two-group Two-period Cross-over Design (Related Measures) 

Johnston Rugg and Scott (1987) have demonstrated that poor readers tend to rely on
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phonological decoding when processing unfamiliar written words. Phonological decoding 
of unfamiliar written words is when a reader uses letter-sound mappings in order to create 
a familiar phonological representation (word sound) which is recognizable. 

A PhD researcher based part of her thesis on this work and in planning the study she 
decided to use a two-group two-period cross-over design. One of the experimental tasks 
is to ask a sample of 9-year-old poor readers to sort written sentences presented to them 
as either correct or incorrect (meaningless). Treatment A will include twenty sentences in 
which 10 have a word replaced by a homophone, for example, ‘She blue up the balloon’, 
blue is the homophone. Treatment B will include twenty sentences in which 10 have a 
word replaced by non-homophonic non-word, for example, ‘He tain the ball’, tain is the 
non-word. Homophones and non-words will be equivalent in visual similarity and 
pronounceability, and sentence length will be held constant across both sets of sentences. 
The number of correct sentences will be counted after presentation of each treatment. The 
cross-over design is illustrated in Figure 5.4. 

Treatment Difference between treatment No difference between 
  n correct on A >n n correct on B >n n correct on A =n correct on B 
A−B n11 n12 n13 
B−A n21 n22 n23 

Figure 5.4: How to determine estimates of pie1 and 
pie2 for a 2×2 cross-over design

 
From Figure 5.4 estimates of pie1 and pie2 can be derived as follows: 

where n is the number of cases in that cell. Subjects with no difference between 
treatments are excluded from subsequent sample size calculations. 

Once pie1 and pie2 have been estimated, the sample size analysis proceeds as in the 
comparison of independent proportions using the SAS programme POWER1 (see 
Appendix A3, Figure 2). However, the estimated sample size will have to be increased by

 

a small factor, perhaps 5 per cent, to allow for those subjects who show no difference 
(cells n13 and n23). Unfortunately, there is no rule of thumb inflation factor and either 
previous studies should be consulted or a range of possible factors should be tried. 

What sample size would be required to detect a significant difference in 
proportions between treatment A (P=n11/(n11+n12) and treatment B 
(P=n21/(n21+ n22), given 80 per cent power and 5 per cent alpha? 

Typically estimates of pie1 and pie2 are unknown in 2×2 cross-over designs. The 
researcher often has to complete a pilot study to determine these estimates for use in

 

subsequent power analysis calculations. In a small pilot study with 12 children in each 
treatment sequence the following values were determined: 

Choosing a statistical test      137



n11=8 n12=3 n13=1 
n21=4 n22=8 n23=0 
then pie1=n11/(n11+n12)=0.727 and pie2=n21/(n21+n22)=0.333.

When these values are entered into the SAS programme POWER1 the number of 
subjects required per treatment sequence group is 22. If this value is inflated by 5 per 
cent, i.e., 1 additional subject, then in total 46 subjects would be required. 

Example 5.4: Estimating Power for Difference in Means 
(Independent Groups) 

In the evaluation of a classroom management programme for use in teacher education, 
Martin and Norwich (1991), report a significant difference, p<0.01 between a treatment 
group and a control group of teachers with respect to effective classroom management. 
The treatment group, n=12, mean score on a effective classroom management question 
was 1.25 (sd=0.45) and the control group, n=12, comparable mean score was 1.92 
(sd=1.17). The control group consisted of teachers who had not 

received training with the classroom management programme but were similar in other 
respects with the treatment group in terms of sex, location of school, class taught, and 
length of teaching experience. While acknowledging a number of evaluation design 
limitations, the authors claim that the study showed how research-based concepts and 
principles of classroom management are amenable to translation into practice via a well 
planned inservice programme. 

What is the power of the significant difference in means between the 
intervention and control groups reported by the authors? 

Difference between Two Means, Independent Groups 
To estimate the statistical power of the reported difference in means the SAS 

programme POWER2 is used, power and sample size for comparison of two means with 
independent groups (see Appendix A3, Figure 3). From the author’s paper, the reported 
alpha is 0.01, the difference in means is 0.67 (1.92−1.25), the pooled standard deviation 
is 0.88. (using equation 5.2), and the sample size in each group is 12. The power is 
estimated to be 24 per cent. The SAS output is shown in Figure 5.5. If sample sizes are 
unequal the harmonic mean, n′, of n1 and n2 should be used. This is evaluated as 2(n1 
n2)/(n1+n2). Alternatively, two power estimates can be determined, one for each n.  

Comparison of Two Means (unpaired data)
  Finding the power 

alpha diff sd n Calculated value of power
0.01 0.67 0.88 12 0.24 

Figure 5.5: Output from SAS programme 
POWER2: Estimated power for difference between
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means (independent groups) 

We can use the same SAS programme to determine the required sample size to 
achieve 80 per cent power, other parameters remaining the same. The number of subjects 
required in each group is 41 (see Figure 5.6)  

Comparison of Tow Means (unpaired data) 
  Finding number of subjects (n) per group

power alpha diff sd calculated value of n per group
0.8 0.01 0.67 0.88 41 

Figure 5.6: Output from SAS programme 
POWER2: Estimated sample size for power set to 
80 per cent 

Example 5.5: Estimating Sample Size for Difference in Means 
(Related Groups) 

In a paper by Hart, Wearing, and Conn (1995) which reported on the evaluation studies 
that were conducted as part of a programme on a Whole School Approach to 

Discipline and Student Welfare (WSADSW-Statewide Australian Programme), changes 
in teachers’ stress, discipline skills and aspects of school organizational climate were 
analyzed. Data abstracted from the paper include: 

Before WSADSW After WSADSW p-values paired Variable n r*
M† SD M SD t-test 

Teachers’ Psychological Distress 828 .59 10.3 4.08 9.7 4.04 <.001 
Student Misbehaviour 812 .37 24.7 19.55 23.9 17.29 >.10 
r* is a Pearson correlation coefficient; † M represents the mean. 

A five-point rating scale, the General Strain Index, was used to assess teachers’ 
psychological distress. Student Misbehaviour was measured using a single self-report 
scale. Teachers’ rated on a 100-point scale their perceptions, related to one class, of the 
amount of time they spent dealing with student misbehaviour in that class. 

What is the power of these t-tests used to detect the change in teachers 
psychological distress following the programme? What minimum sample 
size would be required to detect a change of 0.8 (24.7–23.9) in teachers’ 
perceptions of student misbehaviour, assuming 80 per cent power, and 5 
per cent alpha (two-sided test)? 

Differences between Two Means, Related Samples (Groups) 
To answer these questions the SAS programme POWER3 is used (see Appendix A3, 

Figure 4). Five parameters are required, power, alpha level, difference to be detected, 
standard deviation of the difference scores and sample size. 
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The first question relates to determination of power (set to −9 in the programme) given 
an alpha of .001, a difference in means of 0.6 (10.3–9.7), and a sample size of 828. The 
missing and problematic parameter is the standard deviation of the difference scores, 

This is generally not available. Not all is lost, however, provided we make an 
assumption of homogeneity of variance (here similar variance in pre-and post-

intervention measures, ), then the standard deviation of the difference 
scores can be estimated if we have a measure of the correlation (or an estimate of this) 
between the related measures (pre- and post-intervention scores). 

Using the variance sum law, the variance of the difference of two variables is equal 
to the sum of the two variances minus twice the correlation between the two variables 
times the product of the two standard deviations. 

In notational form this is  
Assuming homogeneity of variance, then by rearrangement, 

 

Standard 
deviation 
difference 
scores—5.3 

where ρ is the correlation between the two related measures. We also require an 
estimate of the pooled standard deviation. For related measures the sample size in the two 
groups is equal and therefore a simplified version of equation 5.2 (pooled standard 
deviation for independent samples) is: 

 Pooled 
standard 
deviation
—5.4 

The pooled standard deviation is 4.06 ((4.082+4.0422)/2)0.5. Note, a value raised to the 
power 0.5 is equivalent to the square root of that value, for example, 40.5=2. Using 
equation 5.1 to evaluate the standard deviation of the difference between pre-and post-
intervention measures of the teachers’ psychological distress variable, 

   

To answer the first question, the values to enter into the SAS programme are, power 
=−9, alpha=0.001, diff=0.6, sd=3.676 and n=828; to answer the second question the 
values to enter into the programme are, power=0.80, alpha=0.05, diff=0.8 sd = 20.715 
and n=−9. Relevant sections of the SAS programme POWER3 are shown in Figure 5.7 
and the SAS output from this programme is shown in Figure 5.8.  

data a; 
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   input power alpha diff sd n; 
   cards; 
−9   0.001 0.6  3.676 828 
0.80 0.05  0.8 20.715 −9 
; 

Figure 5.7: SAS code for POWER3 programme to 
determine power and sample size for the related 
groups design (Example 5.5) 

Comparison of Two Means (paired data) 
  Finding the power 

alpha diff sd n calculated value of power
.001 0.6 3.676 828 0.92 

Comparison of Two Means (paired data) 
  Finding number of subjects (n) 

power alpha diff sd calculated value of n 
0.8 0.05 0.8 20.715 5263 

Figure 5.8: Estimated power for difference between 
means (related measures), output from SAS 
programme POWER3 

Notice in Figure 5.7, in the first line of data input power is set to −9. This is evaluated 
as 92 per cent power and is shown in Figure 5.8. In the second line of data input in Figure 
5.7 sample size is set to −9. This is evaluated as a required sample size of 5263, and 
shown in Figure 5.8. 

In reporting the results the authors comment, ‘The paired sample t-tests suggested that 
the WSADSW programme was effective in bringing about an improvement in teacher 
stress, discipline policies…but that it made no difference to the mean levels of student 
misbehaviour’ (p. 34). From Figure 5.8 it is evident that the obtained power for the 
teachers’ psychological distress variable exceeds the 80 per cent level. The researchers 
therefore have a 90 per cent chance of detecting a difference as small as the one reported. 
To detect a difference of 0.8 in teachers’ perceptions of student misbehaviour with 80 per 
cent power and an alpha of 0.05, a sample size of 5263 would be required. It is not 
surprising that the authors report there is no significant change at the 0.10 level on this 
variable. 

We should pause for a moment to reflect on the finding of this power analysis. Why 
should we require such a large sample size? On reading the full article you might notice 
that the variance on the student misbehaviour variable is more than 4 times larger than 
the variance on any of the other measures reported by the authors. Recall from section 5.4 
that the more homogeneous the groups are (less variability), the easier it is to detect 
differences. With such large variability in this measure, to detect a relatively small 
difference a large sample is required. 

Considering interpretation of these findings there certainly appears to be some change
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in teachers’ perceptions about student misbehaviour before and after the intervention 
because the correlation between pre- and post-intervention measures is low (r=.37) The t-
test only provides information about overall means and not about change in perceptions 
for individual teachers. It is possible that teachers’ scores had changed in different 
directions, some improved and some reduced and the effect of these changes might 
cancel out—resulting in no overall average change. Perhaps supplementary analyses are 
required to detect individual changes, these may be more informative than the average 
effects. 

5.5 Checking for Normality 

Parametric statistical procedures are based on the assumption of underlying normality in 
the population from which a sample is selected. Whereas many univariate test statistics 
such as t- and F-tests are said to be robust (not drastically affected by moderate 
departures from underlying assumptions of normality and homogeneity of variance) 
Boneau (1960) and more recently Bradley (1984) have questioned this assumption of 
robustness. Monte Carlo studies (repeated sampling and testing from a distribution with 
known properties) have found that non-normality has only minor consequences in the 
majority of research applications (Hopkins and Weeks, 1990). As a consequence of the 
general robustness of t- and F-tests, many researchers do not report information about the 
shape of a distribution. This is despite the fact that many distributions are novel measures 
for which underlying population distributions are not well known. Newell and Hancock 
(1984) point to the dangers of erroneous statistical inferences when only means and 
standard deviations of distributions are reported and skewness and kurtosis is ignored 
especially when either n is small or alpha is extremely small, and data is skewed. 

Checking for outliers and normality should therefore be an important preliminary to 
many inferential statistical procedures. The simplest way to check for departures from 
underlying normality in the population is to plot the distribution of sample scores. 
Outliers can be identified and the general shape of a distribution indicates whether it is 
skewed and whether it has positive or negative kurtosis (see Chapter 3 section, 
Describing Distributions). 

As well as plotting the distribution of sample scores the values of skewness and 
kurtosis can be determined routinely in many statistical packages. These values can be 
used inferentially to test whether the distribution departs significantly from normality. 

In SAS the basic assumption of underlying normality can be checked using the 
univariate procedure with the options plot and normal. The relevant SAS code which 
produced Figures 5.9, 5.10 and 5.11 is:  

proc univariate plot normal; 
  var corrd corre vocab; 
run; 

The first line of code has the procedure statement followed by the two options ‘plot’ and 
‘normal’. In the second line of code the three variables ‘corrd’, ‘corre’ and ‘vocab’ are 
specified. 
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Examining Data Distributions 

Example 5.6: Distributions of Three Reading Scores 

A PhD student collected data on a number of reading measures including two syntactic 
awareness measures: a measure of syntactic awareness in a difficult reading passage; a 
measure of syntactic awareness in an easy reading passage, and as a third variable a 
measure of pupils’ vocabulary. Both syntactic awareness variables were measured as 
percentage correct scores and the vocabulary score was a raw score with maximum 
possible score of 25. The data distributions and moments of all three variables are shown 
in Figures 5.9, 5.10 and 5.11. Non-relevant sections of SAS output have been deleted for 
clarity of presentation.  
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Figure 5.9: Percentage correct score of syntactic 
awareness (difficult reading passage) with a 
positive skew 

The variable ‘corrd’, percentage correct in difficult reading passage, has a typical positive 
skew with the tail of the distribution extended to the right (hence +ve), and the majority 
of values to the left (see the histogram and stem and leaf plots) Also notice the positive
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kurtosis (too few values under one tail of the distribution) and the relative positioning of 
the mean, median and mode, i.e., mode<median<mean (see Chapter 3, Describing 
Distributions). 
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Figure 5.10: Percentage correct score of syntactic 
awareness (easy reading passage) with a negative 
skew 

The variable ‘corre’ is negatively skewed, the tail is extended to the left (−ve), and the 
majority of values are to the right In contrast to the variable ‘corrd’ it has negative
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kurtosis (light tail), that is, too few values under the right tail of the distribution and the 
relative positioning of the mean, median and mode is reversed i.e., mode>median>mean.  
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Figure 5.11: Vocabulary (raw scores) approximate 
normal distribution 

The variable vocabulary is approximately normally distributed. The values of skewness 
and kurtosis are close to zero. (Most statistical packages adjust the values of skewness 
and kurtosis to be zero in a normal distribution to aid interpretation—kurtosis actually 
has a value of 3 when a distribution is normal), and the mean, median and mode are 
almost identical (as they would be in a perfectly normal distribution). 
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Interpretation of the Test Statistics W:Normal (or D:Normal) 

In SAS the normal option in PROC UNIVARIATE tests the null hypothesis that the 
sample data represents a random sample from a normal distribution. Two statistical tests 
may be performed by PROC UNIVARIATE depending upon the sample size. If the 
sample size is >2000 then the Kolmogorov test is used, denoted as D:Normal in the SAS 
output. With smaller samples the Shapiro-Wilk test is used, denoted by W:Normal in the 
SAS output. 

Interpretation of the hypothesis test is straightforward. If the obtained p-value from the 
test statistic (either W:Normal or D:Normal) is less than the p-value you have chosen 
(usually 0.05 or 0.15) then the null hypothesis is rejected and you can conclude that the 
data do not come from a normal distribution. 

Care should be taken when choosing your significance level. For small sample sizes 
say<30 then a liberal p-value such as 0.15 is suggested. For larger sample sizes the p-
value of 0.05 is more appropriate. You should be aware that with large samples small 
departures from normality will be detected with significance even when using a p-value 
of 0.05. These small departures are generally of no practical consequence but you should 
consider other information such as data plots and normal probability plots to determine 
whether the sample data plausibly comes from a normal distribution. 

Normal Probability Plot 

This is a descriptive technique for checking normality in a data distribution. Normal 
probability plots are produced by the option plot in PROC UNIVARIATE. Normal 
probability plots are shown for the three score distributions in Figures 5.9, 5.10 and 5.11. 
In a normal probability plot ranked data values are plotted (y axis) against standardized 
expected values based on a normal distribution (x axis). When the data are normally 
distributed any data value will equal its expected value and hence a plot will result in a 
straight line. 

Interpretation of the plot is straightforward. Data points are plotted by an * and a 
theoretically normal distribution is plotted by a + which forms a straightline. So if the 
data is from a normal distribution the * will cover the + and form a straight line. 
Therefore a small number of + and a correspondingly large number of * forming a 
straight line will indicate a normal distribution. See, for example, the normal probability 
plot for the variable VOCAB in Figure 5.11. The approximate normal distribution of this 
variable can be checked by examining the distribution (histogram), stem and leaf, and 
box and whisker plots. 

Departure from normality is evident when a number of + are visible and the data 
values indicated by an * deviate from a straight line, see Figures 5.9 and 5.10. Notice in 
both the variables CORRD and CORRE the * do not cover most of the + signs and the 
data values (*) deviate from a straight line. We could reasonably conclude that the data 
for the percentage correct scores do not come from a normal distribution. The pattern of 
the deviation of data points (*) provides a clue as to the shape of the underlying 
distribution. The variable CORRE in Figure 5.10 has a negative or left skew and the data 
points (*) form a curve from bottom left to top right rising steeply at first and then 
flattening off. The variable CORRD in Figure 5.9 has a distinct right or positive skew, the 
data points (*) form a curve from bottom left to top right but rising slowly and then 
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steeply so that high ranked scores correspond to larger than expected (the straight line) 
standardized scores. 

To see whether the normal probability plot is reasonable, (i.e., no gross errors) you 
should check that when the standardized expected value on the x axis equals zero, the 
corresponding ranked value on the y axis should be an approximate estimate of the 
median. For example, in Figure 5.10 the standardized score of zero corresponds to a score 
on the variable CORRE of about 14, the value of the median. 

What can be Done when Data is not Normal? 

If you face the problem of non normal data there are four possible strategies. 

1 Check that there are no extreme outliers indicated by individual data points in a normal 
probability plot that depart significantly from both the straight line and other data 
points. If outliers are extreme remove them and check again for normality. 

2 Consider using distribution free nonparametric statistical procedures. 
3 Consider transforming your data. 
4 Consider alternative non normal continuous distributions (these are beyond the scope of 

this text and you should consult a statistician for help). 

Strategy 1) may improve a distribution and should always be considered. It is an essential 
part of IDA. However, you should consider the implications of removing outliers in your 
results section and in any interpretation. Strategy 2) is useful when data can be ranked. 
Examples of nonparametric statistical procedures are given in later chapters. Strategy 3) 
is helpful on occasions if data is skewed. Data transformations will minimize the effect of 
outliers but extreme observations should be dealt with as in strategy 1). Transformations 
should also not be applied directly to the data when there are a large number of zeros in 
the data. A constant such as 0.5 should be added to all data values prior to transformation 
(this is because values of zero cannot be multiplied and therefore do not work well in 
transformations, for example, logarithms are only defined for non-zero positive 
numbers). Strategy 4) is beyond the scope of this book. See also the end of Chapter 8 for 
further discussion.  

Data Transformations 

The benefits from normative data transformations for extreme skewness or kurtosis are 
worth considering but transformations should not be used on a routine basis because 
statistical procedures such as F and t-tests are generally robust and interpretation of 
transformed values can be problematic. Transformations should therefore be the 
exception rather than the rule and are generally performed with the intention of: i) 
making skewed distributions more symmetric and closer to a normal distribution ii) to 
obtain homogeneity of variance in ‘scores’, and iii) to achieve a more meaningful scale of 
measurement. This does not always work and transformed data should be checked using 
normal probability plots to see whether there is any improvement in normality. 
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What Transformations to Use 

Positively skewed or when the standard deviation is proportional to the 
mean 

There are two possible transformations for positively skewed data, the square root 
transformation for moderate +ve skewness and the logarithmic transformation for data 
with a severe positive skew. Both transformations ‘pull-in’ the right tail of a distribution. 
Skewness is affected by outliers so check these first. 

The logarithmic transformation generally uses log10 (log to the base 10). Log10 (10)=1, 
means the power to which 10 must be raised to give 1. Similarly, log10 (1000)=3. When 
there are a number of zeros in the data set a constant of 0.5 is added to each data value. 
The transformation then becomes log10(xi+0.5) where xi= original data value. In SAS 
code this would be placed in a DATA step as NEWX= LOG10(OLDX+0.5);. If there 
were negative values in the data then the largest negative value should be treated as an 
absolute value, (|a|), and +0.5 should be added to |a| to make it positive, i.e., 
log10(xi+(|a|+0.5)) where xi=original data value. Log to the basee (e=2.7182…) can be 
used rather than log10 as this has the same transformation effect. Switching from one base 
to another only changes the scale, not the shape of a distribution. Figure 5.12 shows a 
histogram and normal probability plot for the log transformed variable CORRD—
percentage correct in difficult reading passage. The relevant SAS code that produced this 
output is: 

data a; 
     infile 'a:amanda.dat' lrec1= 72; 
     input id 1–3 corre 57–58 vocab 67–69 corrd 70–72; 
newlog=log10 (corrd+0.5); 
label corrd = 'Percentage Correct Syntactic Score 
(difficult)'; 
proc print; 
  var corrd newlog; run; 
proc chart; 
  vbar newlog; 
title1 'Distribution of Log Percentage Correct 
Syntactic Scores (DIFFICULT)'; 
run; 

proc univariate plot normal; 
  var newlog; 
run; 
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Figure 5.12: Histogram and normal 
probability plot for log transformed 
variable ‘CORRD’—percentage 
correct difficult reading passage 

Notice the distribution for the log transformed data in Figure 5.12 has considerably 
improved the shape of the original distribution shown in Figure 5.9. Examining the 
transformed data, however, shows that it still departs significantly from normality, Pr<W 
0.0001. An alternative transformation suitable for data which is in the form of 
percentages or proportions is the arcsine transformation. 

Count data, especially proportions or percentages with skewed 
distributions 

When the variance is a direct function of the mean (σ2=P(1−P)) for example with 
proportions and percentages, the arcsine transformation should be considered. Generally, 
percentage scores tend to cluster around the high or the low end of a range, rather than 
the middle. The effect of the arcsine transformation is to move high scores towards the 
centre of the distribution. A modified arcsine transformation: 
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has the effect of moving both high and low percentage scores towards the middle of a 
distribution. 

The original distribution for the variable CORRD—percentage correct score of 
syntactic awareness (difficult reading passage) in Figure 5.9 had a positive skew. The 
variable CORRE—percentage correct score of syntactic awareness (easy reading 
passage) shown in Figure 5.10 had a negative skew. Both of these variables were 
transformed using the modified arcsine transformation using the following SAS code: 

data a; 
     infile 'a:amanda.dat' lrec1= 72; 
     input id 1–3 corre 57–58 vocab 67–69 corrd 70–72 
label corrd='% CORRECT SYNTACTIC SCORE (difficult)' 
      vocab='VOCABULARY SCORE (RAW SCORE)' 
      corre='% CORRECT SYNTACTIC SCORE (easy)' 
      newd='ARCSINE % CORRECT (difficult)' 
      newe='ARCSINE % CORRECT (easy)'; 
data a; set a; 
newd=round(2 *(arsin (sqrt (corrd/100))), .001); 
newe=round (2*(arsin (sqrt (corre/100))), .001); 

Shown in Figures 5.13 and 5.14 are histograms and normal probability plots for the two 
transformed variables NEWD arcsine transformed percentage correct difficult reading 
passage (original +ve skew), and NEWE arcsine transformed percentage correct easy 
reading passage (original −ve skew).  
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Figure 5.13: Histogram and normal 
probability plot for arcsine 
transformed variable ‘CORRD’—
percentage correct difficult reading 
passage 

It is evident from Figures 5.13 and 5.14 that the modified arcsine transformations have 
improved both original distributions. There are however particular problems of 
interpretion with this transformation and in certain circumstances (when the null 
hypothesis is false) statistical power is reduced (see Chapter 8 section 8.11 for further 
discussion). 

Negatively skewed distributions or when the variance is proportional to 
the mean 

With count data the variance is often proportional to the mean rather than the standard 
deviation and this often results in a negatively skewed distribution. A modified square 
root transformation should be considered for negatively skewed distributions. When 
values are small, i.e., less than 5, then it is suggested that 0.5 is added to all values prior 
to transformation of the data. The form of the transformation is: 

 Modified 
square root 
transforma
tion—5.5 

Statistical analysis for education and psychology researchers      156



where xi is the original score and J is a constant from which each score is subtracted so 
that the smallest score is 0.5. J is the largest score+0.5. In SAS code this would be 
newx=sqrt(j−oldx).  

 

Figure 5.14: Histogram and normal 
probability plot for arcsine 
transformed variable ‘CORRE’—
percentage correct easy reading 
passage 

Interpretation of Transformed Scores 
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Interpretation of transformed scores is sometimes difficult. For example, if a log 
transformation is used then a mean log score of 1.065, see Figure 5.12, is difficult to 
comprehend. This mean log score should be back-transformed (antilog taken) into the 
original metric. The antilogarithm (base 10) of the value 1.065 is 11.61. This is now 
comparable with the original mean of 14.96. The antilogarithm of the mean of the log 
scores is known as the geometric mean (see Chapter 3, section 3.4). The antilogarithm of 
the natural log (log to base e) would give the same result. The geometric mean is not 
equivalent to the metric mean and therefore it is not appropriate to transform the 95 per 
cent confidence intervals back to the original metric values. This is a drawback of 
transforming data. It is suggested that when reporting geometric means for transformed 
data the medians of the original data distributions are also reported. Transformations can 
also be used to stabilize variances prior to t- or F-tests of means. If variances of different 
groups are heterogeneous, transforming the distributions can improve the homogeneity of 
variances and hence make use of a t- or F-test more justified as well as making the 
analysis more exact. These are called variance stabilizing transformations. In this chapter 
only an overview of some of the more common data transformations has been presented. 
The reader is referred to Mosteller and Tukey (1977) for a more detailed account. 

Summary 

This chapter has presented the issues to consider when choosing a statistical test for the 
most common research situations in education and psychology. These considerations can 
be viewed as an extension of IDA prior to inferential analysis. Appraisal of the research 
design and likely data structure as well as choice of statistical test(s) and consideration of 
statistical power should be born in mind when planning a study or when evaluating a 
reported study. The point of determining statistical power for a given research plan is that 
should power be deemed insufficient, that is generally <80%, then the research plan can 
be revised prior to implementation. 

After IDA, data will have been screened and out of range, missing values and outliers 
will have been detected and dealt with. A plausible underlying data distribution will also 
have been identified, such as binomial/categorical, ordered data or normal data. The next 
step will be to check skewness and kurtosis either inferentially or by using a normal 
probability plot. The later approach has the advantage of highlighting any outliers. 

A preliminary choice of a statistical test can then proceed based on the research 
design, specific research questions addressed and the type of data distribution and 
inference for the variables of interest. The statistical decision chart, Figure 5.1, can be 
used at this point. Consideration should also be given to the statistical power of any 
proposed inferential analyses as well as any advantages or disadvantages of transforming 
any non normal data distributions. The final choice of statistical test will rest upon 
consideration of test specific assumptions, such as homogeneity of variance for a t-test. 
These specific assumptions can be checked in the relevant chapter that deals with the 
particular statistical test under consideration.  
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Chapter 6 
Inferences Involving Binomial and Nominal 

Count Data 

 
  

      One-Sample Tests (two measures)    

    6.1  One-sample χ2 test of independence   165 

    
  One-sample test for binomial or multi-category data in the form of 
frequency counts. Used to test the significance of an association 
between two categorical variables. 

  
 

    6.1  Phi Coefficient   174 

    
  A descriptive measure of the strength of association between two 
categorical variables in a 2×2 table. Often used in conjunction with a 
χ2 test. 

  
 

    6.1  Cramer’s Phi (sometimes called Cramer’s V)   174 

    
  A descriptive measure of the strength of association between two 
categorical variables when there are more than four cells in the 
contingency table. 

  
 

    6.2  Binomial test   175 

    
  A one-sample test that is useful for comparing two proportions or 
percentages. The two percentages should add up to 100 per cent 
(because this is a one-sample test). 

  
 

      Two-Sample Tests    

    6.1  r×2 Sample χ2 test of homogeneity   165 

    

  A test of homogeneity of proportions in a contingency table. When 
subjects are sampled from two separate populations, this test is used 
to compare the distribution of proportions in the two independent 
populations. 

  
 



    6.3  Fisher’s Exact Test   181 

    
  A test for studying differences in two independent groups (2×2 
contingency table) and is particularly useful when sample sizes are 
small. Data should be in the form of frequency counts. 

  
 

    6.4  Proportions Test   187 

    

  A two-sample test for binomial data, used to estimate the difference 
between two sample proportions or percentages. A response variable 
is counted as present or absent for subjects and a group proportion (or 
percentage) is calculated. 

  
 

    6.5  Sign Test   192 

    

  A nonparametric repeated measures test of direction of difference 
between two measures. It is useful when actual measurement is 
difficult but it is possible to determine, for each pair of measures, 
which measure is smaller in some meaningful sense. The response 
variable should be at least theoretically continuous. 

  

 

      Multiple-Sample Tests    

    6.6  r×k Sample χ2 test   196 

    
  This is a direct extension of the r×2 Sample χ2 test when there are 
more than two groups (samples).    

    6.7  Cochran’s Q Test   199 

    
  A procedure for comparing three or more related groups on a binary 
response variable. The proportions in each treatment group 
(measurement occasion) are compared. 

  
 

Introduction 

Many research studies in the social sciences use observations or measures that are in the 
form of count data. Whenever data is obtained from a population which can be thought of 
as discrete in nature, then any statistical inferences we make using data such as frequency 
counts, percentages or proportions are, in fact, inferences that involve count data. For 
example, if we were interested in a possible difference between the proportions (or 
percentages) of male and female students studying Advanced Level (A-level) science 
subjects, then the parameters about which we would make inferences are the population 
proportions and data sampled from the population would be in the form of counts or 
frequencies. 

Count data can be binary when only two mutually exclusive categories exist, for 
example, gender. Count data may also be: nominal, when counts can be classified into 
more than two mutually exclusive groups and there is no order implied in the groupings 
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(mode of transport to work; walk, public transport, bicycle, own car); ordered category, 
when frequency counts are arranged into ordered categories (social class group—I to V 
where I refers to the most affluent group); or individual ranked when each subject or 
object is assigned a numerical value designating its rank position relative to all other 
objects (position of school in Local Education Authority school league tables). In this 
chapter we examine the use of statistical inferences involving binary and nominal count 
data. 

A number of inferential statistical techniques have been developed for analyzing count 
data. These nonparametric techniques do not require the data to be drawn from a 
normally distributed population (the underlying distribution may be binomial, 
multinomial, product multinomial or simply unknown) and therefore do not require 
interpretation based on the normal distribution. However, some statistical tests used with 
count data do approximate a normal distribution when sample sizes are large, such as 
binomial and χ2 distributions. 

The examples used to illustrate the use and interpretation of inferential statistical tests, 
in this and in subsequent chapters, are drawn from research questions and analyses that 
have appeared in sections of research reports, journal articles and students’ theses. My 
intention in this and the following chapters is to explain why and how statistical tests 
should be used and to illustrate their application in a variety of research contexts. In 
Chapter 5, a number of considerations important when choosing a statistical test were 
outlined, namely research questions and design, data distribution, type of inference and 
specific test assumptions. These considerations are used to organize in a logical way the 
presentation of statistical tests in this and in subsequent chapters. 

Each statistical procedure is introduced by beginning with a real research problem and 
concentrating on the reasons why a particular test is appropriate. This helps to clarify the 
relationship between statistical theory and statistical practice. Brevity of reporting of 
statistical analyses in many research journals means that much statistical theory and many 
assumptions are taken as understood. For the new researcher this can be frustrating. In the 
examples of the use of statistical tests drawn from the literature, I have filled in details 
about the inferential process used in a statistical analysis, that is the parameters estimated 
and the hypotheses tested and how these relate to underlying statistical theory, necessary 
test assumptions, and where appropriate I have commented on the original author(s) 
interpretation. 

To move the reader from understanding why a test is used to consideration of how a 
statistical test works, simplified worked examples are presented. Formulae are 
explanatory and kept to a minimum. These worked examples, intended to help 
understanding, are for the most part based on sections of real data but necessarily 
simplified. Interpretation of the analysis is related to both statistical theory, such as one-
sided or two-sided tests, alpha, statistical power, sample size and to the purpose behind 
the study such as original research question(s). The examples address the usual kinds of 
problems that a researcher will face when analyzing real data, for example, unequal 
groups sizes, missing or out of range values, outlier observations and skewed 
distributions. Emphasis is given to computer analysis of real data. Computer programmes 
for statistical analysis are presented alongside related computer output and interpretation 
of the analysis. Where relevant procedures for checking any specific test assumptions are 
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also shown and the pragmatic consequences of particular violations, some of which are 
more serious than others, are discussed.  

In summary, each statistical procedure is introduced and discussed using the following 
subheadings: 

• when to use the test; 
• statistical inference (and null hypothesis); 
• test assumptions; 
• example from the literature; 
• worked example (simplified data); 
• interpretation (using statistical tables); 
• computer analysis (real data); 
• interpretation of computer output. 

We begin this chapter with tests appropriate for one-group (sample) designs using binary 
or nominal data. These tests are appropriate when the research question is concerned with 
either association between two variables (or correlation), or differences between 
proportions, or percentages. We then consider tests for two-group (sample) designs, both 
related and independent groups with binary and nominal data. Research questions may 
again relate to association or to differences and comparisons between the two groups. 
Finally, multiple group designs are considered for binary and nominal data. These tests 
are appropriate when interest focuses on differences or association between three or more 
groups which may be either related or independent. 

6.1 Chi-square Tests for Contingency Tables 

In this section both the One-sample Chi-square test of independence and the Two-
sample Chi-square test of homogeneity are considered together because of their 
similarity in both computation and interpretation. 

When to Use 

The Chi-square test (χ2 is pronounced ky similar to by) is an approximate test of 
significance for association between two categorical variables when data is in the form of 
frequency counts and interest focuses on how many subjects fall into different categories. 
The precise hypothesis tested depends upon the sampling design used. Observed 
frequencies in a 2×2 table (the first ‘2’ indicates the number of rows in the table and the 
second ‘2’ refers to the number of columns) may arise from a number of different 
research designs and this often causes confusion. Two common sampling designs are the 
χ2 test of independence with random row and column marginal totals and the χ2 test of 
homogeneity of proportions with either fixed row or fixed column marginal totals.  
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One-sample χ2 test of independence with random row and column 
marginal totals 

In this design a random sample is drawn from a single population of subjects but with 
two measures for each subject, that is the row and column binary variables. The total 
sample size, n, is fixed but the frequencies in both row and column marginal totals are 
random and not known or fixed in advance. The random marginal frequencies depend 
upon (contingent upon, hence the term contingency table) how each subject is classified 
on both binary variables. That is, each subject would be allocated to one of the four cells 
in the 2×2 table. 

For example, a researcher investigating the carers’ role in supporting relatives with 
dementia may be specifically interested in the relationship between length of experience 
as carers (column variable) and dominant feelings about their roles as carers (row 
variable). A single random sample of 100 carers was selected from a population of carers 
who have relatives suffering from dementia. The carers were asked two questions: how 
long have they been looking after their relatives? (responses classified into greater than or 
equal to five years or less than five years), and what were their dominant feelings about 
their carer role? (responses were classified into predominantly anger or guilt). The 
research hypothesis was that feelings about the carer role was related to the length of 
experience as a carer. The null hypothesis is that the row and column variables are 
independent, that is the expected proportions (counts) in each cell of the contingency 
table would be equal and would not differ from the observed counts. In more general 
terms this would be stated as there is no relationship between time as a carer and 
dominant feelings about the carers’ role. 

Two-sample χ2 test of homogeneity of proportions with fixed column (or 
row) marginal totals 

This design is used to compare the distribution of proportions in two independent 
populations. In a 2×2 contingency table each variable is treated as binary. For example, 
the column variable in a 2×2 table may represent two independent populations, males and 
females, and the row variable (response variable) may represent examination 
performance classified as pass or fail. The researcher may want to investigate whether the 
proportion of candidates passing is related to gender. For example, an independent 
random sample of fifty males, and a separate random sample of fifty females would be 
selected. The column total for males and females in this example is fixed by the 
researcher. Each male and female would be classified into a pass or fail category, the row 
marginal totals are random (not fixed by the researcher) and subject to sampling error. If 
the proportion of candidates who pass is represented by P, then the proportion of fails 
would be 1−P (the variable is binary). Usually a count of the number of passes is given as 
a percentage, and a comparison is made between the percentage of males and females 
who pass. The null hypothesis would be the population proportion (or percentage) of 
males and females who pass is equal, or put another way there is no difference between 
males and females in the percentage who pass the exam. A more general form of this null 
hypothesis is that there is no relationship between gender and examination performance. 
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Statistical Inference and Null Hypothesis 

Statistical inferences are about counts or relative frequencies with respect to defined 
characteristics in two populations. The number of observations that fall into a particular 
category in one group are compared with the proportion of observations that fall into the 
same category from the other group. Groups may refer to two independent measurements 
from one population (sample) of subjects, or to two independent populations from which 
two samples have been randomly selected. For example, in a study of the impact of an 
MEd in-service programme, one measure of interest might be confidence following 
completion of the in-service degree programme (professional confidence increased/not 
increased) another measure could be gender (male/female). The one-sample χ2 test of 
independence would be used with this design to detect any association between 
confidence and gender. 

Groups may also refer to two independent populations, for, example in a study of 
parents of children who have special educational needs two populations of parents (two 
independent samples) may be investigated; parents who were contacted via voluntary 
organisations, and parents who were contacted by the psychological services. With this 
sampling design a two-sample χ2 test of homogeneity of proportions would be 
appropriate. 

Whereas the precise form of the research hypothesis differs depending upon the 
sampling design, fortunately, the null hypothesis is the same for both the χ2 tests of 
independence and homogeneity. For the one-sample χ2 test of independence (random row 
and column marginal totals) the parameters being estimated are the proportions of each of 
the four outcomes (frequency distributions in each cell of the 2×2 table) in the population 
from which the sample was drawn. The research hypothesis is that the row and column 
variables interact, that is they are not independent, and the observed proportions in the 
four cells will therefore differ depending upon the particular row and column 
classification. Similarly, for the two-sample χ2 test of homogeneity of proportions (fixed 
column or row marginal totals) the parameters being estimated are the proportions in the 
four outcomes in the population which the sample proportions are intended to estimate. 
The research hypothesis is that the distribution of proportions (for one categorical 
variable) is different in the two populations (the other categorical variable with fixed 
marginal totals). A more general way of stating this research hypothesis is to say that 
there is a relationship between the two categorical variables. The null hypothesis for both 
one-sample and two-sample χ2 tests is that there is no interaction (relationship) between 
column and row variables. If the null hypothesis were true, the four cell proportions 
would be equal, and there would be no significant differences between observed cell 
frequencies and expected cell frequencies (under the null hypothesis of no interaction). 

The χ2 distribution is completely determined by a single parameter, the degrees of 
freedom (df). Whenever we evaluate the χ2 statistic we need to consider the appropriate 
df. Degrees of freedom are determined by the number of rows and columns in a 
contingency table specifically, df=(number of rows−1)×(number of columns−1) and is 
hence always 1 in a 2×2 table. The χ2 test and associated df provides a probability for the 
difference between observed and expected frequencies. When the observed and expected 
frequencies are identical the χ2 statistic will be zero. Any deviation from this will always 
be positive, the larger the χ2 value, the greater the statistical significance (departure from 
the null hypothesis). 
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Test Assumptions 

The Chi-square test is widely used but is also one of the most misused statistical 
procedures. Basic assumptions of both χ2 tests of independence and homogeneity for 2×2 
tables are: 

1 Observations are representative of the populations of interest. 
2 Data is in the form of observed frequency counts. 
3 Observations should be independent, that is, the probability of an observation falling in 

any particular row of a contingency table does not depend on which column it is in 
(and vice versa). 

4 Observations should fall in only one cell of a contingency table. 
5 The χ2 test should not be used when any expected cell frequencies (see later for 

computational procedure) are small because the probability distribution of χ2 gives a 
poor approximation to the sampling distribution of the χ2 statistic. There has been 
considerable debate in the literature about what constitutes small expected frequencies. 
In a seminal paper on the use and misuse of the Chi-square test, Lewis and Burke 
(1949) claimed that small expected frequencies were the most common weakness in 
the use of Chi-square tests (p. 460). They suggested expected values of 5 as the 
absolute lowest limit. More recently Camilli and Hopkins (1978) suggest that provided 
the total sample size is ≥20, then expected frequencies in one or two cells can be as 
low as 1 or 2. Delucchi (1983), in reviewing the literature, concluded that the Chi-
square test was a robust procedure and expected cell frequencies of <5 did not 
substantively effect the Type I error rate. The general view would seem to be that 
small expected frequencies are acceptable in at least one or two cells provided the 
overall sample size ≥20. 

Many statistical texts suggest using Yate’s (1934) correction for continuity (add 
0.5 to observed cell frequencies) with small sample sizes in 2×2 tables. The 
variables in a contingency table are discrete but χ2 is a continuous distribution, 
therefore adding 0.5 to each observed cell frequency is believed to improve the 
Chi-square approximation. Use of this correction is also contested in the statistical 
literature (not on theoretical grounds but based on its application). On balance it is 
suggested that Yate’s correction should not be used because it results in 
unnecessary loss of power and conservative probability estimates. With small 
sample sizes, Fisher’s exact test (Fisher, 1935) should be used (see section 6.3). 

Examples from the Literature 

One sample χ2 test of independence 

Cope et al. (1992) invited students who had completed a part-time in-service MEd 
programme to complete a questionnaire relating to their experience of the course and the 
impact it was perceived to have had on them. One of the questions asked related to the 
professional significance of the programme. The investigators commented that one of the 
most frequently reported categories of effect was an increased understanding of 
educational issues. Data as presented in the original paper is shown in Figure 6.1.  
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  Understanding of Educational Issues 
  An increase reported No increase reported   
Gender:     Total
Male 21 27 48
Female 10 69 *49
Total 31 96 127

Figure 6.1: Number of former students 
reporting increased understanding of 
educational issues as an effect of the 
MEd programme 

*see Comment on the Analysis below 

The investigators reported that there were some interesting gender differences in the 
teachers’ responses. Males reported an increased understanding of educational issues 

more frequently than did females, (  means a Chisquare 
with 1df). 

In this study the investigators used a χ2 test of independence with a fixed total sample 
size of 127 but random observed row and column marginal totals. Each subject was 
categorized on two variables, reported understanding of educational issues (increased/not 
increased) and gender (male/female). The distribution of frequencies in each of the four 
cells was recorded in a 2×2 contingency table, see Figure 6.1. The research question 
addressed was whether, after the MEd programme, there was any association between 
increased understanding of educational issues and gender? Put another way this 
alternative hypothesis could be stated as: There is a statistical relationship between 
increased understanding of educational issues and gender following completion of an in-
service MEd programme. 

It would follow that if understanding and gender are related, then the row and column 
proportions would not be independent. That is the probability that a member of the 
population reported increased understanding and the probability that the person is a male 
would not be independent. 

The null hypothesis tested by the investigators was that of no interaction between the 
row and column variables, namely increased understanding and gender. If the null 
hypothesis were true, the row and column variables would be independent (no 
interaction) and there would be no significant differences between observed cell 
frequencies and expected cell frequencies. 

Comment on the Analysis 

The three measurement assumptions are clearly met, namely, data is in the form of 
observed frequency counts; observations are assumed to be independent (the probability 
of reporting does not depend on gender); and each observation falls into only one cell of 
the contingency table. The sampling assumption, namely respondents are representative 
of part-time MEd students, in the absence of any data to suggest otherwise can also be 
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taken as reasonable. An analysis of non-response by gender would strengthen the 
independence of observations assumption. (Close scrutiny of the published data shows 
that the total of males and females does not add up to 127. The sum of females should be 
79 and not 49. As a check in a Chi-square analysis the sum of the cell frequency counts 
should equal the total sample size, that is no observation is double counted or missed 
out.) 

Two-sample χ2 test of homogeneity of proportions 

In a study of parents of children with special educational needs by Riddell, Brown and 
Duffield (1994), parents of twenty-two children attending private schools and the parents 
of 131 children attending state schools were sampled. The investigators examined, as part 
of the overall purpose of the study, whether there was any association between sampling 
method of contacting parents to elicit study information (via voluntary organizations or 
psychological services) and type of school attended (state or private). Data as presented 
by the investigators is shown in Figure 6.2.  

  Voluntary 
Organizations 

Psychological 
Services 

Random Row 
Total 

Private 21 1 22 
State 62 69 131 
Fixed Column 
Total 

83 70 153 

Figure 6.2: Method of contacting 
parents by type of school child 
attended 

The authors used a χ2 test of homogeneity of proportions with fixed column marginal 
totals, 83 parents contacted via voluntary organizations and 70 parents contacted via 
psychological services. The column variable in the 2×2 table represents two independent 
populations of parents. The authors suggest that the achieved samples from these two 
populations are likely to be unrepresentative of parents (non-random samples). Each 
parent contacted was classified on a response variable into state or private according to 
the type of school his or her child attended. The row marginal totals were therefore 
random and subject to sampling error.  

The research question addressed by the investigators was whether there was a 
statistical relationship between method of contacting parents and type of school the child 
attended. This research question could be rephrased as: ‘Of the parents whose children 
attend private school, how does the proportion (or per cent) of parents contacted by 
voluntary organizations compare with the proportion of parents contacted by the 
psychological services?’ 

The null hypothesis would be that the population proportions (or percentages) of 
parents contacted via voluntary organizations and psychological services whose children 
attend private schools are equal. A more general form of this null hypothesis is that there 
is no relationship (statistical interaction) between the row and column variables—that is 
method of contact and type of school attended. 
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From the observed frequencies, 4.55 per cent (1/22×100) of parents whose children 
attended private schools were contacted by psychological services and 95.45 per cent 
(21/22×100) of these parents were contacted by voluntary organizations. It is evident 
from these results that there is no need for a statistical test of any significant interaction 
between method of contact and type of school, however, the investigators reported a Chi-

square value of p<0.001, and went on to conclude that there was, not 
unexpectedly, an association between method of contact and type of school attended by 
the child. 

Comment on the Analysis 

All assumptions appear to be met with the possible exception that the samples may not 
have been representative of the two populations of parents. This is a good example where 
it is difficult to define target populations. Sampling is always a critical aspect of a study 
design if inferential statistical procedures are to be used and the authors rightly draw the 
readers attention to this aspect of the study. 

Worked Example 

The χ2 statistic for a contingency table is a kind of standardized measure of the overall 
difference between the entire set of observed and expected cell counts. The χ2 test 
compares the observed frequency counts (we already know these) in each of the cells in 
the contingency table with the expected frequency counts for each of the cells (we have 
to estimate expected frequencies). The expected cell counts are estimated under the 
assumption that the null hypothesis is true, that is there is no association between the row 
and column variables. 

The expected count for any cell in a 2×2 table is estimated by the joint probability of 
the appropriate row i and column j in the 2×2 table. For example, the probability, say, of 
increased understanding and being a male is equal to the probability of increased 
understanding multiplied by the probability of being a male, derived from the 
multiplication rule for independent events (P(U and M)= P(U)P(M)). This joint 
probability is the product of the marginal probabilities for the appropriate row i and 
column j in a contingency table. 

These marginal probabilities are not themselves observable but can be estimated by 
the row and column sample proportions, that is row proportion= (row total)/sample total, 
and column proportion=(column total)/sample total. 

In a 2×2 table, each categorical variable is binary and the mean (expected) count for a 
binary variable B(n, π), is np for sample data, where p is the joint probability ricj for a 
particular cell frequency and n is the sample total. The expected frequency count is 
therefore: 
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The χ2 value is calculated for each cell in a contingency table. It is calculated as the 
difference between each observed and corresponding expected count squared (this 
squared difference makes all values positive or zero) and then divided by the expected 
count (this standardizes all values). Each cell’s contribution to χ2 is then added to provide 
an overall χ2 statistic for the contingency table. The degrees of freedom are calculated as 
(rows−1×columns−1) which is 1 in a 2×2 table. 

The χ2 statistic in notational form is: 

 Chi-
square
—6.1 

where O is the observed cell frequency and E is the expected cell frequency. 
Data from the first example (Figure 6.1) on the effect of the MEd programme on 

teachers’ understanding of educational issues is used to illustrate calculation of the 
overall χ2 statistic. For clarity of presentation each cell in the table is labelled A to D. 
(The number of females has been changed to seventy-nine, as there was an error in the 
original paper. See earlier comment, p. 169.) 

  Understanding of Educational Issues 
  An increase reported No increase reported   
Gender:     Total
Male 21 (A) 27 (B) 48
Female 10 (C) 69 (D) 79
Total 31 96 127

Computational steps: 

1 Calculate expected values for each cell A to D 

Cell A: Expected=(48×31)/127=11.717 
Cell B: Expected=(48×96)/127=36.283 
Cell C: Expected=(79×31)/127=19.283 
Cell D: Expected=(79×96)/127=59.717 

2 Calculate the value of χ2 for each cell A to D. Use formulae 6.1 

Cell A: χ2=(21−11.717)2/1 1.717=7.355 
Cell B: χ2=(27−36.283)2/36.283=2.375 
Cell C: χ2=(10−19.283)2/19.283=4.469 
Cell D: χ2=(69−59.717)2/59.717=1.443 

3 Sum all the χ2 values 

= 7.355+2.375+4.469+1.443 
Total χ2=15.64, df=1 
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The investigators reported a χ2 value of 14.00, df=1. The difference between the reported 
value in the original paper and the calculated value in the worked example is attributable 
to the investigators’ use of a continuity adjusted χ2 (which was not reported in the 
original paper). This adjustment was unnecessary, the sample size was>20 and none of 
the expected cell frequencies were<5. The tendency for the continuity adjusted χ2 to 
provide conservative probabilities is evident here because the adjusted χ2 is less than the 
unadjusted statistic, χ1

2
adj 14<χ1

2 15.64 (χ1
2 refers to χ2 with 1 df). In this particular 

instance, the different values of the adjusted and unadjusted χ2 statistics do not affect the 
interpretation. 

Interpretation 

To evaluate the statistical significance of the estimated χ2 statistic you need to calculate 
the appropriate degrees of freedom for the contingency table, here df=1, and refer to a 
table of critical χ2 values (see Table 2, Appendix A4). An alpha level is first selected, 
usually p≤0.05 or p≤0.001, although depending upon the statistical table there may be 
other alpha values to choose from. If we select alpha as p<0.001, the last column in Table 
2 of Appendix A4, we then move down this column until we intersect with the 
appropriate row for degrees of freedom. 

In this example the critical χ2 value is 10.828, rounded to 10.83, the intersection of last 
column and first row in Table 1. Since the calculated value is greater than the value from 
the statistical tables (what would be expected under the null hypothesis of no interaction 
between row and column variables) then we can reject the null hypothesis and conclude 
that the two variables, increased understanding of educational issues, and gender are 
related. Generally, it is good practice to inspect and report on the differences in observed 
and expected frequencies, that is to consider how the null hypothesis is untrue. 
Descriptive percentages are helpful in doing this. For example, the results of the analysis 
could be presented as follows: 

  Understanding of Educational Issues 
  An increase reported No increase reported
  Observed  Expected Observed  Expected
Gender:           
Male 21  12 27  36 
Female 10  19 69  60 
Total   31     96   

Notice as a check, observed and expected totals are equal. Proportionately more males 
43.8 per cent (21/48×100) than females 12.7 per cent (10/79×100) reported an increase in 
understanding of educational issues following the in-service MEd course. 

Computer Analysis 

Data from the example of the χ2 test of independence (see Figure 6.1) is illustrated. When 
data is in the form of frequency counts a simple way to enter and analyze this data in SAS 
is to use the frequencies procedure PROC FREQ with the weight statement. For example, 
if we want to analyze data from the study about teachers’ understanding of educational 
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issues following their MEd course (see Figure 6.1), this data can be entered into a SAS 
programme using the following lines of code: 

data chi; 
    input row col celln @@; 
    cards; 
1 1 21 1 2 27 2 1 10 2 2 69 
; 

The first three values in the data lines, 1121 refer to row 1 (row variable on the input 
line), col 1 (col variable on the input line) cell frequency value 21 (celln variable on the 
input line). The double trailing at sign, @@, is used because the input data line, 1 121 1 2 
27 2 1 10 2 2 69, contains data values for more than one variable and more than one 
observation. In this example, there are three variables (row, col, celln) and four 
observations (the frequency count for each cell). The weight statement when used with 
PROC FREQ specifies the variable that contains the cell frequencies. The SAS code is: 

proc freq data=chi; 
   weight celln; 
   table row*col/nopercent chisq; 
title 'Chi square test for gender (row var) and 
understanding (col var)' ; 
run; 

The complete programme is shown in Figure 5, Appendix A3. 

Interpretation of Computer Output 

Output from the Chi-square programme for the teachers’ data is shown in Figure 6.3. For 
clarity of presentation only the relevant sections of output are illustrated.  

Chi square test for gender (row var) and understanding (col var)
Table of row by col 

Row col     
Frequency       
Row Pct       
Col Pct 1 2 Total 

1 21 27 48
  43.75 56.25  
  67.74 28.12

2 10 69 79
  12.66 87.34  
  32.26 71.88

Total 31 96 127
Statistics for table of row by col 

Statistic DF Value Prob 

Inferences involving binomial and nominal count data      171



Chi-square 1 15.643 0.000
Phi Coefficient   0.351   
Cramer’s V   0.351   
Sample Size=127 

Figure 6.3: Output for Chi-square analysis 

The computed χ2 value is the same as the value in the worked example. Notice an actual 
probability is given rather than p at a pre-specified value (i.e., p≤0.05 or p≤0.01). Clearly 
the actual value is statistically significant at the 1 per cent (p≤0.001) level. Each cell in 
the contingency table contains a cell frequency count and row and column per cents. 

Phi Coefficient and Cramer’s Phi 

The χ2 procedure is sensitive to sample size and is nearly always significant with large 
samples. The χ2 test assesses the statistical significance of an association and not the 
strength of the association. Correlational type statistics are therefore required to 
determine the strength of any statistically significant association detected by the χ2 
statistic. Two of the most useful measures of association provided in the SAS output are 
i) Φ, (Phi Coefficient) and ii) Cramer’s V (sometimes called Cramer’s Phi Coefficient). 
Phi should only be used as a measure of the strength of association when both variables 
are binary (scored as 0, 1; present, absent; +, −, etc.) and can be used when data is in the 
form of a 2 × 2 contingency table. There is a direct relationship between χ2 and Φ given 
by the formulae:  

 
Phi—

6.2 

where n is the total sample size and χ2 is the statistic from the same contingency table. 
The value of Phi for the data shown in Figure 6.1 is 0.351 (15.643/127)0.5. Phi has a 

lower limit of 0, no strength of association (variables are not related) and an upper limit 
of 1, maximum strength of association (variables are perfectly correlated). When a 
contingency table has more than four cells Cramer’s V should be used to measure the 
strength of association. Similar to Phi the range of this statistic varies between 0 and 1. 
Cramer’s V is calculated using the following formulae: 

 
Cramer’s 

V—6.3 

where χ2 is the value for the entire contingency table, n is the total sample size and j is the 
smaller of the number of rows or number of columns in the contingency table. 

The value of Cramer’s V for the data shown in Figure 6.1 is 0.35, (15.643/127 
×(2−1))0.5, the same value as Phi. For discussion of the use of measures of association in 
conjunction with the Chi-square statistic, see Delucchi (1983). 
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When a significant association between two variables is detected, it is sensible to 
consider whether a third variable might explain this association. If this variable is in the 
data set, a three-way frequency table could be produced stratifying on the third variable. 
For example, if the variable ‘teaching experience’ (number of years as a classroom 
teacher) was measured in the study by Cope, et al., (1992) this might have some 
explanatory power for the apparent relationship between gender and increased 
understanding. If a study used several different Chi-square tests, it would be advisable to 
adjust the probability level associated with each statistical test (make it more 
conservative) to take account of a significant result occurring simply by chance. 

6.2 Binomial Test 

When to Use 

The Binomial test is not widely used by educational researchers but is suitable when a 
single random sample is selected from a binary population and each sampled observation 
can be classified into one of two mutually exclusive categories. The sample proportion of 
observations in one of the two categories is used to estimate the population proportion in 
the same category. As this is a one-sample test, both proportions (or percentages) must 
equal one (or 100 per cent). 

The test is particularly useful when it is believed that the population proportion falling 
into one of the two categories is 0.5. This is, in effect, a hypothesis of no difference in the 
proportion of responses in the two categories, that is P1=P2 =0.5, which would equal the 
population proportion. If P1 equals the proportion of observations in one category then 
1−P1 (sometimes called Q) is the proportion of observations in the other category. 

Often research designs involve comparison between matched groups on a binary 
variable of interest. For example, following the introduction of student loans, an 
investigator may be interested in whether students incur serious financial debts during 
their time at college. The binary variable would be, in serious debt/not in serious debt. A 
random sample of fourteen males might be matched with a random sample of fourteen 
females, same age, same college and the proportion of males in debt compared with the 
proportion of females who were in debt. The achieved sample might be: 

  In serious debt at college Total
Male 10 14
Female 6 14
100 per cent 16 28

The null hypothesis is that the population proportions are equal, that is there is no 
difference between the probability of males and the probability of females who incur 
serious debt problems during college. If the null hypothesis were true we would expect to 
find in the sample of 16 students who were in debt, eight males and eight females. 

The binomial test is also useful for analyzing responses to multiple choice questions. 
Given ten true/false multiple choice questions, a teacher may want to know how many 
correct answers would be expected if a candidate were guessing at random. (Caution is 
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required because candidates often do not guess at random; they may use partial 
knowledge.) 

Statistical Inference and Null Hypothesis 

The parameters estimated are population proportions. The null hypothesis is often H0: π 
(population proportion)=0.5. If the proportion of responses in category 1 is P and the 
proportion in category 2 is Q, then there are three alternative hypotheses: i) H1: P>Q, ii) 
H1: P<Q iii) H1: P≠Q. A one-tailed test is used when we predict in advance which of the 
two categories should contain the smaller number of counts (i and ii above). If the 
alternative hypothesis is simply that the counts in the two categories will differ (iii above) 
then a two-sided test should be used. The sampling distribution used is the binomial 
distribution, in this example B(n, π) would be Binomial (16, 0.5) see Chapter 4, section 
4.4 for details. 

Test Assumptions 

The test assumptions are those of the binomial distribution which are as follows: 

1 Observations are sampled at random from a binary population. 
2 Each observation is independent (does not effect the value of any other observations 

sampled) 
3 The probability of any sample observation being classified into one of the two 

categories is fixed for the population. 
4 With small sample sizes such as n≤25, the exact binomial probability can be evaluated. 

With larger sample sizes, especially when P is close to 0.5, the binomial 
approximation to the normal distribution with a continuity correction (because the 
normal distribution is continuous but the binomial distribution is discrete) can be used. 
In this case the normal variate Z is used to evaluate the probability of the observed 
outcome. 

Example from the Literature 

Blasingame and McManis (1977), in a study of retarded adults, investigated 
developmental aspects of cognition, specifically transitivity of inequality (A>B, B>C, 
therefore A>C), classification (subjects had to select a geometric figure to complete a 
missing cell in a 2×2 matrix) and relative thinking (measured by the right-left test, 
Elkind, 1961). Sequentiality of development among the three tasks was evaluated by 
cross classification of subjects on pairs of tasks according to performance (achieve/not 
achieve). The number of subjects performing discrepantly in each direction on two tasks 
(achieve one task but not the other) was evaluated for statistical significance using the 
binomial test. The authors give the following results: 

Discrepant Performance between relative thinking and transivity tasks Number of retarded adults 
transitivity achieved but relative thinking not achieved 4 
transitivity not achieved but relative thinking achieved 13 
100 per cent 17 
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The null hypothesis is that there should be no difference between the proportion (number) 
of subjects who can achieve transitivity but not relative thinking, and the proportion of 
subjects who do not achieve transitivity but do achieve relative thinking. Put another 
way, we could say that the number of subjects performing discrepantly in each direction 
on two tasks should not differ significantly from a chance distribution. A one-sided 
(directional) test would be appropriate here if the authors were, in advance, looking for 
discrepancies in a given direction. 

Worked Example 

Data from the study by Blasingame and McManis (1977) is used to illustrate 
computational details for the binomial test when π=0.5, (sample proportion P= Q=0.5) 
and n<25. The exact probability of obtaining values as extreme or more extreme than the 
observed values is evaluated using the binomial equation, see equation 4.1 Binomial 
Probability in Chapter 4. 

p=nCr×pr×(1−p)n−r 
Binomial 

probability 

The probability of obtaining 4 or fewer discrepant performance ratings is given by the 
sum of the 5 probabilities: 

p 0 discrepant observations=17!/(0!×17!)×0.50×0.517=0.0000076 
p 1 discrepant observations=17!/(1!×16!)×0.51×0.516=0.0001297 
p 2 discrepant observations=17!/(2!×15!)×0.52×0.515=0.0010376 
p 3 discrepant observations=17!/(3!×14!)×0.53×0.514=0.0051880 
p 4 discrepant observations=17!/(4!×13!)×0.54×0.513=0.0181579 

  

which equals 0.0245 allowing for rounding error. To avoid tedious calculations binomial 
tables can be referred to or the SAS function PROBBNML can be used (see computer 
analysis). 

Interpretation 

The null hypothesis of no difference in proportions is rejected at the 5 per cent level. In 
the original paper the authors reported that there was a significant difference in 
performance between relative thinking and transitivity, p=0.025. The authors interpreted 
these findings as indicating a sequential development of relative thinking and transitivity, 
in that order. (In a situation where a two-sided test would be appropriate, then the 
calculated probability, using the above procedure, would simply be multiplied by two.) 

Computer Analysis 

Binomial calculations can be accomplished with ease using the PROBBNML function in 
SAS. Functions are a valuable feature of SAS because they allow a variable to be defined 
which is equal to a kind of built-in expression in the SAS language. There are nearly 150 
different functions which fall into different types, for example, probability, arithmetic, 
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quantile, trigonometric, random numbers and others. The reader should refer to the SAS 
Institute Inc. (1993b) SAS Language Guide Version 6, for details. 

The following SAS code will produce the exact probability for the specified binomial 
distribution in the SAS log file: 

data a; 
p=probbnm1 (0.5, 17, 4); 
put p=; 

The function is used here in a data step, data a: defines a temporary data set in SAS given 
the arbitrary name of ‘a’. p is the name of a variable which takes on the value of the SAS 
function PROBBNML with three defined parameters, 0.5, 17 and 4. The first parameter 
represents the population probability of success, the second parameter is the total number 
of trials (sample size), and the third parameter is the number of successes (the smaller 
frequency count in the two categories). The put statement tells SAS to write the variable 
P (evaluation of the binomial function) to the LOG File. 

Interpretation of Computer Output 

The three lines of SAS code produce the following SAS output in the LOG File:  

data a; 
p=probbnml (0.5, 17, 4); 
   put p=; 
run; 
P=0.024520874 
Note: The data set WORK.A has 1 observation and 1 
variable. 
Note: The DATA statement used 22.57 seconds. 

The returned probability value of 0.025 is the probability that an observation from a 
binomial distribution, with probability of success 0.5, and number of trials 17, has 4 or 
fewer successes. 

Worked Example (n>25) 

Data from the study of upper limb injuries and handedness plasticity (Dellatolas, et al., 
1993) (used to illustrate Fisher’s exact probability test, in section 6.3) is used here to 
investigate whether, for left-handed males, there is any difference between the probability 
of young (≤6-years-old) and the probability of older (>6-years-old) subjects incurring 
upper limb injuries. The sample data is: 

Age when injured Left-handed males with upper limb injuries
≤6 yrs 7
>6 yrs 59
100% 66
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The null hypothesis is that there is no difference in the probability of upper limb injury 
between the two age categories: H0: π (population proportion for >6-years-old)=0.5 and, 
H1: P≠Q. A two-tailed test is required. 

For the binomial test when π=0.5, (sample proportion P=Q=0.5) and n >25, the 
following formula can be used to evaluate the binomial approximation to the normal 
distribution (with continuity correction) 

 
Binomial 

approximat
ion to 
normal 
distribution 
with 
continuity 
correction
—6.4 

where X is the smaller of the two frequency counts (one for each category), n is the total 
sample size, and P is 0.5. 

The correction for continuity is +/−0.5 depending upon the expected value for X which 
is evaluated as nP or simply half of the sample size. If X is <nP we add 0.5 to X and if X 
is >nP we subtract 0.5 from X. In this example, X is <nP (7<33) and we therefore add 0.5 
to X when evaluating formulae 6.4: 

 

  

Interpretation 

This Z-value of −6.2777 is so extreme that it is not even tabulated in the table of Z-
values, (see Table 1, Appendix A4). We can say from this table that the one-tailed 
probability associated with this Z-value is p<0.0000 (probability associated with the most 
extreme tabulated Z-value of 4.0). Since our alternative hypothesis was simply that the 
two frequencies would differ, a two-sided test is appropriate. For a two-sided test the 
probability is doubled, here the value of P remains as p< 0.0000. The null hypothesis of 
no difference in the probability of upper limb injury between the two age categories is 
therefore rejected. Proportionately, significantly more injuries were incurred among left-
handed males when they were >6-years-old than when they were ≤6-years-old. 

Computer Analysis 

The exact probability can be evaluated using the PROBBNML function. The appropriate 
SAS code is, 

data a; 
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p=probbnm1 (0.5, 66, 7); 
   put p=; 

The probability is given in the Log File for example, 

P=1.718532E–10 
Note: The data set WORK. A has has 1 observations and 1 
variables. 
Note: The DATA statement used 39.1 seconds. 
Note: E–10 means move the decimal point 10 places to 
the left. 

Interpretation of Computer Output 

When P=Q=0.5 the normal approximation with correction for continuity provides a good 
approximation as can be seen if the obtained Z-value of −6.27766 is evaluated using the 
PROBNORM function in SAS. This function returns the one-tailed probability that a Z-
value is less than or equal to the value entered. For example, in the following SAS code a 
Z-value of −6.27766 is entered,  

data a; 
  p=probnorm (−6.27766); 
   put p=; 

and a probability of p=1.718532E–10 is returned in the Log File. This value 
(p=1.718532E–10) is the same as the exact probability that was returned by the binomial 
probability function. 

6.3 Fisher’s Exact Test 

When to Use the Test 

Fisher’s exact test is used to test the significance of any association or difference between 
two independent samples. The test determines whether two independent groups differ 
significantly in the proportions of observations that are classified by a dependent binary 
variable. Suppose that in total twelve male subjects who had sustained upper limb injuries 
were sampled. One group was a random sample of six males from a population who had 
sustained their injuries before school age (injured when ≤6-years-old). The second 
independent sample of six males was selected from a population who had sustained their 
injuries when older (injured when >6-years-old). The dependent variable was handedness 
(left or right). Investigators may want to know whether there is any association between 
age when the injury occurred and handedness. 

Fisher’s exact test is a useful alternative to the r×2 sample χ2 test of association when 
total sample sizes are small, n<20 or when expected frequencies in any of the four cells 
of the contingency table are less than 5. The test provides an exact probability for 
observing a particular frequency distribution in a 2×2 table. 

Statistical analysis for education and psychology researchers      178



Statistical Inference and Null Hypothesis 

Inferences made in the Fisher’s exact test are about population proportions. Stated in 
general terms the null hypothesis is that the proportions in the two independent samples 
are not related (statistically independent) to the dependent binary variable. In the example 
of upper limb injuries and handedness the null hypothesis would be that age when the 
injury occurred is independent of handedness. 

Test Assumptions 

Data should be discrete (counts) and may be nominal or ordinal provided members of 
each independent sample can be classified into one of two mutually exclusive groups. 
The test should be used when the underlying distribution is hypergeometric. This 
implies that both row and column marginals are fixed. For example, assume that in total 
ten male subjects with upper limb injuries are randomly assigned to two groups (A and 
B). Each subject is then classified as right- or left-handed, and the following 2×2 table is 
obtained: 

Ten subjects with upper limb injuries randomly assigned to two groups
  Lefthanded Right-handed   

Group A 2 3 5 (Fixed row total) 
Group B 4 1 5 (Fixed row total) 

(Fixed column totals) 6 4   

Provided there is no association between handedness and group membership then each 
group can be treated as a random sample from the population with upper limb injuries 
described by the column marginal totals (6,4). This population is described by the fixed 
column marginal totals (6,4). Whereas a different randomization is likely to have 
produced different cell frequencies, the column marginal totals would remain as before 
(6,4), provided there was no difference between Group A and Group B. In this case both 
marginal totals are fixed and the distribution of cell frequency counts is described by the 
hypergeometric distribution. Inferences are made with respect to the target population of 
subjects (males with upper limb injuries). 

Two alternative sampling strategies that can give rise to a 2×2 contingency table are 
simple random sampling and stratified random sampling. If ten male subjects with upper 
limb injuries were sampled at random from the population (simple random sampling), 
and each subject was asked two questions: Are you left-or right-handed? Did your injury 
occur ≤6-years-old or >6-years-old? The only fixed marginal total is the overall total, and 
the row and column marginal totals will be random. The following data may be obtained: 

Ten subjects with upper limb injuries randomly assigned to two groups
  Left-handed Right-handed   
≤6-years-old 3 3   
>6-years-old 1 3   
      10 (Fixed total) 

In this design, inferences can be drawn with respect to the target population of males with 
upper limb injuries. The null hypothesis would be no association between the row and 
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column variables and the distribution of frequencies is described by the multinomial 
distribution. 

The third sampling design is stratified random sampling. If two groups of 5 male 
subjects are sampled at random from each of two populations, male subjects with upper 
limb injuries that occurred when they were ≤6-years-old and a similar group but with 
injuries occurring when subjects were >6-years-old, and these subjects were asked, ‘Are 
you right- or left-handed?’ The following contingency table may be obtained: 

Random sample of five subjects with upper limb injuries selected from two populations 
  ≤6-years-old >6-years-old 

Left-handed 1 0 
Right-handed 4 5 

(Fixed column totals) 5 5 

In this table, the column marginal totals are fixed, the row marginals are random and the 
underlying frequency distribution is described by the product multinomial distribution. 
The null hypothesis in this design is that the proportions of left-handers (or we could say 
right-handers) is the same in both age cohort populations (≤6 years, and >6 years). 
Inferences are made with respect to the target populations and the notion of independence 
does not make sense in this sampling design. 

What should be done if we have a small overall sample or small expected 
cell values in a 2×2 table, or we want to consider a question about 
statistical independence between row and column variables but have used 
the wrong sampling design? 

We can still use Fisher’s exact test, but any inferences are made conditional on the 
observed marginal totals. 

Example from the Literature 

In a study of handedness plasticity, part of which was designed to investigate handedness 
(left or right) and upper limb injury, Dellatolas et al. (1993) surveyed 9591 men aged 17–
27 who were conscripted into the French army. Of this sample 577 reported that they had 
previously sustained an upper limb injury, 25 were ≤ 6-years-old when the injury 
occurred and 552 sustained their injuries when they were >6-years-old. One question 
addressed by the investigators was whether there was any difference between two age 
groups in the proportions of left-handed males who had sustained upper limb injuries. 
Data was set out in a 2×2 contingency table as follows: 

577 subjects with upper limb injuries 
Age when injury occurred 

Handedness: ≤6-years-old >6-years-old (Random row totals)
Left-handed 7 59 66

Right-handed 18 493 511
(Fixed column totals) 25 552 577
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If the two age groups are treated as separate populations, and the achieved samples are 
treated as random samples from these populations, then the appropriate underlying 
distribution is product multinomial and inferences are made with respect to the 
populations, conditional on the observed marginal totals. A two-tailed test is appropriate 
given the exploratory nature of the study. The investigators reported that among the 577 
injured men, the proportion of left-handers was significantly higher when the age the 
accident occurred was ≤6 years (28 per cent) [7/25× 100] than when it occurred later 
(10.7 per cent) [59/552×100], Fisher’s exact test: p<0.02. 

Worked Example 

Assume the following data table was obtained when a random sample of males with 
upper limb injuries was selected.  

Age when injury occurred 
Handedness: ≤6-years-old >6-years-old (Random row totals) 
Left-handed 3(A) 1(B) 4(A+B) 

Right-handed 3(C) 3(D) 6(C+D) 
(Random column totals) 6(A+C) 4(B+D) 10 (TOTAL N FIXED)

Figure 6.4: Ten subjects with upper 
limb injuries selected at random 

Cells in the table are labelled A to D and marginal totals are (A+B), (C+D), (A +C) and 
(B+D). 

In this example the overall total, N, is fixed and the row and column marginal totals 
are random. Whereas the sampling design suggests that the multinomial distribution is 
appropriate, if we make the assumption that inferences are conditional on the observed 
marginal totals, then the hypergeometric distribution can be used. The exact probability, 
under the null hypothesis (assuming random assignment), of observing this frequency 
distribution in the four cells, or a more extreme distribution, can be evaluated using the 
following equation: 

 Probability 
of observed 
frequency 
distribution 
for Fisher’s 
test—6.5 

where N is the overall total, 10, and A to D are the cell frequencies and marginal totals as 
illustrated in Figure 6.4. 

Using data presented in Figure 6.4, the null hypothesis is that the proportions of left-
handed males with upper limb injuries is the same in both age cohorts (≤6 years, and >6 
years), that is H0: P1=P2 where P1 is the probability that a male from the age cohort ≤6 
years will be left-handed (cell A) and P2 is the probability that a male from the age cohort 
>6 years will be left-handed (cell B). There are three possible alternative hypotheses: H1: 
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P1>P2, H1: P1<P2 and H1: P1≠P2. In most situations the two-tailed test is the appropriate 
test. In this example a two-tailed alternative hypothesis is considered; Does the younger 
age cohort (≤6 years) have a significantly larger or smaller proportion of left-handed 
subjects with upper limb injury? Fishers’s exact test determines the probability under the 
null hypothesis of obtaining the observed frequencies, or more extreme distributions of 
cell frequencies, with the same (fixed) marginal totals.  

1 The first step is to identify all possible frequency distributions with the same fixed 
marginal totals as the observed frequency counts (A+B=4; C+D=6; A+C=6; and 
B+D=4). The number of possible tables is equal to the smallest marginal frequency 
plus 1 if none of the cells are 0. In this example there are 5 possible tables (4+1). 
These are numbered (i) to (v) according to the frequency of cell A: 

Table (i) Table (ii) Table (iii)
0 4 |4 1 3 |4 2 2 |4 
6 0 |6 5 1 |6 4 2 |6 
6 4 |10 6 4 |10 6 4 |10 
Table (iv) Table (v)       
3 1 |4 4 0 |4       
3 3 |6 2 4 |6       
6 4 |10 6 4 |10       

2 Select an appropriate alpha level, for example, 0.05 (two-tailed). 
3 The probability of each possible frequency distribution, with the same fixed marginal 

totals is then evaluated using equation 6.5. 
As a check, the total probability of p(i) to p(v) should sum to 1. 

p(i)=(4!×6!×6!×4!)/ (10!×0!×4!×6!×0!)=0.0048 
p(ii)=(4!×6!×6!×4!)/ (10!×1!×3!×5!×1!)=0.1143 
p(iii)=(4!×6!×6!×4!)/ (10!×2!×2!×4!×2!)=0.4286 
p(iv)=(4!×6!×6!×4!)/ (10!×3!×1!×3!×3!)=0.3810 
p(v)=(4!×6!×6!×4!)/ (10!×4!×0!×2!×4!)=0.0714 

Total=p(i)+p(ii)+p(iii)+p(iv)+p(v)=1.0001 

  

4 For a two-tailed test, the probability is the sum of the probabilities of all tables with a 
probability less than or equal to the probability of the observed table. That is (p(i) 
0.0048+p(ii) 0.1143+p(iv) 0.3810+p(v) 0.0714) p=0.5715. 

For one-tailed tests the right tail probability is the sum of the probabilities of all 
tables more extreme and including the probability of the observed table (when 
tables are arranged in order of magnitude from cell A minimum frequency to cell 
A maximum frequency). The right-tail probability is therefore (p(iv) 0.3810+p(v) 
0.0714)=0.4524. The left-tail probability is the sum of the probabilities of all 
tables less extreme and including the probability of the observed table, that is 
(p(iv) 0.3810+p(iii) 0.4286+p(ii) 0.1143+p(i) 0.0048)=0.929. 
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Interpretation 

The obtained p value of 0.5715 (two-tailed) is clearly not significant at the 5 per cent 
level. 

Computer Analysis 

The calculation of exact probabilities for each contingency table is tedious and time 
consuming. PROC FREQ in SAS produces both one-tailed and two-tailed probabilities 
for Fisher’s exact test. Data from the worked example using the following lines of SAS 
code is shown:  

data fisher; 
   input row $ col $ count @@; 
   cards; 
1 1 3 1 2 1 2 1 3 2 2 3 
; 

To analyze this data PROC FREQ is used with the weight statement (this specifies the 
variable that contains the cell frequencies). The appropriate SAS code is: 

proc freq data=fisher; 
   weight count; 
   table row* col/nopercent chisq; 
title “Fisher’s exact test”; 
run; 

The complete programme is shown in Figure 6, Appendix A3. 

Interpretation of Computer Output 

Computer output for the 2×2 contingency table relating to Fisher’s exact test for the 
group and handedness data (data used in the worked example) is shown in Figure 6.5. For 
clarity of presentation only the relevant sections of output are illustrated. 

The probabilities shown in Figure 6.5 are the same as those calculated in the worked 
example. The null hypothesis cannot be rejected, and we conclude there is no difference 
between the two age groups in the proportions of left-handed subjects with upper limb 
injury. In other words the observed frequency distribution could have arisen by chance.  

Table of row by col 
Row Col       
Frequency         
Row Pct         
Col Pct 1 2 Total   
1 3 1 4   
  75.00 25.00   
  50.00 25.00     

Inferences involving binomial and nominal count data      183



2 3 3 6   
  50.00 50.00   
  50.00 75.00     
Total 6 4 10   

Statistics for table of row by col 
Statistic   DF Value Prob 
Chi-Square   1 0.625 0.429 
Continuity Adj. Chi-Square 1 0.017 0.895 
Fisher’s Exact Test (Left)     0.929 
(Right)     0.452 
(2-Tail)     0.571 
Simple Size=10         
WARNING: 100% of the cells have expected counts less than 5. ChiSquare may not be a 
valid test. 

Figure 6.5: Output for Fisher’s exact 
test 

6.4 Proportions Test (or difference in percentages) 

When to Use 

When an investigator is interested in a simple difference in proportions between two 
independent groups, rather than a relationship (when χ2 would be used), the proportions 
test is appropriate. This test procedure is used to compare the proportions of two 
independent groups (such as boys and girls) with respect to a nominal variable of interest, 
for example, blue eyes/brown eyes; IQ≥100/< 100; pass/fail. The groups are the result of 
two independent random samples from specified populations and the sample sizes do not 
have to be equal. The test procedure illustrated here is based on the confidence interval of 
the difference between two population proportions which is estimated using the 
difference between the observed proportions in the two random samples. The test is also 
applicable to comparison of the difference between two percentages.  

Statistical Inference and Null Hypothesis 

Statistical inferences for this procedure relate to population proportions, the null 
hypothesis is that these are equal. The test is based on a normal approximation to the 
binomial distribution, the normal variate Z is used to evaluate a confidence interval for 
the difference, D, between population proportions. To calculate the significance of this 
difference, D, the standard error (standard deviation) of the observed difference is 
calculated and an appropriate confidence interval for the difference, based on this 
observed standard error, is evaluated. The unknown difference between population 
proportions, D, is estimated using the observed difference in sample proportions, P1−P2. 
If the confidence interval excludes 0 we can be confident that the groups are significantly 
different. 
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Technically, the null hypothesis is tested using a pooled estimate of the standard error 
of the difference in proportions because the null hypothesis actually states that the 
population proportions are equal, π1=π2. When a pooled estimate is used, the total 
population proportion is estimated using the information contained in the two samples. In 
fact a weighted mean proportion is used (the overall proportion of successes in the two 
samples). This is the procedure most often presented in introductory statistical texts. For 
reasons already mentioned, it is this author’s belief that whenever possible it is preferable 
to give a confidence interval for any difference accordingly, the test procedure presented 
here is to evaluate a confidence interval for the difference in proportions. This leads to a 
test of essentially the same null hypothesis of no difference between proportions but 
additionally provides a zone of confidence for any population difference in proportions. 
The reader should note that the main difference between the confidence interval approach 
and a direct test of the null hypothesis is the procedure used for estimating the standard 
error. 

Test Assumptions 

• Observations are sampled at random from a specified binary population. The population 
can be treated as binary with respect to a continuous variable provided that values for 
the statistical variable can be assigned to two mutually exclusive categories. 

• Each observation is independent (does not effect the value of any other observations 
sampled). 

• This test is based on a normal approximation to the binomial distribution (normal 
variate Z is used). The test procedure should not therefore be used when sample sizes 
are small, say <25, or when the proportions are outside the range 0.1 to 0.9. 

Examples from the Literature 

In a study of social-cognitive modes of play Roopnarine et al. (1992) observed playmate 
selection in different classroom structures (same age/mixed age classrooms). The study 
included analysis of the proportions of child-initiated play activities with same sex peers 
in same age and mixed-age classrooms. The investigators performed tests of differences 
between the proportions of initiated play activities in the two different classroom 
organizations (two independent samples of observations). The null hypothesis here is that 
the proportions of initiated play activities with same sex peers would be equal in same 
age and mixed-age classrooms. The alternative two-tailed hypothesis was that the 
proportions would be different in the two types of classroom organization. The 
investigators reported two Z-scores of 2.29, p<0.05 (boys) and 2.22, p<0.05 (girls) and 
concluded that both 4-year-old-boys and 4-year-old-girls in same age classrooms were 
more likely to initiate play with same sex peers than were their age equivalent 
counterparts in mixed-age classrooms. 

In a second example where percentage differences rather than proportions were 
analysed MacKay and Boyle (1994) report on an investigation of primary headteachers’ 
expectations of their local education authorities educational psychologists. Specifically 
the investigators looked at the importance placed by headteachers on provision of advice 
on materials for pupils with learning difficulties. 
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The following three questions were included in a questionnaire survey of primary 
school headteachers (with 96 per cent return rate). Respondents’ replies as reported by 
the investigators are shown: 

To what extent do you feel that the Psychologist should be involved in the 
following areas? 

  n=(100%) Very much/ much 
involved 

in 
between

Little/ not 
involved 

    % n % n % n 
Q1 Advice on materials (for pupils with 
learning difficulties) 

110 87.3 96 11.8 13 0.9 1 

Q2 INSET for school staff (in-service 
education and training) 

108 66.7 72 26.9 29 6.4 7 

Q3 Primary/secondary school liaison 109 65.1 71 26.6 29 8.3 9 

The investigators reported that provision of advice was judged to be of significantly 
greater importance than either INSET or primary-secondary school liaison (p<0.05).  

Worked Example 

Data from the study of headteachers’ perceptions will be used to illustrate application of 
the proportions test for detecting the significance of any difference between  

percentages. As the investigators indicate that the response rate is 96 per cent, it is 
reasonable to assume that the achieved sample is representative of headteachers in the 
LEA(s) concerned. We also need to assume that the sample is random and that responses 
to the three questions are independent, that is, a headteacher’s response to the third 
question is not influenced by his or her response to the first or second questions. The 
samples of responses are sufficiently large for the normal approximation to apply. The 
investigators do not state precisely the comparisons made, but it is reasonable to assume 
that the proportion of respondents endorsing the category very much/much involved in Q 
1 is compared with proportions of responses in the same categories in Q 2 and 3. Thus 
two null hypotheses are tested at the 5 per cent level: 

H0: Q1 πvery much/much=Q2 πvery much/much 
H0: Q1 πvery much/much=Q3 πvery much/much 

  

It is also assumed that the alternative hypotheses are two-tailed tests. 
The sample standard deviation of the difference in proportions, SD, that is the 

standard error of the difference in proportions is used to estimate the unknown 
population parameter, the standard deviation (or standard error) of the difference in 
proportions, σD. That is SD (from sample) estimates σD in the population. The 
computational formula for SD is: 

 
of 

differe
nce in 
Stand
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ard 
error 
propor
tions
—6.6 

where P1 and P2 are the observed sample proportions for the two independent samples of 
size n1 and n2. The sample proportion is the number of counts in the relevant category 
divided by the sample size. 

Confidence Intervals 

Consider the first hypothesis, the difference in the proportions of respondents who 
endorsed the category very much/much to the two questions. Advice on materials 
(observed proportion P1=96/110), and INSET for school staff (observed proportion P2= 
72/108). 

The 95 per cent CI for the population difference in the two proportions (π1−π2) is: 
(P1−P2)−(Z*×SD) to (P1−P2)+(Z*×SD)   

where Z* is the upper value from a standard normal distribution for the selected 
100(1−α/2). For example, for a 95 per cent CI Z*=1.96. Unlike the t-distribution this 
standard normal critical value does not depend on the sample size. 

In this example the standard error of the observed difference is:  

 

  

The 95 per cent CI is 
(P1−P2)−(Z*×SD) to (P1−P2)+(Z*×SD) 
(0.873−0.667)−(1.96×0.055) to (0.873−0.667)+(1.96×0.055) 
= (0.10 to 0.31). 

  

Interpretation 

The 95 per cent CI does not include the value zero and we can therefore conclude with 95 
per cent certainty that the population proportions are significantly different, p<0.05. As 
the investigators concluded, advice on materials for children with learning difficulties 
was judged by primary school headteachers to be of greater importance than in-service 
training for school staff. 

Computer Analysis 

Once again this analysis is accomplished with ease with a few lines of SAS code. A 
complete SAS programme for the proportions test is shown in Figure 7, Appendix A3. In 
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this programme 5 data values n1, n2, x1, x2, and the required CI need to be entered. For 
this example the 5 data values are: 

data a;      ** Enter 5 data values on following 5 
lines    **; 
n1=110;      ** n1 is sample size for sample 
1              **; 
n2=108;      ** n2 is sample size for sample 
2              **; 
x1=96;       ** x1 is relevant count for sample 
1           ** 
x2=72;       ** x2 is relevant count for sample 
2           **; 
CI=95;       ** Required confidence interval e.g. 95, 
90    **; 

Output from the procedure PROC PRINT, which simply prints the values of the variables 
is 

OBS N1 N2 X1 X2 CI P1 P2 ALPHA SEDIFF Y 
1 110 108 96 72 95 0.87273 0.66667 0.05 0.055384 1.95996
LOWERCI UPPERCI               
0.10 0.31               

From this output the computed 95 per cent CI, 0.10 to 0.31, is the same as the interval 
values calculated in the preceding section. Computer output for a test of the second null 
hypothesis, that of no difference in the proportion of respondents between Q1 and Q3 
who endorse the category very much/much, is shown below:  

OBS N1 N2 X1 12 P1 P2   CI ALPHA Y 
1 110 109 96 71 0.87273 0.65138 95 0.05 0.055616 1.95996
LOWERCI UPPERCI               
0.11 0.33               

Interpretation of Computer Output 

Interpretation is straightforward, in neither comparison does the 95 per cent confidence 
interval include the value zero. We can therefore conclude with 95 per cent certainty that 
the population proportions of affirmative responses to the two questions, Q1 and Q2 and 
to the questions Q1 and Q3 (two comparisons) are significantly different, p<0.05. The 
estimate of the difference in the percentage of respondents who endorse the statement that 
they ‘very much or much’ believe that the educational psychologist should be involved in 
providing advice on materials compared with those who endorse the statement ‘should be 
involved with in-service work’ is 20.6 per cent (0.873−0.667×100). The 95 per cent 
confidence interval ranges from 10 per cent to 31 per cent, and the standard error of the 
difference is 5.5 per cent. 

It is good practice to note both the confidence interval and the p value (and any test 
statistic values) when reporting results. 
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6.5 Sign Test (Matched pairs) 

When to Use 

One of the simplest and most useful distribution-free tests is the sign test. As its name 
implies the sign test makes use of the counts of the direction of any differences between 
two measures, that is whether a difference between two measures is + or −. It does not 
use the difference of the actual score values (if they are available). The sign test is useful 
when quantitative measures are not possible, but when it is possible to determine for each 
pair of observations which is the largest in some meaningful sense. 

There are a number of different forms of the sign test, all based on frequency counts 
and the binomial sampling distribution. Perhaps the most common use of the test is the 
sign test for paired differences (or matched pairs). In this form it is a two-sample repeated 
measures test and is used to determine the significance of any change (or difference) 
between two related measures. Other forms of the sign test are: one-sample location 
problems, test for trends in location, sign test for correlation and sign test for association. 
For discussion of these other applications see Sachdeva (1975). 

Statistical Inference and Null Hypothesis 

Inferences for the matched pairs sign test relate to the population median, η, (Greek letter 
eta) of the differences. The null hypothesis is that the median of the differences is 0 
(similar to the paired t-test when the mean of the differences is 0). When the probability 
of a + is 0.5 by chance, there will be an equal number of + and − differences above and 
below the median and therefore the median difference is 0. In notational form H0:η=0. 
The alternative hypothesis may be one-tailed, i.e., H1:η>0 (median difference is positive, 
more + than − signs), or H1: η<0 (median difference is negative, more − than + signs). A 
two-tailed alternative hypothesis would be H1:η≠0 (median is ≠0, different number of + 
and − signs). 

Test Assumptions 

The sign test (matched pairs) is applicable when: 

• The response variable analyzed has a continuous (or at least a theoretical continuous) 
distribution. 

• Data is in the form of frequency counts of + and − differences. 
• Each pair of observations is independent of other observations. 

Examples from the Literature 

In a study by Gardiner (1989) of priming effect on a word fragment completion task, 
twenty-four undergraduate students were presented with a list of word fragments which 
they had to complete. A priming effect is the facilitatory effect of prior experience on 
performance of a cognitive task. In this example, students were first presented with a set 
of twelve target words in a reading passage and were subsequently presented with word 
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fragments for the same set of twelve words. The number of fragment words completed 
were counted. A new set of twelve fragment words were also presented, these had not 
been previously presented in a reading passage. This was a matched pairs design, that is 
each student attempted to complete two sets of fragment words, twelve that had 
previously been read in passage and twelve that had not. If the student completed more 
word fragments for the set of twelve words previously presented in the reading passage, 
(compared with the twelve words that had not been presented) this constituted a priming 
effect. 

For the twenty-four students, seventeen showed a priming effect and three had tied 
scores, that is completed equal numbers of word fragments for both sets. The investigator 
concluded that there was a significant priming effect for items that had been read 
previously, p <0.001, by the sign test. 

In a numerical example of the sign test given by Sachdeva (1975), twelve randomly 
selected pairs of students (each pair matched on age, sex and IQ) were randomly assigned 
to two different conditions. The obtained data are: 

Pair No. 1 2 3 4 5 6 7 8 9 10 11 12
Condition I 17 18 26 24 26 14 17 29 36 25 44 30
Condition II 22 32 25 22 27 21 14 41 37 24 43 31
Sign for difference − − + + − − + − − + + −

The investigator wanted to find out whether there was any difference between the two 
experimental conditions in the average performance of students. 

The sign test was used and alpha was set to 5 per cent, with a two-tailed test. The null 
hypothesis of no difference in the average performance of students under the two 
experimental conditions was not rejected, and the investigator concluded that the average 
performance of students under the two conditions was the same. 

Worked Examples 

Data from the study by Gardiner (1989) on the influence of priming on implicit memory 
is used to illustrate the paired difference sign test. The sign test determines the probability 
associated with an observed number of +’s and −’s when in this case the probability of a 
+ or a − is 0.5. The test statistic is the count of the number of pairs with a difference in 
the desired direction. Pairs with a zero difference are not included in the analysis and n, 
the number of pairs, is reduced accordingly. 

Gardiner reported that 17/21 students showed a basic priming effect, that is seventeen 
subjects completed more word fragments for the set of twelve words previously presented 
in the reading passage, compared with the twelve new words not previously presented 
(here 17 +’s). Three subjects had tied scores, that is, completed an equal number of word 
fragments for both sets of twelve words. Under the null hypothesis of an equal number of 
+’s and −’s, the null hypothesis is rejected if too few differences of one sign occur. The 
probability of obtaining the observed distribution of 17/21 +’s, or a more extreme 
distribution (fewer differences for the sign with the smallest count) is evaluated using the 
binomial equation (see Chapter 4, section 4.1). The binomial equation with probability 
0.5, sample size twenty-one and number of successes set to four or fewer evaluates 
whether four or fewer subjects would be expected to occur by chance (four is the smaller 
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observed frequency, twenty-one less seventeen). The probabilities associated with 
obtaining counts of 4, 3, 2, 1, and 0 are: 

p4= 2.85−3; p3= 6.34−4; p2= 1.00−4; p1=1.00−5; p0= 4.77−7.   

Note, 2.85−3 is equal to 0.00285. The probability of obtaining 4 or fewer is the sum of 
these five probabilities which is 0.0036. 

Interpretation 

Gardiner (1989) did not state in his paper whether a one- or a two-tailed test was used or 
the alpha level selected (see earlier comment about brevity of statistical test details when 
results are presented in periodicals). A cautious approach would be to use a two-tailed 
test with alpha set to 5 per cent. When a two-tailed test is used the probability associated 
with the smallest observed frequency is doubled. The p-value for the two-tailed sign test 
is thus 0.0072. The null hypothesis is therefore rejected, and we conclude that there is a 
statistically significant priming effect.  

Computer Analysis 

Calculation of binomial probabilities using the binomial equation is tedious and either 
tables of binomial probabilities for p=0.5 can be consulted or the probabilities can be 
determined using the SAS binomial function PROBBNML. Appropriate lines of SAS 
code are: 

data a; 
p4=probbnml (0.5, 21, 4) ; 
put p4=; 
run; 

The PROBBNML function is used as part of a SAS data step, here the first line of code 
specifies the data set a (this is just a convenient name). The PUT statement tells SAS to 
write the variable p4, evaluation of the binomial function, to the LOG File. See earlier 
section 6.2 for details of the PROBBNML function. The following value is returned in 
the SAS LOG file, p4=0.00359869 

Worked Example 

The numerical example of the sign test given by Sachdeva (1975) for twelve randomly 
selected pairs of students is used to illustrate an extraordinary simple computational 
procedure for evaluating the sign test which is based on the sample size only. For the 
twelve matched pairs of students the signs of the differences are: 

Sign for difference − − + + − − + − − + + −

A simple formulae for making tests of significance at the 5 per cent level for a two-tailed 
alternative hypothesis is, 

(s+−f)2≥4n   
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where n is the number of matched pairs (ties, if present, would not be included and n 
reduced accordingly), s+ is the number of designated + signs (count of 
observations>median) and f is the count of − signs. If the square of the difference 
between the number of + and − signs is ≥ four times the sample size then the null 
hypothesis of no difference is rejected. 

Interpretation 

In this example, s+=5; f=7; and n=12. Since (s+−f)2=(5−7)2=4, which is <48, (4×12) the 
null hypothesis is not rejected and it is concluded that the average performance of 
students under the two conditions is not significantly different. If an investigator wanted 
to use alternative alpha levels the following comparable formula could be used:  

Alternative hypothesis Alpha Formula
two-tailed 1% (s−f)2≥6.7n
one-tailed 5% (s−f)2≥2.7n
one-tailed 1% (s−f)2≥5.4n

This simple test is particularly useful for detecting significant change in pre-test/ post-test 
designs. 

6.6 r×k Chi-square Test 

When to Use 

This test is an extension of either the r×2 Sample χ2 test of homogeneity when there are 
more than two independent groups (samples), or the one sample χ2 test of independence 
when there are more than two categories in the row or column variables. In the 
homogeneity design k independent random samples are drawn (the columns’ variable) 
from each of k populations and the distribution of proportions in the r (row variable) 
categories are compared hence the term r×k Chi-square. An alternative model is the test 
of independence when a single random sample is drawn from a single population of 
subjects with two categorical measures for each subject, that is the row and column 
variables. For the homogeneity design an investigator would be interested in the effect of 
the column variable on the response or row variable. For the independent design an 
investigator would be interested in testing whether the two categorical variables are 
independent. 

Statistical Inference and Null Hypothesis 

For the homogeneity design the general form of the null hypothesis is that the k 
independent samples come from one single population (or identical populations). This 
may be stated as the proportions of subjects in each category of the row variable 
(measured variable) is the same in each of the k independent groups (samples) of the 
column variable. The parameters being estimated are the proportions in each cell of the 
contingency table which the observed sample proportions are intended to estimate, The 
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column variable describes from which population an observation comes, and the row 
variable is a categorical response (measured) variable. 

The research hypothesis is that the distribution of proportions for one categorical 
variable, the row variable, is different in the k populations (the other categorical column 
variable). A more general way of stating this research hypothesis is to say that the 
proportions differ across the two groups. To test the null hypothesis we compare 
observed cell counts with the expected cell counts under the assumption that there is no 
difference in proportions. 

For the χ2 test of independence the null hypothesis is that the two categorical variables 
are independent. The alternative hypothesis is that there is a relationship between the row 
and column variables. No matter which sampling design is used, it is essential that each 
subject appears in only one cell (is counted once) in the contingency table. 

Test Assumptions 

In general these are the same as for the two sample χ2 test (see section 6.1) except that at 
least one of the categorical variables has three or more categories. 

Example from the Literature 

In a study which investigated aspects of maternal employment and child health care, 
Dowswell and Hewison (1995) examined the relationship between maternal employment, 
full-time, part-time or at home, and educational achievements, no examinations, CSEs or 
O-levels. In this study a sample of mothers was selected from a target population 
consisting of white families where the youngest child was attending school. The 
statistical analysis used by the investigators was a Chi-square test of independence, since 
a single sample of mothers was selected. 

If, however, we were to assume that samples were selected from three independent 
populations based on maternal employment categories this sampling design would 
require an r×k χ2 test of homogeneity (3-sample design). Whichever sampling design is 
used, computational details are the same only the nature of the inferences differ. Data was 
set out in a contingency table as follows: 

Maternal employment 
At home Part-time Full-time

n=41 n=65 n=30 
No examinations 19 32 10

Mothers’ educational achievements

CSEs 9 10 5
O-levels or above 13 23 15  

In this example the column variable represents the three populations of maternal 
employment (full-time, part-time or at home) and the row variable (examination 
achievement) is the categorical response variable. A research question that could have 
been considered by the investigators was whether the distribution of responses for the 
variable examination achievement was the same in the three populations. A homogeneity 
χ2 test is appropriate.  
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The null hypothesis tested with this sampling design is that the proportions of subjects 
in each category of the row variable, examination achievement, is the same in each of the 
three independent samples (column variable). 

We can conclude that there is no significant difference in examination achievements 

between the three populations, of maternal employment, (with 4df). This is 
not significant at the 5 per cent level. 

Worked Example 

Computation of an r×k χ2 statistic follows the same procedure as that presented earlier in 
this chapter when discussing the two-sample χ2 test (section 6.1). The procedure is 
outlined only briefly here. χ2 is calculated as the difference between each observed and 
corresponding expected cell count squared and then divided by the expected count 
(O−E)2/E). The total χ2 value for the contingency table is the sum of the χ2 values 
calculated for each cell in the contingency table. The degrees of freedom are calculated as 
(rows−1×columns−1). 

Interpretation 

A non-significant χ2 value would indicate either no significant difference between the k 
populations with respect to the categorical response variable (homogeneity test) or no 
significant association between the two categorical variables (test of independence). 

Computer Analysis 

Data from the study on maternal employment is used to illustrate an r×k Chi-square 
analysis. The following lines of SAS code show how the data is entered and how the 
procedure PROC FREQ is used: 

data chi; 
   input row col celln @@; 
   cards;                           /* Data entered on 
next line*/ 
1 1 19 1 2 32 1 3 10 2 19 2 2 10 2 3 5 3 1 13 3 2 23 3 
3 15 
proc freq data=chi; 
   weight celln; 
   table row* col/chisq expected; 
title 'Chi square test'; 
run; 

The option expected is used to obtain the expected frequencies for each cell in the 
contingency table. Output from this SAS programme is shown in Figure 6.6:  

Table of row by column 
Row column       
Frequency         
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Row Pct         
Col Pct 1 2 3 Total

1 19 32 10 61
 31.15 52.46 16.39  
 46.34 49.23 33.33

2 9 10 5 24
 37.50 41.67 20.83  
 21.95 15.38 16.67

3 13 23 15 51
 25.49 45.10 29.41  
 31.71 35.38 50.00  

Total 41 65 30 136
Statistic for table of row by col 

Statistic DF   Value Prob
Chi-square 4   3.515 0.476
Sample Size=136 

Figure 6.6: SAS output for r×k Chi-
square analysis 

Interpretation of Computer Output 

The results of the analysis in Figure 6.6 show no difference in educational achievement 
between the three populations: mothers working full-time; part-time; or at home, 

is not significant. The interpretation is the same as that given in the 
example from the literature section. An overall significant χ2 value for a r×k table would 
show that there are significant none chance deviations somewhere in the table. An 
investigator is usually interested in which cells the important discrepancies appear. The 
expected option in the tables statement of PROC FREQ produces expected cell 
frequencies under the null hypothesis of homogeneity of proportions (or independence). 
The cells with the largest discrepancy between observed and expected values can easily 
be identified. 

6.7 Cochran’s Q Test 

When to Use 

This procedure is appropriate when a research design involves subjects each performing 
under different treatment conditions (repeated measures) for which the response 
(outcome) variable is binary (scored 1, 0). The response variable is designated arbitrarily 
1 for success and 0 for failure. The repeated measures may be two or more observations 
on the same subjects over a series of independent trials (treatment conditions) or it may 
involve matched subjects. Cochran’s Q test is appropriate for detecting whether the 
proportions of successes are constant over trials (treatment groups). 
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For example, a research student wanted to assess the effectiveness of vocabulary 
acquisition among primary school pupils under three teaching approaches (treatments): 
storytelling with pictures, storytelling alone and silent reading. Thirty target word 
meanings of equal difficulty were selected (factors considered included context, word 
length, word type classification), and ten words were used in each of the three treatment 
conditions. For each treatment condition, if a subject scored better than chance on the ten 
target words the subject was assigned a score of 1, success. If the subject did not score 
better than chance, the treatment response was assigned a score of 0. Data for this design 
can be arranged in a contingency table where columns represent treatments or 
measurement occasions and subjects form the rows of the table, for example: 

Treatments (measurement occasions) 
Subjects Storytelling +pictures Storytelling alone Silent reading Row totals 

1 1 0 1   
2 1 0 0   
3 0 1 0   
4 1 0 0   
.     .   
.     .   
.     .   

Column Totals       Grand total N 

The purpose of the test is to determine whether related sets of binary observations differ. 
When the related measures correspond to a series of observations on the same subjects 
under different treatment conditions the Q statistic provides a test of whether the 
treatments differ significantly. 

Statistical Inference and Null Hypothesis 

The null hypothesis is that the population parameter for the probability of a success under 
each treatment condition is the same. That is the treatments are equally effective and any 
variation in the column totals is simply due to sampling variation. The alternative 
hypothesis is that the treatments do not have the same effect. 

Test Assumptions 

Cochran’s Q test may be used when the following assumptions are met: 

1 The response variable is binary and observations are related, same subjects observed 
under different treatment conditions (measurement occasions), or matched subjects. 

2 The sampling distribution of the Q statistic approximates to a χ2 distribution with 
degrees of freedom as the number of columns −1. Under the null hypothesis the 
probability associated with the value of Q as large as the observed value is determined 
by reference to the χ2 distribution. However, this approximation is only valid when the 
product of the number of subjects (rows) and treatments (columns) is ≥24. When the 
product of rows and columns is <24 tables of exact distributions should be consulted, 
see Patil (1975). 

Statistical analysis for education and psychology researchers      196



3 Population covariances for all pairs of treatments are the same. Heterogeneity of 
variances and covariances is common in studies involving binary repeated measures. 
Interactions between subjects and treatment conditions would indicate heterogeneity 
of covariance. Severe heterogeneity introduces a positive bias to the Type I error rate 
and if this is suspected, Q should be corrected. (See Myers, et al., 1982). In most cases 
the procedure described by Myers et al. should be followed: 

a Evaluate the Q statistic against a conservative criterion, (  means 
Chi-square with 1 df and c is number of columns). For example, with alpha of 5 per 
cent and with four columns in a contingency table, we would evaluate Q against the 

conservative critical value of If the test statistic Q 
exceeds the critical value of 11.52 we would reject the null hypothesis. 

b If the first conservative test is not significant (this allows for covariance) at the same 

alpha level compare the test statistic Q with a If this liberal 
criterion is not significant, do not reject the null hypothesis and stop at this point. 

c If the first test against the conservative critical value is not significant but the second 
test against the more liberal critical value is, consider computing an adjusted Q (see 
Myers, 1975) and test this against χ2 with (c−1) df. 

Example from the Literature 

In a comparative study of four diagnostic systems (majority opinion of medical 
specialists, and three computer-based diagnostic systems) Gustafson et al. (1973) tested 
the null hypothesis that all four diagnostic methods were equally effective. Each 
diagnosis for eleven hypothyroid patients was coded as correct, 1, or incorrect, 0. 

Alpha was set to 5 per cent and the null hypothesis was that all four methods were 
equally effective in diagnosing hypothyroid patients. The alternative hypothesis was that 
the four methods differ in their ability to produce a correct diagnosis. There were 44 
(11×4) cells in the original contingency table but this was reduced to 28 (7×4) because 4 
subjects had either all 1’s or 0’s. These rows of 1’s or 0’s do not contribute to the value of 
Q (Q would be the same if all eleven subjects were included in the calculation). As the 
obtained number of cells, 28, exceeds 24 the χ2 approximation is valid. The obtained test 

statistic Q was 7.70, which is not significant at the 5 per cent level, 
As Q has an approximate χ2 distribution with c−1 df, A Q (or χ2) value ≥7.81 is required 
to reject the null hypothesis. The investigators were able to conclude that there was no 
significant difference in the diagnostic performance of the four methods. 

Worked Example 

Returning to the example of the vocabulary acquisition experiment which was part of a 
student’s dissertation study, the complete data set for eleven pupils is presented in Figure 
6.7.  

Treatments (Measurement occasions) 
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Row totals Subjects Storytelling 
+pictures 

Storytelling 
alone 

Silent 
reading R R2 

1 1 0 1 2 4 
2 1 1 0 2 4 
3 0 1 0 1 1 
4 1 0 0 1 1 
5 1 1 0 2 4 
6 1 1 1 3 9 
7 1 1 1 3 9 
8 0 0 0 0 0 
9 1 0 1 2 4 
10 1 0 1 2 4 
11 0 0 1 1 1 

(C)olumn 
Totals 

8 5 6 ΣC= 
ΣR=N=19 

        Σ(R2)=41 
(C)olumn 
Total2 

64 25 36 Σ(C2)=125 

Figure 6.7: Contingency table for 
vocabulary acquisition experiment 

For completeness all subjects are shown in the computation of Q. If subjects 6 and 7, (all 
1’s) and subject 8 (all 0’s) were excluded from the computation, we would obtain the 
same value of Q that we obtain with all subjects included in the analysis. 

The null hypothesis is that there is no difference in vocabulary acquisition under the 
different teaching approaches. Alpha is set to 5 per cent and the number of cells is 33 
(11×3). After adjusting for the 3 rows with all 0’s or all 1’s (subjects 6, 7, and 8) the 
number of cells reduces to 24 (8×3) which is the minimum number for use of the χ2 
approximation. 

The computational steps are as follows: 
Step 1 Compute the column and row totals and the square of the column and row totals. 

Step2 Sum the column totals which should equal the sum of the row totals, here, ΣC=ΣR=N=19. N 
is the grand total. 

Step3 Sum the squares of the column and row totals here, Σ(C2)=125 and Σ(R2)=41 
Step4 The test statistic Q is evaluated as: 

 
Cochran‘s 

Q—6.7 

where J is the number of treatments (columns), R2 is the row total squared for each row, 
C2 is the column total squared for each column, and N2 is the grand total squared. Here Q 
is: 
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Interpretation 

With alpha set to 5 per cent the obtained Q of 1.75 is first evaluated against the 

conservative critical value of that is or 2×3.84=7.68. This 
conservative estimate adjusts for heterogeneity in the covariances and the resultant 
inflated Type I error rate. The observed value of Q, 1.75, fails to exceed this conservative 
critical value (not significant at 5 per cent level) and Q is therefore tested against the 
more liberal critical value. This liberal critical value is equivalent to χ2 with (c−1) df. 

Here we see the obtained value of Q, 1.75<5.99 the Q statistic fails to reach the 
liberal critical value and is not significant at the 5 per cent level. 

We do not reject the null hypothesis, the probabilities of 1’s (successes) are not 
different under the three teaching approaches, and we conclude that vocabulary 
acquisition is similar under the three approaches, storytelling enhanced by pictures, 
storytelling alone and silent reading. The reader should carefully consider the design of 
this experiment particularly threats to internal validity (are the three stories comparable, 
are the target words comparable-what would be the advantages/ disadvantages of a 
between subjects design?) 

Computer Analysis 

A SAS programme for calculating Cochran’s Q and evaluating the significance of the Q 
statistic at the conservative and liberal critical values is presented in Figure 8, Appendix 
A3. To use this programme two sections need to be edited: the number of variables, that 
is treatment occasions (repeated measurements), t1 t2 t3…tn and the actual lines of data, 
one subject per line. Three subjects are not included in the data input because they have 
either all 0’s or all 1’s. The total number of lines of data input (subjects) is therefore 
eight. With a larger data set a separate data file could be read using the INFILE statement 
rather than entering data in the SAS programme with the CARDS statement. Illustrated in 
Figure 6.8 is the data entry section of this SAS programme using the vocabulary 
acquisition data.  

** Filename: 
COCHRAN.JOB                                
        **; 
**                                         
                     **; 
** Purpose: Cochran's Q 
test                                    **; 
**                                         
                     **; 
**          Tests whether there is a 
difference between two or  **; 
**          more treatments in a repeated 
measures design when  **; 
**          the response variable is 
binary, 1 (success) 0      **; 
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**          (fail)                         
                     **; 
**                                         
                     **; 
** Created: 16 April 
1995                                       
**; 
**                                         
                     **; 
** Input file: NONE (Data entered in 
programme)                 **; 
** Output file:NONE (see 
notes)                                  **; 
**                                         
                     **; 
** Notes: The number of treatment groups 
(repeated measures)    **; 
          is entered sequentially 
(separated by a space)        **; 
          after the input statement e.g. t1 
t2 t3…tn          **; 
          Data is entered after the cards 
statement,            **; 
          one subject per row, each value 
(either 1 or 0)       **; 
          separated by a 
space.                                 **; 
          Subjects (lines of data) with all 
1’s or 0's          **; 
          should be excluded (not entered 
in the data step)     **; 
data a; 
               ** On next line enter vars 
t1 t2 etc after       **; 
               ** input 
statement                               **; 
               ** see notes 
above                               **; 
input t1 t2 t3; 
cards;        /* Enter data on following 
lines one subject      */ 
               /* per 
line                                       
*/ 
               /* see notes 
above                                */ 
101 
110 
010 
100 
110 
101 

Statistical analysis for education and psychology researchers      200



101 
001 
; 
               ** Do not edit beyond this 
line                  **; 

Figure 6.8: Data entry section of SAS 
programme for computing Cochran’s 
Q 

The statement data a; is the beginning of the data step. Following the input statement 
are the variables t1 t2 and t3. These need to be numbered consecutively and separated by 
a space. They correspond to the treatment periods (measurement occasions) in the 
repeated measures design. The cards statement indicates that data lines follow. The SAS 
system recognizes the end of the data when the first line after the last data line contains a 
single semicolon. 

Output from this analysis is shown in Figure 6.9.  

              Cochran Q Test Results 
Cochran Q test value=1.75 
p-value with liberal df: 
df=2 
Not significant at 5% level (p-value 
=0.417) 
p-value with conservative critical value: 
Not significant at 5% level 

Figure 6.9: SAS output from 
Cochran’s Q analysis for vocabulary 
data 

Interpretation of computer output 

The value of the Q test statistic is the same as that calculated in the previous worked 
example. Interpretation is also the same. The SAS programme prints out the significance 
levels for both liberal and conservative tests, the p-value is given for the liberal degrees 
of freedom. The programme automatically tests alpha at 1 per cent and alpha at 5 per cent 
and prints a p value for either 1 per cent or if this is not significant the p value for the 5 
per cent level. A warning is printed if the number of cells is less than 24. 

6.8 Summary 

In this chapter the use of tests has been discussed where data has been discrete and 
observations have been classified in contingency tables. The role of scores has been to 
label and classify data. Whereas these procedures are suitable for many occasions they do 
not make use of as much of the information contained in data as is sometimes possible. 
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There are other nonparametric techniques which make use of the scores attributed to 
observations. Numerical scores, may not be from an underlying normal distribution but 
may lend themseles to rank ordering. Rank order statistics, which use more information 
contained in the data and are generally more powerful than nominal tests, may be used 
with numerical scores that assign each observation to a relative position in the score 
distribution. These rank order procedures are introduced in the next chapter.  
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Introduction 

Educational researchers may be less familiar with nonparametric methods and in 
particular rank test procedures than with parametric methods. Use of nonparametric rank 
procedures is more common among research psychologists. In this chapter, six 
nonparametric or distribution free statistics that make use of rank scores are introduced: 
Spearman’s correlation, Run’s test, Wilcoxon M-W test, Signed ranks test, Kruskal 
Wallis ANOVA and Friedman’s ANOVA. The term distribution free is strictly not 
accurate. Whereas parametric statistical procedures are dependent upon distributional 
theory, they make certain specific assumptions about patterns of variability in the 
population (referred to as statistical test assumptions). Nonparametric tests do not rely on 
population distributional assumptions. Nonparametric procedures are not entirely 
distributional free. Whilst not making use of distribution theory in the same way that 
parametric procedures do, (mathematical descriptions of patterns of variation are used to 
make inferences about population parameters or constants based on sample data) they 
nevertheless definitely do make use of the distribution of sample observations. In this 
sense they are not distribution free. 

Nonparametric statistical tests are generally less powerful than parametric tests and are 
also less likely to mislead investigators because they are not dependent upon certain 
restrictive measurement and distributional assumptions. Nonparametric procedures are 
also well suited to small sample sizes, and rank tests are particularly helpful when 
outliers are present in a data set since ranks of raw scores are not affected by extreme 
values. Data may naturally form ranks, or ranks may be assigned on the basis of 
measurement (or combinations of different measures) or subjective judgment. 

Many introductory statistical textbooks relegate nonparametric procedures to the later 
chapters and promulgate the view that they should be used when assumptions of 
normality and homogeneity of variance (equal population variances) are not met. 
Whereas nonparametric tests are useful for solving certain statistical difficulties (small 
sample sizes, unrealistic measurement and distributional assumptions), they are not a 
panacea for all problems. They are subject to assumptions of independence of 
observations (groups are comprised of random samples and successive observations 
within samples are independent) and are also sensitive to unequal variances especially in 
combination with unequal sample sizes. As Zimmerman and Zumbo (1993) point out, 
psychologists (and probably educational researchers) are not yet fully appreciative of this. 
Therefore, general advice is that nonparametric procedures are sometimes an effective 
way of dealing with non-normal or unknown distributions but are not always the answer 
to unequal variances. What can be done when assumptions of homogeneity of variance 
are violated? What is referred to in the statistical literature as the Behrens-Fisher 
problem. Strategies are discussed in Chapter 8, but essentially the answer involves using 
a modified test procedure with estimated degrees of freedom.  

7.1 Correlation an overview 

In psychological and educational research many questions are concerned with the extent 
of covariation between two variables. In a review of two journals, the British Educational 
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Research Journal (BERJ) and the British Journal of Educational Psychology (BJEP), 
looking at two consecutive volumes over the same time period, the following was 
observed. In the BERJ authors from 32 per cent (25) of the papers used some statistical 
analyses, in total 12 per cent (9) used correlations; whereas in the BJEP authors from 84 
per cent (61) of the papers reported statistical findings and in total 51 per cent (37) used 
correlations. Correlational analysis, a statistical technique for examining the extent of 
the relationship between two variables, is a technique with which researchers should 
certainly be familiar. 

Correlations coefficients, r, computed from sample data provide an index of the 
strength of the relationship between two variables e.g., rxy is the sample correlation 
between the variables X and Y. Data usually consists of a random sample of subjects each 
of whom has two scores, one for each of the variables measured. When introducing the 
idea of correlation it is helpful to make two distinctions: 

1 We need to be clear about when a correlation from sample data is used as a descriptive 
statistic and when it is used to make inferences about true relationships in the 
population (whether there is a true linear relationship between two variables or indeed 
any relationship). A population correlation is denoted by the Greek letter rho (ρ). 

2 We should distinguish between correlation and association. When observations on 
each variable can be ordered relative to all other observations on the same variable, 
(for example, higher scores represent more of an attribute—continuous or rank 
scores,) then we can speak of correlation. When observations are discrete counts and it 
is not meaningful to arrange these counts in individual ranks or ordered categories 
then we use the term association rather than correlation. 

A correlation between two variables does not imply causality, however an underlying 
causal relationship may exist. In Chapter 3, Initial Data Analysis, we described ways of 
plotting data when examining the distribution of variables. A useful way to explore 
bivariate (two-variable) relationships is to plot two variables at a time on a scatterplot 
(one variable on the Y axis and the other on the X axis). The scatter of points depicted 
enables interpretation of the relationship between the variables, for example, see Figure 
7.1.  
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Figure 7.1: Interpreting scatterplots 
for two variables 

In these plots we are looking for a linear relationship between the two variables which is 
summarized by the spread and scatter of points. If one variable is linearly related to the 
other, then as one variable changes, the other will change in proportion and the points 
will tend to fall on a straight line. The size of a Pearson correlation coefficient indicates 
the degree to which the points in a scatter diagram tend to fall along a straight line 
(summarizes the linear relationship). The value of the Pearson correlation coefficient, can 
range between −1 to +1, in both cases this would indicate a perfect linear relationship. 
The Pearson correlation is used when the underlying data distribution is normal (see 
Chapter 8). 

Diagram A indicates a near perfect positive correlation, as X increases Y increases 
proportionately, r (the correlation) would be close to +1; Diagram B shows a near perfect 
negative correlation as X increases Y decreases proportionately, r would be close to −1; 
Diagram C shows no correlation, r would be 0 and Diagram D shows dependence but no 
linear correlation, Pearson correlation r should not be used to summarize this 
relationship. There are, of course, non-linear relationships that may exist between two 
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variables and other correlation type statistics are then appropriate for summarizing this 
relationship (e.g., the eta statistic is the correlation coefficient which describes a 
curvilinear relationship). 

If you have access to SAS/INSIGHT, an interactive tool for data exploration and 
analysis, graphical representation of bivariate relationships for any number of variables 
taken two at a time can be shown using the menu driven analysis and data display 
features (see exploring data in two dimensions SAS/INSIGHT User’s Guide). In this 
chapter we will consider Spearman’s rank order correlation, which is appropriate 
when variables are measured at an ordinal level, or when data is transformed to an ordinal 
scale, this would include percentages. It is one of a number of alternative distribution-free 
correlation-type statistics. Other nonparametric coefficients include: the point biserial 
correlation (when both variables are discrete true dichotomies); biserial correlation 
(when variables have been dichotomized from an underlying continuous distribution) and 
Kendall’s Tau coefficient (an alternative to Spearman’s rank correlation which is 
actually a measure of concordance—similarity of two rank orders rather than a 
correlation). For discussion and illustrated examples of these alternative correlation 
statistics see Siegel and Castellan, (1988); Hays, (1981); and Guilford and Fruchter 
(1973). 

We are concerned in this and in the subsequent chapter with the inferential use of 
correlations and consequently, we should bear in mind how sample data was generated, 
especially possible bias and range restrictions which can attenuate correlations (reduce 
sample correlations). 

7.2 Spearman’s rho (rank order correlation coefficient) 

When to Use 

Spearman’s rank order correlation should be used when: 

• the relationship between two variables is not linear, (this can be checked by plotting the 
two variables); 

• when measurement and distributional assumptions are not met (the variables are not 
interval or ratio measures and observations do not come from a bivariate normal 
distribution); 

• when sample sizes are too small to establish an underlying distribution, or 
• when the data naturally occur in the form of ranks. 

Spearman’s rank order correlation is equivalent to the Pearson Product Moment 
correlation (a parametric correlation procedure) performed on the ranks of the scores 
rather than on the raw scores themselves. The rank order correlation procedure is 
probably used less often than it should be. In the review of the BERJ and the BJEP 
periodicals mentioned earlier only two papers used rank order correlations (Spearman’s 
correlation coefficient). It is generally not good practice to go fishing for significant 
correlations among researchers should note, a large number of variables.  

Statistical Inference and Null Hypothesis 
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Provided the pairs of sample observations are drawn at random from a population of 
interest, Spearman’s rho, ρs (population rank order correlation), can be used to assess the 
likelihood that two variables are associated in the population. The null hypothesis is, H0: 
there is no association between the two variables and the alternative hypothesis, H1: is 
that there is an association. This is a two-tailed alternative hypothesis. If we had specified 
the nature of the relationship, i.e., positive or negative association, this would be a one-
tailed alternative hypothesis. In some introductory statistical texts, the null hypothesis is 
specified as H0: ρs=0. Unlike the case with a parametric correlation, this does not 
necessarily imply that the variables are independent. Only when values are normally 
distributed does a correlation of 0 mean that variables are independent of one another. 

The exact sampling distribution for Spearman’s rho for sample sizes1≤n≤ 10 has been 
evaluated and is available in statistical tables, see for example, Kendall, (1948); 
Documenta Geigy (1970); Zar (1972). There is no generally accepted procedure for 
calculating confidence intervals for rs (sample rank order correlation) when sample sizes 
are small, n<10. 

When sample sizes are large, here, n≥10 rs approximates to that of Pearson’s product 
moment correlation r (Kendall, 1948). Confidence intervals can therefore be constructed 
by using a transformation of rs to z (Fisher’s z transform), which is approximately 
normally distributed. Siegel and Castellan (1988) suggest sample size should be >20 for 
the sampling distribution of rs to approximate to r. Use of confidence intervals for rs 
when sample sizes are <20 are therefore of dubious value, recall as well that rs is most 
likely to be used with small samples. If a 95 per cent confidence interval is calculated, we 
would interpret it in the usual way, that is, we would be 95 per cent certain that the 
obtained interval includes the true population value ρs. The confidence interval also 
enables a test of the null hypothesis. If the obtained confidence interval excludes zero, we 
can conclude that there is a significant correlation between the two variables. The 
computational procedure for estimating confidence intervals for rs is identical to the 
procedure for estimating the confidence interval for r and this is illustrated in Chapter 8. 

Test Assumptions 

Spearman’s rank order correlation is used when: 

• observations do not come from a bivariate normal distribution; 
• observations are ranked (given rank values); 
• observations are ranked in two ordered series (one for each variable). 

If observations represent a random sample from a specified population then rs can be 
used to test whether there is a significant relationship between two variables in the 
population.  

Example from the Literature 

In a study designed to investigate implementation of an integrated science curriculum, 
Onocha and Okpala (1990) examined classroom interaction patterns of student and 
practising teachers. They used a questionnaire to assess teachers’ reception of the science 
curriculum and an observation schedule to identify teachers’ classroom interaction 
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patterns. Fifty-six student teachers and forty-two practising teachers participated in the 
study. 

The authors do not specifically say anything about the distribution of scores for the 
reception questionnaire but it can be assumed to be a continuous measure because a 
Cronbach alpha (measure of internal consistency) was reported. The observation 
schedule used by the investigators enabled teachers to be placed into one of seven 
behaviour categories. Again nothing was reported about the specific measurement 
assumptions underpinning the behaviour schedule but in the analysis it appears to have 
been treated as an ordinal scale. 

Considering the two different categories of teachers, the authors reported a significant 
relationship between student-teachers’ classroom interaction patterns and their reception 
of the science curriculum, rs=0.87, p<0.05 and, rather confusingly, reported that; ‘the 
magnitude of correlation between practising teachers’ interaction patterns and their 
reception of the science curriculum was low and not statistically significant (rs=0.21, 
p<0.05)’ (p. 26). The authors presumably meant rs=0.21, p>0.05. It is preferable to quote 
the actual p value as this avoids mistakes and misunderstandings. 

In the above situation it is reasonable to assume that a two-tailed test was being used. 
The null hypothesis was that there was no association between reception of the science 
curriculum materials and teacher classroom interaction patterns. Here we have pairs of 
sample observations, two measures per teacher (interaction patterns and reception) and 
two distinct samples, student and practising teachers. Assuming the samples were random 
and representative of defined populations of student and practising teachers, the 
conclusions drawn from this analysis are that among student teachers there is a strong and 
statistically significant relationship between their reception of the curriculum and 
classroom interactions. However, this relationship is weak and statistically not significant 
(at the 5 per cent level) among practising teachers. 

Worked Example 

Data abstracted from a study on school funding for non-statemented special education 
needs is used to illustrate computation of Spearman’s rank order correlation. Marsh 
(1995) gives for each of ten schools the percentage of pupils with free school meal 
entitlements (%FSME) and the aggregated percentage cognitive abilities test (%CAT) 
score for pupils who scored within the bottom 21 per cent on the CAT. This data is 
shown in Table 7.1.  

Table 7.1: FSME and CAT measures for ten 
schools 

School %FSME %CAT
A 24.0 24.1
B 24.3 21.8
C 15.3 23.3
D 40.8 36.4
E 10.7 8.4
F 6.3 13.1
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G 23.1 35.1
H 45.0 36.0
I 12.9 17.7
J 13.9 18.5

In the population is there a correlation, at the school level, between the socioeconomic 
indicator FSME and performance on the CAT? 

The first step in answering this question is to plot the data to identify the nature of the 
relationship between the two variables. In this case both variables have been 
standardized, they are percentages and are therefore ranked. The data from Table 7.1 on 
%FSME and %CAT scores are plotted in Figure 7.2.  

 

Figure 7.2: Scatterplot of %FSME and 
%CAT scores for ten schools 

The SAS code that produced this plot is given below: 

     data a; 
     infile 'a:nonpara.dat'; 
     input school $ fsme cat; 
proc plot; 
   plot fsme*cat='+'/vaxis=0 to 50 by 5 haxis=0 to 50 
by 5; 
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title 'FSME vs CAT'; 
run; 

Looking at the plot there is a suggestion that the data are related in a positive way, that is 
as FSME scores increase so do CAT scores. It is not absolutely clear that the relationship 
is linear although this is plausible. One school with the scores 23.1 and 35.1 seems as 
though it may be an outlier, but with so few points plotted, it is difficult to discern 
whether this point is apart from the main cluster of points and the upward trend. 
Interpreting such plots is as much an art as a science and it is difficult to be definitive 
with so few points plotted. 

Given that there is a question about the linearity, there are only ten data points, there 
may be an outlier and most importantly the data are ranked (percentages), then 
Spearman’s correlation should be used. This example is given to illustrate the steps to be 
taken when carrying out a correlational analysis. Knowing that the data is ranked would 
certainly suggest a rank order correlation. It is always recommended to plot the data prior 
to any significance testing. 

Spearman’s correlation rs is calculated by applying Pearson’s original formula for r to 
the ranked data: 

 
Spearman’s 

rank order 
correlation—
7.1 

where Ri corresponds to the rank value of an x value (xi) and Si corresponds to the rank 
value of a y value (yi). and are the corresponding means of the rank values. In the 
case of ties, average rank values are used. 

There are alternative formulae for example: 

 

  

where D is the difference between x and y ranks assigned to each observation and n is the 
number of observations. It is seldom mentioned that this formulae assumes there are no 
ties in the data. The effect of ties in the data is to inflate the correlation and a correction 
should be made. It is therefore suggested that equation 7.1 be used as this is applicable 
whether or not there are ties. Most computer packages allow for ties in the data and make 
the necessary adjustments. In the SAS procedure PROC CORR averaged rank values are 
used in the case of tied ranks. 

The steps in computing rs using formula 7.1 are: 

1 Rank each variable, for example, FSME and CAT separately (two series of rank 
scores), assign a rank of 1 to the smallest value.  

2 For each subject compute and … 
These computations are shown in Table 7.2.  
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Table 7.2: Original and rank scores for ten schools  
SCHOOL per 
cent 

%FSME Rank %CAT Rank  

A 24.0 7 1.5 2.25 24.1 7 1.5 2.25 
B 24.3 8 2.5 6.25 21.8 5 −0.5 0.25 
C 15.3 5 −0.5 0.25 23.3 6 0.5 0.25 
D 40.8 9 3.5 12.25 36.4 10 4.5 20.25 
E 10.7 2 −3.5 12.25 8.4 1 −4.5 20.25 
F 6.3 1 −4.5 20.25 13.1 2 −3.5 12.25 
G 23.1 6 0.5 0.25 35.1 8 2.5 6.25 
H 45.0 10 4.5 20.25 36.0 9 3.5 12.25 
I 12.9 3 −2.5 6.25 17.7 3 −2.5 6.25 
J 13.9 4 −1.5 2.25 18.5 4 −1.5 2.25 
      Σ=82.5     Σ=82.5 

3 The denominator for equation 7.1 is given by (82.52)0.5=82.5 and the numerator, 

(the products summed) is given by: 
SCHOOL
A 2.25
B −1.25
C −0.25
D 15.75
E 15.75
F 15.75
G 1.25
H 15.75
I 6.25
J 2.25
  Σ=73.5

4 Using formula 7.1, rs=73.5/82.5=0.89. 

If there are tied ranks, the rank value given to each member of the tied group is the 
average of the ranks which would have been assigned if there were no ties. For example, 
if schools E and F both had FSME scores of 10.7, the rank value assigned to each would 
be 1.5 (the average of the 1st and 2nd ranks ie (1+2)/2). 

Interpretation 

If the ten schools represent a random sample from a population of schools in an education 
authority, the null hypothesis of no relationship between FSE and CAT scores in the 
population can be tested. Looking at the scatterplot shown in Figure 7.2 a one-tailed 
alternative hypothesis would seem reasonable. That is FSE and CAT scores are positively 
related. The probability associated with the observed rs 0.89 is obtained by treating the 
value, ((n−2)0.5×rs) /(1−rs

2)0.5 as coming from a t distribution with n−2 df where rs is the 
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evaluated Spearman’s correlation and n is the number of observations. Here t=5.520 
(2.5173/0.4560) with 8 degrees of freedom. Looking at Table 3 in Appendix A4, the 
observed value of t (5.520) is larger than the critical value of 5.041 which is in the row 
with 8df. The associated one-tailed probability is p<0.0005. We can reject the null 
hypothesis of no relationship and conclude that the alternative hypothesis of a positive 
relationship between FSME and CAT scores is tenable. 

Computer Analysis 

The SAS procedure PROC CORR with the option SPEARMAN computes Spearman’s 
rank order correlation. The relevant SAS code is: 

   data a; 
   infile 'a:nonpara.dat'; 
   input school $ fsme cat 
proc corr spearman; 
var fsme cat; 
run; 

The first three lines of SAS code relate to the data step and the second three lines are the 
procedure step. 

The first line specifies the temporary data set as a. The external data file nonpara.dat is 
then read from the directory a: with the INFILE statement. In the third line of code the 
INPUT statement specifies the three variables, the first variable ‘school’ is designated as 
a character variable because of the following $ sign. The variables to be correlated are 
specified in the VAR statement. The correlation procedure PROC CORR with the option 
SPEARMAN produces the following output: 

Correlation Analysis 
2 VAR Variables: FSME CAT 

Simple Statistic 
Variable N Mean Std Dev Median Minimum Maximum
FSME 10 21.6300 12.7326 19.2000 6.3000 45.0000 
CAT 10 23.4400 9.7484 22.5500 8.4000 36.4000 

Spearman Correlation Coefficients /Prob>|R| under Ho: Rho=0/N=10
  FSME CAT 

FSME 1.00000 0.89091 
  0.0 0.0005 
CAT 0.89091 1.00000 
  0.0005 0.0 

Interpretation of Computer Output 

The first two sections of the output contain summary statistics for the sample data. The 
next section of the output contains a matrix of rows and columns with the variables 
forming the column and row headings. Each cell in the matrix contains two numbers, the 
first number is the correlation rs and the second number is the associated p-value. In the 
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second cell along in the first row, the correlation, rs, between the variables FSME and 
CAT is 0.890. This is significant at the 1 per cent level, the actual probability is 
p=0.0005. Notice that a variable that is correlated with itself is always one. 

The null hypothesis tested is that the population correlation, Rho is zero. This is what 
the heading on the output refers to, |R| under H0: Rho=0. This is an approximate one-
tailed test, the probability printed in the SAS output is the one-tailed p-value associated 
with the observed correlation in a predicted direction, in this example positive. If a two-
tailed test is required, the p-value should be doubled (no assumption would be made 
about the direction of the relationship). In this example the correlation for a two-tailed 
test would have an associated probability of 0.001, that is it would be significant at the 1 
per cent level. 

The significant p-value means that the null hypothesis can be rejected, we conclude 
there is strong evidence that the true population correlation is non-zero. The upward trend 
in the scatterplot reflects this. 

7.3 One-sample Runs Test for Randomness 

When to Use 

This test is used whenever we want to conclude that a series (or run) of binary events is 
random. The inference underlying this test is that the order (sequence) of observations 
obtained is based on the sample being random. Many statistical procedures are based on 
the assumption of random sampling. The runs test enables a test of this assumption if 
randomness of the sample is suspect. The test can be used as part of initial data analysis. 
For example, in a regression analysis it is often necessary to examine the distribution of 
residuals (the difference between an observed value of the response variable and the 
value fitted by the regression model). Residuals are either positive or negative and the 
signs of the residuals are lined up in the sequence in which they occur. A run is a 
sequence of identical events (here + or −) that is preceded or followed by a different 
event or no event at all (beginning and end of a sequence). A lack of randomness in the 
pattern of residuals is shown by either too few or too many runs and this would indicate 
that one or more of the assumptions underlying the regression analysis has been violated. 
The runs test uses information about the order of events unlike nominal test procedures 
such as the Chi-square test which use information about the frequency of events. 

Statistical Inference and Null Hypothesis 

The inference on which the test is based is that the total number of runs in a sample of 
observations provides an indication of the randomness of the sample. The null hypothesis 
is that the pattern of events is determined by a random process. There are two one-sided 
alternative hypotheses, the pattern is not random because there are either too few or too 
many runs to be attributed to chance. A two-sided alternative hypothesis is that the 
pattern of runs is not random. The test statistic is U, the number of runs. The exact 
sampling distribution of U is known. For samples where the frequency of events in either 
of the binary categories is >20 a large sample approximation to the sampling distribution 
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of U can be used. For example, assume the total number of + and − signs is 44, of which 
the first 21 are + and the remaining 23 are −. The number of runs equals 2 and the 
frequency in both binary categories is >20. In this example the large sample 
approximation could be used. 

Test Assumptions 

This is a simple one-sample test with few assumptions, namely: 

• Observations can be classified as binary (data may be dichotomized—above or below a 
median value). 

• Observations are recorded in the sequence (order) of their occurrence. 

Example from the Literature 

An example of use of the runs test can be found in a paper by Cliffe (1992) who 
investigated symptom-validity and testing of feigned sensory or memory deficits. 
Symptom validity testing has been used to detect feigning in patients claiming sensory 
and memory deficits. Such patients typically give fewer correct responses on forced 
choice testing than would be expected by chance (non-random). In an experiment in 
which six subjects were asked to feign blindness (the task was to identify which of two 
numbers, 0 or 1 was presented on a display monitor), it was hypothesized that subjects 
would simply decide which stimulus, 0 or 1 to nominate prior to each forced choice. 

To test the hypothesis it was necessary to identify non-randomness in the sequence of 
observed responses to a series of trials. The investigator reported 148 runs in 240 trials 
(the number of observations in each binary category was not reported) and concluded that 
this number exceeded the number expected for a random sequence, p<0.00046 (two-
tailed). The null hypothesis of random choice of digits (1 or 0) was rejected. The 
investigator reported that in subsequent interviews subjects confirmed this strategy. 

Worked Example 

Small sample 

In a study of teachers’ classroom interactions a research student video-recorded fifteen 
science lessons taught by two teachers. Each lesson was subsequently coded and 
classified as either teacher interaction predominantly with boys (B) or teacher interaction 
predominantly with girls (G). As the lessons were recorded during different times of the 
day and week and considering the possibility of the teachers awareness of being observed 
influencing their behaviour (this might change over the study period) the researcher 
wanted to test the randomness of the fifteen observed lessons. The sequence of lessons 
were coded as: 

 
LESSON 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
CODE B B G B B G B B B G G G G B B
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there are 9Bs 6Gs and 7 runs (runs are indicated by underlining). These data meet the 
assumptions underlying the one-sample runs test, each event belongs to a dichotomy 
(B/G), and the events are recorded in the sequence of their occurrence. 

The research hypothesis is to determine, prior to further analysis, whether the pattern 
of teachers’ interactions is a non-random process (two-tailed test). The selected alpha is 
p=0.05 and the number of predominant interactions with boys is 9 (n1) and the number of 
interactions with girls is 6 (n2). The exact sampling distribution of U (number of runs) is 
used because the number in both of the categories n1, n2 is <20. 

Table 4 in Appendix A4 gives the critical values for U when n1, or n2≤20. We enter 
Table 4 with n1 equals 9 and n2 equals 6 and find that the critical values are 4 and 13. (It 
makes no difference if you enter the tables with the values n1 equals 6 and n2 equals 9.) 

Interpretation 

Table 4 in Appendix A4 shows that for values of n1, equals 9 and n2 equals 6, a random 
sample would contain, 95 times out of 100, between 4 and 13 runs. The observed number 
of runs, 7, is within this region, and we do not reject the null hypothesis of non-
randomness. The researcher is able to conclude that the sequence of teacher interactions 
observed over the 15 science lessons is random. 

If the researcher had decided in advance that departure form randomness would be in a 
direction such that too many runs would be observed (for example, the teacher may have 
been conscious of being observed and may therefore make an extra effort to interact with 
girls rather than boys), then only the larger of the two values in the body of the table 
should be used (13). If the observed number of runs is greater than this critical value, we 
reject the null hypothesis and conclude that the alternative directional hypothesis is 
tenable. 

With a one-tailed test alpha would be 0.025 rather than 0.05 (for the two-tailed test). 
Since the observed value is less than the upper critical value (7<13) we would not reject 
the null hypothesis of non-randomness and could not conclude that there were too many 
runs. 

Worked Example 

Large Sample Approximation 

Consider the data from the previous example but assume that an additional twenty 
science lessons were observed. The complete data set is now: 

Lesson 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Code B B G B B G B B B G G G G B B
Lesson 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Code G G B G G B B B G B B B B G G
Lesson 31 32 33 34 35             
Code B B B B G             
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There are 21 Bs, 14Gs and 16 runs, as n1>20 the large sample approximation can be used. 
The researcher chooses a two-sample test and an alpha of 0.05. The null hypothesis is 
tested using the normal approximation for the sampling distribution of U. When either n1 
or n2≥20 the probability associated with an observed U is evaluated using formula 7.2 
which gives a normal Z deviate: 

 
Normal 

approxim
ation for 
the 
sampling 
distributi
on of U—
7.2 

where N is the total sample size, U is the number of runs, n1 and n2 are the frequencies for 
the two categories of the response variable and j is an adjustment for continuity where it 
is 0.5 if U<2n1n2/(N+1) or −0.5 if U>2n1n2/(N+1). The calculated value of Z is −0.465 
(−1.3/2.7941). 

Interpretation 

Since Z is not greater than the two-tailed critical value, +/−1.96, the null hypothesis of 
randomness cannot be rejected at the 5 per cent level. The associated probability of 
obtaining a Z value of −0.465 when the null hypothesis is true is p=0.638. As the normal 
distribution is symmetrical, a Z value of −0.465 has the same associated probability as a Z 
value of +0.465. From Table 1 of Appendix A4 which indicates the proportion of the 
total area under the normal curve which is beyond a +ve Z score, the associated p-value 
for a Z of 0.465 for a two-tailed test is 0.638 (the tabled p-value is doubled, 0.319×2, for 
a two-tailed test). 

Computer Analysis 

Evaluation of equation 7.2 can be easily accomplished using the SAS programme, 
Runs.job. This is shown in Figure 9, Appendix A3. The following data values would be 
entered into this programme: N=35, U=16, n1=21, n2=14. The relevant section of SAS 
code is: 

data a;      ** Enter, after the cards statement, the 
values for   *; 
             ** N, U, CAT1, CAT2, in this order. Each 
value should *; 
             ** be separated by a space. In this 
example N=35,     *; 
             ** U=16, CAT1=21, and 
CAT2=14                         *; 
input n u cat1 cat2; 
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cards; 
35 16 21 14 
; 

Interpretation of Computer Output 

The SAS programme Runs. produced the following output: 
    One-tailed test Two-tailed test
OBS Z p-value p=value 

1 0.46526 0.3209 0.6418 

The associated probability of obtaining a |Z| value (absolute Z value) of 0.46526 when the 
null hypothesis is true is p=0.6418 (the p-value is doubled, 0.3209×2, for a two-tailed 
test). The null hypothesis of randomness cannot be rejected at the 5 per cent level and the 
researcher can therefore conclude that the sequence of classroom observations is random. 

7.4 Wilcoxon Mann-Whitney Test (also called Wilcoxon’s rank sum 
test) 

When to Use 

This is a test of the difference between two independent random samples which is used to 
determine whether two samples could have reasonably come from the same population. 
The Wilcoxon M-W test is sensitive to differences in the location of the central tendency 
of distributions. If two distributions have similar shape and dispersion it is effectively a 
test of the difference in medians between the two groups. It is often described as a 
nonparametric analogue to the independent t-test but unlike the t-test it does not test 
specifically for differences between means. 

When assumptions of an underlying normal distribution are not satisfied, or data are 
already in the form of ranks, the Wilcoxon M-W test is a useful and powerful alternative 
to the independent t-test. As it is based on rank scores, in practice, the procedure can be 
used with ordinal, interval and ratio levels of measurement. The test is particularly useful 
when distributions are heavy tailed, that is the distribution contains many values that are 
distant from the mean (see kurtosis in Chapter 3, section 3.4). The test is more powerful 
than the t-test for heavy tailed distributions, for both relatively small sample sizes and in 
the asymptotic limit (large sample sizes). 

The two samples (groups) need not be the same size and the test has an exact sampling 
distribution for the test statistic SR (sum of rank scores) which rapidly approaches the 
normal distribution as sample sizes increase (i.e., when there are about twenty scores in 
the larger of the two samples). Many statistical texts provide tables of critical values of SR 
for different combinations of sample sizes (for the two groups being compared). 
However, a normal approximation based on the standard error of the test statistic SR is 
adequate for most occasions and with smaller samples,<20 in any of the groups, a 
continuity correction can be applied to the calculated Z score. A few tied scores will 
have little effect on the test statistic but if there are a number of tied scores, and in 
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particular if sample sizes are small, then the variance of the test statistic SR should be 
corrected for ties, 

The Wilcoxon M-W test is also useful for post hoc analysis following a nonparametric 
one-way analysis of variance although there are more sophisticated post hoc procedures 
(see Keselman and Rogan, 1977; Marascuilo and Dagenais, 1982). A statistically 
equivalent test to the Wilcoxon Mann-Whitney procedure is the Mann-Whitney U test. 
This is illustrated in many introductory statistical textbooks. There is a perfect linear 

relationship between the two test statistics, where U is 
the Mann-Whitney U test statistic. 

Statistical Inference and Null Hypothesis 

The null hypothesis tested is that the two random samples are from one population, that is 
there is no difference in the rank order values found in the two data distributions being 
compared. Rejection of the null hypothesis is usually interpreted as meaning that the two 
distributions represent two different populations which have different distributions. When 
the shape and dispersion of the two distributions is similar it is a test of difference in 
population medians. The alternative hypothesis may be directional (a one-tailed test), for 
example, the majority of larger rank scores are found in one sample and this sample 
would have a larger mean rank score, or nondirectional, for example, this simply states 
that the two sample distributions of rank scores are different. The test statistic, SR, is the 
rank sum for the sample (group) which has the smallest sample size. With small sample 
sizes, <10, this test statistic, SR, has an exact sampling distribution, however SR rapidly 
approaches a normal distribution as the sample size of one or both of the groups 
increases—for sample sizes ≥20. 

The Wilcoxon M-W test is based on the idea that if there are two populations and not 
one (i.e., H0 is false) the rank order scores in one sample will generally be larger than the 
rank scores in the other sample. This difference, that is higher ranking scores found 
mostly in one sample, could be detected by ranking all scores irrespective of what group 
they belong to and then summing the rank scores according to group membership. If H0 is 
true, we would expect the rank scores to be similarly represented in both samples 
(groups) and the average ranks in each of the two groups to be about equal. We would not 
reject the null hypothesis and conclude that there is no difference in the two distributions 
being compared. If the two samples were different, that is having come from two distinct 
populations, then we would expect higher (or lower) rank sum totals (allowing for 
differences in sample size) in one of the samples. The sampling distribution of the rank 
sum SR is known and hence the probability associated with extreme values of the test 
statistic. Given regard to the sample sizes of the two groups, and whether a one-tailed or 
two-tailed test is used, the probability associated with an observed value of SR can be 
determined. 

Test Assumptions 

The test assumptions are as follows: 
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• Observations are compared which have been selected at random from an underlying 
theoretically continuous distribution, but measurement is at least at the ordinal level 
(ranks). 

• Observations are from two independent samples. 
• The two distributions compared should have similar variances. 
• Tied scores (after ranking) are given the average of the ranks they would have had if no 

ties had occurred. A small number of ties have little effect on the test statistic SR, 
however when the proportion of ties is large and, in particular when sample sizes are 
small, the test statistic SR tends to be conservative (p-values are inflated) and a 
correction for ties should be applied. The effect of tied values is to reduce the standard 
error of the test statistic SR leading to an overall increase in the value of Z. 

• With small sample sizes, n<20, a correction for continuity should be used, most 
statistical analysis programmes automatically apply a continuity correction. 

Example from the Literature 

Given that ranking methods are particularly useful in many educational settings, where 
measurement can only reasonably be made at the ordinal level, it is surprising that the 
Wilcoxon M-W test or the comparable Mann Whitney U test are not more widely used by 
educational researchers. 

In a study on the place of alcohol education and its (implied) effectiveness Regis, Bish 
and Balding (1994) compared the alcohol consumption (units of alcohol) of 10-year-old 
self-declared drinkers for a number of independent groups of pupils. Four comparisons 
amongst independent groups were made of which two are illustrated: i) comparison of 
alcohol consumption among pupils where alcohol education was delivered through 
science vs. pupils where it was not delivered through science and ii) comparison of 
alcohol consumption among pupils where alcohol education was delivered through 
personal and social education (PSE) vs. pupils where it was not delivered through PSE. 

Data for these comparisons amongst girls is shown below: 
Comparison group Alcohol education delivered Alcohol education not delivered   
(10-year-old girls) Mean Rank Score Mean Rank Score p-value 
Science 298.74 253.77 0.0009 
PSE 281.84 260.51 0.2237 

The investigators reported that Mann Whitney U tests were used (directly comparable 
with Wilcoxon M-W test) as the statistical test for detecting differences between groups. 
They go on to say that a nonparametric test was used because it made fewest assumptions 
about the underlying population distribution and the nature of the variables. 

Given the non-normal distribution of the data reported by the investigators (skewed 
distribution of alcohol consumption attributable to outlier observations) and the 
comparisons among independent groups then the nonparametric equivalent to a t-test, 
either a Wilcoxon M-W test or Mann Whitney U test, is appropriate provided the 
distributions to be compared have similar dispersion. The investigators do not provide 
any information about the dispersion of observations in the data set. 

The null hypothesis tested by the investigators was that the distribution of units of 
alcohol consumed by 10-year-old girls was the same amongst two groups of pupils; one 
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group where alcohol education was delivered in science vs. the other group where alcohol 
education was not delivered in science lessons. A similar null hypothesis was tested 
comparing pupils where alcohol education was delivered through PSE or not. Although 
not specifically stated by the investigators, the alternative hypotheses appear to be non-
directional and therefore a two-tailed test is appropriate. 

Each case was assigned a rank with the ranking done from the lowest upwards so that 
the direction of difference can be determined by inspection of the mean ranks. The 
investigators concluded that there was a significant difference in alcohol consumption 
where it was delivered through science, the higher mean rank score indicates that 
consumption is higher where alcohol education is delivered in science, U=320695, 
p<0.0009. 

Worked Example 

Based on an investigation by Kyriacou (1992) into active learning in secondary school 
mathematics, a research student designed her dissertation study to address, amongst other 
issues, the following research question, ‘Is there any difference in the percentage of 
active learning activities as a percentage of all mathematics learning activities.for upper 
school classes and lower school classes?’ 

Data from this study is used to illustrate computational details of the Wilcoxon M-W 
test. The investigator identified, based on classroom observation, interviews with 
teachers, and exploratory group discussions, seven types of learning activity in 
mathematics classes, four of which were regarded as active and three as traditional 
learning. The second phase of the study sought the views of mathematics teachers 
regarding the extent to which any of the four types of active learning occurred in 
mathematics lessons in their school. Two independent samples of teachers were 
approached, lower school maths teachers (first second and third years) and upper school 
maths teachers (fourth and fifth year groups). Each teacher was asked to rate, on a scale 
of 1 to 100, an indication of the expected frequency of the activity in 100 randomly 
selected mathematics lessons in their school (either upper or lower school as appropriate). 
This was recorded as the percentage of lessons that could be described as active learning. 
The obtained results of the survey are shown in Table 7.3.  

Table 7.3: Results of a survey of learning activities 
in upper and lower school mathematics lessons 

Maths teachers: per cent maths lessons active learning
Lower school (n1=10) 30 51 48 28 26 42 44 66 68 21     
Upper school (n2=12) 30 31 54 32 34 38 40 52 65 30 40 39

The Wilcoxon M-W test is appropriate because the null hypothesis to be tested is: 

H0: There is no difference in the distribution of active learning activities, 
as a percentage of the total types of learning activities in maths lessons, 
for upper-and lower-school teachers. 

Inferences involving rank data      221



The data meets the necessary requirements for this test: two independent random samples 
(need not be of the same size), ordinal measurement, (ranked as percentages), and similar 
shaped distributions, although the dispersion of scores is less among upper-school 
teachers (see Figure 7.3).  

 

Figure 7.3: Plot of upper- and lower-
school teachers estimated percentage 
of active learning maths lessons 

The alternative hypothesis is non-directional (two-tailed, alpha set to 5 per cent) and 
simply states that the distribution of scores in the two groups is different. This is 
equivalent to saying the median scores are different, we can see from the box and whisker 
plots that the median scores for the two groups are not the same but it is not possible to 
judge from the plots whether this difference is statistically significant. The Wilcoxon M-
W test is therefore performed. 

The computational steps are: 

1 Combine the two samples and rank the entire data set, assign the rank 1 to the lowest 
score. In the case of two or more raw score values being equal assign the average rank 
to each. 

2 Sum the rank scores for each group separately. 
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3 Select the test statistic SR which is the sum of the ranks for the smallest group (n). The 
twenty-two observations, ranked from smallest to largest are shown (lower school 
teachers are underlined): 

Observation 21 26 28 30 30 30 31 32 34 38 39
Rank 1 2 3 5 5 5 7 8 9 10 11

Observation 40 40 42 44 48 51 52 54 65 66 68
Rank 12.5 12.5 14 15 16 17 18 19 20 21 22

The test statistic S (Sum of the rank scores) for the smallest group (n=10) is 116. 
This approximates to the following sampling distribution: 

where SE is the standard error 

The observed SR is 116, and the expected Sum where ns is the 
number in the smaller group and N is the total sample size (n1+n2). Expected or 
mean SR is 115 (10×11.5). 

The standard error of SR is  
where t is the number of ties in the jth group and h is the number of groupings of 

different tied scores. In this example is evaluated as: 
tied score n of ties Total

30 3 =2 

40 2× =0.5

Summed over all tied scores=2.5 
The standard error of SR is therefore: 

 

  

4 The test statistic Z, adjusted for continuity (observed score −0.5) and corrected for ties 
in the data is: 
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Many statistical textbooks give special tables for the test statistic SR with upper and lower 
critical values for different combinations of sample sizes. In some of these tables the p-
values associated with sample sizes of 20 or more are actually large sample 
approximations. With very small sample sizes of n≤5 the exact sampling should be used, 
for explanation of the use of these tables and illustrated worked examples, see Conover 
(1980) and Siegel and Castallan (1988). The normal approximation of SR with continuity 
correction is adequate for most occasions. 

Interpretation 

The obtained Z-value of 0.0330 has an associated p-value of 0.4880, the nearest value in 
the Table of Z-scores in Appendix A4. This is the probability beyond a Z-value of 0.0330, 
for a two-tailed test this is doubled. The p-value is therefore 0.976. This is clearly not 
significant and the null hypothesis is therefore not rejected at the 5 per cent level. We 
conclude that teachers’ estimates of active learning in maths lessons do not differ among 
lower and upper school maths teachers. 

Rejection of the null hypothesis is usually interpreted as a difference in the central 
tendency of the two distributions. However, caution is required with this interpretation 
because the null hypothesis may be rejected when the means of the two samples are very 
similar (not so in this example). This is because the Wilcoxon M-W test is sensitive to 
differences in variance in the two samples (the Behrens Fisher problem). Under the null 
hypothesis, the Wilcoxon M-W test assumes that the two samples come from a single 
population with an underlying continuous distribution even though measurement is only 
at the ordinal level. If we assume that the two distributions are the same we are also 
assuming that the variances are the same. If they are not, the means may still be similar 
but clearly the distributions are not identical. 

Computer Analysis 

The SAS procedure PROC NPAR1WAY with the option WILCOXON performs a 
Wilcoxon M-W test on the ranks of scores when there are two independent groups (data 
is classified by a variable into two levels). The following SAS code illustrates use of the 
procedure PROC NPAR1WAY:  

data a; 
   input group response @@; 
   cards; 
1 30 1 51 1 48 1 28 1 26 1 42 1 44 1 66 1 68 1 21 
2 30 2 31 2 54 2 32 2 34 2 38 2 40 2 52 2 65 2 30 2 40 
2 39 
; 
proc nparlway data=a wilcoxon; 
   class group; 
   var response; 
run; 
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The data step begins in the first line where the internal SAS data set is designated a. On 
the second line two variables are specified, ‘group’ and ‘response’, the double trailing at 
sign, @@, indicates that each input line contains several observations, for example, the 
first observation belongs to group 1 and has a value of 30, the second observation also 
belongs to group 1 and has a value of 51. Data values are input after the cards statement, 
note the semicolon on a separate line by itself (the programme will fail if the semicolon is 
not on a line of its own). The CLASS statement identifies the variable that classifies the 
observations into two groups, here it is the variable group. The VAR statement identifies 
the response or outcome variable to use for the group comparison, here the variable is 
called response. This section of SAS code produces the output shown in Figure 7.4.  

NPAR1WAYPROCEDURE 
Wilcoxon Scores (Rank Sums) for Variable RESPONSE 

Classified by Variable GROUP 
GROUP N Sum of scores Expected under H0 Std Dev under H0 Mean score

1 10 116.0 115.0 15.1443273 11.6000000
2 12 137.0 138.0 15.1443273 11.4166667

Average Scores were used for Ties 
Wilcoxon 2-Sample Test (Normal Approximation) 

(with Continuity Correction of .5) 
  S=116.000 Z= 0.033016 Prob>|Z|=0.9737 

T-Test. approx. Significance=0.9740 
Kruskal-Wallis Test (Chi-Square Approximation) 

  CHISQ=0.00436 DF=1 Prob>CHISQ=0.9474 

Figure 7.4: Output for Wilcoxon M-W 
test using PROC NPAR1WAY 

Interpretation of Computer Output 

The heading summarizes the name of the test performed, Wilcoxon Scores (Rank Sums) 
test, the response variable analyzed, and the CLASS variable used to define the groups 
for the analysis. In this example, the class variable is called GROUP, and the levels of 
GROUP are 1 (lower school) and 2 (upper school). The number of observations in each 
group are indicated by N and the sum of the rank scores for each group is printed. The 
rank sum that belongs to the smaller N, here 116, is the test statistic SR and this is printed 
separately on the following line. The expected Wilcoxon rank sums (under the null 
hypothesis) are printed along with their associated standard errors labelled ‘Std Dev 
under H0’. Should the sample sizes for the two groups be equal then the expected values 
of SR would also be equal. The average ranks sum for each group is also output. This 
gives a useful indication of which group has the largest proportion of higher ranking 
scores. In this example both groups are similar. 

The test statistic, the evaluated normal approximation, Z, and associated probability, 
Prob>|Z| labelled in the output S and not SR, are all output on the same line. In this 
example a p-value of 0.9737 is printed, this is a two-tailed value, twice the probability 
associated with a Z-score of 0.0330 (nearest tabled value for one-tailed is 0.4880). As the 
two-tailed p-value is larger than the 5 per cent significance level, 0.9737>0.05, we can 
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conclude that the two distributions are not significantly different and that the average of 
teachers’ estimates of active learning in maths for lower and upper school maths teachers 
are not significantly different. As this is a two-tailed test, a Z-value of ≥1.96 would be 
required for the results to be statistically significant at the 5 per cent level. 

7.5 Wilcoxon Signed Ranks test (for related data) 

When to Use 

This is a test of the difference between pairs of related observations or matched pairs of 
subjects, and is the nonparametric equivalent of the related t-test. The Wilcoxon signed 
ranks test should be considered when researchers are interested in comparing two related 
samples on some rankable measure and when the shape of the population is unknown or 
assumptions underlying use of the related t-test are not met, typically distribution of the 
measures in the population are non normal or measurements are not on an interval or 
ratio scale (see Chapter 8 for details of t-test assumptions). 

The Wilcoxon Signed Ranks test is a more powerful version of the sign test because 
the procedure uses information about both the direction and magnitude of differences 
within pairs. When we can determine the magnitude of a difference, observations can be 
ranked. Parametric tests are often held to be more powerful than nonparametric 
counterparts but this is only true when underlying normal theory assumptions are met. It 
is seldom acknowledged that nonparametric tests may be as powerful or more powerful 
than parametric counterparts under certain circumstances, for example, ‘heavy-tailed’ 
distributions, log-normal distributions and exponential distributions, in these situations 
the Wilcoxon Signed Ranks test is more powerful than the related t-test, with a truncated 
normal distribution the Wilcoxon Signed Ranks test and related t-test are equal in terms 
of statistical power (Blair and Higgins, 1985). 

The logic underpinning this test is elegantly simple. The aim of the test is to find out 
about the distribution of the difference scores, that is the difference for each pair of 
observations. We can think of, for example, a pre-post-test study design where each 
individual has a before (pre) and after (post) intervention score. The distribution of 
difference scores, pre-post-, would be asymmetrical about zero, that is predominantly 
negative if the majority of subjects showed an improvement in scores after the 
intervention. If there were an equal number of positive and negative differences, such as 
only chance differences, and these differences were roughly equal magnitude, this would 
suggest no significant difference between pre-and post-intervention samples of scores.  

Statistical Inference and Null Hypothesis 

The null hypothesis tested is that the median of the population differences is zero and that 
the distribution of differences is symmetrical about zero. It is based on the assumption 
that the amount of positive and negative difference which occurs by chance should be 
approximately equal in each direction. A non-directional alternative hypothesis (two-
sided) would be that the median of the population of differences is non-zero and a 
directional alternative hypothesis would be that the median of the population of 
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differences is either greater or less than zero. The test statistic, T, is the rank sum totals 
for selected pairs of observations. The absolute values of difference scores are first 
ranked then the sign of the difference score is assigned (positive and negative). The 
signed ranked differences are then summed separately (positive differences and negative 
differences), the smaller of the two sums of the absolute values of the signed rank 
differences (the +/− signs are again ignored) is the test statistic T. A sufficiently small 
value of T provides evidence for rejection of the null hypothesis. The exact sampling 
distribution for T with sample sizes ≤15 is determined and tabulated, for larger sample 
sizes there is a normal approximation. 

Test Assumptions 

These are: 

• Data consists of pairs of observations which have been selected at random and each pair 
is independent of other pairs. 

• The differences between pairs of observations are also independent. 
• The original measures in the two samples are rankable (in practice may be ratio, interval 

or ordinal). 
• The differences between the two measures are rankable. 
• Pairs of observations may be two measurements taken on the same subject or two 

subjects that are matched (paired) with respect to one or more important variables. 

Example from the Literature 

Teachers are frequently cited as the reason pupils dislike school. In a study involving 101 
pupils from three schools, Boser and Poppen (1978) examined the qualities of teachers 
that are generally liked and disliked by pupils. Pupils were asked to describe, using seven 
descriptive categories, a teacher with whom they had poor relationships, ‘difficult getting 
on with’ and a teacher with whom they had good relationships, ‘get along with well’. 

One quality identified in the research literature that is associated with good teacher-
pupil relationships is the teacher role of ‘sharing’ that is when a teacher shares personal 
ideas, opinions, or feelings about things. The investigators wanted to determine whether 
there was a difference in sharing behaviour between best relationships and poorest 
relationship situations. Sharing behaviour was scored on an ordinal scale 1–5 where 1 
means always behaves like this and 5 means never behaves like this. 

The null hypothesis tested was that teachers sharing behaviour is the same in poorest 
and best relationship situations. The alternative hypothesis was nondirectional (two-
tailed). In this situation the Wilcoxon signed ranks test was used rather than a related t-
test because measures were ordinal. The investigators did not specify in advance an alpha 
level but reported that sharing behaviour was significantly different at the 0.0001 level on 
a two-tailed test. The mean score for sharing in best relationship situation was 2.198 
compared with 3.830 in poorest relationship situation, a low mean denotes a high 
frequency of behaviour. 
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Worked Example 

A student’s PhD study was concerned with teacher-pupil communication skills and part 
of the empirical investigation was based on Boser and Poppen’s (1978) study on student-
teacher relations. In a pilot study with ten pupils the researcher investigated pupils’ 
experiences of good and poor relationships with teachers. A videotape was produced and 
shown to pupils to demonstrate five types of teacher behaviours, one of which was 
sharing as originally described in Boser and Poppen’s study. Students were asked to 
indicate, on a 5-point scale, how often a particular teacher with whom they had a poor 
relationship had behaved in a manner similar to that demonstrated on the videotape 
(example of sharing behaviour). Pupils also rated a teacher with whom they had good 
relationships in a similar manner. In this study, a score of 5 indicates that the teacher 
always behaves like this (reversed scoring to original Boser and Poppen study). Current 
teachers were excluded from consideration. In this example, data or teachers sharing 
behaviour is used, see Table 7.4:  

Table 7.4: Teachers sharing behaviour in best and 
poorest relationship situations 
Subject Best Poorest |difference|* Rank difference

1 4 2 2 +5 
2 3 1 2 +5 
3 5 3 2 +5 
4 2 2 0 − 
5 3 1 2 +5 
6 5 1 4 +8 
7 1 1 0 − 
8 4 3 1 +1.5 
9 3 4 1 −1.5 

10 4 2 2 +5 
* Difference is (best-poor) 
Observed test statistics T+=34.5; T−=1.5 

The null hypothesis tested by the researcher was that teachers sharing behaviour is the 
same in poorest and best relationship situations. The alternative hypothesis was non-
directional (two-tailed) and the selected alpha was 5 per cent. 

The computational steps are:  

1 For each pair of observations determine the absolute difference score |d|. 
2 Rank these absolute differences (ignore sign of difference) and give the rank of 1 to the 

smallest score. Should the absolute difference, |d| be zero that is no difference between 
the original pair of observations, do not rank this difference score (drop it from the 
analysis) and reduce the sample size accordingly. Should two or more difference 
scores be tied, the rank assigned to each member of the tied group is the average of the 
ranks which would have been assigned were the differences not equal. 
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3 Assign each ranked difference score either +ve or −ve indicating the sign of the 
difference it represents. 

4 The test statistic T is either i) for small samples, n≤15, the smaller sum of the rank 
signed differences regardless of whether it is + or − (that is compute the sum of the 
positive ranked differences and the sum of the negative ranked differences and choose 
the smaller of the two sums), or ii) with a large sample approximation, T+, the sum of 
the positive ranked differences. 

In this example there are only 8 subjects for analysis (two have zero differences and are 
thus eliminated) and therefore the test statistic, T, is 1.5 because this is the smaller of the 
two rank totals in Table 7.4. This test statistic is compared with tabled critical values (see 
Table 5, Appendix A4). Should n be >25 then the following large sample approximation 
should be used: 

 

Z-
score 
approx
imatio
n for 
sampli
ng 
distrib
ution 
of T, 
Wilcox
on 
Signed 
Ranks 
test—
7.3 

The large sample test is a good approximation even with samples as small as 10. 

Interpretation 

Small sample test 

If for a chosen number of observation pairs and a chosen alpha level the observed test 
statistic, T (rank sum total), is larger than the tabled critical value then statistical 
significance has not been attained at the selected alpha level. In this example 1.5<4 
(critical value from Table 5, Appendix A4 with n=8, two-tailed test and alpha=0.05) the 
result is therefore significant at the 5 per cent level. The null hypothesis can be rejected 
and we conclude that teachers’ sharing behaviour is not the same in poorest and best 
relationship situations. Higher scores (more frequent sharing behaviour) were found 
predominantly in the best relationship situations. The exact sampling distribution is 
tabled in some statistical texts in which case T+ should be used, see for example Siegel 

Inferences involving rank data      229



and Castallan, (1988). Table 5 in Appendix A4 provides small sample critical values for 
selected significance levels.  

Computer Analysis 

The Wilcoxon signed ranks test is automatically performed by the procedure PROC 
UNIVARIATE in SAS when the response variable analyzed is a difference score. SAS 
code for data entry and analysis, using the same data as in the worked example, is shown 
in Figure 7.5.  

data a; 
  input best poor @@; 
    diff=best-poor; 
cards; 
4 2 3 1 5 3 2 2 3 1 5 1 1 1 4 3 3 4 4 2 
; 
proc univariate data=a; 
   var diff; 
title ‘Difference between best and poor 
relationships two-tailed test’; 
run; 

Figure 7.5: SAS code for computation 
of the Wilcoxon Signed Rank statistic 

Output from this SAS programme is shown in Figure 7.6:  
Difference between best and poor relationships two-tailed test Univariate 

Procedure 
Variable=DIFF 

Moments 
N 10 Sum Wgts 10 
Mean 1.4 Sum 14 
Std Dev 1.429841 Variance 2.044444 
Skewness −0.03421 Kurtosis 0.215703 
USS 38 CSS 18.4 
CV 102.1315 Std Mean 0.452155 
T:Mean=0 3.096281 Pr>|T| 0.0128 
Num^=0 8 Num>0   
M(Sign) 3 Pr>=|M| 0.0703 
Sgn Rank 16.5 Pr>=|S| 0.0234 

Figure 7.6: Output from PROC 
Univariate for paired difference best-
poor relationship 
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Interpretation of Computer Output 

SAS automatically performs a two-way test if a variable representing the difference 
between the two repeated observations is analyzed as the response variable, here 
difference=best − poor. In Figure 7.6 the row labelled Sgn Rank gives the value of the 
expected signed rank statistic, here 16.5. This Wilcoxon Signed Rank statistic is 
equivalent to the observed−expected value of T+ which is the numerator of equation 7.3. 
The associated probability, Pr≥|S|, is also output in this example p=0.0234. Since this p-
value is less than 0.05, for a two-tailed test, we can conclude that there is a difference 
between teachers sharing behaviour in best and poorest relationship situations. If the p-
value associated with the Wilcoxon Signed Rank test had been larger than 0.05, we could 
not reject the null hypothesis and would have concluded that the median of the population 
differences was not significantly different from zero. 

Large sample procedure approximate test 

With an effective sample size of 8 you would not normally use the large sample 
approximation but it is used here to illustrate the procedure. 

Similar to the Wilcoxon M-W test procedure with large sample approximation, Z is 
given by the general formulae, (observed-expected)/standard error where observed test 
statistic is T+, (sum of the positive ranked differences), the expected value is=(n(n+1))/4, 

and the standard error is  
Here Z=(34.5−18)/7.141=2.311. The associated p-value is 0.021 (see Table of Z scores 

in Appendix A4). This gives substantively the same answer as the small sample test. 
SAS does not automatically output the observed test statistic T+ or its standard error 

when the Wilcoxon signed ranks test is performed with PROC UNIVARIATE. The SAS 
programme Wilcoxsr, see Figure 10, Appendix A3, outputs the rank scores, the sum, T+, 
standard error, expected T and a Z score with associated probability (2-tailed). Output 
from this SAS programme using data from the worked example is shown: 

Wilcoxon signed ranks test 
OBS first value second 

value 
absolute 

difference 
difference ranked 

differences 
1 4 2 2 2 5.0 
2 3 1 2 2 5.0 
3 5 3 2 2 5.0 
4 3 1 2 2 5.0 
5 5 1 4 4 8.0 
6 4 3 1 1 1.5 
7 3 4 1 −1 1.5 
8 4 2 2 2 5.0 

Summary Statistics 
Number of 

subjects 
observed value 

(T) 
expected 

value 
SE z score p-value (2-tailed 

test)  
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8 34.5 18 7.14143 2.31046 0.0268 

This SAS programme is useful even for small samples (the z-value would not be used) 
because it enables T+ and T− to be easily computed from the column of ranked differences 
in the output. The difference column gives the sign + or − associated with an observation, 
so that the two rank sums can be evaluated, that is the sum of the + rank differences and 
the sum of the − rank differences.  

Comment on Use of the Wilcoxon Signed Ranks Test 

The assumption of rankability of the differences is frequently not met with operational 
measures. Kornbrot (1990) discusses this point in some detail with particular reference to 
operational measures of times, rates and counts. These are common operational measures 
in psychology and education for example, time as an index of information processing, 
and counts are often used to determine errors on tasks. Kornbrot presents a practical 
alternative statistical test to the Wilcoxon Signed Ranks test called the rank difference 
test. This procedure is applicable when operational measures do not meet the assumptions 
underlying use of the Wilcoxon Signed Ranks test, in particular if there is doubt about 
rankability of the difference scores. Both exact sampling distributions and large sample 
approximations for the sample statistic D are given in Kornbrot’s paper. 

7.6 Kruskal-Wallis One-way ANOVA 

When to Use 

A common research problem is to decide whether or not sample differences in central 
tendency reflect true differences in parent populations (Walsh and Toothaker, 1974). The 
Kruskal-Wallis test is often the chosen procedure to test two or more (k-sample case) 
independent groups for location equality when assumptions of a one-way ANOVA 
(analysis of variance) are suspect (non-normality and heterogeneity of variance, see 
Chapter 8 for details) or when the observations are naturally in the form of ranks. The 
rationale underpinning this procedure is that if all scores are considered initially as one 
group, assigned a rank value, and the rank values are then reallocated into the 
independent (or treatment) groups, then under the null hypothesis of chance the sum of 
the ranks in each group will be about the same, apart from sampling variation. 

Researchers use this test as they would a one-way ANOVA to determine whether two 
or more groups have similar score distributions, Ciechalski (1988) suggests that the 
Kruskal-Wallis test is not a substitute for a parametric procedure, but an additional 
decision tool. 

This procedure is also useful for analyzing count data in contingency tables when the 
response variable is categorical and ordered. Traditionally this type of data is analyzed by 
a Chi-square procedure, however, provided there is an underlying continuity to the 
response variable, the Kruskal-Wallis test is a more powerful alternative than an r×k Chi-
square test. 
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Statistical Inference and Null Hypothesis 

The Kruskal-Wallis test statistic, H, is sensitive to location shifts and under the null 
hypothesis (equal populations) is asymptotically (large sample) distributed as Chi-square 
with k−1 degrees of freedom. The null hypothesis is that the independent samples come 
from the same population or from populations which have the same median. The non-
directional alternative hypothesis is that at least one sample has a different median to the 
others. A large value of the test statistic leads to rejection of the null hypothesis. 

Test Assumptions 

The test assumptions are as follows: 

• Data consists of observations which have been selected at random from an infinitely 
large population. 

• The population(s) have an underlying continuous distribution but the response variable 
is a rank measurement. 

• It is preferable that there are at least 4–5 subjects in each sample (independent group) 
because of the use of the Chi-square approximation for the H-test statistic. It is not 
necessary to have a balanced design (equal numbers in each independent group). 

With heterogeneity of variance, different variances for the independent samples, it is 
possible with this test procedure to reject the null hypothesis (equality of medians), when 
means are in fact equal. A significant test statistic value, H, is therefore no assurance of 
differences in treatment means. 

Example from the Literature 

Elliott and Hewison (1994) investigated type of reading help given by different 
(independent) groups of parents. In their study there were four groups of parents/ other 
family members: 24 middle-class families; 26 working-class families, 17 families who 
had been involved in a Paired Reading Project; and 24 families of Asian origin. Four 
response variables were analyzed separately, rapid corrections (maintaining flow in 
reading), Semantic-based corrections; phonic-based corrections; and anomalies 
(deliberate non-correction or missed correction). Kruskal-Wallis non-parametric analysis 
of variance was performed on each response variable separately. The authors reported 
differences between groups for all four response variables: rapid correction (H=32.34, 
p<0.00001); semantic-based corrections (H=30.33, p<0.00001); phonic corrections 
(H=11.39, p<0.009); and anomalies/non-corrections (H=20.10, p<0.0002). Post hoc tests 
were not reported. 

Worked Example 

Small sample Kruskal-Wallis test procedure 

Data shown in Table 7.5 is similar to that obtained by Elliott and Hewison (1994), who 
investigated types of reading help given by different groups of parents. In their study 
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there were four groups of parents, but the data presented in Table 7.5 refers to only three 
groups, middle-class, working-class and Asian families, and one ordinal response 
variable, number of rapid reading corrections.  

Table 7.5: Rapid correction reading correction 
scores for three groups of families 

Middle-class Working-class Asian Subjects 
value rank value rank value rank

1 22 10.5 31 15 13 2
2 26 12 30 14 16 3
3 27 13 21 8 21 8
4 22 10.5 17 4.5 17 4.5
5 18 6 21 8 12 1
Sum of ranks   52   49.5   18.5

Mean of ranks   10.4   9.9   3.7

The null hypothesis is that there is no difference among the three groups of middle-class, 
working-class and Asian families in the way that they correct reading errors using rapid 
correction. The alternative hypothesis is that the three groups differ in the way they use 
the rapid correction strategy to correct childrens’ reading errors. Alpha is set to 5 per 
cent. 

The computational steps are: 

• Combine all scores into one group and assign a rank to each score representing its 
position in the single series. 

• Each ranked value is then reassigned to its respective group (in this example middle-
class, working-class or Asian) and the sum of rank values and the mean is calculated 
for each group. In this example sample numbers in each group are equal but this is not 
necessary. 

The Kruskal-Wallis test statistic, H, is then calculated using the following formula: 

 
Kruskal-

Wallis H-
test 
statistic—
7.4 

where k refers to the number of groups (independent samples), nj is the number of 
observations in the jth group, N is the total number of observations in the combined 

sample, and is the mean of the ranks in the jth group, 
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As in the Wilcoxon signed ranks test, the variance of the sampling distribution of the test 
statistic is influenced by ties among the scores regardless of to which group the tied 
scores belong. The correction for ties is given by: 

 

Correction 
for ties in K-
W H-
statistic—7.5 

where g=the number of groups of different tied values, ti is the number of tied ranks in 
each of the groups of tied values and N is the total number of observations in the 
combined sample. The Kruskal-Wallis H statistic is then divided by this correction factor. 

 

  

The value of H corrected for ties is therefore 6.965/0.989=7.04 

Interpretation 

When any of the independent groups has fewer than five observations we can describe 
this as a small sample design. In this situation we use the exact sampling distribution of 
the test statistic H. This is shown in Table 6, Appendix A4 (for three independent groups 
only). The rejection region for the H-test statistic is H>tabled critical value, which is 
based on the sample size in each of three groups and on the chosen alpha level. 

In this example we have selected alpha of 0.05. The critical value given in Table 6, 
Appendix A4 for alpha=0.05 and n1=n2=n3=5 is 5.78. The rejection region for the test 
includes all values of H>5.78. Since the observed H is greater than the critical value, 
7.04>5.78, the probability of obtaining an H-value as large as 7.04, when the null 
hypothesis is true, is equal to or less than p=0.05. We reject the null hypothesis at the 5 
per cent level and conclude there is sufficient evidence of a difference(s) among the three 
groups of middle-class, working-class and Asian families in the way they correct reading 
errors. 

When H is found to be statistically significant it indicates that the k-samples do not 
come from the same population, that is at least one of the samples has a different median 
to at least one of the others. The H-statistic is not informative about which or how many 
of the samples are significantly different from each other. When the number of 
comparisons are small the Wilcoxon Mann-Whitney test may be used for post hoc 
analysis following a significant Kruskal-Wallis H test. A more detailed procedure which 
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makes use of the normal approximations is described by Siegel and Castellan (1988), and 
Keselman and Rogan (1977) discuss the relative merits of K-W post hoc procedure 
(similar to the multiple comparison procedures described by Siegel and Castallan but 
based on the Chi-square distribution) and the Tukey test under varying conditions.  

Computer analysis 

To perform a Kruskal-Wallis test in SAS, PROC NPAR1WAY is used with the option 
wilcoxon. Using this nonparametric ANOVA test on the reading correction data shown in 
Table 7.5 the following SAS code would be used: 

data a; 
  input group response @@ ; 
  cards; 
1 22 1 26 1 27 1 22 1 18 
2 31 2 30 2 21 2 17 2 21 
3 13 3 16 3 21 3 17 3 12 
; 
**** kruskal-wallis test ****; 
proc nparlway data=a wilcoxon; 
  class group; 
  var response; 
title ‘Kruskal-Wallis test-worked example’; 
run; 

Data is entered after the cards statement. The group value followed by the response value 
is input for each subject. The option wilcoxon performs a Kruskal-Wallis test when there 
are more than two groups. The class statement denotes the variable that divides the 
observations into independent groups, here there are three groups and each group, for 
convenience, is given a numeric value of 1, 2, or 3 (these are only nominal categories, the 
class variable does not imply any order). Output from this programme is shown in Figure 
7.7.  

Kruskal-Wallis test—worked, example 
NPAR1WAY Procedure 

Wilcoxon Scores Scores (Rank-Sums) for Variable response 
Classified by Variable group 

GROUP N Sum of Scores Expected Under H0 Std Dev Under H0 Mean Score 
1 5 52.0000000 40.0 8.12110713 10.4000000
2 5 49.5000000 40.0 8.12110713 9.9000000 
3 5 18.5000000 40.0 8.12110713 3.7000000 

Average Scores were used for Ties 
Kruskal-Wallis Test (Chi-square Approximation) 

CHISQ=7.0404 DF=2 Prob>CHISQ=0.0296 

Figure 7.7: Output from PROC 
NPAR1WAY for reading correction 
data 
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Interpretation of Computer Output 

Unlike the worked example, where the exact sampling distribution of H was used, SAS 
output automatically provides a Chi-square approximation. The computed value of H 
(corrected for ties) in the worked example is the same as the Chi-square value shown in 
this output. The only difference is in the interpretation of the test statistic. In the worked 
example the significance of H was evaluated using the exact sampling distribution and 
tabled critical values (Table 6, Appendix A4). The SAS output refers to the Chi-square 
approximation, (primarily intended for large samples studies) which is based on k−1 
degrees of freedom (k is the number of independent samples or groups). The rejection 

region for the Kruskal-Wallis test includes all values of Chi-square larger than 
(means Chi-square with 2 df) with p=0.05, that is 5.99147. Since the calculated value, 
7.0404 exceeds the critical value (falls in the rejection region) we know that the observed 
value has an associated probability under the null hypothesis that lies between p=0.05 and 
p=0.02, (see Table 2, Appendix A4) which may be expressed as 0.05>p>0.02. In fact the 
SAS output shows that the associated probability is 0.0296. This probability is small, less 
than 5 per cent so we can reject the null-hypothesis of no difference and we arrive at the 
same conclusion as in the worked example. If an investigator was concerned about using 
the Chi-square approximation with small samples, less than 5 observations in any of the 
groups, H can be evaluated using the exact sampling distribution (Table 6, Appendix A4). 
For discussion on the adequacy of this Chi-square approximation for small samples the 
reader is referred to Gabriel and Lachenbruch (1969). 

Pairwise Multiple-comparisons for post-hoc Analysis 

When an obtained H-statistic is significant, an investigator may wish to determine which 
of the groups differ. A post hoc pairwise multiple-comparison procedure and 
computational formula is described by Siegel and Castellan (1988), the SAS programme 
Krusk-W1 (see Figure 11, Appendix A3) performs this procedure for all pairwise 
comparisons in a design. An investigator should note that to control for experiment-wise 
error, that is, to adjust for many non-independent pairwise comparisons, the initial alpha 
level should be set to a liberal level (possibly 10 per cent). For a two-tailed test the 
effective pairwise alpha level will be the original alpha level used for the Kruskal-Wallis 
test divided by the number of possible comparisons, c, multiplied by two (α/(c×2)). The 
number of comparisons is given by (k(k−1)/2) where k refers to the number of groups. So, 
if an initial alpha of 10 per cent was selected with 3 groups, the effective alpha level for 
the pairwise comparisons would be 0.1/6=0.0167. Output from the SAS programme 
Krusk-W1 using data from Table 7.5 is shown in Figure 7.8.  
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Significance is based on an initial alpha of 0.1 (two-tailed test) but adjusted for 

the number of pairwise comparisons tests 
First 

group 
Second 
group 

No. of 
subjects 
(gp 1) 

NO. of 
subjects 
(gp 2) 

Abs. 
diff in 
mean 
ranks 

SE of 
diff. 

critical 
Z value

Adjusted 
alpha 

sig. at 
adjusted 

alpha 

1 2 5 5 0.5 2.82843 2.12805 0.016667 no. 
1 3 5 5 6.7 2.82843 2.12805 0.016667 yes 
2 3 5 5 6.2 2.82843 2.12805 0.016667 yes 

Figure 7.8: Post hoc pairwise multiple 
comparisons for reading corrected 
data in Table 7.5 

Interpretation 

Looking at these pairwise comparisons, Group 3, Asian, is significantly different from 
the other two groups, but there is no significant difference between Group 1 (middle-
class) and Group 2 (working-class). 

Large sample Chi-square approximation for Kruskal-Wallis test 

When the number of observations in the independent groups exceeds 5 then the test 
statistic H is approximated by the Chi-square distribution with k−1 degrees of freedom (k 
is the number of independent samples or groups). SAS output would be interpreted as in 
the previous example. 

Use of Kruskal-Wallis Test with Data from r×k Contingency Tables 

Marascuilo and Dagenais (1982) describe the use of the Kruskal-Wallis H-test with 
ordered categorical data that is typically presented in the form of a contingency table. 
Data collected by these authors, originally as part of an evaluation study, is presented in 
Table 7.6 in the form of a contingency table.  

Table 7.6: Frequency distribution of responses to a 
question about perceived success of an integration 
programme for six ethnic groups* 

Type of Student 
Isolates Integrates 

Response categories to question: 

  Asian Black White Asian Black White  
Definitely YES (1) 0 5 1 2 6 10  
YES (2) 11 32 20 14 7 76  
Too soon to tell (3) 3 5 10 3 5 15  
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NO (4) 1 4 3 2 0 4  
Definitely NO (5) 1 0 3 1 1 1  
Total   16 46 37 22 19 106  
* Data originally collected as part of an evaluation study described in Dagenais and Marascuilo 
(1981)  

Educational researchers typically collect questionnaire data in which respondents are 
asked to answer a question or state an opinion and to give their response on an ordered 
response scale. For example, data shown in Table 7.6 is in response to the question: 

Has the integration of Berkeley’s schools been successful? 
The ordered response scale is: 
Definitely Not No Too soon to tell Yes Definitely yes 

These are mutually exclusive categories which can be treated as ordered categories. 
Typically this kind of data would be analyzed using an r×k Chi-square analysis. The 
majority of two-dimensional contingency tables that appear in edu-cational journals are 
analyzed by the traditional Chi-square procedure. Researchers, therefore, generally fail to 
use the inherent information contained in an ordered response variable. 

If the response variable is a qualitative (categorical) variable which has a theoretically 
underlying continuum, the original nominal categories can be replaced by rank values 1, 
2, 3…N and a more powerful Kruskal-Wallis test could be applied. Looking at the data in 
Table 7.6, the number of subjects with each response in each group is given in each of the 
cells of the table, for example, 11 subjects belonging to the group Isolates/Asian gave the 
response YES. If we now create a response score for each subject, based on the frequency 
in a cell, for example, for the Isolates/ Asian group with the response YES, 11 response 
scores of 2 (YES) would be created. These response scores can then be ranked and the 
Kruskal-Wallis test applied. This procedure is performed by the SAS programme, Krusk-
W2 (see Figure 12, Appendix A3). Output from the SAS programme Krusk-W2, using 
data from Table 7.6, is shown in Figure 7.9. 

 
 
 
 
 
  

NPAR1WAY Procedure 
Wilcoxon Scores (Rank Sums) for Variable Response Classified by Variable 

Group 
GROUP N Sum of Scores Expected Under H0 Std Dev Under H0 Mean Score 

1 16 1712.0000 1976.0000 233.387792 107.000000 
2 46 6000.5000 5681.0000 369.018501 130.445652 
3 37 3560.0000 4569.5000 338.320436 96.216216 
4 22 2623.0000 2717.0000 270.078228 119.227273 
5 19 2618.5000 2346.5000 252.664342 137.815789 

Inferences involving rank data      239



6 106 13867.0000 13091.0000 468.674341 130.820755 
Average Scores were used for Ties 

Kruskal-Wallis Test (Chi-Square Approximation) 
CHISQ=12, 110 DF=5 Prob>CHISQ=0.0333 

Figure 7.9: Kruskal-Wallis test using 
frequency data presented in Table 7.6 
(data in the form of an r×k contingency 
table) 

Interpretation of Computer Output 

The Kruskal-Wallis test statistic is 12.110 (Chi-square approximation) and since with 
alpha equal to 5%=11.07, it can be concluded that the six distributions are not identical. 

7.7 Friedman’s ANOVA by Ranks (for related data) 

When to Use 

The Friedman’s ANOVA by ranks is the last statistical procedure to be presented in this 
chapter. It should be considered when an investigator is interested in testing difference 
among related groups (repeated measurements) and when measures are naturally ranked 
or can be rank ordered. The test can be considered as an extension of the Wilcoxon 
signed ranks test, for more than two conditions. It is particularly suited for within-subject 
experimental designs in psychology and education. Often a response variable is a score 
representing, for example, the number of correct items, the number of errors, or the 
number of tasks completed. 

The procedure is most practical when there are at least five subjects and a minimum of 
four conditions (repeated measures). With fewer subjects or treatments the exact 

sampling distribution of the test statistic, should be consulted (see tables in Siegel 

and Castallan, 1988). With more than three treatment groups and more subjects, 
approximates to the Chi-square distribution. The test procedure is based on the idea that 
under the null-hypothesis of no difference between conditions, we would expect the rank 
values to be distributed randomly within each condition. We would also expect the rank 
sum and mean rank in each condition to be similar. 

The repeated measures design is intended to eliminate intra-subject variability 
(subject-to-subject variability) and thereby make comparisons among conditions more 
sensitive to treatment effects. If the rank sums for the various conditions are unequal, this 
suggests that the scores in each condition are drawn from different populations. The 
Friedman’s rank test is particularly sensitive to population differences in central tendency 
and is generally considered to be more powerful than Cochran’s Q test. 
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Test Assumptions 

The test assumptions are: 

• Data consists of more than two related samples. 
• The response variable is measured at least at an ordinal level. 
• The response variable has an underlying continuous distribution. 

Statistical Inference and Null Hypothesis 

The null-hypothesis tested is that the repeated measures (conditions) have been sampled 
from a single population (or k-populations with the same medians), the alternative 
hypothesis is that at least one of the conditions has a different median to the others. In 
this situation the rank sum and the mean rank for each condition would vary. 

Example from the Literature 

In a study to test the hypothesis that measured level of success in the coordination of 
spatial perspectives is related to the mode of response employed in their representation, 
Robinson and Robinson (1983) tested twelve infants and twenty-four junior school 
children (ages 5–6 years, 8–9 years and 10–11 years) on a repeated measures 
representation task. Each child was presented with four tasks (modes of response 
representation): matching; drawing; verbal; and making. In the matching condition a 
child had to select an appropriate card from a set of eight picture cards. Each card 
depicted a particular view and one matched the view of a model placed in front of the 
child. In the drawing condition a child was asked to draw a particular view (that matched 
the model), in the verbal condition the child was asked to describe a view and in the 
making condition the child was invited to construct the particular view from cut-out and 
coloured shaped cards. Binary scoring was used for each test (three tests for each 
condition), a value of 1 was awarded for a correct response and 0 for an incorrect 
response. 

The investigators reported the average test scores for infants in each condition: 
Matching 2.25; Drawing 0.42; Verbal 0.91; and Making 0.67. For infants, matching 
seemed the easiest. To elucidate the descriptive findings the investigators carried out a 
Friedman’s ANOVA on the rank score of performance across the four conditions 
(repeated measurement factor). A significant difference among the four presentation 
modes was reported. In this example the outcome variable is a count of correct responses 
which can be ranked and the within-subjects factor is the four repeated measurements 
corresponding to the experimental conditions of matching, drawing, verbal and making. 
The investigators wanted to know whether the apparent differences in average 
performance across the four tasks were large enough to indicate a statistically significant 
difference in central tendency between the four modes of presentation (no specific alpha 
level was mentioned). The keen reader should look carefully at the reported significance 
levels in this paper. 
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Worked Example 

In a replication of Robinson and Robinson’s study (1983) a PhD research student wanted 
to know whether there was a difference in successful task performance among four 
presentation conditions: matching, drawing, verbal and making (repeated measures). Data 
from a pilot study with 6 subjects aged 7 years is shown in Table 7.7.  

Table 7.7: Task success (number correct) for four 
representation conditions 

Matching Drawing Verbal Making Subject 
Score Rank Score Rank Score Rank Score Rank

1 5 3.5 1 2 0 1 5 3.5
2 5 4 3 3 2 2 1 1
3 3 3 2 2 4 4 0 1
4 5 4 1 1 2 2 4 3
5 5 4 0 1 3 3 1 2
6 4 4 2 2 0 1 3 3
Σ Ranks (R)  22.5   11  13  13.5
Σ Ranks squared (R)2   506.25   121   169   182.25

In the pilot study each task had five conditions so the maximum possible score was 5, 
a score of 1 was awarded for a correct response and 0 for an incorrect response. The 
underlying rationale for the analysis is simply whether the number of correct responses is 
higher or lower in comparing one condition with another. The least number of correct 
responses receives a rank of 1 and the condition with the highest number of correct 
responses receives a rank of 4 (ranked across the four conditions). Ties are assigned 
average rank values (see section 7.4, Wilcoxon Mann-Whitney test for an explanation of 
average ranks). Alpha was once again set to 5 per cent. 

The null-hypothesis tested was that different modes of representation of spatial 
perspectives do not effect measured levels of success on the tasks. The researcher should 
note that what is actually tested by Friedman’s ANOVA procedure is that the distribution 
of responses in each of the repeated measurement occasions come from the same 
population, that is they have the same population median. The alternative hypothesis is 
that at least one pair of repeated measurements (conditions) has a different central 
tendency (median). 

Computational steps: 

1 For each subject the response variable (number correct) is ranked across the four 
conditions. The smallest score is given a rank of 1. 

2 The rank sum (R) and the rank sum squared (R2) for each condition are evaluated. 

3 Using the data presented in Table 7.7 the Friedman’s Test statistic, is calculated as 
follows: 
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Friedman’s 
Chi-square 

adjusted 
for ties—

7.6 

where: N=number of subjects (or sets of matched subjects); 
k=number of conditions (repeated measures); 
Rj=rank sum of the conditions (i.e., sum of the rank for each repeated measure); 
gi=number of different rank values for the ith subject; 
tij=number of observations of the jth rank value in the ith subject. 
Consider, for example, the first subject in Table 7.7. There are 3 different rank 
values, that is gi=3, these rank values are 3.5 (two observations), 2 (one 
observation) and 1 (one observation), therefore; 

 

  

If there are no tied values in the ranked data then, and therefore 

the denominator for becomes Nk(k+1). 
For all 6 subjects in Table 7.7 

the numerator is given 
by: 12(22.52+112+132+13.52)−3×36× 4×(4+1)2=942. The denominator is given 

by: 6×4(5)+(24–30)/ 3=118 so, 942/118=7.983. This is evaluated using χ2 
distribution with k−1 degrees of freedom. The table of critical values of χ2 is 
shown in Table 2, Appendix A4. In this example, 7.983 with 3 df and alpha set to 
5 per cent is greater than the tabled critical value (7.82). 

Interpretation 

Given the significant test statistic, the null-hypothesis of different modes of 
representation of spatial perspectives having similar levels of success on the 
representation tasks can be rejected, and we can conclude that the average ranks 
(medians) for the four conditions differ significantly. Task performance would seem to 
depend upon the nature of the task (matching, drawing, verbal and making) and looking 
at Table 7.7 the highest mean rank was for the matching condition (higher rank score 
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equates with a greater number of correct responses). This finding is consistent with 
Robinson and Robinson’s (1983) study. 

Computer Analysis 

Friedman’s ANOVA by ranks can be performed in SAS using PROC FREQ. The 
following SAS code, using data from Table 7.7, illustrates how to perform this analysis. 

data a; 
input subject cond $ rank @@; 
cards; 
1 1 3.5 1 2 2 1 3 1 1 4 3.5 
2 1 4   2 2 3 2 3 2 2 4 1 
3 1 3   3 2 2 3 3 4 3 4 1 
4 1 4   4 2 1 4 3 2 4 4 3 
5 1 4   5 2 1 5 3 3 5 4 2 
6 1 4   6 2 2 6 3 1 6 4 3 
; 
proc freq; 
  tables subject*cond*rank/noprint cmh; 
run; 
title 'Friedmans ANOVA by ranks test - worked example'; 
run; 

SAS can handle repeated measurement designs using ordinal data with PROC CATMOD, 
or with PROC FREQ, the later approach is by far the simplest. The tables statement in 
PROC FREQ identifies the variables to be used in the contingency table analysis. When a 
statement is of the form A*B*C (A, B and C representing different variables) the last 
variable, here C, forms the columns of a contingency table; values of the next to last 
variable form the rows, and the first variable is used as a stratifying factor, a separate 
contingency table being produced for each level of stratification. 

In a repeated measures design, if a subject is placed as the first variable in the tables 
statement, it is used as a stratifying factor and a separate contingency table is produced 
for each subject. In this example, if the option NOPRINT is not used (it suppresses 
printing of the contingency tables) six separate contingency tables would be produced, 
one for each subject in the design, each table would have as the columns, rank scores and 
for the rows, the four conditions, mat, draw, verb and make. In the situation where there 
is one subject per contingency table the Cochran-Mantel-Haenszel Chi-square statistic 

(CMH statistic) is identical to the Friedman’s Chi-square, The CHM statistic can 
only be interpreted in this way if the column variable is ordinal. The null-hypothesis 
tested in this case is that the mean score (median) of the row variables (repeated 
measures) are equal. 

Interpretation of Computer Output 

Output from PROC FREQ for the repeated measures analysis of spatial perspectives and 
different modes of representation is shown in Figure 7.10.  
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Summary Statistics for COND by Rank 
Controlling for Subject 

Cochran—Mantel—Haenszel Statistics (Based on Table Scores)
Statistic Alternative Hypothesis DF Value Prob 

1 Nonzero Correlation 1 1.144 0.285
2 Row Mean Scores 3 7.983 0.046
3 General Association 12 13.100 0.362

Total Sample=24 

Figure 7.10: CMH statistic from 
PROC FREQ based on data shown in 
Table 7.7 

In this example, the ANOVA CMH statistic is equivalent to Friedman’s Chi-square with 
k−1, i.e., 3 degrees of freedom. The appropriate statistic and alternative hypothesis for the 
repeated measures design is statistic 2 in the output, the row means (medians) differ. 
Looking at the CMH test statistic this is 7.983, identical to the value in the worked 
example, adjusted for ties. This Chi-square statistic is evaluated with 3 df. The associated 
probability of obtaining a test statistic as large as this is given in the third column of the 
output and is 0.046. SAS outputs the actual pro-bability rather than a set probability level. 
We can conclude that there is a significant difference, at the 5 per cent level, among the 
four experimental conditions. 

Sometimes it is inconvenient to consult a Chi-square table for critical values, on these 
occasions the SAS function, PROBCHI can be used instead. For example, to determine 
the probability associated with a Chi-square value of 7.983 with 3 df the following SAS 
code can be entered: 

  data a; 
p=1−probchi(7.983,3); 
put p=; 
run; 

The probability value returned in the SAS LOG is: 

P=0.0463643541 
NOTE: The data set WORK.A has 1 observations and 1 
variables. 

Pairwise Multiple-comparisons for post hoc Analysis 

Similar to the Kruskal-Wallis test when an obtained H statistic is significant, an 
investigator may wish to determine which of the conditions (repeated measures) differ 
when the Friedman test statistic is found to be statistically significant. A post hoc 
pairwise multiple-comparison procedure, adjusting for the number of pairwise 
comparisons should be used. Computational details and worked examples are described 
by Siegel and Castellan (1988). The SAS programme Friedx automatically performs 
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multiple comparison tests for all possible pairwise comparisons and adjusts for 
experimentwise error (see Figure 13, Appendix A3). The initial alpha level should be set 
to a liberal level; output from this programme using the data from Table 7.7 is shown in 
Figure 7.11.  

Friedmans ANOVA by ranks test—worked example post hoc multiple 
comparison tests between the groups 

Significance is is based on an initial alpha of 0.1 (two-tailed test) but adjusted for 
the number of pairwise comparisons tests 

First 
group 

Second 
group 

Abs. diff in 
mean ranks 

SE Of 
diff. 

critical Z 
value 

Adjusted 
alpha 

sig. at 
adjusted alpha 

1 2 11.5 4.47214 2.39398 .0083333 yes 
  3 9.5 4.47214 2.39398 .0083333 no 
1 4 9.0 4.47214 2.39398 .0083333 no 
2 3 2.0 4.47214 2.39398 .0083333 no 
2 4 2.5 4.47214 2.39398 .0083333 no 
3 4 0.5 4.47214 2.39398 .0083333 no 

Figure 7.11: Post hoc multiple 
comparisons for Friedman’s ANOVA 
by ranks using data from Table 7.7 
(four repeated measures) 

Interpretation 

Looking at these pairwise comparisons, groups 1 and 2 are the only conditions that are 
significantly different, the initial alpha level was set to 10 per cent in this analysis and the 
pairwise comparisons should also be evaluated at this alpha level. 

Summary 

In this chapter six nonparametric tests based on rank data have been illustrated. These 
nonparametric procedures are probably not used in educational research as often as they 
should be. They are generally thought to be less powerful than their parametric analogues 
although it is not widely known that under certain circumstances nonparametric statistical 
tests can be as powerful or more powerful than their parametric counterparts. For this 
reason alone researchers should be familiar with these procedures. 

A well known problem with many parametric tests is that the assumption of 
independence of sample observations should be met. Violation of this assumption 
strongly influences statistical tests. It is generally less well known that certain 
nonparametric tests are also subject to this assumption and are influenced by dependence 
among initial scores. Any dependence amongst scores also results in dependence amongst 
ranks (Zimmerman, 1993). 

The general principle to follow when choosing a nonparametric rank test is the same 
as that outlined in Chapter 1, use your judgment and common sense, consider what is 
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operationally measured or observed, and wherever possible keep the analysis simple, do 
not rely on sophisticated techniques which are likely to be based on assumptions which 
are questionable. The next chapter introduces parametric procedures which are based on 
more restrictive assumptions but in certain circumstances are also more powerful than 
binary and rank order statistical tests. They should be viewed not as alternatives to the 
tests in this chapter but as complementary statistical procedures.  
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Inferences Involving Continuous Data 

 
  

      One-sample Tests (two measures)    

    8.1  Introduction to regression and correlation   253 

    8.2  Linear regression analysis   259 

    
  This procedure is used to describe a linear relation between a response and 
explanatory variable(s) to estimates parameters e.g., β0, β1 or to predict values of a 
response variable. 

  
 

    8.3  Pearson’s correlation r   283 

      This quantifies the extent of a linear relationship between two variables.    
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Introduction 

In this chapter parametric statistical procedures are introduced. These include linear 
regression, correlation and tests for differences in location in two-sample and multiple 
sample designs. Parametric statistical techniques require that a number of assumptions 
about the nature of the population from which data were drawn be met and in this sense 
are more restrictive than non-parametric procedures. For example, for statistical 
inferences to be valid, variables should be continuous (variables measured on interval or 
ratio scales) and data should be drawn at random from a population with an underlying 
normal distribution. Parametric tests are based on an underlying normal probability 
distribution of a statistical variable (see Chapter 4, section 4.6). For example, an 
important property of sample means is that they tend to be normally distributed even 
when individual scores may not be (based on the central limit theorem). This enables 
parametric techniques to be used in many situations. Also, parametric procedures are 
reasonably robust, that is tolerant of moderate violations of assumptions, although, as we 
shall see in later sections, violation of particular assumptions, especially when in 
combination, are critical and can invalidate inferences drawn.  

There is much misunderstanding about what is meant by assumptions of normality. 
It is often believed, for example, that to use parametric tests such as the paired t-test (for 
‘before’ and ‘after’ designs) or linear regression, the response variables should be 
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normally distributed. This not true. It is only necessary that, in the case of the paired t-
test, the difference scores are normally distributed, and in the case of linear regression it 
is the residuals (difference between observed and predicted scores, i.e., errors) after 
fitting the explanatory variable that should be normally distributed. The assumption of 
normality refers to the population of interest and not just the sample of scores. Therefore, 
in the above examples what is meant is that the difference scores and the residuals in the 
population of interest are normally distributed. The assumptions of normality are 
usually based either on faith or as Siegel and Castallan (1988) put it, ‘rest on conjecture 
and hope’ (p. 35). Generally, when results are reported in journals the normality 
assumptions (and other assumptions, such as independence of observations, homogeneity 
of variance) are simply assumed to hold and are seldom tested and reported. When space 
is at a premium, brief details about the validity of underlying assumptions would greatly 
enhance the trustworthiness of conclusions. 

In this chapter, the general format of previous chapters is followed but the section on 
test assumptions is extended to include details of how to check assumptions. An overview 
of the general ideas and statistical models underlying regression and analysis of variance 
(ANOVA) is presented before each of these procedures is illustrated. Discussion about 
what can be done when various parametric assumptions are not met is presented at the 
end of this chapter. 

8.1 Introduction to Regression and Correlation 

In educational research regression analysis is one of the most widely used statistical 
procedures. It should be considered when interest is centred on the dependence of a 
response variable on an explanatory variable(s). For example, a primary school 
headteacher may want to know whether a class teacher’s estimate of a pupil’s maths 
ability will predict that pupil’s maths score on a standardized test of maths ability. 
Regression analysis can be used to: Describe the relationship between the response 
variable (score on a standardized maths test in the above example) and an explanatory 
variable (teacher’s estimate of pupil ability in the above example) and Predict the values 
of a response variable from explanatory (independent) variables. When there is a linear 
relationship between response and explanatory variables and when there is only one 
explanatory variable and one response variable we refer to this as a simple linear 
regression. When there is one response variable but more than one explanatory variable 
this is referred to as a multiple regression analysis. We use the term multivariate 
regression when we have more than one response variable and any number of 
explanatory variables. 

Correlation analysis is when a measure of the linear relationship between two or more 
random variables is estimated. The parametric correlation statistic is the Pearson product 
moment correlation. This is a quantitative index of the strength of the linear relationship 
between two variables. If a researcher wants to determine the strength of relationship 
between two variables then correlation analysis is appropriate, however, if interest is 
centred on how well a least squares model fits the data or on prediction of one variable 
given values on another variable(s) then regression is the appropriate analytic technique. 

Statistical analysis for education and psychology researchers      250



In simple linear regression analysis, a random sample of observations is selected from 
a defined population of interest, and data consists of quantitative (continuous) 
measurements on a response variable and usually qualitative measures on an explanatory 
variable (sometimes called independent variable). Often in educational research 
regression analysis is used with survey data as opposed to data generated from 
experimental designs. Regression is sometimes seen as being a completely different 
analytic technique and unrelated to that of analysis of variance, this is possibly because 
these techniques arose in different research traditions. In fact both techniques are based 
on the General Linear Model (GLM). In its simplest form the GLM says that a response 
variable is related to an independent variable(s) by a weighting factor and that the 
response variable is given by the sum of all weighted independent variables. The term 
general linear model means a general statistical model that is linear in its parameters. 
That is the parameters, one for each independent variable, are summed. Regression and 
analysis of variance are simply different variants of the same General Linear Model and 
different disciplines have traditionally favoured certain research approaches and analytic 
techniques. 

Educational research, for example, has a strong survey tradition and has relied more 
heavily on correlation and regression techniques. In the language of regression, the 
response variable is related to the weighted sum of independent variables. The weighting 
factor is called a regression weight (coefficient) and the influence of a weighted 
explanatory variable on the response variable is referred to as a regression effect or 
simply in terms of whether a regression coefficient is statistically significant. 

In contrast, psychology has a strong experimental tradition and associated with this are 
ANOVA techniques. In the language of analysis of variance, the independent variable is 
a categorical variable, and we are interested in treatment effects and tests of significance. 
The weighted independent variables which depend upon treatment combinations 
represent treatment effects. 

Random error, generally defined as the difference between observed scores and those 
predicted from a statistical model in the regression framework, is estimated by the 
difference between observed scores and those predicted from the fitted regression line, 
whereas in an ANOVA statistical model error is estimated as the difference between 
observed scores and cell means (treatment combination means). It is important to 
consider regression and analysis of variance in the context of general linear models 
because they are treated in a uniform way in many propriety statistical computer 
packages. When using propriety statistical analysis programmes such as SPSS or SAS 
interpretation of statistical output is much easier to understand if terms such as model 
sums of squares, error sums of squares, mean square error, r-square, parameter 
estimates and regression weights are seen to be derived from a unified general linear 
model.  

When an investigator is interested in predicting the value of a response variable (either 
mean predicted values for subgroups or individual predicted values) given the value of 
another explanatory variable and has a random sample of pairs of observations (X,Y) 
which have continuous measurements, and when it is reasonable to assume a linear 
relationship between X and Y, then simple linear regression should be considered as a 
possible analytic approach. There are additional assumptions which would need to be met 
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before a regression analysis could be properly used to make inferences about the 
dependence of one variable on another and these are discussed in section 8.2. 

The Simple Linear Regression Model 

Regression analysis may be used to investigate the straight line (linear) relationship in a 
population between a random response variable, Y, and an independent explanatory 
variable, X. This linear relationship can be expressed as a regression equation which takes 
the general form 

y=β0+β1x+ε 
Simple 

linear 
regressio
n 
equation
—8.1 

This equation says that the observed value of the response variable, y, varies as a linear 
function of the explanatory variable x and a random error term, ε, (the Greek letter 
epsilon). The term linear function refers to the additive sum of the two parameters in the 
model, β0 (Greek letter beta0), the intercept and β1 (Greek letter beta1) the population 
regression weight for the value of the explanatory variable x. The model can be thought 
of as consisting of two components, the deterministic part of the model, β0+β1x, which 
describes the straight-line relationship, and a random component, ε. The observed 
response variable, y, can be predicted from a weighted value of the explanatory variable, 
x which is the explained straight-line part of the model and an unexplained error 
component, ε, which allows for random variation of the y values about their mean. This 
error component accounts for random fluctuations of the y variable values and possibly 
other important variables not included in the statistical model. 

The Linear Regression Line 

A simple estimated linear regression line with Y as the predicted response variable and X 
as the explanatory variable is described as the regression of Y on X. (The regression of X 
on Y would give a different regression line.) We can think of the regression line in the 
population being described by two parameters: β0, the intercept which is the point at 
which the regression line cuts the Y axis, that is the value of the variable Y when the value 
of variable X is zero, and β1 the regression coefficient (weight) which represents the slope 
of the regression line, that is the increase or decrease in the variable Y corresponding to a 
unit change in the value of variable X. A third parameter, a, the standard deviation of the 
response variable Y about the regression line is frequently estimated in regression 
analysis as this provides an indication of extent of the linear relationship between the 
response and explanatory variable. 

As in previous statistical procedures, we use sample estimates of these population 
parameters namely, b0 is the sample statistic which estimates β0 the unknown population 
intercept and b1 is the sample regression statistic which is used to estimate β1 the 
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unknown population regression parameter. The sample standard deviation of Y about the 
regression line, S, (which is equivalent to the mean square error, that is sums of squares 
for error/df error) is used to estimate the unknown population standard deviation of Y 
about the regression line, σ (sigma). The population regression model and corresponding 
estimated (sample) regression equation are: 

y=β0+β1x1+ε Population model 
Ŷ=b0+b1x1 Estimated equation 

  

where the population regression model specifies an observed value of y for a particular 
value of x1, the explanatory variable. Sample statistics are used to estimate the 
corresponding population parameters. In the estimated sample regression equation Ŷ 
denotes the predicted (estimated) value of the response variable y given the value of the 
explanatory variable x1. 

The procedure used to find the best fitted regression line, or least squares line is called 
the method of least squares. The principle of least squares involves determination of the 
regression statistics b0 and b1 such that errors of estimation are minimized. An error of 
estimation is the difference between the observed value of y and the corresponding 
predicted value, Ŷ obtained from the regression model. That is ε=Ŷ−(b0+b1x1). The error 
estimates in a sample are called residuals. 

Why is the least squares method used? 

An error of estimation (prediction) for a linear regression model may be either positive or 
negative and if these errors were summed they should equal zero because the effects of 
opposing signs will cancel each error. If however the sums of squared errors is evaluated 
this will give a positive number. The optimal situation is when there is minimal error of 
prediction and the sums of squared errors is minimized. A mathematical procedure called 
differentiation allows values of the regression statistics b0 and b1 to be chosen which will 
minimize the sums of squared errors of estimation. 

Estimation and Prediction 

Using a regression model, a researcher may want to estimate the intercept and slope 
parameters and thereby describe the nature of the dependence between response and 
explanatory variables. Once values have been estimated for the parameters they can be 
used to predict the unknown value of a response variable from the known value of an 
explanatory variable. However, it is recommended that values of an explanatory variable 
which are beyond the sample range of the explanatory variable should not be used to 
predict the value of the response variable Y. This is because the errors of prediction are 
likely to be inflated. 

Tests of Significance and Confidence Intervals 

To test whether the linear regression model is useful for prediction we need to test 
whether the explanatory variable X does in fact explain variation in the response variable 
Y. If X contributes no information to the prediction of Y, the true slope of the population 
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regression line would be zero. In a test of significance of a predictor (explanatory) 
variable the null hypothesis would be, H0: β1=0. The alternative hypothesis, that is X and 
Y are linearly related, is H1: β1≠ 0, and X makes a significant contribution to the 
prediction of Y. To test this null hypothesis we evaluate the ratio of b1/standard error of 
b1, and compare this with the sampling distribution of the t-statistic with n−2 degrees of 
freedom. To use the sampling distribution of the regression test statistic, b1, certain 
assumptions about the random error term in the regression model must be met, these are 
discussed under test assumptions. It has already been stated in previous chapters that 
whenever possible confidence intervals should be used in conjunction with tests of 
significance. A confidence interval for the population regression slope is estimated from 
sample data using the following formula: 

b−[t1−α/2 SE(b1)] to b+[t1−α/2 SE(b1)] 
Confidence 

interval for 
the regression 
slope—8.2 

with df=n−2. 
If a 95 per cent confidence interval was required then t1−α/2 would equal t0.025. The 

confidence interval for the intercept of the regression line is similar to formula 8.2 except 
that SE(b1) is changed to SE(b0), the standard error of the intercept. 

Multiple Regression 

A simple linear regression model can be easily extended to accommodate two or more 
explanatory variables. Practical applications of regression analysis often require two or 
more predictor variables. The general notation for a multiple regression model is 

y=β0+β1x1+β2x2+…+βkxk+ε   

The intercept, β0, sometimes called the constant term, is the value of the response 
variable y when all the explanatory variables are zero. The regression statistics, b1, b2…bk 
as in simple linear regression estimate the unknown parameters β1, β2…βk.  

Steps in Regression Analysis 

There are seven steps in a typical regression analysis; the first two can be regarded as part 
of initial data analysis: 

1 Check the reasons for fitting a regression model—is it a description of a linear 
relationship, estimation of parameters and significance of explanatory variables or the 
prediction of an individual or mean response value? 

2 Examine the means and standard deviations of the response and explanatory variable(s) 
and explore the main features of the data using scatterplots of response variable 
against each explanatory variable (and plots of pairs of explanatory variables in 
multiple regression) to see whether there appears to be any relationship between the 
variables and to check for linearity (see test assumptions in section 8.2). 
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3 An initial regression model based on background information or theoretical 
considerations is then fitted to the data and a regression line is estimated. Consider 
what sources of information, in the model, contribute to the total variation in the 
response variable, i.e., consider overall model fit—Are the explanatory variables 
related in any way to the response variable? What proportion of the total variation in 
the response variable is explained by the independent variables in the model? 

4 Consider the parameter estimates—especially their standard errors and significance 
tests and confidence intervals for the intercept and slope. Do not report these at this 
stage because the next step is to check the regression assumptions and to evaluate the 
fitted regression model. (N.B. In regression analysis assumptions are checked after the 
initial model has been fitted because the regression residuals are used.) 

5 Regression assumptions are checked by looking at the residuals from the fitted model. 
This is called regression diagnostics, that is residual plots are scrutinized (residuals 
are plotted against case-numbers and against explanatory variables), and standard 
errors of fitted coefficients and residuals are examined. 

6 Alternative regression models are built if necessary (independent variables added or 

dropped, polynomial terms fitted, for example, rather than β1x1 outlier 
observations are identified) and further regression diagnostics are performed to 
evaluate the adequacy of the model and the overall model fit (look at adjusted R2). 
Polynomial model, refers to higher powers of x, denoted by the degree of polynomial 
e.g. x2 is quadratic and x3 is cubic. 

7 A parsimonious regression model is selected, the three parameters, β0, β1, and σ are are 
estimated, and tests of significance and confidence intervals for the intercept and slope 
are performed. Caution is required with interpretation of the statistical significance of 
individual explanatory variables in a multiple regression model when the explanatory 
variables are orthogonal (not correlated). Tests of statistical significance can be 
misleading. 

8.2 Linear Regression Analysis 

When to Use 

To use linear regression, measures for the response variable should be continuous (at 
least theoretically) and there should be observations on at least a pair of variables, a 
response variable Y and an explanatory variable X. For every value of Y there should be a 
corresponding value of X. It is also assumed that the relationship between Y and X is 
linear. The size of the correlation, r, between two variables provides an indication of 
linearity. 

Regression analysis is often used by researchers in an exploratory way to discover 
relationships between variables, to generate new ideas and concepts, to find important 
variables and to identify unusual cases (outliers) in a data set. It can of course be used in 
a more formal way to predict certain response values from carefully chosen explanatory 
variables but by far the greatest number of applications of regression analysis in 
education and psychology are what may be termed exploratory. Exploratory analysis 
should not mean ‘blind analysis’ and all regression models should be guided by either 
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theoretical or empirical considerations and common sense. For example, an educational 
researcher may want to know whether individual level variables, (for example, IQ, 
gender, pre-school experience) and/or school level variables (for example, class in 
school, measure of school resources, teacher experience) can explain pupil achievement. 
A research psychologist may be interested in the relationship between recent life events 
(stressors) and work performance. In a more formal way data from personality appraisals 
can be used to predict vocational success and may be used, amongst other criteria, in 
personnel selection and guidance (Bernadin and Bownas, 1985). If y, the observed value 
of a response variable, is an outcome or effect, and x1, x2, are particular values of 
explanatory variables (or causes), then just because a regression model containing y and 
x1, x2 fit the data this does not mean that x1, x2 are the only cause or explanation of y. 
There may be other important explanatory variables not in the model. Emphasis in 
regression analysis should therefore be on model comparison and choice of the most 
appropriate regression model. A decision on the most appropriate model will be based on 
statistical results, theoretical and empirical considerations and common sense. It is 
possible to have a well fitted (statistically) regression model which is nonsense. All to 
common bad practice includes the fitting of a regression model to sparse data (too few 
data points) and interpretation of parameter estimates based on values of explanatory 
variables which are beyond the range of explanatory variables in the sample data. We 
should also not assume that there is only one ‘correct’ statistical model. For discussion of 
model uncertainty and statistical inference see Chatfield (1995). 

Statistical Inference and Null Hypothesis 

Researchers are often interested in determining whether there is a relationship between a 
response and explanatory variable. In effect this is a test of the hypothesis to determine 
the predictive ability of the regression model. To determine the utility of the model we 
test whether the regression slope is zero. The null hypothesis is, H0: β1=0, and the 
alternative hypothesis is that the explanatory variable makes a significant contribution to 
the prediction of the response variable Y, namely H1: β1≠0. Inferences are based on the 
sampling distribution of the regression statistic b1 which is used to estimate the 
population regression parameter β1. The t-distribution with n−2 degrees of freedom is 
used to evaluate the test statistic b1. 

A second hypothesis is sometimes tested, whether the intercept is zero, but this is 
generally of less interest. The null hypothesis and alternative hypotheses are in this case, 
H0: β0=0 and H1: β0≠0. When there is more than one independent variable, the overall 
model fit is evaluated with the F statistic. The null hypothesis tested involves all 
regression parameters except the intercept. For example if there were three explanatory 
variables in the model then the null hypothesis would be: H0: β1=β2=β3=0. The alternative 
hypothesis would be that at least one of the parameters is zero. The F statistic is 
evaluated as the ratio of the mean square for model to mean square for error (see worked 
example). 
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Test Assumptions for Regression Analysis 

Inferences based on hypothesis tests for the regression slope, intercept, and overall model 
fit require the following assumptions to be met: (The reader should also look up the 
assumptions required for the Pearson correlation, r, with particular reference to the 
distinction between descriptive and inferential use of regression and correlation 
statistics.) 

• Data should consist of measures on at least a pair of variables, a response variable Y and 
an explanatory variable X. Measurement of the response variable should be at least 
theoretically continuous. (It is possible for example to use scores on a rating scale; 0, 
1, 2, 3…n), and in multiple regression one or more of the explanatory variables may 
be binary (in regression these are called dummy variables, for example, the binary 
variable sex may be coded 0=male, 1=female). 

• The relationship between response and explanatory variables should be approximately 
linear. (Verify by plotting the response variable against each independent variable in 
the model. Strong correlation is indicated by an obvious straight line trend in the 
scatter of points. To check for correlations between independent variables in multiple 
regression plot pairs of independent variables. The computed correlation also 
indicates the strength of any linear relationship—see section 8.3.) 

• The error term in the regression model, ε, should have a normal probability distribution. 
The residuals in a regression analysis represent the sample estimates of the error 
terms. These should have a mean of zero and constant variance (this is called 
homoscedasticity). Note that neither the response variable or the explanatory variables 
are required to have a normal distribution, it is the fitted residuals that should be 
normal. (Verify the normality assumption by doing a normal probability plot of 
residuals. The distribution of residuals only provides an indication of the underlying 
error distribution in the population and may be unreliable with small sample sizes. 
Interpret the normal probability plot in the same way as described in Chapter 5 
section 5.5 ‘Checking for Normality’. 

Verify the assumption of constant variance by plotting residuals against predicted 
values. A random scatter of points about the mean of zero indicates constant 
variance and satisfies this assumption. A funnel shaped pattern indicates 
nonconstant variance. Outlier observations are easily spotted on this plot.) 

• The error terms (residuals) associated with pairs of Y and X variables should be 
independent. (Verify by checking that each pair of measurements comes from a 
different independent subject, i.e., no repeated measures on the same subject. 

If data is collected over time there may be a time series (trend) in the data (data 
points close in time may be more highly correlated and certainly not 
independent). Verify by plotting residuals against case number (ID).) 

• The model should be adequate and correctly specified. This is strictly not an assumption 
but part of the diagnostic procedure for checking model fit. (Verify model fit and the 
possible requirement for more terms in the model, such as a quadratic term (the value 
of an independent variable squared) or more variables by using an overlay plot of 
predicted values vs. values of the independent variable (this gives the linear fitted 
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regression line) and overlaying this with a plot of observed values of the response 
variable against the independent variable. This overlay gives an indication of the 
scatter of data points about the fitted regression line. Look for a non-random scatter, 
that is any discernible pattern especially curvature. This indicates that the model is 
not well fitted. A more sophisticated regression plot can be output from the SAS 
procedure PROC GPLOT (see Figure 8.7). 

Once a suspect model has been identified using an overlay plot, an indication of 
the lack of model fit and possible extent of departure from linearity is given by a 
plot of residuals against each of the independent variables. Any discernible 
pattern, other than a random scatter of points indicates that the model is not well 
fitted. Influential data points can easily be identified. You should consider 
whether you have chosen the most parsimonious model. For example, can any 
further variables be removed? Do other or additional variables need to be 
added? How robust is the fitted model? Is the model fit dependent upon a few 
influential data points?) 

The general idea when examining residuals is to look for any systematic trends or 
patterns in the plots. These usually indicate departure from linearity and model fit. All the 
assumptions are important but some are more so than others. Experience enables the 
researcher to judge how far assumptions can be relaxed before inferences are 
invalidated—this is as much an art as a science. Lack of normality of the residuals, for 
example, is not critical because the sampling distribution of the regression test statistics 
are stable for minor departures from normality and therefore do not seriously affect 
regression estimates. However, standard errors may be inflated. Similarly, lack of 
constant variance of errors is unlikely to seriously distort the regression coefficients but 
the associated p-values would need to be interpreted with caution. The most serious 
violation is a significant departure from linearity. In this situation transformation of the 
data or an alternative analytic approach should be considered. The literature is rather 
sparse on what to do in these circumstances. However, an excellent book which is very 
readable is Alternative Methods of Regression by Birkes and Dodge (1993). Another text 
which has good advice about robust regression analysis is Tiku, Tan and Balakrishnan 
(1986). 

The important principle to bear in mind is to distinguish between minor departures 
from model assumptions and major violations or combinations of departures such as non-
linearity and non-constant variance. 

Example from the Literature 

In a study of factors that improve teacher competence, Raudenbush et al. (1993) 
investigated a number of regression models one of which looked at key predictors of 
instructional quality. This response variable, was measured as a 12-item student rating 
scale of teachers classroom behaviour (for example, frequency that teachers explained 
objectives of a new lesson, tested new knowledge, provided feedback on test 
performance, etc.). The mean of the 12-item scale was used as the response score. The 
explanatory variables included internal in-service-training (provided by the principal or 
by another teacher in the school), measured as a count of sessions, and pre-service 
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education, a dummy variable, coded as less than bachelor’s degree versus bachelor’s 
degree or more. 

Results of this regression analysis are shown in Table 8.1.  

Table 8.1: Results of regression analysis 
Predictors Regression coefficient SE t 
Intercept  −1.76 0.97−1.81
Pre-service  2.36 1.41 2.06
Education       
In-service 1.28 0.43 2.99
Training (Internal)    

The investigators (Raudenbush et al., 1993) reported that, ‘The model was remarkably 
parsimonious, including just two predictors: preservice training, b=2.36, t= 2.06, and 
internal supervision [in-service training], b=1.28, t=2.99’ (p. 292). p-values were not 
reported in the table or the text but with a sample size of 2111 students and 103 
classrooms, any absolute t values greater than 1.96 would indicate statistical significance 
at the 5 per cent level. As a quick estimate with large sample sizes, if the regression 
coefficient is more than twice the size of its standard error then it is statistically 
significant at the 5 per cent level. In this example in-service training is significant and 
pre-service education might be although the reported t-value of 2.06 is not consistent with 
the ratio of 2.36/1.41 (1.67), which is how t is evaluated (see worked example). 

The authors concluded that there is strong evidence that teacher supervision (internal 
in-service training) improves teachers’ instructional quality (b1=1.28, SEb1=0.43). The 
authors went on to show that there was no support for the proposition that INSET by 
inspectors or other staff outside of the school would be helpful in improving instructional 
quality. The subjects in this study were teachers and pupils from small rural primary 
schools in Thailand. 

In the particular analysis described here the null hypothesis tested is ‘no linear 
relationship between instructional quality and internal in-service training’, that is H0: β1 
(internal in-service training)=0. The alternative hypothesis is that internal in-service 
training makes a significant contribution to the prediction of teachers instructional 
competence. Assumptions for linear regression were checked and some variables 
including number of sessions of internal in-service training were transformed to a 
logarithmic metric because they had positively skewed distributions (as would be 
expected with a count variable). Linear relations between log-transformed variables and a 
response variable imply a diminishing effect of the predictor as it increases. In this 
example, it would mean that when internal in-service training was low, the effect on 
instructional quality would be significant and positive but with an increase in exposure to 
internal in-service training the beneficial effects would be reduced. 

In another study which examined the influence of state-level centralization on 
innovation in post-secondary education the authors Hearn and Griswold (1994) provide a 
good description of model building and variable selection for a multivariate regression 
and describe how checks were made for model fit. Their regression model was developed 
from a general theoretical model but was also influenced by empirical analyses which 
revealed significant relationships between candidate independent variables. They 
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reported that initial exploratory analyses, ‘eliminated several other potentially influential 
independent variables…on the basis of a lack of theoretical rationale and promise, a lack 
of statistical strength, measurement problems, multicollinearity with other factors already 
in the model, or some combination of these’ (p. 170). Multicollinearity means highly 
correlated explanatory variables, the consequence being that information specified in the 
model is redundant. The authors went on to warn that, ‘In regressions with only fifty 
cases and as many as thirteen potential independent variables, there are dangers of 
instability in regression coefficients’ (p. 170). To check for this the authors examined the 
behaviour of suspicious coefficients under different model specifications and adjusted R2 
was used rather than R2 to make comparisons of the fit of different regression models.  

Worked Example 

The following data, abstracted from part of a study on referential communication skills 
by the author and colleagues, is used to illustrate computational details for simple linear 
regression. The two variables shown in Table 8.2 represent pupils’ standardized maths 
attainment score (age adjusted), and teacher estimated score of pupils’ general maths 
ability based on a rating scale of 1 (well below average) to 10 (well above average). A 
simple linear regression model is fitted to these data with standardized maths score 
(SMATHS) as the response variable, and teacher estimate of maths ability (MATHS) as 
the explanatory variable.  

Table 8.2: Teachers’ estimate of maths ability 
(MATHS) and standardized maths attainment score 
(SMATHS) for ten pupils 

Pupil (ID) MATHS (X) SMATHS (Y)
17 5 110
18 10 133
19 5 109
20 3 114
24 8 128
27 5 109
28 8 119
29 5 119
60 1 95
61 6 118

When an investigator wants to i) find a regression relationship between a response 
variable, Y, and an explanatory variable, X, or ii) find the effect of different values of xi; 
on the response variable y, there are three computational steps involved. These are: 

1 Compute the sums of squares for X (denoted SSXX) and for Y (denoted SSYY) and the 
cross product sums of squares for XY (denoted SSXY). 

2 Estimate the parameters β0, β1 and σ. 
3 Write out the least squares regression line substituting parameter estimates for β0 and 
β1. 
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Regression analysis would be inappropriate when there are only ten cases and is 
performed here for illustrative purposes only. Most statistical analysis programmes 
handle the tedious calculations for regression and correlation and the researcher would 
seldom have need to compute sums of squares and regression weights from raw data. 
However, it is important that you understand how these quantities are derived because 
sums of squares and mean squares appear in the regression and ANOVA output of many 
propriety statistical packages. 

Significance tests and confidence intervals for the slope of the line as well as 
confidence intervals for the mean value of the response variable, for a given value of 
xi, and a prediction interval can be calculated once the regression model has been 
determined. 

1 Computation of Sums of Squares and Cross Product Sums of Squares 

The total corrected sums of squares for Y is given by: 

 
Total 

correct
ed 
Sums of 
Squares 
for Y—
8.3 

The corrected sums of squares is the same as the sum of squared deviations about the 
mean (recall the idea of least squares regression to sum the squared deviations about the 
regression line, which goes through the mean of Y). 

A correction term, is subtracted from the total sums of squares to give the 
corrected total sums of squares. This is done to correct for the fact that the original values 
of the variable Y were not expressed as deviations from the mean of Y. To calculate the 
corrected sums of squares the following values are required: ΣY2 and ΣY. The terms ΣX2 
and ΣX will also be required for computing the corrected sums of squares for X (SSXX), 
and ΣXY will be needed to compute the corrected sums of squares for cross products XY 
(SSXY). These values are most easily computed if a table is set out as follows: 

VARIABLES 
Y Y2 X X2 XY 
110 12100 5 25 550
133 17689 10 100 1330
109 11881 5 25 545
114 12996 3 9 342
128 16384 8 64 1024
109 11881 5 25 545
119 14161 8 64 952
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119 14161 5 25 595
95 9025 1 1 95
118 13924 6 36 708

ΣY2=134202 ΣX2=374ΣXY=6686

ΣY=1154   ΣX=56     
n=10         

The corrected sums of squares for Y is therefore: 

 

  

The corrected sums of squares for X, is calculated in a similar way, substituting values of 
X for Y and is 60.4. 

The corrected sums of squares for the cross product XY, denoted SSXY, is calculated as 
follows: 

 Sums 
of 
squares 
for 
cross 
product 
XY—
8.4 

which is  

2 Parameter Estimates 

The regression statistic, b1, which estimates the regression slope parameter is given by: 

 
Estimate 

of 
regression 
slopepara
meter—8.5 

The regression statistic, b0, which estimates the regression intercept parameter is given 
by: 

Estimate 
of intercept 
parameter
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—8.6 

The variation of the response variable, Y, about the fitted regression line is called the 
sums of squared residuals and is crucial in interpreting model fit. The square root of this 
value divided by the appropriate degrees of freedom is the standard deviation of the 
residuals and provides an indication of how well the regression line fits the sample data. 
This statistic, which estimates σ, the population standard deviation of error about the 
regression line, is called the root mean square error (RMSE) in SAS statistical output. 
It is evaluated as: 

 

  

where SSe=SSYY−b1SSXY 
=1030.4−(3.701987×223.6) 
=202.636 (it is important not to round the value of b1 as this will lead to large errors in 

the estimate) 
The degrees of freedom for the error component are estimated as n, the number of data 

points, less the number of estimated parameters in the model, that is n−(the number of b 
parameters). In a simple linear regression model with one explanatory variable there are 
two b parameters, b0 (intercept) and b1 (slope). With ten cases the appropriate degrees of 
freedom, in this example are 8. The value of RMSE is therefore (202.636/8)0.5=5.0328. 

3 Regression Model 

The least squares regression line can therefore be written as: Predicted value of 
SMATHS=94.7+3.7(MATHS) 

Interpretation 

We should first note that the slope parameter is positive, this means that an increase in 
teachers’ estimated maths ability (MATHS) is associated with an increase in the pupils’ 
maths attainment score on a standardized test (SMATHS). Since the slope represents the 
change in standardized maths score per unit change in teachers’ estimate, we can say that 
for every 1-mark increase in the teachers’ estimate of a pupil’s ability we can estimate an 
increase in standardized maths attainment score of 3.7. On the teachers’ rating scale there 
was no value of zero (it was assumed that none of the pupils would have zero ability), 
therefore an X value of zero is not meaningful and interpretation of the Y intercept has 
little practical value. 

Once the least squares regression line has been determined (provided the assumptions 
are valid) it is possible to predict the standardized maths score of a pupil who the teacher 
estimates as having a maths ability rating score of 7 as follows: Predicted standardized 
maths score=94.7+3.7(7)=120.6. 
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Significance Tests and Confidence Intervals 

Significance test for overall model fit 

For a simple linear regression model with one explanatory variable and ten cases, the 
sources of variation (sums of squares, SS) and degrees of freedom can be partitioned as 
follows: 

y= β0 + β1x1 + ε 
SSY   SSmodel     SSe 
Total Model sums of squares   Error sums of squares 
df=n−1 df for model=(number of parameters in model−1) df=n−(number of b parameters) 
9 (2–1)=1   8 
Mean square model=SSmodel/dfmodel   Means square error=SSe/dferror 

The model sums of squares, SSmodel is evaluated by subtraction of the error sums of 
squares from the total corrected sums of squares. That is SSmodel=(SSYY−SSe) 
=(1030.4−202.636)=827.764.  

The MSmodel term is then evaluated as=827.764/1=827.764 (associated df=1). The 
MSerror term is 202.636/8=25.329 (associated df=8). 

If the model makes a significant contribution to the prediction of the response variable 
then SSmodel should be greater than SSe. This is, in fact, equivalent to the alternative 
hypothesis when expressed in terms of the mean squares, H1: MSmodel> MSerror>1. 

The null hypothesis tested is, H0: MSmodel=MSerror=1. The test statistic used is F. This 
null hypothesis is a test of the strength of the linear relationship between the explanatory 
variable(s) and the response variable. An F statistic close to 1 would indicate that the null 
hypothesis of no linear relationship is true. As the F statistic increases in size this 
provides evidence for the alternative hypothesis that there is a linear relationship between 
the response and explanatory variables, i.e., rejection of the null hypothesis. In this 
example, F=MSmodel/MSerror=827.764/ 25.329=32.680 with 1 and 8 df. 

Interpretation 

To evaluate the statistical significance of the obtained F-statistic we refer to Table 7, 
Appendix A4, Critical values of the F-distribution. If we select a 5 per cent significance 
level (there is one table for each level of significance) and want to look up the critical F-
value using this table we need to know the two degrees of freedom which are associated 
with our observed F-statistic. In this example the values with which we enter the table are 
1 (numerator) and 8 (denominator). In Table 7, the numerator df are shown along the top 
row and the denominator df are shown down the left column. We therefore locate 1 on 
the top row and follow the column down until we intersect with 8 for the denominator df. 
The critical value of F entered in the table is 5.32. Since the obtained value of F is larger 
than the tabled critical value, 32.68>5.32, we can reject the null hypothesis and conclude 
that the independent variables, just one in this case, makes a significant contribution to 
the prediction of the response variable. 
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The statistic RMSE is an estimate of the variation of the response variable about the 
population regression line. It is sometimes referred to as the residual standard deviation 
of Y about the regression line. The sum of squared residuals, SSres (which is given in SAS 
output for PROC REG if the residual option is specified), if divided by n−2 and then 
square rooted, is equivalent to RMSE. The residual standard deviation of residuals is 
calculated as: 

 
Standard 

deviation of 
residuals—
8.7 

The sampling distribution of RMSE (equivalent to the sampling distribution of the 
standard deviation of the residuals) is normal and we would therefore expect that most of 
the observed values of y would be within +/−1.96×RMSE=(1.96× 5.0328)=9.864 of the 
least squares predicted values of Y. This provides another indication of the extent of 
model fit. Once the overall significance of the least squares regression line has been 
established, we can then examine in more detail the parameter estimates. 

Statistical test for a regression slope 

After a suitable regression model has been fitted to the data and a least squares prediction 
equation determined, a significance test for the regression slope can be performed. When 
there is only one explanatory variable in the model there will be only one slope parameter 
to estimate and hence only one significance test for the slope. In a multiple regression, 
however, there will be a parameter estimate and a significance test for each explanatory 
variable in the regression model. 

The test of the significance of the slope provides information on the utility of the 
regression model, that is whether the linear regression model explains variation in the 
response variable. The null hypothesis tested is as shown in an earlier section, H0: β1=0. 
The alternative hypothesis is that the variables X and Y are linearly related, H1: β1≠0. This 
means that the variable X makes a significant contribution to the prediction of the 
variable Y. The null hypothesis is tested by computing the ratio of the parameter estimate 
to its standard error (b1/standard error of b1) and comparing this with the sampling 
distribution of the t-statistic with n−2 degrees of freedom. 

The standard error of b1, denoted as is: 

 
Standard 

error of 
slope—8.8 

In this example the significance of the slope is evaluated as: 
t=3.702/0.6476=5.716, with n−2 df.   
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Interpretation 

With a significance level of 5 per cent, a two-tailed test, and df=8 (10–2), the critical t-
value shown in Table 3, Appendix A4 is 2.306. Since the calculated value falls beyond 
this critical value, 5.716>2.306, we can reject the null hypothesis and conclude that a 
simple linear model describes the predictive relationship between the variables MATHS 
and SMATHS. With a two-parameter regression model, intercept and one explanatory 
variable, the null hypothesis, H0: β1=0 and test statistic value, t=5.716 are equivalent to 
the null hypothesis of model fit given by the F-statistic, because F=t2. The t-value is 
equal to 32.6800.5=5.717 which is the value obtained earlier (allowing for rounding 
errors). 

Use of the t-statistic for testing model fit when there is one explanatory variable is 
preferable to the F-statistic because it allows for one-sided alternative hypotheses to be 
tested, namely H1: β1>0 or H1: β1<0, where t has n−2 df. The rejection region for the two-
sided test is the absolute value of t>t1−α/2, where t1−α/2 is the t-value such that 
α/2=p(t>t1−α/2). For a one sided test, t>t1−α where t1−α is the t-value such that α=p(t>t1−α).  

Confidence interval for the regression slope 

Whenever possible we should calculate a confidence interval as well as a p-value for a 
test of significance. Confidence intervals for a regression slope, similar to the tests of 
significance, are based on the sampling distribution of t (the slope estimate b1 is 
approximately normally distributed). The 95 per cent confidence interval for the 
population value of the regression slope is evaluated using equation 8.2. For a 95 per cent 
CI around the slope relating teachers’ estimate of maths ability to pupils’ maths 
attainment, with the values alpha=0.05, df=n−2 (=8), b1= 3.7019, and 
t1−α/2=t0.025=2.306, when we substitute these into equation 8.2 we obtain: 

3.7019−(2.306×0.6475) to 3.7019+(2.306×0.6475)   

The 95 per cent confidence interval estimates are 2.2087 to 5.1950. 

Interpretation 

The confidence interval does not include zero and all the values are positive so it is 
reasonable to conclude that we would be 95 per cent confident of finding a positive 
relationship in the population between teacher estimated maths ability and pupils’ maths 
attainment on the standardized test. (This conclusion would be reasonable if we had 
obtained these results with a larger sample.) We would expect the mean standardized test 
score to increase with every unit increase in teachers’ estimated ability scores, this 
increase may range from 2.209 to 5.200 with the average unit increase being 3.70. 
However, this is a rather large confidence interval width and is likely to be attributable to 
the small sample size (n=10). With a larger sample the confidence interval width is likely 
to be reduced. 
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Confidence Interval Limits for the Predicted Mean Response 

The 95 per cent CI limits for the predicted mean response with a fixed value for the 
explanatory variable, in this example, 8, is given by: 
Ŷ−[t1−α/2 SE Ŷ] to Ŷ+[t1−α/2 SE Ŷ] 

CI 
for 
mea
n 
resp
onse
—8.9 

where Ŷ, the predicted mean value obtained from the regression equation when xi=8 is: 

 

  

The 95 per cent CI is therefore 124.285−[2.306×2.2245] to 124.285+ 
[2.306−2.2245]=119.155 to 129.415 

When this calculation is made for all of the observed values of xi in the sample, these 
confidence intervals can be plotted (see the output from PROC GPLOT in Figure 8.7b). 

Interpretation 

We can predict that the population mean for the response variable, SMATHS, will lie 
within the range 119 to 129 given a value of 8 for the explantory variable. Note that the 
population mean is a fixed parameter and it is the sample estimates which will vary from 
sample to sample. Any inference based on results would only be valid for the target 
population from which the sample was selected. The large width of the confidence 
interval here is probably attributable to the small sample size. 

Confidence Intervals for an Individual Response Score (Prediction 
Interval) 

A computational procedure similar to that in the previous worked example is followed 
when a prediction interval is estimated. A 95 per cent CI for the prediction interval is 
given by, 
Ŷ−[t1−α/2Spred] to Ŷ+[t1−α/2Spred] 

CI 
for 
indiv
idual 
resp
onse
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—
8.10 

where Ŷ, the predicted value obtained from the regression equation when xi=8 is the same 
as in the previous example (124.285), Spred is the estimated standard deviation of 
individual values of y when x is the specified value xi, and, 

 

  

The 95 per cent CI is therefore 124.285−[2.306×5.5024] to 124.285+[2.306× 
5.5024]=111.596 to 136.974. 

Interpretation 

We would be 95 per cent confident that a pupil with a teacher estimated maths ability 
score of 8 would have a standardized maths attainment score within the interval 112 to 
137. Notice that the interval width for prediction of an individual score is larger than the 
width when predicting a mean score. These prediction intervals can be plotted for each 
case in the data set, and if they are compared with a similar plot for the mean response, it 
will be seen that the confidence intervals for the individual predictions are much wider 
(see Figure 8.7c). The confidence interval does not include zero which indicates that a 
teacher’s estimate of a pupil’s maths ability is a significant predictor of that pupil’s 
attainment on a standardized maths test. 

Computer Analysis 

Whereas the worked examples demonstrate the general principles of regression analysis, 
it is clear that such computations are both time consuming and tedious to perform. In 
most research situations the researcher will use a propriety statistical package to perform 
these analyses. The same data and the same regression model is now analysed using the 
least squares regression procedure in SAS called PROC REG. In this section the 
appropriate SAS code is described and related to the tests for regression assumptions. In 
the next section interpretation of the output is discussed. 

The procedure PROC REG is a general purpose interactive procedure in SAS that fits 
linear regression models by least squares. PROC REG can also produce scatter plots of 
variables, diagnostic plots and regression and diagnostic statistics. The parameter 
estimates in the linear model are adjusted to optimize the model fit. 

Assuming that the data has been input screened and edited and an initial regression 
model formulated which is based on theoretical/empirical considerations, an extension of 
IDA means standard deviations and corrected sums of squares should be calculated for all 
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variables in the candidate model. The following SAS code produces these statistics for 
the two variables SMATHS and MATHS. 

proc means maxdec=3 fw=10 n nmiss min max range mean 
std stderr 
           uss CSS t prt; 
var maths smaths; 
run; 

The SAS output is shown: 
Variable Label N Nmiss Minimum Maximum Range
MATHS 10 0 1.000 10.000 9.000
SMATHS 10 0 95.000 133.000 38.000
Variable Label Mean Std Dev Std Error 
MATHS   5.600 2.591 0.819
SMATHS   115.400 10.700 3.384
Variable Label   USS CSS  T  Prob>|T|
MATHS 374.000 60.400 6.836 0.0001
SMATHS 134202.000 1030.400 34.105 0.0001

Notice under the heading CSS that the corrected sums of squares for both the response 
variable SMATHS and the explanatory variable MATHS correspond with the values for 
the sums of squares for Y and X computed in step 1 of the worked example (see pp. 265–
6). 

An important regression assumption to check is whether there is a linear trend between 
the independent and response variable. A separate plot of the response variable SMATHS 
against the explanatory variable MATHS could be performed but this output can also be 
produced by PROC REG which is more convenient and has the advantage of allowing an 
overlay plot to be produced. The overlay plot which is a plot of response against 
explanatory variable—with a plot of predicted scores against the explanatory variable 
overlayed—gives a visual indication of model fit by showing the extent to which the 
observed scores are scattered about the fitted regression line (indicated by the plot of 
predicted values). 

The SAS code that generates the regression output and the overlay plot is: 

proc reg; 
  model smaths=maths /p r clm cli; 
  output out=outreg p=p r=r; 
  id id; 
run; 
proc plot data=outreg vpercent=75 hpercent=75; 
  plot smaths*maths='#' p*maths='*' / overlay; 
title1 'Plot of Observed response var vs Independent 
var (#) and'; 
title2 'Predicted values vs Independent var (*)'; 
run; 
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The first line of code, PROC REG, is the beginning of the regression procedure. The next 
line contains the model statement which is required to fit a regression line. Here the 
model statement tells SAS to fit a linear regression model with the response variable 
SMATHS and one explanatory variable MATHS. The options after the forward slash tell 
SAS to i) calculate predicted values (p) for the specified model. (This option is 
unnecessary if any of the options R, CLI or CLM are specified. It is only entered in the 
code here to explain its function); ii) produce residuals (r) and the standard errors of the 
predicted and residual values; iii) calculate and print the 95 per cent lower- and upper-
confidence interval limits for the mean value of the response variable for each 
observation (CLM); iv) calculate and print the 95 per cent lower- and upper-confidence 
interval limits for a predicted score (CLI). The OUTPUT statement produces an SAS 
output data set called ‘outreg’ containing the predicted scores, residuals and a number of 
statistics. 

The procedure PROC PLOT uses the data set created by the regression procedure to 
produce two diagnostic plots (VPERCENT and HPERCENT simply reduces the size of 
the plot to 75 per cent of the page length). The first plot is response against explanatory 
variable and is indicated in the plot by the symbol #. The second plot which overlays the 
first, hence the different plotting symbol*, shows the predicted values against the 
explanatory variable. This is the fitted linear regression line. SAS output for the overlay 
plot is shown in Figure 8.1.  
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Figure 8.1: Overlay plot of response 
vs. explanatory and predicted vs. 
explanatory variables 

The normality assumption is checked by examining a normal probability plot of the 
residuals from the fitted model. This is produced by the following SAS code:  

proc univariate data=outreg plot; 
  var r; ** r represents the residuals from PROC REG 
**; 
run; 

The SAS plot of the residuals is shown in Figure 8.2.  
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Figure 8.2: Normal probability plot of 
residuals 

The assumption of constant variance of errors is checked by plotting residuals against 
predicted values. The SAS code that produces the plot in Figure 8.3 is 

proc plot; 
  plot r*p='*;' / vref=0; 
title 'Plot of Residuals vs Predicted'; 
run; 

The option/VREF places a reference line on the plot at zero.  

 

Figure 8.3: Plot of residuals vs. 
predicted values for data in Table 8.2 

If data were collected over time there may be a time series (trend), this would be 
checked by plotting residuals against case number (ID). The SAS code is  
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proc plot; 
   plot r*id=‘*’/vref=0; 
  title 'Plot of Residuals vs Case Number (id)'; 
run; 

The SAS output is shown in Figure 8.4.  

 

Figure 8.4: Plot of residuals vs. case 
number (ID) for data in Table 8.2 

A check on the adequacy of model fit can be seen visually by plotting the residuals 
against each independent variable. Output for this plot is shown in Figure 8.5.  
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Figure 8.5: Plot of residual vs. maths 
score (explanatory variable) 

The regression output produced by PROC REG for the maths data presented in Table 8.2 
is shown in Figure 8.6. 

Model: MODEL1 
Dependent Variable: SMATHS 

Analysis of Variance 
Source DF Sum of Squares Mean Square F Value Prob>F
Model 1 827.76424 827.76424 32.680 0.0004
Error 8 202.63576 25.32947     
C Total 9 1030.40000       

  Root MSE 5.03284 R-square 0.8033 
  Dep Mean 115.40000 Adj R-sq 0.7788 
  CV .4.36121    

Parameter Estimates 
Variable DF Parameter 

Estimate 
Standard Error’ T for H0: 

Parameter=0 
Prob>|T| 

INTERCEP 1 94.668874 3.96032096 23.904 0.0001 
MATHS 1 3.701987 0.64758172 5.717 0.0004 
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Obs ID Dep Var 
SMATHS 

Predict 
Value 

Std Err 
Predict 

Lower 
Mean 

95% Upper 
95% Mean 

Lower 
95% 

Predict 
1 17 110.0 113 1.638 109.4 117.0 101.0 
2 18 133.0 131.7 3.264 124.2 139.2 117.9 
3 19 109.0 113.2 1.638 109.4 117.0 101.0 
4 20 114.0 105.8 2.317 100.4 111.1 92.9984 
5 24 128.0 124.3 2.225 119.2 129.4 111.6 
6 27 109.0 113.2 1.638 109.4 117.0 101.0 
7 28 119.0 124.3 2.225 119.2 129.4 111.6 
8 29 119.0 113.2 1.638 109.4 117.0 101.0 
9 60 95.0000 98.3709 3.377 90.5826 106,2 84.3941 

10 61 110.0 116.9 1.612 113.2 120.6 104.7 
Obs 10 95% 

Predict 
Residual Err 

Residual 
Student 
Residual

–2–1–0 1 2   

1 17 125.4 −3.1788 4.759 −0.668 *| | 
2 18 145.5 1.3113 3.831 0.342 | | | 
3 19 125.4 −4.1788 4.759 −0.878 | *| | 
4 20 118.6 8.2252 468 1.841 | *** | 
5 24 137.0 3.7152 .515 0.823 | * | 
6 27 125.4 −4.1788 4.759 −0.878 *|   
7 28 137.0 −5.2848 4.515 −1.171 | **| | 
8 29 125.4 5.8212 4.759 1.223 | ** | 
9 60 112.3 −3.3709 3.731 −0.903 *| | 

10 61 129.1 1.1192 4.768 0.235 | | | 
obs ID Cook’s D           

1 17 0.026           
2 18 0.043           
3 19 0.046           
4 20 0.456           
5 24 0.082           
6 27 0.046           
7 28 0.166           
8 29 0.89           
9 60 0.334           

10 61 0.003           
Sum of 
Residuals 

0 

Sum of Squared 
Residuals 

202.6358 

Predicted 
Resid SS 
(Press) 

316.6016 
 

Figure 8.6: Regression output for data 
shown in Table 8.2 
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A refinement on the regression plot which shows the fitted regression line (see predicted 
vs. explanatory variable in Figure 8.1) can be produced by using PROC GPLOT. This 
produces a least squares fitted line and prints this on the plot. This output would be 
suitable for inclusion in a report or research paper. SAS code to produce the fitted 
regression line as well as plots of the 95 per cent confidence intervals for a mean 
response and a 95 per cent prediction interval (individual response), is shown in Figure 
14, Appendix A3. The output for these three plots is shown in Figures 8.7a–c. The 95 per 
cent confidence interval for the mean standardized maths score for the mean teachers’ 
score is narrower than the comparable 95 per cent confidence interval for individual 
observations (compare Figures 8.7b and 8.7c).  

 

Figure 8.7a: Fitted least squares 
regression line for prediction of 
standardized maths ability score from 
teacher estimate of maths ability 
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Figure 8.7b: Fitted least squares 
regression line for prediction of 
standardized maths ability score from 
teacher estimate of maths ability with 
95 per cent confidence level for mean 
predicted values 

Interpretation of Computer Output 

The overlay plot shown in Figure 8.1 indicates that the model fits the data reasonably 
well, the data points are scattered randomly about the regression line and there are no 
obvious outliers. Look for plotted points, #, being some distance from the main cluster of 
other points, or for points that are distant from the fitted regression line (plotted by *). 
The normal probability plot (see Figure 8.2) indicates that the residuals are reasonably 
normal (see Chapter 5 for interpretation of normal probability plots). 

The plot of residuals against predicted values shown in Figure 8.3 would ideally have 
a random scatter of points around the reference line (mean of zero). There is a suggestion 
of non-constant variance in this plot because of the funnel shape indicating that the 
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variance reduces as the response values increase. With so few data points such an 
interpretation of this actual plot would not be sensible. 

The plot of residuals vs. case ID in this example has no meaning because the data were 
collected at the same point in time. The adequacy of model fit is shown  

 

Figure 8.7c: Fitted least squares 
regression line for prediction of 
standardized maths ability score from 
teacher estimate of maths ability with 
95 per cent confidence level for 
individual predicted values 

in Figure 8.5 where residuals are plotted against the explanatory variable. Again the 
suggestion of a pattern to the data, a funnel shape, narrowing as MATHS score increases, 
is indicative of a non-linear relationship, i.e., lack of model fit. It will be clear by now 
that interpretation of residual diagnostic plots is somewhat subjective and if you have any 
doubts about the model fit then try different variables or combinations of variables and 
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consider deleting outlier data points. The next section of output provides results of 
statistical tests of model fit and parameter estimates. 

The first section of SAS printout shown in Figure 8.6 is an ANOVA table for 
regression which provides information on sources of variation in the response variable 
and overall model fit. The first line of output identifies a model label which, by default, is 
assigned MODELl. Following this the response variable, SMATHS is labelled. The 
sources of variation in the response variable are partitioned into model variation 
accounted for by the linear regression, and error variation that is all other sources of 
variation in the response variable. The corrected total sums of squares, printed as C total 
in the output, is the total variation in the response variable (the sum of model and error). 
Associated degrees of freedom and sums of squares for these sources of variance are 
printed in the output. These values are the same as the values computed in the worked 
example. The TOTALdf is given by n−1 where n is the number of cases, MODELdf is 
equivalent to the number of explanatory variables, one degree of freedom is assigned to 
the intercept, and ERRORdf is given by n (number of b parameters). 

The mean square (MS) values are the sums of squares divided by their appropriate 
degrees of freedom. The F-test, which is a test of overall model fit, is the MSmodel/MSerror, 
again this is the same F-value as that obtained in the worked example. Here the small p-
value associated with the F-statistic indicates that it is probable that MSmodel>MSerror, that 
is the null hypothesis is rejected and we conclude that the least squares regression line 
explains a significant proportion of the variation in the response variable. An estimate of 
the proportion of this explained variation is given by the coefficient of determination 
labelled R-square in the SAS output. More precisely, this statistic provides a measure of 
the variation in the response variable about its mean that is explained by the linear 
regression line. It is evaluated as 1−(SSerror/SStotal) which in this example is 1–0.1967 = 
0.803. We can say that about 80 per cent of the sample SMATHS scores are explained by 
the least squares regression model. 

The coefficient of determination is equivalent to the Pearson correlation squared (r2) 
between the explanatory and independent variable and is sometimes called r squared. In a 
multiple regression the statistic R2 is called the squared multiple correlation and it 
represents the proportion of variation in the response variable explained by the linear 
combination of explanatory variables. The Multiple Correlation R is the correlation 
between the observed and predicted scores on the response variable. An r2 (Pearson 
correlation squared) or R2 of zero would indicate no linear relationship and a value of 1 
would suggest a perfect linear relationship. In the SAS output a value for an Adjusted R-
square is printed. This is evaluated as 1−MSerror/MStotal which in this example is 
1−0.2212=0.7787. This value is less than the unadjusted R2 because it accounts for both 
sample size, and in multiple regression the number of explanatory variables in the model. 
Too much importance should not be attributed to the interpretation of R2 without 
considering the substantive meaning of the regression model. That is, does the model 
make sense and are there any redundant variables? It is recommended that the adjusted R2 
be used when comparing multiple regression models because it adjusts for the number of 
parameters in the regression model (independent variables). 

Also contained in the ANOVA table is the Root MSE value, the square root of the 
mean square error which can be interpreted as the variation of the response variable about 
the fitted regression line in the population (an estimate of the parameter σ). The response 
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variable mean is printed as well as the coefficient of variation, CV which is a unitless 
measure of variation evaluated as (RMSE/ mean of the response variable)×100. 

The next section of output contains the parameter estimates. In Figure 8.6 there are 
two parameter estimates, the intercept and MATHS. Point estimates for the parameters 
and associated standard errors are also printed, these values corres-pond with the values 
in the worked example (see formulas 8.5 and 8.6). Interpretation of these parameter 
estimates is also the same. The t-test for the hypothesis of zero regression slope is 
printed. The t-value, evaluated as the ratio of the parameter estimate to its standard error 
is 5.717, which has an associated p-value of 0.0004. This indicates that the variable 
MATHS makes a significant contribution to the prediction of the response variable 
SMATHS. If the parameter estimate is more than twice its standard error this suggests 
that the explanatory variable is significant at the 5 per cent level. 

The last section of output in Figure 8.6 contains a printout of predicted values and 
residuals scores for the fitted model as well as statistics for regression diagnostics. These 
latter diagnostic statistics are not particularly informative. Student Residuals, evaluated as 
residual/SEresidual, are printed and shown in a schematic plot. They are interpreted as a t-
like statistic. Two diagnostic statistics are also printed, Cook’s D a kind of influence 
statistic and a Press statistic. The former indicates what effect a particular observation has 
on the regression when an observation is deleted. Look at the change in the predicted 
value. The Press statistic (the sum of the squared press residuals) is interpreted in a 
similar way. For both statistics, the smaller they are the better. Finally, the sum of 
squared residuals is printed; notice this is the same as the error sums of squares in the 
ANOVA part of the output. 

8.3 Pearson’s Correlation r 

When to Use 

The Pearson product moment correlation, r, may be used as a sample estimate of the 
population correlation, ρ (rho). It is a dimensionless index of the linear relationship 
between two random variables, a value of zero means that there is no linear relationship 
between the variables and a score of one indicates a perfect linear relationship. If a 
correlation is negative it means that high values on one variable are associated with low 
values on the other variable. Values of r may vary between −1 and +1 irrespective of the 
dimensions of measurement of two variables (assuming they approximate at least an 
interval level of measurement). Thus the correlation between age, measured in months, 
and a teacher’s estimate of maths ability, measured on a 10-point scale, would be 
unaffected by the units of measurement (but may well be affected by the different 
measurement ranges of each variable—p. 285). A partial correlation is an index of the 
relationship between two variables while partialling out the effect (holding constant) of a 
third variable. 

The Pearson correlation, r, should be considered as a descriptive statistic when a 
researcher wants to quantify the extent of linear relationship between variables. A 
parametric correlation would be appropriate whenever quantitative measures are taken 
simultaneously on two or more variables, the relationship between the two variables is 
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linear and both variables are normally distributed. Correlations should always be 
examined prior to more sophisticated multivariate analyses such as factor analysis or 
principal component analysis. The extent of a linear relationship between two variables 
may be difficult to judge from a scatterplot and a correlation coefficient provides a more 
succinct summary. However, it would be unwise to attempt to calculate a correlation 
when a scatterplot depicted a clear non-linear relationship. When a researcher is 
interested in both the extent and the significance of a correlation then r is used in an 
inferential way as an estimate of the population correlation, ρ (rho). 

Statistical Inference and Null Hypothesis 

As well as estimating the size of the population correlation we may want to test whether 
it is statistically significant. In testing this hypothesis the same logic is followed as that 
described in Chapter 7 when testing the significance of a nonparametric correlation. The 
null hypothesis is H0: ρ=0, that is, the variable X is not linearly related to the variable Y. 
The alternative hypothesis is H1: ρ≠0. The null hypothesis is a test of whether any 
apparent relationship between the variables X and Y could have arisen by chance. The 
sampling distribution of r is not normal when the population correlation deviates from 
zero and when sample sizes are small (n<30). For tests of significance r is transformed to 
another statistic called Fisher’s z (which is not the same as the Z deviate for a normal 
distribution). 

Assumptions 

In some statistical texts for social scientists it is asserted that to use the Pearson 
correlation both variables should have a normal distribution, yet in other texts it says that 
the distributions of both variables should be symmetrical and unimodal but not 
necessarily normal. These ideas cause great confusion to researchers and need to be 
clarified. If the correlation statistic is to be used for descriptive purposes only, then 
normality assumptions about the form of the data distributions are not necessary. The 
only assumptions required are that 

• quantitative measures (interval or ratio level of measurement) are taken simultaneously 
on two or more random variables; 

• paired measurements for each subject are independent. 

The results obtained would describe the extent to which a linear relationship would apply 
to the sample data. 

This same idea applies to the descriptive use of regression statistics. Should the 
researcher wish to make any inference about the extent of a population linear relationship 
between two variables or in a regression context to make a prediction which went beyond 
the sample data, the following assumptions should be met: 

• Two random variables should be linearly related, but perfect linearity is not required as 
long as there is an obvious linear trend indicated by an elliptical scatter of points 
without any obvious curvature (look at the scatterplot). 

• The underlying probability distribution should be bivariate normal, that is the 
distribution of the variable X and the distribution of the variable Y should be normal 
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and the joint distribution of these variables should be normal (for all values of xi, the 
conditional distribution of yi is normal and vice versa). This particular assumption is 
required for hypothesis tests of statistical relationships to be valid. 

Cautionary comments about use of r 

These are not strictly assumptions but are typical research situations when Pearson’s r 
either should be interpreted with great caution, or should not be used at all. 

• When the variances of the two measures are very different, often associated with 
different ranges or possibly a restricted range for one variable, then the sample 
correlation is affected. For example, if one variable was to suffer from range 
restriction, (part of the score range not used or not appropriate) then this would tend to 
attenuate (lower) the correlation between the two variables. The reader is referred to 
an informative chapter on reliability and validity (Bartram, 1990) for discussion of this 
problem. 

• When outliers are present, r should be interpreted with caution. 
• When the relative precision of measurement scales/instruments differ. Measurement 

error will reduce the size of a correlation and r should therefore be interpreted with 
caution. 

• When observations are taken from a heterogeneous group, for example, different 
subgroups in the sample such as age groups, then r should be interpreted with caution. 

• When data is sparse (too few measures available), r should not be used. With too few 
values it is not possible to tell whether the bivariate relationship is linear. The Pearson 
correlation r is most appropriate for larger samples, (n>30). 

• The correlation r should not be used when the values on one of the variables are fixed in 
advance. 

Example from the Literature 

In an empirical study to examine the relationships between adolescent attitudes towards 
Christianity, interest in science and other socio-demographic factors, Fulljames, Gibson 
and Francis (1991) used an attitude questionnaire to survey 729 secondary school pupils. 
Attitude towards Christianity was measured by a 24-item scale with known reliability and 
validity indices, index of interest in science was measured by a four-item scale, and 
pupils’ mothers’ and fathers’ church attendance were each measured on a five-point scale 
from ‘never’ to ‘weekly’. 

The authors reported that the first stage of the analysis involved assessing the 
psychometric [measurement] properties of the indices, (reliability coefficients and 
Cronbach alphas were reported but data distributions were not), the second stage of 
analysis involved inspection of bivariate relationships (correlations). Part of the 
correlation matrix of the variables reported by the authors is shown in Table 8.3:  

Table 8.3: Correlation matrix of the variables in 
Fulljames’ et al., study of adolescent attitudes 

  Attitude towards Fathers’ church Interest in 
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Christianity attendance science 
Attitude towards – +0.4573 −0.0926 
Christianity – p=0.001 p=0.010 
Father’s church – – −0.0179 
attendance     p=ns 
Interest in 
science 

– – – 

The authors reported that there were significant relationships between attitude towards 
Christianity and interest in science, and between Fathers’ church attendance and their 
sons’ or daughters’ attitude towards Christianity. The authors went on to caution that 
whereas a simple bivariate correlation coefficient is able to demonstrate where significant 
covariation exists between variables, it is not able to detect whether this covariance is the 
artefact of other significant relationships. It is therefore wise to delay interpretation of 
bivariate relationships between variables until the complex patterns of inter-relationships 
between all the variables have been ordered into some sequence according to 
hypothesized relationships. 

In this study the correlation analysis was used in both a descriptive and inferential 
way. The pattern of relationships between variables was scrutinized prior to a third phase 
of the analysis which involved causal modelling of the data using path analysis. As 
results of statistical significance tests were reported the data was clearly used in an 
inferential way. Although no mention was made about whether the data met the 
assumptions required for correlational analysis, as in most papers, the reader has to 
assume, in the absence of any specific information, that the variables are linearly related 
and have an underlying bivariate normal distribution. 

The null hypotheses tested were of the type, ‘there is no linear relationship between 
attitude towards Christianity and attitude towards science’ or put simply these two 
attitudes are independent. The authors concluded, following a path analysis of the data, 
(causal modelling of relationships between variables) that whereas there was a significant 
negative correlation between Christianity and attitude towards science, interest in science 
did not influence attitude towards Christianity—a good example of the need for caution 
when interpreting the meaning of significant correlations. 

Prior to drawing conclusions from these findings and correlational data in general, the 
reader might want to consider answers to questions such as: What is the shape of the data 
distributions? What evidence is presented related to underlying assumptions required for 
correlational analysis? Are the samples random, and if yes, what is the population? Is a 
hypothesis test really needed? What guidance does the author give on the substantive 
meaning of the size and significance of the correlations? 

Worked Example 

Correlation and regression are closely related techniques and therefore data from the 
worked example in section 8.2 (shown in Table 8.2) is used to show how the Pearson 
correlation r is computed from raw data. To illustrate computation of a partial correlation, 
another variable, a Raven score, is added. This is a standardized (age adjusted) measure 
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of reasoning ability and is often used as an indication of intelligence (IQ). The data is 
shown in Table 8.4.  

Table 8.4: Teacher estimate of pupil maths ability 
(MATHS), standardized maths attainment 
(SMATHS) and Raven score (RAVEN) for ten 
pupils 

ID MATHS SMATHS RAVEN
17 5 110 1
18 10 133 1
19 5 109 2
20 3 114 1
24 8 128 1
27 5 109 1
28 8 119 2
29 5 119 1
60 1 95 7
61 6 118 1

Two research questions are considered: i) Is SMATHS linearly related to MATHS? and 
ii) Is RAVEN score linearly related to MATHS? To obtain a visual impression of the 
strength of any linear relationships between these variables two scatterplots are produced: 
a plot of MATHS vs SMATHS (plot symbol *) and a plot of MATHS vs RAVEN scores 
(plot symbol #), see Figure 8.8.  
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Figure 8.8a: Bivariate scatterplot for 
data in Table 8.2 

To obtain a quantitative index of the strength of a relationship, the Pearson r statistic 
would be calculated. The correlation between two variables, X and Y is denoted rXY. An 
equation for computing r which is an analogue of the correlation formula for Spearman’s 
correlation shown in Chapter 7 is, 

 

  

where X and Y are two random quantitative variables. This formula is equivalent to the 
cross product sums of squares (SSXY) divided by the square root of the sums of squares 
for X (SSXX) multiplied by the sums of squares for Y (SSYY). This can be written as,  
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Figure 8.8b: Bivariate scatterplot for 
data in Table 8.2 

Pearson 
correlatio
n r—8.11 

which is computationally an easier formula to use with a pocket calculator. 
Using the data in Table 8.4, for the variables MATHS and SMATHS, SSXY= 223.6, 

SSYY (MATHS)=60.4 and SSXX (SMATHS)=1030.4. (These correspond with the values 
calculated in the previous regression example). Using the general formula for calculating 
sums of squares, for the two variables MATHS and RAVEN,  
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The correlation between MATHS (M) and SMATHS (SM) is therefore 

and the correlation between MATHS (M) and 

RAVEN (R) is  

Interpretation 

The plot of MATHS*SMATHS suggests an approximate linear trend but the plot of 
MATHS*RAVEN appears to be non-linear as far as it is possible to tell with as small a 
sample as this. This later plot also has a very obvious outlier observation. If this pattern 
(for MATHS vs RAVEN) had been obtained with a larger sample, it would provide good 
evidence for not using a Pearson correlation statistic. It is noticeable that one variable, 
RAVEN has a smaller range and less variability in the scores than the other variable 
(SMATHS). 

The correlation between MATHS and SMATHS is strong and positive suggesting a 
linear relationship, higher scores on MATHS are associated with higher scores on 
SMATHS. The moderate negative correlation between MATHS and RAVEN is generally 
in keeping with what would be expected because smaller values on the Raven scale 
indicate higher reasoning ability and higher reasoning ability might be expected to be 
associated with higher maths ability scores. The scatterplot of this bivariate relationship 
indicates, however, that the relationship is not linear. When a correlation is consistent 
with what is expected it is easy to forget that there may not be a linear relationship 
between the two variables (the obvious benefit of examining scatterplots is demonstrated 
here). When a large correlation is found between two variables (rm.sm=0.89) it is tempting 
to attribute a cause and effect relationship. This is incorrect. The only valid conclusions 
to be drawn from these descriptive correlations is that there is a linear trend between 
MATHS and SMATHS but not between MATHS and RAVEN. It is important to stress 
that these interpretations are only illustrative, with a sample size of 10 a Pearson 
correlation would not be generally appropriate. 

Significance of Correlation r 

Once a correlation has been computed the researcher may want to know how likely is this 
obtained correlation, that is, is this a chance occurrence or does it represent a significant 
population correlation?  
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As with previous tests of significance the sampling distribution of the test statistic is 
used to determine whether the observed statistic is likely to have occurred by chance. 
Unfortunately, the sampling distribution of r is not normal in form when sample sizes are 
small (n<30) and when the population correlation deviates from zero. To overcome this 
problem r is transformed, and the probability of this estimator is based on the sampling 
distribution of the t-statistic. The significance of an obtained Pearson correlation is 
therefore evaluated using the t-distribution with n−2 degrees of freedom and is given by 
the following equation: 

 
Significance 

of r—8.12 

The null hypothesis tested is that the two variables are independent, that is there is no 
linear relationship between them, H0:ρ=0, and the rejection region (for the null 
hypothesis) is /t| (the absolute value of t)>t1−α/2. The alternative hypothesis is, H1:ρ≠0, and 
the rejection region (one sided-tests) is t<−t1−α or t>t1−α. 

To answer the question, Is there a significant correlation, at the 5 per cent level, 
between MATHS and RAVEN scores? t would be calculated as follows: 

 

  

Interpretation 

The critical t-value from Table 3, Appendix A4 is 2.306. The test statistic does not 
exceed this critical value, (2.070<2.306), and the null hypothesis is therefore not rejected. 
We would conclude that the correlation is not significant at the 5 per cent level. 

Confidence Intervals for Correlation r 

A 95 per cent confidence interval for the population correlation allows the accuracy, 
hence trustworthiness of any statistical inferences to be estimated. The confidence 
interval is based on a transformation of the statistic r to a statistic called Fisher’s z. This 
is not the same as the Z-deviate from a normal distribution (sometimes called a Z-score). 
To interpret the confidence interval the Fisher’s z-score has to be transformed back to the 
correlation metric. Fisher’s z is evaluated as, 

 

  

(SE is standard error)  
The 95 per cent CI for the bivariate correlation between SMATHS and MATHS 

(r=0.896) is 
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95 

per 
cent 
CI 
for 
r—
8.13 

Fisher’s z is  
and the 95 per cent CI is 

 

  

These values now have to be transformed back to the original metric. 

 

  

Interpretation 

We can conclude that we are 95 per cent certain that the population correlation is positive 
and is in the interval 0.61 to 0.98. This confidence interval does not include zero which 
indicates that the correlation is statistically significant at the 5 per cent level. 

Computer Analysis 

The SAS procedure PROC CORR with the option Pearson computes Pearson 
correlations. Sums of squares and cross product sums of squares can also be requested 
using the option CSSP. The relevant SAS code is: 

proc corr data=a pearson csscp ; 
  var maths smaths raven; 
run; 

The variables to be included in the correlation analysis are specified with the VAR 
statement. Output from this procedure is shown in Figure 8.9.  

Correlation Analysis 
3 VAR Variables: MATHS SMATHS RAVEN 
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Corrected Sum-of-Squares and Crossproducts 
    MATHS SMATHS RAVEN 
MATHS 60.400000 223.600000 −25.800000
SMATHS 223.600000 1030.400000 −125.200000
RAVEN −25.800000 −125.200000 31.600000

Simple Statistics 
Variable N Mean Std Dev Sum Minimum Maximum
MATHS 10 5.6000 2.5906 56.0000 1.0000 10.0000
SMATHS 10 115.4000 10.6909 1154 95.0000 133.0000
RAVEN 10 1,8000 1.8738 18.0000 1.0000 7.0000
Pearson Correlation Coefficients /Prob>|R| under Ho: Rho=0/N=10
    MATHS   SMATHS RAVEN  
MATHS 1.00000   0.89629 −0.59055
    0.0   0.0004 0.0723
SMATHS 0.89629   1.00000 −0.69384
    0.0004   0.0 0.0260
RAVEN −0.59055   −0.69384 1.00000 
    0.0723   0.0260 0.0

Figure 8.9: SAS output for bivariate 
correlations between the variables 
MATHS, SMATHS and RAVEN 

Interpretation 

The second line of output shown in Figure 8.9 contains the names of the variables 
included in the correlation analysis. This list of variables is followed by a table of the 
corrected sums of squares and cross products for the variables. The names of the 
variables form the rows and columns of this table. For example, the sums of squares for 
the variable RAVEN is found in the body of the table where the third row and third 
column intersect, the value here is 31.6. The cross product sums of squares is at the 
intersection of two different variables for example 223.6 is the cross product sums of 
squares for SMATHS×MATHS. 

The next section of output contains simple summary statistics. In this example the 
sample size for all the cells of the correlation matrix is the same because there is no 
missing data. The sample size is therefore only printed in the summary statistics. If there 
had been different sample sizes for each variable then n would have been printed for each 
correlation in the correlation matrix in the following section. 

The final section of output contains the correlation matrix of rows and columns headed 
by each variable name. Each cell of the matrix, intersection between a row and a column 
variables contains two values, the bivariate correlation coefficient and the associated p-
value. This probability value is the level of significance resulting from a test of the null 
hypothesis, Prob>|R| under H0: Rho=0. For example, the value of the correlation between 
MATHS and SMATHS is r=0.89629. This indicates a positive linear relationship 
between the two variables. The associated p-value is 0.0004 which provides evidence in 
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support of the alternative hypothesis that the true population correlation is not zero. 
Notice that a variable correlated with itself is always 1. 

Partial Correlation 

A partial correlation between two variables adjusts the linear relationship between both 
variables to take account of a third variable. This is called a first order partial 
correlation. If the RAVEN variable is correlated with both MATHS and SMATHS then 
the correlation between SMATHS and MATHS is likely to be reduced when the effect of 
the RAVEN variable is partialled out (adjusted for). The general formula to compute a 
first order partial correlation is, 

 
First 

Order 
partial 
correla
tion—
8.14 

The partial correlation between SMATHS and MATHS with RAVEN partialled out is 
given by 

 

  

Interpretation 

Notice that the correlation between MATHS and SMATHS has been reduced slightly 
(from 0.896 to 0.836 when the effect of the RAVEN variable has been partialled out. This 
indicates that a small portion of the common variance between MATHS and SMATHS is 
explained by the third variable RAVEN. 

SAS code for producing a partial correlation between SMATHS and MATHS 
partialling out the effect of the RAVEN variable is shown,  

proc corr data=a pearson csscp ; 
  var maths smaths raven; 
  partial raven; 
run; 

The relevant section of SAS output resulting from this partial statement is:  
Pearson Partial Correlation Coefficients /Prob>|R| under Ho: Partial Rho=0/N=10 
  MATHS SMATHS RAVEN 
MATHS 1.00000 0.83722 . 
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  0.0 0.0049   
SMATHS 0.83722 1.00000 . 
  0.0049 0.0   
RAVEN . . . 

Interpretation 

Notice that SAS treats the RAVEN variable as missing in the correlation matrix. The 
partial correlation for MATHS and SMATHS corresponds with the value computed in the 
worked example (allowing for rounding error). A researcher may want to test the 
significance of a difference between two correlations from independent samples. A SAS 
programme to do this is presented in Figure 16, Appendix A3. 

8.4 Independent t-test (unrelated two sample procedure) 

When to Use 

The two-sample independent t-test (sometimes called unrelated t-test) is most frequently 
used in survey and experimental (parallel group) designs when an investigator wants to 
determine whether there is a significant difference between two independent group 
means. For example, an educational researcher may want to know which of two 
classroom activities, reading silently or teachers’ storytelling is most helpful in improving 
childrens’ word meanings. A teacher compares the vocabulary scores of two independent 
classroom groups, one which has followed a reading programme including teacher 
storytelling and the other which followed the same reading programme but had periods of 
silent reading in the reading corner instead of the storytelling. In another example, as part 
of a research programme on employee motivation and productivity, a psychologist 
compares personality scores on Catell’s Sixteen Personality Factor Test (16PF) for male 
and female employees. 

In the t-test procedure, sample means are used to estimate the unknown population 
means (parameters). With the two-sample t-test a researcher is interested in whether any 
observed difference in means represents a real difference (not attributable to chance 
fluctuations) and therefore justifies the inference that the two samples represent two 
distinct populations with different population means rather than one population. The t-
statistic (sometimes called a t-ratio) is an estimate of the difference between two 
population means. The significance of this difference is evaluated by calculating the 
difference between the two means divided by the standard error of this difference. The 
idea of computing this ratio is to compare the variability in the predicted differences in 
scores, simply the difference between the mean scores for the two groups, to the total 
variability of all scores (in both samples). Think of it as a proportion of variability 
predicted compared with total variability. The standard error of the difference between 
means is a measure of this total variability. The standard deviation of a sampling 
distribution is usually referred to as the standard error of that distribution. Thus the 
standard deviation of the mean is called the standard error of the mean. The difference 
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between two means also has a sampling distribution which has a mean and a standard 
deviation, the latter is referred to as the standard error of the difference in means. 

The sensitivity of the t-test in detecting differences is dependent upon the total 
variability in scores (standard error of the difference in means). If the overall variability 
in scores is minimal then only a small difference between means of the two groups might 
reflect a consistent and significant difference. However, if there is large overall 
variability in scores then a larger difference between means is required to attain statistical 
significance. It is more difficult to detect real differences with heterogeneous groups 
because more of the variability in individuals’ scores may be due to error or other 
(unmeasured) effects rather than the predicted differences of interest. The implication for 
research design is that you are more likely to detect a significant difference between 
groups if overall scores are homogeneous. See also the discussion of power analysis in 
Chapter 5. 

When samples are small (n<30) the sample standard deviation may not be a good 
estimator of the unknown population standard deviation (with small samples, the sample 
standard deviation underestimates the population standard deviation more than half the 
time) and consequently the ratio of the difference between means to the standard error of 
the difference diff in means, may not have a normal distribution. This 
ratio is called a t-statistic and when the variances in both samples are similar, the t-
statistic has a probability distribution known as the Student’s t-distribution. 

The shape of the t-distribution changes with sample size, that is there is a different t-
distribution for each sample size, so when we use the t-distribution we also need to refer 
to the appropriate degrees of freedom which is based on the sample size and the number 
of parameters estimated. As the sample size increases above 30, the t-distribution 
approaches a normal distribution in shape. 

Statistical Inference and Null Hypothesis 

We use the t-test to see whether there is a difference between two means, the null 
hypothesis is therefore, H0:µ1−µ2=0; this is equivalent to µ1=µ2. In words, this says that 
the population means are the same, which is equivalent to saying there is one population 
and not two. The alternative hypothesis is either nondirectional, H1:µ1≠µ2, rejection 
region |t|>t1−α/2 (this means that the absolute value of t is greater than the critical value of t 
at the 0.025 level of significance, if alpha is 5 per cent) or it may be one-sided, µ1>µ2 or 
µ1<µ2, rejection region t>t1−α or t<−t1−α. The sampling distribution of the difference 
between means is used to test this null hypothesis. 

Pooled Variance Estimate of t-ratio (equal variance) 

The t-statistic has an exact distribution only when the two populations have the same 
variance. This is called the homogeneity of variance assumption. When a pooled 
estimate of the population variance, σ2, is used in the calculation of the t-ratio it is 
referred to as a pooled variance estimate. This is given by the formula: 

 
Pooledvariance 

estimate—8.15 
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This pooled variance estimate is the average of the two separate sample variances 
weighted by their respective sample sizes. The degrees of freedom associated with the 
pooled variance estimate of the t-statistic are n1+n2−2; one degree of freedom is 
associated with each sample variance (sample variance has n−1 df). The homogeneity of 
variance assumption is more reasonable with experimental designs because such designs 
generally assume that groups are equivalent prior to treatment. 

Separate Variance Estimate of the Approximate t′-ratio (unequal 
variance) 

When the assumption of homogeneity of variance is unreasonable (procedures for 
checking are described under the heading Test assumptions) the approximate t-statistic 
denoted t′ is calculated using the separate variance estimates from each sample. The 
sampling distribution of t′ does not have a t-distribution and does not have n1+n2−2 
degrees of freedom. The exact sampling distribution has been evaluated but is not 
generally used. Instead, approximate procedures have been developed for determining the 
critical values to use with the approximate t′ distribution. 

One procedure is the Satterthwaite (1946) approximation which is used in many 
propriety statistical packages. This procedure uses a modified degrees of freedom, 
estimated from the sample sizes, to approximate the t-distribution. 

The df for the Satterthwaite (1946) approximation are, 

 

df 
for 
sepa
rate 
vari
ance 
esti
mat
e—
8.16 

This approximation often results in degrees of freedom which are not whole numbers. 
Associated probabilities cannot therefore be found directly from statistical tables. The p-
value has to be interpolated based on tabled entries or a function can be used in computer 
packages (TINV function in SAS) to produce exact p-values. Standard computational 
procedures such as PROC TTEST in SAS automatically print equal and unequal 
variance estimates and exact p-values. 

Test Assumptions 

The assumptions for the independent t-test are: 

• The populations from which the samples are selected should have an approximate 
normal distribution. What is meant here is that the sampling distributions of the 
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means are normally distributed. If the sample is sufficiently large then because of the 
Central Limit Theorem, even if the distribution of the variables are not normal, their 
sample means will be. If the samples are small and both variables are normally 
distributed their means will also have an underlying normal distribution. (Verify the 
normality assumption by doing a normal probability plot for the two variables. 
Interpret the plot as described in Chapter 5, section 5.5, checking for normality.) 

• The population variances should be equal, this is called the homogeneity of variance 
assumption. (Verify assumption of homogeneity by an approximate rule, variances are 
homogeneous if the ratio of the larger standard deviation (SD) to the smaller standard 
deviation is less than or equal to two. A folded F-test may be used, the ratio of two 
sample variances distributed with n1+n2−2 df but this is affected by non normality of 
data. This assumption is not necessary if the approximate t′-ratio (separate variance 
estimate) is used.) 

• Samples are independent and selected at random. (This assumption is related to the 
research design.) 

In a practical setting these assumptions are not straightforward to apply and as this is one 
of the most common statistical tests some interpretation and guidance is required. 

Guidelines for Practical Use of the t-test 

The utility of the independent t-test is related to how far these assumptions can be relaxed 
without invalidating inferences. 

Normality assumption. What is important is that sample means are normally 
distributed in the population. With large sample sizes (n>30 in each sample) this is not a 
problem. With smaller samples the equality of sample sizes is important. The 
independent t-test is robust against non normality even with small sample sizes (n<10), 
provided the sample sizes are equal. 

Moderately skewed distributions. If both samples are moderately skewed, have 
similar shape and are approximately equal in size with the smaller sample being about 15 
or more, then the t-test may be used with caution. 

Severely skewed distributions. The t-test should only be considered with larger 
samples, n1+n2>45 which are approximately equal in size and have similar variances. If 
these assumptions are not met consider transforming the data, using an alternative 
sampling distribution, use a nonparametric test or use a different analytic approach. A 
general discussion about what to do when parametric assumptions are not met is 
presented at the end of this chapter. 

Unequal variances. If the approximate t′ (unequal variance estimate) is used then the 
homogeneity assumption is not critical. 

Independence. The sample observations must be independent, this is a critical 
assumption. 

Outlier observations. The independent t-test should not be used when there are 
extreme outlier observations. These observations will greatly influence the means and 
invalidate any inferences. 
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Example from the Literature 

Christensen and Cooper (1992) examined the research hypothesis that 6-7-year-old 
children achieve greater proficiency in simple problems of addition when they use 
cognitive strategies compared with children who do not use them. Study participants 
included twenty-two girls and eighteen boys from two classes of a suburban public 
school in Australia. This was a pre-test-post-test design but only pre-test data is analysed 
here. Students were given a screening pre-test on written and oral problems of addition. 
Pre-testing confirmed all children had conceptual understanding of addition and that no 
child utilized cognitive strategies. All children participated in an intervention (involving a 
variety of instructional activities) over a twelve-week period. Post-testing was completed 
immediately following the period of intervention. Children were assigned to cognitive 
strategy and non-cognitive strategy groups after the intervention when strategy group 
could be identified. 

Response variables analysed included written score (number of correct responses on a 
written test), oral latency score (time interval between initial display of test item and 
student correct response), error score (number of errors on oral test) retrieval score 
(number of items retrieved from memory), and counting score (number of items 
answered by counting). For memory and counting scores it was not specified whether 
only ‘number correct’ items were counted. 

Table 1 in Christensen and Cooper’s paper presents data on mean pre-test and post-test 
scores for the two groups of students. Part of this table showing pre-test data only, is 
reproduced as follows:  

Table 8.5: Means, standard deviations and results 
of significance tests for strategy and non-strategy 
groups at pretest 

  Strategy group Non-strategy group     
  Mean SD Mean SD Test p 
Written 20.05 13.04 12.70 11.07 t38=2.04 .048 
Oral latency 5.87 2.07 8.53 2.53 t38=3.64 .001*
Errors 7.70 9.35 5.75 4.66 t38=0.83 .409 
Proficient 1.55 2.01 0.60 1.43 t38= 1–72 .093 
Retrieval 37.70 13.15 21.85 15.36 t38=3.51 .001*
Counting 17.30 13.15 33.15 15.36 t38=3.51 .001*
* Statistically significant 

With respect to this pretest data, six research questions were addressed, one question for 
each response variable. In each case the question is of the form, Is the average pre-test 
score for students who are strategy users different to the average pre-test score for 
students who are non-strategy users? The population of interest in this study is the 
population of students who might participate in a twelve-week instructional programme. 
Implicitly this is the population to which the authors generalize their results. 
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The authors are in effect posing the question, if the population of potential programme 
participants were to be randomly assigned to strategy and non-strategy groups, would the 
two groups differ with respect to pre-intervention competency measures (the six response 
variables in Table 8.5), even though assignment to groups was not made until after the 
intervention. The inferences in this section of the analysis relate to two separate 
populations—a population of cognitive strategy users and a population of non-strategy 
users. The inferential process addresses the issue of whether the two samples of 
competency scores (cognitive strategy user sample and non-strategy user sample) 
represent competency scores from one population of students or alternatively scores from 
two separate populations of students, a cognitive strategy user population and a non-
strategy user population. 

The null hypotheses tested are of the form, the average competency score of the 
population of students who might be exposed to the instructional programme and who are 
cognitive strategy users (or would become so at follow up) is equal to the average 
competency score of the population of students who might be exposed to the programme 
but are non-strategy users (or do not become strategy users at follow up). Put simply this 
could be stated as, There are no differences between the pre-intervention competency 
scores of cognitive strategy and non-cognitive strategy users. 

For the variable Written in Table 8.5 the null hypothesis is H0: µ1=µ2 which in words 
is, the mean written pre-test score is equal for the population of cognitive strategy and 
non-strategy users. The precise nature of the alternative hypothesis is not stated by the 
authors. However, by knowing the test statistic value which is shown in Table 8.3 (under 
the heading Test) and the reported p-value of 0.0048, it is possible to determine that the 
authors were using a non-directional alternative hypothesis and making a two-tailed t-
test. The degrees of freedom, which are a whole number, suggest that an equal variance 
estimate of t was used. 

In testing the statistical hypothesis of equality of means the authors were comparing, 
for example, the average oral latency score of 5.87 for the cognitive strategy group with 
the average score of 8.53 for the non-strategy group. The obtained t-statistic of 3.64 for 
this comparison was larger than the non-directional, (two-tailed) critical t-value of 3.572 
at the 0.001 level. This critical t-value of 3.57 is obtained using the SAS function TINV. 
The table of percentage points of the t-distribution shown in Appendix A4 does not have 
a value for 38 degrees of freedom. 

The appropriate SAS code to evaluate the critical t-value is: 

data a; 
  t=round(TINV(0.9995, 38), .001); 
  put t=; 
run; 

As the obtained t-value was greater than the critical t-value at the 1 per cent level, then 
the authors were able to reject the null hypothesis and conclude that there were some 
initial ability differences between groups. They go on to say that the impact of initial 
ability differences on the results of the study cannot be discarded. 

When reviewing reported results where the independent t-test procedure has been 
used, or if considering use of this procedure on your own data, the reader should reflect 
on the underlying assumptions on which the independent t-test is based. Taking the 
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results reported in Christensen and Cooper’s paper as an example, the reader might like 
to consider answers to the following questions: 

• Are two independent sample averages being compared? 
• Has an element of randomization entered the design, random sampling or randomization 

to groups? 
• Are the groups independent? 
• Are the assumptions of homogeneity of variance reasonable? 
• Are the data distributions skewed? When a standard deviation is greater than the mean, 

this suggests the distribution may be skewed. 
• Is the chosen alpha level and statistical power reasonable? 

If a high level of alpha is selected, for example, 1 per cent, this increases the likelihood of 
a Type I error (conclude there are differences although no true differences really exist) 
but decreases the likelihood of a Type II error. That is accepting the null hypothesis when 
it is false. In this particular example this would mean concluding there are no differences 
at pre-test when there are differences. 

As an exercise evaluate the statistical power of the t-tests in Table 8.5. You should for 
example, find that for the variable Retrieval with an alpha of 1 per cent, the power equals 
81 per cent.  

Worked Example 

The following data, abstracted from a student’s dissertation study on children’s strategies 
for subtraction, is used to illustrate computation of the t-statistic for independent samples. 
Twenty subjects, ten aged 6-years and ten aged 7-years were given a series of test items 
that required subtraction (when both numbers were less than 10, subtraction of a single 
digit from a two-digit number and subtraction when both numbers were double digits). 
Correct answers were totalled for each subject and the subtraction strategy noted. The 
researcher predicted that there would be a difference in both correct scores and strategy 
use between the two age groups. In this example subjects’ total correct scores are 
analysed. Data for the 20 subjects is shown in Table 8.6. A non-directional alternative 
hypothesis is specified and a 5 per cent alpha level is chosen.  

Table 8.6: Subtraction score for thirty test items 
(total subtractions correct) for 6- and 7year-old 
pupils 

Group 1 AGE 6 Group 2 AGE 7 
OBS SCORE OBS SCORE 

1 17 11 16 
2 13 12 20 
3 17 13 24 
4 6 14 17 
5 13 15 25 
6 20 16 20 
7 6 17 22 
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8 19 18 18 
9 12 19 11 
10 9 20 22 

      

S2 (variance)*=25.733 S2 (variance)=17.389 
* The sample variance is calculated using formula 3.1 in Chapter 3 For Age 6, 

and for age 7, S2,  

Separate Variance Estimate 

To calculate a separate variance estimate for t′, three steps are involved, i) find the 
difference in means between the two groups; ii) calculate the standard error of the 
difference in means; and iii) evaluate t′ which is the ratio of the difference in means (i 
above) to the standard error of this difference in means (ii above). 

1 Difference in means 

In this example the difference is  

2 Standard error of the difference in means (separate variance estimate)  
The standard error of the difference in means is, 

 
Standard error of 

difference in means 
separate variance 

estimate—8.17 

The SEdiffin means for the data in Table 8.6 is,  
3 t′-ratio 

The t′-ratio is evaluated as diff in means, which gives the 
value, t′=−3.0338 

For the separate variance estimate the degrees of freedom are estimated using 
equation 8.16, 
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which gives the value df=17.4 

Interpretation 

The t′-statistic represents the size of the difference between two groups, the larger the t′-
value the greater the size of the difference. In this example, the alternative hypothesis is 
non-directional, H1:µ1≠µ2, and the rejection region is |t|>t1−α/2. To be statistically 
significant the calculated t′-value needs to exceed the critical t-value, with 17.4 degrees 
of freedom at the 5 per cent level. Notice that the degrees of freedom is not a whole 
number and a critical value for 17.4 df is not shown in the t-table in Appendix A4 (Table 
3). We can find the critical value by interpolating between the two nearest values namely 
df=17 (critical t=2.110) and df=18 (critical t=2.101). The critical value is approximately 
2.106 with df=17.4. Using the TINV function in SAS the exact critical value is also 
found to be 2.106. See the following SAS code, 

data a; 
alpha=0.975; ** This is equivalent to a two-tailed test 
at the 5% 
level**; 
tcrit=round (tinv (0.975,17.4),.001); ** Round 
statement rounds 
value to**; 
put tcrit=;                            ** 3 decimal 
places ** ; 
run; 

In this example the observed t′-value of −3.0338 exceeds the critical t-value of 2.106, and 
we can conclude that the means are significantly different at the 5 per cent level with a 
two-tailed test. The 7-year-old pupils would seem to have a significantly higher score 
than the 6-year-old pupils (t′=−3.0338, df=17.4, p<0.05). 

Pooled Variance Estimate 

Three steps are involved in calculating a pooled (equal variance) estimate: i) Check that 
the sample variances are homogeneous and find the difference in means between the two 
groups; ii) Calculate the standard error of the difference in means; and iii) evaluate t 
which is the ratio of the difference in means (i above) to the standard error of this 
difference in means (ii above). 

1 Difference in means and check for homogeneity 

The first step is the same as for the separate variance estimate, the 
difference in means is −6.3. Using the approximate rule of thumb for 
homogeneity of variances, (5.072/4.170 is less than 2) the variances are 
similar. 

2 Standard error of the difference in means (pooled variance estimate) 
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This is evaluated using equation 8.15 for the pooled variance estimate. 

 

  

3 t-ratio 

As in the separate variance estimate t is the ratio of the difference in 

means to the standard error of the difference, 
t=−3.034 

The associated degrees of freedom for a pooled variance estimate is simply n1+ n2 
−2=df=18. 

Interpretation 

Assuming a two-tailed test because no specific difference was specified by the researcher 
and a 5 per cent significance level, interpretation is the same as in the previous example 
except that the degrees of freedom are a whole number and can therefore be looked up in 
a table of the t-distribution. The p-value for a t of −3.034 is found by comparing the 
observed t-ratio (t=−3.034) to a critical t-value with 18 df in Table 3 (Appendix A4). For 
18 df and 5 per cent two-tailed the critical t is 2.101. Since the observed value exceeds 
the critical value we can conclude that there is evidence of a significant age difference in 
correct score for subtraction tasks (t=−3.034, df=18, p<0.05). 

In these two worked examples the separate and pooled variance estimates of the t-
ratios are similar because the sample variances are not very different. The negative t-ratio 
is attributable to the larger mean being subtracted from the smaller mean (in both 
examples the mean for 7-year-olds was subtracted from the mean for 6-year-olds). The 
response variable would be checked for normality in the usual way with a normal 
probability plot. 

Confidence Interval (CI) for Difference in Means 

It is useful to present an estimate of the plausible range of population mean differences as 
well as the result of a hypothesis test. The 95 per cent CI for the difference in means is 
given by, 

 
Confidence 

interval 
difference 
between 
means 
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independent 
samples—
8.18 

In this example t1−α/2 with 18 df is 2.101 and the 95 per cent CI is 13.2−19.5 +/−2.101 
(4.643) (0.4472), the lower bound estimate is −10.663 and the upper bound estimate is 
−1.937. 

Interpretation 

The difference between the sample mean correct score in 6- and 7-year-old pupils was 
−6.3 with a 95 per cent CI from −10.663 to −1.937, the equal variance t-ratio, two-tailed 
test, was −3.034, with 18 degrees of freedom and an associated p-value of 0.05. The 
interval does not include zero which corresponds to a rejection of the null hypothesis 
(zero difference between means is equivalent to the null hypothesis). The interval width 
is rather large probably because of the small sample size. We are 95 per cent certain that 
the mean difference could, with rounding, be as small as −2 or as large as −11 but the 
most likely value is −6. 

Output from a SAS programme for computing a Confidence Interval for the difference 
between two means for independent samples (see the SAS programme in Figure 17, 
Appendix A3) is shown in Figure 8.10.  

mean 
(gp 1) 

mean (gp 2) variance (gp 
1) 

variance 
(gp 2) 

sample 
size (gp 

1) 

sample 
size (gp 

1) 10 10 13.2 19.5 25.733 17.389 
  Alpha Critical t-

value 
Lower 

Confidence 
Limit 

Upper 
Confidence 

Limit 

  
  

  0.05 2.101 −10.663 −1.937     

Figure 8.10:95 per cent Cl for 
difference between two means 

The values in this output correspond with the 95 per cent CI interval width in the worked 
example. 

Computer Analysis 

The SAS procedure PROC TTEST performs an independent t-test, the following SAS 
code produced the output shown in Figure 8.11, 

proc ttest; 
class age; 
var score; 
run; 
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The CLASS statement names the classification variable that classifies the data set into 
two groups; in this example there are two age groups. The VAR statement specifies the 
response variable that is analysed.  

T-TEST PROCEDURE 
Variable: SCORE 
AGE N Mean Std Dev Std Error 
6 10 13.20000000 5.07280330 1.60416126
7 10 19.50000000 4.16999867 1.31866936
Variances T DF Prob>|T|     
Unequal −3.0338 17.4 0.0074     
Equal −3.0338 18.0 0.0071     
For H0: Variances are equal, F′=1.48 DF=(9.9) Prob>F′=0.5686

Figure 8.11: Independent t-test 
comparing ages 6 and 7 on total score 
correct for 30 subtraction test items 

Interpretation 

Look first at the bottom of the output where the result of performing the folded F′ test for 
homogeneity of variance (equal variances) is shown. The p-value indicates that F′ 
statistic is not significant. This means that the variances are not significantly different 
Therefore, the results of the equal variance t-ratio are used (pooled variance estimate). 
Here the p-value associated with a t-value of −3.0338 is 0.0071, which is significant at 
the 5 per cent level. The results are significant at the 1 per cent level but α (the 
significance level or probability of incorrectly rejecting the null hypothesis) was set 
initially to 0.05 so this should be reported; statistical significance should never be based 
on the results of the test. The null hypothesis of no difference is rejected, and we can 
conclude that there is a difference in means. 

8.5 Paired t-test (related) 

When to Use 

When two group means are to be compared which are from the same sample, that is, 
paired measurements for each subject in the sample, the paired t-test (sometimes called 
dependent t-test) should be considered. Measurements would also be related if two 
independent samples were matched and then the means of the two samples compared. A 
paired t-test is often used to analyze the results of a ‘before’ and ‘after’ research design. 
For example, a researcher may want to know whether there is any improvement in 
vocabulary acquisition scores which could be attributed to the effect of a reading 
programme. Subjects’ vocabulary score would be determined before commencement of 
the reading programme, and they would be measured again after the programme had been 
completed. Each subject would have paired vocabulary scores one measure before the 
programme and one after. The purpose of a repeated measures analysis using the paired t-
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test would be to determine whether the average change (average of the differences 
before-after scores) in scores is greater than would be expected due to chance fluctuations 
alone. 

The paired t-test is based on the same idea as the independent t-test, the test statistic is 
a ratio of mean difference (predicted variability) to the standard error of the difference 
(overall variability in scores). When the same subjects are used for both measurements 
the standard error is smaller (a desirable research design feature) and consequently 
smaller differences in means are likely to be detected. With fewer than five pairs of 
scores the test is not very sensitive. Large differences in scores are needed to detect a 
significant difference and this procedure should not be used when the population of 
differences is non-normal. 

Statistical Inference and Null Hypothesis 

The sampling distribution of the difference scores (represented by D) is used as the basis 
for statistical inference in the paired t-test. The mean of the population of difference 
scores, µD, is zero, when the null hypothesis is true. We think of this as a one sample test 
even though we are comparing two means because we have one population distribution 
of difference scores. The null hypothesis can be written as H0:µD=µ1−µ2=0. There are 
three possible alternative hypotheses: 

1 µD≠0 a non directional test (two tailed), rejection region is |t|>t1−α/2. 
2 µD<0 directional test (one tailed) rejection region t>t1−α or t<−t1−α. 
3 µD>0 directional test (one tailed) rejection region t>t1−α or t<−t1−α. 

Test Assumptions 

The paired t-test should be considered when the population of interest consists of 
difference scores from paired observations; this implies continuous measurement. The 
following assumptions should be met: 

• Paired differences are randomly selected from the population. This usually means that 
the sample is drawn at random. 

• The population of difference scores is approximately normally distributed. 
• Observations within a treatment condition are independent of each other. 

Example from the Literature 

Borzone de Manrique and Signorini (1994) compared two measures, spelling and 
reading, within groups, using the t-test for paired observations. Scores analysed were 
percentage correct to allow for comparisons across the spelling and reading tests which 
had different numbers of items. Two paired t-tests were performed on separate groups of 
pupils, a group of skilled readers, n=19, (score at the 75th percentile or better on a 
standardized reading comprehension test) and a group of less skilled readers, n=20. 

The authors reported a significant difference between spelling and reading in the less 
skilled group, t(19)=5.24, p<0.001, but no difference was found in the skilled group, 
t(18)=1.63, not significant. The authors concluded that the skilled readers perform 
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similarly on spelling and reading, while the less skilled readers show a clear advantage of 
spelling over reading. 

Although not stated by the authors, this is likely to be a two-tailed test, the null 
hypothesis being that there is no population difference in mean reading and spelling 
scores. It is important not to set the alpha level after a test statistic has been evaluated and 
it is presumed that the authors decided a priori on a 1 per cent level of significance. 
Significant results of exploratory analyses, that is significance tests which were not 
defined a priori with alpha levels and power considerations, should be interpreted 
cautiously until other studies confirm similar findings. In the absence of any 
distributional information about the sample distribution of difference scores the reader 
should also assume that these are approximately normal. The reader should recall, 
however, that percentages are often skewed and particular care is needed when checking 
assumptions for the paired t-test that the difference in percentage correct scores is not 
severely skewed.  

Worked Example 

In an example of the paired t-test we can consider data from a study on primary school 
childrens referential communication skills, the study referred to in the worked example 
(p. 264) on simple linear regression. Researchers were interested in the stability of one of 
their measures, speaker scores, in particular. They wanted to know whether there was any 
carry-over effect of testing (whether testing itself influenced scores on the referential 
communication test). The data presented in Table 8.7 represents a few cases abstracted 
from the test-retest analysis of the referential communication study which is intended to 
show whether there is any change in speaker scores over a three-month period.  

Table 8.7: Comparison of test-retest scores for 
speaker (5-year-old pupils) 

OBS (OCCASION 1) (OCCASION 2) DIFFERENCE (D)
1 14 17 3
2 26 13 −13
3 37 17 −20
4 0 6 6
5 13 13 0
6 0 20 20
7 0 6 6
8 5 19 14
9 0 12 12

10 0 9 9

Mean difference  

Computation of the paired t-statistic involves three steps, 1) calculation of the mean 
difference; 2) calculation of the standard deviation of the difference scores; and 3) 
calculation of the standard error of the difference scores. The t-statistic is evaluated once 
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again as the ratio of the mean difference 1) above to the standard error of the differences 
3) above. 

1 Mean difference 

This is simply the average difference score (occasion 2-occasion 1) =3.7. 

2 Standard deviation of the differences (SDdiff) 

The standard deviation of the differences is calculated using the usual 
formula: 

 

  

3 Standard error of the differences 

The standard error of the differences is simply the standard deviation 

divided by the square root of the sample size, which is 
=3.850. 

The t-statistic is the mean difference divided by the standard error of the differences, t is 
therefore (3.7/3.850)=0.961. The degrees of freedom are given by n−1, in this example 
df=9. One degree of freedom is used in estimating the variance of difference scores in the 
population which is estimated from the sample mean difference. 

Interpretation 

The critical value at the 5 per cent significance level from the t-table (Table 3, Appendix 
A4) is 2.262. Since the observed t-value of 0.961 is less than this critical value we cannot 
reject the null hypothesis and therefore we conclude that it is plausible that the mean 
difference (occasion 2-occasion 1) speaker scores is not significantly different from zero. 

Confidence Interval for the Mean Difference (paired measures) 

To calculate a 95 per cent CI, t1−α/2 is required. With 9 degrees of freedom this value is 
2.262. The 95 per cent CI is given by, 

 95 per cent CI 
for mean 
difference (paired 
data)—8.19 

which is 3.7 +/− (2.262×3.850) 
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The 95 per cent CI for the population value of the mean difference, ‘occasion 2− 
occasion 1’Z speaker scores is −5.009, to 12.409. 

Interpretation 

We can be 95 per cent certain that the difference between occasion 1 and occasion 2 
speaker scores falls within the interval −5.009, to 12.409. This confidence interval 
includes the value zero, which provides a simultaneous test of the null hypothesis. As the 
value of zero difference falls within the confidence interval, there is no evidence to reject 
the null hypothesis, and we conclude that there is no significant difference between the 
mean occasion 1 and occasion 2 speaker scores.  

Computer Analysis 

SAS code for the t-test is,  

Data a; 
  input caseno occ1 occ2 @@; 
  diff= occ2 − occ1; 
cards; 
1 14 17 2 26 13 3 37 17 4 0 6 5 13 13 6 0 20 7 0 6 
8 5 19 9 0 12 10 0 9 
; 
proc means n mean stderr t prt; 
var diff; 
run; 

The variable ‘diff’ can be entered in a data step as in this example. The MEANS 
statement computes the average difference on the specified variable diff. The same 
analysis can be performed using PROC UNIVARIATE with the variable diff. Output 
from PROC MEANS is shown in Figure 8.12.  

Analysis variable: DIFF 
N Mean Std Error T Prob>|T|
10 3.7000000 3.8501082 0.9610119 0.3617 

Figure 8.12: Paired t-test comparing 
difference scores, post-pre, for speaker 
test items 

Interpretation 

The mean difference is 3.7, the same as in the worked example. The margin of error is 
rather large, 3.850 (Standard error of difference), t is 0.961 which has an associated 
(exact) probability of 0.3617. The mean difference in speaker scores is not statistically 
significant. 
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Confidence Intervals for Paired Difference t-test 

The following section of SAS code computes the 95 per cent CI for difference in means 
when samples are paired (related) as follows: 

data a; set a; 
diff= occ2 − occ1; 
proc summary data=a ; 
  var diff; 
  output out=out mean=mean stderr=stderr n=n; 
run; 

data b; set out; 
  alpha=.05; 
  df=n−1; 
  tobs=mean/stderr; 
  t=round (tinv (1−alpha/2,df), .001); 
  lc=round(mean−t*stderr, .001); 
  uc=round(mean+t*stderr, .001); 
proc print data=b split='*' noobs; 
  var n alpha tobs lc uc; 
  title1 'Confidence intervals for difference between 
paired means'; 
  label alpha='Alpha’ 
     n ='Sample size' 
     tobs='t-ratio' 
     df ='Degrees of Freedom' 
     sediff='Standard error' 
     lc ='Lower Confidence Limit' 
uc ='Upper Confidence Limit'; 

Output from this SAS code is shown: 
Confidence intervals for difference between paired means 

Sample size Alpha t-ratio Lower Confidence Limit Upper Confidence Limit 
10 0.05 0.96101 −5.009 l2.409 

The interpretation is exactly the same as in the worked example. 

8.6 Introduction to Analysis of Variance (ANOVA) 

Analysis of variance is a statistical hypothesis testing procedure first developed by Fisher 
(1953) to analyse data generated by experimental designs. The ANOVA approach 
enables an investigator to assess the causal influence of two or more independent 
variables (treatments), and possible interactions of these treatment effects on a single 
response (outcome) variable. In a classical experimental design to compare different 
treatments, each treatment is applied to several experimental units, and the assignment of 
units to treatments is random. In many designs the number of units per treatment are 
equal and this is then called a balanced design. In psychology and education the 
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experimental units are usually individuals. An ANOVA analysis enables causal 
inferences to be made in experimental designs by partitioning total variation between 
individuals (experimental units) into separate components, each component representing 
a different source of variation or treatment effect. It is then possible to identify the 
relative influence of the different treatments (independent variables) and to compare the 
between-treatments variation (the observed differences) to differences attributable to 
chance. Chance differences are any differences among individuals within the various 
treatment groups due to uncontrolled or unknown variables. This source of variation is 
conveniently termed error variance. The proportion of total variation attributable to 
treatments when compared with the proportion attributable to error forms the basis of the 
F-ratio or F-statistic. If the observed treatment effects, that is differences between 
treatments as summarised by treatment means, account for about the same proportion of 
variability in the response variable as the chance differences, then it is reasonable to 
assume that the observed treatment differences are probably just random fluctuations and 
conclude that there are no differences between treatments (the independent variables). If 
the proportion of variance accounted for by the between-treatment conditions is large 
compared with the error variance then this indicates a significant treatment effect which 
may warrant further investigation to find out which treatment(s) have a significant 
influence on the response variable. 

Consider the vocabulary teaching methods experiment introduced in Chapter 1 
(Example 2). The experimental units, in this case pupils, were randomly assigned to one 
of three treatment groups. One condition was silent reading, another was storytelling and 
the third was storytelling enhanced by pictures. After the intervention programme pupils’ 
vocabulary acquisition was assessed and the mean scores for each of the three treatment 
groups were compared. 

Analysis of variance methods can also be used with observational data which would 
include both comparative and survey designs. In comparative designs the impact on a 
metric response variable of categorical independent variables, representing naturally 
occurring groups, is assessed. The researcher is looking for the effect of membership of a 
particular group (independent variable) on the response variable. Variables used to define 
groups are called factors, for example, sex, and the various treatments within a factor are 
called levels, for example, male or female. The researcher looks to see whether there are 
differences between the means of the treatment groups. This term is used because of the 
original development of the ANOVA technique for analysis of true experimental designs. 
The investigator is really examining differences among the means of the levels of a 
factor, such as difference between mean scores for males and females. Comparative 
designs differ from true experimental designs because the levels of the independent 
variables (group membership—male, female) are not randomly assigned (they have 
already occurred or are natural categories) before their effects on the response variable 
are observed. Survey designs are similar to comparative designs except that mean 
differences for population subclasses are examined. The subclasses are described by the 
researcher, for example, a particular age band of 5–7-year-olds or a particular type of 
school. Subjects may even be subclassified by their responses after data has been 
collected for example—cognitive strategy users and non-strategy users might only be 
defined by the researchers after initial data analysis. 
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Repeated measurement designs are also frequently analysed using ANOVA 
techniques. Repeated measures or observations are treated as a factor in the analysis with 
measurements on one variable at different occasions corresponding to levels of the factor. 
The same subjects are involved in repeated measures. It is also possible to have mixed or 
‘split-plot’ designs (a term derived from the initial development of the technique with 
agricultural experiments) where there are two factors, one of which is a repeated 
measurement where the same subjects are used and on the other where different subjects 
are used (between-subjects factor). This chapter serves only as an introduction to the 
analysis of experimental designs. There are many more complex designs requiring 
sophisticated analytic strategies. The interested reader is referred to Mead (1992) for a 
comprehensive guide to the principles of experimental design and analysis. 

ANOVA and the General Linear Model 

Consideration of analysis of variance from the point of view of an underlying general 
linear model means that its relationship to regression can easily be seen; more 
importantly this approach will form a foundation for the use of more sophisticated 
techniques such as multivariate analysis of variance (MANOVA—this is used when there 
are multiple response variables rather than a single response variable as is the case with 
univariate ANOVA), factor analysis and discriminant analysis. The underlying general 
linear model helps integrate ANOVA and regression which are often treated as 
independent analytic strategies. In fact, ANOVA is a special case of multiple linear 
regression. This common framework also helps the researcher see why ANOVA and 
regression share many of the same underlying assumptions. Most proprietary computer 
programmes for statistical analysis present data in a form consistent with the underlying 
general linear model, and unless you understand commonalities and differences between 
ANOVA and regression, you will be reduced to learning the meaning of computer output 
by rote rather than understanding and reporting with insight. 

Consider the linear model for the one-factor vocabulary teaching experiment 
introduced in Chapter 3. It is represented here as an illustration of the general form of the 
ANOVA statistical model for a one-factor design, 

yij=µ+αi+εij  
Statistical model for one-

factor ANOVA—8.20 

This general linear model describes the observed vocabulary score for the jth individual 
pupil from the ith treatment, yij, as the sum of three separate components: i) a response 
common to all pupils in the target population of interest, µ, hence the term mean 
response. This represents the average score of all pupils in the experiment; ii) a deviation 
from the mean response for a particular treatment group, αi. In this experiment there are 
three treatments, so we have α1 corresponding to all pupils who receive silent reading, α2 
corresponding to the storytelling only condition, and α3 corresponding to the storytelling 
enhanced by pictures condition; iii) a unique deviation from the average treatment 
response for a particular jth pupil in the ith treatment, εij. This is called the error term and 
in ANOVA is estimated as the deviation of the observed score from the appropriate 
treatment cell mean. 
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As an illustration of how the statistical model apportions effects of the independent 
variables treatment effects, consider a pupil in the silent reading condition who scores 16 
on the vocabulary test. This score can be decomposed into the three components: i) the 
population mean score is 9; ii) the difference between the population mean score and the 
treatment mean for all pupils in the silent reading condition, say a later treatment mean of 
12; and iii) the difference between the pupils score and the contribution of the mean 
treatment effect. The three components of the pupils score are as follows: 

16 = µ + α1 + εij 
    Population mean score  Treatment mean score  Error residual score
    9  12    

16 = 9 + 12–9 + 16−12 

One point of difference between ANOVA and regression is in the estimation of the error 
term. In regression it is estimated as the difference between an observed and a predicted 
score (based on the linear model) rather than as in ANOVA, the deviation between an 
observed score and a cell mean. These different procedures can lead to different error 
estimates and associated degrees of freedom. Interpretation may also be different and this 
depends upon the assumptions the researcher makes about the relationship between the 
independent variables and the response variable. Estes (1991) discusses these points with 
illustrated examples. 

Comparison of ANOVA and Regression Models 

For the purpose of comparing the structural (statistical) models for ANOVA and 
regression, a two-factor design is described so that the interaction term in the model can 
be illustrated and interpretation of this effect discussed. Assume we modify the 
vocabulary experiment and make it a two-factor fixed effects design, one factor is sex 
with two levels male, female, and the other factor is treatment with two levels 
storytelling, and storytelling enhanced by pictures. The investigator wants to see whether 
there is an added effect of pictures and whether this is the same for both males and 
females. Sex is clearly a fixed effect (not under the control of the researcher) and 
treatment can be considered a fixed effect if we assume that the two treatments are not 
chosen at random from a range of possible treatments and the treatment would be the 
same in all replications of the experiment. 

The statistical model for a Two-way fixed effect ANOVA can be written as, 

Full 
model 
for 
ANO
VA 2-
way—
8.21 

yijk represents the vocabulary score of the kth pupil, in treatment condition ij, µ is the 
population mean vocabulary score, αi is the population treatment effect for the 

Inferences involving continuous data      311



intervention (α1=storytelling, α2=storytelling+pictures), βj is the population effect for sex 
(β1=male, β2=female), αβij is the interaction effect of treatments and εijk is the error term 
for pupil k. The interaction term in the model represents the average effect on the pupils’ 
vocabulary score attributable to a particular combination of teaching method and sex. 

The full 2-Way ANOVA statistical model can be rewritten in a regression format, 
Yijk=µx0+α2x2+β1x3+β2x4+αβ11x5+αβ12x6+αβ21x7+αβ22x8+εijk   

Each value of x will be either 0 or 1 depending upon the treatment combination. For 
example, a pupil who was in treatment combination 2 for both factors (α=2 is 
storytelling+pictures and β=2 is female) would have: x0 set to 1 because the overall mean 
always has an effect, x2, x4 and x8 would also be set to 1 because they represent the main 
effects of storytelling+pictures, the main effect of being a female and the interaction 
effect of being in the storytelling+pictures and female group. The other x’s would be set 
to zero (in the regression framework x is the value of what is called an indicator variable) 
indicating that the other treatment effects and combinations do not contribute to pupil k’s 
score. 

When comparing the ANOVA and regression statistical models a commonality which, 
on reflection, should be clear is that the response variable is hypothesized to be a 
weighted combination of independent variables, in regression these weights are called 
regression coefficients and in ANOVA they are called treatment effects. Both models 
are also linear in their parameters, that is the weighted parameters are assumed to be 
additive. In ANOVA this is termed the ‘additivity’ of the model and in regression the 
term linearity of the model is used. 

Significance Tests and Estimation in ANOVA 

As in regression analysis, the sums of squares derived from sample data are used to 
estimate the various components of the ANOVA model. Sums of squares for the overall 
model are partitioned into component sums of squares representing independent 
variables, any interactions and error variance. Associated with each source of variance 
are degrees of freedom, mean squares and F-statistics. These component sums of squares 
and associated statistics are output in most statistical packages (although the terminology 
might vary). 

The general linear model approach to testing the significance of a linear model 
(significant model effect) is to compare the fit of two statistical models, a full model 
(sometimes called an effects model) and a reduced model (when there is no ‘treatment’ 
this is called a means only model). In a One-way ANOVA the full model, where the 
factor has an effect, is: 

yij=µ+αi+εij   

The reduced model which is just the overall mean effect and underlying variation, is 
yij=µi+εij   

yij is the value for the jth observation for the mean treatment i plus underlying variation. 
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For a Two-way ANOVA, the effect of any interaction can be evaluated by comparing 
the full model (Equation 8.21) with a reduced model where the interaction term is 
deleted. 

yijk=µ+αi+βj+εijk 
Reduced model for Two-way 

ANOVA—8.22 

The interaction sums of squares is evaluated as the difference between the error sums of 
squares for the full model and the error sums of squares for the reduced model. There are 
more direct ways of estimating the interaction sums of square but this approach works 
with both balanced and unbalanced designs (unequal numbers in the cells of the design). 

In a One-way ANOVA, for example, the null hypothesis tested is H0: µ1=µ2 =µ3=µn, 
the means of the treatment groups are equal or in model terms, all αi,s are equal. The 
alternative hypothesis is that the means are not equal. Two measures of variation are used 
in the test of significance of the overall model: 1) Sums of squares describing the 
variation between treatment groups in terms of how different the treatment group means 
are, and 2) Sums of squares describing variation attributable to individuals within the 
treatment groups (chance variation among individuals). The ratio of the between to 
within sources of variance (sums of squares), each sums of squares divided by their 
appropriate degrees of freedom, forms the F-statistic and is an overall test of the model 
fit. The sums of squares divided by degrees of freedom is called the Mean Square. 
Degrees of freedom (df) are values associated with sums of squares, the total df are 
partitioned into df associated with each source of variance. If a model fits the data well, 
then differences among treatment group means will be large in comparison to the 
differences among individuals. That is the Mean Square Between groups MSb a 
summary of treatment mean differences, will be larger than the measure of differences 
among individuals within all groups called the Mean Square Within groups. In this 
situation the effects of the treatment groups will be distinguished from random 
differences among individuals, and the null hypothesis of equal treatment group means is 
likely to be rejected. The F-test statistic will be larger than 1 (equivalent to the null 
hypothesis of equal variation among treatments and individuals—treatment group effects 
are no more than random fluctuations) and a small p-value will indicate a significant 
statistical model has been fitted to the data. We would conclude there are differences 
between treatment group means. 

Once a model has been fitted to empirical data and an F-test statistic is found to be 
significant, then the investigator will need to determine the nature of the differences 
among treatment means. Even if the overall null hypothesis of equal group means is 
rejected there may be some means that do not differ from one another. Comparisons 
among means may be suggested by the data itself and these are called post hoc 
comparisons. Alternatively planned comparisons may have been determined before the 
analysis and in this case contrasts of differences between means are performed following 
the F-test.  

In SAS, One-way ANOV As can be performed by several procedures two of which are 
PROC ANOVA, which can only handle balanced designs, and PROC GLM (meaning 
General Linear Models). Since the latter is the most flexible it is illustrated in this 
chapter. In PROC GLM post hoc comparisons can be performed using the means 
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statement and confidence limits for the differences in means for each pairwise 
comparison can be output using the CLDIFF option. When specific hypothesis tests are 
suggested prior to data analysis preplanned comparisons can be performed in SAS using 
the contrast and estimate statements. The contrast statement generates a sums of 
squares for the contrast and an F-value for testing the null hypothesis of no difference 
(linear combination of parameters=0). The estimate statement, used in the same way as 
the contrast statement generates an estimate of the difference in means, the standard error 
of the difference, a t-test to show whether the estimate of the difference is significantly 
different from zero and an associated p-value. Confidence intervals can then be 
constructed for the estimate of the difference in the means. 

In the remainder of this chapter, four ANOVA procedures are described: One-way 
ANOV As (both unrelated and related); a Two-way ANOVA (2×2) Factorial design 
(unrelated); and a Two-way ANOVA Split Plot design (mixed, a related and an unrelated 
factor). Worked examples of a One-way related and unrelated analysis are presented and 
compared with computer output so that the reader can grasp the general principles of the 
ANOVA approach in the context of the general linear model. These principles can be 
extended to Two-way and more complex factorial designs. Calculations by hand for the 
Two-way analyses are tedious (and prone to error) and are therefore omitted. The 
researcher is likely to use a proprietary computer package for analyses of more complex 
designs and emphasis is therefore given to interpretation of computer output for a Two-
way factorial and a split plot design. All of these ANOVA procedures and associated 
hypothesis tests are based on assumptions underpinning, use of the F-test statistic, and 
underlying assumptions of the general linear model. These assumptions, and ways to 
verify them, rather than listing them under each ANOVA procedure are presented here as 
a unified set. 

Assumptions for ANOVA 

1 The response variable should be a continuous metric, at least at the interval level of 
measurement (equal intervals). 

2 The distribution of the response variable should be approximately normal in the 
population, but not necessarily normal in the sample. 

3 The variance of the response variable should be equal in all population subgroups 
(treatment groups) represented in the design. This is the homogeneity of variance 
assumption. (Verify by plotting residual against predicted values. A random scatter of 
points about the mean of zero indicates constant variance and satisfies this 
assumption. A funnel shaped pattern indicates nonconstant variance. Outlier 
observations are easily spotted on this plot.) 

4 Errors should be independent. This is the most important assumption for use of the F-
statistic in ANOVA. To prevent correlated errors subjects should be sampled at 
random (independent of each other) and subjects’ responses should be independent. 

Assumptions specific to the general linear model include: 

5 Effects should be additive, that is the relationship among the independent variables and 
the response variable is assumed to be additive. Each independent variable contributes 
an effect to the response variable independent of all other factors in the model. (Check 
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the underlying theory if there is one, for example, for some learning theories the 
response variable might be a multiplicative rather than additive function of 
independent variables.) 

6 Errors should be unbiased independently and normally distributed with constant 
variance for significance tests to be valid. In ANOVA the errors or residuals represent 
deviations of observed scores from cell means. Survey researchers are most likely to 
encounter problems of response bias which gives rise to biased errors. (Verify 
normality of errors by plotting residuals against the normalized score of the rank of 
the residuals. A straight line plot indicates normality.) 

(If an investigator is more interested in treatment mean differences than estimate 
of the treatment means then any bias in errors can be assumed to be constant 
across all treatments, unless there is reason to believe otherwise.) 

ANOVA is moderately robust against violations of normality and homogeneity of 
variance assumptions but dependencies among subjects or their responses (such as same 
subjects or repeated measures within subjects) for independent ANOVA invalidates the 
analysis. 

Hypothesis tests are generally of the form that subgroup means or treatment means are 
equal. Sample means are used to estimate these fixed population parameters. 

8.7 One-way ANOVA F-test (unrelated) 

When to Use 

This procedure is used when an investigator wants to test for differences among the 
means of two or more independent groups (treatment groups in experimental designs or 
subgroups in survey and comparative designs). The procedure may be viewed as an 
extension of the independent t-test when there are three or more independent groups. In 
an unrelated design, different subjects appear in each of the treatment conditions or 
subgroups. The hypothesis tested by the F-statistic is that population subgroup (or 
treatment group) means are equal. The researcher is often interested in which means 
differ and in what way. A plot of the subgroup means can be very informative as well as 
modified t-tests on post hoc pairwise comparisons of subgroup means. Less frequently in 
educational research an investigator might specify a particular hypothesis prior to data 
analysis in which case a t-test on the preplanned comparison of interest and an estimate 
of the mean difference with confidence limits would be appropriate. 

Example from the Literature 

The efficacy of three different writing courses designed for postgraduate research 
students, a cognitive strategies approach, a generative writing course and a product-
centred approach, is reported by Torrance, Thomas and Robinson (1993). Of 104 students 
in total who participated in the study, forty-one completed the product-centred course, 
thirty completed the strategies course and thirty-three completed the generative writing 
course. At the end of the course a questionnaire was administered which asked five 
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questions about how helpful they thought the course would be with different aspects of 
the writing process. Each response was scored on a scale from 1, ‘not at all helpful’ to 5 
‘very helpful’. Data presented in the authors’ original paper is shown in Table 8.8.  

Table 8.8: Students’ assessment of how helpful the 
course would be in producing a piece of writing 

  Product-centred COURSE Cognitive strategies Generative writing 
Getting started 4.0(0.87) 4.5(0.78) 4.2(0.81) 
In the middle 3.6(1.0) 3.9(0.92) 3.7(1.0) 
Finishing off 3.5(0.97) 3.8(1.1) 3.3(1.2) 
Developing thinking* 3.7(0.92) 4.5(0.78) 4.2(0.98) 
Expressing ideas* 3.1(1.1) 3.8(0.87) 3.8(1.1) 
* Differences between courses significant at p<0.01 

This is an example of an independent One-way analysis of variance based on survey type 
data. Mean responses across the three independent subgroups (represented by participants 
who attended the three different writing courses) are compared. As five questions were 
asked, there are five one-way ANOVAS (one for each question). The authors reported, 
however, that there were significant differences for only two of the ANOV As (two 
questions) among the three courses, Developing thinking: F=7.34 [df](2, 102), p<0.001; 
and Expressing ideas: F=5.40 [df] (2, 98), p<0.01. The two hypotheses tested here were: 
i) no differ-ences in mean scores across the three courses on students; response to the 
question about Developing thinking; and ii) the same null hypothesis with respect to 
Expressing ideas. The degrees of freedom between subgroups is given by the number of 
groups−1=(3−1)=2, the total degrees of freedom would be n−1, and therefore the error 
degrees of freedom are given by subtraction, dftot−dfbetween. In the authors’ original table 
the sample sizes are not reported for each question mean, but it is evident from the 
reported degrees of freedom in the two F-tests (102 and 98) that the number of responses 
for at least two of the questions must have been different. 

Once a significant F-test had been found, establishing that the three means 
corresponding to the three writing courses were different, the investigators performed a 
post hoc test, (called a Scheffe test) on pairwise comparisons of which there would be 
three. The authors reported that these post hoc tests indicated that in both cases 
(developing thinking and expressing ideas), the product-centred course was perceived as 
being significantly less help than both the cognitive strategies course and the generative 
writing course (p<0.05). 

Worked Example 

In a simplified example taken from a PhD student’s project on pupils’ understanding of 
probability and cultural background, pupils’ attributions about chance events were 
determined by asking them to respond to a series of statements, such as ‘Getting a 6 on a 
normal dice depends on knowing how to throw the dice’. Attribution scores for eight 
pupils from each of three separate religious communities, Christian, Muslim and Jewish 
(24 pupils in total) are shown in Table 8.9.  
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Table 8.9: Attribution scores for three religious 
groups 

  Religious Community 
  Christian 

Religion Group 1
Muslim 

Religion Group 2
Jewish 

Religion Group 3
  17 22 18
  19 19 13
  18 22 18
  17 19 20
  18 19 12
  15 14 15
  16 15 17
  17 14 18
TOTAL 137 144 131
Mean 17.125 18.000 16.375

Data summarizing ANOVA computations are usually presented in an ANOVA table 
which identifies the sources of variance, sums of squares and degrees of freedom, means 
squares and F-statistics. (See for example, Figure 8.13.)  

Source of variation Degrees of Freedom 
(df) 

SS MS 
(SS/df) 

F 
(MSmod/MSerror) 

Between groups (MODEL) k−1       
Within individuals 
(ERROR) 

 

      

CORRECTED TOTAL N−1       
Where: 
SS Is the sums of squares 
MS Is the mean square, sums of squares divided by the degrees of freedom 
F Is the ratio of MS effect to MS error 
k Is the number of independent groups (treatments or subgroups) 
N Is the total number of observations in the analysis 
nj Is the number of observations in the jth group (subgroup or treatment) 

Figure 8.13 Layout of results table for 
One-way ANOVA 

Consider for example the data presented in Table 8.9. The df(between groups) is (3–1)=2. A 
degree of freedom is lost because deviations from the overall mean sum to zero. The 
constraint here is that the deviations of the subgroup means from the overall mean must 
sum to zero hence 1 df is lost. The degrees of freedom between individuals within 
groups, what is usually termed df(error), is again given by the constraint that deviations 
from each subgroup mean sum to zero. Here there are three subgroup means so the df are: 
(n1–1)+(n2–1)+(n3–1)=(8–1) +(8−l)+(8−1)=21. The error degrees of freedom can be 
evaluated simply by subtraction, df(error)=df(corrected total)−df(between groups)=(24–1)−2=21. The 
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principle of evaluating the degrees of freedom is important to grasp. The corrected total 
degrees of freedom is simply, number of subjects −1=(24–1)=23. 

Steps in Computation 

To compute F-ratios the general procedure is 1) Identify the sources of variance and 
compute sums of squares for each source; 2) apportion degrees of freedom to each source 
of variance; 3) evaluate the mean squares; and 4) calculate F-statistics and determine 
probabilities. 

Step 1: Compute sums of squares 

a) Sums of squares between groups (conditions or treatments) Computation of sums of 
squares causes the most confusion in ANOVA calculations. It may help if you realize 
that the denominator value in a sums of squares calculation is the number of 
observations on which the total score in the numerator is based. 

Sums of squares between groups, SS(bet), is given by,  

 
Sums of 
squares 

subjects—8.23 

where: 
Tj=Total score for the jth subgroup (treatment group) 
nj=Number in the jth subgroup (treatment group) 
N=Total number of subjects 
xi=Individual score 
This equation is appropriate for both balanced and imbalanced designs. 

 

  

b) Sums of squares within individuals (error sums of squares) 
The error sums of squares, SS(error), is given by 

 
Sums of 
squares 
error—

8.24 

Where: 
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Tj=Total score for the jth subgroup (treatment group) 
ni=Number in the jth subgroup (treatment group) 
xi=Individual score 

 

  

c) Corrected total sums of squares 
The corrected total sums of squares, SS(ct) is given in the usual way 

 Corrected total 
sums of 

squares—8.25 

Where: 
xi=Individual score 
N=Total of all subjects 

 

  

SS(error)=7224−7083.25=140.750 
The reader should note that an easier computation for SS(error) is given by: 

SS(error)=SS(ct)−SS(bet)=151.333−10.5833=140.750 
  

Step 2: Evaluate degrees of freedom (for explanation see above) 

The df for SS(bet) is 2, the df for SS(error) is 21 and the df(ct) is 23. 

Step 3: Evaluate mean squares 

The mean square for between groups MS(bet) is SS(bet)/df(bet)=10.5833/2= 5.2917. Mean 
square error is calculated in exactly the same way, MS(error)= 
SS(error)/df(error)=140.750/21=6.7024. 

Step 4: Calculate F-ratios 

In this example there is only one F-ratio to calculate which is a test of the hypothesis that 
subgroup mean attribution scores are equal. The F-statistic is given as 
MS(bet)/MS(error)=5.2917/6.7024=0.7895 with 2 and 21 degrees of freedom. The degrees of 
freedom of 2 relates the numerator mean square (MS(bet)) and degrees of freedom of 21 
corresponds to the denominator df (MS(error)). 
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We can now summarize these results in an ANOVA table: 
Source of variation Degrees of freedom SS MS F 
Between groups (Model) 2 10.583 5.292 F=0.79; df2, 21
Within individuals (Error) 21 140.750 6.702   
Corrected total 23 151.333     

Interpretation 

We can look up the significance of the F-statistic corresponding to our chosen alpha level 
of 5 per cent, in Table 7 of Appendix A4. We enter the column at the top of the table with 
numerator df of 2 and find where this intersects with a row or denominator df of 21. The 
critical F-value in the body of the table is 3.47. The observed F-value does not fall 
beyond this critical value and therefore we cannot reject the null hypothesis of equal 
means, F=0.79, df 2,21. It therefore appears that pupils in the three religious groups have 
similar attributions about the concept of probability. 

Computer Analysis 

The SAS procedure PROC GLM is used to perform an analysis of variance on the data 
shown in Table 8.9. PROC GLM (general linear models) uses the method of least squares 
analysis to fit statistical models to data. It is suitable for both balanced and unbalanced 
designs and can be used for both univariate and multivariate analyses. To perform a One-
way ANOVA the following SAS code would be submitted:  

proc glm data=a; 
class religion; 
model attrib1=religion; 
output out=new r=res1 p=pred1; 
run; 

The class statement specifies the variable(s) that categorizes the data into subgroups. The 
model statement specifies on the left of the equals sign the response variable(s) and on 
the right of the sign the independent variables that you want to model. In this example we 
want to determine the effects of different categories of the independent variable, religion 
(different religions) on the response variable attrib1 (attribution score). The output 
statement outputs the residuals and predicted values from the fitted statistical model to a 
data set which is named new. The residual and predicted values are named res1 and pred1 
respectively. 

The summary ANOVA table produced by SAS is shown in Figure 8.14. Although 
there are no missing values in this particular data set, PROC GLM can handle missing 
data. The GLM procedure actually estimates values for the missing data points from the 
fitted least squares solution such that the residuals sum to zero. 

To check the model assumptions of normality and homogeneity of variance the fitted 
residuals are ranked using PROC RANK, using the following SAS code.  

General Linear Models Procedure 
Class Level Information 
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  Class Levels Values     
  Religion 3 1 2 3     

Number of observations in data set=24 
General Linear Models Procedure 

Dependent Variable:ATTRIB1 
Source DF Sum of Squares Mean Square F Value Pr>F 
Model 2 10.5833333 5.2916667 0.9 0.4671
Error 21 140.7500000 6.7023810   
Corrected Total 23 151.3333333    
  R-Square C.V. Root MSE ATTRIB1 Mean
  0.069934 15.08095 2.58890 17.1667
Source DF Type I SS Mean Square F Value Pr>F 
Religion 2 10.5833333 5.2916667 0.79 0.4671
Source DF Type III SS Mean Square F Value Pr>F 
Religion 2 10.5833333 5.2916667 0.79 0.4671

Figure 8.14: Analysis of variance from 
PROC GLM 

  *** rank the residuals ***; 
proc rank data=new ties=mean normal=blom; 
var res1; ranks norml; 
run; 
  *** plot to check the models assumptions ***; 
proc plot; 
  plot res1*norm1; 
  plot res1*pred1; 
  title4 'test of normality'; 
run; 

The option ties=mean is used so that any tied ranks would take the mean value, and the 
option normal=blom converts the ranked residuals into normal scores. The variable 
(norml) is thus a normalized score of the ranked residuals. A plot of the residuals (res1) 
against the normalized rank residuals (norml) should give a straight line plot, and a plot 
of res1 against pred1 should give a random scatter of points if the assumptions of 
normality and homogeneity of variance are valid. Output from these plots is shown in 
Figure 8.15.  

Inferences involving continuous data      321



 

Figure 8.15a: Plot to check ANOVA 
assumptions 

 

Figure 8.15b: Plot to check ANOVA 
assumptions 
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Interpretation of Computer Output 

To see whether the data meets the necessary assumptions for ANOVA the plots shown in 
Figures 8.15 a and b should be inspected first. A general linear trend is indicated in the 
first plot and there is no discernible pattern to the scatter of points in the second plot so 
the assumptions appear to have been met. 

Looking at the first section of output in Figure 8.14, summary information on the 
variables entered in the model is printed. You should look at the number of observations 
and the levels of the class variable to check that the model has been specified as you 
intended. 

The next section of output presents results of the analysis of variance in the form of an 
ANOVA table. You should first examine the degrees of freedom to check they are 
correct. Under the column heading Source there are three row headings, Model, Error and 
Corrected Total. The total variation attributable to all the independent variables in the 
model, (in this case there is only one independent variable, Religion) is given as the 
Model sums of squares (10.5833333). In this case, the model sums of squares is the same 
as the sums of squares for Religion (in the next section) and accounts for the variability 
among the sample means of the three religious groups. The sums of squares for error and 
corrected sums of squares are also printed. These correspond with the values in the 
worked example. A test of overall model fit which in this case is also a test of the null 
hypothesis that the Religion means are equal is provided by the F-statistic, F=0.79, and 
the associated p-value of 0.4671. This probability is compared to the selected alpha level 
of 5 per cent, and in this example there is insufficient evidence to reject the null 
hypothesis, and we conclude that the mean attribution scores for the three religious 
groups are not significantly different—the same conclusion that we arrived at in the 
worked example. Note that in the SAS output the exact probability of the obtained F-
statistic is printed, however, when reporting the results authors usually give a 5 per cent 
or a 1 per cent level. Additional information in the output includes R-Square, a measure 
of variation in the data attributable to group differences here only 6.9 per cent of the 
variance in attribution scores is accounted for by Religion. The coefficient of variation, 
CV statistic, is a unitless measure of variation (Root MSE/Response variable mean)×100. 
For interpretation of Root MSE see section 8.2, interpretation of computer output for 
linear regression. 

The SAS output gives both Type I and Type III sums of squares. Type I SS takes 
account of the order in which the effects (independent variables) are added to the 
statistical model. The Type III SS is adjusted for all other effects in the statistical model 
(order is unimportant). Generally Type III sums of squares should be used. A detailed 
explanation about the types of sums of squares is given in the text SAS System for Linear 
Models (SAS Institute, 1991). 

A priori and post hoc Multiple Comparison Procedures 

Once a significant F-statistic has been found, the nature of the differences among the 
means should be investigated. In this example a preplanned hypothesis test was not 
specified and so an a priori comparison would not be used. Similarly, the F-statistic is not 
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significant so a post hoc test would not usually be appropriate. For illustrative purposes, 
however, both an a priori test to estimate the differences in means between Group 1 and 
Group 2, and a post hoc test for all pairwise comparisons among subgroup means are 
illustrated. There are a number of multiple comparison tests and the reader is referred to 
an informative text by Toothaker (1991) on choice of appropriate multiple comparison 
test procedures. 

Preplanned comparisons 

When variances are homogeneous and sample sizes are equal then a planned t-test can be 
computed by substituting the standard error of the difference in the usual t-test with the 
MSerror value from the ANOVA output. The obtained t-statistic is evaluated against 
degrees of freedom for MSerror (in the ANOVA output). Consider for example a 
preplanned comparison of the difference in means between Group 1 (Christian) and 
Group 2 (Muslim), the observed difference is −0.875, an investigator wants to know 
whether this difference is significant. As there are equal sample sizes and variances are 
not drastically different, the t-statistic is given by 

 

  

where n is the number in the group, here 8. A 95 per cent interval for the difference could 
be estimated. 

When sample sizes are unequal or when variances are heterogeneous, individual 
variances and a Satterthwaite correction for degrees of freedom should be used (see 
section on t-tests). Preplanned comparisons can be handled easily in SAS. If an estimate 
of the difference in means is required then the statements LSMEANS and ESTIMATE 
are used. Least square means (LSMEANS) adjust for unequal sample sizes and when we 
have a balanced design are the same as the ordinary means. To output an estimate of the 
difference in means between Group 1 and Group 2, an orthogonal contrast because Group 
3 is not involved, the following SAS code is entered after the model statement: 

lsmeans religion /stderr pdiff; 
estimate '1–2' religion 1–1 0; 

The label 1–2 is given to the selected contrast in the SAS output—see Figure 8.16.  
General Linear Models Procedure’ 

Dependent Variable: ATTRIB1 
Parameter Estimate T for H0: Parameter=0 Pr>|T| Std. Error. of Eastimate 

1–2 −0.87500000 −0.68 0.5064 1.29444785 

Figure 8.16: Estimate of the difference 
between the means of Group 1 and 
Group 2 
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Interpretation 

The estimate of the difference and the t-value (−0.68) are the same as in the previous 
worked example. We would conclude that there is no significant difference between 
Christian and Muslims in their mean attribution scores. 

Post hoc comparisons 

Multiple t-tests on a set of means should be discouraged because this will lead to a high 
experiment-wise error rate, that is for all the comparisons made in the analysis of an 
experiment (or survey) at least one Type I error will be made. If we assume that α′ is the 
Type I error rate for a single comparison then the experimentwise error rate, EWα is 
1−(1−α′)c, where c is the number of orthogonal (independent) comparisons in the 
experiment. For example, with only two comparisons, and an alpha of 5 per cent, then 
EWα is about 10 per cent [1−(1−0.05)2 =9.75%]. Most post hoc multiple comparison 
procedures adjust for experimentwise error, this is one reason why multiple ordinary t-
tests should not be used. 

To perform a Newman Keul’s post hoc procedure, which adjusts for experiment-wise 
error in all pairwise comparisons, the following SAS code would be entered after the 
MODEL statement, 

means religion /snk; 

Output from this procedure is shown in Figure 8.17:  
General Linear Models Procedure 

Student Newman-Keuls test for variable: ATTRIB1 
NOTE: This test controls the type I experiment-wise error rate under the complete null 

hypothesis but not under partial null hypotheses. 
  Alpha=0.05 df=21 MSE=6.702381 
  Number of Means 2  3 
  Critical Range 2.6919532 3.2627471 

Means with the same letter are not significantly different. 
  SNK Grouping Mean N SET 
  A 18.000 8 2 
  A       
  A 17.125 8 1 
  A       
  A 16.375 8 3 

Figure 8.17: SAS output for Newman-
Keul’s multiple comparison procedure 

Interpretation 

As expected, in this particular analysis there are no significant differences among any of 
the means. 
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8.8 One-way ANOVA F-test (related) 

When to Use 

Many research designs in psychology involve subjects in repeated measurements, that is 
the same (or matched) subjects participate in each of the experimental conditions. 
Observations or measurements are therefore correlated and treatment effects are analysed 
using a repeated measures analysis of variance. Another name for this analysis is within 
subjects ANOVA because comparison of treatment effects is within subjects. 

In a related ANOVA differences in scores attributable to individuals, (subjects) can be 
treated as a separate source of variance because the same subjects take part in each of the 
treatment conditions. This source of variance is called Subjects variance, SS(subj). The 
other variance components, we would have in a One-way ANOVA are a source of 
variance attributable to between treatment conditions, SS(bet), and error variance which 
represents differences among subjects within each of the treatment conditions, SS(error). 
Recall that in a One-way unrelated ANOVA we only have two sources of variance: 
between treatments and within individuals which is the error variance. 

In a related ANOVA the F-test of significance is usually constructed on the ratio, 
MS(bet)/MS(error), the error term is reduced in comparison to what it would be in an 
unrelated analysis because variance accounted for by subjects has been partitioned 
separately. In most repeated measurement analyses Subjects are treated as a random 
effect in the statistical model, the treatment effect is usually considered to be fixed. The 
distinction between fixed and random effects is of importance when there is more than 
one factor; this is discussed in section 8.9. In a related ANOVA the MS(error) is not a pure 
error term because part of the variation within subjects is attributable to the different 
treatments, and part is due to individual differences. An F-test of significance for 
Subjects is not therefore valid unless we are willing to assume that there is no interaction 
between subjects and treatments. Ordinarily this is not a problem because the researcher 
is interested in differences among treatment means and not differences among Subjects. 

The assumptions for related ANOVA are the same as for the unrelated analysis with 
the additional requirements of homogeneity of covariance among population error terms 
for the different treatments and independence of errors for the different treatment 
conditions. This assumption is of little concern in a practical setting but the interested 
reader should consult Winer (1962), Chapter 4. 

Example from the Literature 

In an experiment designed to investigate the effects of visual interference on visuospatial 
working memory (Toms, Morris and Foley, 1994) twelve subjects (university 
undergraduates) were presented with two tasks—one spatial imagery and the other 
verbal. Subjects performed each task under four conditions (eyes shut; looking at blank 
screen; looking at a white square; and looking at a changing pattern) the order of 
conditions was counterbalanced using a Latin square design (for explanation of this 
design see Winer, 1962). Each condition was presented in a block of four trials. The 
response variable score was the mean number of correctly recalled sentences per trial in 
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each condition for the spatial and verbal tasks. Data from the authors’ paper is presented 
in Table 8.10:  

Table 8.10: Spatial imagery data 
  Mean number correct per trial 
  Eyes shut Blank screen Square Pattern
Spatial task 6.8 6.7 5.5 5.5 
  (1.0) (0.9) (1.2) (0.9) 
Verbal task 4.6 4.6 4.4 4.8 
  (0.8) (1.2) (1.0) (0.9) 

In this example there is one response variable (mean number of correctly recalled 
sentences) and one repeated measures factor, interference, with four levels corresponding 
to the four conditions. A One-way repeated measures ANOVA is therefore an appropriate 
analytic procedure if the researchers want to determine whether there is a significant 
interference effect-difference among condition means. To do this the researchers need to 
compare subjects’ performance over the four experimental conditions (between treatment 
groups). Differences between subjects within the conditions is not usually of interest in 
this design. The treatments are counterbalanced to reduce serial effects (learning) from 
one treatment to the next. Each subject takes all tasks and conditions and the general idea 
is to see whether differences between condition means account for more variance than 
differences between individuals within each of the four conditions. Differences in scores 
among subjects as a whole are treated as a separate source of variance in this design. 

The null hypothesis would be that variance between conditions is equal to the variance 
between individuals within conditions. Should this be true it implies that differences 
among condition means are no greater than chance variations, or stated another way the 
condition means are equal. In this design, the total degrees of freedom (df) are the 
number of measurements −1. Three subjects were assigned to each row of 4 trials (12 
measures) and there were 4 experimental blocks giving 48 measures, total df is therefore 
47. The degrees of freedom for subjects is given by number of subjects −1=(12−1) 11, 
and degrees of freedom for conditions is number of conditions −1=(4−1)3. The degrees 
of freedom for error term is given by dftotal−dfbetween conditions−dfsubjects,=(47−3−11)=33. 

The authors reported a significant interference effect for the spatial task, F = 23.1, df 
3,33, p<0.0001. They followed this F-test with a post hoc Newman-Keuls test on all 
pairwise comparisons. This procedure is designed for equal sample sizes. Inspection of 
these comparisons showed that performance on the square and changing-pattern 
conditions was significantly poorer than in either of the other two conditions (p<0.01). 

Worked Example 

A subset of data is taken from an evaluation of a reading recovery programme and used 
here to illustrate the principles and computational details of a repeated measures analysis. 
In the recovery programme five children were tested for reading accuracy on three 
occassions, when they entered the programme (Time 1); two weeks after entry (Time 
two); and one month after entry (Time 3). All pupils remained in the programme for a 
period of at least one month. The data is shown in Table 8.11.  
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Table 8.11: Reading accuracy scores for pupils in 
the reading recovery programme 
  Reading Score   
Subject Time 1 Time 2 Time 3 Total Score
1 5 7 12 24
2 4 6 15 25
3 4 7 8 19
4 6 7 13 26
5 3 5 6 14
Occasion Totals 22 32 54 GT=108

Steps in Computation 

To compute F-ratios, the usual sums of squares have to be computed, the degrees of 
freedom determined, and mean square terms calculated. 

Step 1: Compute sums of squares 

a) Sums of squares between treatments (conditions) SS(bet) 
This term is evaluated using the following formula: 

 
Sums of squares 
between subjects 

(repeated 
measures)—8.26 

where: 
Ts=Total score for all subjects at each measurement occassion 
nj=Number in the jth subgroup (treatment group) 
nt=Number of treatments (conditions) 
ns=Number of subjects 
xi=Individual score 

 

  

b) Sums of squares for subjects within treatments SS(subj) 
The subjects sums of squares are given by: 

 
Sums of squares 

for subjects

Statistical analysis for education and psychology researchers      328



(repeated 
measures)—8.27 

where: 
Trm=Total score over repeated measurements for each subject 
nrm=Number of repeated measures 
nt=Number of treatments (conditions) 
ns=Number of subjects 
xi=Individual score 

 

  

c) Corrected total sums of squares SS(ct) 
The corrected total sums of squares are given in the usual way: 

 Corrected total sums 
of squares (repeated 

measures)—8.28 

Where: 
xi=Individual score 
nt=Number of treatments (conditions) 
ns=Number of subjects 

 
SS(ct)=948–777.6=170.40 

d) Error sums of squares SS(error) 
The error sums of squares are obtained by subtraction, 

SS(error)=SS(ct)−SS(subj)−SS(bet) 
SS(error)=170.400–33.733–107.20=29.467 

  

Step 2: Evaluate degrees of freedom 

The df for SS(bet) are number of conditions−1=2; df for SS(subj) are the number of 
subjects−1=4; the df SS(ct) are the total number of scores−1= 14; and the df for SS(error) are 
obtained by subtraction of (df(bet)+df(subj)) from df(ct)=(14−(2+4))=8. 

Step 3: Evaluate mean squares 
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The mean square for between conditions (over the three occasions): MS(bet) is 
SS(bet)/df(bet)=107.2000/2=53.6. Mean square error is calculated in exactly the same way 
for MS(subj) and MS(error): MS(subj)=SS(subj)/df(subj)=33.733/4= 8.433; 
MS(error)=SS(error)/df(error)=29.467/8=3.6834. 

Step 4: Calculate F-ratios 

The main hypothesis of interest is whether there are any differences in reading accuracy 
over the period in which pupils were in the reading recovery programme, that is whether 
mean scores differ over time. A test of this hypothesis is given by the F-test statistic 
which is MS(bet)/MS(error) =53.6/3.6834=14.5518. If we assume no interaction between 
subjects and measurement occasions, the hypothesis of overall differences among 
subjects is tested by the F-statistic which is MS(subj)/MS(error)=8.433/3.6834 =2.2895. 

Interpretation 

The F-statistics are interpreted as usual (see previous worked example). For the between 
conditions effect, the critical value of F at the 5 per cent level with 2 and 8 df is 4.46. 
Since the obtained F of 14.55 (rounded) is larger than this we can reject the null 
hypothesis and conclude that there are significant differences in reading accuracy over 
the three measurement occasions; F=14.55; df 2,8; p< 0.05. For subjects, the critical F-
value is 3.84, since the observed value of 2.29 is less than this we can conclude that 
overall, differences among subjects are not statistically significant. Results of these tests 
can be presented in a summary table as follows:  

Table 8.12: Summary table for One-way repeated 
measures ANOVA 

Source of variation Degrees of freedom SS MS F 
Between occasions 2 107.200 53.60 F=14.55; df 2, 8
Subjects 4 33.733 8.433 F=2.29; df 4, 8
Error 8 29.467 3.6834   
Corrected total 14 170.400    

Computer Analysis 

The following SAS code performs a One-way repeated measures ANOVA on the data 
presented in Table 8.11.  

data a; 
   input subj t1 t2 t3; 
   cards; 
1 8 7 4 
2 7 8 5 
3 9 5 3 
4 5 4 6 
5 6 6 2 
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6 8 7 4 
; 

data b; set a; 
   drop t1-t3; 
   time=1; score=t1; output; 
   time=2; score=t2; output; 
   time=3; score=t3; output; 
proc glm data=b; 
  class subj time; 
  model score= subj time ; 
run; 

Data is usually in the format of one case per line, which has a case number or some other 
subject identification followed by the response variable score for each of the 
measurement occasions (see data after the cards statement). To create a single response 
variable score for use in PROC GLM a data step is used to rearrange the data. This new 
variable score is the reading accuracy score at each measurement occasion (time 1, time 2 
and time 3 in Table 8.11). To associate each score with its measurement occasion a 
variable time is created. The PROC GLM procedure analyses the response variable score 
with subject and time as the independent variables. For an explanation of the MODEL 
statement refer to the description given in the section-on computer analysis for an 
unrelated One-way ANOVA. SAS output for this analysis is shown in Figure 8.18.  

General Linear Models Procedure 
Class Level Information 

    Class Levels Values     
    Subj 5 1 2 3 4 5     
    Time 3 1 2 3     

Number of observations in data set=15 
General Linear Models Procedure  

Dependent Variable: SCORE 
Source DF Sum of Squares   Mean Square F Value Pr>F 
  6 140.933333   23.488889 6.38 0.0100
Error 8 29.466667   3.683333     
  Corrected           
Total 14 170.400000         

R-Square C.V.   Root MSE   SCORE Mean
0.827074 26.65557  1.91920  7.20000

Source DF Type I SS   Mean Square F Value Pr>F 
Subj 4 33.733333   8.433333 2.29 0.1481
Time 2 107.200000   53.600000 14.55 0.0022
Source DF Type III SS   Mean Square F Value Pr>F 
Subj 4 33.733333  8.433333 2.29 0.1481
Time 2 107.200000  53.600000 14.55 0.0022
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Figure 8.18: Output for One-way 
repeated measures analysis of 
variance 

It is often informative to inspect any differences in means visually, a plot of the mean 
reading accuracy scores for each measurement occasion is given by the following SAS 
code: 

*** To produce plot of means by treatment occasion ***; 
proc sort; by time; 
run; 
proc means mean noprint data=b; 
   var score; 
   by time; 
output out=means mean=score; 
run; 
proc plot data=means; 
     plot score*time; 
run; 

Interpretation of Computer Output 

The usual plots to check for underlying assumptions should be performed before detailed 
examination of the results. The SAS output is interpreted in exactly the same way as 
described in the section on unrelated One-Way ANOVA, the only difference here is the 
partitioning of a separate source of variance attributable to Subjects. Also note, The 
Model sums of squares is equivalent to the total of the sums of squares for Subject and 
Time. 

As before, the first section of output in Figure 8.18 contains summary information on 
the variables entered in the model. Here the variables subject and time are analysed, the 
summary information shows there are five subjects, three occasions for time and a total 
of fifteen observations. 

The next section of output presents results of the analysis of variance, again an 
investigator should first check that the degrees of freedom are correct. The sums of 
squares for the model and error are presented first and then the model sums of squares is 
partitioned into separate sources of variance, subject and time. A test of overall model fit 
is given by the first F-value of 6.38 which is significant at the 1 per cent level (p=0.01). 
This indicates that the sources of variance specified in the statistical model have a 
significant effect on reading accuracy scores. F-statistics for the effects of individual 
sources of variance are given in the following section of the output. We can conclude that 
the mean reading accuracy score differs over the three measurement occasions, F=14.55; 
df 2,8; p < 0.05 and there is no significant subject effect. Overall individual differences 
among subjects are not significant at the 5 per cent level. The statistics in the SAS output 
and the substantive conclusions are the same as in the worked example. 

An investigator having identified a significant time effect may want to inspect this 
further by examining any possible trends in the means. Clearly if this was a design 
intention it would be preferable to have more than three repeated measures. One method 

Statistical analysis for education and psychology researchers      332



to describe a trend is to use polynomials (non-linear relationships) of varying degree in a 
regression analysis. The treatment levels would correspond to the X variable and the 
treatment group means would be the Y variable in a regression of Y on X. A further 
design implication is that the various treatment levels should correspond to a sensible 
measurement scale, i.e., equal steps along an ordered scale. We would pick equal time 
intervals in this example. 

A linear (first degree) model would be fitted first to see whether there was any linear 
relationship. Polynomial terms would then be fitted e.g., quadratic (second degree) and 
cubic (third degree). F-tests can then be performed to detect the significance of linear and 
higher order trends. The reader is referred to Chapter 3 in Winer (1962) for a worked 
example. 

8.9 Two-way ANOVA 2×2 Factorial (unrelated) Two factors with two 
levels for each factor 

When to Use 

When a survey or experimental design has two independent variables (factors) and every 
level of one factor is paired with every level of the other factor this is called a factorial 
design and can be analysed by a 2×2 Factorial ANOVA. In this design different subjects 
appear in each combination of different levels of the factors, hence the term unrelated. In 
a 2×2 design there are two factors each with two levels giving four cells. Results can 
therefore be analysed by examining main effects of each factor, (ignoring the effect of the 
other factor) and by looking for interaction effects. Often a factorial analysis is 
performed because an investigator believes there will be a significant interaction between 
the two independent variables. In an unrelated 2×2 factorial design there is only one score 
per subject (experimental unit) and if the design is balanced there will be an equal 
number of subjects (and scores) in each of the four cells of the design. 

In this analysis the total variance between subjects is partitioned into three separate 
components, a sums of squares for each factor, SSF1, SSF2, and an interaction sums of 
squares SSF1×F2. Any differences between subjects within each combination of treatment 
conditions is counted as a source of error variance. The interaction sums of squares can 
be calculated, using a pocket calculator, by calculating the sums of squares for all four 
cells in the design (based on the totals of all four cells) and then subtracting the sums of 
squares for each single factor (based on the totals of only two cells). A computer analysis 
evaluates the interaction term by first fitting a full statistical model and then comparing 
the estimated values with a reduced model with the interaction term deleted. One final 
problem that researchers occasionally encounter with factorial designs is the choice of an 
appropriate error term for the denominator of the F-test when a random effects or mixed 
effects (fixed and random factor) model is fitted. Choice of error terms and how to 
specify these in your analysis is described in the section on computer analysis.  
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Example from the Literature 

In an experimental study on ways to improve the clarity of journal abstracts Hartley 
(1994) designed a study to examine the effects of changes in type-size, layout and 
language on the perceived clarity of published abstracts. In one of four studies to see 
whether formal language is more appropriate for overseas students a 2×2 unrelated 
factorial (unbalanced) design was used, one factor being the abstract which was 
presented in original vs. revised condition (2 levels) and the other factor was student, 
British students vs vs. Overseas students (2 levels). Data were analysed using a Two-way 
ANOVA for unrelated measures. 

Data represented in Table 8.13 is taken from Table 5 of the author’s original paper.  

Table 8.13: Mean cloze (comprehension) scores 
(out of 20) for British and overseas postgraduate 
librarianship students on the original and revised 
version of abstract A 

    ABSTRACT 
    Original version Revised version
British students M 7.6 10.5
  SD 0.8 2.3
  N 5 10
Overseas students M 3.6 6.8
  SD 3.3 2.7
  N 5 7

Hypotheses tested by the author include: i) main effects for Abstract, that is the means for 
the two abstract groups will be equal, ignoring the effects of students; ii) main effects for 
students; and iii) interaction effects, that is whether the effects of one variable depend on 
the level of the other, for example, one hypothesis might be no different among students 
for revised abstract. 

The author reported two significant main effects. A main effect is the effect of one 
factor ignoring the effect of the other. In this example the significant main effect for 
revision of abstract indicated that participants did better with the revised abstracts than 
with the original versions, F=7.58, df=1,23, p=0.01. Degrees of freedom for the factor 
abstract is, number of conditions−1, (2−1=1), and the degrees of freedom for error are 
given by dftotal−dfFactor 1−dfFactor2−dfinteraction which is evaluated as (27−1)−(1−(1−(1)=23. 
The degrees of freedom for the interaction term are: dfinteraction=dfF1×dfF2=(1×1)=1. The 
main effect can be seen by examining the body of the table, the differences in means 
between original and revised versions of the abstract are evident ignoring the main effect 
of student. The main effect of student is also significant, British students had higher 
scores than overseas students, ignoring the effect of abstract, F=13.83, df=1, 23, p = 
0.001. The author reported no significant interaction effect. 
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The author did not report any tests of the ANOVA assumptions even though sample 
sizes were small, cells were unbalanced and the variance in one cell is much smaller than 
the variances in the other three cells.  

Computer Analysis 

When analysing any two-factor design it is important to distinguish between fixed and 
random effects. The error term, the denominator in the F-test, is dependent upon whether 
a factor is fixed or random. For example, in a two-factor design where both factors are 
random (unusual in education), both main factors would be tested against the interaction 
term, for example FF1=MS(F1)/MS(F1×F2), however, the interaction effect would be tested 
against the error term (e.g., FFl×F2= MS(F1×F2)/MS(error). With a fixed effects design the F-
statistic would be found for all effects by dividing by MS(error) in the usual way. In a 
mixed design with both fixed and random effects (common in education) both the 
random factor and the interaction term are tested against the usual error term, but the 
fixed factor is tested against the MS(interaction) term. 

Data for the following analysis is taken from the study on pupils’ understanding of 
probability and cultural background that was described briefly in section 8.7. The 
additional factor here is sex of respondent. One of the religious groups has also been 
changed so we now have Christian and Sikh as the two levels of the other factor. The data 
is shown in Table 8.14.  

Table 8.14: Data for 2×2 factorial ANOVA 
Variable (Sex) Variable Religion (REL)

Male (code=0) Female (code=1)
Christian 17 19 22 18 15 19 
(code=2) 19 18 13 14 12 15 
Sikh 18 17 22 16 17 15 
(code=5) 19 18 20 14 17 18 

The following SAS code is used to perform a 2×2 factorial analysis of variance on the 
data shown in Table 8.13. Pre-planned significance tests as well as estimates of the 
differences in means between: i) males and females, (ESTIMATE ‘0–1’ SEX 1–1) and ii) 
Christians and Sikhs (ESTIMATE ‘5–2’ REL–1 1) are also output.  

proc glm data=a; 
class sex rel; 
model attrib1 = sex rel sex*rel; 
lsmeans sex rel/ stderr pdiff; 
means sex rel/ deponly; 
estimate '0–1' sex 1 −1; 
estimate '5−2' rel −1 1; 
output out = new r = res1 p = pred1; 
run; 
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Output from this analysis is shown in Figure 8.19. The lsmeans statement produces least-
square means for the response variable attrib1 split on the independent variables religion 
and sex. The standard error of the lsmean is also produced (code is stderr) along with a 
test of the null hypothesis that the lsmeans are equal (code is pdiff). The means statement 
produces means instead of lsmeans (in this example they are both the same). Use of the 
estimate statement is described in section 8.7 under the heading ‘A priori and post hoc 
multiple comparison procedures’. 

General Linear Models Procedure 
Class Level Information 

  Class Levels Values     
  sex 2 0 1     
  rel 2 2 5     

Number of observations in data set=24 
Dependent Variable: ATTRIB1 
Source DF Sum of Squares Mean Square F Value Pr>F 
Model 3 47.0000000 15.6666667 3.00 0.0547 
Error 20 104.3333333 5.2166667    
Corrected          
Total 23 151.3333333       
  R-Square C.V. Root MSE   Mean 
  0.310573 13.30487 2.28400  17.1667 
Source DF Type SS Mean Square F Value Pr>F 
sex 1 42.6666667 42.6666667 8.18 0.0097 
rel 1 4.166666 4.1666667 0.80 0.3821 
sex*rel 1 0.1666667 0.1666667 0.03 0.8599 
Source DF Type III SS Mean Square F Value Pr>F 
sex 1 42.6666667 42.6666667 8.18   
rel 1 4.1666667 4.1666667 0.80   
sex*rel  0.1666667 0.1666667 0.03   

Least Squares Means 
Sex Attribl lsmean Std Err lsmean Pr>|T| H0: lsmean=0 Pr>|T| H0: lsmeanl=lsmean2 

0 18.5000000 0.6593347 0.0001 0.0097 
1 15.8333333 0.6593347 0.0001    

Rel Attribl lsmean Std Err 
lsmean 

Pr>|T| H0: lsmean=0 Pr>|T| H0: lsmeanl=lsmean2 

2 16.7500000 0.6593347 0.0001 0.3821 
5 17.5833333 0.0001     

General Linear Models Procedure 
Level of -----------ATTRIB1-------- 

  SEX N Mean SD   
  0 12 18.5000000 2.39317211   
  1 12 15.8333333 2.03752672   

Level of -----------ATTRIB1-------- 
  REL N Mean SD   
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  2 12 16.7500000 2.95803989   
  5 12 17.5833333 2.15146180   

General Linear Models Procedure 
Dependent Variable: ATTRIB1 
Parameter Estimate T for H0: Parameter=0 Pr>|T| std Error of Estimate

0–1 2.66666667 2.86 0.0097 0.93244005 
5–2 0.83333333 0.89 0.3821 0.93244005 

Figure 8.19: Output for 2×2 Factorial 
ANOVA on the data shown in Table 
8.14 

Interpretation of Computer Output 

The ANOVA results section of the output is interpreted in the usual way (see 
interpretation of One-way unrelated ANOVA). When interpreting main effects and 
interactions a quick approximation of the importance of these effects is indicated by the 
relative size of the sums of squares. In this example the variable sex has by far the largest 
sums of squares. The F-ratios should be inspected for significance and main effects 
should always be examined first followed by lower- to higher-order interactions. Here 
there is a significant main effect for sex, F=8.18; df 1,20; p<0.05, but no significant 
effect for religion. 

The interaction term signifies dependence and therefore has no sensible meaning 
without first considering the main effects. In this example interactions effects are small 
and none significant, only the results of main effects should therefore be reported. Should 
the interaction have been significant, the main effects would have to be interpreted with 
caution. 

The next section of output contains information about means and can be used for 
plotting simple effects (effect of one variable at one level of the other). These plots can 
be very informative when there is a significant interaction. We can conclude from the 
ANOVA table that there is a significant difference in the mean attribution scores for 
males and females and this difference does not appear to depend upon religion. The final 
section of this output relates to the preplanned hypothesis tests and estimates of the 
differences in mean attribution scores between males and females and between the 
Christians and Sikhs. The results indicate that whereas there is a significant difference 
between males and females, there is no significant difference between the religious 
groups.  

8.10 Split-Plot ANOVA 

When to Use 

The split-plot design is quite common in educational and psychological research. Split-
plot ANOVA should be considered when measures on a response variable are 
continuous, when two independent groups of subjects are given two or more tests 
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(treatments) and each subject takes all tests (treatments—the repeated measures). The 
usual ANOVA assumptions should be met. Often the type of subjects in a design are of 
particular interest and the investigator wants to compare the effects of treatments for 
different subcategories, such as sex, age groups, or different types of learning difficulty. 
In this case different subjects are required hence the between subjects factor. However, 
the same subjects in a subgroup will appear in the different treatment conditions or 
different measures over time if the design is intended to examine differences between 
pre-test, post-test and delayed post-test mean scores. 

Example from the Literature 

Teacher researchers have shown that a substantial proportion of teachers report high 
levels of occupational stress, the main stressors being work conditions, pupils’ behaviour, 
staff relationships and pressure of time. In a study to investigate the relationship between 
teachers’ cognitive style and stress, Borg and Riding (1993) surveyed 212 secondary 
school teachers in Malta. The investigators performed a split-plot ANOVA to determine 
whether there was any interaction between teachers’ perception of four stressors (pupil 
misbehaviour, poor staff relationships, poor working conditions, time pressure), the 
within subjects factor, and cognitive style between subjects factor (wholists vs. analytics). 
They reported a highly significant within-subjects factor, teacher perception of stress, 
F=20.31, df 3,312, p<0.001, which indicated that teachers’ stress factor perceptions 
differed. No post hoc tests were reported, but the authors commented that the most 
stressful factor for the group of teachers was pupil misbehaviour. A significant 
interaction between stress and cognitive style was also reported, F=3.13, df3, 312, 
p=0.026. The authors examined plots of simple effects and concluded that ‘Analytic 
thinkers reported greater stress than wholists for “pupil misbehaviour” and “working 
conditions” but the converse was true for “poor staff relations” and “time pressure”.’ The 
authors reported no significant between-subjects effect (for the wholist-analytics 
comparison). 

Data referred to in an earlier section taken from a student’s thesis study on 
augmentation and children’s vocabulary acquisition is used to illustrate computer analysis 
of a split-plot ANOVA. Children were read a story based on a folktale containing target 
words on which they would be tested. The target words did not occur naturally in the 
story; they replaced easier words, such as ‘pinnacle’ for ‘top’. The fourteen target words 
consisted of eight nouns, three adjectives and three verbs. Each pupil was tested 
individually on three occasions: one week before the story was read to them by the 
teacher, (Time 1); shortly after the storytelling by the teacher (Time 2); and two weeks 
after the storytelling (Time 3). In the test situation a choice of six alternative words was 
provided, one of which was similar in meaning to the target word. A score of 1 was given 
for each correct answer. Boys and girls were treated as a between-subjects factor in the 
analysis. Data from ten subjects is shown in Table 8.15.  

Table 8.15: Vocabulary acquisition data for split-
plot analysis 

Factor 
(Sex) 

Subjects Before story 
(Time1) 

Factor (Time) Shortly after 
story (Time2) 

Delayed post-test 
(Time3) 
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Male S1 5 8 6 
(code=1) S2 4 8 6 
  S3 3 5 5 
  S4 6 10 9 
  S5 3 6 5 
Female S6 6 5 7 
(code=0) S7 4 4 4 
  S8 5 6 5 
  S9 4 5 5 
  S10 3 4 5 

Three main hypotheses were tested: 

• whether there was a difference between males and females; 
• whether there was a difference in vocabulary score between the testing occasions (Time 

1 to Time3); 
• whether there was an interaction between sex and time. 

Computer Analysis 

The sources of variance in a split-plot design can be partitioned first into sums of squares 
between-subjects and sums of squares within-subjects. Then the withinsubjects sums of 
squares can be further partitioned into sums of squares for treatment effects (in this 
example time), sums of squares for the interaction of between-subjects by treatment 
factor (time*sex in this example), and the withinerror sums of squares which is actually 
the sums of squares for treatment by subjects within the between subjects factor, 
(time*subj(sex)). The between-subjects partition of the data has its own sums of squares 
error term, subjects within the between-subjects factor, (subj(sex)) which is independent 
of the within-subjects effects. This partitioning of the sums of squares for the data shown 
in Table 8.15 is illustrated in Figure 8.20.  
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Figure 8.20: Partitioning of sums of 
squares in a 2×2 split-plot design 

The data if collected in the usual way (one line per case with each repeated time 
measurement on the same line) is first rearranged using a data step. For an explanation, 
see under the heading Computer Analysis for the related ANOVA. PROC GLM is then 
used to produce the ANOVA output see the following SAS code: 

data a; 
   input subj sex t1 t2 t3; 
   cards; 
  1  1  5  8  6 
  2  1  4  8  6 
  3  1  3  5  5 
  4  1  6  10 9 
  5  1  3  6  5 
  6  0  6  5  7 
  7  0  4  4  4 
  8  0  5  6  5 
  9  0  4  5  5 
  10 0  3  4  5 
  ; 
data b; set a; 
   drop t1−t3; 
   time=1; score=t1; output; 
   time=2; score=t2; output; 
   time=3; score=t3; output; 
proc glm data=b; 
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  class sex subj time; 
  model score= sex subj(sex) time sex*time; 
  test h=sex e=subj (sex); 
run; 

Output from this code is shown in Figure 8.21.  
General Linear Models Procedure 

Class Level Information 
  Class Levels Values     
  sex 2 0 1     
  subj 10 1 2 3 4 5 6 7 8 9 10     
  time 3 1 2 3     

Number of observations in data set=30 
General Linear Models Procedure 

Dependent Variable: SCORE 
Source DF Sum of Squares Mean Square F Value Pr>F 

Model 13 76.7000000 5.9000000 15.06 0.0001
Error 16 6.26666667 0.3916667   
Corrected           
Total 29 82.9666667       

R-Square C.V. Root MSE SCORE Mean 
0.924468 11.66148 0.62583   5.36667

Source DF Type I SS Mean Square F Value Pr>F 
sex 1 9.6333333 9.6333333 24.60 0.0001
subj(sex) 8 39.3333333 4.9166667 12.55 0.0001
time 2 17.8666667 8.9333333 22.81 0.0001
sex*time 2 9.8666667 4.9333333 12 .60 0.0005
Source DF Type III SS Mean Square F Value Pr>F 
sex 1 9.6333333 9.6333333 24.60 0.0001
subj(sex) 8 39.3333333 4.9166667 12.55 0.0001
time  2 17.8666667 8.9333333 22.81 0.0001
sex*time 2 9.8666667 4.9333333 12.60 0.0005
Tests of Hypotheses—using the Type III MS for. subj (sex) as an error term
Source DF Type III SS Mean Square F Value Pr>F 
sex 1 9.63333333 9.63333333 1.96 0.1991

Figure 8.21: Output for univariate 
split-plot ANOVA on the data shown in 
Table 8.15 

Interpretation of Computer Output 

The first section of output contains the usual summary information which should be 
checked to ensure the model fitted is correct. Here there are two levels for the between 
subjects factor (sex), three repeated measurements over time, ten subjects and a total of 
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thirty observations. The corrected total degrees of freedom and the partitioning into 
between and within sources should then be checked. Considering next the overall model 
fit this is significant, F=15.06; df 13; 16 p<0.0001 indicating that the independent 
variables have a significant effect. Notice that the model sums of squares (and df) are 
equivalent to the total of the sums of squares for: (sex), (subj(sex)), (time), and 
(sex*time) indicating the additive nature of ANOVA. Considering the first hypothesis, 
whether there is a significant main effect of sex, the observed F-statistic, obtained from 
the bottom of the SAS output, is F=1.96; df1, 8; p=0.199 which indicates that the null 
hypothesis cannot be rejected. It is therefore concluded that there is no difference 
between males and females in their mean vocabulary scores. The reader should note that 
an F-value for the effect of sex is printed in the body of the ANOVA table but this is 
based on an inappropriate error term. The output at the bottom of the table reminds the 
analyst that the requested denominator for the F-test has been used, ‘Tests of Hypotheses 
using the Type III MS for subj(sex) as an error term’. The Type III sums of squares are 
used by default but Type I, II or IV can be requested. 

A significant difference is found among the three means for the pre-, post- and 
delayed-post-tests, (Time in the analysis) F=22.81; df2, 16; p<0.001 suggesting there 
may be a possible trend in the data. These means should be plotted but with only three 
measurement points in time it probably would not be worth examining the data for trends 
using polynomial terms. Finally, group by repeated measures interaction, sex*time, is 
significant, F=12.60; df=2, 16; p<0.001. This indicates that male and female vocabulary 
scores differ depending upon the measurement occasion. Plots of the simple effects that is 
the effects of one variable at individual levels of the other variable, (for example, a plot 
of mean vocabulary scores, Y-axis against measurement occasion, X-axis for males and 
females separately) are likely to be informative. 

8.11 What Can Be Done when Assumptions of Homogeneity of 
Variance and Normality of Residuals Are Not Met? 

This is an issue that most researchers face at some time or another but is generally not 
discussed in introductory statistical texts. 

First, to deal with the two sample problem of unequal variances when the assumption 
of normality is reasonable, a modified t-test should be used called the Satterthwaite 
approximation procedure. This was described in the section on t-tests; for more detailed 
discussion the reader is referred to Winer (1971). 

When the assumption of normality is also violated then the answer is to perform a rank 
transformation on the raw scores and then use the modified Satterthwaite t’-test on the 
ranks of the scores instead of the scores themselves. This procedure will to a large extent 
eliminate the effects of both non-normality and unequal variances. Zimmerman and 
Zumbo (1993) provide a very readable account with straightforward practical guidance 
about what to do in this situation. 

When more than two means are compared the same principles can be applied, for 
example, use of PROC GLM on the ranked scores and non-parametric procedures such as 
those described in Chapter 7. Alternatively, other data transformations should be 
considered, such as log transform or square root. The purpose of data transformation is 
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usually to obtain scores which have improved normality and homogeneity of variance 
characteristics. However, the reader should be aware that transformation of data to 
change the variance of a distribution or restore normality will also affect the shape of the 
distribution. For example, homogeneity of variance may be achieved but a distribution 
may then be skewed. Another consequence resulting from data transformation is the 
possibility of induced non-linearity. With reference to the arcsine transformation there is 
no general agreement as to when this transformation is appropriate (Milligan, 1987), and 
when the null hypothesis is false the transformation can reduce the power of a statistical 
test. 

A third strategy, seldom mentioned, is to perform the analysis but then to make 
nominal adjustments to the statistical significance and power of a test, see Horton (1978) 
for discussion of this alternative. 

Concluding Remarks 

Generally ask yourself the following questions when interpreting results: Does this make 
sense? Is it what I might have expected? Is there an alternative interpretation or 
explanation? Statistical significance should be distinguished from educational or clinical 
significance. If a clinical or educational effect is reported consider the magnitude of the 
effect, the ‘effect size’ and the statistical power. Consider also whether reported results 
are exploratory or confirmatory and if survey data is reported, pay particular attention to 
non-sampling errors when interpreting findings. Statistical analysis should be used to 
gain insight into data and not as an end itself or to lend respectability to a poorly designed 
study. Too much or over-sophisticated statistical analysis should be avoided, as one 
statistician is reported to have commented, any data set will confess if you interrogate it 
long enough.  
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Appendix 

Appendix A1 Data 

Table 1: Data set for 114 First Class Honours 
Graduates (Chapter 3) 

OBS SUB SEX CASENO DEGP ASCORE1 NUMV AGEY
1 Phys.Sci/5 F 302 I/5 7 3 18.7500
2 Phys.Sci/5 M 303 I/5 14 3 18.7500
3 Phys.Sci/5 M 320 I/5 15 3 18.2500
4 Phys.Sci/5 M 321 I/5 12 3 20.3333
5 Phys.Sci/5 M 329 I/5 11 3 19.0000
6 Phys.Sci/5 M 330 I/5 9 4 18.7500
7 Phys.Sci/5 M 331 I/5 14 4 19.0833
8 Phys.Sci/5 M 367 I/5 20 4 18.6667
9 Phys.Sci/5 F 368 I/5 20 4 19.8333

10 Phys.Sci/5 M 369 I/5 20 4 19.0000
11 Phys.Sci/5 F 370 I/5 10 3 18.5000
12 Phys.Sci/5 F 371 I/5 12 3 18.5833
13 Phys.Sci/5 M 374 I/5 18 4 18.8333
14 Phys.Sci/5 F 375 I/5 13 3 19.5833
15 Phys.Sci/5 F 376 I/5 11 3 21.0833
16 Phys.Sci/5 M 377 I/5 15 3 18.6667
17 Phys.Sci/5 M 378 I/5 13 3 18.7500
18 Phys.Sci/5 F 379 I/5 13 3 18.1667
19 Phys.Sci/5 F 380 I/5 8 3 18.9167
20 Phys.Sci/5 M 381 I/5 11 3 19.3333
21 Phys.Sci/5 M 382 I/5 10 3 18.2500
22 Phys.Sci/5 F 402 I/5 13 3 19.0000
23 Phys.Sci/5 M 408 I/5 12 3 19.0000
24 Phys.Sci/5 M 435 I/5 13 3 18.5833
25 Phys.Sci/5 M 441 I/5 14 3 18.9167
26 Phys.Sci/5 M 442 I/5 20 4 18.8333
27 Phys.Sci/5 M 443 I/5 11 3 18.3333
28 Phys.Sci/5 M 444 I/5 20 4 19.4167
29 Phys.Sci/5 M 445 I/5 15 3 18.0833
30 Phys.Sci/5 M 446 I/5 19 4 18.9167
31 Phys.Sci/5 M 447 I/5 13 4 18.6667
32 Phys.Sci/5 M 448 I/5 15 3 19.0000
33 Phys.Sci/5 M 449 I/5 19 4 18.2500



34 Phys.Sci/5 F 450 I/5 16 4 18.6667
35 Phys.Sci/5 M 451 I/5 20 4 18.8333
36 Phys.Sci/5 M 456 I/5 20 4 19.0833
37 Phys.Sci/5 M 457 I/5 19 4 18.1667

OBS SUB SEX CASENO DEGP ASCORE1 NUMV AGEY
38 Phys.Sci/5 M 458 I/5 19 4 19.0000
39 Phys.Sci/5 M 459 I/5 14 3 19.5000
40 Phys.Sci/5 F 460 I/5 18 4 18.9167
41 Phys.Sci/5 M 461 I/5 19 4 18.5833
42 Phys.Sci/5 M 462 I/5 17 4 19.4167
43 Phys.Sci/5 M 463 I/5 20 4 18.2500
44 Phys.Sci/5 M 464 I/5 19 4 19.0833
45 Phys.Sci/5 M 465 I/5 20 4 18.7500
46 Phys.Sci/5 M 466 I/5 14 3 19.0833
47 Phys.Sci/5 M 467 I/5 15 3 18.8333
48 Phys.Sci/5 M 468 I/5 13 3 18.2500
49 Phys.Sci/5 M 469 I/5 15 4 18.3333
50 Phys.Sci/5 M 470 I/5 20 4 18.1667
51 Phys.Sci/5 M 471 I/5 13 3 18.3333
52 Phys.Sci/5 M 472 I/5 15 3 18.7500
53 Phys.Sci/5 M 473 I/5 15 3 19.5000
54 Phys.Sci/5 F 474 I/5 13 4 18.7500
55 Phys.Sci/5 M 475 I/5 14 3 18.9167
56 Phys . Sci/5 F 476 I/5 15 3 17.8333
57 Phys.Sci/5 F 477 I/5 20 4 18.4167
58 Phys.Sci/5 M 542 I/5 19 4 18.5833
59 Phys.Sci/5 M 548 I/5 16 4 19.0833
60 Phys.Sci/5 M 549 I/5 18 4 18.5000
61 Phys.Sci/5 M 550 I/5 15 3 18.3333
62 Phys.Sci/5 M 551 I/5 15 3 18.5833
63 Engineer/7 M 782 I/5 18 4 18.4167
64 Engineer/7 M 800 I/5 10 4 18.5833
65 Engineer/7 M 804 I/5 12 3 19.3333
66 Engineer/7 M 805 I/5 18 4 18.6667
67 Engineer/7 M 806 I/5 20 4 19.2500
68 Engineer/7 M 807 I/5 18 4 19.5833
69 Engineer/7 M 808 I/5 14 4 20.9167
70 Engineer/7 M 809 I/5 15 3 18.7500
71 Engineer/7 M 810 I/5 12 3 18.4167
72 Engineer/7 F 836 I/5 17 4 18.1667
73 Engineer/7 M 837 I/5 19 4 19.5833
74 Engineer/7 M 859 I/5 20 4 19.0000
75 Engineer/7 M 860 I/5 13 4 20.7500
76 Engineer/7 M 861 I/5 13 3 18.2500
77 Engineer/7 M 863 I/5 13 3 18.7500
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78 Engineer/7 M 886 I/5 11 4 19.4167
79 Engineer/7 M 887 I/5 20 4 19.5000
80 Engineer/7 M 888 I/5 15 3 19.4167
81 Engineer/7 M 889 I/5 17 4 19.5833
82 Engineer/7 M 891 I/5 13 3 19.5833
83 Engineer/7 M 893 I/5 14 4 19.0000
84 Engineer/7 M 894 I/5 14 3 20.3333
85 Engineer/7 F 895 I/5 16 4 19.5000
86 Engineer/7 M 896 I/5 13 3 18.5833
87 Engineer/7 M 897 I/5 14 3 20.5833
88 Engineer/7 M 898 I/5 15 3 20.6667

OBS SUB SEX CASENO DEGP ASCORE1 NUMV AGEY
89 Engineer/7 M 934 I/5 19 4 20. 0833
90 Engineer/7 M 935 I/5 10 3 20. 5833
91 Engineer/7 M 937 I/5 19 4 20. 3333
92 Soc .Sci/9 F 1119 I/5 16 4 19. 0000
93 Soc.Sci/9 M 1154 I/5 15 3 18. 5000
94 Soc .Sci/9 F 1155 I/5 18 4 19. 2500
95 Soc .Sci/9 M 1158 I/5 10 2 16. 7500
96 Soc .Sci/9 M 1172 I/5 15 4 18. 5000
97 Soc.Sci/9 M 1230 I/5 8 2 19.5000
98 Soc.Sci/9 F 1231 I/5 11 3 19.0833
99 Soc.Sci/9 M 1232 I/5 10 3 18.2500

100 Soc.Sci/9 F 1273 I/5 20 4 19.7500
101 Soc.Sci/9 M 1352 I/5 13 3 18.5833
102 Soc.Sci/9 M 1497 I/5 12 3 20.0833
103 Soc.Sci/9 M 1498 I/5 11 3 19.4167
104 Soc.Sci/9 M 1502 I/5 20 4 21.7500
105 Soc.Sci/9 M 1503 I/5 11 3 19.9167
106 Soc.Sci/9 F 1504 I/5 15 3 18.0833
107 Soc.Sci/9 F 1505 I/5 12 3 18.8333
108 Soc.Sci/9 M 1506 I/5 11 3 27.1667
109 Soc.Sci/9 M 1507 I/5 15 3 19.6667
110 Soc.Sci/9 F 1508 I/5 18 4 19.2500
111 Soc.Sci/9 M 1668 I/5 9 3 20.1667
112 Soc.Sci/9 M 1677 I/5 14 3 24. 2500
113 Educat/15 F 2251 I/5 13 3 20. 6667
114 Educat/15 F 2272 I/5 20 4 19. 5833
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Table 2: Raw data on 227 school children ‘s 
mathematical self-concept and mathematical 
achievement as presented originally for analysis 

1113144124123 22114143444425 43214122224428 64324423414310
2114134553218 23114454321416 44213123913322 65324421411318
3113234423445 24114345415414 45214234423427 66324252115514
4114324514515 25214152222328 46215444222426 67325112425419
5111114123322 26214223245510 47213352354222 68325411245508
6111134511118 27214113323418 48214224422416 69324232423318
7114132324413 28215244224415 49215253443314 70325151255518
8114234324526 29214232314419 50324345411524 71325554232422
9114124122419 30214122114509 51323143323222 72324124311416

10114222121413 31214224324424 52324313414419 73324153234312
11114123311411 32214255414422 53324444524509 74324552435513
12113134353426 33214154352216 54324125424321 75325254414418
13114133222422 34215244112413 55324225222414 76333231454516
14114133212421 35214223322424 56324234424316 77334232223414
15114234213419 36214234231411 57324143131325 78334213323412
16114223344524 37215012211421 58324234214415 79335134221420
17114251344427 38214233423424 59324113525412 80434144233416
18114332424323 39214134344516 60325252344317 81434243435319
19114232314516 40213154244412 61324234424415 82434294314312
20114234522423 41214154354318 62324153253516 83434252534214
21113134453317 42214233322416 63324354454223 84434151342110

85434223211212 121524153454320 157743292304206 193864232122424
86434214614421 122524253335317 158744344412212 1948625.41.34. 
87434214212415 123634112122410 159743232422204 195863314553301
88433324354410 124635234221408 160744445132116 196864233123403
89434122424209 125634232323414 161743215314310 197864232144300
90434221444414 126633454444413 162744424022403 198955524414404
91434111115410 127634332322414 163744221121008 199955252425505
92434153325113 128633154352406 164744454254109 2009531254553. 
93434114324408 129634132223310 165744414414405 2019554453254. 
94434222424412 130634232223414 166744352333301 20295...24.5400 
95434123322409 131635352253205 167743324314308 203954241151208
96433123414419 132634152454312 168743353424409 204954122213312
97433125111314 133634211414411 169744432344411 205954352425402
98433235434412 134632404534410 170744212353305 206955111125501
99525142334416 135634344514510 171744124425111 2079555115410. 

100524234334316 136634331312310 172743124352206 2089543124543. 
101524142123218 137635443214314 173744242454405 209953443434300
102524244243324 138634323324308 174744442452302 210954111125239
103525134131319 139633244313412 175744121414310 211954223151110
104523153113414 140633224244206 17674423.12220 212954112343305
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105523313343316 141633124424408 177744234342301 213954444544100
106524232324418 142634242224410 178744114311105 2149542432143. 
107524253444321 143634132225317 179744432222306 215954454352407
108524154354418 144633131224514 180745242324310 216953334544411
109525211444413 145634333414412 181744422051109 217953245424200
110524111313512 146744252342310 182743243353208 218954212424205
111524445222417 147744445224508 183744232212309 219954532424301
112524234422415 148744213225310 184744124224405 2209543434554. 
113525454322419 149744242544405 185744231214410 221954.422444. 
114523324223426 150744224333300 186744124254508 222954241425306
115524221.24420 151744047334302 187864134444403 223955245414209
116524214242417 152745414355304 188864.253254. 224951415152501
117524232324411 153744454255405 189864130031404 2259533.1125403
118523250324316 154744121300010 190864155310103 226955452552504
119523224314318 155744244324508 191864442.422. 227954214424205
120524222322321 156744212324205 192862324233102   

Appendix A2 Statistical Notation 

Statistics makes use of algebraic notation to express mathematical operations. 

1 Notation for variables and values 
Generally a variable is denoted with a particular upper case Latin letter, for 
example, X. An individual value of that variable is represented by a lower case 
letter and a subscript, such as xi. Here i is the subscript which denotes the ith 
value for the variable X. 
For example, look at this set of 5 anxiety scores: 

5 4 7 9 8 

If you wish to refer to a single score from this set without specifying which one, 
you could can refer to xi, where i can take on any value between 1 and 5. The first 
score (5) would be referred to as x1, the second x2, and so on. A general form of 
notation for this example would be (xi; I=1, 2,…n). This means in the set of n 
values of the variable X, a single value xi may extend over a range of values from 
1 to n. 

2 Summation 
In statistics we are often required to sum a set of values. The upper case Greek 
letter sigma (Σ), means add up or sum what follows. So, Σxi is read sum over all 
xi. To be perfectly correct, the notation for summing all n values of xi (from 
i=1,2,…n) is: 
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This means sum all of the xi’s from i=1 to i=n. To keep things simple, when the 
suffix i assumes all values in the range we use Σxi or simply Σx. The range of 
values to be summed is indicated above and below sigma. So, with respect to the 
five anxiety scores, 

 

  

Rules of summation: 

is read as sum of all the squared values of xi, that is 52+42+ 72+92+82 This is 
equal to 235. However, means sum all the values of xi and then square this 
value (5+4+7+9+8)2. This equals 332=1089. 

Note The general rule, which always applies, is to perform 
operations within parentheses before performing operations outside parentheses. 

3 Order statistics 
Should you want to specify the order of a set of values this is denoted by adding 
small brackets around the subscript i, that is (i). In general form this would be x(1), 
x(2)…x(n) where x(l) would be the smallest value in a set, i.e., rank of 1, x(2) would 
be the second smallest value in a set, i.e., rank of 2 and so on. This implies that 
x(1)≤x(2)≤…x(n) where ≤ means less than or equal to. For the set of 5 anxiety 
scores, 
x(1)=4, x(2)=5, x(3)=7, x(4)=8, and x(5)=9 
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Appendix A3 SAS Programs 

*******************************************
***************************; 
**  Filename:   CHECK.JOB                  
                         **; 
**                                         
                         **; 
**  Purpose:    Use this check job to 
identify out-of-range and     **; 
**              missing numeric data 
(character data is ignored).  **; 
**                                         
                         **; 
**  Created:  16 March 
1995                                       
  **; 
**                                         
                         **; 
**  Input file:   SEE 
NOTES                                      
   **; 
**  Output 
file:  NONE                                
              **; 
**                                         
                         **; 
**  Notes:                                 
                         **; 
**                                         
                         **; 
**  1. You need  on the 'a' disk the 
following files:               **' 
**     check.job (this 
file)                                      
  ** 
**     main.dat - the data file to be 
checked                       **; 
**                                         
                         **; 
**  2. Rename the data file you want to 
check as main.dat           **; 
**                                         
                         **; 
**  3. You will need to write a format 
statement for your own       **; 
**     data. This means after the input 
statement in the            **; 
**     next section of SAS code you should 
write in your own        **; 
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**     variable list. If a character 
variable is included in        **; 
**     your data list it should be followed 
by a $ and a space,     **; 
**     then the name of the next variable. 
All character            **; 
**     variables will be ignored in the 
data check program.         **; 
**     All variable names should be TYPED 
IN UPPER CASE.            **; 
**                                         
                         **; 
**  4. You will need to change the lines of 
SAS code after the      **; 
**     data limits statement to correspond 
to the variables         **; 
**     and ranges for each numeric variable 
in main dataset.        **; 
**     All variable names should be TYPED 
IN UPPER CASE. Do         **; 
**     not include CASEID in the list of 
variables after            **; 
**     the data limits 
statement.                                 
  **; 
**                                         
                         **; 
*******************************************
***************************; 
options pagesize=65; 
data main; 
   infile 'a:main.dat'; 
** EDIT THE NEXT LINE (see 2. 
above)                                **; 
   input CASEID 1–3 CLASS 4 SET 5 ATTB1 6 
ATTB2 7 ATTB3 8 ATTB4 9 
          SELFC1 10 SELFC2 11 SELFC3 12 
SELFC4 13 SCORE 14–15; 
data limits; 
**  EDIT THE NEXT FEW LINES (see 3. 
above)                          **; 
  input vname $ min max; 
  cards; 

  CLASS  1 9 
  SET    1 6 
  ATTB1  1 5 
  ATTB2  1 5 
  ATTB3  1 5 
  ATTB4  1 5 
  SELFC1 1 5 
  SELFC2 1 5 
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  SELFC3 1 5 
  SELFC4 1 5 
  SCORE  0 30 
**  Transpose data main.dat creating one 
variable containing        **; 
**  all variables in the data 
set                                   **; 
proc transpose data=main out=new; 
   by caseid; 
proc sort data=new; 
   by _name_caseid; 
proc sort data=limits; 
   by vname; 
**  Merge this data set new with limits 
data set                    **; 
data new; 
   merge new (rename= (_name_=vname 
col1=varval)) limits 
(in=inlim); 
  by vname; 
        if inlim; 
        if varval ne . then do; 
          if varval < min then lessmin = 
caseid; 
          else if varval > max then gtmax = 
caseid; 
        end; 
else misdat=caseid; 
**  Delete observations with no values 
outside limits/missing data  **; 
   if sum (lessmin, gtmax, misdat) =. then 
delete; 
run; 
proc print data = new label; 
   by vname; 
   id vname; 
   var lessmin misdat gtmax; 
   label vname   = 'variable name' 
         lessmin = '<min' 
         misdat  = 'missing' 
         gtmax   = '>max'; 
   title 'Out of Range Values and Missing 
Data by Caseid'; 
run; 

Figure 1: SAS program to check 
missing and out-of-range values 

*******************************************
**************************; 
**  Filename:  POWER1.JOB                  
                        **; 
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**                                         
                        **; 
**  Purpose:   Calculates statistical power 
and sample size for    **; 
**             the difference between two 
proportions              **; 
**             (independent 
groups)                                **; 
**                                         
                        **; 
**             ALSO USED FOR TWO-GROUP TWO-
PERIOD CROSS OVER       **; 
**             DESIGNS                     
                        **; 
**                                         
                        **; 
**  Calculations are based on Machin, D. 
and Campbell, M.J. (1987).**; 
**                                         
                        **; 
**  Created:  16 March 
1995                                       
 **; 
**                                         
                        **; 
**  Input file:   NONE (see 
notes)                                 **; 
**  Output file:  NONE (see 
notes)                                 **; 
**                                         
                        **; 
**  Notes:   Data is entered after the 
cards statement Enter       **; 
**           power alpha pie1 pie2 and each 
separated by a space   **; 
**           −9 is used for the parameter 
to be estimated, only    **; 
**           one −9 should be entered per 
line (i.e., 3 parameters **; 
**           are entered and 1 is 
estimated) only POWER or         **; 
**           N can be 
estimated.                                 
  **; 
**                                         
                        **; 
**           Pie1 and pie2 are the two 
proportions (pie1 is the    **; 
**           smallest).                    
                        **; 
**           This is a two-sided test, for 
a 1-sided test change   **; 
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**           alpha/2 to alpha in the 2nd 
line of code after the    **; 
**           data                          
                        **; 
*******************************************
**************************; 
data a; 
    input power alpha pie1 pie2 n; 
    cards; 
0.80  0.05  0.07 0.12  −9 
; 
data a; set a; 
  pza=abs(probit(alpha/2));      /* 
pza=significance level as a z 
                                    score 
ie 5%=1.96* 
                     */ 
  diff= (abs (pie1−pie2))**2; 
pieval= ((piel*(1−pie1)) + 
(pie2*(1−pie2))); 
  if n=−9 then do;               /* Find n 
         flag=1; 
         pz=probit(power);       /* 
pz=cumulative z value for given 
                                    power 
*/ 
         function= (pz + pza)**2;  /* 
function=power function         */ 
         n=ceil((function*pieval)/diff); 
end; 

   else if power=−9 then do;         /* 
Find power                  */ 
        flag=2; 
        function= (n*diff)/pieval; 
        pz=sgrt (function) −pza; 
        power=round (abs 
(probnorm(pz)),.01) ; 
   end; 
                                 /* Print 
out results               */ 
title1 'Comparison of two Proportions 
(independent groups)'; 
   proc print split ='*'; 
        where flag=1;            /* found 
n                         */ 
        id power; 
        var alpha pie1 pie2 n; 
        label n='CALCULATED VALUE* OF N 
(PER GROUP)'; 
        title3 ‘Finding number of subjects 
(n)’; 
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   run; 
   proc print split='*'; 
        where flag =2;           /* found 
power                     */ 
        id alpha; 
        var pie1 pie2 n power; 
        label power='CALCULATED VALUE*OF 
POWER'; 
        title3 'Finding the power'; 
   run; 
 
 
 
 

Figure 2: SAS program POWER1 for 
power and sample size calculations, 
difference between two proportions 
(independent groups) 

*******************************************
**************************; 
**  Filename:  POWER2.JOB                  
                        **; 
**                                         
                        **; 
**  Purpose:   This job calculates 
statistical power and sample    **; 
**             sizes for comparison of two 
means independent       **; 
**             groups.                     
                        **; 
**                                         
                        **; 
**             Calculations are based on 
Machin, D. and Campbell,  **; 
**             M.J. 
(1987).                                    
    **; 
**                                         
                        **; 
**  Created:   16 March 
1995                                       
**; 
**                                         
                        **; 
**  Input file:  NONE (see 
notes)                                  **; 
**  Output file:  NONE (see 
notes)                                 **; 
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**                                         
                        **; 
**  Notes:                                 
                        **; 
**  1. Data is input after the cards 
statement. Enter power alpha  **; 
**     diff sd and n separated by spaces 
either POWER or n should  **; 
**     be set to −9 (value to be 
estimated).                       **; 
**                                         
                        **; 
**  2. Sd is the pooled standard deviation 
derived from both       **; 
**     samples.                            
                        **; 
**                                         
                        **; 
**  3. Diff is the difference in sample 
means to be detected.      **; 
**                                         
                        **; 
**  4. This is a two-sided test, for a one-
sided test change       **; 
**      alpha/2 to alpha in the second line 
of code after the data. **; 

** 5. If sample sizes are 
unequal the harmonic mean, n, of 
n1      **; 
**    and n2 should be used. 
This is evaluated 
as                  **; 
**    2 (n1 n2) / (n1+n2) . 
Alternatively, two 
power               **; 
**    estimates can be 
determined, one for each 
n.                 **; 
********************************
********************************
*****; 
data a; 
    input power alpha diff sd n; 
    cards; 
0.910  0.05 1.5   1.2  −9 
0.80   0.05 5    10    −9 
; 
data a; set a; 
  pza=abs(probit(alpha/2)) ;  /* 
pza=significance level as a z 
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 score ie 
5%=1.96                  */ 
  if n=−9 then do;            /* 
Find 
n                            */ 
  flag=1; 
  pz=probit(power);           /* 
pz=cumulative z value for given 
                                
 power                          
   */ 
  function=(pz+pza)**2;       /* 
function=power 
function           */ 
  n=ceil((function*2*(sd**2))/(d
iff**2)); 
  end; 
  else if power=−9 then do;   /* 
Find 
power                        */ 
  flag=2; 
  function=(n*diff**2)/(2*(sd**2
)) ; 
  pz=sqrt(function) −pza; 
  power=round (abs 
(probnorm(pz)),.01); 
  end; 
                              /* 
Print out 
results                 */ 
title1 'COMPARISON OF TWO MEANS 
(UNPAIRED DATA)'; 
  proc print split='*'; 
       where flag=1;          /* 
found 
n                           */ 
       id power; 
       var alpha diff sd n; 
      label n='CALCULATED VALUE* 
OF N PER GROUP' ; 
       title3 'Finding number of 
subjects (n) per group' ; 
  run; 
  proc print split='*'; 
       where flag=2;          /* 
found 
power                       */ 
       id alpha; 
       var diff sd n power; 
      label power='CALCULATED 
VALUE*OF POWER' ; 
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       title3 'Finding the 
power' ; 
  run; 
 
 
 

Figure 3: SAS program 
POWER2 for power and 
sample-size calculations, 
comparison of two means 
(independent groups) 

********************************
********************************
*********; 
**  Filename:  POWER3.JOB       
                                
       **; 
**                              
                                
       **; 
**  Purpose:   This job 
calculates statistical power and 
sample        **; 
**             sizes for 
comparison of two means (paired 
data).        **; 
**                              
                                
       **; 
**  Calculations are based on 
Machin, D. and Campbell, M.J. 
(1987).    **; 
**                              
                                
       **; 
**  Created:   16 March 
1995                            
               **; 
**                              
                                
       **; 
**  Input file:  NONE (see 
notes)                          
            **; 
**  Output file: NONE (see 
notes)                          
            **; 
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**                              
                                
       **; 
**  Notes:   Data is input after 
the cards 
statement.                  **; 
**           Sd is the pooled 
standard deviation derived from 
both     **; 
**           samples.           
                                
       **; 
********************************
********************************
*********; 
data a; 
    input power alpha diff sd n; 
    cards; 
−9   0.001 0.6   3.676  828 
0.80  0.05  0.8  20.715  −9 
; 
data a; set a; 
  pza=abs(probit 
(alpha/2));       /* 
pza=significance level as 
a      */ 
                                
   /* z score i.e. 
5%=1.96             */ 
  if n=−9 then 
do;                 /* Find 
n                           */ 
         flag=1; 
         pz=probit 
(power);         /* 
pz=cumulative z value 
for        */ 
                                
   /* given 
power                      */ 
         function= (pz + 
pza)**2;     /* function=power 
function          */ 
         n=ceil((function*(sd**2
))/(diff**2)) ; 
  end; 
  else if power=−9 then 
do;        /* Find 
power                       */ 
         flag=2; 
         function=(n*(diff**2))/
(sd**2); 
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         pz=sqrt(function) −pza; 
         power=round(abs(probnor
m(pz)),.01); 
   end; 
                                
   /* Print out 
results                */ 
title1  'COMPARISON OF TWO MEANS 
(PAIRED DATA)'; 
   proc  print split='*'; 
         where flag=1; /* found 
n                               
       */ 
         id power; 
          var alpha diff sd n; 
         label n='CALCULATED 
VALUE* OF N'; 
         title3 'Finding number 
of subjects (n)'; 
   run; 

  proc print split='*'; 
       where 
flag=2;              /* found 
power                           
      */ 
       id alpha; 
        var diff sd n power; 
       label power='CALCULATED 
VALUE*OF POWER'; 
       title3 'Finding the 
power'; 
  run; 
 
 
 

Figure 4: SAS program 
POWER3, sample size 
and power calculations 
for comparison of two 
means for paired data 

********************************
********************************
*****; 
**  Filename:  CHI.JOB          
                                
   **; 
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**                              
                                
   **; 
**  Purpose:   Chi-square test 
(one-sample/two-sample and r × 
K      **; 
**             sample           
                                
   **; 
**                              
                                
   **; 
**             Tests whether 
there is an association between 
two   **; 
**             category 
variables (test of independence) 
or whether**; 
**             distribution of 
proportions in the k-
populations    **; 
**             with respect to 
the categorical response 
variable   **; 
**             are different 
(test of 
homogeneity)                 **; 
**                              
                                
   **; 
**  Created:  16 April 
1995                            
            **; 
**                              
                                
   **; 
**  Input file:   NONE (Data 
entered in 
programme)                 **; 
**  Output 
file:  NONE                     
                        **; 
**  Notes:   Data is entered 
after the cards 
statement.            **; 
********************************
********************************
*****; 
data chi; 
    input row col celln @@; 
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    cards;                 /* 
Data entered on next 
line            */ 
1  1  21 1  2 27  2  1 10  2  2 
69 
; 
proc freq data=chi; 
   weight celln; 
   table row*col / nopercent 
chisq; 
title 'Chi square test for 
gender (row var) and 
understanding (col var)'; 
run; 
 
 
 

Figure 5: Program for 
Chi-square analysis 

********************************
********************************
**************; 
**  Filename:  FISHER.JOB       
                                
            **; 
**                              
                                
            **; 
**  Purpose:   Fisher's exact 
test                            
              **; 
**             Tests whether 
there is a difference in 
proportions           **; 
**             between two 
groups in a 2 × 2 
table.                          
 **; 

**  Created:   16 April 
1995                            
                   **; 
**                              
                                
           **; 
**  Input file:  NONE (Data 
entered in 
program)                        
    **; 
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**  Output file: NONE (see 
notes)                          
                **; 
**                              
                                
           **; 
**  Notes: Data is entered after 
the cards 
statement                       
**; 
********************************
********************************
*************; 
data fisher; 
    input row $ col $ count @@; 
    cards; 
1  1  3 1  2  1 2  1 3  2  2 3 
; 
proc  freq data=fisher; 
   weight count; 
   table row*col/nopercent 
chisq; 
title 'Fisher's exact test' ; 
run; 
 
 
 
 

Figure 6: Program for 
Fisher’s exact test 

********************************
********************************
*************; 
**  Filename:  PROPORT.JOB      
                                
           **; 
**                              
                                
           **; 
**  Purpose:   Proportions 
test                            
                **; 
**                              
                                
           **; 
**             Tests whether 
there is a difference between 
two             **; 
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**             independent 
proportions and provides a 
confidence           **; 
**             interval for the 
difference.                     
           **; 
**                              
                                
           **; 
**  Created:   16 April 
1995                            
                   **; 
**                              
                                
           **; 
**  Input file:  NONE (Data 
entered in 
programme)                      
    **; 
**  Output file: NONE (see 
notes)                          
                **; 
**                              
                                
           **; 
**  Notes:   Data is entered 
after the data 
statement                      *
*; 
********************************
********************************
*************; 
data a;        **  Enter 5 data 
values on following 5 
lines                **; 
   n1=110;     **  n1 is sample 
size for sample 
1                          **; 
   n2=108;     **  n2 is sample 
size for sample 
2                          **; 
   x1=96;      **  x1 is 
relevant count for sample 
1                       **; 
   x2=72;      **  x2 is 
relevant count for sample 
2                       **; 
   CI=95;      **  Required 
confidence interval, for 
example, 95,          **; 
   p1=x1/n1; 
   p2=x2/n2; 
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   alpha=1 − (ci/100); 
sediff=sqrt((p1*(1−p1))/n1 + 
((p2*(1−p2))/n2)); 

y=probit(alpha/2); 
y=abs(y); 
LOWERCI = ROUND (((p1 − p2) − 
(y*sediff)),.01); 
UPPERCI = ROUND (((p1 − p2) + 
(y*sediff)),.01); 
proc print; 
run; 
 
 
 

Figure 7: Program for 
proportions test (with 
confidence interval for 
difference) 

********************************
********************************
*************; 
**  Filename:  COCHRAN.JOB      
                                
           **; 
**  Purpose:   Cochran’s Q 
test                            
                **; 
**             Tests whether 
there is a difference between 
two or          **; 
**             more treatments 
in a repeated measures design 
when          **; 
**             the response 
variable is binary, 1 (success) 
0              **; 
**             (fail).          
                                
           **; 
**                              
                                
           **; 
**  Created:   16 April 
1995                            
                   **; 
**                              
                                
           **; 
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**  Input file:  NONE (Data 
entered in 
programme)                      
    **; 
**  Output file: NONE (see 
notes)                          
                **; 
**                              
                                
           **; 
**  Notes:   The number of 
treatment groups (repeated 
measures) is         **; 
**           entered 
sequentially (separated by a 
space) after the         **; 
**           input statement 
e.g. t1 t2 t3 . . . 
tn.                       **; 
**           Data is entered 
after the cards statement, 
one                **; 
**           subject per row, 
each value (either 1 or 
0)                   **; 
**           separated by a 
space.                          
               **; 
**           Subjects (lines of 
data) with all 1’s or 0’s 
should           **; 
**           be excluded (not 
entered in the data 
step).                   **; 
********************************
********************************
*************; 
data a; 
                **  On next line 
enter vars t1 t2 etc after 
input          **; 
                ** 
statement                       
                        **; 
                ** see notes 
above                           
              **; 
input t1 t2 t3; 
cards          /* Enter data on 
following lines one 
subject                */ 
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                /* per 
line                            
                     */ 
                /* see notes 
above                           
               */ 
1 0 1 
1 1 1 
0 1 1 
0 0 0           /* 
1 1 0 
0 0 1 
0 0 1 
0 0 1 
; 
                ** Do not edit 
beyond this 
line                            
**; 
%macro cochran; 

**  Find number of groups and 
store in macro var j **; 
     %global j; 
Proc transpose data=a out=trans; 
run; 
   data _null_; 
      if 0 then set trans 
nobs=count; 
         call symput (‘j’, left 
(put (count, 8.))); 
         stop; 
      run; 
data a; 
set a end = eof; 
   n+sum (of t1 − 
t&j);                   ** Find 
n             **; 
   sumr2 + (sum(of t1 − 
t&j)**2);        ** Find sum r 
squared **; 
     %do i=1 %to &j; 
         c&i + 
t&i;                        ** 
Find totals for c  **; 
         if eof then do; 
            c2&i=c&i**2; 
         end; 
     %end; 
   if eof then do; 
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        sumc2=sum (of 
c21−c2&j);         ** sum c 
squared              **; 
        ** find cochran q **; 
        q= 
((&j−1)*(&j*sumc2−(n**2)))/((&j*
n)−sumr2) ; 
        numobs= 
_n_;                      ** 
find no. of observations   **; 
      output; 
    end; 
** evaluate q **; 
data _null_; 
  set a; 
rowcol=&j  * 
numobs;                     ** 
number of cells            **; 
file print; 
   put @25 'Cochran Q Test 
Results'//; 
   if rowcol < 24 then do; 
      put @15 'CAUTION – the 
number of cells is less than 
24'/; 
   end; 
   conscv5 = (&j − 
1)*3.84;     ** 5% conservative 
critical value           
   conscv1 = (&j − 
1)*6.63;     ** 1% conservative 
critical value           
   libdf=&j−1;                ** 
liberal 
df                           
   lib=1 − 
round(probchi(q,libdf), .001) 
;    ** find p-value **; 
   q=round (q, .001); 

  put @20 'Cochran Q test value 
='q / /; 
  put @20 'p-value with liberal 
df:' / ; 
    put @20 'df=' libdf /; 
    if lib <=0.01 then 
             put @20 'p <=0.01 
(p-value= 'lib')' / /; 
    else if lib <=0.05 then 
             put @20 'p <=0.05 
(p-value=' lib')' / /; 
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    else put @20 'Not 
significant at 5% level (p-
value= 'lib')' / /; 
  put @20 'p-value with 
conservative critical value:' / 
; 
  if q > conscv1 then 
           put @20 'p <=0.01'/ 
/; 
  else if q>conscv5 then 
           put @20 'p<=0.05' / / 
; 
  else     put @20 'Not 
significant at 5% level' ; 
run; 
%mend cochran; 
%cochran; 
 
 
 

Figure 8: Program for 
Cochran’s Q test (with 
conservative and liberal 
critical values) 

********************************
********************************
***********; 
**  Filename:  RUNS.JOB         
                                
         **; 
**                              
                                
         **; 
**  Purpose:   Calculates 
statistical significance for 
number of         **; 
**             observed runs in 
a sequence of observations. 
Data         **; 
**             should be 
dichotomous.                    
                **; 
**                              
                                
         **; 
**             Provides a test 
of the null hypothesis that 
the           **; 

Appendix      369



**             pattern of 
occurrence of observations is 
random.          **; 
**                              
                                
         **; 
**             This procedure 
uses a large sample 
approximation for      **; 
**             the sampling of 
U, (the number of runs) and 
the           **; 
**             number of 
observations in either of the 
two groups        **; 
**             should be > 
20.                             
              **; 
**                              
                                
         **; 
**  Created:    MAY 23 
1995                            
                  **; 
**                              
                                
         **; 
**  Input file:  NONE (see 
notes)                          
              **; 
**  Output file: 
NONE                            
                        **; 
**                              
                                
         **; 
**  Notes:     Four data values 
are 
entered:                        
     **; 
**                              
                                
         **; 
**             SAMPLE SIZE (N), 
NUMBER OF RUNS (U), and the 
number       **; 
**             of observations 
in category 1 (CAT1) and 
category 2       **; 
**             (CAT2)           
                                
         **; 
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**             P-values for one 
and two-tailed tests are 
output          **; 
********************************
********************************
***********; 
data a;         ** Enter, after 
the cards statement, the values 
for       *; 
                ** N, U, CAT1, 
CAT2, in this order. Each value 
should     *; 

               ** be separated 
by a space. In this example 
N=35,     *; 
               ** U=16, CAT1=21, 
and 
CAT2=14                         
*; 
  input n u cat1 cat2; 
  cards; 
  35 16 21 14 
  ; 
             ** DO NOT EDIT 
BEYOND THIS LINE**; 
data a; set a; 
  label 
   p1= 'One-tailed test p-value' 
   p2= 'Two-tailed test p=value' 
; 
  a = 2* (cat1*cat2); 
  if u < (a/ (n+1)) then adj=0.5 
; 
    else if u > (a/(n+1) then 
adj=−0.5 ; 
  b= (u+ (adj − (a/n))) −1; 
  c= (a* (a − n)); 
  d= ((n*n) * (n − 1)); 
  e= sqrt (c/d); 
  z= abs (b/e); 
  p=round (1− (probnorm(z)) , 
.0001); 
  p1=p; 
  p2=2*p1; 
proc print label; 
   var z p1 p2; 
run ; 

Figure 9: Program for 
one-sample runs test for 
randomness 
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********************************
********************************
***********; 
**  Filename:  WILCOXSR.JOB     
                                
         **; 
**                              
                                
         **; 
**  Purpose:   Wilcoxon signed 
ranks 
test                            
    **; 
**                              
                                
         **; 
**             Provides a test 
of the null hypothesis that 
the           **; 
**             median of the 
population differences is 
zero.             **; 
**             It is used to 
test the differences between 
pairs of       **; 
**             related 
observations or matched pairs of 
subjects.        **; 
**                              
                                
         **; 
**             This procedure is 
an approximate test for 
large           **; 
**             samples (where n 
> 25) using z-
scores.                    **; 
**                              
                                
         **; 
**  Created:    JUNE 17 
1995                            
                 **; 
**                              
                                
         **; 
**  Input file:  NONE (see 
notes)                          
              **; 
**  Output file: 
NONE                            
                        **; 
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**                              
                                
         **; 
**  Notes:  The pair of 
observations for each subject- 
are entered,      **; 
**          the first 
observation and then the second 
for each           **; 
**          subject             
                                
         **; 
********************************
********************************
***********; 

data a; 
  input first second @@; 
cards;                          
     /* edit the next line */ 
4 2 3 1 5 3 2 2 3 1 5 1 1 1 4 3 
3 4 4 2 
; 
*** DO NOT EDIT BELOW THIS LINE 
***; 
data a; set a; 
   diff = abs(first-second); 
   signdiff = first-second; 
   if diff= 0 then delete; ** 
delete abs differences of zero 
**; 
proc rank data=a out=b; 
var diff; 
ranks rankdiff; 
run; 
proc print data=b split='*'; 
  var first second diff signdiff 
rankdiff; 
label 
    first= 'first*value' 
   second= '‘second*value' 
     diff= ‘absolute*difference' 
signdiff= 'difference' 
rankdiff= 'ranked*differences'; 
title 'Wilcoxon signed ranks 
test'; 
run; 
data b; set b end=eof; 
retain n t 0; 
if signdiff > 0 then 
t=t+rankdiff; 
n=n+1; 
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if eof then output; 
data b; set b; 
se=sqrt((n*(n+1))*((((2*n) 
+1))/24)); 
expect = (n*(n+l))/4; 
z=abs((t−expect)/se); 
p=round (1−(probnorm(z)), 
.0001)*2; 
proc print data=b label; 
id n; 
var t expect se z p; 
label p      ='p-value (2-tailed 
test)' 
      expect ='expected value' 
      n      =‘No. of subjects' 
      t      ='observed value 
(T)' 
      z      ='z score'; 
title3 'Summary Statistics'; 
run; 

Figure 10: Program for 
Wilcoxon Signed Ranks 
test 

********************************
********************************
*************; 
**  Filename:  KRUSK-
W1.JOB                          
                      **; 
**                              
                                
           **; 
**  Purpose:   Kruskal-Wallis 
test                            
             **; 
**             Using a dataset 
containing each response for 
each           **; 
**             subject.         
                                
           **; 
**             Also does 
multiple comparison tests 
between                 **; 
**             the 
groups.                         
                        **; 
**                              
                                
           **; 
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**  Created:   8 June 
1995                            
                     **; 
**                              
                                
           **; 
**  Input file:  NONE (data 
entered in 
program)                        
    **; 
**  Output file: NONE (see 
notes)                          
                **; 
**                              
                                
           **; 
**  Notes:       Data is entered 
after the cards 
statement,                **; 
**               inputing the 
group value and response 
value               **; 
**               for each 
subject                         
                 **; 
**                              
                                
           **; 
**               The alpha level 
is entered for multiple 
comparison        **; 
**               tests after the 
data (see comment in the 
program)         **; 
**                              
                                
           **; 
**               NOTE: group 
values must be numbered 
consecutively         **; 
**               from 
1                               
                     **; 
********************************
********************************
*************; 
data a; 
  input group response @@ ; 
  cards; 
1 22 1 26 1 27 1 22 1 18 
2 31 2 30 2 21 2 17 2 21 
3 13 3 16 3 21 3 17 3 12 

Appendix      375



; 
%macro kw; 
%let alpha= 0.1;   ***** ENTER 
ALPHA LEVEL ON THIS LINE ****; 
********************************
********************; 
*** DO NOT EDIT THE PROGRAM 
BEYOND THIS LINE ****; 
proc datasets; 
  delete comps; 
run; 
*****************************; 
**** kruskal-wallis test ****; 
*****************************; 
proc nparlway data=a wilcoxon; 
  class group; 
  var response; 
title 'Kruskal-Wallis test – 
worked example'; 
run; 

********************************
*; 
* post hoc pairwise comparisons 
*; 
********************************
*; 
** rank the data **; 
proc rank data=a out=b; 
var response; 
ranks rankresp; 
run; 
**** find the mean rank for each 
group and number in each group 
****; 
proc sort data=b; by group; 
proc means data=b noprint; 
by group; 
var rankresp; 
output out=rank mean=meanrank 
n=num; 
**** find total number of 
subjects ****; 
data numsub; 
set a end=eof; 
  if eof then do; 
     totnum=_n_; 
      output; 
  end; 
**** find the total number of 
groups ****; 
   %global totgp; 
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   data _null_; 
      if 0 then set rank 
nobs=count; 
      call symput (‘totgp’, left 
(put (count, 8.))); 
     stop; run; 
data rank; 
  if _n_= 1 then do; 
        set numsub; 
end; 
set rank; 
********************************
********************; 
****** carry out comparisons for 
each pair of groups *****; 
********************************
********************; 
%do i = 1 %to &totgp-1; 
  %do j = &i+1 %to &totgp; 
    data 
gp1(rename=(meanrank=mrank1 
num=num1)) 
         gp2(rename=(meanrank=mr
ank2 num=num2)); 
     set rank; 
     if group = &i then output 
gp1; 
        else if group = &j then 
output gp2; 

   data ranks (keep=gp1 gp2 num1 
num2 prob sig se crit diffrank); 
     merge gp1 gp2; 
   **** calculate the statistics 
for the comparison ****; 
   se = 
sqrt(((totnum*(totnum+1)712) * 
(1/num1 + 1/num2))); 
   gp1 = &i;  gp2=&j; 
   diffrank=abs(mrankl − 
mrank2); 
   prob= &alpha/(&totgp*(&totgp-
1)); 
   crit = abs(probit(prob)); 
   if diffrank >= crit*se then 
sig= ‘yes’; 
     else sig = 'no'; 
   proc append base=comps 
data=ranks; 
    run; 
   %end; 
%end; 
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***** print out the results 
*****; 
proc print split='*'; 
id gp1; 
var gp2 num1 num2 diffrank se 
crit prob sig; 
label gp1     = 'First*group' 
       gp2     = 'Second*group' 
       num1    = 'No. of 
*subjects* (gp 1)' 
       num2    = 'No. of 
*subjects* (gp 2)' 
       diffrank= 'Abs. diff*in 
mean*ranks' 
       se      = 'SE of *diff.' 
       prob    = 
'Adjusted*alpha' 
       crit    = 'critical*Z 
value' 
       sig     = 'sig. 
at*adjusted*alpha'; 
title3 'Post hoc multiple 
comparison tests between the 
groups'; 
title5 'Significance is based on 
an initial alpha of &alpha (two-
tailed test)'; 
title6 'but adjusted for the 
number of pairwise comparisons 
tests'; 
run; 
%mend kw; 
%kw; 
 
 
 

Figure 11: Program for 
Kruskal-Wallis test and 
pairwise multiple 
comparisons 

********************************
********************************
*************; 
**  Filename:  KRUSK-W2 . 
JOB                             
                 **; 
**                              
                                
           **; 
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**  Purpose:   Kruskal-Wallis 
test uses -data in the form 
of               **; 
**             frequencies for 
each 
response                        
       **; 
**                              
                                
           **; 
**  Created:   8 June 
1995                            
                     **; 

**  Input file:  NONE (data 
entered in 
program)                        
   **; 
**  Output file: NONE (see 
notes)                          
               **; 
**                              
                                
          **; 
**  Notes:       Data is entered 
after the cards 
statement.               **; 
**               A line is input 
for each combination of group 
and        **; 
**               response, that 
is, on each line the group 
value,         **; 
**               response value 
and number of subjects with 
the           **; 
**               response is 
entered.                        
             **; 
********************************
********************************
************; 
data a; 
  input group response totsubj; 
  cards; 
1 5 0 
1 4 11 
1 3 3 
1 2 1 
1 1 1 
2 5 5 
2 4 32 
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2 3 5 
2 2 4 
2 1 0 
3 5 1 
3 4 20 
3 3 10 
3 2 3 
3 1 3 
4 5 2 
4 4 14 
4 3 3 
4 2 2 
4 1 1 
5 5 6 
5 4 7 
5 3 5 
5 2 0 
5 1 1 
6 5 10 
6 4 76 
6 3 15 
6 2 4 
6 1 1 
; 
*** create one observation per 
subject, ***; 
*** using the frequency variable 
totsubj ***; 
data a(drop=totsubj); 
  set a; 
do i = 1 to totsubj; 
   output; 
end; 

******************************; 
**** kruskal-wallis test *****; 
******************************; 
proc nparlway data=a wilcoxon; 
  class group; 
  var response; 
title 'Kruskal-Wallis test - 
looking at type of student and 
perceived success 
run; 

Figure 12: Program for 
Kruskal-Wallis test for 
data in the form of 
frequencies (contingency 
table) 
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********************************
********************************
*************; 
**  Filename:  FRIEDX.JOB       
                                
           **; 
**                              
                                
           **; 
**  Purpose:   Friedman's ANOVA 
by ranks test using a 
dataset              **; 
**             containing each 
response for each subject. 
Also             **; 
**             does multiple 
comparison tests between the 
groups.          **; 
**                              
                                
           **; 
**  Created:   8 June 
1995                            
                     **; 
**                              
                                
           **; 
**  Input file:  NONE (data 
entered in 
program)                        
    **; 
**  Output file: NONE (see 
notes)                          
                **; 
**                              
                                
           **; 
**  Notes:       Data is entered 
after the cards 
statement.                **; 
**               Inputing the 
subject number, condition value 
and          **; 
**               response for 
each subject (the response can 
be            **; 
**               either the 
response value or the rank 
value).             **; 
**                              
                                
           **; 
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**               The alpha level 
is entered for multiple 
comparison        **; 
**               tests after the 
data (see comment in the 
program)         **; 
**                              
                                
           **; 
**  Note:        condition 
values must be numbered 
consecutively           **; 
**               from 
1                               
                     **; 
********************************
********************************
*************; 
data a; 
input subject cond $ rank @@; 
cards; 
1 1 3.5 1 2 2  1 3 1 1 4 3.5 
2 1   4 2 2 3  2 3 2 2 4 1 
3 1   3 3 2 2  3 3 4 3 4 1 
4 1   4 4 2 1  4 3 2 4 4 3 
5 1   4 5 2 1  5 3 3 5 4 2 
6 1   4 6 2 2  6 3 1 6 4 3 
; 
%macro fr; 
%let alpha= 0.1; ***** ENTER 
ALPHA LEVEL ON THIS LINE ****; 
********************************
*******************; 
*** DO NOT EDIT THE PROGRAM 
BEYOND THIS LINE ****; 

proc datasets; 
  delete comps; 
run; 
*****************************; 
**** Friedmans ANOVA test****; 
*****************************; 
proc freq; 
  tables subject*cond*rank / 
noprint cmh; 
run; 
title 'Friedmans ANOVA by ranks 
test - worked example'; 
run; 
********************************
*; 
*post hoc pairwise comparisons*; 
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********************************
*; 
** rank the data **; 
** in case not ranked **; 
proc sort data=a; by subject; 
proc rank data=a out=b; 
by subject; 
var rank; 
ranks rankresp; 
run; 
**** find total number of 
subjects ****; 
proc transpose data=a 
out=numsub; 
by subject; 
var rank; 
run; 
data numsub; 
   set numsub end=eof; 
    if eof then do; 
       totnum = _n_; 
       output; 
    end; 
**** find the sum of the ranks 
for each cond 
   proc sort data=b; by cond; 
   proc means data=b noprint; 
    by cond; 
    var rankresp; 
    output out=rank sum=sumrank; 
run; 

**** find the total number of 
groups ****; 
   %global totgp; 
   data _null_; 
      if 0 then set rank 
nobs=count; 
      call symput ('totgp', left 
(put (count, 8.))); 
     stop; run; 
data rank; 
  if _n_ = 1 then do; 
         set numsub; 
       end; 
     set rank; 
********************************
*************************; 
****** carry out comparisons for 
each pair of groups *****; 
********************************
*************************; 

Appendix      383



%do i = 1 %to &totgp-1; 
  %do j = &i + 1 % to &totgp; 
    data 
gp1(rename=(sumrank=srank1)) 
         gp2(rename=(sumrank=sra
nk2)); 
     set rank; 
     if cond =&i then output 
gp1; 
        else if cond = &j then 
output gp2; 
    data ranks (keep=gp1 gp2 
prob sig se crit diffrank); 
      merge gp1 gp2; 
    **** calculate the 
statistics for the comparison 
****; 
    se = 
sqrt((totnum*&totgp*(&totgp+l))/
6); 
    gp1 = &i; gp2 = &j; 
    diffrank = abs(srankl − 
srank2); 
    prob = 
&alpha/(&totgp*(&totgp-1)); 
    crit = abs(probit(prob)); 
    if diffrank >= crit*se then 
sig ='yes'; 
      else sig = 'no'; 
    proc append base=comps 
data=ranks; 
     run; 
    %end; 
%end; 
***** print out the results 
*****; 
proc print split='*'; 
id gp1; 

var gp2 diffrank se crit prob 
sig; 
label gp1     = 'First*group' 
       gp2     = 'Second*group' 
       diffrank= 'Abs. diff*in 
sum of *ranks' 
       se      = 'SE of *diff.' 
       prob    = 
'Adjusted*alpha' 
       crit    = 'critical *Z 
value' 
       sig     = 'sig. 
at*adjusted*alpha'; 
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title3 'Post hoc multiple 
comparison tests between the 
groups'; 
title5 "Significance is based on 
an initial alpha of &alpha (two 
tailed test)"; 
title6 'but adjusted for the 
number of pairwise comparisons 
tests 
run; 
%mend fr; 
%fr; 
 
 
 

Figure 13: Program for 
Friedman's ANOVA by 
ranks and pairwise 
multiple comparisons 

goptions vsize=6.5 hsize=7.0 
device=win target=winprtm; 
proc gplot data=outreg; 
  axisl value=(f=simplex) 
label=(f=simplex justify=right 
'Standardized Maths Score') 
  order=90 to 140 by 10; 
  axis2 label=(f=simplex 
'Teacher estimate of maths 
ability') 
order= 0 to 10 by 1 
  value=(f=simplex); 
  legend1 label =(f=simplex 
'KEY:') value=(f=simplex) frame; 
  plot smaths*maths / frame 
  legend = legend1 
  vaxis=axis1 haxis=axis2 
hminor=0; 
  symbol1 c= black v=circle i=R; 
  title1 f=simplex h=1 'FITTED 
LEAST SQUARES REGRESSION LINE 
FOR 
PREDICTION OF STANDARDIZED'; 
  title2 f=simplex h=1 'MATHS 
ABILITY SCORE FROM TEACHER 
ESTIMATE OF 
MATHS ABILITY'; 
run; 
proc gplot data=outreg; 
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   axisl value= (f=simplex) 
label= (f=simplex justify=right 
   'Standardized Maths Score') 
   order=90 to 140 by 10; 
   axis2 label= (f=simplex 
'Teacher estimate of maths 
ability') 
order= 0 to 10 by 1 
   value=(f=simplex); 
   legend1 label=(f=simplex 
'KEY:') value=(f=simplex) frame; 
   plot smaths*maths / frame 
   legend = legend1 
   vaxis=axis1 haxis=axis2 
hminor=0; 
   symbol1 c=black v=circle 
i=RLCLI95; 

   title1 f=simplex h=1 'FITTED 
LEAST SQUARES REGRESSION LINE 
FOR 
PREDICTION OF STANDARDIZED'; 
   title2 f=simplex h=1 'MATHS 
ABILITY SCORE FROM TEACHER 
ESTIMATE OF 
MATHS ABILITY'; 
   title3 f=simplex h=1 'WITH 
95% CONFIDENCE LEVEL FOR 
INDIVIDUAL 
PREDICTED VALUES'; 
run; 
proc gplot data=outreg; 
   axisl value=(f=simplex) 
label=(f=simplex justify=right 
   'Standardized Maths Score') 
   order=90 to 140 by 10; 
   axis2 label=(f=simplex 
'Teacher estimate of maths 
ability') 
order= 0 to 10 by 1 
   value=(f=simplex); 
   legend1 label=(f=simplex 
'KEY:') value=(f=simplex) frame; 
   plot smaths*maths / frame 
   legend=legend1 
   vaxis=axis1 haxis=axis2 
hminor=0; 
   symbol1 c=black v=circle 
i=RLCLM95; 
   title1 f=simplex h=1 'FITTED 
LEAST SQUARES REGRESSION LINE 
FOR 
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   PREDICTION OF STANDARDIZED'; 
   title2 f=simplex h=1 'MATHS 
ABILITY SCORE FROM TEACHER 
ESTIMATE OF 
MATHS ABILITY'; 
   title3 f=simplex h=1 'WITH 
95% CONFIDENCE LEVEL FOR MEAN 
PREDICTED 
VALUES'; 
run; 
 
 
 

Figure 14: SAS code for 
plotting i) fitted linear 
regression line; ii) 95 per 
cent confidence interval 
for mean response; and 
iii) 95 per cent prediction 
interval (individual 
response) PC version of 
SAS 

********************************
********************************
*************; 
**  Filename:  CORR95CI.JOB     
                                
           **; 
**                              
                                
           **; 
**  Purpose:   95 per cent 
CONFIDENCE INTERVAL FOR PEARSONS 
r              **; 
**             CORRELATION      
                                
           **; 
**                              
                                
           **; 
**  Created:  10 JULY 
1995                            
                     **; 
**                              
                                
           **; 
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**  Input file:   NONE (Data 
entered in 
program)                        
   **; 
**  Output 
file:  NONE                     
                                
**; 
**                              
                                
           **; 
**  Notes:    Data is entered 
after the DATA 
statement                     **
; 
**            Enter pearsons r 
on first 
line                            
   **; 
**            Enter sample size 
on second 
line                            
 **; 
********************************
********************************
*************; 
DATA A; 
  r 
=0.896;                 *ENTER 
pearsons r *; 
  n 
=10;                    *ENTER 
sample size *; 
  **** DO NOT EDIT THE PROGRAM 
BEYOND THIS LINE ****; 

  ** find Fishers z **; 
  z= 0.5*(log((1+r)/(1−r))); 
  ** find two quantities, z1 and 
z2 ***; 
  z1 = z- (1.96/sqrt(n−3)); 
  z2 = z+ (1.96/sqrt(n−3)); 
  ** find the 95% confidence 
intervals **; 
  lower = round ((exp(2*z1) 
−1)/(exp(2*z1) +1), .001); 
  upper = round ((exp(2*z2) 
−1)/(exp(2*z2) +1), .001); 
proc print split ='*'; 
id r; 
var n lower upper; 
label   r = 'Pearsons* r' 
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         n = 'sample size' 
     lower = 'lower 
95%*confidence*limit' 
     upper = 'upper 
95%*confidence*limit'; 
title '95% confidence interval 
for pearsons r correlation'; 
run; 

Figure 15: Program for 
95 per cent confidence 
interval for Pearson 
correlation 

********************************
********************************
*************; 
**  Filename:  CORRDIFF.JOB     
                                
           **; 
**                              
                                
           **; 
**  Purpose:   DIFFERENCE 
BETWEEN TWO INDEPENDENT 
CORRELATAIONS 'r'        **; 
**                              
                                
           **; 
**  Created:   10 JULY 
1995                            
                    **; 
**                              
                                
           **; 
**  Input file:  NONE (Data 
entered in 
programme)                      
    **; 
**  Output file: 
NONE                            
                          **; 
**                              
                                
           **; 
**  Notes:    This is a one-
tailed test of the 
alternative                 **; 
**            hypothesis that 
the larger correlation r1 
is                 **; 
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**            significantly 
different from the 
smaller                     **; 
**            correlation 
r2                              
                 **; 
**                              
                                
           **; 
**            Data is entered 
after the DATA 
statement:                    **
; 
**                              
                                
           **; 
**            Enter in the 
program r1, r2, on first 
line                   **; 
**            followed by N1 and 
N2 on the next 
line                       **; 
********************************
********************************
*************; 
DATA 
A;                    *BEGIN 
DATA STEP; 
  r1 = .92; r2 = 
.82;      *ENTER TWO 
CORRELATIONS HERE r1 is the 
                            larg
est; 
  N1 = 60; N2 = 
50;        *ENTER CORRESPONDING 
SAMPLE SIZES HERE; 
**** DO NOT EDIT THE PROGRAM 
BEYOND THIS LINE ****; 
  A=LOG(1+R1); B=LOG(1−R1); 
C=A−B; 
  D=LOG(1+R2); E=LOG(1−R2); 
F=D−E; 

FZ1= ROUND (.5*(C), .001); *THIS 
COMPUTES FISHER Z TRANSFORM; 
FZ2= ROUND (.5*(F), .001); 
G=1/(N1−3); H=1/(N2−3); I=G+H; 
SEZDIFF=ROUND (SQRT(I), .001); 
Z= (FZ1−FZ2)/SEZDIFF; 
Z=ROUND(Z, .001); 
NORMPROB=ROUND (1 − PROBNORM (Z) 
, .0 01) ; 
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FILE PRINT; 
PUT 'FISHER Z TRANSFORM FOR R1= 
' FZ1; 
PUT 'FISHER Z TRANSFORM FOR R2= 
' FZ2; 
PUT 'STANDARD ERROR OF 
DIFFERENCE BETWEEN Z 
COEFFICIENTS = 'SEZDIFF; 
PUT 'Z DEVIATE FOR DIFFERENCE 
BETWEEN CORRELATIONS= ' Z; 
PUT 'ONE TAILED TEST, (R1>R2) 
PROBABILITY FOR Z DEVIATE = 
'NORMPROB; 
RUN; 
 
 
 

Figure 16: Program for 
testing significance of a 
difference between two 
Pearson correlations 
obtained from 
independent samples 

********************************
********************************
*****; 
*  Filename:    CIDIFF.JOB      
                                
    *; 
*  Purpose:     CONFIDENCE 
INTERVAL MEAN DIFFERENCE FOR 
TWO         *; 
*               INDEPENDENT 
SAMPLE 
MEANS                           
 *; 
*  Created:     10 JULY 
1995                            
            *; 
*  Input file:  SEE 
NOTES                           
                *; 
*  Output file: 
NONE                            
                    *; 
*  Notes:       DATA NEEDS TO BE 
ENTERED                         
   *; 
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*               CHANGE 3 VALUES 
IN THE 
PROGRAM:                     *; 
*               i) data set 
name, ii) response var to 
be            *; 
*               analysed and 
iii) class var, (the var 
used          *; 
*               to allocate 
subjects to 
groups                      *; 
********************************
********************************
*****; 
**** ENTER YOUR DATA USING 
EITHER THE CARDS STATEMENT, AN 
EXTERNAL  *; 
****   DATA FILE e.g. INFILE 
INPUT etc, or a LIBNAME 
STATEMENT ******; 
proc summary data=all nway; *** 
Change 'All' to your Data set 
name  *; 
  var score;                *** 
EDIT response var to be 
analysed    *; 
  class age;                *** 
EDIT class var which is 
the         *; 
                          *** 
classification var for the two 
groups*; 
                 *** DO NOT EDIT 
BELOW THIS LINE ***; 
  output out=out mean=ymean 
var=variance n=n; 
data b; set out; 
   n2=n; 
   n1=lag(n); 

   y2=ymean; 
   y1=lag (ymean); 
   variance=round(variance, 
.001); 
   v2=variance; 
   v1=lag (variance); 
   alpha= .05; 
   ndiff=n1+n2; 
   ydiff= y1−y2; 
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   poolvar= 
((n1−1)*v1+  (n2−1)*v2) / 
(ndiff−2); 
   sediff=sqrt (poolvar*(1/n1 + 
l/n2)); 
   t=round (tinv (1−alpha/2, 
ndiff−2),.001); 
   lc=round(ydiff−t *sediff, 
.001); 
   uc=round(ydiff+t*sediff, 
.001); 
proc print data=b split='*' 
noobs; 
   where t ne .; 
   var n1 n2 y1 y2 v1 v2 alpha t 
1c uc; 
   title1 'Confidence interval 
for difference between means'; 
   label alpha='Alpha' 
         t = 'Critical *t-value' 
        y1 = 'mean*(gp 1) ' 
        y2 = 'mean*(gp 2)' 
        n1 = 'sample*size*(gp 
1)' 
        n2 = 'sample*size*(gp 
2)' 
        v1 = 'variance*(gp 1)' 
        v2 = 'variance*(gp 2)' 
        lc = 'Lower Confidence 
Limit' 
        uc = 'Upper Confidence 
Limit'; 
run; 

 
Figure 17: Program for 
confidence intervals for 
difference between two 
independent sample 
means 

Appendix A4 Statistical Tables 

Table 1: The normal distribution (Z 
deviates) 

Probability values in the body of the table correspond to a given Z 
score. This Z score (deviate) represents the proportion of the total area 
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under the normal curve that is beyond (to the right of) the given Z score. 
The probability values are thus appropriate for a one-tailed test. These 
probabilities should be doubled for a two-tailed test. 

The left hand column gives values of Z to one decimal place, the top 
row gives values of Z to the second decimal place. For example, the 
probability of a Z score ≥1.96, for a one-tailed test, is p=0.025. For a two-
tailed test the same Z score would have a probability, p=0.05. 

  0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
Z                     
0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247
0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 0.2296 0.2266 0.2236 0.2206 0.2177 0.2148
0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985
1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
1.8 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110
2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036
  0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
z            
2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 
2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007
3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005
3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003
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3.4 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002
3.5 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
3.6 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
3.7 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
3.8 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
3.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Source: The entries in this table were computed by the author. 

Table 2: χ2 distribution 
For a particular degree of freedom (df) 
and at a given level of significance 
(e.g., 0.05, 0.01 etc), the observed 
value of χ2 is significant if it is greater 
than or equal to the value shown in the 
body of the table. 

  0.10 0.05 0.02 0.01 0.001
DF       

1 2.706 3.841 5.412 6.635 10.828
2 4.605 5.991 7.824 9.210 13.816
3 6.251 7.815 9.837 11.345 16.266
4 7.779 9.488 11.668 13.277 18.467
5 9.236 11.070 13.388 15.086 20.515
6 10.645 12.592 15.033 16.812 22.458
7 12.017 14.067 16.622 18.475 24.322
8 13.362 15.507 18.168 20.090 26.124
9 14.684 16.919 19.679 21.666 27.877

10 15.987 18.307 21.161 23.209 29.588
11 17.275 19.675 22.618 24.725 31.264
12 18.549 21.026 24.054 26.217 32.909
13 19.812 22. 362 25.472 27.688 34.528
14 21.064 23.685 26.873 29.141 36.123
15 22.307 24.996 28.259 30.578 37.697
16 23.542 26.296 29.633 32.000 39.252
17 24.769 27.587 30.995 33.409 40.790
18 25.989 28. 869 32.346 34.805 42.312
19 27.204 30.144 33.687 36.191 43.820
20 28.412 31.410 I 35.020 37.566 I 45.315

  0.10 0.05 0.02 0.01 0.001
DF           

21 29.615 32.671 36.343 38.932 46.797
22 30.813 33.924 37.659 40.289 48.268
23 32.007 35.172 38.968 41.638 49.728
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24 33.196 36.415 40.270 42.980 51.179
25 34.382 37.652 41.566 44.314 52.620
26 35.563 38.885 42.856 45.642 54.052
27 36.741 40.113 44.140 46.963 55.476
28 37.916 41.337 45.419 48.278 56.892
29 39.087 42.557 46.693 49.588 58.301
30 40.256 43.773 47.962 50.892 59.703
50 63.167 67.505 72.613 76.154 86.661
75 91.061 96.217 102.243 106.393 118.599

100 118.498 124.342 131.142 135.807 149.49
Source: The entries in this table were computed by the author.

Table 3: t-distribution 
For any particular degree of freedom 
(df) and at a given level of 
significance, the observed t-value is 
significant if it is greater than or equal 
to the value shown in the body of the 
table. 

Level of significance for a one-tailed test
  0.050 0.025 0.010 0.005 0.0005

Level of significance for a two-tailed test
  0.100 0.050 0.020 0.010 0.001

DF           
1 6.314 12.706 31.821 63.657 636.619
2 2.920 4.303 6.965 9.925 31.599
3 2.353 3.182 4.541 5.841 12.924
4 2.132 2.776 3.747 4.604 8.610
5 2.015 2.571 3.365 4.032 6.869
6 1.943 2.447 3.143 3.707 5.959
7 1.895 2.365 2.998 3.499 5.408
8 1.860 2.306 2.896 3.355 5.041
9 1.833 2.262 2.821 3.250 4.781
10 1.812 2.228 2.764 3.169 4.587
11 1.796 2.201 2.718 3.106 4.437
12 1.782 2.179 2.681 3.055 4. 318
13 1.771 2.160 2.650 3.012 4.221
14 1.761 2.145 2.624 I 2.977 4.40
15 1.753 2.131 2.602 2.947 4.073
16 1.746 2.120 2.583 2.921 I 4.015
17 1.740 2.110 2.567 2.898 3.965
18 1.734 2.101 2.552 2.878 3.922

Level of significance for a two-tailed test 
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  0.100 0.050 0.020 0.010 0.001
DF      

19 1.729 2.093 2.539 2.861 3.883
20 1.725 2.086 2.528 2.845 3.850
21 1.721 2.080 2.518 2.831 3.819
22 1.717 2.074 2.508 2.819 3.792
23 1.714 2.069 2.500 2.807 3.768
24 1.711 2.064 2.492 2.797 3.745
25 1.708 2.060 2.485 2.787 3.725
26 1.706 2.056 2.479 2.779 3.707
27 1.703 2.052 2.473 2. 771 3.690
28 1.701 2.048 2.467 2.763 3.674
29 1.699 2.045 2.462 2.756 3.659
30 1.697 2.042 2.457 2.750 3.646
31 1.696 2.040 2.453 2. 744 3.633
32 1.694 2.037 2.449 2.738 3.622
33 1.692 2.035 2.445 2.733 3.611
34 1.691 2.032 2.441 2.728 3.601
35 1.690 2.030 2.438 2.724 3.591
40 1.684 2.021 2.423 2.704 3.551
45 1.679 2.014 2.412 2.690 3.520
50 1.676 2.009 2.403 2.678 3.496
60 1.671 2.000 2.390 2.660 3.460
∞ 1.645 1.960 2.326 2.576 3.291
Source: The entries in this table were computed by the author.

Table 4: Critical value of U in the runs 
test for testing randomness* 
The two counts, n1 and n2 in the two 
categories of the binary variable should 
be ≤20. 
To determine the LOWER critical 
value of U we enter the table with n1 
and n2, if the observed value of U is ≤ 
the lower of the two values shown in 
the body of the table U is significant at 
the 0.05 level. 
To determine the UPPER critical value 
of U we enter the table with n1 and n2, 
if the observed value of U is ≥ the 
larger of the pair of values shown in 
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the body of the table then U is 
significant at the 0.05 level. 
Any value of U for n1 and n2 which: i) 
is equal to either of the pair of critical 
values in the body of the table or ii) is 
smaller than the lowest figure in the 
pair or larger than the largest figure in 
the pair, is significant at the alpha 
=0.05 level. 

 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

2              2 2 2 2 2 2 2 2 
              - - - - - - - - - 
3      2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 
       - - - - - - - - - - - - - - - 
4     2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 
      9 9 - - - - - - - - - - - - - - 
5    2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 
     9 10 10 11 11 - - - - - - - - - - - - 
6   2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6 
    - 9 10 11 12 12 13 13 13 13 - - - - - - - - 
7   2 3 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6 6 
    - - 11 12 13 13 14 14 14 14 15 15 15 - - - - - 
8   2 3 3 3 4 4 5 5 5 6 6 6 6 6 7 7 7 7 
    - - 11 12 13 14 14 15 15 16 16 16 16 17 17 17 17 17 
9   2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8 
    - - - 13 14 14 15 16 16 16 17 17 18 18 18 18 18 18 

 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

10   2 3 3 4 5 5 5 6 6 7 7 7 7 8 8 8 8 9 
    - - - 13 14 15 16 16 17 17 18 18 18 19 19 19 20 20 
11   2 3 4 4 5 5 6 6 7 7 7 8 8 8 9 9 9 9 
    - - - 13 14 15 16 17 17 18 19 19 19 20 20 20 21 21 
12 2 2 3 4 4 5 6 6 7 7 7 8 8 8 9 9 9 10 10 
  - - - - 13 14 16 16 17 18 19 19 20 20 21 21 21 22 22 
13 2 2 3 4 5 5 6 6 7 7 8 8 9 9 9 10 10 10 10 
  - - - - - 15 16 17 18 19 19 20 20 21 21 22 22 23 23 
14 2 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10 10 11 11 
  - - - - - 15 16 17 18 19 20 20 21 22 22 23 23 23 24 
15 2 3 3 4 5 6 6 7 7 8 8 9 9 10 10 11 11 11 12 
  - - - - - 15 16 18 18 19 20 21 22 22 23 23 24 24 25 
16 2 3 4 4 5 6 6 7 8 8 9 9 10 10 11 11 11 12 12 
  - - - - - - 17 18 19 20 21 21 22 23 23 24 25 25 25 
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17 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11 12 12 13 
  - - - - - - 17 18 19 20 21 22 23 23 24 25 25 26 26 
18 2 3 4 5 5 6 7 8 8 9 9 10 10 11 11 12 12 13 13 
  - - - - - - 17 18 19 20 21 22 23 24 25 25 26 26 27 
19 2 3 4 5 6 6 7 8 8 9 10 10 11 11 12 12 13 13 13 
  - - - - - - 17 18 20 21 22 23 23 24 25 26 26 27 27 
20 2 3 4 5 6 6 7 8 9 9 10 10 11 12 12 13 13 13 14 
  - - - - - - 17 18 20 21 22 23 24 25 25 26 27 27 28 
*Table 4 is taken from table G of Siegel, S. and Castellan, N.J. (1988) Nonparametric 
Statistics for the Behavioral Sciences, 2nd edition, published by McGraw-Hill and 
reproduced with the kind permission of the authors and publisher. 
 
 

 
 
Table 5: Wilcoxon matched-pairs 
signed-ranks test rank sum total 
statistic critical values 

Level of significance for 1-tailed test 
0.025 0.010 0.005 

Level of significance for 2-tailed test 

Number of pairs=N 

0.05 0.02 0.01 
6 0 - - 
7 2 0 - 
8 4 2 0 
9 6 3 2 

10 8 5 3 
11 11 7 5 
12 14 10 7 
13 17 13 10 
14 21 16 13 
15 25 20 16 
16 30 24 20 
17 35 28 23 
18 40 33 28 
19 46 38 32 
20 52 43 38 
21 59 49 43 
22 66 56 49 
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23 73 62 55 
24 81 69 61 
25 89 77 68 

Material from Some Rapid Approximate Procedures, Copyright © 1949, 1964, Lederle 
Laboratories Divison of American Cyanamid Company. 

 
 
Table 6: Critical values for the 
Kruskal-Wallis ANOVA by ranks 
statistic h 

Sample sizes α 
n1 n2 n3 .10 .05 .01 .005 .001 

2 2 2 4.25       
3 2 1 4.29       
3 2 2 4.71 4.71      
3 3 1 4.57 5.14      
3 3 2 4.56 5.36      
3 3 3 4.62 5.60 7.20 7.20   
4 2 1 4.50      
4 2 2 4.46 5.33     
4 3 1 4.06 5.21     
4 3 2 4.51 5.44 6.44 7.00   
4 3 3 4.71 5.73 6.75 7.32 8.02 
4 4 1 4.17 4.97 6.67    
4 4 2 4.55 5.45 7.04 7.28   
4 4 3 4.55 5.60 7.14 7.59 8.32 
4 4 4 4.65 5.69 7.66 8.00 8.65 
5 2 1 4.20 5.00     
5 2 2 4.36 5.16 6.53    
5 3 1 4.02 4.96     
5 3 2 4.65 5.25 6.82 7.18   
5 3 3 4.53 5.65 7.08 7.51 8.24 
5 4 1 3.99 4.99 6.95 7.36   
5 4 2 4.54 5.27 7.12 7.57 8.11 
5 4 3 4.55 5.63 7.44 7.91 8.50 
5 4 4 4.62 5.62 7.76 8.14 9.00 
5 5 1 4.11 5.13 7.31 7.75   
5 5 2 4.62 5.34 7.27 8.13 8.68 
5 5 3 4.54 5.71 7.54 8.24 9.06 
5 5 4 4.53 5.64 7.77 8.37 9.32 
5 5 5 4.56 5.78 7.98 8.72 9.68 
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Large samples  4.61 5.99 9.21 10.60 13.82 
Note: The absence of an entry in the extreme tails indicates that the distribution may not 
take on the necesary extremes values. 
Table 6 is taken from table O of Siegel, S. and Castellan, N.J. (1988) Nonparametric 
Statistics for the Behavioral Sciences, 2nd edition, published by McGraw-Hill and 
reproduced with the kind permission of the authors and publisher. 

Table 7: Critical values of the F-
distribution at various levels of 
probability (0.05, 0.025 and 0.01) 
For any combination of V1 (numerator 
df) and V2 (denominator or error df) 
the observed value of the F statistic is 
significant at the chosen alpha level if 
it is equal to or larger than the critical 
F value shown in the body of the table. 
Alpha =0.05 

  V1 
  1 2 3 4 5 6 7 8 12 24 50
V2                       

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 243.9 249.1 251.8
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.41 19.45 19.48
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.74 8.64 8.58
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 5.91 5.77 5.70
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.68 4.53 4.44
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.00 3.84 3.75
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.57 3.41 3.32
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.28 3.12 3.02
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.07 2.90 2.80

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 2.91 2.74 2.64
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.79 2.61 2.51

Alpha =0.05 
  V1 
  1 2 3 4 5 6 7 8 12 24 50

V2            
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.69 2.51 2.40
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.60 2.42 2.31
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.53 2.35 2.24
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.48 2.29 2.18
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.42 2.24 2.12
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.38 2.19 2.08

Appendix      401



18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.34 2.15 2.04
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.31 2.11 2.00
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.28 2.08 1.97
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.25 2.05 1.94
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.23 2.03 1.91

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.20 2.01 1.88
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.18 1.98 1.86
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.16 1.96 1.84
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.15 1.95 1.82 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.13 1.93 1.81
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.12 1.91 1.79
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.10 1.90 1.77 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.09 1.89 1.76
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.00 1.79 1.66
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 1.95 1.74 1.60
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 1.92 1.70 1.56

120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.83 1.61 1.46
150 3.90 3.06 2.66 2.43 2.27 2.16 2.07 2.00 1.82 1.59 1.44
200 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.80 1.57 1.41 
250 3.88 3.03 2.64 2.41 2.25 2.13 2.05 1.98 1.79 1.56 1.40
500 3.86 3.01 2.62 2.39 2.23 2.12 2.03 1.96 1.77 1.54 1.38

Alpha=0.025 
  V1 
  1 2 3 4 5 6 7 8 12 24 50
V2                       

1 647.8 799.5 864.2 899.6 921.9 937.1 948.2 956.7 976.7 997.3 1008
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.41 39.46 39.48
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.34 14.12 14.01
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.75 8.51 8.38
5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.52 6.28 6.14
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.37 5.12 4.98
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.67 4.41 4.28
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.20 3.95 3.81
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 3.87 3.61 3.47

10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.62 3.37 3.22
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.43 3.17 3.03
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.28 3.02 2.87

13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.15 2.89 2.74
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.05 2.79 2.64
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 2.96 2.70 2.55
16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 2.89 2.63 2.47
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.82 2.56 2.41
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.77 2.50 2.35
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19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.72 2.45 2.30
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.68 2.41 2.25
21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.64 2.37 2.21
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.60 2.33 2.17
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.57 2.30 2.14
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.54 2.27 2.11
25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.51 2.24 2.08
26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.49 2.22 2.05
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.47 2.19 2.03
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.45 2.17 2.01

Alpha=0.025 
  V1 
  1 2 3 4 5 6 7 8 12 24 50
V2                       
29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.43 2.15 1.99
30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.41 2.14 1.97
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.29 2.01 1.83
50 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.22 1.93 1.75
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.17 1.88 1.70

120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.05 1.76 1.56
150 5.13 3.78 3.20 2.87 2.65 2.49 2.37 2.28 2.03 1.74 1.54
200 5.10 3.76 3.18 2.85 2.63 2.47 2.35 2.26 2.01 1.71 1.51
250 5.08 3.74 3.17 2.84 2.62 2.46 2.34 2.24 2.00 1.70 1.49
500 5.05 3.72 3.14 2.81 2.59 2.43 2.31 2.22 1.97 1.67 1.46

Alpha =0.01 
  V1 
  1 2 3 4 5 6 7 8 12 24 50 
V2                       

1 4052 5000 5403 5625 5764 5859 5928 5981 6106 6235 6303
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.42 99.46 99.48
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.05 26.60 26.35
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.37 13.93 13.69
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 9.89 9.47 9.24
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.72 7.31 7.09
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.47 6.07 5.86
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.67 5.28 5.07 
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.11 4.73 4.52

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.71 4.33 4.12
11 9.65 7.21 6.22 5.67 5.32 5.07| 4.89 4.74 4.40 4.02 3.81
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.16 3.78 3.57 
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Alpha =0.01 
  V1 
  1 2 3 4 5 6 7 8 12 24 50
V2                       
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 3.96 3.59 3.38
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 3.80 3.43 3.22
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.67 3.29 3.08
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.55 3.18 2.97
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.46 3.08 2.87
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.37 3.00 2.78
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.30 2.92 2.71
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.23 2.86 2.64
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.17 2.80 2.58
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.12 2.75 2.53
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.07 2.70 2.48
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.03 2.66 2.44

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 2.99 2.62 2.40
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 2.96 2.58 2.36
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 2.93 2.55 2.33
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 2.90 2.52 2.30
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 2.87 2.49 2.27 
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 2.84 2.47 2.25
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.66 2.29 2.06
50 7.17 5.06 4.20 3.72 3.41 3.19 3.02 2.89 2.56 2.18 1.95
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.50 2.12 1.88

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.34 1.95 1.70
150 6.81 4.75 3.91 3.45 3.14 2.92 2.76 2.63 2.31 1.92 1.66
200 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.27 1.89 1.63
250 6.74 4.69 3.86 3.40 3.09 2.87 2.71 2.58 2.26 1.87 1.61
500 6.69 4.65 3.82 3.36 3.05 2.84 2.68 2.55 2.22 1.83 1.57
Source: The entries in this table were computed by the author.
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A priori comparisons, 328–329 
Adjusted means, 329 
Alpha, 114 
Alternate form reliability (See Reliability coefficients) 
Analysis of variance (ANOVA) parametric, 312 

assumptions, 318–319 
in SAS using PROC GLM, 318 
one-way, 319 
two-way, 338 
related, 330 
split plot, 343 
and violation of assumptions, 347 

Analysis of variance (ANOVA) nonparametric, 236 
(See Kruskal-Wallis ANOVA, Friedman’s ANOVA) 

Approximate t′-ratio, 297–298 
Arcsine transformation, 155–157 

using SAS data step, 155 
 

Balanced design, 312, 338 
Bar charts, 52, 53 
Behrens-Fisher problem, 207 
Beta (ß) weights in regression, 255 
Binomial coefficient, 98 
Binomial distribution and SAS function PROBBNML, 178 
Binomial test, 175 

(See difference in proportions) 
assumptions, 176 
worked example, 177–180 

Box and whisker plot, 56 
 

Carryover effects, 309 
Censored observations, 78 
Central Limit Theorem, 105 
Change score analysis, 192, 307–312 

and difference in pre-test post-test designs, 196 
(See sign test for matched pairs and t-test) 

Checking for normality, 143 



and dealing with nonnormal data, 151 
and normal probability plot, 150 
and SAS function PROBNORM, 181 
(See data transformations) 

Chi-square, 123 
degrees of freedom, 166–167 
one sample χ2 test of independence, 123, 168 
probability using SAS function PROBCHI, 249 
r×2 sample χ2 test, 123 
sampling distribution, 93–94 
statistic, 171 
table of, 383 
test assumptions, 167 
two sample test of homogeneity, 124, 169 
when to use, 94, 164 
worked example, 170–172, 198 
using SAS procedure PROC FREQ, 173 
(See Figure 5.1, 130) 

Choosing a statistical test, 118, 129 
(See also Figure 5.1, 130) 

Class intervals using PROC FORMAT in SAS, 63 
Cochran’s Q test statistic, 199, 203 

worked example, 202–203 
Coefficient of determination (R-square in SAS output), 282 

of variation in regression, 282 
Combinatorial, 98 
Confidence interval(s) CI, 6, 102 

correlation, 291–292 
difference in means, 305 
difference in proportions 190–191 
for mean predicted values, 280 
for individual predicted value, 281 

CI of correlation worked example, 291–292  
CI of difference in means worked example, 305 
CI of mean difference worked example, 310 
CI of predicted individual response worked example, 271 
CI of predicted mean response worked example, 270–271 
Contingency table, 22 
Continuous distribution, 104–106 
Contrasts on means (See Planned comparisons of means) 
Corrected sums of squares, 75, 265 
Correlation, 9, 253–254 

attenuation of, 210 
partial, 294–295 
Pearson’s 283–289 
Point biserial, 210 
significance of, 290–291 
Spearman’s rank order, 210, 214 
using SAS procedure PROC CORR, 292 
and Fisher’s z transformation, 291–292 
and normality assumption, 284 
(See Confidence Interval, Pearson correlation) 
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Covary, 9 
Cramer’s V, 174–175 
Cronbach’s alpha (See Reliability coefficients) 
Crossed factorial design, 14 
Curvilinear relationship, 210 

 
Data, 1 

binary, 162 
categorical, 18 
enumeration, 19 
individual ranked, 162 
input using CARDS statement in SAS, 228–229 
measurement, 19 
nominal (multi-category), 162 
quantitative, 18 
ordered category, 162 

Dataset, 122 
confirmatory, 122 
training, 122 

Data transformations 152, 347 
for positively skewed data, 152, 154 
for negatively skewed data, 158 
(See Arcsine and Logarithmic transformations) 

Degrees of fireedom 70 
in split plot ANOVA, 343 
Denominator of F-test in fixed, random and split plot designs, 340  

Difference 
between means, 125 
(See t-test, 295) 
between means and F-ratio, 313 
(See also Analysis of variance), 
between two correlations, 295 
in proportions or percentage, 175–181 

 
Effect size, 134 
Effects in ANOVA 

fixed, 13 
interaction, 338 
main, 342 
random, 13 
simple, 342 

Error variance in ANOVA, 313 
Estimate statement in SAS, 

(See planned comparisons of means) 
Estimating sample size, 136 

for difference in means independent groups, 139 
for difference in means related groups, 141 
for difference in proportions, 136 
with two-group two-period cross-over design, 138 

Estimation, 86 
and inference, 86 
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Estimator(s), 76 
properties of, 77 

Eta, 210 
Experimental design, 313 

comparative, 313 
split plot 313–314 
true, 313 

Experimentwise error, 329–330 
 

F-statistic in ANOVA, 317 
and relationship with t-statistic, 269 

Factor, 13 
in experimental design, 13, 313 
level of, 313 
stratifying, 35 

Factorial(!), 98, 178 
Fisher Neyman-Pearson debate, 116–117 
Friedman’s ANOVA by ranks (related data), 243 

using SAS procedure PROC FREQ, 247 
worked example, 245–247 

Fisher’s exact test (for small sample sizes), 184 
worked example, 184–185 

Fixed treatment effect, 80 
in ANOVA, 315, 331, 340 

Fixed marginals, 166 
Fixed format data entry, 39 
Frequency bar chart, 52 
Full effects model in ANOVA, 316 

 
General Linear Model, 80, 254 

assumptions, 319 
random error in, 254 

Generalizability, 4 
 

Harmonic mean, 140 
Homogeneity of variance and t-test, 297 
Homoscedasticity, 260 
Hypergeometric distribution, 182 
Hypothesis, 86, 108 

alternative, 109 
null, 93, 109 
research, 109 
statistical, 109–110 
testing, 86 

 
Independent t-test (See t-test) 

worked example, 303–304 
Influential observation, 49 
Initial data analysis, 34 
Integer, 22 
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Inter-rater reliability (See Reliability coefficients) 
Interaction effect(s), 14, 338 
Interquartile range, 57 
Interval, 60 

class, 58 
stated limits, 60–61 
mid-point, 61 
(See Scales of Measurement, Confidence Interval) 

 
Kruskal-Wallis One-way Analysis of Variance, 237 

use with r×k contingency tables, 242–243 
using SAS procedure PROC NPAR1WAY, 240 
worked example, 237–239 

Kuder-Richardson, K-R 20 (See Reliability coefficients) 
Kurtosis, 67 

 
Least squares in regression, 256 
Linear regression (See regression analysis) 

worked example, 264–267 
Logarithmic transformation, 152 

using SAS data step, 152–153 
 

Main effect(s), 14 
Mann-Whitney U statistic, 222 

(See Wilcoxon Mann-Whitney test) 
Mean, 65 

geometric, 66 
of binomial variable, 99 
trimmed, 66 
weighted, 65 
(See harmonic) 

Mean Square in regression, 282 
Means only model in ANOVA, 317 

(See Full effects model) 
Measurement, 19 

continuous, 22 
discrete, 22 
error, 4 
validity, 2 
reliability, 2–3 

Median, 64, 76 
Missing values, 35 
Mode, 64 
Multicollinearity, 263 
Multinomial distribution, 182 
Multiple correlation R, 282 
Multiple regression, 124 

model, 257 
 

Newman-Keuls test, 330 
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Non-probability sample, 8 
Nonparametric test procedures, 120 
Normal distribution, 66 

 
One-way Analysis of variance, 14 

(See Analysis of variance, ANOVA) 
worked example for related, 332–335 
worked example for unrelated, 321–324 

One tailed test, 308 
Outlier observation, 49 
Overlay plot with SAS procedure PROC REG, 273 

 
Parameter, 76, 79 
Parametric test procedures, 119 
Partial correlation (See correlation) 

worked example, 294 
Partialling out, 294 
Pearson’s correlation (See correlation) 

worked example, 287–291 
Percentile (norms), 27, 56 
Phi coefficient, 174–75 
Planned comparisons of means, 317 

following F-test, 328–329 
and LSMEANS statement in SAS, 329 

Polynomial term, 258 
Population, 7  
Post-hoc comparison of means, 317 

following F-test, 329 
Power (See Statistical power) 
Prediction in regression, 257, 259 
Probability, 87 

binomial, 95–98 
model, 92 
nature of, 85–87 

Probable limits, 108 
PROC GLM in SAS (See ANOVA analysis) 
Product multinomial distribution, 183 
Proportions test, 187 

(difference in percentages) 
worked example, 189–191 

 
Quartile(s), 56 

 
R-square, 282 

adjusted 282 
unadjusted, 282 

Random marginals, 166–167 
Random treatment effect in ANOVA, 331–340 
Random selection, 91 
Random variable, 91 
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discrete, 95 
binomial, 95 

Random sample, 3–4, 8, 89, 91 
and checking for normality, 150 

Randomization, 3 
Randomness checking for 217 

checking residuals in regression, 217 
(See Runs test) 

Range, 68 
inter quartile, 69 

Ranking, 21 
Reduced model in ANOVA, 316 

(See Means only model) 
Regression analysis and steps in performing, 258 

diagnostics, 258 
equation, 255 
multiple, 253 
population model, 256 
simple linear, 253 
statistic b, 266 
and dummy variables, 260 

Regression slope, 266 
worked example, 269 

Related t-test (See t-test) 
worked example, 309–310 

Relative frequencies, 58 
Reliability, 3 

coefficients, 30 
test, 29 

Repeated measures analysis of binary data, 199 
Research process, 86 
Residuals in regression, 256 
Rho (population correlation), 208, 283–284 
Robustness, 143 
Runs test for randomness, 217 

worked example, 219 
 

Sample, 7 
Sample size, 134 

and statistical power, 134 
Sampling error, 4 

and probability, 87–88 
Sampling, 4 

bias, 4 
distribution of a statistic, 88, 92–93 
variability, 89 
(See Sampling error) 

Satterthwaite approximation, 297–298 
Scales of measurement (interval, nominal, ordinal, ratio), 22–23  
Scatter plot, 289 
Sigma (Σ), 353 
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Sign test for matched pairs, 125, 192–195 
worked example, 194–195 

Significance, 131 
of regression slope, 269 
and multiple tests, 132 
(See Statistical significance) 

Simple effect(s), 14, 342 
Skewness, 67 
Spearman’s rank order correlation (See correlation) 

worked example, 212–215 
Spit-half reliability (See Reliability coefficients) 
Split plot Analysis of variance SAS code for, 345 
Squared multiple correlation R2, 282 
Standard normal curve, 106 
Standard deviation, 68–70 

of binomial variable, 99 
of residuals in regression, 266 
and degrees of freedom, 71 
and Root Mean Square Error, 266, 282 

Standard error, 101–102 
of a test, 31 
of difference between means, 134, 295–296, 303–309 
of difference in proportions, 188, 190 
of lsmean. 341 
of mean, 31, 75 
of proportion, 101 
of Wilcoxon M-W test statistic, 227 
of b1, (regression slope parameter), 257, 269 
related to sample size and variance, 101–102 
and confidence interval, 102 
and statistical power, 134 

Statistic(s), 1 
descriptive, 1 
inferential, 1 

Statistical model, 1 
for 2-way ANOVA, 315 
and in regression format, 316 

Statistical notation, 353, 354 
Statistical power, 114 

and effect size, 135 
and sample size, 134 
and Type I error rate, 135 
and variance, 134 

Statistical significance, 2, 131 
and educational significance, 2, 5 

Statistical inference, 86 
Stem and leaf plot, 54 
Student’s t-distribution, 296 
Sums of squares for cross products, 266 
Sums of squares in ANOVA, 317, 322 

between subjects, 322 
error, 323 
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corrected total, 323 
Type I, II and III in SAS, 328 

Survey types, 7 
causal comparative, 7 
longitudinal, 7 
prospective, 7 
retrospective, 7 

 
t-test, 295–312 

critical value using SAS function TINV, 310 
independent, 295–307 
nonparametric analogue, 221 
paired or related sample, 307–312 
table of critical value, 385 
test assumptions, 298 
and pooled variance estimate, 297, 304 
and separate variance estimate, 297, 302 
and guidelines for practical use, 298–299 
and using SAS procedure PROC TTEST, 306 
(See Confidence Interval) 

Test content (criterion, domain and norm referenced), 27 
Test statistic, 74, 92–93 

sampling distribution of, 93 
standard error of, 104–105 

Test reliability, 29 
Tied ranks, 21 

in SAS procedure PROC CORP, 214 
Treatment effects in ANOVA, 316 

(see Fixed treatment effects, Random treatment effects, Full effects) 
Two tailed test, 308 
Type I Error, 113, 132 

and Type II Error, 114 
 

Univariate Analysis of variance, 314 
 

Validity, 2–3 
concurrent, 29 
construct, 3, 18, 29 
content, 28 
external, 4, 12 
internal, 11 
predictive, 29 
statistical conclusion, 3 

Variable(s), 3, 17–18 
confounding, 11 
criterion, 9 
dependent, 11 
explanatory, 9 
independent, 9 
predictor, 9 
nominal, 19 
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ordinal, 19 
response, 11 
statistical, 17 
(See Random variable) 

Variance, 69, 76 
sum law, 141 

 
Wilcoxon Signed Ranks test (for related measures), 125, 230 

using SAS procedure PROC UNIVARIATE, 234 
worked example, 232–239 

Wilcoxon Mann-Whitney test, 125 
using SAS procedure PROC NPAR1Way, 228 
and standard error of test statistic, 227 
relationship with Mann-Whitney U statistic, 222 
worked example, 225–228 

 
Yate’s correction for continuity, 167–168 

 
Z score, 107 
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STATISTICAI. INFERENCE ABOUT 

DESIGN: COUNT DATA CONTINUOUS 
DATA 

One. Sample Binomial/Nominal Rank Normal 
Research Q: 
Association/ 
relationship 

One sample χ2 test of 
Independence (6.1) Phi 
Coefficient and Cramer’s 
Phi (6.1) 

Spearman’s rank order 
rs correlation (7.2) 

Pearson correlation r 
(8.3) 

Difference Binomial test difference 
between 2 proportions (or 
%) (6.2) 

One sample Runs test 
(7.3) 

—   

Research Q: 
Prediction 
(independent 
variable is 
continuous) 

—   —   Linear 
(Response 
continuous 

Regression 
variable is 
(8.2)) 

Two. Sample Independent Related   Independent 
Related 

Independent Related 

Research Q: 
Comparison/ 
differences 

Fisher’s 
exact test 
(6.3) 

Sign test 
(6.5) 

Wilcoxon 
M-W test 
(7.4) 

Wilcoxon 
Signed 
Ranks test 
(7.5) 

t-test (8.4) t-test (8.5) 

  Proportions 
test* (6.4) 

          

Association 
(class variable 
is discrete 

r×2 sample 
χ2 test of 
homogeneity 

—         
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forming 
groups) 

(6.1) 

Multiple Samples (groups) 1 Independent variable (factor) 
  Independent Related   Independent 

Related 
Independent Related 

Research Q: 
Differences 
between 
groups (class 
variable is 
discrete 
forming 
groups) 

— — One-way 
ANOVA 

Kruskal-
Wallis 
Friedman 
ANOVA 
(7.6) by 
Ranks (7.7) 

One-way 
ANOVA 
(unrelated) 
(8.7) 

One-way 
ANOVA 
(related) 
(8.8) 

Multiple Samples (groups) More than 1 independent variable (factors) 
Research Q: 
Differences 
between 
groups (class 
variable is 
discrete 
forming 
groups) 

  Cochran’s 
Q test for 
>2 
proportions 
(6.7) 

    Two-way 
ANOVA 
(unrelated)( 
(8.9) 

Two-way 
ANOVA 
split-plot’) 
(8.10) 

Association 
(class variable 
is discrete 
forming 
groups) 

r×k 
χ2 test (6.6) 

—   — — — 

*Can be independent or related; (6.1) indicates Chapter and section in text; †Independent 
and related 

Decision chart for choosing a statistical test 
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