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Preface

This volume contains the 65 selected full papers (from 160 submitted ones)
presented at the MCO 2008 conference, held on September 8–10, 2008 at Paul
Verlaine University of Metz, France and the University of Luxembourg.

MCO 2008 was the second event in the series of MCO conferences on Mod-
elling, Computation and Optimization in Information Systems and Management
Sciences organized by LITA, the Laboratory of Theoretical and Applied Com-
puter Science, University Paul Verlaine, Metz. Now recognized as a high-quality
international conference, MCO takes place in Metz every four years. The first
conference, MCO 2004, brought together 100 scientists from 21 countries and
was a great success. It included 8 invited plenary speakers, 70 papers presented
and published in the proceedings, “Modelling, Computation and Optimization
in Information Systems and Management Sciences”, edited by Thi Hoai An and
Pham Dinh Tao, Hermes Sciences Publishing, June 2004, 668 pages, and 22
papers published in the European Journal of Operational Research and in the
Journal of Global Optimization. This time the Computer Science and Commu-
nications Research Unit, University of Luxembourg joined forces with LITA in
the organization of the MCO conference.

MCO 2008 covered several fields of Management Science and Information
Systems: Computer Sciences, Information Technology, Mathematical Program-
ming, and Optimization and Operations Research, through the five main topic
areas: Optimization and Decision Making; Data Mining Theory, Systems and Ap-
plications; Computer Vision and Image Processing; Computer Communications
and Networks; and Optimization and Search Techniques for Security, Reliability,
Trust. It allowed researchers and practitioners to clarify the recent developments
in models and solutions for decision making in Engineering and Information
Systems and to interact and discuss how to reinforce the role of these fields in
potential applications of great impact.

Continuing the success of the first conference, MCO 2004, MCO 2008 brought
together 6 invited plenary speakers and more than 120 scientists from 27 coun-
tries. The scientific program consisted of 6 plenary lectures and of the oral pre-
sentation of 65 selected full papers as well as 34 selected abstracts covering all
main topic areas.

We would like to thank all those who contributed to the success of the confer-
ence and to this book of proceedings. In particular we would like to mention the
authors as well as the members of the scientific committee and the referees for
their efforts and cooperation. Finally, the interest of the sponsors in the meeting
and their assistance are gratefully acknowledged.

June 2008 Le Thi Hoai An
Bouvry Pascal

Pham Dinh Tao
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Nadine Meskens FUCaM, Belgium
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Esteban José Palomo, Enrique Domı́nguez,
Rafael Marcos Luque, and José Muñoz
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Optimal Flight Paths Reducing the Aircraft

Noise during Landing

Lina Abdallah

MAPMO - UMR 6628
Universite d’Orléans - BP 6759
45067 Orléans cedex 02 France

lina.abdallah@univ-orleans.fr

Abstract. This study concerns the development and the resolution of
an optimization model minimizing the aircraft noise levels around the
airports. Our problem is stated as a nonconvex and nonlinear control
problem. We used two numerical approaches : direct and indirect. Some
numerical results of these approaches are presented and discussed in this
paper.

Keywords: Optimization, optimal control, aircraft noise abatement.

1 Introduction

For many years, commercial aircraft noise represented a serious social and en-
vironmental problem for the population living near the airports. A possible
solution to decrease aircraft noise is the practicability of new flight paths with
the best management of operational procedures. The objective is to make these
paths practical where the predominant task is to maintain high safety flight
during landing operations.

In this context, we developed and solved an optimization model, minimiz-
ing the noise level. To this end, two stages were needed. Firstly, we defined the
components which formulated an ODE optimal control problem: the ODE sys-
tem represents the flight dynamics of the aircraft in the vertical plane, the
constraints concern some flight safety and comfort requirements, and the cost
function is an aircraft noise index describing the effective noise level of the noise
aircraft event.

In the second stage, we used two numerical approaches : direct and indirect. The
directapproach isbasedontheKarush-Kuhn-Tucker,wherewediscretizedtheprob-
lembypartitioningthetime intervalandwereducedtheoptimalcontrolprobleminto
finite-dimensional, then the large nonlinear program is solved by a standard NLP
solver. The indirect approach is based on Pontryaguine’s principle and an adapted
interior point algorithm. Basically,we used the primal-dual formulation of the opti-
mality conditions. A discrestization of these conditions transforms the system to a
set ofnon-linear equations that canbe solved according to the discretizedvariables.
For the implementation,we used theAMPL [1] language and theSNOPT solver [8].

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 1–10, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 L. Abdallah

This paper is organized as follow : a first section presenting the aim of the work;
a second section, which present the details of the optimal control problem; a third
section, which discuss the developed methods to solve the problem; a fourth sec-
tion which is devoted to numerical experiments and finally a conclusion.

2 Optimal Control Problem

2.1 Dynamics of Problem

The system of differential equations commonly employed in aircraft trajectory
analysis is the following six-dimension system derived at the center of mass of
the aircraft [3]:

(ED)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇ = g

(
T cosα−D

mg
− sin γ

)

γ̇ =
1

mV
((T sinα+ L) cosμ−mg cos γ)

χ̇ =
(T sinα+ L) sinμ

mV cos γ

ẋ = V cos γ cosχ

ẏ = V cos γ sinχ

ḣ = V sin γ

where V, γ, χ, α and μ are respectively the speed, the angle of descent, the yaw
angle, the angle of attack and the roll angle. The position of the aircraft is
(x, y, h).

The variables T,D,L,m and g are respectively the engine thrust [7], the drag
force, the lift force, the aircraft mass [3] and the aircraft weight acceleration.
Those variables are expressed as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T = T0δx
ρ

ρ0
(1 − M +

M2

2
)

L = 1
2ρSV 2Czαα

D = 1
2ρSV 2 [Cx0 + kiC

2
zα

α2]

ρ = ρ0(1 − 22.6 × 10−6h)4.26

c = 10.1
√

273 − 0.0065h

M =
V

c
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With T0 the full thrust, ρ the density of air at altitude h, δx the throttle setting, ρ0

the atmospheric density at the ground (= 1.225 kg/m3) and c the speed of sound
at altitude h.

The previous system of equations (ED) respects the assumptions of a constant
weight, symmetric flight and constant gravitational attraction.

VerticalPlan. We restrict our study of the flight path optimization in the vertical
plane. The equations in the vertical plane are obtained by setting the following
conditions :

1. y = cste
2. Yaw angle and roll angle, χ = μ = 0

In this case (ED) becomes:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ = V cos γ

ḣ = V sin γ

V̇ =
1

m
(T cos α − D) − g sin γ

γ̇ =
1

mV
(T sin α + L) − g cos γ

V

(1)

The system of equations (1) can be written in the following matrix form:

ż(t) = f(z(t), u(t))

where
z : [t0, tf ] −→ IR4

t −→ z(t) = [V (t), γ(t), x(t), h(t)] is the state variable,

u : [t0, tf ] −→ IR2

t −→ u(t) = [α(t), δx(t)] is the control variable,

t0 and tf are the initial and final times.

2.2 Path Constraints

Along the trajectory, we have some safety requirements and comfort constraints.
For that, we have to respect:

1.3Vs0 ≤ V ≤ Vmax

δxmin ≤ δx ≤ δxmax

γmin ≤ γ ≤ γmax

αmin ≤ α ≤ αmax

where Vs0 represents the stall velocity, i.e. the limited velocity at which the
aircraft can produce enough lift to balance the aircraft weight.

These inequalities can be put into the following form:

a ≤ C(z(t), u(t)) ≤ b

where a and b are two constant vectors.
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2.3 Cost Function

The cost function may be chosen as any of the usual aircraft noise indices, which
describes the effective noise level of the aircraft noise event [12,13], like SEL
(Sound Exposure Level), the EPNL (Effective Perceived Noise Levels) or the
Leq,Δt (Equivalent noise level). . .

This study is limited to the sound effects observed during a given interval of
time, thus we choose to minimize the index Leq,ΔT during landing. It is expressed
as:

Leq,ΔT = 10 log
1
ΔT

∫ tf

t0

100.1LP (t)dt (2)

where t0, tf and LP (t) are respectively, the initial time, the final time and the
overall sound pressure level (expressed in decibels (dB)). ΔT is equal to tf − t0.
The analytic formula to compute the noise levels at any reception point is:

LP = Lref − 20 log10 R +Δatm +Δground +ΔV +Δf (3)

where Lref is the sound level at the source, 20 log10 R is a correction factor due
to geometric divergence, Δatm is the attenuation due to atmospheric absorption
of sound. The other terms Δground, ΔV and Δf correspond respectively to the
ground effects, correction for the Doppler and correction for the frequency.

In this study, we have used a semi-empirical model to predict noise that is
generated by conventional-velocity-profile jets emitted from coaxial nozzles. This
model can be used to express the jet noise [9] which corresponds to the main
predominated noisy source, under the following form:

LP (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

141 + 10 log10

(
ρ1

ρ

)w

+ 10 log10

(
Ve

c

)7.5

+ 10 log10 s1

+10 log10

⎛

⎜
⎜
⎜
⎝

(

1− v2

v1

)me

+ 1.2

(

1 +
s2v

2
2

s1v2
1

)4

(

1 +
s2
s1

)3

⎞

⎟
⎟
⎟
⎠

+3 log10

(
2s1
πd2

+ 0.5
)

+ log10

τ1
τ2
− 20 log10 R

−15 log10(CD(Mc, θ)) − 10 log10(1−M cos θ),

(4)

where ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ve = v1[1 − (V/v1)]
2/3

CD(Mc, θ) =
[
(1 + Mc cos θ)2 + 0.04M2

c

]

Mc = 0.62(v1 − V )/c
ρ = ρ0(1 − 22.6 × 10−6h)4.26

w =
3(Ve/c)3.5

0.6 + (Ve/c)3.5 − 1.
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Here, θ, v, s and τ represent respectively the directivity angle, the speed of jet
gas, the area of coaxial engine nozzle and the temperature. The subscripts 1, 2
correspond to the inner and outer contours.

The distance R between source and observer is

R = l2 + h2(cos(γ))2

where l the lateral distance, γ the angle of descent and h the altitude.

R

h

l

γ

Fig. 1. Distance R between the source and observer

Taking into account the formulas (4) and (2), we obtain our cost function in
the following integral function form

J : C1([t0, tf ], IR4)× C1([t0, tf ], IR2) −→ IR

(z(t), u(t)) −→ J(z, u) =
∫ tf

t0

�(z(t), u(t))dt.

J is the criterion for the noise level.
Finding an optimal trajectory, minimizing the noise level during landing, is a

mathematical problem that can be stated as an optimal control problem as follow:

(OCP )

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min J(z, u) =
∫ tf

0

�(z(t), u(t))dt

ż(t) = f(z(t), u(t)), ∀t ∈ [0, tf ]

zI1(0) = c1, zI2(tf ) = c2

a ≤ C(z(t), u(t)) ≤ b

where J : IRn+m → IR, f : IRn+m → IRn and C : IRn+m → IRq correspond
respectively to the cost function, the dynamic of the problem and the constraints.
The initial and final values for the sate variables (h(0), V (0)) and h(tf ) are fixed.
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3 Methods of Resolution

Numerical methods for solving control problems governed by ordinary differential
equations fall into two categories, the indirect methods and the direct approach
[2,10]. In this paper, we present the two approaches for solving the problem OCP.

3.1 Indirect Method

We set H : IRn × IRm × IRn × IRq × IRq −→ IR the hamiltonian function of the
problem OCP :

H(z, u, p, λ, μ) = �(z, u) + ptf(z, u) + λt(C(z, u)− a) + μt(b− C(z, u))

where λ, μ are the multiplicators associated to the constraints and p is the
costate vector.

We describe now the optimality conditions (OC) for the OCP problem:

(OC)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ż(t) = f(z(t), u(t))
ṗ(t) = −Hz(z(t), u(t), p(t), λ(t), μ(t))
u(t) = ArgminwH(z(t), w, p(t), λ(t), μ(t))
0 = λ.(C(z(t), u(t)− a), λ ≥ 0
0 = μ.(b− C(z(t), u(t)), μ ≤ 0

It is difficult to solve numerically the last two equations. In order to avoid this
kind of problem, the interior point method could be used. This method consists
of perturbing by a positif parameter the complementary conditions, then we
obtain the following system:

(OCε)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ż(t) = f(z(t), u(t))
ṗ(t) = −Hz(z(t), u(t), p(t), λ(t), μ(t))
u(t) = ArgminwH(z(t), w, p(t), λ(t), μ(t))
1ε = λ.(C(z(t), u(t)) − a), λ ≥ 0
−1ε = μ.(b− C(z(t), u(t))), μ ≤ 0

To solve OC, we have to solve a sequence of problems OCε by tending ε to zero.
When ε decrease to 0, the solution of optimal conditions OCε is a solution for
OC.

Discretization of Optimal Conditions. To compute the solution of the
continuous optimal conditions, we first discretize them. We obtain a set of
non-linear equations, which has to be solved for the discretized control, state
and costate vectors using a Newton method. For the discretization, we choose
an Euler schema. The discretization of the optimal conditions OCε gives the
following system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zk+1 = zk + hf(uk, zk), k = 0, . . . , N − 1
pk+1 = pk − hHz(zk, uk, pk, λk, μk), k = 0, . . . , N − 1
0 = Hu(uk, zk, pk, λk, μk), k = 0, . . . , N
1ε = λk.(C(zk, uk)− a), λk ≥ 0, k = 0, . . . , N
−1ε = μk.(b− C(zk, uk)), μk ≤ 0, k = 0, . . . , N
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Finally we have a large set of equations to be solved under the boundary
constraints corresponding to the multiplicators.

(Nε)

⎧
⎨

⎩

Fε(X) = 0
λk ≥ 0
μk ≤ 0

where Fε is the set of optimal conditions, and X the variable vector X =
(zk, uk, pk, λk, μk).

3.2 Direct Method

We discretize the control and the state with identical grid and reduce the opti-
mal control problem into finite-dimensional, then the large nonlinear program is
solved by a standard NLP solver.

We use an equidistant discretization of the time interval as

tk = t0 + kh, k = 0, ..., N and h =
tf − t0
N

.

Then we consider that u(.) is parameterized as a piecewise constant function:

u(t) := uk for t ∈ [tk−1, tk]

and use an Euler scheme to discretize the dynamic:

zk+1 = zk + hf(zk, uk), k = 0, . . . , N − 1.

The new cost function is stated as:
N∑

k=0

�(zk, uk).

The continuous problem is replaced by the following discretized control problem:

(NLP )

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
(zk,uk)

N∑

k=0

�(zk, uk)

zk+1 = zk + hf(zk, uk), k = 0, . . . , N − 1
z0I1

= c1, zNI2
= c2

a ≤ C(zk, uk) ≤ b, k = 0, . . . , N

4 Numerical Application

We consider an aircraft landing in the vertical plane with initial conditions h0 =
3500m,V0 = 180m/s and a final condition hf = 500m. The landing time is
fixed to tf = 10 min.

We present here solutions obtained with the two considered approaches. The
problem OCP is discretized along its state (h, V, γ) and control (α, δx). To solve
NLP and Nε, we developed an AMPL [1] model and used a robust solver SNOPT
[8]. We have chosen this NLP solver after numerous comparisons with some other
standard solvers available on the NEOS (Server for Optimization) platform.
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4.1 Indirect Method

We solve a sequence of problems Nε (tending ε to zero). We initialize the problem
Nε, by centering the sate and control. Then we initialize the Lagrange multipli-
cators as follow:

λ = ε(C(z, u) − a)−1, μ = ε(b − C(z, u))−1.

For the implementation of the penalty parameter ε, many strategies exist in
the literature [6]. We used the following strategy:

εk+1 = εk/5.

We present the value of the noise in function of ε in the second column of the
table 1. The third column gives the measurement of the feasibility error, the last
column summarizes the exit message obtained with the SNOPT solver [8].

Table 1. The obtained solution in function of ε

ε Noise (ε) Feasible Exit

1 63.3 5.6e − 12 Optimal solution

0.2 62.7 4.0e − 12 Optimal solution

0.04 62.3 7.3e − 14 Optimal solution

0.008 62.2 8.8e − 12 Optimal solution

0.0016 62.1 1.1e − 11 Optimal solution

0.000032 62.1 2.3e − 07 Optimal solution

6.4e − 05 62.1 2.5e − 07 Optimal solution

1.28e − 05 62.1 2.1e − 07 Optimal solution

For each iteration of interior point method, the algorithm (SNOPT [8]) found
a solution with a very high accuracy.

Figure 2 shows the solution trajectory, control strategy and noise evolution.
We clearly see that the control δx is always saturated when the angle of attack

α is not. The state variable γ is bang-bang between its prescribed bounds. The
noise level is highest at the end of the trajectory and the altitude h plays a
predominant role in the noise level.

4.2 Direct Method

Once OCP is transformed into a Non Linear Programming NLP problem, we use
a standard NLP solver SNOPT and get a very good accuracy and an optimal so-
lution. The obtained noise is equal to 62 dB and the feasibility error is equal to
1.8e− 09. Figure 3 shows the solution trajectory, control strategy and noise evo-
lution.

We obtain approximately the same characteristic for the trajectory and for
the noise level (∼ 62 dB) from both approaches and confirm that the solution is
optimal.
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Fig. 2. Solution of Nε for 100 discretization points
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Fig. 3. Solution of NLP for 100 discretization points

5 Conclusion

This paper presents preliminary work for generating flight paths that minimize
aircraft noise levels.

We have performed a numerical computation for indirect and direct approaches.
An optimal solution is found in both cases, with a high accuracy. The two ap-
proaches give the same solution for the noise level and for the trajectory charac-
teristic and confirm that the obtained solution is optimal. The direct approach is
easier to implement.

This study is restricted to the vertical plane, an extension of the analysis
should consider the problem in the space by using the general nonlinear system
and by fixing one or several observers in the ground.



10 L. Abdallah

Acknowledgments. We would like to thank Mounir Haddou for his valuable
help for computational aspects and Salah Khardi for his helpful discussions.

References

1. AMPL: A Modeling Language for Mathematical Programming,
http://www.ampl.com

2. Berend, N., Bonnans, F., Haddou, M., Varin, J., Talbot, C.: An Interior-Point
Approach to trajectory Optimization, INRIA Report, N. 5613 (2005)

3. Boiffier, J.: The Dynamics of Flight. John Wiley and Sons, Chichester (1998)
4. Bonnans, J.F., Gilbert, J.C., Lemarechal, C., Sagastizabal, C.: Optimisation Num-

rique: aspects et thoriques, Mathmatiques et Applications. Springer, Heidelberg
(1997)

5. Bonnans, J.F., Launay, G.: Large-scale Direct Optimal Control Applied to a Re-
Entry Problem. J. of Guidance. Control And Dynamic 21(6) (1998)

6. Dussault, J.P., Elafia, A.: On the superlinear convergence order of the logarithmic
barrier algorithm (1999)

7. Mattingly, J.D.: Elements of Gas Turbine Propulsion. McGraw-Hill, New York
(1996)

8. Gill, P., Murray, W., Saunders, M.: SNOPT, A large-scale smooth optimization
problems having linear or nonlinear objectives and constraints,
http://www-neos.mcs.anl.gov/neos/solvers

9. Stone, J.R., Groesbeck, D.E., Zola Charles, L.: An improved prediction method
for noise generated by conventional profil coaxial jets. National Aeronautics and
Space Administration. Report NASA-TM-82712, AIAA-1991 (1981)

10. Wright, S.: Interior-point methods for optimal control of discrete-time systems. J.
Optim. Theory Appls. 77, 161–187 (1993)

11. Wright, S.: Primal-dual interior-point methods. Society for Industrial and Applied
Mathematics. SIAM, Philadelphia (1997)

12. Zaporozhets, O.I., Tokarev, V.I.: Aircraft Noise Modelling for Environmental As-
sessment Around Airports. Applied Acoustics 55(2), 99–127 (1998)

13. Zaporozhets, O.I., Tokarev, V.I.: Predicted Flight Procedures for Minimum Noise
Impact. Applied Acoustics 55(2), 129–143 (1998)



Scalability Analysis of a Novel Integer

Programming Model to Deal with Energy
Consumption in Heterogeneous Wireless Sensor

Networks
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Abstract. This paper presents a scalability analysis over a novel integer
programming model devoted to optimize power consumption efficiency
in heterogeneous wireless sensor networks. This model is based upon
a schedule of sensor allocation plans in multiple time intervals subject
to coverage and connectivity constraints. By turning off a specific set
of redundant sensors in each time interval, it is possible to reduce the
total energy consumption in the network and, at the same time, avoid
partitioning the whole network by losing some strategic sensors too pre-
maturely. Since the network is heterogeneous, sensors can sense different
phenomena from different demand points, with different sample rates.
As the problem instances grows the time spent to the execution turns
impractcable.

1 Introduction

Wireless sensor networks (WSNs) have been primarily used in the monitoring of
several physical phenomena, such as temperature, barometric pressure, humidity,
ambient light, sound volume, solar radiation, and precipitation, and therefore
have been deployed in different areas of application/research, like agriculture,
climate study, biology, and security.

The simple deployment of the approach proposed by Nakamura et al. [6], while
sensing different phenomena through the same WSN, can lead to inefficiency in
terms of energy expenditure. With this perspective in mind, in this work, we pro-
vide an extension to the model devised by Nakamura et al. [6], namely, to consider
different coverage radius and sampling rates for different phenomena. We argue
that the incorporation of such aspects into the model can have a significant impact
on thenetwork lifetimemainlywhen the spatio-temporalproperties of the phenom-
ena under observation vary a lot. The introduction of this new dimension into the
model brings about novel issues to be dealt with. The critical issue relates to the

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 11–20, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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concurrent routing of data related to different phenomena, as these data should be
relayed to different sinks.

The rest of the paper is organized as follows. Section 2 presents the WSN,
how do they work, the components of a sensor, the problems that can occur
in a WSN and complementary knowledge to optimize the Network. Section 3
presents the novel integer linear programming model for the minimization of
energy expenditure in WSNs regarding the heterogeneity aspects of the sensed
phenomena mentioned above. Section 4 presents initial results achieved by simu-
lation while Section 5 provides a qualitative discussion of such results. Finally,
Section 6 concludes the paper and comments on future work.

2 The Wireless Sensor Network

A Wireless Sensor network typically consist of a large number of small, low-
power, and limited-bandwidth computational devices, named sensor nodes. The-
se nodes can frequently interact with each other, in a wireless manner, in order to
relay the sensed data towards one or more processing machines (a.k.a. sinks) re-
siding outside the network. For such a purpose, special devices, called gateways,
are also employed, in order to interface the WSN with a wired, transport net-
work. To avoid bottleneck and reliability problems, it is pertinent to make one or
more of these gateways available in the same network setting, a strategy that can
also reduce the length of the traffic routes across the network and consequently
lower the overall energy consumption. A typical sensor node is composed of four
modules, namely the processing module, the battery, the transceiver module and
the sensor module [4]. Besides the packet building processing, a dynamic routing
algorithm runs over the sensor nodes in order to discover and configure in runtime
the “best” network topology in terms of number of retransmissions and waste of
energy. Due to the limited resources available to the microprocessor, most de-
vices make use of a small operating system that supplies basic functionalities to
the application program. To supply the power necessary to the whole unit, there
is a battery, whose lifetime duration depends on several aspects, among which,
its storage capacity and the levels of electrical current employed in the device.
The transceiver module, conversely, is a device that transmits and receives data
using radio-frequency propagation as media, and typically involves two circuits,
viz. the transmitter and the receiver. Due to the use of public-frequency bands,
other devices in the neighborhood can cause interference during sensor commu-
nication. Likewise, the operation/interaction among other sensor nodes of the
same network can cause this sort of interference. So, the lower is the number of
active sensors in the network, the more reliable tends to be the radio-frequency
communication among these sensors. The last component, the sensor module,
is responsible to gauge the phenomena of interest; the ability of concurrently
collecting data pertaining to different phenomena is a property already available
in some models of sensor nodes.
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For each application scenario, the network designer has to consider the rate
of variation for each sensed phenomenon in order to choose the best sampling
rate of each sensor device. Such decision is very important to be pursued with
precision as it surely has a great impact on the amount of data to be sensed and
delivered, and, consequently, on the levels of energy consumed prematurely by
the sensor nodes. This is the temporal aspect to be considered in the network
design.

Another aspect to be considered is the spatial one. Megerian et al. [5] define
coverage as a measure of the ability to detect objects within a sensor field.
The lower the variation of the physical variable being measured across the area,
the shorter has to be the radius of coverage for each sensor while measuring
the phenomenon. This will have an influence in the number of active sensors
to be employed to cover all demand points related to the given phenomenon.
The fact is: the more sensors are active in a given moment, the bigger is the
overall energy consumed across the net. WSNs are usually deployed in hostile
environments, with many restrictions of access. In such cases, the network would
be very unreliable and unstable if the minimum number of sensor nodes was
effectively used to cover the whole area of observation. If some sensor node
fails to operate, its area of coverage would be out of monitoring, preventing
the correlation of data coming from this area with others coming from other
areas.

Another worst-case scenario occurs when we have sensor nodes as network
bottlenecks, being responsible for routing all data coming from the sensor nodes
in the neighborhood. In this case, a failure in such nodes could jeopardize the
whole network deployment. To avoid these problems and make a robust design
of the WSN, extra sensor nodes are usually employed in order to introduce some
sort of redundancy. By this means, the routing topology needs to be dynamic
and adaptive: When a sensor node that is routing data from other nodes fails,
the routing algorithm discovers all its neighbor nodes and then the network
reconfigures its own topology dynamically. One problem with this approach is
that it entails unnecessary energy consumption. This is because the coverage ar-
eas of the redundant sensor nodes overlap too much, giving birth to redundant
data. And these redundant data bring about extra energy consumption in re-
transmission nodes. The radio-frequency interference is also stronger, which can
cause unnecessary retransmissions of data, increasing the levels of energy expen-
diture. Megerian and Potkonjak [1] present many integer linear programming
models to maximize energy consumption but not consider the dynamic time
scheduling.

The solution proposed by Nakamura et al. [6] is to create different schedules,
each one associated with a given time interval, that activate only the minimum
set of sensor nodes necessary to satisfy the coverage and connectivity constraints.
The employment of different schedules prevents the premature starvation from
some of the nodes, bringing about a more homogeneous level of consumption
of battery across the whole network. This is because the alternation of active
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nodes among the schedules is often an outcome of the model, as it optimizes the
energy consumption of the whole network taking into account all time intervals
and coverage and connectivity constraints. It is well-known that the sensing
of different phenomena does not follow the same spatio-temporal profile. For
instance, the temporal and spatial variations of temperature measurements in a
given area can be very different from those related to humidity. Working with
only one radius of coverage for all sensed phenomena entails that this radius
be the smallest one. Likewise, choosing only one sampling rate for all sensed
phenomena implies that this rate can keep up well with the phenomenon that
varies faster.

3 Model for Optimizing the Energy Consumption

In order to properly model the heterogeneous WSN setting, some previous re-
marks are necessary:

1. A demand point is a geographical point in the region of monitoring where
one or more phenomena are sensed. The distribution of such points across the
area of monitoring can be regular, like a grid, but can also be random in na-
ture. The density of such points varies according to the spatial variation of the
phenomenon under observation. At least one sensor must be active in a given
moment to sense each demand point. Such constraint is implemented in the
model;

2. Usually, the sensors are associated with coverage areas that cannot be esti-
mated with accuracy. To simplify the modeling, we assume plain areas without
obstacles. Moreover, we assume a circular coverage area with a radius deter-
mined by the spatial variation of the sensed phenomenon. Within this area, it
is assumed that all demand points can be sensed. The radio-frequency propaga-
tion in real WSNs is also irregular in nature. In the same way, we can assume a
circular communication area. The radius of this circle is the maximum distance
at which two sensor nodes can interact;

3. A route is a path from one sensor node to a sink possibly passing through
one or more other sensor nodes by retransmission. Gateways are regarded as
special sensor nodes whose role is only to interface with the sinks. Each phe-
nomenon sensed in a node has its data associated with a route leading to a given
sink, which is independent from the routes followed by the data related to other
phenomena sensed in the same sensor node;

4. The energy consumption is actually the electric current drawn by a circuit
in a given time period.

In what follows, the elements of the novel integer linear programming model
are introduced in a step-by-step manner.



Scalability Analysis of a Novel Integer Programming Model 15

S Set of sensors
D Set of demand points
M Set of sinks
G Set of phenomena (temperature, humidity, barometric pressure,

etc.). Each phenomenon has its own spatio-temporal properties.
The associated sampling rate has impact on data traffic, while the
associated radius of coverage has impact on the number of active
sensors

t Number scheduling periods
Ad Set of arcs that link sensors to demand points for phenomena
As Set of arcs that interconnects sensors
Am Set of arcs that link sensors and sinks
Ed(A) Set of incident arcs for demand point d ∈ D which belong to A
Es(A) Set of incident arcs for sensor s ∈ S which belong to A
Ss(A) Set of output arcs leaving sensor s ∈ S which belong to A
EBi Cumulated battery energy for sensor i ∈ S
EAi Energy dissipated while activating sensor i ∈ S
EMi Energy dissipated while sensor i ∈ S is activated (effectively sens-

ing)
ET g

ij Energy dissipated when transmitting data from sensor i to sensor
j with respect to phenomenon g. Such values can be different
for each arc ij if a sensor can have its transmitter power adjusted
based on the distance to the destination sensor. Each phenomenon
has its own sampling rate, a parameter that impacts the total
amount of data transmitted across the WSN and, consequently,
the levels of energy waste

ERI Energy expended in the reception of data for sensor i ∈ S
EHG

J Penalty applied when a demand point j ∈ D for phenomenon g is
not covered by any sensor

EGg
i Penalty applied when sensor i ∈ S is activated to unnecessarily

sense the phenomenon g

xtg
ij if sensor i covers demand point j in period t for phenomenon g

ztg
lij if arc ij belongs to the route from sensor l to a sink in period t for

phenomenon g
wt

l if sensor i was activated in period t for at least one phenomenon
rtg
i if sensor i was activated in period t for phenomenon g
yt

i if sensor i is activated in period t

htg
j if demand point j for phenomenon g is not covered by any sensor in

period t
ei Energy consumed by sensor i considering all time periods
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The objective function (1) minimizes the total energy consumption through all
time periods. The second term penalizes the existence some not-covered demand
points, but the solution continues feasible. It penalizes unnecessary activation
for phenomenon too.

min
∑

i∈S

ei +
∑

t∈T

∑

g∈G

(
∑

j∈D

EHt
jh

tg
j +

∑

i∈S

EGtg
i r

tg
i ) (1)

These are the constraints adopted:
∑

ij∈Ed
j (Ad

g)

xtg
ij + htg

j ≥ 1, ∀j ∈ D, ∀t ∈ T, ∀g ∈ G (2)

Constraint (2) enforces the activation of at least one sensor node i to cover
the demand point j associated with phenomenon g in period t. Otherwise, the
penalty variable h is set to one. This last condition will occur only in those cases
when no sensor node can cover the demand point.

xtg
ij ≤ rtg

i , ∀i ∈ S, ∀ij ∈ Ad
g, ∀t ∈ T, ∀g ∈ G (3)

Constraint (3) turns on variable r (which means that a sensor node is actively
sensing phenomenon g in period t) if its associated sensor node is indeed allocated
to cover any demand point associated with g.

rtg
i ≤ yt

i , ∀i ∈ S, ∀t ∈ T, ∀g ∈ G (4)

Constraint (4) reads that sensor node i is fully active (parameter y), if it is active
for at least one phenomenon of observation.

∑

ij∈Es
j (As)

ztg
lij −

∑

jk∈Ss
j (As∪Am)

ztg
ljk = 0, ∀j ∈ (S ∪M − l), ∀l ∈ S, ∀t ∈ T, ∀g ∈ G

(5)

Constraint (5) relates to the connectivity issue using the flow conservation
principle. This constraint enforces that an outgoing route exists from sensor
node j to sensor node k if there is already an incoming route from sensor node
i to sensor node j.

−
∑

jk∈Ss
j (As∪Am)

ztg
ljk = −rtg

l , j = l, ∀l ∈ S, ∀t ∈ T, ∀g ∈ G (6)

Constraint (6) enforces that a route is created for phenomenon g if a sensor node
is already active for that phenomenon.

ztg
lij ≤ yt

i , ∀i ∈ S, ∀l ∈ (S − j), ∀ij ∈ (As ∪AM ), ∀t ∈ T, ∀g ∈ G (7)
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In Constraint (7), if there is an outgoing route passing through sensor node
i, then this sensor node has to be necessarily active.

ztg
lij ≤ yt

i , ∀j ∈ S, ∀l ∈ (S − j), ∀ij ∈ (As ∪AM ), ∀t ∈ T, ∀g ∈ G (8)

In the same way, with Constraint (8), if there is an incoming route passing
through sensor i, then this sensor has to be active.

∑

t∈T

∑

g∈G

(EMiy
t
i + EAiw

t
i +

∑

l∈(S−i)

∑

ki∈Es
i (As∪Am)

ERiz
tg
lki

+
∑

l∈S

∑

ij∈Ss
i (As∪Am)

ET g
i jz

t
l ij) ≤ ei, ∀i ∈ S

(9)

The total energy consumed by a sensor node is the sum of the parcels given in
Constraint (9).

0 ≤ ei ≤ EBi, ∀i ∈ S (10)

Constraint (10) enforces that each sensor node should consume at most the
energy capacity limit of its battery.

w0
i − y0

i ≥ 0, ∀i ∈ S (11)

Constraint (11) determines when the sensor node should start to sense (para-
meter w). If a sensor is active in the first period, its corresponding w should be
set to 1.

wt
i − yt

i + yt−1
i ≥ 0, ∀i ∈ S, ∀t ∈ T, t > 0 (12)

In Constraint (12), the past and current activation states of a sensor node are
compared. If the sensor node was active from period t− 1 to period t, then w is
set to 1.

x, y, z, w, h ∈ {0, 1}, e ∈ R. (13)

4 Computational Results

In order to assess the potentialities of the novel optimization model, we have
devised the simulation scenario that is described in the sequence. First of all, we
have considered only two phenomena of interest to be concurrently sensed by
the same WSN. Besides, only four time intervals were taken into consideration
to alleviate the computational burden, although the reader should be aware that
the real benefits of our extended model appear (that is, the savings in terms of
energy expenditure would be more significant) when one has to deal with larger
numbers of time intervals.

A regular grid of demand points was considered: There were 100 demand
points in a square area of 10 per 10 meters, with one demand point per square
meter. Each demand point can be assigned to either or both phenomena, but
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the overall coverage of each phenomenon is totally independent from each other
regarding a demand point alone. In the same vein, sixteen sensor nodes were
placed in a regular 4 × 4 grid. All nodes have the same processing/sensing
capabilities with the possibility to sense concurrently the two phenomena. The
coverage radius for the first phenomenon was set as 8.8 meters in length while
the length of the coverage radius for the second phenomenon was 16 meters.
The sampling rate for the first and second phenomena was set as two samples
per minute and one sample per minute, respectively. The length of the radius of
communication between two neighbor sensors was 11 meters in size. Only one
sink was placed at the middle of the regular grid. All elements of this scenario
(demand points, sensors, and sink) were generated with its associated geographic
coordinates. The matrix was filled with ones in those cases where the distance
from the sensor and the demand point was less than or equal to the coverage
radius for each phenomenon, and with zeros otherwise. Similarly, the matrices
and were filled with ones in those positions where the distance between the
sensor nodes or from a sensor node to the sink was less than or equal to the
communication radius, and with zeros otherwise. The energy constants were
calculated having as basis the values announced at a spreadsheet from a sensor
node manufacturer [2]. The energy values for transmission and reception were
calculated having as basis the amount of sensed data and the bit rate adopted in
the devices. The penalty constant was assigned to a high value to enforce that
the model covers all demand points of interest.

In order to establish a comparison, in terms of problem difficulty (variables
and constraints) and energy savings (objective function values), between the
heterogeneous WSN setting and its homogeneous counterpart, we have also
conducted some simulations with our model considering two phenomena with
the same characteristics, namely coverage radius of 8.8 meters and sampling
rate of two samples per minute.

Table 4 shows the simulation results achieved by playing with the CPLEX
platform [3] with OPL Development Studio 4.2 and Cplex 10.0. The tests were
executed in Pentium D 3 GHz 512 MB machines with Windows XP Professional.
In this table, in the calculus of the “real objective” value we ignore the penalties
and sum up only the variables. Figures 1 and 2 provide snapshots of the scheduled
plans generated for the first and second phenomena regarding the four time
intervals considered.

In a manner as to have a better feeling of the impact of the data routing
process on the energy expenditure of the WSN nodes, we have set up a second
scenario with a larger area, where the length of the coverage and communication
radii become smaller. By this means, there are few communication options to
each sensor, and routes must be established in order to convey data to the sinks.
In this new scenario, there are four sinks in the corners of the square area and
our aim is to assess how many sensor nodes the model recruits to operate as
routers of the traffic towards the sinks. Figure 3 the routes generated to this
scenario by our model.
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Table 1. Simulation results comparing homogeneous and heterogeneous WSN settings

Model Homogen. Heterogen. Homogen. Heterogen. Homogen. Heterogen.

Phenomenom 1 2 1 2 1 2

Time intervals 4 4 5 5 6 6

Demand pts. 100 100 100 100 100 100

Sensor nodes 16 16 16 16 16 16

Sinks 1 1 1 1 1 1

Variables 24,416 48,688 30,517 60,857 36,617 73,025

Constraints 39,248 78,384 49,048 97,968 58,848 117,552

Density 9.47e-05 4.89e-05 7.58e-05 3.92e-05 6.32e-05 3.26e-05

Time (h:m:s) 00:00:27 00:01:57 00:02:13 15:28:02 00:05:24 23:30:57

Objective 16,155.120 15,053.768 21,409.072 19,643.030 26,232.680 24,017.120

Real objective 16,155.120 12,653.768 21,409.072 16,543.200 26,232.680 20,825.570

Reduction 0% 21.67% 0% 15,78% 0% 20.61%

Fig. 1. First phenomenon
intervals 1-3

Fig. 2. First phenomenon
interval 4

Fig. 3. Routes generated
by the model

5 Discussion

Evaluating the results presented in the preceding section, one can notice that
the deployment of a homogeneous WSN setting has entailed an overall energy
consumption of 16,155.12 mAh, which is much higher than the 12,653.768 mAh
level achieved with the heterogeneous model. That is, by employing the extended
optimization model, 21.67% of energy savings could be obtained. As mentioned
above, this gain is mainly due to the unnecessary generation and transmission of
data when the spatio-temporal properties of the sensed phenomena are treated
as the same. These simulation results corroborate with our perspective that, the
more different are the phenomena sensed by the same WSN, the higher tends to
be the overall gain in making use of the heterogeneous approach. A drawback
exhibited by the model during the simulation runs was that of shortage of scala-
bility. We postulate that a much noticeable increase in the network lifetime could
be achieved if we had increased the number of time intervals considered. How-
ever, when we have tried to exploit this expedient, the computational burden of
the simulation has increased a lot. This is indeed a limitation of the approach
that demands to be circumvented in future work.
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6 Conclusion and Future Work

In this paper, a novel integer linear programming model devoted to optimize
power consumption efficiency in heterogeneous wireless sensor networks is pre-
sented. This model is based upon a schedule of sensor allocation plans in multiple
time intervals subject to coverage and connectivity constraints. By turning off
a specific set of redundant sensors in each time interval, it is possible to reduce
the total energy consumption in the network and, at the same time, avoid par-
titioning the whole network by losing some strategic sensors too prematurely.
This sensor activity alternation in time intervals can yield a properly-adjusted
balance in terms of energy expenditure among the sensors, overcoming some of
the problems usually incurred with the deployment of static plans. The current
work can be enhanced by making use of alternative optimization methodologies.
It is possible to allow larger problem instances to be solved in much viable times
and by adding new features to the model. We are currently investigating the
deployment of novel methodologies hybridizing metaheuristics with exact meth-
ods, such as the one recently proposed by Nepomuceno et al. [8, 7], which has
achieved very good results in other classes of hard optimization problems. We
feel that, by customizing the methodology to deal with the heterogeneous WSN
configuration problem, can let us raise the complexity of the simulated problem
instances and investigate new interesting aspects.
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Abstract. It is discussed how to route straddle carriers during the
loading operation of export containers. The straddle carrier (SC) travel
distance will be much longer if two consecutive containers must be col-
lected far from one another instead of from consecutive yard-bays. So,
finding the minimum straddle carrier travel distance will guarantee port
efficiency and allow cost savings. Our objective is to minimize this total
travel distance of a straddle carrier. A SC performs a so called partial tour
to pick-up containers of a same group, according to the work schedule.
This problem is characterized as problem with binary variables, which
are hard to solve optimally.

In this paper we reformulate the problem, thanks to exact penalty
techniques in DC Programming, as a polyhedral DC Program. A com-
bination of the local algorithm DCA and global optimization approach
such as Cutting plane techniques is proposed. The performance of the
algorithm is tested on a set of data and the computational results are
presented.

Keywords: Vehicle Routing, Container port, Straddle carrier, Noncon-
vex optimization-Global optimization, DC (Difference of Convex Func-
tions) Programming, DCA (DC Algorithm), Cutting plane techniques.

1 Introduction

Port operations concerning containers essentially comprehend loading, stocking
and transferring which have a direct impact on port service and performance
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of the entire terminal configuration. This port scenario involves several com-
putational problems, such as allocation of containers in port yards and also in
ships, as well as single straddle carrier routing problem (SSCRP) and manipu-
lation of containers. Loading export containers on a ship requires three types of
equipments: straddle carriers, yard trucks and quay cranes.

The straddle carrier has to move containers from where they are stored within
a container terminal and to deliver them to a yard truck. The yard truck, a
combination of yard tractor and yard trailer, has to transport containers received
from a straddle carrier to the marshalling area. The quay crane (QC) has to pick
up containers from the marshalling area and to place them inside container ships.
It is a static equipment. A container terminal yard is subdivided into blocks of
yard-bays which contain containers arranged in rows. A yard-map shows the
distances between blocks and between consecutive yard-bays.

Each straddle carrier, the only equipment allowed to enter yard-bays, is as-
signed to fulfil a quay crane loading sequence. This sequence defines a work
schedule which determines the exact order in which containers must be handled
and delivered by a straddle carrier (and consequently by a yard truck) to a quay
crane.

For the study of the problem of straddle carrier routing problem and the
global movement management in port container terminals, see [1,2,3,4].

In port container terminal, Kozan and Preston [1] proposed an analytical
scheduling model, and a solution based on genetic algorithm, in order to mini-
mize handling for loading export containers into ships. Kim and Kim [3] formu-
lated the port routing problem for export containers during the loading process
using Integer Programming. A Dynamic Programming solution was proposed
to minimize the total travel distance of a single straddle carrier vehicle, used
for container transportation between storage and marshalling areas. In [2] they
proposed a Beam Search procedure for resolving the same routing problem. An
evaluation of algorithm performance was discussed based on numerical experi-
mentation and comparison between Beam Search and Genetic Algorithm results.

In this paper, we developed the new approaches of DC Programming and
DCA for numerical processing of this class, very significant and difficult, of non
convex problems. Our algorithm converges to a local solution after many finite
iterations and it consists of solving a linear program, at each iteration. Moreover,
although our DCA is a continuous approach that works on a continuous domain,
it provides an integer solution.

DC Algorithm (DCA), based on local optimality conditions and the duality
in DC programming, have been introduced by Pham Dinh in 1986 [5] as an
extension of the sub gradient algorithms to DC programming. Important im-
provements and developments for DCA from both theorical and computational
aspects have been completed since 1994 by Le Thi and Pham Dinh ([11,12,13,14];
and references therein).

In section 2 and 3, a formulation and an algorithm are suggested. In section
4, computational experimentations are presented. Finally, summary and conclu-
sions are provided in section 5.
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2 The Problem Formulation

The formulation of routing straddle carriers for the loading operation of contain-
ers in automated container terminal has been presented in [2].

Notations
m : number of partial tours for a SC complete tour,
n : number of yard-bays, l : number of container groups,
t : partial-tour number, t=0,1,. . .,m,m+1; where t=0 and t=m+1 at source

and terminal vertices in the network representation,
B : set of indexes of yard-bays = {1,2, . . . n},
G : set of indexes of container groups = {1,2, . . . l},

S(h) : set of indexes of partial tours corresponding to container group h,
B(h) : set of yard-bay numbers which contain containers of group h,

chj : initial number of containers of group h stacked at yard-bay j,
rt : number of containers to pick up during partial tour t,
gt : container group number to be picked up during partial tour t,
dij : travel distance between yard-bays i and j,
Bg0 = {S} source, [Bgm+1 ]= {T} sink, and M a very large number.

– variable y = (Yt
ij),

Y t
ij =

{
1 if SC moves from yard-bay i to j after completing partial-tour t
0 otherwise.

– variable z = (Zt
ij),

Zt
ij =

{
1 if SC moves from yard-bay i to j during a partial-tour t
0 otherwise.

– variable x = (Xt
j ),

Xt
j = number of containers picked-up at yard-bay j during partial tour t

A tour t is defined as a visiting sequence of yard-bays by a SC in order to pick up
all the specified containers in the corresponding work schedule. A partial-tour
of a SC is the visiting sequence of yard-bays during which a SC picks up all the
containers for a cluster of cells in a ship.

• The problem, denoted by (P), can be formulated as :
The objective function that minimizes the total distances travelled between
partial-tours and within a partial-tour.

min
Xt

j ,Y t
ij ,Zt

ij

m∑

t=0

∑

i∈B(gt),j∈B(gt+1)

dijY
t
ij +

m∑

t=1

∑

(i,j)∈B(gt)

dijZ
t
ij

s.t.
(i) represents the gain of flows at the source node

∑

i∈B(gt)

Y 0
Sj = 1 (1)
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(ii) represents the gain of flows at the terminal node

−
∑

j∈B(gm)

Y m
jT = −1 (2)

(iii) represents the flow conservation at the other nodes

∑

j∈B(gt−1),k∈B(gt)

(Y t−1
ji + Zt

ki)−
∑

j∈B(gt+1),k∈B(gt)

(Y t
ij + Zt

ik) = 0 (3)

∀i ∈ B(gt), ∀t = 1, 2 . . . ,m

(iv) prevents the looping of sub-tours. An isolated cycle may exist in the final
solution that is not connected to the path from the source node to the terminal
node.

∑

(i,j)∈B(gt)

Zt
ij < |N | − 1 ∀N ⊆ B(gt), ∀t = 1, 2 . . . ,m (4)

(v) implies that only when a SC visits a yard-bay can it pick up containers at
the yard-bay.

Xt
j ≤M(

∑

k∈B(gt)

Zt
kj +

∑

i∈B(gt−1)

Y t−1
ij ) ∀j ∈ B(gt), ∀t = 1, 2 . . . ,m (5)

(vi) implies that the number of containers picked up in a partial-tour should
be equal to the number of containers requested by a work schedule.

∑

j∈B(gt)

Xt
j = rt ∀t = 1, 2 . . . ,m (6)

(vii) means that the total number of containers picked up during the whole
tour should be equal to the initial number of containers at each bay for each
specific container group

∑

t∈S(h)

Xt
j = chj j ∈ B(gt), ∀h = 1, 2 . . . , l (7)

(viii) represent the domains of the variables.

Xt
j ∈ IN ∀j ∈ B(gt), ∀t = 1, 2, . . . ,m (8)

Y t
ij ∈ {0, 1} ∀i ∈ B(gt), ∀j ∈ B(gt+1), ∀t = 0, 1, . . . ,m (9)

Zt
ij ∈ {0, 1} ∀i, j ∈ B(gt), ∀t = 1, 2 . . . ,m (10)
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3 A Combined DCA and New Cutting Plane Techniques

In this section, we propose a global method based on a new cutting planes with
an original and robust local approach namely DCA. Contrary to the classical
approaches [8,16]; we solve an equivalent problem with continue variables, thanks
to exact penalty techniques in DC Programming. Our cutting plane is obtained
from a local minimum of the penalty function in the relaxed domain of (P). It’s a
new method developed in [15], where comparison results therein, in non-convex
real problems have shown the efficiency of this algorithm.

DC reformulation of the problem (P)
Using the well known results concerning the exact penalty, we will formulate the
problem (P) in the form of a DC program. Let:

• C = (C1, C2), Y = (Y t
ij), Z = (Zt

ij) V = (Y, Z) ∈ Rn=n1+n2 , X = (Xt
j),

and U = (V,X) ∈ Rn+p. C1 and C2 represent the cost of the first and the sec-
ond member in the objective function, respectively.
• K the set of feasible points U=(V,X) determined by the system of the con-
straints {(1), . . . , (8)}, S = {U = (V,X) ∈ K : 0 ≤ V ≤ 1}, is nonempty,
bounded polyhedral convex set in Rn+p.

• p(V,X) = p(U) =
n∑

i=1

min(Vi, 1−Vi). It is clear that p is concave and finite on

S, and p(U) ≥ 0 for all U ∈ S.

The problem (P) can be expressed in the form:

α = min{CTV : U = (V,X) ∈ K,V ∈ {0, 1}n} (11)

Problem (11) can be rewritten as follows:

α = min{CTV : U ∈ S, p(U) ≤ 0} (12)

From the Theorem of the exact penalty (Theorem 1, [6]), we get, for a sufficiently
large number t (t ≥ t0), the equivalent concave minimization problem to (11):

α(t) = min{CTV + tp(U) : U ∈ S} (13)

= min{g(U)− h(U) = f(U) : U ∈ Rn+p} (14)

with g(U) = χS(U) and h(U) = 〈−C,U〉 − t
n∑

i=1

min(Vi, 1− Vi)

where: χS is the indicator function of S, S = {U ∈ K : 0 ≤ V ≤ 1}.
It is clear that g and h are two convex functions, and so problem (13) is a DC

program, in the form expressed in (14).
Briefly, DCA is a descent method and converges to a critical point of g−h. If

either g or h is polyhedral convex, then (14) is called a polyhedral DC program
for which DCA has a finite convergence [7,9]. That is the case for DCA applied
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to (13). Convergence properties of DCA and its theoretical basis can be found in
[7,9,12]. Our algorithm converges to a critical point (to local solution in almost
cases) after a many finitely iterations and its consists of solving a linear program
at each iteration.

3.1 Construction of a Cutting Plane from a Local Solution of the
Penalty Function

Let u∗ = (v∗, x∗) the solution of DCA applied to (14). We have the following two
cases: first, u∗ is a feasible solution of the original problem (P), i.e., v∗ ∈ {0, 1}n.
Second, u∗ is not feasible, i.e., at least there exist an index j0 such that v∗j0 is a
rational number. The case (i) will be discuss in the next section. We just take
account, in this section, of the case (ii).

• We consider the linear programming problem with mixed 0-1 variables:

(P) min{CT
1 y + CT

2 z : Av +Bx ≤ b, v ∈ {0, 1}n, x ∈ Rp}.

Now, let: K := {u = (v, x) ∈ {0, 1}n × Rp : Av +Bx ≤ b} and
S := {u = (v, x) ∈ [0, 1]n × Rp : Av +Bx ≤ b}. For all u∗ ∈ K, we denote by:

I := {1, . . . , n}; J0(u∗) := {j ∈ {1, . . . , n} : vj ≤ 1/2}

J1(u∗) := {1, . . . , n} \ J0(u∗), and lu∗(v) :=
∑

j∈J0(u∗)

vj +
∑

j∈J1(u∗)

(1− vj).

Let u∗ be an infeasible local solution of the function p(u) :=
n∑

j=1

min{vj , 1− vj}

on K, (i.e., u∗ is a local solution of p on K and u∗ /∈ S).
Let:

α = min{p(u) | u ∈ K} (15)

and we consider the following hypothesis.

Hypothesis (H): Let u0 ∈ Rn+p.
We suppose that we have an algorithm A that allows us to find a minimum u�

of the function p such that:

p(u∗) ≤ p(u0).

Theorem 1. Let u∗ be an infeasible local minimum of the function p on K.
Suppose that u∗j �= 1/2 for all j. We have:
(i) the following inequality is valid for (P): lu∗(u) ≥ lu∗(u∗)

(ii) if the value p(u∗) is not integer then the inequality: lu∗(u) ≥ p(u∗)� + 1
is a cutting plane which cuts off u∗ from S.
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Proof. For the proof of the theorem, see [15].

In the case where u∗ is an infeasible local minimum of the problem (15) with the
integer value p(u∗): by applying the Procedure P (see [15,17]), we can obtain
either a feasible solution or a cutting plane that cuts off u∗ from S.
Procedure P stops after a finite number of iterations.

Remark 1. The cutting plane obtained, either thanks to the Theorem 1, or
thanks to the Procedure P, which cuts off the minimum v∗ can be written in the
form:

lu∗(v) =
∑

i∈I0(u∗)

vi +
∑

i∈I1(u∗)

(1− vi) ≥ η (16)

where η > lu∗(v∗). Moreover, we can suppose that η is integer, otherwise replace
η by η�+ 1.

3.2 Updating of the Upper Bound and the Best Known Solution -
Separation of a Feasible Solution

We suppose that: at step k, uk = (vk, xk) is the best feasible solution known and
γk is the upper bound (γk = CT

1 y
k +CT

2 z
k). In our approach, a feasible solution

is often found after applying the Procedure P.
By convention, at the step k, if we know any feasible solution, then set uk = ∅

and γk = +∞. When a feasible solution is found, we update the best feasible
solution and the upper bound. Suppose that uk and γk are the best feasible
solution and the upper bound, respectively, at the step k, (k ≥ 1).

If at the step k+1 we found the feasible solution u∗ such that CT
1 y

∗+CT
2 z

∗ <
CT

1 y
k +CT

2 z
k, then we put uk+1 = u∗ and γk+1 = CT

1 y
∗ +CT

2 z
∗. Otherwise, we

put uk+1 = uk and γk+1 = γk.
Taking into account of the update of the best feasible solution and the upper

bound, we separate this solution from the feasible set, to eliminate the solutions
and the local minima already found by DCA.

The separation of a feasible solution wk is carried out as follows:
We add to the problem (P), a constraint (the separation constraint) in the form
h(u) ≥ ζ such as it eliminates only the point wk of S, i.e.:

h(w) ≥ ζ ∀w ∈ S \ {wk} and h(wk) < ζ. (17)

In our approach, this constraint is selected as follows:

h(w) ≡ h(v) :=
∑

j:vk
j =0

vj +
∑

j:vk
j =1

(1− vj) ≥ 1 (18)

It is easy to check that (18) satisfies the condition (17).
The DCA CUT to solve the problem (P) can be described by the next sub-

section.
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3.3 Description of the Algorithm DCA CUT

Algorithm 1. [DCA CUT to solve the problem (P)]

Step 0. (Initial)
• K0 = K; Let β0 ← −∞ (lower bound), γ0 ← +∞ (upper bound);

Step 1. (Solving the linear problem)
• Solve the linear problem LBk := min{CT

1 y + CT
2 z : (v, x) ∈ Kk}

to obtain the lower bound βk and the optimal solution of existing
relaxation uk

LP ;
• If uk

LP ∈ S then uk
LP solve (P); STOP.

Step 2. (Apply DCA)
• Apply DCA to the problem min{CT

1 y + CT
2 z + tp(v) : (v, x) ∈ Kk}

to obtain its solution uk
DCA;

• Call the Procedure P, if necessary, to obtain either a feasible solution
or a cutting plane;

• If a feasible solution is obtained (denote by wk = uk), go to the Step 3;
Otherwise go to the Step 4;

Step 3. (Update the upper bound and the best known solution and separate wk)
• If CT

1 y
k + CT

2 z
k < γk, put wOpt ← wk; γk ← CT

1 y
k + CT

2 z
k;

• Separate wk from S by addition of the inequality 18 to the constraints;

Step 4. (Addition of the cutting plane)
• Add the cutting plane obtained to the constraints;
• Put k ← k + 1; Go to the Step 1;

The convergence of Algorithm 1 is expressed through the following theorem:

Theorem 2. Algorithm 1 converges to a global optimal solution after a finite
number of iterations.

For the proof of the theorem see [15,17].

4 Numerical Experiments

In order to determine a loading sequence, two documents are necessary. One is
the yard-map that shows the distribution of containers of each container group
in the yard. The other is the work schedule of each QC.

It is assumed that one SC is assigned to one QC. Since a containership is
usually served by multiple QCs, containers in a yard are first allocated to an
individual QC. Once all the containers are allocated to a specific QC, the carrier
routing problem for each SC can be solved independently.

For more information on the datasets regarding technical parameters of the
different technologies, see [2,3].

We denote by: time(s) = total execution time in seconds, iter = number
of iterations, lb = lower bound, ub = upper bound, gap = (ub − lb)/(1. + lb),
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nbcut = number of cuts, DCA CUT = combination of DCA and Cutting Planes,
CPLEX 11.0 = CPLEX Optimization ILOG, version 11.0 [10].

The algorithm was implemented in C++, on the Toshiba computer: Intel(R)
Pentium(R) 4 CPU 3.00GHz, 1.024Gb of RAM, under UNIX system.

To solve the linear programming, we used software CPLEX version 11.0.
To test the performance of the algorithm, we generated 15 realistic scenarios

(based on a large number of parameters) supported in part by the Dakar Port,
with 2 quay cranes, 5 container group quantity, 3 blocks and 8 yard-bays. In this
case, there are 5423 variables with 4900 binary variables and 1124 constraints.

• The combined DCA CUT is interesting, it is much better than the CPLEX
11.0 in terms of running time. The results show that DCA CUT gives a good
approximation of the optimal solution within a very short running time, com-
pared to CPLEX 11.0. DCA intensely decreases the number of iterations and
improves the upper bound. Our method usually provides a best upper bound
after some iterations.

DCA CUT is very fast and can then handle large-scale problems to improve
the performance of the port terminal, for making possible to assist human experts
to support real time decisions.

Table 1. DCA CUT and CPLEX 11.0 for single straddle carrier routing problem

No DCA CUT CPLEX 11.0
time(s) iter lb ub gap nbcut time(s) iter lb ub gap

1 19.098 24 37.00 37.00 0.00 21 1292.013 813479 37.00 37.00 0.00
2 10.756 10 26.00 26.00 0.00 7 1777.153 524578 26.00 26.00 0.00
3 23.657 28 51.50 51.50 0.00 20 1085.613 453224 51.50 51.50 0.00
4 8.703 11 51.10 51.10 0.00 6 1074.447 1310164 51.10 51.10 0.00
5 15.540 19 51.40 51.40 0.00 14 1171.383 444561 51.40 51.40 0.00
6 22.001 27 51.05 51.05 0.00 21 1304.437 609681 51.05 51.05 0.00
7 19.110 23 60.00 60.05 0.00 20 1077.473 487331 60.00 60.00 0.00
8 17.563 19 66.00 66.00 0.00 16 1178.103 643191 66.00 66.00 0.00
9 24.141 25 28.60 28.65 0.00 19 1778.153 710017 28.60 28.60 0.00
10 13.319 14 47.60 47.60 0.00 9 2771.703 514019 47.60 47.60 0.00
11 25.533 27 52.20 52.20 0.00 21 1180.103 475211 52.20 52.20 0.00
12 19.328 21 52.00 52.00 0.00 17 2193.008 977123 52.00 52.00 0.00
13 20.711 26 52.50 52.50 0.00 21 617.713 1337561 52.50 52.50 0.00
14 17.052 17 58.05 58.05 0.00 14 2172.853 613442 58.05 58.05 0.00
15 19.991 24 61.40 61.40 0.00 21 1161.113 1300692 61.40 61.40 0.00

5 Summary and Conclusions

Port container terminal scenario involves several computational problems, such
as allocation of containers in port yards and also in ships, as well as routing and
manipulation of containers.

In this paper, we address the problem of the single straddle carrier rout-
ing problem in an export container terminal environment. We develop new
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techniques to minimize the total travel distance of straddle carriers, which are
used to transfer containers in a marshalling yard to yard trucks. Finding the
minimum straddle carrier travel distance will guarantee port efficiency and allow
cost savings.

We have developed a combination of DCA and new cutting plane technique
to solve efficiently the mixed 0-1 linear program obtained. The numerical sim-
ulations on large scale datasets have shown the efficiency of our method. We
show how the simulation technique of DCA CUT can be applied successfully to
practical decision support and employed as a decision support system for the
terminal management.
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Abstract. Primary objective of this study is to show how fuzzy opti-
mization models can be solved directly by employing metaheuristics and
ranking methods without requiring a transformation into a crisp model.
In this study, a fuzzy multi-item Economic Order Quantity (EOQ) model
with two constraints is solved directly (without any transformation pro-
cess) by employing three different fuzzy ranking functions and the Parti-
cle Swarm Optimization (PSO) metaheuristic. The parameters of the
problem are defined as symmetric triangular fuzzy numbers. Having
fuzzy parameters, the objective function values of the generated solu-
tion vectors also will be fuzzy numbers. Therefore, in the selection of
the best solution vector, ranking of fuzzy numbers is used. Similarly, the
feasibility of the constraints for the generated solution vectors will be
determined via ranking of two fuzzy numbers. By this approach other
fuzzy optimization problems can be solved without any transformation
process.

Keywords: EOQ; fuzzy ranking functions; particle swarm optimization.

1 Introduction

Most of the real life problems and models contain linguistic and/or impre-
cise variables and constraints. The mentioned impreciseness in a system does
not exist because of randomness but rather because of fuzziness. The classi-
cal procedures are generally not suitable (or easy) to handle linguistic terms or
impreciseness in a given mathematical program; therefore the decision maker is
usually forced to state the problem in precise mathematical terms. Fuzzy set
theory gives an opportunity to handle linguistic terms and vagueness in real life
systems.

Fuzzy set theory gives the ability to quantitatively and qualitatively model
problems which involve vagueness and impreciseness. Zimmermann [1] identifies
that fuzzy set theory can be used as language to model problems which contain
fuzzy phenomena or relationships, as a tool to analyze such models in order to
gain better insight into the problem and as an algorithmic tool to make solution
procedures more stable or faster [2].

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 32–42, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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In the literature, there are various studies on solving fuzzy mathematical
programming (FMP) models. In a FMP model, all or some of the parame-
ters can be defined as fuzzy numbers. For FMP models with various fuzzy
parameters, different optimization algorithms were proposed. But, most of the
solution approaches are based on the fuzzy decision concept which was proposed
by Zimmermann [3]. Other common approach is to use fuzzy ranking proce-
dures as a part of the solution mechanism for solving FMPs. In the literature,
there are various studies in which different fuzzy ranking procedures are used for
the solution of fuzzy mathematical models. In all of these studies, FMP models
were first transformed into a crisp equivalent then solved by a classical solution
approach.

Inventory management is very important for many service and manufacturing
industries. A proper control of inventory can significantly enhance a company’s
profitability. The purpose of the EOQ model is to find the optimal order quantity
of inventory items at each time such that the combination of the order cost and
the stock cost is minimal [4]. There are a variety of EOQ models available and
all originate from the classical EOQ model [5]. In reality, it is very hard to define
parameters of the EOQ model precisely. Moreover, it is very hard to estimate
the probability distribution of these parameters due to a lack of historical data.
Instead, these parameters are often estimated based on experience and subjective
managerial judgment [4]. However, these non-stochastic and ill-formed inventory
models can be realistically represented in the fuzzy environment [6]. In this study,
a fuzzy multi-item EOQ model with two constraints (available warehouse space
and number of orders placed during a time period) is handled. The parameters of
the problem are defined as triangular fuzzy numbers. The fuzzy multi-item EOQ
problem is solved directly by employing three different fuzzy ranking methods
and the PSO metaheuristic algorithm. Ranking methods for fuzzy numbers are
used to rank the objective function values and to determine the feasibility of the
constraints. The aim of this study is to show that fuzzy models can be solved
directly by using metaheuristics and ranking methods.

2 The Particle Swarm Optimization Algorithm

In order to solve the fuzzy multi-item EOQ problem directly by using the
ranking methods, PSO is employed in this study. PSO is a simple algorithm
that seems to be effective for optimizing a wide range of functions [7]. A PSO
algorithm maintains a swarm of particles, where each particle represents a po-
tential solution. A swarm is similar to a population, while a particle is similar to
an individual. The particles are flown through a multidimensional search space,
where the position of each particle is adjusted according to its own experience
and that of its neighbors [8]. Two PSO algorithms have been developed which
differ in the size of their neighborhoods; global best and local best PSO. For the
global best PSO, the neighborhood for each particle is the entire swarm [8]. In
local best PSO, particles have information only of their own and their nearest
array neighbours’ bests, rather than that of the entire group [7]. In this study,
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global best PSO algorithm is used. Let xi(t)denote the position of particle i in
the search space at the time step t. The position of the particle is changed by
adding a velocity, vi(t), to the current position,

xi; (t+ 1) = xi(t) + vi(t+ 1) (1)

It is the velocity that drives the optimization process, and reflects both the
experiential knowledge of the particle and socially exchanged information from
the particle’s neighborhood [8]. The PSO concept consists of, at each time step,
changing the velocity of each particle toward its particle best and global best.
Acceleration is weighted by a random term, with separate random numbers
being generated for acceleration toward particle best and global best [7]. For
global best PSO, the velocity of particle i is calculated as [8];

vij(t+ 1) = wvij(t) + c1r1j(t)[yij(t)− xij(t)] + c2r2j(t)[ŷj(t)− xij(t)] (2)

where vij(t) is the velocity of particle i in dimension j=1,. . . ,nx at time step t,
xij(t)is the position of particle i in dimension j at time step t, w is the inertia
weight, c1 and c2 positive acceleration constants, r1j(t) and r2j(t) ˜U(0,1) are
random values in the range [0,1], yij(t) is the personal best position of particle
i, ŷj(t)is the global best position at time step t. Inertia weight w controls the
impact of previous historical values of particle velocity on its current one. A
larger inertia weight pressures toward global exploration while a smaller inertia
weight pressures toward fine-tuning the current search area. The acceleration
constants c1 and c2 represent the weighting of the stochastic acceleration terms
that pull each particle towards pbest and gbest positions. Thus, adjustment of
these constants changes the amount of tension in the system [9]. The global best
PSO algorithm can be summarized as follows [8].

Create and initialize an nx-dimensional swarm, S;
repeat

for each particle i = 1, . . . , S.ns do
// set the personal best position
if f(S.xi) < f(S.yi) then
S.yi = S.xi ;
end
// set the global best position
if f(S.yi) < f(S.ŷ)then
S.ŷ = S.yi ;
end

end
for each particle i = 1, . . . , S.ns do
update the velocity using eq. 2;
update the position using eq. 1;
end

until stopping condition is true.
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In order to solve the fuzzy multi-item EOQ problem directly, the above global
best PSO algorithm is used. In the solution of the problem, the parameters of
the algorithm are taken as follows after several trial runs; inertia weight w = 0.4,
individual and sociality weights c1 = c2 = 1.4962, and the number of iterations
is 1000.

3 Fuzzy Multi-item EOQ Model

EOQ models are used for determining the quantity of item(s) to purchase from
suppliers or to process through a production facility [5]. Inventory management is
used to decide when and how much to replenish the companies’ inventory under
a minimum of total cost. An EOQ model can be defined as only the minimization
of the cost function or minimization of cost function under limitations like that
budget, warehouse space, number of orders, etc. In this study, a multi-item EOQ
model with two constraints (available warehouse space and number of orders
placed during a time period) is handled. The problem is to decide the order
levels Qi, i = 1, 2, . . . ,m which minimize the average total cost. In this study,
the fuzzy multi-item EOQ problem is solved by employing three different fuzzy
ranking methods and the PSO algorithm. The studied fuzzy multi-item EOQ
model is defined as follows;

min C(Q) =
m∑

1

(
c̃1iQi

2
+
c̃2iDi

Qi

)

(3)

subject to

m∑

1

ãiQi ≤ W̃ ;
m∑

1

M̃i

Qi
≤ ñ; Q ≥ 0

where, Qiis the economic order quantity for i th item, c̃1i is the holding cost
per unit quantity per unit time for i th item, c̃2i is the set up cost per period
for ith item, D iis the demand per unit time for ith item, ãi is the space re-
quired by each unit of product i (in sq.m), M̃i is the total demand of product i
during some given time interval, W̃ is the maximum available warehouse space
(in sq.m.), ñ is the maximum number of orders placed during the given time
period and m is the number of items. The parameters of the problem are de-
fined as triangular fuzzy numbers. As an example application, it is accepted
that there are two items in the EOQ problem. The input data of the example
problem is given in Table 1 and Table 2. The input data is similar to the data
that was used by Mondal and Maiti’s [10] multi-item EOQ problem, except and
which are not considered as fuzzy numbers in their work. In the study of Mon-
dal and Maiti [10], the objective function, the cost coefficients and the right
hand values of the constraints were defined as fuzzy numbers. Moreover, they
did not employ triangular fuzzy numbers and set aspiration value for the objec-
tive function. Therefore the present model is different than Mondal and Maiti’s
model.
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Table 1. Input data relevant to items

Item c̃1i c̃2i Di ãi M̃i

1 (200;250;300)
(90.103; 105;

110.103)
200 (0.8;1;1.1) (7500;8000;8500)

2 (150;200;250)
(225.103 ;

245.103; 265.103 800 (0.8;1;1.1) (3500;4000;4500)

Table 2. Input data relevant to production environment

W̃ = (W ; W ;W ) ñ = (n; n; n)

(1450; 1500; 1550) (18; 20; 22)

The fuzzy multi-item EOQ problem of the present study can be stated as
follows;

min C(Q) = (200; 250; 300)
Q1

2
+ (90.103; 105; 110.103)

200
Q1

+ (4)

(150; 200; 250)
Q2

2
+ (225.103; 245.103; 265.103)

800
Q2

subject to (0.8; 1; 1.1)Q1 + (0.8; 1; 1.1)Q2 ≤ (1450; 1500; 1550)

(7500; 8000; 8500)
1
Q1

+ (3500; 4000; 4500)
1
Q2
≤ (18; 20; 22)

Q1, Q2 ≥ 0

In the present study, the fuzzy multi-item EOQ problem is solved directly by
using three different ranking methods and the PSO algorithm. Ranking meth-
ods for fuzzy numbers are used to rank the objective function values and to
determine the feasibility of the constraints. As the cost coefficients of the objec-
tive functions are fuzzy numbers, the objective function values of the generated
solution vectors will be fuzzy numbers. Therefore, in the selection of the best
solution vector, ranking of fuzzy numbers is used. Similarly, the feasibility of the
constraints for the generated solution vectors will be determined via ranking of
two fuzzy numbers (i.e. comparing right and left hand side fuzzy numbers for the
constraint functions). In the following section, both the solution of the problem
with transformation process and the solution of the problem with the proposed
direct approach are shown.

3.1 Solution of Fuzzy Multi-item EOQ Problem Via the Signed
Distance Method

Yao and Wu [11] have used signed distance to define ranking of fuzzy numbers.
The signed distance used for fuzzy numbers has some similar properties to the
properties induced by the signed distance in real numbers. Let F be the family
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of the fuzzy numbers on R. The sign distance is defined as d∗(a, 0) = a on R.
Then for a, b ∈ R, d∗(a, b) = a − b. For , D̃, Ẽ ∈ F , with α-cut (0 ≤ α ≤ 1),
there is a closed interval D(α) = [DL(α), DR(α)]. Then, the signed distance of
D̃, Ẽ, is defined as [11],

d(D̃, Ẽ) =
1
2

1∫

0

[DL(α) +DR(α)− EL(α) − ER(α)]dα (5)

It can be proved that d is an extension of d∗. According to these definitions,
the signed distance of a triangular fuzzy number Ã = (a; a; a)is defined as,

d(Ã, 0) =
1
2

1∫

0

[a+ (a− a)α + a− (a− a)α]dα =
1
4
(2a+ a + a) (6)

Let and are two triangular fuzzy numbers, their ranking relation is defined as
Ã ≤ B̃ ⇐⇒ d(Ã, 0) ≤ d(B̃, 0) [11].

In the study of Baykasoğlu and Göçken [12], the fuzzy EOQ problem (eq. 4)
is solved after transformed into crisp equivalent. The resultant crisp nonlinear
problem is solved by using LINGO solver. The solution obtained from LINGO
is Q1 = 494.8279, Q2 = 1043.634, and the corresponding objective function
value of the crisp model is 394440.3. Triangular possibility distribution of the
objective function is determined after finding the optimal solution vector. The
cost coefficients of the problem are triangular fuzzy numbers, so by calculating
the objective function value by using minimum, middle and maximum points
of the cost coefficients separately, the possibility distribution of the objective
function can be obtained. The triangular possibility distribution of the objective
function for the obtained solution using signed distance method is (336605.88;
394440.28; 452274.69). In this study, the fuzzy multi-item EOQ problem is solved
directly by using the signed distance method and the PSO algorithm. The signed
distance method is used to rank the objective function values and to determine
the feasibility of the constraints. The obtained solution is , Q1 = 494.8279, Q2 =
1043.634, z = (336605.92; 394440.32; 452274.72). The solution obtained after
transformation process and solution obtained from direct solution approach are
same. However the need for transformation is avoided in the present approach.

3.2 Solution of Fuzzy Multi-item EOQ Problem Via Ranking with
Integral Value

Liou and Wang [13] proposed the method of ranking fuzzy numbers with integral
value. Ranking fuzzy numbers with integral value is relatively simple in computa-
tion, especially in ranking of triangular and trapezoidal fuzzy numbers, and can
be used to rank more than two fuzzy numbers simultaneously [14].
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Table 3. α-acceptable optimal solutions for the integral value method

Feasibility
degree,α

Decision vector, Q0(α)
Possibility distribution of the

objective value, z̃0(α)

0.4 Q1 = 494.2751 Q2 = 1063.017 (334900.12; 392930.26; 450960.39)

0.5 Q1 = 494.8279 Q2 = 1043.634 (336605.88; 394440.28; 452274.69)

0.6 Q1 = 495.4511 Q2 = 1024.751 (338384.39; 396039.72; 453695.04)

0.7 Q1 = 496.1461 Q2 = 1006.341 (340235.63; 397728.06; 455220.49)

0.8 Q1 = 496.9146 Q2 = 988.3795 (342159.73; 399505.04; 456850.34)

0.9 Q1 = 497.7585 Q2 = 970.8405 (344157.36; 401370.91; 458584.46)

1.0 Q1 = 498.6800 Q2 = 953.7010 (346229.27; 403326.12; 460422.99)

The definition of integral values for the triangular fuzzy number is defined as
follows [14].

I(Ã) =
1− α

2
a+

1
2
a +

α

2
a (7)

where 0 ≤ α ≤ 1. The index of optimism α is representing the degree of optimism
for a person. A larger α indicates a higher degree of optimism [14]. The fuzzy
numbers are ranked according to their integral values; the fuzzy number with
the larger integral value is the bigger fuzzy number.

When the Fuzzy EOQ problem is transformed into crisp equivalent using the
integral value method, an α parametric nonlinear crisp problem is obtained and
it has solved by using LINGO solver in the study of Baykasoğlu and Göçken
[12]. The resultant crisp problem ?? is solved for different α values (α values
are determined by the decision maker). The multi-item EOQ problem is solved
for α = {0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0}. The obtained solutions and the possibility
distributions of the objective for each α value are given in Table 3 [12]. In the
present study, the fuzzy multi-item EOQ problem is solved directly by using
ranking fuzzy numbers with integral value and the PSO algorithm. The inte-
gral value ranking method is used to rank the objective function values and to
determine the feasibility of the constraints. The obtained solutions for each α
value are given in Table 4. As it can be seen from Table 3 and Table 4 the
obtained solutions from transformation approach and direct solution approach
are exactly the same.

3.3 Solution of Fuzzy Multi-item EOQ Problem Via Ranking of
Fuzzy Numbers through the Comparison of Their Expected
Intervals

Jimenez [15] has proposed a ranking method of fuzzy numbers based on the com-
parison of their expected intervals. If a fuzzy number is triangular, its expected
interval will be [15]:

EI(Ã) = [EÃ
1 , E

Ã
2 ] = [

1
2
(a+ a),

1
2
(a + a)] (8)
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Table 4. α-acceptable optimal solutions for the integral value method with PSO
algorithm

Feasibility
degree, α

Decision vector, Q0(α)
Possibility distribution of
the objective value, z̃0(α)

0.4 Q1 = 494.2751Q2 = 1063.017 (334900.12; 392930.26; 450960.39)

0.5 Q1 = 494.8279 Q2 = 1043.634 (336605.92; 394440.32; 452274.72)

0.6 Q1 = 495.4511 Q2 = 1024.751 (338384.40; 396039.73; 453695.05)

0.7 Q1 = 496.1461 Q2 = 1006.341 (340235.60; 397728.03; 455220.47)

0.8 Q1 = 496.9146 Q2 = 988.3795 (342159.74; 399505.04; 456850.34)

0.9 Q1 = 497.7585 Q2 = 970.8405 (344157.36; 401370.92; 458584.47)

1.0 Q1 = 498.6800 Q2 = 953.7010 (346229.27; 403326.13; 460422.99)

According to the ranking method of Jimenez, for any pair of fuzzy numbers and,
the degree in which is bigger than is defined as [15,16];

μM (Ã, B̃) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if EÃ
2 − EB̃

1 < 0
EÃ

2 −EB̃
1

EÃ
2 −EB̃

1 −(EÃ
1 −EB̃

2 )
, if 0 ∈ [EÃ

1 − EB̃
2 , E

Ã
2 − EB̃

1 ]

1, if EÃ
1 − EB̃

2 > 0

⎫
⎪⎪⎬

⎪⎪⎭

(9)

Where, μM (Ã, B̃) is the degree of preference of Ã over B̃ . When μM (Ã, B̃) = 0.5
it will be said that and Ã and B̃ are equal. The expected value of a fuzzy number
is the half point of its expected interval:

EV (Ã) =
EÃ

1 + EÃ
2

2
(10)

Jimenez et al. [16] have used the expected values of fuzzy numbers and the
ranking of fuzzy numbers using expected intervals for solving FMP problems in
which all parameters are defined as fuzzy numbers. Based on Jimenez’s approach,
a FMP problem is transformed into an equivalent α-parametric crisp problem.
In the study of Baykasoğlu and Göçken [12], the equivalent α-parametric crisp
nonlinear problem of the fuzzy EOQ problem is obtained and solved by using
LINGO solver. The crisp model is solved for α = {0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0}.
The obtained solutions and the possibility distributions of the objective for each
α value are given in Table 5.

In the present study, the fuzzy multi-item EOQ problem is solved directly via
ranking of fuzzy numbers through the comparison of their expected intervals and
the PSO algorithm. The ranking method is used to rank the objective function
values and to determine the feasibility of the constraints. The obtained solutions
for each α value are given in Table 6.

As it can be seen from Tables 5 and 6 the results are different, except α=0.5.
This is mainly due to the fact that; in Jimenez’s transformation approach, the
best objective value is the objective value which is a better choice at least in de-
gree 0.5 as opposed to the others. But, in deciding the feasibility of the constraints,
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Table 5. α-acceptable optimal solutions for the expected intervals method

Feasibility
degree, α

Decision vector, Q0(α)
Possibility distribution of

objective value, z̃0(α)

0.4 Q1 = 479.8072 Q2 = 1087.901 (332544.6; 390612.9; 448681.13)

0.5 Q1 = 494.8279 Q2 = 1043.634 (336605.92; 394440.32; 452274.72)

0.6 Q1 = 511.2642 Q2 = 998.8368 (341455.65; 399138.68; 456821.71)

0.7 Q1 = 529.4697 Q2 = 953.1174 (347281.03; 404910.09; 462539.15)

0.8 Q1 = 549.9703 Q2 = 905.912 (354364.28; 412059.66; 469755.04)

0.9 Q1 = 573.6106 Q2 = 856.341 (363163.45; 421083.07; 479002.69)

1.0 Q1 = 601.9098 Q2 = 802.852 (374510.42; 432881.18; 491251.93)

Table 6. α-acceptable optimal solutions for the expected intervals method with PSO
algorithm

Feasibility
degree, α

Decision vector, Q0(α)
Possibility distribution of

objective value, z̃0(α)

0.4 Q1 = 488.6419 Q2 = 1010.0089 (339667.89; 397068.59; 454469.28)

0.5 Q1 = 494.8279 Q2 = 1043.634 (336605.92; 394440.32; 452274.72)

0.6 Q1 = 514.7356 Q2 = 994.3181 (342045.41; 399748.68; 457451.94)

0.7 Q1 = 584.1816 Q2 = 872.1778 (361023.77; 419201.23; 477378.69)

0.8 Q1 = 644.8545 Q2 = 724.4589 (395194.43; 454614.19; 514033.95)

0.9 Q1 = 644.8545 Q2 = 724.4589 (395194.43; 454614.19; 514033.95)

1.0 Q1 = 644.8545 Q2 = 724.4589 (395194.43; 454614.19; 514033.95)

different ordering degrees are used after transforming into crisp equivalent. In our
approach, the selection of the best objective value and the feasibility check of con-
straints are carried out at the same ordering degrees. The best objective function
value is decided according to the ordering degrees between 0.5 and 1.0 as in decid-
ing the feasibility of the constraints. When the ordering degree which is used in
the selection of the best objective function value increases, the obtained objective
function value is expected to increase as well. Therefore, objective function val-
ues generated from the direct solution can be bigger than the objective function
values generated from the transformation process for different ordering degrees.

4 Conclusion

The aim of this study is to present that fuzzy optimization models can be solved
directly by employing metaheuristics and ranking methods without requiring a
transformation into a crisp model. For this purpose a fuzzy multi-item EOQ
model with two constraints is handled. The parameters of the problem are de-
fined as triangular fuzzy numbers. The fuzzy multi-item EOQ problem is solved
directly by employing three different fuzzy ranking methods and the PSO al-
gorithm. Both the solution of the problem with transformation process and the
solution of the problem with the proposed direct solution are presented and
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compared. It is seen that same results can be obtained from solution with trans-
formation process and direct solution approach. According to this, it has been
observed that FMP problems can be solved effectively by using ranking methods
of fuzzy numbers without any necessity of transformation into crisp equivalent.
Essentially, it can be very hard to transform many problems into crisp equiva-
lent and sometimes the obtained crisp equivalent can be highly nonlinear. When
the obtained crisp equivalent is nonlinear, a meta-heuristics algorithm should
be used again for the solution. Therefore, transformation might not be always
advantageous; in fact it can be unnecessary.
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Abstract. Let (QP ) be an integer quadratic program that consists in
minimizing a quadratic function subject to linear constraints. In this
paper, we present several linearizations of (QP ). Many linearization
methods for the quadratic 0-1 programs are known. A natural approach
when considering (QP ) is to reformulate it into a quadratic 0-1 program.
However, this method, that we denote BBL (Binary Binary Lineariza-
tion), leads to a quadratic program with a large number of variables and
constraints.

Our new approach, BIL (Binary Integer Linearization), consists in
reformulating (QP ) into a particular quadratic integer program where
each quadratic term is the product of an integer variable by a 0-1 variable.
The obtained integer linear program is significantly smaller than in the
BBL approach.

Each reformulation leads to an integer linear program that we improve
by adding valid inequalities. Finally, we get 4 different programs that we
compare from the computational point of view.

Keywords: Integer programming, quadratic programming, linear refor-
mulations.

1 Introduction

Consider the following linearly-constrained integer quadratic program:

(QP )

{
Min f(x) = xT Qx + cT x
s.t x ∈ X ⊂ Nn

with Q ∈ Sn (space of symmetric matrices of order n), c ∈ Rn and X is defined
as the set of integer solutions of a system of linear equalities and inequalities:

X =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x :

Ax = b (1)
Dx ≤ e (2)
xi ≤ ui i ∈ I (3)
xi ≥ 0 i ∈ I (4)
xi ∈ N i ∈ I (5)

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 43–51, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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where A ∈Mm,n (set of m ∗ n integer matrices), b ∈ Nm , D ∈ Mp,n, e ∈ Np,
u ∈ Nn, I = {i : i = 1, . . . , n}. Without loss of generality, we shall suppose X
non empty.

We denote R = {r : r = 1, . . . ,m}, S = {s : s = 1, . . . , p}, E = {(i, k) : i =

1, . . . , n, k = 0, . . . log(ui)�} and N = |E| =

n∑

i=1

(�log(ui)� + 1).

A lot of applications in operations research and industrial engineering involve
discrete variables in their formulation. Some of these applications can be formu-
lated as (QP ). For instance, such a formulation is used in (1) for the chaotic
mapping of complete multipartite graphs.

In the state-of-the-art, a majority of resolution methods of quadratic dis-
crete problems are designed only for quadratic 0-1 programs. This is why a
natural way to solve (QP ) consists in replacing each integer variable by its bi-
nary decomposition. The number of additional variables is hence equal to N .
Thereafter each integer product becomes an expression of binary products, that
we standardly linearize. The idea of the standard 0-1 linearization (2) consists
in adding a set of new variables and a family of inequalities that we substitute
to the binary quadratic terms. The main drawback of this approach, that we
call BBL (Binary Binary Linearization) is that the size of the obtained linear
problem is O(N2). Possible improvements of the standard 0-1 linearization were
introduced by Sherali and Adams (3) and consist in adding a family of valid in-
equalities. These improvements can be easily applied to the BBL approach, giving
a reinforced linearization method that we call BBLr.

Our new approach, that we call BIL (Binary Integer Linearization), consists
also in replacing each integer variable by its binary decomposition. Then, in
each product of two different integer variables we replace only one of them
by its binary decomposition. Thus, each integer product becomes an expres-
sion of products of a binary variable by an integer one. Finally, we linearize
these new products by the standard binary-integer linearization (4). The BIL
approach hence leads to an integer linear program of size O(nN) that is signif-
icantly smaller than the program of size O(N2) provided by the BBL method.
Moreover, we improve this reformulation in term of integrality gap, by adding
new valid inequalities. We denote by BILr the reinforced version of the BIL
method.

Finally, we get 4 linear reformulations that we compare from the compu-
tational point of view. Our experimentations are carried out on the Integer
Quadratic Knapsack Problem (IQKP).

The paper is organized as follows. In Section 2, we present the BBL approach
and its reinforcement BBLr. In Section 3, we describe the BIL approach and its
reinforcement BILr. Finally, in Section 4, we present our computational study
of these different methods. Section 5 is a conclusion.
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2 The BBL Approach

Let xi =
�log(ui)�∑

k=0

2ktik be the unique binary decomposition of xi. We replace the

xi variables by the set of tik binary variables. Then each product xixj leads to
an expression of products tiktjl, that we linearize by adding new binary variables
yikjl. We obtain the following program:

(LPBBL)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min fBBL(x, y) =

n∑

i=1

n∑

j = 1
qij �= 0

qij

�log(ui)�∑

k=0

�log(uj)�
∑

l=0

2k+lyikjl +

n∑

i=1

cixi

s.t. (1)(2)(3)

xi =

�log(ui)�∑

k=0

2ktik i ∈ I (6)

yikjl ≤ tik (i, k), (j, l) ∈ E, qij < 0 (7)
yikjl ≤ tjl (i, k), (j, l) ∈ E, qij < 0 (8)
yikjl ≥ tik + tjl − 1 (i, k), (j, l) ∈ E, qij > 0 (9)
yikjl ≥ 0 (i, k), (j, l) ∈ E, qij > 0 (10)
yikjl = yjlik (i, k), (j, l) ∈ E, i < j qij 	= 0 (11)
yikik = tik (i, k) ∈ E, qii 	= 0 (12)
yikil = yilik (i, k), (i, l) ∈ E, k < l, qii 	= 0 (13)
tik ∈ {0, 1} (i, k) ∈ E (14)

Observe that for any optimal solution of (LPBBL), as variables yikjl are present
only in the objective function and in Constraints (7)-(13), the following proper-
ties are satisfied:

- If qij < 0 then yikjl = min (tik, tjl)
- If qij > 0 then yikjl = max (0, tik + tjl − 1)

ensuring yikjl to be equal to the product tiktjl if Constraints (14) are satisfied.
Constraints (11) and (13) follow from the equality tiktjl = tjltik. Constraints
(12) follow from the property that if tik ∈ {0, 1} then t2ik = tik.

The size of (LPBBL) is O(N2). As the yikjl variables and related constraints
are not defined when qij = 0, the actual size depends on the density of matrix
Q. In our computational results of Section 4, matrix Q is fully dense.

Improving the BBL approach

Here we improve the BBL approach by adding valid inequalities in (LPBBL) fol-
lowing the same ideas as in (3). We generate valid inequalities by multiply-
ing the initial constraints (1) and (2) by the binary variables, then we lin-
earize the obtained quadratic constraints. We obtain the following reinforced
program:
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(LPBBLr)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min fBBLr(x, y) =

n∑

i=1

n∑

j=1

qij

�log(ui)�∑

k=0

�log(uj )�
∑

l=0

2k+lyikjl +

n∑

i=1

cixi

s.t. (1)(2)(3)(6)(14)
yikjl ≤ tik (i, k), (j, l) ∈ E (7′)
yikjl ≤ tjl (i, k), (j, l) ∈ E (8′)
yikjl ≥ tik + tjl − 1 (i, k), (j, l) ∈ E (9′)
yikjl ≥ 0 (i, k), (j, l) ∈ E (10′)
yikjl = yjlik (i, k), (j, l) ∈ E, i < j (11′)
yikik = tik (i, k) ∈ E (12′)
yikil = yilik (i, k), (i, l) ∈ E, k < l (13′)

n∑

i=1

�log(ui)�∑

k=0

2kariyikjl = brtjl (j, l) ∈ E, r ∈ R (15)

n∑

i=1

�log(ui)�∑

k=0

2kdsiyikjl ≤ estjl (j, l) ∈ E, s ∈ S (16)

n∑

i=1

dsixi −
n∑

i=1

�log(ui)�∑

k=0

2kdsiyikjl ≤ es(1 − tjl) (j, l) ∈ E, s ∈ S (17)

We multiply the equality Constraints (1) by variable tjl to get Constraints (15).
Similarly, we multiply the inequality Constraints (2) by tjl (resp. (1− tjl)) to get
Constraints (16) (resp. (17)). Doing this introduces variables yikjl in the new con-
straints (15)-(17). Hence we need to define Constraints (7’)-(13’) independently
from the sign of qij . Moreover, variables yikjl become needed even when qij = 0.
The size of (LPBBLr) does no longer depend on the density of matrix Q.

3 The BIL Approach

Here again we use the unique binary decomposition xi =

�log(ui)�∑

k=0

2ktik. We lin-

earize the square terms x2
i by use of variables yikil that represent the product

tiktil as in the BBL approach. However, for quadratic terms xixj with i �= j, we

use the equality xixj =

�log(ui)�∑

k=0

2ktikxj , that we linearize by introducing new vari-

ables zijk to replace each quadratic term tikxj . Then we add a set of inequalities
that ensure zijk to be equal to tikxj . We obtain the following program:

(LPBIL)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min fBIL(x, y, z)

s.t (1)(2)(3)(6)(14)
zijk ≤ ujtik (i, k) ∈ E, j ∈ I, qij < 0, i 	= j (18)
zijk ≤ xj (i, k) ∈ E, j ∈ I, qij < 0, i 	= j (19)
zijk ≥ xj − uj(1 − tik) (i, k) ∈ E, j ∈ I, qij > 0, i 	= j (20)
zijk ≥ 0 (i, k) ∈ E, j ∈ I, qij > 0, i 	= j (21)
yikik = tik (i, k) ∈ E, qii 	= 0 (22)
yikil = yilik (i, k), (i, l) ∈ E, k < l, qii 	= 0 (23)
yikil ≤ tik (i, k), (i, l) ∈ E, qii < 0 (24)
yikil ≤ til (i, k), (i, l) ∈ E, qii < 0 (25)
yikil ≥ tik + til − 1 (i, k), (i, l) ∈ E, qii > 0 (26)
yikil ≥ 0 (i, k), (i, l) ∈ E, qii > 0 (27)
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with

fBIL(x, y, z) =

n∑

i=1

n∑

j = 1
qij �= 0

i �= j

qij

�log(ui)�∑

k=0

2kzijk +

n∑

i=1

cixi +

n∑

i = 1
qii �= 0

qii

�log(ui)�∑

k=0

�log(ui)�∑

l=0

2k+lyikil

In any optimal solution of program (LPBIL) we have:
- If qij < 0 then zijk = min (ujtik, xj)
- If qij > 0 then zijk = max (0, ujtik + xj − uj)

it follows that, if tik = 0 then zijk = 0 and if tik = 1 then zijk = xj . This proves
that in any optimal integer solution, zijk = tikxj . For the same reason as for
program (LPBBL) we also have yikil = tiktil. Hence program (LPBIL) is a mixed
integer linear program that is equivalent to (QP ).

The BIL approach produces program (LPBIL) with O(nN) variables and con-
straints. Here again, it is not necessary to define zijk when qij = 0. The actual
size depends on the density of matrix Q.

Improving the BIL approach

We mainly add Constraints (28)-(35) and variables ziik that represent tikxi. We
also need to transform Constraints (18)-(27) into Constraints (18’)-(27’). All this
give the following integer linear program (LPBILr).

(LPBILr)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Min fBILr(x, z) =
nX

i=1

nX
j = 1
i �= j

qij

�log(ui)�X
k=0

2
k
zijk +

nX
i=1

qii

�log(ui)�X
k=0

�log(ui)�X
l=0

2
k+l

yikil +
nX

i=1

cixi

s.t (1)(2)(3)(6)(14)
zijk ≤ ujtik (i, k) ∈ E, j ∈ I (18′)
zijk ≤ xj (i, k) ∈ E, j ∈ I (19′)
zijk ≥ xj − uj(1 − tik) (i, k) ∈ E, j ∈ I (20′)
zijk ≥ 0 (i, k) ∈ E, j ∈ I (21′)
yikik = tik (i, k) ∈ E (22′)
yikil = yilik (i, k), (i, l) ∈ E, k < l (23′)
yikil ≤ tik (i, k), (i, l) ∈ E (24′)
yikil ≤ til (i, k), (i, l) ∈ E (25′)
yikil ≥ tik + til − 1 (i, k), (i, l) ∈ E (26′)
yikil ≥ 0 (i, k), (i, l) ∈ E (27′)
�log(ui)�X

k=0

2
k
zijk =

�log(uj)�X
l=0

2
l
zjil i, j ∈ I (28)

�log(ui)�X
k=0

2
k
zijk ≥ xiuj + xjui − uiuj (i, k) ∈ E, j ∈ I (29)

ziik =

�log(ui)�X
l=0

2
l
yikil (i, k) ∈ E (30)

�log(ui)�X
k=0

2
k
ziik ≥ xi i ∈ I (31)

nX
i=1

arizjil = brtjl (j, l) ∈ E, r ∈ R (32)

nX
i=1

dsizjil ≤ estjl (j, l) ∈ E, s ∈ S (33)

nX
i=1

(dsixi − dsizjil) ≤ es(1 − tjl) (j, l) ∈ E, s ∈ S (34)

nX
i=1

(dsixiuj − dsi

�log(ui)�X
k=0

2
k
zijk) ≤ es(uj − xj) j ∈ I, s ∈ S (35)
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Here we describe how we get the above valid inequalities (28)-(35):

– Constraints (28) follow from the fact that in any product xixj either xi or
xj can be replaced by its binary decomposition.

– Constraints (29) follow from the inequality (xi − ui)(xj − uj) ≥ 0.
– Constraints (30) define variables ziik that represent tikxi for an integer

solution.
– Constraints (31) follow from inequality x2

i ≥ xi that is satisfied by any
integer xi.

– Constraints (32)areobtainedbymultiplying the initialequalityConstraints (1)
by tjl.

– Constraints (33) are obtained by multiplying the initial inequality Con-
straints (2) by tjl.

– Constraints (34) are obtained by multiplying the initial inequality Con-
straints (2) by (1− tjl).

– Constraints (35) are obtained by multiplying the initial inequality Con-
straints (2) by (uj − xj).

As in the BBLr method, the multiplication of Constraints (1) and (2) by the
variables introduces variables zijk in the new constraints (32)-(35). This is why
we need to define Constraints (18’)-(27’) independently from the sign of qij .
Moreover, variables zijk become required even when qij = 0.

4 Computational Results

We choose to perform numerical experiments on the Integer Quadratic Knapsack
Problem (IQKP ) that consists in minimizing a quadratic function subject to a
linear inequality constraint:

(IQKP )

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Min f(x) = xT Qx + cT x

s.t

n∑

i=1

dixi ≤ e

0 ≤ xi ≤ ui i ∈ I
xi ∈ N i ∈ I

We generate instances with 10, 20, and 30 variables. The coefficients are ran-
domly generated as follows:

– the coefficients of Q and c are reals in the interval [−100, 100]
– the di coefficients are integers in the interval [1, 50]

– e is equal to 20 ∗
n∑

i=1

di

– we generate a first class of instances, (IQKP1), with all ui = 50, and a
second class, (IQKP2), with all ui = 100.

For any size n = 10, 20, or 30, we generate 5 instances in each class giving a
total of 30 instances.
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Our experiments are carried out on a Linux operating system based on an
Intel core 2 duo processor, 2.8 GHz with 1024 MB of RAM. We use the modeler
and the linear programs solver XPress-Mosel version 1.6.1 (2005) (5).

The results of the four formulations are presented in Tables 1 and 2, where
each row corresponds to one instance.

Legenda of the tables:

– n: number of integer variables
– gap: | b−l

b | ∗ 100 where b is the value of the best known solution and l is the
optimal value of the LP relaxation at the root node (in %).

– nodes : number of nodes visited by the branch-and-bound algorithm
– time: CPU time (in seconds) required by the branch-and-bound algorithm.

This time is limited to 1 hour of CPU time.

Program (LPBIL) has less variables and constraints than program (LPBBL). For
example, instances of class IQKP1 with n = 20 lead to a program (LPBIL) (resp.
(LPBBL)) with 2820 (resp. 7260) variables and 5061 (resp. 14421) constraints.
Moreover, we can observe in Tables 1 and 2 that, for all the instances, the
gap associated to (LPBIL) is much smaller than the gap associated to (LPBBL).
Consequently, the BIL approach outperforms the BBL approach with regard to
the number of nodes and the computational time.

For BBL and BIL the reinforced versions significantly improve the gap value.
Consequently, the number of nodes decreases in these reinforced versions. How-
ever, for BBL, the gap improvement is not sufficient to compensate the increase

Table 1. Resolution of (IQKP1) (ui = 50)

(LPBBL) (LPBBLr) (LPBIL) (LPBILr)

n gap nodes time gap nodes time gap nodes time gap nodes time

10 69 1462 51 35 549 88 44 787 9 9 169 15

10 37 478 22 21 423 49 19 449 5 2 13 2

10 59 2316 83 29 577 92 41 886 14 6 66 7

10 41 573 19 31 301 30 19 389 4 0.4 75 5

10 41 403 17 20 129 30 22 319 3 0.3 45 5

20 37 13030 3303 24 863 *(3%) 16 1740 82 0.04 15 22

20 44 10000 *(7%) 26 956 *(7%) 25 3339 169 0.07 5 119

20 55 10000 *(7%) 35 866 *(13%) 33 9322 545 7 95 75

20 45 8218 *(11%) 28 758 *(9%) 23 4355 317 0 1 0

20 38 6435 *(3%) 29 485 *(10%) 23 6323 318 0.6 146 114

30 47 2632 *(36%) 36 270 *(27%) 25 10000 *(8%) 4 148 441

30 79 3288 *(55%) 51 159 *(42%) 52 4813 *(30%) 24 1086 *(11%)

30 45 5833 *(23%) 26 293 *(19%) 22 13739 *(3%) 0.05 81 193

30 84 195 *(60%) 58 171 *(43%) 60 10000 *(40%) 28 1103 *(15%)

30 48 2933 *(6%) 33 175 *(29%) 27 10000 *(11%) 3 568 2088
∗(g%) means that the branch-and-bound is stopped after 1 hour with a MIP gap of g%.
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Table 2. Resolution of (IQKP2) (ui = 100)

(LPBBL) (LPBBLr) (LPBIL) (LPBILr)

n gap nodes time gap nodes time gap nodes time gap nodes time

10 38 503 25 31 143 29 17 423 7 0.1 12 3

10 63 667 44 34 168 52 45 299 7 7 69 5

10 33 362 26 19 206 41 14 162 3 0.1 26 6

10 44 531 24 14 313 50 22 364 4 0.1 87 7

10 37 201 12 5 75 2s 15 251 3 0.1 9 1

20 43 5226 *(18%) 21 900 3524 24 2877 256 0.04 12 28

20 52 4617 996 20 708 *(4%) 29 83 1574 0 1 0

20 63 2900 *(20%) 39 484 *(22%) 38 19528 1130 8 118 123

20 64 6347 *(26%) 38 541 *(22%) 42 16630 1039 11 228 152

20 74 6307 *(22%) 30 385 2848 49 7910 920 4 74 74

30 46 1651 *(37%) 29 48 *(29%) 24 8548 *(1%) 0.4 60 488

30 61 99 *(47%) 23 124 *(29%) 37 1591 *(21%) 3 271 3278

30 44 2219 *(37%) 31 48 *(29%) 22 2956 *(4%) 0.6 255 1828

30 53 414 *(62%) 34 61 *(32%) 31 4452 *(17%) 5 499 3080

30 71 2327 *(39%) 56 108 *(49%) 40 5676 *(9%) 17 824 *(4%)
∗(g%) means that the branch-and-bound is stopped after 1 hour with a MIP gap of g%.

of the size and finally the CPU time required by BBLr is larger than the CPU
time required by BBL.

For BIL, the reinforced version leads to an important improvement of the gap,
but in this case the improvement of the gap widely compensate the increase of
the size and finally the CPU time required by BILr is generally significantly
smaller than the CPU time required by BIL.

We can also observe in Tables 1 and 2 that the gap values associated with
BBLr and BIL are quite similar. However, the size of BIL being much lower than
that of BBLr, BIL outperforms BBLr from the computational time point of view.

As a conclusion, on these two classes of instances, BILr is the best approach for
the three criteria : gap, nodes and time. However, the computational experiments
have shown that this method was unable to solve instances with 40 variables or
more within 1 hour of CPU time.

5 Concluding Remarks

In this paper, we have presented several linear reformulations of linearly con-
strained quadratic integer programs. The BBL and BBLr methods that consist in
using the standard linearization of quadratic 0-1 programs is not usable because
the binary decomposition combined to this linearization leads to 0-1 quadratic
programs with too many variables and constraints.

Then, we presented a new approach, BIL, using the standard linearization
of the product of an integer variable by a binary one. This method reduces
significantly the number of constraints and variables added, in comparison with
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the BBL approach. In our experiments, surprisingly, this size reduction comes
along with a smaller integrality gap. Therefore, BIL is a better approach. More-
over, the valid inequalities added in BILr provide an important improvement.
A further improvement would be to incorporate these valid inequalities into a
branch-and-cut framework.
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Abstract. Topology Control is one of principal questions in network
design. Tree-decompositions with bags of small diameter models net-
works, and were used to construct compact routing schemes. Over time,
the bags must change to reflect the changes in the network topology as
nodes move around, or links failure. It must be possible to restore the
service when there is a failure of an edge or a node in the network. In
order to preserve the advantages of this structure, we propose to study
the case where a node or edge is added to (resp. is removed from) the
network and its effects on some invariants of a tree decomposition.

Keywords: Topology Control, Routing, Tree Decomposition, Tree width,
Tree length, Graphs.

Introduction

A dynamic network consists of nodes that move freely and communicate with
each other using dynamic links. Dynamic networks do not use specialized routers
for path discovery and traffic routing. Compact routing scheme consists to sup-
port efficient communication between nodes. One way to develop this scheme is
to construct tree decomposition architecture; this means that certain nodes must
be selected to form the bags. Tree decomposition of minimum tree width were
introduce by Robertson and Seymour in 1986 [1]. For these networks with partic-
ular topology, Y. Dourisboure [2] showed that it was possible to build a compact
routing schemes of deviation to more 2δ (where δ represent a new introduced
invariant, called tree-length of a graph) with addresses and local memories of
size O(δ log3 n). F.Dragan and I.Lomonosov [3] refine this notion of tree decom-
position by introducing acyclic (R,D)−clustering, where clusters are subsets of
vertices of a graph and R and D are the maximum radius and the maximum
diameter of these subsets, the authors achieve a routing scheme of deviation 2R
with labels of size O(log3 n/ log logn) bits per vertex and O(1) routing protocol
for these graphs.

Today, the nature of services and the requests volume in telecommunications
industry have radically changes, thanks to the introduction of new technologies
which offer large capacities of transmission. Over time, the bags must change
to reflect the changes in the network topology as nodes move around, or links
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failure. Thus, the current networks tend to have an increasingly sparse topology.
In this case, the failure of one or more edges (or nodes) can have disastrous
consequences if the network does not provide other paths for routing. So, one
of the principal questions in the design process of networks is Topology Control.
Tree decomposition were used too for topology control, that is the problem of
determining an appropriate topology for dynamic networks. Readers are referred
to Li [4] and Rajaraman [5] for more information on the topic of topology control.
It must be possible to restore the service when failure of an edge or a node of
the network occurs.

In this work, we study the changes on the invariants ”tree-width and tree-
length” of the networks which have a topology modeled by a graph which admits
a tree decomposition. In order to preserve the advantages of this structure, we
propose to study the case where a connection or edge is added to (resp. is
removed from) the network and its changes on the two invariants of the tree
decomposition. The paper is organized as follows. Section 2 covers some basic
definitions on graph theory. Sections 3, 4, 5, 6 presents respectively the study of
th cases of addition of an edge, removal of an edge, addition of a vertex and a
removal of a vertex. Finally, section 7 concludes with some directions for possible
future work.

1 Some Definitions

All graphs occurring in this paper are connected, finite, undirected, without
loop and multiple edges. For a subset S ⊂ V of vertices of G, let G(S) be a sub
graph of G induced by S. By n = |V | we denote the number of vertices in G.
The distance distG(u, v) between vertices u and v of a graph G = (V,E) is the
smallest number of edges in a path connecting u and v. The distance between
a vertex u ∈ V and a set S is distG(u, S) = minv∈S{distG(u, v)}. The induced
diameter is diam(S) = maxv,u∈S{distG(v, u)}. We denote by NG(v) = {u ∈ V :
uv ∈ E} the neighborhood of a vertex v in G and by NG[v] = NG(v)U{v} the
closed neighborhood of v in G. The k-th neighborhood Nk(v) of a vertex v of G
is the set of all vertices of distance k to v: NkG(v) = {u ∈ V : distG(u, v) = k}.

The notion of tree decomposition was introduced by Robertson and Seymour
in their studies of the minors of graphs [1], see figure1 for example.

Definition 1. A tree decomposition of a graph G is a tree T whose vertices,
called bags, are subsets of V (G) such that:

1. ∪X∈V (T ) X = V (G)
2. for all {u, v} ∈ E(G), there exist X ⊂ V (T ) such that u, v ∈ X
3. for all X,Y, Z ⊂ V (T ), if Y is on the path from X to Z in T then X∩Z ⊂ Y

Tree decomposition is reduced if no bags are contained in another one. A leaf of
such decomposition contains necessarily a vertex contained in none other bags.
Thus, by induction the tree-length of reduced tree decomposition does not exceed
the diameter of a graph.
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The width of T is width(T ) = maxX∈V (T ) |X | − 1. The length of T is
length(T ) = maxX∈V (T )diamG(X). The tree width and the tree length of G, de-
noted by tw(G) and tl(G), are respectively, minTwidth(T ) and minT length(T ),
where the minimum is taken over all tree decomposition of G.

2 Addition of an Edge

The object of this section will be the study of the case where a connection is
added to the network, which corresponds to an addition of an edge in the graph
G, and its effects on the tree decomposition T of G.

Let e = uv be the added edge to G. Thus, one obtain a new graph G′ = G∪e.
Now, and starting from T , one wants to obtain an tree decomposition T ′of G′

which is of minimum tree width and tree length. Two cases arise;

2.1 First Case

This case corresponds to that where both extremities u, v of the added edge e
are in the same bag in T . Thus, nothing changes for the tree decomposition of
G′ (ie; G and G′ have the same tree decomposition).

T ′ = T

Claim. One has obviously ;tw(G) = tw(G′) and tl(G′) ≤ tl(G).

2.2 Second Case

This case corresponds to that where both extremities u, v of the added edge e
do not belong to the same bag in T . Thus, we want to find a tree decomposition
T ′ for G′ starting from a tree decomposition T of G which is of minimal tree
width and tree length.
T ′ respects the three rules of definition 1. Therefore, if e = uv is added; One

seeks the bags containing u and the bags containing v. Afterwards, one extracts
the subtree induced by u from T , denoted Tu , and the subtree induced by v
denoted Tv .

A/ Tu ∩ Tv = ∅

Let S be a separator between Tu and Tv, and let suppose that |Tu| ≤ |Tv|,
then one add the vertex v to each bag of Tu and S, in this way, one forces T ′ to
respect rules 2 and 3 of definition 1.

Claim. For T ′ the tree decomposition of G′ obtained starting from G as in A.1
or A.2, one has ; tw(G′) ≤ tw(G) + 1 and tl(G′) ≤ tl(G).

Proof. Indeed; if Tu contain at least one bag with (tw(G)+ 1) vertices, then the
addiction of a vertex v to the bags of Tu imply that Tu will contain at least
one bag with (tw(G) + 2) vertices and hence tw(G′) = tw(G) + 1, otherwise,
tw(G′) = tw(G). Same reasoninig for Tv .
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tl(G′) ≤ tl(G) ; it is clear that the addition of an edge makes reduce the
distances in the graph G′and consequently the length of T ′, but, one cannot
know of exactly how much, in any way, us what interests us, it is that the bound
of the tree length of G′ is the same one for G. ��

Remark 1. One has not the case Tu ∩ Tv �= ∅, because it will exist a bag
B ∈ Tu ∩ Tv such that B ∈ Tu and B ∈ Tv , hence, one will have u ∈ B and
v ∈ B, then, u and v are in the same bag B in T , contradiction with the
hypothesis of second case.

3 Removal of an Edge

The object of this section will be the study of the case where a connection is
removed from the network, which corresponds to a removal of an edge in the
graph G, and its effects on the tree decomposition T of G.

Let e = uv be the removed edge which is not an isthmus from G. Thus, one
obtain a new graph G′ = G�e, (G′ is connective). Now, and starting from T ,
one wants to obtain a tree decomposition T ′ of G′ which is of minimal tree width
and tree length.

If one removes any edge e from G, by definition 1, there exists at least one bag
B in T such as both extremities u, v of e belongs to B. Thus, nothing changes for
the tree decomposition of G′ (ie; G and G′ have the same tree decomposition).
Thus T ′ = T

Claim. one has ; tw(G) = tw(G′) and tl(G′) ≥ tl(G).

Proof. Since T ′ = T , one has tw(G) = tw(G′).
Furthermore, one has tl(G′) ≥ tl(G); indeed, it is clear that the removal of an

edge makes increase the distances in the graph G′and consequently the length
of T ′, but, one cannot know of exactly how much., we must compute the length
of T ′, which will constitute the new bound of the tree length of G′. ��

4 Addition of a Vertex

The object of this section will be the study of the case where a new user is coming
to the network, which corresponds to an addition of a vertex in the graph G,
and its effects on the tree decomposition T of G.

Let u be the added vertex to G and N(x) the set of neighbors of x. Thus,
one obtain a new graph G′ = (V ′, E′) such that V ′ = V ∪ {x} and E′ =
E ∪ {xy, y ∈ N(x)}. Now, and starting from T , one wants to obtain a tree de-
composition T ′ of G′ which is of minimum tree width and tree length. For doing
this, we must the following conditions:

1. To respect the rule 1 of the definition, we must place x in at least one bag
of T .
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2. To respect the second rule of the definition, it must that exists at least one
bag containing both x and y, y ∈ N(x).

3. To respect the third rule of the definition, it must that bags containing x
induces a sub tree of T ′.

Remark 2. With this method, one will have |T | = |T ′|, ie; we only place x in
one bag of T , we don’t create new bags in T ′.

For this case, one have x ∈ V (G′), xy ∈ E′, with y ∈ N(x). Let y ∈ N(x);One
havex ∈ V (G) and Ty is a sub tree of T induced by bags of T containing y.

A/Case 1: If ∩y∈N(x)Ty = ∅

Here, with an aim of satisfying the conditions of definition 1, one must place x
in bags of T by observing the conditions 2) and 3) referred to above. A trivial
solution is to place x in all bags of T , we can do it once, but if we do it twice
then the decomposition obtained will not be a tree decomposition and will not
respect the rules of definition 1. Hence, we must minimize the number of bags
candidate to receive x, ie; minimize the size of T ′

x , a sub tree of T ′ induced by
bags containing x in T ′. And for this, we applied the following procedure:

Procedure
Input : a tree decomposition Γ ′

x of G′ = G∪{x} obtained from T by the addition
of a vertex x to all bags of T ; The set N(x) = Neighbors of x and ∩y∈N(x)Ty = ∅
Output : the sub tree T ′

x of Γ ′
x ; induced by the bags containing x verifying

conditions 2) and 3) of definition 1, and of minimum cardinality
While B ∈ Γ ′

x is a leaf
If Γ ′

x�B is a sub tree that verify ; It exists at least one bag containing x
and y, y ∈ N(x), then remove B

Else stop;
End

Interpretation
In the tree decomposition Γ ′

x, we start by leafs removing such that the remain-
ing sub tree verify the second condition of definition 1. At the end, we obtain
a minimal sub tree T ′

x that verify conditions 2) and 3), trivially of definition 1.
Hence, to obtain a tree decomposition T ′ of G′ from a tree decomposition T of
G, for the case A, we add the vertex x only to the bags of the sub tree T ′

x, that
we removed x.

Claim. One has ; tw(G) ≤ tw(G′) ≤ tw(G) + 1 and tl(G′) ≤ Max(tl(G);
LengthT ′

x), where : T ′
x, is a sub tree of T ′ formed of the bags containing x.

Proof. It’s clear that all bags of T containing (tw(G) + 1) vertices are among,
those to which, one added the vertex x (to have the tree decomposition T ′ ,
hence tw(G′) = tw(G) + 1, if not then, tw(G′) = tw(G) .

Bydefinition,onehas:tl(G′)≤LengthT ′,andLengthT ′ = MaxB∈V (T ′)diamG′B
andLengthT ′

x = MaxBx∈V (T ′)diamG′Bx withBx bag containingx inT ′. As here,
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thechangesofT ′ comparedtoT arethebagsBx, thatonedeterminedbyaddingeach
time the vertexx and whose sub graph induced by the vertices of {Bx, x ∈ T ′

x} con-
tainsedgeswhichare inG′andnot inG.Thus,toknowLengthT ′, it isenoughtoknow
MaxBx∈V (T ′)diamG′Bx ie;LengthT ′

x.Thus, ifLengthT ′
x ≤ tl(G)thenLengthT ′ =

tl(G)andifLengthT ′
x > tl(G)then,onewillhaveLengthT ′ = LengthT ′

x,fromwhere
;LengthT ′ = Max(tl(G);LengthT ′

x)andtl(G′) ≤ LengthT ′. ��

B/Case 2: If ∩y∈N(x)Ty �= ∅

Let B ∈ ∩y∈N(x)Ty with |B| < |Bi|, ∀Bi ∈ ∩y∈N(x)Ty. Then, it is enough to add
x ∈ B, and one obtains thus, a tree decomposition T ′ of G′ complying with rule
3 of the definition 1.

Claim. One has ; tw(G′) ≤ tw(G) + 1 and tl(G′) ≤ Max(tl(G); diamG′B) =
LengthT ′.

Proof. It is clear that if |B| = tw(G) + 1 in T then the fact of adding a vertex
with B implies that |B| = tw(G) + 2 in T ′, thus tw(G′) = tw(G) + 1. Else
|B| ≤ tw(G), one will have tw(G′) = tw(G), from where tw(G′) ≤ tw(G) + 1.

By definition, one has tl(G′) ≤ LengthT ′, and LengthT ′ = MaxBx∈V (T ′)

diamG′B. As here, the only changes of T ′ compared to T is the bag B to which,
one added a vertex and thus the sub graph induced by the vertices of B contain
edges which are in G′ and not in G. Thus, to know LengthT ′, it is enough to
know diamG′B. If diamG′B ≤ tl(G), then LengthT ′ = tl(G). If diamG′B >
tl(G), then LengthT ′ = diamG′B, thus LengthT ′ = Max(tl(G); diamG′B),
from where, one has tl(G′) ≤ LengthT ′. ��

5 Removal of a Vertex

The object of this section will be the study of the case where a user is leaving
the network, which corresponds to a removal of a vertex in the graph G, and its
effects on the tree decomposition T of G. The case where a vertex is removed
from the network corresponds to the case of breakdown of a user.

Let u be this vertex (u not an articulation point), in this case, one will have
several connected components.

Thus, G′ = G�u is connected.
One wants to determine T ′ the tree decomposition of G′, starting from the

tree decomposition T of G.
It is enough to remove u, in the bags of T which contain it, thus, is obtained

the tree decomposition T ′ of G′ = G�u and this tree decomposition checks well
the three conditions of definition 1.

Remark 3. T ′ thus obtained will not be inevitably a reduced tree decomposition,
and this, same if T is. To return T ′ a reduced tree decomposition, it is enough
to remove the bags which are such that B ⊂ B′ with B and B′ adjacent in T .

Claim. One has ; tw(G) − 1 ≤ tw(G′) ≤ tw(G) and tl(G′) ≤ LengthT ′.
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Proof. Indeed, if all the bags of T which contain (tw(G)+1) vertices are among
the bags to which, one removed the vertex u, then ; tw(G′) = tw(G) − 1. Else
tw(G′) = tw(G). It is obvious that, tl(G′) ≤ LengthT ′ (by definition).

6 Conclusion

In order to study the reliability of a tree decomposition graph model networks,
we have considered four cases; addition of an edge, removal of an edge, addition
of a vertex and a removal of a vertex, for which, we have to consider a new graph
G′. We proved that one can obtain a tree decomposition of minimum tree width
and tree length for G′ starting from the preceding tree decomposition of G, what
returns these models most interesting.
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Abstract. The pregnant women enter and leave hospitals 24 hours a
day throughout the year. So, the designers of models have to consider
the day, the time and the method of arrival, the degrees of emergency,
the alternative placement, and the staff availability. The discrete event
simulation has been widely used in attempts to improve the delivery of
healthcare. In this paper, the method used to develop a simulation tool
for a maternity block is described. This paper surveys the application of
discrete-event simulation modeling to healthcare systems and presents
the decision-making aid tool designed for a maternity block in order to
improve their management. Future directions of research and applica-
tions are also discussed.

Keywords: Modeling, simulation, healthcare, decision-making aid tool,
maternity block.

1 Introduction

At the end of 2009, the “Hôtel Dieu”, a unit of the University Hospital (UH) of
Clermont-Ferrand will transfer its activities on a new site: the “Nouvel Hôpital
Estaing” (NHE). The UH managers have to reconsider the organization of the
maternity block which will gather in a single place two obstetrics units now
distinct: the “Maternity” and the “Polyclinic”. The maternity and the polyclinic
of the “Hôtel Dieu” are two separated obstetrics units in two different buildings.
We define the maternity block as a hospital unit where the pregnant women
undergo a medical treatment before and after child birth.

The new obstetrical unit must provide health services for women, which
includes the full range of the maternity care and the gynaecology care (only
for emergency examinations). The maternity service provides care for pregnant
women in the antenatal, intrapartum and postnatal period.

The maternity unit has to respond to an uncertain demand from patients.
Some demands can be treated within the maternity block, others are admit-
ted to the hospital for further treatment as inpatients (complications). In this
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work, our main goals is to provide to the hospital managers and to the medical
teams, a decision-making aid tool which allows them to improve and optimize
the management of their new structure.

We have built a discrete-event simulation model to show visually and numer-
ically the flow of patients through the maternity block on a typical week. The
simulation shows the impact of variability in demand, and process capability.

We start by briefly describing the main simulation approaches used for these
types of model, namely discrete-event simulation. We propose our approach for
the design of decision-making aid tools, and we present the modeling tools used.
Next, we present the decision-making aid tool designed for a maternity block.
We conclude with a glimpse at the future.

2 Literature Survey

The literature survey on maternity blocks, except medical publications, is poor.
This is partly due to the complexity of this system, which meet very different ac-
tivities difficult to forecast (the emergency examinations, the delivery, the medi-
cal termination of pregnancy, etc.). The maternity block includes different areas,
different methods of operation, different asepsis levels and technicality levels (the
examination rooms, the operating rooms,. . . ), which involve somematerial andhu-
man resources (doctors, midwives, anesthesiologist, operating room nurses, anaes-
thetic nurses). Unlike a conventional surgicalunit, the planned or “programmable”
operations do not represent the majority of the activity, and emergencies quickly
become vital for the patient, as for baby, requiring management and priority rules
very specific. So, it appears necessary to model such systems to develop decision-
making aid tools. A choice is to develop a simulation model, that represents all the
operations of an unit in sufficient detail for the experimentation of different sce-
narii of organization and the test of several system loads. Computer or simulation
models provide an insight into the working of a system and can be used to predict
the outcome of a change in strategy. This is particularly useful when the system is
very complex and/or when the experimentation is not possible. Several healthcare
administrators have used discrete-event simulation as an effective tool for allocat-
ing scarce resources to improve patient flow, while minimising health care delivery
costs and increasing patient satisfaction

The potential benefit of the simulation of the health care systems is huge. The
literature shows that with no doubt, the most widely used simulation approach
in health is discrete-event simulation (DES). In DES, entities have character-
istics which determine their pathway through the system, in exactly the same
way as patients have individual characteristics which determine their pathway
through the hospital system [1]. Model designers have to lead the effort to develop
models, by improving their understanding of health care needs and challenges
(model designing) and communication of user-friendly models, to help provide
answers to the complex health care issues. In this work, Royston [2] studies the
future challenges and opportunities in health care modeling and simulation and
proposes to compare experiment and modeling (Tab. 1).
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Table 1. Experiment vs Modeling

Attribute Experiment Modeling and simulation
Veracity Often high, within its do-

main
Contingent on logic, ele-
ments and data

Timescale Often long Can be quick

Cost Often high Can be low

Risk Can be high Generally low

Extendablity Limited High

Jun et al. [3] have surveyed an approximately 30 year period, from the early
1960s to the late 1990s, applications of simulation in healthcare. They have re-
viewed 117 journal articles and have classified them according to their
objectives. Their main interest is the impact of patient and resource scheduling
on patient and work flows, followed by the allocation of resources such as beds,
rooms and staff. They also have searched for studies of more complex, integrated
and multi-facility systems and have concluded that there seems to be a lack of
such work reported in the literature. They suggest that the major reasons for this
shortage are first, the level of complexity and the data needs. Wilson [4] has sur-
veyed 200 simulation projects in healthcare but has found only 16 projects which
reported a successful implementation. Common factors in these 16 projects are
at least one author who worked at the institution concerned, a problem of high
priority to that institution, an external funding, and/or a detailed description of
data collection. Twenty years later, a systematic review of healthcare simulation
models [5] has founded 182 papers published between 1980 and 1999. They have
identified five broad topic areas: the hospital scheduling and organization, the in-
fection and communicable disease, the costs of illness and the economic evaluation,
the screening and the miscellaneous. We are interested in hospital scheduling and
organization area. This domain includes 94 (52 per cent) of the 182 papers in the
review. Patient scheduling and admissions policies were popular topics for mod-
eling on many sytems : outpatient clinics [6], a walk-in clinic [7], an intensive care
unit [8] and operating room scheduling [9] [10] [11]. Fone et al. note that very few
papers reported that models had been implemented. The authors said “. . . we were
unable to reach any conclusions on the value of modeling in health care because the
evidence of implementation was so scant.” ([5], p. 333) As Brailsford said [1], one
possible barrier to implementation is that of generalizability. All healthcare mod-
elers stress the importance of working closely with clinical or managerial practi-
tioners, in order to gain buy-in and acceptance.

3 Decision-Making Aid Tool Design: Approach and Tools

A simulation model is able to deal with detail complexity by simulating the life
histories of individuals and then estimating the population effect from the sum
of the individual effects. Each member of the population (entity) included in a
simulation model is tracked through a set of options. At each decision point a
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variety of choices is available, and the outcome will depend on, for example, the
characteristics of the entity and resources, the previous movement through the
model, and the choices that other entities have made.

The main dilemma in a such work is deciding on the appropriate level of detail.
An increased detail leads to more realistic representation, which should increase
the confidence of stakeholders. However, an increased detail requires validated
data and it can be expensive and time-consuming to collect all the knowledge of
the system.

The abstraction level for the simulation model depend of the modeling level
of the formal knowledge. Sinreich and Marmor [12] propose a figure with the
range of modeling options and the building blocks used in each case. We adapt
and complete it with the classic modeling level for the formalization of the system
knowledge (Fig. 1).

Hight abstraction level

Flexible: models any 
system and scenario

Difficult to use:
Requires knowledge and
experience

Medium abstraction
level

Flexible: models any 
system which uses a 
similar process
Simple and intuitive:
use friendly after a brief
and short
introduction

Low abstraction
level
Dedicated : only models 
the system it was
designed for
Simple: easy
to use after a
quick
explanation

GenericActivities Fixed Process/ Activity
Generic

Processes

Macroscopic level

Global design, 
configuration and running

Mesoscopic level

Process design, 
configuration and running

Microscopic level

Activity design,
configuration and running

Knowledge 
formalization

Simulation 
modelling

Fig. 1. Abstraction levels for the knowledge formalization and the simulation

The challenge is to develop models at medium abstraction levels, which both
consider the system complexity and the ease of use. The main goal of our work
is to provide for the maternity block teams, a decision-making aid tool:

– To confirm the physical structure size, to specify the staffing requirements
and to plan the resources (functions, allocation. . . ).

– To test and to compare management rules (resources allocation), to study
the system response to random events, to test different scenarii (schedules,
load, etc.), to improve the service working.

– To estimate the system performances: indicators evaluation, waiting times,
occupancy rates, identification of possible bottleneck.

A second goal is to provide coaching for change to the medical teams. Our work
should allow the maternity teams and the polyclinic teams to work together on the
organisation of the new obstetrical unit. Our approach consists in:
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– The data collection on the field (meetings with the executives of health,
doctors and midwives).

– The identification of the processes (patient pathways), of the staff tasks ,
and of the management rules.

– The modeling of the new maternity block.
– The design of a decision-making aid tool based on a simulation model.

We used the ASDI methodology (Analysis, Specification, Design, and Implemen-
tation) initially developed by Gourgand [13]. In a previous work [14], we have
shown the interest to use this methodology adapted to the hospital systems in
order to build, for a given system, knowledge, action and results models which
allows to give a decision-making aid and to act on the system. We present the
tools used for each stage in the Fig. 2.

Analysis Specification Design Implementation

Systemic 
breakdown

UML Patient pathways, staff tasks
UML / LAESH * Discrete Event 

Simulation
Witness

* Language of Analysis and Evaluation of the Hospital Systems [15]

Fig. 2. Approach and tools used
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Fig. 3. Density graphic for the Caesarean time

Thefirststep isthedesignoftheknowledgemodelwhichformalizesalltheentities,
the processes and themanagement rules of the system.We have designed a software
component library with Witness software, to satisfy the hospital systems specifici-
ties (management and priority rules, preemption,. . . ). In a second step, thanks to
the knowledgemodel and to the software component library,we can build an action
model,basedonadiscrete-events simulationmodel.To feeddata into thesimulation
model, a data analysis was done to determine the different caracteristics for the op-
eration times (distribution laws. . . ). Data were obtained from a variety of sources:
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centralized information system, local systems, special manual data collection
exercises, observation and interview. Fig. 3 shows an example of the statistic
work: a density graphic for the time of Caesarean operation. In this paper, we
do not present the knowledge model of the maternity block and its transla-
tion into simulation model. We just give the different patient pathways idenfied
(Tab. 2) and an exemple of knowledge formalization of a patient pathway with
LAESH (Fig. 4).

Table 2. Patient pathways

Processes “Father”
Category 1 Emergency consultation for pregnant women

Category 2 Emergency consultation without pregnancy

Category 3 Childbirth except programmed Caesarean

Category 4 Programmed Caesarean

Category 5 Version by External Operation

Category 6 Medical Interruption of Pregnancy

Processes “Son”
Category 7 Baby by natural birth

Category 8 Baby by caesarean section

OUT

4
Cesarean 

after 

consultation 

3
Labor

1
Emergency 

consultation 

with pregnant 

woman

13
Outside 

transfer after 

cesearean in 

emergency 

14
Post-

operation 

surveillance 

after 

complication

15
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transfer after 

complication

of single 

delivery 
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Outside 

transfer after 

single 

delivery 

9
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Single 
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OUT OUT

OUT

2
Consultation 

without 

continuation

OUT

Fig. 4. Example of a patient pathway: Emergency consultation for pregnant women (9
ways)
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4 Application: A Decision-Making Aid Tool for a
Maternity Block

The primary objective in developing the simulation model is to provide a tool for
decision-making in the clinical environment. The simulation tool has to include
several modules in order to consider all the requirements described earlier. The
tool has to have a Graphical User Interface that is intuitive and simple to use.
Through it, the user can input the system characteristics and the other required
data and he can get back the different results.

A framework for the development of a generic processes model using the
discrete-event simulation and a visually interactive software (Witness) has been
created. The framework allows users to input walk-in arrivals hourly, over a
24-hour period, over a 7-day week in the Excel spreadsheet interfaces. It also
allows the user to aim the arrivals through a number of different pathways (emer-
gency consultation, programmed Caesarean. . . ) and to set resources within the
modeled unit. Input variables of the decision-making aid tool are:

– The human resources with the various time slot of presence (schedules) and
the quantity of persons by time schedule/slot;

– The quantity of patients expected by week;
– The patients distribution by “pathway”;
– The patients arrival terms by “pathway” (programmed, emergency arrival

laws);
– Several probabilities (complications, multiple births, etc.);
– The times of elementary operations (constants, variables).

The interface can generate a patients arrival schedule based on the data and
parameters captured (the quantity of patients and the distribution’s arrival law).
This schedule can be reviewed by the user before running the simulation. The
simulation’s duration has been set to one week. We have designed a graphical
user interface. This graphical interface enables the user to visualize the model.
As a communication aid with healthcare professionals, this can be invaluable to
validate the model. During the simulation run, the users can see patients arriving
in real simulation time, observing monitor their travel through the different work
areas as defined by their assigned pathways. The simulation also allows users
to see resource use and queue activity throughout the run. A snapshot of the
simulation model is shown in Fig. 5. The generic framework also facilitates the
testing of new scenarios. The resources can be changed and the outputs can be
compared after re-running the model. Similarly, process times can be changed
and the model re-run to assess impact. Furthermore, the generic framework could
be used to assign other attributes to patients for modeling. The model was used
to produce detailed predictions of resource requirements for each scenario.

Two levels of results are obtained. Overall results:

– The overall results: the passive resources (rooms) and active resources
occupancy (recorded every fifteen minutes), the total time spent in the
system by each patient and the quantity of births of each type (natural
childbirth and cesarean section).
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– The detailed results which provide: (i) For each room; the occupancy times
and occupancy rates and the quantity of patients that have been treated;
(ii) For each type of human resources and each human resources: the times
and occupancy rates by place, elementary operation; (iii) For each patient:
the processing times and the total latency times, by place or elementary
operation.

Fig. 6 gives an example of the type of graph than can be obtained with the
total occupancy times for each type of human resource in the different areas
(consultation, delivery suites, caesarean rooms). Fig. 7 shows the delivery rooms
occupancy at intervals of fifteen minutes.

Fig. 5. Snapshot of simulation model
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Fig. 6. Human resources occupancy time by area
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Delivery rooms occupancy
(at intervals of fifteen minutes)
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Fig. 7. Delivery rooms occupancy

5 Conclusion

The decision-making aid tool has been developed in close cooperation with staffs
in the maternity blocks. It was validated and installed in the maternity blocks
of the HU. The medical teams and health care workers staff can test different
scenarii from organization (resource allocation, slot time for the programmed in-
terventions. . . ) and adapt their management rules. Moreover, and at the request
of physicians and midwives, this tool has been presented at the National Days of
the French society for Prenatal Medicine (October 2007), at the Day of Research
in Obstetrics and Gynecology (December 2007) and to the 33rd International
Conference on Operational Research Applied to Health Services (ORAHS) in
July 2007. We now plan to develop couplings between the simulation and opti-
mization approaches.
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Abstract. In this work, an exact method for generating the efficient set
of the multiple objective integer linear programming problem (MOILP)
is described. When many of the published methods consist of solving
initially an ILP program, our method has the advantage of starting with
an optimal solution of an LP program whose objective is a positive com-
bination of the criteria, and uses a branching procedure to generate an
integer feasible solution. Whenever such a solution is found, the increas-
ing directions of the criteria are recognized and an efficient cutting plane
is built in order to delete some of the non efficient solutions without
computing them. Compared to the Sylva & Crema’s method where at
each stage, the ILP programs considered are augmented by (q + 1) new
constraints and q bivalent variables, our method does not depend on q,
where q is the number of the criteria.

1 Introduction

Multiple objective integer linear programs (MOILP) are often adequate models
for many real-world situations. With such a formulation, an important point is
to be able to generate the set of all efficient solutions to this problem (see for
example [2]).This paper proposes a novel algorithm to do so. The main orig-
inality of the approach taken in the present paper is to make use of classical
branching well known in the branch and bound technique (see for example [6])
with a novel efficient cut. Several methods have been developed to generate all
efficient solutions of the MOILP problem ([1], [3], [6], [9], [10], [11]). For instance,
Klein & Hannan [5], gave an implicit enumeration algorithm which consists
of solving a sequence of single objective integer linear programs progressively
more constrained. The additional constraints exclude both previously generated
efficient solutions and some of the non efficient ones. In [8], a variation of the
[5] algorithm is proposed, maximizing at each step a positive combination of
the q objective functions ensuring the detection of an efficient solution. The ILP
programs considered at each stage are augmented by (q+1) new constraints and
q bivalent variables which aims to eliminate some of the non efficient solutions.
The number of ILP problems to be solved is given by the number of nondom-
inated solutions plus one corresponding to an unfeasible problem. The method
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proposed by Gupta & Malhotra [4], is also a variant of that proposed by Klein &
Hannan [5]. It is to determine the set of all efficient solutions where the authors
were able to reduce the number of additional constraints at each stage of the
procedure. Unfortunately, an example showing that the algorithm stops before
producing all efficient solutions is constructed. Therefore, the approach adopted
by the authors does not always provide the entire set of efficient solutions. A
synthesis of research tasks is made by [10] and completed by [3].

In this paper, a new exact approach based on a branch and cut technique
is developed to generate all efficient solutions of the MOILP problem, without
computing all feasible integer solutions. In the proposed method, we do not need
to search for an initial optimal solution for an ILP problem. Indeed, based on a
simplex method, the criteria evolve in a dynamic way in an augmented simplex
table when a linear programming problem is solved, then a branching process is
carried out to detect an integer solution for a constrained problem. When such a
solution is obtained, it is tested for efficiency with those already found using the
criteria values. The increasing directions of the criteria are used to build efficient
cuts, in order to avoid the exploration of domains containing integer solutions
but not efficient integer ones.

The sections described in this paper are organized as follows: after a formal
introduction of the problem in section 2, the principle of the method is reported
in section 3. The main theoretical results allowing to justify various stages of
the algorithm suggested in the preceding section are developed in section 4.
Computational results are reported in section 5 and a final section concludes.

2 Problem Formulation

We consider the following multiple objective integer linear programming problem
(MOILP):

(P )

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max Z1 = c1x
max Z2 = c2x

...
max Zr = crx

x ∈ S
x integer

where S = {x ∈ Rn|Ax = b, x ≥ 0} is the feasible set and Zq = cqx, q = 1, . . . , r,
r ≥ 2, are real-valued linear functions, cq =

(
cqj
)

j=1,...,n
. We assume that S is

a nonempty, compact polyhedron, all components of the m × n matrix A =
(aij)i=1,...,m; j=1,...,n and the m vector b are integers.

A solution x is known as efficient solution, if there is not another solution y
such that cqy ≥ cqx for all q ∈ {1, . . . , r} and cqy > cqx for at least one index
q ∈ {1, . . . , r}. Otherwise, x is not efficient and the vector Cy dominates the
vector Cx, where C = (cq)q∈{1,...,r}.

An ideal point x is a solution that maximizes all criteria at the same time:
Cy ≤ Cx for any feasible solution y.
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We define the linear program (Pl) as follows:

(Pl)

⎧
⎨

⎩

maxZ =
r∑

q=1
λqc

qx

x ∈ Sl

with λq ≥ 0 ∀q = 1, ..., r ; S0 = S.
At each stage that an integer solution x∗l is obtained after the branching pro-

cess, the following definitions and notations are used:
Bl and Nl are respectively, the indices sets of basic variables and non-basic vari-
ables of x∗l , Hl =

{
j ∈ Nl|∃q∈{1, ..., r} ; ĉqj > 0

}
∪
{
j ∈ Nl|ĉqj = 0, ∀q ∈ {1, ..., r}

}
,

where ĉqj is the jth component of the reduced cost vector of the criterion Zq. The
two following subsets of set Sl are defined:

Sl+1 =

{

x ∈ Sl|
∑

j∈Hl

xj ≥ 1

}

and Tl+1 =

{

x ∈ Sl|
∑

j∈Nl\Hl

xj ≥ 1

}

.

3 Principle of the Method

The method is based on the concept of branching in integer linear program-
ming. All operations described below are identified in nodes and branches in a
structured tree. At each node, we have to solve a program (Pl). A node l of the
tree is saturated if the corresponding program (Pl) is not feasible or if Hl = ∅.
If the optimal solution x of program (Pl) is not integer, let xj be one coordi-
nate such that xj = αj where αj is a fractional number. Then, the node l is
separated in two nodes with the additional constraint respectively: xj ≤ αj�
and xj ≥ αj� + 1, where αj� indicate the greatest integer less than αj . Each
corresponding branch define a new linear program (Pk), k > l, to solve.

The case corresponding to an integer solution x is solved by using the increas-
ing directions of criteria to avoid exploring non efficient regions of the feasible
solutions of problem (P ). Only the part of feasible solutions domain in which at
least one of the objectives of problem (P ) can be improved is treated. This is
made possible by adding the following valid constraint that we call the efficient
cut:

∑

j∈Hl

xj ≥ 1.

Algorithm

Step 1. (Initialization)
S0 := S, l := 0 and Eff := ∅; (integer efficient set of problem (P ))
Let λq ≥ 0 for all q ∈ {1, . . . , r}, with at least one strict inequality, solve the
linear program (P0) at node 0 and let x be an optimal solution.
If x is not integer, go to Step 2a, else go to Step 2b.

Step 2. (General Step)
As long as there is an unsaturated node in the tree, do:
Choose the first created node l of the tree, not yet saturated and solve the
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corresponding linear program (Pl). If program (Pl) have not feasible solu-
tions, then the corresponding node l is saturated. Else, let x be an optimal
solution. If x is not integer, go to Step 2a. Else, go to Step 2b.

Step 2a. Choose one coordinate xj of x such that xj := αj , with αj fractional
number, and separate the actual node l of the tree in two nodes: add the
constraint xj ≤ αj� in the first node, the constraint xj ≥ αj� + 1 in the
second node and go to Step 2.

Step 2b. If Cx is not dominated by Cy, for all solution y ∈ Eff , then Eff :=
Eff ∪ {x}. If there exists y ∈ Eff such that Cy is dominated by Cx, then
Eff := Eff\{y} ∪ {x}. Determine the sets Bl, Nl and Hl, If Hl = ∅, then
the corresponding node l is saturated, go to Step 2. Else, add the constraint∑

j∈Hl

xj ≥ 1 to obtain the set Sl+1, solve the corresponding program using

the dual simplex method and let x be an optimal solution, If x is an integer
solution, go to Step 2b. Else, go to Step 2a.

4 Main Result

In this section, justifications of steps described in the above method are es-
tablished. The following results show that, at each step l of the method, no
integer efficient solution of the set Sl can be ignored when we consider the set
Sl+1 ⊂ Sl. Consider the optimal simplex tableau with the integer solution x∗l
and note D′ = {x ∈ D|x integer and x �= x∗l }, D ⊆ Sl.

Lemma 1. S′
l = S′

l+1 ∪ T ′
l+1

Proof. Let x ∈ S′
l . Then x is in the closed domain generated by the Dantzig cut∑

j∈Nl

xj ≥ 1. As Hl and Nl\Hl define a partition of set Nl, the Dantzig cut can

be written as
∑

j∈Hl

xj +
∑

j∈Nl\Hl

xj ≥ 1.

If the solution x satisfies the inequality
∑

j∈Hl

xj ≥ 1, then x ∈ S′
l+1. If not,

∑

j∈Nl\Hl

xj ≥ 1 and hence x ∈ T ′
l+1.

Consequently, x ∈ S′
l+1 ∪ T ′

l+1, and S′
l ⊆ S′

l+1 ∪ T ′
l+1.

In the other hand, it is clear that S′
l+1 ∪ T ′

l+1 ⊆ S′
l and we can conclude that

the equality is true. ��

Theorem 1. Let x �= x∗l be an integer efficient solution in domain Sl, then x
is located in set S′

l+1.

Proof. Let x �= x∗l be an integer solution in domain Sl such that x /∈ S′
l+1, then

by the above lemma x ∈ T ′
l+1. Hence, the coordinates of x check the following

inequalities:
∑

j∈Hl

xj < 1 and
∑

j∈Nl\ Hl

xj ≥ 1.

This is equivalent to the following conditions: xj = 0 for all j ∈ Hl, and
xj ≥ 1 for at least one index j ∈ Nl\ Hl. By using the simplex table in x∗l , the
following equality holds for all criterion q ∈ {1, ..., r}:
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cqx = cqx∗l +
∑

j∈Nl

ĉqjxj

=⇒ cqx = cqx∗l +
∑

j∈Hl

ĉqjxj +
∑

j∈Nl\Hl

ĉqjxj

=⇒ cqx = cqx∗l +
∑

j∈Nl\Hl

ĉqjxj

Hence cqx ≤ cqx∗l for all criterion q ∈ {1, ..., r}, with cqx < cqx∗l for at least one
criterion since ĉqj ≤ 0 for all j ∈ Nl\Hl.

We conclude that solution x is not efficient and then, all efficient integer
solutions in domain Sl belong to domain S′

l+1. ��

Corollary 1. The constraint
∑

j∈Hl

xj ≥ 1 define an efficient cut.

Proof. It is clear that
∑

j∈Hl

xj ≥ 1 is an efficient valid constraint by the above

theorem, since all integer efficient solutions in the current domain Sl check
this constraint. Moreover, the current integer solution x∗l does not satisfy this
constraint since xj = 0 for all j ∈ Hl. In conclusion, we can say that the con-
straint

∑

j∈Hl

xj ≥ 1 is an efficient cut. ��

Theorem 2. The algorithm described bellow generates all the efficient integer
solutions and terminates in a finite number of iterations.

Proof. The set S of feasible solutions of problem (P ) being compact, it contains a
finite number of integer solutions. At each step l of the algorithm, one determines
an integer solution x∗l when there exists. By taking into account the lemma and
theorem above, at least the solution x∗l is eliminated when a cut is added. In the
other hand, when the set Hl is empty the corresponding solution x∗l is an ideal
point and the current node can be saturated since no criterion can be improved.

��

5 Computational Results

The method was implemented in a Matlab 7.0 program, using PC pentium 4,
CPU 1.60 GHz 512 MB RAM. All the procedures in the method were pro-
grammed by our students and no packages are used. The method was tested
with randomly generated m constraints, m ∈ {5, 10} and r objective functions,
r ∈ {4, 10}. The coefficients are uncorrelated integers uniformly distributed in
the interval [20, 90] for constraints and [30, 100] for objective functions. For
each constraint j, the right-hand side value bj is set to maximum value be-
tween α% of the sum of the coefficients (integer part) of each constraint, where
α ∈ {17, 20, 25} , and the maximum value of the coefficients. Problems with
n variables, n ∈ {20, 25, 30}, are considered. The variables are bounded and
take the possible values 0, 1 and 2. For each instance (n,m, r, α), a sequence
of 20 problems is solved and the whole efficient solution set was generated for
all these problems. In the last column of each table, EC/C indicate the ratio
between the number of efficient cuts and the total number of the used cuts.
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Table 1. Computational results

(n, m, r, α) Efficient Solutions CPU(s) Efficient Cuts EC/C
Mean Max Mean Max Mean Max Mean

(20,5,4,25) 99.7 216 281.6 342.2 241.6 340 96%
(20,10,4,25) 60.1 228 265.8 306.9 157 195 98.9%
(20,10,10,25) 763.6 1889 311.73 378.45 147.3 182 99%
(25,5,4,20) 76.5 152 1280.1 1609.2 665.5 807 99.8%
(25,10,4,20) 48.8 140 1082.5 1179.4 365,3 434 99.7%
(25,10,10,20) 1277.4 3749 1354.6 1853.5 378.7 438 98%
(30,5,4,17) 119.9 300 2224.4 2553 905.4 1019 99.8%
(30,10,4,17) 36.4 47 2167.7 2351.4 574.2 624 99.8%

(20,20,4,25) 24.35 48 46.92 67.7 382.6 588 100%
(25,25,4,20) 35.8 142 184.29 255.4 771.1 1242 100%
(30,30,4,17) 33.2 119 587.3 870.6 963.4 2062 100%

In the first experimentation, the MOILP problems considered are of general
form and the cumulative results are reported in the first part of Table 1. Ob-
viously in this case, the results show that the CPU time increases rapidly with
the data size, the method being exact, but the number of criteria does not sig-
nificantly increase the CPU time. In the other hand, it should be noted that the
ratio EC/C tends towards 100%, which proves that almost all the added cuts
are efficient cuts. This means that in most cases, the built set Hl is different
from the set Nl of non basic indices variables. Let us note also that the method
becomes faster when the size of the set Hl is small, because the domain to re-
move from the feasible solutions set is more large. This happens particularly
when the constraints matrix is triangular. In the second part of Table 1, we have
reported the results of particular MOILP treated problems with triangular con-
strained matrices. In this case, the CPU time decreased, but in the same time,
the number of efficient cuts increased. This proves that the removed domains
contain many non efficient integer solutions that the method will not have to
generate.

The method described in [8] was also programmed for searching the integer
efficient set. We give hereafter the results obtained:

Table 2. Comparative results given on average with 4 objectives

n m Eff Our method Sylva & Crema
iter CPU(s) iter CPU(s)

5 5 21.2 577 0.34 51569 813.68
10 5 25.2 1314.6 0.59 142111.6 3058.37
15 5 24.8 2720.8 1.27 187036 2830.17
10 10 20.6 1018.8 0.64 66245.6 907.89
15 10 16.8 2086 0.82 51976 291.94
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where iter represents the number of simplex iterations and Eff is the cardinality
of the efficient set.

As expected, the size of ILP problems to be solved is closely related to the
number of criteria and the CPU time grows faster with the size of the data
compared to our method. However, a subset of efficient solutions can be obtained
as soon as the calculation is interrupted unlike our method which gives the
efficient set at the end of the algorithm.

6 Conclusion

In this paper, a new exact method combining the well-known principle of branch-
ing in integer linear programming with a new efficient cut is described to gener-
ate all integer efficient solutions of a MOILP problem. It can be considered as
a general method dedicated to MOLP problems with integer as well as zero-one
decision variables can be solved by the method. The comparative study proves
that our method is faster than that proposed by Sylva & Crema whose CPU
time increases quickly of one iteration to another, because of the additional con-
straints and variables. The method was tested only on medium size problems
since the problem is too difficult to solve. However, the tree structure of the
proposed algorithm can be parallelized in order to allow the resolution of large
size problems.
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Abstract. A well-known method to represent a partially ordered set P
consists in associating to each element of P a subset of a fixed set
S = {1, . . . , k} such that the order relation coincides with subset in-
clusion. Such an embedding is called a bit-vector encoding of P . Such
encodings are economical with space and comparisons between elements
can be performed efficiently via subset inclusion tests. As a consequence,
they have found applications in databases, knowledge representation,
distributed computing or object-oriented programming. The main issue
consists in minimizing the size of the encoding, i.e. the cardinal of S, in
order to get the best storage space and comparison speed. This smallest
size is called the 2-dimension of P . Its computation is known to be NP-
hard in the general case [1] and the complexity is open for trees which
are an important class of orders encountered in practice.

Finding heuristics which provide encodings of small size is challenging
and it has yielded many works in the general case and in the particu-
lar case of trees. Our paper presents a new algorithm for trees which
improves all previously known heuristics for trees.

1 Introduction

Partially ordered sets (orders for short) occur in numerous fields of computer
science, like distributed computing, programming languages, databases or
knowledge representation. Such applications have raised the need for storing
and handling them efficiently. Many ways of encoding partially ordered sets have
been proposed in the literature. Depending on the purposes, several criteria are
commonly considered to guide the choice of the most appropriate encoding. One
may cite the compromise between speeding up operations and saving space, the
choice between dynamic or static data structures with regard to possible modifi-
cations of the order, the complexity of generating the encoding from usual data
structures (like matrices or lists of successors), the restrictions on the data struc-
tures imposed by hardware and software (e.g. storing the order in a database
which can be then accessed only by means of SQL requests). Performing fast
comparisons between elements while saving space is the most usual issue.

Here is a non-exhaustive list of approaches that have been studied: numbering
the elements in order to compress their lists of successors [2,3], partitioning

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 77–86, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the order into nice subsets like antichains [4,5,6] or chains [7,5,8,9,10], mixing
numbering and partitioning [11,12], seeing the order as the inclusion order on
some geometrical shapes [13,14], describing the order as the union of nice orders
on the same set of elements [15,16], describing the order by combinations of
boolean formulas on integer tuples [17,18,19,20], focusing on lattice operations
[21,22], embedding the order into another one which is known to have a nice
representation [23,24].

In this article, we study bit-vector encodings of orders which are embeddings
into boolean lattices. In other words, let P = (X,≤P ) be an order, a bit-vector
encoding of P is a mapping φ from X into 2S (the set of all the subsets of a set S,
ordered by inclusion) such that for all x, y∈X , x ≤P y if and only if φ(x) ⊆ φ(y).
The size of the encoding φ is the cardinal of S. It is well-known that there always
exists a canonical bit-vector encoding embedding P into 2X and defined for all
x ∈ X by φ(x) = {y ∈ X |y ≤P x}. A classical implementation of bit-vector
encodings associates to each element x a vector Vx of |S| bits where bit i is equal
to 1 if i ∈ φ(x) and equal to 0 otherwise. In that case, checking whether x ≤P y
is equivalent to check whether Vx OR Vy = Vy on the vectors. Fig. 1 illustrates
the two representations of such embeddings.

images of the elements in S={1,2,3,4,5,6}

14 24 34 15

54 16 3626

0

vectors of bits

000010
000100

000000

100010001100010100100100

100001 001001010001

Fig. 1. The two representations of a bit-vector encoding.

Bit-vector encodings provide a compact way to store an order. The size of a
bit-vector encoding can be really lower than the n bits per element required for
instance by the binary matrix storage of the order relation (where n is the
number of elements). Concerning the speed of the inclusion tests, checking
whether Vx OR Vy = Vy on the vectors of bits uses elementary bitwise boolean
operations, and the speed is proportional to the size of the encoding divided
by the length of machine words. For those reasons, such encodings have been
used for several types of applications, e.g., databases [21], knowledge represen-
tation [25], object oriented programming [6].

The critical parameter is the size of a bit-vector encoding and its minimization
improves both space compression and comparison speed. Given an order P , the
smallest size of a bit-vector encoding of P is called the 2-dimension of P and
denoted Dim2(P ). Originally defined in 1963 [26], this parameter has yielded
many studies in mathematics and later in computer science. Its computation
is known to be NP-hard in the general case (see [1] for a survey). Neverthe-
less the assets of bit-vector encodings have urged to design good heuristics for
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applications. Beyond algorithms for the general case [], the class of trees has
been specifically studied by several authors: it belongs to many classical classes
of orders and in many applications, the orders involved are trees. Note that since
we deal with orders, those trees are rooted.

Our contribution is the design of a new heuristic for trees called Generalized
PolychotomicEncodingproviding bit-vector encodings ofvery small size. Although
it does not compute the 2-dimension, it improves the best known heuristic for trees
designed by Filman and called Polychotomic Encoding [27]. Section 2 surveys pre-
vious results about bit-vector encodings of trees and presents a general formulation
of several heuristics from literature. Using this formulation, we show in Section 3
how to improve Filman’s heuristic. We first prove that for any tree, the size of the
encoding produced by our algorithm is always smaller than Filman’s one. Then
in Section 4, we apply our algorithm to a set of benchmarks to compare our al-
gorithm with Polychotomic Encodings and Dichotomic Encodings, another former
heuristic.

2 State of the Art

2.1 Previous Works

The 2-dimension of two particular cases of trees is known for long: chains and
antichains. A chain P = (X,≤P ) is an order such that ∀x, y ∈ X , x ≤P y or
y ≤P x. An antichain P = (X,≤P ) is an order such that ∀x, y ∈ X , neither
x ≤P y nor y ≤P x.

Proposition 1 (Folklore). Given a chain P = (X,≤P ) with n elements, then
Dim2(P ) = n−1. Let x0, x1, . . . , xn−1 be the n elements of P ordered by x0 <P

x1 <P . . . <P xn−1, then an optimal bit-vector encoding φ using colors from S =
{1, . . . , n− 1} is given by φ(x0) = ∅ and φ(xi) = {1, . . . , i} for all 1 ≤ i ≤ n− 1.

Proposition 2 (Sperner [28]). Given an antichain P = (X,≤P ) with n el-
ements, then Dim2(P ) = sp(n) where sp(n) = min{k|

(
k

�k/2�
)
≥ n}. An opti-

mal bit-vector of P is obtained by associating with each x ∈ X a combination
of sp(n)/2� elements from S = {1, . . . , sp(n)}.

There exists a tight approximation of the numbers sp(n) for n ≥ 2.

Proposition 3 ([1]). Let n ≥ 2 and sp(n) = min{k|
(

k
�k/2�

)
≥ n}. Then

log2(n) + log2 log2(n)/2 < sp(n) < log2(n) + log2 log2(n)/2 + 2.

Hence sp(n) ∈ {log2(n) + log2 log2(n)/2 + 1�, log2(n) + log2 log2(n)/2 + 2�}.

For instance, sp(2) = 2, sp(3) = 3, sp(4) = 4, sp(5) = 4 and sp(100000) = 20.
Caseau is the first to have studied bit-vector encodings for the whole class

of trees [29]. Let C be a chain x0, x1, . . . , xp of a tree T , he defines the weight
of this chain by weight(C) =

∑
0≤i≤p deg(xi) (where deg(xi) is the number of
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children of xi). The size of Caseau’s encoding for T is the maximum weight
over all the chains of T . After a first improvement by Krall, Vitek and Hor-
spool [30] based on the coloring of a conflict graph, Caseau, Habib, Nourine
and Raynaud provided a better heuristic where the output size for a tree T
is the maximum over all the chains C of weight(C) =

∑
0≤i≤p sp(deg(xi)) [31].

Raynaud and Thierry then introduced a new heuristic based on a balancing prin-
ciple [32]. Their Dichotomic Encodings were improved by Filman’s Polychotomic
Encodings [27] who managed to generate bit-vector encodings smaller than all
previously known heuristics.

2.2 A Generic Algorithm

The following algorithm can be viewed as a generic method to encode trees. It uses
a depth-first search of the original tree to determine the number of bits needed for
distinguished each children of each node. For a node t with children (x1, ..., xk)
the algorithm computes recursively the number of bits needed to represent each
node xi (so called weight). Nodes with no children have a weight of 0.

Algorithm 1. Encode(T )
Input: T a tree
Output: A number of bits being enough for encoding T
begin

if T is a leaf then
return 0

else
for xi ∈ Children(T ) do

si = Encode(xi)

return W(S =< s1, ...sn >)

end

The crucial point of this algorithm lives in the function noted by W(). For an
orderly sequence of integers S =< s1, ..., sn > which corresponds to the weight
of the children of a given node, the W() function returns a number of bits
necessary to encode it. In the following we give several manners to implement
the W() function.

The first one corresponds to the Dichotomic Encoding [32]. This strategy con-
sists in determining the weight of a sequence S according to its number of ele-
ments. If the sequence S contains only one element, S weighs one more than this
unique element. In the case of S contains two elements its weight is two more than
the largest element of S. On the other hand if S contains at most three elements
the Dichotomic Encoding selects the two smallest elements (i.e., s1 and s2), and
replaces them by an element weighing s2 + 2, and iterates this process.

More formally the behaviour of the Dichotomic Encoding is given by the
following recursive function
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D(S) =

⎧
⎪⎪⎨

⎪⎪⎩

0 |S| = 0
s1 + 1 |S| = 1
s2 + 2 |S| = 2
D(< s3, ..., s2 + 2, ..., sn >) |S| > 2

The idea of Filman’s Polychotomic Encoding rests in the following observation.
A sequence S =< s1, s2, ..., sn >, where the distance between s2 and sn is strictly
lower than 2, is called flat sequence. Filman has shown that for a flat sequence we
have sn + sp(n) ≤ D(S). Consequently, in case of flat sequence it’s always better
to use sn+sp(n) bits rather than the encoding given by the Dichotomic Encoding.
In all other case Polychotomic Encoding works as the Dichotomic Encoding. Its
functioning is formalized by the following.

P(S) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 |S| = 0
s1 + 1 |S| = 1
s2 + 2 |S| = 2
P(< s3, ..., s2 + 2, ..., sn >) |S| > 2 and sn − s2 ≥ 2
sn + sp(n) |S| > 2 and sn − s2 < 2

In the following we give a new heuristic based on a generalization of the
Filman’s observation.

3 Heuristic

3.1 Description

In this section we present a new improvement for sequence encoding. On the prin-
ciple of Filman’s strategy which uses sn + sp(n) bits to encode a flat sequence.
We can wonder if we cannot use a similar method when the sequence presents
landings. Landings can be seen as a flat subsequence. As example the following
sequence owns two landings, one between s1 and s5, and another one between s6
and s9. Indeed, one can check that s5 − s2 ≤ 1 and s9 − s7 ≤ 1.

< 1, 2, 2, 3, 3, 8, 8, 9, 9, 14, 19>

Our new heuristic called Generalized Polychotomic Encoding detects such land-
ings (i.e., sk−s2 < 2), and decides if it’s interesting to merging it. It’s interesting
to merge a landing of size k when the distance between elements sk and sk+1 are
big enough (i.e., sk + sp(k) ≤ sk+1). In all other cases Generalized Polychotomic
Encoding works as the PolychotomicEncoding. Generalized Polychotomic Encod-
ing can be formalized as follow

G(S) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 |S| = 0
s1 + 1 |S| = 1
s2 + 2 |S| = 2
sn + sp(n) |S| ≥ 2 and sn − s2 < 2
G(< sk + sp(k), sk+1, ..., sn >) |S| ≥ 2 and ∃k ≤ n− 1

with sk − s2 < 2, sk + sp(k) ≤ sk+1

G(< s3, ..., s2 + 2, ..., sn >) in other cases
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1 2 2 2 3 7

2 2 3 3 7

 3 3 4 7

4 6 7

10

1 2 2 2 3 7

7 7

9

Fig. 2. On left, Polychotomic Encoding computation induces three Dichotomic steps
and ends with the Filman’s step. P(< 1, 2, 2, 2, 3, 7 >) = 10. On right our technique
detects the flat subsequence < 1, 2, 2, 2, 3 > and merge it to obtain a 7. We then obtain
G(< 1, 2, 2, 2, 3, 7 >) = 9.

The following example shows the interest of Generalized Polychotomic En-
coding on the sequence < 1, 2, 2, 2, 3, 7 >.

If the sp(k) values have been precomputed and can be accessed in constant
time, the computation of G(S) from S has a linear time complexity.

3.2 Theoretical Results

Let S be a sequence, then Generalized Polychotomic Encoding is never worse
than Polychotomic Encoding. In other words we have

Proposition 4. For any sequence S, G(S) ≤ P(S).

See Appendix for the proof.
Let S a well-chosen sequence, the difference between the respective sizes of

the Polychotomic Encoding of S and the Generalized Polychotomic Encoding of
S can be as large as wished. In other words we have.

Proposition 5. For any positive integer n, there exists a sequence S such that
P(S) − G(S) ≥ n.

Proof. Let us consider the following lemma (the proof is given in Appendix):

Lemma 1. Let S =< 0, 0, ..., 0, sp(k) > be a sequence of size k+1 with k = 2p.
Then we have

– G(< 0, 0, ..., 0, sp(k) >) = G(< sp(k), sp(k) >) = sp(k) + 2;
– P(< 0, 0, ..., 0, sp(k) >) ≥ sp(k) + sp(2p−(sp(k)/2));

Let Δ = P(S) − G(S). From lemma 1 we obtain Δ = sp(2p−(sp(k)/2)) − 2. Let
us now show that the difference between P(S) and G(S) growths with k. From
Proposition 3 in one hand we have :

Δ ≥ log2(2p−(sp(k)/2))− 2
≥ p− sp(k)/2− 2

(1)
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on the other hand we obtain :

sp(k) = sp(2p) ≤ log22p + (log2log22p)/2 + 2
≤ p + (log2p)/2 + 2

(2)

Form equations 1 and 2 we conclude

Δ ≥ p− [(p/2) + (log2p)/4 + 1)− 2
≥ p/2− (log2p)/4− 3

(3)

As example Δ becomes positive with p = 8 and Δ is equal to 3 with p = 13.

4 Experimental Results

We’re going to evaluate experimentally our algorithm on ”natural” hierarchies,
and on random trees. This experiment aim is to compare Dichotomic Encoding,
Polychotomic Encoding, and Generalized Polychotomic Encoding.

The natural hierarchies mainly come from programming languages (Classes
and Packages hierarchies) and Artificial Intelligence purpose. As classes hierar-
chies the following examples are shown: VisualWorks2, NeXTStep, Digitalk3,
ET++. Those examples are the benchmarks of [30,32,27]. We use the package
hierarchies of Java 1.3 and JavaSE6. As example of an AI’s hierarchy our heuris-
tic has been applied to a biological taxonomy named Mammals. Table 1 presents
the number of bits required to encode that trees.

The random trees are produced by using the following protocol: we fix the max-
imal height hMax and the maximum branching factor bMax as two parameters.
From the root, we randomly choose its number of children (uniformly between 1
and bMax). And for each of its children we choose uniformly a boolean which deter-
mined if it is a leaf or not. This process iterates until it reaches the maximal height.
The experimental study carries on 50000 trees to avoid special instances. Table 2
presents the average number of nodes and the averages of the encoding for every

Table 1. Generalized Polychotomic Encodings for the benchmarks of [30,32,27]

D P G
Class
VisualWorks2 32 20 19
Digitalk3 27 26 26
NeXTStep 18 17 17
ET++ 20 20 19
Packages
Java 1.3 27 23 23
JavaSE 6 29 26 26
AI
Mammals 30 26 25
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Table 2. Random trees are defined by a maximal height (”hMax”), a branching factor
(”bMax”) and a number of nodes (”Nodes”). This table summerizes the value of the
different functions D, P and G for each kind of tree.

hMax bMax Nodes D P G Distance
5 20 53,5 15,9 14,2 13,4 6%

40 103,2 18 16 14,9 7,4%
200 503,5 22,7 20 18,1 10,5%
500 1252,8 25,2 22,3 19,6 13,8%
1000 2498,7 27,2 24 20,8 15,4%

10 20 106,1 25,6 24 23,8 0,8%
40 205,9 27,9 25,9 24,8 4,4%
200 1004,8 32,7 30 28 7,1%
500 2509,9 35,2 32,3 29,7 8,8%
1000 5011,8 37,2 34 30,9 10%

20 20 211,5 45,1 43,1 42,7 1,9%
40 411,1 47,6 45,7 44,6 2,5%
200 2008,8 52,6 50 48 4,2%
500 5005,8 55,1 52,3 49,6 5,4%
1000 9983,1 57,2 54 50,8 6,3%

couple of parameters. As well as the average distance between the Polychotomic
Encoding and the Generalized Polychotomic Encoding.

Our different experimental studies enlighten us on several points. First, we
can remark that Generalized polychotomic Encoding rarely improves the poly-
cotomic Encoding on natural hierarchies. From this observation we can deduced
that landings appear rarely in nature. Second, experiments on random trees
show that improvement of Generalized polycotomic Encoding compared to fil-
man’s encoding is proportional to the ratio between maximal branching factor
and the maximal height. In other words, the more the considered tree is crushed,
the more our strategy improves that of Filman. Since, crushed trees are conve-
nient in appearances of landings.

5 Conclusion

Although the complexity of computing the exact 2-dimension of trees remains
open, we have provided a new heuristic which produces the smallest bit-vector
encodings of trees at present, and thus a better upper bound on the 2-dimension
of trees.

References

1. Habib, M., Nourine, L., Raynaud, O., Thierry, E.: Computational aspects of the
2-dimension of partially ordered sets. Theor. Comput. Sci. 312(2-3), 401–431 (2004)

2. Agrawal, R., Borgida, A., Jagadish, J.V.: Efficient management of transitive re-
lationships in large data and knowledge bases. In: ACM SIGMOD International
Conference on Management of Data, pp. 115–146 (1989)



Generalized Polychotomic Encoding 85

3. Schubert, L.K., Papalaskaris, M.A., Taugher, J.: Determining type, part, color and
time relationships. Computer 16, 53–60 (1983)

4. Cohen, N.H.: Type-extension type tests can be performed in constant time. ACM
Transactions on Programming Languages and Systems 13(4), 626–629 (1991)

5. Fall, A.: The foundations of taxonomic encodings. Computational Intelligence 14,
598–642 (1998)

6. Vitek, J., Horspool, R., Krall, A.: Efficient type inclusion tests. In: OOPSLA 1997,
pp. 142–157 (1997)

7. Bouchet, A.: Etude combinatoire des ordonnés finis, Applications. PhD thesis,
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Abstract. We discuss a mixed-integer nonlinear programming formula-
tion for the problem of covering a set of points with a given number of
slabs of minimum width, known as the bottleneck variant of the hyper-
plane clustering problem. We derive several linear approximations, which
we solve using a standard mixed-integer linear programming solver. A
computational comparison of the performance of the different lineariza-
tions is provided.
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1 Introduction

We investigate some mathematical programming formulations for the following
optimization problem.

bottleneck Hyperplane Clustering Problem (bHCP). Given in-
tegers n,m, d > 0 and a set N = {pi ∈ Rd | i ≤ n}, find a set
M = {(wj , w

0
j ) ∈ Rd×R | j ≤ m} and an assignment x : N×M → {0, 1}

of points to hyperplanes such that max
i≤n,j≤m

xij=1

|wj ·pi−w0
j |

||wj ||2 is minimum.

In other words, we want to partitionN into m clusters whose points are projected
onto a (d−1)-dimensional subspace in such a way that the maximum Euclidean
distance between a point and its projection is minimized. Our problem is a
special case of a projective clustering problem in which all the subspaces are of
the same dimension. It is also known as the Hyperplane Cover Problem [8],
the m-Hyperplane Center Problem [14] and the Slab Width Problem

[6] in literature.

If we fix max
i≤n,j≤m

xij=1

|wj ·pi−w0
j |

||wj ||2 to some maximum tolerance, geometrically our

problem is that of finding slabs of minimum width that cover all the points
— thus the name bottleneck. In the case when the slabs are of zero width,
the problem at hand is known as the k-line center problem in which lines are
used instead of slabs. The k-line center problem has been studied extensively in

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 87–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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literature: [14] reports a table with summarized complexities of the developed
algorithms. Most of the past work studied the problem from a computational
geometry point of view; most results are theoretical in nature. To the best of
our knowledge, mathematical programming based solution approaches for the
bHCP have not been extensively studied yet.

1.1 Previous Work

Clustering techniques are widely studied in areas ranging from data mining to
information retrieval and pattern recognition to name a few. They also arise in the
context of shape fitting in geometric covering problems where given a set of shapes
the goal is to choose the one that covers the data points w.r.t. some objective.
Deciding whether a set of n points in R2 can be covered with m lines was shown
to be NP-complete in [13]; trying to approximate the width of the minimum slab
that covers the point is also NP-complete.

A sublinear time randomized algorithm in which all but (1−γ)n of the points
are covered is presented in [14]. They prove that the m-q-dimensional hyperplane
center problem (where q is the dimension of the subspace) can be solved in
Õ(dmq

γ
q+1). The described algorithm finds a collection of O(m log mdq

γ ) slabs of
width at most 2q times the optimum.

For points in R2 and R3, [1] present randomized algorithms which compute
O(m logm) strips of bounded width that cover the data points. Their algorithms
have run times of O(nm2log4n) if m2 logm ≤ n and O(n2/3m8/3log4n) for larger
m when d = 2 and O(n3/2m9/4polylog(n)) for d = 3.

A coreset framework based approach was proposed in [6]. It was shown that no
coreset exists for the problem of covering a set of points with 2 slabs in R3; however,
a (1 + γ) approximation algorithm for the same problem was also presented.

In [8], some fixed-parameter tractable algorithms which are based on general
techniques of parameterized complexity are presented. The main argument of
this work rests on the fact that certain parameters (such as the dimension) can
be used to limit the complexity of these problems.

Many variants of the bHCP have been proposed in the literature. [4] adapted
the k-means algorithm to the case of hyperplanes and treated the problem of
minimizing the sum of the Euclidean distances of points to the assigned hyper-
planes (for fixed m). Another variant minimizes the total number of hyperslabs
of a fixed width used to cover a set of points [2].

The rest of this paper is organized as follows. The mathematical programming
formulation of the bHCP is given in Sect. 2. Some exact reformulations are given in
Sect. 3. Three model-based approximating linearizations are proposed in Sect. 4.
Our computational results are discussed in Sect. 5. Sect. 6 concludes the paper.

2 Problem Formulation

Given a set of n points pi ∈ Rd (i ≤ n) we seek a set of m hyperplanes
(wj , w

0
j ) ∈ Rd+1 (j ≤ m) and an assignment x ∈ {0, 1}nm (such that xij = 1 iff
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pi is assigned to the hyperplane (wj , w
0
j ) for all i ≤ n, j ≤ m) that minimizes

the maximum of the Euclidean distances between the hyperplanes and their
assigned points. The following Mixed-Integer Nonlinear Programming (MINLP)
formulation correctly describes the problem:

min max
j≤m
i≤n

|wjpi−w0
j |

||wj ||2 xij

s.t. ∀i ≤ n
∑

j≤m

xij = 1

w ∈ Rmd

x ∈ {0, 1}nm.

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(1)

Computationally, the direct solution of (1) is problematic because (1) is non-
differentiable and has a singularity at w = 0.

3 Reformulations

Reformulations are symbolic transformations that are applied to the problem
formulation and yield modified formulations with different mathematical prop-
erties [10]. Within this paper, we shall make use of two types of reformulations:
opt-reformulations and approximations. Opt-reformulations guarantee that there
is an optimum of the reformulated problem corresponding to each optimum of
the original problem [11]. The precise definition of an approximation is given in
[11]; for our purposes, it suffices to know that an approximating reformulation
yields a sequence of reformulated problems dependent on a numerical parameter,
which “tends” to the original problem when the parameter tends to infinity. An
approximation is simply a problem in the sequence.

We first provide opt-reformulations that yield a differentiable MINLP. We
remark that if we require all vectors w to be normalized to 1, there is no need
for dividing the objective function terms through by ||w||2: the objective thus
becomes

min max
j≤m
i≤n

|wjpi − w0
j |xij

subject to added constraints

∀j ≤ m ||wj ||22 = 1. (2)

We reformulate the maximum operator by introducing an added nonnegative
continuous variable ε ≥ 0: the objective becomes

min ε

subject to added constraints

∀i ≤ n, j ≤ m ε ≥ |wjpi − w0
j |xij .
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Secondly, we reformulate the absolute values by introducing added nonnegative
continuous variables t+ij , t

−
ij ≥ 0, which yield reformulated constraints

∀i ≤ n, j ≤ m ε ≥ (t+ij + t−ij)xij , (3)

subject to added constraints

∀i ≤ n, j ≤ m wjpi − w0
j = t+ij − t−ij .

This reformulation is exact as long as a complementarity constraint
∑

i,j t
+
ijt

−
ij

= 0 is enforced; in this particular case, however, it is not necessary because of the
minimization direction of the objective function. Lastly, since the products t+ijxij

and t−ijxij involve a binary variable, they can be linearized exactly by replacing
them with added nonnegative continuous variables y+

ij , y
−
ij whilst adding the

following (linear) constraints:

∀i ≤ n, j ≤ m y+
ij ≤ min(Mxij , t

+
ij)

∀i ≤ n, j ≤ m y+
ij ≥ t+ij −M(1− xij)

∀i ≤ n, j ≤ m y−ij ≤ min(Mxij , t
−
ij)

∀i ≤ n, j ≤ m y−ij ≥ t−ij −M(1− xij),

where M is a large enough constant. We also remark that the intuitive meaning
of (3) is that ε should be bounded below by t+ij + t−ij if and only if xij = 1. This
can be written formally as:

∀i ≤ n, j ≤ m yij ≥ t+ij + t−ij ,

where yij is an added nonnegative continuous variable constrained to take value
ε if and only if xij = 1 (otherwise, it is free):

∀i ≤ n, j ≤ m yij ≤ ε+M(1− xij)
∀i ≤ n, j ≤ m yij ≥ ε−M(1− xij).

The latter approach provides an alternative linearization of the products.
The reformulations above therefore provide two different twice-differentiable

MINLP formulations for the bHCP:

min ε
s.t.∀i ≤ n, j ≤ m ε ≥ y+

ij + y−ij
∀j ≤ m ||wj ||22 = 1

∀i ≤ n, j ≤ m wjpi − w0
j = t+ij − t−ij

∀i ≤ n, j ≤ m y+
ij ≤ min(Mxij , t

+
ij)

∀i ≤ n, j ≤ m y+
ij ≥ t+ij −M(1− xij)

∀i ≤ n, j ≤ m y−ij ≤ min(Mxij , t
−
ij)

∀i ≤ n, j ≤ m y−ij ≥ t−ij −M(1− xij)
∀i ≤ n

∑

j≤m

xij = 1

w ∈ Rmd

x ∈ {0, 1}nm

y+,y−, t+, t− ∈ [0,M ]nm

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)
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min ε
s.t.∀i ≤ n, j ≤ m yij ≥ t+ij + t−ij

∀j ≤ m ||wj ||22 = 1
∀i ≤ n, j ≤ m wjpi − w0

j = t+ij − t−ij
∀i ≤ n, j ≤ m yij ≤ ε +M(1− xij)
∀i ≤ n, j ≤ m yij ≥ ε−M(1− xij)

∀i ≤ n
∑

j≤m

xij = 1

w ∈ Rmd

x ∈ {0, 1}nm

y, t+, t− ∈ [0,M ]nm

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5)

Proposition 1. If (w∗,x∗) is a global optimum of (4) (resp. (5)) then it is also
a global optimum of (1).

Proof. This follows by Defn. 2.3.10 and Lemma 2.3.11 in [10], because all the
reformulations involved are opt-reformulations.

Both (4) and (5) are extremely difficult problems to solve, due to the high number
of binary variables and the nonconvexity of (2). Exact solutions of such MINLPs
can be obtained via the spatial Branch-and-Bound (sBB) algorithm [9] only for
very small instances (≤ 10 points, ≤ 3 hyperplanes, ≤ 2 dimensions). MINLP
heuristics such as VNS [12] fare slightly better but are far from being able to
tackle realistically-sized instances.

4 Approximations

In this section we propose three different Mixed-Integer Linear Programming
(MILP) approximations for the problematic nonconvex constraints (2) in terms
of the �1 and �∞ norm, which can both be linearized exactly. We first remark
the following inclusion relationships:

U1 = {w | ||w||1 ≤ 1} ⊆ {w | ||w||2 ≤ 1} = U2

U2 = {w | ||w||2 ≤ 1} ⊆ {w | ||w||∞ ≤ 1} = U∞.

We shall exploit these inclusions to derive exactly linearizable approximations
for U2.

In the rest of this section, we shall discuss the exact linearization of both �1
and �∞ unit constraints. We shall then propose three different approximations
of (2): the �∞ approximation, the �1/�∞ “sandwiching” approximation, and the
�1/�∞ “alternating” approximation (shown graphically in Fig. 1).

4.1 Linearization of �1 Unit Constraint

The linearization of the �1 unit constraint:

∀j ≤ m ||wj ||1 = 1, (6)
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which can also be written as
∑

k≤d |wjk | = 1 for j ≤ m, proceeds by repeated
application of the AbsDiff opt-reformulation [10] to each absolute value term
|wjk|: let w+

jk, w
−
jk be added nonnegative continuous variables, replace (6) with:

∀j ≤ m
∑

k≤d

(w+
jk + w−

jk) = 1,

add the constraints:

∀j ≤ m, k ≤ d wjk = w+
jk − w−

jk,

and add the following exact reformulation of the linear complementarity condi-
tions w+

jkw
−
jk = 0 (for j ≤ m, k ≤ d):

∀j ≤ m, k ≤ d w+
jk ≤Mμjk

∀j ≤ m, k ≤ d w−
jk ≤M(1− μjk),

where for j ≤ m, k ≤ d μjk are added binary variables that are 1 if w+
jk has

nonzero value.

4.2 Linearization of �∞ Unit Constraint

The linearization of the �∞ unit constraint:

∀j ≤ m ||wj ||∞ = 1, (7)

which can also be written as maxk≤d |wjk | = 1 for j ≤ m, is a reformulation of the
narrowing type [11] denoted by InfNorm, and was proposed in [5] (informally,
a reformulation is a narrowing if it preserves at least one global optimum of the
original problem). In full generality it works as follows. Consider a mathematical
programming formulation P with a d-vector of variables x = (x1, . . . , xd) ∈ Rd

bounded in [−α, α] (for some α > 0) with the property that if x∗ is a feasible
solution of P then −x∗ is also a feasible solution of P with the same objective
function cost; and a constraint ||x||∞ = α. The InfNorm reformulation is as
follows:

– for all k ≤ d, add a binary decision variable uk to P ;
– delete the constraint ||x||∞ = α;
– add the following constraints:

∀k ≤ d xk ≥ α(1 − 2(1− uk)) (8)
∑

k≤d

uk = 1. (9)

This reformulation being a narrowing, it guarantees that at least one optimum
of the original problem is mapped into an optimum of the reformulation.
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Proposition 2. There exist an optimum of P which is also an optimum of
InfNorm(P ).

Proof. Constraint (9) ensures that there is at least an index k ≤ d such that, by
(8) and the fact that the upper bound for xk is α, the value of xk is exactly α:
this forces ||x||∞ to be precisely α. Suppose now there is a feasible values of x
with ||x||∞ = α such that xk �= α for all k. Since ||x||∞ = α, this implies there
is at least an index k ≤ d for which xk = −α. By the symmetry assumption, −x
is feasible and has the same objective function value as x.

4.3 Pure �∞ Approximation

This approximation is based on simply replacing (2) by (7) and applying
the InfNorm narrowing. Geometrically, we replace a hyperspherical feasible re-
gion with its hypercubical overapproximation, as shown graphically in
Fig. 1 (A).

A B C

Fig. 1. Three types of approximation: pure (A), sandwich (B), and alternating (C)

An equivalent pure �1 approximation (where (2) was replaced by (6) and
subsequently linearized) was tested but found to yield markedly inferior perfor-
mances, and thence discarded.

4.4 Sandwiching �1/�∞ Approximation

This approximation, depicted graphically in Fig. 1 (B), consists of replacing (2)
by the following constraints:

∀j ≤ m 1 ≤ ||wj ||1 ≤
√
d

∀j ≤ m
1√
d
≤ ||wj ||∞ ≤ 1.

The above constraints can be linearized exactly by applying the reformulations
of Sections 4.1 and 4.2.
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4.5 Alternating �1/�∞ Approximation

This approximation, depicted graphically in Fig. 1 (C), consists of replacing (2)
by the following disjunction:

∀j ≤ m (||wj ||∞ = 1 ∨ ||wj ||1 =
√
d).

This is modelled by introducing added binary variables μj ∈ {0, 1} for j ≤ m
which have value 1 if the constraint ||wj ||∞ = 1 is active and 0 otherwise, and
serve the purpose of alternating between �1 and �∞ unit norm constraints.

5 Computational Experiments

We considered a set of 8 instances whose statistics are given in Table 1. The
cancer instance is taken from the Wisconsin Prognostic Breast Cancer (WPBC)
Database [3]. The other instances are generated based on hyperplane geome-
try in [5]. All instances were solved using 6 different MILP formulations: (4)
and (5) with the “pure �∞” (Sect. 4.3), “sandwich” (Sect. 4.4) and “alter-
nating” (Sect. 4.5) approximations. All results were obtained on one core of
a quad-CPU Intel Xeon 2.4GHz with 8GB RAM using ILOG CPLEX
11.0 [7].

Table 1. Instance statistics

Instance n m d
cancer 194 3 2
esr 150 8 10 150 8 10
esr 210 8 10 210 8 10
sr 2000 7 4 2000 7 4
sr 250 10 10 250 10 10
sr 500 4 4 500 4 4
sr 750 10 10 750 10 10
hsynt 1500 8 3 1500 8 2
synt 35 2 3 35 3 2
synt 70 2 3 70 3 2

The results are given in Table 2. Each group of 5 columns describes the results
obtained by solving all instances in the test set with a particular formulation.
Within each group, we recorded: the value of objective function of the original

problem (1) ε = max
j≤m
i≤n

|wjpi−w0
j |

||w||2 xij computed using the solution given by the

approximation; the CPU time (limited to 1800 seconds of user time); the Branch-
and-Bound (BB) node index F where the recorded optimum was found; the total
number N of BB nodes explored within the allowed time; and the final optimality
gap reported by CPLEX (opt=0%). For each approximation type, boldface is
used to emphasize the original problem ((4) or (5)) yielding better results for
a particular measure (for F,N the comparative measure is F/N). Underlined
figures emphasize draws. Values marked by ∗ indicate a winning method for a
particular instance: this is chosen by looking at (in order of priority): ε, CPU,
gap, F/N .



Mathematical Programming Formulations for the bHCP 95

Table 2. Computational results

Instance (4)+Pure �∞ (5)+Pure �∞
ε CPU F N gap ε CPU F N gap

cancer 0.73∗ 1800.21 677574 760654 12.33% 0.915 1800.11 7671 209071 67.65%
esr 150 8 10 0.0744∗ 1800.21 13879 13980 100.00% 0.0896 1800.26 10164 11264 100.00%
esr 210 8 10 0.1704 1800.32 7874 8075 100.00% 0.1503∗ 1800.34 5371 5472 100.00%
sr 2000 7 4 0.4883 1802.44 507 607 100.00% 0.4339* 1802.78 534 536 100.00%
sr 250 10 10 0.1431* 1800.43 5751 5852 100.00% 0.2219 1800.48 1889 1990 100.00%
sr 500 4 4 0.3755 1800.43 6080 6181 100.00% 0.3588 1800.28 6260 6561 100.00%
sr 750 10 10 0.4059 1805.49 680 782 100.00% 0.3535* 1803.21 789 790 100.00%
hsynt 1500 8 3 0.4497 1800.89 511 812 100.00% 0.4368 1800.46 1911 2129 100.00%
synt 35 2 3 0.0561 6.33 5103 7500 opt 0.0556 31.53 10211 41062 opt
synt 70 2 3 0.0749 47.52 8661 10238 opt 0.0741 163.43 24223 62325 opt

Instance (4)+Sandwich (5)+Sandwich
ε CPU F N gap ε CPU F N gap

cancer 0.8922 1800.07 104385 119285 52.53% 0.9286 1800.12 105540 243340 53.52%
esr 150 8 10 0.1121 1800.28 18411 18612 100.00% 0.1006 1800.2 8841 8942 100.00%
esr 210 8 10 0.1593 1800.56 11158 11175 100.00% 0.157 1800.43 5964 6165 100.00%
sr 2000 7 4 0.5386 1803.35 504 507 100.00% 0.4863 1802.85 582 586 100.00%
sr 250 10 10 0.2008 1800.88 7984 8185 100.00% 0.1996 1800.41 4959 5060 100.00%
sr 500 4 4 0.3842 1800.56 14089 14589 100.00% 0.3743 1800.43 4969 4969 100.00%
sr 750 10 10 0.4939 1810.65 510 675 100.00% 0.528 1801.53 571 771 100.00%
hsynt 1500 8 3 0.5103 1801.88 860 1962 100.00% 0.416∗ 1800.6 1701 2002 100.00%
synt 35 2 3 0.0473 6.7 891 3314 opt 0.0482 127.63 28025 117132 0.27%
synt 70 2 3 0.0656 199.78 84489 84490 opt 0.0664 648.44 71625 334408 opt

Instance (4)+Alternating (5)+Alternating
ε CPU F N gap ε CPU F N gap

cancer 0.73 1800.11 131488 163688 51.47% 0.82 1800.11 168988 269689 50.82%
esr 150 8 10 0.1511 1800.2 15374 15875 100.00% 0.1076 1800.26 11060 11161 100.00%
esr 210 8 10 0.2184 1800.29 14284 14685 100.00% 0.1871 1800.29 7374 7575 100.00%
sr 2000 7 4 0.5013 1801.75 90 113 100.00% 0.4845 1802.21 483 485 100.00%
sr 250 10 10 0.2249 1800.35 7394 7595 100.00% 0.2667 1800.42 4669 4770 100.00%
sr 500 4 4 0.2871 1800.49 9095 9103 100.00% 0.242* 1800.19 7773 8092 100.00%
sr 750 10 10 0.4681 1802.23 487 489 100.00% 0.4429 1802.32 521 625 100.00%
hsynt 1500 8 3 0.4741 1800.75 478 879 100.00% 0.4713 1800.65 501 2204 100.00%
synt 35 2 3 0.0462 155.08 86293 90612 opt 0.0462∗ 85.31 12201 50181 opt
synt 70 2 3 0.0584∗ 206.55 14715 45222 opt 0.0596 259.43 50931 73956 opt

6 Conclusion

We presented several approximate MILP formulations for the bHCP. In
particular, we discussed some techniques for linearizing a unit �2 norm
constraint approximately. We evaluated the performance of the linearizations
on an instance test set. However due to lack of space we do not present all the
results. It was seen that approximations derived from (5) were better than those
derived from (4). However, there was no clear winner within that group.
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Abstract. In this paper we focus on decision tree management for effectiveness 
enhancement of constraint programming hybrid algorithms. We propose a de-
terministic method that dynamically manages the cut of tree-branches and the 
access to the decision variables. Both principles are based on the discovery and 
the memorizing of variable/value associations that lead to unfeasible solutions. 
The work is thus about a learning system which progressively extends the algo-
rithm knowledge on the problem and increases its effectiveness. We have tested 
the method on GRAPH and CELAR frequency assignment benchmarks. The 
current results are on the level of the best-known ones on the Min-Span prob-
lems and they improve the success percentages on most of these problems. 

Keywords: Constraint propagation, Nogood Tabu list, Frequency assignment. 

1   Introduction 

Constraint satisfaction problems (CSP) [TSA93] are generally represented by a set of 
variables with domain definition and a set of constraints on the variables. They have 
the common characteristic to be strongly combinatory and they induce high  
algorithmic complexity as most of them are NP-complete [GAR78] [PAP94]. Many 
algorithms have been developed to solve the CSP; they are usually classified in two 
categories. On one hand, the complete methods which guarantee to obtain an optimal 
solution to a given problem. Their disadvantages are that the CPU time increases 
exponentially with the size of the problem. In addition, incomplete methods that gen-
erally are an iterative improvement process during which the algorithm seeks one 
assignment satisfying the greatest number of constraints. In that case, the final objec-
tive is to satisfy all constraints. Contrary to the complete approaches, the incomplete 
methods cannot conclude with the unfeasibility of a problem but they are fast enough 
to find a good solution. The complete methods are mainly based on the concept of 
backtracking search [TSA93]. Search is undertaken by exploring a decisional tree 
structure. At each iteration, the partial solution is extended gradually by binding a 
variable not yet instantiated to a value of its domain. If a given variable has no more 
coherent value, the algorithm uninstantiates (backtrack) one of the variables previ-
ously assigned. Several techniques have been proposed to improve the performances 
of these algorithms:  
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−  The use of heuristic rule to determine the instantiation order of the variables ei-
ther in a static way using the variables degrees or dynamically during search 
[BAC95] ;  

−  Preventing in advance the blocking assignments by the use of constraint propaga-
tion mechanisms (LookAhead). The work on Forward Checking (FC)  [HAR80] 
and the method of Maintaining Arc-Consistency (MAC) [SAB94] are in this 
category;  

−  Other methods evaluate the blocking degree of each variable in order to operate 
the backtracking procedure such as Conflict-Directed Backjumping (CBJ) 
[PRO93, CHE01] or Dynamic Backtracking method, DBT [GIN93, JUS00]. 

 

The incomplete or approximate methods based on local search, heuristics or stochas-
tic methods have been largely used for CSP resolution. This panel includes the greedy 
algorithms and simplest iterative modification methods, to most sophisticated meta-
heuristics (Tabu Search, Genetic Algorithms, Simulated Annealing) [HAO99, 
JAM03]. A great interest was also carried to the filtering algorithms [DEB97; 
DEB98] allowing the simplification of the CSP before or during the search. The most 
used methods reduce the original problem in such manner to obtain an equivalent CSP 
in term of solutions and to conserve the arc-consistency property. Filtering algorithms 
remove the values which obviously cannot belong to the solution and thus reduce 
search space. Complete methods present the advantage of result accuracy (proof of 
unfeasibility and ability to provide the whole solutions); however they find their lim-
its with the increase in the size and the complexity of the considered problems. In 
particular, in the case of NP-complete problems, the combinatory explosion of search 
space induces a prohibitory calculation cost. In this case, with the loss of the exact 
resolution, the user can then turn to the incomplete methods which prove their effec-
tiveness in finding a good solution in a reasonable time for larger problems.   

In this context, an emergent option consists in combining the two resolution para-
digms in order to profit from the respective performance of each one of them. 
[LAM06] presents an overview of literature on hybridization between the complete 
and incomplete methods. [FOC02] draws up a panorama of the Local Search (LS) 
applications in the context of the constraint programming. [SHA98] has proposed a 
Local Search method using the tree search exploration to make the extended 
neighborhood more competitive. Other methods use the Local Search to repair the 
partial solution when an inconsistency is met [JUS02]. CN-Tabu method [VAS00] 
[DUP05] uses the Tabu concept to temporarily prevent the instantiation of a variable 
with an already tested value. A lot of these approaches have shown very competitive 
results on several problems.  

In this paper, we present a new hybrid optimization algorithm to solve CSP prob-
lem, which combines mechanisms resulting from constraint propagation and Tabu 
Search. Very often this kind of combination results in a more effective search able to 
avoid or leave the zones of search space not leading to the problem resolution. But on 
the other hand this type of hybridization leads to stochastic method and it may affect 
the properties of the method to reproduce the same quality of result from one execu-
tion to another as it is for most metaheuristic. Contrary to the majority of the other 
hybrid methods, we have conceived a deterministic hybrid method guaranteeing a 
total stability of the results on the application. The method does not use Local Search 
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process which most of the time adds a randomized component to the method. The 
search is done deterministically by constraint programming technique but Tabu 
memories are used to help the decision making during the search and improve the 
system efficiency to get better results on CSP. The Tabu memory enhances the space 
browsing by escaping or avoiding the zones of search space not leading to the prob-
lem resolution and then avoids to reproduce subsets of assignment leading systemati-
cally to a failure (trashing phenomenon). The paper on that work is organized as  
follows. We describe formally the CSP problem in section 2. Then we give the gen-
eral concepts of the algorithm and its working scheme in section 3. In section 4, we 
report the results obtained on some CSP instances corresponding to Frequencies As-
signment Problem (FAP) and we make a comparison with other methods from litera-
ture. We conclude the paper with a discussion. 

2   Hybrid Method with Tabu List and Constraint Propagation 

2.1   Global Procedure 

We propose here a constraint propagation algorithm using a dynamic backtrack proc-
ess based on the concepts of nogood and Tabu list. The search for the solution follows 
a constructive process. Search starts with a consistent partial configuration otherwise 
an empty assignment. At each iteration, the algorithm tries to extend the current par-
tial assignment in such manner to maintain the consistency. The instantiation of a new 
variable implies adding a new constraint, called decision constraint and noted xi = di. 
When a decision constraint proves to be incompatible with the union of problem con-
straints C and the set of decision constraints, the algorithm reacts by repairing the 
incompatible decisions and cancels some instantiations already done. The procedure 
of constraint propagation is run following each extension of the current partial con-
figuration. This procedure consists in filtering the domains of the unassigned vari-
ables in order to detect in advance the blocking situations called deadend. A deadend 
is detected when the set of the possible values (maintaining the consistency of the 
solution) of a given variable becomes empty.  

After the detection of a deadend, the set of the incompatible instantiations leading 
to the raised inconsistency is marked. These incompatible assignments form a struc-
ture called a nogood [SCH94].  The storage of the nogoods in a permanent Tabu list 
makes it possible to prevent the re-exploration of the blocking branches in the deci-
sion tree. When a deadend is reached, one of the variables taking part in the nogood is 
uninstantiated on the basis of a weight associated with each decision. The procedure 
of uninstantiation is described in section 3.4. The value of the uninstantiated variable 
is then stored in a temporary Tabu list for a Tabu period computed according to the 
number of times that the value was assigned to the variable. This duration is used to 
avoid the cycles and therefore to diversify search. 

Thereby the method profits from two advantages: firstly, the reduction of search 
space by the means of filtering and nogoods procedures, and secondly the handling of 
consistent partial solutions. From this point of view, the method is specially dedicated 
to the CSP. The ConstraintSatisfaction procedure presented below described the gen-
eral scheme of the method. 
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Procedure ConstraintSatisfaction () 
Begin 
1. iter = 0; 
2. repeat 
 /*Propagation*/ 
3. ConstraintPropagation();  
4. if isDeadEnd() 
5.   repeat  
6.    Nogood =getNogood(); 
7.    AddNogoodInPermanentTabuList(Nogood); 
8.    UnassignedVariable(); 
9.   AddUnassignedVariableInTemporaryTabuList(); 
10.    ConstraintPropagation(); 
11.   until none isDeadEnd() 
12. end if 
13. iter = iter+1; 
 /*extend the solution*/ 
14. ExtendSolution(); 
15. until FindSolution() or iter >= iterMax 
end 

2.2   Constraint Propagation 

The constraint propagation consists in reducing the domain of the variables involved in 
constraints. The objective is then to discard the variable values that will lead necessarily 
to the inconsistency of the configuration during further extensions. The variable values 
that inevitably cause a blocking step are called not supported values. Constraint 
propagation mechanism based on the arc-consistency consists to check the support of 
each variable value by considering the constraints separately. Let c a constraint 
connecting the variables xi1,…, xir and for which the domain of an instantiated variable 
is restricted to the assigned value. A value dip of one uninstantiated variable xip is said 
not supported by arc-consistency checking of the constraint c if: 

1 1 1
 is not supported  by  ... ... ,  is not satisfied

ip i ip ip ik
d c d d d d c

− +
⇔ ∀ ∀ ∀ ∀  (1) 

1 1 1 is not supported  ... ... ,  not satisfiedip i ip ip ikd d d d d c C− +⇔ ∀ ∀ ∀ ∀ ∃ ∈  (2) 

Constraint propagation procedure associates to each free variable a set of instantiated 
variables that have contributed to its domain restriction. The set of these variables and 
their values in the partial configuration will constitute the returned nogood if a 
deadend occurs on this variable (empty domain). For each variable of the problem the 
algorithm associates two domains: one current domain that represent the dynamic 
domain of the variable after filtering, and one original domain that corresponds to the 
initial domain of the variable. The idea is then to reduce the domain of the variables 
not instantiated taking into account: the values of assigned variables, and the inci-
dence of the reduction of free variables domain on the domain of the other variables. 
The algorithm keeps trace of the origins of the reductions made on the domains. For 
instance, if the value dx assigned to a variable x is in conflict with the value dy of a 
free variable y then dy will be discarded. Consequently, the variable x is both recorded 
as a cause of the y domain reduction and the cause of the elimination of dy from y 
domain. On the other hand, if a value dy is not supported in the filtered domain of x 
but is supported in the original domain by a value dx, the value dy is then eliminated 
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and the algorithm records that the reduction is due to the same reasons which leads to 
the elimination of dx. 

2.3   Nogood Management 

In order to prevent the re-exploration of the blocking branches, the list of nogoods 
that have led to deadend is stored. One nogood is the set of the couples variable/value 
which has involved the domain of a variable to be empty. This unit is thus associated 
with a failure of the algorithm. This failure corresponds to the assignments of some 
variables which finally correspond to a zone of the search space that cannot contain a 
solution to the problem. When such a unit is identified by the algorithm it is thus 
important to memorize it in order not to reproduce it. In some manner this list capital-
izes the search experience. The algorithm always takes care that the current partial 
configuration does not contain a list of assignments recorded as nogood. Each time a 
deadend is reached, the list of the decisions having led to the empty field is added to 
the list of nogoods.  We notice that, if the decisions of a nogood are included in an-
other already stored nogood only the minimal nogood is retained. All elements of that 
list are definitively exclude of the search. In this way the algorithm stores the sets of 
variable assignments of different sizes in a permanent Tabu list. This list is the fist 
one uses by the algorithm, a second list is also used by the uninstantiation procedure. 

2.4   Uninstantiation Procedure 

A weight is associated to each couple variable/value involves in the deadends found 
by the algorithm. The weight measures the importance of the couple in the previous 
failures. The weight is calculated in a dynamic way during the search. After each 
nogood detection, the weight of the couples variable/value corresponding to the deci-
sions contained in the nogood is incremented according to the following formula: 

 ( ,  )   ( ,  ) 1/   x xWeigth x d Weigth x d Length Of Nogood= +  (3) 

The length of the nogood corresponds to the number of variables which it contains, it 
is then the cardinality of the current nogood set. The initial value of the weight is put 
to null for each couple variable/value. After each deadend the decision with the great-
est weight in the current nogood, is cancelled (uninstantiation of the variable). The 
cancelled decision is then considered Tabu for a given number of iterations in order to 
avoid search cycles. The Tabu duration is calculated according to the number of times 
that the same decision was undertaken by search. This second Tabu list is then a tem-
porary Tabu list with full deterministic procedure that allows the algorithm to diver-
sify its search by avoiding to immediately reassigned a newly free variable. This kind 
of list is most of the time uses with Tabu Search algorithm. 

2.5   Extension Procedure 

The choice of the next variable to instantiate obeys to two objectives. Firstly, the 
algorithm tries to reduce the explored width of the decision tree and secondly, to re-
duce the depth of the explored branches before the detection of the deadend. Two 
criteria are used to guide the decision of extension: a dynamic criterion determined by 
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the size of the filtered domains (called MRV for Remaining Minimum Value) and a 
static criterion referring to the number of constraints binding each variable. MRV is 
applied first and the variable degree is applied in case of equality on MRV between 
several variables. Then the choice of the value of the variable must obey to two rules. 
Firstly, the partial configuration resulting from the extension of the assignments with 
the decision (x=dx) should not be declared as a nogood (the extended configuration is 
not in the permanent Tabu list). Secondly the value to be assigned should not be tabu 
at the current iteration (the extended configuration is not in the temporary Tabu list). 
Thus the candidate values must not be Tabu in any list. If whatever the value assigned 
to variable x, the extended configuration remains prohibited by the nogoods list, the 
part of the not extended configuration leading to this situation is added to the nogoods 
list. In that case the uninstantiation procedure (see section 3.4) is then called again to 
free a new variable. At last if a part of the values leads to a nogood and if the remain-
der values are Tabu within the temporary Tabu list, the uninstantiation procedure is 
also called again to work on another variable. In that case, we enforced the algorithm 
to diversify the search. 

3   Tests and Results 

3.1   Frequency Assignment Problem 

The frequency assignment problem [AAR07][MAB02][GON07] is defined by a set of 
variables (transmitters, radio links, radio stations…)  requiring each one a frequency 
channel. Each variable is defined by a domain of discrete subset of frequency chan-
nels. The variables of the problem are linked by electromagnetic compatibility con-
straints establishing the conditions of communication success. These constraints are 
often expressed as a minimal separation or the exact equality to respect by the fre-
quency assignment. The theoretical reference problems are the colouring ones  
(k-colouring, T-colouring, etc). Within the framework of the CALMA project (Com-
binatorial Algorithms for Military Applications), several concurrent teams of Euro-
pean researchers worked on problem benchmarks. Eleven instances called SCEN 
were provided by the CELAR (Centre Electronique de l’Armement, France) and 14 
others by a group of search of the University of Technology of Delft [BEN95]. The 
size of the problems varies between 200 to 1000 variables with domains of 44 values 
and the number of constraints is between 1134 and 5548.  

In addition to the constraint satisfaction, some problems are described with an ob-
jective function on the spectrum usage. Two modes of optimization have been de-
fined: the Min-Span mode that consists in reducing the spread of the frequency used 
by the variables (distance between the upper and the lower frequency used in the 
spectrum); and the Min-Order mode that consists in reducing the number of frequency 
used. The spectral optimization is carried out by the means of iterative re-start of 
constraint satisfaction procedure. In the case of Min-Span optimization, the algorithm 
is started with the original domains. If the algorithm finds a feasible solution, the 
higher frequency used in the solution dmax is removed from the domains and all the 
decisions x=dmax in the feasible solution are cancelled. The partial solution thus gener-
ated is used as starting point for the search for a new feasible solution during the next 
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phase. The algorithm stops when the search for a feasible solution failed. The solution 
found during the preceding phase is then retained as optimal solution. In the case of 
Min-Order optimization, the same search process is followed, with the only difference 
that the least used frequency is eliminated after each phase. 

3.2   Results and Comparisons 

Several methods are proposed in the literature to solve the Frequency Assignment Prob-
lem. We present here the methods listed and compared on the research Web page of Zuse 
Institute of Berlin, ZIB, dedicated to CALMA, http://fap.zib.de/problems/CALMA. Two 
test sets are proposed in the Web site called CELAR [CELAR] and GRAPH [BEN95] 
and we work on those related to the Min-Span optimization to evaluate our new hybrid 
method. We like to emphasize that the results on other methods were not computed by us 
but by other teams. We give in Table 1 the results of the four best methods (among eight 
reported algorithms) for 4 first data set (it gives a general idea of performance of our 
approach), and in Table 2 the comparison of results on 12 data sets with CN-Tabu which 
is the most performing method on these benchmarks (it gives more precise output on our 
method performance). In Table 1 we put the 4 best results: a Branch-and-Cut algorithm 
proposed in [AHHJ96] uses a linear programming model, this algorithm uses problem 
specifications and generic techniques such as reduction methods, primal heuristics and 
branching rules to obtain optimal solutions; a Tabu Search algorithm proposed in 
[THL00]; a combination of the quadratic programming method followed by a rounding 
heuristic to obtain the final solution in [WTRJ97]; and an algorithm inspired by the Kar-
makar's interior point potential reduction approach where the method is applied on non-
convex quadratic model of FAP [PAS98]. The columns indicate: the name of each  
instance, the best-known result (evaluated according to the highest frequency used in the 
spectrum) and the results of the different algorithms. The eight methods listed in ZIB 
web page find an optimal solution with a cost of 792 for the SCEN05 instance. But only 
the four methods presented above resolve the instances GRAPH03, GRAPH04 and 
GRAPH10. Among those 8 techniques there are only 3 methods solving optimally each 
problems. As well the four instances are solved in an optimal way by our method in less 
than 15 seconds. Our tests are carried out on PC Pentium IV, 2.4 GHz and 512MO of 
RAM. We have few information on the resolution context of the algorithms within the 
project CALMA. The data concerning the test machines, the time and the number of 
authorized retrials are unknown. 

Then the Table 2 shows a comparison between the results of our method with those 
of the CN-Tabu method given in [DUP05]. The machine used by [DUP05] is a PC 
 

Table 1. Comparison of our results with the 4 best methods for Min-Span 

Scenario Opt Var Cst [AHHJ
96] 

[THL00] [WTRJ
97] 

[PAS98] Our 
results 

SCEN 05 792 400 2598 792 792 792 792 792 
GRAPH 03 380 200 1134 380 380 - 380 380 
GRAPH 04 394 400 2244 394 394 - 394 394 
GRAPH 10 394 680 3907 394 394 394 394 394 
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Pentium IV, 3 GHZ and 1 GB of RAM. CN-Tabu have proven its efficiency in the 
frame of ROADEF'01 challenge [Roadef01] by obtaining the first rank among several 
concurrent teams. The CN-Tabu method was applied on the instances presented in 
Table 2 with Min-Span objective. For each of the twelve instances, the table plots the 
name of the instance, the number of variables, the number of constraints to satisfy, the 
best result obtained by CN-Tabu (the highest frequency used in the spectrum),  
the CPU Time in seconds, and the success rate giving the percentage of optimal  
solutions got on 20 executions. The character “-” indicates the absence of this  
information. 

Table 2. Comparison with the results of the CN-Tabu method for Min-Span 

 

The results presented in Table 2 show the competitiveness of our hybrid method. 
The grey cells indicate the best performing method in the basis of frequency used, 
then success rate, then computation time. It obtains a better result on SCEN03, 
GRAPH04, GRAPH10 and GRAPH14. However it remains less effective on 
GRAPH08 and GRAPH09 instances. On these two scenarios the frequency spectrum 
is organized in channels of width 14. The obtained solutions are then less good than 
the optimal solution by two channels. On GRAPH14 the performance is better on 
computational time knowing that the PC is less performing for our test (2,4GHz PIV 
instead of 3GHz PIV). Globally with the current results this new method is competi-
tive with CN-Tabu which is the best one on these problems. One of the major contri-
bution of our approach is in its deterministic behaviour; so when the optimal solution 
is found by the algorithm, it is always found that is with 100% success rate. 

4   Conclusion 

In this paper, we presented a promising hybrid method which takes advantages, on 
one hand, from the rigorous and optimal character of the exact approach and on the 
other hand, from the great flexibility of the heuristic approach. The principle of con-
straint propagation allows us to reduce search space and to record the blocking 
branches. It leads to a more effective exploration of the consistent solutions space. 
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The variables are ordered according to the conflicts degree and generated weights. 
These weights give the information about how and where operate the backtracking. 
Complementary to these mechanisms, we defined two Tabu lists to allow the algo-
rithm to avoid search cycles and decision repetitions. The lists bring a kind of adap-
tive behaviour which traduces the information found by the algorithm during search. 
The result of the comparisons carried out showed that this new hybrid algorithm is a 
promising method which takes advantage from its deterministic behaviour. The effec-
tiveness of the method depends on the relevance of the extension, uninstantiation and 
constraint propagation procedures. The improvement of these mechanisms should 
permit to get better performances of the method. Other extension mechanisms of the 
solution based on a prior study of the constraints graph structure are envisaged. This 
study concerns the identification of the difficult zones represented by the graph 
cliques. In a forthcoming work, our purpose is to study the application of the method 
to the frequency assignment problem with constraints on n-tuples which bind more 
than two variables. 
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Abstract. Support Vector Machines (SVMs) concern a new generation learning
systems based on recent advances in statistical learning theory. A key problem of
these methods is how to choose an optimal kernel and how to optimise its param-
eters. A (multiple) kernel adapted to the problem to be solved could improve the
SVM performance. Therefore, our goal is to develop a model able to automati-
cally generate a complex kernel combination (linear or non-linear, weighted or
un-weighted, according to the data) and to optimise both the kernel parameters
and SVM parameters by evolutionary means in a unified framework. Further-
more we try to analyse the architecture of such kernel of kernels (KoK). Numer-
ical experiments show that the SVM algorithm, involving the evolutionary KoK
performs statistically better than some well-known classic kernels and its archi-
tecture is adapted to each problem.

Keywords: Kernel of kernels, Support Vector Machines, Genetic Programming,
Hyper-Parameters Optimization.

1 Introduction

The general problem of machine learning is to search a, usually very large, space of
potential hypotheses to determine the one that will best fit the data. There are many
learning algorithms today and their performances are related not only to the problem
to be solved, but also to their parameters. Therefore, the best results can be achieved
only by identifying the optimal values of these parameters. Although this is a very
complex task, different optimisation methods have been developed in order to optimise
the parameters of Machine Learning algorithms.

In this context, evolutionary computations have been theoretically and empirically
proven robust for searching solutions in complex spaces and have been widely used in
optimization, training neural networks, estimating parameters in system identification
or adaptive control applications. Evolutionary algorithms form a subset of evolutionary
computation in that they generally only involve techniques implementing mechanisms
inspired by biological evolution such as reproduction, mutation, recombination, natural
selection and survival of the fittest. Candidate solutions to the optimization problem
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play the role of individuals in a population, and the cost function determines the envi-
ronment within which the solutions “live”. Evolution of the population takes place after
the repeated application of the above operators.

In 1995, Support Vector Machines (SVMs) marked the beginning of a new era in
the paradigm of learning from examples. Rooted to the Statistical Learning Theory and
the Structural Risk Minimization principle developed by Vladimir Vapnik at AT&T in
1963 [1], SVMs gained quickly attention from the Machine Learning community due
to a number of theoretical and computational merits.

To date, various methods have been proposed to optimise the hyper-parameters of an
SVM algorithm that uses a particular kernel. However, it was shown that any classical
kernel achieve good enough performances for some classification problems [2]. A novel
idea was to generate a new kernel function as a combination of classic kernels [3].
The combination which is obtained has to map the initial space into a larger one (the
main purpose of a kernel function); in fact, this combination must be a more complex
kernel. Therefore, we will denote it as a kernel of kernels (KoK). In this context, several
questions arise concerning the architecture of a KoK: Which are the kernels that have to
be considered for the most efficient combination: different classic kernels and/or several
instances of the same kernel, but with different parameters? How to optimise the hyper-
parameters of a KoK-based SVM algorithm? Optimise each of the standard kernels and
than involve them in the KoK or involve them in the KoK and than optimise?

Trying to answer these questions, we will investigate in this paper the architecture
of different KoKs and the importance of parameter optimisation in an SVM algorithm.
We develop an evolutionary approach which is based on a previous model for design-
ing KoKs [4]. The optimal expression of a KoK is actually found by involving a guided
search process based on genetic operations: the selection has to provide high reproduc-
tive chances to the fittest KoKs, the crossover has to enable kernel-children to inherit
quickly beneficial characteristics of their kernel-parents and the mutation has to ensure
the diversity of the population and the exploration of the search space. After an iter-
ative process, which runs more generations, an optimal evolutionary kernel of kernels
(eKoK) and its parameters are provided. The design of these KoKs is analysed from two
points of view: which are the most frequently involved standard kernels in the KoK and
which are the parameters of these kernels.

The paper is organized as follows: Section 2 outlines the theory behind SVM clas-
sifiers giving a particular emphasis to the kernel functions. An overview of the related
work in the field of SVM hyper-parameters optimisation is presented in Section 3. Sec-
tion 4 describes the hybrid model utilised to optimise the KoK expression and its param-
eters. This is followed by Section 5 where the results of the experiments are presented
and discussed. Finally, Section 6 concludes the paper.

2 Support Vector Machines

SVMs can solve binary or multiple-class problems. Originally, SVM have been pro-
posed for solving binary classification problems [1]. Consequently, in what follows, the
concepts within SVMs will be explained on binary-labelled data. However, our model
can be applied for solving problems with any number of classes.
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Suppose the training data has the following form:D = (xi, yi)i=1,m, where xi ∈ �d

represents an input vector and each yi, yi ∈ {−1, 1}, the output label associated to the
item xi. We are interested to find a function f that takes a set of unlabelled inputs x
and provides the output y = f(x) by using just the set of training observations D. This
function can be viewed as a decision frontier (a hyper plane 〈w, b〉) that separates the
input data in two regions: f(x) = 〈w, x〉 + b,.

The value of each element of the weight vector w could be a measure of the rela-
tive importance of each of an item attributes for the classification of a sample. It has
been shown that the optimal hyper-plane can be uniquely constructed by solving the
following constrained quadratic optimisation problem:

minimisew,b,ξ
1
2w

Tw + C
∑m

i=1 ξi
subject to: yi(wTφ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, ∀i ∈ {1, 2, . . . ,m}.
(1)

Rather than solving this problem in its primal form it can be more easily solved in its
dual formulation:

maximisea∈�m

∑m
i=1 ai − 1

2

∑m
i,j=1 aiajyiyjφ(xi)φ(xj)

subject to
∑m

i=1 aiyi = 0,
0 ≤ ai ≤ C, ∀i ∈ {1, 2, . . . ,m}.

(2)

Instead of findingw and b, the goal now is to find the vector a and the bias value b, where
each ai represents the relative importance of a training sample xi in the classification of
a new sample. To classify a new sample, the quantity f(xs) is calculated as: f(xs) =∑

i aiyi 〈x, xi〉 + b where b is chosen so that yif(xs) = 1 for any i with C > ai > 0.
Then, a new sample xs is classed as negative if f(xs) < 0 and positive if f(xs) ≥ 0.
Samples xi for which the corresponding αi are non-zero are known as support vectors
since they lie closest to the separating hyperplane.

Because not all the input data-points are linear separable, it is suitable to use a kernel
function. Cf. [5], a kernel is a function K , such that K(x, z) = 〈Φ(x), Φ(z)〉 for all
x, z ∈ X , whereΦ is a mapping fromX to an (inner product) feature spaceF . By using
kernels, the solution could be expressed like an affine function: f(x) = 〈w,Φ(x)〉 + b,
for some weight vector w. The kernel can be exploited whenever the weight vector
can be expressed as a linear combination of the training points, w =

∑m
i=1 aiΦ(xi),

implying that f can be expressed as: f(x) =
∑m

i=1 aiK(xi, x) + b. There are a wide
choice for a positive definite and symmetric kernel K – see Table 1.

Table 1. The expression of several classic kernels

Name Expression

Sigmoid KSig (x, z) = tanh(σxT · z + r)
RBF KRBF (x, z) = exp(−σ|x− z|2)
Liniar KLin (x, z) = xT · z
Polynomial KPol (x, z) = (xT · z + coef)d
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3 Related Work

While one of the first feelings about SVM algorithm is that it can solve a learning
task automatically, it actually remains challenging to apply SVMs in a fully automatic
manner. Questions regarding the choice of the kernel function and the hyper-parameters
values remain largely empirical in the real-world applications. While default setting and
parameters are generally useful as a starting point, major improvements can result from
careful choosing of an optimal kernel.

Extensive explorations such as performing line search for one hyper-parameter or
grid search for two hyper-parameters are frequently applied when such knowledge is un-
available [6]. More elaborated techniques for optimising the SVM hyper-parameters are
the gradient-based approaches [2]. Keerthi et al. [7] have developed a hyper-parameter
tuning approach based on minimizing a smooth performance validation function.

The previous approaches required to train the model several times with different
hyper-parameter values. Therefore, new methods have been proposed to overcome these
problems. Several promising recent approaches [8] are based on solution path algo-
rithms, which can trace the entire solution path as a function of the hyper-parameters
(the penalty error C and the kernel parameters) without having to train the model mul-
tiple times. A new study [9] has proposed to directly tackle the model selection by
using out-of-sample testing as an optimization problem. EAs have optimised the hyper-
parameters of an SVM classifier [10] as well.

Note that all the previous approaches deal only with a classic kernel, which is fixed
a priori. Any kernel combination is considered in all these cases, because in the context
of a KoK also the expression of such kernel combination must be optimised together
with the hyper-parameters.

4 Evolutionary Kernel of Kernels (eKoK)

4.1 Model Architecture

This section describes an evolutionary approach for automatic design of KoKs and their
parameter optimisation. This model is a hybrid one: it uses Genetic Programming (GP)
[11] to construct positive and symmetric functions (KoKs), and optimizes the fitness
function by using an SVM classifier (see Figure 1). A GP chromosome provides the
analytic expression of such KoK. The model actually seeks to replace the expert domain
knowledge concerning the design of the SVM’s kernel function and the choice of its
parameters, with a GP algorithm. The idea of combining more kernels by evolutionary
means has been proposed in [4], but the purpose was only to generate a new complex
kernel combination. The aim of the current work is to study the architecture of these
KoKs and how they adapt to the problem to be solved.

The hybrid model we describe is structured on two levels: a macro level and a micro
level. The macro level algorithm is a standard GP [11], which is used to evolve the math-
ematical expression of a KoK. The steady-state evolutionary model [12] is involved as
an underlying mechanism for the GP implementation. A steady state algorithm is much
more tolerant of poor offspring than a generational one. This is because in most imple-
mentations, the best individuals from a given generation will always be preserved in the
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Fig. 1. Architecture of the hybrid model: a GP algorithm combined with an SVM one

next generation, giving themselves another opportunity to be selected for reproduction.
The best individuals are therefore given more chances to pass on their successful traits.
The GP algorithm starts by an initialisation step of creating a random population of in-
dividuals (seen as KoKs). The following steps are repeated until a given number of itera-
tions is reached: two parents are selected using a binary selection procedure; the parents
are recombined by using the sub-tree crossover [13] in order to obtain an offspring O;
the offspring is than considered for mutation (a shrink mutation [14], followed by a grow
mutation [14] are actually performed); the new individual O∗ (obtained after mutation)
replaces the worst individual W in the current population if O∗ is better than W .

The micro level algorithm is an SVM classifier taken from LIBSVM [15] library.
The original implementation of the SVM algorithm proposed in [15] allows using sev-
eral well-known kernels (Linear, Polynomial, RBF and Sigmoid – see Table 1). In the
numerical experiments, a modified version of this algorithm, which is based on the
evolved KoK is also used. The quality of each GP individual is determined by running
the SVM algorithm, which uses the eKoK encoded in the current chromosome. The
accuracy rate estimated by the classifier (on the validation set) represents the fitness of
the GP chromosome.

4.2 The Representation of the eKoK

The GP chromosome is a tree encoding the mathematical expression of a KoK and its
parameters: the leaves contain either a classic parameterized kernel or an ephemeral
random constant (viewed as a scaling or a shifting coefficient), while the internal nodes
contain operations that preserve the key properties of a Mercer kernel (+, ×, exp).
Moreover, the GP individual representation is constrained to satisfy the kernel algebra
[5] (regarding the positiveness and the symmetry of the Gram matrix required by valid
Mercer’s kernels) – see [4] for more details.

Since our goal is to study the performance of various KoK architectures, three models
are investigated. In the first model the KoK can be a combination of some standard
kernels whose parameters have been optimised apriori. The other two models combines
more kernels, but with different parameters. The GP algorithm will select the kernels
of this set whose parameters are the best adapted to the problem to be solved. The
second model combines more parameterised kernels of the same type, while the third
model combines more parameterised kernels of different type. For all these models, two
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versions are investigated: a pure combination of kernels and a mixed one (kernels and
weighting coefficients).

The well-known grow method [16], which is a recursive procedure, is used to initial-
ize a GP individual. The root of each GP tree must be a function from FS. If a node
contains a function, then its children are initialized either with another function or with
a terminal (a kernel or a coefficient). The initialization process is stopped when is at-
tained a leaf node or at the maximal depth of the tree (the nodes from the last level will
be initialised by terminals). The maximal depth of a GP chromosome has to be large
enough in order to assure a sufficient search space for the optimal expression of our
evolutionary KoK. An example of a GP chromosome is depicted in Figure 2.

4.3 Fitness Assignment

The evaluation of the chromosome quality is based on a cross-validation process. There-
fore, some information about the data set partitioning must be provided before to de-
scribe the fitness assignment process. The data sample was randomly divided into two
sets: a training set (80%) - for model building - and a testing set (20%) - for perfor-
mance assignment. The training set was than randomly partitioned into learning (2/3)
and validation (1/3) parts.

The SVM model based on the eKoK that is encoded in the current GP tree uses the
learning subset for training the SVM model and the validation subset for classification
performance assignment. The quality of an eKoK can be measured by the classification
accuracy rate estimated on the validation data set: the number of correctly classified
items over the total number of items belonging to the validation set. Note that we deal
with a maximization problem: the greater accuracy rate, the better eKoK is. Once the
GP iterations end, the optimal eKoK, which corresponds to the best GP chromosome is
utilised by SVM algorithm in order to classify the test items.

4.4 Genetic Operations

Selection. The selection operator chooses from the current population which individu-
als will act like parents in order to create the next generation. Selection has to provide
high reproductive chances to the fittest individuals but, at the same time, it has to pre-
serve the exploration of the search space.

Crossover. The crossover operator assures the diversity of the KoKs and is performed
in a tree-structure preserving way in order to ensure the validity of the offspring. The



Evolutionary Optimisation of Kernel and Hyper-Parameters for SVM 113

proposed model uses the standard cutting-point crossover [11] with the particularity
that the offspring has to contain at least one kernel in its leaves. This crossover type
has been used because it is able to guarantee a quite quickly convergence of the GP
algorithm.

Mutation. The purpose of the mutation operator is to create new individuals by small
and stochastic perturbations of a chromosome. For a GP-based KoK, a cutting point is
randomly chosen: the sub-tree belonging to that point is deleted and a new sub-tree is
grown there by applying the same random growth process that was used to generate
the initial population. Note that the maximal depth allowed for the GP trees limits the
growth process.

The initialization, recombination and mutation operators always generate valid KoKs.

5 Experimental Validation and Discussions

This section reports on the experimental validation of eKoK on a standard set of bench-
mark problems [17]. The hybrid model is based on TinyGP [18] framework of GP al-
gorithm and LIBSVM [15] framework of SVM classifier. The performances of eKoKs
are evaluated on several binary classification problems taken from Machine Learning
Repository UCI and Statlog database: P1(34, 351)1 – ionosphere, P2(10, 683) – breast,
P3(13, 270) – heart, P4(123, 4217) – a1a, P5(123, 2591) – a2a.

A population of 50 individuals is evolved during 50 iterations, which are reasonable
limits to assure the diversity and convergence of our eKoKs. The maximal depth of a
GP tree is limited to 10 levels, which allows encoding till (210 − 1)! combinations of
kernels and coefficients. This maximal depth was fixed by tacking into account the bloat
problem (the uncontrolled growth of programs during GP runs without (significant)
return in terms of fitness [18]). Furthermore, several empirical tests indicated that the
efficient kernel-trees do not expand to more than 10 levels. The crossover and mutation
operations are performed with 0.8 and 0.3, respectively, probabilities, values that are
generally recommended in the specialised literature.

The selection of the kernel parameters has the same importance as the optimisation
of the kernel expression. In order to determine good values of these parameters, it is
important to search on the right scale. The default value for the C parameter is that

suggested in [2]: s2 = 1
m

∑m
i=1 KMi,i − 1

m2

∑m
i=1

(∑m
j=1 KMij

)
from an m × m

kernel matrix KM . This value is actually used in our numerical experiments performed
in order to evolve the expression of a KoK function.

Several kernels of kernels are evolved in this experiment by using different terminal
sets (TSs). The purpose of this experiment is to emphasise the contribution of the pa-
rameter optimisation to the classification performance. These terminal sets can contain
only several standard kernels KTS or also some coefficients MTS = KTS ∪ {o,s}.
Note that in our experiments, these constants could be either scaling or shifting co-
efficients from [0, 1] range. The eKoKs based on KTS are un-weighted combinations
(pure combinations of kernels), while the eKoKs based on MTS could be weighted
combinations.

1 The number of characteristics and the number of items are given for each problem.
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Therefore, the TSs actually used in the numerical experiments are:

1. a TS composed by different standard kernels (see Table 1) with fixed parameters
– KTS1 = {Kθ

Lin,K
θ
Pol,K

θ
RBF ,K

θ
Sig} where the parameters θ of each simple

kernel have been optimised by the parallel grid search method (for each data set)
apriori – before to involve them in the eKoK.

2. a TS that contains more kernels of the same type, but with different parameters; we
select the well-known RBF kernel: KTS2 = {Kθ

RBF }, where θ = σqt = q · 10t,
q = 1, 9, t = −5, 0. The difference between these RBF kernels is determined by
the bandwidth value (the σ parameter);

3. a TS composed by different standard kernels, each of them with different param-
eters KTS3 = {Kθ

Pol,K
θ
RBF ,K

θ
Sig} where the parameters θ of each standard

kernel have been considered in some discrete ranges: for the degree d of the Poly-
nomial kernel 15 values (from 1 to 15) are considered, for the bandwidth σ of the
RBF kernel the following values: σqt = q · 10t, q = 1, 9, t = −5, 0 are considered
and for the Sigmoid kernel all the combination between σqt and r, where r = 10u,
u ∈ {−1, 0, 1} are taken into account;

4. a TS composed by different standard kernels with fixed parameters (apriori opti-
mised) and coefficients MTS1 = KTS1 ∪ {o, s};

5. a TS that contains RBF kernel, but with different values for the σ parameter and
coefficients MTS2 = KTS2 ∪ {o, s};

6. a TS of different standard kernels with different parameters and coefficientsMTS3

= KTS3 ∪ {o, s}.
The results found in literature indicate that these discrete spaces of parameters are the

most suitable for an efficient classification. The improvement obtained by using a finer
discretisation of the parameter space or a continuous space is no relevant (by tacking
into account the computational effort that must be performed). Furthermore, the guided
search (based on the efficiency of an eKoK) involved by the evolutionary algorithm is
able to detect in the discrete space the optimal values of these parameters (and implicit
the corresponding kernels).

The performances of the eKoKs based on various TSs and their confidence intervals
are presented in Table 2: the first six rows contain the accuracy rates (for each prob-
lem) estimated by the SVM algorithm involving our evolutionary KoKs on the test set
(unseen data). Table 2 also presents the performances of three classic kernels for all the
test problems (the last three rows).

The values from Table 2 allows realising several comparisons:

– standard kernels vs. combined kernels – for each problem, eKoKs perform better
than the standard kernels;

– weighted vs. un-weighted KoKs – for P3 and P4 problems a pure combination of
kernels (un-weighted eKoK based on KTS) performs better than a mixed (kernels
and coefficients) combination (weighted eKoK based on MTS), while for the other
problems the weighted eKoKs achieve to the best classification performances;

– fixed vs. optimised parameters – the parameter optimisation seems to be very im-
portant: for the un-weighted eKoKs this optimisation determines the performance
improvement for 3 problems (out of 5), while for the weighted eKoKs it improves
the classification quality for all the problems.
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Table 2. The accuracy rate of various kernels and their confidence intervals estimated on the test
data

P1 P2 P3 P4 P5

eKoK

KTS1 88.89±1.03 97.81±0.13 86.92±0.51 85.88±0.14 87.01±0.19
KTS2 86.11±1.13 97.81±0.13 87.57±0.50 84.26±0.14 88.74±0.18
KTS3 86.11±1.13 97.81±0.13 86.98±0.51 84.27±0.14 86.93±0.19
MTS1 86.11±1.13 97.81±0.13 86.98±0.51 84.18±0.14 87.44±0.19
MTS2 88.89±1.03 98.03±0.13 87.57±0.50 84.38±0.14 89.08±0.18
MTS3 91.67±0.90 98.03±0.13 86.98±0.51 84.38±0.14 88.99±0.18

Standard
kernels

KPol 77.77±1.36 97.58±0.14 85.79±0.53 84.26±0.14 86.24±0.20
KRBF 80.55±1.29 97.81±0.13 85.21±0.54 83.65±0.14 83.49±0.21
KSig 66.67±1.54 97.81±0.13 77.91±0.63 82.73±0.14 84.52±0.21

In addition, we have investigated which are the most often involved kernels in an
evolutionary KoK. The expression of the KoKs from the last generation are inspected
and the results are presented in Table 3 for two problems.

We can observe that for each problem and for each possible terminal set different
results are obtained indicating the importance of the adaptation of the evolved KoK and
its parameters to the problem that must be solved.

As a general conclusion, we can affirm that the eKoKs has to be adapted to the
problem and its characteristics. By tacking into account the values from Tables 2 and
3 we cannot identify an eKoK (based on a particular TS) which works better than the
other ones for all the problems. Furthermore, the parameter optimisation has a strong
influence on SVM performances. However, it is not enough to evolve a new kernel. To
obtain good generalisation, it is also necessary to optimise the hyper-parameters. Their
values could affect the quality of the SVM solution.

Table 3. The most used kernels (and their parameters) contained by the evolved KoK

KoK KTS1 KTS2 KTS3 MTS1 MTS2 MTS3

P1 KLin Kσ=0.08
RBF Kσ=0.07,r=−0.1

Sig KRBF Kσ=0.01
RBF Kσ=0.08,r=−0.1

Sig

P3 KRBF Kσ=0.02
RBF Kd=2

Pol KLin Kσ=0.03
RBF Kσ=0.08,r=−0.1

Sig

6 Conclusions

A hybrid model to optimise SVM kernel and its parameters has been studied. Several
numerical experiments have been performed to emphasize the importance of parameter
optimisation and of kernel adaptation.

We will focus our further work on the validation of eKoK model developed in this
paper for large data sets and using multiple data sets for the training stage; this could
help to evolve kernels that are more generic. Furthermore, we plan to evolve KoKs for
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feature selection tasks and to use them in order to solve classification problems with
heterogeneous data. In this way, we should favour the data fusion process.
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Abstract. We study a problem of lot-sizing and sequencing several dis-
crete products on a single machine. A sequence dependent setup time is
required between the lots of different products. The machine is imperfect
in the sense that it can produce defective items, and furthermore break-
down. The number of the defective items for each product is given as
an integer valued non-decreasing function of the manufactured quantity
for this product. The total machine breakdown time is given as a real
valued non-decreasing function of the manufactured quantities of all the
products. The objective is to minimize the total cost of the demand dis-
satisfaction, provided that a given upper bound on the completion time
for the last item has been satisfied.

Keywords: Lot-sizing, Sequencing, Imperfect production.

1 Introduction

A single facility (machine) is used to manufacture items of n discrete products
in lots. A lot is the maximal set of items of the same product, which are man-
ufactured with no inserted item of another product. Each lot is preceded by a
sequence dependent setup time. The size of a lot is the number of its items.
The machine is imperfect in the sense that it can produce defective items, and
furthermore, it can breakdown. Defective items cannot be repaired. Therefore,
they are disposed of. No item can be manufactured during the setup or machine
breakdown times. Moreover, setting up is impossible during the breakdown time.
The following parameters are given for each product i:

bi - a demand for the good quality items (counted in the number of items),
bi > 0;

ci - a per unit cost for the unsatisfied demand, ci > 0;
ti - a processing requirement for every single item, ti > 0;

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 117–125, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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si,j (sj,i) - a setup time required to switch from processing of a lot of the
product i (j) to a lot of the product j (i), si,j ≥ 0, sj,i ≥ 0;

s0,i - a setup time required to start processing of a lot of the product i, if it is
processed first on the machine, s0,i ≥ 0;

fi(x) - a non-decreasing integer valued function representing the number of the
defective items, if the total number of the manufactured items of product i
is equal to x, fi(0) = 0, and fi(x) < x for x = 1, 2, . . .

We assume that the setup times satisfy the triangle inequality such that
si,j + sj,k ≥ si,k for i = 0, 1, . . . , n, j = 1, . . . , n, k = 1, . . . , n. The total ma-
chine breakdown time before the last item has been produced is determined by
a given non-negative real valued function T (x1, . . . , xn) non-decreasing in each
argument, where xi is the total number of the manufactured items (both de-
fective items and good quality items) of the product i, i = 1 . . . , n. Functions
fi(x), i = 1 . . . , n, and T (x1, . . . , xn) of an adequate type can be obtained by a
statistical analysis of historical data concerning the machine.

The decision variables are the product lots (their sizes) and their sequence.
The objective of our problem, denoted as P-Cost, is to minimize the total linear
cost of the demand dissatisfaction,

∑n
j=1 ci max{0, bi− (xi− fi(xi))}, subject to

Cmax ≤ T0, where Cmax is the completion time of the last item, provided that
all the product demands are satisfied, and T0 is a given upper bound on the
completion time of the last item.

Problem P-Cost lies at the intersection of the two research fields: scheduling
with batching and lot-sizing, and optimal lot-sizing for imperfect production
systems. The majority of the problems in the former field are deterministic
and discrete, and those in the latter field are mainly stochastic and continuous
(exceptions can be found, for example, in Inderfurth et al. [11] and Inderfurth et
al. [12]). Surveys on scheduling with batching and lot-sizing are given by Potts
and Van Wassenhove [16], Potts and Kovalyov [15] and Allahverdi et al. [1].
Lot-sizing models for imperfect production systems were studied by Rosenblatt
and Lee [17], Groenevelt, Pintelon and Seidmann [9], Flapper et al. [10], Chiu,
Ting and Chiu [4], Buscher and Lindner [2], to name a few.

The most similar problem to P-Cost was studied by Dolgui, Levin and Louly
[6]. The difference is that the quantities of the defective items and the ma-
chine breakdown times were assumed to be random variables with the given
probabilities and distribution functions, and the objective was to maximize the
probability of the demand satisfaction within a given production time period.
Dolgui, Levin and Louly [6] presented a three-level decomposition approach to
solve their problem. We will suggest a more efficient combination of the opti-
mization and approximation techniques to solve problem P-Cost and some of its
special cases. This new problem possesses the following properties.

Property 1. There exists an optimal solution of the problem P-Cost, in which
items of the same product are manufactured in at most one lot.

An item shifting technique can be used to prove this property. Note: the triangle
inequality is needed for the correct implementation of this technique.
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Property 2. There exists an optimal solution of the problem P-Cost,whose se-
quence of (non-empty) lots minimizes the total setup time.

This property can be proved by noting that a reduction in the total setup time
does not increase the Cmax value, nor does it increase the dissatisfaction of any
demand.

One can see that there exists an optimal solution of the problem P-Cost,
which satisfies both Property 1 and Property 2. Property 1 was implicitly used
by Dolgui, Levin and Louly [6] in their previous work. Property 2 was explicitly
discussed and used by them for an optimal sequence, which includes a single
lot of each product (formulation of their problem suggests that at least one lot
must be created for each product). Hereafter, we shall consider only solutions
satisfying Properties 1 and 2.

Problem P-Cost is studied in Section 2. We show that optimal sequencing
and lot-sizing decisions can be separated for this problem. Furthermore, a set
of products for which at least one item is manufactured has to be determined.
A dynamic programming algorithm is described, which determines optimal se-
quences for all possible sets of products. We further prove that the lot-sizing
subproblem of P-Cost is NP-hard even in the “fraction defective” case. We also
present a fully polynomial time approximation scheme for this case. The paper
concludes with a summary of the results.

Note: another new problem exists which we denote as problem P-Time that
we are also working on [7]. For this the objective is to minimize the completion
time for the last item, Cmax, provided that all the product demands are satisfied.
While not in the scope of this article, in our oral presentation at the conference,
we will also discuss a model for the problem P-Time.

2 Problem P-Cost

In problem P-Cost, the demands for the good quality items are not required to
be satisfied, but total linear demand dissatisfaction cost should be minimized,
subject to Cmax ≤ T0, where T0 is a given upper bound on the completion time
for the last item. In an optimal solution of this problem, it may happen that
no item of a product is manufactured. Therefore, a selection decision has to be
made which determines the set of products with at least one manufactured item.

Optimal product permutations for all possible selection decisions can be found
in O(n22n) time by the following dynamic programming algorithm, which is
similar to the well-known algorithm of Held and Karp [13] developed for the
TSP with triangle inequality. In this algorithm, values T (S, i) are recursively
computed, where T (S, i) is the minimum total setup time for processing a set
of products S, provided that product i ∈ S is processed last. The initialization
is T (S, i) = s0,i for S = {i}, i = 1, . . . , n, and the recursion for S ⊆ {1, . . . , n},
|S| = 2, 3, . . . , n, is given by

T (S, i) = min
j∈S\{i}

{T (S\{i}, j) + sj,i}. (1)
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For any set S, the minimum total setup time T ∗(S) can be calculated as T ∗(S) =
mini∈S{T (S, i)} in O(|S|) time. All the relevant values T ∗(S) can be computed
in O(n22n) time. Given S and T ∗(S), the corresponding optimal permutation
π∗(S) can be found in O(n) time by backtracking the dynamic programming
algorithm described above.

In the rest of this section, we assume that the optimal selection and sequencing
decisions have been made: products of a set N have been selected for manufac-
turing and their optimal permutation has been found. To facilitate our presen-
tation, let N = {1, . . . , n}. Let xi denote the size of the only lot of product i,
i = 1, . . . , n, and let x = (x1, . . . , xn). Problem P-Cost reduces to the following
lot-sizing problem, which we denote as P-Cost-Sizes.

Minimize D(x) :=
n∑

i=1

ci max{0, bi − (xi − fi(xi))},

subject to E(x) :=
n∑

i=1

tixi + T (x) ≤ T1, xi ∈ Z+, i = 1, . . . , n, (2)

where T1 is equal to T0 minus the corresponding optimal total setup time. Let
x∗ = (x∗1, . . . , x

∗
n) be an optimal solution of this problem.

Observe that if n = 1 and the only function f1(x) is represented by an oracle,
then the question whether there exists a solution of problem P-Cost-Size such
that D(x) ≤ 0 is equivalent to the NP-hard problem P formulated in the next
Theorem:

Theorem 1. Let f(x) be a non-decreasing integer valued function, which is
given by an oracle, such that f(x) < x for x = 1, 2, . . . The problem of de-
ciding whether x − f(x) ≥ b for x ∈ Z+, which we refer to as problem P, is
NP-hard.

The proof of the Theorem is in line with the proof from Cheng and Kovalyov[3].
Therefore, the following statement holds.

Statement 1. Problem P-Cost-Sizes is NP-hard even if n = 1 and the only
function f1(x) is represented by an oracle.

For specific functions fi(x), i = 1, . . . , n, problem P-Cost-Sizes might be poly-
nomially solvable. However, we shall now prove that it is NP-hard even in the
“fraction defective” case, where all the functions fi(x), i = 1, . . . , n, are rounded
linear functions. Recall that the problem P-Time-Sizes is solvable in O(n) in this
case [7]. Then we shall present an efficient (1 + ε)-approximation algorithm for
the “fraction defective” case of the problem P-Cost-Sizes.

Theorem 2. Problem P-Cost-Sizes is NP-hard even if fi(x) = x
3 �, bi = 2,

i = 1, . . . , n, and T (x) = 0.

Proof. We shall use a reduction from the NP-complete Partition problem, see
Garey and Johnson[8]: Given positive integer numbers a1, . . . , am and A, where∑m

i=1 ai = 2A, is there a subset X ⊂M := {1, . . . ,m} such that
∑

i∈X ai = A?
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Given any instance of Partition, we construct the following instance of the
problem P-Cost-Sizes. Set n = m, T (x) = 0, T1 = 3A, fi(x) = x

3 �, bi = 2,
ci = ti = ai, i = 1, . . . , n. We show that Partition has a solution if and only if
there exists a solution x to the constructed instance of the problem P-Cost-Sizes
such that D(x) ≤ A. We call such a solution a feasible solution.

Part “only if”. Assume that set X is a solution to Partition. Construct a
vector x = (x1, . . . , xn) such that xi = 2 if i ∈ X , xi = 1 if i �∈ X. We have

D(x) =
m∑

i=1

ai max
{
0, 2−

(
xi −

⌊xi

3

⌋)}
=

=
m∑

i=1

ai max{0, 2− xi} =
m∑

i=1

ai(2− xi) = A, (3)

and E(x) =
∑m

i=1 aixi = 3A = T1, i.e., a feasible solution to the constructed
instance of the problem P-Cost-Sizes exists.

Part “if”. Let there exist a feasible solution for the constructed instance of the
problem P-Cost-Sizes. Given such a solution, introduce sets X1 = {i | xi = 1}
and X2 = {i | xi ≥ 2}. Since max{0, 2 − (xi − xi

3 �)} = 0 if xi ∈ {2, 3, . . .},
we must have D(x) =

∑
i∈X1

ai ≤ A and E(x) =
∑

i∈X1
ai + 2

∑
i∈X2

ai ≤ 3A.
Taking into account X1 ∪X2 = M, we deduce that E(x) =

∑
i∈X1

ai + 2(2A−
∑

i∈X1
ai) = 4A −

∑
i∈X1

ai ≤ 3A, which together with D(x) =
∑

i∈X1
ai ≤ A

implies
∑

i∈X1
ai = A, i.e., set X := X1 is a solution to problem Partition. ��

We shall now present a Fully Polynomial Time Approximation Scheme (FP-
TAS) for the “fraction defective” case of the problem P-Cost-Sizes, which is
hereby denoted as P-Cost-Sizes-FD. In this case, fi(x) = αix�, and T (x) =
∑n

i=1 γitixi, where αi and γi are rational numbers such that 0 ≤ αi < 1 and
0 ≤ γi < 1, i = 1, . . . , n. Let L denote the largest denominator in the irreducible
fractions representing the numbers αi and γi, i = 1, . . . , n. A family {Aε} of
(1 + ε)-approximation algorithms Aε constitutes an FPTAS for the problem
P-Cost-Sizes-FD if the running time of each algorithm Aε is bounded by a poly-
nomial of n, log pmax, and 1/ε, where pmax = max{max1≤i≤n{ci, bi, ti}, L} is the
maximum numerical parameter.

Problem P-Cost-Sizes-FD can be formulated as follows.

MinimizeD(x) :=
n∑

i=1

ci max{0, bi − (xi − αixi�)},

subject to E(x) :=
n∑

i=1

(1 + γi)tixi ≤ T1, xi ∈ Z+, ı = 1, . . . , n. (4)

Let x∗ = (x∗1, . . . , x
∗
n) denote its optimal solution. If E(x(1)) > T1, where

x(1) = (1, ..., 1), then problem P-Cost-Sizes-FD has no feasible solution. Assume
without loss of generality that E(x(1)) ≤ T1. For our FPTAS, we shall need lower
and upper bounds V and U such that 0 < V ≤ D(x∗) ≤ U. An upper bound
can be determined as U = D(x), where x is an arbitrary feasible solution, for
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example, U = D(x(1)) =
∑n

i=1 ci(bi − 1), where x(1) = (1, . . . , 1). We shall now
show how a positive lower bound can be found. Denote

hi = min{x | x ∈ Z+, bi − x+ αix� ≤ 0} =

=

{
bi−1
1−αi

+ 1, if bi−1
1−αi

is integer,
� bi−1

1−αi
�, if bi−1

1−αi
is not integer,

i = 1, . . . , n. (5)

If E(x(h)) ≤ T1, where x(h) = (h1, . . . , hn), then x∗ = x(h) because D(x(h)) =
0. If E(x(h)) > T1, then for each feasible solution x = (x1, . . . , xn), there exists
an index i such that bi − x+ αix� ≥ 1, which implies

D(x∗) ≥ min
1≤i≤n

{ci} := V ≥ 1. (6)

Now assume without loss of generality that lower and upper bounds are known
such that 0 < V ≤ D(x∗) ≤ U. We have shown that these values V and U can
be computed in O(n) time. Determine a scaling parameter δ = εV

n and formulate
the following “rounded problem”, denoted as P-Rou.

Minimize w(x) :=
n∑

i=1

⌊vi(xi)
δ

⌋
,

subject to E(x) ≤ T1, and

xi ∈ {ri(0), ri(1), . . . , ri(
⌊U

δ

⌋
)}, i = 1, . . . , n, (7)

where

vi(xi) = ci max{0, bi − (xi − αixi�)},

ri(l) = min{x | x ∈ Z+,
⌊vi(x)

δ

⌋
≤ l}, l = 0, 1, . . . ,

⌊U

δ

⌋
. (8)

The inequality
⌊

vi(x)
δ

⌋
≤ l is equivalent to bi−xi+αixi� < (l+1)δ

ci
. Since the left

hand side of this inequality is integer, it is in turn equivalent to bi−xi +αixi� <⌈
(l+1)δ

ci

⌉
and further to

⌈
(l+1)δ

ci

⌉
+ xi − bi > αixi, which can be written as

xi >
bi − � (l+1)δ

ci
�

1− αi
:= h

(l)
i . (9)

Thus,

ri(l) =

{
max{1, h(l)

i + 1}}, if h(l)
i is integer,

max{1, �h(l)
i �}}, if h(l)

i is not integer,

l = 0, 1, . . . ,
⌊U

δ

⌋
, i = 1, . . . , n. (10)
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Problem P-Rou can be formulated inO(n
⌊

U
δ

⌋
) = O(n2 U

V ) time. Let x0 denote an
optimal solution of this problem. Similar to Kovalyov [14], it can be easily proved
that any exact algorithm for the problem P-Rou is an (1 + ε)-approximation
algorithm for the problem P-Cost-Sizes-FD. Let Ej(f) denote the minimum
value of the function

∑n
i=1(1+γi)tixi on the set of vectors x = (x1, . . . , xj) such

that
∑j

i=1

⌊
vi(xi)

δ

⌋
= f. Problem P-Rou can be solved by the following dynamic

programming algorithm.

Algorithm Aε (FPTAS for problem P-Cost-Sizes-FD)

Step 1. (Initialization) Set Ej(f) = 0 if f = 0, j = 0, and Ej(f) = ∞, other-
wise. Set j = 1.

Step 2. (Recursion) For f = 0, 1, . . . ,
⌊

U
δ

⌋
, compute the following:

Ej(f) = min
{
Ej−1

(
f−

⌊vj(xj)
δ

⌋)
+(1+γj)tjxj | xj ∈ {rj(0), . . . , rj(f)}

}
.

(11)
If j < n, then set j = j + 1 and repeat Step 2; otherwise, go to Step 3.

Step 3. (Optimal solution) Compute the optimal solution value

w(x0) = min
{
f | En(f) ≤ T1, f = 0, 1, . . . ,

⌊U

δ

⌋}
(12)

and find the corresponding optimal solution x0 by backtracking.

The running time of algorithm Aε is O
(

n3

ε2

(
U
V

)2)
. By applying the Bound

Improvement Procedure in Tanaev, Kovalyov and Shafransky [18] (see English
translation in Chubanov, Kovalyov and Pesch [5]), value D0 can be found in
O(n3 log log U

V

)
time such that 0 < D0 ≤ D(x∗) ≤ 3D0. Then we can set V = D0

and U = 3D0. The family of algorithms {Aε} with the Bound Improvement
Procedure incorporated in it constitutes an FPTAS for the problem P-Cost-
Sizes-FD, and the following statement holds.

Statement 2. There exists an FPTAS for the problem P-Cost-Sizes-FD with
the running time O

(
n3

ε2 + n3 log log(
∑n

i=1 cibi)
)

of each algorithm.

3 Conclusions

Deterministic problem P-Cost of optimal sequencing and lot-sizing of several
products on a single imperfect machine have been studied. We have shown that
optimal sequencing and lot-sizing decisions can be made separately for this prob-
lem. The lot-sizing decision was called P-Cost-Sizes problem.

The problem of optimal P-Cost-Sizes was proved NP-hard even if a function
representing the number of defective items is given by an oracle. The P-Cost-
Sizes was also proved NP-hard in the “fraction defective” case for which an
FPTAS with running time O

(
n3

ε2 + n3 log log(
∑n

i=1 cibi)
)

was developed.
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Computer experiments on classes of real-life and randomly generated instances
made in order to verify the applicability of the suggested approaches were ac-
complished. The numerical results prove the efficiency of the proposed models.
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1 Problem Statement

In optimization, it is used to deal with uncertain and inaccurate factors which
make difficult the assignment of a single plausible value to each model param-
eters. Two approaches are possible: in the first one, a single nominal value is
assigned to each parameter, the corresponding optimal solution is computed,
then the interval in which each parameter can vary in order to preserve optimal-
ity solution is determined; the second approach consists in taking into account in
the model to optimize, the possible variations of each parameter. In mathemat-
ical programming, the first approach is known as sensitivity analysis (see e.g.
[6]). For the second approach, stochastic optimization may be applied for some
problems in which parameters value can be described by probability laws (see
for example [4]). When it is not possible nor relevant to associate probability
laws to parameters, another way amounts to assign a set of possible values to
each parameter. Two models may be considered: in the first one, a finite set of
values is assigned to each uncertain model coefficient; in the second one, each
uncertain model coefficient is associated with an interval number. In this paper,
we only consider this second model called interval linear programming.

The choice of one value in each interval corresponds to a scenario. The induced
robust optimization problem is to determine a single solution which is optimal
for all scenarios. In general, such a solution does not exist and the problem is to
determine a ”relatively good” solution for all scenarios (see for example [2,8,10]).
When uncertainty concerns feasible solution set, robustness problems have been
less studied (see for example [9,7]). Nevertheless, a lot of real optimization prob-
lems include uncertainty and inaccuracy factors on feasible solutions set. For
example, when a linear program represents a production problem in which the
right hand sides equal to some forecast demands on several periods, it may be
much more relevant to replace each right hand side coefficient by a suitable
interval number.

In this paper, we consider general linear programs in which each right hand
side bi is an interval number [bi, bi]. It is assumed that each bi can take on any
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value from the corresponding interval regardless of the values taken by other
coefficients.

The aim of this work is to define the theoretical complexity of the best and
worst optimum problems (firstly introduced by Chinneck and Ramadan in [5]).
In the first part, we consider linear programs with inequality constraints. In
the second part, we deal with those containing equality constraints, and then,
we extend the results to general linear programs. In each case, we characterize
optimal solutions.

2 Uncertainty on Right Hand Sides: Main Results

When uncertainty (represented by interval numbers) concerns right hand side
constraints, only few results have already been obtained. The difficulty comes
from the fact that the set of feasible solutions is not exactly known. Thus, any
solution may not be feasible for all interval right hand side.

In [5],Chinneck andRamadan consider general linear programswith interval co-
efficients (simultaneously in objective function, matrix constraints and right hand
sides). The goal is to compute the best possible optimum and the worst one over
all possible scenarios in order to provide a kind of robustness information: ”The
range of the objective function between the best and the worst optimum values
gives a sense of the risk involved... For example, the specific values of the uncertain
coefficients can be chosen to reflect a conservative or a risk-taking strategy.”

In [5], algorithms are proposed to determine best and worst optimum but
none complexity result is given. They consider separately linear problems with
variables restricted in sign and equality or inequality constraints. They propose
polynomial time algorithms for determining the best optimum of a linear pro-
gram with variables restricted in sign, and the worst optimum of linear program
with inequality constraints and variables restricted in sign. They define an ex-
ponential time algorithm for computing the worst optimum of a linear program
with equality constraints and variables restricted in sign. Moreover, the authors
remark that the complexity of the algorithm grows when variables are not re-
stricted in sign.

When only right hand sides are interval numbers in a linear program, we
show in this paper that only two cases have to be distinguished for complexity
analysis. Firstly, we consider the easier case of linear programs with general
inequality constraints (whatever the sign of each variable is), and secondly, we
study the much more difficult case of linear programs with equality constraints.
In each case, we characterize optimal solutions.

3 Linear Programs with Interval Right Hand Sides: The
Case of Inequality Constraints

We consider the following linear program with n variables and m constraints

(P b
≥)

{
min cx
s.t Ax ≥ b
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We suppose that each bi varies in the interval [bi, bi]. For all b ∈ [b, b], we denote
Xb

≥ the polyhedron defined by {x ∈ IRn : Ax ≥ b} and we suppose that Xb
≥ is

a nonempty bounded polyhedron. As usual, we denote in this paper v(P ) the
optimal solution value of the optimization problem (P ).

3.1 Best Optimal Solution

Our objective is to determine the minimum value of the optimal solution of
(P b

≥) when b varies in the interval [b, b]. The best optimal solution problem can
be written as follows

(B≥)
{

min v(P b
≥)

s.t b ≤ b ≤ b

Theorem 1. (B≥) can be solved in polynomial time.

Proof. It is sufficient to remark that (B≥) is equivalent to the following linear
program ⎧

⎨

⎩

min cx
s.t Ax ≥ b

b ≤ b ≤ b

Moreover, it is possible to characterize the scenario which gives the best opti-
mal solution. Since Xb

≥ ⊆ X
b
≥ for all b in [b, b], we have v(P b

≥) ≥ v(P b
≥) and

consequently v(B≥) = v(P b
≥).

3.2 Worst Optimal Solution

Our objective is to determine the maximum value of the optimal solution of (P b
≥)

when b varies in the interval [b, b]. The worst optimal solution problem can be
written as follows

(W≥)
{

max v(P b
≥)

s.t b ≤ b ≤ b

We have Xb
≥ ⊆ Xb

≥ for all b in [b, b]. Thus v(P b
≥) ≤ v(P b

≥) and the theorem 2
follows.

Theorem 2. (W≥) can be solved in polynomial time since v(W≥) = v(P b
≥).

4 Linear Programs with Interval Right Hand Sides: The
Case of Equality Constraints

In this section, we consider the following linear program with n variables and m
equality constraints

(P b
=)

⎧
⎨

⎩

min cx
s.t Ax = b

x ≥ 0

We suppose that each bi varies independently in the interval [bi, bi]. For all
b ∈ [b, b], we denote Xb

= the polyhedron defined by {x ∈ Rn : Ax = b, x ≥ 0} and
we suppose that Xb

= is a nonempty polyhedron. Two cases must be distinguished:
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– n = m and the rank of matrix A equals to n. In this case, the problem (P b
=)

has only one feasible solution.
– n > m and the rank of matrix A equals to m. In this case, (Xb

=) is unbounded
and we suppose that (P b

=) presents a finite optimal solution for all b.

We introduce two sets X =
⋃

b∈[b,b] X
b
= and X =

⋂
b∈[b,b] X

b
=. Given a solution

x ∈ X and a scenario b, we have:

– either x belongs to Xb
= and its value is equal to cx,

– or x does not belong to Xb
= and, by convention, we set its value to +∞.

Let us remark that (P b
=) can be formulated as a (P b

≥) problem as follows
⎧
⎪⎪⎨

⎪⎪⎩

min cx
s.t Ax ≥ b
−Ax ≥ −b
b ≤ b ≤ b

But for such a problem, each right hand side does not vary independently to
each other. Each bi appears twice with opposite sign in two different constraints.
Thus we have to study specifically the case of equality constraints.

4.1 Best Optimal Solution

The best optimal solution problem is equivalent to

(B=)
{

min v(P b
=)

s.t b ≤ b ≤ b

Theorem 1. The problem (B=) can be solved in polynomial time.

The proof is equivalent to the proof 3.1 given in the case of linear program with
inequality constraints.

Another formulation of (B=) can be obtained by introducing additional vari-
ables noted by z ∈ Rm. For i = 1, . . . ,m, each zi variable, defined in [0, 1],
represents the deviation from the lower bound bi in the interval [bi, bi] and we
have

∀bi ∈ [bi, bi], bi = bi + zi(bi − bi) with zi ∈ [0, 1]

So, (B=) can be written
⎧
⎪⎪⎨

⎪⎪⎩

min cx

s.t Ax = b+ z(b− b)
x ≥ 0
0 ≤ z ≤ 1

Let us remark that this reformulation, with zi variables, is inspired by the
robustness approach proposed by Bertsimas and Sim [3].

With this formulation, one may characterize the scenario which leads to the
best optimal solution.

Theorem 2. The best optimal solution can be obtained with an extreme sce-
nario, that is to say, ∀i = 1, . . . ,m, zi equals to 1 or 0.
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4.2 Worst Optimal Solution

The problem of determining the worst optimal solution can be formulated as
follows

(W=)
{

max v(P b
=)

s.t b ≤ b ≤ b

In order to analyze the theoretical complexity of (W=), we deal separately
with the simplest case in which n = m and rank(A) = n and the more difficult
case in which n > m and rank(A) = m.

Case n = m and rank(A) = n

Theorem 3. When n = m and rank(A) = n, the problem (W=) is solvable in
polynomial time.

Proof 1. We remark that, when the problem has a unique feasible solution,
the optimal solution of (P b

=) is equal to x∗ = A−1b. (W=) is equivalent to the
following linear program: ⎧

⎨

⎩

max cA−1b
s.t A−1b ≥ 0

b ≤ b ≤ b

Case n > m and rank(A) = m

At first, we have to prove the following lemma:

Lemma 1. The following quadratic program is NP-hard:

(QX)

⎧
⎨

⎩

max cx
s.t x ∈ X

c ≤ c ≤ c

with X ⊆ Rn nonempty bounded polyhedron.

Proof 2. Let us consider the following linear program with a bounded feasible
solutions set and interval coefficients in the objective function

{
max cu
s.t Δu ≤ β

with c ∈ [c, c], u, c ∈ Rn, β ∈ Rm and Δ ∈ Rm×n. Averbakh and Lebedev prove
in [1] that the problem of computing the maximum regret value of a given u is
NP-hard. This problem can be written as follows

freg(u) = max
c ≤ c ≤ c
Δv ≤ β

{c(v − u)}
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By setting x = v − u, we obtain

freg(u) =

⎧
⎨

⎩

max cx
s.t Δx ≤ β −Δu

c ≤ c ≤ c

If we denote the bounded set X = {x ∈ Rn : Δx ≤ β −Δu} we have

freg(u) =

⎧
⎨

⎩

max cx
s.t x ∈ X

c ≤ c ≤ c

Thus, (QX) has the same complexity as freg(u) which is strongly NP-hard and
the lemma is proven.

Now, we prove that (QX) remains NP-hard even if the feasible solution set is
unbounded.

Lemma 2. The following quadratic problem is NP-hard:

(QX’)

⎧
⎨

⎩

max cx
s.t x ∈ X ′

c ≤ c ≤ c

with X ′ ⊆ Rn a nonempty unbounded polyhedron.

Proof 3. The problem (QX) with X ⊆ Rn−1 is equivalent to

(QX’)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max
n−1∑

j=1

cjxj − cnx
′
n

s.t x ∈ X
x′n ≥ 0
c ≤ c ≤ c
0 ≤ cn ≤M

It is to be noted that the polyhedron X ′ = {x ∈ X,x′n ≥ 0} is a nonempty
unbounded polyhedron (since X is nonempty).

The optimal solution of (QX’) is (x∗1, . . . , x
∗
n−1, 0) with (x∗1, . . . , x

∗
n−1) being

the optimal solution of (QX). Thus (QX’) is NP-hard.

Theorem 4. When n > m, rank(A) = m and (P b
=) has finite optimal solution

for all b ∈ [b, b], the problem (W=) is NP-hard.

Proof 4. For a given b, the dual program of (P b
=), is

(Db
=)

{
max btλ
s.t Atλ ≤ ct

whereλ = (λi)i=1,...,m andλi is the dual variable of the ith constraint
n∑

j=1

aijxj = bi.
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According to the strong duality theorem, one can replace v(P b
=) by v(Db

=) in
(W=) as follows

v(W=) = max
b≤b≤b

max
Atλ≤ct

btλ

which is equivalent to the following quadratic program

(Q)

⎧
⎨

⎩

max btλ
s.t Atλ ≤ ct

b ≤ b ≤ b

According to lemmas 1 and 2 problems (W=) and (Q) are NP-hard.

Moreover, the scenario which leads to a worst optimal solution is an extreme
scenario. Considering (Q), one can remark that for a given feasible solution
λ, the bi variables can be separately optimized since maxb≤b≤b

∑m
i=1 biλi =

∑m
i=1 maxbi≤bi≤bi

biλi. Thus, for all i = 1, . . . ,m, if λi ≥ 0 then b∗i = bi oth-
erwise, if λi < 0 then b∗i = bi. Chinneck and Ramadan in [5] observe also that
extreme scenarios are those of interest to determine a worst optimum and they
give an exact algorithm which enumerates the 2m extreme scenarios.

5 Linear Programs with Interval Right Hand Sides: The
General Case

In this section, we consider a general linear program with n variables,m1 equality
constraints and m2 inequality constraints

(P b,b′
)

⎧
⎨

⎩

min cx
s.t Ax = b

A′x ≥ b′

We suppose that each bi (resp. b′i) varies in the interval [bi, bi] (resp. [b′i, b′i]).
For a fixed b and b′, we denote Xb,b′

the polyhedron defined by {x ∈ Rn : Ax =
b, A′x ≥ b′} and we suppose that Xb,b′

is a nonempty polyhedron.

5.1 Best Optimal Solution

The best optimal solution problem is equivalent to

(B)

⎧
⎨

⎩

min v(P b,b′
)

s.t b ≤ b ≤ b

b′ ≤ b′ ≤ b
′

Theorem 5. (B) can be solved in polynomial time.

Proof 5. The proof is the same as the proof 3.1. It leads to solve the linear
program

(B)

⎧
⎪⎪⎨

⎪⎪⎩

min cx
s.t Ax = b

A′x ≥ b′

b ≤ b ≤ b
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Table 1. Main results

best opt worst opt
{

min cx
s.t Ax ≥ b

with b ≤ b ≤ b polynomial polynomial

case n = m and rank(A) = n⎧
⎨

⎩

min cx
s.t Ax = b

x ≥ 0
with b ≤ b ≤ b polynomial polynomial

case n > m and rank(A) = m⎧
⎨

⎩

min cx
s.t Ax = b

x ≥ 0
with b ≤ b ≤ b polynomial NP-hard

5.2 Worst Optimal Solution

The problem of determining the worst optimal solution can be formulated as
follows

(W )

⎧
⎨

⎩

max v(P b,b′
)

s.t b ≤ b ≤ b

b′ ≤ b′ ≤ b
′

Case n = m1 and rank(A) = n.

Theorem 6. When n = m1 and rank(A) = n, the problem (W ) is solvable in
polynomial time.

Proof 6. (W ) can be written as a linear program as follows:
⎧
⎨

⎩

max cA−1b

s.t A′A−1b ≥ b
′

b ≤ b ≤ b

Case n > m1 and rank(A) = m1.

Theorem 7. When n > m1 and rank(A) = m1, the problem (W ) is NP-hard.

The proof is equivalent to proof 4.

6 Conclusion

In this article, we study the theoretical complexity of the best (worst) optimum
problem for linear program with interval right hand sides. In the following table,
the main results are summarized:
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The best and worst optimum values can be seen as indicators for dealing with
uncertainty in a decision problem. In fact, the best (worst) solution is optimal
only for a particular scenario and their performance on the other scenarios is
unknown (and can be far away from optimality). For evaluating the robustness
of a solution, another approach must be applied. A classical one comes from
decision theory and amounts to apply some suitable criteria, like the worst case
criteria or the maximum regret criteria. It will be very interesting to analyze
the relationship between the best and worst optimum problems and those of
determining the optimal solutions according to the best and worst case criterion.
This will be the subject of future research.
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Abstract. In the transit planning literature, network timetabling and
vehicle scheduling are usually treated in a sequential manner. In this pa-
per, we focus on combining important features of these two steps, and
underline how their simultaneous optimization is meaningful and can
bring important improvements to both quality of service and level of re-
sources required. We deal with the objectives of networkwide quality of
service through number and quality of the transfers and evenness of the
line headways, and with the resources side through number of vehicles
needed. Our approach is adapted to the problem faced by regulating au-
thorities, treating among others intermodality, multi-periods for head-
ways and travel times, and complex timetable schemes. We introduce
an optimization procedure based on Iterated Local Search and present
computational experiments carried out on a real large transit network,
showing substantial improvements in both quality of service and level of
resources compared to the current practice.

Keywords: Mass transit, Timetabling, Scheduling, Transfer Synchro-
nization, Iterated Local Search.

1 Introduction

Transit network timetabling is the step of transit planning during which the
quality of service of the offer is determined and the level of resources needed is
strongly influenced (lower-bounded). In general, the offer is defined first, to create
transfer possibilities and respect headway bounds. Vehicle allocation only occurs
afterwards, thoroughly constraining the problem of minimizing the number of
buses needed. Despite the strong relation between these two problems, most
studies focus on a single side, due to the intrinsic complexity of each of them.

Depending on the focus of the problem treated, denominations for transit
network timetabling include Schedule Synchronization [6], Transfer Time Opti-
mization [3] or Transfer Coordination [12]. Objectives assigned to these problems
include minimizing total waiting time, minimizing transfer waiting time or max-
imizing the number of simultaneous arrivals [9]. This problem has often been
modeled as a Quadratic Semi-Assignment Problem (QSAP) [6,1] which aims
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at minimizing the global transfer waiting time of passengers in the network by
setting the first departure time of each line. However, QSAP cannot capture
some important operational constraints such as variable headways. The author
of [11] proposed a constructive heuristic to set line runs departure times. The
objective was to minimize the total transfer waiting time while allowing variable
headways between runs. However, the evenness of headways was not consid-
ered as an objective, neglecting an important factor in service quality. In many
studies, headway evenness is rather computed as a function of initial waiting
time weighted by the number of users waiting [7]. This implies availability of
the desired boarding times of the passengers or the assumption of arrival time
distribution functions.

In order to include additional degrees of freedom, the authors of [4] proposed
a Non-Linear Mixed Integer Problem model in which stopping times are allowed
to vary. However, due to the level of complexity involved, this study considered
a single transfer node. In [7], the authors used a Genetic Algorithm on a net-
workwide basis. A single common period is considered for the whole network,
meaning fixed running times and unvarying headway demand for each route.

Vehicle scheduling, on the other hand, consists in assigning vehicles to line
runs and depots, thereby creating the so-called vehicle services. Several aspects
have been studied, considering different levels of complexity, such as number of
depots or fleet homogeneity/heterogeneity [5]. In the case of regulating authori-
ties, information regarding depots and fleet are unavailable.

So far, the simultaneous approach of optimal fleet distribution and timetabling
of transit systems has only been superficially explored. It has often been nar-
rowed to integrating constraints on the number of available vehicles in the
timetabling problem and considering schedules without interlining. The first
study that we are aware of that considers the number of vehicles as an objective
of the transit network timetabling problem is reported in [4]. The authors pro-
posed a genetic algorithm to tackle a combination of transfer coordination and
vehicle scheduling problems. However, since the representation is cumbersome,
the restrictive case of a single transfer stop with multiple lines is studied.

In this paper, we consider the combination of transit network timetabling with
vehicle scheduling from the point of view of regulating authorities, meaning the
consideration of depots is not needed yet. Given a pre-defined lines network;
the current timetable; groups of lines sharing resources; running times; headway
periods; and levels of importance of the transfers; the goal is to define a syn-
chronized network timetable and the associated vehicle assignment with respect
to a set of constraints and objectives. Our approach is based on three different
levels of evaluation: headway evenness is calculated per line, level of resources
is computed per group of lines, and transfer optimization works at the network
level. We present a solution method combining both perspectives, leading to
a very flexible decision-aid tool. An Iterated Local Search procedure is devel-
oped, which is based on the exploration of two types of neighborhoods aiming
at alternatively intensifying and diversifying the search.
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2 Problem Description

Our problem consists in assigning a departure time and a vehicle to each line
run in the network, with respect to a set of objectives and constraints. In this
part, we detail the characteristics, variables and domains, inputs, constraints
and objectives of our approach. Let us state a few definitions first:

– A route is a sequence of stops, and a line is a route with a direction. In the
rest of this paper, we will consider only lines.

– A line run is a trip on the line, characterized by a departure time.
– An external line is any activity connected in time and space with the transit

network (e.g. a train line, a factory quitting). This information is used to
create intermodal transfers.

– The turnaround time is the time needed by a vehicle at the end of a line
run to get ready for the next trip and possibly catch up with some lateness
accumulated with respect to the planned schedule.

– The headway of a line is the time separating the service of its main stop by
consecutive runs. It is the inverse of the frequency over a time period.

– A network timetable is composed of line timetables, which in turn correspond
to the set of all arrival and departure times for the stops served by each run.

– A vehicle assignment is the entire sequence of line runs assigned to a vehicle.

2.1 Properties of Our Approach

Our model includes a set of interesting properties that render it particularly flex-
ible, realistic and adapted to planners’ needs. It aims at defining a compromise
between flexibility and complexity for the design of high quality timetables. For
this purpose, we consider period-dependent travel times and headways, while
keeping fixed stopping times in stations.

We also base our model on realistically available data such as planner-defined
importance level of transfers and period-dependent headways. Indeed, while
origin-destination data is often taken as input for the models in the literature,
the complexity induced by path-assignment is such that the option of re-routing
passengers during the process of optimization is usually abandoned and the de-
mand considered fixed and inelastic. Therefore, we directly assign a weight to
each transfer based on the transit operator’s knowledge and experience.

Also, we consider that users are not captive and will not use a transfer re-
quiring more than a certain waiting time limit. This implies that we need to
take into consideration both number and quality (waiting time with respect to
provided minimum, ideal and maximum waiting times) of transfers.

Our model supports complex line timetable schemes and uses real-world timeta-
bles, in which itineraries can vary with the line runs. This includes skipping or
adding stops to the ”main” line itinerary in some runs, serving stops in variable
order, and lines with branches (when several patterns of itinerary are used, serv-
ing different stops, usually at extremities of the line).
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2.2 Input

The problem considered in this paper has the following inputs.

– The lines network structure, composed of ordered sets of stops with a planner-
defined main stop for each line.

– The current timetable (it is assumed the lines are already in use), comprising
for each line run the set of arrival and departure times of the served stops.

– For each line, a set of headway periods with associated variation margins.
– The constitution of groups of lines on which interlining is allowed. Each

vehicle will be assigned to line runs exclusively inside the same lines group.
This allows to cover the cases in which portions of various sizes of the network
are serviced by the same operator, as well as the common urban case of
vehicles running back and forth on a single line.

– All needed information concerning external lines are also available, namely
connecting point and times with the network.

– The set of parameterized transfers. Parameters include relative level of im-
portance, and minimum, ideal and maximum waiting time for users.

– The deadhead running times between all line run termini of each lines group,
which are used in the vehicle assignment part of the problem.

2.3 Variables

The set of decision variables is composed of all the line runs on the timetable.
The value to be assigned to each variable is a (starting-time, vehicle) pair. The
domain of these variables is discrete and finite. The planning horizon is comprised
in a time-frame usually of one day long, and discretised in minutes without loss
of generality. The number of vehicles is at most equal to the number of line runs
in the timetable.

Since we use fixed stopping times and the period-dependent running times
are also given, we can then deduce all arrival and departure times for the rest
of the stops from the starting time of each line run.

2.4 Constraints

Feasibility Constraints. A feasible solution must meet three conditions:

– The stopping time at each stop is equal to the initial stopping time at the
same stop of the same line run.

– The running times between stops match the period-dependent data.
– In any vehicle schedule, the time gap separating the arrival at the last stop of

a line run and the departure from the first stop of the next line run assigned
to it must be greater or equal to the turnaround time of the terminal plus
the deadheading trip duration.

Timetable Structure. Within a given line, the set of stops served and their
order can vary with the runs along the day. The structure of each run is fixed,
and the order in which the runs are served cannot be modified. Additionally, the
first (resp. last) run of a line cannot serve the main stop before (resp. after) the
start (resp. end) time of the first (resp. last) headway period of the line.
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Complete Assignments. A (starting-time, vehicle) couple value must be as-
signed to each decision variable. In order to be consistent, we require the assign-
ment to be complete such that:

– A departure time must be assigned to each line run.
– One vehicle must be assigned to each line run.

Group Interlining. All resources must be assigned to line runs belonging to
the same line group.

2.5 Objectives

Fleet Size. The number of vehicles is the main resource objective.

Number and Quality of Transfer Possibilities. As mentioned in 2.1, we
base our transfer quality evaluation on bounds and ideal value provided by the
planner. The cost function we use is a nonlinear function of the waiting time
which favors the most heavily close-to-ideal waiting times. The cost incurred
to the configuration is also pondered by the relative level of importance of the
transfer. The time gaps between arriving and departing runs belonging to lines
meeting in the network are computed. Each gap belonging to the allowed interval
means a transfer opportunity and generates a negative cost to the configuration.

Headway Evenness. In the context of a minimization problem, we model
this objective as one of minimizing the sum of evenness defaults. Dealing with
multiple headway periods and their transitions is a challenging problem [2]. Let
us describe the basics of our method to deal with the three types of situations
which can arise (see Fig.1):

– Case 1: Consecutive runs belong to the same headway period. The observed
interval should be as close as possible to the expected headway.

– Case 2: Consecutive runs belong to adjacent headway periods. Only gaps
shorter than both or longer than one of the expected headways are penalized.

– Case 3: Observed interval with start and end of the day. For each line, two
of these intervals occur: between the allowed start of the day and the first
actual run, and between the last run and the end of the day. It is assumed
that these values can be ”too long” but not ”too short”, and we compare
them to the variation margin.

Fig. 1. Individual headway cost functions incurred respectively for case 1, 2 and 3
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3 Solution Approach

Our transit network timetabling and vehicle scheduling problem enables several
important features: complex timetable schemes, multiple headway periods for
each line and variable running times along the day. These features induce at
the same time additional difficulties for solving the problem. Given the intrinsic
complexity of the model, we choose to employ a heuristic solution approach
rather than exact methods. For this purpose, we use Iterated Local Search for
its simplicity and efficiency.

In what follows, we recall the basic idea of ILS and the algorithm used for
the vehicle assignment, then introduce the evaluation function and the neigh-
borhoods employed, and from there we present the developed approach.

3.1 Iterated Local Search

Iterated Local Search (ILS) is a simple and robust metaheuristic [10]. It is based
on the principles of Local Search combined with perturbation movements that
are used when the search is caught in a local optimum. If this perturbation
satisfies a given acceptance criterion, another round of local search is applied
to the current solution, eventually leading to another local optimum. These
alternate phases of intensification and diversification permit an exploration of
the local optima of the search space that can provide effective results. In our
case, we use ”Markovian” walk dynamics rather than a history. This choice is
based on the fact that the defined perturbation movements diversifies the search
enough to limit the probability of leading back to the last local optimum.

3.2 Vehicle Assignment

The vehicle assignment part of our problem, i.e. the linkage of runs, can be mod-
eled as a network-flow-based quasi-linear assignment problem and solved opti-
mally by an efficient auction algorithm [8]. This algorithm consists in assigning
the source and the trips to trips or to the sink (in order to create sequences).
We assign half the cost of a vehicle to the links between the source and trips
and between trips and the sink. The cost is somewhat different from Freling’s
model of [8] in that we do not include in this cost any value related to the
deadheading time for pull-in and pull-out trips, since information regarding the
depots is unavailable. Therefore all the links leaving the source and entering
the sink have the same value. The other ”intermediate” links, joining two trips,
are assigned a value depending on the feasibility of the connection. The al-
gorithm gives optimal results in a very short time, especially on sparse net-
works. This fits well our context of limited groups of lines for the vehicle
assignment.

3.3 Evaluation Function

An aggregated weighted sum is used to evaluate the global cost of a solution.
While the number of vehicles involved and number of feasible transfers are
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countable, notions of transfer quality and headway evenness are more fuzzy.
Non-linear cost functions are defined for these objectives (see 2.5). This evalua-
tion function is used in the context of our minimization problem.

3.4 Moves and Neighborhoods

RunShift: Recall that the value of a variable is composed of a (starting-time,
vehicle) couple. The RunShift move modifies only the time value of one single
variable and the vehicle values of none to all of the variables.

Given a solution (i.e. a timetable and a schedule), a neighboring solution can
be obtained by shifting the departure time of a single randomly selected line run
by +/- n minutes. n is chosen randomly inside a restricted interval defined to
both respect the timetable structure constraint and prevent large shifts that are
likely to incur high costs on the headway evenness objective.

The vehicle assignment is then recomputed on the neighboring timetable, re-
sulting in the possible modification of the vehicle value of up to the entire set of
variables. These values are determined in order for the schedule to remain inside
the realisability domain by respecting the sequence feasibility and group inter-
lining constraints, and also to be cost-optimal on the vehicle assignment problem.

LineShift: The LineShift move modifies the time value of a definite set of
variables at a time and the vehicle values of none to all of the variables.

A neighboring solution can be obtained by shifting the departure time of all
the runs of one single randomly selected line by +/- n minutes. As in RunShift,
n is chosen randomly inside a restricted interval defined to both respect the
timetable structure constraint and prevent excessively large shifts that could be
detrimental to the headway evenness objective.

The vehicle assignment is then completely recomputed on the neighbor
timetable.

3.5 Initial Solution and General Procedure

Our ILS algorithm is based on a heuristic initial construction and uses two
neighborhoods aiming at alternatively intensifying and diversifying the search.

The initial solution is built according to the following three steps.

– First, a departure time is assigned to each line run of the network based on
the existing timetable.

– Second, a vehicle is assigned to each line run through the linear assignment
algorithm (see section 3.2).

– Third, a descent method combined with the LineShift neighborhood is
applied to explore quickly parts of a restricted but diverse search space.

It should be clear that this initial solution corresponds to a local optimum
with respect to the small-sized LineShift neighborhood. At this point, we use
a larger neighborhood (RunShift) to intensify the search in the vicinity of this
local optimum. Additional areas (that were not reachable with LineShift) of
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the search space (which is now complete) can be explored through RunShift
moves. This is the heart of the ILS: at each iteration, a descent method is applied
with RunShift up to a local optimum, at which point a perturbation is applied.

This perturbation consists of a short sequence of LineShift moves applied
in the context of a descent method. Moves from LineShift are likely to modify
substantially the current solution. Therefore, in order not to loose too many of
the good properties acquired so far, only moves with negative or null impact on
the evaluation function are accepted. The descent is stopped when a number of
moves have been accepted or evaluated, or a time limit has been reached.

The acceptation criterion is met when the quality of the current solution is
equal to or better than the quality of the best local optimum recorded so far.
The stopping criterion of the whole ILS algorithm relies on computational time,
number of iterations, and number of iterations without improvement.

4 Experimentations and Numerical Results

4.1 Data Set

Our experimentations are based on a real extraurban transit network of a large
French area involving 3 medium-size cities and numerous villages. The network
is composed of 50 oriented lines serving 673 stops. Each line is assigned to one
of three different operators, represented in our model by line groups (of 8, 16
and 26 lines). On the typical day of operation considered in this study, 318 line
runs are scheduled. Additionally, 30 external activities (train and school flows)
interact with the bus network. Considering only the spatial structure of the
transit network, 282 different kinds of intramodal and intermodal transfers can
hypothetically be generated.

4.2 Computational Results

For this particular test, we carried out 10 runs on the transit network instance,
allowing for each run 10 minutes of CPU time (corresponding to a reasonable
time cutoff on real situations). Our algorithm was coded in C++, compiled with
VC++ 9.0, on a laptop equipped with a 1.73 Ghz Intel(R) Pentium(R) M and
1Gb RAM running Windows XP. Averaged results are plotted in Fig. 2 and 3.

Fig. 3 discloses more details of the result. It is easily observed that the al-
gorithm substantially improves both the quality of service (left) and the level
of resources (right). The number of vehicles is evaluated at 91 with the current
timetable, and reduced to a average of 67 by the algorithm. The number of
feasible transfers on the other hand rises from 180 initially to 260 on average.
Considering transfer quality and headway evenness, the global cost function re-
lated to quality of service is provided in the left graph of Fig. 3. We use a set of
parameters that, while considering both aspects of the problem, slightly favors
the resources, as is often desired by the regulating authorities. This is why the
number of vehicles drops first, and the quality of service only rises afterwards.
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Fig. 2. Evaluation Function Evolution

The first part of the algorithm, based on
LineShift, stops on average at 130s. We
can observe on Fig. 2 that in this short
initial period, the descent method based
on this neighborhood provides drastic im-
provement to the solution very fast, and
stabilizes at a local optimum. In the sec-
ond phase consisting of the heart of the ILS,
the additional level of detail provided by
RunShift permits to explore new areas of
the search space and find (important) im-
provements therein.

Fig. 3. Profile of the best solution according to the two sides of the problem

5 Conclusion

The problem treated in this paper combines simultaneously two important steps
usually treated sequentially in the transit planning process: timetabling and
vehicle scheduling. Such a simultaneous approach is, to our knowledge, the first
of this kind in the context of this study.

We introduced a natural and high level model in which a departure time and
a vehicle must be assigned to each line run of the timetable. This model has
the main advantage of being flexible, able to embrace various relevant features
of real-world transit networks. In particular, we considered objectives and con-
straints concerning both quality of service and level of resources as well as other
practical features.

A local search optimization procedure is proposed, combining two types of
neighborhood in a descent-based Iterated Local Search method. A linear auc-
tion algorithm is used to assign vehicles to line runs. Tests carried out on a real
and large network showed considerable improvements in both quality of service
and level of resources required compared with the current practice. The algo-
rithm has been integrated in a commercial software solution designed for transit
operators, and is being used for re-timetabling and scheduling projects by regu-
lating authorities. A path for future work is to integrate features to the solution
method that belong to steps both forward and backward in the transit planning
process.
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Abstract. Symmetric traveling salesman problem (STSP), a difficult
combinatorial problem is formulated as a multistage insertion (MI) deci-
sion problem in Arthanari and Usha (2000). MI formulation is a compact
0-1 formulation for STSP. MI has given rise to the definition of a com-
binatorial object called pedigree. Arthanari (2008) contains a necessary
condition for a MI-relaxation solution to be expressible as a convex com-
bination of pedigrees. The existence of a multicommodity flow with the
optimum value equal to unity over some layered network is checked for
this purpose. This paper walks through an illustrative example to show
the construction of such a network and the procedures involved in check-
ing the necessary condition. Another important feature of this example is
it brings out the need for discarding some arcs from the network called
dummy arcs, for the correctness of the necessary condition for member-
ship.

Keywords: Traveling salesman problem, Combinatorial optimization,
Pedigree polytope, Multistage insertion formulation, Membership
problem.

1 Introduction

The Traveling Salesman Problem (TSP) is probably the most studied NP-hard
problem in the area of combinatorial optimization [16] and it has served as a
very good test bed for validating new algorithms and combinatorial methods
[22], [15] and [2].

TSP seeks to find the shortest Hamiltonian tour over a complete graph of
a finite set of nodes where the distance between every two nodes is known.
In general, TSP intends to minimize CTx, subject to x ∈ S, where vector x
is indicating to a Hamiltonian tour, with S denoting the set of the incidence
vectors of all possible feasible tours and CTx being the length of the tour x
[2],[16].

The standard formulation for TSP was suggested by Dantzig, Fulkerson and
Johnson in 1954 [12]. Dantzig, Fulkerson and Johnson formulation (DFJ) is a
0 − 1 linear model with each variable representing the existence of an edge in
the tour. The number of variables in DFJ is of the order of O(n2) and the
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number of the constraints is of the order of O(2n−1) which makes it impractical
to solve directly, hence Dantzig, Fulkerson and Johnson took resort to cutting
off fractional solutions from the solution space by adding violated constraints
and re-solving the problem. This method for solving TSP has led to wide spread
applications in the combinatorial optimization field. For instance Concorde c©
software [11] is one of the best known computer codes for TSP that uses branch
and cut approach and is capable of solving TSP instances as large as 15000−city
problems [2].

There are many different formulations for TSP [12] [13], [10] and [17]. The num-
ber of constraints, variables and also solvability of these formulations are different.
Padberg and Sung [20] have used a transformation technique to map different for-
mulations from different spaces into the DFJ problem space and then compared
the strength of the formulations. Orman and Williams[19] showed that the LP
relaxation of DFJ formulation has the smallest polytope and thus is the tightest.

The multistage insertion formulation (MI) suggested by Arthanari [9] has
O(n2) constraints and O(n3) variables. MI is based on n− 3 sequential stages of
node insertions, from 4 to n, into the subtour T3 = [1, 2, 3, 1] for constructing a
complete n−tour . The MI formulation models the TSP by taking these insertions
as the decision variables. Let Vn = {1, . . . , n} , with n being the number of nodes.
Let En = {e = (i, j) | i, j ∈ Vn, i < j}, δ(S) = {(u, v) ∈ En, (u ∈ S∧v /∈ S)∨(u /∈
S ∧ v ∈ S)} for S ⊂ Vn and also E(S) = {(u, v) ∈ En | u, v ∈ S}. Let xk(e) be
a 0-1 variable indicating the insertion of city k into the edge e and let Ck(e) be
the increase in the length of the tour due to such insertion. The complete MI
formulation is:

Minimize

n∑

k=4

∑

e∈En−1\E3

Ck(e)xk(e)

subject to:
xk(Ek−1) = 1, k ∈ Vn \ V3, (1)

n∑

k=4

xk(e) = 1, ∀ e ∈ E3, (2)

− xj(δ(i) ∩ Ej−1) +
n∑

k=j+1

xk(e) ≤ 0, e = (i, j) ∈ En−1 \ E3, (3)

xk(e) ≥ 0 integer, ∀ e ∈ Ek, ∀ k ∈ Vn \ V3.

By relaxing the integer constraint from MI and also adding

− xn

(
δ(i) ∩ En−1

)
≤ 0, i = 1, . . . , n− 1, (4)

the MI-relaxation problem is achieved. The MI-relaxation polytope is denoted by
PMI(n). The affine transformation of PMI(n), projecting out xk(e) variables, is
denoted by u(n). Arthanari and Usha [8] compared u(n) with the subtour elim-
ination polytope SEP (n), and proved that u(n) ⊆ SEPn. Thus MI formulation
is as tight as DFJ formulation and has only polynomially many constraints.
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Next we consider the definition of pedigree as given in [6]. A pedigree is an
integer solution to MI formulation and is an alternative representation of a TSP
tour which can be associated with the sequential insertion of nodes into the tours.
Pedigree is a combinatorial entity composed of the ordered set of the edges cho-
sen for insertion at each stage throughout the multistage insertion process [6]. A
pedigree W corresponding to a tour of n cities is denoted by W = (e4, . . . , en),
where ek is the edge used for the insertion of city k .

Example 1. For a TSP of the size n = 7, the tour T7 = [1, 4, 5, 3, 6, 2, 7, 1] is
equivalent to having the decision variables x4((1, 3)) = x5((3, 4)) = x6((2, 3)) =
x7((1, 2)) = 1. The corresponding pedigree is W = ((1, 3), (3, 4), (2, 3), (1, 2)).
In this pedigree, node 4 was inserted into the edge (1, 3), resulting in the edges
(3, 4) and (1, 4). The edge (3, 4) was then used for the insertion of node 5 which
resulted in (3, 5) and (4, 5) and so on.

1.1 The Pedigree Polytope

The MI formulation has given rise to the definition of pedigree polytope. The
set of all the pedigrees for a TSP of size n, is denoted by Pn and conv(Pn)
is the convex hull that is formed by all the pedigrees as its extreme points
and is called the pedigree polytope. Each vertex of conv(Pn) corresponds to a
unique pedigree and hence a unique TSP tour. conv(Pn) lies on the hyperplanes
xk(Ek−1) = 1, ∀k ∈ Vn \V3. The dimension of conv(Pn) is shown to be equal to
∑n

(k=4)(k − 2)(k − 1)/2− (n− 3) in [4].
Pedigree polytope has some interesting characteristics, for instance, the test-

ing of non-adjacency of two pedigrees can be conducted in polynomial time [5]
whereas the non-adjacency testing for two tours is shown to be NP-complete
[21]. Other characteristics of pedigree polytope are discussed in [5] and [6].

It is shown that the convex hull of pedigrees is the subset of the MI polytope
(conv(Pn) ⊂ PMI(n)) [8] therefore it would be interesting to check whether given
a feasible solution X ∈ PMI(n), it also belongs to the pedigree polytope. This is
equivalent to checking if a solution from the LP relaxation of MI corresponds to
a convex combination of feasible tours. This problem is called the membership
problem. The complexity of an optimization problem over a polytope is similar
to that of the membership problem of the polytope [14], thus we are interested
in solving the membership problem.

It is shown by Arthanari that a necessary condition for a MI-relaxation so-
lution to be expressible as a convex combination of pedigrees can be associ-
ated with the existence of a multicommodity flow with the optimum value
equal to unity over some layered network [5]. In this construction a proce-
dure is used to identify some arcs as dummy arcs which are deleted from the
network. In this paper an example is given to show that discarding dummy
arcs is essential for the correctness of the necessary condition. This example
is also used to illustrate the procedures involved in checking the necessary
condition.
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Section 2 walks through the illustrative example. The algorithms and results
from [3] are used for checking this necessary condition for membership. And
finally, the conclusion and future research are presented in Section 3.

2 The Membership Problem

Given X , an MI-relaxation solution, let X/k denote the solution including cities
1 to k. The membership problem checks that given some MI-relaxation solution
X , where X/k belongs to the pedigree polytope conv(Pk), whether X/k + 1
belongs to the pedigree polytope conv(Pk+1) or not.

Given 4 ≤ k ≤ n, let Nk be the layered network which can be constructed
in a recursive fashion in k − 3 stages. Starting from a subnetwork N4 including
only the first two layers, the layers are added one after another in each stage.
Each stage consists of adding the next layer to the network Nk and solving some
maximum flow problems in the network to define the arc capacities of the arcs
between Nk and the new layer. In the bipartite network of the layers k − 3 and
k−2, a maximum flow problem denoted by Fk is then solved. In each stage, given
X/k ∈ conv(Pk), it is checked whether X/k + 1 ∈ conv(Pk+1) or not. It is said
that Nk is well-defined, when X/k+ 1 ∈ conv(Pk+1). In case k = 4, the process
for checking the necessary condition includes solving F4. The infeasibility of F4

is sufficient for X/5, and thus X , not being a member of the respective pedigree
polytopes.

Checking the necessary condition for k = 4 and k > 4 is illustrated in Section
2.1 and 2.2 respectively.

2.1 Solving F4 and Forming N4

Checking the necessary condition for k = 4 is illustrated through Example 2.

Example 2. Consider X , a MI-relaxation solution corresponding to a 8−city
problem, with the following xk((i, j)) values: x4((1, 2)) = x4((1, 3)) = 2

5 , x4

((2, 3)) = 1
5 , x5((1, 2)) = 2

5 , x5((1, 3)) = 3
5 , x6((1, 2)) = x6((1, 5)) = x6((2, 5))

= 1
5 , x6((3, 5)) = 2

5 , x7((1, 4)) = 2
5 , x7((3, 5)) = 1

5 , x7((5, 6)) = 2
5 , x8((5, 6)) =

3
5 and x8((6, 7)) = 2

5 .

The network N4 includes nodes corresponding to x4(e) and x5(e) variables with
positive values. Let [k : i, j] be a node inN4 corresponding to variable xk((i, j)) >
0 and let V[l] be the set of nodes in layer l. In this example V[1] = {[4 : 1, 2], [4 :
1, 3], [4 : 2, 3]} and similarly V[2] = {[5 : 1, 2], [5 : 1, 3]}. Each node [k : i, j]
in the network corresponds to the insertion of some city k into the edge (i, j),
and therefore each arc between the two layers corresponds to two successive
insertions. Let the arc in Nk, connecting a node in layer k − 3 to a node in
layer k − 2 be denoted as ([k : i, j], [k + 1 : r, s]) where [k : i, j] ∈ V[k−3] and
[k + 1 : r, s] ∈ V[k−2]. In the bipartite network of F4, nodes of the first layer are
treated as origins with supplies equal to xk((i, j)) values and the nodes in the
second layer are destinations with demands equal to xk+1((i, j)) values.
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In the insertion process, since some successive insertions are infeasible, the
corresponding arcs in the network are considered to be forbidden and discarded
from the network e.g. arc ([4 : 1, 2], [5 : 1, 2]) corresponds to the insertion of city
4 and 5 into the same edge which is infeasible. Similarly ([4 : 1, 2], [5 : 3, 4]) is
not possible as (3, 4) is not available from the insertion of 4 in (1, 2). Therefore
the set of arcs for F4 is {([4 : 1, 3], [5 : 1, 2]), ([4 : 2, 3], [5 : 1, 2]), ([4 : 1, 2], [5 :
1, 3]), ([4 : 2, 3], [5 : 1, 3])}. The capacities of the arcs in F4 are set equal to
one. In this example, F4 is solved and its optimal value is equal to unity. Let
f([k : i, j], [k+1 : r, s]) denote the flow along the arc ([k : i, j], [k+1 : r, s]). The
optimal flow through the arcs of F4 are f([4 : 1, 2], [5 : 1, 3]) = f([4 : 1, 3], [5 :
1, 2]) = 2

5 and f([4 : 2, 3], [5 : 1, 3]) = 1
5 .

2.2 Defining Dummy and Rigid Arcs in F4

If the flow along an arc is same in all feasible solutions of Fk, that arc is called a
rigid arc. The rigid arcs along which the flow is zero are called dummy arcs and
are discarded from the network. The capacity of the rigid arcs will be set equal
to the flow they are carrying. Defining the dummy and rigid arcs can be done by
applying a polynomial time algorithm called the frozen flow finding algorithm [3]
on the optimal solution of F4. After applying the frozen flow finding algorithm
on N4, the arcs ([4 : 1, 2], [5 : 1, 3]), ([4 : 1, 3], [5 : 1, 2]) and ([4 : 2, 3], [5 : 1, 3]) are
marked as rigid. The arc ([4 : 2, 3], [5 : 1, 2]) is marked as dummy and therefore
discarded from the network. By updating the arc capacities and discarding the
dummy arcs, the network we obtain is the network N4 which is well-defined.
And it is concluded that X/5 ∈ conv(P5). If F4 was infeasible we would conclude
X/5 /∈ conv(P5) and so X /∈ conv(Pn).

Next we define a procedure for checking the necessary condition for X/k+1 ∈
conv(Pk+1) given X/k ∈ conv(Pk) for k > 4.

2.3 Checking the Necessary Condition for Membership in the
Pedigree Polytope for k > 4

The procedure for checking the necessary condition for any k > 4 is summarized
in the algorithm bellow.

Checking the necessary condition for membership in the
pedigree polytope.
Input: MI-relaxation solution X , some k > 4, X/k ∈ conv(Pk)
and Nk being well-defined.
Question: Does X/k+1 satisfy the necessary condition for mem-
bership in conv(Pk+1) ?
Output: Yes/No.

Step 1 - Identify links L between layers k − 3 and k − 2.
Step 2 - Find capacities for links L solving maximum flow problems in the

restricted networks 1 Nk−1(L) for each link.
1 The restricted network for a link is explained through the illustrative example.
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Step 3 - Solve Fk.
Step 4 - If Fk is not feasible, goto Step 9 .
Step 5 - Identify dummy and rigid arcs in Fk.
Step 6 - Construct Nk.
Step 7 - Define and solve the multicommodity flow problem in Nk. If the op-

timal solution is not equal to 1, goto Step 9.
Step 8 - The necessary condition for membership is satisfied. Stop.
Step 9 - The solution is not a member of the pedigree polytope. Stop.

The steps of the algorithm are explained in detail through a numerical illus-
tration for k = 5 and X from Example 2.

Example 2 (continued) Checking the necessary condition
k = 5

Step 1 - The third layer including the nodes in V[3] = {[6 : 1, 2], [6 : 1, 5], [6 :
2, 5], [6 : 3, 5]} is added to the network. The links between the second and the
third layers are considered. Let L = ([5 : i, j], [6 : r, s]) be a link between the last
two layers.

Step 2 - Link L between the edges e1 and e2 is feasible only if e1 and e2 were
generated in the earlier stages and were not used for insertion before this stage.
Let Nk−1(L) be a subnetwork of Nk−1 regarding link L, including only the nodes
that lead to feasible generation of the edges e1 and e2 in L.Nk−1(L) is also called a
restricted network for linkL. Figure 1 shows the restricted networks corresponding
to links ([5 : 1, 2], [6 : 1, 5]) and ([5 : 1, 3], [6 : 1, 5]). A polynomial-time algorithm
for defining the nodes of the restricted network is defined in [3].

Let C(Li) be the optimal solution of the maximum flow problem in Nk−1(Li)
networks. C(Li) values are then used as the capacities of Li links in the network.
The optimal solutions for the maximum flow problems in the restricted networks
for C(Li) > 0 are shown in Figure 2 next to the related links.

Step 3 - To make sure that no conflicts would be caused between the new
capacities when considered all at the same time, F5 is solved in the bipartite
network of the last two layers. The optimal solution of F5 is equal to one and
the optimal flows are also shown in Figure 2 next to the links.

Step 4 - Since the optimal solution of F5 is equal to one, we may proceed to
the next step.

Fig. 1. The restricted networks for two links
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Fig. 2. The capacity and optimal flows in F5

Step 5 - Applying the frozen flow finding algorithm again, the arc ([5 :
1, 3], [6 : 1, 5]) was identified as dummy and therefore discarded from N5.

Step 6 - A temporary layer of sink nodes are added to N5. Each sink in this
layer corresponds to a link Li with the demand for a certain commodity i equal
to C(Li). A source node in a temporary layer zero is also added to the network
with one unit of supply available for each commodity.

Step 7 - The multicommodity flow problem [3] can be solved in the extended
network including the sinks and the source node. Like any general network flow
problem, multicommodity flow problem includes flow conservation and node and
arc capacity constraints. The sink demand constraints in the multicommodity
flow problem includes only the rigid arcs in Fk. The multicommodity flow prob-
lem in this extended network is solved and the optimal solution is equal to one.
Figure 3 shows the flows in the multicommodity flow network.

Step 8 - Since the optimal solution to the multicommodity flow problem is
equal to one, the necessary condition for membership is satisfied.

It can be observed in Figure 3 that by following the commodity flows, the
pedigree paths in the network can be identified. The pedigree paths carrying
the commodity flows in this subnetwork are shown in Figure 3. The paths are
given in Table 1. Since all the commodity flows in the example are following
pedigree paths, and X/6 is in fact the convex combination of these pedigrees,
the membership in the pedigree polytope conv(P6) is evident.

Fig. 3. The N5 multicommodity flow network
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Table 1. The pedigree paths in the N5 multicommodity flow network

Pedigree Path
Commodity

4 5 6
Flow

1 1,3 1,2 1,5 1/5
2 1,3 1,2 2,5 1/5
3 2,3 1,3 1,2 1/5
4 1,2 1,3 3,5 2/5

Total Flow 1

Fig. 4. The well-defined N6 network

Continuing similarly with k = 6 we can check X/7 ∈ conv(P7). The corre-
sponding well-defined network N6 is shown in Figure 4. Finally we trace through
the algorithm for k = 7.

Step 1 - For k = 7, the fifth layer including the nodes in V[5] = {[8 : 5, 6], [8 :
6, 7]} is added to the network and the new links between the fourth and fifth
layers are considered.

Step 2 - The maximum flow problems in the restricted networks for the links
are solved and the optimal solutions are C(([7 : 1, 4], [8 : 5, 6])) = 2

5 , C(([7 :
3, 5], [8 : 5, 6])) = 1

5 and C(([7 : 5, 6], [8 : 6, 7])) = 2
5 .

Step 3 - F7 is solved and the optimal solution was equal to one. The optimal
flows are equal to arc capacities.

Step 4 - We may proceed to the next step as the optimal solution of F7 is
equal to one .

Step 5 - All the three links in F7 are identified as rigid arcs.
Step 6 - Three sink nodes are added to N7 for each link. The multicommodity

flow network for N7 is formed.
Step 7 - The multicommodity flow problem is solved and the optimal solution

is equal to 0.8. The optimal solution is shown in Figure 5.
Step 9 - The solution is not a member of the pedigree polytope.
It should be mentioned that identifying the rigid and dummy arcs is necessary

for applying this algorithm. For instance in this example, not discarding the
dummy arc ((5,1,3),(6,1,5)) from the network would have resulted in a false
optimal solution of one and it might lead to the wrong conclusion that the
necessary condition for membership is satisfied.
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Fig. 5. The N7 multicommodity flow network

3 Conclusion

It was shown by Arthanari [3] that a necessary condition for membership of the
solutions of MI-relaxation in the pedigree polytope can be associated with the
existence of a multicommodity flow in some layered network with optimal value
equal to unity. Such a layered network is built recursively based on the solution
of MI-relaxation.

This paper aims to bring out a work-in-progress on the algorithm for checking
the necessary condition for membership. Given a solution from a MI-relaxation
instance, the algorithm is traced through and the construction of the layered
network is illustrated. A multicommodity flow problem and some maximum flow
problems are solved in the network.

Current studies by the authors are targeting MI-relaxation instances of larger
sizes. Further computational experiments on bigger problems for the search of
possible counter example that shows the necessary condition is not sufficient is
currently under progress. Future research is on developing heuristics for proving
membership in pedigree polytope using the necessary condition illustrated in
this paper and some other sufficient conditions proved in the related papers [5]
and [3].

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows Theory: Algorithms and
Applications. Prentice Hall, Englewood Cliffs (1993)

2. Applegate, D., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2006)

3. Arthanari, T.S.: On the Membership Problem of Pedigree Polytope. In: Neogy,
S.K., Bapat, R.B., Das, A.K., Parthasarathy, T. (eds.) Mathematical Programming
and Game Theory for Decision Making, pp. 61–98. World Scientific, Singapore
(2008)

4. Arthanari, T.S.: A Comparison of the Pedigree Polytope with the Symmetric Trav-
eling Salesman Polytope. In: The Fourteenth International Conference of the FIM,
Chennai, India, pp. 6–8 (2007)



154 L.H. Ardekani and T.S. Arthanari

5. Arthanari, T.S.: On Pedigree Polytopes and Hamiltonian Cycles. Discrete Mathe-
matics 306, 1474–1492 (2006)

6. Arthanari, T.S.: Pedigree Polytope is a Combinatorial Polytope. In: Mohan, S.R.,
Neogy, S.K. (eds.) Operations Research with Economic and Industrial Applica-
tions: Emerging Trends, pp. 1–17. Anamaya Publishers, New Delhi (2005)

7. Arthanari, T.S., Usha, M.: On the Equivalence of the Multistage-Insertion and Cy-
cle Shrink Formulations of the Symmetric Traveling Salesman Problem. Operations
Research Letters 29, 129–139 (2001)

8. Arthanari, T.S., Usha, M.: An Alternate Formulation of the Symmetric Traveling
Salesman Problem and Its Properties. Discrete Applied Mathematics 98, 173–190
(2000)

9. Arthanari, T.S.: On the Traveling Salesman Problem. In: Bachem, A., et al. (eds.)
Mathematical Programming- The State of the Art, p. 638. Springer, New York
(1983)

10. Claus, A.: A New Formulation for the Traveling Salesman Problem. SIAM Journal
of Algebraic Discrete Methods 5, 21–25 (1984)

11. Concorde Home, http://www.tsp.gatech.edu/concorde/index.htm
12. Dantzig, G., Fulkerson, D., Johnson, S.: Solution of a Large Scale Traveling Sales-

man Problem. Operations Research 2, 393–410 (1954)
13. Fox, K., Gavish, B., Graves, S.: An n-Constraint Formulation of the (Time-

Dependent) Traveling Salesman Problem. Operations Research 28, 1018–1021
(1980)

14. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Berlin (1988)

15. Junger, M., Reinelt, G., Giovanni, R.: The Traveling Salesman Problem. Network
Models. In: Ball, M.O., Magnanti, T.L., Monma, C.L. (eds.) Handbook in Op-
erations Research and Management Science, vol. 7. Elsevier Science, Amsterdam
(1995)

16. Lawler, E., Lenstra, J.K., Rinooy Kan, A.H.G., Shmoys, D.B.: The Traveling Sales-
man Problem: A Guided Tour of Combinatorial Optimization. Wiley, New York
(1985)

17. Miller, C., Tucker, A., Zemlin, R.: Integer Programming Formulations and Trav-
eling Salesman Problems. Journal of the Association for Computing Machinery 7,
326–329 (1960)

18. Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. Wiley Inter-
science, Chichester (1999)

19. Orman, A.J., Williams, H.P.: A Survey of Different Integer Programming Formula-
tions of the Traveling Salesman Problem. In: Kontoghiorghes, E.J., Gatu, C. (eds.)
Optimization Econometrics and Financial Analysis. Springer, Heidelberg (2007)

20. Padberg, M., Sung, T.: An Analytical Comparison of Different Formulations of the
Traveling Salesman Problem. Mathematical Programming 52, 315–357 (1991)

21. Papadimitriou, C.H.: The Adjacency Relation on the Traveling Salesman Polytope
Is NP-Complete. Math. Programming 14, 312–324 (1978)

22. Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applica-
tions. Springer, Heidelberg (1994)



The Minimum Weight In-Tree Cover Problem

Naoyuki Kamiyama� and Naoki Katoh��

Department of Architecture and Architectural Engineering, Kyoto University,
Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan

{is.kamiyama,naoki}@archi.kyoto-u.ac.jp

Abstract. Given a directed graph D = (V, A) with a root s ∈ V such
that a non-negative rational weight is associated with each arc in A, we
consider the problem for finding a set of minimum weight k spanning in-
trees rooted at s which cover A. Here the weight of k spanning in-trees is
defined as the sum of weights of all arcs contained in these in-trees. We
will show that this problem can be solved in polynomial time. For this, we
first consider the set of linear inequalities in RA that coincides with the
convex hull Pic(D) of a |A|-dimensional positive integral vector x such
that we can cover A by k spanning in-trees rooted at s such that e ∈ A
is contained in xe in-trees where R represents the set of reals. After this,
we will show that the separation problem for this polytope can be solved
in polynomial time, which implies the polynomial time solvability of the
minimum weight in-tree cover problem in conjunction with the ellipsoid
method. Furthermore, we will consider the generalization of the minimum
in-tree cover problem such that the input directed graph has multiple
roots. Although this problem is still open, we give the generalization of
the result presented by Vidyasankar [13] which is used to derive the set of
linear inequalities which determine Pic(D) to the case of multiple roots.

1 Introduction

Covering problems in a graph are very important from practical and theoretical
viewpoints and have been extensively studied. For example, the problem for
covering edges in an undirected graph by a minimum number of vertices [9] or
a minimum number of cliques [10] is a famous NP-hard problem. On the other
hand, the problem for covering all edges of a given undirected graph by minimum
number forests can be solved in polynomial time [5,6]. As regards the problems
for covering an arc set of a directed graph by subgraphs, for example, the problem
for covering arcs in an acyclic directed graph by a minimum number of paths
can be solved in polynomial time (see Corollary 14.7a in [12]). The problem for
covering all arcs by minimum number branchings can be solved in polynomial
time [3]. However, to the best of our knowledge, there do not exist many covering
problems which can be solved in polynomial time.

In this paper, we consider the problem for covering a directed graph D =
(V,A, s) by k spanning in-trees rooted at s with minimum weight. Here V is a
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vertex set, A is an arc set, s is a specified vertex s ∈ V called root and an in-tree
is a subgraph T of D such that T has no cycle when the direction of an arc is
ignored and all arcs in T are directed to a root. A non-negative rational weight
we is associated with each arc e ∈ A and the weight of a spanning in-tree is the
sum of weights of arcs in the in-tree and the weight of k spanning in-trees is
the sum of weights of k spanning in-trees. Without loss of generality, we assume
that s is reachable from every v ∈ V . If the out-degree of s is not zero, it is clear
that we can not cover A by k spanning in-trees rooted at s. Thus, we assume
that the out-degree of s is zero. Furthermore, since we can always cover A by |A|
spanning in-trees rooted at s, we assume that k ≤ |A|. Then, we consider the
problem what we call minimum weight in-tree cover problem (in short MWICP)
defined as follows.

Problem : MWICP
Input : a directed graph D = (V,A, s);

Output : a minimum weight k spanning in-trees rooted at s which cover A
if one exists.

In our recent paper [8], we presented a combinatorial algorithm for finding
k spanning in-trees rooted at s which cover A if they exist. The running time
of this algorithm is O(k7|V |7|A|6). However, this algorithm does not lead to a
polynomial time algorithm for MWICP. To the best of our knowledge, no one
studied the problem MWICP, and thus there was no polynomial time algorithm
for MWICP.

The problem MWICP can be reformulated as follows. We define the in-tree
cover polytope Pic(D) ⊆ RA by

Pic(D) = conv.hull

{

x ∈ NA :
We can cover A by k spanning in-trees rooted
at s such that each e ∈ A is contained in xe

in-trees.

}

where R and N respectively denote the set of reals and positive integers, and for
a set X we denote by conv.hullX is the smallest convex set containing X . Then,
the problem MWICP is formulated as follows.

min{
∑

e∈Awexe : x ∈ Pic(D)}. (1)

If we can compute an optimal solution x of the problem (1), we can find an
optimal solution of the problem MWICP as follows. (i) First, we find k arc-
disjoint spanning in-trees T1, . . . , Tk rooted at s by using the in-tree packing
algorithm of Gabow [4] in the directed graph D′ obtained from D by adding
xe − 1 parallel arcs to each e ∈ A. (ii) Next, for each arc e′ of each Ti, if e
is the one created in the previous step (i.e., e′ /∈ A), we replace it by an arc
e ∈ A parallel to e′. The algorithm of Gabow [4] can find k arc-disjoint spanning
in-trees rooted at a specified vertex of a directed graph with n vertices and
m arcs in O(k2n2 + m) time. Since each xe is clearly at most k, the number
of arcs of D′ is O(k|A|). Thus, the first step of the above procedure can be
done in O(k2|V | + k|A|) and the time complexity of the second step is clearly
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O(k|V |). Hence, in order to prove the polynomial time solvability of MWICP, it
is sufficient to show that the problem (1) can be solved in polynomial time.

It is known that the problem (1) can be solved in polynomial time if we
can solve the following separation problem what we call Separation for this
polytope can be solved in polynomial time (see Theorem 6.36 in [1]).

Problem : Separation

Input : a directed graph D = (V,A, s) and a rational vector x ∈ RA;
Output : If x ∈ Pic(D), “yes”. Otherwise, a rational vector a ∈ RA with∑

e∈A aexe <
∑

e∈A aeye for every y ∈ Pic(D).

Our results. We will first present the set of linear inequalities in RA that
determines Pic(D) which will help to solve Separation. To the best of our
knowledge, no one presented the in-tree cover analogue of the matching poly-
tope, the independent set polytope and so on although the characterizations in
terms of inequalities for the existence of k spanning in-trees rooted at s which
cover A were presented by Vidyasankar [13] and Frank [3]. After this, we will
prove that Separation can be solved in polynomial time. Furthermore, we will
consider the generalization of the minimum in-tree cover problem such that the
input directed graph has multiple roots. In this paper, we give the generalization
of the lemma presented by Vidyasankar [13] which is used to derive the set of
linear inequalities which determine Pic(D) to the case of multiple roots. How-
ever, unlike the case of a single root, polynomial time solvability is still open.
Nevertheless, we believe that our polyhedral characterization will be crucial to
develop a polyhedral approach to solve the problem in polynomial time.

Organization. In Section 2, we consider the set of linear inequalities which
determine Pic(D) and the separation problem Separation for this polytope.
In Section 3, we will consider the generalization of the minimum in-tree cover
problem such that the input directed graph has multiple roots.

We conclude this section with necessary definitions and fundamental results.

Directed graphs. Let D = (V,A, s) be a directed graph. For W ⊆ V , let
δD(W ) = {e = xy ∈ A : x ∈ W, y /∈ W} where e = xy represents an arc whose
tail and head are x and y, respectively. For v ∈ V , we write δD(v) instead of
δD({v}).

Total dual integrality. Here we introduce the notion of total dual integrality
presented by Edmonds and Giles [2] which plays a crucial role in this paper.
Let A and b an m × n rational matrix and an m-dimensional rational vector,
respectively. For an n-dimensional variable vector x, a system Ax ≥ b is called
totally dual integral, or just TDI, if for any c ∈ Zn where Z denotes the set
of integers, the dual of minimizing cx over Ax ≥ b has an integer optimum
solution y, if it is finite. We will use the following lemmas concerning TDI.

Lemma 1 (Corollary 22.1b in [11]). If Ax ≥ b is a TDI system and b is
integral, every vertex of the polyhedron {x : Ax ≥ b} is integral.
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Lemma 2 (Theorem 22.2 in [11]). Let Ax ≥ b be TDI and let A′x ≥ b′ arise
from Ax ≥ b by adding −αx ≥ −β for some inequality αx ≥ β in Ax ≥ b.
Then A′x ≥ b′ is also TDI.

Furthermore, a system Ax ≥ b is called box-totally dual integral or box-TDI if for
each pair of n-dimensional rational vectors l and u, the system obtained from
Ax ≥ b by adding l ≤ x ≤ u is TDI. The following lemma is known.

Lemma 3 (Theorem 22.7 in [11]). Given a box-TDI Ax ≥ b, a system ob-
tained from Ax ≥ b by adding l ≤ x such that l is n-dimensional rational vector
is TDI.

2 An Algorithm for the Problem MWICP

In this section, we prove that the problem (1) can be solved in polynomial time.
For a directed graph D = (V,A, s), we first present the set of inequalities which
determines Pic(D). Consider the following set of linear inequalities for x ∈ RA :

(i) xe ≥ 1 for all e ∈ A,
(ii) x(δD(W )) ≥ k for all nonempty W ⊆ V \ {s},
(iii) x(δD(v)) = k for all v ∈ V \ {s},

(2)

where for B ⊆ A we define x(B) =
∑

e∈B xe.

Lemma 4. Pic(D) is determined by (2).

Proof. LetQ be the polytope determined by (2). Pic(D) ⊆ Q immediately follows
from the following theorem.

Theorem 1 ([13]). Given a directed graph D = (V,A, s) and a |A|-dimensional
positive integral vector x ∈ NA, x ∈ Pic(D) if and only if x satisfies

x(δD(W )) ≥ k for all nonempty W ⊆ V \ {s},
x(δD(v)) = k for all v ∈ V \ {s}.

Next we will show Q ⊆ Pic(D). Since x ∈ Q ∩ ZA belongs to Pic(D) from
Theorem 1, it is sufficient to prove that every vertex of Q is integral.

Theorem 2 ([3]). Consider the following set of linear inequalities for x ∈ RA :

xe ≥ 0 for all e ∈ A,
x(δD(W )) ≥ k for all nonempty W ⊆ V \ {s}. (3)

Then, the system (3) is box-TDI.

From Lemma 3 and Theorem 2, the system S1 obtained by adding xe ≥ 1 to
the system (3) for every e ∈ A is TDI. Furthermore, from Lemma 2, the system
S2 obtained by adding x(δD(v)) ≤ k to the system S1 for every v ∈ A is TDI.
Even if we remove xe ≥ 0 for every e ∈ A from S2, the polytope determined by
the resulting system (that is, the system (2)) is the same as that determined by
S2. Hence, it follows from Lemma 1 that every vertex of Q is integral. ��
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2.1 An Algorithm for the Problem Separation

Next we prove that the problem Separation can be solved in polynomial time.

Lemma 5. The problem Separation can be solved in O(|V |·MF(|V |, |A|)) time
where MF(n,m) denotes the time required to solve the maximum-flow problem
defined on a network with n vertices and m vertices.

Proof. Given x ∈ RA, in order to test whether x ∈ Pic(D), we need to check
that x satisfies (i), (ii) and (iii) of (2) from Lemma 4. We first prove that if there
exists an equality or an inequality violated, we can obtain a ∈ RA such that∑

e∈A aexe <
∑

e∈A aeye for every y ∈ Pic(D) in polynomial time.

Case (i). Assume that there exists ê ∈ A such that xê < 1. Since every y ∈
Pic(D) satisfies yê ≥ 1, we can obtain a desired a ∈ RA by setting (a) ae = 1 if
e = ê, or (b) ae = 0 otherwise.

Case (ii). Assume that there exists a nonempty Ŵ ⊆ V \ {s} such that
x(δD(Ŵ )) < k. Since every y ∈ Pic(D) satisfies y(δD(Ŵ )) ≥ k, we can obtain a
desired a ∈ RA by setting (a) ae = 1 if e ∈ δD(Ŵ ), or (b) ae = 0 otherwise.

Case (iii). Assume that there exists v̂ ∈ V with x(δD(v̂)) < k (resp. x(δD(v̂)) >
k). Since every y ∈ Pic(D) satisfies y(δD(v̂)) = k, we can obtain a desired a ∈ RA

by setting (a) ae = 1 (resp. ae = −1) if e ∈ δD(v̂), or (b) ae = 0 otherwise.
Next we prove that we can check x ∈ Pic(D) in a desired time complexity.

It is clear that we can check whether x satisfies all conditions of (i) and (iii)
in O(|V | + |A|) time. Assuming x satisfies (i) and (iii), in order to check (ii),
we consider the network N which is D with capacity xe for each e ∈ A. Let
k′ = min{x(δD(W )) : ∅ �= W ⊆ V \ {s}}. Then, from the max-flow min-cut the-
orem [7], it follows that min{MaxValue(v) : v ∈ V \{s}} = k′ where MaxValue(v)
represents the maximum-flow value from v ∈ V \ {s} to s in N . Hence, by cal-
culating MaxValue(v) for all v ∈ V \ {s}, we can find Wmin ⊆ V \ {s} with
x(δD(Wmin)) = k′. If k′ ≥ k, the condition (ii) is satisfied. Otherwise, the in-
equality x(δD(Wmin)) ≥ k is violated. This completes the proof. ��

Thus, from Lemma 5, we obtain the following theorem.

Theorem 3. The problem (1) can be solved in polynomial time.

We remark that the results in this paper are correct for the case where a weight
of an arc is allowed to be negative.

3 Generalization to Multiple Roots

In this section, we will consider the generalization of the minimum in-tree cover
problem such that the input directed graph has multiple roots. We call this prob-
lem the minimum weight in-tree cover with multiple roots (in short MWICP-MR).
In this problem, we are given a directed graph D = (V,A, S, f) which consists of
a vertex set V , an arc set A, a set of d roots S = {s1, . . . , sd} ⊆ S and a function
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f : S → N. A function f corresponds to a positive integer k in the single root case.
For each i = 1, . . . , d, we define Vi as the set of vertices in V from which si is reach-
able inD, and we define an in-tree rooted at si which spans Vi as an si-in-tree. We
define a set T of subgraphs of D as a feasible set of in-trees if T contains exactly
f(si) si-in-trees for every i = 1, . . . , d. Then, the problem MWICP-MR is defined
as follows.

Problem : MWICP-MR
Input : a directed graph D = (V,A, S, f);

Output : a minimum weight feasible set of in-trees covering A if one exists.

Here we introduce necessary definitions for the subsequent discussion. For two
distinct vertices u, v ∈ D, we denote by λ(u, v;D) the local arc-connectivity from
u to v in D, i.e.,

λ(u, v;D) = min{|δD(W )| : u ∈W, v /∈W,W ⊆ V }. (4)

From Menger’s theorem, it is known that λ(u, v;D) is equal to the maximum
number of arc-disjoint paths from u to v in D (see Corollary 9.1b in [12]). We
denote a directed graph obtained by adding an arc set B to A by D + B, i.e.,
D+B = (V,A∪B,S, f). For S′ ⊆ S, let f(S′) =

∑
si∈S′ f(si), and let f(∅) = 0.

For v ∈ V , we denote by RD(v) a set of vertices in S which are reachable from
v in D. For W ⊆ V , let RD(W ) =

⋃
v∈W RD(v). We define D∗ as a directed

graph obtained from D by adding a new vertex s∗ and connecting si to s∗ with
f(si) parallel arcs for every i = 1, . . . , d.

If |δD(v)| > f(RD(v)) − f({v} ∩ S) holds for some v ∈ V , there exists no
feasible set of in-trees which covers δD(v) from the definition of a feasible set of in-
trees. Thus, we assume in the subsequent discussion that |δD(v)| ≤ f(RD(v))−
f({v}∩S) holds for every v ∈ V . Since we can always cover by |A| si-in-trees the
arc set of the subgraph of D induced by Vi, we consider the problem by using
at most |A| si-in-trees. That is, we assume that f(si) ≤ |A|.

As regards covering a directed graph by a feasible set of in-trees, our recent
paper [8] presented a combinatorial algorithm for finding a feasible set of in-
trees covering A if one exists whose running time is O(M7|A|6) where M =∑

v∈V f(RD(v)). However, this algorithm can not solve MWICP-MR.
In order to prove that MWICP-MR can be solved in polynomial time, it is

helpful to produce the set of linear inequalities which determines the multiple
roots in-tree cover polytope Pmric(D) ⊆ RA defined by

Pmric(D) = conv.hull

{

x ∈ NA :
We can cover A by a feasible set of in-
trees such that each e ∈ A is contained
in xe in-trees.

}

.

Although the polynomial solvability of MWICP-MR is still open, we present
in this section the generalization of Theorem 1 which was used to derive the set
of linear inequalities of the polytope for a single root case. This generalizes the
result of Vidyasankar [13]. The main result of this section is described as follows.
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Theorem 4. Given a directed graph D = (V,A, S, f) and a |A|-dimensional
positive integral vector x ∈ NA, x ∈ Pmric(D) if and only if x satisfies

x(δD(W )) ≥ f(RD(W ))− f(W ∩ S) for all W ⊆ V,
x(δD(v)) = f(RD(v)) − f({v} ∩ S) for all v ∈ V. (5)

In order to prove Theorem 4, we will prove some lemmas.

Lemma 6. Given a directed graph D = (V,A, S, f), λ(v, s∗;D∗) ≥ f(RD(v))
holds for any v ∈ V if and only if |δD∗(W )| ≥ f(RD(W )) holds for any W ⊆ V .

Proof. If-part. Assume that |δD∗(W )| ≥ f(RD(W )) holds for every W ⊆ V .
Let us fix v ∈ V and we consider λ(v, s∗;D∗). Since RD(v) ⊆ RD(W ) holds for
W ⊆ V with v ∈ W , f(RD(W )) ≥ f(RD(v)) holds for W ⊆ V with v ∈ W .
Thus, by this fact and the assumption of the proof, |δD∗(W )| ≥ f(RD(v)) holds
for every W ⊆ V with v ∈ W . Hence, λ(v, s∗;D∗) ≥ f(RD(v)) holds since
λ(v, s∗;D∗) = min{|δD∗(W )| : v ∈ W,W ⊆ V } follows from (4).

Only if-part. Assume that λ(v, s∗;D∗) ≥ f(RD(v)). holds for every v ∈ V .
Since |δD∗(W )| ≥ f(RD(W )) holds for W = ∅, it is sufficient to consider a
nonempty W ⊆ V . We define the procedure DominateSequence(W ) as follows
for each nonempty W ⊆ V .

Procedure 1. DominateSequence(W )
1: t = 0
2: while W 	= ∅ do
3: Set t = t + 1
4: Choose u ∈ W arbitrarily
5: Set wt = u and Pt = {v ∈ W : v is reachable from wt}
6: Set W = W \ Pt

7: end while
8: return w1, . . . , wt and P1, . . . , Pt

It is clear that the procedure DominateSequence halts. Let us fix a
nonempty W ⊆ V , and let w1, . . . , wt and P1, . . . , Pt be an output of the proce-
dure DominateSequence(W ). For U,U ′ ⊆ V , we define A[U,U ′] as the set of
arcs whose tails and heads are in U and U ′, respectively. In order to prove the
“only if-part”, we will show Lemmas 7 and 8.

Lemma 7. For j = 1, . . . , t, |A[Pj , V
∗ \W ]| ≥ f(RD(Pj)\RD(P1∪· · ·∪Pj−1)).

Proof. Since every vertex in Pj is reachable from wj , RD(Pj) = RD(wj) holds.
Hence, it is sufficient to prove

|A[Pj , V
∗ \W ]| ≥ f(RD(wj) \RD(P1 ∪ · · · ∪ Pj−1)). (6)

Since no vertex in Pj+1∪· · ·∪Pt is reachable from wj , we have A[Pj , Pj+1∪· · ·∪
Pt] = ∅. From this equation, a path from wj to s∗ in D∗ must use either an arc in
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A[Pj , P1∪· · ·∪Pj−1] or an arc in A[Pj , V
∗ \W ]. Let N be the maximum number

of arc-disjoint paths from wj to s∗ in D∗ using arcs in A[Pj , P1 ∪ · · · ∪ Pj−1].
Since the heads of arcs in A[Pj , P1∪· · ·∪Pj−1] are contained in P1∪· · ·∪Pj−1, a
path from wj to s∗ in D∗ using at least one arc in A[Pj , P1∪· · ·∪Pj−1] must pass
through a vertex in RD(P1 ∪ · · · ∪ Pj−1) ∩RD(wj). Notice that a path from wj

to s∗ in D∗ must through a vertex in RD(wj). Thus, a path from wj to s∗ in D∗

using at least one arc in A[Pj , P1 ∪ · · · ∪Pj−1] must use at least one arc between
vertices in RD(P1∪· · ·∪Pj−1)∩RD(wj) and s∗. Hence, since there exactly exist
f(si) parallel arcs from each si to s∗ in D∗, N ≤ f(RD(P1∪· · ·∪Pj−1)∩RD(wj)).
From this equation and since the maximum number of arc-disjoint paths from wj

to s∗ in D∗ is at least f(RD(wj)) by the assumption of the proof, the maximum
number of arc-disjoint paths from wj to s∗ in D∗ using arcs in A[Pj , V

∗ \W ] is
at least

f(RD(wj))−f(RD(P1∪· · ·∪Pj−1)∩RD(wj)) = f(RD(wj)\RD(P1∪· · ·∪Pj−1)).

From this fact, if (6) does not hold, this contradicts that the maximum number
of arc-disjoint paths from wj to s∗ in D∗ is at least f(RD(wj)). This completes
the proof. ��

Lemma 8.
∑t

j=1 f(RD(Pj) \RD(P1 ∪ · · · ∪ Pj−1)) = f(RD(W )).

Proof. From P1∪· · ·∪Pt = W , it is sufficient to prove that for every j′ = 1, . . . , t
∑j′

j=1f(RD(Pj) \RD(P1 ∪ · · · ∪ Pj−1)) = f(RD(P1 ∪ P2 ∪ · · · ∪ Pj′ )). (7)

We prove (7) by induction on j′. For j′ = 1, (7) clearly holds. Assume that (7)
holds for j′ ≥ 1. From the induction hypothesis,

∑j′+1
j=1 f(RD(Pj) \RD(P1 ∪ · · · ∪ Pj−1))

= f(RD(P1 ∪ · · · ∪ Pj′ )) + f(RD(Pj′+1) \RD(P1 ∪ · · · ∪Rj′ ))
= f(RD(P1 ∪ · · · ∪ Pj′ ) ∪RD(Pj′+1)) = f(RD(P1 ∪ · · · ∪ Pj′ ∪ Pj′+1)). (8)

The last equality holds from RD(U)∪RD(U ′) = RD(U ∪U ′) for U,U ′ ⊆ V . ��

From Lemmas 7 and 8, we have

|δD∗(W )| =
∑t

j=1|A[Pj , V
∗ \W ]| (since P1, . . . , Pt is a partition of W )

≥
∑t

j=1f(RD(Pj) \RD(P1 ∪ · · · ∪ Pj−1)) (from Lemma 7)

= f(RD(W )) (from Lemma 8).

This proves the “only if-part”. ��

From Lemma 6, we can obtain the following lemma.

Lemma 9. Given a |A|-dimensional positive integral vector x ∈ NA, letting
B = {xe − 1 copies of e ∈ A}, λ(v, s∗;D∗ + B) ≥ f(RD(v)) holds for every
v ∈ V if and only if x(δD(W )) ≥ f(RD(W ))−f(W ∩S) holds for every W ⊆ V .
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Proof. Since every arc in B is parallel to some arc in A, D∗ + B = (D + B)∗

and RD(v) = RD+B(v) for every v ∈ V hold. Hence,

λ(v, s∗;D∗ +B) ≥ f(RD(v)) for all v ∈ V
⇔ λ(v, s∗; (D +B)∗) ≥ f(RD+B(v)) for all v ∈ V
⇔ |δ(D+B)∗(W )| ≥ f(RD+B(W )) for all W ⊆ V (from Lemma 6)
⇔ |δ(D+B)∗(W )| ≥ f(RD(W )) for all W ⊆ V. (9)

Furthermore, since B contains xe − 1 copies of each e ∈ A, for every W ⊆ V

|δ(D+B)∗(W )| =|δD+B(W )|+ f(W ∩ S)
=|δD(W )|+

∑
e∈δD(W )(xe − 1) + f(W ∩ S)

=x(δD(W )) + f(W ∩ S). (10)

Thus, from (9) and (10), the lemma follows. ��

Moreover, our recent paper [8] proved the following lemma.

Lemma 10 ([8]). Given a directed graph D = (V,A, S, f) and a |A|-dimensional
positive integral vectorx ∈ NA,x ∈ Pmric(D) if and only ifB = {xe−1 copies of e ∈
A} satisfies (a) |B| =

∑
v∈V f(RD(v))− (f(S) + |A|), and (b) λ(v, s∗;D∗ +B) ≥

f(RD(v)) holds for every v ∈ V .

Based on the above lemmas, we now give the proof of Theorem 4.

Proof (Theorem 4). If-part. Assume that x satisfies (5). From Lemma 10, it
is sufficient to prove that B = {xe − 1 copies of e ∈ A} satisfies (a) and (b) in
Lemma 10. From the second condition of (5),

|B| =
∑

e∈A(xe − 1) =
∑

v∈V x(δD(v))− |A|
=
∑

v∈V f(RD(v))− (
∑

v∈V f({v} ∩ S) + |A|). (11)

Since
∑

v∈V f({v}∩S) = f(S) clearly holds, it follows from (11) that B satisfies
(a). Furthermore, from Lemma 9 and the first condition of (5), B satisfies (b).
Only if-part. Assume that x ∈ Pmric(D). Then, from Lemma 10, B = {xe −
1 copies of e ∈ A} satisfies (a) and (b) in Lemma 10. From Lemma 9 and (b), x
satisfies the first condition of (5). From the first condition of (5) for each v ∈ V ,

|B| =
∑

e∈A(xe − 1) =
∑

v∈V x(δD(v)) − |A|
≥
∑

v∈V f(RD(v)) − (
∑

v∈V f({v} ∩ S) + |A|) (from (5))
=
∑

v∈V f(RD(v)) − (f(S) + |A|). (12)

Since (12) holds with equality by (a) of Lemma 10, x satisfies the second condi-
tion of (5). ��

From Theorem 4, in order to consider the set of linear inequalities which deter-
mine Pmric(D), we need to consider the following problem.
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Is the following system for x ∈ RA box-TDI?

xe ≥ 0 for all e ∈ A,
x(δD(W )) ≥ f(RD(W ))− f(W ∩ S) for all W ⊆ V.

(13)

If this problem can be positively solved, we can show that the following system
(14) determines Pmric(D) in the same manner as the single root case.

xe ≥ 1 for all e ∈ A,
x(δD(W )) ≥ f(RD(W ))− f(W ∩ S) for all W ⊆ V,
x(δD(v)) = f(RD(v)) − f({v} ∩ S) for all v ∈ V.

(14)

If f(RD(W )) − f(W ∩ S) is a supermodular function on W ⊆ V , this problem
can be solved in the same manner as in the proof of Lemma 2. However, since
f(RD(W )) and f(W ∩ S) are respectively submodular and modular functions
on W ⊆ V , f(RD(W ))− f(W ∩S) is a submodular function on W ⊆ V . Hence,
we need a different technique.
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Abstract. In this paper a new sorting strategy is proposed to be used
in the maximum weight clique finding algorithm, which is known to be
the fastest at the moment. It is based on colour classes, i.e. on heuristic
colouring that is used to prune efficiently branches by excluding from
the calculation formulae vertices of the same colours. That is why the
right ordering before colouring is so crucial before executing the heuristic
colouring and consequently the main maximum weight clique searching
routine. Computational experiments with random graphs were conducted
and have shown a sufficient increase of performance considering the type
of application dealt with in the article.

1 Introduction

Let G = (V,E,W ) be an undirected graph, where V is the set of vertices,
E is the set of edges and W is a set of weights for each vertex. A clique is
a complete subgraph of G, i.e. one whose vertices are pairwise adjacent. The
maximum clique problem is a problem of finding maximum complete subgraph
of G, i.e. a set of vertices from G that are pairwise adjacent. An independent set
is a set of vertices that are pairwise nonadjacent. A graph colouring problem is
defined to be an assignment of colour to its vertices so that no pair of adjacent
vertices shares identical colours. The maximum-weight clique problem asks for a
clique of the maximum weight. The weighted clique number is the total weight
of weighted maximum clique. It can be seen as a generalization of the maximum
clique problem by assigning positive, integer weights to the vertices. Actually it
can be generalized more by assigning real-number weights, but it is reasonable
to restrict to integer values since it doesn’t decrease complexity of the problem.
This problem is well known to be NP-hard.

The described problem has important economic implications in a variety of
applications. In particular, the maximum-weight clique problem has applications
in combinatorial auctions, coding theory [1], geometric tiling [2], fault diagnosis
[3], pattern recognition [4], molecular biology [5], and scheduling [6]. Additional
applications arise in more comprehensive problems that involve graph problems
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with side constraints. More this problem is surveyed in [7]. In this paper a
modification of the best known algorithm for finding the maximum-weight clique
is proposed. The paper is organised as follows.

The section 2 describes in details the algorithm to be extended by a new or-
dering strategy, so readers can understand an essence of the change and the final
result. The following section describes the new idea and presents algorithms. The
section 4 contains information about conducted tests. The last section concluded
the paper and describes open problems.

2 Description of the Algorithm to Be Extended

This section contains a description of an algorithm known to be the best at the
moment [12] in finding the maximum weight clique. It is the algorithm that is
about to be improved in the paper and therefore it will be described in quite
details in order to understand the improvement idea and will be called a base
algorithm in the entire text of the paper. The base algorithm is a typical branch
and bound algorithm and is a mix of the classical approach proposed by Car-
raghan and Pardalos in 1990s [8,9] and of a backtracking strategy proposed by
Ostergard [10].

2.1 Branch and Bound Routine and Pruning Using Colour Classes

Crucial to the understanding of the branch and bound algorithms is a notation
of the depth and pruning formula. Initially, at the depth 1 we have all vertices
of a graph, i.e. G1 ≡ G. Now the algorithm is going to pick up vertices one
by one and form a set of vertices that are connected to it forming a new lower
depth. This process is normally called expanding a vertex and is repeated for each
depth. Notice that only vertices existing on the current depth can be promoted
to the lower one. Repeating this routine we always will have a set of vertices on
the lowest depth that are connected to vertices selected (expanded) on previous
depths. Moreover all vertices expanded on different depth are also connected to
each other by the expansion logic. That is a way the maximum clique is formed.
The more formal illustration will be the following. Suppose we expand initially
vertex v11. At the next depth the algorithm considers all vertices adjacent to
the vertex expanded on the previous level, i.e. v11 and belonging to G1. Those
vertices will form a subgraph G2. At the depth 3, we consider all vertices (that
are at the depth 2, i.e. from G2) adjacent to the vertex expanded in depth 2 etc.
Let vd1 be the vertex we are currently expanding at the depth d. That is:

Let’s say that Gd is a subgraph of G on a depth d that contains the following
vertices: Vd = (vd1, vd2, . . . , vdm). The vd1 is the vertex to be expanded. Then a
subgraph on the depth d+1 is Gd+1 = (Vd+1, E),
where Vd+1 = (v(d+1)1, . . . , v(d+1)k) : ∀i v(d+1)i ∈ Vd and (v(d+1)i, vd1) ∈ E.

As soon as a vertex is expanded and a subgraph, which is formed by this
expansion, is analysed, this vertex is deleted from the depth and the next vertex
of the depth become active, i.e. will be expanded. This should be repeated until
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there are vertices that are not analysed and then the algorithm returns to the
higher level. The algorithm should stop if all vertices are analysed on the first
level.

The branch and bound algorithm by itself is nothing else than an exhaustive
search and is very pure from the combinatorial point of view. Therefore it is
always accomplished by a special analyses that identifies whether the current
depth could produce a bigger clique that the already found one. Such analysis is
normally done by so called pruning formula. If W (d) +Degree(Gd) ≤ CBCW ,
where CBCW is a size (weight) of the current maximum weight clique, W (d)
is a sum of weights of vertices expanded on previous to d depths and Degree
is function that defines how much larger the forming clique can become using
vertices of the depth (i.e. vertices forming Gd). If this formula holds then the
depth is pruned - it is not analysed further and the algorithm immediately
returns to the previous level. The main art of different algorithm of this class
is setting how the degree function works. The classical approach [8] will just
sum up weight of remaining vertices of the depth. The modification made in the
base algorithm [12] is applying colour classes. A vertex colouring is found before
running the main algorithm and only the highest weight vertex of each colour
is included into the degree function calculation during the main algorithm work
applying the fact that no more than one vertex of each colour class (independent
set) can be included into any clique. Please check the original work for any proves
of the previously stated and for more details of the described approach.

2.2 Backtracking and Colour Classes

A backtracking process is widely known in different types of combinatorial al-
gorithm including one proposed by P. Ostergard [10]. The algorithm starts to
analyse vertices in the backward order by adding them one by one into analyses
on the highest level instead of excluding as others do (although the lower levels
work still the same was as the branch and bound one). The main idea of the
algorithm is to introduce one more pruning formula - for each vertex starting
from the last one and up to the first one a function c(i) is calculated (i is a
vertex number), which denotes the weight of the maximum-weight clique in the
subgraph induced by the vertices {vi, vi+1, . . . , vn}. In other words c(i) will be a
maximum-weight clique that can be formed using only vertices with indexes are
starting from i. So, the original backtracking search [10] algorithm will define
that c(n) equals to the weight of vn and c(1) is the weight of the maximum-
weight clique for the entire graph. Obviously the following new pruning formula
can be introduced in the backtracking search using the calculated function: if
W (d) + c(i) ≤ CBCW , where CBCW is still a size (weight) of the current
maximum weight clique and W (d) is a sum of weights of vertices expanded on
previous to d depths.

Colour classes also improve this idea as well it was demonstrated in the base
work [12]. The idea is to calculate c function (actually an array) by colour classes
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instead of individual vertices. Lets say that the graph colouring before the main
algorithm has produced the set of colours {C1, C2, . . . , Cn} and vertices are
reordered accordingly to their colours. Now, c(n) will equal to the largest weight
vertex of {Cn}, c(1) is still the weight of the maximum-weight clique for the
entire graph and c(i) is the weight of the maximum-weight clique in the sub-
graph induced by the vertices {Ci, Ci+1, . . . , Cn}. The pruning formula remains
the same although the i indicates now the colour class index of the examined
vertex instead of the vertex index. Notice that the backtracking order base on
the fixed ordering, so vertices colouring and reordering should be done before
starting the backtracking order.

3 New Algorithm Including Sorting Strategy

3.1 Sorting

Sorting always played quite a crucial role in many algorithms. Unfortunately the
right ordering doesn’t guarantee that the final solution could be obtained imme-
diately in problems like finding the maximum-weight clique (at least in nowadays
algorithms). The reason is simple - the answer should be proved by revising all
other vertices and cases. So even if a solution is obtained during the first search
iteration it still takes long to conclude that the already found clique is the max-
imum one. Despite of this the sorting is still important since could sufficiently
affect the performance of an algorithm. Moreover some algorithms use sorting
as a core element of their structure in the maximum clique finding routine. The
base algorithm only recommends sorting vertices by weights inside each colour
class in the decreasing order. This sorting lets just pick up the last vertex per
each colour on whatever depth calculating the degree function since ensures that
it will always be the maximum weight one among all vertices remaining on that
depth in that colour class. This sorting by itself is a sufficient part of the algo-
rithm, but this paper is about to extend this sorting strategy in order to improve
the overall efficiency of the algorithm. The complexity produced by introducing
into the maximum clique task weights lays first of all in the sufficient variation
of weights among vertices. This variation produces situation when one vertex
been included into the forming clique gives much more that a set of others. As
it was mentioned earlier describing the base algorithm the degree function cal-
culation is conducted basing on the highest weight vertex that appears in each
class among remaining in the subgraph on the depth. Therefore a sufficient dis-
tribution of high weight vertices among different classes can sufficiently increase
the degree calculation result. At the same time, if any algorithm will be able
to propose how we could group high weight vertices into same colour classes
then we would improve the degree function as one high weight vertex will cover
other, similar high weight vertices - once again only the highest weight vertex is
used in calculation by the algorithm logic per colour class. Notice that the task
formulated earlier is not a pure sorting one, since it should improve the search
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basing on colouring. So the heuristic colouring task is the main constraint here.
The desired order should appear after the algorithm has:

1. Defined initial sorting
2. Coloured vertices

It is quite common that the colouring is the task that will sufficiently change the
order. Therefore we cannot talk here about a precise ordering, but should say ”a
probabilistic one”, i.e. such ordering that will keep the desired ordering after the
heuristic colouring is applied with a certain probability. Notice the term heuristic
in the previous sentence. Our analysis of the base algorithm source code, which
is published in Internet [13], have shown that the initial proposed ordering by
weights is dramatically broken by the colouring strategy during which a vertex
to be coloured is always moved to the end of the uncoloured vertices line by
swapping, so initial positions of the high weights’ vertices are lost just after some
colouring iterations. This paper proposes that the colouring should be done in
such a way that the ordering is kept as long as possible.

The order direction - increasing or decreasing is another interesting topic.
Notice that the key technique of the base algorithm is moving backward in
the backtrack search. Generally the backtracking algorithm works better if the
larger clique is found right in the beginning therefore the paper suggests to order
vertices so that the last colour classes (from which the backtracking search will
start) will include the higher weight vertices in average.

3.2 Colouring Algorithm for the Maximum Weigh Clique Algorithm

It is well known that the number of colour classes can be sufficiently larger than
the size of the maximum clique. That is why most best known algorithms [10,12]
are using a greedy colouring as a heuristic one - there is no points to spend time
on more precise colouring since even the best colouring will not guarantee to
give a number that will be close to the maximum clique size. At the same time
the earlier stated wish to keep the initial ordering by weights force us to propose
the following algorithm:

Algorithm for the ordering and colouring

Variables:
N - the number of vertices
a - an array with an initial ordering of vertices: ai contains a vertex number
been in the i-th position of that vertices ordering
b - the new ordering after colouring
Ci - a set of vertices coloured by the i-th color

Operations:
!= - a comparison operation called ”not equal”
== - a comparison operation ”equals”
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Step 1. Initial sorting:
Sort vertices by weights in the increasing order producing an ordering array a

Step 2. Initialise:
i := 0
m := N

Step 3. Pick up a colour:
i := i+ 1

Step 4. Colour:
For k := N downto 1
If ak! = 0 & there is no such j : vj ∈ Ci, (ak, vj) ∈ E then
ak := 0, bm := ak,m := m− 1, Ci := Ci U bm

if m == 0 then go to the ”Final sorting” step
Next
Go to step 3

Step 5. Final sorting:
Re-order vertices inside each colour class in the increasing order by weights.

End: Return the new order of vertices b and colouring C.

3.3 Maximum Weigh Clique Algorithm

Algorithm for the maximum - weight clique problem

CBCW - weight of the current best (maximum-weight) clique
d - depth
Gd - subgraph of G formed by vertices existing on depth d and is induced by E
W (d) - weight of vertices in the forming clique
w(i) - weight of vertex i

Step 0. Sorting and colouring (See the above algorithm):
Sort vertices by weights in the increasing order.
Find a vertex colouring starting from the highest weight vertices. Keep the order
of uncoloured vertices.
Re-order vertices inside each colour class in the increasing order by weights.

Step 1. Backtrack search runner:
For n := NumberOfColourClasses downto 1
Goto step 2
c(n) := W

Next
Go to End



On Importance of a Special Sorting 171

Step 2. Initialization: Form the depth 1 by selecting all vertices belonging
to colour classes with an index greater or equal to n.
d := 1.

Step 3. Prune: If the current level can contain a larger clique than already
found:
If W (d) +Degree(Gd) ≤ CBCW then go to step 7.

Step 4. Expand vertex: Select the next vertex to expand on a depth. If all
vertices have been expanded or there is no vertices then control if the current
clique is the largest one. If yes then save it (including its size as CBCW ) and
go to step 7.
Note: Vertices are examined starting from the first one on the depth.

Step 5. Prune: If the current level can contain a larger clique than already
found:
If expanding vertex colour class index <> n
If W (d) + c(expanding vertex colour class index) ≤ CBCW then go to step 7.

Step 6. The next level: Form the new depth by selecting vertices that are
connected to the expanding vertex from the current depth among remaining;
W (d+ 1) := W (d) + w(expanding vertex index)
d := d+ 1;
Go to step 2.

Step 7. Step back:
d := d− 1;
if d == 0, then return to step 1
Delete the expanded vertex from the analysis on this depth;
Go to step 2.

End: Return the maximum-weight clique.

Note: It is advisable to use a special array to solve the order of vertices to avoid
work by changing adjacency matrix during reordering vertices. Besides, instead
of removing vertices from a depth, it is advisable to have a cursor that moves
from the first vertex on a depth to the last one. All vertices that are in the front
of the cursor are in the analyses, while vertices behind the cursor are excluded
from it (already analysed).

4 Computational Results and Discussion

It is common to apply tests on two types of case: randomly generated and
standard (like for example the DIMACS package for unweighted case of finding
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maximum clique problem). Unfortunately there is no such widely adopted stan-
dard package for the weighted case although application of maximum clique with
weights plays no less important role in industry and health care. Therefore tests
to be conducted in this paper will be restricted to randomly generated graphs.

Several algorithms were published since 1975s. The easiest and effective one
was presented in an unpublished paper by Carraghan and Pardalos [8]. This
algorithm is nothing more that their earlier algorithm [9] for the unweighted
case applied to weighted case. They have shown that their algorithm outper-
forms algorithm their have compared with. Another work, which is quite widely
referenced in different sources as the best was published by P. Ostergard [10].
He also has compared his algorithm with earlier published algorithms and has
shown his algorithm works better by the publishing time. The last algorithm to
be used in the tests in the base one [12] that was described in details earlier. In
order to produce comparison results a set of instances where generated and each
instance was given to each algorithm and their spent time (on producing a so-
lution) was measured. The table below demonstrates that tests were conducted
from densities from 10% to 90% with a step 10%. For each vertices/density case
1000 instances of graphs were generated. Results are presented as ratios of algo-
rithms spent times on finding the maximum clique. Although this presentation is
slightly different from common it has one sufficient advantage from our point of
view - it gives platform independency, so the same results can be reproduced on
any computer and ratios should stay the same. The compared algorithms were
programmed using the same programming language and the same programming
technique (since all algorithms are quite similar). The greedy algorithm was used
to find a vertex-colouring.
PO - time needed to find the maximum-weight clique by Carraghan and

Pardalos algorithm [8] divided by time needed to find the maximum-weight clique
by P. Ostergard algorithm [10] - an average ratio.
V Color −BT −w - time needed to find the maximum-weight clique by Car-

raghan and Pardalos algorithm [8] divided by time needed to find the maximum-
weight clique by the base [12] algorithm - an average ratio.
New - time needed to find the maximum-weight clique by Carraghan and

Pardalos algorithm [8] divided by time needed to find the maximum-weight clique
by the new algorithm - an average ratio.

The following table is constructed in such a way to guarantee that each algo-
rithm execution will take at least one second and no more than one hour. That
is why the vertices count locates in the second column of the table below - the
number of vertices is a dependent parameter (on the density) and is chosen by
the time constraint. As the result the number of used vertices the smaller the
higher density is. At the same additional tests have shown no sufficient change
of results on other number of vertices for each density and it proved from our
point results independency from the number of vertices we actually use.

For example, 38.62 in the column marked New means that Carraghan and
Pardalos [8] algorithm requires 38.62 times more time to find the maximum-
weight clique than the new algorithm proposed in this paper. Presented results
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Table 1. Benchmark results on random graphs

Edge density Vertices PO VColor-BT-u New

0.1 1000 1.01 1.26 1.40
0.2 800 1.25 2.11 2.93
0.3 500 1.58 2.64 3.93
0.4 300 1.71 3.02 4.61
0.5 200 1.78 3.41 5.87
0.6 200 2.07 6.53 10.42
0.7 150 2.37 10.16 18.25
0.8 100 2.98 17.36 38.62
0.9 100 4.51 79.80 293.64

show that the new algorithm performs very well on any density. It is faster than
all algorithms we compare with. Especially good results are shown on the dense
graphs, where the new algorithm is faster than the Carraghan and Pardalos
algorithm [8] in 293 times and than the best known algorithm [12] circa 3 times.

5 Conclusion

In this paper a new fast algorithm for finding the maximum-weight clique is
introduced. The algorithm is based on the best know algorithm, which is a
branch and bound one, uses a heuristic vertex-colouring in the pruning rules
and a backtracking search by colour classes. The algorithm is always better than
other best known algorithms that were used in the comparison test. Notice that
unlike the unweighted case, the weighted case is much harder to improve the
performance and therefore achieved results, like for example one on the dense
graphs, where the new algorithm is 3 times faster than the best known algorithm
and 300 times faster than the standard benchmarking base one is a remarkable
result from our point of view.
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Abstract. This paper conducts an extended comparison of two best
known at the moment algorithms for finding the unweighted maximum
clique. This test is extremely important from both industry and the-
oretical perspectives. It will be useful for further developing of those
algorithms as clearly demonstrated both algorithms advantages and dis-
advantages, while industry should consider tests result selecting the best
algorithm to be applied in their particular environment.

1 Introduction

Let G = (V,E) be an undirected graph, where V is the set of vertices and
E is the set of edges. Two vertices are called to be adjacent if they are con-
nected by an edge. A clique is a complete subgraph of G, i.e. one whose vertices
are pairwise adjacent. An independent set is a set of vertices that are pair-
wise nonadjacent. A complement graph is an undirected graph G′ = (V,E′),
where E′ = {(vi, vj)|vi, vj ∈ V, i �= j, (vi, vj) /∈ E} - this is a slightly refor-
mulated definition provided by Bomze et al 1999 [2]. A neighbourhood of a
vertex vi is defined as a set of vertices, which are connected to this vertex, i.e.
N(vi) = {v1, . . . , vk|∀j : vj ∈ V, i �= j, (vi, vj) ∈ E}. A maximal clique is a clique
that is not a proper subset of any other clique, in other words this clique doesn’t
belong to any other clique. The same can be stated about maximal independent
set. The maximum clique problem is a problem of finding maximum complete
subgraph of G, i.e. maximum set of vertices from G that are pairwise adjacent.
In other words the maximum clique is the largest maximal clique. It is also said
that the maximum clique is a maximal clique that has the maximal cardinality.
The maximum independent set problem is a problem of finding the maximum
set of vertices that are pairways nonadjacent. In other words, none of vertices
belonging to this maximum set is connected to any other vertex of this set. A
graph-colouring problem or a colouring of G is defined to be an assignment of
colours to the graph’s vertices so that no pair of adjacent vertices shares identical
colours. So, all vertices that are coloured by the same colour are nothing more
than an independent set, although it is not always maximal.

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 175–181, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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All those problems are computationally equivalent, in other words, each one
of them can be transformed to any other. For example, any clique of a graph G
is an independent set for the graph’s complement graph G′. So the problem of
finding the maximum clique is equivalent to the problem of finding the maximum
independent set for a complement graph.

All those problems are NP-hard on general graphs [7] and no polynomial time
algorithms are expected to be found. The maximum clique problem has many
theoretical and practical applications. In fact, a lot of algorithms contain this
problem as a subtask and this is another important applications area for the
problem. The first area of applications is data analyses / finding a similar data:
the identification and classification of new diseases based on symptom correlation
[3], computer vision [1], and biochemistry [11]. Another wide area of applying
the maximum clique is the coding theory [5,12]. There are many others areas of
the maximum clique application that makes this problem to be important.

2 Introduction into Branch and Bound Algorithms

First of all the branch and bound types of algorithms should be introduced in
case the reader doesn’t have enough knowledge since understanding of those is a
crucial element to understanding main point of algorithms to be described later.
Branch and bound type algorithms do analyse vertices one by one expanding those
by selecting into the next level of analysis all vertices among remaining that are
connected to the expanding one. This next level of expansion is normally named
a depth, so initially, at the first depth all vertices of a graph are presented, i.e.
G1 ≡ G. Then the algorithm is executed and picks up a vertex one by one, so
the first one to analyse will be v11, where the indexes indicate that it is a version
from the first depth and is also the first version on that depth. The algorithm will
form the depth 2 by listening there all vertices connected to the algorithm con-
siders all vertices adjacent to the v11 and belonging to G1. Those vertices form
a subgraph G2. If G2 is not empty then the first vertex of that depth will be ex-
panded next - v21. The depth 3 will contain all vertices from G2 that are adja-
cent to v21 and by the selection logic those will also are adjacent to the vertex
expanded on the first depth, i.e. v11. Let vd1 be the vertex to be expanded at the
depth d andGd is a subgraph ofG on a depth d that contains the following vertices:
Vd = (vd1, vd2, . . . , vdm). Then a subgraph on the depth d+1 isGd+1 = (Vd+1, E),
where Vd+1 = (v(d+1)1, . . . , v(d+1)k) : ∀i v(d+1)i ∈ Vd and (v(d+1)i, vd1) ∈ E.

Continuing this way the algorithm will finally arrive to a depth where no
vertices exist. Then the previous depth number is compared to the currently
maximum clique size and all vertices expanding at the moment on all previous
levels (those are called a forming clique) are saved as the maximum clique if it is
larger. Anyway the analysis is returned to the previous level and the next vertex
of that level should be expanded now. Let say that we returned to the d-th level
and the previous expanded vertex is vd1. Then the next vertex to be expanded
will be vd2. This should be continued as long as there are vertices on the depth.
The algorithm should stop if all vertices of the first level are analysed.
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The branch and bound algorithm by itself is nothing else than an exhaustive
search and is very bad from the combinatorial point of view. Therefore it is
always used together with a special check allowing to cut branches (cases) that
cannot produce any better solution that the current maximum one. This check
is called a pruning formula and the classical work [6] in the field of finding the
maximum clique suggests using the following:

if d−m+ n ≤ CBC (1)

where d is a depth, m is the current (under analyses) vertex index on a depth, n
is the total number of vertices in the depth and CBC is the current maximum
clique size. Actually it can be generalised into the following:

if d− 1 +Degree(Gd) ≤ CBC (2)

where Degree equals to n+ 1−m since d - 1 represents the number of vertices
in the forming clique (expanded on previous levels) and n + 1 −m the number
of vertices can be potentially included into the clique (and called a degree of the
depth/branch).

If this formula holds then the depth is pruned - it is not analysed further and
the algorithm immediately returns to the previous depth.

3 Different Levels of Using a Vertex Colouring in
Nowadays Algorithms

Here two algorithms to be reviewed that are using vertex colouring for finding the
maximum clique on different levels. The first idea is to re-apply a heuristic vertex
colouring on each new level of a branch and bound algorithm. Another idea is
to apply the colouring only once before the branch and bound routine starts
and then use results on the permanent base. There are two representatives of
both ways nowadays, which are claimed to be quickest; therefore a comparison
of those algorithms is worth to do to identify how different ways affects the
performance in different cases to be solved.

3.1 Re-applying a Heuristic Vertex Colouring

This subchapter algorithm is developed by Tomita and Seki [13]. Both this and
the next chapter algorithms use the same idea - any colour class is an independent
set and therefore no more than one vertex from each colour class can participate
in a clique. The pruning formula for the algorithm is still the same:

if d− 1 +Degree(Gd) ≤ CBC (3)

but Degree here represents the number of existing colour classes (independent
sets). The number of existing colour classes is obviously much better estimation
than the number of remaining vertices. Therefore the number of analysed sub-
graphs decreased dramatically. Obviously the exact colouring cannot be used as
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it is a task of the same complexity as the maximum clique finding one. Therefore
a heuristic colouring is used. The main difference between this algorithm and
the next one is an approach to calculating the number of existing colours. This
subchapter algorithm finds the heuristic vertex-colouring on each new depth.
Besides, it reorders vertices after finding the colouring by colour index in de-
creasing order. Therefore, instead of calculating the degree each time a new
vertex is expanded, the expanding vertex colour index is used as a degree. The
pruning formula is reformulated into the following one:

if d− 1 + colour index(m) ≤ CBC (4)

where d is a depth, m is the current (under analyses) vertex index on a depth,
and CBC is the current maximum clique size.

3.2 Re-using a Heuristic Vertex Colouring

Here we present an algorithm that obtains a vertex colouring only once and
then re-use during its work. The algorithm was developed by Kumlander [10]
independently and simultaneously with the previous one. The first step of the
algorithm is to obtain a heuristic vertex colouring and re-order vertices by colour
classes, so that colour classes will appear one by one in the new vertices order.
The algorithm uses the vertex colouring to apply two pruning rules - the direct
one and the backtracking one. The backtracking search described below cannot
be used for the previous class of algorithm re-colouring on each depth as the
backtracking relies on a fixed vertices ordering. Therefore it is a natural part
of algorithms from the re-using class. The direct pruning rule is defined using
a degree function, which equals to the number of existing colour classes on a
depth. The algorithm prunes also:

if d− 1 +Degree ≤ CBC (5)

where d is a depth, Degree is the depth (subgraph) degree, which is the number
of existing colour classes and CBC is the size of the current maximum clique.
This algorithm calculates the degree by examining what colour classes exist on a
depth. Actually the degree is calculated only ones when the depth is formed and
later only adjusted by decreasing on one when the next vertex to be analysed is
from another colour class than the previous one. This improves the performance
dramatically.

In fact the fixed ordering lets also to apply here one more technique: the back-
tracking search. It examines the graph vertices in the opposite to the standard
branch and bound algorithm’s order. The classical vertex level backtracking con-
siders first of all all cliques that could be built using only vn, then all cliques that
could contain vn−1 and vn, and so forth. The general rule - it considers at the
i-th step all cliques that could contain{vi, vi+1, vi+2, . . . , vn}. The core idea here
is to keep in memory the size of the maximum clique found for each i-th step
(i.e. i-th vertex at the highest level) in a special array b. So b[i] is the maximum
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clique for the i-th vertex while searching backward. This allows employing one
more pruning formula:

if d− 1 + b[m] ≤ CBC (6)

Besides the algorithm can stop the backtracking iteration and go to the next one
if a new maximum clique is found. Colour classes can improve the backtracking
by doing it on the colour classes’ level instead of individual vertices. Lets say that
vertices are coloured and sorted by colour classes, i.e. V = {Cn, Cn−1, . . . , C1},
where Ci is the i-th colour (or we call it the i-th colour class). The algorithm
now considers first of all all cliques that could be built using only vertices of
the C1, i.e. of the first colour class, then all cliques that could be built using
vertices of C1 and C2, and so forth. The general rule - it considers at the i-th
step all cliques of {Ci, Ci−1, . . . , C1} vertices. The array b is also used, but the
index here is the vertex colour index. So the pruning formula will be:

if d− 1 + b[colour index(m)] ≤ CBC (7)

The stopping condition remains since the maximum clique size of a subgraph
formed by {Ci, Ci−1, . . . , C1} is either equal to the maximum clique size of a
subgraph formed by {Ci−1, . . . , C1} or is larger on 1.

4 Tests

Here the described algorithms of both classes are analysed on DIMACS graphs,
which are a special package of graphs used in the Second DIMACS Implemen-
tation Challenge [8,9] to measure performance of algorithms on graphs having
different, special structures.

As it has been mentioned earlier, there is a very simple and effective algorithm
for the maximum clique problem proposed by Carraghan and Pardalos [6]. This
algorithm was used as a benchmark in the Second DIMACS Implementation
Challenge [9]. Besides, using of this algorithm as a benchmark is advised in one of
the DIMACS annual reports [8]. That’s why it will be used in the benchmarking
below and is called the ”base” algorithm. Results are presented as ratios of
algorithms spent times on finding the maximum clique - so the same results can
be reproduced on any platforms. Ratios are calculated using the benchmarking
algorithm [6]. The larger ratio is the quicker a tested algorithm works as the
ratio shows how much quicker the tested one is. The compared algorithms were
programmed using the same programming language and the same programming
technique. The greedy algorithm was used to find a vertex-colouring.

TS - time needed to find the maximum clique the base algorithm divided by
time needed to find the maximum clique by the algorithm re-applying colour
classes [13].

VColor-BT-u - time needed to find the maximum clique the base algorithm
divided by time needed to find the maximum clique by the algorithm re-using
colour classes [10].

* - An original task for this graph is to find the maximum independent set,
so the maximum clique is found from the complement graph.
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Table 1. Benchmark results on DIMACS graphs

Graph name Edge density Vertices Maximum clique
size

TS VColor-
BT-u

brock200 2 0.50 200 12 2.3 4.0
brock200 3 0.61 200 15 3.3 3.2
hamming8-4 0.64 256 16 39.9 7848.3
johnson16-2-4 0.76 120 8 7.0 20.9
keller4 0.65 171 11 6.7 11.8
p hat300-1 0.24 300 8 1.0 1.3
p hat300-2 0.49 300 25 4.8 6.6
p hat500 1 0.25 500 9 0.9 1.5
p hat700 1 0.25 700 11 1.1 1.9
sanr400 0.7 0.70 400 21 1.4 5.6
2dc.256* 0.47 256 7 6.6 14.5

For example, 4.8 in the column markedTS means that Tomita and Seki algo-
rithm [13] requires 4.8 times less time to find the maximum clique than the base
one. The quickest result of each row is highlighted by the italic font. Presented
results show that the VColor-BT-u algorithm [10] outperforms the other in most
cases. Both reviewed in the paper algorithms are faster than the benchmarking
algorithms.

The next test will be conducted on random graphs from densities from 10% to
90% with a step of 10%. 100 instances of graphs have been generated per density
and an average ratio is found per algorithm. Here you can see thatVColor-BT-u
looses to Tomita and Seki algorithm practically on all densities.

Table 2. Benchmark results on random graphs

Edge density Vertices TS VColor-BT-u

0.10 1300 0.8 1.0
0.20 1000 1.4 1.3
0.30 600 1.9 1.5
0.40 500 2.7 1.7
0.50 300 3.3 2.3
0.60 200 5.4 3.5
0.70 150 10.8 5.6
0.80 100 40.9 16.2
0.90 80 200.6 102.1

5 Conclusion

In this paper two currently best known algorithms for finding the unweighted
maximum clique are described and what is more important are compared on dif-
ferent graph types. Both algorithms are branch and bound and both are using
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colour classes obtained from a heuristic vertex-colouring to find the maximum
clique. The main difference is the method of using the colouring. One of those
keep re-colouring the graph for each depth formed during the algorithm work
and the second does it only once before the core part of the algorithm is ex-
ecuted. The first looses in spending time each time re-colouring and cannot
employ backtracking search, while the second looses in precision of colouring
the deeper the depth is. Therefore both algorithms have certain disadvantages
been both reported as the best known. That is why the comparison test was
interested for the industry and theory. Tests were conducted for both DIMACS
graphs representing certain important graph types and for randomly generated
graphs. The general result is that the re-using colouring algorithm [10] is the
better technique is most cases for DIMACS graphs and the re-applying colour-
ing algorithm [13] have shown superb results on random graphs. This let us to
conclude that there is no clear winner and tests conducted in the paper should
be carefully revisited selecting one or another algorithm to be applied basing on
the particular environment it should happen in.
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2 Département de Mathématiques, Faculté des Sciences,
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Abstract. In this paper we propose an efficient algorithm based on
branch and bound method and reduced interval techniques to approxi-
mate real roots of a polynomial. Quadratic bounding functions are pro-
posed which are better than the well known linear underestimator.
Experimental result shows its efficiency when facing ill-conditionned
polynomials.
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1 Introduction

Several fundamental geometrical problems that arise in the processing of curves
and surfaces may be reduced computationally by isolating and approximating
the distinct real roots of univariate polynomials on finite intervals. Many different
approaches for solving a polynomial equation exist [1]. We briefly mention the
methods based on deflation techniques [2]. Other ones proceed by subdividing
the interval into a sequence of intervals such that each one contains one and only
one root of the polynomial [3]. Another interesting study for computing multiple
roots of polynomial has been introduced in [4]. In recent years univariate global
optimization problems have attracted common attention because they arise in
many real-life applications and the obtained results can be easily generalized to
multivariate case. Let us mention the works for the Polynomial and Rational
functions [9], [16], the Lipschitz functions [11], and those in [7], [8], [15], [17].
Root-finding problem is not an optimization problem, however we can exploit
the idea of branch and bound techniques in global optimization for finding roots
of a polynomial.

In this paper we propose an adapted branch and bound approach presented
in [7] for finding all roots of a polynomial in a power basis. The main idea of our
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approach consists in constructing quadratic underestimation and/or overestima-
tion functions of the given polynomial f in a successive reduced interval [ak, bk]
to locate all intervals in which roots of the quadratic bounding functions and
roots of f are the same. The algorithm has a finite convergence for obtaining an
ε-solution.

The above idea is based on the following reasoning: let Lfk and Ufk be a
lower and a upper bound of f on [ak, bk], then we have :

– if Lfk(x) > 0, then f(x) > 0 ∀x ∈ [ak, bk]. This means that the polynomial
has no root in this interval ;

– if Ufk(x) < 0, then f(x) < 0 ∀x ∈ [ak, bk] and so the polynomial has no
roots in this interval ;

– if Lfk(x) or Ufk(x) has one or two roots on the current interval [ak, bk] which
are not the roots of the polynomial, then these roots are used to reduce
the current interval. By the way, when reducing the interval containing all
the roots of f , we can locate all sub-intervals that contain the roots of
f . These roots are in fact the roots of quadratic underestimating and/or
overestimating functions of f on these sub-intervals.

The performance of the proposed procedure depends on the quality of the
chosen lower and upper bounds of f . We introduce a quadratic lower bounding
function which is better than the well known linear underestimating of f by the
theory of approximation [6]. In the same way we introduce a quadratic upper
bounding function.

The structure of the rest of the paper is as follows: Section 2 discusses the
construction of a lower and an upper bound of a polynomial. Section 3 describes
an adapted branch and bound algorithm to approximate the real roots of a
polynomial. Section 4 presents some numerical examples for ill-conditionned
polynomials while Section 5 contains some conclusions.

2 Quadratic Bounding Functions

We now explain how to construct an upper bound of a function f which is twice
continuously differentiable on an interval [a, b].

For m ≥ 2, let {w1, w2, ......, wm} be the pairwise functions defined as in [6]:

wi(x) =

⎧
⎪⎨

⎪⎩

x−xi−1
xi−xi−1

if xi−1 ≤ s ≤ xi
xi+1−x
xi+1−xi

if xi ≤ x ≤ xi+1

0 otherwise.

We have

i=m∑

i=1

wi(x) = 1, ∀x ∈ [a, b] and wi(xj) =
{

0 if i �= j
1 otherwise.
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Let Lhf be the piecewise linear interpolant to f at the points x1, x2, ......, xm :

Lhf(x) =
i=m∑

i=1

f(xi)wi(x). (1)

The next result from [6] gives a upper bound and a lower bound of f on the
interval [a, b], (h = b− a) .

Theorem 1. [6] For all x ∈ [a, b], we have |Lhf(x)− f(x)| ≤ 1
8Kh2, i.e.,

Lhf(x)− 1
8
Kh2 ≤ f(x) ≤ Lhf(x) +

1
8
Kh2.

In [7] the following quadratic lower bounding function of f is proposed:

Lf(x) := Lhf(x)− 1
2
K(x− a)(b− x) ≤ f(x), ∀x ∈ [a, b] .

It has been proved (see [7]) that this lower bound is better than the affine
minorization given in [6]:

Lf(x) ≥ Lhf(x)− 1
8
Kh2.

In a similar way, we now introduce a concave quadratic upper bounding func-
tion of f :

Theorem 2. For all x ∈ [a, b], we have

Lhf(x) +
1
8
Kh2 ≥ Uf(x) := Lhf(x) +

1
2
K(x− a)(b− x) ≥ f(x). (2)

Proof. Let E(x) be the function defined on [a, b] by

E(x) = Lhf(x) +
1
8
Kh2 − Uf(x)

=
1
8
Kh2 − 1

2
K(x− a)(b− x)

=
K

2

[

x2 − (a + b)x+ ab+
1
4
(b− a)2

]

.

E is convex on [a, b] , and its derivative is equal to zero at x∗ = 1
2 (a + b).

Therefore, for any x ∈ [a, b] we have

E(x) ≥ min{E(x) : x ∈ [a, b]} = E(x∗) = 0. (3)

Then, the first inequality in (2) holds. Consider now the function φ defined on
S by

φ(x) := Uf(x)− f(x) = Lh(x) +
1
2
K(x− a)(b− x)− f(x). (4)

It is clear that φ′′(x) = −K − f ′′(x) ≤ 0 for all x ∈ S. Hence φ is a concave
function, and for all x ∈ [a, b] we have

φ(x) ≥ min{φ(x) : x ∈ [a, b]} = φ(a) = φ(b) = 0. (5)

The second inequality in (2) is then proved. �
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3 Description of the Adapted Branch and Bound
Algorithm

In this section we describe an adapted branch and bound algorithm for approx-
imating the real roots of a polynomial f(x) =

∑n
i=0 aix

i in an interval [a, b].
The initial interval which contains all the roots of f can be computed by us-
ing the Cauchy or the Knuth method. Let K be a positive number such that
|f ′′(x)| ≤ K, ∀x ∈ [a, b]. As described above, we construct upper bounds and
lower bounds of f on successive reduced intervals [ak, bk] of [a, b]. More precisely,

– If f(ak) > 0, we construct Lfk, a convex quadratic underestimating function
of f on the interval [ak, bk] defined by setting

Lfk(x) = f(ak)
bk − x

hk
+ f(bk)

x− ak

hk
− 1

2
K(x− ak)(bk − x). (6)

Clearly, if Lfk(x) has no roots in [ak, bk], then Lfk(x) > 0 ∀x ∈ [ak, bk] .
Consequently, f(x) > 0 ∀x ∈ [ak, bk] . Hence f(x) has no roots in [ak, bk] .

– If f(ak) < 0, we construct Ufk, a concave quadratic overestimating function
of f on the interval [ak, bk] , by setting

Ufk(x) = f(ak)
bk − x

hk
+ f(bk)

x− ak

hk
+

1
2
K(x− ak)(bk − x). (7)

Similarly as in the above, if Ufk(x) has no roots in [ak, bk], then Ufk(x) < 0
∀x ∈ [ak, bk] . cSo f(x) has no roots in [ak, bk] .

The recursive algorithm can be given as follows:
Function S = RootPolynom(f, n, a, b, ε)
Input: f : the polynomial, n : the degree of the polynomial, a, b : the end of the
interval [a, b], ε : precision of the roots
Output: S - the set of all found roots of f
begin
Sk = ∅ is an intermediate set
If (b− a) < ε then S = ∅ , return S.
Else

1. Compute f(a)
2. If f(a) > 0, then

(a) Construct Lfk, a quadratic lower bound of f on the interval [a, b]
(b) Solve the equation Lfk(x) = 0

– If Lfk(x) has no root in [a, b], then Sk = ∅
– Else

- If Lfk has one root r1 ∈ [a, b], then
• If |f(r1)| < ε, then Sk = Sk ∪ {r1};
• Sk = Sk∪RootPolynom(f, n, r1 + ε, b, ε);

- If Lfk has two roots r1 ∈ [a, b] and r2 ∈ [a, b], then
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• If |f(r1)| < ε then Sk = Sk ∪ {r1};
• If |f(r2)| < ε then Sk = Sk ∪ {r2};
• Sk = Sk∪ RootPolynom(f, n, r1 + ε, r2 − ε, ε)

3. Else (* f(a) <= 0 *)
(a) Construct Ufk a quadratic upper bound of f on the interval [a, b];
(b) Solve the equation Ufk(x) = 0;

– If Ufk has no root in [a, b], then Sk = ∅
– Else

If Ufk has one root r1 ∈ [a, b], then
• If |f(r1)| < ε, then Sk = Sk ∪ {r1};
• Sk = Sk∪RootPolynom(f, n, r1 + ε, b, ε);

– Else
If Ufk has two roots r1 ∈ [a, b] and r2 ∈ [a, b], then
• If |f(r1)| < ε, then Sk = Sk ∪ {r1};
• If |f(r2)| < ε, then Sk = Sk ∪ {r2};
• Sk = Sk∪ RootPolynom(f, n, r1 + ε, r2 − ε, ε);

4. S = Sk, return S.

end

3.1 Convergence of the Algorithm

The algorithm terminates if one of the following criteria is satisfied:
1. The length of the current interval [ak, bk] is less than ε ;
2. The lower or the upper bound of the polynomial has no roots on the current

interval [ak, bk].
For ε > 0, at least one of the two above conditions must be satisfied after a fi-

nite number of iterations: if the second condition is violated during the algorithm,

then the first condition must be fulfilled after at most m = (b − a)
√

K
8ε� + 1

iterations (see [7]).
For ε = 0, we have the following result.

Theorem 3. For hk = bk − ak, we have

lim
hk→0

(Ufk(x)− f(x)) = 0 and lim
hk→0

(f(x)− Lfk(x)) = 0.

Proof. As

0 ≤ Ufk(x) − f(x) ≤ 1
2
K(s− ak)(bk − s) ≤ 1

2
Khk

2,

it holds
lim

hk→0
(Ufk(x) − f(x)) = 0.

In the same way, if we have

0 ≤ f(x)− Lfk(x) ≤ 1
2
K(s− ak)(bk − s) ≤ 1

2
Khk

2,
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then
lim

hk→0
(f(x)− Lfk(x)) = 0.

The proof is complete. �

4 Illustrative Examples and Computational Results

Ill-conditioned dependence of the zeros on the coefficients occurs for many poly-
nomials having no multiple or clustered zeros, the well known example is the
polynomial

∏i=n
i=0 (x − i/n). For a large n, the zeros jump dramatically because

of a smaller perturbation of the coefficients [5]. Furthermore, it would not be
appropriate to ignore polynomials with multiple zeros like (x− 1/2)n since they
frequently appear in CAGD. We propose to study the behavior of the proposed
algorithm with help of these polynomials. Of course, the polynomials are first
written in Power basis. The numerical computations were implemented with the
IEEE754 double precision floating point arithmetic.

1. Polynomials of the form f(x) =
∏i=n

i=0 (x− i/n). The experimental result
shows that up to n = 20, the proposed algorithm found every root. Beyond
n = 20, the method start to fail and the results deteriorate. This is due
to successive division operations performed by the algorithm in the power
basis.

2. Polynomials of the form f(x) =
∏i=n

i=0 (x− αi) with 0 < αi < 1.
The numbers αi are chosen at random in [0, 1]. As in the previous experi-
ences our method found all the zeros with high accuracy (about 10−9). The
numbers αi are arbitrarily chosen. This experience (and the previous) shows
that the manner in which the roots are distributed (at random or uniformly)
has no influence on the performance of the method. Only the density has an
effect on their stability.

f(x) =
∏ i=n

i=0 (x − i/n) f(x) =
∏ i=n

i=0 (x − αi) f(x) = x(x − 1/2)n(x − 1)
0 0 0

.999999768138546 9.79239766337205E-02 1
5.00005729583799E-02 .999998917211747 0.499999999999

.949999718867712 .197925531155132

.100000896356013 .949998669127637

.150001164734556 .89999780620256

.200002047363825 .247925935504342

.250002675831615 .29792619161883

.300003430727458 .849997394440562

.350004072135139 .347926640047862

.400004072461467 .397927135990397
.45000502409906 .799996880187295
.500005566022001 .447927504621865
.550006287009764 .497928483243614
.60000697258511 .749996008511239
.650007085846317 .547928810935695
.700007715675635 .597929709584623
.750008644101933 .699995263507098
.800008749363372 .647929904566746
.899998762393359 0.9700110000233

.849999999999 0.1499999999999
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3. Polynomials of the form f(x) = x(x − 1/2)n(x − 1). For these polyno-
mials, the multiplicity n of the value 1/2 varies from 2 to 13. For any n, the
root 1/2 is found as a simple zero with an excellent error 10−16. For n = 13,
the results are summarized in the following table :

5 Conclusion

We propose a new method for finding real roots of a polynomial f(x) which is
based on the computation of some lower and upper bounds of f(x) and on suc-
cessive reducing of the initial interval. Facing ill-conditionned polynomial, the
experimental results show the efficiency of our algorithm. The roots are found
with a good accuracy (relative error magnitude =10−9). Note that the multi-
plicity order can be found by using derivatives of f(x). As the computations are
performed in a finite precision arithmetic and rounding errors affect the coeffi-
cients of polynomials of high degree, our results deteriorate beyond n = 20. But,
it has been shown [5] that the Bernstein basis minimizes the condition number
which measures the sensibility of the roots through the coefficients perturbation.
Our target is to use this base to improve the stability of the proposed algorithm.
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Abstract. In this paper we consider the problem of selecting assets for
which transaction costs are given by piecewise affine functions. Given
practical constraints related to budget and buy-in thresholds, our pur-
pose is to determine the number of each asset i that can produce the
maximum return of a portfolio composed of (n + 1) assets (one of them
is free of risk). The problem is formulated as an integer quadratic problem
and afterwards linearized. Some numerical experiments, using Ilog Cplex
10.1, has been performed. They show that the methodology is promising.

Keywords: Piecewise transaction costs; Integer quadratic programming;
portfolio selection; Linearization.

1 Introduction

Porfolio selection problems consist, in short, in optimally selecting, within a num-
ber of risky and riskless assets, suitable quantities of each asset in such a way to
reach a desirable return without exceeding an acceptable risk. The first and most
famous portfolio selection model is due to Markowitz (see [11]). In the Markowitz
model, the risk (taken as the variance) may be minimized for a fixed level of return,
or, symmetrically, the return may be maximized for a fixed level of risk.

In addition to return and risk, many variants of the Markowitz model involved
other aspects. Indeed, one can also take into account the transaction costs, the fact
that in practice the asset quantities are integer multiple of transaction lots (called
“rounds”), and pratical constraints such as budget limit and buy-in threshold.
When round lots are considered, Mansini et Speranza [6] propose a Mixed Integer
Linear Programming model whose objective function is the mean semi-absolute
risk measure of the portfolio. This model has been solved by a linear program-
ming based heuristic. Moreover, continuous transaction costs, proportional to the
traded amount, have been considered in Davis and Norman [3].
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In this paper, we deal with another variant of portfolio selection problem in
which (n+ 1) assets (whose one of them is free of risk) under transaction costs,
given by discontinuous piecewise affine functions, have to be optimally selected.
Our purpose here is to determine the maximum return and the correspond-
ing number of securities. This problem has been first considered in Lajili-Jarjir
and Rakotondratsimba [10]. The authors proposed in this work an optimization
mathematical model whose objective function involved the discontinous trans-
action cost functions. An enumerative scheme has been used to solve the model,
and an analytic methodology allows to reduce significantly the portfolio feasible
domain. This method is suited when n is small, say n = 10, but is impraticable
for huge value since the problem of portfolio selection, independently of the risk
function, is a NP-Complete problem.

To tackle this problem, we present a global approach in which the portfolio
problem with piecewise transaction costs is reformulated as an integer quadratic
program and solved with a linearization scheme. Some numerical experiments
on asset instances show that the methodology is successful.

2 The Investor Portfolio Selection Model

To present the model we first need the following notations. Let:

- W be the initial wealth available for the investment, so 0 < W ;
- Si denotes the initial quote at which the security is bought, where 0 < Si and
i ∈ {1, .., n};
- ψi and φi be the transaction functions which are applied respectively on buying
(at time 0) and selling (at time 1) the securities i where i ∈ {1, .., n};
- Vi be the expected move up of the security i, so 0 < Vi;
- r be the risk-free interest rate which is applied during the investment period,
so 0 ≤ r;
- δi, with 0 < δi < 1, be such that δiW represents the minimal level of cash
invested in the risky asset i;
- γi, with 0 < γi < 1, be such that γiW represents the maximal level of cash
invested in the risky asset i;
- Ni be a nonnegative integer (we write N ∈ N∗) which corresponds to the
quantity of security i.

It is important to notice that following the investment in security i, the remaining
money C is invested on a saving account with interest rate r.

With the previous notations, the initial wealth of investor is defined as:

W =
n∑

i=1

[

NiSi + ψi(NiSi)
]

+ C.

And the final wealth at the end of the investment period can be written as follow:

W̃ =
n∑

i=1

[

(1 + Vi)NiSi − φi

(
(1 + Vi)NiSi

)
]

+ C(1 + r).
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Our aim is to determine the values N̂1, N̂2, ..., N̂n, that maximize, under some
constraints, the return of the investment. The return is measured by the value:

Ret(N1, ... , Nn) =
W̃ −W

W
=

1
W

∑n
i=1

[

(Vi − r)NiSi − φi

(
(1 + Vi)NiSi

)
−

(1 + r)ψi(NiSi)
]

+ r. The optimal quantities N̂i may be obtained by solving the

following optimization problem:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Max Ret(N1, ... , Nn)

s.c. δiW ≤ NiSi + ψi(NiSi) ≤ γiW
0 < δi ≤ γi < 1 : i ∈ {1, ..., n}
∑n

i=1 γi ≤ 1
Ni ∈ N∗ : i ∈ {1, ..., n}.

(1)

Definition 1
The functions ψi and φi are defined as:

ψi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x = 0
αi0x+ βi0 for 0 = ai0 < x ≤ ai1

.

.

.
αiM−1x+ βiM−1 for aiM−1 < x ≤ aiM

αiMx+ βiM for x > aiM .

φi(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x = 0
di0x+ ei0 for 0 = bi0 < x ≤ bi1
.
.
.
diM−1x+ eiM−1 for biM−1 < x ≤ biM
diMx+ eiM for x > biM .

3 An Integer Quadratic Formulation

Since the functions ψi and φi are discontinuous, and the variablesNi are integers,
we cannot solve this problem by standard global optimization techniques.

In the scheme that we propose, we first reformulate the discontinuous piece-
wise affine transaction costs as quadratic functions and apply linearization tech-
niques to solve the resulting integer quadratic programming model. This kind of
reformulation has been studied in many references such as in Keha et al [7] on
continuous piecewise affine function, or in Gabrel et al [8] dealing with discon-
tinuous step-increasing cost functions of a multicommodity flow problem. Such
reformulation is done by adding new binary variables and additional constraints.
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Lemma 1. To reformulate ψi, we add μi1, μi2, ..., μiMi as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψi(x) =
∑Mi

t=1 μit

(
αitx+ βit − αit−1x− βit−1

)

=
∑Mi

t=1 μit

(
(αit − αit−1)x + βit − βit−1

)

where :
∑Mi−1

t=0 μit+1(ait − ait−1) ≤ x ≤
∑Mi

t=1 μit(ait − ait−1)
μit ∈ {0, 1} : t ∈ {0, ...,Mi}, i ∈ {1, ..., n}
μi0 ≥ μi1 ≥ ... ≥ μiMi : i ∈ {1, ..., n}
ai(−1) = ai0 = 0 : i ∈ {1, ..., n}.

(2)

Lemma 2. The same transformation is applicable for φi. We add the binary
variables λi1, λi2, ..., λiMi as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φi(x) =
∑Mi

t=1 λit

(
ditx+ eit − dit−1x− eit−1

)

=
∑Mi

t=1 λit

(
(dit − dit−1)x+ eit − eit−1

)

where :
∑Mi−1

t=0 λit+1(bit − bit−1) ≤ x ≤
∑Mi

t=1 λit(bit − bit−1)
λit ∈ {0, 1}, t ∈ {0, ...,Mi} : i ∈ {1, ..., n}
λi0 ≥ λi1 ≥ ... ≥ λiMi : i ∈ {1, ..., n}
bi(−1) = bi0 = 0 : i ∈ {1, ..., n}.

(3)

4 Algorithm of Resolution

By replacing the functions ψi and φi in the problem (1) by their values in the
systems (2) and (3), we obtain:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min Ret(N1, ... , Nn) =
1
W

[
∑n

i=1

∑Mi

t=1

(

Si(1 + Vi)(Dit −Dit−1)λitNi

+Si(1 + r)(αit − αit−1)μitNi

)

−
∑n

i=1 Si(Vi − r)Ni

+
∑n

i=1

∑Mi

t=1(eit − eit−1)λit +
∑n

i=1

∑Mi

t=1(1 + r)(βit − βit−1)μit

]

− r

s.c. Ni ≤
1
2

[
γiW

Si
+
∑Mi

t=1

(
ait − ait−1

2Si
− (βit − βit−1)

Si

)

μit

+
∑Mi

t=1

(bit − bit−1)
2(1 + Vi)Si

λit −
∑Mi

t=1(αit − αit−1)Niμit

]

Ni ≥
1
2

[
δiW

Si
+
∑Mi

t=1

(
ait−1 − ait−2

2Si
− (βit − βit−1)

Si

)

μit

+
∑Mi

t=1

(bit−1 − bit−2)
2(1 + Vi)Si

λit −
∑Mi

t=1(αit − αit−1)Niμit

]

λit, μit ∈ {0, 1} : t ∈ {0, ...,Mi}, i ∈ {1, ..., n}
λi0 ≥ λi1 ≥ ... ≥ λiMi

: i ∈ {1, ..., n}
μi0 ≥ μi1 ≥ ... ≥ μiMi

: i ∈ {1, ..., n}
ai(−1) = ai0 = 0 : i ∈ {1, ..., n}
bi(−1) = bi0 = 0 : i ∈ {1, ..., n}.
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In order to linearize this problem, we pose Xit = λitNi and Yit = μitNi. Then
we replace them by their values and adding constraints in the problem above:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min Ret(N1, ... , Nn) =
1
W

[
∑n

i=1

∑Mi

t=1

(

Si(1 + Vi)(Dit −Dit−1)Xit

+Si(1 + r)(αit − αit−1)Yit

)

−
∑n

i=1 Si(Vi − r)Ni

+
∑n

i=1

∑Mi

t=1(eit − eit−1)λit +
∑n

i=1

∑Mi

t=1(1 + r)(βit − βit−1)μit

]

− r

s.c. Ni ≤
1
2

[
γiW

Si
+
∑Mi

t=1

(
ait − ait−1

2Si
− (βit − βit−1)

Si

)

μit

+
∑Mi

t=1

(bit − bit−1)
2(1 + Vi)Si

λit −
∑Mi

t=1(αit − αit−1)Yit

]

Ni ≥
1
2

[
δiW

Si
+
∑Mi

t=1

(
ait−1 − ait−2

2Si
− (βit − βit−1)

Si

)

μit

+
∑Mi

t=1

(bit−1 − bit−2)
2(1 + Vi)Si

λit −
∑Mi

t=1(αit − αit−1)Yit

]

Yit ≤ Ni : t ∈ {0, ...,Mi}, i ∈ {1, ..., n}
Yit ≤ μitN̄i : t ∈ {0, ...,Mi}, i ∈ {1, ..., n}
Yit ≥ N̄iμit +Ni − N̄i : t ∈ {0, ...,Mi}, i ∈ {1, ..., n}
Xit ≤ Ni : t ∈ {0, ...,Mi}, i ∈ {1, ..., n}
Xit ≤ λitN̄i : t ∈ {0, ...,Mi}, i ∈ {1, ..., n}
Xit ≥ N̄iλit +Ni − N̄i : t ∈ {0, ...,Mi}, i ∈ {1, ..., n}
λit, μit ∈ {0, 1} : t ∈ {0, ...,Mi}, i ∈ {1, ..., n}
λi0 ≥ λi1 ≥ ... ≥ λiMi : i ∈ {1, ..., n}
μi0 ≥ μi1 ≥ ... ≥ μiMi : i ∈ {1, ..., n}
ai(−1) = ai0 = 0 : i ∈ {1, ..., n}
bi(−1) = bi0 = 0 : i ∈ {1, ..., n}.

5 Numerical Results and Conclusion

The formulation and its linearization have been implemented with Ilog Cplex
10.1. Numerical experiments were realized on the randomly generated instances.

These numerical results are presented in the following table:

i=1 i=2 i=3 i=4 i=5
δi 0.012 0.013 0.011 0.012 0.015
γi 0.041 0.04 0.039 0.036 0.038
Si 45 46 44 42 43
Vi 0.05 0.06 0.08 0.07 0.04

Ret = 0.036 N1 = 175 N2 = 118 N3 = 89 N4 = 111 N5 = 142
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i=6 i=7 i=8 i=9 i=10
δi 0.014 0.011 0.011 0.013 0.0016
γi 0.048 0.047 0.039 0.046 0.047
Si 46 47 49 44 44
Vi 0.05 0.09 0,049 0.054 0.06

Ret = 0.036 N6 = 176 N7 = 128 N8 = 213 N9 = 164 N10 = 125

i=11 i=12 i=13 i=14 i=15
δi 0.002 0.012 0.0112 0.0132 0.011
γi 0.046 0.049 0.048 0.039 0.044
Si 47 48 41 45 47
Vi 0.07 0.065 0.075 0.046 0.053

Ret = 0.036 N11 = 108 N12 = 79 N13 = 101 N14 = 102 N15 = 106

i=16 i=17 i=18 i=19 i=20
δi 0.012 0.0115 0.0113 0.001 0.001
γi 0.038 0.042 0.049 0.03 0.036
Si 49 47 46 42 57
Vi 0.091 0,0492 0.053 0.05 0.076

Ret = 0.036 N16 = 98 N17 = 113 N18 = 74 N19 = 125 N20 = 108

where ψ and φ are considered independent of i. They are taken as follows:

ψ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x = 0
11 for 0 < x ≤ 3000
15 for 3000 < x ≤ 7668
0.003x− 8 for 7668 < x ≤ 8000
0.0055x− 23 for 8000 < x ≤ 153000
0.004x− 23 for 153000 < x ≤ 422000
0.0025x+ 610 for x > 422000.

φ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x = 0
12 for 0 < x ≤ 4020
18 for 4020 < x ≤ 8568
0.004x− 11 for 8568 < x ≤ 12400
0.0068x− 25 for 12400 < x ≤ 252000
0.0052x− 25 for 252000 < x ≤ 543000
0.0032x+ 840 for x > 543000.

The initial wealth is W = 200000. r = 0.038.
The results show that until 20 assets and 7 pieces in the affine functions, the

linearized formulation runs very well. Beyond that, some improvements on the res-
olution scheme are needed. In this paper we treated the problem where the objec-
tive function is a combination of two functions of transaction. These last ones are
discontinuous piecewise affine functions. We added binary variables to transform
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the problem into an integer quadratique problem and afterwards linearized. This
good theoretical result which consists in formulating the problem in the form of an
integer linear program allowed us to resolve him by using the ILOG software. The
results of numerical simulations are encouraging and prove the efficiency of our
new approach. As perspectives, such improvements may be reached by strength-
ening the linear formulation polytope with cuts, reducing the size of the variables
Ni, or applying different approaches to the integer quadratic formulation such as
semidefinite programming.
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Abstract. In this work, we develop a new algorithm for solving a dis-
crete quadratic fractional maximum problem in which the objective is to
optimize a ratio of two quadratic functions over a set of integer points
contained in a convex polytope. This algorithm is based on a branch and
bound method on computation of penalties and a related integer linear
fractional programs.For this problem, optimality conditions are derived.
A numerical example is presented for illustrating the proposed method.

1 Introduction

Fractional Programming problems have been a subject of wide interest since
they arise in many fields like agricultural planning, financial analysis of a firm,
location theory, capital budgeting problem, portfolio selection problem, cutting
stock problem, stochastic process problem. From time to time survey papers on
applications and algorithms on fractional programming have been presented by
many authors [3,5,6,7]. In this paper a new algorithm is developed for solving
integer quadratic fractional programs in which the objective is to minimize a
ratio of two quadratic functionals over a set of integer points contained in a
convex polytope. Branch and bound method based on computation of penalties
is developed to solve the problem. The branch and bound methods have been
used in literature for solving a number of integer programming problems. For
solving the problem, integer points of the polytope are ranked in non-decreasing
order of the values of the integer quadratic fractional programming problem.
Integer linear fractional programming problem related to the main problem is
formulated and its feasible integer solutions are scanned in a systematic manner
till an integer optimal solution of the problem is obtained.

2 Notations and Definitions

Let S the set of vectors x ∈ IRn satisfying the constraints x ≥ 0, x integer and
Ax ≤ b where A is an integer m × n matrix and b a vector of IRm. Let C,D
vectors of IRn, E,F are real symmetric matrices and α, β two elements of IR.
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The integer quadratic fractional programming problem (P ), intended to be
studied can be mathematically stated as:

(P ) : min f(x) =
CTx+ xTEx+ α

DTx+ xTFx+ β
, x ∈ S . (1)

DTx + xTFx + β > 0 for all x ∈ S̃ = {x ∈ IRn | Ax ≤ b, x ≥ 0} where the
nonempty S̃ is bounded.

To find an optimal integer solution of problem (P ), integer feasible solutions
are ranked in non-decreasing order of the values of the objective function. For
obtaining various integer feasible solutions a related integer linear fractional
programming problem (P1) is constructed.

(P1) : min g(x) =
UTx+ α

V Tx+ β
, x ∈ S . (2)

where
Uj = jth component of U ∈ IRn = min

x∈S̃
(Cj + xTEj), j = 1, ..., n, Cj being

the jth column of C and Ej being the jth column of E.
Vj = jth component of V ∈ IRn = max

x∈S̃
(Dj + xTFj), j = 1, ..., n, Dj being

the jth column of D and Fj being the jth column of F .

3 Some Results

Proposition 1
g(x) ≤ f(x), ∀x ∈ S̃ . (3)

Proof. By definition of Uj and Vj , we have:
∀x ∈ S̃, Uj ≤ Cj + xTEj and Vj ≥ Dj + xTFj , j = 1, ..., n.
As x ≥ 0, ∀x ∈ S̃ UTx ≤ (CT + xTE)x and V Tx ≥ (DT + xTF )x
Clearly it follows that ∀x ∈ S̃, g(x) ≤ f(x) . ��

Recall that the integer linear fractional problem (P1) can be solved by branch
and bound method based on computation of penalties [1]. Consider the problem
(P2) without integrality restrictions

(P2) : min g(x) =
UTx+ α

V Tx+ β
, x ∈ S̃ . (4)

and introducing slack variables and solving it by Cambini and Martein’s method
[4], we find the optimal continuous solution. Let the optimal simplex tableau be
given by (P ′

2):

(P ′
2) : min g(x) =

ᾱ+
pj∑

j∈IN

xj

β̄ +
qj∑

j∈IN

xj

. (5)



An Exact Method for a Discrete Quadratic Fractional Maximum Problem 199

xi +
∑

j∈IN

āijxj = ei, i ∈ IB, xj ≥ 0, j ∈ IN . (6)

where IN is the index set of the non-basic variables, xi, i ∈ IB is the basic
variable, ᾱ and β̄ are the reduced costs in the simplex tableau and ᾱ/β̄ is the
value of the objective function. The optimal basic solution of problem (P2) is
given by

xi = ei, i ∈ IB otherwise xj = 0 j ∈ IN . (7)

If ei is integer for every i ∈ IB , then the integer optimal solution to problem
(P2) is obtained. If the necessary integrality restrictions are not satisfied, let ekt

be non integer value of xkt for some kt ∈ IB . We denote the largest integer less
than ekt by ekt� and the smallest integer greater than ekt by �ekt�. Since xkt is
required to be integer, either xkt ≤ ekt� or xkt ≥ �ekt�.

Let us consider the former xkt ≤ ekt�which gives rise to the constraint x
kt

+
s = ekt� but x

kt
+

∑

j∈IN

āktjxj = ekt from the simplex tableau. Then

−
∑

j∈IN

āktjxj + s = ekt� − ekt . (8)

Thus we have
−

∑

j∈IN

āktjxj ≤ ekt� − ekt . (9)

It is obvious that ekt� − ekt is negative and the optimal solution to problem
(P1) given below does not satisfy the constraint (9). Augmenting this constraints
to problem (P1), we obtain one of the branches.

Similarly, corresponding to xkt ≥ �ekt�, we obtain the constraint

− xkt + s = −�ekt� . (10)

Then ∑

j∈IN

āktjxj ≤ ekt − �ekt� < 0 . (11)

Introducing this constraints to problem (P1), we obtain the other branch. For
selecting a branch which must be added to the optimal simplex tableau (P ′

2), we
compute the penalties πr and π′

r of the constraints xkt ≤ ekt� and xkt ≥ �ekt�,
respectively given by:

πr =
eΔr

β̄(β̄ + eq̄r

ākt,r
)
. (12)

and

π′
r =

(1− e)Δ′
r

β̄(β̄ + (1−e)q̄r

ākt,r′
)
. (13)

where

Δr = min
{

γ̄j

−ākt,j
| ākt,j > 0

}

, Δ′
r = min

{
γ̄j

ākt,j
| ākt,j < 0

}

. (14)

and e = ekt − ekt�.
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γj represents the jth component of the reduced gradient of g at x, γ̄j = β̄ ×
p̄j − ᾱ× q̄j , j ∈ IN .

The branch corresponding to the smallest penalty is augmented to problem
(P ′

2).

Proposition 2. If for some k ≥ 1, gk ≥ min
{
f(x) | x ∈ T k

}
= f(x̂), then x̂ is

the optimal solution of (P ).

Proof. We have

∀x ∈ T k f(x̂) ≤ f(x) . (15)

On the other hand from Proposition 1 and our hypothesis it follows that

∀x ∈ S/T k f(x) ≥ g(x) ≥ gk+1 > gk ≥ f(x̂) . (16)

Conditions (15) and (16) implies that x̂ is the optimal solution of (P ). ��

Next proposition shows that when the hypothesis of Proposition 2 is not satisfied,
we have information about the minimum value of the initial problem (P ).

Proposition 3. If gk < min{f(x) | x ∈ T k}, then gk < f1 ≤ min{f(x) | x ∈
T k+1}.

Proof. The second inequality is obvious. For the first part, we note as in propo-
sition 2 that

∀x ∈ S/T k f(x) ≥ g(x) ≥ gk+1 > gk . (17)

Therefore
min

{
f(x) : x ∈ S/T k

}
> gk . (18)

By hypothesis,
min

{
f(x) : x ∈ T k

}
> gk . (19)

Then conditions (18) and (19) imply that f1 > gk. ��

4 Notations

Δi =Set of all the ithbest feasible solutions of (P1);
Clearly
Δ1 =Set of optimal solutions of (P1),g1 the optimal value corresponding at

Δ1 and
Δ2 = Set of the 2nd optimal solutions of (P1), g2 the optimal value correspond-

ing at Δ2. It follows that g1 < g2. Obviously for i = k we have gk < gk+1 and
the feasible set S being finite. Introduce the notations T k = Δ1 ∪Δ2 ∪ ... ∪Δk.
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4.1 Algorithm

Step 0. Find Cj = min
x∈S̃

(Cj + xTEj) and Vj = Max
x∈S̃

(Dj + xTFj), j = 1...n.

Construct the related integer linear fractional programming problem (P1)
and go to step 1.

Step 1. Solve problem (P2) .
– if a such solution does not exist, stop. Either sup

x∈S
g = +∞

– Otherwise, set k = 1, l = 1 and goto step2.
Step 2. Let x1 an optimal continuous solution of problem (P2).

– if x1 is integer, Find Δ1 and compute g(x1) = g1, go to step 5.
– Otherwise for k = 1, l = 1, let xkt be for some kt ∈ IB , a non integer

component of x1 with corresponding value ekt. Set πl = 0 and go to step
3.

Step 3. Compute π2k−1 and π2k. Let π2k−1 = π2k−1 + πl, π2k = π2k + πl and
πl = +∞. Compute πl = min

1≤j≤2k
{πj}. Augment the constraint to the optimal

simplex tableau, solve it and go to step 4.
Step 4. if xl is integer, Find Δl and compute g(xl) = gl, go to step 7. Otherwise,

the augmented problems have no solutions, stop. Let xl
kt be a non integer

component of xl with corresponding value el
kt. Set k = k + 1 and go to step

3.
Step 5. Test

– if g1 = min
{
f(x) | x ∈ T 1

}
= f(x̂1). Then x̂1 is the integer optimal

solution of problem (P ).
– If g1 < min

{
f(x) | x ∈ T 1

}
, l = 2 and go to step 6.

Step 6. Find the next best solution of the problem(P2), go to step 4.
Step 7. Test

– If gl ≥ min
{
f(x) | x ∈ T l

}
= f(x̂1), then x̂1 is the integer optimal

solution of problem (P ).
– If gl < min

{
f(x) | x ∈ T l

}
, l = l + 1 and go to step 6.

5 Illustrative Example

Consider the integer quadratic fractional programming problem (P ):

(P ) : min f(x1, x2) =
−5x1 − 8x2 − x2

1 − 2x1x2 − 3
2x1 + x2

1 + 2
. (20)

(x1, x2) ∈ S = {2x1+3x2 ≤ 6; 3x1+2x2 ≤ 5; x1 ≥ 0; x2 ≥ 0, integers} . (21)

Step 0: A related integer linear fractional problem (P1) is constructed as:

(P1) : min f(x1, x2) =
−7x1 − 9x2 − 3
3x1 + 4x2 + 2

, (x1, x2) ∈ S . (22)
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For solving problem (P1), a relaxed linear fractional programming problem
(P2) say is given by:

(P1) : min f(x1, x2) =
−7x1 − 9x2 − 3
3x1 + 4x2 + 2

, (x1, x2) ∈ S̃ . (23)

Step 1: The optimal continuous solution is x1 = 3/5, x2 = 8/5 and xj = 0
otherwise.

Step 2: Since x1 and x2 are not integers, this is not the one corresponding to
the required solution to problem (P1).

Step 3: Compute the penalties π1 and π2 of the added constraints x1 ≤ 3/5�
and x1 ≥ �3/5�, respectively, we obtain π1 = 3/170 and π2 = 1/153. Then, we
select the branch whose penalty is smallest and augment respective constraint
to the optimal simplex tableau (P ′

2).
Step 4: The solution that we obtain is x1 = 1, x2 = 1, x3 = 1 and xj = 0

otherwise. Δ1 = {(1, 1)} and g1 = 19/9.
Step 5: min

{
f(x) | x ∈ T 1

}
= 19/9. Then g1 = min

{
f(x) | x ∈ T 1

}
=

f(x̂1). Then x̂1 is the integer optimal solution of problem (P ).

6 Conclusion

In this paper, we have proposed an algorithm for solving integer quadratic frac-
tional programs. This algorithm is based on a branch and bound method on
computation of penalties and a related integer linear fractional programming
problem is constructed for solving the integer quadratic fractional programs
problem in a finite number of iterations. we hope that this article motivates the
researchers to develop better solution procedures for this problem.
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2. Abbas, M., Mouläı, M.: An algorithm for mixed integer linear fractional program-
ming problem. Jorbel 39, 21–30 (1999)
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Abstract. In this article, we tackle the problem of exploring the struc-
ture of the data which is underlying a bipolar-valued outranking relation.
More precisely, we show how the performances of alternatives and weights
related to criteria can be determined from three different formulations
of the bipolar-valued outranking relations, which are given beforehand.

1 Introduction

Let X = {x, y, z, . . .} be a set of p alternatives and N = {1, . . . , n} be a set of
n criteria. Each alternative of X is evaluated on each of the criteria of N . Let
us write gi(x) for the performance of alternative x on criterion i of N . In this
work, we will regard, without any loss of generality, such a performance function
gi (i ∈ N) as having its values in [0, 1] s.t.:

∀x, y ∈ X, gi(x) ≥ gi(y)⇒ x is at least as good as y on criterion i. (1)

With each criterion i of N we associate its weight represented by a rational
number wi from the interval [0, 1] such that

n∑

i=1

wi = 1.

To enrich the model which can be based on Formula (1), it is possible to
associate different thresholds (weak preference, preference, weak veto, veto; see,
e.g., [1]) with the criteria functions which allow to represent more precisely a
decision maker’s (DM’s) local “at least as good as” preferences.

Let S be a binary relation on X . Classically, the proposition “x outranks y”
(xSy) (x, y ∈ X) is assumed to be validated if there is a sufficient majority of
criteria which supports an “at least as good as” preferential statement and there
is no criterion which raises a veto against it [2].

In this paper, given the outranking relation, we detail how the performances of
the alternatives and the weights associated with the criteria can be determined.
We present three different definitions of the outranking relation, where the first

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 204–213, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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model takes only into account a preference threshold, the second one considers
also a weak preference threshold, and finally, the third one adds also two veto
thresholds.

From a practical point of view, the determination of the performances of the
alternatives on the criteria may be questionnable, as in general, in a decision
problem, these evaluations are given beforehand. Nevertheless, from an exper-
imental point of view, the determination of a performance table from a given
valued outranking relation can be of some help. Furthermore, it is possible to
show that our developments can easily be extended to the tuning of the param-
eters underlying the DM’s preferences.

2 M1: Model with a Single Preference Threshold

Starting from Formula (1), this first model enriches the local pairwise comparison
of two alternatives on each criterion by a preference threshold. Therefore, to
characterise a local “at least as good as” situation between two alternatives x
and y of X , for each criterion i of N , we use the function Ci : X×X → {−1, 1}
defined by:

Ci(x, y) =
{

1 if gi(y) < gi(x) + p ;
−1 otherwise , (2)

where p ∈]0, 1[ is a constant preference threshold associated with all the prefer-
ence dimensions. According to this local concordance index, x is considered as
at least as good as y for criterion i if gi(y) < gi(x) + p (Ci(x, y) = 1). Else, x is
not considered as at least as good as y for criterion i (Ci(x, y) = −1).

The overall outranking index S̃, defined for all pairs of alternatives (x, y) ∈
X ×X , can then be written as:

S̃(x, y) =
∑

i∈N

wiCi(x, y). (3)

S̃ represents the credibility of the validation or non-validation of an outranking
situation observed between each pair of alternatives [1]. The maximum value 1 of
S̃ is reached in the case of unanimous concordance, whereas the minimum value
−1 is obtained in the case of unanimous discordance. S̃ is called the bipolar-valued
characterisation of the outranking relation S, or, for short, the bipolar-valued
outranking relation.

Given the bipolar-valued outranking relation S̃ and a constant preference
threshold p, we now show how the values taken by the performance functions
gi(x) (∀i ∈ N, ∀x ∈ X) and the associated weights wi (∀i ∈ N) can be deter-
mined.

The local concordance conditions (2) can be translated as follows into linear
constraints:

(−1+p)(Ci(x, y)−1)<gi(x)−gi(y)+p ≤ (1+p)(Ci(x, y)+1) ∀x �=y ∈ X, ∀i ∈ N,
(4)
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where Ci(x, y) ∈ {−1, 1} for each x �= y ∈ X . Indeed, gi(x) − gi(y) + p > 0
implies Ci(x, y) = 1 whereas gi(x)− gi(y) + p ≤ 0 forces Ci(x, y) = −1.

Constraints derived from Equation 3 can be written as

n∑

i=1

w′
i(x, y) = S̃(x, y) ∀x �= y ∈ X,

where w′
i(x, y) is a non-negative variable for each i ∈ N , x �= y ∈ X s.t.:

w′
i(x, y) =

{
wi if Ci(x, y) = 1;
−wi otherwise.

This then leads to the following linear constraints:

−wi ≤ w′
i(x, y) ≤ wi;

wi + Ci(x, y)− 1 ≤ w′
i(x, y);

w′
i(x, y) ≤ −wi + Ci(x, y) + 1.

Indeed, Ci(x, y) = −1 implies w′
i(x, y) = −wi, whereas Ci(x, y) = 1 forces

w′
i(x, y) = wi.
In order to remain flexible enough and not to depend on rounding errors, we

propose to approach the values taken by S̃ as closely as possible by minimis-
ing the maximal gap between S̃(x, y) and

∑

i∈N

wiCi(x, y), for all x �= y ∈ X ,

represented by a non-negative variable ε.
The mixed integer program MIP1 which has to be solved can now be written

as follows:

MIP1:

Variables:
ε ≥ 0
gi(x) ∈ [0, 1] ∀i ∈ N, ∀x ∈ X
wi ∈ [0, 1] ∀i ∈ N
Ci(x, y) ∈ {0, 1} ∀i ∈ N, ∀x 	= y ∈ X
w′

i ∈ [−1, 1] ∀i ∈ N

Parameters:
p ∈]0, 1[

S̃(x, y) ∈ [0, 1] ∀x 	= y ∈ X
δ ∈]0, p[

Objective function:
min ε

Constraints:

s.t.
n∑

i=1
wi = 1

−wi ≤ w′
i(x, y) ∀x 	= y ∈ X, ∀i ∈ N

w′
i(x, y) ≤ wi ∀x 	= y ∈ X, ∀i ∈ N

wi + Ci(x, y) − 1 ≤ w′
i(x, y) ∀x 	= y ∈ X, ∀i ∈ N
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w′
i(x, y) ≤ −wi + Ci(x, y) + 1 ∀x 	= y ∈ X, ∀i ∈ N

n∑

i=1
w′

i(x, y) ≤ S̃(x, y) + ε ∀x 	= y ∈ X

n∑

i=1
w′

i(x, y) ≥ S̃(x, y) − ε ∀x 	= y ∈ X

(−1 + p)(1 − Ci(x, y)) + δ ≤ gi(x) − gi(y) + p ∀x 	= y ∈ X, ∀i ∈ N
gi(x) − gi(y) + p ≤ (1 + p)Ci(x, y) ∀x 	= y ∈ X, ∀i ∈ N

The solution of MIP1 might not be unique. If the objective function equals
0, then there exist gi(x) (∀i ∈ N, ∀x ∈ X) and associated weights wi (∀i ∈ N)
generating the overall outranking index S̃ via Equations (2) and (3). Else there
exists no solution to the problem via the selected representation, and the output
of MIP1 can be considered as an approximation of the given S̃ by a the constant
preference threshold model.

Let us now turn to a more complex model which allows to represent a larger
set of valued outranking relations.

3 M2: Model with Two Preference Thresholds

In this case, a local “at least as good as” situation between two alternatives x
and y of X is characterised by the function C ′

i : X ×X → {−1, 0, 1} s.t.:

C′
i(x, y) =

⎧
⎨

⎩

1 if gi(y) < gi(x) + q ;
−1 if gi(y) ≥ gi(x) + p ;

0 otherwise ,
(5)

where q ∈]0, p[ is a constant weak preference threshold associated with all the
preference dimensions. If C′

i(x, y) = 1 (resp. C′
i(x, y) = −1), then x is considered

(resp. not considered) as at least as good as y for criterion i. Finally, according
to the developments in [1], if gi(x) + q ≤ gi(y) < gi(x) + p then it cannot
be determined whether x is at least as good as y or not for criterion i, and
C′

i(x, y) = 0.
The overall outranking index S̃′ is defined as follows for all pairs of alternatives

(x, y) ∈ X ×X :
S̃′(x, y) =

∑

i∈N

wiC
′
i(x, y). (6)

According to Equation (6), S̃′ has its values in [−1, 1]. Its maximum value 1 is
reached in the case of unanimous concordance, its minimum value −1 represents
unanimous discordance, and the value 0 is obtained if the positive arguments
counterbalance the negative arguments for the outranking. The value 0 therefore
represents an indetermined outranking situation. In this context, S̃′ is again
called the bipolar-valued outranking relation.

In order to represent the three values taken by C′
i(x, y), we use two binary

variables αi(x, y) ∈ {0, 1} and βi(x, y) ∈ {0, 1} (∀i ∈ N, ∀x �= y ∈ X) s.t.

C′
i(x, y) = αi(x, y)− βi(x, y). (7)
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Note that C′
i(x, y) = 1 if αi(x, y) = 1 and βi(x, y) = 0, C′

i(x, y) = −1 if
αi(x, y) = 0 and βi(x, y) = 1, and C′

i(x, y) = 0 if αi(x, y) = βi(x, y) = 1 or
αi(x, y) = βi(x, y) = 0.

The local concordance conditions (5) can then be rewritten as follows as linear
constraints (∀x �= y ∈ X, ∀i ∈ N):

{
(−1 + q)(1− αi(x, y)) < gi(x) − gi(y) + q ≤ (1 + q)αi(x, y);

(−1 + p)βi(x, y) < gi(x) − gi(y) + p ≤ (1 + p)(1− βi(x, y)).
(8)

Note that, as p > q > 0, gi(x) − gi(y) + q > 0 ⇒ gi(x) − gi(y) + p > 0, and
gi(x) − gi(y) + p < 0 ⇒ gi(x) − gi(y) + q < 0. Consequently, in constraints (8),
gi(x)− gi(y) + q > 0 forces αi(x, y) = 1 and βi(x, y) = 0 (C′

i(x, y) = 1) whereas
gi(x) − gi(y) + p < 0 implies βi(x, y) = 1 and αi(x, y) = 0 (C′

i(x, y) = −1).
Furthermore, gi(x) − gi(y) + q < 0 and gi(x) − gi(y) + p > 0 implies αi(x, y) =
βi(x, y) = 0 (C′

i(x, y) = 0). Then, gi(x) − gi(y) + q = 0⇒ gi(x)− gi(y) + p > 0
forces αi(x, y) = βi(x, y) = 0 and finally gi(x)−gi(y)+p = 0⇒ gi(x)−gi(y)+q <
0 implies that αi(x, y) = 0 and βi(x, y) = 1 (C′

i(x, y) = 1).
It is important to note that constraints (8) linked to the condition p > q > 0

do not allow that αi(x, y) = βi(x, y) = 1 simultanously. Indeed αi(x, y) = 1 ⇒
gi(x) − gi(y) + q ≥ 0 and βi(x, y) = 1 ⇒ gi(x) − gi(y) + p ≤ 0, which is only
possible if p = q.

Equation (6) can be rewritten as follows:

S̃′(x, y) =
∑

i∈N

wi(αi(x, y)− βi(x, y)) ∀x �= y ∈ X,

which can be replaced by a linear constraint of the type

n∑

i=1

w′′
i (x, y) = S̃′(x, y) ∀x �= y ∈ X,

where w′′
i (x, y) ∈ [−1, 1] for each i ∈ N, x �= y ∈ X s.t.:

w′′
i (x, y) =

⎧
⎨

⎩

wi if C′
i(x, y) = 1;

−wi if C′
i(x, y) = −1;

0 otherwise.

This then leads to the following linear constraints (∀x �= y ∈ X, ∀i ∈ N):

−wi ≤ w′′
i (x, y) ≤ wi;

wi + αi(x, y)− βi(x, y)− 1 ≤ w′′
i (x, y)

w′′
i (x, y) ≤ −wi + αi(x, y)− βi(x, y) + 1
−[αi(x, y) + βi(x, y)] ≤ w′′

i (x, y) ≤ αi(x, y) + βi(x, y).

Indeed, recalling that αi(x, y) and βi(x, y) cannot simultanously be equal to 1, it
is easy to verify that C′

i(x, y) = 1⇒ w′′
i (x, y) = wi, C′

i(x, y) = −1⇒ w′′
i (x, y) =

−wi, and C′
i(x, y) = 0⇒ w′′

i (x, y) = 0.
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These considerations lead to the formulation of the mixed integer program
MIP2, whose objective is again to minimise a non-negative variable ε repre-
senting the maximal gap between S̃′(x, y) and

∑

i∈N

wiC
′
i(x, y), for all x �= y ∈ X .

MIP2:

Variables:
ε ≥ 0
gi(x) ∈ [0, 1] ∀i ∈ N, ∀x ∈ X
wi ∈ [0, 1] ∀i ∈ N
αi(x, y) ∈ {0, 1} ∀i ∈ N, ∀x 	= y ∈ X
βi(x, y) ∈ {0, 1} ∀i ∈ N, ∀x 	= y ∈ X
w′′

i (x, y) ∈ [−1, 1] ∀i ∈ N, ∀x 	= y ∈ X

Parameters:
q ∈]0, p[
p ∈]q, 1[

S̃′(x, y) ∈ [0, 1] ∀x 	= y ∈ X
δ ∈]0, q[

Objective function:
min ε

Constraints:

s.t.
n∑

i=1
wi = 1

−wi ≤ w′′
i (x, y) ∀x 	= y ∈ X, ∀i ∈ N

w′′
i (x, y) ≤ wi ∀x 	= y ∈ X, ∀i ∈ N

wi + αi(x, y) − βi(x, y) − 1 ≤ w′′
i (x, y) ∀x 	= y ∈ X, ∀i ∈ N

w′′
i (x, y) ≤ −wi + αi(x, y) − βi(x, y) + 1 ∀x 	= y ∈ X, ∀i ∈ N

−[αi(x, y) + βi(x, y)] ≤ w′′
i (x, y) ∀x 	= y ∈ X, ∀i ∈ N

w′′
i (x, y) ≤ αi(x, y) + βi(x, y) ∀x 	= y ∈ X, ∀i ∈ N

n∑

i=1
w′′

i (x, y) ≤ S̃′(x, y) + ε ∀x 	= y ∈ X

n∑

i=1
w′′

i (x, y) ≥ S̃′(x, y) − ε ∀x 	= y ∈ X

(−1 + q)(1 − αi(x, y)) + δ ≤ gi(x) − gi(y) + q ∀x 	= y ∈ X, ∀i ∈ N
gi(x) − gi(y) + q ≤ (1 + q)αi(x, y) ∀x 	= y ∈ X, ∀i ∈ N
(−1 + p)βi(x, y) + δ ≤ gi(x) − gi(y) + p ∀x 	= y ∈ X, ∀i ∈ N
gi(x) − gi(y) + p ≤ (1 + p)(1 − βi(x, y)) ∀x 	= y ∈ X, ∀i ∈ N

Similar remarks as for MIP1 concerning the uniqueness and the character-
istics of the solution apply here. Once again, let us now turn to a more com-
plex model which allows to represent an even larger set of valued outranking
relations.
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4 M3: Model with Two Preference and Two Veto
Thresholds

In this third case, the outranking relation is enriched by veto thresholds on the
criteria. A veto threshold on a criterion i ∈ N allows to clearly non-validate an
outranking situation between two alternatives if the difference of evaluations on
i is too large. A local veto situation for each criterion i of N is characterised by
a veto function Vi : X ×X → {−1, 0, 1} s.t.:

Vi(x, y) =

⎧
⎨

⎩

1 if gi(y) ≥ gi(x) + v ;
−1 if gi(y) < gi(x) + wv ;

0 otherwise ,
(9)

where wv ∈]p, 1[ (resp. v ∈]wv, 1[) is a constant weak veto threshold (resp.
veto threshold) associated with all the preference dimensions. If Vi(x, y) = 1
(resp. Vi(x, y) = −1), then the comparison of x and y for criterion i leads
(resp. does not lead) to a veto. Again, according to the developments in [1],
if gi(x) +wv < gi(y) ≤ gi(x) + v then it cannot be determined whether we have
a veto situation between x and y or not, and Vi(x, y) = 0. Figure 1 represents
the local concordance and veto indexes for a fixed gi(x).

To take into account these veto effects, the overall outranking index S̃′′ is
defined as follows for all pairs of alternatives (x, y) ∈ X ×X :

S̃′′(x, y) = min
{∑

i∈N

wiC
′
i(x, y),−V1(x, y), . . . ,−Vn(x, y)

}
. (10)

The min operator in Formula (10) tranlsates the conjunction between the overall
concordance and the negated local veto indexes for each criterion. In the case of
absence of veto on all the criteria (Vi = −1 ∀i ∈ N), we have S̃′′(x, y) = S̃′(x, y).

1

−1

0
gj(y)

C′
i(x, y)

Vi(x, y)

gi(x) gi(x) + q gi(x) + p gi(x) + wv gi(x) + v

Fig. 1. Local concordance and veto indexes for a fixed gi(x)



Disaggregation of Bipolar-Valued Outranking Relations 211

Similarly as in Section 3, the three values taken by the local veto function can
be represented by means of two binary variables α′

i(x, y) ∈ {0, 1} and β′
i(x, y) ∈

{0, 1} (∀i ∈ N, ∀x �= y ∈ X) s.t.

Vi(x, y) = α′
i(x, y)− β′

i(x, y).

Recalling that wv < v, conditions (9) can then be rewritten as follows as linear
constraints (∀x �= y ∈ X, ∀i ∈ N):
{

(−1 + wv)(1 − β′
i(x, y)) < gi(x)− gi(y) + wv ≤ (1 + wv)β′

i(x, y);
(−1 + v)α′

i(x, y) < gi(x) − gi(y) + v ≤ (1 + v)(1 − α′
i(x, y)).

(11)

To represent Formula (10) as a set of linear constraints, we need to introduce
some further binary variables z0(x, y) and zi(x, y) (∀x �= y ∈ X, ∀i ∈ N) s.t.:

S̃′′(x, y)=

{
−Vk(x, y) if zk(x, y)=1 and zi(x, y)=0 ∀i∈N ∪ {0}\{k} ;∑

i∈N

wiC
′
i(x, y) if z0(x, y)=1 and zi(x, y)=0 ∀i∈N .

This leads to the following linear constraints:

S̃′′(x, y) ≤
∑

i∈N

wiC
′
i(x, y) ∀x �= y ∈ X ;

S̃′′(x, y) ≤ −(α′
i(x, y)− β′

i(x, y)) ∀x �= y ∈ X, ∀i ∈ N ;
∑

i∈N

wiC
′
i(x, y) ≤ 2(1− z0(x, y)) + S̃′′(x, y) ∀x �= y ∈ X ;

−(α′
i(x, y)− β′

i(x, y)) ≤ 2(1− zi(x, y)) + S̃′′(x, y) ∀x �= y ∈ X, ∀i ∈ N ;
n∑

i=0

zi(x, y) = 1 ∀x �= y ∈ X.

(12)

Due to the last condition of Constraints (12), there exists a unique k ∈ N ∪ {0}
s.t. zk = 1 and zi = 0 for i ∈ N ∪{0}\{k}. Besides, if

∑

i∈N

wiC
′
i(x, y) < −Vi(x, y)

holds for all i ∈ N , then zi(x, y) = 0 for all i ∈ N and z0(x, y) = 1 (which implies
that S̃′′(x, y) =

∑

i∈N

wiC
′
i(x, y)). Furthermore, if ∃k ∈ N ∪ {0} s.t. −Vk(x, y) <

∑

i∈N

wiC
′
i(x, y) and −Vk(x, y) < −Vi(x, y) (∀i ∈ N \ {k}), then zk(x, y) = 1

(which implies that S̃′′(x, y) = −Vk(x, y)).
Constraints (12) only represent Formula (10) if all criteria have strictly posi-

tive weights. Note also that the first and the third condition of Constraints (12)
can easily be linearised as in Section 3.

These considerations lead to the formulation of the mixed integer program
MIP3, whose objective is to minimise a non-negative variable ε representing
the maximal gap between S̃′′(x, y) and

∑

i∈N

wiC
′
i(x, y), for all x �= y ∈ X where

the bipolar-valued outranking relation requires no veto. As S̃′′(x, y) equals −1
or 0 in veto situations, no gap is considered on these values. Remember that all
the weights are supposed to be strictly positive.
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MIP3:

Variables:
ε ≥ 0
gi(x) ∈ [0, 1] ∀i ∈ N, ∀x ∈ X
wi ∈]0, 1] ∀i ∈ N
αi(x, y) ∈ {0, 1} ∀i ∈ N, ∀x 	= y ∈ X
βi(x, y) ∈ {0, 1} ∀i ∈ N, ∀x 	= y ∈ X
α′

i(x, y) ∈ {0, 1} ∀i ∈ N, ∀x 	= y ∈ X
β′

i(x, y) ∈ {0, 1} ∀i ∈ N, ∀x 	= y ∈ X
w′′

i (x, y) ∈ [−1, 1] ∀i ∈ N, ∀x 	= y ∈ X
zi(x, y) ∈ {0, 1} ∀i ∈ N ∪ {0}, ∀x 	= y ∈ X

Parameters:
q ∈]0, p[
p ∈]q, 1[
wv ∈]p, 1[
v ∈]wv, 1[

S̃′′(x, y) ∈ [0, 1] ∀x 	= y ∈ X
δ ∈]0, q[

Objective function:
min ε

Constraints:

s.t.
n∑

i=1
wi = 1

−wi ≤ w′′
i (x, y) ∀x 	= y ∈ X, ∀i ∈ N

w′′
i (x, y) ≤ wi ∀x 	= y ∈ X, ∀i ∈ N

wi + αi(x, y) − βi(x, y) − 1 ≤ w′′
i (x, y) ∀x 	= y ∈ X, ∀i ∈ N

w′′
i (x, y) ≤ −wi + αi(x, y) − βi(x, y) + 1 ∀x 	= y ∈ X, ∀i ∈ N

−[αi(x, y) + βi(x, y)] ≤ w′′
i (x, y) ∀x 	= y ∈ X, ∀i ∈ N

w′′
i (x, y) ≤ αi(x, y) + βi(x, y) ∀x 	= y ∈ X, ∀i ∈ N

S̃′′(x, y) − ε ≤
∑

i∈N

w′′
i ∀x 	= y ∈ X

S̃′′(x, y) ≤ −(α′
i(x, y) − β′

i(x, y)) ∀x 	= y ∈ X, ∀i ∈ N
∑

i∈N

w′′
i ≤ 2(1 − z0(x, y)) + S̃′′(x, y) + ε ∀x 	= y ∈ X

−(α′
i(x, y) − β′

i(x, y)) ≤ 2(1 − zi(x, y)) + S̃′′(x, y) ∀x 	= y ∈ X, ∀i ∈ N
n∑

i=0
zi(x, y) = 1 ∀x 	= y ∈ X

(−1 + q)(1 − αi(x, y)) + δ ≤ gi(x) − gi(y) + q ∀x 	= y ∈ X, ∀i ∈ N (c)
gi(x) − gi(y) + q ≤ (1 + q)αi(x, y) ∀x 	= y ∈ X, ∀i ∈ N
(−1 + p)βi(x, y) + δ ≤ gi(x) − gi(y) + p ∀x 	= y ∈ X, ∀i ∈ N
gi(x) − gi(y) + p ≤ (1 + p)(1 − βi(x, y)) ∀x 	= y ∈ X, ∀i ∈ N
(−1 + wv)(1 − β′

i(x, y)) + δ ≤ gi(x) − gi(y) + wv ∀x 	= y ∈ X, ∀i ∈ N
gi(x) − gi(y) + wv ≤ (1 + wv)β′

i(x, y) ∀x 	= y ∈ X, ∀i ∈ N
(−1 + v)α′

i(x, y) + δ ≤ gi(x) − gi(y) + v ∀x 	= y ∈ X, ∀i ∈ N
gi(x) − gi(y) + v ≤ (1 + v)(1 − α′

i(x, y)) ∀x 	= y ∈ X, ∀i ∈ N
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4.1 Example

Let us consider the bipolar-valued outranking relation S̃ on X = {a, b, c} of
Table 1 and fix q = 0.1, p = 0.2, wv = 0.6 and v = 0.8. Let us first try to
represent S̃ by model M2. For n = 4, the value of the objective function for
the optimal solution of MIP2 equals 0.593. The weights w3 and w4 equal 0.
Table 2 summarises the outranking relation associated with its optimal solution
determined by solving MIP2 for n = 4. One can easily check that S̃ and S̃∗ differ
by at most 0.593. This shows that this outranking relation is not representable
by M2 and at most 4 criteria. We therefore switch to the more general model
M3 with two preference and two veto thresholds.

For n = 4 the value of the objective function for the optimal solution of MIP3
equals 0. This means that S̃ can be built from a performance table with 4 criteria
viaM3, given the above thresholds. For lower values of n, the objective function
for the optimal solution is strictly positive. Table 3 shows the performances of
the three alternatives and the weights which allow to construct S̃ via modelM3.
A veto situation occurs between a and c on criterion g4 (S̃(c, a) = −1).

Table 1. Given S̃

S̃ a b c

a · 0.258 -0.186
b 0.334 · 0.556
c -1.000 0.036 ·

Table 2. Approximative outranking relation S̃∗

via MIP1bis for n = 4

S̃∗ a b c g1 g2

a · 0.407 0.407 0.280 0.000
b 0.296 · 1.000 0.090 1.000
c -0.407 0.407 · 0.000 0.200

wi 0.704 0.296

Table 3. Performances and weights to construct S̃ via model M3

g1 g2 g3 g4

a 0.000 0.000 0.000 1.000
b 0.400 0.100 0.090 0.590
c 0.200 0.290 0.000 0.000

wi 0.149 0.444 0.074 0.333
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Gestion (1985)



A Performance Study of Task Scheduling

Heuristics in HC Environment

Ehsan Ullah Munir, Jianzhong Li, Shengfei Shi,
Zhaonian Zou, and Qaisar Rasool

School of Computer Science and Technology, Harbin Institute of Technology,
Harbin 150001, China

ehsanmunnir@gmail.com, lijzh@hit.edu.cn, shengfei@hit.ed.cn,
zouzhaonian@gmail.com, qrasool@yahoo.com

Abstract. Heterogeneous computing (HC) environment consists of dif-
ferent resources connected with high-speed links to provide a variety
of computational capabilities for computing-intensive applications hav-
ing multifarious computational requirements. The problem of optimal
assignment of tasks to machines in HC environment is proven to be NP-
complete requiring use of heuristics to find the near optimal solution. In
this work we conduct a performance study of task scheduling heuristics
in HC environment. Overall we have implemented 16 heuristics, among
them 7 are proposed in this paper. Based on experimental results we
specify the circumstances under which one heuristic will outperform the
others.

Keywords: Heterogeneous computing, Task scheduling, Performance
evaluation, Task Partitioning heuristic.

1 Introduction

Heterogeneous computing (HC) environment consists of different resources con-
nected with high-speed links to provide a variety of computational capabilities
for computing-intensive applications having multifarious computational require-
ments [1]. In HC environment an application is decomposed into various tasks
and each task is assigned to one of the machines, which is best suited for its
execution to minimize the total execution time. Therefore, an efficient assign-
ment scheme responsible for allocating the application tasks to the machines
is needed; formally this problem is named task scheduling [2]. Developing such
strategies is an important area of research and it has gained a lot of interest
from researchers [3, 4]. The problem of task scheduling has gained tremendous
attention and has been extensively studied in other areas such as computational
grids [5] and parallel programs [6].

The problem of an optimal assignment of tasks to machines is proven to be
NP-complete requiring use of heuristics to find the near-optimal solution [7].
Plethora of heuristics has been proposed for assignment of tasks to machines in
HC environment [7, 8, 9]. Each heuristic has different underlying assumptions to

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 214–223, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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produce near optimal solution however no work reports which heuristic should
be used for a given set of tasks to be executed on different machines.

Provided with a set of tasks {t1, t2, ..., tm}, a set of machines {m1,m2, ...,mn}
and expected time to compute of each task t on each machine mj , ETC (ti,mj),
(1 ≤ i ≤ m, 1 ≤ j ≤ n), in the current study we find out the task assignment
strategy that gives the minimum makespan.

For task selection in heterogeneous environment different criteria can be used,
e.g. minimum, maximum or average of expected execution time across all ma-
chines. In current work we propose a new heuristic based on task partitioning,
which consider minimum (min), maximum (max), average (avg), median (med)
and standard deviation (std) of expected execution time of task on different ma-
chines as selection criteria. We call each selection criterion a key. Each heuristic
uses only one key. Scheduling process for the proposed heuristics works like this;
all the tasks are sorted in decreasing order of their key, then these tasks are par-
titioned into k segments and after this scheduling is performed in each segment.

A large number of experiments were conducted on synthetic datasets; Co-
efficient of Variation (COV) based method was used for generating synthetic
datasets, which provides greater control over spread of heterogeneity [10]. A
comparison among existing heuristics is conducted and new heuristics are pro-
posed. Extensive simulation results illustrate the circumstances when one heuris-
tic would outperform other heuristics in terms of average makespan. This work
is intended to establish basis for selecting a heuristic for any given ETC.

2 Related Work

Many heuristics have been developed for task scheduling in heterogeneous com-
puting environments. Min-min [11] gives the highest priority to the task for
scheduling, which can be completed earliest. The idea behind Min-min heuris-
tic is to finish each task as early as possible and hence, it schedules the tasks
with the selection criterion of minimum earliest completion time. Max-min [11]
heuristic is very similar to the Min-min, which gives the highest priority to the
task with the maximum earliest completion time for scheduling. The idea behind
Max-min is that overlapping long running tasks with short-running ones. The
Heaviest Task First (HTF) heuristic [12] computes each tasks minimum execu-
tion time on all machines and the task with the maximum execution time is
selected. The selected task is the heaviest task among all tasks (note that the
Max-Min algorithm selects the task with the latest minimum completion time,
which may not be the heaviest one). Then this heaviest task is assigned to the ma-
chine on which this task has minimum completion time. Eight dynamic mapping
heuristics are given and compared in [3], however the problem domain considered
there involves priorities and multiple deadlines. In Segmented Min-min heuristic
[8] the tasks are divided into four groups based on their minimum, maximum
or average expected execution time, and then Min-min is applied on each group
for scheduling. In [1] the comparison of eleven heuristics is given and the Min-min
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heuristic is declared the best among all the other heuristics considered based on
makespan criterion. Minimum standard deviation first heuristics is proposed in
[13] where the task having the minimum standard deviation is scheduled first.

Current research is different from the related work as different keys are used
here as a selection criterion suiting the ETC type. Moreover for any given ETC
we provide the near optimal solution by using the heuristic best suited for a
specific ETC type.

3 Problem Definition

Let T = {t1, t2, ..., tm} be a set of tasks, M = {m1,m2, ...,mn} be a set of
machines, and the expected time to compute (ETC) is a m×n matrix where the
element ETCij represents the expected execution time of task ti on machine mj .
For clarity, we denote ETCij by ETC (ti,mj) in the rest of the paper. Machine
availability time, MAT (mj), is the earliest time machine mj can complete the
execution of all the tasks that have previously been assigned to it (based on the
ETC entries for those tasks). The completion time (CT) of task ti on machine
is equal to the execution time of ti on plus the machine availability time of mj

i.e.

CT (ti,mj) = ETC (ti,mj) +MAT (mj)

Makespan (MS) is equal to the maximum value of the completion time of all
tasks i.e.

MS = maxMAT (mj) for (1 ≤ j ≤ n)

Provided with T, M and ETC our objective is to find the task assignment strat-
egy that minimizes makespan.

4 Task Partitioning Heuristic

In heterogeneous environment for task selection different criteria can be used,
examples are minimum, maximum or average of expected execution time across
all machines. In task partitioning heuristic we use minimum (min), maximum
(max), average (avg), median (med) and standard deviation (std) of expected
execution time of task on different machines as selection criteria; hereafter re-
ferred to as key. Given a set of tasks T = {t1, t2, ..., tm}, a set of machines
M = {m1,m2, ...,mn}, expected time to compute (ETC) matrix then the work-
ing of proposed heuristic can be explained as follows: we compute the sorting
key for each task (for each heuristic only one key will be used for sorting), then
we sort the tasks in decreasing order of their sorting key. Next the tasks are
partitioned into k disjoint equal sized groups. At the end, tasks are scheduled in
each group gx using the following procedure:
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Procedure1
a) for each task ti in a group gx find machine mj which completes the task at earliest.
b) machine mj is available i.e. no task is assigned to machine then assign task to machine
and remove it from list of tasks.
c) If there is already task tk assigned to machine mj i.e. machine is not available then
compute the difference between the minimum earliest completion time and the second
smallest earliest completion time on all machines for ti and tk respectively.
1) If the difference value for ti is larger than that of tk then ti is assigned to machine mj .
2) If the difference value for ti is less than that of tk, then no changes to the assignment.
3) If the differences are equal, we compute the difference between the minimum earliest
completion time and the third smallest earliest completion time for ti and tk respectively.
And repeat 1-3. Every time if step 3 is selected, the difference between the minimum
earliest completion time and the next earliest completion time (e.g. the fourth, the fifth)
for ti and tk are computed respectively. If all the differences are the same then the task
is selected deterministically i.e. the oldest task is chosen.

Now the proposed Task partitioning algorithm can be summed up in the
following steps:

Task Partitioning Heuristic
1) Compute the sorting key for each task:
Sub-policy1 (avg): Compute the average value of each row in ETC matrix
keyi =

∑

j

ETC (ti,mj) /n.

Sub-policy2 (min): Compute the minimum value of each row in ETC matrix
keyi = min

j
ETC (ti,mj) .

Sub-policy3 (max): Compute the maximum value of each row in ETC matrix
keyi = max

j
ETC (ti,mj) .

Sub-policy4 (med): Compute the median value of each row in ETC matrix
keyi = med

j
ETC (ti,mj) .

Sub-policy5 (std): Compute the standard deviation value of each row in ETC matrix
keyi = std

j
ETC (ti,mj) .

2) Sort the tasks in decreasing order of their sorting key (for each heuristic only one key will be
used for sorting). 3) Partition the tasks evenly into k segments.
4) Apply the Procedure1 for scheduling each segment.

Table 1. Summary of compared heuristics

No Name Reference No Name Reference

H1 TPAvg New H9 Smm-avg [8]

H2 TPMin New H10 Smm-min [8]

H3 TPMax New H11 Smm-max [8]

H4 TPMed New H12 Smm-med New

H5 TPStd New H13 Smm-std New

H6 Min-min [11] H14 MCT [7]

H7 Max-min [11] H15 minSD [13]

H8 Sufferage [7] H16 HTF [12]
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4.1 Heuristics Notation

In task partitioning heuristic tasks are sorted based on average, minimum, max-
imum, median and standard deviation, and each heuristic is named as TPAvg,
TPMin, TPMax, TPMed and TPStd. The algorithms Segmented min-min (med)
and Segmented min-min (std) are also implemented for the evaluation purpose.
The naming conventions and source information for all existing and proposed
heuristics are detailed in Table 1.

5 Experimental Results and Analysis

5.1 Dataset

In the experiments, COV based ETC generation method is used to simulate
different HC environments by changing the parameters μtask, Vtask and Vmachine,
which represent the mean task execution time, the task heterogeneity, and the
machine heterogeneity, respectively. The COV based method provides greater
control over the spread of the execution time values than the common range-
based method used previously [1].

The COV-based ETC generation method works as follows [10]: First, a task
vector, q, of expected execution times with the desired task heterogeneity is
generated following gamma distribution with mean μtask and standard deviation
μtask ∗ Vtask. The input parameter is used to set the average of the values in q.
The input parameter μtask is the desired coefficient of variation of the values in
q. The value of Vtask quantifies task heterogeneity, and is larger for high task
heterogeneity. Each element of the task vector q is then used to produce one row
of the ETC matrix following gamma distribution with mean q[i] and standard
deviation q[i]∗Vmachine such that the desired coefficient of variation of values in
each row is Vmachine, another input parameter. The value of Vmachine quantifies
machine heterogeneity, and is larger for high machine heterogeneity.

5.2 Comparative Performance Evaluation

The performance of the heuristic algorithm is evaluated by the average makespan
of 1000 results on 1000 ETCs generated by the same parameters. In all the
experiments, the size of ETCs is 512 × 16, the value of k = 3 (i.e. tasks are
partitioned into 3 segments) the mean of task execution time μtask is 1000, and
the task COV Vtask is in [0.1, 2] while the machine COV Vmachine is in [0.1, 1.1].

The motivation behind choosing such heterogeneous ranges is that in real sit-
uation there is more variability across execution times for different tasks on a
given machine than the execution time for a single task across different machines.
The range bar for the average makespan of each heuristic shows a 95% confi-
dence interval for the corresponding average makespan. This interval represents
the likelihood that makespans of task assignment for that type of heuristic fall
within the specified range. That is, if another ETC matrix (of the same type)
is generated, and the specified heuristic generates a task assignment, then the
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makespan of the task assignment would be within the given interval with 95%
certainty. In our experiments we have also considered two metrics in comparison
of heuristics. Such metrics have also been considered by [9]

• The number of best solutions (denoted by NB) is the number of times a
particular method was the only one that produced the shortest makespan.

• The number of best solutions equal with another method (denoted by NEB),
which counts those cases where a particular method produced the shortest
makespan but at least one other method also achieved the same makespan.
NEB is the complement to NB.

The proposed heuristics are compared with 11 existing heuristics. Experiments
are performed with different ranges of task and machine heterogeneity. In the

Table 2. NB and NEB values table when fix Vtask = 2

COV of

machines

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

0.1 NB 86 197 169 78 245 0 0 96 0 0 0 0 0 0 0 4

NEB 97 27 48 92 29 0 2 18 0 0 0 0 0 0 0 2

0.3 NB 101 252 112 132 90 0 0 213 0 1 0 0 0 0 0 0

NEB 62 54 48 62 52 0 1 49 0 0 0 0 0 0 0 4

0.5 NB 101 352 98 106 65 0 0 92 0 1 1 1 1 0 0 19

NEB 105 84 104 103 99 0 1 90 1 0 1 1 0 0 0 10

0.7 NB 82 350 62 89 47 0 0 45 1 2 4 1 2 0 0 146

NEB 100 59 98 96 99 0 2 89 0 0 2 1 1 0 0 32

0.9 NB 60 199 43 62 44 0 0 11 5 2 2 4 0 0 0 381
NEB 103 78 115 103 110 0 14 94 1 0 2 0 1 2 0 90

1.1 NB 17 69 22 21 16 0 0 9 0 1 0 3 1 0 0 575
NEB 167 156 160 163 160 0 47 156 1 0 3 1 2 5 0 202

(a)    (b)    (c) 

  (d)        (e)                   (f) 

Fig. 1. Average makespan of the heuristics when Vtask = 2 and Vmachine = (a) 0.1;
(b) 0.3; (c) 0.5; (d) 0.7; (e) 0.9; (f) 1.1

first experiment we have fixed the value of Vtask = 2 while increasing the value
of Vmachine from 0.1 to 1.1 with a step size of 0.2. The results of NB and NEB
are shown in the Table 2 (best values shown in bold). From the values we can
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see that for high values of Vmachine H16 performs better. And in all other cases
one of the proposed heuristic H2 or H5 outperforms all other heuristics. Fig. 1
gives the comparison of average makespan of the all heuristics considered.

Secondly, we have fixed the value of Vtask = 1.1 and increased the value of
Vmachine from 0.1 to 1.1 with increment of 0.2 in each step. The results of NB
and NEB are shown in the Table 3 which confirm that in all the cases one of
the proposed heuristic H2 or H5 is best. Fig. 2 gives the comparison of average
makespan of all the heuristics considered.

Table 3. NB and NEB values table when fix Vtask = 1.1

COV of

machines

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

0.1 NB 141 159 150 150 372 0 0 0 0 0 0 0 0 0 0 0

NEB 24 2 5 21 6 0 0 0 0 0 0 0 0 0 0 0

0.3 NB 139 284 199 161 211 0 0 0 0 0 0 0 0 0 0 0

NEB 2 4 2 3 1 0 0 0 0 0 0 0 0 0 0 0

0.5 NB 129 445 154 127 142 0 0 0 0 0 0 0 0 0 0 0

NEB 1 2 2 0 1 0 0 0 0 0 0 0 0 0 0 0

0.7 NB 84 613 97 82 102 0 0 0 3 10 1 2 0 0 0 0

NEB 3 2 4 3 1 0 0 0 0 0 0 0 0 0 0 0

0.9 NB 78 586 80 63 91 0 0 0 8 59 5 14 1 0 0 2

NEB 6 8 6 7 4 0 0 1 0 2 0 0 0 0 0 1

1.1 NB 66 505 76 73 63 0 0 1 28 24 4 24 4 0 0 92

NEB 20 24 17 16 14 0 0 10 3 0 1 1 1 0 0 11

 (a)     (b)      (c) 

(d)    (e)    (f) 

Fig. 2. Average makespan of the heuristics when Vtask = 1.1 and Vmachine = (a) 0.1;
(b) 0.3; (c) 0.5; (d) 0.7; (e) 0.9; (f) 1.1

In the third experiment Vtask is fixed to 0.6 and value of Vmachine is increased
from 0.1 to 1.1 with step size of 0.2. As shown in the Table 4, proposed heuristic
H5 outperforms all other heuristics in every case. Fig. 3 gives the comparison of
average makespan of all the heuristics. The results for fixing Vtask = 0.1 are same
with Vtask = 0.6 and hence not shown due to space limitations. From these exper-
iments we conclude that in most of circumstances one of the proposed heuristics
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Table 4. NB and NEB values table when fix Vtask = 0.6

COV of

machines

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

0.1 NB 81 80 78 79 682 0 0 0 0 0 0 0 0 0 0 0

NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.3 NB 73 42 143 76 663 0 0 0 0 0 0 0 0 0 0 0

NEB 1 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0

0.5 NB 84 20 254 118 520 0 0 0 0 0 0 0 0 0 0 0

NEB 3 0 2 0 3 0 0 0 0 0 0 0 0 0 0 0

0.7 NB 127 13 285 130 441 0 0 0 0 0 0 0 0 0 0 0

NEB 2 0 3 1 2 0 0 0 0 0 0 0 0 0 0 0

0.9 NB 150 33 313 144 354 0 0 0 0 0 0 0 0 0 0 0

NEB 2 0 2 4 4 0 0 0 0 0 0 0 0 0 0 0

1.1 NB 138 124 245 158 313 0 0 0 0 6 0 0 0 0 0 1

NEB 4 9 5 8 5 0 0 0 0 1 0 0 0 0 0 0

(a) (b) (c)

(d) (e) (f)

Fig. 3. Average makespan of the heuristics when Vtask = 0.6 and Vmachine = (a) 0.1;
(b) 0.3; (c) 0.5; (d) 0.7; (e) 0.9; (f) 1.1

H2 or H5 outperforms the existing heuristics in terms of average makespan. In
the remaining cases H16 performs better.

5.3 Algorithm to Find Best Heuristic

Based on the values of Vtask and Vmachine we divide ETC into three different
regions. If the values of Vtask and are high (here Vtast = 2 and 0.9 ≤ Vmachine ≤
1.1) then ETC falls in the region 1, if either of them is medium (here Vmask = 1.1
or 0.3 ≤ Vmachine ≤ 0.7) then it falls in region 2 and if either of them is low
(here 0.1 ≤ Vmachine ≤ 0.6 or 0.1 ≤ Vmachine ≤ 0.2) then it falls in region 3. Fig.
4 shows the three regions and best heuristic for each region.

The procedure for finding a best heuristic is given below in algorithm Best
Heuristic, which suggests the best heuristic depending on ETC type.
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COV of Machines

0.1 0.3 0.5 0.7 0.9 1.1

2 H5 H2 H2 H2 H16 H16

1.1 H5 H2 H2 H2 H2 H2

0.6 H5 H5 H5 H5 H5 H5

Cov of

Tasks

0.1 H5 H5 H5 H5 H5 H5

Region 2
Region 3

Region 1

Fig. 4. Division of ETC in different regions

Best Heuristic

Input: expected time to compute matrix (ETC)
Output: best heuristic
Compute the Vmask and Vmachine

if Vmask is high and Vmachine is high then
ETC belongs to region1
if Vmask is medium or Vmachine is medium then
ETC belongs to region2
if Vmask is low or Vmachine is low then
ETC belongs to region3
end if
switch(region)
case region1: return H16
case region2: return H2
case region3: return H5
end switch

6 Conclusions

Optimal assignment of tasks to machines in a HC environment has been proven to
be a NP-complete problem. It requires the use of efficient heuristics to find near
optimal solutions. In this paper, we have proposed, analyzed and implemented
seven new heuristics. A comparison of the proposed heuristics with the existing
heuristics was also performed in order to identify the circumstances in which one
heuristic outperforms the others. The experimental results demonstrate that in
most of the circumstances one of the proposed heuristics H2 or H5 outperforms
all the existing heuristics. Based on these experimental results, we are also able to
suggest, given an ETC, which heuristic should be used to achieve the minimum
makespan.
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Abstract. In this communication, we use the strong stability method
to approximate the characteristics of the M2/G/1 queue with preemp-
tive resume priority by those of the M/G/1 one. For this, we first prove
the stability fact and next obtain quantitative stability estimates with
an exact computation of constants.

Keywords: Strong stability, Approximation, Preemptive priority,
Markov chain.

1 Introduction

Queueing phenomena occur in several real situations when resources can not
immediately render the current or the kind of service required by their users.
The theory of queues is particulary well adapted to the study of the performance
of computer systems and communication networks. Such systems often trait
classes of request of different priorities. Nowadays, the introduction of priorities
in such systems is frequent and often motivated by the need to increase their
performance and quality of service. A complete presentation of the area was
the subject of monographs of N.K.Jaiswal [7] or of B.V.Gneedenko and al [5].
Nevertheless, these non markovien systems are complex then difficult to study
and their characteristic are obtained in a very complicated way of the parameters
of the system [7].

In addition, the including some complex systems in queueing networks, dos
not allow the use of the existing queueing networks models (with product form
solutions). This why it is interesting to study the proximity of characteristics
of some complex systems by those of the simpler and more exploitable one.
The purpose of this paper is to obtain the conditions and estimations of strong
stability of an imbedded Markov chain in an M2/G/1 system with a preemptive
priority. This is to approximate this system by the M/G/1 model. Indeed, the
characteristic of the queue M/G/1 are obtained in an explicit form and this last
allows the use of the product form solutions.

In the stability theory, we establish the domain within a model may be used
as a good approximation or idealization to the real system under considera-
tion. The stability methods allow to investigate qualitative proprieties of the

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 224–233, 2008.
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system, in particular its robustness. In addition, using these approach, bounds
can be obtained in an explicit form and approximations can be made rigourously
[13]. Indeed, measure of robustness of the system also need to be evaluated in
comparison to the often studied measures of performance and efficiency [11]. The
first results on the stability have been obtained by Rosseberg [12], Gnedenko
[5], Franken [4] and Kennedy [10]. Afterwards, several papers have considered
various situations and various approaches. Stoyen proposed the weak conver-
gence method [13] used to investigate proprieties of stability of homogeneous
Markov processus. Kalashinkov and Tsitsiashvili proposed the method of test
functions [8] which consist in constructing a test function allowing to compare
the behavior of the perturbed system (real model) with the non-perturbed sys-
tem (ideal model). Borovkov proposed the renewal method [3] whose advantage
comes from the fact that it allows to obtain theorems of ergodicity and stability
with minimal conditions. Zolotariev and Rachev proposed the metric method
[14] , [11]. Ipsen and Meyer proposed the uniform stability method [6] whose
aim to analyze the sensitivity of individual stationary probabilities to pertur-
bations in the transition probabilities of finite irreductible Markov chains. Kar-
tashov and Aı̈ssani proposed the strong stability method [1]. In contrast to other
methods, this technique suppose that the perturbations of the transition kernel
(associated to the Markov chain describing the system) is small with respect
to a certain norm. Such strict conditions allows us to obtain better estimations
on the characteristics of the perturbed chain. This article is strutted as follow.
In the section 2, we clarify the Markov chains and their transition operation
describing the system and the basic theorems of the strong stability method. In
the section 3, we prove the strong stability in an M/G/1 queue. On other words
we clarify the condition under which the M/G/1 system can be approximate the
M2/G/1 system with priority. The section 4 gives the error of approximation on
the stationary distribution of the number of request when the intensity of the
flux is sufficing small.

2 Description of the Systems

Let us consider a queueing system M2/G/1 with preemptive priority. Priority
and non priority request arrive at service mechanism in poisson streams with
mean rates λ1 and λ2 respectively. The service of priority and non-priority re-
quest are distributed with probability density b(t). The service of a non-priority
request may be interrupted by the arrival of a priority request. When the later
completes its service, the interrupted begin again its service if no priority request
are waiting. The service time of the non priority request up to the interruption
is distributed with probability density b∗(t). The state of the M2/G/1 queueing
system with preemptive priority at time t can be described by using the method
of imbedded Markov chain, for this we define:

X i
n+1: the number of priority request(respectively non-priority request) in the

system at instant tn+1.
If X1

n �= 0 : tn+1 is the instant of ”end of service” of priority request.
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If X1
n = 0: tn+1 is the instant of end of service of non-priority request” or ”instant

of interruption of priority request”
Ai

n+1, i = 1, 2: is a random variable that represents the number of the priority
(respectively non priority) request arriving during the (n+ 1)th service.
- If tn+1is the instant of the end of service of priority (respectively non priority)
request, the distribution of Ai

n+1, i = 1, 2 is:

ai
k = P (Ai

n+1 = k) =
∫∞
0

(λit)
k

k! e−λitb(t)dt. i = 1, 2
-If tn+1 is the instant of interruption, the distribution of A1

n+1 is:
a1

k = P (A1
n+1 = 1) =

∫∞
0 λ1t e

−λ1tb∗(t)dt.
The random variables A1

n+1, A
2
n+1 are independent between them.

Lemma 1. The sequence (X1
n+1, X2

n+1) forms a Markov chain of transition
operator Pk,l(i, j)i,j≥0 defined by:

Pk,l(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

•
∫ ∞
0

(λ1t)i−k+1

(i−k+1)!
(λ2t)j−l

(j−l)! e−(λ1+λ2)tb(t)dt,

if k > 0, j ≥ l, l ≥ 0, i ≥ k − 1.

•
∫ ∞
0 e−λ1tb(t)dt

∫ ∞
0

(λ2t)j−l+1

(j−l+1)! e−λ2tb(t)dt

+
∫ ∞
0 (λ1t)e

−λ1tb∗(t)dt
∫ ∞
0

(λ2t)j−l

(j−l)! e−λ2tb∗(t)dt.

if j ≥ l − 1, k = 0, i = 0, l 	= 0.

• λ1
λ1+λ2

∫ ∞
0

(λ1t)i

i!
(λ2t)j

j! e−(λ1+λ2)tb(t)dt + λ2
λ1+λ2

×
×[
∫ ∞
0 e−λ1tb(t)dt

∫ ∞
0

(λ2t)j

j! e−λ2tb(t)dt

+
∫ ∞
0 (λ1t)e

−λ1tb∗(t)dt
∫ ∞
0

(λ2t)j

j! e−λ2tb∗(t)]dt,

if i ≥ 0, j ≥ 0, k = 0, l = 0.

Proof. In order to calculate Pk,l(i, j)i,j we consider the different cases:

Case 1 : X1
n �= 0, X2

n ≥ 0

In this case tn+1 is the end of service of priority request, and the sequence

(X1
n+1, X

2
n+1) is given by :

{
X1

n+1 = X1
n +A1

n+1 − 1,
X2

n+1 = X2
n +A2

n+1.
The probability of transition Pk,l(i, j) is:

Pk,l(i, j)=P (A1
n+1 = i−k+1, A2

n+1=j−l)=
∫ ∞

0

(λ1t)i−k+1

(i− k + 1)!
(λ2t)j−l

(j − l)!
e−(λ1+λ2)tb(t)dt

Case 2 : X1
n = 0, X2

n �= 0

If tn+1 is the “end of service of non-priority request”, the sequence

(X1
n+1, X

2
n+1) is given by :

{
X1

n+1 = 0,
X2

n+1 = X2
n +A2

n+1 − 1.
That explains A :“ no priority request arrives during the service of the non-

priority request”. The probability of A is : P (A) =
∫∞
0

e−λ1tb(t)dt.
If tn+1 is the “ instant of interruption of priority request”, the sequence

(X1
n+1, X

2
n+1) is given by:

{
X1

n+1 = 1,
X2

n+1 = X2
n +A2

n+1.
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That explains B : “priority request arrives during the service of non-priority
request”. The probability of B is : P (B) =

∫∞
0 (λ1t)e−λ1tb∗(t)dt. Therefore the

probability of transition Pk,l(i, j)is given by:

Pk,l(i, j) = P (A)P (X1
n+1 = 0, X2

n+1 = X2
n + A2

n+1 − 1 = j/X1
n = 0, X2

n = l)

+ P (B)P (X1
n+1 = X1

n + A1
n+1 = 1, X2

n+1 = X2
n + A2

n+1 = j/X1
n = 1, X2

n = l)

=

∫ ∞

0
e−λ1tb(t)dt

∫ ∞

0

(λ2t)
j−l+1

(j − l + 1)!
e−λ2tb(t)dt

+

∫ ∞

0
(λ1t)e

−λ1tb∗(t)dt

∫ ∞

0

(λ2t)
j−l

(j − l)!
e−λ2tb∗(t)dt.

Case 3 : X1
n = 0, X2

n = 0

We introduce two possibility according to the nature of first arrival:

∗If A
′
:” the first arriving is a priority request”: in this case tn+1 is instant of the

end of service of the priority request, at that time the (X1
n+1, X

2
n+1) is given

by:
{
X1

n+1 = An+1,
X2

n+1 = A2
n+1.

∗If B
′
:” the first arriving is a non-priority request”: in this case tn+1 is either,

” the end of service of non-priority request or instant of interruption of priority
request ”.

If tn+1 is the end of service of non-priority request, at that time the

(X1
n+1, X

2
n+1) is given by:

{
X1

n+1 = 0,
X2

n+1 = A2
n+1.

If tn+1 is instant of interruption of priority request, at that time the sequence

(X1
n+1, X

2
n+1) is given by :

{
X1

n+1 = 1,
X2

n+1 = A2
n+1.

Therefore the probability of transition Pk,l(i, j)is:

Pk,l(i, j) =
λ1

λ1 + λ2

∫ ∞

0

(λ1t)
i

i!

(λ2t)
j

j!
e

−(λ1+λ2)t
b(t)dt +

λ2

λ1 + λ2
×

×
[∫ ∞

0

e
−λ1t

b(t)dt

∫ ∞

0

(λ2t)
j

j!
e

−λ2t
b(t)dt +

∫ ∞

0

(λ1t)e
−λ1t

b
∗(t)dt

∫ ∞

0

(λ2t)
j

j!
e

−λ2t
b
∗(t)dt.

]

The probability of realization of A
′
and B

′
are respectively :

P (A
′
) = λ1

λ1+λ2
, P (B

′
) = λ2

λ1+λ2
.

We consider at the same time the M2/G/1 queueing system with preemptive
priority when λ1 = 0.

X̂1
n: the number of priority request in the system just after the end of the nth

service or just before interruption.
X̂2

n : the number of non-priority request in the system at the end of the nth

service or just before interruption.
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The transition operator P̂k,l(i, j) is given by :

P̂k,l(i, j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

•
∫ ∞
0

(λ2t)j−l

(j−l)! e−λ2tb(t)dt, ; if i = k − 1, j ≥ l, k 	= 0, l ≥ 0,

•
∫ ∞
0

(λ2t)j−l+1

(j−l+1)! e−λ2tb(t)dt, if 1 ≤ l ≤ j + 1, k = 0, i = 0, l 	= 0,

•
∫ ∞
0

(λ2t)j

j! e−λ2tb(t)dt, if i ≥ 0, j ≥ 0, k = 0, l = 0,

• 0 otherwise.

To estimate the difference between the stationary distribution of the chain Xn =
(X1

n+1, X
2
n+1) in the M2/G/1 and X̂n = (X̂1

n+1, X̂
2
n+1) in the M/G/1 system,

we apply the strong stability criterion.

3 Strong Stability in an M2/G/1 Queue with Preemptive
Priority

In this section, we determine the domain within the system M2/G/1 is strongly
v-stable after a small perturbation of the intensity of the priority flux.

Theorem 1. Let us denote β0 = sup(β : f̂(λβ − λ) < β)

• λ2 E(U) < 1

• ∃ a > 0 such as E(eaU ) =
∫∞
0

eau b(u) du <∞.

Where introduce the following condition of ergodicity, then for all β such that
1 < β ≤ a, the imbedded Markov chain X̂n = (X̂1

n, X̂2
n) is strongly stable

for the function v(i, j) = aiβj, where α = f̂(λ2β−λ2)
ρ , ρ = f̂(λ2β−λ2)

β < 1 and

f̂(λ2β − λ2) =
∞∫

0

e(λ2β−λ2)ub(u)du.

Proof. To be able to prove the v-stability of the M/G/1 queue with priority we
choose:
V (i, j) = ai × βj , α > 1, β > 1. h(k, l) = 1(k=0, l=0)

and α(i, j) = P̂0,0(0, j); where P̂0,0(0, j) =
∫∞
0

(λ2t)j

j! e−λ2tb(t)dt
We apply theorem [1]:

π̂h =
∑

k≥0

∑

l≥0

π̂k,l(i, j)hk,l = π̂0,0 = 1− λ2
μ > 0.

α1 =
∑

i≥0

∑

j≥0

α(i, j) =
∑

j≥0

∫∞
0

(λ2t)j

j! e−λ2tb(t)dt =
∫∞
0 b(t)dt = 1.

αh =
∑

k≥0

∑

l≥0

αk,lhk,l = α0,0(i, j) = P̂0,0(0, j) > 0.

Verification of a. We have two cases: k = 0, l = 0

T0,0(i, j) = P̂0,0(0, j)− 1P̂0,0(0, j) = 0 ≥ 0.
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k = 0, l �= 0, k �= 0, l = 0, k �= 0, l �= 0

Tk,l(i, j) = P̂k,l(i, j)− 0P̂0,0(0, j) = P̂k,l(i, j) ≥ 0

Verification of b. We have three cases:
1) k=0, l= 0

TV (0, 0) =
∑

i≥0

∑

j≥0

αiβjT0,0(i, j) = 0 ≤ a0β0ρ = ρ

2) k=0, l �= 0

TV (0, l) =
∑

j≥0

βj

∫ ∞

0

(λ2t)j−l+1

(j − l + 1)!
e−λ2tb(t)dt ≤ βl f̂(λ2β − λ2)

It is sufficient to verify :

βl−1f̂(λ2β − λ2) ≤ ρβl ⇐⇒ ρβ ≥ f̂(λ2β − λ2)

3) k �= 0, l �= 0

TV (k, l) =
∑

i≥0

∑

j≥0

Tk,l(i, j)v(i, j) = ak−1βj
∑

j≥l

P̂k−1,l(i, j)

= βlak−1

∫ ∞

0

∑

j≥l

(λ2tβ)j−l

(j − l)!
e−λ2tb(t)dt = βlak−1f̂(λ2β − λ2)

It is sufficient to verify:

ak−1 βl f̂(λ2α− λ2) ≤ ρ ak βl ⇐⇒ ρ a ≥ f̂(λ2β − λ2)

Therefore we must verify :
{
ρ β ≥ f̂(λ2β − λ2),
ρa ≥ f̂(λ2β − λ2)

Let us choose :

ρ =
f̂(λ2β − λ2)

β
< 1. (1)

Then for all 1 < β ≤ β0, a ≥ β, ρ < 1, We have, TV (k, l) ≤ ρ V (k, l).

Finally we verify the condition (c):

Tk,l(i, j) = P̂k,l(i, j)− h(k, l)α(k, l) =⇒ P̂k,l = Tk,l(i, j) + h(k, l)α(k, l)

=⇒ ‖P̂k,l‖v = ||Tk,l(i, j) + h(k, l)α(k, l)||v ≤ ‖Tk,l(i, j)‖v + ||h(k, l)||v ‖α(k, l)‖v

‖Tk,l(i, j)‖v =≤ sup
k≥0

sup
l≥0

1
V (k, l)

ρ V (k, l) ≤ ρ < 1
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Because ,
∑

i≥0

∑

j≥0

V (i, j)Tk,l(i, j) = ‖TV (k, l)‖v ≤ ρ V (k, l).

||h(k, l)||v = sup
k≥0

sup
l≥0

|h(k, l)|
V (k, l)

= 1

||α(k, l)||v =
∑

j≥0

a0 βj P̂0,0(0, j) =
∑

j≥0

∫ ∞

0

(λ2βt)j

j!
e−λ2t b(t) dt = f̂(λβ − λ)

Therefore,||P̂k,l|| ≤ 1 + f̂(λβ − λ) <∞.

3.1 Estimation of Stability

In order to obtain the error due to the approximation of the system M2/G/1 by
the M/G/1 one, let us estimate the norm of deviation of the transition kernel.

Estimation of Deviation of Transition Kernels
To estimate the margin between the stationary distribution of Markov chain X̂n

and Xn, first we estimate the norm of the deviation of transition kernels.

Theorem 2. For all β and α, such as 1 < β ≤ α, || $ ||v = || P − P̂ ||v ≤ D.
Such that,

D = max{K1,K2,K3} (2)

K1 =
λ1

λ1 + λ2

∫ ∞

0

e(α−1)λ1te(β−1)λ2tb(t)dt +
λ2

λ1 + λ2

∫ ∞

0

e−λ1tb(t)dt

∫ ∞

0

e(β−1)λ2tb(t)dt

+
λ2

λ1 + λ2

∫ ∞

0

λ1te
−λ1tb∗(t)dt

∫ ∞

0

e(β−1)λ2tb∗(t)dt

K2 =
1
β

∫ ∞

0

e−λ1tb(t)dt

∫ ∞

0

e(β−1)λ2tb(t)dt +
∫ ∞

0

λ1te
−λ1tb∗(t)dt

∫ ∞

0

e(β−1)λ2tb∗(t)dt

K3 =
1
α

[∫ ∞

0

e(α−1)λ1t+(β−1)λ2tb(t)dt +
∫ ∞

0

eλ2(β−1)tb(t)dt
]

We must choose smallest of the estimates obtained in {K1,K2,K3, }.
These intermediate results allow us to consider the problem of obtaining es-

timates of stability, with an exact computation of the constants. for this, we
introduce:

π(i, j): the joint stationary distribution of the process of number of request of
the priority and non-priority of the system M2/G/1.
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π̂(i, j): the joint stationary distribution of the process of the number of the
non-priority request of the system M/G/1

Generating Function
In order to estimate the norm ‖π̂‖v, necessary for the obtaining of the stability
inequalities, let us calculate the generating function Π(Z1, Z2) of π̂.

Theorem 3. Let us note Π(Z1, Z2) the generating function of the π̂(i, j)
(stationary distribution of the M/G/1 system).If the two conditions of ergod-
icity are verified:

{
λ2E(U) ≤ 1
∃ a > 0, suchthat E(eaU ) =

∫∞
0

eaub(u)du <∞.

We have the equality: Π(Z1, Z2) = (Z2−1)f̂(λ2Z2−λ2)

Z2−f̂(λ2Z2−λ2)
(1 − λ2

μ ).
Where

f̂(λ2Z2 − λ2) =
∫ ∞

0

eλ2(Z2−1)t b(t)dt. (3)

and
μ = E(u) =

∫ ∞

0

t b(t) dt. (4)

Proof. Π(Z1, Z2) =
∑

i≥0

Zi
1Π(i, Z2) = Π(0, Z2) +

∑

i≥1

Zi
1Π(i, Z2)

Where Π(i, Z2) =
∑

j≥0

π̂(i, j)Zj
2.

From the transition of the transition kernel, we have:

π̂(i, j) =
∑

k

∑

l

π̂(k, l)P̂k,l(i, j) = 1i=0 π̂(0, j)P̂0,0(0, j) + 1i=0

∑

l>0

π̂(0, l)P̂0,l(0, j)

+1j≥0

∑

k>0

{
j∑

l=0

π̂(k, l)P̂k,l}1i=k−1

For i = 0

π̂(0, j) = π̂(0, 0)
∫∞
0

(λ2t)j

j! e−λ2tb(t)dt +
j+1∑

l=1

π̂(0, l)
∫∞
0

(λ2t)j−l+1

(j−l+1)! e
−λ2tb(t)dt

+
j∑

l=0

π̂(1, l)
∫∞
0

(λ2t)j−l

(j−l)! e
−λ2tb(t)dt.

Using the method of generating functions, we obtain:

Π(1, Z2) = Π(0, Z2)
Z2 − f̂(λ2Z2 − λ2)

Z2f̂(λ2Z2 − λ2)
+

1− Z2f̂(λ2Z2 − λ2)

Z2f̂(λ2Z2 − λ2)
π̂(0, 0)

For i > 0
π̂(i, j) =

∑

l≥0

π̂(k, l)
∫∞
0

(λ2t)j−l

(j−l)! e
−λ2tb(t)dt.

And,

Π(i, Z2) = Π(i + 1, Z2)f̂(λ2Z2 − λ2) ⇐⇒ Π(i, Z2) =
Π(1, Z2)

f̂ i−1(λ2Z2 − λ2)
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If there is no priority request in the system (when θ = 0), we are in case of the
system M/G/1.

Π(0, Z2) =
(Z2 − 1)f̂(λ2Z2 − 1)

Z2 − f̂(λ2Z2 − λ2)
π̂(0, 0) (5)

This is the Pollatchek- Khinchin formula.

3.2 Inegality of Stability

In the following theorem, we calculate the error due to approximate M2/G/1
system by the M/G/1 one on the stationary distribution.

Theorem 4. Suppose that in a system M2/G/1 with preemptive priority, the
conditions of theorem (1) hold. Then, ∀β and α, 1 < β ≤ α,; we have the
estimation

‖π − π̂‖ ≤Wθ, (6)

Where,
Wθ = D(1 +W )W (1 − ρ− (1 +W )D)−1,
W = (β − 1)(1− λ2/μ) ρ

1−ρ ,
D = min{K1,K2,K3}.
and ρ, μ are respectively defined in (1),(4)

Proof. To verify the theorem (4), it is sufficient to estimate ‖π‖v and ‖1‖v, where
1 is the function identically equal to unity. ‖π̂‖v =

∑

i≥0

∑

j≥0

v(i, j)|π̂(i, j, )|, Where

v(i, j) = aiβj .
From (5), we have, ||π̂||ν = (β−1)f̂(λ2β−λ2)

β−f̂(λ2β−λ2)
(1− λ2

μ ) = W

||1||ν = sup
k≥0

sup
l≥0

1
akβl ≤ 1.

By definition, C = 1 + || I ||v|| π̂ ||v = 1 +W. And, || $ ||ν < 1−ρ
C .

Thence,
|| π − π̂ ||v = D(1 +W )W (1 − ρ− (1 +W )D)−1.

4 Conclusion

In this work, we are obtained the measurement and performance of the systems
of queues with preemptive priority. We were interested in the study of strong
stability in a system M2/G/1 with preemptive priority, after perturbation of the
intensity of the arrivals of the priority requests. We clarified the conditions of
approximation of the characteristics of the system of queue M2/G/1 with pre-
emptive priority by those corresponding to the system of queue M/G/1 classical.
The method of strong stability also makes it possible to obtain the quantitative
estimates of stability. We obtained the inequalities of stability with an exact
calculation of the constants.
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Abstract. We propose an outcome-space polyblock approximation al-
gorithm for maximizing a function f(x) = ϕ(Cx) over the efficient so-
lution set XE of the multiple objective linear programming problem
Max {Cx|x ∈ X}. The convergence of the algorithm is established. To
illustrate the new algorithm, we apply it to the solution of a sample
problem.

Keywords: Increasing function; Polyblock approximation algorithm;
Multiple objective linear programming; Optimization over the efficient
set.

1 Introduction

This paper is concerned with the problem of optimizing

max f(x), s.t. x ∈ XE , (P)

where f is a real valued function and XE is the efficient solution set of the
multiple objective linear programming problem

Max Cx, s.t. x ∈ X, (VP)

where C is a p×nmatrix and X ⊂ Rn is a nonempty compact polyhedron. Recall
that a point x0 ∈ X is called an efficient solution to problem (VP) if there is
no point x ∈ X such that Cx ≥ Cx0 and Cx �= Cx0. The efficient solution set
XE consists of some closed faces of the polyhedron X . While this set is always
pathwise connected, generally, it is not convex [7]. Therefore optimizing over the
efficient set is a hard task.

Problem (P) has many applications in decision making and have attracted a
great deal of attention from researchers (see e.g. [1], [2],[3], [4],[6], [8], [9], [10]
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and references therein). In many practical problems such functions f have been
constructed in the form depending on the criteria of Problem (VP), f(x) =
ϕ(Cx) with a function ϕ : Rp → R. Isermann and Steuer published [6] the
cutting plane algorithm solving (P ) with f(x) = −〈ci, x〉 where ci is the ith row
of C. Benson [3] has studied (P) for the case when ϕ is a linear function, i.e.
the function f(x) is linearly dependent upon the rows of C. Muu and Luc [8]
proposed inner-approximation algorithms for solving (P) with convex functions
ϕ. Kim and Muu in [10] studied the efficient set XE for Problem (VP) by using
its projection into the linear space spanned by the independent criteria and
proposed a simple algorithm for solving (P) with ϕ being a convex function.

In this paper we focused on a special class of (P) noted (P1)

maxϕ(Cx), s.t. x ∈ XE , (P1)

when ϕ is a continuous and increasing function defined on R
p
+. Note that a

function ϕ : R
p
+ → R is increasing on R

p
+ if for y′, y ∈ R

p
+ and y′ ≥ y we have

ϕ(y′) ≥ ϕ(y).
Assume throughout this paper that the nonempty compact polyhedron X is

defined by
X = {x ∈ Rn|Ax = h, x ≥ 0}, (1)

where A is a m× n matrix and h ∈ Rm, and the outcome set Y ,

Y := {y ∈ Rp | y = Cx for some x ∈ X},

is a subset of the interior of R
p
+ := {y ∈ Rp | y ≥ 0},

Y ⊂ intRp
+. (2)

From [11] and [7], Y is a nonempty, compact polyhedron and XE is nonempty.
The requirement (2) can be achieved by considering the criteria functions (Cx−
yM ) instead of Cx, where yM = (yM

1 , . . . , yM
p ) and

yM
i < y∗i = min{yi, y ∈ Y }, i = 1, . . . , p.

The outcome-space reformulation of problem (P1) is given by the maximizing
a continuous and increasing function in the outcome-space Rp,

maxϕ(y), s.t. y ∈ YE , (P2)

where YE := {y ∈ Rp | y = Cx for some x ∈ XE}. It is easily seen that if ȳ
is a solution to problem (P2) then any x̄ ∈ X such that Cx̄ = ȳ is an optimal
solution to problem (P1).

Here, we present an outcome-space polyblock approximation algorithm for
solving problem (P1). Instead of solving problem (P1), we solve problem (P2).
Fortunately, the dimension p of the outcome space is typically much smaller than
the dimension n of the decision space. Therefore, computational savings could
be obtained.

The bases of the algorithm are presented in the next section. The algorithm
and its convergence are discussed in Section 3.
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2 Bases of the Algorithm

2.1 Equivalent Form of Problem (P2)

For a given nonempty set Q ⊂ Rp, a point q0 ∈ Q is an efficient point (or
Pareto point) of Q if there is no q ∈ Q satisfying q ≥ q0 and q �= q0, i.e.
Q∩(q0 +R

p
+) = {q0}. Similarly, a point q0 ∈ Q is a weakly efficient point if there

is no q ∈ Q satisfying q % q0, i.e. Q ∩ (q0 + intRp
+) = ∅. We denote by MaxQ

and WMaxQ the set of all efficient point of Q and the set of all weakly efficient
point of Q, respectively. By the definition,

MaxQ ⊆WMaxQ.

For b ∈ R
p
+, we denote by [0, b] := {y ∈ Rp | 0 ≤ y ≤ b} the box (or the

hyper-rectangle) response to vertex b.
Consider the set N(Y ) defined by

N(Y ) :=
⋃

y∈Y

[0, y] = (Y − R
p
+) ∩R

p
+,

where Y = {y ∈ Rp | y = Cx for some x ∈ X}. It is clear that N(Y ) is a
nonempty, full-dimension bounded polyhedron in R

p
+.

Proposition 1. i) MaxN(Y ) = MaxY ;

ii) N(Y ) =
⋃

y∈MaxY

[0, y].

Proof. i) Since N(Y ) = (Y − R
p
+) ∩R

p
+, we have

Y ⊆ N(Y ) ⊆ Y − R
p
+. (3)

First, we prove that MaxY ⊆ MaxN(Y ). Let ye ∈ MaxY . From (3) it follows
that ye ∈ N(Y ). Assume on the contrary that ye �∈ MaxN(Y ). Hence, there is
ȳ ∈ N(Y ) such that ȳ > ye. Furthermore, since ȳ ∈ N(Y ) ⊆ Y − R

p
+, we have

ȳ = y0 − v, where y0 ∈ Y and v ≥ 0. Hence y0 > ye which conflicts with the
hypothesis ye ∈ MaxY . So ye ∈ MaxN(Y ).

Now, we show that MaxN(Y ) ⊆ MaxY . Let ye ∈ MaxN(Y ). To prove ye ∈
MaxY , we need to show only that ye ∈ Y , because of Y ⊂ N(Y ). Similarly to
above arguments, we have ye = y0 − v with y0 ∈ Y and v ≥ 0. This implies
that v = 0. Indeed, if v > 0, we have that y0 > ye that contradicts to the fact
ye ∈ MaxN(Y ). Thus, ye ∈ Y .

ii) By the definition of N(Y ) we have
⋃

y∈MaxY

[0, y] ⊆ N(Y ).

We need only to show that
⋃

y∈MaxY

[0, y] ⊇ N(Y ).
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As Y is compact, MaxY is nonempty ([7]). From the definition of MaxY we
can see easily that if ye ∈ MaxY , then there is no point y ∈ Y such that
[0, ye] ⊂ [0, y]. The proof is straightforward.

Proposition 2. Problem (P2) is equivalent to the problem

maxϕ(y), s.t. y ∈WMaxN(Y ). (P3)

Proof. First, we will show that Problem (P2) is equivalent to the following
problem

maxϕ(y), s.t. y ∈MaxN(Y ). (P ∗
3 )

From (i) of Proposition 1 we have MaxN(Y ) = MaxY. We need only to show
that MaxY = YE . Indeed, a point y0 ∈ MaxY if y0 ∈ Y and there is no y ∈ Y
such that y > y0. It means that there is a point x0 ∈ X such that y0 = Cx0 and
there is no x ∈ X such that y = Cx > y0 = Cx0. In other words, x0 ∈ XE , i.e.
y0 ∈ YE .

Now, by the above observation we will show that (P3) is equivalent to (P ∗
3 ).

As MaxN(Y ) ⊆ WMaxN(Y ), we need only to prove that if y0 is an optimal
solution of (P3), then y0 ∈ MaxN(Y ). Assume on the contrary that y0 ∈
WMaxN(Y ) \ MaxN(Y ). Consider the cone y0 + R

p
+. By definition and the

pathwise connectedness of the weakly efficient point set WMaxN(Y ), there is
ye ∈ MaxN(Y ) such that

ye = y0 + tei0 for some i0 ∈ {1, . . . , p} and t ≥ 0.

As ye ≥ y0, we have ϕ(ye) ≥ ϕ(y0), since the function ϕ is increasing. This
contradicts the fact that y0 is an optimal solution of (P3).

Next, we present some estimations which serve as a basis of the procedure in
our algorithm to solve the problem (P3).

For i = 1, . . . , p we denote Fi := {y ∈ N(Y )|yi = 0}. Obviously, the sets Fi

are (p − 1)-dimensional faces of N(Y ). Recall that WMaxN(Y ) is a union of
some closed faces of N(Y ). Since 0 ∈ Fi and 0 �∈WMaxN(Y ), we have that

riFi ∩WMaxN(Y ) = ∅, i = 1, . . . , p.

The boundary ∂N(Y ) of N(Y ) can be described as follows.

Proposition 3

∂N(Y ) = (
p⋃

i=1

Fi) ∪WMaxN(Y ).

Proof. Observe first that

(
p⋃

i=1

Fi) ∪WMaxN(Y ) ⊆ ∂N(Y ).
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From this we need to show only that if a point y∗ ∈ ∂N(Y ) \ (∪p
i=1Fi), then

y∗ ∈ WMaxN(Y ). Given a point y∗ belonging to ∂N(Y ) \ (∪p
i=1Fi). Then, y∗

is contained in a face F of N(Y ). Note that a subset F ⊂ N(Y ) is a face if
there is a vector v ∈ Rp such that F is the optimal solution set of the linear
programming problem

max〈v, y〉, s.t. y ∈ N(Y ).

Since Y ⊂ intRp
+, N(Y ) = (Y − R

p
+) ∩ R

p
+ and F �= Fi for all i = 1, . . . , p, we

have v ∈ Rp, v ≥ 0 and v �= 0. It is well known (see for instance Theorem 2.5,
Chapter 4 of [7]) that y0 ∈ N(Y ) is a weakly efficient point if and only if there
is a nonzero vector λ ≥ 0 such that y0 is a maximum point of the function 〈λ, y〉
over N(Y ). Therefore, y∗ ∈WMaxY .

The following corollary is immediate from Proposition 3.

Corollary 1. Suppose y∗ > 0 and y∗ �∈ N(Y ). The segment {μy∗|0 ≤ μ ≤ 1}
contains a unique point on the WMaxN(Y ).

Let b := (b1, . . . , bp) where bi := max{yi : y ∈ Y }, i = 1, . . . , p. We have N(Y ) ⊆
[0, b]. The next fact will play an important role in our algorithm.

Proposition 4. For any v ∈ [0, b] \N(Y ) the segment {μv|0 ≤ μ ≤ 1} contains
a unique point on the MaxN(Y ).

Proof. By Corollary 1, let yv be the unique weakly efficient point of N(Y ) on
the segment {μv|0 ≤ μ ≤ 1}. Assume the contrary that

yv ∈WMaxN(Y ) \MaxN(Y ).

This implies that there is i0 ∈ {1, · · · , p} such that yv
i0

= bi0 = max{yi0 | y ∈ Y }.
Since v ∈ [0, b] \N(Y ), we always have v = λyv with λ > 1. Hence,

vi0 = λyv
i0 = λbi0 > bi0 .

This is impossible, because bi0 ≥ vi0 for all v ∈ [0, b].

2.2 Polyblock Approximation

A set of the form Q =
⋃

v∈V [0, y] with |V | < +∞ is called a polyblock with vertex
set V . A vertex v ∈ V is said to be proper if there is no v′ ∈ V \ {v} such that
[0, v] ⊂ [0, v′].

Proposition 5. The maximum of an increasing function ϕ(y) over a polyblock
Q is attained at a proper vertex of Q.

Proof. For any y ∈ Q, there is a proper vertex v of Q such that y ∈ [0, v], i.e.
y ≤ v, and therefore ϕ(y) ≤ ϕ(v). Since the element number of V is finite, we
have

v0 = argmax{ϕ(v), v ∈ V } = argmax{ϕ(y), y ∈ Q}.
This proves the proposition.
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Let Q1 = [0, b] ⊂ Rp where b := (b1, . . . , bp) with

bi := max{yi : y ∈ Y }, i = 1, . . . , p.

We haveN(Y ) ⊆ [0, b]. Starting with the box Q1, the polyblock approximation
algorithm will iteratively generate a sequence of polyblocks Qk, k = 1, 2, . . ., such
that

Q1 ⊃ Q2 ⊃ · · · ⊃ Qk ⊃ · · ·N(Y ).

In a typical iteration k, the algorithm can be described as follows.
Find

vk ∈ argmax{ϕ(v), v ∈ V k},
where V k is the proper vertex set of the polyblock Qk.

a) If the maximizer vk of ϕ(y) over the polyblock Qk belongs to N(Y ), then
we obtain a point ȳ := vk and ȳ ∈ MaxN(Y ) is an optimal solution of Problem
(P2).

b) Otherwise, we construct a polyblock Qk+1 such that

Qk ⊃ Qk+1 ⊃ N(Y ) and vk �∈ Qk+1.

Determine the proper vertex set V k+1 of the polyblock Qk+1. The procedure
can be repeated with Qk+1, V k+1 in place of Qk and V k.

The polyblock Qk+1 is constructed by

Qk+1 = Qk \ [yk, vk],

where yk ∈ MaxN(Y ) (see Proposition 4) is the unique common point of the
boundary of N(Y ) and the open line segment connecting the origin 0 and vk.
To compute the proper vertex set V k+1 one can use the following proposition.

Proposition 6. (see [5] or [12]) Let D ⊂ R
p
+ be a compact normal set contained

in a polyblock M with vertex set V . Let z ∈ V \D and y be the unique common
point of the boundary of D and the open line segment connecting the origin 0
and z. Then V ′ = (V \ {z}) ∪ {x1, . . . , xp} where

xi = z − (zi − yi)ei, i = 1, . . . , p (4)

and the polyblock M ′ generated by V ′ satisfies

D ⊂M ′ ⊂M, z ∈M \M ′. (5)

3 Polyblock Approximation Algorithm

3.1 Algorithm for Solving Problem (P2)

Let e := (1, . . . , 1) ∈ Rp and ε > 0 be a given sufficient small number. Put

N(Y )ε := {x ∈ N(Y )|x ≥ εe}.
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In practice we find an approximate optimal solution y∗ ∈ N(Y )ε such that
ϕ(y∗) differs from the maximal value of ϕ over N(Y )ε by at most η > 0. A
such solution will be called an (ε, η)-approximate optimal solution of (P2) and
a solution y∗ ∈ argmax{ϕ(y)|y ∈ N(Y )ε} will be called an ε− solution to (P2).
Bellows, we will present an algorithm for finding (ε, η)- approximate optimal
solution to (P2).

ALGORITHM
Initialization. Compute b = (b1, . . . , bp), with

bi = max{yi, s.t. y ∈ Y }, i := 1, . . . , p.

If b ∈ Y Then STOP; (ȳ = b is the optimal solution to (P2). In this case,
y is an ideal efficient point of Y .)

Else Set
Q1 := [0, b], V 1 = {b}, ϕ(ȳ0) = −∞, k := 1;
Go to Iteration k.

Iteration k, k ≥ 1. It consists of five steps.

Step k1. Find vk ∈ argmax{ϕ(v) |v ∈ V k, v ≥ εe}.
Step k2. If vk ∈ N(Y ) Then STOP (ȳ = vk is an ε− optimal solution of (P2))

Else find the unique point yk ∈ ∂(N(Y )) ∩ (0, vk).
Go to Step k3.

Step k3. Let ȳk = argmax{ϕ(ȳk−1), ϕ(yk)}
If ϕ(ȳk) ≥ ϕ(vk)− η Then STOP

(ȳ = ȳk is an (ε, η)-approximate optimal solution of (P2))
Else Goto Step k4

Step k4. Set Qk+1 = Qk \ [yk, vk].
Compute p extreme points of the box [yk, vk] that are adjacent to vk

vk+1,i = vk − (vk
i − yk

i )ei, i = 1, . . . , p,

(ei is the ith unit vector of Rp). Set

V k+1 = (V k \ {vk}) ∪ {vk+1,1, . . . , vk+1,p}.

Step k5. Set k = k + 1 and go to iteration k.

Remark 1. When the algorithm is terminated at an iteration K, we obtain a
solution ȳ to Problem (P2). The obtained solution ȳ is either an ε− optimal
solution to (P2) or an (ε, η)- approximate optimal solution to Problem (P2).

i) If the solution ȳ is an ε− optimal solution to (P2), this solution must be a
vertex vK of the polyblock QK : ȳ = vK . Then, to find an optimal solution x̄ to
Problem (P1) we need to solve the following system

{
Cx = ȳ
Ax = h
x ≥ 0.

(6)
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ii) In general case, the obtained ȳ is only an (ε, η)- approximate optimal
solution to Problem (P2). By Proposition 4, we have ȳ ∈ MaxN(Y ). Hence, ȳ
must belong to MaxY = YE and we obtain an optimal solution x̄ to (P1) by
solving (6).

Remark 2. Recall that a point yI ∈ Y is called an ideal efficient point of Y
when, yI

i = max yi, s.t. y ∈ Y for i = 1, 2, . . . , p. If Y has an ideal efficient
point yI , then MaxN(Y ) = MaxY = {yI}. Thus, if in the initial step of the
algorithm we get a solution y = b ∈ Y , this one is just an optimal solution to
(P2).

Remark 3. To find a point yk ∈ ∂(N(Y ))∩ (0, vk) we solve the linear program-
ming problem

tk = max t
⎧
⎪⎨

⎪⎩

0 < t < 1
Cx− v = tvk

Ax = h
x ≥ 0, v ≥ 0.

The obtained solution has the form yk = tkv
k that belongs to ∂(N(Y )).

3.2 Convergence of Algorithm

Convergence Theorem. The algorithm terminates after finitely many steps,
yielding an ε− optimal solution or an (ε, η)- approximate optimal solution
to (P2).

Proof. For convenience, we will equip Rp with the normal ‖x‖ := maxi |xi|. We
will prove that for any δ > 0 there exists a number k > 0 such that ‖vk−yk‖ < δ.
Note that the function ϕ is uniformly continuous on the compact set Q1. Hence,
if δ is chosen so that ϕ(vk)− ϕ(yk) < η whenever ‖vk − yk‖ < δ for a sufficient
large k we will have

ϕ(vk)− ϕ(ȳk) < ϕ(vk)− ϕ(yk) < η

and the algorithm terminates.
Observe that there are positive numbers M > m > 0 independent of k such

that
M‖vk − yk‖ ≥ (vk

i − yk
i ) ≥ m‖vk − yk‖, i = 1, . . . , p

since vk, yk ∈ {x ∈ Q1 : x ≥ εe} and yk = λvk for λ ∈ (0, 1) . This implies that

Mp‖vk − yk‖p ≥ V ol([yk, vk]) ≥ mp‖vk − yk‖p. (7)

Here, V ol([yk, vk]) indicates the volume of the box [yk, vk].
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On the other hand, since the boxes [yk, vk] are disjoint and all of them are
contained in the box Q1, one can see that

K∑

k=1

V ol([yk, vk]) ≤ V ol(Q1).

Hence, for a number k large enough we have V ol([yk, vk]) < (mδ)p. Then, by
(7) we get ‖vk − yk‖ < δ.

3.3 Example

To illustrate the application of the outcome-space polyblock approximation al-
gorithm for solving problem (P1), consider the case with p = 2,

C =
(

2 −4 −1 0 −6 6 7 2 0 0 0 0 0 0 0 0
−3 4 3 −4 1 0 2 −5 0 0 0 0 0 0 0 0

)

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 4 0 1 −3 6 3 1 0 0 0 0 0 0 0
−1 7 1 8 8 7 0 3 0 1 0 0 0 0 0 0
1 0 0 0 2 0 2 5 0 0 1 0 0 0 0 0
5 7 −3 5 2 0 8 5 0 0 0 1 0 0 0 0
4 0 0 1 0 2 3 0 0 0 0 0 1 0 0 0
2 −1 0 0 4 0 8 −3 0 0 0 0 0 1 0 0
0 4 0 3 0 0 0 0 0 0 0 0 0 0 1 0
2 8 0 0 1 −3 −2 1 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

h = (6 10 5 6 8 10 10 10)T .

• Solve Problem (P2) with ϕ(y) = y1, ε = 0.01 and η = 0.01. After 7 iterations,
we receive (ε, η) - approximate optimal solution y = (14.493, 9.357) ∈ YE .

• Solve Problem (P2) with ϕ(y) = y0.25
1 y0.75

2 , ε = 0.01 and η = 0.01. After 108
iterations, we receive (ε, η)-optimal solution y = (10.616, 5.606) ∈ YE .

• Solve Problem (P2) with ϕ(y) = y1 + y2, ε = 0.01 and η = 0.01. After 8
iterations, we receive (ε, η)-optimal solution y = (14.493, 9.357) ∈ YE .
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Abstract. In this paper, we propose a new efficient algorithm for glob-
ally solving a class of Mixed Integer Program (MIP). If the objective
function is linear with both continuous variables and integer variables,
then the problem is called a Mixed Integer Linear Program (MILP).
Researches on MILP are important in both theoretical and practical
aspects. Our approach for solving a general MILP is based on DC Pro-
gramming and DC Algorithms. Using a suitable penalty parameter, we
can reformulate MILP as a DC programming problem. By virtue of the
state of the art in DC Programming research, a very efficient local non-
convex optimization method called DC Algorithm (DCA) was used. Fur-
thermore, a robust global optimization algorithm (GOA-DCA): A hybrid
method which combines DCA with a suitable Branch-and-Bound (B&B)
method for globally solving general MILP problem is investigated. More-
over, this new solution method for MILP is also applicable to the Integer
Linear Program (ILP). An illustrative example and some computational
results, which show the robustness, the efficiency and the globality of our
algorithm, are reported.

Keywords: MIP, MILP, ILP, DC Programming, DCA, Branch-and-
Bound, GOA-DCA.

1 Introduction

The MIP problems are classical discrete optimization problems with both integer
and continuous variables. Considering a general formulation of MILP:

min f(x, y) := cTx+ dT y
s.t. Ax+By ≤ b, Aeqx+Beqy = beq,

(lbx, lby) ≤ (x, y) ≤ (ubx, uby),
x ∈ Rn, y ∈ Zm

+ .

(1)

where the objective function f : Rn×Rm → R is a linear function. The variables
x (resp. y) are bounded by lbx and ubx (resp. lby and uby) which are constants
specifying the lower and upper bounds of x (resp. of y). The difficulty of (1) lies
in the variable y, because it is an integer variable which destroys the convexity

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 244–253, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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of the constraint set. If we suppose y is a continuous variable, then (1) becomes
to a linear programming problem which can be solved efficiently.

There are several well-known methods for solving MIPs: Branch-and-Bound
Method, Cutting-Plane Method, Decomposition Method [7], etc. Some of them
have already been implemented in commercial software, such as ”ILOG CPLEX”,
”MATLAB”, ”XPressMP”, ”AIMMS”, ”LINDO/LINGO”, ”1stOpt”, etc. More-
over, there are also open-source codes [11], such as ”OSI”,”CBC” for MILP, and
”BONMIN”, the latter is a good solver for general Mixed Integer Nonlinear Pro-
gram (MINLP). Although, we already have several methods and softwares for
solving MIPs, it should be emphasized that the research on MIP should be con-
tinued, because MIP is classified as NP-hard, for which there is no efficient poly-
nomial time algorithm. The methods mentioned above are often very expensive in
computation time. Therefore, there is a need to improve these methods or to find
more efficient methods.

In order to overcome the difficulty of the integer variables, we will reformu-
late the problem (1) to a DC programming problem, then we apply an efficient
method for solving DC programming, called DC Algorithm (DCA), which en-
able us to find a KKT point of the DC reformulation problem. DCA can rapidly
generate a convergent sequence on which the objective values decrease.

In order to check the globality of the computed solution obtained by DCA
and to guarantee that we can globally solve MILP, we combine DCA with a
suitable Branch-and-Bound scheme (GOA-DCA). Some numerical results to the
applications of DCA and GOA-DCA for (1) are also reported in the final section
of the paper.

2 DC Reformulation for MILP

2.1 Reformulation of Integer Set

In this section, we will reformulate the integer set {y : y ∈ Zm
+ } using a twice

continuously differentiable function.
Let

p(y) :=
m∑

i=1

(1 − cos(2πyi)), (2)

where y ∈ Rm. The function p : Rm → R has some interesting properties which
can be verified without any difficulty:

1) 0 ≤ p(y) ≤ 2m ∀y ∈ Rm;
2) p(y) = 0 if and only if yi ∈ Z, for all i = 1, . . . ,m;
3) p(y) ∈ C∞(Rm,R).

By virtue of the third property, we can calculate the first and the second
derivatives of p(y), the gradient and the Hessian matrix, as follows

∇yp(y) = 2π

⎡

⎣
sin 2πy1

· · ·
sin 2πym

⎤

⎦ = 2π sin 2πy, (3)
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∇2
yp(y) = 4π2Diag(cos 2πy1, · · · , cos 2πym), (4)

where Diag(cos 2πy1, · · · , cos 2πym) is a m×m diagonal matrix.
Therefore, the spectral radius of ∇2

yp(y), denoted by ρ(∇2
yp(y)), satisfies the

following inequality:

ρ(∇2
yp(y)) := max

1≤i≤m
(4π2| cos 2πyi|) ≤ 4π2. (5)

With the help of the properties 1) and 2), the set {y : y ∈ Z
p
+} can be

represented as

{y : y ∈ Z
p
+} ≡ {y : p(y) = 0, y ∈ R

p
+} ≡ {y : p(y) ≤ 0, y ∈ R

p
+}. (6)

2.2 Reformulation of MILP as a DC Program

Let K := {(x, y) ∈ Rn × Rm
+ : Ax + Gy ≤ b, Aeqx + Beqy = beq, lbx ≤ x ≤

ubx, lby ≤ y ≤ uby} be a nonempty and compact set.
The problem MILP (1) can be expressed as

min{f(x, y) := cTx+ dT y : (x, y) ∈ K, y ∈ Zm
+ }. (7)

Using (6), we reformulate the problem (7) as an equivalent problem:

min{f(x, y) : (x, y) ∈ K, p(y) ≤ 0}. (8)

We establish a penalized problem for (8) with a penalty parameter t (a positive
constant):

min{Ft(x, y) := cTx+ dT y + tp(y) : (x, y) ∈ K}. (9)

Note that (9) is a nonlinear and nonconvex optimization problem. The addi-
tional item tp(y) in the objective function satisfies the inequality tp(y) ≥ 0 for
all y ∈ Rm, and it is equal to 0 if and only if y ∈ Zm. According to the general
result of the penalty method (see [8], pp. 366-380), for a given large number t,
the minimizer of (9) should be found in a region where p is relatively small.

Definition 1. (See [6].) Let ỹ ∈ Zm. The set N(ỹ) = {y : ||y − ỹ||∞ ≤ 1
5} is

called a 1
5 - cubic neighborhood of the integer point ỹ.

Theorem 1. (See [6].)Suppose that t is large enough, if (x∗, y∗) is a global min-
imizer of (9) and y∗ is in a 1

5 - cubic neighborhood of an integer point ỹ, then
(x∗, ỹ) is a solution of the problem (7).

However, the problem (9) is a difficult nonlinear optimization problem. Fortu-
nately, we can represent p as a DC function:

p(y) = (
η

2
yT y)− (

η

2
yT y − p(y)), (10)
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where η ≥ ρ(∇2
yp(y)). Note that (η

2y
T y) − (η

2y
T y − p(y)) is a DC function

(difference of two convex functions) if η ≥ ρ(∇2
yp(y)). The reason is that the

functions η
2y

T y and η
2y

T y − p(y) are convex, because their Hessian matrices
are semi-positive definite matrices when the inequality η ≥ ρ(∇2

yp(y)) satisfies.
Using (5) in the section 2.1, ρ(∇2

yp(y)) ≤ 4π2, we can take η = 4π2 to establish
an available DC decomposition of p :

p(y) = 2π2yT y − (2π2yT y − p(y)).

Thus, the problem (9) can be reformulated as a DC programming problem:

min{Ft(x, y) := g(y)− h(x, y) : (x, y) ∈ K}. (11)

where g(y) := 2tπ2yT y is a convex quadratic function, h(x, y) := (2tπ2yTy −
tp(y)− dT y)− cTx is a separable convex function.

3 DCA for Solving Problem (11)

DC Algorithm (DCA) has been introduced by Pham Dinh Tao in 1985 as an
extension of the subgradient algorithm, and extensively developed by Le Thi
Hoai An and Pham Dinh Tao since 1993 to solve DC programs. It is actually one
of the rare algorithms for nonlinear nonconvex nonsmooth programming which
allows solving very efficiently large-scale DC programs. DCA has successfully
been applied in solving real world nonconvex programs to which it quite often
gives global solutions and is proved to be more robust and more efficient than the
related standard methods, especially for large-scale problems. For more details
of DC programs and DCA, the reader is referred to [1,2,3,4] and the references
therein.

According to the general framework of DCA, we need constructing two se-
quences {Xk} and {Y k}. In our problem, {Xk := (xk, yk)} and {Y k := (uk, vk)}.
In order to compute Y k = (uk, vk), we need computing subdifferential of the
function h at the point Xk = (xk, yk), denoted by ∂h(xk, yk).

Definition 2. (See [1,2].) Let Γ0(Rn) denote the convex cone of all lower semi-
continuous proper convex functions on Rn. For all θ ∈ Γ0(Rn) and x0 ∈ dom(θ)
:= {x ∈ Rn : θ(x) < +∞}, ∂θ(x0) denotes the subdifferential of θ at x0

∂θ(x0) := {y ∈ Rn : θ(x) ≥ θ(x0)+ < x− x0, y >, ∀x ∈ Rn}.

It is well-known that if θ is differentiable at x0, then ∂θ(x0) reduces to a singleton
which is exactly {∇θ(x0)}.

In our problem, the convex function h was defined as h(x, y) := (2π2tyT y −
tp(y) − dT y) − cTx which is a twice continuously differentiable function. Thus,
∂h(xk, yk) = {∇(x,y)h(xk, yk)}. The vector Y k = (uk, vk) can be computed
explicitly using the following equivalence:

(uk, vk) ∈ ∂h(xk, yk)⇔ (uk = −c, vk = 4π2tyk − 2πt sin 2πyk − d). (12)
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Let g∗(y) := sup{< x, y > −g(x) : x ∈ Rn} be the conjugate function of g.
For computing Xk+1 = (xk+1, yk+1) ∈ ∂g∗(uk, vk), we have to solve the convex
quadratic program:

min{2π2tyT y − 〈(x, y), (uk, vk)〉 : (x, y) ∈ K}. (13)

Every optimal solution of the problem (13) gives us one vector Xk+1 = (xk+1,
yk+1). Repeating the above operation, we can establish the sequences {Xk} and
{Y k}.

DC Algorithm (DCA)

Initialization:
Choose an initial point X0 = (x0, y0) ∈ Rn × Rm.
Let t be a large enough positive number.
Let ε1, ε2 be sufficiently small positive numbers.
Iteration number k = 0.

Repeat:
- Calculate (uk, vk) ∈ ∂h(xk, yk) via (12).
- Solve the quadratic convex program (13) to obtain (xk+1, yk+1).
- k ← k + 1.

Until:
If either ||Xk −Xk−1|| ≤ ε1(1 + ||Xk−1||)
or |Ft(Xk)− Ft(Xk−1)| ≤ ε2(1 + |Ft(Xk−1)|)
Then STOP and verify:
If yk is in a 1

5 - cubic neighborhood of an integer point ỹ ∈ Zm
+ and

(xk, ỹ) is a feasible solution to the problem (1)
Then (xk, ỹ) is a feasible computed solution
Else (xk, yk) is the computed solution.

The convergence of DCA can be summarized in the next theorem whose proof
is essentially based on the convergence theorem of the general scheme of DCA
(see [1,2,3]).

Theorem 2 (Convergence properties of DC Algorithm)

1. DCA generates a sequence {(xk, yk)} such that the sequence {Ft(xk, yk)} is
decreasing and bounded below.

2. If the optimal value of (11) is finite and the infinite sequences {Xk} and
{Y k} are bounded, then every limit point X∞ of the sequence {Xk} is a
Karush-Kuhn-Tucker point.

4 A Combination of DCA with a B&B Scheme

In order to evaluate the quality of the solution obtained by DCA and improve
the computed solution of DCA for finding a global optimal solution, we propose a
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hybrid method which combines DCA with an adapted Branch-and-Bound
scheme for globally solving MILP.

Branching. Suppose that we have already found a computed solution by DCA,
denoted by (x∗, y∗). If it is not feasible solution of MILP, then we can find an
element y∗i /∈ Z+, and the subdivision is performed in the way that yi ≤ y∗i �
or yi ≥ �y∗i �(where y∗i � (resp. �y∗i �) means the floor (resp. ceil) number of y∗i ).
The two subdivision problems can be described as

min{Ft(x, y) = g(y)− h(x, y) : (x, y) ∈ K, yi ≤ y∗i �}. (14)

min{Ft(x, y) = g(y)− h(x, y) : (x, y) ∈ K, yi ≥ �y∗i �}. (15)

Note that (14) and (15) are also DC programs. The feasible sets of these
problems are disjunctive, and the union of the two feasible sets might be smaller
than K, but it includes every feasible solution of the original MILP problem (1).

Bounding. Solving directly the subproblems (14) and (15) is a difficult task and
there is no extraordinary efficient and practical solution method. So we establish
their lower bound problems:

min{f(x, y) = cTx+ dT y : (x, y) ∈ K, yi ≤ y∗i �}. (16)

min{f(x, y) = cTx+ dT y : (x, y) ∈ K, yi ≥ �y∗i �}. (17)

Note that, the problem (16) (resp. (17)) is a lower bound problem to (14)
(resp. (15)), because Ft(x, y) = cTx+dTy+ tp(y) ≥ cTx+dTy for all (x, y) ∈ K.
It is clear that (16) and (17) are linear programs, so there are efficient practical
algorithms for solving them even if they are large-scales. After solving a lower
bound problem, the best current upper bound solution will be updated if a better
feasible solution was discovered.

DCA + B&B for Solving MILP. The B&B method forms a search tree in a
way that we always create branches with a node who has a smallest lower bound
(a node here means a subdivision problem). During the search process, we can
prune away every node who is an infeasible problem or whose lower bound is
greater than the best current upper bound.

The algorithm terminates when every node of the search tree was pruned away
or the gap between the best upper bound and the current minimal lower bound
is less than a given tolerance.

When DCA is restarted?
A suggestion to restart DCA in some steps of B&B helps to reduce the compu-
tational time. We have several heuristic strategies to restart DCA:

– The first strategy: When a best current upper bound solution is discovered,
we can restart DCA from this upper bound solution. Perhaps this strategy
will find a better feasible solution. If a better feasible solution was found by
DCA, the best current upper bound solution will be updated.
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– The second strategy: When we choose a current minimal lower bound node
to create branches, we can restart DCA from this best lower bound solution.
Perhaps this strategy will find a better feasible solution for updating the
best current upper bound.

Based on the above discussions, we have established a Global Optimization
Algorithm, denoted by GOA-DCA, for solving general MILP. Because the length
of this article is limited, for more details about GOA-DCA, the reader is referred
to the technical report [9].

Note that, using this solution method for solving ILP, we just need to ignore
the coefficients of the continuous variables, i.e. the vectors c, lbx, ubx and the
matrices A, Aeq in the problem (1).

5 Computational Experiments

We have implemented the algorithm DCA and GOA-DCA in MATLAB R2007a
and tested it on a laptop equipped with Windows XP Professional, Genuine
Intel(R) CPU T2130 1.86GHz, 2G RAM. The version of C++ has also been
implemented using CPLEX and COIN-OR.

In this section, we present an illustrative example of an integer linear program.
More tests on MILP and ILP (medium-scales or large-scales) have been realized
with a series of data from MIPLIB 3.0 [10], they are real world pure or mixed
integer linear problems, some of them are large-scales (105−106 integer variables)
and difficult to be globally solved.

An illustrative example to an integer linear program:
This integer linear program is defined as

min{dT y : By ≤ b, lby ≤ y ≤ uby, y ∈ Zm
+}. (18)

– Number of integer variables: m = 12
– Number of linear inequality constraints: 7

d = −(96, 76, 56, 11, 86, 10, 66, 86, 83, 12, 9, 81)T

B =

19 1 10 1 1 14 152 11 1 1 1 1
0 4 53 0 0 80 0 4 5 0 0 0
4 660 3 0 30 0 3 0 4 90 0 0
7 0 18 6 770 330 7 0 0 6 0 0
0 20 0 4 52 3 0 0 0 5 4 0
0 0 40 70 4 63 0 0 60 0 4 0
0 32 0 0 0 5 0 3 0 660 0 9

b = (18209, 7692, 1333, 924, 26638, 61188, 13360)T

lby = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T

uby = (26638, 26638, 26638, 26638, 26638, 26638, 26638, 26638, 26638, 26638, 26638, 26638)T
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Using the Branch-and-Bound method for solving (18):

– The global optimal solution was found after 182 iterations.
– The global optimal value: -261922.
– The global optimal solution: [0,0,0,154,0,0,0,913,333,0,6499,1180].
– The average CPU time: 13.12 seconds.

Using DCA for solving (18):
We have tested the performance of DCA with different starting points. Here are
some numerical results in Table 1:

Table 1. DCA test results for (18) with ε1 = ε2 = 1e − 3 and t = 1000

TestNo Starting point #Iter CPU time (secs.) Obj (Min) Integer solution (T/F)

1 ub − lb 30 0.5183 -261890 T
2 ub−lb

2 30 0.5079 -261890 T
3 ub−lb

3 30 0.4950 -261890 T
4 ub−lb

4 30 0.4913 -261890 T
5 ub−lb

5 30 0.5165 -261890 T
6 ub−lb

6 30 0.5306 -261890 T
7 ub−lb

8 30 0.5505 -261890 T
8 ub−lb

9 11 0.2583 -261657.341 F
9 ub−lb

20 21 0.3978 -249604.313 F
10 ub−lb

50 12 0.2396 -230200 T
11 ub−lb

100 10 0.2085 -137045 T

Table 1 shows:

– DCA often gives a feasible solution (TestNo 1-7, 10 and 11).
– Using different staring points, DCA often converges with a small number of

iterations (less than 30 iterations).
– Most of the objective values in Table 1 are the number −261890. This number

is close to the global optimal value which is −261922.

We calculate the relative error by the formula:

err :=
|optimal value obtained by DCA− global optimal value|

|global optimal value| .

We get err = | − 261890 + 261922|/261922≈ 1.2E− 4. Such a small error shows
the computed solutions of DCA are often close to the global optimal solution.

More tests for large-scale problems show that the good performance of DCA
is not particular to this illustrative example, but a universal result. Especially,
the iteration numbers are often relatively small (less than 60 for the tests with
105 − 106 variables).

Using GOA-DCA for solving (18):
Here are some test results of GOA-DCA without restarting DCA during the
B&B process:
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– The optimal solution was discovered after 36 iterations.
– The optimal value: -261922.
– Theoptimalsolution:[0,0,0,154,0,0,0,913,333,0,6499,1180](globallyoptimized).
– The CPU time is 2.35 seconds * 13.12 seconds (by B&B).

More test results show that GOA-DCA can always find the global optimal so-
lution if it exists, and the CPU time is always smaller than B&B. The superiority
of GOA-DCA with respect to B&B increases with the dimension. An interest-
ing issue is how to restart DCA. More tests for large-scale problems show that
the two strategies for restarting DCA play a quite important role in GOA-DCA
method. DCA often finds rapidly a feasible solution and it improves considerably
the best current upper bound during the B&B process and therefore accelerates
the convergence of GOA-DCA. For more discussions of the tests on DCA and
GOA-DCA, the reader is referred to the technical report [9].

6 Conclusion and Future Work

In this paper, we have presented a new continuous nonconvex optimization ap-
proach based on DC programming and DCA for solving the general MILP prob-
lem. Using a special penalized function, we get a DC program. With a suitable
penalty parameter and a good starting point, DCA generates a sequence for
which the objective values decrease and converge very fast to a computed solu-
tion (which is often a feasible solution of MILP and close to a global optimal
solution). Despite its local character, DCA shows once again, its robustness, reli-
ability, efficiency and globality. The hybrid method GOA-DCA which combines
DCA with an adapted Branch-and-Bound aims at checking the globality of DCA
and globally solving the MILP problem efficiently. Preliminary numerical tests
show that GOA-DCA usually gives the global optimal solution much faster than
B&B method.

This paper could be considered as a first step of using the DC Programming
approach for solving general MILP and ILP problems. Some extensions of this
solution method are in development. For instance, we are trying to integrate
GOA-DCA with some cuts (Gomory’s cut, lift-and-projet cut, knapsack cover,
etc.). We also want to extend this approach to more difficult nonlinear MIPs
and pure Integer Programs:

1. Pure Integer Nonlinear Program (convex objective function, and DC objec-
tive function).

2. Mixed Integer Quadratic Program (convex objective function, and noncon-
vex objective function).

3. Mixed Integer Nonlinear Program with DC objective function, etc.

Mixed Integer Quadratic Programs with binary integer variables have already
been treated in another work [5]. Results concerning these extensions will be
reported subsequently.
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Abstract. In many sectors of industry, manufacturers possess ware-
houses where finished goods are stored, awaiting to fulfill a client order.

We present a situation where these items are characterized by release
and due dates, i.e. warehouse arrival for storage and client delivery, re-
spectively. The warehouse has a number of positions available, where
items can be placed on top of each other, forming stacks. For item ma-
nipulation, there is a single a stacking crane, able to carry one item at a
time.

When in a given stack an item at the top is due at a date later than
some item below it, it must be relocated to another stack, so that the
item below can be delivered. In this problem the objective is to minimize
the number of movements made by the crane.

1 Introduction

We present an applied stacking problem arising in steel manufacturing, which
we name as steel stacking problem. This combinatorial optimization problem has
many variants, with applications e.g. in container stacking [2,3] and ship stowage
planning [1]. Here we will focus on a variant where items are produced at given
dates (the release dates), and are then placed in the warehouse, where they re-
main until being shipped to the customers, on dates that are also predetermined
(the due dates).

The warehouse is divided into several positions, each having its own stack for
placing items. There are no particular restrictions on item placement.

At the time of item retrieval for delivery, it may be required to relocate items
on top of the departing item, before actually delivering it. These relocations are
called reshuffling or shifting, meaning unproductive moves of an item, which are
required to access another item that is stored beneath it. In our case, reshuffling
occurs when an item is placed above another that is due first, which we call an
inversion.

Each of these movements is made by a crane, which is able to move one item at
a time. As the operation of the crane is energy and time consuming, the objective
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is to minimize the number of movements it does. This problem is NP-hard [1],
a fact which makes finding optimal solutions inviable in polynomial time, with
known algorithms.

We propose a solution method which consists of using a custom discrete event
simulation engine, based on a heuristics for deciding the placement for each item.
The heuristics is semi-greedy, meaning that it has a random component besides
the greedy behavior. Since simulation is cheap when compared to “classic” res-
olution methods, such as branch-and-bound, or local search, we are allowed to
run several simulations, leading to a set of different solutions, from which the
best is selected at the end.

The paper is structured as follows. First, we take a short literature overview of
scientific work on stacking problems. Subsequently, we present a detailed prob-
lem description. A solution is then proposed, along with three simple stacking
strategies that were compared on 1500 problem instances. Finally, the results
and some ideas for future work are discussed.

1.1 Literature Overview

Dekker et al. [2] present a simulation study of container terminal activities, using
category and residence time stacking policies. Also, they mention the existence
of little published work on stacking problems. Since this problem has less restric-
tions than those of container stacking, the stacking policies there described are
unsuitable in our simplified problem.

Though the problem handled in this paper is a rather simple stacking variant,
with very few restrictions, it is nonetheless NP-hard (NP-completeness has been
shown in [1] for a similar problem, arising in ship stowage planning).

1.2 Contributions

Our contributions are the following: we formalize the description of a stacking
problem and propose several heuristics for constructing solutions in a semi-greedy
way. We define a set of benchmark instances for this problem, and compare the
results obtained by several heuristics on the semi-greedy construction.

2 Formal Description

Consider the problem of stacking n items in a warehouse with p positions. We
denote items as i1, i2, . . . , in, and stacks as s1, s2, . . . , sp.

Let r ∈ Nn be the list of release dates, where ri denotes the release date of
item i. In the same way, let d ∈ Nn be the list of due dates. We assume that due
dates are greater than release dates for every item, i.e. ri < di, for i = 1, . . . , n.

The objective is to store all the items, and deliver them to the client, with the
minimum number of crane movements. The solution is represented as an ordered
list of movements, where we represent the movement of an item from stack so to
stack sd as so → sd (note that only the item on the top of the stack is moved).
The time at which a movement occurs is either the instant of release of an item
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(when the movement corresponds to storing it in the warehouse), or the instant
of delivery of an item (for the delivery movement itself, and all the underlying
reshuffling moves).

The order of moves in the movement list must always respect release and due
dates for the solution to be valid. Furthermore, there cannot exist movements
originating at empty stacks. Regarding intermediate moves, they can be in any
number, and between any two positions, as long as they occur between the release
and due dates of the associated item.

3 Proposed Solution

For simulating systems where changes are known to occur only at certain points
in time, the intervals between system changes can be safely ignored. This is
the basis of discrete event simulation [5,4], a well-known simulation discipline.
Since we know a priori the discrete times when arrivals and departures will take
place, using discrete event simulation seems appropriate, and far less expensive
than a complete search algorithm such as branch-and-bound. Other alternatives,
as the local search or tabu search meta-heuristics, are inappropriate, since any
change of a part of the solution implies very deep changes in the remaining part,
rendering it virtually useless.

We will now describe how events are handled, highlighting when placement
heuristics are used, and describe the event preprocessing performed by the sim-
ulator during the setup phase. The setup phase takes place before the beginning
of the simulation, when the instance data is used by the simulator to build a
chronologically ordered event schedule.

3.1 Simulation Setup

We have built a custom discrete event simulation engine, with two event types:

Item release: when an item is released, its location in the warehouse is deter-
mined through a call to a placement heuristics. The heuristics scores stacks
in the warehouse, building a list of best scored candidates. After the list is
created, a stack s is randomly chosen among the best candidates and the
item is placed in s. Solution diversity is granted by this random target choice.
If two or more items are to be released simultaneously, the corresponding
release events are processed in the inverse order of their due dates, thus
avoiding inversions among items arriving together.

Item delivery: at simulation time t all items with due date di = t must be
delivered. All items at the top of a stack with delivery time t are immediately
delivered. For all the remaining items with di = t that were not delivered
in the previous step, the simulation engine searches the item’s stack, and
swaps all items above it to other stacks, finally delivering the target items.
Items are delivered in the inverse order of their depth in the corresponding
stack, as illustrated in Figure 1. The position for the items begin reshuffled
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Unordered delivery:

1. {C, D} : s2 → s1

2. E : s2 → client
3. {D, C, A} : s1 → s2

4. B : s1 → client

Depth-ordered delivery:

1. A : s1 → s2

2. B : s1 → client
3. {A, C, D} : s2 → s1

4. E : s2 → client

Fig. 1. Unordered delivery (center) and depth-ordered delivery (right) on a two-stack
warehouse (left), where two items, B and E, are due at t = 10. If no particular order
is used, E may be delivered before B, requiring 7 moves to deliver the two items.
However, if shallower items are delivered first (i.e., B is delivered before E, as shown
at the right), only 6 moves are required.

is determined by the placement heuristics used at item release, this time not
allowing the original stack to be a candidate target.

If at any time release and delivery events occur simultaneously, the deliveries
are handled first (in discrete event simulation terminology, this corresponds to
assigning a higher scheduling priority to deliveries).

4 Stacking Strategies

In this section, we propose several stacking strategies for item placement, both
when items are arriving at the warehouse after being released, or when reshuffling
a stack in order to reach an item for delivery.

4.1 Minimize Conflicts

This is the simplest heuristics presented, and it is the starting point of our
research. The aim of this heuristics is to avoid placing an item i, with due date
di, above any item j with due date dj < di. Defining E(s) as the earliest due
date for items in stack s,

E(s) = min{di : i ∈ s}

we say that a conflict, or inversion, is created if we place item j on stack s, and
dj > E(s). Let us also define I(s) as the number of inversions in stack s:

I(s) = |{i ∈ s : di > E(s) and i is above the earliest departing item}|

Figure 2a presents a simple example, for a two-stack warehouse. With a con-
flict minimization strategy, item F (the arriving item) will be placed in stack s1,
since placing it in s2 will cause a new inversion (as dF > E(s2)).

Note that although s1 has an inversion, it is the chosen stack for item F , since
we are only considering the creation of new inversions. Even though there is a
zero-conflict stack (s2), it is not a good choice, since we would be creating an
inversion after placing F on top of C.
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4.2 Delay Conflicts

Delaying conflicts is a heuristics that derives directly from the previous, in the
sense that its aim is also to avoid creating inversions.

The only difference is that, when placing an item i such that for any stack s,
di > E(s) (i.e. when i creates a new inversion no matter which stack it goes to),
we prefer the stack with highest E(s). This makes the newly created inversion
express later in time, as illustrated in Figure 2b.

3
stack 1 stack 2

16

4

2
A

B

C

D

F

Fig.2a: Conflict minimization heuristics.
There are two stacks, with earliest due
dates 3 and 1. The item arriving has a de-
livery date of 2, and hence it will cause a
conflict in stack 2 but not in stack 1.

5 4
stack 1 stack 2

6
A B

C

Fig.2b: Conflict delaying heuristics. There
are two stacks, with earliest due dates 5
and 4; the arriving item has a delivery date
of 6, and hence it will cause a new conflict
in both stacks. Stack 1 is chosen, as there
the conflict will show up later.

Fig. 2. Conflict minimization (left) and conflict delaying (right) heuristics

Conflict delaying is done hoping that when the simulation clock reaches E(s),
a different stack s′ will be able to receive i without conflicts. Intuitively, this
seems to be a good strategy when space utilization becomes low, i.e., if stacks
with no inversions are likely to be found later.

Figure 3 shows an example of the advantage of delaying conflicts in a situation
where a new inversion is mandatory. Since E(s1) < dC and E(s2) < dC , a new
inversion is unavoidable. The conflict minimization heuristics sees both stacks
as equal, and randomly selects its target. Let us consider the case where s2 is
selected. Figure 3 (center) shows the movement list in this case, where 6 moves
are necessary to deliver all items. There are two unproductive moves of C.

Now consider delaying the conflict (right). Since E(s1) > E(s2), stack s1 is
chosen for item C. In this case, only 5 movements are required for delivering all
items.

We have gained a move because the conditions in the warehouse changed
between the release of item C (at time rC < 4) and the earliest item delivery
from stack s1, (which occurs at time E(s1) = 5), allowing us to reshuffle item C
to s2 (move 3 in the right list) when it was already empty.

4.3 Flexibility Optimization

We define flexibility for a stack s as the size of the maximum set of items with
different due dates that can be placed on s without causing new inversions. Let
us call this set F(s), and define flexibility as

F (s) = |F(s)|.
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5 4
stack 1 stack 2

6
A B

C Random choice:

1. C : release → s2

2. C : s2 → s1

3. B : s2 → client
4. C : s1 → s2

5. A : s1 → client
6. C : s2 → client

Delayed conflict:

1. C : release → s1

2. B : s2 → client
3. C : s1 → s2

4. A : s1 → client
5. C : s2 → client

Fig. 3. Random stack choice (center) and delayed conflict stack choice (right) for a
case with a mandatory inversion (left)

The greater F (s), the more items the stack can receive without conflicts.
Flexibility can also be seen as E(s), since we can only put a set with E(s) items
of different, decreasing due dates, on top of s without causing inversions. This
idea is illustrated in figure 4, where it is clear that the number of items the stack
“accepts” is equal to its earliest due date.

stack 1

3

8

5

1

2

3

Fig. 4. Example of stack flexibility, with F(s) shown in the left. The numbers inside
the boxes represent the items’ due dates, di.

By looking at stack flexibility we get a better judgement of stacks where no
inversions are caused by an arriving item. Figure 5 shows a two-stack example
of an arrival where the item does not cause a conflict with any of the two stacks.
Both the conflict minimization and conflict delaying strategies would see the two
stacks as equal candidates.

The flexibility variation caused by placing item i on stack s,

ΔF (i, s) = di − E(s),

provides a different view of the two stacks, and it becomes clear that we lose
more flexibility by choosing stack s1 (with ΔF (C, s1) = −3) rather than stack
s2 (with ΔF (C, s2) = −1).

Note that this does not represent an immediate gain, but nevertheless main-
taining high flexibility is a good idea for preparing future arrivals. Suppose that,
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Fig. 5. Flexibility based decision in a multiple no-inversion case

after C, an item D arrives, with due date dD = 5. If we had selected s1 for C,
we would now be at hand with an unavoidable inversion, or a preparation move
would be required (C : s1 → s2). This situation is avoided by selecting s2 in the
first place.

This means that it is desirable to maximize ΔF (i, s) in cases where no-
inversion stacks exist. On the other hand, when a new inversion is mandatory,
we have seen cases where delaying the conflict may be advantageous. In order
to capture these two cases, we divide our goal in two parts:

1. if there is a stack s such that ΔF (i, s) ≤ 0, then we are not causing a new
inversion, and we want to maximize flexibility.

2. if there is no stack s such that ΔF (i, s) ≤ 0, a new inversion is unavoidable,
and we want the minimum value of flexibility variation. Note that this is
equivalent to delaying the conflict.

To summarize, in this heuristics the aim is trying to approach ΔF (i, s) to 0,
but always preferring a negative variation to a positive variation (as the latter
represents new inversions).

5 Computational Results

For testing the heuristics we have prepared a set of 1500 different instances,
with varying sizes (number of stacks and number of items), and different values
for parameters controlling the sparsity of release and due dates, as well as the
residence time of items.

The instances are divided into two main classes: easy and hard. The major
difference between them is the relation between warehouse size and item count.
Hard instances have a small number of stacks for a relatively large number of
items, while easy instances have a medium/high number of stacks for a propor-
tionally smaller set of items.

For every instance, each heuristics was used on 100 simulations, each simula-
tion corresponding to a different seed in the random number generator (RNG).
We collected the best result of each heuristics among these 100 simulations for
each instance.

In the results we present the move ratio for all heuristics, for all the instance
sizes and categories.

The move ratio is defined as the number of moves of the solution divided by
a known lower bound of the move count. The lower bound considered here is
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Instances sizes
p = 10, n = 100 p = 20, n = 400 p = 40, n = 1600

Heuristics mean variance mean variance mean variance

Minimize conflicts 1.123 0.01324 1.629 0.2268 3.036 2.192
Delay conflicts 1.075 0.004072 1.218 0.02823 1.492 0.1369

Optimize flexibility 1.007 0.0001978 1.027 0.0007952 1.080 0.004220

Fig. 6. Move ratio results for the 750 easy instances. (The points in the graphic are
shifted in the x-axis by a random guassian value to improve visibility.)

twice the number of items in the instance: one move for arrival, and another for
departure, corresponding to the ideal situation of having no reshuffling.

We determined the move ratio using the best result from the 100 independent
simulations, for each instance-heuristics pair.

Figure 6 shows the results for the three heuristics in 750 “easy” instances, with
10, 20 and 40 stacks, and, respectively, 100, 400 and 1600 items. The average
and variance of the move ratio are shown in the table coupled to the figure. In
the same way, figure 7 shows the results for the three heuristics in 750 “hard”
instances, with 2, 3, and 4 stacks, and, respectively, 32, 243 and 1024 items. For
hard instances there are fewer stacks available, and hence there is less suppleness
when placing items.

The results obtained in this section allow us to conclude that flexibility opti-
mization is better than the other two heuristics in all contexts (varying size and
problem difficulty).
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Instances sizes
p = 2, n = 32 p = 3, n = 243 p = 4, n = 1024

Heuristics mean variance mean variance mean variance

Minimize conflicts 1.396 0.08011 3.984 2.393 12.96 43.65
Delay conflicts 1.357 0.07056 3.038 1.172 7.413 13.73

Optimize flexibility 1.368 0.09244 2.589 0.6888 5.391 5.977

Fig. 7. Move ratio results for 750 hard instances. (The points in the graphic are shifted
in the x-axis by a random guassian value to improve visibility.)

6 Conclusions and Future Work

In this work we tackle the problem of minimizing the number of movements
made by a crane when storing items, characterized by a release date and a due
date, in a warehouse with several stacks.

The solution strategy consists of using a custom discrete event simulation en-
gine, based on a heuristics for deciding the placement for each item. We proposed
three different semi-greedy heuristics, each having a random component besides a
greedy behavior. Since simulation is computationally inexpensive, each heuristics
is run on several independent simulations, leading to a set of different solutions,
from which the best is selected. This provides a practical solution strategy to a
problem which is rather difficult to formulate, let alone solve exactly.

The results obtained in preliminary tests show a very good performance, espe-
cially for the flexibility optimization heuristics. This conclusion was drawn from
a statistically meaningful set of data, indicating that heuristics as the choice for
industry implementation.
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Future research directions include the implementation of a limited depth
branch-and-bound algorithm to produce more accurate stack scoring values (be-
cause of the provided lookahead), and of remarshalling heuristics, that perform
preparation moves before the arrival of an item that will cause a mandatory new
inversion.
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Abstract. This paper suggests a way for electricity retailers to build
their supply portfolios, calibrating their exposure to physical and finan-
cial contracts, in order to hedge from risks that variously affect the supply
side in power markets. In particular, we formulate an allocation model
which describes uncertainty sources using the robust approach originally
introduced by Soyster (1973), and we provide an explicit form to ro-
bust risk constraints. The notable elements of innovation of this paper
include: (a) the focus on the optimization problem faced by retailers,
which is generally less explored than its counterpart in the generation
side; (b) the analysis of uncertainty sources through the robust optimiza-
tion paradigm, and (c) the representation of robust constraints based on
Conditional Value at Risk (CVaR).

Keywords: Conditional Value at Risk, Energy Management, Robust
Optimization, Supply Side.

1 Introduction

As widely known, the introduction of competition and consumer choice (i.e.
the deregulation) boomed on power markets all over the world in the past two
decades. Such newly organised markets typically include one or more of the
following structures:

– Day–ahead (spot) Market. This is the natural place where the bids (both
from generation and supply side) are submitted. The market is cleared on
the day before the actual dispatch. The day to be scheduled is divided into
Nh periods; every bidding firm makes a price bid for each generation unit for
the whole day. Commonly, in the day–ahead market either hourly contracts
(for the 24 hours of the calendar day) or block contracts (i.e. a number of
successive hours) are being traded.
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– Adjustment or Balancing Market. The existence of this intra–daymarket (clos-
ing a few hours before delivery), is due to the long time span between the set-
tling of contractson the day–aheadmarket and physical delivery. It enables the
participants to improve their balance of physical contracts in the short term.

This renewed scenario has introduced additional elements of complexity in
the decision process of players, and a general shift in risk exposure of market
participants: whereas at the beginning the risk was borne upon final electricity
consumers through regulated tariffs, in the actual context the risk perception of
different market stakeholders has changed.

Such remarks hold particularly on the retailers’ side, where we are focusing on.
It is a matter of fact that supply and demand bids are created on forecasts of cus-
tomer usage; this means that if customer demand for power drops unexpectedly
to a very low level, the retailer will be still asked to buy the total amount that
the market bid requires. At this point, in order to avoid financial losses, the re-
tailer will be forced to put on the balancing market the extra power not used by
the customer. On the other hand, if customer demand surges, the supplier will be
obliged to purchase extra power on the balancing market, to meet the excess of
customer demand. In practice, both situations lead to major risk exposures, with
the supplier facing volume risk (physical risk) and price risk (financial risk).

However, despite of consequences coming on balance sheets from improper
allocation, building retailers portfolios has been only partially addressed in recent
literature [7], [8], [9], [10]. Following this rationale, we are then going to suggest
an approach to the problem based on the paradigm of robust optimization.

Robust optimization [12],[1],[3] concerns a way to manage uncertainty within
optimization problems: whereas in the standard stochastic approach the optimal
solution is obtained through a convenient probabilistic representation of problem
parameters, the robust counterpart finds out solutions that are optimal over the
finite (and convex) input space A, for every parameter belonging to a proper
deterministic uncertainty set U . The method is actually applied to a variety
of practical cases, with a certain preminent attention to financial applications
(see, for instance: [2],[4]), as alternative to the classical optimization scheme
á la Markowitz [11]. In all the cited cases, however, the way U is built is of
fundamental importance for the success of the whole procedure; to such aim,
our paper will follow the path traced by [5] and [6] through the representation
theorem which is given below.

Theorem 1. Let Q be a family of probability measures s.t.:

ρ(X) = sup
Q∈Q

EQ[X ], ∀X ∈ X . (1)

If the risk measure ρ is generated byQ, then the following constraints are equivalent:

ρ(r̃′x− b) ≤ 0⇔ r̃′x ≤ b, ∀r ∈ U

where: U = conv

({
N∑

i=1

qiri : q ∈ Q
})

⊆ conv(A) .



266 M. Resta and S. Santini

With respect to the existing literature, our contribution adds some elements
of innovation that we are going to list. First of all, from the practical standpoint,
we will focus on electricity markets on the retailers’ side, and we will suggest an
optimization scheme to build their portfolios, where both physical and financial
constraints are considered. The allocation problem will be managed within a
robust framework, in the sense outlined above. We will then show how robust
(according to Eq.(1)) risk constraints may be built using Conditional Value at
Risk (CVaR) as risk measure. In this way, in addition to the robustness of the
optimal solution, we will also get a highly tractable optimization scheme, thanks
to the linearity of the inserted CVaR constraints.

What remains of the paper is structured as follows. Section 2 will introduce
the basic assumptions and variables on which our model relies. Section 3 will
describe and discuss our proposed robust optimization scheme, to conclude with
the representation of CVaR constraints in an explicit form. Section 4 will examine
the results of the robust optimization procedure in a case study, and compare
them to those of the fully deterministic solution. Finally, Section 5 will end the
paper.

2 Basic Assumptions and Notational Conventions

We consider a simplified but meaningful structure of the regulatory framework,
built up by picking relevant features from regulations of various European coun-
tries. We move into a fully liberalized retail market, where either business or
domestic costumers can stipulate contracts with retailers for electricity supply,
despite of the quantity of energy yearly consumed. The local distribution com-
pany will provide connection services between customers and distribution grid,
including electricity metering, and technical maintenance. We then assume that
the retailer’s activity may be disassembled into four macro–components:

(a) the selling activity to customers; the retailer can stipulate a number NC of
different selling contracts, diversified and standardised according to the type
of customer, and to the time profile. As a rule, this activity should generate
revenues:

RSELL =
NC∑

i=1

Nh∑

h=1

PS(i, h) E(i, h) . (2)

where PS(i, h) is the selling price for the i−th type of contract at hour h,
and E(i, h) is the corresponding amount of effectively consumed energy.

(b) The supplying activity; as a consequence of the selling activity, the retailer
must enter the spot market to supply the estimated power load, acquiring
electricity from Ns different sources. This implies a cost to be borne on the
retailer, which may be expressed as:

CSP =
Ns∑

s=1

Nh∑

h=1

PSP (s, h) B(s, h) . (3)
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where PSP (s, h) is the price for the s−th contract and h−th hourly profile
on the spot market, and B(s, h) is the related energy bandwidth, expressed
in Mega Watt per hour (MWh).

(c) The balancing activity; since task (a) is based on effective demand for elec-
tricity, while (b) assumes a forecast of customers usage, a bias can arise
between the amount of consumed energy, and the quantity acquired on the
spot market. We will therefore introduce:

CBIAS =
Nh∑

h=1

{

PBM (h)

[
NC∑

i=1

E(i, h)−
Ns∑

s=1

B(s, h)

]}

. (4)

where PBM (h) is the hourly price in the balancing market. By definition,
CBIAS is a cost; clearly this holds when the provisions of the retail company
in the spot market are lesser than the load effectively requested by final
users. On the other hand, in case of demand drops, Eq.(4) will express a
kind of negative cost.

(d) As a consequence of activities described in points (a) to (c), the retail com-
pany must perform some financial hedging to prevent (or better: to limit)
portfolio risk:

H =
NFc∑

j=1

Nh∑

h=1

[S(j, h)− PBM (h)] Bh(j, h) . (5)

where S(j, h) is the strike price of the j−th financial contract used to hedge
the retailer’s position with respect to the h−th hourly profile, and Bh(j, h)
is the corresponding bandwidth (in MWh).

From Eqs. (2) to (5) it turns then out that the profit of a generic power retailer
may be expressed as:

π = f(RSELL, CSP , CBIAS , H) = RSELL − CSP − CBIAS +H . (6)

3 The Optimization Model

Holding the assumptions made in the previous section, the activity on the Bal-
ancing Market becomes a key issue for the retailer, as illustrated in Figure 1.

The Balancing Market is the place where the load settled through contracts
on the spot market (solid black line on top graph) meets energy volumes de-
manded by consumers (dashed gray line on top graph): the difference among
those quantities is what is effectively traded on such market (centered graph
at the bottom of Figure 1), and it may led the retailer to attain either profits
(shaded gray area above x–axes), or losses (shaded gray area below x–axes).

The maximization of retailer’s profit is therefore a problem depending on the
bandwiths of energy settled on the physical market, and hedged through financial
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Fig. 1. Activity on the Balancing Market

contracts; the general optimization model for the retail company may be then
written as follows:

maxπ
s.t.

0 ≤ B(s, h) ≤ BMAX(s, h), s = 1, . . . , Ns; h = 1, . . . , Nh; (7)
0 ≤ Bh(j, h) ≤ BhMAX(j, h), j = 1, . . . , NFc; h = 1, . . . , Nh; (8)
CV aRα(Π) ≤ RL. (9)

Eqs (7) to (9) define a multi–period optimization problem, faced by the retailer
at each time h (h = 1, . . . , Nh), i.e. for each hourly profile.

In deepest detail, at each time h (h = 1, . . . , Nh), we will have Ns physical
constraints of type (7). Those contraints rule out the energy bandwith settled
with the generic s–th generation company to maintain non–negative, and to
stay under a maximum threshold level BMAX(s, h). The NFc constraints of
type (8), on the other hand, are the financial counterparts of (7): their presence
makes sense only within a deregulated envinroment, where the retailer needs
to hedge from perspective losses. Finally, constraints of type (9) are robustness
constraints.

The novelty of our approach, at this point, stands primarily in the way ro-
bustness constraints are posed, since:

(i) they force the overall Conditional Value at Risk, at the confidence interval
1−α, to lay down the value RL that represents the maximum loss the retailer
can sustain;
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(ii) they assume that CV aRα depends on the stochastic variable Π , being:

CV aRα(Π) = CVα {Π [PBM (h), E(i, h), B(s, h), Bh(j, h)]} , (10)
h = 1, . . . , Nh; i = 1, . . . , Nc;
s = 1, . . . , Ns; j = 1, . . . , NFc.

where PBM (h), E(i, h), B(s, h), and Bh(j, h) are the variables already in-
troduced and described in the previous section.

3.1 Expliciting CVaR Constraints

Type (9) constraints provide the general formulation of how CV aRα enters into
the optimization scheme. We now define:

PBM = {PBM (h)}h=1,...,Nh ; (11)
En = {E(i, h)}i=1,...,Nc; h=1,...,Nh . (12)

i.e. PBM is an array whose components are Nh realizations of the random
variable electricity price on the balancing market, observed from h = 1 to Nh,
and En is the Nc×Nh matrix whose elements are Nh realizations of the random
variable energy volume, which represents the energy demanded by each group
of final users. The rationale is that since prices vary along a frame horizon of
length Nh, we must consider Nh different possible realizations for such variable.
In a similar way, the retailer faces to Nc different types of consumers, and hence
to Nc energy volumes that, like the price, vary along time too. Using Eqs. (11)
and (12), we can then build L scenarios:

S� = {PBM�,En�}, � = 1, . . . , L ;

with associated probability P�, being
L∑

�=1

P� = 1. For sake of simplicity, here we

assume that S� are uniformly distributed random variables, but, obviously, more
sophisticated assumptions may be made. Hence, from (9) and (10) we derive the
following L×Nh×Nc×NFc+ 1 constraints for CV aRα:

ν +
L∑

�=1

P�t� ≤ RL ; (13)

1
α
{Π�[B(s, h), Bh(j, h)]− ν} ≤ t�, ∀�, s, j, h . (14)

with ν ≥ 0, � = 1, . . . , L, s = 1, . . . , Ns; j = 1, . . . , NFc, and h = 1, . . . , Nh. In
practice, this corresponds to explode Eq.(9) into two classes of constraints:

– the constraint given in Eq.(13), that fixes the contribution of each scenario,
weighted by the probability it has to really occur;
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– the L constraints given in Eq.(14), where the contribution of each contract
is defined as the best scenario outcome, provided the energy bandwiths to
be negotiated both in physical and financial market.

The robustness of constraints emerges in many ways. First of all, the suggested
scheme tends by construction to mitigate the typical effect of optimization mod-
els to find solutions that are “extreme”allocations. Additionally, the formulation
reveals particularly suitable to be adapted to multi–stage problems. This is a
highly desirable feature within the framework under examination, where retail-
ers manage physical and financial contracts at very different duration. Not less
importantly, the suggested scheme may be built directly from data, and hence
it is suitable to be data driven.

4 An Application

We now consider a toy simulation to give an idea about how the robust optimiza-
tion scheme works. To such purpose, we are going to write anew the optimization
problem for the retail company, giving an aggregated form to deterministic con-
straints provided by (7) and (8), and considering the exploded form of the robust
constraint given in (9):

maxπ
s.t.

0 ≤
Ns∑

s=1

Nh∑

h=1

B(s, h) ≤ B;

0 ≤
NFc∑

j=1

Nh∑

h=1

Bh(j, h) ≤ Bh;

ν +
L∑

�=1

P�t� ≤ RL;

1
α{Π�[B(s, h), Bh(j, h)]− ν} ≤ t�, ∀�, s, j, h .

where B and Bh are the maximum energy volumes (in MWh) that the retailer
can trade through physical and financial contracts, respectively.

Table 1 reports main features of the examined simulation.
In particular, the simulation involves robust constraints at 95% confidence

interval level, a time horizon of one year (Nh = 24× 365), while the maximum
exposure to loss has been set at 78000 Euro. It is also worthwhile to spend a
few words on parameter L, that expresses the number of scenarios to build. The

Table 1. Simulation main features

α Ns Nh NFc Nc L B Bh RL
(MWh) (MWh) Euro

5% 10 8760 20 10 7 5000 3000 78000
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value of L is apparently too low, but it is fully consistent with the perspectives
and the needs of typical retailers in real world allocation problems. As a matter
of fact, this is the very key issue, that justifies the adoption of a robust tractation
to the optimization problem: whereas the probabilistic approach needs a huge
amount of data to build proper statistical description of problem parameters, our
approach is data–driven, and it works with limited available knowledge, allow-
ing to create scenarios that are nothing but perturbations around the available
historical values of the observed variables. This made us possible to generate
S� = {PBM�,En�}, (� = 1, . . . , L), using historical data, and perturbing them
with a fraction 1/L of their overall variance.

Table 2 shows the results in the discussed case, and the comparison to those
obtained running a deterministic scheme without the insertion of any robust
constraint.

Table 2. Simulation results

Det. Sol. Rob. Sol. Delta %

RL (Cvar)= 78000 Euro
Average Profit [Euro] 8 603 656.11 8 576 042.59 -0.32%
CVaR [Euro] 101 473.00 78 000.00 -23.33%

Viewing at Table 2, one can immediately observe that the robust scheme al-
lows to bound the maximum loss to which the retailer is exposed: while RL is
inflated as a constraint into the robust problem, in the deterministic case the ex-
posure to risk is evaluated a posteriori, once the optimal solution has been found,
and it is generally higher than in the robust case. In the examined situation, for
instance, the robust solution leads to a reduction of 0.32% in the average profit,
but the deterministic solution requires from the retailer an exposure sensitively
greater than in the robust case (+23.33%).

5 Conclusive Remarks and Future Directions

We presented an optimization scheme which allows a realistic representation of
the allocation problem faced by retail companies which operate on deregulated
power markets.

Prior to restructuring, consumers were charged an all–inclusive price, covering
all aspects of utility service (generation, transmission, delivery, metering, billing,
and any ancillary costs). As energy markets have evolved in the late 1990s away
from cost–based transactions to competitive market–based transactions, the ex-
posure to market risks for the variable cost of supply has substantially increased.
As main consequence, the retailers in order to maximize their profit must de-
termine the optimal mix of energy bandwidth they have to trade both through
physical contract, and through financial contracts, to hedge from major risk
exposure.

Starting from this point, we have suggested a robust optimization framework
that makes retailers capable to manage both physical and financial risk, by
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creating joint scenarios of price–energy profiles. Actually, to the best of our
knowledge, this approach seems rather unexplored, and it is surely original in
the way robust constraints are explicited by way of Conditional Value at Risk.
The main advantages of such approach rely inside its tractability, as well as
in the possibility to be easily customizable to replicate significant observable
conditions.

More generally, with the scenarios approach inflated into the robust optimiza-
tion scheme, it is possible to assure a better awareness of the examined problem
in all its (uncertainty) aspects. Not less importantly, the suggested scheme may
be built directly from data, and hence it is suitable to be data driven.

Presently some unaddressed questions remain, although we have planned to
make them objects of future works:

(i) the convenience of the robust approach with respect to more traditional
counterparts, like stochastic and dynamic programming. Such convenience,
in particular, need to be explored under two different aspects: the reduction
of total performance, and the improvement in downside risk protection;

(ii) the theoretical characterization of the price of robustness in term of opti-
mality.
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Abstract. This paper investigates infinite horizon optimal control prob-
lems with fixed left endpoints with nonconvex, nonsmooth data. We de-
rive the nonsmooth maximum principle and the adjoint inclusion for the
value function as necessary conditions for optimality that indicate the
relationship between the maximum principle and dynamic programming.
The necessary conditions under consideration are extensions of those of
[8] to an infinite horizon setting. We then present new sufficiency condi-
tions consistent with the necessary conditions, which are motivated by
the useful result by [26] whose sufficiency theorem is valid for nonconvex,
nondifferentiable Hamiltonians. The sufficiency theorem presented in this
paper employs the strengthened adjoint inclusion of the value function
as well as the strengthened maximum principle. If we restrict our result
to convex models, it is possible to characterize minimizing processes and
provide necessary and sufficient conditions for optimality. In particular,
the role of the transversality conditions at infinity is clarified.

Keywords: Nonsmooth maximum principle; Infinite horizon; Value
function; Sufficiency; Transversality condition.

1 Necessary Condition for Optimality

Let [0,∞) be a half-open interval of the real line with the σ-algebra L of
Lebesgue measurable subsets of [0,∞). Denote the product σ-algebra of L and
the product σ-algebra Bm×Bn of Borel subsets of Rm×Rn by L ×Bm×Bn.
We are given L ×Bm×Bn-measurable functions L : [0,∞)×Rm×Rn → R and
f : [0,∞)× Rm × Rn → Rm, an L ×Bm-measurable subset Ω of [0,∞)× Rm

and a set-valued mapping U : [0,∞) ⇒ Rn. The t-section of Ω is denoted by
Ω(t), that is, Ω(t) = {x ∈ Rm | (t, x) ∈ Ω} for t ∈ [0,∞). The optimal control
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problem under investigation is the following one:

min J(x, u) :=
∫ ∞

0

L(t, x(t), u(t))dt

s.t. ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [0,∞),
x(0) = x,

u(t) ∈ U(t) a.e. t ∈ [0,∞),
x(t) ∈ Ω(t) for every t ∈ [0,∞).

(P∞
0 )

Here the minimization is taken over all locally absolutely continuous functions
x : [0,∞) → Rm and L -measurable functions u : [0,∞) → Rn satisfying the
constraint for the problem (P∞

0 ).
An ε-tube about the continuous function x : [0,∞)→ Rm is a set of the form

T ε = {(t, x) ∈ Ω | x ∈ x(t) + εB}

with ε > 0, where B is the open unit ball in Rm. A process on a given subinterval
I of [0,∞) is a pair of functions (x(·), u(·)) on I of which x : I → Rm is locally
absolutely continuous functions and u : I → Rn is a measurable function such that
the constraints (when I replaces [0,∞)) except for the initial condition in problem
(P∞

0 ) are satisfied and the integrand L( · , x(·), u(·)) is integrable on I. A process
(x(·), u(·)) on I isadmissible ifx(t0) = x,where t0 is the left endpointof I.Aprocess
on I is minimizing if it minimizes the value of the integral functional

∫

I Ldt over
all admissible processes on I. When I = [0,∞), we shall abbreviate the domain
on which processes are defined. In this section (x0(·), u0(·)) is taken to be a fixed
minimizing process on [0,∞) for (P∞

0 ) for which x0(·) is contained in some tube.
Now define the value function V : Ω → R ∪ {±∞} by

V (t, x) = inf
∫ ∞

t

L(s, x(s), u(s))ds,

where the infimum is taken over all processes (x(·), u(·)) on [t,∞) for which
x(t) = x ∈ Ω(t). When no such processes exist, the value is supposed to be
+∞ as usual. Throughout this paper, the generalized gradient of V (t, · ) at x is
denoted by ∂V (t, x).

1.1 Maximum Principle with an Infinite Horizon

For notational simplicity, define the function f̃ by

f̃ =
(
L
f

)

: [0,∞)× Rm × Rn → Rm+1.

The basic hypotheses to derive necessary conditions for optimality are as follows:

Hypothesis 1. (i) graph (U) is L ×Bn-measurable;
(ii) f̃(t, · , u) isLipschitz of rank k(t) onΩ(t) for every (t, u) ∈ graph (U)withk(·)

integrable on [0,∞) and f̃( · , x, · ) is L ×Bn-measurable for every x ∈ Rm;
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(iii) There exists an integrable function ϕ on [0,∞) such that

|L(t, x0(t), u)| ≤ ϕ(t) for every (t, u) ∈ graph (U);

(iv) There exists an ε-tube Ω′ ⊂ Ω about x0(·) such that V (t, · , ) is Lipschitz
of rank K on Ω′(t) for every t ∈ [0,∞).

The Lipschitz continuity of the value function in the condition (iv) of the
hypothesis is very mild if the existence of minimizing processes is guaranteed.
In fact it is almost superfluous, since one is most often interested in examples
of the optimal control problem in which Ω = [0,∞)×Rm; As seen in Section 3,
the condition (iv) of the hypothesis is implied from the other conditions.

The Pontryagin (or pseudo) Hamiltonian for (P∞
0 ) is given by

HP (t, x, u, p) = 〈p, f(t, x, u)〉 − L(t, x, u).

Theorem 2. Suppose that Hypothesis 1 is satisfied. Then there exists a locally
absolutely continuous function p : [0,∞)→ Rm with the following properties:

(i) −ṗ(t) ∈ ∂xHP (t, x0(t), u0(t), p(t)) a.e. t ∈ [0,∞);
(ii) HP (t, x0(t), u0(t), p(t)) = max

u∈U(t)
HP (t, x0(t), u, p(t)) a.e. t ∈ [0,∞);

(iii) −p(t) ∈ ∂V (t, x0(t)) a.e. t ∈ [0,∞);
(iv) −p(0) ∈ ∂V (0, x).

It should be noted that the maximum principle is relevant to the (true) Hamil-
tonian for (P∞

0 ) given by

H(t, x, p) = sup
u∈U(t)

{〈p, f(t, x, u)〉 − L(t, x, u)}.

Corollary 1. The condition (i) of Theorem 2 implies that

ṗ(t) ∈ ∂xH(t, x0(t), p(t)) a.e. t ∈ [0,∞).

Note that the assertions of the theorem do not exclude the possibility that
−p(t) �∈ ∂V (t, x0(t)) for every t in some null set in [0,∞). We seek then additional
hypotheses under which the condition (iii) of the theorem can be strengthened
to

−p(t) ∈ ∂V (t, x0(t)) for every t ∈ [0,∞). (1)

To this end, the argument of [8] is valid to the infinite horizon setting for ob-
taining the following result.

Corollary 2. The condition (iii) of Theorem 2 can be strengthened to the con-
dition (1) if the set-valued mapping ∂V ( · , x0(·)) : [0,∞) ⇒ Rm is upper semi-
continuous.
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2 Properties of the Value Function

We have assumed in Hypothesis 1(iv) that the value function is Lipschitz con-
tinuous. In Subsection 3.1, we demonstrate the Lipschitz continuity of the value
function under the existence of minimizing process for any initial point in time
and initial condition. For the finite horizon case, the result is well-known, but
some intricate arguments are involved for the infinite horizon case because the
finite horizon value functions are approximated to the infinite horizon value
function.

The convexity of the value function is proven in Subsection 3.2 under some
additional assumptions. It simplifies the adjoint inclusion for the value function
in Theorem 2 to the usual subgradient inclusions and enables one to characterize
minimizing process along with the concavity of the Hamiltonian as developed in
Section 5.

2.1 Lipschitz Continuity of the Value Function

Hypothesis 3. For every (t, x)∈Ω there exists a minimizing process (x̂(·), û(·))
on [t,∞) for the problem

min
∫ ∞

t

L(s, x(s), u(s))ds

s.t. ẋ(s) = f(s, x(s), u(s)) a.e. s ∈ [t,∞),
x(t) = x,

u(s) ∈ U(s) a.e. s ∈ [t,∞),
x(s) ∈ Ω(s) for every s ∈ [t,∞)

(P∞
t )

such that some ε-tube about x̂(·) is contained in Ω.

To guarantee the existence of a minimizing process for (P∞
t ), one needs convexity

assumptions on f̃ as in [2,3,4,5]. However, the existence of the minimizing process
(x0(·), u0(·)) for (P∞

0 ) implies that the above hypothesis is innocuous in the
following typical case in which f̃ is autonomous (independent of s), U(s) ≡ Û ⊂
Rn and Ω(s) ≡ Ω̂ ⊂ Rm. To see this, note that the process on [t,∞) defined by

(x̂(s), û(s)) = (x0(t− s), u0(t− s)) for s ∈ [t,∞)

is a minimizing process for problem (P∞
t ).

Theorem 4. Suppose that Hypotheses 1 and 3 is satisfied. Then V is measurable
on Ω and V (t, · ) is Lipschitz of rank K on Ω(t) for every t ∈ [0,∞).

2.2 Convexity of the Value Function

Define the set-mapping Γ̃ : Ω → R× Rm by

Γ̃ (t, x) = {(z, v) ∈ R× Rm | ∃u ∈ U(t) : z ≥ L(t, x, u), v = f(t, x, u)}.
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Hypothesis 5. (i) Ω(t) is convex for every t ∈ [0,∞).
(ii) Γ̃ (t, · ) : Ω(t) ⇒ Rm has the convex graph for every t ∈ [0,∞).

Hypothesis 5 is somewhat stronger than the standard convexity hypothesis guar-
anteeing the existence of a minimizing process that Γ̃ (t, · ) is convex-valued for
every t ∈ [0,∞). (See [2,3,4,5].) One of the sufficient conditions guaranteeing
Hypothesis 5 is the following:

Hypothesis 6. (i) Ω(t)× U(t) are convex for every t ∈ [0,∞);
(ii) L(t, · , · ) is convex on Ω(t)× U(t) for every t ∈ [0,∞).
(iii) f(t, · , U(t)) : Ω(t) ⇒ Rm has the convex graph for every t ∈ [0,∞);

Theorem 7. V (t, · ) is convex on Ω(t) for every t ∈ [0,∞) if Hypotheses 1, 3
and 5 are satisfied.

Corollary 3. The condition (iii) of Theorem 2 is strengthened to the condition
(1) if Hypotheses 1, 3 and 5 are satisfied.

3 Sufficient Conditions for Optimality

We now turn for the important issue of sufficient conditions : conditions that
assure that a given admissible process is in fact a solution of the problem. In this
section we present two sufficiency theorems: The first one is an extension of the
result by [26] to the infinite horizon setting that is consistent with the maximum
principle. The second one is novel in the literature in that the sufficient condition
is related to the adjoint inclusion of the value function and it is consistent with
the necessary condition of Theorem 2.

3.1 Sufficiency Theorems

Definition 1. An admissible process (x0(·), u0(·)) for (P∞
0 ) is a locally minimiz-

ing process if there exists some ε > 0 such that (x0(·), u0(·)) minimizes the func-
tional J(x, u) over all admissible processes (x(·), u(·)) satisfying x(t) ∈ x0(t)+εB
for every t ∈ [0,∞).

Hypothesis 8. (i) L(t, · , · ) is lower semicontinuous on Ω(t)×U(t) for every
t ∈ [0,∞).

(ii) f(t, · , · ) is continuous on Ω(t)× U(t) for every t ∈ [0,∞).
(iii) U(t) is closed for every t ∈ [0,∞) and graph (U) is L ×Bn-measurable.
(iv) For every t ∈ [0,∞) and for every bounded subset S of Rm × Rm, the set

{u ∈ U(t) | ∃(x, v) ∈ S : f(t, x, u) = v}

is bounded.

Theorem 9. Suppose that Hypothesis 8 is satisfied. Let (x0(·), u0(·)) be an ad-
missible process for (P∞

0 ) such that the ε-tube about x0(·) is contained in Ω.
Suppose that there exist a locally absolutely continuous function p : [0,∞)→ Rm

and a locally absolutely continuous m×m-symmetric matrix-valued function P
on [0,∞) with the following properties:
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(i) For every v ∈ εB and u ∈ U(t):

HP (t, x0(t) + v, u, p(t)− P (t)v)

≤ HP (t, x0(t), u0(t), p(t))− 〈ṗ(t) + P (t)ẋ0(t), v〉 + 1
2 〈v, Ṗ (t)v〉

a.e. t ∈ [0,∞);
(ii) For every η > 0 there exists some t0 ∈ [0,∞) such that t ≥ t0 implies

1
2 〈v, P (t)v〉 < 〈p(t), v〉+ η for every v ∈ εB.

Then (x0(·), u0(·)) is a minimizing process for (P∞
0 ).

Note that the condition (i) of the theorem implies the conditions (i) and (ii)
of Theorem 2. When the matrix-valued function P in the theorem happens to
be identically the zero matrix, the condition (i) of the theorem reduces to the
subgradient inequality for H :

H(t, x0(t) + v, p(t))−H(t, x0(t), p(t)) ≤ −〈ṗ(t), v〉 (2)

for every v ∈ Rm. The condition (2) is imposed also by [9] to obtain the suffi-
ciency result. This is, of course, satisfied if H(t, x, p(t)) is concave in x for every
t ∈ [0,∞). Thus, the condition (i) of the theorem can be viewed as a strength-
ening of the necessary condition (i) of Theorem 2. Moreover, if P = 0, then
the condition (ii) of the theorem is equivalent to the transversality condition at
infinity:

lim
t→∞ p(t) = 0.

For the differentiable case, sufficient conditions for optimality were given by
[11] under the hypothesis that the Hamiltonian HP is concave in (x, u), whose
result was extended by [20]. Thus, the above observation leads to an extension
of the Mangasarian sufficiency theorem with an infinite horizon:

Corollary 4. Suppose that Hypothesis 8 is satisfied and Ω(t) is convex for every
t ∈ [0,∞). Let (x0(·), u0(·)) be an admissible process for (P∞

0 ) such that the ε-
tube about x0(·) is contained in Ω and p : [0,∞) → Rm be a locally absolutely
continuous function with the following properties:

(i) H(t, · , p(t)) is concave on Ω(t) for every t ∈ [0,∞);
(ii) −ṗ(t) ∈ ∂xH(t, x0(t), p(t)) a.e. t ∈ [0,∞);
(iii) HP (t, x0(t), u0(t), p(t)) = H(t, x0(t), p(t)) a.e. t ∈ [0,∞);
(iv) lim

t→∞ p(t) = 0.

Then (x0(·), u0(·)) is a minimizing process for (P∞
0 ).

Consider the following transversality condition at infinity:

lim sup
t→∞

〈p(t), x(t) − x0(t)〉 ≥ 0 (3)
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for every admissible arc for (P∞
0 ). To obtain the sufficiency result, [20] imposed

the condition (3) in addition to the conditions (i) and (ii) of the corollary as well
as the differentiability assumption on f̃ and [9] assumed (3) for the nondifferen-
tiable nonconcave Hamiltonians along with the condition (2).

Note that the condition (2) is implied by the condition (iv) of the corollary if
every admissible arc is bounded. However, if admissible arcs are unbounded, this
condition is difficult to check in practice because it involves possible information
on the limit behavior of all admissible arcs. The condition (iv) of the corollary on
its own right needs no such information. For the derivation of it as a necessary
condition, see [1,12].

We provide a new sufficient condition in terms of the value function. Contrary
to Theorem 9, it does not need Hypothesis 8 and is consistent with the necessary
condition in Theorem 2.

Theorem 10. Let (x0(·), u0(·)) be an admissible process for (P∞
0 ) such that the

ε-tube about x0(·) is contained in Ω. Suppose that there exist a locally absolutely
continuous function p : [0,∞)→ Rm and a locally absolutely continuous m×m-
symmetric matrix-valued function P on [0,∞) with the following properties:

(i) For every v ∈ εB and u ∈ U(t):

HP (t, x0(t) + v, u, p(t)− P (t)v)

≤ HP (t, x0(t), u0(t), p(t))− 〈ṗ(t) + P (t)ẋ0(t), v〉 + 1
2 〈v, Ṗ (t)v〉

a.e. t ∈ [0,∞);
(ii) For every v ∈ εB:

V (t, x0(t) + v) ≤ V (t, x0(t))− 〈p(t) + P (t)x(t), v〉 + 1
2 〈v, P (t)v〉;

(iii) lim
t→∞V (t, x0(t)) = 0.

Then (x0(·), u0(·)) is a minimizing process for (P∞
0 ).

Note that when P = 0 in the theorem, the condition (ii) of the theorem reduces
to the subgradient inequality for V (t, · ):

V (t, x0(t) + v)− V (t, x0(t)) ≤ −〈p(t), v〉

for every v ∈ Rm. This is, indeed, satisfied if V (t, x) is convex in x for every t ∈
[0,∞). Thus, the conditions (ii) of the theorem can be viewed as a strengthening
of the necessary condition (ii) of Theorem 2.

Corollary 5. Suppose that Ω(t) is convex for every t ∈ [0,∞) and V (t, · ) is
convex on Ω(t) for every t ∈ [0,∞). Let (x0(·), u0(·)) be an admissible process
for (P∞

0 ) such that the ε-tube about x0(·) is contained in Ω and p : [0,∞)→ Rm

be a locally absolutely continuous function with the following properties:
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(i) H(t, · , p(t)) is concave on Ω(t) for every t ∈ [0,∞);
(ii) −ṗ(t) ∈ ∂xH(t, x0(t), p(t)) a.e. t ∈ [0,∞);
(iii) HP (t, x0(t), u0(t), p(t)) = H(t, x0(t), p(t)) a.e. t ∈ [0,∞);
(iv) −p(t) ∈ ∂xV (t, x0(t)) for every t ∈ [0,∞);
(v) lim

t→∞V (t, x0(t)) = 0.

Then (x0(·), u0(·)) is a minimizing process for (P∞
0 ).

The role of the limit behavior of the value function in the condition (v) of the
corollary was also exploited by [6] and [22] in the derivation of the sufficiency
result for the convex problem of calculus of variations.

4 Necessary and Sufficient Condition for Optimality

In this section we derive the necessary and sufficient conditions for optimality
under convexity hypotheses. For the finite horizon case, [16] obtained necessary
and sufficient conditions for optimality under convexity hypotheses. The convex
model examined here clarifies the role of the Hamiltonian and the value function
for a complete characterization of optimality. Furthermore, we investigate the
role of transversality conditions at infinity and derive them as a necessary and
sufficient condition for optimality.

4.1 Concavity of the Hamiltonian

The concavity of the Hamiltonian is subtler than the convexity of the value
function. Strictly speaking, Hypothesis 6 guaranteeing the convexity of the value
function V (t, x) in x is insufficient to establish the concavity of the Hamiltonian
H(t, x, p) in x.

Note that for every (t, x) ∈ Ω and p ∈ Rm:

H(t, x, p) = sup
v∈Rm

{〈p, v〉 − F (t, x, v)}.

Thus, H(t, x, p) is concave in x if F (t, x, v) is convex in (x, v). However, the con-
vexity of F (t, · , · ) does not necessarily follows from Hypothesis 6. To overcome
this difficulty, we must strengthen Hypothesis 6 according to [9].

Hypothesis 11. (i) Ω(t)× U(t) is convex for every t ∈ [0,∞);
(ii) L(t, · , · ) is convex on Ω(t) × U(t) for every t ∈ [0,∞) and L(t, x, · ) is

nondecreasing on U(t) for every (t, x) ∈ Ω;
(iii) f(t, · , ·) : Ω(t)× U(t)→ Rn is concave for every t ∈ [0,∞);
(iv) f(t, · , U(t)) : Ω(t) ⇒ Rm has the convex graph for every t ∈ [0,∞);
(v) For every v ∈ f(t, x, U(t)) and u ∈ U(t) with v ≤ f(t, x, u) and x ∈ Ω(t)

there exists some u′ ∈ U(t) such that u′ ≤ u and v = f(t, x, u′).

As shown by [9], Hypothesis 11 is sufficient for F (t, · , · ) to be a convex function
on Ω(t)×Rm for every t ∈ [0,∞), from which the concavity of the Hamiltonian
follows.
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Theorem 12. H(t, · , p) is concave on Ω(t) for every (t, p) ∈ [0,∞) × Rm if
Hypothesis 11 is satisfied.

Corollary 6. Suppose that Hypothesis 11 is satisfied. An admissible process
(x0(·), u0(·)) is a minimizing process for (P∞

0 ) if and only if the following con-
ditions are satisfied:

(i) There exists a locally absolutely continuous function p : [0,∞)→ Rm such
that:
(a) −ṗ(t) ∈ ∂xH(t, x0(t), p(t)) a.e. t ∈ [0,∞);
(b) HP (t, x0(t), u0(t), p(t)) = H(t, x0(t), p(t)) a.e. t ∈ [0,∞);
(c) −p(t) ∈ ∂V (t, x0(t)) for every t ∈ [0,∞);

(ii) lim
t→∞V (t, x0(t)) = 0.

4.2 Transversality Condition at Infinity

Hypothesis 13. (i) Ω(t) ⊂ Rm
+ for every t ∈ [0,∞);

(ii) 0 ∈ U(t) a.e. t ∈ [0,∞);
(iii) f(t, 0, 0) = 0 a.e. t ∈ [0,∞);
(iv) L(t, 0, 0) ≤ 0 a.e. t ∈ [0,∞);
(v) L(t, · , u) is nondecreasing on Ω(t) for every u ∈ U(t) a.e. t ∈ [0,∞).

Corollary 7. Suppose that Hypotheses 11 and 13 are satisfied. An admissible
process (x0(·), u0(·)) is a minimizing process for (P∞

0 ) if and only if there exists
a locally absolutely continuous function p : [0,∞)→ Rm such that:

(i) −ṗ(t) ∈ ∂xH(t, x0(t), p(t)) a.e. t ∈ [0,∞);
(ii) HP (t, x0(t), u0(t), p(t)) = H(t, x0(t), p(t)) a.e. t ∈ [0,∞);
(iii) −p(t) ∈ ∂V (t, x0(t)) for every t ∈ [0,∞);
(iv) lim

t→∞〈p(t), x0(t)〉 = 0.

References

1. Aseev, S.M., Kryaziimskiy, A.: The Pontryagin Maximum Principle and Transver-
sality Conditions for a Class of Optimal Control Problems with Infinite Time Hori-
zons. SIAM J. Control Optim. 43, 1094–1119 (2004)

2. Balder, E.J.: An Existence Result for Optimal Economic Growth Problems. J.
Math. Anal. Appl. 95, 195–213 (1983)

3. Bates, G.R.: Lower Closure Existence Theorems for Optimal Control Problems
with Infinite Horizon. J. Optim. Theory Appl. 24, 639–649 (1978)

4. Baum, R.F.: Existence Theorems for Lagrange Control Problems with Unbounded
Time Domain. J. Optim. Theory Appl. 19, 89–116 (1976)

5. Bell, M.L., Sargent, R.W.H., Vinter, R.B.: Existence of Optimal Controls for Con-
tinuous Time Infinite Horizon Problems. Internat. J. Control 68, 887–896 (1997)

6. Benveniste, L.M., Scheinkman, J.A.: Duality Theory for Dynamic Optimization
Models of Economics: The Continuous Time Case. J. Econ. Theory 27, 1–19 (1982)

7. Clarke, F.H.: Optimization and Nonsmooth Analysis. John Wiley & Sons, New
York (1983)



282 N. Sagara

8. Clarke, F.H., Vinter, R.B.: The Relationship between the Maximum Principle and
Dynamic Programming. SIAM J. Control Optim. 25, 1291–1311 (1987)

9. Feinstein, C.D., Luenberger, D.G.: Analysis of the Asymptotic Behavior of Opti-
mal Control Trajectories: The Implicit Programming Problem. SIAM J. Control
Optim. 19, 561–585 (1981)

10. Halkin, H.: Necessary Conditions for Optimal Control Problems with Infinite Hori-
zon. Econometrica 42, 267–272 (1974)

11. Mangasarian, O.L.: Sufficient Conditions for the Optimal Control of Nonlinear
Systems. SIAM J. Control Optim. 4, 139–151 (1966)

12. Michel, P.: On the Transversality Condition in Infinite Horizon Optimal Problems.
Econometrica 50, 975–984 (1982)

13. Mlynarska, E.: Dual Sufficient Optimality Conditions for the Generalized Problem
of Bolza. J. Optim. Theory Appl. 104, 427–442 (2000)

14. Nowakowski, A.: The Dual Dynamic Programming. Proc. Amer. Math. Soc. 116,
1089–1096 (1992)

15. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mischenko, E.F.: The
Mathematical Theory of Optimal Processes. John Wiley & Sons, New York (1962)

16. Rockafellar, R.T.: Conjugate Convex Functions in Optimal Control and the Cal-
culus of Variations. J. Math. Anal. Appl. 32, 174–222 (1970)

17. Rockafellar, R.T.: Optimal Arcs and the Minimum Value Function in Problems of
Lagrange. Trans. Amer. Math. Soc. 180, 53–83 (1973)

18. Rockafellar, R.T.: Existence Theorems for Generalized Control Problems of Bolza
and Lagrange. Adv. Math. 15, 312–333 (1975)

19. Sagara, N.: Nonconvex Variational Problem with Recursive Integral Functionals in
Sobolev Spaces: Existence and Representation. J. Math. Anal. Appl. 327, 203–219
(2007)

20. Seierstadt, A., Sydsæter, K.: Sufficient Conditions in Optimal Control Theory.
Internat. Econ. Rev. 18, 367–391 (1977)

21. Takekuma, S.-I.: Support Price Theorem for the Continuous Time Model of Capital
Accumulation. Econometrica 50, 427–442 (1982)

22. Takekuma, S.-I.: On Duality Theory for the Continuous Time Model of Capital
Accumulation. Hitotsubashi J. Econ. 25, 145–154 (1984)

23. Vinter, R.B.: New Results on the Relationship between Dynamic Programming
and the Maximum Principle. Math. Control, Signals Systems 1, 97–105 (1988)

24. Ye, J.J.: Nonsmooth Maximum Principle for Infinite–Horizon Problems. J. Optim.
Theory Appl. 76, 485–500 (1993)

25. Zeidan, V.: A modified Hamilton–Jacobi Approach in the Generalized Problem of
Bolza. Appl. Math. Optim. 11, 97–109 (1984)

26. Zeidan, V.: First and Second Order Sufficient Conditions for Optimal Control and
the Calculus of Variations. Appl. Math. Optim. 11, 209–226 (1984)

27. Zeidan, V.: New Second-Order Optimality Conditions for Variational Problems
with C2-Hamiltonians. SIAM J. Control Optim. 40, 577–609 (2000)



Modeling the Mobile Oil Recovery Problem

as a Multiobjective Vehicle Routing Problem
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Abstract. The Mobile Oil Recovery (MOR) unit is a truck able to pump
marginal wells in a petrol field. The goal of the MOR optimization Pro-
blem (MORP) is to optimize both the oil extraction and the travel costs.
We describe several formulations for the MORP using a single vehicle
or a fleet of vehicles. We have also strengthened them by improving the
subtour elimination constraints. Optimality is proved for instances close
to reality with up to 200 nodes.

Keywords: Vehicle routing problem, prize-collecting, multiobjective.

1 Introduction

Much effort has been made to increase the oil production in Brazil though the
use of new technologies. As a consequence, the Brazilian oil production has met
the country’s need in 2006 and the country is globally self sufficient. The Rio
Grande do Norte basin has been exploited for the last 30 years and about 98%
of the oil wells are pumped using artificial lift systems. One such system is the
Mobile Oil Recovery (MOR) unit. It consists of a truck equipped with a pumping
system. The unit starts its tour at the depot, then it pumps several wells before
returning to the depot at the end of the day. Whenever the unit’s tank is full, an
auxiliary vehicle is used to transfer the oil from the MOR unit to its own tank
and to carry it to the depot. Thus, the MOR unit capacity can be considered
unlimited.

The MOR optimization Problem (MORP) is a multiobjective problem which
consists in finding a set of wells to be pumped in a working day to maximize the
oil extraction and to minimize the travel time. The two objectives are opposite,
one pushing to increase profit and the other to reduce costs. With one MOR
unit, the problem is close to the Selective Traveling Salesman Problem which is
also called Orienteering Problem or Maximum Collection Problem [8]. With a
fleet of vehicles, the problem becomes a Vehicle Routing Problem (VRP) close
to the Prize-Collecting VRP [2]. For further investigation on routing problems,
readers are referred to the following works: the state of the art on exact and

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 283–292, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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approximated methods for the VRP and its variants are found in [14] and an
overview covering about 500 papers on classical routing problems are found in
[9]. For multiobjective solutions strategies on routing problems, see [3,7].

A mathematical formulation for the MORP is proposed in [13] for a single
MOR unit. Heuristics applications of the MORP are presented in [1,13]. We
propose several formulations for the MORP with a single vehicle or a fleet of ve-
hicles. They are strengthened by improving the subtour elimination constraints.
Instances with up to 200 nodes, close to reality, are solved.

The paper is organized as follows: the problem definition and formulations
for one unit are presented in Section 2. Sections 3 and 4 are devoted to the
MORP with several units. Computational results are shown in Section 5 and
final remarks are made in Section 6.

2 Formulations Using One Vehicle

The geographical data (roads, wells and depot) are modeled as an undirected
graph G = (N,E). G is preprocessed to build a complete digraph G′ = (V,A)
where V is the set of wells and the depot v0. Let dij be the shortest distance
from i to j, ∀(i, j) ∈ A, and let s be the MOR unit average speed. Thus, for
every arc of G′, the travel time tij is computed as tij = dij/s.

Let t′i be the total operation time at well i (time to connect the unit, to
pump, and to disconnect the unit) and let pi be its oil production. Let P and
T be respectively the total oil production and the total working time of a MOR
unit. Moreover, T is the maximal time an MOR unit can work in a day. Wells
can be exploited only once a day as in the previous works [1,13].

Given K, the total number of MOR units, the MORP consists in defining one
circuit τ = {v0, vσ1, vσ2, ..., vσk, v0} for each MOR unit, where σ is the position
of wells in the circuit to be exploited in a day, such that P is maximized and T
is minimized. The time limit T ≤ T has to be satisfied.

As far as we know, only one formulation has been proposed in the literature
for the MORP [13]. It considers one vehicle and the optimization is done in two
phases: first, the maximal amount of oil is computed, and second, the shortest
route to extract this amount is computed. In this section, our contributions
improve the formulation proposed in [13] as follows: (i) remove the constraint
ensuring the MOR unit returns to the depot because it is redundant, (ii) simplify
the flow conservation constraints, (iii) test different strategies to eliminate invalid
subtours, and (iv) strengthen the subtour elimination constraints.

Let fij ∈ {0, 1} be the decision variable on the choice of arc (i, j) and let
xi be the binary variables which specify if well i is exploited or not. The first
optimization phase for the MORP is given as follows:

max P =
∑

i∈V \{v0}
pi · xi s.t. (1)

∑

i∈V \{v0}
t′i · xi +

∑

(i,j)∈A

tij · fij ≤ T (2)
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∑

j:(j,i)∈A

fji −
∑

j:(i,j)∈A

fij = 0 ∀i ∈ V \{v0} (3)

∑

j:(j,i)∈A

fji = xi ∀i ∈ V \{v0} (4)

∑

j∈V

f0j = 1 (5)

(subtour eliminations constraints) (6)

xi ∈ {0, 1} ∀i ∈ V (7)

fij ∈ {0, 1} ∀(i, j) ∈ A (8)

The objective function (1) aims at minimizing the oil extraction. Inequality (2)
limits the working time (travel and operation time) to T . The flow conservation
constraints are (3) and (4). Restriction (5) guarantees the tour starts at the
depot. Variables xi and fij are respectively defined in Constraints (7) and (8).
We discuss in Section 2.1 the use of several subtour elimination constraints:
those of Miller and Tucker and Zemlin (MTZ) [5,11], and those of Gavish and
Graves using either aggregated (GGA) or disaggregated flow (GGD) [6]. GGA
constraints are used in [13].

The objective of the second optimization phase is to minimize the working
time (9) subject to Constraints (3)–(8) and (10). Constraint (10) restricts the
total production to be equal to the total optimal prize P ∗ obtained in the first
phase.

min T =
∑

i∈V \{v0}
t′i · xi +

∑

(i,j)∈A

tij · fij s.t. (9)

∑

i∈V \{v0}
pi · xi = P ∗ (10)

Constraints (3)–(8).

2.1 Subtour Eliminations Constraints

A subtour is defined by any ordered subset of vertices. For the MORP, only
subtours starting and ending at the depot v0 are valid. Subtour constraints have
been evaluated in the literature for the TSP problem, see e.g. [15]. MTZ, GGA
and GGD subtour elimination constraints for the MORP, and some improve-
ments are described below.

An upper bound on the number M of wells that can be exploited in a working
day can be computed. Considering the working time of the MOR unit, a simple
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procedure consists in computing M by sorting the wells in increasing order of
operation time t′i [13]. Thus, M is such that:

M∑

i=1

t′i ≤ T ≤
M+1∑

i=1

t′i. (11)

We propose to strengthen the value of M by using also the minimum travel
time to arrive at each node. Moreover, the vehicle must return to the depot and
the minimal time to return to the depot is also considered. M is given as:

M∑

i=1

(

t′i +min
j∈V
{tji}

)

≤ T −min
j∈V
{tj0} ≤

M+1∑

i=1

(

t′i +min
j∈V
{tji}

)

(12)

Lifted Miller and Tucker and Zemlin Constraints. The Miller, Tucker
and Zemlin constraints define a topological order to eliminate invalid subtours.
Variables ui state the order well i appears in the tour. However, for the MORP,
the depot appears twice (at the beginning and at the end). Thus, one can du-
plicate the depot and work on a support graph. We consider instead the depot
only at the beginning of the topological design. This can be done since the flow
structure defined by variables fij and xi, and Constraints (3)–(5) guarantees the
return to the depot. The corresponding MTZ constraints for the MORP is given
in Equations (13)–(14).

ui − uj +M · fij ≤M − 1 ∀(i, j) ∈ A, j �= {v0} (13)

0 ≤ ui ≤M ∀i ∈ V (14)

There is O(|V |2) of such constraints, improved by M . They can be lifted using
the same ideas as Desrochers and Laporte [5]. It consists in adding a valid non-
negative term αjifji to the Inequalities (13): ui−uj +M ·fij +αji ·fji ≤M−1. If
fji = 0, then αji may take any value. Suppose now fji = 1. Then, the MOR unit
exploits well j �= v0 before well i, ui = uj + 1. Thus, fji = 1 implies fij = 0 due
to Constraints (3) and (4). By substitution, we obtain αji ≤M − 2. The larger
αji, the stronger is the lift. Thus, αji = M − 2. A lifted version of Constraints
(13) is given in Inequalities (15).

ui − uj +M · fij + (M − 2) · fji ≤M − 1 ∀(i, j) ∈ A, j �= v0 (15)

Gavish and Graves Constraints. The Gavish and Graves [6] approach re-
moves invalid subtours by building a network flow. A flow is sent to the nodes of
the tour. Each node consumes one unit. In disaggregated flow, a specific flow is
sent from the source to each node [4,10]. Otherwise, if the flow is not specified,
it is an aggregated flow.

Let yij be the flow variable on arc (i, j). Thus, GGA constraints for the MORP
are given in Equations (16)–(18). Constraints (16) are the flow conservation



Modeling the MORP as a Multiobjective VRP 287

constraints. Inequalities (17) state a flow uses the arc (i, j) if it is selected. These
constraints are strengthened by using M . In this strategy, there are O(|V |2)
constraints and variables.

∑

j:(j,i)∈A

yji −
∑

j:(i,j)∈A

yij = xi ∀i ∈ V \{v0} (16)

yij ≤M · fij ∀(i, j) ∈ A, (17)

yij ≥ 0 ∀(i, j) ∈ A (18)

The GGD version is given in Constraints (19)–(22). Let yk
ij be the variable

specifying if flow for node k traverses arc (i, j) or not. Constraints (19) are
the flow conservation constraints. Equations (20) state that a flow unit is sent
from the source to each node k. Restrictions (21) specify that flow for node
k traverses arc (i, j) if and only if it is used. This strategy implies O(|V |3)
constraints and variables. Usually, it produces a better linear relaxation than
using the aggregated flow.

∑

j:(i,j)∈A

yk
ij −

∑

j:(j,i)∈A

yk
ji = 0 ∀k ∈ V \{v0}, ∀i ∈ V \{v0, k} (19)

∑

j:(0,j)∈A

yk
0j = xk ∀k ∈ V \{v0} (20)

yk
ij ≤ fij ∀k ∈ V \{v0}, ∀(i, j) ∈ A (21)

yk
ij ≥ 0 ∀k ∈ V \{v0}, ∀(i, j) ∈ A (22)

3 A Three-Indexed Formulation Using Several Vehicles

Let xk
i be a decision variable that specifies if well i is exploited by the vehicle k

or not. Variables fk
ij ∈ {0, 1} state if vehicle k exploits well j after well i or not.

P (K) is the total profit collected using the K MOR units. All other terms are
defined in Section 2. The three-indexed formulation is as follows:

max P (K) =
∑

i∈V \{v0}
pi ·

K∑

k=1

xk
i s.t. (23)

∑

i∈V \{v0}
t′i · xk

i +
∑

(i,j)∈A

tij · fk
ij ≤ T ∀k = 1, ...,K (24)

∑

j:(j,i)∈A

fk
ji −

∑

j:(i,j)∈A

fk
ij = 0 ∀k = 1, ...,K,∀i ∈ V \{v0, k} (25)
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∑

j:(0,j)∈A

fk
0j ≤ 1 ∀k = 1, ...,K (26)

∑

j:(j,i)∈A

fk
ji = xk

i ∀k = 1, ...,K, ∀i ∈ V \{v0} (27)

K∑

k=1

xk
i ≤ 1 ∀i ∈ V \{v0} (28)

∑

j:(j,i)∈A

yji −
∑

j:(i,j)∈A

yij =
K∑

k=1

xk
i ∀i ∈ V \{v0} (29)

yij ≤M ·
K∑

k=1

fk
ij ∀(i, j) ∈ A, j �= v0 (30)

yij ≥ 0 ∀(i, j) ∈ A (31)

xk
i ∈ {0, 1} ∀k = 1, ...,K,∀i ∈ V \{v0} (32)

fk
ij ∈ {0, 1} ∀k = 1, ...,K,∀(i, j) ∈ A (33)

Restrictions (24) limit the units work in a day. The flow conservation cons-
traints are defined in (25) and (26). Constraints (27) ensure that unit k pass
though an arc (i, j) only if it exploits well j. Inequalities (28) specify that at most
one unit visits a well in a day. Constraints (29) and (30) are the GGA subtour
elimination constraints. Constraints (31)–(33) are the variables definition. This
formulation contains O(|V 3|) variables and constraints. The GGA constraints
are chosen according to the computational results for one vehicle (Section 5).
Obviously, other strategies could be used as well.

4 A Two-Indexed Formulation Using Several Vehicles

We do not explicitly define which unit exploits well i as every unit has the
same characteristics (homogeneous fleet). A similar idea was previously used,
for example, in [12]. Variables fij and xi are defined in Section 2. Additionally,
variables di specify the date (time) well i is visited by a vehicle in a day. The
two-indexed formulation is given as follows:

max P =
∑

i∈V \{v0}
pi · xi s.t. (34)

∑

j:(j,i)∈A

fji −
∑

j:(i,j)∈A

fij = 0 ∀i ∈ V \{v0} (35)
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∑

j:(j,i)∈A

fji = xi ∀i ∈ V \{v0} (36)

∑

j∈V

f0j = K (37)

di−dj +(T + t′i + tij) ·fij +(T − t′j− tji) ·fji ≤ T ∀(i, j) ∈ A, i, j �= v0 (38)

di ≥ t0i · f0i +
∑

j �=v0

(t0j + t′j + tji) · fji ∀i ∈ V \{v0} (39)

di ≤ T − (t′i + ti0) · fi0 −
∑

j �=v0

(t′i + tij + t′j + tj0) · fij ∀i ∈ V \{v0} (40)

xi ∈ {0, 1} ∀i ∈ V (41)

fij ∈ {0, 1} ∀(i, j) ∈ A (42)

di ≥ 0 ∀i ∈ V \{v0} (43)

The flow conservation is given in Constraints (35). Restrictions (36) ensure arc
(i, j) is used if well j is exploited. Inequalities (37) state K MOR units are used.
Constraints (38) link the time node j is visited, to the time node i is visited, and
to the selection of arc (i, j). This is an adaptation of the lifted MTZ constraints
(see Section 2.1). Inequalities (39) and (40) define generalized lower and upper
bounds on the time node i is visited. Inequalities (39) link the time node i is
visited to variables fji. At most one of the arcs entering node i is used. Thus, di

is at least equal to the minimal time required to arrive at node i, either by going
from v0 to i or by going from j to i. The same idea applies to the Inequalities
(40). Variables xk

i , fk
ij and di are defined respectively by Constraints (41) to (43).

The two-indexed formulation has O(|V |2) variables and constraints. MTZ is used
since the time constraints definition is straightforward and the formulation has
still O(|V |2) variables.

5 Computational Results

The computational experiments were carried out on an Intel Core 2 Duo with
2.66 GHz clock and 4Gb of RAM memory, using CPLEX 11 under default pa-
rameters. Instances were generated using a geographical information system to
simulate real situations. Comparison among the proposed formulations are mea-
sured in terms of time to prove optimality and of linear relaxation.

In the Tables 1 and 2, each line corresponds to an instance. For each instan-
ce, the working day length (L) in minutes, the number of wells (|V |) and its
optimal production (P∗) are given. For each formulation, the linear relaxation
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value (RL∗), the time (T ) spent by the unit in the optimal solution, the time
(time(s)) required to prove optimality in seconds (rounded up), and the number
of nodes (nodes) explored in the branch-and-bound tree are presented. The sym-
bol (−) means the solver did not prove optimality because it ran out of memory.
When the optimal solution is unknown, the best integer solution found so far is
identified by “(≥ value)”.

Table 1 summarizes the results for the formulations for one vehicle using the
MTZ, GGA or GGD subtour elimination constraints. From the computational
results, GGA proves optimality faster than MTZ and GGD for 9 instances. MTZ
proves optimality faster than GGA and GGD for 7 instances. In spite of having
the worst linear relaxation, MTZ is able to prove optimality for instances with
up to 200 nodes. GGD consumes a lot of time even if it produces good linear
relaxation. An interesting result on the linear relaxation is found for L = 480
and |V | = 20: the GGA linear relaxation is better than the linear relaxation of
GGD. This happens here because the value of M is equal to the optimal amount
of wells exploited in a day.

We have also run the second optimization phase for all instances presented in
Table 1. The time T was only improved for the instance with L = 480 and |V | =
120 (T ∗ = 479.5 instead of T = 480). Thus, results of the second optimization
phase were not tested for several vehicles. Even so, it remains valuable since it
takes place in the global decision process of the problem.

The results for the two-indexed and the three-indexed formulations are pre-
sented in Table 2. The number of vehicles used (K) and the sum of the total
time spent by all the MOR units (T ′) are given. The three-indexed formulation
produces a better linear relaxation than the two-indexed formulation. However,

Table 1. The first optimization phase for the MORP using one vehicle

MTZ GGA GGD
L |V | P∗ RL∗ T time nodes RL∗ T time nodes RL∗ T time nodes

480 20 12.60 17.21 477 2 1292 12.92 477 0 1 13.41 477 11 17
480 30 15.88 18.38 477 5 2337 17.19 477 6 979 16.61 477 841 191
480 40 15.88 18.38 477 7 2081 17.19 477 6 963 16.61 477 30137 255
480 60 15.84 18.43 467 15 3203 16.86 467 3 90 - - - -
480 80 9.97 13.80 479 83 5429 11.67 479 32 1410 - - - -
480 120 18.73 19.09 480 73 2996 19.05 480 204 1910 - - - -
480 160 19.10 19.47 480 240 2095 19.46 480 2540 3378 - - - -
480 200 19.64 19.82 480 62 3256 19.77 480 20626 2360 - - - -
960 20 24.45 32.11 952 817 915570 28.39 952 98 14807 25.65 960 452 264
960 30 31.65 35.93 950 424 228949 35.29 950 446 46898 32.43 950 5313 527
960 40 19.76 24.17 909 406 40244 23.84 909 135 10898 22.34 909 63631 2401
960 60 31.65 35.96 950 974 301668 35.18 950 377 33257 32.26 - - -
960 80 37.70 38.05 959.5 3240 57320 38.00 959.5 866 21595 - - - -
960 120 37.99 38.41 960 2764 36803 38.42 960 872 6716 - - - -
960 160 40.05 40.19 960 377 5893 40.16 960 585 877 - - - -
960 200 40.05 40.19 960 420 6672 40.16 960 789 951 - - - -
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Table 2. The first optimization phase for the MORP using several vehicles

Two-indexed formulation Three-indexed formulation
K L |V | P ∗ RL∗ T ′ time (s) nodes RL∗ T ′ time (s) nodes

2 480 10 20.97 27.74 911 2 8416 24.09 870 22 9139
2 480 20 24.45 29.55 953 74 41047 25.08 953 4 487
2 480 30 31.16 35.79 941 51 51661 33.78 941 1149 75216
2 480 40 31.16 35.79 941 646 84815 33.78 941 1315 64397
2 480 50 28.99 34.70 928 654 94922 30.93 928 7929 101935
2 480 60 30.39 35.78 946 326 57405 32.99 946 1619 60724
2 480 70 25.88 32.86 916 2 3374 30.43 916 1219 26108
2 480 80 19.35 27.03 881 78 69927 22.86 876 16426 313421
2 960 20 ≥ 46.51 55.89 - - - 52.75 - - -
2 960 30 ≥ 62.26 69.44 - - - 68.57 - - -
3 480 10 29.82 29.82 909 1 503 29.82 901 2 639
3 480 20 33.72 40.42 943 553 704266 36.73 943 27788 214856
3 480 30 45.49 52.31 943 2394 2269664 49.86 - - -
3 960 20 62.16 62.16 933 134 138791 62.16 - - -
3 960 30 ≥ 88.78 98.44 - - - 97.63 - - -

the two-indexed formulation performs better to compute the optimal solution.
In addition to the number of wells, the problem becomes more difficult when the
number of vehicles increases. Moreover, the working day limit also contributes
to the difficulty of the problem. Results suggest it is suitable to use a small
time window (480 minutes). The three-indexed formulation found sometimes a
smaller value of T ′ as shown in bold.

6 Concluding Remarks

Several formulations for the MORP are proposed in this work and the first
ever results using several vehicles are presented. Additionally, we proposed to
improve the subtour constraints by taking advantage of the time window. Thus,
instances close to reality (up to 200 wells) are solved. Among the formulations
for one vehicle, GGA performs globally better than MTZ and GGD to prove
optimality. For several vehicles, the two-indexed formulation is faster to prove
optimality in spite of weaker linear relaxations.

Computational experiments show that the time window restriction plays a
key role in computing an optimal solution: the smaller the time window, the
easier the problem to solve. Optimal solutions can be computed for medium-
sized instances with two MOR units. When using three vehicles, this does not
hold as the CPU time increases dramatically for small instances.

The larger instances used here are larger than the problems considered by the
company in the Rio Grande do Norte Basin. Consequently, the oil company is
now able to compute the optimal solution for the MORP instead of using solu-
tions given by heuristics. It could be interesting in future work to investigate
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instances characteristics to specify situations where the second optimization
phase becomes really useful. Moreover, for large time windows, we could in-
vestigate an approach to split it.

Acknowledgments. We thank Petrobras staff for providing valuable informa-
tions about the MOR unit and its usage in a petrol field.
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Abstract. If we trade in financial markets we are interested in buying
at low and selling at high prices. We suggest an active trading algorithm
which tries to solve this type of problem. The algorithm is based on reser-
vation prices. The effectiveness of the algorithm is analyzed from a worst
case and an average case point of view. We want to give an answer to
the questions if the suggested active trading algorithm shows a superior
behaviour to buy-and-hold policies. We also calculate the average com-
petitive performance of our algorithm using simulation on historical data.

Keywords: online algorithms, average case analysis, stock trading, trad-
ing rules, performance analysis, competitive analysis, trading problem,
empirical analysis.

1 Introduction

Many major stock markets are electronic market places where trading is carried
out automatically. Trading policies which have the potential to operate without
human interaction are of great importance in electronic stock markets. Very
often such policies are based on data from technical analysis [8, 6, 7]. Many
researchers have also studied trading policies from the perspective of artificial
intelligence, software agents and neural networks [1, 5, 9].

In order to carry out trading policies automatically they have to be converted
into trading algorithms. Before a trading algorithm is applied one might be in-
terested in its performance. The performance analysis of trading algorithms can
basically be carried by three different approaches. One is Bayesian analysis where
a given probability distribution for asset prices is a basic assumption. Another
one is assuming uncertainty about asset prices and analyzing the trading algo-
rithm under worst case outcomes; this approach is called competitive analysis.
The third one is a heuristic approach where trading algorithms are designed
and the analysis is done on historic data by simulation runs. In this paper we
apply the second and the third approach in combination. We consider a multiple
trade problem and analyze an appropriate trading algorithm from a worst case
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point of view. Moreover we evaluate its average case performance empirically
and compare it to other trading algorithms.

The reminder of this paper is organized as follows. In the next section the
problem is formulated and a worst case competitive analysis of the proposed
trading algorithm is performed. In Section 3 different trading policies for the
multiple trade problem are introduced. Section 4 presents detailed experimental
findings from our simulation runs. We finish with some conclusions in the last
section.

2 Problem Formulation

If we trade in financial markets we are interested in buying at low prices and
selling at high prices. Let us consider the single trade and the multiple trade
problem. In a single trade problem we search for the minimum price m and the
maximum price M in a time series of prices for a single asset. At best we buy
at price m and sell later at price M . In a multiple trade problem we trade assets
sequentially in a row, e.g. we buy some asset u today and sell it later in the
future. After selling asset u we buy some other asset v and sell it later again;
after selling v we can buy w which we sell again, etc. If we buy and sell (trade)
assets k times we call the problem k-trade problem with k ≥ 1.

As we do not know future prices the decisions to be taken are subject to
uncertainty. How to handle uncertainty for trading problems is discussed in [3].
In [2] and [4] online algorithms are applied to a search problem. Here a trader
owns some asset at time t = 0 and obtains a price quotation m ≤ p(t) ≤ M at
points of time t = 1, 2, . . . , T . The trader must decide at every time t whether
or not to accept this price for selling. Once some price p(t) is accepted trading
is closed and the trader’s payoff is calculated. The horizon T and the possible
minimum and maximum prices m and M are known to the trader. If the trader
did not accept a price at the first T − 1 points of time he must be prepared to
accept some minimum price m at time T . The problem is solved by an online
algorithm.

An algorithm ON computes online if for each j = 1, . . . , n−1, it computes an
output for j before the input for j + 1 is given. An algorithm computes offline if
it computes a feasible output given the entire input sequence j = 1, . . . , n − 1.
We denote an optimal offline algorithm by OPT . An online algorithm ON is
c-competitive if for any input I

ON(I) > 1/c ∗OPT (I). (1)

The competitive ratio is a worst-case performance measure. In other words, any
c-competitive online algorithm is guaranteed a value of at least the fraction 1/c
of the optimal offline value OPT (I), no matter how unfortunate or uncertain
the future will be. When we have a maximization problem c ≥ 1, i.e. the smaller
c the more effective is ON . For the search problem the policy (trading rule) [2]
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accept the first price greater or equal to reservation price p∗ =
√

(M ∗m)

has a competitive ratio cs =
√

M
m where M and m are upper and lower bounds

of prices p(t) with p(t) from [m,M ]. cs measures the worst case in terms of
maximum and minimum price.

This result can be transferred to k-trade problems if we modify the policy to

buy the asset at the first price smaller or equal and sell the asset at the
first price greater or equal to reservation price p∗ =

√
(M ∗m).

In the single trade problem we have to carry out the search twice. In the worst
case we get a competitive ratio of cs for buying and the same competitive ratio of
cs for selling resulting in an overall competitive ratio for the single trade problem
of ct = cscs = M/m. In general we get for the k-trade problem a competitive
ratio of ct(k) =

∏
i=1,...,k (M(i)/m(i)). If m and M are constant for all trades

ct(k) = (M/m)k. The ratio ct can be interpreted as the rate of return we can
achieve by buying and selling assets.

The bound is tight for arbitrary k. Let us assume for each of k trades we have
to consider the time series (M, (M ∗m)1/2,m,m, (M ∗m)1/2,M). OPT always
buys at price m and sells at price M resulting in a return rate of M/m; ON
buys at price (M ∗m)1/2 and sells at price (M ∗m)1/2 resulting in a return rate
of 1, i.e. OPT/ON = M/m = c. If we have k trades OPT will have a return of
(M/m)k and ON of 1k , i.e. OPT (k)/ON(k) = (M/m)k = c(k).

In the following we apply the above modified reservation price policy to mul-
tiple trade problems.

3 Multiple Trade Problem

In a multiple trade problem we have to choose points of time for selling current
assets and buying new assets over a known time horizon. The horizon consists
of several trading periods i of different types p; each trading period consists of
a constant number of h days. We differ between p = 1, 2, . . . , 6 types of periods
with length h from {7, 14, 28, 91, 182, 364} days e.g. period type p = 6 has length
h = 364 days; periods of type p are numbered with i = 1, . . . , n(p). There is a
fixed length h for each period type p, e.g. period length h = 7 corresponds to
period type p = 1, period length h = 14 corresponds to period type p = 2, etc.
For a time horizon of one year, for period type p = 1 we get n(1) = 52 periods
of length h = 7, for type p = 2 we get n(2) = 26 periods of length h = 14, etc.

We may choose between three trading policies. Two elementary ones are Buy-
and-Hold (B+H), a passive policy, and Market Timing (MT ), an active policy.
The third one is a random (Rand) policy. As a benchmark we use an optimal
offline algorithm called Market (MA). We assume that for each period i there is
an estimate of the maximum price M(i) and the minimum price m(i). Within
each period i = 1, . . . , n(p) we have to buy and sell an asset at least once.
The annualized return rate R(x), with x from {MT,Rand, B +H,MA} is the
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performance measure used. At any point of time of the horizon the policy either
holds an asset or an overnight deposit.

In order to describe the different policies we define a holding period with
respect to MT . A holding period is the number of days h between the purchase
of asset j and the purchase of another asset j′ (j′ �= j) by MT . Holding periods
are determined by either reservation prices RPj(t) which give a trading signal
or when the last day T of the period is reached.

MARKET TIMING (MT )

MT calculates reservation prices RPj(t) for each day t for each asset j. At
each day t, MT must decide whether to sell asset j or to hold it another day
considering the reservation prices. Each period i, the first offered price pj(t) of
asset j with pj(t) ≥ RPj(t) is accepted by MT and asset j is sold. The asset
j∗, which is bought by MT is called MT asset. MT chooses the MT asset j∗ if
RPj∗(t) − pj∗(t) = max {RPj(t)− pj(t)|j = 1, . . . ,m} and pj∗(t) < RPj∗(t). If
there was no trading signal in a period related to reservation prices then trading
is done on the last day T of a period. In this case MT must sell asset j and
invest in asset j′ at day T . The holding period of MT showing buying (Buy)
and selling (Sell) points and intervals with overnight deposit (OD) is shown in
Fig. 1.

Fig. 1. Holding period for MT and for Rand

RANDOM (Rand)

Rand will buy and sell at randomly chosen prices pj(t) within the holding period
of MT (cf. Fig. 1).

BUY AND HOLD (B + H)

B +H will buy at the first day t of the period and sell at the last day T of the
period.

MARKET (MA)

To evaluate the performance of these three policies empirically we use as a bench-
mark the optimal offline policy. It is assumed that MA knows all prices pj(t)
of a period including also these which were not presented to MT if there were
any. In each period i MA will buy at the minimum price pmin > m(i) and sell
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Fig. 2. Holding period for MA

at the maximum possible price pmax < M(i) within the holding period of MT
(cf. Fig. 2).

The performance of the investment policies is evaluated empirically. Clearly,
all policies cannot beat the benchmark policy MA.

4 Experimental Results

We want to investigate the performance of the trading policies discussed in
Section 3 using experimental analysis. Tests are run for all p = 1, 2, . . . , 6 pe-
riod types with the number of periods n(p) from {52, 26, 13, 4, 2, 1} and period
length h from {7, 14, 28, 91, 182, 364} days. The following assumptions apply for
all tested policies:

1. There is an initial portfolio value greater zero.
2. Buying and selling prices pj(t) of an asset j are the closing prices of day t.
3. At each point of time all money is invested either in assets or in 3% overnight

deposit.
4. Transaction costs are 0.0048% of the market value but between 0.60 and

18.00 Euro.
5. When selling and buying is on different days the money is invested in

overnight deposit.
6. At each point of time t there is at most one asset in the portfolio.
7. Each period i at least one buying and one selling transaction must be exe-

cuted. At the latest on the last day of each period asset j has to be bought
and on the last day it has to be sold.

8. In period i = 1 all policies buy the same asset j on the same day t at the
same price pj(t); the asset chosen is the one MT will chose (MT asset).

9. In periods i = 2, . . . , n(p)−1 trades are carried out according to the different
policies.

10. In the last period i = n(p) the asset has to be sold at the last day of that
period. No further transactions are carried out from there on.

11. If the reservation price is calculated over h days, the period length is (also)
h days.

We simulate all policies using historical XETRA DAX data from the interval
2007.01.01 until 2007.12.31. This interval we divide into n(p) periods where
n(p) is from {52, 26, 13, 4, 2, 1} and p is from {7, 14, 28, 91, 182, 364}. With this
arrangement we get 52 periods of length 7 days, 26 periods of length 14 days,
etc. We carried out simulation runs in order to find out
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(1) if MT shows a superior behaviour to buy-and-hold policies
(2) the influence of m and M on the performance of MT
(3) the average competitive ratio for policies for MA and MT .

Two types of buy-and-hold policies are used for simulation; one holds the
MT asset within each period (MTB+H) and the other holds the index over all
periods (IndexB+H) of a simulation run. Thus, MTB+H is synchronized with
the MT policy, i.e, MTB+H buys on the first day of each period the same asset
which MT buys first in this period (possibly not on the first day) and sells this
asset on the last day (note that this asset may differ from the one MT is selling
on the last day) of the period. Using this setting we compare both policies related
to the same period. IndexB+H is a common policy applied by ETF investment
funds and it is also often used as a benchmark although it is not synchronized
with the MT policy. In addition to these policies also the random policy Rand
is simulated. Rand buys the same asset which MT buys on a randomly chosen
day within a holding period.

We first concentrate on question (1) if MT shows a superior behaviour to the
policies MTB+H and IndexB+H . For calculating the reservation prices we use
estimates from the past, i.e. in case of a period length of h days m and M are
taken from the prices of these h days which are preceding the actual day t∗ of
the reservation price calculation, i.e. m = min {p(t)|t = t∗ − 1, t∗ − 2, . . . , t∗ − h}
and M = max {p(t)|t = t∗ − 1, t∗ − 2, . . . , t∗ − h}. In Table 1 the trading results
are displayed considering also transaction costs. The return rates are calculated
covering a time horizon of one year. For the three active policies (MA, MT ,
Rand) the transaction costs are the same because all follow the holding period
of MT ; in all these cases there is a flat minimum transaction fee.

Table 1. Annualized return rates for different period lengths

Historic Annualized Returns Including Transaction Costs

Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) = 52 n(14) = 26 n(28) = 13 n(91) = 4 n(182) = 2 n(364) = 1

MA 418.18% 138.40% 201.61% 47.93% 72.95% 61.95%
MT 41.08% 1.37% 54.86% 6.08% 32.39% 31.35%

MTB+H 9.70% 0.50% 17.18% 15.80% 45.30% 35.29%
IndexB+H 20.78% 20.78% 20.78% 20.78% 20.78% 20.78%

Rand -23.59% -21.23% 17.18% -18.23% 6.20% 15.42%

MT dominates MTB+H and IndexB+H in two cases (1 and 4 weeks). MTB+H

dominates MT and IndexB+H in two cases (6 and 12 months). IndexB+H dom-
inates MT and MTB+H in two cases (2 weeks and 3 months). MT generates
the best overall annual return rate when applied to 4 weeks. MTB+H generates
the worst overall annual return rate when applied to 2 weeks. MTB+H policy
improves its performance in comparison to IndexB+H and MT policy propor-
tional to the length of the periods. We might conclude the longer the period the
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better the relative performance of MTB+H . MT outperforms IndexB+H in four
of six cases and it outperforms MTB+H in three of six cases; MT and MTB+H

have the same relative performance. If the period length is not greater than 4
weeks MT outperforms MTB+H in all cases. If the period length is greater than
4 weeks MTB+H outperforms MT in all cases. IndexB+H outperforms MTB+H

in three of six cases. If we consider the average performance we have 27.86% for
MT , 20.78% for IndexB+H , and 20.63% for MTB+H . MT is not always the best
but it is on average the best. From this we conclude that MT shows on average
a superior behaviour to buy-and-hold policies under the assumption that m and
M are calculated by historical data.

In general we would assume that the better the estimates of m and M the
better the performance of MT . Results in Table 1 show, that the longer the
periods the worse the relative performance of MT . This might be due to the fact
that for longer periods historical m and M are worse estimates in comparison
to those for shorter periods. In order to analyze the influence of estimates of m
and M we run all simulations also with the observed m and M of the actual
periods, i.e. we have optimal estimates. Results for optimal estimates are shown
in Table 2 and have to be considered in comparison to the results for historic
estimates shown in Table 1.

Now we can answer question (2) discussing the influence of m and M on the
performance of MT . The results are displayed in Table 2. It turns out that in
all cases the return rate of policy MT improves significantly when estimates of
m and M are improved. For all period lengths now MT is always better than
MTB+H and IndexB+H . From this we conclude that the estimates of m and
M are obviously of major importance for the performance of the MT policy.
Now we concentrate on question (3) discussing the average competitive ratio for
policies MA and MT . We now compare the experimental competitive ratio cec

to the analytical competitive ratio cwc. To do this we have to calculate OPT
and ON for the experimental case and the worst case. We base our discussion
on the return rate as the performance measure. We assume that we have precise
forecasts for m and M .

A detailed example for the evaluation of the competitive ratio is presented
in Table 3 considering a period length of 12 months. In this period six trades
were executed using reservation prices based on the clairvoyant test set. The
analytical results are based on the values of m and M for each holding period.

Table 2. Annualized returns for optimal historic estimates

Clairvoryant Annualized Returns Including Transaction Costs

Policy 1 Week 2 Weeks 4 Weeks 3 Months 6 Months 12 Months
n(7) = 52 n(14) = 26 n(28) = 13 n(91) = 4 n(182) = 2 n(364) = 1

MA 418.18% 315.81% 280.94% 183.43% 86.07% 70.94%
MT 102.60% 87.90% 76.10% 81.38% 55.11% 54.75%

MTB+H 9.70% -4.40% 22.31% 19.79% 45.30% 35.29%
IndexB+H 20.78% 20.78% 20.78% 20.78% 20.78% 20.78%

Rand -23.59% -101.3% -10.67% 47.37% 46.08% 15.42%
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Table 3. Periodic results for period length one year

Clairvoyant Data Analytical Results Experimental Results

# Trades Holding m M cwc = Buy at Sell at Periodic cex =
n(364) = 1 Period M/m MA/MT Return MA/MT

1st trade Week 1-14 37.91 43.23 1.1403 1.0072
MA 37.91 43.23 1.1403
MT 37.91 42.92 1.1322

2nd trade Week 14-24 34.25 38.15 1.1139 1.0069
MA 34.25 38.15 1.1139
MT 34.25 37.89 1.1063

3rd trade Week 24-25 13.54 13.69 1.0111 1.0000
MA 13.54 13.69 1.0111
MT 13.54 13.69 1.0111

4th trade Week 25-30 33.57 35.73 1.0643 1.0167
MA 33.57 35.73 1.0643
MT 34.13 35.73 1.0469

5th trade Week 30-46 51.23 58.86 1.1489 1.0646
MA 51.23 58.86 1.1489
MT 52.37 56.52 1.0792

5th trade Week 46-52 82.16 89.4 1.0881 1.0061
MA 82.16 89.4 1.0881
MT 82.66 89.4 1.0815

Table 4. Competitive ratio and annualized return rates

Clairvoyant Data Analytical Results Experimental Results

Period Length # Trades OPT/ON MA MT MA/MT cex/cwc

12 Months 6 1.7108 71.08% 54.89% 1.2950 75.69%

6 Months 7 1.8624 86.24% 55.28% 1.5601 83.77%

3 Months 18 2.8387 183.87% 81.82% 2.2473 79.16%

4 Weeks 38 3.8185 281.85% 77.02% 3.6594 95.83%

2 Weeks 48 4.1695 316.95% 89.05% 3.5592 85.36%

1 Week 52 4.1711 317.11% 103.84% 3.0538 73.21%

The analytical results are based on the consideration that MA achieves the best
possible return and MT achieves a return of zero. E.g. for the first trade MA
achieves a return rate of 14.03% and MT achieves a return rate of 0% i.e. MT
achieves absolutely 14.03% less than MA and relatively a multiple of 1.1403.
The experimental results are also based on the consideration that MA achieves
the best possible return and MT now achieves the return rate generated during
the experiment. E.g. for the first trade MA achieves a return rate of 1.1403
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or 14.03% and MT achieves a return rate of 1.1322 or 13.22%. We compared
the analytical results with the experimental results based on annualized return
rates for the period lengths 1, 2, 4 weeks, 3, 6, and 12 months. The overall
competitive ratio is based on period adjusted annual return rates. The results
for all period lengths are presented in Table 4. Transaction costs are not taken
into account in order not to bias results. As the policies are always invested there
is no overnight deposit. E.g. For the period of 12 months the analytical worst
case ratio OPT/ON is 1.7108 and the average experimental ratio MA/MT is
1.2950. The values of the competitive ratios for the other period lengths are also
given in Table 4. The return of MT reached in the experiments reaches at least
27.33%, at most 77.22% and on average 45.67% of the return of MA.

5 Conclusions

In order to answer the three questions from section 4 twelve simulation runs were
performed. MT outperforms buy-and-hold in all cases even when transaction
costs are incorporated in the clairvoyant test set. Tests on historical estimates
of m and M show that MT outperforms buy-and-hold in one third of the cases
and also on average. We conclude that when the period length is small enough
MT outperforms B +H .

It is obvious that the better the estimates of m and M the better the perfor-
mance of MT . Results show that the shorter the periods, the better are estimates
by historical m and M . As a result, the performance of MT gets worse the longer
the periods become.

In real life it is very difficult to get close to the (analytical) worst cases. It
turned out that the shorter the periods are the less MT achieves in comparison
to MA. A MT trading policy which is applied to short periods leads to small
intervals for estimating historical m and M . In these cases there is a tendency to
buy too late (early) in increasing (decreasing) markets and to sell too late (early)
in decreasing (increasing) markets due to unknown overall trend directions, e.g.
weekly volatility leads to wrong selling decisions during an upward trend.

The paper leaves also some open questions for future research. One is that of
better forecasts of future upper and lower bounds of asset prices to improve the
performance of MT . The suitable period length for estimating m and M is an
important factor to provide a good trading signal, e.g. if the period length is h
days estimates for historical m and M were also be calculated over h days. Sim-
ulations with other period lengths for estimating m and M could be of interest.
Moreover, the data set of one year is very small. Future research should consider
intervals of 5, 10, and 15 years.
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Abstract. This study considers nurse scheduling problem in seven-days-
three-week operations under an arrangement called 4-day workweek. A
computer-assisted scheduling program has been proposed to schedule
nurses with multiple shifts. The program has been developed in Delphi
7.0 and includes a scheduling module which schedules nurses for three
weeks on the basis of the weekday and weekend shift nursing require-
ments. The program is significantly beneficial for scheduling of large
numbers of nurses and providing optimal three weekly schedules in a
reasonable time and provides a faster response, a reduced cost as com-
pared to human experts and a number of practical features.

Keywords: Novel approach, Nurse scheduling, Flexible workweek.

1 Introduction

Many operations which have switched to a compressed workweek (CW) cite
higher morale and productivity, decreases in turnover, absenteeism, overtime,
requests for days off, tardiness, work commuting and easier recruitment [1]. CWs
have gained much popularity in the workplaces. CW scheduling is crucial for
efficient nursing management and a type of shift scheduling that concerns deals
with matching weekday/weekend demand and resources, the resource being the
nurses to be scheduled.

Much of the workforce scheduling literature is on single-shift operations un-
der the conventional five-day workweek (see [2-6]). However, more and more
seven-days-a-week operations are switching to novel workweeks such as three-
day and four-day workweeks [1]. Recently, there has been a lot of interest in
alternative work schedules, including 4-day workweeks. This research interest
was illustrated by Alfares [6, 7], Narasinhan [8], Burns, Narasimhan, and Smith
[9], Lankford [10], Hung [11], Hung and Emmons [12], Nanda and Browne [13].
There is workforce scheduling in a compressed workweek arrangements used in
many 7-days-a-week operations: the 3-4 workweek (see Arnold and Mills [14],
Poor [15], Steward and Larsen [16], Hung [17] Narasimhan [18] Billionnet [19]).
However, these mentioned authors have scheduled personnel with either by hand
or mathematical programming models. To find robust and acceptable solutions
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for the problems within an affordable time period is very important especially
real world conditions. Many problems of service industry remain with difficulties
to be solved within a reasonable time due to the complexity and dynamic nature
of the service systems. Because of this reason, service systems such as hospital
need more efficient and rapid computer-assisted scheduling programs.

The objective of this study is to describe and report the development pro-
cess of the nurse scheduling program for compressed workweek schedules. The
used algorithm allocates the workforce demands for days-on and days-off, assigns
shifts to the schedule subject to demands and the shift change constraints and
assigns off-days on the schedule subject to off-day and workstretch constraints.
The advantage of the proposed computer program is to obtain feasible schedules
easily and quickly from one week to the next week. If you run the program several
times, the program gives different schedule. With the help of the program, the
multiple-shift workforce scheduling model under the compressed workweek prob-
lem gets easily solved. Especially, the larger number of workforces, the harder
solution is obtained. The proposed approach helps to find well-designed work
schedules in a reasonable time.

2 Nurse Scheduling Environment

The algorithm provides optimal solution for the CW problem under these as-
sumptions; A week runs from Sunday to Saturday. There are 3 shifts (Morning-
Mid-Night) each day- Shifts may overlap. There must be at least Dj nurses on
duty on shift j on a weekday and at least E j nurses on duty on shift j on a
weekend day. It is assumed that Dj ≥ Ej, j =1,2,3 ., Each nurse works only one
shift per day. A nurse is said to be off on a day if the nurse does not work on
any shift on that day. With the 4-day workweek, each nurse must work four days
and receive three off-days each week. A nurse must receive at least one off-day
before changing shifts. In addition, in a planning horizon of B weeks plus one
day (i.e. Sunday of week 1 to Sunday of week (B+1), each nurse must receive
at least A out of the B weekends off. The objective is to minimize the workforce
size subject to satisfying the above staffing requirements and the workrules.
The program is first to find the smallest workforce size and then create an
off-day and shift assignment in such a way that the resulting schedule will be
feasible. The program calls Sat of week q and Sun of week (q +1) weekend q,
(q =1......,B).

The proposed program has been programmed in Borland Delphi 7.0 and if
reader wants to see the code, it is supplied by author. Borland Delphi 7.0 is
a complete environment for the visual design, compilation, and debugging of
Windows applications. The program has been tested on a Pentium IV 3.06 Ghz
(512 MB RAM). To obtain a feasible schedule, Hung’s algorithm [11] calls for
at least 30 minutes for a small size problem by hand whereas our program
only requires a few seconds. The feasibility of these solutions can be confirmed
by weekend and weekday requirement assignment and equality to the target
requirements.
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Illustrative example: P = 3 (shifts), (A, B) = (1, 3) (at least one out of
the three weekends off). Assume that the nurse requirements are D1=6, D2=5,
D3=3, E1=5, E2=5, E3=3. The developed program computes the smallest work-
force as D = 14 , E =11 and Workforce = 24.

We should use the following example to illustrate how steps of the algorithm
are performed by the developed program. In the step 1, workforce size is com-
puted and in the user interface, “0” represents off-days, “1” represents shift 1,
“2” represents shift 2 and “3” represents shift 3. There are six requirement fields.
Nurse requirements for each shift are obtained from the staff nurse or manager.
In step 1, the smallest workforce size is computed by program. The smallest
workforce size is calculated based on Hung’s algorithm [11] that derived from
literature [4, 5]. In Step 2, Off-weekends are assigned. In this step, (W – E )
nurses take weekend 1 off, the next (W – E ) nurses take weekend 2 off, and so
on until (W – E ) nurses have been assigned to take weekend B off, where we
wrap around (i.e. nurse 1 follows nurse W) when necessary. In step 3, Off-Fridays
are assigned. Just after Step 2, in any week q, a nurse belongs to one of the four
types; Type 1 is off on Sunday and off on Saturday. Type 2 is off on Sunday and
at work on Saturday. Type 3 is at work on Sunday and off on Saturday. Type 4
is at work on Sunday and on Saturday. In each week, the program assigns Fri as
an off-day until (W – D) off-Fridays are given out, giving first priority to Type
4 nurses and second priority to Type 2 nurses. In step 4, additional off-weekdays
are assigned. In each week, nurses take additional off-weekdays. If there are Type
2 nurses without an off-Friday, program assigns to these nurses Tue and Wed
off. In step 5, Necessary weekend shifts and some weekday shifts are assigned.
For the week 1. On Sun (Sunday) of week 1, program select Ej on-duty nurses
who have not been assigned shifts on that day to shift j .

The program considers those Type 2 and Type 3 nurses concerned in week 1
in Step 4. Arbitrarily it associates each Type 2 with a Type 3 nurse. If a Type 3
nurse is on shift j on Sun, program gives nurse on shift j on Tue and Wed, and
associated Type 2 nurse work on shift j on Mo, Th, Fr and weekend 1. For the
week q (q = 2,....B + 1). The develop program sequentially works from i = 2. On
weekend (i–1), it assigns just enough nurses who are on duty on the weekend to
shift j to satisfy staffing requirements Ej . For i≤B , the program considers those
Type 2 and Type 3 nurses concerned in week q in Step 4. Program associates
each Type 2 with a Type 3 nurse. If a Type 3 nurse is on shift j on Sun of week
q, program gives work on shift j on Tue and Wed and associated Type 2 nurse
work on shift j on Mon, Thu, Fri and weekend i . In step 6, Necessary weekday
shifts are assigned. Some shift assignments have been already made on the ith
day, Sun≤i≤Thu. There are nurses who have been assigned shifts on the ith
day and who are also on duty on the (i+1)st day, but have not yet received
shift assignments. If a nurse is on shift jon the ith day, program assigns the
nurse to shift jon the (i+1)st day so that the nurse does not change shifts. In
according to ergonomic rules, it is strongly desired that a nurse must be assigned
same shifts consecutively. There is a small percent of consecutive days-on. It is
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Fig. 1. A completed schedule for illustrative example

very normal assignment policy. This approach is get on well with ergonomic rule
which support balancing among nurses.

Figure 1 displays a schedule generated by the developed program. There may
be some nurses who have not been assigned weekday shifts. If a nurse is unas-
signed between two-off-days, program assigns nurse to shift j on the day(s) be-
tween. If a nurse is unassigned between an off-day and shift j , program assigns
nurse to shift on the day(s) between. Program doesn’t take into account nurses
preferences for shifts or off-days on given days. If it does, it is nearly impossible
to obtain an optimal schedule in this scheduling environment.

3 Conclusion

A new computer-assisted nurse scheduling program for multiple-shift workforce
scheduling model under the compressed workweek has been just developed and
presented. In the program, nurses are given 3 off days and 4 on days per week.
The model assumes 3-workweek. The proposed program produces a schedule
satisfying the daily demand while ensuring that the schedule is feasible, every
nurse has at least Aout of B weekends off, each nurse takes exactly 4 days
per from Sunday to Saturday, there are at least one day off between different
shifts. The program was tested and our results were optimal like as Hung’s
algorithm.
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Abstract. Usually, discrete optimization problems (DOPs) from appli-
cations have a special structure, and the matrices of constraints for large-
scale problems have a lot of zero elements (sparse matrices). One of the
promising ways to exploit sparsity in the interaction graph of the DOP
is nonserial dynamic programming (NSDP), which allows to compute
a solution in stages such that each of them uses results from previous
stages. The drawback of NSDP methods consists on exponential time
and space complexity that is exponential in the induced width of the
DOP’s interaction graph. This causes an expediency and an urgency of
development of tools that could help to cope with this difficulty. In this
paper is shown that NSDP algorithm generates a family of related DOPs
that differ from each other in their right-hand sides. For solving this fam-
ily of related problems postoptimal and sensitivity analysis methods are
proposed.

1 Introduction

Solving discrete optimization (DO) problems (DOPs) can be a rather hard task.
Many real-life DOPs from applications contain a huge number of variables and/or
constraints that make the models intractable for currently available solvers. Usu-
ally, DOPs from OR applications have a special structure, and the matrices of
constraints for large-scale problems have a lot of zero elements (sparse matrices).
One of the promising ways to exploit sparsity in the interaction graph of DOP
is nonserial dynamic programming (NSDP), which allows to compute a solution
in stages such that each of them uses results from previous stages.

In this paper is shown that NSDP algorithms generate a family of related
DO problems that differ from each other in their right-hand sides. For solving
this family of related problems postoptimal and sensitivity analysis methods are
proposed.
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2 Discrete Optimization Problems and Their Graph
Representations

Consider a DOP with constraints:

max
X

f(X) = max
X

∑

k∈K

fk(Xk), (1)

subject to

AiSiXSi ≤ bi, i ∈M = {1, 2, . . . ,m}, (2)

xj = 0, 1, j ∈ N = {1, . . . , n}, (3)

where X = {x1, . . . , xn} is a set of discrete variables, functions fi(X i) are called
components of the objective function and can be defined in tabular form, Xk ⊂
X, k ∈ K = {1, 2, . . . , t} , t is a number of components of the objective function,

Si ⊆ {1, 2, . . . , n}, i ∈M. (4)

Definition 1. [3]. Variables x ∈ X and y ∈ X interact in DOP with con-
straints if they appear both either in the same component of objective function,
or in the same constraint (in other words, if variables both are either in a set
Xk, or in a set XSi).

Introduce a graph representation of a DOP. An interaction graph [3] represents
a structure of the DOP in a natural way.

Definition 2. [3]. The interaction graph of the DOP is called an undirected
graph G = (X,E), such that

1. Vertices X of G correspond to variables of the DOP;
2. Two vertices of G are adjacent iff corresponding variables interact.

Further, we shall use the notion of vertices that correspond one-to-one to vari-
ables.

Definition 3. The set of variables interacting with a variable x ∈ X, is denoted
as Nb(x) and called neighborhood of the variable x. For corresponding vertices
a neighborhood of a vertex v is a set of vertices of interaction graph that are
linked by edges with v. Denote the latter neighborhood as NbG(v).

Let S be vertex sets of the graph. Introduce the following notions:

Neighborhood of a set S ⊆ V , Nb(S) =
⋃

v∈S Nb(v)− S;
Closed neighborhood of a set S ⊆ V , Nb[S] = Nb(S) ∪ S.
If S = {j1, . . . , jq} then XS = {xj1 , . . . , xjq}.
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3 Graph Partitioning and Quotient Graphs

Let G = (X,E) be an interaction graph of a DOP.
An ordered partition Π = {XK1, XK2 , . . . , XKp} of a vertex set X is a

decomposition of X into ordered sequence of pairwise disjoint nonempty subsets
XKr , r = 1, . . . , p whose union is all of X and ∪p

r=1 Kr = N = {1, . . . , n}.
Finding algorithms that produce good partitions of graphs is more an art

than a science. Several related decision problems are NP -complete (see, e.g.,
Arnborg et al. [2]) and hence unlikely to be solvable by fast algorithms. In
practice one finds such partitions using greedy heuristics of minimum degree
type (see, e.g., [1]) or of nested dissection type (see, e.g., MeTiS [7]).

Any partition induces an equivalence relation. Given a graph G = (X,E),
let Π be an ordered partition on the vertex set X :

Π = {X1, X2, . . . , Xp}.

That is, ∪p
i=1Xi = X and Xi∩Xk = ∅ for i �= k. We define the quotient graph

(George & Liu [5]) of G with respect to the partition Π to be the graph

G/Π = (Π, E),

where (Xi, Xk) ∈ E if and only if NbG(Xi) ∩Xk �= ∅.
Taking advantage of indistinguishable variables (two variables are indistin-

guishable if they have the same closed neighborhood (Amestoy et al. [1]) it
is possible to compute a quotient graph, which is a more concise graph represen-
tation of the structure of the sparse problem. The quotient graph is formed by
merging all vertices with the same closed neighborhoods into a single meta-node.
Let Xk be a a block of a graph G (Arnborg, Corneil & Proskurowski [2]),
i.e., a maximal set of indistinguishable with x vertices. Clearly, the blocks of G
partition X since indistinguishability is an equivalence relation defined on the
original vertices.

Consider below a NSDP block procedure [3].

4 Nonserial Dynamic Programming Block Elimination
Scheme

One of the promising ways to exploit sparsity in the interaction graph of an opti-
mizationproblem is NSDP (Bertele&Brioschi [3],Neumaier&Shcherbina

[9]) which allows to compute a solution in stages such that each of them uses results
from previous stages.

This approach is used in Artificial Intelligence under the names ”variable
elimination” or ”bucket elimination”. NSDP being a natural and general de-
composition approach, considers a set of constraints and an objective function
as recursively computable function. This allows one to compute a solution in
stages such that each of them uses results from previous stages.
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The efficiency of this algorithm crucially depends on the interaction graph
structure of a DOP. The worst case performance of NSDP algorithms is exponen-
tial in the induced width of the interaction graph, also known as tree-width,
namely the size of the largest cluster in an optimal tree-embedding of a graph.

Consider a DOP with constraints (1), (2), (3). The NSDP procedure can
eliminate sets of variables ([3]).

Consider an ordered partition of the set X into blocks:

Π = (XK1 , . . . , XKp), p ≤ n.

For this ordered partition, the constrained DOP may be solved by NSDP.

A. Forward part
Consider first the block XK1 . Then

max
X
{CNXN |AiSiXSi ≤ bi, i ∈M, xj = 0, 1, j ∈ N} =

max
XK2 ,...,XKp

{CN−K1XN−K1 + h1(Nb(XK1)

|AiSiXSi ≤ bi, i ∈M − U1, xj = 0, 1, j ∈ N −K1}
where

U1 = {i : Si ∩K1 �= ∅} = U(K1)

and
h1(Nb(XK1)) = h1(XNb(K1)) =

max
XK1

{CK1XK1 |AiSiXSi ≤ bi, i ∈ U1, xj = 0, 1, j ∈ Nb[K1]}.

The first step of the block-elimination procedure consists in solving, using com-
plete enumeration of XK1 , the following optimization problem

h1(Nb(XK1)) = max
XK1

{CK1XK1 |AiSiXSi ≤ bi, i ∈ U1, xj = 0, 1, j ∈ Nb[K1]},

(5)
and storing the optimal partial solutions XK1 as a function of a neighborhood
XK1 , i.e., X∗

K1
(Nb(XK1)).

The maximization of f(X) over all feasible assignmentsNb(XK1), is called the
elimination of the block XK1 . The optimization problem left after the elimination
of XK1 , is:

max
X−XK1

{CN−K1XN−K1 + h1(Nb(XK1))}

s.t.
AiSiXSi ≤ bi, i ∈M − U1, xj = 0, 1, j ∈ N −K1.

Note that it has the same form as the original problem, and the tabular func-
tion h1(Nb(XK1)) may be considered as a new component of the new
objective function. Subsequently, the same procedure may be applied to the
elimination of the blocks XK2 , . . . , XKp , in turn. At each step j the new compo-
nent hj and optimal partial solutions X∗

Kj
are stored as functions of Nb(XKj |
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XK1 , . . . , XKj−1), i.e., the set of variables interacting with at least one variable
of XKj in the current problem, obtained from the original problem by the elim-
ination of XK1 , . . . , XKj−1 . Since the set Nb(XKp | XK1 , . . . , XKp−1) is empty,
the elimination of XKp yields the optimal value of objective f(X).

B. Backward part
This part of the procedure consists in the consecutive choice of X∗

Kp
, X∗

Kp−1
, . . . ,

X∗
K1

, i.e., the optimal partial solutions from the stored tables X∗
K1

(Nb(XK1)),
X∗

K2
(Nb(XK2 | XK1)), . . . , X∗

Kp
.

NSDP systematically proceeds with so called parametric DO problems [3].
An optimization problem is in parametric form when the objective function is
optimized not over entire set X , but only over a subset X − P , for all possible
assignments of the variables of P . Below we show that this parametric form
allows exploiting postoptimality and sensitivity tools in NSDP procedure.

5 Postoptimality Analysis

5.1 Postoptimality Analysis in DO

Decomposition and sensitivity analysis in DO are closely related. Sensitivity
analysis follows naturally from the duality theory. Decomposition methods con-
sist of generating and solving families of related DO problems that have the
same structure but differ as the values of coefficients. Sensitivity analysis allows
using information obtained during solving one DO problem of the family of re-
lated DO problems in solving other problems of this family. Due to the lack of
full-fledged duality theory in DO, sensitivity analysis for DO problems is not
sufficiently developed [4], [8]. A number of useful tools of sensitivity analysis in
DO are derived for integer programming in [4]. A technique of sensitivity anal-
ysis proposed in [11] computes a piecewise linear value function that provides a
lower bound on the optimal value that results from changing the right-hand sides
of constraints. Recently, an interesting application of binary decision diagrams
(BDD) (introduced earlier in computer science community) was proposed by
Hadzic & Hooker [6] for the purposes of postoptimal analysis in DO. Particu-
lar implementation of postoptimality analysis depends on chosen computational
DO algorithm (solver) and its properties.

5.2 Family of Related DO Subproblems in NSDP Block Procedure

Rewriting (5) we have the DOP

h1(Nb(XK1)) = max
XK1

{CK1XK1 |AiK1XK1 ≤ bi −AiNb(K1)XiNb(K1),

i ∈ U1, xj = 0, 1, j ∈ K1}. (6)

For all binary assignments of Nb(XK1) the parametric DOP (6) has to be solved.
There is a family of related DO problems that differ from each other in their
right-hand sides. For solving this family of related problems it is reasonable to
use postoptimal and sensitivity analysis methods [4], [6], [8], [11].
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Fig. 1. Interaction graph in the DOP with constraints

Example 1. Consider a DOP (P) with binary variables:

2x1 + 3x2 + x3 + 4x4 + 2x5 + 4x6 → max (OF )
x1 + 2x2 + 2x3 + 3x4 ≤ 6, (C1)

x3 + 2x4 + 3x5 + 2x6 ≤ 6, (C2)
xj = 0, 1, j = 1, . . . , 6.

Apply the NSDP block procedure to the DO problem (P) from the example
assuming K1 = {1, 2}, K2 = {5, 6}, K3 = {3, 4}. Then Nb(XK1) =
{x3, x4} = XK3 .

The meta-DOP has the form:

max
XK1 ,XK2 ,XK3

{CK1XK1 + CK2XK2 + CK3XK3}

subject to
A

(K1)
1 XK1 +A

(K3)
1 XK3 ≤ 6,

A
(K3)
2 XK3 +A

(K2)
2 XK2 ≤ 6,

xj = 0, 1, j = 1, . . . , 6,

where
CK1 =

(
2 3

)
, CK2 =

(
2 4

)
, CK3 =

(
1 4

)
,

A
(K1)
1 =

(
1 2

)
, A

(K3)
1 =

(
2 3

)
, A

(K3)
2 =

(
1 2

)
, A

(K2)
2 =

(
3 2

)
,

XK1 =
(
x1

x2

)

, XK2 =
(
x5

x6

)

, XK3 =
(
x3

x4

)

.

Let us formulate a family of related DO subproblems corresponding to a block
XK1 :

h1(Nb(XK1))=h1(x3, x4)=max
XK1

{

CK1XK1 |A
(K1)
1 XK1≤b−A

(Nb(K1))
1 XNb(K1)

}

=

max
x1, x2

{2x1 + 3x2|x1 + 2x2 ≤ 6− 2x3 − 3x4}. (7)
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Fig. 2. Quotient graph

This is a family of knapsack problems. To solve these problems let us solve only
one DOP of the family, namely the knapsack problem with maximum right-hand
sides (if x3 = x4 = 0) using usual dynamic programming procedure:

h1(0, 0) = max
x1, x2

{2x1 + 3x2|x1 + 2x2 ≤ 6, x1, x2 = 0, 1}.

Bellman’s recursive equation for solving the knapsack problem

max
{ n∑

j=1

cjxj |
n∑

j=1

ajxj ≤ b, xj = 0, 1, j = 1, . . . , n
}

(where cj , aj , b are integer) is:

f(k, y) = max{f(k − 1, y), f(k − 1, y − ak) + ck},

where

f(k, y) = max
{ k∑

j=1

cjxj |
k∑

j=1

ajxj ≤ y, xj = 0, 1, j = 1, . . . , k
}

,

f(0, y) = 0, f(k, 0) = 0.

All objective function values and solutions for h1(x3, x4) are contained in this
table.

Table 1. Calculation of h1(0, 0)

k\y 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 2* 2* 2* 2* 2* 2*
2 0 2 3* 5* 5* 5* 5*

Remark1. Value with ”star” in the tables (e.g., 5∗) means that corresponding
variable x equals 1.
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Thus, we got a tabular function h1(x3, x4):

Table 2. Calculation of h1(x3, x4)

x3 x4 h1 x
∗
1(x3, x4) x∗2(x3, x4)

0 0 5 1 1
0 1 5 1 1
1 0 5 1 1
1 1 2 1 0

Consider the next block XK2 . Let us formulate a family of related DO sub-
problems corresponding to a block XK2 :

h2(Nb(XK2))=h2(x3, x4)=max
XK2

{
CK2XK2 |A

(K2)
1 XK2≤b2−A

(Nb(K2))
1 XNb(K2)

}
=

max
x5, x6

{2x5 + 4x6|3x5 + 2x6 ≤ 6− x3 − 2x4}. (8)

This is a family of knapsack problems. To solve these problems let us solve
only one DOP of the family, namely the knapsack problem with maximum right-
hand sides (when x3 = x4 = 0) using usual dynamic programming procedure:

h2(0, 0) = max
x5, x6

{2x5 + 4x6 | 3x5 + 2x6 ≤ 6, x5, x6 = 0, 1}.

All objective function values and solutions for h2(x3, x4) are contained in this
table.

Table 3. Calculation of h2(0, 0)

k\y 1 2 3 4 5 6
1 0 0 2* 2* 2* 2*
2 0 4* 4* 5* 6* 6*

Thus, we got a tabular function h2(x3, x4):

Table 4. Calculation of h2(x3, x4)

x3 x4 h2 x
∗
5(x3, x4) x∗6(x3, x4)

0 0 6 1 1
0 1 4 0 1
1 0 6 1 1
1 1 4 0 1

Consider the last block XK3 . We have the DOP:

max
x3,x4

[h1(x3, x4) + h2(x3, x4) + x3 + 4x4] .

Optimal solution is: x∗3 = 0, x∗4 = 1 with objective function value 13.
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After backward step of the NSDP we have: Table 4: x∗5 = 0, x∗6 = 1. Table 2:
x∗1 = 1, x∗2 = 1.

The solution is (1, 1, 0, 1, 0, 1), the maximum objective value is 13.
Postoptimal analysis was here practically trivial, because we used the prop-

erties of dynamic programming tables for knapsack problems and calculate only
one table for each block XK1 , XK2 .

In more general case it is possible to introduce a partial order over a family
of related DO problems. This allows to solve the members of the family in a
corresponding sequence to yield useful information and to take advantage of the
information generated by the solution to one member of the family in order to
reduce the running time necessary to solve another member.

NSDP algorithms combined with modern DO solvers are a promising ap-
proach that enables solving sparse discrete optimization problems from appli-
cations. The performance of these algorithms can be improved with the aid of
postoptimality analysis.

Promising direction of future research is the development of efficient
schemes of postoptimality analysis embedded in NSDP algorithms combined
with DO solvers.
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Abstract. A new framework for a problem of guillotined cut and selec-
tion in stock of reels of steel of the industry metal-mechanics formulated
is present. Initially a model of lineal programming aiming at to minimize
the losses of the lengths of the cut plans, afterwards a model of integer
lineal programming completes of selection of reels applied to the stock
that assists the demand, minimizing the production surpluses and the
time with the logistics interns (transport and movement of reels).

1 Introduction

The new environment of competitiveness, caused for the growth, globalization
and evolution of the economy, imposes now, that the industries have a still big-
ger commitment with it continue perfectioning of its products, processes and
elimination of wastefulness waste during the productive stage. There is one con-
sidered publication number exploring the possibilities, not only the theoretical
problems, but, overall industrial applications [3]. In this context a modeling in
integer linear programming for optimization of cut in steel reels is considered,
whose objective is to minimize the losses in raw material, the excesses of pro-
duction and the time with the logistic intern (transport and movement of reels).

2 The Problem of Guillotine Cut and Selection of Reels
in Stock

In the planning of the production of some industrial segments, the objective
is to minimize the negative effect generated by wastefulness of materials and
equally excellent in the planning of logistic operations as storage, movement
and transport, aiming at to the movement of idle spaces [6]. For [7], beyond
the loss of material when the objects biggest are cut in itens lesser, will also
be admitted a cost associated with the preparation of the production of each
product in determined periods of planning. With this an economic pressure ap-
pears to manufacture some end items anticipated in order to minimize the loss

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 318–327, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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and the costs of preparation, respecting the available capacity in each period of
the planning horizon. To justify the necessity of the stock of reels some factors
must be considered: Slow transport between siderurgy and the plant due to the
difficulties in the transport of the reels. The storage places must be great the
sufficient to store the reels. However the logistic intern (transport between stock
until the cut machines) must be considered, what she becomes inevitable the
piling up of the reels. After the election of the reels in stock, the operator of the
transporters must carry through the movements of displacement of the stock of
the reels for the cut machine (to slitter). The times, selected reel met in posi-
tion of difficult access (some reels piled up on the selected reel. Such fact makes
it difficult the operation of withdrawal of the selected reels, therefore a bigger
number of movements to be is necessary carried through for the transporter.

3 Cutting of Steel Reels

A reel is uncurled and the process of cut for attainment of the intermediate reels
is made longitudinally by “cut records” (it does not have transversal cuts and
therefore it can be understood that the problem is one dimension). Intrinsic losses
[5] in the laterals of the reels exist, to eliminate the irregularities of the edges,
varying enter 3 to 6 mm for edge. The time of preparation of the cut machine
(Slitter) is about 50 minutes and the average time for cut of a funny reel around
20 minutes. After the cut, the reels by the proper machine to slitter, giving origin
to the straps (or reels you would intermediate) that they will be referenced as
reels blanks. The reel blank will be able to follow two ways: stored in the stock of
the reels blanks (cut reels already) or to be directed the production where they
will suffer as a cut in the machine, giving origin blanks . For reasons techniques
the possible number of straps to be cut by reel is inversely proportional to
the gauge. To the widths differentiated of blanks (parts), the reels can be cut
in different ways. In the practical one, by a restriction in the total number of
knives (cut records) and functioning of the Slitter, the amount of reels blanks
generated by cut standard was limited (maximum of 30 reels blanks).

4 The Model of Guillotine Cut and Selection of Reels in
Stock

To determine a standard of cut for unidimensionais problems definition (1) con-
sists, in inside placing lesser units (item) of a bigger unit (object) of the possible
form most valuable. From a reel B, of width � continuous, is desired to cut I
reels blanks bli of width �i ≥ � , and length Li, i = 1, ..., I. Each reel blank
bli, it will suffer after that to one guillotine cut to give length parts. The value
is determined of L, total length of B, thus as the used standards of cut. These
standards of cut are only the different possibilities of disposal of n reels blanks
bli, in the width of the main reel B. To each standard of cut s, we associate
ni(s), i = 1, ..., I, the number of reels blanks type bli contained in s.
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Definition 1: A standard of cut s, is said possible if the addition of the widths
of the reels blanks bli, that it composes it, the width is inferior � of the reel B,
which is:

p(s) = �−
I∑

i=1

ni(s) ∗ �i (1)

One denotes p(s), the corresponding loss to this standard of cut, whose value of
p(s) ≥0.

Definition 2: A cut standard s it is viable if it is possible and p(s) is inferior
the lesser width of the reels blanks bli:

0 ≤ p(s) ≤ min
i=1,...,I

�i (2)

The number of possible combinations, the process of generation of columns can
be become a critical operation. To optimize the processing time [1] was decided
to use an algorithm in tree. The viable considered standards of cut will be
considered by the cut model. Some parts exist that only can to be cut in one
of the directions (length or width), had as cut in the machine to be of the type
when all the process of cut in the machine uncurls the reel blank to the cut that
will give origin blank, it is carried through of automatic form To treat these
particularitities, the cut standards are generated considering all the possible
combinations, being in charge of the model to choose the direction to be cut of
the parts that do not possess restriction how much to the cut in the machine.
Either xbj the excellent length of the standards of cut necessary to take care of
demand Li. The cut of the steel reels can be formulated:

min
∑

b∈B

∑

j∈J

(

pbj +
∑

i∈I

nij

pasi

)

∗ xbj (3)

subject a:
∑

b∈B

∑

j∈J

nij

pasi
∗ xbj ≥ Li, i = 1, ..., I, xbj ≥ 0, j = 1, ..., J. (4)

Where: J - number of viable standards of cut; B - number of types of reels; I
- types of parts necessary to take care of the demand; xbj - length of the cut
standard sj , j = 1, ..., J in reel b; pbj - loss p (sj) associated to the standard
sj , j = 1, ..., J in reel b; nij = ni(sj) - amount of straps of part i of standard j;
pasi, corresponds the width or the length of the part, depending on the choice of
standard. The objective function (3) to minimize the total loss (pj), and the ex-
cess of parts gotten, represented for (

∑
i∈I

nij

pasi
). The restrictions (4) correspond

to the minimum lengths, that if must cut for each type of part, of form that
if takes care of the demand. The great volume of reels in stock, it is necessary
to formulate a model being objectified to support the sector of planning and
control of the production in the choice of the reels that must be cut. After to
have joined the length of the excellent standards through model Pcut, that to
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inform which reels will have to be selected in form stock that is possible to cut
them with the exceeding minor of reels blanks.

min
∑

j∈J

∑

k∈K

(Tk yjk − xjk) (5)

subjetc to:

∑

k∈K

xjk ≥ Cj , j = 1, ..., J (6)

∑

j∈J

xjk ≤ Tk, k = 1, ...,K (7)

∑

j∈J

yjk ≤ 1, k = 1, ...,K (8)

xjk − fator minTkyjk ≥ 0, Tkyjk ≥ 0, j = 1..J, k = 1, ...,K (9)

xjk ≥ 0, yjk ∈ {0, 1}, j = 1, ..., J, k = 1, ...,K

Where: Tk - length of the reel bk available in stock, Cj - length of the cut
standard sj , j = 1, ..., J found in model Pcut, xjk - length of standard j to be cut
effectively of the reel bk; yjk it is equal 1 (one) if reel bk it is cut for standard j,
and equal the 0 (zero) in contrary case, fator min it is a parameter that informs
the minimum percentage to be cut of reel bk for standard j. Value configured
and only for all reels bjk. The objective function (5) aims at to minimize the
lengths of the reels in stock (Tk yjk), while it maximizes the lengths of the cut
standards (−xjk) found in model (Pcut). The intended to diminish the excesses
of reels blanks had not the use of the reel in stock for complete. The restrictions
(6) they assure that the total length to be cut of reel bk, for a cut standard j, it
takes care of to the length gotten for model (Pcut). The restrictions (7) impose
that length xjk effectively to be cut of reel bk either lesser that the total length
of the reel in stock (Tk). In (8) one inquires that the reel will be cut by an only
standard of cut. The minimum length (given a minimum factor) and that the
maximum length, to be cut of reel bk, they do not exceed the lengths of reels bk
in stock (Tk) it is assured in the restrictions (9).

5 Application in the Metal-Mechanics Industry

The Esmaltec S/A located in Maracanau/Ceara/Brazil, an industry metal-
mechanics with production of stoves, coolants, to freezer, water through and
containers GLP being aimed at to take care of the domestic market and exter-
nal. It needs to carry through cut to produce a plan of monthly production, as
Table 1. It considers the parts of the type of plate 0.75 mm, as Table 1, one has
storage with 35 reels of 0.75 mm x 1.200 mm and lengths varied given in Table 3.
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Table 1. Plan of monthly production

Production Plan Quantity Production Plan Quantity

Support Baby Ch-3 White 5000 Horizontal Freezer 2255ect1 10000

Support Baby Ch-3 Inox 1000 Vertical Freezer 3050ec 2000

Stove Pantanal 0294 White 1000 Horizontal Freezer 3168ect1 200

Stove Taiba 4207 25000 Horizontal Freezer 3169ect2 600

Stove Itapuã 4311 30000 Horizontal Freezer 3165ect2 1000

Stove Olinda 4407 5000 Horizontal Freezer 4505ect2 1000

Stove Angra 4607 3184 Gelágua Gnc - 7be 5000

Stove Maresias 470 1246 Gelágua Gnm-1be 5220

Stove Salina 4803 2000 Gelágua Gnc - 1ae 2300

Stove Olinda 6405 2000 Gelágua Gn - 97ce 500

Stove Angra 6605 5862 Gelágua Gnc - 1ae Inox 1000

Stove Maresias 6705 2000 Refrigerator - RUP2450ec 3000

Stove Salinas 6803 4328 Refrigerator - RUP3100ec 2000

Refrigerator - RDP3140ec 3000

Table 2. Description of parts 0.75 mm to be produced

Description of the piece Type
of steel

Thick-
ness
(mm)

Width
(mm)

Length
(mm)

Pieces
for
blank

Number of
pieces

De-
mand

Comp. Profile Drain
plug 3mm

1 0.75 120 33 1 2 132.86

Comp. Profile Drain
plug 4mm

1 0.75 120 33 1 3 102.57

Comp. Knob 6q 1 0.75 770 98 1 1 20.00

Normal Espalhador 1 0.75 84 83 1 2 2.00

Door Fv340 1 0.75 661 1573 1 1 2.00

Knob Oven 6 1 0.75 810 106 1 1 20.00

Reinforcement Door
Fv340

1 0.75 84 1440 1 2 4.00

Normal ice-cream dealer 1 0.75 75 72 1 2 2.00

Sup/Inf - Burning Oven 1 0.75 350 240 2 2 132.86

Come in sight drain plug
2255

1 0.75 717 853 1 1 10.00

Come in sight drain plug
3165

1 0.75 717 581 1 2 2.00

Come in sight drain plug
3167

1 0.75 717 1086 1 1 200.00

Come in sight drain plug
4505

1 0.75 717 756 1 2 2.00

It considers the parts Table 2 to be produced to take care of to the plan of
production Table 3 and the listing of the reels B (0.75 x 1.200) available in stock
Table 5.
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Table 3. Stock of reels B

Reel Weight Length Reel Weight Length Reel Weight Length Reel Weight Length

1 12.650 1.757 10 11.450 1.590 19 10.000 1.389 28 10.000 1.389

2 13.170 1.829 11 12.310 1.710 20 10.000 1.389 29 10.000 1.389

3 11.390 1.582 12 11.190 1.554 21 10.000 1.389 30 10.000 1.389

4 12.230 1.699 13 13.590 1.888 22 10.000 1.389 31 10.000 1.389

5 7.820 1.086 14 12.820 1.781 23 10.000 1.389 32 10.000 1.389

6 10.760 1.494 15 10.000 1.389 24 10.000 1.389 33 10.000 1.389

7 13.730 1.907 16 10.000 1.389 25 10.000 1.389 34 10.000 1.389

8 12.750 1.771 17 10.000 1.389 26 10.000 1.389 35 10.000 1.389

9 12.720 1.767 18 10.000 1.389 27 10.000 1.389

The table 4 presents the results of sequential models (Pcut e Psel). The com-
putational tests had been carried through in a computer Pentium IV 3.0 Ghz,
with 1 Mb of memory, applying Java, with CPLEX.

Table 4. Result of sequential model (Pcut e Psel)

Simulation Model Iteration Objective Status Time(sec) Lines Columns

1 Production Plan(Table3) Pcut 41 374,502 Optimo 5 13 1006
Psel(11standard) 415 0 Optimo 3 852 770

Total 8

On the other hand, Table 5 presents the consumption of the steel (kg), the
loss (kg) and the scrap iron index (%) generated the execution of models Pcut

and Psel.

Table 5. Demonstrative of consumption, loss and scrap iron of the steel plate

Reel Weight(mm) Length(mm) Loss(kg) Consumption(kg) Waste

5,010,090,364 0.75 1,200 7,845.00 160,002.05 4.90%

Considering the losses associates to each standard of cut, a loss is registered
of 7.845 Kg of a total of 160.000 Kg of steel consumption. They have a scrap iron
of 4,9% of the steel consumption considering the plan of production of Table 5.
An initiated time the cut, the machine (to slitter) it can stop at any time, but
the operation that consists of modifying the blades (cut knives) of position is
delayed. To consider a model in which it is considered that the machine alone
will be able to stop when all the reel will be cut. The inconvenience biggest of
this attempt is that in practical it generates new excesses of reels blanks.

6 Model for Reels Blanks in Stock

In the case of the industry, it is looked exploitation of the reels blank in stock,
objectifying a reduction of the losses and a reduction of the production excesses.
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All the reels (B) selected for model Psel they are cut completely had to the
raised involved cost in the operation of exchange of “records of cut”. They have
a number of reels blanks (bi) with bigger length that the demand. The excess
does not have to suffer as the cut in the machine, therefore blanks that they will
not be used in the production immediately they still have a bigger probability
of compared oxidation if with the storage in reels blanks. Such fact generates
an excess of reels blanks (bi) with characteristics of width, definite thickness
and lengths. Where situations must be used the reels blanks in stock without
generating new excesses of production? One presents a model for the problem,
Pstock , with intention to use to advantage the reels blanks stored in stock.
The application of the model of exploitation of stock (Pstock) is conditional the
situations:

When the length of the reels blanks in stock it is minor of what the length of
blanks of the demand;

When the length of the reels blanks in stock it is greater that the length of
blanks of the demand. In the first case the reels blanks the exploitation and the
balance of the amounts will be chosen for of blanks it will go to compose the
demand for model Pcut.The reels blanks in stock already the width or length of
the parts is cut in straps in agreement. Initially the width of the part is carried
through in agreement search to be produced. In case that no reel does not exist
blank in stock that satisfies the condition for the width, a new search is carried
through having considered the length of the part to be produced. After that, a
model is presented to optimize the excess of blanks generated as the choice of
the reel blank in stock, a time that any reel blank chosen in stock it possess the
length biggest that the total demand of blanks. The part that will be taken care
of completely will not go to compose the restriction in the model of cut (Pcut).

min
∑

i∈I

qiyi (10)

subject to :
∑

i∈I

qiyi ≥ Li (11)

yi ∈ {0, 1}, i = 1, ..., I

Where: qi amount of blanks in stock that could be produced by the reel blank
bli; Li demand of blanks to be produced by the reel blank bi ; yi equal the 1 if
reel blank bli; it will be chosen, and equal the 0 in contrary case. The objective
function aims at to minimize the amount of blanks (ud) to be produced. The
restrictions they assure that the amount of blanks to be used it takes care of
the total demand without generating new excesses of blanks e the restrictions
guarantee which reel must be chosen.

7 Computational Results

It considers the scene in which if they have in stock of 12 reels blanks as
Table 6.
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Table 6. Relation of the reels blanks in stock

Blank Reel Thickness(mm) Width(mm) Type of steel Weight(Kg) Length

1 0.75 120 1 1.200 1.666,67

2 0.75 120 1 1.200 1.666,67

3 0.75 661 1 1.000 252,14

4 0.75 661 1 1.000 252,14

5 0.75 84 1 900 1.785,71

6 0.75 84 1 900 1.785,71

7 0.75 717 1 2.000 464,9

8 0.75 717 1 2.000 464,9

9 0.75 350 1 1.500 714,29

10 0.75 350 1 1.500 714,29

11 0.75 810 1 1.200 246,91

12 0.75 810 1 1.200 246,91

The table 7 shows the results of sequential models (Pcut e Psel) considering the
exploitation of the reels blanks in stock.Comparing the data of first simulation
Table 4 with the results of second simulation Table 7, observes a profit in the
objective function, time of processing and number of iterations of models Pcut e
Psel . The table 8 presents the consumption of the steel (kg), the loss (kg) and
the scrap iron index (%) generated execution of models Pstock, Pcut after Psel.

Table 7. Exploitation of reels blanks in stock

Simulation Model Iteration Objective Status Time(sec) Lines Columns

2 Production Plan(Table3) Pcut 26 258,804 Optimo 3 13 266
Psel(10standard) 388 0.9094 Optimo 2 781 770

Total 5

Table 8. Demonstrative of consumption, loss and scrap iron of the steel plate

Reel Weight(mm) Length(mm) Loss(kg) Consumption(kg) Waste

5,010,090,364 0.75 1,200 5,921.64 137,398.70 4.31%

The loss using the exploitation of the reels blanks (model Pstock) it was
5.921,64 Kg, that guarantees a real profit of 1.924 Kg or 24,52% if compared
with the model without exploitation of reels blanks. Considering the consump-
tion of 137.398 Kg, registers a profit of 22.604 Kg, or 14,13%. Consequently they
get a reduction of 0,6% in the generation of the sucatas considering only the
reels of the type of plate 0.75 mm.

7.1 Comparative Analyses of the Results

A sequence of comparative tests between models Pcut is presented cut (with-
out stock exploitation) and the Pcut using considered model Pstock (with stock
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Table 9. Comparative simulations between models Cest e Sest

With Stock - Cest Without Stock -Sest

Plan of Pro-
duction

Stock
Reels

Losses
(Kg)

Consump-
tion (Kg)

Waste Losses
(Kg)

Consump-
tion (Kg)

Waste

1 144.400 35 5.922 137.399 4,31% 7.845 160.002 4,90%

2 146.300 40 5.503 140.200 3,93% 6.840 162.120 4,22%

3 149.150 45 6.200 143.594 4,32% 7.200 165.980 4,34%

4 151.650 50 5.130 155.035 3,31% 6.780 168.340 4,03%

5 154.040 55 6.501 161.040 4.04% 7.650 170.870 4,48%

6 157.980 60 6.300 163.050 3,86% 6.700 172.345 3,89%

7 160.200 65 6.900 168.340 4,10% 7.990 173.250 4,61%

8 163.480 70 5.500 170.200 3,23% 6.990 175.238 3,99%

9 166.780 75 7.100 173.105 4,10% 7.890 177.654 4,44%

10 169.345 80 5.830 175.055 3,33% 7.010 179.486 3,91%

11 172.045 85 7.250 171.230 4,23% 7.930 180.521 4,39%

12 175.200 90 6.990 170.300 4,10% 7.500 181.450 4,13%

13 177.400 95 7.000 175.340 3,99% 7.350 182.340 4,03%

Total 82.126 2.103.888 3,90% 95.675 2.249.596 4,25%

exploitation). It considers Cest the model with exploitation of stock e Sest the
model without stock exploitation . In the Table 9 data of the 13 carried through
simulations modifying the plan of production and the amount of reels in stock.

A profit is had when we apply the model Cest. Beyond the profit in the
cited previously, one better control of the reels is obtained blanks in stock and
consequently one better planning of the production.

8 Conclusion

The carried through computational tests with data of Esmaltec S/A, had pre-
sented the evolution of the models Pcut and Psel to the being used with the
Pstock model. Analyzing the results, it is verified that the application of the
Pstock model reflects in the reduction of the pointers of loss, scrap iron and con-
sumption. The simulations carried through with the parts of the type of plate
0.75mm had presented an average reduction of 13.500 kg (14%) in losses and
145.000 kg (6%) in the consumption of plates. It is standed out reduction with
other types of plate that are used in the products of the Esmaltec, for example:
the plates with thickness of 0.50mm, 0.55mm, 0.60mm, 0.65mm and 1.50mm.
Important to cite that beyond the economy in the consumption of the plate of
steel, indirect costs as: loss for oxidation of reels blanks in stock, logistic intern
(transport of the reels), energy and man power had been also reduced with the
job of this model. For future works it is considered to take care of the plan of
sales in one determined period, analyzing the variable of time of preparation of
machine, cost of stock, wallet of order and loss of the cut standards.
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Abstract. Robust planning approaches, which specifically address the
issue of uncertainty in production systems, are becoming more and more
popular among managers. Production planning models which incorpo-
rate some of the system’s uncertainty, at earlier stages in the planning
process, are capable of generating ‘stable’ plans that are robust to the
variability resulting from some critical planning parameter. In this paper
we review some models for robust planning and their solution approaches.
We then propose and discuss a new alternative model for aggregate pro-
duction planning when periodic demands are uncertain. The objective of
the model is to provide cost effective production plans while maintaining
the targeted service levels. The performance of the proposed alternative
model is compared with that of the scenario-based optimization models,
and the obtained results are thoroughly discussed.

Keywords: Robust planning, scenario optimization.

1 Introduction

Uncertainty is present at all levels in a production system. This uncertainty
may result from machine breakdowns, processing capabilities or human failures.
If it is not taken into account during the planning, the system’s performance
may extremely deteriorate. The service level may dramatically decline when
the actual demand is higher or when the supplier’s lead time is longer than
expected. In order to protect the system against these uncertainties, a course of
actions is needed. Many efforts and research have been made to address this issue,
in particular using a technique called buffering. This technique includes safety
stock, safety lead-time and safety capacity (see Guide & Srivastaya, [3] for an
extensive survey). Until recently, sensitivity analysis is used as post-optimality
studies to discover the impact of data variability on the model’s recommendation.
However, this does not solve the issue since it is a rather passive approach. We
actually need a proactive approach which can produce solutions that are less
sensitive to the data variability. Robust model incorporating the uncertainty
into the model itself seem to carry the answer to this issue.

Mulvey et al. ([8]) defined a robust optimal solution as one that remains
‘close’ to optimal for all scenarios of the input data, and model-robust solution

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 328–337, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Robust Production Planning 329

as one that remains ‘almost’ feasible for all data scenario. The optimal value
of the decision variables (design variables) is not conditioned on the realization
of the uncertain parameters, the control variables, however are subjected to ad-
justments once the uncertain parameter is observed. Using multiple scenarios,
the objective becomes a random variable where the mean value is used as the
objective function in the stochastic linear programming. The approach of robust
planning also handles risks or higher moments of the objective function distri-
bution using the mean/variance model or the expected utility model. In the
objective function, a feasibility penalty function is used to penalize violations
of the control constraints under some of the scenarios, for example a quadratic
penalty function or an exact penalty function. Therefore, the Mulvey’s frame-
work can be seen as a multi objective programming whose objectives are (1) the
mean value, (2) the variability of the objective, and (3) penalty of violating con-
trol constraints. The framework has been applied to many problems such as the
capacity expansion problem, the matrix-balancing problem, airline allocation for
the air force, scenario immunization, and minimum weight structural design.

In this paper we propose and discuss an alternative model for aggregate pro-
duction planning when periodic demands are uncertain. The objective of the
model is to provide cost effective production plans while maintaining the tar-
geted service levels. The model does not use scenarios explicitly which results in
a huge savings in terms of variables and computational times.

2 Aggregate Production Planning Models

In this section, we present an aggregate production planning model when peri-
odic demands are deterministic. We then present two production planning mod-
els when demands are uncertain, i.e. the scenario-based optimization model and
an alternative new model. Let N be the number of products and T be the length
of horizon planning. Let crit and coit be the production cost per unit product i
during period t in regular time and in over time respectively. Let wc

t , w
h
t , and wl

t

be respectively the labour, hiring and laying-off costs per worker during period
t and wmax

t , hmax
t , lmax

t be the maximum available workforce, maximum hiring
and maximum laying off in period t. Let fit be the fixed cost of production for
product i during period t and hit be the holding cost per unit of product i by
the end of period t. Let li and mi be labour time and machine time needed per
unit product i respectively. Let rwh be the working hour per labour per period.
Let rmct be the regular machine capacity. Let omct and owct be the over time
machine capacity and workforce (in fraction of regular capacity/workforce) re-
spectively. Let Ii0 and w0 be the inventory level and the workforce level at the
end of period 0, respectively. The variable of the problems are Xr

it and Xo
it which

determine the quantity of production in period t during regular time and over
time respectively. The variable Yit is a binary variable which takes value 1 if
production of product i takes place in period t. Let Iit be the inventory level for
product i by the end of period t. Let Wt, WHt and WLt denote the workforce
levels, the amount of workforce hired and the amount of workforce laid-off in
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period t. Let dit be the forecasted demand for product i in period t (in units),
the deterministic aggregate production planning (DAPP) model is formulated
as follow:

Minimize

T∑

t=1

N∑

i=1

fitYit + critX
r
it + coitX

o
it + hitIit +

T∑

t=1

wc
tWt + wh

t WHt + wl
tWLt (1)

subject to
Xr

it +Xo
it + Iit−1 − Iit = dit, ∀i, t, (2)

Wt = Wt−1 +WHt −WLt, ∀t, (3)

Wt ≤ wmax
t , ∀t;WHt ≤ hmax

t , ∀t;WLt ≤ lmax
t , ∀t, (4)

N∑

i=1

liX
r
it ≤ rwh (Wt) , ∀t, (5)

N∑

i=1

liX
o
it ≤ owct (rwh) (Wt) , ∀t, (6)

N∑

i=1

miX
r
it ≤ rwct;

N∑

i=1

miX
o
it ≤ omct (rwct) , ∀t, (7)

mi (Xr
it +Xo

it) ≤ (1 + omct) (rmct)Yit, ∀i, t, (8)

Xr
it, X

o
it, Iit,Wt,WHt,WLt ≥ 0, Yit ∈ {0, 1} .

The total cost in the objective function (1) is the sum of all costs, i.e. fixed,
production, holding, labour, hiring and layoff costs. The inventory balance and
workforce balance are presented by constraints (2) and (3), respectively. Con-
straints (4) are the maximum availability for workforce, the maximum number
of hiring and the maximum number of laid-off workforce. Constraints (5) and
(6) show the capacity of labour hours for regular and overtime production. The
capacity of machine is described by constraint (7), for both regular and over
time capacity respectively. Constraint (8) shows the fixed cost realization, i.e.
if production of i is taking place at period t. If the capacities of machines and
labour are not sufficient to meet demand then the problem is infeasible (i.e. all
demands must to be satisfied).

2.1 Scenario-Based Optimization Model

Leung et al. [6] proposed an aggregate production planning model based on
the scenario realization as suggested by Mulvey et al. ([8]). Assume that the
uncertain demand is represented by a set of scenario s ∈ Ω which is taking
value ds

it for product i in period t for scenario s with probability ps. Assume
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that the variables Xr
it, X

o
it,Wt,WHt,WLt, Yit are design variables which do not

depend on the realization of the scenario and assume that Is
i,t are control vari-

able which depend on the realization of the scenario s ∈ Ω. We also consider
the lost sales or unmet demand Es

it with respect to infeasibility under scenario
s ∈ Ω. Constraints (2) then become control constraints as follow: Xr

it + Xo
it +

Is
it−1− Is

it +Es
it = ds

it, ∀i, t, ∀s ∈ Ω. Because the demand, inventory, and the un-
met demand depend on the scenario realization, the cost function, ξs becomes
a random variable taking value

∑T
t=1

∑N
i=1 (fitYit + critX

r
it + coitX

o
it + hitI

s
it) +

∑T
t=1

(
wc

tWt + wh
t WHt + wl

tWLt

)
. The average cost is then defined as ξ̄ =∑

s∈Ω psξs. The variability of the cost function can be measured using vari-
ance or mean absolute deviation. The variance model leads to a large number of
computational times attributed to calculating the quadratic term. On the other
hand, the mean absolute deviation can be easily transformed into linear form
using equation ξs − ξ̄ + θs ≥ 0, where θs ≥ 0. The absolute deviation is then
replaced by ξs − ξ̄ + 2θs ≥ 0 (for a complete discussion, see Leung et al. [6]).
The unmet demand Es

it is considered as a penalty in the objective function. The
mean value of this penalty function is

∑
s∈Ω

∑T
t=1

∑N
i=1 p

sEs
it. Using a constant

(λ) times the mean absolute deviation as a choice of risk norm and the weight
ω as the trade-off to feasibility robustness, the scenario-based aggregate produc-
tion planning model is formulated as follow

Minimize

∑

s∈Ω

psξs + λ
∑

s∈Ω

ps

(

ξs −
∑

s′∈Ω

ps′
ξs′

+ 2θs

)

+ ω
∑

s∈Ω

T∑

t=1

N∑

i=1

psEs
it (9)

subject to

Xr
it +Xo

it + Is
it−1 − Is

it + Es
it = ds

it, ∀i, t, ∀s ∈ Ω, (10)

ξs =
T∑

t=1

N∑

i=1

fitYit+critX
r
it+coitX

o
it+hitI

s
it +

T∑

t=1

wc
tWt+wh

t WHt+wl
tWLt, (11)

ξs −
∑

s′∈Ω

ps′
ξs′

+ θs ≥ 0, ∀s ∈ Ω, (12)

Xr
it, X

o
it, E

s
it, I

s
it,Wt,WHt,WLt, θ

s ≥ 0, Yit ∈ {0, 1} , ∀i, t, ∀s ∈ Ω.
Equation (9) shows the multi objective function which consists of the mean
cost, weighted mean absolute deviation and weighted mean unmet demand. Con-
straints (10) are the inventory balance as a result of the scenario realization of
the demand. Constraints (11) are the random value of the cost function, while
constraints (12) are required for the transformation of the absolute deviation
into a linear form. Constraints (3)-(8) are also required as in the deterministic
model. The control constraints in Equation 10 suggests that infeasibility (unmet
demand) under scenario s is acceptable but penalized by the parameter ω (i.e.
it is considered to be a soft constraint). In this case, the production planner has
to decide the level of ‘acceptable’ infeasibility in term of unmet demand.
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2.2 An Alternative Model

The idea of generating a deterministic equivalent or approximation to the original
stochastic problem has been initiated by Bitran & Yanasse ([2]). They showed
that the relative error bound for the deterministic equivalent is small enough to
justify its use for practical problems.

Our model is a deterministic equivalent which basically integrates the concept
of safety stock into the aggregate production planning. The objective is to gener-
ate optimal plans that are robust, in sense that all realized demands are covered
with a certain predetermined level of confidence. Assume that the periodic de-
mands of product i, dit, are stochastic, independent and are normally distributed
N(d̄it, σit), where d̄it is the average demand and σit is the standard deviation.
For any consecutive {u, u+ 1, ..., v} and (u ≤ v) set of period, the cumulative
demand Duv

i has a probability distribution with average ¯duv
i and standard de-

viation σuv
i as follow ¯duv

i =
∑v

τ=u d̄iτ and σuv
i =

√∑v
τ=u σ

2
iτ . Suppose that a

100(1 − α)% service level is to be achieved then the plan must provides quan-
tities at the beginning of period u to cover the realized demand from period u
to v, u ≤ v, such P (Duv

i ≥ ¯duv
i + zασ

uv
i ) = α. The term zασ

uv
i refers to the

safety stock required for product i to cover the variation of the demand from
period u to period v, i.e. the interval between successive production, where zα

is a standard normal value. To model this, we introduce a new binary variable
Zuv

i defined for each pair period (u, v), u ≤ v which takes value 1 if production
takes place at period u to cover integrally the realized demands from period u
to period v, and zero otherwise. The alternative model can be then formulated
as follows

Minimize

T∑

t=1

N∑

i=1

fitYit + critX
r
it + coitX

o
it + hitIit +

T∑

t=1

wc
tWt + wh

t WHt + wl
tWLt (13)

subject to

Xr
it +Xo

it + Iit−1 − Iit = d̄it, ∀i, t, (14)

Xr
it +Xo

it + Iit−1 ≥
(
d̄tv

i + zασ
tv
i

)
Ztv

i , ∀t ∈ T, t ≤ v, (15)

t∑

u=1

T∑

v=t

Zuv
i = 1, ∀t ∈ T, t ≤ v, (16)

T∑

v=t

Ztv
i − Yit ≤ 0, ∀t ∈ T, (17)

Xr
it, X

o
it, Iit,Wt,WHt,WLt ≥ 0, Yit ∈ {0, 1} , Ztv

i binary, (t, v) ∈ T, t ≤ v.

The objective function in the alternative model consists in minimizing the ex-
pected total cost, i.e. the production cost, expected holding cost (i.e. the inven-
tory and safety stock), labour cost, hiring and layoff cost, and the fixed cost.
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The inventory left from the previous period is unknown since the demand in the
previous period is also stochastic. One way to model this is with a mean value
approximation, assuming that demand is realized on the average. Constraints
(14) are the expected inventory balance if the demands are realized on the aver-
age. Constraints (15) require that at the beginning of period t, production and
inventory must be able to cover realized demand from period t to v, (t ≤ v) ∈ T .
Constraints (16) decompose the planning horizon T into a partition of subsets of
consecutive periods. In equation (17), the variable Ztv

i takes value 1 only if the
variable Yit also takes value 1, i.e. the production takes place at period t. The
alternative model makes use the parameter zα to determine the stock out proba-
bility which requires adding some safety stock between successive production to
meet all realized demand for a certain level of confidence. Thus, the robustness
in the alternative model for the aggregate production planning is simply defined
by the ability of the plan to cope the variation of demand using an amount of
safety stock.

3 Experimental Design and Computational Result

We evaluate both robust aggregate production planning models for 4-period
problems comparing the impact of demand trends, the variability of demand, the
capacity and the ratio of fixed cost and holding cost. We test the models for three
demand trends, where the average demand is constant, increasing, and decreasing
over time. We use the coefficient of variation (σit/d̄it) to measure the variability
of the demand and assume that it increases over time as a result of insufficient
information about the future demand. We test the models for two levels of the
variability, i.e. low and medium variability (The coefficient of low variability is
0.1, 0.15, 0.2, and 0.25 for period 1,2,3, and 4 and 0.15, 0.25, 0.35, and 0.45
for the medium variability). We also evaluate the effect of the regular machine
capacity levels which is assumed to be constant over time. Three different levels
of capacity are evaluated, i.e. tight (110 % ), medium (150 %) and loose (200 %)
of the average demand in hours. The effect of the ratio of fixed costs over holding
costs is also evaluated. We use different levels of the ratio, i.e. 0.5, 1, 2, and 4.
We generate a number of scenarios to represent the stochastic demand for each
period. The realization of demand for each period falls into three discrete values,
i.e.

(
d̄it − 2σit

)
,
(
d̄it

)
, and

(
d̄it + 2σit

)
with the probability 0.16, 0.68 and 0.16

respectively. The resulting probability density function approximates a normal
distribution with average d̄it, and standard deviation σit. For an instance of
problem (constant average demand, medium variability, medium capacity and
the ratio of the fixed costs and the holding costs equals to 2), we solve the
problem using the alternative model with the parameter zα = 2, i.e. we are
expecting that the stock out probability is approximately 5 %.

Using the previously generated demand scenario, the performance of the plan
is then calculated in term of mean cost (MC), mean absolute deviation (MAD),
mean unmet demand (ME), and stock out probability (SO). The stock out proba-
bility is defined as

∑
s∈Ω

∑N
i=1

∑T
t=1 p

sOs
it/NT, where Os

it equals to 1 if Es
it > 0 ,
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and 0 otherwise. We also calculate the ratio between the mean absolute deviation
and mean cost and use it as the constant λ for the scenario-based optimization
model. We use the same λ for the scenario-based model because we want to
compare both models in term of solution robustness (i.e. mean cost) and model
robustness (i.e. mean unmet demand). The alternative model for such a case
generates a plan where the ratio between the mean absolute deviation and the
mean cost equals to 0.028. We use the same λ for different levels of the parameter
weight ω for the scenario-based optimization model. Naturally, if ω = 0 then the
cost is minimum when no production takes place. However, this is not a feasible
plan because the number of unmet demand, Es

it is very high and the service
level is 0%. To get a more feasible plan, we need to increase ω, i.e. giving more
penalties for each unmet demand (infeasibility). However, having a more robust
plan (in term of feasibility) comes with additional costs. The trade off between
the cost and the expected number of unmet demand is shown in Figure 1. Using
λ = 0.028 and different levels of ω, the production planners can decide which
plan gives a ‘good enough’ expected cost with a ‘reasonable’ amount of unmet
demand. The term ‘good enough’ and ‘reasonable enough’ are of course relatively
subjective. If the production planner decides to use ω = 550, the scenario-based
optimization model generates a plan with mean cost equals to e543207 and
mean unmet demand equals to 80 units. The plans and their performance mea-
sures generated from the alternative model and the scenario-based model are
presented in Table (1).

To make a fair comparison in term of cost, we evaluate the plans which gen-
erate almost the same unmet demand for both models. Since the scenario-based
optimization model depends on the parameter ω, we increment the parameter
by 50 such that the unmet demand of the plan is approaching the unmet de-
mand from the alternative plan. The computation results show that the demand

Table 1. Aggregate Production Plans

Alternative model Scenario-based
λ = 0.0283, ω = 550

Product 1 2 3 4 1 2 3 4

Regular production 1 560 766 820 727 154 2186 0 1493
2 1560 1891 1970 2109 3449 0 3280 0

Overtime production 1 350 579 640 640 735 656 0 0
2 0 0 0 0 1 0 984 0

Fixed cost realization 1 1 1 1 1 1 1 0 1
2 1 1 1 1 1 0 1 0

Working labour 30 38 40 40 46 41 41 28
Hiring labour 0 8 2 0 16 0 0 0
Laying off 0 0 0 0 0 5 0 13

Mean cost (MC) 534988 543207
Abs. deviation (MAD) 15107 15392
Unmet demand (ME) 116 80
Stock out prob. (SO) 0.0308 0.0538
MAD/MC 0.0283 0.0283
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Fig. 1. Expected cost and unmet demand as function of ω

Fig. 2. Variation of stock out probability

trend does not influence the optimality of the plan for both models. Regardless
of the capacity level, the variability influences the optimality for both models
showing that if the variability is high then the cost is also high. In the alter-
native model, it corresponds to the need of a higher safety stock. The effect of
capacity is noticeable when the ratio of fixed cost and holding cost is high. In
this situation, the scenario-based model is superior when the capacity is tight.
However, the difference becomes less noticeable when the capacity is loose. We
do the same procedure to evaluate both models in term of stock out probabil-
ity. Figure 2 shows that the alternative model generates plans that are more
‘stable’ in term of the stock-out probability. This results from the fact that the
alternative model makes use of the parameter zα which corresponds directly
to the stock out probability. We evaluate the effect of the parameter zα on the
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Fig. 3. Ratio of MAD/MC

optimality and the feasibility of the plan. We found that the trade off between the
mean cost and the unmet demand as functions of the parameter zα is similar to
that of the scenario-based optimization model with parameter ω. Interestingly,
the alternative model generates plans where the ratio between the variability
of the cost (i.e. mean absolute deviation) and the mean cost bounded by 0.03
which means that the deviation is approximately 3 % from the mean cost (see
Figure 3).

4 Conclusion and Further Research

The scenario-based optimization model and the alternative model generate plans
that are capable of coping with the variability of demand in term of model ro-
bustness (i.e. expected unmet demand or the stock out level) and the solution
robustness (i.e. the mean cost). The scenario-based optimization model makes
use the parameter ω to penalize the unmet demand. The alternative model, on
the other hand, makes use parameter zα to assure a certain maximum level of
the stock out probability. The trade off between the mean cost and the unmet
demand can be established for both models using different levels of the param-
eters. In term of cost, the scenario-based model is only slightly superior when
the capacity is tight and the ratio between the fixed cost and the holding cost
is big. However, the alternative model needs less computational time than the
scenario-based optimization model. In term of stock out probability, the alterna-
tive model provides plans with smaller and stable results than the scenario-based
optimization model. The scenario-based optimization model is flexible in deter-
mining the level of variability of the cost from the mean cost using the parameter
λ. In the other hand, the alternative model bounds the variability of the cost
into 3 % of the mean cost. As mentioned previously, the robustness concept is
system-specific. In term of production planning where the uncertainty comes
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from the demand, safety stock can be considered as a tool to achieve a certain
level of robustness (which is measured by the unmet demand or service level).
The robustness approach for aggregate production planning dealing with uncer-
tain demand in the alternative model is basically corresponding with the use
of safety stock. The safety stock is represented by parameter zα which deter-
mine the stock out probability. The alternative model which incorporates the
safety stock, although more expensive in few cases, is able to produce plan that
are robust in a reasonable computational time. The scenario-based optimization
model, however, needs more computational time due to the number of constraint
associated with the scenarios. However, this approach may not be sufficient when
uncertainty appears also in other parameters such as costs and capacity. Thus,
further research directed toward this types of situation is still needed.
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Abstract. Aiming the reduction of incomparability cases between alter-
natives, for the presentation of a complete and satisfactory result, it is
presented a new approach for aiding the decision making process on Ver-
bal Decision Analysis, structured basically on ZAPROS III method. A
tool applying the methodology was developed. Some optimizations were
done to the method through some differentials on the process, consider-
ing similar tools which support solving ill-structured problems. Compu-
tational experiments applied to the tool presented promising results.

Keywords: Verbal Decision Analysis, ZAPROS, Multicriteria.

1 Introduction

One of the greatest problems faced on organizations is related to decision making
process. The determination of the object which will conduct to the greatest
result isn’t a trivial process and involves series of factors to be analyzed. These
problems are classified as complex and the consideration of all relevant aspects
to the decision making is practically impossible, due to human limitations.

The decision making related to management decisions is a critical process,
since the wrong choice between two alternatives can lead to a waste of resources,
affecting the company. Complex problems found in organizations can be solved
in a valid and complete way through the application of multicriteria methods,
such as the work developed on the company Cascaju [7], which will be used as
an application model for this paper.

2 ZAPROS III Method

The ZAPROS III method belongs to Verbal Decision Analysis (VDA) framework
and it aims the classification of given multicriteria alternatives. The method is
structured on the acknowledgment that most of the decision making problems
can be verbally described. The Verbal Decision Analysis supports the decision
making process by verbal representation of the problem [3].

The method is based on elicitation of preferences around values that repre-
sent distances between evaluations of two criteria. A scale of preferences can be
structured, enabling the comparison of alternatives.

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 338–347, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Before the alternatives comparison process, one should consider:

- The preferences must be elicited such that a decision rule can be formed
before the presentation of alternatives;

- The comparisons between criteria will be made by human beings, symboliz-
ing the decision maker (DM);

- The quality graduations of criteria values are verbal and defined by the DM.
Among the advantages of ZAPROS III method utilization, we can say that [9]:
- It presents questions on elicitation of preferences process understandable to

the decision maker, based on criteria values. This procedure is psychologically
valid (because it respects the limitations of the human information processing
system) and represents the method’s greatest feature;

- It presents considerable resistance to decision maker’s contradictory inputs,
being capable of detect and request a solution to these problems;

- It specifies all informations of qualitative comparison on the decision maker’s
natural language.

A disadvantage of the method is that the number of criteria and values of
criteria supported are limited, since they are responsible for the exponential
growth of the problem alternatives and of the information required on the process
of preferences elicitation.

The scale of preferences is essentially qualitative, defined with verbal variables,
causing losses on the comparison power, because these symbols aren’t assigned
of exact values (which implies in the inexistence of overall values - best or worst
in any kind of situation) and can’t be recognized computationally. So, there are
a lot of incomparable alternatives, what can lead to an absence of an acceptable
result.

According to [5], the estimative of the incomparable alternatives number (and,
consequently, of the method’s decision power) can be made by calculating the
number of pairs of alternatives (Q = 0.5nN(nN − 1), where N represents the
number of criteria and n is the number of criteria values) and the subset that
will be related by Pareto’s dominance (D). From the difference between Q and
D, we have the set of alternatives that depends directly of the preferences’ scale
obtained by the decision maker’s answers, this is the set with the greatest prob-
ability of presenting contradictory pairs of alternatives. After that, the index of
decision power of the method can be obtained as follows: P=1-S/B, where B is
the difference between Q and D, and S is the number of alternatives that can’t
be compared based on the DM’s scale of preferences (incomparable alternatives).

On [2], a system implemented in Visual C++ 6.0 structured on ZAPROS III
method is presented with an analysis of the method’s performance. The Formal
Index of Quality (FIQ), which allows the reduction of the comparisons number
between alternatives at the process of alternatives’ classification, is not used on
the system.

The system presented on [1], called UniComBOS, aims avoiding the existing
limitations of other methods, besides modifying the rule of consistency control of
the decision maker’s answers in order to improve it by utilization of procedures
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beyond the transitivity relations. It is the implementation of a new procedure
for comparison and classification of multicriteria alternatives.

The questions made at the process of preferences’ elicitation involve only the
criteria values necessary to compare one alternative to another (which is more
preferable, which are equivalent, etc.). After the elicitation process, the user can
check the solution proposed by the tool.

As the tool is based on preferences’ elicitation only after the alternatives’
definition, there is no decision rule formulated previously, instead of what occurs
on ZAPROS method. An advantage of the implementation is that it can avoid
the incomparability cases, but if a new alternative is defined or changed, the
scale of preferences will be reevaluated and, possibly, modified. On simulation
scenarios, where objects will be constantly modified, or in cases where there is
no direct access to the decision maker or to the alternatives, as in a model of
decision making for computational agents, that would not be an indicated tool.

3 A New Approach Methodology

A methodology structured basically on ZAPROS III method [4] is proposed. It
presents three main stages: Problem’s Formulation, Elicitation of Preferences
and Comparison of Alternatives, as proposed on the original version of the ZA-
PROS method. These stages are described as follows.

3.1 Formal Statement of the Problem

The methodology follows the same problem’s formulation proposed on [4]:
Given:
1) K = 1, 2,..., N, representing a set of N criteria;
2) nq represents the number of possible values on the scale of q-th criterion,

(q ∈ K); for the ill-structured problems, as in this case, usually nq ≤ 4;
3) Xq = xiq represents a set of values to the q-th criterion, which is this

criterion scale; |Xq| = nq(q ∈ K); where the values of the scale are ordered from
best to worst, and this order doesn’t depends on the values of other scales;

4) Y = X1 ∗ X2 ∗ ... ∗ Xn represents a set of vectors yi, such that: yi =
(yi1, yi2, ..., yiN ), and yi ∈ Y , yiq ∈ Xq and P = |Y |, where |Y | =

∏i=N
i=1 ni.

5) A = {ai} ∈ Y , i=1,2,...,t, where the set of t vectors represents the descrip-
tion of the real alternatives.

Required: The multicriteria alternatives classification based on the decision
maker’s preferences.

3.2 Elicitation of Preferences

In this stage, the scale of preferences for quality variations (Joint Scale of Qual-
ity Variations - JSQV) is constructed. The methodology follows the order of
steps shown on fig. 1. This structure is the same proposed on [4], however, the
substages 2 and 3 (numbered on the left side of the figure) were put together in
just one substage.
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Fig. 1. Elicitation of preferences process

Instead of setting the decision maker’s preferences based on the first reference
situation and, then, establish another scale of preferences using the second refer-
ence situation, it is proposed that the two substages be transformed in one. The
questions made considering the first reference situation are the same that the ones
made considering the second reference situation. So, both situations will be pre-
sented and must be considered on the answer to the question, in order to not cause
dependence of criteria. The alteration reflects on an optimization of the process:
instead of making 2*n questions, only n will be made. The questions to quality
variations (QV) belonging to just one criteria will be made as follows: supposing
a criterion A with three values XA = A1, A2, A3, the decision maker will be asked
about his preferences between the QV a1 − a2, a1 − a3 and a2 − a3. Thus, there
is a maximum of three questions to a criterion with three values (nq = 3).

The question will be formulated in a different way on the preferences elicita-
tion for two criteria, because it was observed difficulties on understanding and
delay on the decision maker’s answers when exposing QV of different criteria.

The question will be made dividing the QV in two items. For example, having
the set of criteria k = A, B, C, where nq = 3 and Xq = q1, q2, q3. Considering
the pair of criteria A, B and the QV a1 and b1, the decision maker should analyze
which imaginary alternative would be preferable: A1, B2, C1 or A2, B1, C1. How-
ever, this answer must be the same to the alternatives A1, B2, C3 and A2, B1, C3.
If the decision maker answers that the first option is better, then b1 is preferable to
a1, because it is preferable to have the value B2 on the alternative instead of A2.

3.3 Comparison of Alternatives

With the aim of reducing the incomparability cases, we apply the same structure
proposed on [4], but modifying the comparison of pairs of alternatives’ substage
according to the one proposed on [6].
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Each alternative has a function of quality - V(y) [4], depending on the evalua-
tions on criteria that it represents. On [6], it is proposed that the vectors of ranks
of criteria values, which represent the function of quality, are rearranged in as-
cending order. Then, the values will be compared to the corresponding position
of another alternative’s vector of values based on Pareto’s dominance rule. Mean-
while, this procedure was modified to implementation because it was originally
proposed to scales of preferences of criteria values, not for quality variations’
scales.

So, supposing the comparison between alternatives Alt1 = A2, B2, C1 and
Alt2 = A3, B1, C2, considering a scale of preferences: a1 ≺ b1 ≺ c1 ≺ a2 ≺ b2 ≺
c2 ≺ a3 ≺ b3 ≺ c3, we have the following functions of quality: V(Alt1) = (0, 0,
2) and V(Alt2) = (0, 3, 4), which represents the ranks of, respectively, b1 and c1,
a2. Comparing the ranks presented, we can say that Alt1 is preferable to Alt2.

However, there are cases in which the incomparability of real alternatives
won’t permit a presentation of a complete result. These problems require a fur-
ther comparison.

In such cases, we can evaluate all possible alternatives to the problem in
order to rank indirectly the real alternatives. The possible alternatives should
be rearranged in ascending order according to their Formal Index of Quality
(FIQ) and only the significant part will be selected to the comparison process
(the set of alternatives presenting FIQ between the greater and the smaller
real alternatives’ FIQ). After that, the ranks obtained will be passed to the
corresponding real alternatives.

4 Proposed Tool

In order to facilitate the decision process and perform it consistently, observing
its complexity and with the aim of turning it accessible, we present a tool im-
plemented in Java, structured on Verbal Decision Analysis, considering the new
approach methodology.

The tool is presented by the sequence of actions that follows:
- Criteria Definition: First of all, the user should define the criteria presented

by the problem. In this stage occurs the problem formulation.
- Preferences Elicitation: This process occurs in two stages: elicitation of pref-

erences for quality variation on the same criteria and elicitation of preferences
between pairs of criteria.

- Alternatives Definition: The alternatives can be defined only after the con-
struction of the scale of preferences.

- Alternatives Classification: After the problem formulation, the user can ver-
ify the solution obtained to the problem. The result is presented to the decision
maker so that it can be evaluated.

If the classification of the alternatives isn’t satisfactory, the decision maker can
request a new comparison based on all possible alternatives for the problem. This
is an elevated cost solution and should be performed only when it’s necessary to
the problem resolution.
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5 Application of the Tool

We present the computational experiments applied to the tool. These were based
on experiments with results already determined. The problem, its original result
and the one obtained with the tool will be exposed.

5.1 Industrialization Process of Cashew Chestnut

The tool was submitted to the problem “A Model Multicriteria Applied to the
Industrialization Process of the Cashew Chestnut” [7]. The choice of the more
indicated industrialization process applied to cashew chestnut so that, after series
of steps, one obtains a good index of whole almonds, involves the analysis of seven
stages (formulated as criteria and presented in table 1). The decision was taken
observing historical data and the tacit experience of the manager. The problem
was modeled as a VDA problem and the scale of preferences was formulated
according to the manager’s (DM) informations.

The alternatives and their criteria representations, the original ranks and the
ones obtained with the tool are exposed on table 2. The results presentation
screen is exposed on fig. 2.

The application [7] resulted in a non satisfactory classification when applying
purely the ZAPROS III method because of the incomparability cases; thus, the
FIQ was used in the paper to rank order the alternatives. The proposed method
rank ordered the given alternatives through pairwise comparison of all possible
alternatives. The results obtained, although, were the same as the ordered given
by FIQ.

Fig. 2. Presentation of results



344 I. Tamanini and P.R. Pinheiro

Table 1. Criteria involved on the cashew chestnut industrialization process

Criteria Values of Criteria
A1. 0 - 40 minutes

A - Immersion Time A2. 41 - 80 minutes
A3. 81 - 120 minutes

B1. 50 - 57 hours
B - Rest Time in the Water B2. 58 - 65 hours

B3. 66 - 72 hours

C1. 8,90 - 10,0
C - Humidity Tax C2. 10,1 - 12,4

C3. 12,5 - 13,0

D1. 180 C - 198 C
D - Baking Temperature D2. 199 C - 216 C

D3. 217 C - 235 C

E1. 150 cps - 334 cps
E - LCC Viscosity E2. 335 cps - 520 cps

E3. 521 cps - 700 cps

F1. 800 kg/h - 966 kg/h
F - Entrance Outflow F2. 967 kg/h - 1.133 kg/h

F3. 1.134 kg/h - 1.300 kg/h

G1. 38 C - 45 C
G - Cooling Temperature G2. 46 C - 53 C

G3. 54 C - 60 C

Table 2. Alternatives classifications of cashew chestnut industrialization process

Alternatives Evaluations on Criteria Original Rank Rank Obtained
Alternative 1 A1B1C1D3E1F2G1 1 1

Alternative 2 A2B1C1D1E2F3G3 5 5

Alternative 3 A2B2C2D2E1F3G2 2 2

Alternative 4 A3B1C3D1E2F1G3 6 6

Alternative 5 A1B2C2D3E3F2G1 4 4

Alternative 6 A1B3C4D1E2F1G3 3 3

5.2 The Choice of a Prototype for Digital Mobile Television

The tool was also submitted to the problem presented on [8]. Three prototypes of
mobile interfaces are evaluated according to user’s opinion after using each one.
The problem was formulated as a VDA problem and the information obtained
was transformed into a scale of preferences.

The relevant criteria and their possible values are listed in table 3.
The problem was applied to the tool and presented the results exposed in

table 4. The application also used the FIQ to rank order the alternatives. The
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Table 3. Criteria involved on choosing a prototype for digital mobile television

Criteria Values of Criteria
A1. No difficulty was found on identifying the system

functionalities;
A - Functions Evidence A2. Some difficulty was found on identifying the system

functionalities;
A3. It was hard to identify the system functionalities.

B1. No familiarity is required with similar applications of a
B - User’s familiarity determined technology;
with a determined B2. Requires little user familiarity with applications of a

technology determined technology;
B3. The manipulation of the prototype is fairly easy when the

user is familiar with similar applications.

C1. The user was not hindered in any way when manipulating
C - User’s the prototype while moving;

locomotion while C2. The user was occasionally confused when manipulating the
manipulating the prototype while moving;

device C3. The spatial orientation of the application was hindered when
the user was moving.

D1. There is no influence of content on choosing the interface;
D - Content Influence D2. The content exerted some influence on choosing the interface;

D3. The content was decisive on choosing the interface.

E1. He felt fine (modern, comfortable) when using the interface;
E - User Emotion E2. He felt indifferent when using the interface;

E3. He felt bad (uncomfortable, frustrated) when using the interface.

Table 4. Alternatives classifications of prototypes for digital mobile television

Alternatives Evaluations on Criteria Original Rank Rank Obtained
Prototype 1 A2 B1 C2 D1 E2 3 2

Prototype 2 A2 B3 C1 D1 E1 2 2

Prototype 3 A2 B1 C1 D1 E2 1 1

new methodology application resulted in the same classification order exposed
on the original problem, which corresponds to the FIQ order.

Fig. 3 presents the preferences elicitation of quality variations to pairs of
criteria.

An advantage of the ZAPROS III method is the presentation of all ques-
tions during the elicitation of preferences process in the decision maker’s natural
language, respecting the human information processing system limitations. The
incomparability cases, however, are unavoidable when the scale of preferences is
purely verbal, because there is no exact measure of the values.
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Fig. 3. Elicitation of preferences for two criteria - Application [7]

6 Conclusions

This paper contribution is the new approach methodology structured basically
on ZAPROS III method and with some modifications in order to improve the
alternatives comparison process. This methodology is presented by the tool,
which allows aiding the decision making process.

In such case, it was used the Formal Index of Quality (FIQ) [4], which purpose
is to reduce the number of pairs of alternatives compared; the ideas of comparison
between alternatives by ordering the quality vectors in ascending order [6]; and,
for a complex decision making process, it is possible to perform a comparison
based on all possible alternatives for the problem.

These steps were sufficient to guarantee the comparison of all alternatives for
the presented experiments.

As future works, we intend to improve the treatment proposed to incom-
parability cases, reducing the complexity it represents and, consequently, the
execution cost of the procedure. New experiments on health areas will be done,
aiming advances on early diagnosis of diseases.

As a conclusion to the structuringof the tool, theexpectedbehaviorwasobtained
by presentation of complete and satisfactory results at the end of the execution.
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Abstract. We propose a new solution for a class of nonconvex programs
involving l0 norm. Our method is based on a reformulation of these pro-
grams as bilevel programs, in which the objective function in the first
level program is a DC function, and the second level consists of finding
a Karush-Kuhn-Tucker point of a linear programming problem. Exact
penalty techniques are then used to reformulate the obtained programs
as DC programs. The resulted problems are then handled by the local
algorithm DCA in DC programming. Preliminary computational results
are reported.
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1 Introduction

We propose exact reformulations of some programs involving l0 norm. Let

‖x‖0 = | {i ∈ {1, ..., n} : xi �= 0} |.

Consider the problems :
⎧
⎨

⎩

min(x,y) f(x, y)
s.t. ‖x‖0 ≤ k,

(x, y) ∈ K,
(1)

and {
min(x,y) f(x, y) + ρ ‖x‖0
s.t. (x, y) ∈ K,

(2)

where K is a compact convex polyhedral subset of Rn × Rm, f : Rn × Rm → R

is a finite DC function, ρ > 0, and 1 ≤ k < n are given.
The class of programs (1) and (2) are directly related to some optimization

problems in learning (see Schnörr et al. [2] and Weston et al. [1] for example).
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They have many uses in a machine learning context: for variable or feature
selection, minimizing the training error and ensuring the sparsity in solutions.

In this paper we first reformulate (1) and (2) as bilevel programs, in which
the objective function in the first level is a DC function, and the second level
consists of finding a Karush-Kuhn-Tucker point of a linear programming prob-
lem. Then we apply the theory of exact penalization of mathematical programs
with equilibrium constraints developed by Luo et al [6] and the exact penalty
techniques in DC programming due to Le Thi et al [4], [5] to reformulate the
obtained bilevel programs as problems of minimizing DC functions over polyhe-
dral convex sets. The resulted problems are then handled by a local approach
in DC programming developed by Pham Dinh and Le Thi in their early works
(see [4], [5], [7]).

The paper is organized as follows. In sections 2 and 3 we reformulate the
problems (1) and (2) as DC Programs. The algorithm to solve the obtained
problem is presented in section 3 while some applications in feature selection
and numerical results are presented in section 4 and 5.

The proofs of propositions and lemmas were omitted for reasons of limitation
of pages, refer to the technical report [12] for more details.

2 Reformulations

2.1 First Reformulation

Consider the following optimization problems
⎧
⎪⎪⎨

⎪⎪⎩

min(x,y,u,v) f(x, y)
s.t. (x, y) ∈ K, 〈en, u+ v〉 ≤ k,

u ∈ argmin{〈−x, ũ〉 : ũ ∈ [0, 1]n} ,
v ∈ argmin {〈x, ṽ〉 : ṽ ∈ [0, 1]n} ,

(3)

and ⎧
⎪⎪⎨

⎪⎪⎩

min(x,y,u,v) f(x, y) + ρ〈en, u+ v〉
s.t. (x, y) ∈ K,

u ∈ argmin{〈−x, ũ〉 : ũ ∈ [0, 1]n} ,
v ∈ argmin {〈x, ṽ〉 : ṽ ∈ [0, 1]n} ,

(4)

where en = (1, ..., 1)T ∈ Rn.

Proposition 1. 1. The problems (1) and (3) are equivalent in the following
sense :
– if (x̄, ȳ) is an optimal solution of (1), then there exists ū and v̄ such that

(x̄, ȳ, ū, v̄) is an optimal solution of (3), and
– if (x̄, ȳ, ū, v̄) is an optimal solution of (3), then (x̄, ȳ) is an optimal so-

lution of (1).
2. The problems (2) and (4) are equivalent in the following sense:

– if (x̄, ȳ) is an optimal solution of (2), then there exists ū and v̄ such that
(x̄, ȳ, ū, v̄) is an optimal solution of (4), and

– if (x̄, ȳ, ū, v̄) is an optimal solution of (4), then (x̄, ȳ) is an optimal so-
lution of (2).
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2.2 Second Reformulation

Applying the KKT conditions to (3) and (4), respectively we get the following
problems

⎧
⎪⎪⎨

⎪⎪⎩

min(y,u,v,λ,α) f(λ− α, y)
s.t. (λ− α, y) ∈ K, 〈en, u+ v〉 ≤ k

〈λ, en − u+ v〉 = 0, 〈α, en + u− v〉 = 0
u, v ∈ [0, 1]n , λ, α ∈ Rn

+,

(5)

and ⎧
⎪⎪⎨

⎪⎪⎩

min(y,u,v,λ,α) f(λ− α, y) + ρ〈en, u+ v〉
s.t. (λ− α, y) ∈ K

〈λ, en − u+ v〉 = 0, 〈α, en + u− v〉 = 0
u, v ∈ [0, 1]n , λ, α ∈ Rn

+.

(6)

The connection between (5), (6) and (3), (4) can be described as follows.

Proposition 2. 1. The problems (3) and (5) are equivalent in the following
sense :
– if (x̄, ȳ, ū, v̄) is an optimal solution of (3), then there exist λ̄, and ᾱ such

that (ȳ, ū, v̄, λ̄, ᾱ) is an optimal solution of (5), and
– if (ȳ, ū, v̄, λ̄, ᾱ) is an optimal solution of (5), then (λ̄ − ᾱ, ȳ, ū, v̄) is an

optimal solution of (3).
2. The problems (4) and (6) are equivalent in the following sense:

– if (x̄, ȳ, ū, v̄) is an optimal solution of (4), then there exist λ̄, and ᾱ such
that (ȳ, ū, v̄, λ̄, ᾱ) is an optimal solution of (6), and

– if (ȳ, ū, v̄, λ̄, ᾱ) is an optimal solution of (6), then (λ̄ − ᾱ, ȳ, ū, v̄) is an
optimal solution of (4).

3 DC Programming and DCA for (5) and (6)

First of all, to make the paper self-contained and so more comprehensive for
the reader not familiar with DC programming and DCA, we will outline main
theoretical and algorithmic results on the topic.

3.1 DC Programming and DCA

Let Γ0(Rn) denote the convex cone of all lower semicontinuous proper convex
functions on Rn. The vector space of DC functions, DC(Rn) = Γ0(Rn)−Γ0(Rn),
is quite large to contain almost real life objective functions and is closed under
all the operations usually considered in Optimization. Consider the standard DC
program

(Pdc) α = inf {f(x) := g(x)− h(x) : x ∈ Rn} ,
where g, h ∈ Γ0(Rn). Remark that the closed convex constraint set C is incorpo-
rated in the first convex DC component g with the help of its indicator function
χC(χC(x) = 0 if x ∈ C,+∞ otherwise).
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Based on local optimality conditions and duality in DC programming, the
DCA consists in the construction of two sequences xk and yk (candidates to be
solutions of (Pdc) and (Ddc) resp.). Each iteration of DCA approximates the con-
cave part −h by its affine majorization (that corresponds to taking yk ∈ ∂h(xk))
and minimizes the resulting convex function (that is equivalent to determining
xk+1 ∈ ∂g∗(yk)).

Generic DCA scheme:
Initialization Let x0 ∈ Rn be a best guest, 0← k.
Repeat
Calculate yk ∈ ∂h(xk).
Calculate xk+1 ∈ argmin

{
g(x)− h(xk)− 〈x− xk, yk〉 : x ∈ Rn

}
(Pk).

k + 1← k.
Until convergence of xk.

Convergence properties of DCA and its theoretical basis can be found in Pham
Dinh, Le Thi et al. [4], [5], and [7].

DCA’s Convergence Theorem. DCA is a descent method without linesearch
which enjoys the following primal properties (the dual ones can be formulated
in a similar way):

1. The sequences
{
g(xk)− h(xk)

}
and h∗(yk)− g∗(yk) are decreasing.

2. If the optimal value α of problem (Pdc) is finite and the infinite sequences{
xk
}

and
{
yk
}

are bounded then every limit point x∞ (resp. y∞) of the
sequence

{
xk
}

(resp.
{
yk
}
) is a critical point of g − h (resp. h∗ − g∗).

3. DCA has a linear convergence for general DC programs.
4. For polyhedral DC programs, DCA has a finite convergence.

We shall apply all DC enhancement features to solve (1) and (2).

3.2 DCA for Solving (1) and (2)

In this section we will reformulate (5) and (6) as equivalent DC programs, where
f is a DC function and K is a compact convex polyhedral subset of Rn×Rm, and
then apply DCA. We emphasize the finite convergence of DCA and its feasibility
in the related polyhedral DC programs.

Reformulation of the Penalty Equivalents as DC Programs Let

q(y, u, v, λ, α) :=
n∑

l=1

(min(λl, 1− ul + vl) +min(αl, 1 + ul − vl)), (7)

and
Ω :=

{
(y, u, v, λ, α) : (λ− α, y) ∈ K,u, v ∈ [0, 1]n , λ, α ∈ Rn

+

}
. (8)

Property 1. 1. q is finite nonnegative concave in Ω.
2. −q is convex polyhedral.
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As K is bounded, there exists M > 0 such that |xl| ≤M for all l ∈ {1, ..., n}
and for all (x, y) ∈ K. Let

Ω̃ := {(y, u, v, λ, α) : (λ− α, y) ∈ K,u, v ∈ [0, 1]n , λ, α ∈ [0,M + 2]n} . (9)

Lemma 1. 1. Ω is nonempty closed convex polyhedral set.
2. {(y, u, v, λ, α) : (y, u, v, λ, α) ∈ Ω, q(y, u, v, λ, α) ≤ 0} ⊂ Ω̃ ⊂ Ω.

Based on this lemma, we can rewrite (5) and (6), respectively, as
{

min(y,u,v,λ,α) f(λ− α, y)
s.t. 〈en, u+ v〉 ≤ k, q(y, u, v, λ, α) ≤ 0, (y, u, v, λ, α) ∈ Ω̃, (10)

and {
min(y,u,v,λ,α) f(λ− α, y) + ρ〈en, u+ v〉
s.t. q(y, u, v, λ, α) ≤ 0, (y, u, v, λ, α) ∈ Ω̃. (11)

Let t > 0. Consider the following penalty programs
{

min(y,u,v,λ,α) f(λ− α, y) + tq(y, u, v, λ, α)
s.t. 〈en, u+ v〉 ≤ k, (y, u, v, λ, α) ∈ Ω̃, (12)

and {
min(y,u,v,λ,α) f(λ− α, y) + ρ〈en, u+ v〉+ tq(y, u, v, λ, α)
s.t. (y, u, v, λ, α) ∈ Ω̃. (13)

Proposition 3. 1. There exists t1 > 0 such that (5) and (12) are equivalent
for all t > t1.

2. There exists t2 > 0 such that (6) and (13) are equivalent for all t > t2.

The objective functions of (12) and (13) are nondifferentiable and nonconvex.
They are actually DC functions, so (12) and (13) are DC programs. Note that
if f is a convex or DC function whose first DC component is polyhedral convex,
then (12) and (13) are polyhedral DC programs for which DCA has a finite
convergence.

First we have to present (12) and (13) in the standard form of a DC program.
Since the function f is DC (with respect to the pair of variables (x, y)) on K

f(x, y) = f1(x, y)− f2(x, y),

with f1 and f2 being convex functions on K. The function F defined by

F (y, u, v, λ, α) = f(λ− α, y)

is DC with the following DC decomposition

F (y, u, v, λ, α) = F1(y, u, v, λ, α)− F2(y, u, v, λ, α),

where F1 and F2 are the following convex functions

F1(y, u, v, λ, α) = f1(λ − α, y), F2(y, u, v, λ, α) = f2(λ − α, y).
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DCA for (12): By assumption, the feasible set C of (12) is a bounded poly-
hedral convex set. Its indicator function χC is defined by χC(y, u, v, λ, α) := 0 if
(y, u, v, λ, α) ∈ C, +∞ otherwise.

With the concavity of the function q, (12) can be rewritten as the following
DC program

{
minG(y, u, v, λ, α) −H(y, u, v, λ, α)
s.t. (y, u, v, λ, α) ∈ Rm × Rn × Rn × Rn × Rn,

(14)

with G, H being convex functions defined by (t > t1)

G := F1 + χC , H := F2 − tq.

Recall that if the function f is convex, then f2 = 0. In this case , H is a
polyhedral convex function and (14) is a polyhedral DC program.

According to subsection 3.1, performing DCA for problem (14) amounts to
computing the two sequences

{
(yk, uk, vk, λk, αk)

}
and

{
(Y k, Uk, V k, Λk, Ak)

}

defined by
(Y k, Uk, V k, Λk, Ak) ∈ ∂H(yk, uk, vk, λk, αk), (15)

(yk+1, uk+1, vk+1, λk+1, αk+1) ∈ ∂G∗(Y k, Uk, V k, Λk, Ak). (16)

In other words, we have to compute the subdifferentials ∂H and ∂G∗. Here
we have

∂H(yk, uk, vk, λk, αk) = ∂F2(yk, uk, vk, λk, αk) + t∂(−q)(yk, uk, vk, λk, αk),
(17)

with the explicit computation of ∂(−q) as follows

∂(−q)(y, u, v, λ, α)=
n∑

l=1

[∂(max(−λl,−1+ul − vl))+∂(max(−αl,−1−ul+vl))] ,

with

∂(max(−λl,−1 + ul − vl)) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, 0, 0,−el, 0) if −λl > −1 + ul − vl,
(0, el,−el, 0, 0) if −λl < −1 + ul − vl,[
(0, 0, 0,−el, 0), (0, el,−el, 0, 0)

]

if −λl = −1 + ul − vl,

(18)

and

∂(max(−αl,−1− ul + vl)) =

⎧
⎪⎪⎨

⎪⎪⎩

(0, 0, 0, 0,−el) if −αl > −1− ul + vl,
(0,−el, el, 0, 0) if −αl < −1− ul + vl,[
(0, 0, 0, 0,−el), (0,−el, el, 0, 0)

]

if −αl = −1− ul + vl,

(19)

where e1, ..., en are the unit vectors of Rn.
As for computing ∂G∗(Y k, Uk, V k, Λk, Ak), we have to solve the following

related convex program :
{

minF1(y, u, v, λ, α)− 〈(y, u, v, λ, α), (Y k, Uk, V k, Λk, Ak)〉
s.t (y, u, v, λ, α) ∈ C. (20)
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We decompose this convex program into two convex programs:
{

min(y,λ,α) f1(λ− α, y)− 〈(y, λ, α), (Y k, Λk, Ak)〉
s.t. (λ− α, y) ∈ K,λ, α ∈ [0,M + 2]n , (21)

and {
min(u,v) −〈(u, v), (Uk, V k)〉
s.t. 〈en, u+ v〉 ≤ k, u, v ∈ [0, 1]n . (22)

DCA for (13): For (13) we take

G := F1 + ρ〈en, u+ v〉+ χC , H := F2 − tq.

As for computing ∂G∗(Y k, Uk, V k, Λk, Ak), we have to solve the following related
convex programs :

{
min(y,λ,α) f1(λ− α, y)− 〈(y, λ, α), (Y k, Λk, Ak)〉
s.t. (λ− α, y) ∈ K,λ, α ∈ [0,M + 2]n , (23)

and {
min(u,v) 〈(u, v), (ρen − Uk, ρen − V k)〉
s.t. u, v ∈ [0, 1]n . (24)

Now we can describe DCA applied to (14).

Initialization Let ε be the tolerance sufficiently small, set k = 0.
Choose (y0, u0, v0, λ0, α0) ∈ Rm × Rn × Rn × Rn × Rn.
Repeat

– Compute (Y k, Uk, V k, Λk, Ak) via (17), (18), (19).
– Solve (22) (resp. (24)) to obtain (uk+1, vk+1) and (21) to obtain

(yk+1, λk+1, αk+1).
– k + 1← k.

Until∥
∥yk+1 − yk

∥
∥+

∥
∥uk+1 − uk

∥
∥+

∥
∥vk+1 − vk

∥
∥

+
∥
∥λk+1 − λk

∥
∥+

∥
∥αk+1 − αk

∥
∥ ≤ ε.

4 Applications

In this section we present some feature selection problems. Feature selection is
an important combinatorial optimization problem in the context of supervised
pattern classification. The main goal in feature selection is to select a subset
of features of a given data set while preserving or improving the discriminative
ability of a classifier.

It is well known [10] that the problem of minimizing the l0 norm is NP-Hard.
Bradley and Mangasarian [11] proposed an approximation method in which the
l0 norm is approximated by a concave exponential function. Weston et al. [1]
have used another approximated function.
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To test our method we consider the following feature selection problems.

1. Combined feature selection (L2-L0 SVM)

(CFS)

⎧
⎨

⎩

min(w,b,ξ)
μ
meT

mξ + 1
2w

Tw + ν ‖w‖0
s.t. yi(wTxi + b) ≥ 1− ξi, i = 1, ...,m,

ξ ≥ 0, w ∈ Rn, b ∈ R.

2. Zero-norm for feature selection

(ZFS)

⎧
⎨

⎩

min(w,b,ξ)
μ
meT

mξ + 1
2w

Tw
s.t. yi(wTxi + b) ≥ 1− ξi, i = 1, ...,m,

‖w‖0 ≤ k, ξ ≥ 0, w ∈ Rn, b ∈ R.

3. Original FSV

(FSV )

⎧
⎨

⎩

min(w,γ,y,z) fλ(w, γ, y, z) = (1− λ)( 1
meT y + 1

k e
T z) + λ ‖w‖0

s.t. −Aw + eγ + e ≤ y,Bw − eγ + e ≤ z,
w ∈ Rn, y ∈ Rm

+ , z ∈ Rk
+, γ ∈ R.

For the original FSV we have the following analytical results:

– If a ∈ {1...n} and λ ≥ 2
2+a , then ‖w‖0 < a or fλ(w, γ, y, z) ≥ fλ(0, 0, e, e)

for all feasible point of FSV;
– If λ ≥ 2

3 then (0, γ, (1 + γ)e, (1 − γ)e), γ ∈ [−1, 1] are global solutions of
FSV;

– If λ ≥ 0.05 then all the global solutions (w, γ, y, z) of FSV satisfy ‖w‖0 ≤ 38.

This results show the non uniqueness of global solution and that for high number
of features it is necessary to choose small values for λ.
Many questions can arise

– A global solution gives better one classification than a local solution?
– Model with the original l0 norm gives better one classification than model

with the l0 approximations?
– How to choose good parameters?

In the next section we present some preliminary results in the context of
SVMs.

5 Experiments and Preliminary Numerical Results

We have implemented our method for (CFS) and (ZFS) and we start DCA
with x0 = e and stop DCA on a solution with tolerance tol = 10−8. The num-
ber of selected features is determined as |

{
j = 1, ..., n : |wj | > 10−8

}
|. We take

the exact penalty parameter t greater than 1000. For solving quadratic convex
problem (21) we use CPLEX 7.5.
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5.1 Data Sets

To test our methods on real-world data, we use several data sets from the UCI
repository. The problems mostly treat medical diagnoses based on genuine patient
data and are resumed in Table 1 where we use distinct short names for databases.

5.2 Numerical Results

In Table 2, we summarize the computational results obtained on (CFS) and
(ZFS). We observe from the computational results that

– The classifiers obtained by this method with DCA suppressed many features.
The number of features is considerably reduced while the classifier is quite
good. For (CFS) the correctness of the classification on the test set vary
from 57.90% (when 83.33% of features are deleted) to 97.40% (when 33.33%
of features are deleted). For (ZFS) the correctness of the classification on the
test set vary from 57.90% (when 83.33% of features are deleted) to 87.30%
(when 88.88% of features are deleted).

– DCA realizes the suitable trade-off between the error of classification and
the number of features.

Table 1. Statistics for data sets used

data set no. of features no. of samples class dist.(+)/(-)

ionosphere 34 351 225/126
breast cancer wisconsin 9 683 444/239

wdbc wisconsin 30 569 212/357
wpbc wisconsin 32 198 151/47

Bupa Liver 6 345 145/200

Table 2. Computational results

(CFS) (ZFS)

data set selected train test selected train test
features correctness correctness features correctness correctness

(%) (%) (%) (%)

ionosphere 1 76.10 70.95 1 73.08 78.64
bcw 6 92.80 97.40 1 88.90 87.30
wdbc wisconsin 4 93.13 92.64 2 69.32 69.74
wpbc wisconsin 4 83.10 74.44 3 84.62 74.70
Bupa Liver 1 58.10 57.90 1 58.10 57.90

6 Conclusion

We have proposed in this paper a new DC programming approach for solving
problem dealing l0 norm. The resulted DC program is polyhedral in general and
DCA has a finite convergence.
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Preliminary computational results show that the proposed approach is promis-
ing for feature selection in the context of SVMs. Studies in the large-dimension
case and large-dimension data are in progress.
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Abstract. This paper investigates the problem of Maximum Common
Connected Subgraph (MCCS) which is not necessarily an induced sub-
graph. This problem has so far been neglected by the literature which
is mainly devoted to the MCIS problem. Two reductions of the MCCS
problem to a MCCIS problem are explored: a classic method based on
linegraphs and an original approach using subdivision graphs. Then we
propose a method to solve MCCS that searchs for a maximum clique in a
compatibility graph. To compare with backtrack approach we explore the
applicability of Constraint Satisfaction framework to the MCCS problem
for both reductions.

Keywords: Maximum common subgraph; linegraph; subdivision graph,
compatibility graph; constraints satisfaction algorithm; clique detection.

1 Introduction

A classic method for comparing two graphs is to find the largest pattern between
them. Most of the time, this question is interpreted as a maximum common
induced subgraph (MCIS) problem. Nevertheless, some slightly different problems
can be relevant in many areas. For instance, finding connected subgraphs can be
preferred to compare molecules in the design of organic synthesis.

In this paper we investigate the problem of Maximum Common Connected
Subgraph (MCCS) which is not necessarily an induced subgraph. This problem
has so far been neglected by the literature which is mainly devoted to the MCIS
problem.

The algorithms that solve MCIS are generally classified into two main cat-
egories: backtrack algorithms and methods that find a maximum clique in a
compatibility graph. This latter approach is one of the most popular and is gen-
erally based on variants of the Bron and Kerbrosch’s algorithm [3] that finds the
maximal cliques of a graph. Koch [8] has proposed an extension of the method
adapted to the MCCIS problem (connected MCIS). The non-clique based back-
track approach is symbolized by McGregor’s algorithm [12]. This method has
several similarities with the framework of Constraint Satisfaction Problems.
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Common subgraph problems for chemical structures matching are explored
in [14]. The MCIS problem is NP-hard except for almost trees of bounded de-
gree [1]. As for the MCCIS problem, it is polynomial for partial k-tree [18].

Based on Withney’s theorem [17] on linegraphs, a reduction of the MCS prob-
lem (neither induced nor connected) to a MCIS problem is often suggested (but
never detailed) in the literature. In this paper we explore this reduction for
MCCS on labeled graphs. We also investigate another reduction based on the
subdivision graph notion. Then we study how to solve this problem using a clique-
based algorithm for both reductions. In section 4 we explore the applicability of
constraint satisfaction algorithms to the MCCS problem. For each approach we
compare the efficiency of using linegraphs or subdivision graphs to transform the
problem into a MCCIS problem. Experimental results are reported in section 5.

2 Preliminaries

We consider connected graphs with labeled nodes and edges. Formally, a graph
is a 4-tuple, G = (V,E, μ, ν), where V is the set of vertices, E ⊆ V × V is the
set of edges, μ : V → LV is a function assigning to each vertex a label from the
set of labels LV and similarly ν : E → LE is the edge labeling function.

For any edge e = xy we define ends(e) = {x, y}.
A graph H = (V ′, E′, μ′, ν′) is a subgraph of G iff V ′ ⊆ V , μ′ and ν′ are the

restrictions of μ and ν respectively and E′ ⊆ E ∩ (V ′ × V ′). The graph H is an
induced subgraph of G if E′ = E ∩ (V ′ × V ′).

Given two graphs G1 and G2, a Common Connected Subgraphs (CCS) of G1

and G2 is a connected graph H isomorphic to both subgraphs of G1 and G2.
A Maximum Common Connected Subgraphs (MCCS) is a Common Con-

nected Subgraphs which size is maximum according to the number of edges. By
analogy, we can define a Maximum Common Connected Induced Subgraph (MC-
CIS). Generally, MCCIS is maximum according to number of vertices. Figure 1
illustrate differences between MCS, MCCS, MCIS, and MCCIS.

Linegraph. The linegraph L(G) of a graph G = (V,E, μ, ν) is a graph that
has a vertex for each edge of G, and two vertices of L(G) are adjacent if they
correspond to two edges of G with a common extremity.

According to Withney’s theorem [17], two connected graphs with isomorphic
linegraphs are isomorphic unless one is a triangle (K3) and the other is a trinode

MCS MCIS MCCS MCCIS

G2

G1

Fig. 1. Differences between MCS, MCCS, MCIS, and MCCIS
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(K1,3) since both graphs have their linegraph equal to K3. Hence, the MCCS
problem between two unlabeled connected graphs can be solved as an MCCIS
problem between their linegraphs. Checking for triangle / trinode exchange must
be done only for solutions including less than 4 edges.

It is important to note that there is no such a direct equivalence for the MCS
problem (not necessarily connected) because a MCIS between two linegraphs can
have many connected components reduced to K3. Since solutions with triangle
/ trinode exchanges can be larger than solutions without exchanges, the test for
exchanges must be done during the search.

Now we consider the MCCS problem for labeled graphs. To insure the equiv-
alence with MCCIS for labeled graphs, the corresponding linegraphs must be
labeled on both nodes and edges (see figure 2). We define the labeling func-
tions of the linegraph L(G) = (E, E , μL, νL) as follows: ∀e ∈ E, where e =
xy, μL(e) = (ν(e), μ(x), μ(y)) and ∀αβ ∈ E , νL(αβ) = μ(ends(α) ∩ ends(β)).
Using this definition, Withney’s theorem can be extended to labeled graphs.
To demonstrate this result, one can adapt the proof presented in [6]. Given an
isomorphism of L(G1) onto L(G2) preserving the labels, it is easy to derive an
isomorphism of G1 onto G2 that preserves the labels.

Fig. 2. Labeling linegraphs

Subdivision Graph. The subdivision graph S(G) is obtained from a graph
G = (V,E, μ, ν) by replacing each edge e = xy by a new vertex e connected to
both x and y.

Formally, S(G) = (V ∪ E, E , μs, f0) where E = {xα ∈ V × E | x ∈ ends(α)},
f0 is the zero function and ∀x ∈ V, μs(x) = μ(x) and ∀e ∈ E, μs(e) = ν(e).

Definition 1. Abalanced subgraph of a subdivision graphS(G)=(V ∪E, E , μs, f0)
is a subgraph in which any vertex from E has an odd degree.

Then, the MCCS problem between two graphs is clearly equivalent to find max-
imum common connected and balanced subgraphs between their subdivision
graphs.

3 Clique Detection

The detection of a MCIS between two graphs (Ga and Gb) can be solved by
finding maximum clique in the compatibility graph (GC). A compatibility graph
of two graphs, also called modular graph, is a graph whose node set is Va×Vb. A
node (xi, xj) in GC represents a mapping between the vertex xi from Ga and the
vertex xj from Gb. An edge between two nodes in GC represents two compatible
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mapping. Then a clique in GC of size k is a compatible mapping of k vertices in
Ga with k vertices of Gb.

Reducing the MCIS problem to the maximum clique has been discovered inde-
pendently by numerous authors such as Levi [11]. Clique detection is a common
approach to compute MCIS. I. Koch [8] proposed a method to find MCCIS
involving labels on edges of the compatibility graph.

In this section we present the ways to solve MCCS using clique detection
algorithms on compatibility graphs constructed from linegraphs or subdivision
graphs.

Clique Detection Based on Linegraphs
According to section 2, we can reduce MCCS to MCCIS. The compatibility
graph is constructed with L(G1) and L(G2) instead of G1 and G2.

Given two labeled linegraphs L(G1) = (E1, E1, μ1, ν1) and L(G2)=(E2, E2, μ2,
ν2), the compatibility graph GC = (VC , EC , f0, νC) is defined as :

– VC = {(x1, xa) ∈ E1 × E2 | μ1(x1) = μ2(xa)}
– EC = {(x1, xa)(x2, xb) ∈ VC × VC} such that :
• x1 �= x2 and xa �= xb and
• (x1x2 ∈ E1 and xaxb ∈ E2) or (x1x2 �∈ E1 and xaxb �∈ E2)

– νC : EC → {strong,weak} such that :

• νC((x1, xa)(x2, xb)) =
{
strong if (x1x2 ∈ E1 and xaxb ∈ E2)
weak otherwise

A clique is a subset of nodes such that each pair of nodes is connected by an edge.
An edge e is a strong edge iff νC(e) = strong. Two nodes a and b in GC are said
strongly (resp. weakly) connected iff ab is a strong edge (resp. weak). A clique is
a strong clique if it contains a covering tree that consists of strong edges. Hence,
the common subgraph corresponding to a strong clique is necessarily connected.

Once the compatibility graph is constructed (in O(|E1|×|E2|)), a clique detec-
tion algorithm is used to find maximum cliques. The maximum clique problem
is a classical problem in combinatorial optimization and has been widely studied
[2]. The Bron and Kerbrosch’s algorithm[3] is one of the first and most popular.
This algorithm computes all maximal cliques but is often used for finding the
maximum clique. The benefit of the backtracking method in [3] is that it avoids
generating non-maximal cliques.

This algorithm has known several modifications such as Johnston’s heuristic
[7]. During the backtrack search, once the current clique K has been extended
with z, K must be extended without z. [7] showed that the next node y to
extend K can be taken within nodes disconnected to z since any maximal clique
without z must include such a node.

Koch’s algorithm [8] is based on [3] and computes all maximal strong cliques.
The current clique K is extended with a node z strongly connected to K. Unfor-
tunately, Johnston’s heuristic[7] cannot be applied since nodes disconnected to
z aren’t necessarily strongly connected to K (see fig. 3). We propose to modify
the heuristic such that the next node y (strongly connected to K) is added to
K if either y is disconnected to z or y is strongly connected to a node t weakly
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Fig. 3. Extending the current strong clique

connected to K and such that t is disconnected to z. In this way, the maximum
strong clique found represents a MCCIS of L(G1) and L(G2) and therefore a
MCCS of G1 and G2.

Clique Detection Based on Subdivision Graphs
The compatibility graph can be created upon S(G1) and S(G2). As far as we
know, subdivision graphs have not been used to reduce the MC(C)S problems
to the MC(C)IS problems. Since a subdivision graph has two different kinds of
nodes, the construction of the compatibility graph is more tricky.

The construction of the compatibility graph must ensure that a maximal
clique corresponds to a balanced subgraph in S(G1) and S(G2).

Given two subdivision graphs S(G1) = (V1 ∪ E1, E1, μ1, f0) and S(G2) =
(V2∪E2, E2, μ2, f0), the compatibility graphGC = (VC∪EC , EC , f0, νC) is defined
as follows:

– VC = {(x1, xa) ∈ V1 × V2 | μ1(x1) = μ2(xa)}
EC ={(e1, ea) ∈ E1×E2 | ν1(e1)=ν2(ea) and μ1(ends(e1)) = μ2(ends(e2))}

– EC =
1. {(x1, xa)(e1, ea)∈VC ×EC | (x1 ∈ ends(e1) and xa ∈ ends(ea)) or (x1 �∈

ends(e1) and xa �∈ ends(ea))} ∪
2. {(x1, xa)(x2, xb) ∈ VC × VC | x1 �= x2 and xa �= xb} ∪
3. {(e1, ea)(e2, eb) ∈ EC × EC} such that :
• e1 �= e2 and ea �= eb and
• |ends(e1) ∩ ends(e2)| = |ends(eb) ∩ ends(eb)|

– νC : EC → {strong,weak} such that :

• νC((x1, xa)(e1, ea)) =
{

strong if x1 ∈ ends(e1) and xa ∈ ends(ea)
weak otherwise

• νC((x1, xa)(x2, xb)) = νC((e1, ea)(e2, eb)) = weak

The time complexity of the construction is O((|V1|+ |E1|)× (|V2|+ |E2|)).

Theorem 1. A maximal strong clique K of the compatibility graph GC defines
a balanced connected subgraph in the subdivision graphs S(G1) and S(G2).

Proof. The main result is to prove that for any (a, b) ∈ EC , if (a, b) ∈ K then
K must include a couple of nodes in VC that maps the ends of a and b. Let
(a, b) ∈ EC∩K such that ends(a) = {x, y} and ends(b) = {i, j}. By construction
(1) of EC , (a, b) is strongly connected to (x, i), (x, j), (y, j) and (y, i). By (2),
(x, i) is adjacent to (y, j) and (x, j) is adjacent to (y, i). For any node (z, k) ∈
VC ∩ K where z �∈ ends(a) or k �∈ ends(b), since (z, k) is adjacent to (a, b)
we have by (1) (z, k) is adjacent to (x, i), (x, j), (y, j) and (y, i). Now let’s
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assume that K includes another node (c, d) ∈ EC . By (3), let α = |ends(a) ∩
ends(c)| = |ends(b) ∩ ends(d)|. If α = 0, then (c, d) is necessarily adjacent to
(x, i), (x, j), (y, j) and (y, i). If α = 1, without loss of generality, suppose that
ends(a) ∩ ends(c) = {x} and ends(b) ∩ ends(d) = {i}. Thus (c, d) is strongly
connected to (x, i). Since y �∈ ends(c) and j �∈ ends(d) the nodes (y, j) and (c, d)
must be connected. Hence, K must include (x, i) and (y, j) to be maximal.

4 Constraint Satisfaction Problems

In [12], McGregor presents one of the rare algorithms specially intended for
MCS problems. Even so, this method has often been used to solve MCIS prob-
lems. The method is based on a backtrack algorithm but the way the method is
implemented has some analogy with the general framework of Constraint Sat-
isfaction Problems (CSP). Constraint satisfaction algorithms have been applied
to several problems in Graph Theory [10,5] but the MCCS problem has not yet
been formulated as a constraint satisfaction problem. Since CSP research finding
can benefit such an approach, we chose to study the applicability of backtrack
methods to MCCS in the scope of CSP.

From Induced Subgraph Problem to MCCIS. A constraint satisfaction
problem (CSP) is described by a constraint network defined as a triple whose
elements are a set of variables X = {x1, x2, ..., xk}, a set of values for each
variable, and a set of constraints among variables to specify which tuples of values
can be assigned to tuples of variables. A solution of the CSP is an instantiation
I of the variables that satisfies all the constraints.

For instance, a CSP for checking whether a graph G1 is an induced subgraph
of a graph G2 could be defined as follows: (i) a variable Xi is defined for each
vertex i of G1; (ii) a variable Xi can be assigned to any vertex of G2 whose label
is the same as that of i; the set of values that Xi can take is called the domain of
Xi and denoted by D(Xi); (iii) a binary constraint C(Xi, Xj) is defined between
each pair of variables Xi, Xj to insure that the connectivity and the labeling are
preserved by the mapping. A pair of values (yi, yj) ∈ D(Xi)×D(Xj) is allowed
by the constraint if ij ∈ E1 ⇔ yiyj ∈ E2 and when ij ∈ E1, ν1(ij) = ν2(yiyj);
(iv) a constraint of difference[15] is defined on variables to ensure that they all
take different values. Any solution for this constraint network is a matching of
G1 to G2.

Although the standard approach to solve a CSP is based on backtracking,
the reader interested in algorithms to solve CSP should refer to the vast lit-
erature on this domain [16]. In this paper we focus on the classical constraint
network framework which is oriented towards the satisfaction of all constraints.
This framework is widely used and has been implemented in many constraint
programming toolkits as JChoco [9] a Java library for constraint programming.
In the last decade, several extensions of the classical CSP framework have been
proposed. Some of them, like soft constraints, could be interesting to solve the
MCCS problem. But most of the CSP solvers do not implement these extensions.
Hence, they have not been studied yet in the context of the present work.
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In the previous example we have defined a constraint network to solve the
induced subgraph isomorphism problem. Representing an MCIS problem should
differ in the way that some vertices of graph G1 are not mapped to any vertex
of G2. Hence, the corresponding variables of the CSP cannot be assigned to
values in X2. A usual solution in such a case is to add an extra value (we denote
�) to the domain of the variables. Note that the constraint of difference must
be weakened since many variables can be assigned to the � value. Then, for
any solution of the CSP, the common induced subgraph will correspond to the
variables assigned to values in X2 only. The size of the common induced subgraph
is the number of variables whose value differs from �. Solving the MCIS problem
is then equivalent to find a solution of the constraint network that minimize the
number of � values.

To solve the MCCIS problem we add a new global constraint to the previ-
ous CSP. This connectivity constraint checks the connectivity of all the vertices
whose corresponding variable is not assigned to �.

In the following sections we detail the constraint networks to solve the MCCS
problem using linegraph or subdivision graph respectively.

A Constraint Network Based on Linegraphs
Given two linegraphs L(G1) = (E1, E1, μ1, ν1) and L(G2) = (E2, E2, μ2, ν2), we
propose to define a network constraint as follows:

– a set of variables X = {Xi | i ∈ E1}
– a domain for each variable: ∀i ∈ E1, D(Xi) = {y ∈ E2 | μ2(y) = μ1(i)}∪{�}
– a binary constraint C(Xi, Xj) between each pair of variables that allows the

set of couples: {(k, l) | k, l ∈ E2 and k �= l and (k, l) ∈ E2 ⇔ (i, j) ∈ E1}
∪ {(t, �), (�, t) | t ∈ E2} ∪ {(�, �)}

– a global constraint of connectivity on X to insure that the subgraph induced
by {i ∈ E1 | I(Xi) �= �} is connected, where I is an instantiation of the
variables.

The main difficulty lies in the implementation of the constraint of connectivity.
We maintain two sets during the search. CComp is the set of variables already
instancied to a non-� value and such that the subgraph {i ∈ E1 | Xi ∈ CComp}
is connected. The set Candidates includes uninstanciated variables connected to
at least one variable in CComp. Only variables in Candidates can be assigned
to non-� values. The sets are updated after each assignment.

Finally, to minimize the number of � values a new variable X#� is usually
added to the constraint network that counts the number of variables assigned to
this value. Hence, D(X#�) = {0 . . . |E1|} and a global constraint is defined on
{Xi}i∈E1 ∪ {X#�} to ensure that I(X#�) = |{i ∈ E1 | I(Xi) = �}|

A Constraint Network Based on Subdivision Graphs
The constraint network based on subdivision graphs is quite similar to that
defined in the previous section. Given two graphs G1 = (V1, E1, μ1, ν1) and
G2 = (V2, E2, μ2, ν2) and their subdivision graphs S(G1) = (V1 ∪E1, E1, μs1, f0)
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and S(G2) = (V2 ∪ E2, E2, μs2, f0), we propose to define the network constraint
as follows:

1. a set of variables X = {Xi | i ∈ V1 ∪ E1}
2. ∀i ∈ V1, D(Xi) = {y ∈ V2 | μ2(y) = μ1(i)} ∪ {�} and
∀j ∈ E1, D(Xj) = {y ∈ E2 | ν2(y) = ν1(j)} ∪ {�}

3. a binary constraint C(Xi, Xj) for each couple i, j ∈ V1 ×E1 that allows the
set {(k, l) ∈ V2 × E2 | (k, l) ∈ E2 ⇔ (i, j) ∈ E1} ∪ {(t, �), | t ∈ V2} ∪ {(�, �)}

4. a binary constraint between eachpair ofvariables in {Xi}i∈V1 (resp. {Xj}j∈E1)
that forbids equals values except of �.

5. a global constraint of connectivity on X to insure that the subgraph induced
by {i ∈ E1 | I(Xi) �= �} is connected, where I is an instanciation of the
variables.

The main difference with the CSP based on linegraphs lies in the partition of
the set of variables. By the binary constraint (3) between a “vertex variable”
and an “edge variable” we can easily prove that ∀j ∈ E1, I(Xj) �= � ⇒ ∀i ∈
ends(j), I(Xi) �= �

Hence any solution of the CSP corresponds to a balanced subgraph of the
subdivision graphs.

5 Experimental Results

We have implemented our constraint networks with the Java constraint program-
ming library JChoco [9]. The set CComp and Candidates for the connectivity
constraint are handled with backtrackable structures provided by JChoco.

The Bron and Kerbrosch’s algorithm [3] for clique detection has been imple-
mented in Java. We modified the program with Koch’s work [8] to find only
connected solutions. Then we adapted Johnston’s heuristic [7] for improving
performance.

Our database consists of three sets of graphs. The first one consists of 30
undirected connected graphs without label and randomly generated. Each has
at least 10 nodes and at most 20 nodes. The second set of graphs contains
30 molecules with a size between 6 and 62 atoms. The last set of graphs are
molecules taken from 5487 chemical reactions. In this set, we only compare the
reactant graphs with the product graphs without labels in the same reaction. A
timeout was set to 10 minutes for each test.

The first statement can be done about the comparison between subdivision
and the linegraph method in either CSP or clique-based approach. The subdivi-
sion method are almost always slower than the linegraph method. Subdivision
graphs increase the number of nodes of a graph. Since the complexity of MCCS
depends of the size of the data, the size of subdivision graphs probably slows the
procedure.

For small graphs or labbeled graphs, both CSP and clique approachs solve the
same number of problems within the time limit. The difference is more important
for larger graphs.
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Table 1. Description of the database. The third column (resp. fourth) represents the
average size of the compatibility graph on linegraphs (resp. subdivisions graphs).

# of couples average average

of graphs (m1 ∗ m2) (n1 × n2) + (m1 + ×m2)

molecules 465 475 1019

random graphs 465 835 1816

chemical reactions 8437 169 331

Table 2. Percent of solved problems on the different graphs sets within the time limit

CSP Clique detection
Linegraph Subdivision Linegraph Subdivision

molecules without labels 73,99% 69,04% 65,6% 55,4%

molecules 98.15% 94.45% 99.2% 97.09%

random graphs 73.6% 71.7% 65.5% 48.5%

chemical reactions 99.68% 99,58% 99,79% 98,62%

One explanation could be that the library used to implement the CSP algo-
rithms is quite complex and not very efficient for small problems. Conversely,
the clique detection algorithms are easier to implement but they do not benefit
of the CSP heuristics for large problems. As long as the compatibility graph has
a reasonable size (see column 3 and 4 from Table 1), the maximum clique can
be found within the time limit. When the size of the compatibilty graph arises,
finding the maximum clique is harder and the algorithms timeout.

Even with a preliminary benchmark and a different problem, we have a similar
conclusion than [4] that deals with MCIS on directed graphs: we cannot point
clearly a faster method in general. Meanwhile, its seems that the size of the
compatibility graph could be a threshold where the clique detection algorithms
become less effective than constraints satisfaction algorithms.

6 Conclusion

We have presented two methods to reduce the MCCS problem to an MCCIS
problem. The first one is an adaptation of the reduction based on linegraphs for
the “induced” versions of the problems. The second method is a new approach
that involves subdivision graphs. As far as we know, this reduction have not
been yet applied even for the MCIS problem.

These methods have been formalized in the general scope of labeled graphs.
We have adapted Koch’s algorithm [8] that computes an MCCIS by searching

a clique in a labeled compatibility graph. We proposed an heuristic for the choice
of the next vertex to add to the strong clique. We have extended the model of
compatibility graph in order to solve the MCCS problem for both linegraph and
subdivision graph reductions.



Finding Maximum Common Connected Subgraphs 367

To investigate backtrack algorithms as McGregor’s algorithm[12] we have cho-
sen the general framework of Constraint Satisfaction Problems. We have studied
the applicability of constraint satisfaction techniques for linegraphs and subdivi-
sion graphs reductions. The constraints we propose are quite simple and may be
improved. We have implemented both constraint networks using the JChoco[9],
a open source constraint programming toolkit, using the Java programming lan-
guage.

The four methods we have investigated to solve the MCCS have been imple-
mented in Java. We have experimented these algorithms on molecular labeled
graphs and unlabeled random graphs. The first results show that a linegraph
approach is generally faster than methods using subdivision graphs. One expla-
nation could be that subdivision graphs include more nodes than the correspond-
ing linegraphs. This drawback could be reduced with heuristics that exploit the
specific structure of subdivision graphs. For small or very labelled graphs there
is no significant difference between CSP and clique approachs. For more complex
graphs, it seems that the clique detection algorithms become less effective than
constraint algorithms.

Since the constraint networks we have proposed are based on quite simple
constraints, it would be interesting to optimize them. Another solution would
be to use extensions of the classical constraint network framework as soft con-
straints [13].

Nevertheless, the MCCS problem itself has many variants for real word prob-
lems. For instance we can use different criteria to calculate the size of a common
subgraph (number of nodes and edges, ...). It should be interesting to compare
the different methods according to their adaptability to these variations.
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Abstract. The inventory routing problem (IRP) is a challenging opti-
mization problem underlying the vendor managed inventory policy. In
this paper, we focus on a particular case of this problem, namely, the
long-term single-vehicle IRP with stable demand rates. The objective is
thus to develop an optimal cyclical distribution plan, of a single product,
from a single distribution center to a set of selected customers. After an
analysis of the problem’s features, we propose and discuss a hybrid ap-
proximation algorithm to solve the problem. The approach is then tested
on some randomly generated problems to evaluate its performance.

1 Introduction

The inventory routing problem (IRP) is one of the challenging optimization
problems in logistics and distribution. The problem is of special interest, to
supply chain managers in particular, since it provides them with integrated plans
that coordinate inventory control with vehicle scheduling and routing policies. In
practice, policies such as ‘Vendor Managed Inventory’ (VMI) are actually used
to coordinate inventory control and delivery scheduling in the supply chain. VMI
refers to an agreement between a vendor and his customers according to which
customers allow the vendor to decide the size and timing of their deliveries [1].
In other words, the vendor is granted full authority to manage his customers’
inventories. Compared with the traditional nonintegrated replenishments and
routings, in which customers manage their inventories themselves and call in
their orders, overall inventory and routing performances throughout the supply
chain is by far superior when VMI is implemented. The IRP is actually an
underlying optimization model for the VMI policy.

In this paper we discuss the particular long-term single-vehicle IRP which is
formulated as a nonlinear mixed integer problem. The original model for this
case is proposed and discussed in [2]. The model provides optimal solutions in
which a single distribution center is supplying a single product to a selected set
of customers in a cyclical way. The main objective of this paper is to develop
and suggest an exact solution strategy for the single-vehicle sub-problem.
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2 Formulation of Single-Vehicle IRP

The single-vehicle inventory routing problem consists of a single distribution
center r distributing a single product to a selected subset of customers from an
already located set of customers S. It is assumed that customer demand rates
are stable over time and that a single vehicle is available for the distribution of
the product. The objective is to select an optimal subset of customers C ⊂ S
to be served by the vehicle and to develop a cyclical distribution strategy that
minimizes expected distribution and inventory costs, without causing any stock-
outs at any customers during the planning horizon.

2.1 Review of Some Important Concepts

In order to provide a complete description of the problem, we review the concepts
of vehicle ‘cycle time’ and ‘multi-tours’. For more detailed description of these
concepts see [2].

r

S1

S2

C = S
1

S
2
, and S

1
S

2
=

Fig. 1. S is the set of all customers (all nodes), C is the set of selected customers
(filled nodes) and the vehicle’s trip is made out of two tours, going through the disjoint
subsets S1 and S2

Consider a vehicle replenishing a set of customers C. Assume that the vehi-
cle makes a trip visiting these customers by means of a set of disjoint tours P .
Assume also that each tour p ∈ P goes through a subset Sp ∪ {r} of customers
such that C =

⋃
p∈P Sp and Sp ∩ Sq = ∅ for any p and q �= p in P . Under this

pattern, the most effective way to supply customers in C is to travel along the
traveling salesman tour in each subset Sp ∪ {r}. Let TTSP (Sp ∪ {r}) denote the
travel time of each TSP tour on Sp∪{r}. Now, if we define the time between two
consecutive iterations of the trip as the ‘cycle time’ and we denote it by T (C).
Clearly, this cycle time is bounded from below by the sum of the TSP-tours’
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travel times through the subsets Sp ∪ {r} for p ∈ P . This lower bound is called
the ‘minimal cycle time’ and is also denoted by Tmin(C). It is given by:

Tmin (C) =
∑

p∈P

TTSP (Sp ∪ {r}) (1)

There is also an upper bound on the cycle time T (C). It is called ‘maximal
cycle time’ and is denoted by Tmax(C). This upper bound results from the limited
capacity of the vehicle, and is given by:

Tmax (C) = minp∈P

{
κ

∑
j∈Sp

dj

}

(2)

where dj is the demand rate of customer j ∈ Sp and κ is the capacity of the
vehicle. The vehicle makes multi-tours Sp and in each tour it cannot carry more
than its capacity. This means that T (C) ≤ κ/

∑
j∈Sp

dj for each tour. Therefore
T (C) cannot exceed the value of Tmax(C) given by above. Of course, for a multi-
tour going through customers in C =

⋃
p∈P Sp to be feasible, it is necessary that

Tmin(C) be smaller or equal to Tmax(C).
Finally, there is a theoretical optimal cycle time which can be determined as

explained in [2]. This is an extension of the EOQ-formula and is denoted by the
‘EOQ cycle time’ TEOQ(C). This last value may turn out to be greater than the
maximal cycle time or smaller than the minimal cycle time. In these cases, the
actual optimal cycle time T ∗(C) is equal to the maximal cycle time or minimal
cycle time respectively. For a more detailed discussion of these cycle time we
refer the reader to in [2], [3] or [4].

2.2 The Modified Formulation for Single-Vehicle IRP

In [2], an approximation algorithm based on column generation is employed to
solve the complete nonlinear cyclic long-term IRP. The resulting sub-problems
are solved heuristically. In this paper, our discussion will focus mainly on the
mixed integer nonlinear formulation of these sub-problems. In the formulation
we are presenting in this paper, the nonlinearities in the constraints of the orig-
inal sub-problem given in [2] are removed. The reformulation of the problem as
well as the necessary parameters, variables and constraints are given below.

Additional parameters of the model:

– tij : The travel time from customer i ∈ S+ = S ∪ {r} to customer j ∈ S+ (in
hours);

– ψ: The fixed operating cost of vehicle (in euro per vehicle);
– δ: The travel cost of vehicle (in euro per km);
– ν: The vehicle speed (in km per hour);
– ϕj : The cost per delivery at customer j (in euro per cycle);
– ηj : The holding cost at customer j (in euro per ton per hour);
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– λj : The reward (dual price) if customer j is visited. ( these prices are obtained
from the master problem);

Variables of the model:

– xij : A binary variable set to 1 if customer j ∈ S+ is served immediately after
customer i ∈ S+ by the vehicle, and 0 otherwise;

– Qij : The quantity of the product remaining in the vehicle when it travels
directly to the customer j ∈ S+ from customer i ∈ S+. This quantity equals
zero when the link (i, j) is not on any tour made by the vehicle;

– qj : The quantity that is delivered to the customer j ∈ S;
– T : The cycle time of the trip made by the vehicle (in hours).

The modified formulation of single-vehicle IRP is given as following:

The Single-Vehicle IRP P1
Minimize

RC = ψ +
∑

i∈S+

∑

j∈S+

(

(δνtij + ϕj)
1
T

+
1
2
ηjdjT

)

xij −
∑

i∈S+

∑

j∈S+

λjxij (3)

Subject to: ∑

i∈S+

xij ≤ 1, for all j ∈ S, (4)

∑

i∈S+

xij −
∑

k∈S+

xjk = 0, for all j ∈ S+, (5)

∑

i∈S+

∑

j∈S+

tijxij − T ≤ 0, (6)

Qij ≤ κ · xij for all i, j ∈ S, (7)

∑

i∈S+

Qij −
∑

k∈S+

Qjk = qj , for all i ∈ S+, j ∈ S, (8)

dj · T ≤ qj + Uj ·
(

1−
∑

i∈S+

xij

)

, for all j ∈ S, (9)

xij ∈ {0, 1} , Qij ≥ 0, qj ≥ 0, T ≥ 0, for all i, j ∈ S+

Constraints (4) make sure that each customer is served at most once. Con-
straints (5) are the usual flow conservation constraints, insuring that a vehicle
assigned to serve a customer will actually serve this customer in one of its tours
and will leave to a next customer. Constraints (6) indicate that the cycle time of a
vehicle should be greater than the minimal cycle time. Constraints (7) guarantee
that the quantity carried by a vehicle doesn’t exceed the vehicle’s maximum ca-
pacity. Constraints (8) are the delivered load balance constraints. In constraints
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(9), Uj is given by Uj = dj · TL, where TL is the largest possible cycle time.
These constraints indicate that the quantity delivered to customer j in one cycle
time should be greater than its demand during that time. Note that in P1, all
constraints are linear.

It is assumed that the time necessary for loading and unloading a vehicle
is relatively small in comparison to travel time, and is therefore neglected in
this model. Also, inventory capacities at the customers are assumed to be large
enough, so corresponding capacity constraints are omitted in the model. Finally,
transportation costs are assumed to be proportional to travel times.

3 Analysis and Solution Strategy

3.1 Problem Features

The reformulated model P1 is still nonlinear because of the objective function
(3). However, for fixed values of the cycle time T , the model becomes linear
but mixed integer, and can be solved using an available MILP package. In the
first phase of the analysis, we carry out some experiments designed to reveal the
structure of the problem’s objective function. We solved the problem for a series
of fixed values of T given below:

T−
n =

κ
∑n

i=1 dσ(i)
and T+

n =
κ

D −
∑n

i=2 dσ(i)
, (10)

where n varies from 1 to |S|, D is the total demand rate of all customers, and(
dσ(i)

)

(i∈S)
is the series of customer demand rates renumbered in the ascending

order. T−
n and T+

n are merged in an ascending sequence
{
T(k)

}
. This is a series

of possible values of T covering the feasible domain. It is not sure the optimal
T belongs to this series, but this series of cycle times provides some information
on the shape of the objective function.

The problem P1 is solved for each fixed T(k), in the collection given above,
to determine the corresponding optimal solution X(k). For this solution X(k)

the minimal, maximal and practical optimal cycle times are obtained and the
optimal cycle time among these three is selected. For the selected cycle time the
corresponding solution is recomputed again.

Figure 2 depicts some observed features of the problem. The most important
is the fact that the objective function is usually non-convex, non-smooth, with
many local minima. Also the optimal solution may lie in a very small interval,
which imposes some ingenuity is determining the right search step for solution
procedure. Examples of these features are graphically shown in Fig. 2. As one
may observe in Fig.2, A, B, C, and D the problem is very complex. Notice
finally that in cases of B and C, X1, X2 and X3 are different solutions, in which
the vehicle visits different sets of customers. Also note that there might exist
intervals of T in which there doesn’t exist any feasible solution (see Fig. 2.D).
Such situations make the development of a solution procedure too difficult.
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X1 X2

X3

T1

C

Fig. 2. The example graphs for objective values with T

3.2 Solution Strategy

As shown in the above analysis, the single-vehicle IRP is inherently complex. For
its solution, a steepest descent like solution strategy is proposed. Clearly, this
process will lead only to an approximate solution. The basic idea is to renew the
cycle time step by step and solve the resulting MILP problem for each new cycle
time. Recall that S is the set of all customers, the domain for the cycle time
variable is [Ts, Tl], where Ts is the smallest value, given by Ts = κ/

∑
j∈S dj and

Tl is the largest value, given by Tl = κ/Min(j∈S) {dj}. Within this domain, a start
point Tk (k = 0) (i.e. Ts) is selected and the problem P1 is solved to determine
the corresponding optimal solution Xk. Let TXk

min and TXk
max be the solution’s

minimal and maximal cycle times respectively. The progress is performed by
increasing the cycle time as follows:

Tk+1 = TXk
max + εk (11)

where εk is a step which could either be constant or variable.
In our discussion, εk is a small constant selected so as to avoid the possibility

of missing any possible optimal solution. It is determined by:

εk =
∣
∣
∣
∣
κ

di∗
− κ

dj∗

∣
∣
∣
∣ (12)

where the customers i∗ ∈ S and j∗ ∈ S are the ones which give the smallest
difference of demand rates (i.e. Δd = Minij {|di − dj |}). The problem with this
approach is that Tk+1 can be either feasible or infeasible. These two cases are
treated respectively as follows:
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Case 1. Assume that Tk+1 is feasible, this means that the steepest descent
procedure will work correctly in the interval

[
Tk+1, T

Xk+1
max

]
. However, we have

to be attentive to cases such as B and C shown in Fig. 2. In such cases, by simply
increasing Tmax1 + ε1 (assuming Tmax1 is also the practical optimal cycle time
for solution X1), where ε1 < Tmin3 − Tmax1, X2 will be obtained and Tmax2

is its practical optimal cycle time. As Tmax1 < Tmin3 < Tmax3 < Tmax2, the
solution X3 will be missed during the search process. In order to avoid missing
possible local minima such as X3, in the interval

[
Tk+1, T

Xk+1
max

]
, the gradient

search approach, for example Frank-Wolfe method, may be employed. Details
on the Frank-Wolfe method can be found in [5], [6] and [7].

Case 2. If Tk+1 is infeasible, this means that we reach a sub-interval in the
domain of T which contains no feasible solution (see for example Fig. 2.D). In
this case, since the inventory holding cost is proportional to T in our particular
problem. When Tk+1 = TXk

max + εk is infeasible, a jump can be made to avoid
the infeasible interval through the solution of the following cycle time relocating
problem:

The Cycle Time Relocating Problem P2
Minimize

H (X,T ) =
∑

j∈S

1
2
ηjqj −

∑

i∈S+

∑

j∈S+

λjxij (13)

Subject to:
TXk

max + εk ≤
∑

i∈S+

∑

j∈S+

tijxij ≤ T. (14)

where TXk
max + εk is defined as above. Besides the modified constraints (14),

other all constraints (4)-(5), (7)-(9) in P1 should also be taken into account. As
a consequence, the solution X of P2 provides a feasible solution for P1. The
obtained value of T is the minimal value for which a feasible solution X exists
(i.e. T =

∑
i∈S+

∑
j∈S+ tijxij). Once feasibility of T is reestablished again, the

process continues as described in case 1.
To summarize, we outline the proposed solution strategy in the form of an

algorithm as follows:
Let [Ts, Tl] be the domain of T , XC be the set of corresponding feasible

solutions X , and ∇f (X,T ) be the set of the derivatives of objective function at
X and T .

Algorithm 1. (The main algorithm)

Step 0. {Initialization}

Set k = 0 and choose a small Tk ∈ [Ts, Tl] for which a feasible solution exists.
Solve the problem P1, find a solution Xk ∈ XC.
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Step 1. {Checking the optimality}
If (Tk ≥ Tl) then stop.
For the obtained solution Xk, find the corresponding TXk

max. In
[
Tk, T

Xk
max

]
, call

the Frank-Wolfe algorithm to find the optimal solution X∗
k ∈ XC within this in-

terval.

Step 2. {Updating T}

Determine εk and set Tk+1 = TXk
max + εk and solve the problem P1. Set k =

k + 1.
If (Tk is infeasible)
then (solve the problem P2 and go to Setp 1)
else (go to Setp 1)

The employed Frank-Wolfe algorithm is outline in the following algorithm:

Algorithm 2. (The Frank-Wolfe algorithm)

Step 0. {Initialization}

Set n = 0, and choose (Xn, Tn) = (Xk, Tk).

Step 1. {Generating the derivatives}

Compute ∇fn (X,T ) =
(

∂f
∂X , ∂f

∂T

)
|(X,T )n

.

Step 2. {Solving a linear mixed integer minimal problem g (X,T )}

Find an optimal solution XIP
n+1 and T IP

n+1 for

g (X,T ) = Minimize {∇fn (X) ·X +∇fn (T ) · T }
.

Step 3. {Generating α}

Find α ∈ [0, 1] such that

f
(
α
(
XIP

n+1, T
IP
n+1

)
+(1−α) (Xn, Tn)

)
=Min

{
f
(
α
(
XIP

n+1, T
IP
n+1

)
+(1−α) (Xn, Tn)

)}

and set

(Xn+1, Tn+1) = α
(
XIP

n+1, T
IP
n+1

)
+ (1− α) (Xn, Tn)

.
Step 4. {Updating}

Choose (Xn+1, Tn+1), set n = n+ 1 and go to Setp 1.

The Frank-Wolfe algorithm stops when α = 1.
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The algorithm starts from the smallest value of T for which a feasible solution
exits. It then updates T step by step avoiding the possibility of missing potential
local minima. If an infeasible cycle time is found a cycle time relocating problem
is solved to obtain a next new feasible cycle (a jump to the next smallest feasible
cycle time). When the renewed T exceeds the feasible domain of the cycle time,
the algorithm stops.

4 Numerical Example

A randomly generated simple problem is used to test the algorithm. The data are
selected from the example in [2], which include the first 7 customers (i.e. namely
1, 2, ..., 7, additional with the depot RW . See Fig.3.). The other all details are
given in [2].

In this case, Ts = 45.89h, Tl = 917.43h. The starting cycle time is chosen to
be T = 50h. AMPL CPLEXR is used to solve the problem, the computational
results are given below:

Table 1. Computational result

Parameters Results

Optimal T 132.45h

Optimal X (1, 3, 5), (6, 2),

(4), (7)
Objective value -303.39EUR/h

(RC)

Cost rate 94.10EUR/h

CPU time 9640.62ms

Fig. 3. The example figure for the
solution

In Table 1, the cost rate is defined as:

Cost rate = ψ +
∑

i∈S+

∑

j∈S+

(

(δνtij + ϕj)
1
T

+
1
2
ηjdjT

)

xij (15)

The procedure has actually found the optimal solution of problem. In this case,
the out-loop has run 20 steps. In each in-loop, we needed only one step to deter-
mine the local minimum. However, we believe that for other more complicated
cases, the in-loop will probably require more steps.

5 Conclusion

In this paper, the particular single-vehicle IRP is discussed. The analysis of
problem revealed the difficulties that must be tackled if one whishes to solve
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the problem to optimality. We proposed a steepest descend like hybrid solution
strategy based on the gradient search to find the near-optimal solution. A nu-
merical example is used to show the steps of the solution procedure. Some other
cases of medium sizes were also solved with the procedure. In almost all cases
the optimal solution is found. This approach, however, requires the solution of
many MILP’s. This results in a large computational time, which may be a seri-
ous drawback, especially for large-scale cases. The issue of locating those local
minima quickly still needs to be addressed. Some extensions and other efficient
search strategies are now under investigation.
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Abstract. This work presents an application of diverse soft-computing
techniques to the resolution of semaphoric regulation problems. First,
clustering techniques are used to discover the prototypes which char-
acterize the mobility patterns at an intersection. A prediction model is
then constructed on the basis of the prototypes found. Fuzzy logic tech-
niques are used to formally represent the prototypes in this prediction
model and these prototypes are parametrically defined through frame-
works. The use of these techniques supposes a substancial contribution
to the significance of the prediction model, making it robust in the face
of anomalous mobility patterns, and efficient from the point of view of
real-time computation.

Keywords: Regulating traffic lights, soft-computing, clustering, esti-
mation models.

1 Introduction

The semaphoric regulation problem seeks to optimize i) the cycle lengths of a
set of traffic-lights, ii) the percentage of time devoted to each of the phases in
a cycle and iii) the transitions between consecutive sets of lights. This problem
has been tackled in two temporal planning contexts. In the medium term, the
stationary situation of the traffic is considered, and the objective is to obtain
the semaphoric regulation of a set of intersections within the network. This
problem has been formulated through a mathematical program with equilibrium
constraints (MPEC). The results of these models are semaphoric regulations with
fixed times for the cycles. The short term methods, which consider the dynamic
aspect of the problem, have been fundamentally tackled through the application
of optimization techniques to simulation models [1].

Various works using soft-computing techniques exist, and such works have
fundamentally used Genetic Algorithms [2], whose objective has been the op-
timization of semaphoric transitions [3]. Numerous fuzzy logic approximations
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have also been carried out, particularly in the field of the fuzzy control of traffic-
lights [4],[5], [1], [6] and [7]. Many of these developments have been carried out in
an off-line context. The appearance of new traffic control technologies permits
the real-time availability of precise data with regard to traffic conditions and
makes the development of on-line methodologies possible.

Besides, Sanchez [8] presents architectures for traffic light optimization based
on Genetic Algorithms with greater stability. It is designed and tested an evolu-
tive architecture which optimizes the traffic light cycles in a flexible and adaptive
way. These tests were of medium size and took place in a zone of Santa Cruz de
Tenerife (Spain), thus improving the results of fixed cycle traffic lights.

In spite of these approximations, problems still remain which must be solved.
One of these problems is that of tackling non-stationary mobility patterns, which
is to say, the changing demands at various times of the day. This paper tackles
this problem by proposing a methodology for the adaptive control of semaphoric
intersections by using on-line traffic light counts.

The methodology here proposed is based on the extraction of mobility patterns
on the basis of prototypes through the use of diverse soft-computing techniques
which are implemented as an approach of the classic process of Knowledge Dis-
covery on Databases (KDD) [9]. The use of diverse techniques, such as fuzzy logic
and clustering, are incorporated in to this model and these techniques allow us
to obtain more comprehensible and useful results for the prediction process.

The remainder of the work is organized as follows: Section 2 describes the
different tasks that have been carried out to design the mobility patterns-based
model. Section 3 explains the necessary stages to apply the above-designed model
at a real intersection. To assess the methodology here proposed, an experiment
has been developed in section 4. Finally, some conclusions and future works are
pointed out.

2 Methodology

The objective of the methodology here proposed is that of adaptively regulating
an intersection, as is shown in Figure 1. The intersection has sensors which mea-
sure all four lanes and permit the existence of entrance and exit traffic linkcounts
in both directions at each of the time intervals considered. Moreover, that inter-
section has a semaphoric regulation.

To build the model with which to determine adaptive regulation, it is first
necessary to extract the intersection´s mobility patterns. These patterns will be
extracted from the vehicle flow observations obtained from the sensors.

The following stages are carried out to build the model:

1. Observations of the entrance/exit flows by use of the sensors.
2. Estimation model for traffic dynamic O-D matrix : This model permits the

estimation of turns at the intersection. The O-D matrix is defined as be-
ing the matrix which contains, in the i-j row, the flow (number of people
per time unit) which is incorporated into the intersection of lane i, and which
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Traffic Light

Fig. 1. Four lane intersection with no U-turns

leaves that lane via lane j. It is assumed that U-turn movements are not
allowed, i.e., the main diagonal entries (i-i) of the O-D matrix are all zero.

3. Extraction of mobility Patterns: This stage models the mobility patterns
using the O-D matrix and represents them by means of fuzzy deformable
prototypes.

4. Traffic light regulation model: An expert can model the optimum behaviour
of the semaphores following the above-mentioned prototypes.

In a concrete moment of the day, it can be seen different O-D matrices. The
differences among themselves are random, so it can be considered that all ma-
trices represent the same behaviour. So, such concept is here known as mobility
pattern during a concrete time period and the exact representation of this pat-
tern is each above-mentioned matrix.

2.1 Flow Observations

The entrance/exit sensors situated in each lane calculate the number of vehicles
that are been driven in the instant t. We thus obtain the number of vehicles
which pass each sensor, although their destinations are unknown owing to the
turns that they may make.

Let an intersection be a tuple composed by m entrances and n exits and
considering the time divided into N intervals (t = 1, . . . , N), the inputs of the
model would be:

- Entrance flows: qi(t)(i = 1, ...,m); q(t) = [q1(t), ..., qm(t)]T ;
- Exit flows: yj(t)(j = 1, ..., n); y(t) = [y1(t), ..., yn(t)]T ;

These data are the linkcounts in the intersection during the time period t. We
thus obtain the number of vehicles which pass each sensor, but their destinations
(turns) are unknown.

2.2 Estimation Model: Dynamic O-D Matrix

The estimation model shown in this sub-section is used to obtain the O-D matrix
with complete predictions (including turns). This estimation can be carried out
instantaneously by using the sensors information.
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The model´s variables are the following:

- Ij : A set of values in which entrance i allows user to take exit j. Ij (j =
1, . . . , n).

- The probability that a vehicle enters via i and takes the exit j.
bij(i = 1, . . . ,m; j = 1, . . . , n).

- The probability vector from each entrance i to the exit j.
bj = [bij ]∀iεIj y Qj = [qi]∀iεIj ; b = [bT1 , ..., b

T
n ]T = [b(i)]

Traffic Light

Sensor

y3q3
3

Fig. 2. qi entrances and yi exits in a four lane intersection with prohibited U-turns

For an intersection such as that shown in Figure 2, in which n = m = 4, the
variables are as follows:
b1 = [b21, b31, b41]T , b2 = [b12, b32, b42]T , b3 = [b13, b23, b43]T , b4 = [b14, b24, b34]T

Q1 = [q2, q3, q4]T , Q2 = [q1, q3, q4]T , Q3 = [q1, q2, q4]T , Q4 = [q1, q2, q3]T

b = [b21, b31, b41, b12, b32, b42, b13, b23, b43, b14, b24, b34]T = [b(1), ..., b(12)]T

Where b should fulfil:

b ≥ 0,
n∑

j=1

bij = 1, bii = 0 (1)

Therefore, the sum of probabilities from each entrance i to an exit j must be 1
and each probability must be greater than 0. For the observed linkcounts y(t)
and q(t) in each time interval t, the estimation problem of b is resolved with:

Ji(b) =
t∑

s=1

n∑

j=1

{yj(s)−Qj(s)bj}2, t = 1, ..., N (2)

Where Ji is the set of values in which exit j permits users to enter entrance i,
being (i = 1, . . . ,m; j = 1, . . . , n).

The estimation model creates an O-D matrix taking into account the turns.
These vectors are the input of the phase called mobility patterns extraction.

2.3 Mobility Patterns Extraction

A clustering process is carried out to find relationships among the O-D matri-
ces and after this process, the mobility patterns are detected. The goal of the
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clustering process is to reduce the amount of data by categorizing or grouping
similar data items together. Firstly the process must be build a similarity matrix
based on the matrices returned by the estimation model, i.e., the inputs of the
prototypes extraction process. The euclidean distance is the measure chosen to
calculate the similarity among vectors.

Once the similarity matrix has been created, the two stages of the clustering
process are carried out. Firstly the goal is finding groups of similar flows data
detected in successive instants. This goal is reached following a graph-based
clustering method [10]. In the second stage, to detect other similar groups that
exist in non-successive instants, is carried out a hierarchical clustering algorithm
based on fuzzy graph connectedness [11]. The nodes of the graph are the clusters
of the first stage.

Every cluster represents a mobility pattern found at the intersection. Ev-
ery pattern is described by a fuzzy deformable prototype that finally will be
represented by a fuzzy numbers set. The fuzzy numbers set is modeled by a nor-
malization and aggregation process using the O-D matrices of each cluster. This
process permits to calculate the center and the length of the base of the fuzzy
triangular numbers, the unique necessary data to represent each fuzzy number.
In figure 3 are shown five prototypes that are the output of the clustering stage.

Fig. 3. Formal representation of the prototypes

Using a fuzzy numbers-based representation, it is easy to calculate the member-
ship degree (in range [0-1]) between real situations and the prototypes detected.

2.4 Semaphoric Regulation

Once the mobility patterns have been detected and defined by means of fuzzy
prototypes, the behaviour of each semaphore is analyzed by an expert depending
on each pattern. If there are N prototypes then there are N optimum system
responses and the value set of each response will be represented by a frame.

Fuzzy deformable prototypes and the parametric definition of the semaphoric
regulation permits to design a flexible solution for the problem of traffic tie-ups.
This idea could be especially important in critical moments such as great sport
or cultural events, where the traffic can be a serious problem.
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Table 1. Parametric Description of the prototypes

Prot Congestion Level Demand Direction

P1 Congested (High) go
P2 Semicongested (Medium) go
P3 Without congestion (Very Low) go
P4 Semicongested (Medium) return
P5 Without congestion (Very Low) return

3 Model Performance

Once the model has been calculated, it can be applied to the daily management
of the intersection. The regulation system´s entrance data will be the real-time
flow observations, and the exits will express the type of regulation that must
take place at each moment.

3.1 Real-Time Flow Observations

At an intersection, sensors located in every entrance/exit of the lanes catch
information about the number of vehicles driving in every moment. These data
feed the system to discover the optimum semaphoric regulation parameters.

3.2 Estimation Model

The estimation model permits us to obtain the complete O-D matrix (including
turns) from the linkcount estimations. This is obtained in exactly the same man-
ner as in the model construction phase (off-line). The elements and calculations
specified in sub-section 2.2 will thus also be applicable in this step.

3.3 Inference in Prototypes

The mobility pattern is calculated using the values of the O-D matrix by means
of an inference process based on the fuzzy deformable prototypes of the model.
The algorithm is:

1. Normalization of the values of the entrance O-D vector.
2. Aggregate the normalized values (X value).
3. Calculate the membership degrees of each prototype represented by fuzzy

numbers. To assess a concrete situation (Figura 4) is necessary relevant in-
formation. This relevant information is achieved by calculating an affinity
degree with the prototypes(μi).

Once the membership degrees between the real environment and the proto-
types of the model have been calculated, the definition of the prototype, that
represents the optimum behaviour of the semaphores, must be returned.
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Fig. 4. Similitude of a vector to a prototype (X = 0.41, μ3 = 0, 78)

3.4 Implementation of the Optimum Control

The most similar prototype among the above-calculated prototypes will be cho-
sen as the most suitable one to simulate the semaphoric regulation in an exact
moment.

The system´s exit thus contains all the parameters that define the traffic
lights, behaviour whilst the detected mobility pattern remains. These values will
be transmitted to the electronic component in charge of transmitting orders to
each of the traffic lights in the intersection.

So, the output of the system is composed by all the parameters that are
necessary to describe the behaviour of the semaphores while the mobility pattern
is happening. The values of these parameters will be transmitted to the control
process unit to manage the semaphores that are at the intersection.

4 Computational Experience

The data used in these numerical tests has been generated by simulation. The
traffic density at each time interval is the same as that used in the demand which
supports the urban railway network in Madrid. The graph in Figure 5 shows this
hourly demand distribution.

Let qi be the entrance traffic density in the approach i and e let yi be the ex-
iting traffic density in a determined time period. The estimation of the entrance
flows qi to the intersection is carried out by using the following expression:

qi = D ∗ p(t) ∗ u(1− ε, 1 + ε) (3)

D: is the total entrance demand to the intersection, namely, the total number
of vehicles passing through the intersection throughout the day and we consider
10000.
p(t): is the proportion of turns dependant on the time instant. This parameter
allows us to take into account the direction of the traffic flow in each instant.
u(.): is the uniform random variable.
ε: takes the value of 0.15.
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Fig. 5. Hourly demand distribution of the urban railway network, Madrid

The estimation of the exits yi at the intersection is carried out by using the
expression:

yj =
∑

j �=i

(Pij(t) ∗ qi) (4)

Pij(t) is calculated by using the expresion:

Pij(t) =
(

t− 5
24− 5

)

∗ P1 +
(

1− t− 5
24− 5

)

∗ P2 (5)

where P1 and P2 are:

P1 =

⎛

⎜
⎜
⎝

0 0.2 0.6 0.2
0.1 0 0.5 0.4
0.2 0.4 0 0.4
0.25 0.25 0.5 0

⎞

⎟
⎟
⎠ P2 =

⎛

⎜
⎜
⎝

0 0.4 0.2 0.4
0.5 0 0.25 0.25
0.6 0.2 0 0.2
0.5 0.4 0.1 0

⎞

⎟
⎟
⎠

Once the entrance and exit estimations for each lane have taken place for
all the 5 minute time intervals between 05:00 and 24:00, the predicted origin-
destination matrix is estimated by using the resolution of the proposed opti-
mization model and by using GAMS software.

The estimation model allows us to obtain the complete O-D matrix (including
turns) from the linkcount estimations and is calculated by using the elements
and calculations specified in sub-section 3.2. Figure 6 shows the results of the
linkcount estimation model, as opposed to those of the prediction model shown
in sub-section 3.2, for the entrance turn in 1 and the exit in 2.

Figure 6 shows the results obtained. Note the high adjustment quality. This
algorithm offers results which allow us to group the elements into 6 different
mobility patterns. Figure 7 shows the different assignation of each element to
the different groups obtained.
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Fig. 6. Matrix (1, 2) observed compared to the predicted matrix

High Traffic

MoreTraffic Norrmal

Very High Traffic

Norrmal Traffic

Little Traffic

Very Little Traffic

Fig. 7. Grouping distribution

5 Conclusions and Future Work

A new methodology has been presented to define and extract mobility patterns
by means of optimization and fuzzy logic techniques. These techniques have been
used to discover knowledge useful to design a formal, meaningful and useful
model.

The methodology presents an automatic and adaptive control for intersec-
tions, achieving controlled outputs of the system and avoiding wrong responses.
Besides, the requirements to develop a system based on these ideas are very
simple due to the fact that the implementation of the system is really easy, the
technology requirements are not expensive and the performance is very efficient.

To validate the proposed methodology, an experiment has been carried out
simulating the behaviour of vehicles following known distributions. The perfor-
mance of the experiment has been satisfactory.

In future works, the main goals are 1) testing a system developed following this
methodology using real data and 2) refining the parameters used to described
the mobility patterns.
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Abstract. In this paper, a new data mining tool which is called TACO-
miner is used to determine composite Dispatching Rules (DR) under
a given set of shop parameters (i.e., interarrival times, pre-shop pool
length). The main purpose is to determine a set of composite DRs which
are a combination of conventional DRs (i.e., FIFO, SPT). In or-der to
achieve this, full factorial experiments are carried out to determine the
effect of input parameters on predetermined performance measures. Af-
terwards, the data set which is obtained from the full factorial simulation
analyses is feed into the TACO-miner in order to determine composite
DRs. The preliminary verification study has shown that composite DRs
have an acceptable performance.

Keywords: Dispatching rules, data mining, simulation, ant colony op-
timization, neural networks.

1 Introduction

The computational complexity of job shop scheduling has stimulated interest
in heuristics, meta-heuristics and other algorithms for solving large job shop
problems in a reasonable computational time. One class of heuristics includes
DR. DR are often favored because of their simplicity, ease of application and the
fact that they are an on-line scheduling method that can be used in real-time
scheduling. This makes them dynamic in the sense that they can process new job
arrivals and react to other disruptions without need to re-schedule [1]. In this
sense, DRs work well for dynamic scheduling problems. However, in the context
of conventional job shops, the relative performance of these rules has been found
to depend upon the system attributes, and no single rule is dominant across all
possible scenarios. This indicates the need for developing a scheduling approach
which adopts a state-dependent DR selection policy [2]. By this way, still the
dispatching heuristic does not adapt itself to the changing system attributes but
adoption of the most appropriate dispatching heuristic by switching between a
set of pre-determined DRs according to the current state of the shop is provided.
Thus, the deterioration of the selected performance measure can be prevented.
In fact, this problem continues to be a very active area of research [3].

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 389–398, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Researches into DRs appear to take two main directions. The first uses simu-
lation to evaluate new and existing DRs under different shop conditions and per-
formance objectives [4]. The second direction aims to improve the performance
of existing rules by using new tools or strategies to support or hybridize existing
rules [1]. Approaches related to second category attracts many researchers and
successful studies exist in the literature. For example, Pierreval and Mebarki [6]
proposed a scheduling strategy which is based on a dynamic selection of cer-
tain pre-determined DRs. El-Bouri and Shah [7] proposed an intelligent system
that selects DRs to apply locally for each machine in a job shop. Holthaus and
Rajendran [8] developed new scheduling rules based upon the combination of
well-known rules. Li and Olafsson [9] presented that by using decision tree mod-
els to learn from properly prepared data set, not only a predictive model that
can be used as a DR can be obtained, but they also showed that previously
unknown structural knowledge can be obtained that provides new insights and
may be used to improve scheduling performance. Wang et al. [10] developed a
hybrid knowledge discovery model, using a combination of a decision tree and
a back-propagation neural network, to determine an appropriate DR for use in
the semiconductor final testing industry in order to achieve high manufacturing
performance. More recently, Baykasoğlu et al. [11] proposed a new data mining
approach that is known as MEPAR-miner (Multi-expression programming for
classification rule mining) is used to extract knowledge on the selection of best
possible DRs among certain pre-determined DRs. This study applies a new data
mining approach that is known as TACO-miner for deriving composite DRs.

2 Problem Definition

This study aims at developing a composite DR which optimizes a specific perfor-
mance measure under changing input parameter levels (i.e., arrival rate, buffer
size etc.). By this aim, first, factors (input parameters) determined in order to
identify the behavior of the system under different levels of input parameters.
Mean absolute percentage error (MAPE) is selected as the system’s response
variable. Since sophisticated rules hardly provide significant improvement over
most less sophisticated ones, simple and easy to implement DRs was selected
[12]. The selected DRs were first in first out (FIFO), shortest processing times
(SPT), and earliest due date (EDD). The present problem is to find classification
rules which can classify different factor levels according to selected DRs by using
the TACO-miner algorithm.

3 A Brief Overview of the TACO-Miner Algorithm

Many approaches have been proposed in the literature so far in order to develop
effective algorithms for classification rule extraction. In the past, artificial neu-
ral networks (ANN) was used commonly and found to be one of the most efficient
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tools for classification and prediction purposes. However, they have the well-
known disadvantage of having black-box nature and not discovering any high
level rule that can be used as a support for human understanding. Because
of that, many researchers tend to develop new algorithms for rule extraction
from ANNs. The knowledge acquired by an ANN is codified on its connection
weights, which in turn are associated to both its architecture and activation
functions [14]. In this context, the process of knowledge acquisition from ANNs
usually implies the use of algorithms based on the values of either connection
weights or hidden unit activations. The algorithms designed to perform such
task are generally called algorithms for rule extraction from ANNs [13]. Recently
Özbakir et al. [14] proposed such a new rule extraction algorithm from ANNs.
The proposed algorithm is mainly based on a meta-heuristic which is known
as Touring Ant Colony Optimization (TACO) and has a two-step hierarchical
structure. In the first step a multilayer perceptron type ANNs is trained and its
weights are extracted. After obtaining the weights, in the second step TACO is
applied to extract classification rules.

In this study, multi-layer perceptron (MLP) which is one of the most widely
used ANN is considered. For extracting classification rules from trained MLP via
TACO algorithm, elements of the dataset must be decoded in binary form. For
the data sets which contain continuous attributes, discretization must be carried
out before transforming the attributes into binary form. MLP is trained on the
encoded vectors of the input attributes and the corresponding vectors of the
output classes until the convergence rate between actual and the desired output
is achieved. The general methodology of rule extraction from ANNs by TACO
is shown in Figure 1 taken from Özbakır et al. [13]. Due to space limitation the
details of TACo algorithm is not given here. However, for details of the algorithm
the reader is referred to Özbakır et al. [13].

Fig. 1. General flowchart for the proposed methodology
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4 Simulation Study

Simulation experiments are conducted on a hypothetical multi-stage dynamic job
shop to collect data for different levels of input parameters and response variable.
The job shop model is the same as in Baykasoğlu et al. [11]. For convenience we
define the model as follows:

4.1 Job Shop Model

The simulation model represents a multi-stage job shop containing 24 worksta-
tions. There is only one machine in each workstation. The interarrival times are
assumed to be exponentially distributed. The system observed for three different
levels of the interarrival time attribute (see table 1). The total number of oper-
ations of a job varied uniformly from 1 to 10 and assigned at the arrival time of
the job by generating a random number between 1 and 10. Also, routes of the
jobs are determined according to the uniformly determined operation sequence
For example, if total number of operations of an arriving job assigned to be 3, a
random number between 1 and 24 is generated and assigned as its first operation
no and a second one generated and assigned as its second operation no, and the
third one generated and assigned as its third operation no. Each machine can
process only predetermined operations and also one operation at a time (see
Table 2). A given machine could appear more than once in a job’s routing even
for consecutive operations. The processing times of each job are assumed to be
uniformly distributed and given in Table 2. Transportation times are assumed
to be negligible. The simulation model is run for 18000 finished jobs and after
preliminary runs 8000 time unit is determined to be warm-up period to avoid in-
corporation of transient behavior of the system. The experiments are performed
using 5 replications of each selected DR and proposed composite DR, thus min-
imizing variability in the results. Common random numbers are used to provide
the same experimental condition across the runs for each factor combination.

All arriving jobs are waited in an entrance pool according to the FIFO DR. In
the case of exceeding the capacity of entrance pool, arriving jobs are rejected (see
Table 1 for entrance pool’s capacity levels). Due dates of jobs are assigned by
using conventional total work content (TWK) due date assignment rule. Three
levels of due date tightness, tight, medium, and loose due dates are determined,
by letting due date tightness factor differentiate between 30, 50, and 75 (see
Table 1), respectively. Before releasing a job to the shop floor, the entrance
pool is searched. The search is made according to the ‘search dept of queue’
(SDEPQ) attribute (see Table 1 for levels of SDEPQ attribute). For example,
if the level of SDEPQ is determined to be 25, only first 25 jobs from entrance
pool will be checked whether there exist any mature jobs. In the case of being
mature they released to the shop floor otherwise they kept waiting in the entrance
pool. For being a mature job, the number of waiting jobs in each machine’s
queue placed in the job’s route must be lower than ‘buffer size’ attribute’s value
(BUFSIZ) (see table 1 for levels of BUFSIZ attribute). If a job is found to be
not mature it is not released to the shop floor and SDEPQ attribute’s value
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Table 1. Factors and their levels

Factors Levels

Interarrival Times (INTARR) (unit time) 1.5 3 4.5

Entrance Pool Length (EPL) (jobs) 1000 3000 5000

Search Depth of Queue (SDEPQ) (jobs) 25 50 75

Buffer Size (BUFSIZ) (jobs) 50 75 100

Due Date Tightness (DDTIGHT) (constant) 30 50 75

Table 2. Processing times of operations according to stations

Operation

No

Station

No

Process

T ime

Op.

No

St.

No

Pr.

T ime

Op.

No

St.

No

Pr.

T ime

1 9 U(15,20) 9 7 U(10,15) 17 13 U(10,20)

2 10 U(12,18) 10 3 U(15,25) 18 14 U(10,15)

3 20 U(12,18) 11 11 U(15,20) 19 15 U(10,15)

4 21 U(12,18) 12 2 U(10,15) 20 18 U(12,18)

5 17 U(15,20) 13 4 U(12,20) 21 22 U(10,15)

6 16 U(10,15) 14 5 U(15,20) 22 23 U(15,20)

7 1 U(15,20) 15 6 U(12,18) 23 24 U(10,15)

8 8 U(12,18) 16 12 U(15,20) 24 19 U(15,20)

is increased by 1. If, SDEPQ value is lower than its predetermined level (i.e.,
25), checking for subsequent jobs is performed. Simulation model is run for all
input parameter combinations and data related to MAPE performance measure
is gathered. Consequently, the test and training data are ready for rule extraction
and verification of the extracted rules.

4.2 Simulation Experiments

Experiments are performed according to the full factorial design in order to
detect the effects of input parameters on the performance criterion accurately.
Factors of experimental design and their levels are shown in Table 1. Since
there are 5 factors, 3 levels for each, 243 (35) experiments are performed. These
experiments are repeated for FIFO, SPT and EDD DRs in order to determine the
selected performance measure’s values as the response variable’s value desired
to be minimized. Parameter settings and predictive accuracies of TACO-miner
algorithm and parameter settings of ANN and on the data set are summarized
in Table 3, Table 4, and Table 5, respectively.

5 The Methodology and Results

After generating data for different levels of input parameters and response vari-
able, these are used as input to multi-layer perceptron (MLP) ANN for training
purpose. MLP is trained on the encoded vectors of the input attributes and
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Table 3. Parameter setting of TACO-miner algorithm

No.of

Ants(M)
No.of

Iterations(T )
Frequency

Factor(f)
Evaporation

Parameter(ρ)
ConstantQ

100 1000 2 0.8 5

Table 4. Predictive accuracies of TACO-miner on the data set

Performance metric Min Average Max Standard Deviation

Testing Accuracy (%) 95.06 96.9 98.77 1.674

Extracted number of rules 8 10.5 13 1.149

the corresponding vectors of the output classes until the convergence rate be-
tween actual and the desired output is achieved. After training the MLP, weights
from input layer to hidden layer and weights from hidden layer to output layer
are extracted by using sigmoid activation function. Then, these weights are fed
into TACO-miner algorithm for rule induction process. In this stage, TACO-
miner uses weights to extract rules belonging to certain classes. Applying this
methodology, a composite DR for MAPE performance measurement was ex-
tracted. Here, the aim is to develop a system state-independent composite DR
which is impossible for conventional DR in a dynamic job shop environment.
This means, developed composite DR always provides acceptable MAPE perfor-
mance for all levels of system attributes. Developed composite DR is given in
table 6.

Composite DR is tested with 10 randomly selected input parameter combi-
nations under the same experimental conditions. For each selected input factor
combination. Results of the composite and conventional DRs with respect to
MAPE performance measurement for each factor combinations are summarized
in table 7.

Simulation experiments revealed that according to the MAPE performance,
composite DR performed very well for all possible input parameter combina-
tion. Note that, for only 3 system combinations (3, 4, and 9) composite DR’s
performance is worse than the conventional DRs, but is acceptable. In figure 1,
performances of DRs shown comparatively for each input parameter combina-
tion. From figure 1, it is apparently seen that under all possible input parameter
combination composite DR can be used confidently for achieving acceptable
MAPE performance.

Table 5. Parameter setting of ANN

Data

Set

#ofHidden

Layer

Proc.

Elementsin

HiddenLayer1

Proc.
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2 12 5 Sigmoidaxon 20000

Conjugate
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Table 6. Developed composite DR by TACO-miner

Rule1 : IF, (INTARR = 45)AND((SDEPQ = 50)OR(SDEPQ = 75))AND
(BUFSIZ = 75)AND((DDTIGHT = 50)OR(DDTIGHT = 75)), F IFO :

Rule2 : IF, (INTARR = 15)AND(PRL = 5000)AND(DDTIGHT = 30), SPT :

Rule3 : IF, (INTARR = 15)AND((PRL = 3000)OR(PRL = 5000))AND
((BUFSIZ = 75)OR(BUFSIZ = 100))AND(DDTIGHT = 30), SPT :

Ruel4 : IF, (INTARR = 15)AND((PRL = 3000)OR(PRL = 5000))AND
((SDEPQ = 25)OR(SDEPQ = 75))AND(DDTIGHT = 30), SPT :

Rule5 : IF, (INTARR = 3), EDD :

Rule6 : IF, ((SDEPQ = 25)OR(SDEPQ = 75))AND((BUFSIZ = 50)OR
(BUFSIZ = 100))AND((DDTIGHT = 50ORDDTIGHT = 75)), EDD :

Rule7 : IF, ((INTARR = 15)OR(INTARR = 3))AND((DDTIGHT = 50)OR
(DDTIGHT = 75)), EDD :

Rule8 : IF, ((INTARR = 15)OR(INTARR = 3))AND((PRL = 1000)OR
(PRL = 3000))AND((SDEPQ = 50)OR(SDEPQ = 75)), EDD :

Rule9 : IF, (INTARR = 45)AND((BUFSIZ = 50)OR(BUFSIZ = 75))AND
(DDTIGHT = 75), F IFO :

Rule10 : IF, ((BUFSIZ = 50)OR(BUFSIZ = 100))AND((DDTIGHT = 50)OR
(DDTIGHT = 75)), EDD :

Rule11 : IF, (DDTIGHT = 50), EDD :

Rule12 : IF, (INTARR = 15)AND((SDEPQ = 25)OR(SDEPQ = 50))AND
((BUFSIZ = 75)OR(BUFSIZ = 100))AND(DDTIGHT = 30), SPT :

Rule13 : IF, (INTARR = 45)AND((BUFSIZ = 50)OR(BUFSIZ = 100))AND
(DDTIGHT = 30), F IFO :

Rule14 : IF, (INTARR = 45)AND((SDEPQ = 25)OR(SDEPQ = 50))AND
(DDTIGHT = 75), F IFO :

Rule15 : IF, (INTARR = 45)AND(SDEPQ = 25)AND((DDTIGHT = 30)OR
(DDTIGHT = 75)), F IFO :

Rule16 : IF, (INTARR = 15)AND((PRL = 3000)OR(PRL = 5000))AND
(SDEPQ = 50)AND = 30)
((BUFSIZ = 75)OR(BUFSIZ = 100))AND((DDTIGHTOR(DDTIGHT = 75)), SPT :

Rule17 : IF, ((SDEPQ = 25)OR(SDEPQ = 75))AND((BUFSIZ = 50)OR
(BUFSIZ = 100)), EDD :

Rule18 : IF, ((SDEPQ = 25)OR(SDEPQ = 75))AND((BUFSIZ = 75)OR
(BUFSIZ = 100)), EDD :

Rule19 : ELSE, EDD;
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Table 7. Results for MAPE (%)

InputParameter

Combinations
IntArr Prl SDEPQ BufSiz DDTight FIFO EDD SPT

Composite

Rule

1 1.5 1000 25 50 30 0.11 0.10∗ 0.11 0.10∗

2 1.5 1000 50 75 50 0.10 0.08∗ 0.12 0.08∗

3 1.5 1000 75 100 30 0.15 0.14∗ 0.15 0.1

4 1.5 3000 50 100 30 0.28 0.28 0.26∗ 0.28

5 1.5 5000 25 50 75 0.25 0.24 0.25 0.23∗

6 3 3000 25 100 30 0.14∗ 0.14∗ 0.17 0.14∗

7 4.5 1000 25 50 30 0.05∗ 0.06 0.06 0.05∗

8 4.5 1000 50 100 75 0.17 0.17 0.17 0.16∗

9 4.5 3000 50 50 75 0.16∗ 0.17 0.17 0.17

10 4.5 5000 50 100 30 0.06∗ 0.06∗ 0.06∗ 0.06∗

Fig. 2. Comparative performances of DRs

6 Conclusions

Conventional DRs’ performances are significantly affected by the state of the
system which changes frequently in job shop environments. In such environ-
ments, selecting the most appropriate conventional DR in order to achieve the
best performance is a challenging task. This is mainly because they are problem
dependent. Thus, most of the time they can not adapt themselves to chang-
ing levels of input parameters which results in poor performance. One way of
improving the performance of dispatching process is to use simple and easy to
implement conventional DRs interchangeably according to the certain system
state.

In literature, this problem tackled by using ANN. In most of the studies
it is pointed out that, ANN’s choice of DR resulted in better satisfaction of
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the performance criteria than its counterparts. In fact, they achieved this by
their high classification accuracy. But the main problem with them was their
having a black-box nature which causes discovery of low-level rule that can not
be used as a support for human understanding. The recent trend is to acquire
comprehensible knowledge from trained ANNs. In this manner, high-level rules
which can be used as a support for human understanding is extracted.

In this study, accurate and comprehensible composite DR in a dynamic job
shop environment is developed. Before, developing such a composite DR, full
factorial experiments are carried out to determine the effect of input parameters
on predetermined performance measures for each selected conventional DR. The
effects of input parameters are determined by training MLP ANN. In fact, the
weights of MLP represent the effect of input parameters. Then, this knowledge
is utilized by TACO-miner. By using this knowledge, TACO-miner extracted not
only accurate but also comprehensible composite DR which is valid for all possi-
ble input parameter combinations. Developed composite DR is high-level which
means it can be used to support for human understanding. In other words, by
interpreting this composite DR, previously unknown structural knowledge can
be obtained that provides new insights and may be used to improve schedul-
ing performance. Simulation results revealed that the composite DR performs
comparatively better than the conventional DRs in terms of MAPE performance
measure. This is mainly due to the capability of composite DR in selecting the
best possible DR according to the current system state.
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Abstract. In this paper we describe how the co-author network, which
is built from the bibliographic records, can be incorporated into the pro-
cess of personal name language classification. The model is tested on
the DBLP data set. The results show that the extension of the language
classification process with the co-author network may help to refine the
name language classification obtained from the author names considered
independently. It may also lead to the discovery of dependencies between
the elements of the co-author network, or participation of authors in sci-
entific communities.

Keywords: language classification, bibliographic databases, co-author
networks.

1 Introduction

With the constant growth of scientific publications, bibliographic databases and
digital librariesbecomewidespread.Services suchasCiteSeer [8],GoogleScholar [2],
or DBLP bibliography [10], are often consulted to find publications in a given do-
main or identify people working in the area of interest. At the same time they are an
object of research in their own right. The information contained in the bibliograph-
ical databases and digital libraries is being explored to gain insight into various as-
pects of scientific world. Take for example co-author networks which are built from
the bibliographic records. Their analysis (sometimes in combinationwith more fac-
tors, suchas timeof publication,keywords inpublicationand/orvenue titles) starts
from calculating the “central” author for a certain venue [17] and extends to com-
munity discovery [21,20], understanding of scientific collaboration and individual
researcher profiling [12,5,1], and topic modeling [18,11]. They are employed in data
visualization tasks [14,6,7] and for the purpose of name spelling correction [13,3,9].
Although the examples above suggest a wide scope of directions in bibliographic
data analysis, the question of “where the authors come from”? does not seem to
attract much attention so far. In [4], an attempt to capture the geographical back-
ground of the papers published in SIGIR1 conferences is reported. This analysis is

1 SIGIR – Special Interest Group on Information Retrieval [16].

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 399–408, 2008.
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based on the bibliographical data contained in the papers. However the personal
name itself may shed light on the author’s origin. In [22], we proposed a tool for lan-
guage detection of personal names, and applied it to the set of more than 600, 000
names recorded by DBLP. Each name was considered on an individual basis. We
showedhow such tool could be used in the process of data cleaning, namely in selec-
tion of the correctname spellingwhenmultiplevariations of the samename existed.
In another experiment, the system was employed to discover how the share of par-
ticipation of different cultures in scientific publications was evolvingwithin the last
20 years. While these experiments proved the usability of the name language de-
tection system for the bibliographic databases and digital libraries, they revealed
a high number of names which could not unambiguously be attributed to one lan-
guage and thus affected the success rate of the tool. Consider for example the name
“John Li”: the first component suggests English, while the second one points to
Chinese. In order for such names (mixed names thereafter) to be classified correctly
additional knowledge is required. It could eventually be obtained from the exter-
nal sources, for instance personal homepages or institute affiliations. Alternatively
we turn to the examination of co-author networks to solve the problem of language
assignement.

This paper is organized as follows: in Section 2 we present the tool for the
name language detection and introduce its application to the DBLP. Section 3
describes the name language classification approach enhanced with the co-author
network analysis. Evaluation of the results is presented in Section 4. Finally we
conclude the paper by a short summary of the results in Section 5.

2 Detecting the Language of a Personal Name in DBLP

2.1 System Overview

The language detection system we have built, consists of a set of corpora and
a set of metrics for the estimation of the probability that a character string A
belongs to a language L. While the tool is applied to the personal name language
detection, the string A is not limited to represent a name. Rather it can be any
valid string in some language L. The overlapping n-gram2 model is chosen to
represent both – the corpora and the names to be labeled. It is based on the
assumption that the n-grams and their frequencies are specific to any given
language and thus may serve as discriminating feature. The n-gram model of
the language can be traced back to Shannon [15].

The system is trained to identify 14 different languages: Chinese, Danish,
Dutch, English, Finnish, French, German, Italian, Japanese, Norwegian, Por-
tuguese, Spanish, Swedish, and Turkish. For checking whether a string of char-
acters A = [a0, a1, . . . , al−1] belongs to the language L we use the following
formula:
2 The term n-gram refers to the sequence of n characters, where n ≥ 1. The word

overlapping indicates that the last and the first characters of the kth −1, kthn-grams
are the same.
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P (A ∈ L) = pL(a0, a1, a2, a3) ·
l−4∏

i=1

pL(ai+3|ai, ai+1, ai+2).

Here, the probability pL that the tetragram a0, a1, a2, a3 belongs to the language
L is approximated by its frequency in the corpus of the language L, divided by
the size M of the corpus:

pL(a0, a1, a2, a3) ≈ frL(a0, a1, a2, a3)/M

and conditional tetragram probability is approximated as follows:

pL(ai+3|ai, ai+1, ai+2) ≈
fr(ai, ai+1, ai+2, ai+3)

fr(ai, ai+1, ai+2)
.

If we denote by logFr the logarithms of the frequencies and normalize the
result by the length of the string l, we get:

logP (A ∈ L) = logFr(a0, a1, a2, a3)− logM+

+
l−4∑

i=1

logFr(ai, ai+1, ai+2, ai+3)− logFr(ai, ai+1, ai+2).

CondTetrScore(A) =
logP (A ∈ L)

l
.

This metric estimates the probability that the stringA belongs to the language
L using the conditional tetragram approximation of the language.3

Tetragrams which occurred < 3 times in the corpus are not considered, since
their frequency may not be a good approximation of the real tetragram probabil-
ity. For the n-grams that cannot be found or are infrequent in the language the
default solution is to evaluate their weight to −1000 (“penalty”). It might be the
case though that the corpus for that language is not sufficiently large to include
all the possible n-grams that may occur in the names. Instead of assigning such
n-grams the penalty weight immediately, we check whether the n-gram exists
with a certain minimal frequency in the other languages. (We checked the range
100 – 10000 and stopped at the choice of the threshold frequency 100 as the one
performing the best.) If the n-gram is sufficiently frequent in at least one of the
other languages, we give the penalty weight in the language which is currently
being checked. This way we increase the discriminating power of the computa-
tional model. Alternatively, the n-gram is approximated by an (n−1)-gram (for
example for the tetragrams):

logP (ai+3|ai, ai+1, ai+2) ≈

≈ logFr(ai+1, ai+2, ai+3)− logFr(ai+1, ai+2).

3 The conditional trigram approximation as well as unconditional models have also
been tried. They are discussed in detail in [22].
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At this stage however if the (n − 1)-gram is not found in the language the
conditional tetragram is penalized.

Our system is built in a way which allows an easy addition of new languages
and new string evaluation metrics. The program takes as input a list of personal
names for which their language origin has to be identified, and the parameter,
which indicates the choice of the string evaluation metric 4. The system outputs
separate files with the names attributed to each language, ranked by the metric
of choice. For each name the second best choice is given as well as the values of
the metric across all the languages.

The tool has been tested on 100 names for each of the 14 languages as well as
on the joint list of 1400 names, all collected from the Wikipedia people lists [19].
The first setting allows us to accurately assess the recall and precision achieved
by the system when given a monolingual set of names. The second setting ap-
proximates the “real life” conditions of a database with a multilingual set of
names. The overall performance has shown recall above 80% and precision in
the range of 80 – 100% for most of the languages. These figures have motivated
us to apply it to the DBLP.

2.2 Application to DBLP

DBLP is a publicly available database which provides bibliographic information
on major computer science journals and proceedings. The records typically list
the (co-)author name(s), publication title, date and venue. For the first attempt
of the name language identification only personal names have been considered
and processed in isolation from other information contained in the records. We
run our experiments on the DBLP release from February 2008 5 which has listed
609411 personal names. To increase the accuracy of classification the system
only deals with the names whose complete length is ≥ 4, which has amounted
to 608350 names.

While the system has shown promissing results during the test runs, applying
it to the DBLP brings out a number of differences between the settings:

– Language scope. Presumably DBLP contains names from much more lan-
guages than our system in its current state can handle (all Eastern-European,
Indian, Korean, Arabic, etc.). To detect such names and avoid them from
being randomly assigned to one of the existing categories, we adopt the
following method:
Recall that the weight of a name in the language is determined by the
frequency of its n-grams in that language. Hence, names from unknown
languages are especially prone to penalties according to the “penalization
policy” described in 2.1. Should the name receive at least one penalty in all
14 languages, it is labeled “other” and is sent to the file which collects names
from languages not covered by the system.

4 For the purpose of this work the conditional tetragram metric described above is
used.

5 The up-to-date versions of DBLP are available for download from
http://dblp.uni-trier.de/xml/ in xml format.
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– Uncertain names. Even for the 14 languages the system deals with, the deci-
sion is not always unambiguous. This holds for the names of closely related
languages, for example Portuguese and Spanish, Dutch and German, Dan-
ish and Norvegian, etc., because of the overlap in n-grams and similarity of
their respective frequencies. Another reason for uncertainty are names whose
components are typical for more than one language. For instance “Robert”
or “Charles” occur (and are written in the same way) in both, English and
French, and assignment of the name “Charles Robert” to English or French
is almost equally likely. In terms of the name scores, such cases would have a
very small difference between the 1st and 2nd best choices, and thus the clas-
sification cannot be accepted with confidence6. Such names are assigned the
language where they have gained the highest score, but labeled “uncertain”.

– Mixed names. Mixed names are the ones, whose components belong to the
different languages. For instance, in the name “Thomas Xavier Vintimilla”
the first given name is English (Welsh origin), the second one – Spanish
(Basque origin, written as Javier in modern Spanish, also popular in France,
US), and the family name is probably Spanish. Mixed names do not neces-
sarily have close 1st and 2nd best ranks, and hence are not always recognized
as “uncertain”. They are often misclassified.

To increase the system’s performance in the real life conditions we enhance the
model with the co-author network. The idea is that the collaboration between
researchers speaking the same language is more widespread than the cross–
linguistic one. Thus, if a person whose name is labeled “uncertain” with the
highest rank in Italian, has mainly Italian co-authors (as classified by the sys-
tem), it can be identified as Italian with increased certainty. In the same spirit,
misclassified names can be reassigned the most appropriate language category.
Of course, this method is not a substitute for the languages that are not covered
by our system. However it may help to correct the initial classification by trans-
ferring names erroneously labeled “other” to one of the languages known to the
system based on the co-author list assignment. On the other hand, co-author
classification serves as support for the author name classification, in case they
agree.

Bellow we describe the application of co-author network to the personal name
language classification in more details.

3 Language Detection Using Co-author Network

3.1 DBLP as a Co-author Network

To conduct the experiments we transform the DBLP into a network of co-authors
represented by a graph G = (V,E), where V is the set of vertices which cor-
respond to personal names, and E is the set of edges which are defined by the

6 In the experiments described here decision is confirmed if the difference between the
two highest scores ≥ 0.5.
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co-authorship: there is an edge between two authors 〈a, b〉 if they have at least
one common publication. Based on the DBLP data from February 2008, the
network graph consists of 609411 vertices, and 3634114 edges. In average, there
are 2.51 authors per publication, and 4.1 publications per author, out of which
3.69 are made in collaboration with the other authors. For every co-author b
of an author a we calculate the relative strength of their co-authorship via the
formula:

wb(a) =
n∑

i=1

1/(Ai − 1),

where Ai is the number of co-authors in the ith common publication of a and
b, and n is the number of the common publications. There are on average 5.96
co-authors per author, and the co-authorship strength across the database is
0.63.

3.2 Language Detection Using Co-author Network

In this enhanced approach the language classification consists of three steps:

– Personal name language detection for every vertex in V . This step is done
according to the procedure described in the Subsection 2.1. The result is par-
titioning of the DBLP personal names into language categories, as described
in the Subsection 2.2.

– Verification of the initial classification. The objectif is to determine for every
a ∈ V the dominating language category of his/her co-authors.

– Refine the classification by merging the results of the two independent clas-
sifications (via linguistic structure of the name and via co-author network).

We implement three different methods of computing the language category of
the co-authors.

3.3 Classification Using Probabilistic Voting Approach

This method represents a kind of “voting system”, where each co-author votes
for the language to which his personal name has been attributed by the first
round of the classification process.7 We will also describe other more refined
models later in this section. Consider the following example: Suppose that out
of 30 co-authors the highest vote for a single language (say, Italian) is 10. Is
this a chance event or a strong bias towards Italian? In order to determine the
threshold we propose the probabilistic method described below.

This method determines how much the probability of selecting one of the 14
languages by co-author voting is higher than a chance selection. We iterate over
the co-authors bi of a ∈ V , count for each language the number of co-authors that
have been assigned to it, and determine the language with the largest counter
7 We consider all a ∈ V that have ≥ 5 co-authors, and ≥ 3 works produced in collab-

oration, i.e. sufficient co-authorship strength. In total 131989 DBLP authors pass
this criteria.
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cmax. We assume that the language counters are binomially distributed B(n, p)
with p = 1/14 (independent choice of one of the 14 languages) and n – being the
number of co-authors of a. For some language the probability that the number
X of co-authors assigned to it is < cmax is expressed by:

P (X < cmax) = F (cmax;n, p),

where F is the cumulative function of the binomial distribution. This cumulative
function can be evaluated using the regularized incomplete beta function, as
follows:

F (cmax;n, p) = P (X < cmax) = I1−p(n− cmax, cmax + 1),

provided that 0 < cmax ≤ n. Thus taking into account the 14 languages treated
by the system we can compute the probability P that in some language the
number of co-authors is higher than cmax, applying the formula:

P = 1− I1−p(n− cmax, cmax + 1)14.

If P < pmin we accept that having cmax co-authors voting for the same language
is not a chance event. In our experiments pmin is set to 0.01. (We have checked
other possibilities for pmin, from 0.02 to 0.05, and kept 0.01 as producing the
most accurate results).

This model can be further refined due to the following observations:

– By using only a single vote per co-author we loose the possibly relevant
infomation that is contained in the second best, third best, etc. languages
proposed by our linguistic model. We can still accomodate this information
by giving points to the top five languages for each person, with some decay
factor. For example: a vote of 1 for the first language, a vote of 0.5 for the
second, 0.25 for the third, etc. (decay factor 1/2). The reason why we work
with points rather than with linguistic weights is that the later depend on
the corpus size, frequency and the total number of the unique n-grams in the
language. They are also influenced by the corpus frequency of names. Thus
it makes no sense to compare absolute weight values across the languages.

– The second observation is that a co-authorship strength wb(a) varies between
the co-authors and thus giving all the co-authors the same voting power may
not be optimal. We may thus weight the vote of each co-author by his/her
co-authorship strength with the target author a.

In all these methods we do not consider co-author names labeled “other” because
they mainly belong to the languages not covered by the system. If all the co-
authors of a given author are “others”, the author is skipped.

Finally, we check whether the language category suggested by the co-authors
corresponds to the one obtained by the author in the 1st classification step.
Results produced by this method are discussed in the following section.
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4 Evaluation of the Results and Discussion

We apply the three methods described in Subsection 3.3 to the 131989 DBLP
authors who satisfy the co-authorship strength criteria. From that list 100 names
have randomly been chosen to assess the quality of the classification. Table 1
summarizes the results.

Table 1. Evaluation of the name language classification using co-author network

Category True False Chance

Methods agree 36 0 –
Methods differ 37 5 –
Chance – – 22

Total 73 5 22

We notice that 22 names out of 100 have not been classified because the
language selection made by the co-author voting have been considered a chance
selection by all the three methods. In the other 36 cases the language selected
by the co-authors corresponds to the one initially attributed to the name by the
linguistic method, and in 42 cases – the two classifications disagree. To check
the correctness of these results we have searched for the information concerning
the author’s current or past affiliation. As the evaluation table suggests, the
co-author based classification is true in most of the cases (only 5 errors out of
78 cases, i.e. above 90% success rate). The match between the linguistic and
the co-author based classifications speaks for the hypothesis that people tend
to collaborate within monolingual communities. The disagreement between the
two usually occurs in one of the following scenarios:

– The name is classified with uncertainty or misclassified. For example in our
test set there are 27 such names out of 42, and 7 among them are initially
labeled “other” while they actually fall into the scope of languages processed
by the system. Due to the co-author based classification we could correct the
initial assignment.

– Person works outside of his/her native linguistic environment (for example,
in another country). We have encountered 10 such names out of 42 in our test
set. In that case co-authors attribute the name to the language of community
to which he/she contributes.

The technique-wise comparison shows that all the three methods usually pro-
duce the same language selection for a single author. However the method which
takes into account the co-authorship strength wb(a) may select the language of
the strongest co-author, if there is one. This feature makes it useful for discoverig
special patterns in co-authorship, for example: 〈professor, PhD − student〉.

5 Summary

In this paper we have described an approach for the personal name language
classification using the co-author network. We have developed a voting model of
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the language selection and proposed three statistical metrics for calculation of
how much the probability of selecting one of the languages by the co-author is
higher than a chance selection. We have tested our model on co-author graph
built from the DBLP data. The results have shown that the extension of the
language classification process with the co-author network may help to improve
the initial, based on the author names only, linguistic classification. It may also
lead to the discovery of dependencies between the elements of the co-author
network, or participation of authors in scientific communitites. Our evaluation
has shows that the co-author based identification is correct in more than 90% of
the cases.
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Abstract. In this paper we discuss the clustering of the set of criteria in
a multicriteria decision analysis. Our approach is based on a generalisa-
tion of Kendall’s rank correlation resulting in the definition of a bipolar
ordinal correlation index. A factorial decomposition of this index allows
to compute the principal inertia planes of the criteria correlations. The
same ordinal correlation index, modelling a symmetric bipolar-valued
similarity digraph, allows us to compute a criteria clustering from its
maximal cliques.

Introduction

The PROMETHEE authors [1,2] consider very accurately that one of the
methodological requisites for an appropriate Multicriteria Decision Aid (MCDA)
method is the necessity to provide information on the conflicting nature of
the criteria. The classical Electre methods [3,4] as well as the recent Rubis
best choice method [5] do not provide any such information. In this paper we
therefore present several tools that, similar in their operational purpose to the
PROMETHEE GAIA plane [2], help illustrating concordance and/or discordance
of the criteria with respect to the preferential judgments they show on the given
set of decision alternatives. The following example will illustrate our discussion
all along the paper.

Example 1 (The Ronda choice decision problem). A family, staying during their
holidays in Ronda (Andalusia), is planning the next day’s activity. The alterna-
tives shown in Table 1 are considered as potential action. The family members
agree to measure their preferences with respect to a set of seven criteria such
as the time to attend the place (to be minimised), the required physical invest-
ment, the expected quality of the food, touristic interest, relaxation, sun fun &
more, ... (see Table 2). The common evaluation of the performances of the nine
alternatives on all the criteria results in the performance table shown in Table 3.
All performances on the qualitative criteria are marked on a same ordinal scale
going from 0 (lowest) to 10 (highest). On the quantitative Distance criterion (to
be minimized), the required travel time to go to and return from the activity
is marked in negative minutes. In order to model only effective preferences, an
indifference threshold of 1 point and a preference threshold of 2 points is put
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Table 1. Ronda example: The set of alternatives

Identifier Name Comment

ant Antequerra An afternoon excursion to Antequerra and surroundings.
ard Ardales An afternoon excursion to Ardales and El Chorro.
be beach Sun, fun and more.
crd Cordoba A whole day visit by car to Cordoba.
dn fa niente Doing nothing.
lw long walk A whole day hiking.
mal Malaga A whole day visit by car to Malaga.
sev Sevilla A whole day visit by car to Sevilla.
sw short walk Less than a half day hiking.

Table 2. Ronda example: The set of criteria

Identifier Name Comment

cult Cultural Interest Andalusian heritage.
dis Distance Minutes by car to go to and come back from the activity.

food Food Quality of the expected food opportunities.
sun Sun, Fun, & more No comment.
phy Physical Investment Contribution to physical health care.
rel Relaxation Anti-stress support.

tour Tourist Attraction How many stars in the guide ?

Table 3. Ronda example: The performance table

Criteria ant ard be crd dn lw mal sev sw

cult 7.0 3.0 0.0 10.0 0.0 0.0 5.0 10.0 0.0
dis -120.0 -100.0 -30.0 -360.0 0.0 -90.0 -240.0 -240.0 0.0
phy 3.0 7.0 0.0 5.0 0.0 10.0 5.0 5.0 5.0
rel 1.0 5.0 8.0 3.0 10.0 5.0 3.0 3.0 6.0

food 8.0 10.0 4.0 8.0 10.0 1.0 8.0 10.0 1.0
sun 0.0 3.0 10.0 3.0 1.0 3.0 8.0 5.0 5.0
tour 5.0 7.0 3.0 10.0 0.0 8.0 10.0 10.0 5.0

on the qualitative performance measures. On the Distance criterion, an indiffer-
ence threshold of 20 min, and a preference threshold of 45 min. is considered.
Furthermore, a difference of more than two hours to attend the activity’s place
is considered to raise a veto (see Table 4).

The individual criteria each reflect one or the other member’s preferential
point of view. Therefore they are judged equi-significant for the best action to
be eventually chosen.

How do the criteria express their preferential view point on the set of al-
ternatives? For instance the Tourist Attraction criterion appears to be in its
preferential judgments somehow positively correlated with both the Cultural In-
terest and the Food criteria. It is also apparent that the Distance criterion is
somehow negatively correlated to these latter criteria. How can we explore and
illustrate these intuitions?

In a given MCDA, where a certain set of criteria is used for solving a given deci-
sion problem, it is generally worthwhile analysing to what extent the
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Table 4. Ronda example: Preference discrimination thresholds

Criterion
Thresholds

indifference preference veto

cult 1pt 2pts -
dis 20min. 45min. 121min.
food 1pt 2pts -
sun 1pt 2pts -
phy 1pt 2pts -
rel 1pt 2pts -
tour 1pt 2pts -

criteria vary in their relational judgments concerning the pairwise comparison of
performances of the alternatives. Illustrating such similarities and dissimilarities
between criteria judgments is indeed the very purpose of this paper. First, we
present a bipolar-valued ordinal criteria correlation index, generalising Kendall’s
τ [6], and illustrating the preferential distance between the criterial judgments.
In a second section we show how to decompose this correlation index into its
principal components. In a third section, following an earlier work of ours [11],
we propose a credibility level indexed clustering of the criteria based on the
extraction of maximal bipolar-valued cliques observed in the associated criteria
similarity digraph.

1 A Bipolar-Valued Ordinal Criteria Correlation Index

Let us introduce our notations. We consider a finite set A of n alternatives and
denote by x and y any two alternatives. We consider also a set F of outranking
criteria [4] denoted by variables i or j, with k = 0, 1, ... discrimination thresholds.
The performance of an alternative x on criterion i is denoted by xi.

Example 2. The four discrimination thresholds we may observe on each criterion
i for instance in the Rubis choice method [5] are: – “weak preference”1 wpi

(0 < wpi), – “preference” pi (wpi � pi), – “weak veto” wvi (pi < wvi), and –
“veto” vi (wvi � vi). Each difference (xi − yi) may thus be classified into one
and only one of the following nine cases:
(≫) “veto against x � y” ⇔ vi � (xi − yi)
(�) “weak veto against x � y” ⇔ wvi � (xi − yi) < vi

(>) “x better than y” ⇔ p � (xi − yi)
(�) “x better than or equal y” ⇔ wpi � (xi − yi) < pi

(=) “x indifferent to y” ⇔ −wpi < (xi − yi) < wpi

(�) “x worse than or indifferent to y” ⇔ −pi < (xi − yi) � −wpi

(<) “x worse than y” ⇔ −wpi < (xi − yi) � −pi

(�) “weak veto against x � y” ⇔ −vi < (xi − yi) � −wpi

(≪) “veto against x � y” ⇔ (xi − yi) � −vi

1 In some cases it may be useful to replace the weak preference threshold, defining an
open indifference interval on the criterion scale, with an indifference threshold 0 � h
defining a closed indifference interval and leaving open the weak preference interval
(see [5]).
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In general, let us consider on each criterion i, supporting a set of discrimination
thresholds pr (r = 1, .., k) such that 0 < p1 � ... � pk, the Kendall vector
(see [7]) gathering the classification of all possible differences (xi − yi) into one
of the following 2k + 1 cases:

(xi − yi) ∈

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(>k) if pk � (xi − yi)
(>r) if pr � (xi − yi) < pr+1, for r = 1, ...k − 1
(=) if − p1 < (xi − yi) < p1

(<r) if − pr+1 < (xi − yi) � −pr, for r = 1, ...k − 1
(<k) if (xi − yi) � −pk

(1)

Comparing the preferential view point of two criteria i and j, we say that x and
y are concordantly (resp. discordantly) compared if (xi − yi) and (xj − yj) are
classified into the same category (resp. different categories) on both criteria. This
is the case if position (i, j) in both Kendall vectors is of the same (resp. different)
value. There are n(n − 1) distinct ordered pairs of performances and each pair
(x, y) is thus either concordantly or discordantly classified. Please notice that
we may well compare two criteria with a different number of discrimination
thresholds. The only semiotic restriction we require here is that the preferential
meanings of the k thresholds are the same for all criteria in the given family F .
Denoting by Sij the number cij of concordantly classified minus the number dij

of discordantly classified ordered pairs, the ordinal criteria correlation index T̃
is defined on F × F as

T̃ (i, j) =
cij − dij

cij + dij
=

Sij

n(n− 1)
. (2)

Property 1. The ordinal criteria correlation index T̃ is symmetrically valued in
the rational bipolar credibility domain [−1, 1] (see [8,5]).

Proof. If all pairs of alternatives are concordantly (discordantly) classified by
both criteria, dij = 0 (resp. cij = 0) and T̃ (i, j) = 1.0 (resp. −1.0). If T̃ (i, j) > 0
(resp. < 0) both criteria are more similar than dissimilar (resp. dissimilar than
similar) in their preferential judgments. When T̃ (i, j) = 0.0, no conclusion can
be drawn. The linear structure of the criterion scale and the relational coherence
of the discrimination thresholds imply that a performance difference (xi − yi) is
classified in one and only one case. Furthermore, the case of (xi−yi) corresponds
bijectively to a unique symmetric case classifying the reversed difference (yi−xi).
Hence, the pair (x, y) is concordantly classified by criteria i and j if and only if
the symmetric pair (y, x) is concordantly classified by the same two criteria. ��

Property 2. If i and j are two perfectly discriminating criteria, i.e. they admit a
single preference threshold p1 = ε, and we don’t observe ties in the performance
table then T̃ (i, j) is identical with the classical τ of Kendall [6].

Proof. In this case, both the Kendall vectors of criteria i and j contain only the two
possible cases: – case (>1): (xi− yi) � ε, and – case (<1): (xi − yi) � ε. Denoting
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by pij the number of pairs (x, y) in A ×A such that conjointly (xi − yi) � ε and
(xj − yj) � ε we obtain indeed

T̃ (i, j) = (2× 2pij

n(n− 1)
)− 1, ∀(i, j) ∈ F × F, (3)

i.e. Kendall’s original τ definition (see [6]). ��

It is worthwhile noticing that the classical problem for applying Kendall’s τ to
a situation with ties is here coherently resolved. Indeed, Equation 2 generalises
Kendall’s rank correlation index to any family of homogeneous semiorders (see
[9] Chapter 3).

Example 3 (The Ronda decision problem – continued). Computing our ordinal
criteria correlation index T̃ (see Equation 2) on the set of seven criteria we
obtain the results shown in Table 5. As initially suspected, on the one hand, we
observe here that the performances on the criteria Cultural interest and Tourist
Attraction, and Physical Investment lead to positively correlated preferential
judgments (T̃ (cult, tour) = +0.28 and T̃ (phy, tour) = +0.33). On the other
hand, the performances observed on criteria Distance and Cultural Interest or
Tourist Attraction lead to nearly completely opposed preferential statements
(T̃ (dis, tour) = −0.92 and T̃ (dis, cult) = −0.89).

As these couples of concordant and/or discordant criteria play an essential role
in the actual difficulty of the decision making process, we look for a systematic
graphical illustration of the ordinal criteria correlation index.

Table 5. Ronda example: The ordinal criteria correlation table

T̃ dis phy rel food sun tour

cult −0.89 −0.17 −0.81 +0.00 −0.39 +0.28
dis −0.72 −0.08 −0.67 −0.39 −0.92
phy −0.17 −0.39 −0.28 +0.33
rel −0.25 −0.17 −0.53

food −0.56 −0.17
sun −0.03

2 Principal Component Analysis of the Criteria
Correlation

A most suitable tool is given by the classical Principal Component Analysis –
PCA [10]. We may uncover the principal components of T̃ by computing the
eigen-vectors of its associated covariance. Projecting the criteria points in the
covariance eigen-space along the principal coordinates explaining the largest
part of the total variance reveals the major agreements and oppositions be-
tween the preferential judgments as expressed by the criteria on the given set of
alternatives.
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Fig. 1. Ronda example: Results of the PCA

Example 4 (The Ronda decision problem – continued). Such PCA results, com-
puted from the T̃ index observed in the Ronda example, are shown in Figure 1.
As expected, the first and largely prominent opposition – gathering 55.7% of
the total variance – is observed between, on the one hand, both criteria Cultural
Interest and Tourist Attraction, and, on the other hand, criterion Distance and,
to a lesser extent, criterion Relaxation. The second factorial axis – already much
less prominent (only 19.5% of total variance) – shows an opposition between, on
the one hand, the Food criterion and, on the other hand, both the Sun, Fun &
more and the Physical Investment criteria. It is furthermore worthwhile notic-
ing that all seven criteria appear in a more or less elliptic layout in the main
principal plane (gathering 75.1% of all variance) and thereby indicate that each
one owns a specific preferential judgment behaviour, somehow different from all
the others.

The PCA of T̃ is much like the well known PROMETHEE Gaia approach [2].
Main difference is that the Gaia PCA is realized on the covariance of the rows
– describing the alternatives – of the single net flows matrix (see [2]). Recall
that the single net flow for alternative x on criteria i is the normalized differ-
ence between the number of times x is preferred to the other alternatives minus
the number of times the other alternatives are preferred to x. The Gaia plane
therefore shows the projection of the alternatives in the plane of the two most
prominent principal axes. The criteria are there only indirectly represented as
supplementary points, the unit vectors of the coordinate axis representing each
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criteria. Practical experiments have shown that very similar result to ours would
however appear when realizing a PCA on the covariance, not of the rows, but of
the columns – describing the criteria – of the single net flows matrix. Main ad-
vantage of our T̃ measure is, nonetheless, that the distance between the criteria’s
preferential judgments is not computed from a compound preference situation,
but takes into account the indifference situation as well as all k discriminated
preference levels a criterion may, the case given, attach to a given performance
difference on all pairs of alternatives.

If the PCA of the criteria correlation index T̃ reveals very convincingly the
most prominently opposed criteria, the projection of the criteria into the main
principal planes also illustrates quite well the potential proximities between cri-
teria (see the position of criteria Cultural Interest and Tourist Attraction for
instance in Figure 1). In order to qualify the credibility of such proximities, we
finally propose a bipolar-valued clustering based again on the ordinal criteria
correlation index T̃ .

3 Bipolar-Valued Clustering from the Criteria

Correlation Index T̃

For this last approach, we make use of Property 1 which tells us that the in-
dex T̃ represents a bipolar-valued characteristic denotation of the propositional
statement “criteria i and j express similar preferential statements on A”. We
consider indeed this statement to be more or less validated if both criteria are
concordant on a majority of pairwise comparisons and discordant on a minor-
ity ones. In this sense, T̃ is characterising a bipolar-valued similarity graph, we
denote by S̃(F, T̃ ) or S̃ for short. Following from the logical denotation of the
bipolar valuation, we say that there is an arc between i and j if T̃ (i, j) > 0
(see [8]). Similarly, a clique C in S̃ is a subset of criteria such that for all i and
j in C, we have T̃ (i, j) � 0. 2

In general, we may associate a crisp graph S(F, T ) with S̃, where T =
{(i, j)|T̃ (i, ) > 0}. All properties of S are canonically transferred to S̃. For in-
stance, S is a symmetric digraph (see Property 1), so is S̃.

Example 5 (The Ronda decision problem – continued). The criteria similarity
graph in the Ronda example contains only three edges: – between Physical In-
vestment and Tourist Attraction (T̃ (phy,tour) = 0.33), – between Tourist Attrac-
tion and Cultural Interest (T̃ (tour,cult) = 0.28), and – the weak (or potential)
similarity between criteria Food and Cultural Interest (T̃ (food,cult) = 0.0). No-
tice that the similarity relation is not transitive (a fact easily explainable from
Figure 1).

2 We admit here a weak notion of a bipolar-valued clique by including possibly inde-
terminate similarity situations. A strict bipolar-valued clique concept would require
a strictly positive valuation.
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What we are looking for are maximal cliques, i.e. subsets C of criteria which
verify both the following properties:

1. Internal stability: all criteria in C are similar, i.e. the subgraph (C, T̃|C) is a
clique;

2. External stability : if a criteria i is not in C, there must exist a criteria j in
C such that T̃ (i, j) < 0 and T̃ (j, i) < 0.

For any C ∈ F , we denote by Δint(C) (resp. Δext(C)) its credibility of being
internally (resp. externally) stable:

Δint(C) =

{
1.0 if |C| = 1,
mini∈C minj �=i

j∈C

(
T̃ (i, j)

)
otherwise.

(4)

Δext(C) =

{
1.0 if C = F,

mini�∈C
i∈F maxj∈C

(
− T̃ (i, j)

)
otherwise.

(5)

Property 3. A subset C of criteria is a maximal clique of the similarity graph
S̃ ≡ (F, T̃ ) if and only if both Δint(C) � 0 and Δext(C) > 0.

Proof. Condition Δint(C) � 0 directly implies that (C, T̃|C) is a clique and
condition Δext(C) > 0 implies that, for any criterion i not in C, there exists at
least one criterion j in C such that T̃ (i, j) < 0. ��

Computing maximal cliques in a graph is equivalent to the problem of comput-
ing maximal independent sets in the dual graph. These problems are in theory
algorithmically difficult [12]. Considering however the very low dimension of the
set of criteria in a common MCDA problem, there is no operational difficulty
here for the decision aid practice. The credibility level min(Δext, Δint) of the
resulting maximal cliques may eventually lead to a bipolar-valued clustering of
the family of criteria (see [11]).

Example 6 (The Ronda decision problem – continued). The clustering results
are shown in Table 6.

The most validated maximal cliques (at credibility level 58.33%3) are the pairs
(Physical Investment, Tourist Attraction) and (Tourist Attraction, Cultural In-
terest). At level 54.17%, both the criteria Distance and Relaxation are singleton
maximal cliques, followed at level 51.39% by the criterion Sun, Fun & more.
Finally, a potential maximal clique is the pair (Cultural Interest, Food). The
credibility level indexed clustering results are shown in Figure 2.

With non-redundant and preferentially independent criteria, we may expect in
general very small maximal cliques and singletons. Monte Carlo experiments
with random performance tableaux confirm indeed this sparsity of the criteria
clustering in normal MCDA problems.
3 The credibility levels are expressed as (min(Δext, Δint)+1.0)/2.0 in the [0, 1] interval.
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Table 6. Ronda example: Clustering the criteria

Maximal credibility stability
cliques level (in%3) external internal

{phy,tour} 58.33 +0.167 +0.333
{tour,cult} 58.33 +0.167 +0.278

{dis} 54.17 +0.083 +1.00
{rel} 54.17 +0.083 +1.00
{sun} 51.39 +0.028 +1.00

{cult,food} 50.00 +0.167 0.0

food

cult

tour

phy sun

rel

dis

credibility levels:
58.33%

54.17%

51.39%

50.00%

Fig. 2. Ronda example: The bipolar-valued criteria clusters

Conclusion

Despite the obvious importance of the methodological requisite for a suitable
MCDA approach to offer tools for illustrating preferential agreements and/or
oppositions between the criteria, no specific formal methodological contribution,
apart from the PROMETHEE Gaia plane, has been made in the general context
of the outranking based MCDA methods. This paper fills this gap with a gener-
alisation of Kendall’s rank correlation τ measure to the pairwise comparison of
the preferential judgements the criteria apply to a given set of alternatives. This
new ordinal criteria correlation index may be used, on the one hand, for graph-
ically illustrating oppositions and agreements between criteria with the help of
a PCA similar to the Gaia approach. On the other hand, the same ordinal cor-
relation index may also be used for extracting in a decreasing level of credibility
the maximal cliques from a bipolar-valued criteria similarity graph.
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Abstract. The new parallel incremental Support Vector Machine (SVM)
algorithm aims at classifying very large datasets on graphics processing
units (GPUs). SVM and kernel related methods have shown to build
accurate models but the learning task usually needs a quadratic program-
ming, so that the learning task for large datasets requires big memory ca-
pacity and a long time. We extend the recent finite Newton classifier for
building a parallel incremental algorithm. The new algorithm uses graph-
ics processors to gain high performance at low cost. Numerical test results
on UCI, Delve dataset repositories showed that our parallel incremental
algorithm using GPUs is about 45 times faster than a CPU implemen-
tation and often significantly over 100 times faster than state-of-the-art
algorithms LibSVM, SVM-perf and CB-SVM.

Keywords: Support vector machines, incremental learning, parallel al-
gorithm, graphics processing unit, massive data classification.

1 Introduction

Since SVM learning algorithms were first proposed by Vapnik [26], they have
been shown to build accurate models with practical relevance for classification,
regression and novelty detection. Successful applications of SVMs have been re-
ported for such varied fields as facial recognition, text categorization and bioin-
formatics [14]. In particular, SVMs using the idea of kernel substitution have
been shown to build good models, and they have become increasingly popular
classification tools.

In spite of the prominent properties of SVMs, current SVMs can not easily
deal with very large datasets. A standard SVM algorithm requires solving a
quadratic program (QP); so its computational cost is at least O(m2), where m is
the number of training datapoints. Also, the memory requirements of SVM fre-
quently make it intractable. Unfortunately, real-world databases doubles every 9
months [12], [16]. There is a need to scale up these learning algorithms for deal-
ing with massive datasets. Effective heuristic methods to improve SVM learning
time divide the original quadratic program into series of small problems [2], [21],
[22]. Incremental learning methods [3], [7], [9], [10], [13], [23], [24] improve mem-
ory performance for massive datasets by updating solutions in a growing training
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set without needing to load the entire dataset into memory at once. Parallel and
distributed algorithms [9], [23] improve learning performance for large datasets
by dividing the problem into components that execute on large numbers of net-
worked personal computers (PCs). Active learning algorithms [8], [25] choose
interesting datapoint subsets (active sets) to construct models, instead of using
the whole dataset they can not deal easily with very large datasets.

In this paper, we describe methods to build the incremental and parallel
Newton SVM algorithm for classifying very large datasets on GPUs, for example,
a Nvidia GeForce 8800 GTX graphics card. Our work is based on Newton SVM
classifiers proposed by Mangasarian [17]. He proposed to change the margin
maximization formula and add with a least squares 2-norm error to the standard
SVM and then this brings out an unconstrained optimization which is solved by
the finite stepless Newton method. The Newton SVM formulation requires thus
only solutions of linear equations instead of QP. This makes training time very
short. We have extended Newton SVM in two ways.

1. We developed an incremental algorithm for classifying massive datasets
(billions of datapoints) of dimensionality up to 103.

2. Using a GPU (massively parallel computing architecture), we developed a
parallel version of incremental Newton SVM algorithm to gain high performance
at low cost.

Some performances in terms of learning time and accuracy are evaluated on
the UCI repository [1] and Delve [6], including Forest cover type, KDD cup
1999, Adult and Ringnorm datasets. The results showed that our algorithm
using GPU is about 45 times faster than a CPU implementation. An example of
the effectiveness of the new algorithms is their performance on the 1999 KDD
cup dataset. They performed a binary classification of 5 million datapoints in a
41-dimensional input space within 18 seconds on the Nvidia GeForce 8800 GTX
graphics card (compared with 552 seconds on a CPU, Intel core 2, 2.6 GHz, 2
GB RAM). We also compared the performances of our algorithm with the highly
efficient standard SVM algorithm LibSVM [4] and with two recent algorithms,
SVM-perf [15] and CB-SVM [28].

The remainder of this paper is organized as follows. Section 2 introduces
Newton SVM classifiers. Section 3 describes how to build the incremental learn-
ing algorithm with the Newton SVM algorithm for classifying large datasets on
CPUs. Section 4 presents a parallel version of the incremental Newton SVM us-
ing GPUs. We present numerical test results in section 5 before the conclusion
and future work.

Some notations are used in this paper. All vectors are column vectors unless
transposed to row vector by a T superscript. The inner dot product of two
vectors, x, y is denoted by x.y. The 2-norm of the vector x is denoted by ‖x‖.
The matrix A[mxn] is m datapoints in the n-dimensional real space Rn. e will
be the column vector of 1. w, b will be the normal vector and the scalar of the
hyperplane. z is the slack variable and C is a positive constant. I denotes the
identity matrix.
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2 Newton Support Vector Machine

Let us consider a linear binary classification task, as depicted in Figure 1, with
m datapoints xi (i = 1, . . . ,m) in the n-dimensional input space Rn. It is
represented by the mxn matrix A, having corresponding labels yi = ±1, denoted
by the mxm diagonal matrix D of ±1 (where Di,i = 1 if xi is in class +1 and
Di,i = −1 if xi is in class -1).

Fig. 1. Linear separation of the datapoints into two classes

For this problem, the SVM algorithm try to find the best separating plane (de-
noted by the normal vector w ∈ Rn and the scalar b ∈ R1), i.e. furthest from both
class +1 and class -1. It can simply maximize the distance or margin between the
supporting planes for each class (x.w − b = +1 for class +1, x.w − b = −1 for
class -1). The margin between these supporting planes is 2/‖w‖ (where ‖w‖ is the
2-norm of the vector w). Any point xi falling on the wrong side of its support-
ing plane is considered to be an error (having corresponding slack value zi > 0).
Therefore, a SVM algorithm has to simultaneously maximize the margin and min-
imize the error. This is accomplished through the following QP (1):

min f(w, b, z) = (1/2)‖w‖2 + CeT z (1)
s.t. : D(Aw − eb) + z ≥ e

where z ∈ Rm is the non negative slack vector and the positive constant C ∈ R1

are used to tune errors, margin size, respectively.
The plane (w, b) is obtained by solving the QP (1). Then, the classification

function of a new datapoint x based on the plane is: predict(x) = sign(w.x− b)
SVM can use some other classification functions, for example a polynomial

function of degree d, a RBF (Radial Basis Function) or a sigmoid function. To
change from a linear to non-linear classifier, one must only substitute a kernel
evaluation in (1) instead of the original dot product. More details about SVM
and others kernel-based learning methods can be found in [5].

Recent developments for massive linear SVM algorithms proposed by Man-
gasarian [17], [18] reformulate the classification as an unconstrained optimiza-
tion. By changing the margin maximization to the minimization of (1/2)‖w, b‖2
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and adding with a least squares 2-norm error, the SVM algorithm reformulation
with linear kernel is given by the QP (2).

min f(w, b, z) = (1/2)‖w, b‖2 + (C/2)‖z‖2 (2)
s.t. : D(Aw − eb) + z ≥ e

where z is the non negative slack vector and the positive constant C are used to
tune errors, margin size.

The formulation (2) can be rewritten by substituting for z = [e − D(Aw −
eb)]+ (where (x)+ replaces negative components of a vector x by zeros) into the
objective function f . We get an unconstrained problem (3):

min f(w, b) = (1/2)‖w, b‖2 + (C/2)‖[e−D(Aw − eb)]+‖2 (3)

By setting [w1w2 . . . wnb]T to u and [A− e] to H , then the SVM formulation
(3) is rewritten by (4):

min f(w, b) = (1/2)uTu+ (C/2)‖(e−DHu)+‖2 (4)

Mangasarian [17] has shown that the finite stepless Newton method can be
used to solve the strongly convex unconstrained minimization problem (4). The
algorithm is described in figure 2. Mangasarian has proved that the sequence
ui of the algorithm terminates at the global minimum solution. In most of the
tested cases, the Newton algorithm has given the good solution with a number
of iterations varying between 5 and 8.

The SVM formulation (4) requires thus only solutions of linear equations of
(w, b) instead of QP. If the dimensional input space is small enough (less than
103), even if there are millions datapoints, the Newton SVM algorithm is able
to classify them in minutes on a PC.

Fig. 2. Newton SVM algorithm
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3 Incremental Newton SVM Algorithm

Although the Newton SVM algorithm is fast and efficient to classify large
datasets, it needs load whole dataset in the memory. With a large dataset e.g.
one billion datapoints in 20 dimensional input, Newton SVM requires more than
80 GB RAM. Any machine learning algorithm has some difficulties to deal with
the challenge of large datasets. Our investigation aims at scaling up the Newton
SVM algorithm to classify very large datasets on PCs (Intel CPUs). The incre-
mental learning algorithms are a convenient way to handle very large datasets
because they avoid loading the whole dataset in main memory: only subsets of
the data are considered at any one time and update the solution in growing
training set. The main idea is to incrementally compute the gradient of f and
the generalized Hessian of f at u for each iteration in the finite Newton algorithm
described in figure 3.

Suppose we have a very large dataset decomposed into small blocks by rows
Ai, Di. The incremental algorithm of the Newton SVM can simply incrementally
compute the gradient and the generalized Hessian of f by the formulation (5) and
(6). Consequently, the incremental Newton SVM algorithm can handle massive
datasets on a PC. If the dimension of the input space is small enough (less
than 103), even if there are billions datapoints, the incremental Newton SVM
algorithm is able to classify them on a standard personal computer (Pentium IV,
512 MB RAM). The algorithm only needs to store a small (n+1)x(n+1) matrix
and two (n + 1)x1 vectors in memory between two successives steps (where n
is number of dimensions). The accuracy of the incremental algorithm is exactly
the same as the original one.

4 Parallel Incremental Newton SVM Using GPUs

The incremental Newton SVM algorithm described above is able to deal with
very large datasets on a PC. However it only runs on one single processor. We
have extended it to build a parallel version using a GPU.

During the last decade, GPUs described in [27] have developed as highly spe-
cialized processors for the acceleration of raster graphics. The GPU has several
advantages over CPU architectures for highly parallel, compute intensive work-
loads, including higher memory bandwidth, significantly higher floating-point,
and thousands of hardware thread contexts with hundreds of parallel compute
pipelines executing programs in a single instruction multiple data (SIMD) mode.
The GPU can be an alternative to CPU clusters in high performance comput-
ing environments. Recent GPUs have added programmability and been used for
general-purpose computation, i.e. non-graphics computation, including physics
simulation, signal processing, computational geometry, database management,
computational biology, data mining.
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Fig. 3. Incremental Newton SVM algorithm

NVIDIA has introduced a new GPU, i.e. Geforce 8800 GTX and a C-language
programming API called CUDA [19] (compute unified device architecture). A
block diagram of the NVIDIA Geforce 8800 GTX architecture is comprised of
16 multiprocessors. Each multiprocessor has 8 SPs (streaming processors) for
a total of 128 SPs. Each group of 8 SPs shares one L1 data cache. A SP con-
tains a scalar ALU (arithmetic logic unit) and can perform floating point oper-
ations. Instructions are executed in a SIMD mode. The NVIDIA Geforce 8800
GTX has 768 MB of graphics memory, with a peak observed performance of 330
GFLOPS and 86 GB/s peak memory bandwidth. This specialized architecture
can sufficiently meet the needs of many massively data-parallel computations.
In addition, NVIDIA CUDA also provides a C-language API to program the
GPU for general purpose applications. In CUDA, the GPU is a device that
can execute multiple concurrent threads. The CUDA software stack is com-
posed of a hardware driver, an API, its runtime and higher-level mathematical
libraries of common usage, an implementation of Basic Linear Algebra Subpro-
grams (CUBLAS [20]). The CUBLAS library allows access to the computational
resources of NVIDIA GPUs. The basic model by which applications use the
CUBLAS library is to create matrix and vector objects in GPU memory space,
fill them with data, call a sequence of CUBLAS functions, and, finally, upload the
results from GPU memory space back to the host. Furthermore, the datatransfer
rate between GPU and CPU memory is about 2 GB/s.

Thus, we developed a parallel version of incremental Newton SVM algorithm
based on GPUs to gain high performance at low cost. The parallel incremental
implementation in figure 4 using the CUBLAS library performs matrix com-
putations on the GPU massively parallel computing architecture. Note that in
CUDA/CUBLAS, the GPU can execute multiple concurrent threads. Therefore,
parallel computations are done in the implicite way.
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Fig. 4. Parallel incremental Newton SVM algorithm using GPUs

First, we split a large dataset A,D into small blocks of rows Aj , Dj. For
each incremental step, a data block Aj , Dj is loaded to the CPU memory; a
datatransfer task copies Aj , Dj from CPU to GPU memory; and then GPU
computes in the parallel way the sums of: ∇f(ui) = ∇f(ui) + (−DjHj)T (e −
DjHjui)+ and
∂2f(ui) = ∂2f(ui) + (−DjHj)Tdiag([e−DjHjui]∗)(−DjHj)
Then the results ∇f(ui) and ∂2f(ui) are uploaded from GPUs memory back

to CPU memory to update u at the ith iteration. The accuracy of the new
algorithm is exactly the same as the original one.

5 Numerical Test Results

We prepared an experiment setup using a PC, Intel Core 2, 2.6 GHz, 2 GB
RAM, a Nvidia GeForce 8800 GTX graphics card with NVIDIA driver version
6.14.11.6201 and CUDA 1.1, running Linux Fedora Core 6. We implemented two
versions (GPU and CPU code) of incremental Newton SVM algorithm in C/C++
using NVIDIA’s CUDA, CUBLAS API [19], [20] and the high performance linear
algebra libraries, Lapack++ [11]. The GPU implementation results are compared
against the CPU results under Linux Fedora Core 6. We have only evaluated the
computational time without the time needed to read data from disk.

We focus on numerical tests with large datasets from on the UCI repository,
including Forest cover type, KDD cup 1999 and Adult datasets (c.f. table 1).
We created another massive datasets by using the RingNorm program. It is
a 20 dimensional, 2 class classification example. Each class is drawn from a
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Table 1. Dataset description

Datasets Dimensions Training set Testing set

Adult 110 32561 16281
Forest covertype 54 495141 45141
KDD cup 1999 41 4898429 311029
Ringnorm 1M 20 1000000 100000
Ringnorm 10M 20 10000000 1000000

Table 2. Classification results reported on a CPU (Intel Core 2, 2.6 GHz, 2 GB RAM)
and a GPU (NVIDIA Geforce 8800 GTX)

Datasets GPU time (sec) CPU time (sec) Accuracy (%)

Adult 0.48 17.52 85.18
Forest covertype 2.42 84.17 77.18
KDD cup 1999 18.01 552.98 92.31
Ringnorm 1M 0.39 39.01 75.07
Ringnorm 10M 17.44 395.67 76.68

multivariate normal distribution. Class 1 has mean equal to zero and covariance
4 times the identity. Class 2 (considered as -1) has unit covariance with mean =
2/sqrt(20).

First, we have split the datasets into small blocks of rows to avoid fitting in
memory. Table 2 presents the classification results obtained by GPU and CPU
implementations of the incremental Newton SVM algorithm. The GPU version
is a factor of 45 faster than the CPU implementation.

For Forest cover type dataset, the standard LibSVM ran for 21 days without
any result. Recently-published results indicate that the SVM-perf algorithm per-
formed this classification in 171 seconds (CPU time) on a 3.6 GHz Intel Xeon
processor with 2 GB RAM. This indicates that our GPU implementation of
incremental Newton SVM is probably about 70 times faster than SVM-Perf.

KDD Cup 1999 dataset consists of network data indicating either normal con-
nections (negative class) or attacks (postive class). LibSVM ran out of memory.
CB-SVM has classified the dataset with over 90% accuracy in 4750 seconds (CPU
time) on a Pentium 800 MHz with 1GB RAM, while our algorithm achieved over
92% accuracy in only 18.01 second. They appear to be about a factor of 264 times
faster than CB-SVM.

The numerical test results showed the effectiveness of the new algorithm to
deal with very large datasets on GPUs.

6 Conclusion and Future Work

We have presented a new parallel incremental Newton SVM algorithm being
able to deal with very large datasets in classification tasks on GPUs. We have
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extended the recent Newton SVM algorithm proposed by Mangasarian in two
ways. We developed an incremental algorithm for classifying massive datasets.
Our algorithm avoid loading the whole dataset in main memory: only subsets
of the data are considered at any one time and update the solution in grow-
ing training set. We developed a parallel version of incremental Newton SVM
algorithm based on GPUs to gain high performance at low cost.

We evaluated the performances in terms of learning time on very large datasets
of UCI repository and Delve. The results showed that our algorithm using GPU
is about 45 times faster than a CPU implementation. We also compared the per-
formances of our algorithm with the efficient standard SVM algorithm LibSVM
and with two recent algorithms, SVM-perf and CB-SVM. Our GPU implementa-
tion of incremental Newton SVM is probably over 100 times faster than LibSVM,
SVM-Perf and CB-SVM.

A forthcoming improvement will extend our methods for dealing with complex
non-linear classification tasks.
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Abstract. Participants in the agricultural industries are subject to sig-
nificant market risks due to long production lags. Traditional method-
ology analyzes the risk evolution following a time invariant approach.
However, this paper analyzes and proposes wavelet analysis to track risk
evolution in a time variant fashion. A wavelet-econometric hybrid model
is further proposed for VaR estimates. The proposed wavelet decomposed
VaR (WDVaR) is ex-ante in nature and is capable of estimating risks that
are multi-scale structured. Empirical studies in major agricultural mar-
kets are conducted for both the hybrid ARMA-GARCH VaR and the
proposed WDVaR. Experiment results confirm significant performance
improvement. Besides, incorporation of time variant risks tracking capa-
bility offers additional flexibility for adaptability of the proposed hybrid
algorithm to different market environments. WDVaR can be tailored to
specific market characteristics to capture unique investment styles, time
horizons, etc.

Keywords: financial, risk management, time series analysis, wavelets
and fractals, Value at Risk.

1 Introduction

Risks are an inherent part of agricultural production process due to the complexi-
ties in the surrounding physical and economic environment. Proper measurement
and management of agricultural market risks are essential due to the following
reasons: Firstly, the past and present risk levels shape expectations about future
risk evolutions and influence production decisions. Secondly, risk levels affect
important operational decisions concerning the cost of capital and revenue tar-
gets, etc. Thirdly, agricultural industries are capital intensive, with majority of
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capital deployment concentrated on farm real estate and machinery. Fourthly,
agricultural risks increase continuously as there are rising levels of uncertainties
during the production cycle. Thus, the industries are increasingly vulnerable to
devastating consequences of unexpected market risks [1]. Value at Risk (VaR)
is one popular approach to measure market risk. Despite its significance, there
are only a handful of research methodologies concerning quantitative measure-
ment and management of risks in agricultural industries - e.g. Giot measures
risks in commodities markets, including metals, agricultural commodities and
oil markets, using the VaR methodology. VaR estimated by using the APARCH
model provides the highest reliability. VaR estimates based on implied volatility
are also found to provide comparable performance [2,3]. Ani and Peter applied
two popular credit risk models to risk measurement in agricultural loans and
calculated the required VaR to protect investors’ interests [4]. At the same time,
measurement of the multi-scale heterogeneous structure of agricultural risk evo-
lution remains the unexplored area.

Therefore, this paper proposes an ex-ante decomposition based approach for
risk measurement in agricultural markets, in contrast with the traditional ap-
proaches. Wavelet analysis is proposed to conduct multi-resolution analysis of
the heterogeneous market structure of the risk evolution process in agricultural
markets. Wavelet analysis has been used extensively in different fields of eco-
nomics and finance, such as the economic relationship identification and wavelet
decomposed forecasting methodology, etc [5,6,7]. Despite the apparent need for
multi-scale risk structure analysis, there have been only a handful of researches
identified in the literature. These approaches focus on multi-resolution analysis
of historical market risk structure and its distribution [8]. However, they are
more of a historical simulation approach during their modeling attempts and
offer little insights into the evolution of these structures.

The proposed Wavelet based approach for VaR estimates allows the flexibil-
ity of combining the power of different econometric models in the time scale
domain, which reflects different investment strategies over various investment
time horizons in the agricultural markets.

Empirical studies have been conducted in major US agricultural markets to
evaluate and compare the performance of the proposed wavelet based approach
against the traditional ARMA-GARCH approach for VaR estimates. Experiment
results confirm improved reliability and accuracy offered by WDVaR due to
its ability to analyze multi-scale heterogeneous structures and its processing
power.

The rest of the paper is organized as follows: the second section briefly reviews
the relevant theories, including wavelet analysis and different approaches to VaR
estimates. The status quo of applications of wavelet analysis in risk management
is also reviewed. The third section proposes the wavelet based VaR algorithm.
The fourth section conducts empirical studies in major US agricultural markets.
Performance evaluation and comparison of models tested are based on Kupiec
backtesting procedures. The fifth section concludes.
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2 Relevant Theories

2.1 Value at Risk

Value at Risk is the dominant risk measure that has received endorsement from
both, academics and industries, recently [9]. Given the confidence level α, VaR
is defined as the p-quantile of the portfolio’s profit/loss distribution over certain
holding period at time t as in (1).

V aRt = −qp,t = F−1
t (α) = μt + σtG

−1
t (α) (1)

Where qp,t refers to the pth conditional quantile of the portfolio distribution.
F−1

t (α) and G−1
t (α) refer to the inverse of the portfolio distribution function.

μt is the conditional mean, while σt is the conditional variance. VaR is used to
compress and give approximate estimates as to the maximal possible losses.

Estimation of VaR can be classified into three groups, depending on the de-
gree of assumptions made - parametric approach, non-parametric approach and
semi-parametric approach [9]. The parametric approach fits the curve into the
risk evolution process and derives analytical forms. The advantage of the para-
metric approach is its intuitive appeal and simplicity to understand and track.
It is especially useful in the tranquile environments. However, when the mar-
ket gets volatile with more extreme events occurring, assumptions in parametric
approaches are easily violated and lead to biased estimates. Also, the current
parametric approaches lack the essential ability to analyze the multi-scale non-
linear dynamics in the markets. The non-parametric approach takes a different
route by imposing weak assumptions during the estimation process. It includes
techniques such as Monte Carlo simulation methods and more recently neural
network, etc. The advantage lies in its adaptability to non-linear environments,
where Data Generating Process (DGP) is unknown. However, These approaches
are mostly black box in nature and offer little insights into the underlying risk
evolutions. The semi-parametric approach strikes the balance between the previ-
ous two approaches. It relaxes to some extent, assumptions made in parametric
approaches while providing more insights. Techniques used include extreme value
theory (EVT) and wavelet analysis, etc.

Backtesting procedures are formal statistical methods to verify whether the
projected losses are in line with the actual losses observed in the market. Over
the years, different approaches have been developed. This paper uses the uncon-
ditional coverage tests as the basis for the model evaluation and comparison.
The VaR exceedances are Bernoulli random variable, which is equal to 1 when
VaR is exceeded by losses; and is 0 otherwise. The null hypothesis for uncondi-
tional coverage test is the acceptance of the model at the given confidence level.
Kupiec develops the likelihood ratio test statistics as in (2).

LR = −2ln[(1− ρ)n−xρx] + 2ln[(1− x)/n)n−x(x/n)x] (2)

Where x is the number of exceedances, n is the total number of observations
and p is the confidence level chosen for the VaR estimates. The Kupiec likelihood
ratio test statistics is distributed as χ2(1) .
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2.2 Wavelet Analysis

Wavelet analysis with time-frequency localization capability is introduced as
the advancement to the traditional band limited Fourier transform [10]. The
wavelet functions utilized during wavelet analysis are mathematically defined as
functions that satisfy the admissibility condition as in (3).

Cψ =
∫ ∞

0

|ϕ(f)|
f

df <∞ (3)

Where ϕ is the Fourier transform of the frequency f . ψ is the wavelet transform.
Location parameter u and scale parameter s can be used to translate and

dilate the original function during wavelet analysis as in (4) [10].

W (u, s) =
∫ ∞

−∞
x(t)

1√
s
ψ(

t− u

s
)dt (4)

Where s ∈ R+, μ ∈ R. Thus, the transformed wavelet function convolves with
the market return series to obtain wavelet coefficients as in (4)

An inverse operation could also be performed, as in (5), which is referred to
as the wavelet synthesizing process.

x(t) =
1
Cψ

∫ ∞

0

∫ ∞

−∞
W (u, s)ψu,s(t)du

ds

s2
(5)

By design, wavelets are dilated shorter at higher frequency, which provides
shorter time windows to capture time sensitive information. Wavelets are also
dilated longer at lower frequency to emphasize frequency level information with
longer time windows. Typical wavelet families include Haar, Daubechies, Symlet
and Coiflet, etc.

3 Wavelet Decomposed Value at Risk

Markets are heterogeneous in nature. A typical financial market (e.g. agricul-
tural, energy market, etc.) consists of the following participants: market makers,
intraday traders, daily traders, short term traders and long term traders. Since
different types of traders have different investment strategies, determined by
their investment horizon and financial health, their contributions to the market
price formation process vary in terms of both time horizon and frequency level
[11]. Previous parametric approaches, including single and hybrid models based
approaches to VaR estimates, are categorized as ex-post approaches. They would
lead to significant biases in estimates in heterogeneous markets. In heterogeneous
markets, prices are formed with influences from different types of investors, char-
acterized by different investment strategies and time horizons, which change over
time. Since most current single parametric approaches are based on stationary
assumptions and focus on frequency domain, their performances are unstable in
the volatile market environment, i.e. the violation of the stationary assumptions



A Wavelet Based Multi Scale VaR Model for Agricultural Market 433

invalidates the model during periods of intense fluctuations with investment
strategies changing with time horizons. The ensemble approaches also share the
same problem with the single model approach, although it improves the perfor-
mance by nonlinearly ensembling different individual forecasts. Besides, it offers
little insights into the multi-scale market risk structure. Meanwhile, the current
hybrid algorithm linearly filters the data through different models to extract
maximal possible information and minimize the residuals. However, the bias in-
troduced in the first stage filtering process would not only be carried forward,
but would also distort the next filtering process and lead to an increasing level
of biases in estimates.

If the distribution can be described with location and scale parameters, then
the VaR is estimated parametrically as in (6)

V aRt = μt + σtG
−1(α) (6)

Where G−1(α) refers to the inverse of the cumulative normal distribution.
Estimation of the conditional mean μt follows the ARMA-GARCH process.

Estimation of the conditional standard deviation σt follows a multi-scale frame-
work based on wavelet analysis.

Firstly , the original data series are projected into the time scale domain with
the chosen wavelet families as in (7)

f(t) = fAJ (t) +
J∑

j=1

fDj (t) (7)

Where f(t) refers to the original time series. fAJ (t) refers to the decomposed
time series using scaling function at scale J. fDj (t) refers to the decomposed
time series using wavelet function at scales j, up to scale J.

Secondly econometric or time series models serve as individual volatility fore-
casters at each scale. Parameters are estimated by fitting different models to
decomposed data at each scale. Then volatilities are forecasted, using the esti-
mated model specifications.

Thirdly, according to the preservation of energy property, estimates of volatil-
ity are reconstructed from volatility estimates at each scale, using wavelet syn-
thesis techniques as in (8).

σ̂2 = V aR((f(t)) = var(fAJ (t)) +
J∑

j=1

V ar(fDJ (t))

=
1

2λJN̂

N

2J −1∑

t=2

ω2
J,t +

J∑

j=1

1

2λjN̂

N

2j −1∑

t=2

ϕ2
j,t (8)

Where N = 2J refers to the length of the dyadic data series. N̂ refers to the
wavelet coeeficients at scale λj .
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4 Empirical Studies

4.1 Data and Experiment Design

The data examined in this paper are daily aggregated spot prices in two major
US agricultural markets: cotton and live hog. These markets are selected, based
on their significant market shares and data availability. The market shares for
both cotton and live hog are 2.20% and 5.90% respectively. The data set for
cotton covers the time period from 27 March, 1980 to 14 June, 2006 while the
data set for live hog covers the time period from 2 January, 1980 to 14 June,
2006. The total sample size is 6613 daily observations. The data are divided into
two parts, i.e., the first 60% of the data set forms the training set while the rest
40% serves as the test set.

Table 1. Descriptive Statistics and Statistical Tests

Agricultural Commodities Cotton Live Hog

Mean 0.0000 0.0000

Maximum 0.1292 0.5125

Minimum -0.9049 -0.5316

Medium 0.0000 0.0000

Standard Deviation 0.0196 0.0248

Skewness -24.7588 -0.3208

Kurtosis 1150.6933 108.1585

Jarque-Bera Test (P value) 0 0

BDS Test (P value) 0 0

Table 1 reports the descriptive statistics for daily returns in both markets.
The agricultural market represents a volatile environment, as indicated by the
high volatility level. Investors face significant losses, as suggested by the nega-
tive and skewnesses. The market environment is considerably risky, as indicated
by the high degree of excess kurtosis, which suggests the prevalence of extreme
events. Thus, proper measurement and management of risks are crucial to both,
investors and governments, in agricultural markets. Rejection of Jarque-bera test
of normality and BDS (Brock-Dechert-Scheinkman) test of independence sug-
gests the existence of nonlinear dynamics in the data [12]. Further performance
improvement upon traditional approaches demands innovative techniques to ac-
count for the multi-scale heterogeneous structure of the markets.

A portfolio of one asset position worth 1 USD is assumed during each ex-
periment. Geometric returns rt are calculated assuming continuous compound-
ing as ln Pt

Pt−1
, where Pt refers to the price at time t. Based on the analysis of

the autocorrelation and partial autocorrelation function, the model order for
ARMA-GARCH is determined as ARMA(2,2) and GARCH(1,1). The length of
the moving windows during the one step ahead forecasts is set at 3967 to cover
the most relevant information set.
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4.2 Empirical Results

ARMA-GARCH VaR. As suggested by results in table 2, the ARMA-GARCH
approach don’t offer sufficient reliability for VaR estimates. The ARMA-GARCH
approach is rejected uniformly in both markets, across all confidence levels. Gen-
erally, the estimates are too conservative. The poor performance stems from the
linear hybrid approach adopted, which lacks the ability to extract information
concerning the multi-scale risk structures.

WDVaR(X,1). When wavelet analysis is applied to multi-resolution analysis
of the risk evolution, two new parameters are introduced in the notion WD-
VaR(X,i), i.e., the wavelet families chosen X and the decomposition level i.

The sensitivity of the model’s performance to the wavelet families chosen
is investigated by estimating VaRs based on different wavelet families at the
decomposition level 1. Experiment results are listed in table 3.

Taking VaRs estimated at 95% confidence level, experiment results in table 3
confirm that the wavelet families chosen affect the perspectives taken during the
analysis of the risk evolution and, as a consequence, affect the VaR estimated.
The wavelet families could be treated as a pattern recognition tool since different
families would lead to the extraction of different data patterns. Convolution of
wavelets to the original data series is a process of searching for the relevant data
patterns across time horizons and scales. Meanwhile, further experiment results
confirm that

Take symlet 2 for example, experiment results in table 4 show that changing
wavelet families do lead to significant performance improvement. VaRs estimated
are accepted at both 97.5% and 99% confidence level in the live hog market and
are accepted at both 95% and 97.5% confidence levels in the cotton market.

WDVaR(Haar, i). The sensitivity of the model’s performance to the selection
of decomposition level is further investigated. Decomposition level is set to 3.

Increases in the decomposition level improve the model’s performance signif-
icantly. Firstly, the reliability of the proposed VaRs estimates are accepted at

Table 2. Experiment Results for ARMA-GARCH VaR in Two Agricultural Commodi-
ties Markets Across All Confidence Levels

Agricultural Confidence ARMA-GARCH MSE Kupiec Test P-value

Commodities Level VaR Exceedance Statistics

99.0% 8 0.0018 17.8826 0

Cotton 97.5% 17 0.0013 52.9588 0

95.0% 31 0.0010 116.5033 0

99.0% 15 0.0027 5.9125 0.0149

Live Hog 97.5% 33 0.0020 20.7756 0

95.0% 71 0.0015 35.6069 0
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Table 3. Experiment Results for WDVaR(X,1) at 95% Confidence Level in Cotton
Market

Wavelet WDVaR(x,1) MSE Kupiec Test P-Value

Family Exceedance Statistics

Haar(db1) 45 0.0007 80.4040 0.0000

db2 113 0.0005 3.0806 0.0792

db3 141 0.0005 0.6041 0.4370

db4 131 0.0005 3.0806 0.0792

db5 143 0.0004 0.9057 0.3413

db6 151 0.0004 2.6962 0.1006

dmey 138 0.0004 0.2642 0.6072

sym2 113 0.0005 3.0806 0.0792

sym3 141 0.0005 0.6041 0.4370

sym4 135 0.0005 0.0620 0.8033

sym5 132 0.0004 0.0003 0.9858

coif1 148 0.0005 1.9169 0.1662

Table 4. Experiment Results for WDVaR(Sym2,1) in Two Agricultural Commodities
Markets Across All Confidence Levels

Agricultural Confidence ARMA-GARCH MSE Kupiec Test P-value

Commodities Level VaR Exceedance Statistics

99.0% 57 0.0008 26.8099 0

Cotton 97.5% 79 0.0006 2.4328 0.1188

95.0% 113 0.0005 3.0806 0.0792

99.0% 25 0.0027 0.0807 0.7764

Live Hog 97.5% 51 0.0020 3.8353 0.0502

95.0% 97 0.0016 10.8276 0

99% confidence level in the cotton market and are accepted at both 97.5% and
99% confidence levels in the live hog market. Secondly, the accuracy of the esti-
mates improves as the size of the exceedances measured by Mean Square Error
(MSE) decreases uniformly. This performance improvement results from finer
modeling of details at higher decomposition levels using the wavelet analysis.
As the decomposition level increases, market structures are projected into the
higher dimension domain to reveal more subtle details, i.e. investors with longer
investment horizons are separated out for further analysis. Thus, the attempted
ARMA-ARCH model could be estimated with more suitable parameters at the
individual scale, which results in the more accurate description of risk evolutions.
Aggregated together, it will result in the closer tracking of risk evolutions and,
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Table 5. Experiment Result for WDVaR(Haar,3) in Two Agricultural Commodities
Markets Across All Confidence Levels

Agricultural Confidence ARMA-GARCH MSE Kupiec Test P-value

Commodities Level VaR Exceedance Statistics

99.0% 21 0.0011 1.2164 0.2701

Cotton 97.5% 36 0.0008 16.7993 0

95.0% 58 0.0006 55.0014 0

99.0% 29 0.0026 0.2427 0.6222

Live Hog 97.5% 55 0.0020 2.0258 0.1546

95.0% 94 0.0015 12.8661 0

thus, more accurate and reliable estimates of risk measurements - VaR. Besides,
by tuning the two new parameters, i.e. the wavelet families and the decomposi-
tion level, reliability and accuracy of the VaR estimates improves significantly.
The wavelet based approach offers considerably more flexibility during the VaR
estimation process. However, the increased performance doesn’t come without
costs. More subtleties are revealed with the exponential growth of computational
complexities, which are not always desirable.

5 Conclusion

Given the long production cycle and unexpected factors involved, proper mea-
surement of risks has a significant impact on agricultural production decisions
and the revenue generated. This paper proposes the wavelet based hybrid ap-
proach to measure agricultural risks using the VaR methodology, due to its
long production cycle. The contribution of this paper is two fold. Firstly, multi-
resolution analysis is conducted to investigate the heterogeneous market struc-
tures using the wavelet analysis. Agricultural data are projected into the time
scale domain to reveal its the composition factors. Secondly, the ex-ante based
methodology is proposed for hybrid algorithm design. Wavelet analysis is used as
an example of ex-ante based hybrid algorithm. The combination methodology is
based on time scale decomposition in contrast with the traditional linear filter-
ing process. Experiments conducted in two major US agricultural markets show
that the proposed WDVaR outperforms the traditional ARMA-GARCH VaR.
The advantage of this model is that the estimates unify different models with
different parameter settings in a given time scale domain. Besides, this model
also offers additional insights into the multi-scale structure of risk evolution.
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Abstract. In this paper, we present a data-mining approach in gene
expression matrices. The method is aimed at extracting formal concepts,
representing sets of genes that present similar quantitative variations of
expression in certain biological situations or environments. Formal Con-
cept Analysis is used both for its abilities in data-mining and information
representation. We structure the method around three steps: numerical
data is turned into binary data, then formal concepts are extracted and
filtered with a new formalism. The method has been applied to a gene
expression dataset obtained in a fungal species named Laccaria bicolor.
The paper ends with a discussion and research perspectives.

Keywords: Gene expression, formal concept analysis, scaling.

1 Introduction

Microarray biotechnologies can monitor the expression of thousands of genes
across many biological situations, over time, and have proved being relevant in
many applications. They allow to classify tumors or tissue types, to identify
genes that play a major role in a given cellular process, or eventually to assign
a function to a gene [18].

The output of a microarray experiment is a matrix or table with genes in lines
and biological situations in columns (see Table 1). Each value of this so-called
gene expression matrix (GEM) reflects the state of expression (transcription) of
a gene in a given situation. A classical method for analysing GEM is clustering,
which groups into clusters, genes that exhibit similar expression patterns in all
the different situations. Indeed a consensual hypothesis in molecular biology
states that co-expressed genes, i.e. genes having a similar expression pattern,
interact together within the same biological function or the same cellular process
[10,19]. For analysing GEM, biologists apply widely used classical numerical
methods such as K-Means, hierarchical clustering, and Self Organizing Maps
[8]. Meanwhile, symbolic data-mining methods [14] such as itemset search [15],
association rules extraction [5], and Formal Concept Analysis [17], are emerging
thanks to their ease of result interpretation.

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 439–449, 2008.
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In this paper, we propose a method relying on Formal Concept Analysis (FCA)
[6] for extracting groups or classes of co-expressed genes. FCA builds a concept
lattice where each concept represents a set of co-expressed genes in a number
of situations. As input data for FCA is a binary table, a numerical GEM is
transformed with possible introduction of biases or loss of information. More-
over, the set of resulting concepts can be huge (up to a million) and contains a
little proportion of biologically relevant concepts for a given study [17]. Indeed,
most of the concepts characterize groups of genes showing a similar expression
pattern, with very low numerical variation between the situations. The reason is
that a few proportion of genes has its expression differing from one situation to
another, and that microarray data are noisy. In this paper, we propose an orig-
inal transformation from numerical to binary GEM data. This transformation
allows to characterize and easily discriminate groups of co-expressed genes that
shows particular expression variations. The biologists are able to infer from this
characterization the role of genes and their membership to a cellular process.

The paper is organized as follows. In Section 2, we explain what gene expres-
sion data are and why we need new methods for GEM analysis. After explaining
the background on FCA, our approach is detailed in Section 3 and applied to
a real dataset in Section 4. The paper closes with a discussion and research
perspectives.

2 Background

2.1 Gene Expression Matrices and Profiles

Biological processes of a living cell are based on chemical reactions and interac-
tions between molecules. Proteins are molecules playing a major role in structure
and function of cells, tissues and the whole organism. They are produced by a
blueprint encoded in the DNA. A portion of DNA called the coding sequence of
a gene serves as support to build a specific protein. The mechanism that pro-
duces a protein from a gene is called gene expression. It consists of two steps:
transcription and translation. During the transcription, a copy of a gene is pro-
duced, called messenger RNA (mRNA). Then the translation produces a protein
from the mRNA. The different reactions and interactions of a cell differ from
the quantity of each protein at a time. It is nowadays still hard and expensive
to measure the abundance of several proteins in a cell. However, microarray is a
less expensive biotechnology and enables the measurement of the abundance of
thousands of different mRNA. The abundance of mRNA of a gene is measured
into a numerical value called gene expression value. In this paper, we consider
the NimbleGen Systems Oligonucleotide Arrays technology: expression values
are ranged from 0 (not expressed) to 65535 (highly expressed).

A microarray experiment considers a large number of genes, eventually the
complete coding space of a genome in multiple situations. These situations can
be a time-series during a particular biological process (e.g. cell cycle), a collec-
tion of different tissues (e.g. normal and cancerous tissues) or both, sometimes
responding to particular environmental stresses.
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By measuring the expression value of a gene in m situations, a gene expression
profile can be written as a m-dimensional numerical vector e = (e1, ..., em) where
ej is the expression value of the gene in the jth situation (j ∈ [1,m]). A gene
expression matrix (GEM) E = (eij)1≤i≤n,1≤j≤m is a collection of n profiles: it is
composed of n lines which correspond to genes andm columns which corresponds
to situations. eij is the expression value of the ith gene in the jth situation. For
example, in Table 1, (11050, 11950, 1503) is the expression profile for the Gene 1.
e11 = 11050 is the expression value of the Gene 1 in the situation a. Clustering
methods groups similar profiles together into a cluster, leading, when interpreted
by a domain expert, to the understanding of biological processes and of function
of genes [10,19].

Table 1. An example of GEM composed of 5 genes in lines and 3 situations in columns

Gene Id a b c

Gene 1 11050 11950 1503
Gene 2 13025 14100 1708
Gene 3 6257 5057 6500
Gene 4 5392 6020 7300
Gene 5 13070 12021 15548

Why do we still need new methods? Although literature includes many
methods for the analysis of GEM [8,11], the challenge to derive useful knowl-
edge from GEM still remains. Indeed, biological background implies to take
simultaneously the following properties into account:

1. A single gene can participate in several biological processes or have several
functions.

2. A single situation can describe several biological processes or functions.
3. A biological function or process implies a small subset of genes.
4. A biological process or function of interest is active in several, all or none

situations of a given dataset.
5. The genes having a high difference of expression value between two situations

(e.g. between a normal and a cancerous cell) are not frequent.

A cluster represents a group of genes having globally similar expression values
in all situations, e.g. Gene 1 and Gene 2 in Table 1. However, clustering methods
may fail to detect strong local association between genes in some subsets of
situations only, e.g. Gene 1, Gene 2 and Gene 5 are co-expressed in the situations
a and b. Moreover most of clustering methods forces a profile to belong to only
one cluster.

To overcome these limitations, the principle of block-clustering introduced in
[7] has been adapted for GEM since [3]. These so-called bi-clustering methods
are able to consider subsets of genes sharing compatible expression local patterns
across subsets of biological situations (see Table 1). Some techniques allow genes
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and conditions to belong to several bi-clusters. In this way, bi-clustering is better
adapted for GEM analysis than clustering. Nevertheless a critical limit is that the
potential number of interesting bi-clusters is huge (up to millions). A complete
enumeration is not feasible in GEM analysis. Heuristics are introduced to reduce
the result size but can miss bi-clusters of interest [11].

On the other hand, researchers considered algorithms in binary data [14] ex-
tracting local patterns, e.g. itemset extraction, association rules generation, and
formal concept analysis [15,17,5,13]. As these methods works on a binary table,
GEM has to be discretized, and then strong local patterns can be extracted.
However, if the number of patterns is generally tractable in GEM analysis, it is
too huge to by analysed by a human-expert. Some solutions exists to reduce the
number of patterns and are presented in the related work section. We propose
an alternative: to use Formal Concept Analysis (FCA) that is able to take into
account properties 1, 2, 3, and 4. We present an original binary representation
of the GEM that allows us to consider property 5, which, to our knowledge, is
an unexplored area in FCA. This representation allows an expert to focus on
and analyse most interesting patterns of the complete collection. Thus, we also
exploit the abilities of FCA for data-mining and for information representation.

2.2 Background on FCA

Formal concept analysis (FCA) [6] is a mathematical formalism allowing to de-
rive a concept lattice (to be defined later) from a formal context K constituted of
a set of objects G, a set of attributes M , and a binary relation I defined on the
Cartesian product G×M . In the binary table representing G×M (see Table 2),
the rows correspond to objects and the columns to attributes or properties. A
cross means that “an object possesses a property”. FCA can be used for a num-
ber of purposes among which knowledge formalization and acquisition, ontology
design, and data mining.

The concept lattice is composed of formal concepts, or simply concepts, orga-
nized into a hierarchy by a partial ordering (a subsumption relation allowing to
compare concepts). Intuitively, a concept is a pair (A,B) where A ⊆ G, B ⊆M ,
and A is the maximal set of objects sharing the whole set of attributes in B
and vice-versa. The concepts in a concept lattice are computed on the basis of
a Galois connection defined by two derivation operators denoted by ′:

′ : 2G → 2M ;A′ = {m ∈M ; ∀g ∈ A : (g,m) ∈ I}
′ : 2M → 2G;B′ = {g ∈ G; ∀m ∈ B : (g,m) ∈ I}

Formally, a concept (A,B) verifies A′ = B and B′ = A. The set A is called
the extent and the set B the intent of the concept (A,B). The subsumption
(or subconcept–superconcept) relation between concepts is defined as follows:
(A1, B1) , (A2, B2) ⇔ A1 ⊆ A2 (or B2 ⊆ B1). Relying on this subsumption
relation ,, the set of all concepts, denoted by B(G,M, I), extracted from a
context K = (G,M, I) is organized within a complete lattice, that means that
for any set of concepts there is a smallest superconcept and a largest subconcept,
called the concept lattice of K and denoted by B(G,M, I).
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The objects of microarray data are described by numerical attributes, i.e the
expression value in each situation. FCA considers these attributes as many-valued
attributes, in contrast to one-valued attributes. Then, a many-valued context
(G,M,W, I) is a 4-tuple constituted of a set of objects G, a set of attributes M ,
a set of attribute values W and a ternary relation I defined on the Cartesian
product G×M×W . (g,m,w) ∈ I, also written g(m) = w, means that “the value
of the attribute m for the object g is w”. The relation I verifies that g(m) = w
and g(m) = v always imply w = v.

Before finding formal concepts in a many-valued context, this context has
to be turned into a formal context (one-valued): many-valued attributes are
discretized. This procedure is called discretization in data analysis, and termed
also conceptual scaling in FCA.

3 Applying FCA to GEM Analysis

This section proposes to use FCA to extract from a GEM groups of co-expressed
genes represented by concepts. Firstly, a GEM is mathematically defined as
a many-valued context, then turned into a binary context using a particular
conceptual scaling. The concepts of the formal context are searched for and
structured into a concept lattice. Finally, concepts are filtered using a particular
representation of concept intents.

A GEM as a many-valued context. A GEM is considered as a many valued
context K1 = (G,S,W, I1) where G is a set of genes, S a set of situations, and
g(s) = w means that the expression value of gene g is w in situation s. In
our example, G = {Gene 1, . . . , Gene 5}, S = {a, b, c}, and I1 is illustrated,
for example, by Gene 1(a) = 11050. The objectives are to use FCA to extract
concepts (A,B), where A ⊆ G is a subset of genes that shares similar values of
W in the situations of B ⊆ S. As FCA needs a binary context, K1 is scaled.

Conceptual scaling. Given an attribute value space of the form [0, u], the scale
is given by a set of intervals T = {[0, u1], ]u1, u2], ..., ]up−1, up]}. p is the number
of intervals of T and up = 65535 for the NimbleGen System. In our context, the
interval bounds for each t ∈ T are dependent on expert knowledge. The scaling
procedure consists in replacing each many-valued attribute of K1 = (G,S,W, I1)
with p one-valued attributes to create the formal context K2 = (G,ST , I2) with
ST = S×T . ST is then a set of pairs: the first value is a situation while the second
represents an interval. (g, (s, t)) ∈ I2 means that the gene g has an expression
value in the interval t in the situation s.

This procedure is illustrated in the Table 2 with T = {[0, 5000[, [5000, 10000[,
[10000, 65535]}. The many-valued attribute a is replaced by the three one-valued
attributes (a, t1), (a, t2) and (a, t3), i.e (a, [0, 5000[), (a, [5000, 10000[) and (a,
[10000, 65535]). Then (Gene 1, (a, t3)) ∈ I2 means that Gene 1 has an expression
value in [10000, 65535] for the situation a and represented as the first cross in
Table 2.
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Classical discretization problems appear with conceptual scaling: introduction
of biases and loss of information. Moreover, a major challenge in microarray
analysis is to effectively dissociate actual gene expression values from experi-
mental noise. We follow the idea given in [4,13] to characterize noise: a thresh-
old l ∈ [0, 1] is used to define the scale T as follows: T = {[0, u1 + u1 × l],
. . . , [up−1 − up−1 × l, up]}, meaning that intervals of T can overlap.

Table 2. Formal context derived from the many-valued context of Table 1

(a, t1) (a, t2) (a, t3) (b, t1) (b, t2) (b, t3) (c, t1) (c, t2) (c, t3)

Gene 1 × × ×
Gene 2 × × ×
Gene 3 × × ×
Gene 4 × × ×
Gene 5 × × ×

Lattice construction. Once K2 = (G,ST , I2) is computed, classical algorithms
of lattice construction (see e.g. [2]) can be applied. The goal of such algorithms
is to find the set of all concepts partially ordered by concept subsumption. In
this paper, a concept (A,B) represents a subset of genes A that share similar
expression values in the situations defined by the elements of B. The intent B
is the common expression description of the genes in the extent A. For example,
in Table 2, such a concept (A,B) is ({Gene 3, Gene 4}, {(a, t2), (b, t2), (c, t2)}).
It means that Gene 3 and Gene 4 are co-expressed, by sharing expression values
in the same interval t2 in situations a, b and c.

The line diagram1 of Figure 1 represents the concept lattice B(G,ST , I2). This
is an ordered structure with a bottom and a top element. Top = {{Gene 1, . . . ,
Gene 5}, {∅}} and dually, Bottom has an empty extent and a maximal intent.
Each element of the lattice represents a formal concept (A,B). The extent A is
the set of objects attached to elements reachable by descending paths. Dually,
the intent B is the set of attributes attached to elements reachable by ascending
paths. For example, in Figure 1, the concept C4 = {{Gene 1, Gene 2, Gene
5}, {(a, t3), (b, t3)}}.

This representation of the concept lattice is interesting for the biologists,
because relations between the concepts provide knowledge: for example, concepts
C2, C3, C4, and their relations show that Gene 1 and Gene 2 are co-expressed
in all situations, but are also co-expressed with Gene 5 in situations a and b.

Concepts filtering. A GEM can contain thousands of genes and dozens of sit-
uations. For these reasons, the lattice B(G,ST , I2) may contain a large number
of concepts (up to a million). The biologist focuses on small and homogeneous
gene groups presenting the most important variations simultaneously. Interpre-
tation of variations leads after experimental validations to the discovery of gene
1 Drawn with the ConExp software, see http://conexp.sourceforge.net/
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Fig. 1. The Concept lattice B(G, ST , I2)

functions. Large variations are important to discriminate genes responsible of a
particular cellular process [10]. Concepts are groups of genes co-expressed in a
certain number of situations and satisfy the properties 1 and 2 proposed in Sec-
tion 2: a gene (or a situation) may belong to multiple concepts. The properties 3
and 4 implies that a concept is a relevant bi-cluster if the extent is not composed
of “too many” genes, and if the intent contains a least “a few” situations. A first
filtering step keeps only concepts (A,B), with |A| ≤ a and |B| ≥ b. a and b are
chosen by the biologist and materialize the modalities “too many” and “a few”.
Property 5 implies that many concepts describe groups of co-expressed genes
having a similar expression with no numerical variations, i.e. B is composed
of pairs possessing the same interval t ∈ T . For example the concept ({Gene 3,
Gene 4}, {(a, t2), (b, t2), (c, t2)}) presents no variation, with respect to T . To take
property 5 into account, instead of removing only the concepts that present no
variation, we adapt the formalism proposed in [9]. For a concept, the intent B is
a set of pairs (s, t). We replace t by its rank in T , the rank beginning at position
1. For example, {(a, t2), (b, t2), (c, t2)} becomes {(a, 2), (b, 2), (c, 2)}. B is now
written as a set of pairs (s, k) where s remains a situation, while k is an integer
valuation providing a control on expression values: B = {(a1, k1), . . . , (ap, kp)}.
We define V ar(B), which represents the number of variations of B. A variation
is a non null difference between all the possible pairs of valuations of B (see
below formula (1)). B is constant, i.e. presents no variation, iff V ar(B) = 0. To
have more control on variations, we also introduce V arα(B) as the number of
variations higher than a given threshold α, named minimal amplitude (see below
formula (2)). It can be noticed that V ar0(B) = V ar(B). Finally, if B has β vari-
ations higher than α, then B is (α, β)− variant and respects V arα(B) ≥ β. For
example, the intent B3 = {(a, 3), (b, 3), (c, 1)}) of the concept C3 = (A3, B3), is
(2, 2)− variant as V ar2(B3) = |((a, 3), (c, 1)), ((b, 3), (c, 1))| = 2.

V ar(B) = |{((ai, ki), (aj , kj)) with i �= j, |ki − kj | �= 0, i, j ∈ [1, p]}| (1)

V arα(B) = |{((ai, ki), (aj , kj)) with i �= j, |ki−kj | ≥ α, α ≥ 0, i, j ∈ [1, p]}| (2)

The biologists may introduce knowledge and preferences for a given biological
study by filtering certain type of intents. A lot of combinations are possible, as ki



446 M. Kaytoue-Uberall, S. Duplessis, and A. Napoli

is a value. We mainly extract concepts having (α, β)− variant intent to analyse
groups of genes having the most important variations of expression profiles.

Related work. Conceptual scaling can be used to scale situations or genes.
In this paper, we scale situations into u intervals. This allows us to extract
relevant concepts by introducing filters. In [17], genes are scaled into a one-
valued attribute depending on a threshold. Expression values greater than this
threshold are said to be over-expressed. To overcome the problem of the number
of concepts, the authors perform a clustering on concepts, where a distance
between two concepts is considered. The authors of [1] use the same technique
of discretization and extract association rules of type Gene 1 ⇒ Gene 2, i.e.
when the Gene 1 is over-expressed, so is the Gene 2. By using two thresholds,
the authors of [5] extract association rules that follows the scheme: Gene 1 ↑⇒
Gene 2 ↓, i.e. when the expression of the Gene 1 is high, the expression of Gene
2 is low. We can notice that the above presented discretization methods are
particular instances of the one presented in this paper. Recently FCA has been
used for the comparison of situations in [4]. Firstly a concept lattice is built for
each situation, and then a distance between two lattices is defined. It allows the
authors to classify the situations. The authors of [13] use FCA to find biomarkers
of a cancer (i.e. the set of genes involved) for supervised classification of cells.

4 Experiments

Biologists at INRA – UMR IAM2, study the interactions between fungi and trees.
They recently published the complete sequencing of the genome of a fungus called
Laccaria bicolor [12]. This fungus can live in symbiosis with many trees of the
temperate forest: the fungus grab mineral nutrients in surrounding soil, improve
the nutrition of the tree, and receives carbon through association to the root
tissue. This fungus is known to positively influence forest productivity. It is thus
a major interest to understand how symbiosis performs at the cellular level.

The sequencing of Laccaria bicolor genome has allowed the prediction of more
than 20,000 genes [12]. It remains now to study expression of those genes to
understand functions and processes in the fungal lifestyle. Microarray measure-
ments in several situations is a critical solution. For example, it enables to com-
pare the expression values of genes in free-living cells with cells in a symbiotic
association, to find genes responsible for the fructification of the fungus, etc.

A GEM is available as series (GSE9784) at the Gene Expression Omnibus at
NCBI (http://www.ncbi.nlm.nih.gov/geo/). It is composed of 22,294 genes in
lines and 7 various biological situations in columns, i.e. free-living cells (M81306
and MS238), young (FBe) and mature (FBl) fruiting body cells and fungal cells
in association with trees (Mpgh, Mpiv and MD).

We have applied the method presented in this paper. The experiment starts
with a many-valued context K1 = (G,S,W, I) with |G| = 22, 294 and |S| = 7.
We have worked with a scale T where t1 = 100, t2 = 250, t3 = 500, t4 = 1000,
2 Ecogenomic Team of the National Institute of Agronomical Research.
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t5 = 2500, t6 = 5000, t7 = 7500, t8 = 10000, t9 = 12500, t10 = 15000, t11 =
17500, t12 = 20000, t13 = 30000, t14 = 40000 and an overlapping threshold l =
0.1. The conceptual scaling produces the formal context K2 = (G,ST , I) where
|ST | = |S|× |T | = 98. We remove all genes having all expression values in [0, 100],
i.e. a low intensity cut-off, considered by biologists as noise. Then |G| = 17, 862.
Extraction in K2 results in 146, 504 formal concepts. We filter out concepts (A,B)
not respecting |A| ≤ 50, |B| ≥ 4 and B is a (4, 4)− variant intent. It means that
we extract groups of at most 50 genes that are co-expressed in at least 4 situations
and showing at least 4 expression variations of a minimal amplitude greater than
4. We obtained 156 concepts which can be analysed by the expert. We pick up two
concepts in Figure 2 and 3: the X-axis is composed of the elements of the intentB,
the Y-axis is the expression value axis and a point (x, y) is the expression value of
a gene in a situation. All points of a gene are linked: a line is the expression profile
of a gene. In Figure 2, bold lines are average and standard deviation expression
profiles.

The concept of Figure 2 is such that |A| = 9 and |B| = 7: 9 genes are
strongly and globally (as |B| is maximal) co-expressed. Considering the average
expression profile of this group, biologist can infer that these genes are implied
in the fungus fructification. Indeed expression value is higher in the early fruiting
body that is the later one, very weak in free-living cells and higher in the cells
where the association is well established (i.e. where fructification may appear).

In the concept of Figure 3, we have |A| = 9 and |B| = 6: 9 genes are strongly
and locally (as |B| is not maximal) co-expressed. These genes may have the
same function or may belong to a single gene family but located at different
chromosomal loci, with however an undefined biological function. The biologists
show an active interest in this type of groups.

Fig. 2. A group of genes that may be in-
volved in frutification of Laccaria bicolor

Fig. 3. A group of genes with coordinated
expression profiles that can share similar
function

5 Conclusion and Future Works

In this paper, we have shown how Formal Concept Analysis can be used to mine
gene expression data and represent biological information. Indeed, an adapted
and fully customizable conceptual scaling allows the expert to use knowledge to
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filter the resulting formal concepts. However, from a qualitative point of view,
there is no universal scaling. The impact of a scaling on the quality of the
extracted formal concepts must be studied in each different case [16]. Moreover,
a small percentage (less than 10% [8]) of genes manifest meaningful interest and
are buried in large amount of noise. The present method allows us to extract
strong local or global associations between genes and situations with the so-called
formal concepts. The resulting set of concepts can be huge and the filtering may
show its limits by skipping interesting concepts. The number of intervals of the
scale may be critical for the number of final concepts. Solutions like formal
concept clustering [17] will be studied, also to find a way to build a readable
concept lattice for voluminous data. Finally, a binary context has to be enriched,
when it is possible, with more reliable information on genes such as motifs on
the up-sequence of DNA, putative function of genes... This will increase the
reliability (not studied in this paper) by giving less importance on the gene
expression values and thus on the inherent noise.
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Abstract. Closure systems arise in many areas as databases, datamin-
ing, formal concept analysis, logic and artificial intelligence. Several rep-
resentations were studied to deal efficiently with closure systems and to
be efficient tools in various areas. Implicational basis is a particular repre-
sentation which have the advantage to be a short representation of datas.
This paper states on operation of join of closure systems using their im-
plicational basis representations. Computation of an implicational basis
of join of closure systems given by their implicational basis is a problem
that can’t be solve in polynomial time in size of the input in general. We
present here a polynomial algorithm that solves this problem when the
given implicational basis corresponding to the given closure systems are
direct.

Keywords: closure systems, implicational basis, direct basis, datamining.

1 Introduction

Since several years, the amount of datas is growing in an exponential way and the
storage becomes a serious difficulty. As a way, different representations of these
datas has been studied to reduce their size. In particular, several representations
were studied to deal efficiently with closure systems and to be efficient tools in
various areas. Implicational basis is a particular representation which has the
advantage to be a short representation of datas.

In this paper, we consider the issue of computing an implicational basis of join
of closure systems given by their implicational basis. This may be encountered
in many applications. Suppose you have to consider a large amount of datas and
you want to analyse these datas and extract their corresponding implicational
rules. A method would be to split these datas into a bounded number of packages
and to compute in parallel their respective association rules. This step done, a
process gets back the information generated and deduces the entire set of asso-
ciation rules. An other application concerns the updates of datas in a databasis.
Suppose that we have the implicational rules concerning a set of datas and we
add some datas, it will be more interresting to compute only the implicational
rules corresponding to the new datas and use old ones than compute the impli-
cational rules from all set of data. Then, computation of an implicational basis
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of join of closure systems given by their implicational basis would be interresting
in that way if it could be obtained efficiently and if its size is reasonable.

Unfortunately, it has been shown in [7] that this problem can’t be solve in
polynomial time in the size of the input. As a way, we consider a specific class of
basis: direct implicational basis as input and show that, in this case, the problem
can be solved in polynomial time in size of the input.

The rest of this paper is organized as follows. In next section, we recall some
basic definitions and introduce notations. In section 3, we define the problem of
computing an implicational basis of join of closure systems given by their impli-
cational basis. We show that, in general, there is no input polynomial algorithm.
Then, we study the case where implicational basis are direct. Finally, in section
4, we conclude this paper.

2 Preliminaries

2.1 Basic Definitions and Notations

Let us review here only the most important concepts. A partially ordered set
(poset) will be denoted by P = (X,≤P ), where X is the ground set of elements
or vertices and ≤P is the order relation, i.e., an antisymmetric, reflexive and
transitive binary relation whose elements (a, b) ∈≤P are written as a ≤P b
(a, b ∈ X) with the usual interpretation. If a ≤P b but a �= b then we write
a <P b. For a, b ∈ X we say b covers a, denoted by a ≺ b, if a <P b and
there is no c ∈ X with a <P c <P b. Two elements a, b ∈ X are comparable
in P (denoted by a∼P b) if a ≤P b or b ≤P a. Otherwise they are said to be
incomparable (denoted by a ‖P b).

With the notion of ordered sets we introduce the notion of lattice.

Definition 1. Let L = (V, ≤) a non empty ordered set. L is a lattice if, for all
x,y in V, x∨y and x∧y exist.

Therefore a lattice contains a minimum element (according to the relation ≤)
called the bottom of the lattice, and denoted ⊥. Respectively, a lattice contains
a maximum element called the top of the lattice, and denoted 0. We introduced
specific elements of a lattice. An element j (respectively m) of a lattice L is a join-
irreducible (respectively meet-irreducible) element of L if it canoot be obtained
as the join (respectively meet) of elements of V all distinct from j (respectively
from m). The sets of join-irreducible elements and meet-irreducible elements of a
lattice L are respectively denoted by JL and ML. For an element x ∈ L, we de-
note by Jx (respectively Mx) the set of all join-irreducible elements j (respectively
meet-irreducible elements m) such that j ≤ x (respectively x ≤ m).

2.2 Closure Systems

A set system on a set G is a family of subsets of G. A closure system F on a set
G, also called a Moore family, is a set system closed under set intersection and
which contains G.
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Definition 2. Let G be a finite set. A closure system on a set G is a family
F of subsets of G, containing G and any intersection of subsets of F , i.e. if it
satisfies the following conditions :

1. G ∈ F .
2. F, F ′ ∈ F implies F ∩ F ′ ∈ F .

The sets of closure systems F are called closed sets.

Moreover, any lattice is isomorphic to the lattice of closed sets of a closure
system [9]. The simplest closure system representing L is defined on JL: it is the
set system {Jx | x ∈ L}.

Example 1. Let F be a closure system on G={a,b,c,d,e}:
FΣ={{},{a}, {b}, {c}, {e}, {ab}, {ad}, {abd}, {abce}, {abcde}}.
The sets of F ordered by set-inclusion is a lattice denoted by LF = (F , ⊆).

Figure 1 shows the lattice associated to this closure system.

At each closure systems can be associated one or some implicational bases.
An implication A → B on G is a pair of subsets A and B of G. A subset

X ⊆ G is a model of A→ B if and only if A ⊆ X implies B ⊆ X . A subset X is
a model of a set Σ of implications if it is a model for every implication in Σ. FΣ

denotes the set of all models (or Σ-closed sets) of Σ, which is a closure system
on G. A set Σ of implications is a basis of a closure system F if F = FΣ . Since,
closure systems are in bijection with closure operators, the we can associate a
closure operator φΣ as follows :

For X ⊂ G, φΣ(X) = X0 ∪X1 ∪X2 ∪ .....

where X0 = X and X i = X i−1 ∪ {B | A→ B ∈ Σ, A ⊆ X i}
Note that φΣ(X) = X i, where i ≤ |G| and X i = X i+1.
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Fig. 1. The lattice (F , ⊆) represented by its Hasse diagram
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Fig. 2. 1)Lattice corresponding to F1, 2) Lattice corresponding to F2, 3) Lattice cor-
responding to F1 ∧ F2, 4) Lattice corresponding to F1 ∨ F2

We say that an implicational base Σ is direct or iteration-free if for every X
⊆ G, φΣ(X) = X1. It means that there is just one passage of Σ to find φΣ(X).

Example 2. If we consider closure system of example 1,a possible direct impli-
cational basis of F is as follow:
ΣF = { d→a, bd→a, ac→be, bc→ae, ae→bc, be→ac, ce→ab, cd→abe, de→abc}

The setM of all closure systems on a set G is itself a closure system on the set
2G. The closure operator on 2G associated with this closure system is given by :

φM(F) =
⋂
{F ′ ∈M | F ⊆ F ′}

where F is an arbitrary family of subsets of G.
The closure system M ordered under set-inclusion (i.e. (M,⊆) is a lattice

whose meet and join operations are given by :

– F ∧ F ′ = F ∩ F ′

– F ∨ F ′ = φM(F ∪ F ′) = {F ∩ F ′ | F, F ′ ∈ F ∪ F ′}.

3 Join of Closure Systems Using Their Implicational
Representation

We present here the problem of computing an implicational basis of join of
closure systems given by an implicational representation.

Problem 1 (Basis of the Join Operation(BJO)).

Data : A family ΣF1 , ΣF2, ..., ΣFk
corresponding to implicational basis of the

closure systems F1,F1, ...,Fk on a finite set G
Question : Compute an implicational basis Σ of

∨
i=1,k Fi.
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3.1 General Case

Authors in [7] shown that can’t exist polynomial algorithm in size of the input
to resolve problem BJO even if we consider only two closure systems.
We explain this result exhibiting an example.

Example 3. Let Σ1 and Σ2 be two minimum implicational basis for FΣ1 and
FΣ2 .

Σ1={∅ → x0}
Σ2={x1...xn → x0, y1 → x1,....., yn → xn}

An implicational basis obtained for FΣ1 ∨ FΣ2 is the following one:

Σ ={z1....zn → x0, zi ∈ {xi,yi} ∀ i ∈ {1...n}}
The fact that this implicational basis is minimum introduces the next propo-

sition:

Proposition 1. [7] There exists closure systems F1 and F2 such that ΣF1∨F2

has size exponential in the size of ΣF1 and ΣF2 .

Proof. See Example 3.

3.2 Particular Case: Direct Implicational Basis

The previous proposition show us that can’t exist a polynomial algorithm in size
of the input to compute an implication basis of join of closure systems with their
respective basis.

But if we consider a particular class of basis, we show that we can compute an
implicational basis for join of closure systems in polynomial time in size of the
input. To attempt this goal, it is sufficient to exhibit an algorithm to compute
an implicational basis of join of two closure systems. Using this algorithm, an
algorithm for a bounded number of closure systems can be directly deduced. We
consider then that implicational basis given for closure systems are direct. We
now show the following proposition:

Proposition 2. Problem BJO is polynomial if the given bases are direct bases.

Proof. see definition3 and theorem1.

Definition 3. Let Σ1={A1 → a1,... Al → al} et Σ2={B1 → b1,... Bm → bm}
two direct basis associated to two closure systems which are decomposed. We de-
fine by:

ΣP =
{
AiBj →((AiBj)Σ1 ∩ (AiBj)Σ2)\ AiBj

}
for i ∈{1..l}, j∈{1..m}

With this new implicational basis, we deduce the next theorem:
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Theorem 1. FΣP = FΣ1 ∨ FΣ2.

Proof. We have to show that FΣ1 ∨ FΣ2 ⊆ FΣP .
Let F ∈ FΣ1 ∨ FΣ2 . Two cases:

– Let F ∈ FΣ1 ∪ FΣ2 . We have to show that F is closed under ΣP . Let A→x
∈ ΣP and A ⊆ F. Then x ∈ (AΣ1 ∩ AΣ2)\ A. This implies x ∈ AΣ1 and so
that x ∈ F.

– Let F �∈ FΣ1 ∪ FΣ2 . We have F = F1 ∩ F2 with F1 ∈ FΣ1 , F2 ∈ FΣ2. Let
A→x ∈ ΣP and A ⊆ F, by construction of ΣP , we obtain x ∈ (AΣ1 ∩AΣ2)\
A. This implies x ∈ AΣ1 and x ∈ AΣ2 and so that x ∈ F because A ⊆ F1

and A ⊆ F2.

Now, we have to prove FΣP ⊆ FΣ1 ∨ FΣ2 . By this way, we have to proof that
F ∈ FΣP \(FΣ1 ∪ FΣ2) implie F ∈ FΣ1 ∨ FΣ2 i.e F = FΣ1 ∩ FΣ2 .

Suppose F �= FΣ1 ∩ FΣ2 . Then ∃ x �∈ F with x ∈ FΣ1 and x ∈ FΣ2 .by the
fact that Σ1 and Σ2 are direct bases we have , FΣ1 = F ∪

⋃
{φ(A)|A → C ∈

Σ1 and A ⊆ F} and FΣ2 = F ∪
⋃
{φ(B)|B → D ∈ Σ2 and B ⊆ F} . So there

exists A→C ∈ Σ1 with x ∈ C and B→D ∈ Σ2 with x ∈ D. By definition 3 , AB
→ x ∈ ΣP et AB ⊆ F. So there is a contradiction since F is a closed set of FΣP .
As a conclusion, FΣP ⊆ FΣ1 ∨ FΣ2 . ��

With the previous theorem, ΣP represents a implicational basis FΣ1 ∨ FΣ2 .
Then, we can compute an implicational base for FΣ1 ∨ FΣ2 with Σ1 and Σ2.
Moreover, this computing is polynomial in both side of Σ1 and Σ2.

Theorem 2. Let Σ1, Σ2 be two direct bases. Then compute a implicational basis
for FΣ1∨Σ2 can be made in polynomial time in size of the input.

Algorithm 1. implicational basis of join of closure systems
Input: Σ1, Σ2, two direct basis of F1 and F2

Output: an implicational basis of F1 ∨ F2

begin
ΣP = ∅
foreach rule A → C in Σ1 do

foreach rule B → D in Σ2 do
compute Ext= (AB)Σ1 ∩ (AB)Σ2)\ AB
if Ext 	= ∅ then

ΣP = ΣP ∪ AB → Ext.

return ΣP

end

Example 4. Consider following Σ1 and Σ2 which are direct implicational basis
of two closure systems FΣ1 and FΣ2.
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Σ1 = { Σ2 = {
a→c b→d
ab→c ab→d
ce→d de→c
ad→c bc→d
bce→d ade→c
abd→c abc→d
ae→cd be→cd
abe→cd abe→cd
} }

We compute FΣ1 ∨ FΣ2 dropping duplicated rules and redundant rules:

ΣP = {
ade→c
abe→cd
bce→d
}

This result can be generalized for a bounded number, by a constant k, of closure
systems. We can apply the same process viewed for two closure systems. The
algorithm is always polynomial since the number of implicational rules generated
remains polynomial due to the constant number of implicational basis taken as
input.

4 Conclusion

In this paper, we studied the problem of computing an implicational basis of join
of bounded number closure systems represented by their implicational basis. We
produces a polynomial algorithm in the particular case where implicational basis
are direct. This problem remains open in general case if we consider both size of
input and size of the output.

Further work is to look if these results can be applied to distributed implica-
tional rules discovery.
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Ile du Saulcy, 57045 Metz, France
zidna@univ-metz.fr

Abstract. Recently, some results on G1 continuity conditions for two
adjacent B-spline surfaces such as bicubic or biquartic B-spline surfaces
have been developed in the literature. However, the blending and the op-
timization problems related to these surfaces were not studied. Then, we
give in this paper a method which allows to solve a G1 blending problem
of two B-spline surfaces and an algorithm for finding optimal surfaces.

Keywords: B-spline, Blending surface, optimization.

1 Introduction

The construction of blending parametric surfaces, such as Bézier patches and
B-spline surfaces, is a functional problem in computer graphics, animation, geo-
metric modeling, CAD/CAM and reverse engineering. It consists in constructing
a blending surface that smoothing joins on more given surfaces. A blending sur-
face is widely used for functional or esthetic reasons in geometric design. The
study of the geometric continuity between two Bézier patches received a consid-
erable importance in the field of CAGD (see Liu and Hoschek, 1989, Liu, 1990),
Du and Schmitt, 1990, Zheng et al., 1995, Ye et al., 1996). But a discussion
of the geometric continuity conditions between two B-spline surfaces was sel-
dom seen before 1995. Shi et al. (2002) have presented the necessary and the
sufficient conditions of G1 continuity between two biquartic B-spline surfaces
with single interior knots. The problem for the G1 construction blending surface
can be formulated as follows. Let A(u, v) and B(u, v) be two C1 B-spline sur-
faces. We assume that these two surfaces have the same degree and knot vector
in the v-direction. We want to build a B-spline surface C(u, v) which satisfies
the positional continuity of the surfaces A, B and the blending surface C, i.e.
C(0, v) = A(0, v) and C(1, v) = B(1, v). We also want that the blending surface
satisfies G1 continuity with the given surfaces A and B. This last constraint
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gives rise to four parameter functions:

α0(v) = α0, α1(v) = α1, β0(v) =
m̄+1∑

i=0

β0
i Ni,1(v) and β1(v) =

m̄+1∑

i=0

β1
i Ni,1(v)

such that ⎧
⎨

⎩

∂C
∂u (0, v) = α0

∂A
∂u (0, v) + β0

∂A
∂v (0, v),

∂C
∂u (1, v) = α1(v)∂B

∂u (1, v) + β1(v)∂B
∂v (1, v).

The problem that arises here is how to choose the parameter functions in order
to obtain an appropriate blending surface in unique way. Then, the definition of
the blending surface shape depends on the choice of the arbitrary functions men-
tioned above. When they are fixed, one can take the solution of some boundary-
value problem, which is directly related with a functional to be minimized. With
the free parameters α0, α1 and βk

i where k ∈ {0, 1} and i ∈ {0, . . . , m̄+ 1}, this
problem admits some solutions. Our optimization process tries to find a B-spline
surface for which the quality of the surface is optimum. In this paper, we use
the numerical optimization method to deal with geometric constraints for solv-
ing this problem. A numerical example is given for illustrating the theoretical
results.

2 B-Spline Surface Review

In this section the representation of B-spline patches and some of their geometric
properties are briefly recalled. For more detailed description, the reader can
consult [9]. A tensor product B-spline is defined by

A(u, v) =
n∑

i=0

m∑

j=0

ai,jNi,p(u)Nj,q(v), (1)

where aij are the control points in the space R3 and Ni,k (k = p or q) are the
B-spline basis functions of degree k defined respectively on the non periodic knot
vectors:
U = [0, . . . , 0

︸ ︷︷ ︸
p+1

, ul, . . . , ul
︸ ︷︷ ︸

kl

, . . . , un̄, . . . , un̄
︸ ︷︷ ︸

kn̄

, 1, . . . , 1
︸ ︷︷ ︸

p+1

], 1 ≤ kl < p,

V = [0, . . . , 0
︸ ︷︷ ︸

q+1

, vl, . . . , vl
︸ ︷︷ ︸

kl

, . . . , vm̄, . . . , vm̄
︸ ︷︷ ︸

km̄

, 1, . . . , 1
︸ ︷︷ ︸

q+1

], 1 ≤ kl < q,

where kl, 1 ≤ l ≤ n̄ (resp. 1 ≤ l ≤ m̄) is the multiplicity of the interior knot ul

(resp. vl). Hence, n =
∑n̄

l=1 kl + p and m =
∑m̄

l=1 kl + q.
Therefore, the knot vectors U and V can be written in the form

U = [ū0, ū1, . . . , ūn+p+1] and V = [v̄0, v̄1, . . . , v̄m+q+1].

Now, let us consider another B-spline surface B(u, v) defined by

B(u, v) =
n∑

i=0

m∑

j=0

bi,jNi,p(u)Nj,q(v). (2)
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According to the the properties of B-splines, we get

∂A

∂u
(u, v) |u=0=

m∑

j=0

p

u1
(aj,1 − aj,0)Nj,q(v),

and
∂A

∂v
(u, v) |u=0=

m−1∑

j=0

q

v̄j+q+1 − v̄j+1
(aj+1,0 − aj,0)Nj,q−1(v),

where v ∈ [0, 1], and Nj,q−1 are the B-spline basis functions of degree q − 1
defined on the knot vector

V̄ = [0, . . . , 0
︸ ︷︷ ︸

q

, vl, . . . , vl
︸ ︷︷ ︸

kl

, . . . , vm̄, . . . , vm̄
︸ ︷︷ ︸

km̄

, 1, . . . , 1
︸ ︷︷ ︸

q

].

Similarly, for the surface B, we have

∂B

∂u
(u, v) |u=0=

m∑

i=0

p

u1
(bj,1 − bj,0)Nj,q(v),

and
∂B

∂v
(u, v) |u=0=

m−1∑

j=0

q

v̄j+q+1 − v̄j+1
(bj+1,0 − bj,0)Nj,q−1(v).

Moreover, the cross-boundary tangent vector for this surface at u = 1 is given
by

∂B

∂u
(u, v) |u=1=

m∑

j=0

p

ū2p
(bj,n − bj,n−1)Nj,q(v),

and
∂B

∂v
(u, v) |u=1=

m−1∑

j=0

q

v̄j+q+1 − v̄j+1
(bj+1,n − bj,n)Nj,q−1(v).

In the next section, we will study the G1 continuity conditions between the
surfaces (1) and (2).

3 Sufficient Conditions of G1continuity of Two B-Spline
Patches

According to [12], the necessary and sufficient conditions for the two surfaces
(1) and (2) joining G0-continuously along a common boundary curve R(v) are
such that

R(v) = A(0, v) = B(0, v), ∀ v ∈ [0, 1], (3)
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and these surfaces are G1-continuously jointed along the curve R(v) if and only
if there exist two scalar functions α and β defined on [0, 1] and satisfying the
following equation

∂B

∂u
(0, v) = α(v)

∂A

∂u
(0, v) + β(v)

∂A

∂v
(0, v) ∀v ∈ [0, 1]. (4)

In what follows, we take α(v) = α and β(v) =
∑m̄+1

i=0 βiNi,1 ∀v ∈ [0, 1].
Denote by Vl the interval [vl−1, vl], 1 ≤ l ≤ m̄+ 1, with v0 = 0, vm̄+1 = 1.
For each v ∈ Vl, we denote by Al(u, v) and Bl(s, v) the lth patches of A(u, v)

and B(s, v) respectively, and Rl(v) = R(v).
According to [12], the surfaces Al(u, v) and Bl(u, v) can be regarded as Bézier

surface patches. By using the knot refinement process (see [9]), we can write

∂B

∂u
�l(0, v) =

q∑

j=0

bljBj,q(t),
∂A

∂u
�l(0, v) =

q∑

j=0

al
jBj,q(t)

and
∂A

∂v
�l(0, v) =

q−1∑

j=0

āl
jBj,q−1(t).

Theorem 1. The two surfaces A(u, v) and B(u, v) defined by (1) and (2) re-
spectively are G1 continuous along their common boundary curve R(v) if the
following conditions are satisfied

1. ai,0 = bi,0, i = 0, 1, . . . ,m.

2. blj = αal
j + βl−1( q−j

q )āl
j + βl

j
q ā

l
j−1, where al

−1 = al
q = 0, l = 1, 2, . . . , m̄ + 1

and j = 0, 1, . . . , q.

3. blq = bl+1
0 , āl+1

0 = āl
q−1 and al

q = al+1
0 , l = 1, 2, . . . , m̄.

Proof. According to the expressions of the surfaces A and B, (3) is equivalent
to

ai,0 = bi,0, ∀ i = 0, 1, . . . ,m. (5)

Then, the surfaces A and B are G0 continuous along their common boundary
curve R(v).

On the other hand, for v ∈ [vl−1, vl], l = 1, 2, ..., m̄+ 1, we have

α(v) = α and β(v) = βl−1(1− t) + βlt, where t =
v − vl−1

vl − vl−1
.

Then, as

tBj,q−1(t) =
(j + 1)

q
Bj+1,q(t) and (1− t)Bj,q−1(t) =

q − j

q
Bj,q(t), (6)
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we deduce from the condition (2) in the above theorem that ∀t ∈ [0, 1] we have

q∑

j=0

bljBj,q(t) = α

q∑

j=0

āl
jBj,q(t) + (βl−1t+ βl(1− t))

q−1∑

j=0

al
jBj,q−1(t). (7)

Therefore, ∀v ∈ Vl we get

∂B

∂u
�l(0, v) = α

∂A

∂u
�l(0, v) + βl(v)

∂A

∂v
�l(0, v). (8)

Finally, the condition (3), i.e. blq = bl+1
0 , al+1

0 = al
q and āl

q−1 = āl+1
0 , ensures the

continuity of ∂B
∂u (0, v), ∂A

∂u (0, v) and ∂A
∂v (0, v) at the interior knots vl, then the

equation (5) is satisfied.

4 Construction of a G1 Blending Patch of Two B-Splines

Let A(u, v) and B(u, v) be two C1 B-spline surfaces as mentionned above. For
all v ∈ [0, 1], we want to construct a B-spline surface C(u, v) which satisfies the
following constraints:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C(0, v) = A(0, v),
C(1, v) = B(1, v),

∂C
∂u (0, v) = α0

∂A
∂u (0, v) + β0(v)∂A

∂v (0, v),

∂C
∂u (1, v) = α1

∂B
∂u (1, v) + β1(v)∂B

∂v (1, v),

(9)

where α0, α1 ∈ R, β0(v) =
∑m̄+1

i=0 β0
i (v)Ni,1(v) and β1(v) =

∑m̄+1
i=0 β1

i (v)Ni,1(v).
One way to define the blending B-spline surface is to use the tensor product

by putting

C(u, v) =
m∑

i=0

3∑

j=0

cijBj,3(u)Ni,q(v), (10)

where Bj,3(u) is the classical Bernstein basis polynomials of degree 3 defined by

Bj,3(u) =
3!

j!(3− j)!
uj(1− u)3−j , j = 0, . . . , 3. (11)

In this case, it is simple to verify that for v ∈ Vl, the constraints (9) become
⎧
⎨

⎩

∂C
∂u �l(0, v) = α0

∂A
∂u �l(0, v) + β0,l(v)∂A

∂v �l(0, v),

∂C
∂u �l(1, v) = α1

∂B
∂u �l(1, v) + β1,l(v)∂B

∂v �l(1, v),
(12)

where β0,l(v) = β0
l−1(1− t) + β0

l t, β1,l(v) = β1
l−1(1− t) + β1

l t, with t = v−vl−1
vl−vl−1

.
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4.1 Solution for Two Bicubic B-Spline Surfaces

For the sake of simplicity, we restrict our study in this subsection to the case
of two uniform bicubic G1 blending B-spline surfaces, that is p = q = 3, with
n = m ≥ 8. For other cases, one can obtain similar results using this method.

In this case, equations (1), (2) and (10) can be written as follows

A(u, v) =
m∑

i=0

m∑

j=0

aijNj,3(u)Ni,3(v), (13)

B(u, v) =
m∑

i=0

m∑

j=0

bijNj,3(u)Ni,3(v), (14)

C(u, v) =
m∑

i=0

3∑

j=0

ci,jBj,3(u)Ni3(v), (15)

where U = V = {0, 0, 0, 0, v1, v2, . . . , vm̃, 1, 1, 1, 1}, v0 = 0, vm̄+1 = 1 and vl+1 −
vl = 1

m−2 , l = 0, . . . , m̄+ 1.
The cross-boundary tangent vector for the surfaces A, B and C are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂A
∂u (0, v) =

∑m
i=0

3
h (ai,1 − ai,0)Ni,3(v) =

∑m
i=0 aiNi,3(v), with h = 1

m−2 ,

∂A
∂v (0, v) =

∑m−1
i=0

3
v̄i+4−v̄i+1

(ai+1,0 − ai,0)Ni,2(v) =
∑m−1

i=0 āiNi,2(v),

∂B
∂u (1, v) =

∑m
i=0

3
v̄6

(bi,m − bi,m−1)Ni,3(v) =
∑m

i=0 biNi,3(v),

∂B
∂v (1, v) =

∑m−1
i=0

3
v̄i+4−v̄i+1

(bi+1,m − bi,m)Ni,2(v) =
∑m−1

i=0 b̄iNi,2(v),

∂C
∂u (0, v) =

∑m
i=0 3(ci,1 − ci,0)Ni,3(v) =

∑m
i=0 c

0
iNi,3(v),

∂C
∂u (1, v) =

∑m
i=0 3(ci,3 − ci,2)Ni,3(v) =

∑m
i=0 c

1
iNi,3(v),

(16)

where
⎧
⎨

⎩

ai = 3
h (ai,1 − ai,0), āi = 3

v̄i+4−v̄i+1
(ai+1,0 − ai,0),

bi = 3
v̄6

(bi,3 − bi,2), b̄i = 3
v̄i+4−v̄i+1

(bi+1,3 − bi,3),
c0i = 3(ci,1 − ci,0), c1i = 3(ci,3 − ci,2).

(17)

The four steps of the algorithm for constructing the G1 B-spline blending surface
are as follows.

Step 1. Determination of the control points {ci,0, ci,3}.
From the G0 continuity, we deduce that ci,0 = ai,0 and ci,3 = bi,m, for all
i = 0, . . . ,m,
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Step 2. Knot refinement.
Using a knot refinement technique, see [9], we can write

m∑

i=0

aiNi,3(v) =
3(m−2)∑

i=0

âiN̂i,3(v),
m∑

i=0

biNi,3(v) =
3(m−2)∑

i=0

b̂iN̂i,3(v), (18)

m∑

i=0

c0iNi,3(v) =
3(m−2)∑

i=0

ĉ0i N̂i,3(v),
m∑

i=0

c1iNi,3(v) =
3(m−2)∑

i=0

ĉ1i N̂i,3(v), (19)

where N̂i,3 are the basis B-splines of degree 3 defined on the knot vector

V̂2 = [0, 0, 0, 0, v1, v1, v1, ..., vm̄, vm̄, vm̄, 1, 1, 1, 1].

Similarly we have

m−1∑

i=0

āiNi,2(v) =
2(m−2)∑

i=0

ˆ̄aiN̂i,2(v),
m∑

i=0

b̄iNi,2(v) =
2(m−2)∑

i=0

ˆ̄biN̂i,2(v), (20)

where N̂i,2 are the basis B-splines of degree 2 defined on the knot vector

V̂1 = [0, 0, 0, v1, v1, ..., vm̄, vm̄, 1, 1, 1].

The coefficients {ai}0≤i≤(3m−6) and {ˆ̄ai}0≤i≤(2m−4) are determined as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

â0 = a0, â1 = a1, â2 = 1
2 (a1 + a2), â3 = 1

12 (3a1 + 7a2 + 2a3),
â3i = 1

6 (ai + 4ai+1 + ai+2), i = 2, ...,m− 4,
â3i+1 = 1

3 (2ai+1 + ai+2), â3i+2 = 1
3 (ai+1 + 2ai+2), i = 1, ...,m− 4,

â3(m−3) = 1
12 (2am−3 + 7am−2 + 3am−1),

â3(m−3)+1 = 1
2 (am−2 + am−1), â3(m−3)+2 = am−1, â3(m−2) = am,

ˆ̄a0 = ā0, ˆ̄a1 = 1
2 ā1, ˆ̄a2 = 1

12 (3ā1 + 2ā2),
ˆ̄a2i+1 = 1

3 āi+1, i = 1, ...,m− 4, ˆ̄a2i = 1
6 (āi + āi+1), i = 2, ...,m− 4,

ˆ̄a2(m−3) = 1
12 (2ām−3 + 3ām−2), ˆ̄a2(m−3)+1 = 1

2 ām−2, ˆ̄a2(m−2) = ām−1.

(21)

The coefficients {b̂i}, {ĉ1i }, {ĉ0i } and {ˆ̄bi} can be computed in a similar way.

Step 3. G1 conditions between C(u, v), A(u, v) and C(u, v), B(u, v). From (10),
the piecewise Bézier control points {ĉ03l+i} and {ĉ13l+i}, i = 0, 1, 2, 3, and l =
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1, ...,m− 2 can be obtained as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ĉ03l = α1â3l + β0
l−1

ˆ̄a2l,

ĉ03l+1 = α1â3l+1 + 2
3β

0
l−1

ˆ̄a2l+1 + 1
3β

0
l
ˆ̄a2l,

ĉ03l+2 = α1â3l+2 + 1
3β

0
l−1

ˆ̄a2l+2 + 2
3β

0
l
ˆ̄a2l+2,

ĉ03l+3 = α1â3l+3 + β0
l
ˆ̄a2l+2,

ĉ13l = α2b̂3l + β1
l−1

ˆ̄b2l,

ĉ13l+1 = α2b̂3l+1 + 2
3β

1
l−1

ˆ̄b2l+1 + 1
3β

1
l
ˆ̄b2l,

ĉ13l+2 = α2b̂3l+2 + 1
3β

1
l−1

ˆ̄b2l+2 + 2
3β

1
l
ˆ̄b2l+2,

ĉ13l+3 = α2b̂3l+3 + β1
l
ˆ̄b2l+2.

(22)

Step 4. Computation of the control points {ci,j , i = 0, ...,m and j = 1, 2}.
After determining {ai}, {āi}, {bi}, {b̄i}, {c0i } and {c1i }, i = 0, ...,m, introduced

in (17), the coefficients {ci,j , i = 0, ...,m and j = 1, 2} are computed by using
Steep 2.

4.2 Numerical Example

For n = m = 8 and U = V = [0, 0, 0, 0, 1
6 ,

2
6 ,

3
6 ,

4
6 ,

5
6 , 1, 1, 1, 1], we show in Figure

1 (a) the graphs of their corresponding B-spline surfaces of degree 3. In Figure
1(b) and Figure 1 (c), we give their G1 blending surfaces by using two choices
of parameter functions.

(a)

  

(b)

 

(c)

Fig. 1. G1 blending surfaces between two bicubic B-spline surfaces. For Fig.1(b):
α0 = −1, α1 = 1, β0 = β1 = [5, 5, 5, 5, 0.05, 1, 0.05]. For Fig.1(c): α0 = −4, α1 = 1, β0 =
[0.05, 0.05, 0.05, 0.05, 0.05, 0.06, 0.05], β1 = [2, 1, 3, 5, 0.05, 1, 1].

5 Optimization of Blending B-Spline Surfaces

As the parameters α1, α2 and βk
l , k ∈ {1, 2} and l ∈ {0, . . . , m̄ + 1}, are free,

the problem of blending B-spline surfaces admits several solutions. Then, we
propose, in this section, an optimization process for finding a blending B-spline
surface such that the quality of the global surface is optimum. More precisely,
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we want to build a blending surface from above problem which will be more
symmetric in the sense that for all i = 0, ...,m− 2, ‖ci,1− ci,0‖2 or ‖ci,3− ci,2‖2
is minimal and ‖ci,1 − ci,0‖2 = ‖ci,3 − ci,2‖2, for all i = 0, ...,m.

The algorithm that allows us to build this optimal surface is based on the two
following propositions which can easily be proved.

Proposition 1. For i = 0, ...,m − 2, we have ci,1 − ci,0 = u0
i + β0

i v
0
i and

ci,3 − ci,2 = u1
i + β1

i v
1
i where u0

i , u
1
i , v

0
i and v1

i are given vectors.

Proposition 2. Let x and y be two vectors in R3. If y �= 0 then there exists a
real β̄ = −<x,y>

‖y‖2
2

which minimizes the expression ‖x+ βy‖2.

Description of the algorithm
Output {β0

i , β
1
i , i = 0, ...,m− 2}

For i=0 : m-2
Find

ε0i (β
0)←− minβ∈R ‖u0

i + βv0
i ‖2 and ε1i (β

1)←− minβ∈R ‖u1
i + βv1

i ‖2
If ε0i (β

0) ≤ ε1i (β
1) then

β1
i ←− β1

Solve ‖u0
i + βv0

i ‖2 = ε1i (β
1)

β0
i ←− β

Else
β0

i ←− β0

Solve ‖u1
i + βv1

i ‖2 = ε0i (β
0)

β1
i ←− β

End
End

Now, if we reconsider the example introduced above, then with the choice
α1 = α2 = −1, we obtain the following G1 blending optimal surface.

Fig. 2. A G1 Blending optimal surface

6 Conclusion and Perspectives

In this work we have presented a method for constructing a G1 B- spline surface
which blends two given B-spline surfaces. The blending surface is optimized for
an optimum geometric quality surface. In the next work, we will exploit the free
parameters for minimizing one of functionals J1(C) =

∫

Ω
‖∂C

∂u ∧
∂C
∂v ‖2dudv and

J2(C) =
∫

Ω H(u, v)2dudv where Ω = [0, 1]× [0, 1] and H(u, v) denote the mean
curvature of the blending surface C.
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Abstract. The geometry properties of a particle are very important
pieces of information for production optimization in many industrial
applications such as metal material processing, sugar processing, wood
piece processing, quarry, geology, mining and mineral processing, which
requires that particles in images have to be delineated online. This pa-
per shows that a method, involving image evaluation and edge based
particle delineation, is a highly efficient way of delineating particles on-
line. No earlier work on delineating particles online has exploited these
two building blocks for making robust delineation. Our method has been
tested experimentally for different kinds of particle images those are dif-
ficult to detect by ordinary edge detection algorithms. The reason for
the powerfulness of the technique is that image evaluation and particle
delineation are highly cooperative processes. As tested, the algorithms
can be applied into many similar engineering areas.

1 Introduction

In many online particle image-processing applications, the common problem for
the particle image processing is to delineate every particle, but in most industrial
cases, particle images are difficult to segment due to rough surface, overlapping,
and size variation etc. If considering the aspects of the algorithms or methods
of image segmentation, the existing systems could be classified into at least four
classes: (1) thresholding on histogram of gray levels; (2) boundary tracing or
edge detection; (3) region growing or merge & split; and (4) thresholding and
granulometry (= morphology segmentation on a binary image, e.g. Watershed
segmentation algorithm). Since a large variation of particle images, there is no
segmentation algorithm that can process all kinds of particle images. In brief,
edge detection tends to produce too few or too many boundary candidates, inten-
sity similarity does not fit the data since grey value variation between particles is
small and within-particle variation quite large, and watershed algorithms based
on using maxima within particles do not perform as well as the approach in this
paper.

For online detection of rock particles, Gallagher[1] in 1976 developed the ear-
liest image analysis system. In his PhD study, he set up a system aimed to

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 468–477, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. The online system configuration

measure particle size parameters on a conveyor belt. The figure 1 shows the sys-
tem configuration. The camera was mounted above the particle stream with its
optical axis aligned normal to the moving bed of particles. The size distribution
of the particles was then computed by finding the spacing of edges with a chord
sizing method. In most applications, the quality of particle images varies too
much, which make image segmentation hard. Therefore, this research subject
becomes a hot topic in the world during last thirty years. Today, a number of
image systems have been developed for measuring particles in different appli-
cation environments such as particles on/in gravitational flows, conveyor belts,
rockpiles, and laboratories. The research and development has been and is being
carried out in many countries, the detailed information can be found in [2] [3]
[4] [5].

Rock particle images taken from a fast moving conveyor belt vary so much that
the quality of any two successive image frames are not the same. For example,
a) an image may include about 80% fine materials which is difficult to recognize
by a segmentation program; b) an image may consist of only a few particles
which is of less interest to analyze; c) some images are very dark or very bright
with poor contrast of gray values, in which case erroneous image information
will be obtained by a segmentation program, and the result of image analysis
will be affected seriously; d) some images are quite blurry, caused by an increase
of the speed of conveyor belt or other reasons, which can also be difficult to
process, etc. Hence, classification with respect to a number of image categories,
intimately linked to the feasibility of successful segmentation, is very important
for this application. A kind of inspection system needs to be set up. Inspection
tasks should be performed in real-time, and complex and time-consuming texture
analysis cannot be used. Thus, we avoid doing complex texture analysis.

Empirically, from a performed field investigation, there seems to be at least
four defect classes of rock particle images from a moving conveyor belt (By
”defect”, we mean ”not proper or particularly suitable to process further”),
namely: (1) empty conveyor belt images (or few particles on a belt); (2) large
particles images (a few large particles are included in a image, but they overlap
each other or part of them are not included in the image); (3) blurry images (most
of the edges are lost, or weak); (4) fine material images (on average, each particle
only occupies a few image pixels). Some of these defect classes are difficult to
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recognize even by human vision. If a segmentation algorithm accepts them, we
should not expect segmentation results to be satisfactory.

The approach to automatically, simply and quickly recognize and distinguish
these four classes can be based on global statistical information. For this pur-
pose, we have used histograms of both the original image and its gradient mag-
nitude image as input to a rock particle classification procedure that makes the
system automatically select non-defect rock particle image for further segmen-
tation or average size estimation. The general program sequence is: (1) image
pre-processing for smoothing original image and creating gradient magnitude
image; (2) calculation of mean gray values of smoothed rock particle image and
corresponding gradient magnitude image, the standard deviation and skewness
of the gradient magnitude image; and (3) rock particle image classification based
on statistical texture analysis of both the original image and its gradient magni-
tude image. This procedure has been tested both in laboratory and in the field,
and seems rather promising.

2 Particle Image Evaluation

One approach to rock particle image classification is a scheme intended to work
for the case of washed rock particle material transported on a dark conveyor belt,
assuming that the rock particle color is brighter than the wet conveyor belt.
The classification program is also developed to serve as a kind of pre-process
for subsequent image segmentation for increasing its accuracy. Hence, when the
system grabs one image frame, the system should judge if the image should be
processed. If the image quality is poor, it belongs to the defect classes. It is
not possible or desirable to conduct analysis by a segmentation algorithm, and
therefore the image should be omitted and the segmentation algorithm should
wait for the next image frame.

For industrial applications, during the working period of conveyor belt, one
also wants to know: (1) the size distribution of rock particle particles, which
includes the percentages of smallest particles and largest particles; (2) the situ-
ation of rock particle feedback for the crusher, the relative information can be
obtained from the percentage of the number of images of an empty conveyor
belt; (3) the variation of conveyor belt speed, which can be estimated crudely
by monitoring the percentage of blurred images.

Based on the field investigation and the above motivations, we have classified
rock particle images into five basic classes, four of them being the images un-
acceptable for the segmentation algorithm (defect classes). They are images of
empty conveyor belt, fine materials, large particles and images affected strongly
by motion blur. The remaining ones are acceptable images for the segmenta-
tion algorithm. For the defect classes, the basic considerations are described as
follows.

We use the following notation: μo is the mean value of the smoothed gray
level image, and μm= mean value of the corresponding gradient magnitude im-
age. σo, σm are the standard deviations of the original and gradient magnitude
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images, respectively. The various kinds of threshold values are λ0, λ1, λ2, etc.
For example, the threshold λ0 is linked to the inequality μo ≥ λ0.

For an empty conveyor belt, μo will be substantially lower compared to the
case when the belt is almost filled with rock particles, provided the belt is no-
ticeably darker than the rock particles. This would tend to be the case if the
belt is washed, because washed conveyor belts are much darker than dry ones.
Dry belts are often sprinkled with dust making them both brighter and full of
traces and patches of dust and dirt. It is advisable to have washed conveyor belt,
since this makes both background-particle segmentation and particle delineation
in subsequent particle segmentation easier. In what follows, we will assume that
the belt is darker than rock particles. By ”empty” conveyor belt, we mean that
not more than 20% of the image area is occupied by rock particles (The case
when the belt is filled between 20% and 80% we have not dealt with yet, except
some preliminary experiments), and if the belt is ”empty”, there will be very
few edges implying relatively lower average gradient magnitudes, i.e., μm is rela-
tively lower. For images strongly affected by motion blur, edges are weak, making
μm low. But μo need not be low (blurry images of almost empty conveyor belt
wind up in the ”empty-class”). To distinguish between the cases of quite small
particles, medium-sized particles and large particles, edge density seems to be
an efficient tool, provided rock particles occupy at least 80% of conveyor belt,
see Table 1, and the column of qm/σm.

Based on these considerations, we have chosen eight typical rock particle im-
ages for statistical analysis (see Fig. 2 and Table 1). The rock particle materials
come from the quarry of Under̊as in Södertälje, south of Stockholm.

In experiments presented in Table 1, Fig. 1, Fig. 2, we noted that although
both μm and μo are relatively lower for ”empty” belt, and μm lower for strongly
blurry images, it is somewhat hard to choose the threshold independently of
material (illumination was more or less fixed). Some rock particle materials are
darker, some brighter. On the other hand, it is clear that some kind of normalized
average, say μm/μo is almost independent of material, in our experiments. It
makes sense to normalize μm by μo, since we then obtain a quantity that is
something like average edge strength divided by (normalized by) mean gray
value in an image.

From Fig. 2 and Table 1, the statistical result from laboratory tests is analyzed
as follows:

Class 1 (the images with empty conveyor belt, as shown in the image No. 1):
the values of μo and μm/μo are comparatively lower.

Class 2 (the images with blur, as shown in the images No. 2-3): the ratio of
μm/μo is lower than the other values in the column, but μo is not.

Classes 3 ∼ 5 (the rock particle images, as shown in the images No. 4-8): the
values of qm/σm which is related to rock particle edge density is lower, when
the average size of particles is smaller. Other values such as μo/σo, μm/μo and
μm/σm also seem to decrease with increasing average size of rock particle parti-
cles. Table 2 shows experimental, empirical classification criteria for classifying
the above images of Fig. 2.
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Fig. 2. Different classes of rock particle images (see Table 1)

Table 1. The parameters statistics of the eight typical rock particle images in Fig. 2

#. μo σo μo
/σo

μm μm
/μo

σm μm
/σm

qm Qm
/σm

sieving
size mm

class

1 77.37 6.58 11.76 15.28 0.20 16.50 0.93 26.23 1.59 1

2 171.47 36.36 4.72 33.77 0.20 28.83 1.17 41.01 1.42 8 ∼ 12 2

3 166.00 43.17 3.85 52.62 0.32 36.21 1.45 41.53 1.15 8 ∼ 12 2

4 146.25 50.02 2.92 161.49 1.10 75.58 2.14 -47.63 -0.63 2 ∼ 4 3

5 142.76 48.67 2.93 160.23 1.12 75.15 2.13 -45.35 -0.60 2 ∼ 4 3

6 131.78 57.85 2.28 134.73 1.02 81.82 1.65 44.45 0.54 8 ∼ 12 5

7 139.41 61.09 2.28 136.27 0.98 82.29 1.66 41.86 0.51 8 ∼ 12 5

8 135.33 80.77 1.68 79.39 0.59 85.44 0.93 85.61 1.00 32 ∼ 64 4

Table 2. The classification criteria of defect images for the images in Fig. 2

class μo μm/μo qm/σm

1 (empty) < λ0 (here λ0=
85)

≤ λ1 (here λ1=
0.4)

2 (blur) > λ2 (here λ2=
105)

≤ λ1

3 (fine) < λ4 (here λ4=
0.1)

4 (large) > λ3 (here λ3=
0.8)

Summing up, this approach is developed based on a statistical texture analysis
of both original rock particle image and gradient magnitude image. It is simple
and works fast, but is crude. The parameters λ0 ∼ λ4 are not necessarily
constant values for any kind of applications of rock particle materials. Experience
and rock particle material types determine them, because different materials have
different colors and surface roughness etc. The following description presents an
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example of how to use this approach to automatically or semi-automatically
select acceptable rock particle images from a moving conveyor belt.

3 Particle Image Segmentation Algorithm

After image evaluation, the selected images (fine, large) will e processed. Figure 3
shows (a) a grey value landscape over layered with a sample point grid. A simple
edge detector uses differences in two directions:Δx = g (x+ 1, y)−g (x, y), Δy =
g (x, y + 1) − g (x, y). In the valley detector, we use four directions. Obviously,
in many situations, the horizontal and vertical grey value differences, do not
characterize a point, such as P, well. See Fig. 3.

Fig. 3. Examine the point P, determining if it is a valley pixel, or not. Circles in the
sparse (i, j)-grid. It moves for each P ∈ (x, y)-grid. (a) A grey value landscape over
layered with a sample point grid. (b) PA-PB section.

In the example of Fig. 3, we see that P is surrounded by strong negative and
positive differences in the diagonal directions: ∇45 < 0, andΔ45 > 0,∇135 < 0,
and Δ135 > 0, whereas, ∇0 ≈ 0, and Δ0 ≥ 0,∇90 ≈ 0, and Δ90 ≈ 0. Where
Δare forward differences: Δ45 = f (i+ 1, j + 1) − f (i, j), and ∇ are backward
differences: ∇45 = f (i, j) − f (i− 1, j − 1), etc. for other directions. We use
max (Δα −∇α) as a measure of the strength of a valley point candidate. It
should be noted that we use sampled grid coordinates, which are much more
sparse than the pixel grid0 ≤ x ≤ n, 0 ≤ y ≤ m. f is the original grey value
image after weak smoothing. What should be stressed about the valley edge
detector is:

(a) It uses four instead of two directions;
(b) It studies value differences of well-separated points: the sparse i± 1 cor-

responds to x ± L and j ± 1 corresponds toy ± L, whereL >> 1, in our case,
3 ≤ L ≤ 7. In applications, if there are closely packed particles of area ¿ 400
pixels, images should be shrunk to be suitable for this choice of L. Section 3
deals with average size estimation, which can guide choice of L;
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(c) It is nonlinear: only the most valley-like directional response (Δα −∇α) is
used. By valley-like, we mean (Δα −∇α) value. To manage valley detection in
cases of broader valleys, there is a slight modification whereby weighted averages
of (Δα −∇α)- expressions are used.w1Δα (PB) + w2Δα (PA) − w2∇α (PB) −
w1∇α (PA), where,PA and PB are shown in Fig. 2. For example, w1 = 2 and
w2 = 3 are in our experiments.

(d) It is one-pass edge detection algorithm; the detected image is a binary
image, no need for further thresholding.

(e) Since each edge point is detected through four different directions, hence
in the local part, edge width is one pixel wide (if average particle area is greater
than 200 pixels, a thinning operation follows boundary detection operation);

(f) It is not sensitive to illumination variations, as shown in Fig. 5, an egg
sequence image. On the image, illumination (or egg color) varies from place to
place, for which, some traditional edge detectors (Sobel and Canny etc.) are
sensitive, but the new edge detector can give a stable and clear edge detection
result comparable to manual drawing result.

Fig. 4. Egg image test: (a) original image (400x200 pixels), (b) new algorithm result,
(c) manual drawing result (180 eggs), (d) Sobel edge detection result, and (e) and (f)
Canny edge detection results with different thresholds

After valley edge point detection, we have pieces of valley edges, and a valley
edge tracing subroutine, filling gaps is needed (Some thinning is also needed.).

As a background process, there is a simple grey value thresholding sub-routine,
which before classification creates a binary image with quite dark regions as the
bellow-threshold class. If this dark space covers more than a certain percentage
of the image, and has few holes, background is separated from particles by a
Canny edge detector [11] along the between-class boundaries.

To test the delineation algorithm, we have taken a number of different par-
ticle images from a laboratory, a muckpile, and a moving conveyor belt. In this
section, we just present three different particle images to show representative
segmentation results.
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Fig. 5. A densely packed particle image and segmentation results: (a) Original image
(512x512 resolution, in a lab, Sweden), (b) Auto-thresholding, (c) Segmentation on
similarity, and (d) New algorithm result

As an illustration of typical difficulties encountered in particle images we show
an example, where thresholding [7] and similarity-based segmentation [9] are
applied. Figure 5 shows one original image of closely packed particles. in which
most particles are of medium size, according to the classification algorithm.
Under-segmentation and over-segmentation normally take place in Fig. 5(b) and
Fig. 5(c). The new algorithm shows a better result in Fig. 5(d).

Experimental image results with the new algorithms are shown in Figs. 6-
8 too, where particle images are classified into classes of small particles, and
using the developed segmentation algorithm segments medium sizes with non-
void spaces and the images. In Figs 6-7, the size of an image is 512x512 pixels,
and the numbers of particles in an image are 1560 and 276. The segmentation
results are quite good, and comparable to human performance.

Fig. 6. A densely packed particle image from a rockpile (USA). Image resolution is
512x512.

In addition to particle images, the developed algorithm can also be used for
other application images. Fig. 8 shows the testing result for froth images in min-
eral processing. As tested and compared, the processing speed of the algorithm is
hundred times faster than Watershed algorithm, it is suitable for online system
too.
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Fig. 7. A densely packed coal particle image from a underground mine (Africa). Image
resolution is 512x512.

Fig. 8. Froth images (Sweden). Image resolution is 256x256. Three images are classified
into Classes 1-3.

4 Conclusion

In this paper, a new type of online particle delineation method has been stud-
ied and tested; the combination of image evaluation algorithm and particle
delineation algorithm has been described. The particle image evaluation al-
gorithm was developed based on a statistical texture analysis approach using
both original and gradient magnitude images. The particle delineation algo-
rithm studied is actually based on both valley-edge detection and valley-edge
tracing. The presented particle delineation algorithm seems robust for densely
packed complicated objects (e.g. rock particles on a moving conveyor belt). The
method can be used into other applications such as froth images in mineral
processing.
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Abstract. Clustering is a well-known approach to cope with mobility
in multi-hop ad-hoc networks. The aim of clustering hereby is to detect
and maintain stable topologies within a set of mobile nodes. WCPD is
an algorithm that allows to interconnect multiple stable clusters and to
exchange data across single cluster boundaries. However, disseminating
information beyond stable connected sets of nodes is required in some
settings as well. The DWCF algorithm introduced in this paper aims
at high coverage while keeping the overhead low. DWCF facilitates that
by exploiting the cluster structures and selectively forwarding data to
foreign neighbor clusters.

Keywords: Networking, ad hoc, mobile, delay, tolerant, weighted, clus-
ter, broadcast.

1 Introduction

An increasing number of present-day mobile devices like tablets, PDAs, smart-
phones and laptops provide adapters for both, ad hoc and backbone commu-
nication. In our hybrid network model mobile devices use Wi-Fi adapters to
communicate in an ad hoc fashion and cellular adapters to access an infras-
tructured backbone. The backbone assists the mobile network by providing au-
thentication and partition inter-connection mechanisms as well as information
of interest. In both ad-hoc networks and sensor networks, clustering is one of
the most popular techniques for locality-preserving network organization [1].
Cluster-based architectures effectively reduce energy consumption, and enable
efficient realization of routing protocols [2], data aggregation [3,4], and security
mechanisms [5]. In our previous introduced backbone-assisted mobile ad hoc
network applications [6,7] a cluster is created by electing a so called clusterhead
among one hop neighbor devices. The applications use the clusterheads to keep
track of cluster interests and register them at the backbone by an uplink main-
tained for instance by a cellular connection. The backbone provides multimedia
items of interest to the registered clusterheads which forward them to inter-
ested cluster slave devices in the ad hoc network. For the self-organization of
the mobile devices in cluster structures we employ the Node and Link Weighted
Clustering Algorithm – NLWCA [8] . NLWCA is designed to organize mobile ad
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hoc networks in one hop clusters. Each device elects exactly one device as its
clusterhead, i.e. the neighbor with the highest weight. The weight of the own
device is calculated by NLWCA based on device properties that are important
for the application running on top of it. For instance good signal strength to
the backbone network is important for a multimedia providing application since
it increases the download bandwidth. Favorable is also a high network degree,
which optimizes the multimedia items spreading process. These device proper-
ties along with the battery power are used to calculate the weight, which is sent
by the beacon to the one-hop neighbors. An elected clusterhead also investigates
its one-hop neighborhood, similarly electing the device with the highest weight
as its clusterhead. This process terminates when a device elects itself as its own
clusterhead, due to the fact of having the highest weight among all its neighbors.
We call all intermediary devices along such clusterhead chains sub-heads. Each
device on top of a chain is called a full clusterhead, or, in short, clusterhead.
Hence, in each network partition, multiple clusterheads might coexist. The main
goal of the algorithm is to avoid superfluous re-organization of the clusters, par-
ticularly when clusters cross each other. To achieve this, NLWCA assigns weights
to the links between the own node and the network neighbor nodes. The link
weight is used to keep track of the connection stability to the one-hop network
neighbors. When a link weight reaches a given stability threshold the link is con-
sidered stable and the device is called stable neighbor device. The clusterhead is
elected only from the set of stable neighbors which avoids the re-organization of
the topology when two clusters are crossing for a short period of time. In pre-
vious work we introduced the Weighted Cluster-based Path Discovery protocol
(WCPD) [9] , which is designed to take advantage of the cluster topology built by
NLWCA in order to provide reliable path discovery and broadcast mechanisms
in mobile ad hoc networks. In this work we present an approach that increases
the ad hoc network inter-cluster broadcast performance of the WCPD protocol
by using delayed flooding. The remaining of the paper is organized as follows:
Section 2 describes the WCPD inter-cluster broadcasting mechanism. Section 3
introduces the Delayed Weighted Cluster Flooding (DWCF) algorithm. In Sec-
tion 4 we describe the simulation settings and the results obtained. Related work
is located in Section 5. Section 6 presents the conclusions and the future work.

2 WCPD Inter-cluster Broadcasting

In this section we describe the WCPD broadcasting protocol introduced in [8].
Since DWCF aims to improve the broadcast performance in mobile ad hoc net-
works, we present the WCPD protocol that works without the assistance of the
backbone. WCPD runs on each network node and requires solely information
available locally in the one hop neighborhood. The algorithm uses information
provided by NLWCA: the set of stable connected network neighbor nodes and the
ID of the own clusterhead. NLWCA also propagates by beacon the own weight
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A

B

C

Fig. 1. The clusterheads A and B are stable connected in the topology built by NL-
WCA. The main goal of the WCPD broadcasting protocol is to reach the nodes of
stable connected clusters. To achieve this, when A broadcasts a message it also sends
it by multi-hop unicast (illustrated by the arrows) to the stable connected cluster B.
As side effect, the crossing clusterhead C receives the broadcast message from A like
every other node in one-hop communication range. Clusterhead C re-broadcasts the
message in order to reach the stable connected nodes, thus increasing the number of
the broadcast receivers..

and the ID of the current clusterhead. Besides the information provided by NL-
WCA, the WCPD protocol uses the beacon to disseminate the list of locally
discovered nearby connected clusterheads. By doing so, every node has the fol-
lowing information about each stable one hop neighbor: its clusterhead ID and
the ID set of discovered clusterheads and the respective path length. After the
data of all stable one hop neighbors is checked, the set of discovered nearby
clusterheads and the path length is inserted into the beacon in order to propa-
gate it to the one hop neighborhood. Since WACA elects one clusterhead in each
one-hop network neighborhood, the path length between two clusterheads of con-
nected clusters is at least two hops and at most three hops. If the number of hops
to a clusterhead is higher than three then its cluster is not directly connected
to the local cluster and its ID is not added to the set of nearby clusterheads.
In other words, WCPD keeps track only of stable connected clusterheads that
are at most three hops afar. The WCPD broadcasting algorithm is simple and
easy to deploy: the broadcast source node sends the message to the clusterhead,
which stores the ID of the message and broadcasts it to the one hop neighbor-
hood. After that, it sends it to all nearby clusterheads by multi-hop unicast 1.
The inter-cluster destination-clusterheads repeat the procedure except that the
message source clusters are omitted from further forwarding. Additionally the
information about the ID of the broadcast messages and their sources is stored
for a given period of time to avoid superfluous re-sending of the message. The
protocol sends the broadcast message to nearby clusters connected by stable
links in order to disseminate it to the network partition. Nevertheless the mes-
sage also reaches crossing clusters since the broadcasts are received by all nodes
in the one-hop neighborhood of local leaders. This increases the chance that the
message reaches a high number of nodes in the mobile network partition.
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3 The Delayed Weighted Cluster Flooding Protocol
(DWCF)

The inter-cluster broadcast protocol of WCPD is designed to reach the members
of stable-connected clusters in the network vicinity of the broadcast source node.
The algorithm is easy to deploy and aims to avoid computational and communi-
cation load on the mobile nodes. To achieve this, the next hop to a cluster in the
vicinity is picked up based on its weight, thus the device with the highest amount
of energy left is elected as router. This method is simple but it does not take
topological properties of the potential next-hop nodes into account. Since the
protocol acts in mobile environments the elected router-node might lose its path
to the destination cluster, thus dropping the message. Further, the mechanism
is not well suited for applications that require network flooding since the main
goal of the WCPD inter-cluster broadcast is to reach only the nearby stable-
connected clusters. In order to improve the network flooding performance of the
WCPD protocol we introduce the Delayed Weighted Cluster Flooding (DWCF)
algorithm, which is inspired by the Delayed Flooding with Cumulative Neigh-
borhood (DFCN) algorithm introduced in [10]. The DFCN algorithm aims to
minimize the network load during flooding by taking into account the network
density. When the network is sparse, it is quite difficult to spread a message,
so in that conditions, a node should forward the message as soon as another
device enters the communication range. This would lead to good results since
every re-emission proves to be useful because of the reduced number of meeting
points between nodes. However, in dense networks this strategy would lead to a
high overload and broadcast storms. In order to avoid this, DFCN sets a random
delay (RAD) when a node receives a new message. If the density is low then the
RAD is immediately set to zero after a new neighbor is met, but this behavior
is disable when the density is high. This perception of the density corresponds
directly to its neighborhood and it is managed with a threshold called densi-
tyThreshold. DFCN attaches to the broadcast message a list T(m) containing
the current neighbors of the node. This list is managed as follows: when a node s
broadcasts a message m to its neighbors, it assumes that all of them will receive
m. Therefore, T(m) is set with all the neighbors, N(s), of the sender-node s.
Once the RAD is finished, DFCN uses this list to decide whether the received
message will be forwarded or not, in terms of the neighbors that already received
the message which are in the one hop neighborhood. For that, a threshold called
minBenefit is set, which is formally defined on the benefit, computed as the ratio
between the neighbors of s which do not belong to T(m), and the total neighbors
of s, N(s). The higher the benefit, the higher the probability of (re)-emission of a
message. The Delayed Weighted Cluster Flooding algorithm aims to be as sim-
ple as possible but at the same time to improve the flooding performance of the
WCPD protocol. To achieve this, the protocol uses the cluster topology provided
by NLWCA and the cluster information provided by the WCPD Nearby-Cluster
Discovery protocol. The basic idea of the protocol is to use broadcast instead of
unicasts to reach nearby clusters. This increases the chance that a sent message
reaches the destination cluster even if the connecting cluster-border nodes are
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changing during transmission. Also, the broadcast might reach nodes belonging
to different clusters, thus reducing the communication load. One of the main
design goals is to keep the algorithm as simple as possible, which reduces com-
putational load on the nodes, but at the same time to avoid communication
overload. The main issue is to avoid that several nodes situated on the border of
the cluster re-broadcast a message in order to reach the same neighbor clusters.
Inspired by DFCN, the DWCF algorithm uses random delays before it forwards
the broadcast messages. Further, the decision to re-send the message is based
solely on the presence of foreign-cluster nodes in the one-hop neighborhood at
the end of the delay. This keeps the algorithm simple and reduces the num-
ber of node IDs added to the broadcast message since generally the number of
nearby clusterheads is much lower than the number of one-hop neighbors. The
broadcast-handler method is called when a node receives a broadcast message.
First of all DWCF checks if the message was already processed (delay = -1) and
breaks the method if true. If the message was not processed but is already in
the queue then the set of receiver cluster IDs is updated since the sender might
reach new clusters. This avoids later that nodes re-send the message if some
other node already sent it during the delay to all foreign clusters in one-hop
neighborhood. In case the message is new, it is instantly re-broadcasted if the
receiver is a clusterhead or a sub-head in order to reach all nodes in the cluster.
If the receiver is a slave node then a random delay is set for the message, which
is added to the queue and the delay timer is started. The delay timer fires a
tick event every second. The tick handler method is in charge of decreasing the
delay of every message in the queue that is not already processed (having a delay
of -1). If the delay of a message reaches the value 0 then the DelayBroadcast
method is called. If the queue contains no message with delay higher than 0 then
the timer is stopped in order to save computational load. After the delay of a
message, the DelayBroadcast method is called. DWCF searches the last received
beacons of the one-hop neighbor nodes in order to discover foreign clusters. This
information is provided by NLWCA, which uses the beacon to send the own
weight node and the current clusterhead ID to the neighboring nodes. The set
of discovered foreign cluster IDs is compared to the set of receiver-cluster IDs
contained in the message. If at least one new cluster is reachable then DWCF
replace the receiver-cluster IDs with the current neighboring cluster IDs and
broadcasts the message. The message is also broadcasted if it was not already
received from a member node of the own cluster. Thus, the messages received
from foreign clusters reach the own clusterhead for further spreading. After the
message is forwarded its payload is deleted but the ID is kept for a given time
to avoid further processing. The pseudo code of the algorithm is like follows:

--- Required Data ---
d: The ID of the node.
C(d): The clusterhead ID of d.
N(d): The set of one-hop neighbor nodes of d.
m(d): A broadcast message received from d.
M(m): The ID set of cluster reached by broadcast of m.
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f(m): True if m was received from the own cluster.
r(m): The re-send delay for m.
Q: The message queue.
T: Delay-timer, fires a tick event every second.

--- Handler method m(e) on node d ---
If( r(m) == -1 ) return; // already processed message
If( Q contains m ) do: // message already in queue

Merge received M(m) with local M(m);
return; // break

End do;
If( d is clusterhead or is sub-head ) do:

r(m) = -1; // mark it as processed
add (m,r(m)) to Q; // remember it
Send_broadcast(m); // instantly re-send
return;

End do;
If( C(e) equals C(d) ) f(m) = true;
r(m) = random number between 1 and n;
add (m,r(m)) to Q;
If( T is not running ) start T;

--- Handler method for the ticks of T ---
For each ( m(e) in Q ) do:

run = false; // timer re-start flag
If( r(m) > -1 ) r(m) = r(m) - 1;
If( r(m) > 0 ) run = true;
If( r(m) == 0 ) DelayBroadcast(m);

End do;
If( run = false ) stop T; // more messages to process

--- DelayBroadcast method for message m on node d ---
For each ( e in N(d) ) // find foreign clusters

If( C(e) not equals C(d) ) add C(e) to K;
re-send = false;
If( K \ M(m) not null ) re-send = true;
If( f(m) == false ) re-send = true;
If( re-send == true ) do:

M(m) = K;
Send_broadcast(m);
Delete payload(m); // keep only the ID

End do;
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Fig. 2. JANE simulating the WCPD protocol on 100 devices. The mobile devices move
on the streets of the Luxembourg City map. The devices move with a speed of 0.5 –
1.5 m/s and have a sending radius of 20 m.

4 Experiments and Results

In order to compare the flooding performance of the two algorithms, we im-
plemented them on the top of the JANE simulator [11]and performed several
experiments. For the conducted experiments we used the Restricted Random
Way Point mobility model [12], whereby the devices move along defined streets
on the map of Luxembourg City 2. For each device the speed was randomly
varied between 0.5 and 1.5 m/s (1.8 and 5.4 km/h), which are common human
speeds. For this speed range the NLWCA link stability threshold is set on 2.
At simulation startup, the devices are positioned at random selected crossroads
and the movement to other crossroads is determined by the given random distri-
bution seed. A number of ten different random distribution seeds were used in
order to feature results from different topologies and movement setups. In order
to monitor the information dissemination performance and network load of the
broadcasting mechanisms, a node was chosen to broadcast a message every 10
seconds during different simulation runs using different distribution seeds. The
number of sent messages (i.e. broadcasts and unicasts) during the dissemination
and the number of reached network nodes were tracked for 300 seconds. The
experiments were done in sparse networks with 100 mobile devices and in dense
networks with 300 devices.

The tracking results regarding the message dissemination performance and
network load of the inter-cluster broadcasting protocols are presented in Fig. 3
and Fig. 4. The overall results show that DWCF performs much better in terms
of message dissemination than the WCPD inter-cluster broadcast protocol. The
denser the network, the higher the difference between both the number of sent
messages and the number of receiver nodes. The results for sparse networks with
100 devices are presented in Fig. 3. The WCPD uses a number of messages
with a mean value around 100 to reach around 10% of the receivers. The low



Improving Inter-cluster Broadcasting in Ad Hoc Networks 485

5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

Broadcasts (one every 10 seconds)

N
u
m
b
e
r
 
o
f
 
m
e
s
s
a
g
e
s
 
a
n
d
 
r
e
c
e
i

Overall results for 10 distribution seeds. Device number: 100

 

 
W CPD  o v e r a ll me s s a g e s  s e n t

W CPD  n u mb e r  o f  r e c e iv e rs

DW CF  o v e r a ll me s s a g e s  s e n t

DW CF  n u mb e r  o f  r e c e iv e rs

 

Fig. 3. Simulation results for sparse networks with 100 devices. The number of sent
messages is almost the same as the number of received when using WCPD inter-cluster
broadcasting. The flooding performance of DWCF is much higher but at the cost of a
higher network overload.
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Fig. 4. In dense networks with 300 devices the performance of DWCF is even better.
The difference between the number of sent messages and the number of receivers is
much higher than in sparse networks.

reachability can be explained by the fact that WCPD aims to reach with the
broadcast only the stable connected clusters. The number of sent messages is high
in relation to the number of reached devices and it emerges due to the multi-hop
unicasts used to forward the message to connected clusters. The DWCF protocol
performs much better in terms of reached devices whose ratio has a mean value
around 50%. The increased dissemination performance requires a higher number
of sent messages, which has a mean value around 400.
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The results in Fig. 4 show that the DWCF performs even better in denser
networks with 300 devices, where only 1500 messages were sent. The most of
them reached 100% of the receivers. Since DWCF uses broadcasts to forward
the messages to neighbor clusters, the probability to reach them is higher than
when using multi-hop unicasts. Even if the connecting nodes change during the
forward process, the new ones receive and re-send the broadcasted message.
The broadcasted messages also reach crossing foreign clusters in communication
range of the forwarding border nodes. These clusters are missed by the WCPD
unicasts.

5 Related Work

The Delayed Flooding with Cumulative Neighborhood (DFCN) [10] is a broad-
casting protocol designed for mobile ad hoc networks. The protocol uses the
information about the one hop neighbors provided by the ad hoc network bea-
cons. When a node receives a broadcast message a random delay is set for the
re-sending of the message. The protocol aims to improve the flooding perfor-
mance by forwarding the message instantly when a new node is detected in
sparse networks and to wait longer in dense networks in order to avoid commu-
nication overload. DFCN is optimized in [13] using cMOGA, a new cellular multi-
objective genetic algorithm. Main goals of the work are minimizing the duration
of the broadcasting process, maximizing network coverage, and minimizing the
network usage. Three different realistic scenarios were used corresponding to a
shopping center, the streets in a city and a wide non-metropolitan area wherein
several roads exist. In [14] a delay-tolerant broadcasting algorithm is proposed
for wide and public wireless dissemination of data. The approach is not using
flooding or routing, it uses only the mobility of the nodes in order to spread
the data. The hybrid setting of Sun et al [15] consists of base stations that are
inter-connected and mobile devices that can connect locally via an ad-hoc mode
or to a base station if near enough to it. Two routing schemas are introduced
to deal with different application requirements. Sun et al research points out
that the efficiency of the chosen communication mode strongly depends on the
applications running in the overall network.

6 Conclusion and Future Work

In this paper we introduced a new flooding algorithm employed on top of the
cluster topology built by NLWCA. The protocol is simple and easy to deploy and
aims to avoid high computation and communication load on the network nodes.
The simulation results show that DWCF highly outperforms the inter-cluster
broadcasting protocol of WCPD in terms of message spreading. On the other
side, WCPD focus on the communication with nearby clusters considered to be
stable. This is beneficial for applications which require that a multi-hop path
between two communicating nodes has certain stability. In future work we aim
to improve the DWCF by decreasing the delays on high weighted nodes in order
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reduce the load on nodes with low battery power. Besides this, nodes with a
higher number of neighboring foreign clusters should forward the message faster
in order to decrease the network communication load.
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Abstract. Ability to find a low-energy broadcast routing quickly is vi-
tal to a wireless system’s energy efficiency. Directional antennae save
power by concentrating the transmission towards the intended destina-
tions. A routing is given by assigning a transmission power, angle, and
direction to every networking unit, and the problem of finding such a
power saving routing is called the Directional Minimum Energy Broad-
cast Problem (D-MEBP). In the well known Minimum Energy Broadcast
Problem (MEBP), the transmission angle is fixed to 2π. Previous works
suggested to adapt MEBP algorithms to D-MEBP by two procedures,
Reduced Beam (RB) and Directional (D). As the running time of the
routing algorithms is a critical factor, we reduce the time complexity of
both by one order of magnitude.

1 Introduction

In wireless ad-hoc networks, a broadcast session is established without use of
any central backbone system, and is based entirely on message passing between
network units. To accomplish this, each unit is equipped with an energy resource
in terms of a battery. Since this resource is limited it becomes crucial to route
the broadcast messages in such a way that power consumption is minimized.
At each network unit transmitting a message, the power consumption typically
depends on the transmission coverage, which in its turn is determined by the set
of intended recipients.

What parameters that can be set in order to achieve a minimum energy broad-
cast routing depends on the technology of the transmission antennae in the net-
work. In the case of directional antennae, the transmission beam is concentrated
towards the intended destination units, and the coverage hence has both a radial
and an angular dimension. The former is simply the power required to reach the
most remotely located recipient, and the latter is the minimum angle of a sector
containing all. For networks based on omnidirectional antennae, the transmission
angle is fixed to 2π.
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The Minimum Energy Broadcast Problem (MEBP) has in the case of omnidi-
rectional antennae attracted intensive research. As the problem is NP-hard [1],
the energy efficiency of applications depends on efficient routing heuristics. An
overview of various suggestions to such methods can be found in the survey of
Guo and Yang [2].

A common approach is to represent the network as a graph and determine a
routing arborescence spanning the nodes in the graph. The arborescence defines
an assignment of power to the nodes, given as the cost of the most expensive
outgoing arc. A straightforward choice of routing arborescence is the Minimum
Spanning Tree (MST), computed for instance by Prim’s algorithm, which has
been studied thoroughly. In [3], Guo and Yang proved that MST provides the
optimal solution to a variant of MEBP, the static Maximum Lifetime Multicast
Problem (MLMP).

Arborescences yielding a smaller total power assignment are found by taking
into account the node-oriented objective function. In construction algorithms,
where new nodes are added iteratively to an arborescence consisting initially
of only the source node, this can be reflected by selecting nodes such that the
incremental power is minimized. The most frequently cited such algorithm is the
Broadcast Incremental Power (BIP) algorithm by Wieselthier et al. [4].

Assuming that the antennae are directional, we arrive at an extension of
MEBP referred to as the Directional MEBP (D-MEBP). This problem has been
studied to a far lesser extent than MEBP. Wieselthier et al. suggested in [5] the
principles Reduced Beam (RB) and Directional (D) to adapt BIP to D-MEBP,
resulting in the heuristics RB-BIP and D-BIP, respectively. RB-BIP first calls
BIP to construct a broadcast routing arborescence, and then simply reduces the
transmission angle of every unit to the minimum angle necessary to cover all
the unit’s children. D-BIP, on the other hand, takes antenna angles into account
already in the construction phase. In each iteration of this procedure, the increase
in both power requirement and angle are considered when deciding which unit
to add to the current arborescence. In general, RB can be considered as a local
improvement procedure to be called after construction, whereas D is interleaved
with the construction algorithm.

In [6], Guo and Yang presented a mixed integer programming model, and
used RB and D to adapt their local search heuristic [7] to D-MEBP. In [3], they
applied both principles to adapt the MST algorithm to a directional version of
MLMP.

As demonstrated in the above articles, RB and D are useful for adapting
MEBP algorithms to D-MEBP in general. Wieselthier et al. showed in [8] that
the time complexities of RB-BIP and D-BIP are O(|V |3) and O(|V |3 log |V |),
respectively, where V denotes the node set of the graph. The result for RB-BIP
is derived from an implementation of BIP with O(|V |3) time complexity. The
additional time complexity of the RB procedure is in [8] proved to be bounded
by O(|V |2 log |V |).
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In this paper, we first improve the time complexity of RB to O(|V | log |V |) by
better analysis. Together with an implementation of BIP with O(|A|+|V | log |V |)
time complexity, suggested by Bauer et al. [9], this results in an implementation
of RB-BIP with as low time complexity as O(|A| + |V | log |V |). Here A denotes
the set of arcs in the graph.

Second, we suggest a novel implementation of D-BIP building on the BIP
implementation in [9], and prove that its running time is O(|V |2).

2 Preliminaries

An instance of D-MEBP is given by a directed graphG = (V,A), where the nodes
represent the networking units, a source s ∈ V , power requirements c ∈ IRA,
and the minimum transmission angle θmin. The nodes are associated with points
in the plane, and the power requirement cvu is typically proportional to dα

vu,
where dvu is the Euclidean distance between nodes v and u, and α ∈ [2, 4] is a
constant [2].

A solution to any instance can be given by an s-arborescence T = (V,AT )
with arc set AT ⊆ A. An s-arborescence is a directed tree where all arcs are
oriented away from s. In T , every node v has a (possibly empty) set Γv(T ) of
children. The transmission power induced by T at v ∈ V is given by

pv(T ) =

{
0 if Γv(T ) = ∅
maxw∈Γv(T ){cvw} otherwise .

In the idealized model assumed in the literature, the energy emitted by node v
is concentrated uniformly in a beam of width θv(T ) [5]. To simplify the definition
of θv(T ), nodes are identified with points in IR2. For any two nodes u and v,
we let uv denote the straight line segment in IR2 with end points u and v, and
for any three nodes u, v and w, we let � uvw denote the angle between the line
segments uv and vw with positive (counter-clockwise) direction from uv to vw.
This implies � uvw = 2π − � wvu. For the purpose of simplified presentation, we
assume that no three nodes are collinear, and we define � uvu = 2π. Let the
sector Suvw be defined as the node set Suvw = {x ∈ V : � uvx ≤ � uvw}. For any
node set V ′ ⊂ V , we define (see Fig. 1)

θv(V ′) =

{
θmin if |V ′| < 2
max {θmin,minu,w∈V ′{ � uvw : V ′ ⊆ Suvw}} otherwise .

(1)

The beam width θv(T ) is hence given as θv(Γv(T )). In Fig. 1, tv(T ) ∈ Γv(T )
and t′v(T ) ∈ Γv(T ) are the nodes for which the minimum in (1) is attained in
the case V ′ = Γv(T ) and |V ′| ≥ 2.

The directional minimum energy broadcast problem can then be formulated
as

[D-MEBP] Find an s-arborescence T such that pT =
∑

v∈V pv(T )θv(T ) is
minimized.
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Fig. 1. Examples of beam width θv(T )

3 The Reduced Beam Procedure

By (1) and the RB principle, any s-arborescence constructing heuristic H for
MEBP can be extended to a D-MEBP heuristic RB-H. This derived heuristic
consists of the two steps H and the RB procedure. The latter simply amounts to
computing θv(T ) for all v ∈ V , which is accomplished by sorting the children of
v according to the angular dimension of their polar coordinates with v as center.

By exploiting the fact that every node has at most |V | children, Wieselthier
et al. [5] found that the time complexity of sorting all children of all nodes is
bounded by O(|V |2 log |V |). However, since there are only a total of |V | − 1
children in the arborescence, the time complexity of sorting the children of all
nodes is bounded by O(|V | log |V |). Thus we have the following result.

Theorem 1. RB has O(|V | log |V |) time complexity.

4 Directional BIP

The BIP-algorithm [4] for the omnidirectional version of the problem resembles
Prim’s algorithm for MST. In each iteration, the best arc from some connected
node v to some disconnected node is selected. The algorithms are distinguished
in that the selection criterion in BIP is not to minimize arc cost but rather
incremental arc cost, that is, arc cost minus the cost of the most expensive arc
leaving v selected so far.

In [5], the authors adapt BIP to the directional problem. The resulting al-
gorithm is referred to as the Directional BIP (D-BIP) heuristic, which differs
from BIP by taking antenna directions and beam widths into account when se-
lecting the next node to be added to the arborescence. In the implementation
of D-BIP suggested in [8], the children of every node are maintained as sorted
lists. The authors prove that the time complexity of such an implementation
is bounded above by O(|V |3 log |V |). Through computational experiments, it is
also demonstrated that D-BIP outperforms RB-BIP for a large number of test
instances.
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In the following, we present an implementation of D-BIP that has O(|V |2)
time complexity. It is presented as an extension of BIP, which in its turn can
be seen as an extension of Prim’s algorithm for MST. Then we demonstrate
that these extensions are accomplished without distortion of the quadratic time
complexity known to hold for Prim’s algorithm.

4.1 An Implementation of BIP with Quadratic Running Time

Consider the O(|A| + |V | log |V |) implementation of Prim’s algorithm shown in
Table 1, based on the implementation given in [10]. The excluded nodes V \ VT

are stored in a priority queue Q. We denote the key value of node v in Q by
keyQ[v]. The operation Q.extractMin() and Q.extractMax() remove a node
with smallest and largest key value, respectively, and return the removed node
to the invoking algorithm. An array parent is maintained such that for all
v ∈ V \ VT , parent[v] is the best parent node of v in VT .

In all algorithms to follow, we assume that the graph G is represented by a
set of adjacency lists {Adj[v] : v ∈ V }, where Adj[v] = {u : (v, u) ∈ A}.

Table 1. Prim’s Algorithm

Prim(G = (V, A), s, c)
1 T = (VT , AT ) ← ({s}, ∅)
2 priority queue Q ← V \ {s}
3 for all v ∈ Q
4 parent[v] ← s
5 keyQ[v] ← csv

6 while Q 	= ∅
7 w ← Q.extractMin()
8 v ← parent[w]
9 VT ← VT ∪ {w}
10 AT ← AT ∪ {(v, w)}
11 for all u ∈ Adj[w]
12 if u ∈ Q ∧ cwu < keyQ[u]

13 keyQ[u] ← cwu

14 parent[u] ← w
15 return T

Table 2. Additional steps needed to extend Prim’s algorithm to BIP

1 for all u ∈ Adj[v]
2 if u ∈ Q ∧ cvu − cvw < keyQ[u]

3 keyQ[u] ← cvu − cvw

4 parent[u] ← v

Assume the steps in Table 2 are inserted after the for-loop occupying Steps 11-
14 in Table 1. In [9], it is proved that this extension results in an implementation
of BIP with running time O(|A| + |V | log |V |).
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4.2 Directional BIP as an Extension of Prim’s Algorithm

Consider a tree T = (VT , AT ) where VT ⊂ V , and a node v ∈ VT for which
Γv(T ) �= ∅. Since no three nodes in Γv(T ) are collinear, there exists for each
node u ∈ Γv(T ) a unique u′ ∈ Γv(T ) such that Suvu′ ∩ Γv(T ) = {u, u′}. With
reference to a polar coordinate system centered at v, u′ is the successor of u when
sorting Γv(T ) by increasing value of the angular dimension (defined cyclically
such that u′ is the first node if u is the last). If |Γv(T )| = 1, then u′ = u.

v w

x

y

z

θv(T )

Fig. 2. Sectors induced by v and
Γv(T )

Define the family of sectors hence indu-
ced by node v as Sv(T )={Suvu′ :u∈Γv(T )}.
In the example shown in Fig. 2, the sectors
induced by v are Swvx, Sxvy, Syvz and Szvw.

The figure also illustrates the gen-
eral fact that θv(T ) = max

{
θmin, 2π −

max { � uvu′ : u ∈ Γv(T )}
}
, which means

that if θv(T ) > θmin, then the complemen-
tary angle of θv(T ) is the angle of a widest
sector in Sv(T ). This observation is used
to maintain information on the incremental
cost of adding a new arc to T .

For all u ∈ V \ VT such that (v, u) ∈ A, we need to know the new value of
θv(T ) given that (v, u) is added to AT . Consider the case where |Γv(T )| > 1, and
let Szvz′ and Syvy′ be the two widest sectors in Sv(T ) (ties broken arbitrarily),
where � zvz′ ≥ � yvy′ . When evaluating the inclusion of u in VT , we have to take
into account how u relates to Szvz′ and Syvy′ :

– If u �∈ Szvz′ , then Szvz′ will remain the widest sector in Sv(T ) if (v, u) is
added to AT , and thus θv(T ) is unchanged.

– If u ∈ Szvz′ , then adding (v, u) toAT implies that Szvz′ leaves Sv(T ), whereas
Szvu and Suvz′ enter. Consequently, the widest sector in the updated fam-
ily Sv(T ) is Szvu, Suvz′ or Syvy′ . The new value of θv(T ) thus becomes
max

{
θmin, 2π −max { � zvu, � uvz′ , � yvy′}

}
.

It follows that access to the two widest sectors in Sv(T ) is crucial for rapid compu-
tation of the incremental cost of adding a potential new arc to AT . In our imple-
mentation of D-BIP, we therefore represent Sv(T ) by a priority queue Sv where
Suvu′ has key value keySv

[(u, u′)] = � uvu′ . The methods Sv.insert
(
(u, u′)

)
and

Sv.delete
(
(u, u′)

)
are used to add/remove sector Suvu′ to/from the queue.

Table 3 shows the steps that replace Steps 11-14 in Table 1 when extending
Prim’s algorithm to D-BIP. We make use of a matrix θ ∈ IRA, where θvu is the
value of θv(T ) resulting from the possible inclusion of arc (v, u) in AT .

To complete the extension of Prim’s algorithm to D-BIP, Step 5 in Table 1
has to be changed to

5 keyQ[v]← csvθmin ,
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Table 3. Additional steps needed to extend Prim’s algorithm to D-BIP

1 for all u ∈ Adj[v] ∩ Q
2 if cwuθmin < keyQ[u]

3 keyQ[u] ← cwuθmin

4 parent[u] ← w
5 if Γv(T ) = {w}
6 priority queue Sv ←

{
(w, w)

}

7 keySv
[(w, w)] ← 
 wvw

8 for all u ∈ Q ∩ Adj[v]
9 θvu ← max {θmin, min { 
 uvw, 
 wvu}}
10 else
11 find (x, x′) ∈ Sv : w ∈ Sxvx′

12 Sv.delete
(
(x, x′)

)

13 keySv
[(x, w)] ← 
 xvw, Sv.insert

(
(x, w)

)

14 keySv
[(w, x′)] ← 


wvx′ , Sv.insert
(
(w, x′)

)

15 (z, z′) ← Sv.extractMax(), (y, y′) ← Sv.extractMax()
16 Sv.insert

(
(y, y′)

)
, Sv.insert

(
z, z′)

)

17 for all u ∈ Q ∩ Adj[v]
18 if u ∈ Szvz′

19 θvu ← max

{

θmin, 2π − max
{


 zvu, 

uvz′ , 


yvy′

}}

20 else
21 θvu ← max

{
θmin, 


zvz′
}

22 for all u ∈ Adj[v] ∩ Q
23 incCost ← max{pv(T ), cvu}θvu − pv(T )θv(T )
24 if incCost < keyQ[u]

25 keyQ[u] ← incCost
26 parent[u] ← v

in order to reflect that the cost of adding arc (s, v) is csvθmin rather than csv.
Accordingly, Steps 1-4 in Table 3 are updates of Steps 11-14 in Table 1, taking
the minimum beam width into account.

Steps 5-21 concern the updates of Sv and θvu after insertion of (v, u) in AT .
Steps 22-26 correspond to the extension made for BIP (Table 2), except that
power has been replaced by power times beam width.

Theorem 2. D-BIP has O(|V |2) time complexity.

Proof. All the steps in Table 3 are included in the while-loop in Table 1, which
generates |V | iterations. We therefore need to show that each of these steps has
at most O(|V |) time complexity.

For the for-loop 1-4, this follows from the analysis of Prim’s algorithm.
Given that the priority queues are implemented as Fibonacci heaps, the in-

sertion and key update operations run in constant amortized time, and the op-
erations delete and extractMax run in O(log n) amortized time, where n is
the maximum number of elements in the queue. Furthermore, any angle � uvw
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is computed in constant time, and checking whether u ∈ Szvz′ is also done in
constant time. Thus, each step within the for-loops 8-9, 17-21 and 22-26 runs in
constant (amortized) time, and the loops generate at most |V | iterations each.
Furthermore, Steps 6-7 and 12-16 have constant and O(log |V |) time complexity,
respectively.

The proof is complete by observing that Step 11 has time complexity O(|V |)
since |Sv| ≤ |V |. ��

5 Conclusions

We have studied how to extend construction heuristics designed for the Mini-
mum Energy Broadcast Problem to the directional version of the problem. Two
approaches from the literature, RB and D, were chosen, and we have given fast
implementations of both. By virtue of the implementations and analysis given
in the current work, the time complexities of previously suggested methods like
RB-BIP and D-BIP are reduced by one order of magnitude.

This achievement can be generalized in several directions. Due to the general-
ity of RB and D, our results can be transferred also to other existing and future
construction heuristics for MEBP. To simplify the presentation, we have chosen
to present the implementations for broadcast routing, but they can easily be
adapted to the more general multicast case.
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Abstract. Fault-tolerance protocols play an important role in today
long runtime scientific parallel applications. The probability of a failure
may be important due to the number of unreliable components involved
during an execution. In this paper we present our approach and prelim-
inary results about a new checkpoint/rollback protocol based on a coor-
dinated scheme. One feature of this protocol is that fault recovery only
requires a partial restart of other processes thanks to the availability of
an abstract representation of the execution. Simulations on a domain de-
composition application show that the amount of computations required
to restart and the number of involved processes are reduced compared
to the classical global rollback protocol.

Keywords: grid, fault-tolerance, parallel computing, data flow graph.

1 Introduction

Since few years, fault-tolerance has been studied in the context of high-perfor-
mance parallel applications that makes use of large scale clusters or grids (i.e.
simulation of complex phenomena) [1,2,3,4,5,6]. Due to the number of unreli-
able components involved during the computation, the apparition of faults is
not an exceptional event [7,8]: the system or the middleware should provide
fault-tolerance protocols in order to mask failures. Moreover, some applications
require an important computation time to complete (like a week running on a
thousand processors [9]). Exclusive reservation of computing resources during
such a period conflicts with reservation policies aiming at fairness between users
on short periods. In this case, fault-tolerance allows to split a large computation
and run it during many shorter separated reservations [10,11].

This subject has been well studied in the context of distributed systems and
distributed middlewares [1,2,12,13]. Optimising performance on large scale archi-
tectures becomes a major objective. Recent propositions study the applications
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runtime behaviour in order to specialise or extend published protocols [5,6,14,15].
This is the context of our paper.

In our document the specialisation of fault-tolerance protocol is done using
an abstract representation of the execution offering important optimisations at
runtime. We implemented this work in the framework of Kaapi [4,14,16], where
the abstract representation of execution was firstly designed to plug scheduling
algorithms independently of applications. In [4,6], it was shown that this abstract
representation is well suited for defining the local process checkpoint. In this
paper, this abstract representation is used to specialise a fault-tolerance protocol
for long runtime intensive iterative simulation where the communications versus
computing ratio is high.

Experiments carried out in [2,5] show that coordinated checkpoint/rollback
protocols are efficient up to thousands of processors. In case of fault, all the
processors restart from their most recent checkpoint, even those which did not
failed. The two challenging problems about performances of coordinated check-
point/rollback protocols are:

1. How to speed up processes restart after the occurrence of a fault?
2. How to reduce the amount of computation time loss in case of fault?

In [2,5] the solution to solve (1) is: each process keeps a local copy of its
checkpoint and sends another copy to either a stable storage [5] or a fixed number
of neighbour processes [2]. Within this approach, all processes except the failed
process, restart from their local copy of the most recent checkpoint.

Our contribution is mainly to propose a solution for (2). Thanks to the ab-
stract representation of execution of any Kaapi applications, it is possible to
compute the strictly required computation set which is the computation task set
that a processor have to re-execute to resend lost messages to the failed proces-
sor. This optimisation reduces the amount of computation required to restart the
application. Furthermore, if the task set is parallel enough, it can be scheduled
over all the processors to speed up the restart.

The outline of the paper is the following. The next section deals with related
works. Section three presents the improved rollback of our coordinated check-
point/rollback protocol. It begins with an overview of the abstract representation
in Kaapi and the process state definition. Then we present the recovery step
and an analysis of its complexity is sketched. The next section presents a study
case on a domain decomposition application and simulations of its restart. The
conclusion ends the paper.

2 Related Works

In this paper we deal with long runtime of parallel applications with a high ratio
communication versus computation. Such kind of applications appear during it-
erative simulation of physical phenomena: for instance molecular dynamics [17],
virtual reality [18]. Parallelisation of such applications uses domain decomposi-
tion method: the simulation domain is splitted into smaller subdomains. During
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an iteration, each processor communicates with its neighbours according to sub-
domain relationship.

Fault-tolerance protocols have been classified in three categories [1]: those
based on duplication to introduce redundancy of computations [12,19]; proto-
cols based on event logging [20] and protocols based on checkpoint/rollback
approach [1,21].

Protocols based on duplication only tolerate a fixed number of faults and may
consume lots of resources [19]. Since the main criteria for the considered applica-
tions is the performance, and moreover, an interruption during the computation
can be tolerated, they are not selected.

Log-based protocols assume that the state of the system evolves according
to non-deterministic events. These events are logged in order to rollback from a
previous saved checkpoint [1]. In our case, non-deterministic events are commu-
nications between subdomains which represent a large amount of data. So these
protocols are not selected, they require too many resources (memory, band-
width) [3].

Checkpoint/rollback protocols periodically save the local process state of the
applications and have few overhead with respect to the communications. They
come in three forms depending on the way they build a coherent global state for
the application restart [1]. Uncoordinated protocols make no assumption about
the coherency of the global state captured and may be impacted by the domino
effect: in worst case, the application is required to rollback at the beginning [22].
Coordinated protocols are based on global synchronisation to ensure that the
set of local checkpoints forms a coherent global state [21]. Communication-
induced checkpointing protocols [23] are a mix between coordinated and uncoor-
dinated protocols where forced checkpoints are computed on reception of some
messages.

Coordinated checkpoint/rollback protocols have the advantage of having a
low overhead towards application communications [2,5]. However, they produce
a large communication volume due to the checkpoints size which are sent si-
multaneously to the checkpoints servers. This can be amortised by choosing a
suitable checkpoint period [3] or using incremental checkpoints [24].

3 Improved Coordinated Checkpoint/Rollback Protocol

The idea of the Coordinated Checkpointing in Kaapi (CCK) protocol is to build
after fault occurrence, the computations of every processes that are strictly re-
quired to resend messages to the failed processor. Thanks to Kaapi, the amount
of computation to re-execute is less than in classical and improved coordinated
protocols [1,2,5] for which all the processors restart from their last checkpoint.

This section presents how to reduce the number of instruction to re-execute
using the execution abstract representation provided by Kaapi. We first describe
the execution model and the abstract representation of Kaapi. Then we deal
with the optimised recovery.
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3.1 Execution Model and Abstract Representation

Kaapi
1 [16] is a middleware that allows to execute distributed and/or parallel

applications. It offers a high level parallel programming model. The programmer
writes his program describing potential parallelism independently of the target
architecture, using for example the Athapascan [25,26] programming interface.

With Athapascan, the parallelism is defined with two simple concepts:
shared data and tasks. A shared data is a data in global memory that a task
can produce or consume. A task is an indivisible instruction set that declares
an access mode to a shared data (read or write). With this description, Kaapi

can execute the application according to the precedence constraints which are
dynamically detected.

The set {tasks, shared data, precedence constraints} builds the data flow
graph representing the application execution [26]. A data flow graph is defined
as a directed graph G = (V , E), where V is a finite vertex set (tasks and shared
data) and E is an edge set (precedence constraints) between vertices. This data
flow graph is called the abstract representation of the application. This repre-
sentation is causally connected to the (execution of the) application: any new
execution of an API instruction is reported by the creation of new vertices in
the data flow graph; and any modification in the data flow graph is rendered in
a modification in the application execution. For instance, the data flow graph is
distributed among the processes and the application execution reflects this by
having (generally) speedup in comparison to the sequential execution.

For the application aimed in this paper, we use the following approach, called
static scheduling [11], to execute the data flow graph. First, a pluggable library
like SCOTCH [27] or METIS [28] partitions the data flow graph of one iteration
in N data flow subgraphs where N is the wanted processor number to run on.
For each subgraph, the static scheduling Kaapi engine automatically generates
the tasks for the required communications. Then data flow subgraphs are dis-
tributed over all the processors and they execute their subgraph iteratively. If
no modification of the data flow graph occurs between iterations then subgraphs
are reused without recomputing them.

3.2 Definition of a Checkpoint

The application state is represented by the state of all its processes and by the
state of communication channels. Because the communication channels’ state
is not available, the principle of coordinated protocols is the synchronise all
the processes and to flush all in-transit messages in order to checkpoint the
application. Under this condition, the application state is made of the union of
all the process local states [21].

The process state can be save using its abstract representation as a data flow
graph Gi (which is composed of the graph and its input data). Moreover, this
state is independent of the computer executing the process (hardware, operating
system) if it is saved between the execution of two tasks.
1 http://kaapi.gforge.inria.fr
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Definition 1. The checkpoint Gi of process Pi is composed of its data flow
graph, i.e. its tasks and their associated inputs. It does not depend on the task
execution state on the processor itself.

Finally, a coherent global state G of the application is the set of all the local
checkpoints Gi which are saved during the same coordination step.

The checkpointing step of CCK protocol implemented in Kaapi is based on
the classical coordinated checkpointing protocol presented in [21] and on opti-
misations proposed in [29]. It is fully detailled in [30,31].

3.3 Recovery After Failures

When one or many processes fail during the computation, the role of a check-
point/rollback protocol is to restart the application in a state that could happen
in a normal execution (i.e. without failure). At the failure time, the application
is composed of two kind of processes: failed processes and non-failed processes.
The last checkpoint of all processes is available and all these checkpoints form
a coherent global state of the application before the failure. Furthermore, the
current state of the non-failed processes is known.

In the case of the classical rollback protocol [21], all processes would restart
from their last checkpoint (failed processors are replaced using spare processors).
However, all computations performed on all the processes since the last check-
point step are lost. This waste can be important specially when a large processor
number is used.

The CCK rollback protocol try to reduce this waste. The substituting pro-
cesses that replace failed processes have to restart from the last checkpoint
because the failure made failed processes loose their current state. As for the
non-failed processes, they keep their ongoing computation. Because the global
state made of the states of substituting processes and non-failed processes is not
coherent, the computation can’t continue from this state. Analysing the execu-
tion abstract representation as a data flow graph allow us to identify, among the
last checkpoint of non-failed processes, the strictly required computation set that
need to be re-executed so as to guarantee that this global state is coherent.

Definition 2. The strictly required computation set for a process Pi with
respect to a process Pk is the minimal task set stored in the previous checkpoint
of Pi which have already been executed on Pi and which produce, directly or
indirectly, a data that will be send to Pk.

The distributed algorithm that determines the strictly required computation set
to re-execute is detailed in [31]. This algorithm computes the task set which
produces data that will be send to failed processes by analysing the data flow
graph stored in the previous checkpoint of each process. The demonstration that
all lost messages is re-send is based on the properties of Kaapi execution model
and data flow graph’s. The coordination flushes all in-transit messages which
imply that the set of local checkpoints is a coherent global state; so if a failed
process Pfailed should have received a message from process Pi, then there is a
task in Pi that will produce the data consumed by task in Pfailed.
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3.4 Complexity Analysis

In this section we analyse the execution complexity with a fault in comparison
to the complexity of classical coordinated checkpoint protocol [21] that restart
all processes when one is faulty.

The worst case for our protocol is the case where the strictly required com-
putation set of Pi with respect to Pfailed contains all executed tasks on Pi. If it
is true for all processes Pi, then our protocol’s complexity is the traditional pro-
tocols’ complexity plus the complexity to analyse the data flow graph in order
to compute the strictly required computation set. This latter complexity corre-
sponds to the computation of transitive closures on the graphs, which is linear
with respect to the task number in the data flow graph to analyse because they
are acyclic and directed [32].

Nevertheless, for the considered class of parallel applications, our algorithm’s
complexity is lesser than the classical coordinated protocol on two points:

1. The number of involved processes in the restart of Pfailed is less that the
total number of processes that have to restart for the classical protocol.
Moreover, this number may be a constant.

2. The task number in the strictly required computation set is generally less
than the executed tasks.

The point 1 is due to the fact that the knowledge of the data flow graph
permits to know the communications between processes. The point 2 is due
to the nature of the dependencies on some applications, especially in domain
decomposition applications that exhibit good locality of (remote) data accesses
because most of the computations use data from the process itself, only a few
computations require data from other processes. These processes are bordering
processes (according to subdomain relationship) and are in constant number.

4 Simulations

In this section we present simulations of the recovery step of CCK after one pro-
cess failed. We consider an application that solves the Poisson problem on a large
domain to study gains with a large processor number. The application uses the
Jacobi method on a three dimensional domain. The size of the domain is 2, 0483

(64 GB) split in 643 subdomains of 32 KB size. For each computation iteration,
a subdomain update corresponds to one computation task. The execution of this
task requires the neighbour subdomains. On a reference computer (Bi-Opteron
2 GHz CPU with a 2 GB memory), the execution of one computation task lasts
10 ms.

4.1 Checkpoint Period Influence

For this simulation, the 643 submains are distributed on 1,024 processors, so
there are 256 subdomains (64 MB) for each process. In this case, the execution
of one iteration (i.e. the update of all the subdomains) last about 2.5 seconds.
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Fig. 1. Proportion in the worst case of tasks to re-execute and of involved processes
for CCK restart with respect to the classical protocol

The figure 1 shows the proportion, with respect to the classical protocol, of
tasks to re-execute and of involved processes for the CCK restart in relation
to the checkpoint period. The curve shows the worst case values, i.e. when the
failure happens just before the next checkpoint. With a 60-second period, less
than 30 % of the processes are involved and only 6 % of the tasks have to be
re-executed with respect to the classical protocol.

In order to reduce the restart time, the task set to re-execute can be dis-
tributed on all the processors. In this case, the estimated restart time is 3.6
seconds for CCK instead of 60 seconds for the global restart of the classical pro-
tocol. To this time, we have to add the time to identify and to distribute the
strictly required task set. These will be evaluated in future experimentations.

4.2 Processor Number Influence

The two next simulations show the processor number influence on the CCK
restart. The figure 2 shows the proportion of tasks to re-execute in comparison
with the global restart for many checkpoint periods. On the figure 3 is the number
of involved processes. For the scenario application run on 8,192 processors, a 10-
seconds checkpoint period gives less than 10 % of tasks to re-execute and less
than 2,500 involved processes (over 8,192).

Between two checkpoints, the amount of computation and the iteration num-
ber increase proportionally with the processor number. When the processor num-
ber increases, the proportion of tasks to re-execute and the number of involved
processes also increase because the application graph is bigger and holds more
dependencies. To preserve the protocol performances, it is required to decrease
the checkpoint period when the processor number increases. Moreover, it guar-
antee that in case of failure, the lost computation will not be too big [3].
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Fig. 2. Proportion of tasks to re-execute with CCK restart with respect to the classical
protocol for many checkpoint periods in relation to the process number
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5 Conclusion

In this paper we presented the CCK protocol, an improved coordinated check-
point/rollback protocol for parallel applications. Our work originality comes from
the abstract representation provided by the Kaapi library for any applications’
parallel execution. The main contribution is to show how to improve classical
coordinated checkpoint protocol by using a better knowledge of the application
and especially about the dependencies between processes due to communications.
We improved the application restart after failure: 1/ the number of processes in-
volved in the restart is smaller; 2/ the restart time for this partial restart is
shorter. This work is still in progress, additional evaluations and experiments at
grid scale are planned. The final purpose is to provide a framework that adapts
dynamically to available resources [11] using the CCK fault-tolerance protocol.
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Abstract. Delay Tolerant Networks (DTNs) are a sub-class of mobile ad hoc
networks (MANETs). They are mobile wireless networks that feature inherent
connection disruption. In particular such networks are generally non-connected.
In this paper we focus on defining a broadcast service which operate on DTNs.
A number of protocols solving the problem of broadcasting across DTNs have
been proposed in the past, but all of them exhibit a static behavior, i.e. they pro-
vide no control parameter. However, at the application level, flexible broadcast-
ing schemes are desirable. In particular, it is important that the user (the source
of the broadcast message) can control the way the message gets spread across the
network. This paper introduces a new broadcasting protocol dedicated to DTNs,
called Context-Aware Broadcasting Protocol (CABP), which adapts its greedi-
ness according to the “urgency” (priority) of the broadcast message. A formal
presentation of its strategy is proposed and through preliminary experiments, the
cost-e�ectiveness of CABP is enlightened.

1 Introduction

Mobile Ad hoc NETworks (MANETs) are wireless networks composed of nodes able
to spontaneously interconnect with other nodes in their geographical neighborhood.
Communication does not require any networking infrastructure since, in these networks,
nodes communicate directly with each other through the radio medium. To do so, they
rely on wireless networking technologies like IEEE802.11a�b�g�n (Wi-Fi) [1] or, to a
lesser extent, Bluetooth [2]. When using Wi-Fi, nodes can communicate with other
nodes up to a few hundred meters away, in the best case (i.e. when they use Wi-Fi in an
environment free of obstacles to the propagation of radio waves).

� Partially supported by the European FET project AEOLUS.

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 507–519, 2008.
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MANETs are challenging networks mainly because of node mobility. Indeed, node
mobility causes fluctuations of the network topology (which result, from the point of
view of network nodes, in connection disruptions), as well as variations of the quality
of the network links. In particular, unless specific conditions are met (even node dis-
tribution, high node density, non-standard radio signal power, etc) the network is very
likely to be partitioned. When considering these challenges, mobile ad hoc networks
can be referred to as Delay Tolerant Networks (DTNs), as they will in the rest of this
paper.

DTNs have a variety of deployments, including Vehicular Ad hoc NETworks
(VANETs) [3], sensor networks [4], military networks, etc.

This paper tackles the problem of broadcasting data across DTNs. Put in simple
words, broadcasting is the process of sending one message from one node to all other
nodes in the network. It has been extensively studied in the past and many broadcast
protocols dedicated to mobile ad hoc networks have been proposed. Static approaches
like SBA, Multipoint-Relaying [5] provide eÆcient solutions. Furthermore, approaches
originating from distributed computing and complex systems [6] [7] were described.
A recent approach, called MCB, dynamically adapts the broadcast strategy according
to user-defined criteria [8]. Although it does not specifically consider preserving the
network bandwidth, MCB shares some of its design objectives with the protocol pre-
sented in this paper. Unfortunately most of these protocols were designed to operate on
MANETs and, because of the stronger constraints inherent to delay tolerant network-
ing, they fail to operate in the latter context. As a consequence new protocols have to
be developed for the challenging environment proposed by DTNs.

In the specific context of DTNs, the mere definition of broadcasting has to be re-
visited. Indeed in a DTN one cannot ensure that all nodes will be reachable. Therefore
some studies tackle the broadcasting issue in a di�erent manner. In particular, Alba
and al. [9] define the message broadcasting problem as a multi-objective one consisting
of:

– maximizing the number of nodes reached;
– minimizing the duration of the process;
– minimizing the bandwidth utilized.

The work presented in this article considers an extension of this definition which
introduces the key notion of “message urgency”. This new parameter will directly in-
fluence the number of nodes reached, the duration of the broadcast process, and the uti-
lization of the network bandwidth. Basically, the more urgent a message is, the greater
number of nodes should be reached, the faster possible; and the lesser attention should
being paid on bandwidth utilization. We call this broadcast protocol based on mes-
sage urgency the “context-aware broadcast protocol” (CABP), where the urgency of
the broadcast message is viewed as a context information.

The document is organized as follows. Section 2 presents the problem and the CABP
protocol. Next in Section 3 the cost-e�ectiveness of the protocol is analyzed through
simulation. Finally Section 4 concludes and presents further research directions.
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2 Description of the Protocol

This section describes the Context-Aware Broadcast Protocol (CABP) by first indicat-
ing its objectives, then by detailing the strategy that it relies on, and finally by illustrat-
ing its e�ectiveness through simulation.

2.1 Objectives

The design objectives of CABP are threefold:

– It must operate on DTNs, given all the challenges they involve;
– it must provide the user with the ability to control its behavior, for each message

processed;
– it must require little information on the network topology.

These three points are detailed in this section.

A broadcast protocol which operates on DTNs. Upon years, a fair wealth of broadcast
schemes and protocols have been proposed. Most of them were designed to operate on
MANETs. These protocols turn out to be inoperable on DTNs. This has motivated the
development of protocols which make use of node mobility to propagate the message,
such as AHBP-EX [10,11], DFCN [12] and, more generally, to epidemic broadcast
schemes.

A broadcast protocol which is parameterizable. Broadcast protocols most often are
targeted to providing low-level network services. In particular, broadcasting is useful
in the context of routing [13] [14]. In this context, there is no need to control the be-
havior of broadcast protocol. This behavior is defined at the design time and cannot
be altered afterwards. When looking at broadcast services from the applicative point of
view, controllability turns out to be a desirable property. As an example, let us consider
an industrial city surrounded by hazardous companies. In order to ensure a certain de-
gree of safety to the population, companies have the possibility to broadcast messages
across the available ad hoc networks. In the case of the formation of a toxic cloud caused
by one of these companies, it is crucial that a highest-priority message is created and
broadcasted across the networks, and that the propagation of this message is not slowed
down by advertising messages (or more generally messages of a lower importance), or
by cautious network policies whose objective is to control the usage of the bandwidth.

A broadcast protocol which require only one hop of neighborhood information. Ex-
cept from Simple Flooding (a node that receives a broadcast message will forward it
one single time), broadcast protocols require some form of neighborhood knowledge in
order to operate. This knowledge can take the shape of Do I have any neighbors? or
Which are my neighbors? or How far is my closest neighbor?, etc. Wu and Lou [15]
have defined a classification which takes into account this amount of neighborhood
knowledge that is required. They roughly define two classes: centralized and localized
protocols. On the one hand, centralized protocols require global network information.
Since global network information is inherently not achievable in DTNs, centralized pro-
tocols are not suitable to broadcasting in those networks. On the other hand, localized
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protocols require local neighborhood information, that is information on the network
topology in the first and�or second hop around the node that is executing the protocol.
Protocols like AHBP-EX [16] and SBA [17] use 2-hops of neighborhood information.
They exhibit the most e�ective strategies. However in DTNs, because of the poten-
tially very dynamic nature of the network, 2-hops of neighborhood information may be
not be achievable. In the context of DTNs, broadcasting protocols which require only
1-hop of neighborhood information are highly desirable. This is for example the case
of Flooding with Self Pruning. DFCN [12] [18] and CABP are also designed in this
way.

A number of broadcast protocols already meet the aforementioned design objectives;
that is they operate on DTNs, they provide control on the way they behave and they re-
quire 1-hop neighborhood information. Such protocols include probabilistic schemes,
distance and area-based methods [11]. Unfortunately there does not exist guidelines on
how to set their parameters in order to obtain the desired e�ect, if possible. For exam-
ple, the probabilistic scheme (nodes forwarded according to a probability defined by
the user) cannot be applied in the case of the propagation of low urgency messages:
experimentation showed that probabilities below 0.5 cannot be applied. As a matter of
fact, metrics like network coverage or bandwidth utilization do not obey to linear func-
tions of basic parameters such as broadcast probabilities. Recent studies [8] propose a
way of parameterizing the broadcast process so as it will target to certain objectives.
However, contrarily to what is presented hereinafter, these objectives do not consider
the minimization of the network bandwidth.

2.2 Requirements

In order to operate, CABP requires that the nodes must:

– know the IDs of their neighbor nodes;
– locally maintain a set of node IDs associated to every message they receive;

Additionally message headers must contain:

– the ID of the node which sent the message, referred to as the source node (note that
the source node is not the node which initiates the broadcast process, it is the one
which forwards the message);

– the list of IDs of the neighbors of their source node (plus one additional word
indicating the end of the neighbor list);

– one byte coding the urgency of the message;
– three bytes1 coding the number of seconds before the message expires.

The message header should hence be structured as shown on Figure 1. Using 8 bits
for encoding message urgency should provide appropriate precision in the context of
this paper.

1 Three bytes should satisfy the majority of the possible applications since it makes it possible
to keeps messages almost 200 days.
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Message Header

ContentID ID ID ID ID...

ID of source
node

ID of neighbors
of the source node

0.8

Urgency

s(m) N(s(m)) u(m)

Fig. 1. The CABP messages header

2.3 Mathematical Model

In the following, we will assume that given a node n, The ID of n’s neighbors is noted
N(n), and given a message m, the source node of m is given by s(m). Additionally, the
urgency of a message m is given by u(m). It is defined in [0��1]. The greater value for
u(m), the greater urgency for m.

General Principle. In order to make it clear the design objectives for CABP, consider
the two extreme values of importance: 0 and 1.

At the lower bound, an urgency of 0 does not imply any requirement in terms of the
speed and delivery ratio of the message. In this case where the urgency is minimal, a
great attention should be paid to utilizing as little resources as possible. In order to save
resources, nodes forward messages with a probability that decreases when the number
of their neighbors increases. In the case of 0-urgency, a node n forwards the broadcast
message with a probability P(n� m) � 1

�N(n)�
1
a

, given that the set of known neighbors of

a node n is given by N(n). Hence when the neighbor density is high, individual nodes
forward messages with a low probability; but the high number of nodes statistically
ensures that one node will forward the message. a is used as a calibration value for
the protocol. It determines how fast the forward probability decreases. For the sake of
simplicity, in the following we will consider that this probability decreases in a linear
fashion, that is a � 1.

At the upper bound, an urgency of 1 means that the message should be broadcasted
at any cost, as fast as possible, and in such a manner that the delivery ratio is 100%.
In that case, the resources available are utilized regardless of their utilization by other
applications—which are considered of a lesser urgency. Then nodes forward the broad-
cast message with a probability of 1. In this extreme case, the number of neighbors is
not taken into account.

Behavioral Requirements. Formally speaking, the probability P(n� m) that a node n
forwards a broadcast message m depends both on:

– the urgency u(m) of the message m;
– the number �N(n)� of neighbors of the broadcasting node n. �N(n)� is defined in

[1�� ��]. It is not defined below 1 because if a node n has less than one neighbor,
it does not even consider forwarding messages.

P(n� m) must satisfy two requirements, as defined in the following.



512 L. Hogie et al.

On the one hand, by looking at the extreme urgency values 0 and 1 as described
hereinbefore, it comes that P(m� n) must exhibit the following properties at the limits,
as they are defined in the previous section:

�
������
������

lim
u(m)�0

P(m, n)� 1

�N(n)�
1
a

lim
u(m)�1

P(m, n)� 1

On the other hand, it is desirable that P(m� n) is continuous and that altering u(m)
impacts the behavior of the protocol in a linear manner. Indeed the behavior of the
protocol is parameterized by the value of u(m), whose the value is intended to be defined
by a human operator. Ensuring a linear change of behavior of P(m� n) when u(m) varies
is the best way the allow the human operator to have good control of the “urgency
knob”. In mathematical words, P(m� n) must be a linear function of u(m). That is there
must exist two functions f (n) and g(n) so that P(m� n) � f (n) � u(m) � g(n):

Proposed Model. The most straightforward mathematical expression which meets the
aforementioned requirements defines that the probability P(n� m) that a node n forwards
a message m is:

P(n� m) �
1 � u(m)

�N(n)�
1
a

� u(m)

Which can be put in the form f (x) � xa� (x� 1)b, allowing f (x) to morph from a to b,
depending on x.

2.4 Triggers

The mathematical model described in section 2.3 is applicable in two di�erent situ-
ations. First when a node n receives a message m from one of its neighbors, it will
forward it according to a probability P(n� m). Second, when a node n discovers a new
neighbor, it considers forwarding every message it is currently carrying. This forward
happens with the same probability P(n� m).

2.5 Random Assessment Delay

Most often broadcast protocols make use of a Random Assessment Delay (commonly
referred to as the RAD), which allows nodes to “wait before send”. More precisely,
when a node receives a broadcast message and immediately decides to forward it, it
does not radio-transmit at once. Instead it will wait a random amount of time. This
prevents nodes that receive simultaneously the same message from a common neighbor
to forward it at the same moment. A simultaneous collective re-emission would result
in a high risk of packet collision.

Broadcast protocols use a generic method for determining the assessment delay. This
method consists in picking up a random number in [0� max_delay]. CABP propose an
extension of this strategy by benefit from nodes’ neighborhood knowledge. Formally
speaking, when a node n receives a message m from a source node s(m), n computes
an assessment delay on the basis of the neighborhood of s(m). As detailed in Section
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2.2, messages embed (in their header) the ordered list of neighbors’ID N Æ s(m) of their
source node s(m). On reception of a message m, node n determines the o�set o(n� m) of
its own ID in the list of node ID embedded in m. The assessment delay that n will wait
before

d(n� m) � q � o(n� m)

In this equation q “slices” the time, meaning that the forward of a message happens
only after a delay of n � q seconds, where n � �. We suggest q � 0�1s. Note that the
determination of the delay does not depend on the urgency of the message. One may
think that urgent messages should be forwarded with lower delays, but doing this would
increase the risk of packet collision and would finally lead to harmfully lower delivery
ratio.

This technique for the determination of the assessment delay ensures a number of
properties. First, if the transmission of a message lasts less than q seconds, no collision
occurs. Second, the sparser is the network, the faster the message gets disseminated.
In the extreme case (if no competition for the medium happens — no risk of collision
exists) the message is forwarded with no delay.

2.6 Node Memory

CABP makes use of a generic technique which consists in maintaining a node-local
history of the others nodes’ IDs which are known to have received a given message.
Basically a node remembers the nodes to which it sent the message in the past. In
the same manner, it remembers the neighbors of the node which communicated him
the message, since they also received it. This general technique can be applied only
when 1-hop neighborhood information is available. It proves an e�ective way to reduce
the number of transmission of broadcast messages. The technique requires that nodes
individually manage an associative map

idmsg � �idnode1 � idnode2 � ���� idnoden�

which establishes a one-to-n relation from one message ID to a set of node IDs. This
table is updated in the case of message emissions and receptions.

On the one hand, just before a node n emits a message m, it builds a set N(n) consist-
ing of the ID of its neighbors. These neighbors are considered to be actual recipients of
the message. Then node n associates N(n) to the ID of the message m, by storing the
relation m � N(n) in its local associative table. Also the IDs in N(n) are embedded into
the message header.

On the other hand, on reception of a message m, a node n2 obtains a list N(s(m)) of
the neighbors of its source node s(m), as well as the ID of s(m). Then node n2 stores the
relation

m � N Æ s(m) 	 �s(m)�

into its local associative table.
The knowledge provided by the associative table is used when a node considers

forwarding a message. Before transmitting, it tests if there exists at least one of its
neighbors whose the ID is not yet stored in the set associated to the message’s ID. If
one (or more) of such neighbor is found, the message is forwarded.
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The lifetime of the set of IDs for a given message is the same as the lifetime of the
message. As a consequence, when a message expires, all the local sets associated to it
are erased from the memory of all nodes.

3 Experimentation

The behavior of CABP is investigated through simulation. This section first describes
the tools that we use as well the conditions under which CABP was tested. Then pre-
liminary results are presented.

3.1 Simulation Environment

CABP was prototyped and studied using the Madhoc wireless network simulator. Mad-
hoc was initially targeted at the design and experimentation of broadcasting protocols.
As such, it provides a framework that is suited to their development, and it comes with
a set of tools that simplifies the monitoring of such highly distributed applications. In
addition to that, it o�ers a set of mobility models allowing the simulation of a variety
of environmental conditions.2

Our simulation campaign relied on the following parameters. The network is com-
posed of 500 nodes evolving in a bounded squared area of 1km2. The nodes mobility
obeys to the rules defined by the Human Mobility Model [19]. Briefly, the Human Mo-
bility Model defines that the simulated area exhibits a set of spots. A spot is a circular
area surrounded by a wall (walls constitute obstacles to the propagation of radio waves).
Within a spot, the nodes move in random directions. When a node gets out of a spot,
it chooses the closest spot that it has not yet visited. Thus every node maintains a lo-
cal history of the spots they visit. Once all spots have been visited, the local history is
cleared.

Although all nodes move independently from one another, the human mobility model
permits the emergence of mobility patterns such as temporary group mobility, lines
and clusters of nodes. The human mobility model was chosen because of its ability to
reproduce such phenomenons.

The network environment we considered consists of 50 spots evenly located across
the simulation area. The distance between spots is constrained so as it cannot be lower
than 50m. Each spot has a radius randomly chosen between 20 and 30 meters. The graph
of the initial network is represented in Figure 3. The simulation considers the broadcast
of one single message, from one node to as many destination nodes as possible. Note
that the initiator node is chosen so that it is in the middle of the longest path in the
network graph.

3.2 Results

In order to illustrate the behavior of the CABP protocol. We will consider the following
metrics:

2 The source code of the Madhoc simulator is available at the following web address:
���������	������������������	�������
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number of nodes 500
number of spots 50
mininum dist between spots 50m
spot radius randomly chosen in [20, 30]m
simulation area surface 1km2

simulation area shape square
message urgency {0, 0.3, 0.6, 1}

Fig. 2. The parameters used for the experimentation campaign

Fig. 3. The mobility model which rules the dynamics of the network defines a number of center of
interests (called spots) where the nodes go to and stay for a while. A few parameters controlling
the mobility permits to define several realistic scenarios of human mobility.

– the evolution of the coverage upon time;
– the number of message emissions upon time (this reflects the utilization of the

bandwidth);
– the number of emissions carried out for reaching a given coverage;
– the evolution of the memory requirements upon time.

Bandwidth Utilization�Time. The number of emissions is an important measure be-
cause it has a direct impact on the network bandwidth which is used along the broad-
casting process. The number of emissions has to be kept as low as possible, taking into
account the importance of the message: the most important it is, the less care should
be taken to the number of emissions. Figure 4 shows that a high urgency leads to nu-
merous emissions, but also that it has the desirable e�ect to broadcast the message
fast. However when reducing the importance of the message, the number of emissions
dramatically lessens. This result indicates that the importance of a message should be
carefully chosen. Setting a too high importance leads to a high bandwidth utilization,
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Fig. 4. If message urgency does not have such a great impact on the time required for message
dissemination (makespan), it does seriously impact the bandwidth utilization. As illustrated here
low-urgency messages require significantly less bandwidth to get disseminated.
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Fig. 5. The evolution of the delivery ratio depends on the message urgency. Less important mes-
sages are broadcasted using a smooth strategy whose aim is to use little network resources. A
consequence is that their complete dissemination takes longer.
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Fig. 6. The utilization of memory local to every node directly depends on the velocity of the
broadcasting process. This figure illustrates the fact that the way nodes forward the broadcast
messages that they hold when they meet new neighbors depends on message urgency.

while setting too low importance slightly delays the message, still ensuring a complete
dissemination of the message.

Delivery Ratio�Time. Figure 5 shows the evolution of the delivery ratio upon time. The
delivery ratio is the ratio of the nodes which has received the message. The simulation
process is considered terminated as soon as a delivery ratio reaches a value of 1 (the
message has been delivered to every node). What counts is the time required to reach
a delivery ratio of 1. The more important a message is, the faster a delivery ratio of
1 should be reached. Figure 5 shows that when the importance of the message is 1,
a high delivery ratio is reached fast. It also shows that this velocity of the broadcast
process is not exactly proportional to the importance of the message. This attests that
the probability function has room for improvement.

Note that there is no guarantee that the broadcasting process will reach every nodes.
Theoretically the probability that a given node never meets another node which has
received the message is not null, although insignificant. Figure 5 shows the evolution
of the delivery ratio upon time. The delivery ratio is the ratio of the nodes which has
received the message. The simulation process is considered terminated as soon as a
delivery ratio reaches a value of 1 (the message has been delivered to every node).
What counts is the time required to reach a delivery ratio of 1. The more important a
message is, the faster a delivery ratio of 1 should be reached. Figure 5 shows that when
the importance of the message is 1, a high delivery ratio is reached fast. It also shows
that this velocity of the broadcast process is not exactly proportional to the importance
of the message. This attests that the probability function has room for improvement.
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Note that there is no guarantee that the broadcasting process will reach every nodes.
Theoretically the probability that a given node never meets another node which has
received the message is not null, although insignificant.

Local Memory Utilization. Figure 6 shows that when broadcasting in a network com-
posed of 500 nodes moving in a 1 square kilometer area, the memory size required to
store the local history for one message is significantly less than 1Kb. This value assumes
that the ID of the nodes is stored on 6 bytes, as it is the case when using MAC or IPv6
addresses as nodes ID. Even if all nodes got in contact with all other nodes, they would
have to store 500 IDs, which would require 3Kb of memory.

4 Conclusion and Future Works

This paper introduced the Context-Aware Broadcasting Protocol (CABP). Unlike most
existing broadcast protocols, CABP is to provides a parameterizable broadcasting pro-
tocol for Mobile Ad hoc NETworks (MANETs) and Delay Tolerant Networks (DTNs).

We experimentally demonstrated that the “urgency” parameter of CABP provides the
desired behavior. Indeed, the less urgent is the message, the less resources are utilized in
terms of bandwidth and memory usage. On the contrary, the more urgency the message
has, the quicker the broadcast process is, regardless of the resource utilized to perform it.

In addition to this, CABP proceeds regardless of the network density, which make it
usable in any network condition, and in particular it can use employed in the specific
context of the DTNs.

Further works include the refinement of the probabilistic model for the protocol, so
that its behavior will be more linear, i.e. more controllable by the user.
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Abstract. Queueing networks are known to provide a useful modeling
and evaluation tool in computer and telecommunications. Unfortunately,
realistic features like finite capacities, retrials, priority, ... usually compli-
cate or prohibit analytic solutions. Numerical and approximate compu-
tations as well as simplifications and performance bounds for queueing
networks therefore become of practical interest. However, it is indispens-
able to delimit the stability domain wherever these approximations are
justified.

In this paper we applied for the first time the strong stability method
to analyze the stability of the tandem queues [M/G/1 → ./M/1/1]. This
enables us to determine the conditions for which the characteristics of the
network with retrials [M/G/1/1 → ./M/1/1], can be approximated by
the characteristics of the ordinary network [M/G/1 → ./M/1/1] (with-
out retrials).

Keywords: Queueing networks, tandem queues, Stability, Retrials,
Blocking, Markov chain.

1 Introduction

Tandem queueing systems arise in mathematical modeling of computer and com-
munication networks, manufacturing lines and other systems where customers,
jobs, packets, ... , are subjected to a successive processing. Tandem queues can
be used for modeling real-life two-node networks as well as for validation of gen-
eral networks decomposition algorithms [6]. So, tandem queueing systems have
found much interest in literature. The survey of early papers on tandem queues
was done in [8]. The most of these papers are devoted to the exponential queue-
ing models. Over the last two decades, efforts of many investigators in tandem
queues were directed to study a complex two tandem queues. In particular, when
priority, retrials, non-exponentiality of the service, ... arises in this networks. In
this cases more often than not numerical and approximate computations as well
as simplifications and performance bounds for queueing networks therefore be-
come of practical interest. However, it is indispensable to delimit the stability
domain wherever these approximations are justified.

The stability analysis of queueing networks have received a great deal of at-
tention recently. This is partly due to several examples that demonstrate that the
usual conditions ”traffic intensities less than one at each station” are not sufficient

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 520–529, 2008.
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for stability, even under the well-known FIFO politics. Methods for establishing
the stability of queueing networks have been developed by several authors, based
on fluid limits [2], Lyaponov functions [5], explicit coupling (renovating event and
Harris chains), monotonicity, martingales, large deviations, ....

The actual needs of practice require quantitative estimations in addition to
the qualitative analysis, so in the beginning of the 1980’s, a quantitative method
for studying the stability of stochastic systems, called strong stability method
”also called method of operators” was elaborated [1] (for full particulars on this
method we suggest to see [9]). This method is applicable to all operation research
models which can be governed by Markov chains.

In this article, we follow the strong stability approach to establish the stability
of a two tandem queue with blocking in order to justify the approximation
obtained by E. Moutzoukis and C. Langaris in [13].

The important feature and main originality of this work is that : since we es-
tablish the strong stability of the two tandem queues without intermediate space
, the formulas for the characteristics of the ordinary model (without retrials) can
be used to deduce the characteristics for the retrial model.

2 The Real Model

We consider a two single-server queues in tandem with blocking and retrials.
Customers arrive at the first station, one a time, according to a poisson distri-
bution with parameter λ. Each customer receives service at station 1 and then
proceeds to station 2 for an additional service. There is no intermediate waiting
room, so a customer whose service in the station 1 is completed can not proceed
to the second station if the later is busy. Instead, the customer remains at station
1, so the last is blocked until station 2 becomes empty. The arriving customer
who find the station 1 busy or blocked behave like retrial customer, he does not
join a queue but he is placed instead in a hypothetical retrial queue of infinite
capacity and retries for service under the constant retrial policy. According to
this policy, the parameter of the exponential time of each customer in the retrial
group is μ

n , where n is the size of the retrial group. Thus, the total intensity is μ
(for the different interpretation of the constant retrial policy see Farahmand [4]).
If the server of station 1 is free at the time of an attempt, then the customer at
the head of the retrial group receives service immediately. Otherwise, he repeats
his demand later.

The service times at stations 1 and 2 are independent and arbitrarily dis-
tributed random variables with probability density functions bi(x), distribution
functions Bi(x) and finite mean values μi, for i = 1, 2, respectively.

2.1 The General Process

Let X(t) represent the number of customers in the retrial box at time t, and for
l = 1, 2:
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ξl(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if the lth server is idle at time t.

1 if the lth server is working at time t.

2 if the lth server is blocked at time t.

the considered model is completely describe by the regenerative process V (t) =(
X(t), ξ1(t), ξ2(t)

)
.

2.2 The Embedded Markov Chain Xn

Denote by dn, n ∈ N, the instant of the nth departure from station 1. We assume,
without loss of generality, that d0 = 0. If we denote Vn = V (dn + 0), then it is
clear that: Vn =

(
X(dn + 0), ξ1(dn + 0), ξ2(dn + 0)

)
= (Xn, 0, 0).

So, the process Vn is a semi regenerative process with embedded Markov
renewal process (X,D) = {Xn, dn : n ∈ N}. The last process is an irreductible
and aperiodic Markov chain with the probability matrix P = {pij}, where:

pij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫∞
0

(λt)j

j! e−λtf0(t)dt, for i = 0,

∫∞
0

(λt)j−i

(j−i)! e
−λtf1(t)dt+

+
∫∞
0

(λt)j−i+1

(j−i+1)! e
−λtf2(t)dt, for 1 ≤ i < j + 1,

∫∞
0

e−λtf2(t)dt, for i = j + 1,

0, otherwise.

where :
f0(t) =

∫ ∞
0 λe−λw d

dt
(B1(t)B2(t + w)) dw,

f1(t) =
∫ ∞
0 λe−(λ+μ)w d

dt
(B1(t)B2(t + w)) dw,

f2(t) =
∫ ∞
0 μe−(λ+μ)w d

dt
(B1(t)B2(t + w)) dw.

We define the function: ψu(s) =
∫∞
0

ue−uwdw
∫∞
0

e−sxdx (B1(x)B2(x+ w)) and
we denote :

υu = −dψu(s)
ds |s=0; ρ∗ = λ

λ+μ + λυλ+μ, πk = limn→∞ P [Xn = k] , k ∈ N,
If the intensity of the system ρ∗ < 1, the Markov chain Xn is positive recur-

rent. In this case, the generating function Π(z) =
∑∞

n=0 πnz
n is given by:

Π(z) =
zψλ(λ − λz)−

(
λz+μ
λ+μ

)
ψλ+μ(λ− λz)

z −
(

λz+μ
λ+μ

)
ψλ+μ(λ − λz)

π0, (1)

where: π0 = lim
n→∞P [Xn = 0] =

1− ρ∗

1− ρ∗ + λυλ
. (2)

3 The Ideal Model

We assume that the mean retrial rate in our real model tends to infinity. So,
the customers in the retrial orbite try continuously to find a position for service
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and they become ordinary customers. It means that if μ → ∞, our real model
becomes the simple model of two queues in tandem without intermediate room,
it will be referred to as an ideal model.

Now, let X(t) denote the number of customers in the first queue of the ideal
model at time t and for l = 1, 2 we consider:

ξ
l
(t)

⎧
⎪⎪⎨

⎪⎪⎩

0 if the lth server is idle at time t.

1 if the lth server is working at time t.

2 if the lth server is blocked at time t.

Our ideal model is completely described by: V (t) =
(
X(t), ξ

1
(t), ξ

2
(t)
)
.

3.1 The Embedded Markov Chain Xn

It is clear that Xn = (X,D) = {Xn, dn, n ≥ 0} is the embedded Markov renewal
process of the semiregenerative process

(
X(t), ξ

1
(t), ξ

2
(t)
)
. We suppose that the

intensity of the system ρ < 1, then Xn is an irreductible and aperiodic recurrent
Markov chain with transition probability matrix P =

{
pij

}
, where:

pij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫∞
0

(λt)j

j! e−λtf0(t)dt, i = 0,

∫∞
0

(λt)j−k+1

(j−k+1)! e
−λtdt (B1(t)B2(t)) , 1 ≤ i ≤ j + 1,

0, otherwise.

In this case the generating function of the v.a. X is defined as:

Π(z) = limμ→∞Π(z) = zψλ(λ−λz)−ψ(λ−λz)
z−ψ(λ−λz) π0.

π0 = 1−ρ
1−ρ+λυλ

, ψ(s) =
∫∞
0 e−stdt (B1(t)B2(t)) ,

ρ = −λdψ(s)
ds |s=0= λ

∫∞
0

tdt (B1(t)B2(t)) , We suppose that the retrial
rate tends to infinity and to characterize the proximity of the ideal and real
model we define the variation distance: W =

∫ +∞
0 | f2(t)− d

dt (B1(t)B2(t)) | dt.

4 The Strong Stability

This section contains preliminary results that are needed in the constructive
proofs of the main theorems, given in the next sections. Let (E, ε), a measurable
space, where ε is a σ-algebra denumbrably engendered. We consider a homoge-
neous Markov chain Y = (Yt, t ≥ 0) in the space (E, ε), given by a transition
kernel P(§,A), § ∈ E ,A ∈ ε and having a unique invariant probability ν.

Denote by mε(mε+) the space of finite (nonnegative) measures on ε and by
fε (fε+) the space of bounded measurable (nonnegative) functions on E. We
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associate to every transition kernel P (x,A) in the space of bounded operators,
the linear mappings LP and L∗P defined by :

LP : ε→ mε L∗P : fε→ fε

μ→
∫

E
μ(dx)P (x,A), A ∈ ε f →

∫

E
P (x, dy)f(y), x ∈ E.

We also associate to every function f ∈ fε the linear functional f : μ→ μf such
that: μf =

∫

E μ(dx)f(A); x ∈ E, A ∈ ε.
We denote by f ◦ μ the transition kernel defined as the tensorial product of

the measure μ and the measurable function f having the form:
f(x)μ(A); x ∈ E, A ∈ ε.

We consider, the Banach space M = {μ ∈ mε/‖μ‖ <∞}, in the space mε de-
fined by a norm ‖.‖ compatible with the structural order in mε, i.e. :

‖μ1‖ ≤ ‖μ1 + μ2‖, for μi ∈M+, i = 1, 2,

‖μ1‖ ≤ ‖μ1 − μ2‖, for μi ∈M+, i = 1, 2;μ1⊥μ2,

| μ | (E) ≤ k‖μ‖, for μ ∈M,

where | μ | is the variation of the measure μ, k is a finite constant and M+ =
mε+ ∩M .

The family of norms ‖μ‖v =
∫

E v(x) | μ | (dx), ∀μ ∈ mε, where, v is a
measurable function (not necessary finite) bounded from bellow by a positive
constant, satisfy the above conditions. With this family of norms we can induce
on the spaces fε,M the following norms:

‖P‖v = sup{‖μP‖v , ‖μ‖v ≤ 1 = sup
x∈E

1

v(x)

∫

E

| P (x, dy) | v(y), (3)

‖f‖v = sup{| μf |, ‖μ‖v ≤ 1} = sup
x∈E

1

v(x)
| f(x) | . (4)

Definition 1. [1] We say that the Markov chain Y , with a bounded transition
kernel P, and a unique stationary measure ν, is strongly v-stable if every stochas-
tic kernel Q in the neighborhood {Q : ‖Q−P‖� < ε} admits a unique stationary
measure ν and :

‖ν − ν‖v → 0 when ‖Q − P‖v → 0

Theorem 1. [1] The Harris recurrent Markov chain Y with a bounded tran-
sition kernel P, and a unique stationary measure ν, is strongly v-stable, if the
following conditions holds:

1. ∃ α ∈ M+, ∃ h ∈ fε+/πh > 0, α I = 1, αh > 0,
2. T = P − h ◦ α ≥ 0,
3. ∃ γ < 1/ Tv(x) ≤ γv(x), ∀x ∈ E,

where I is the function identically equal to 1.
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Theorem 2. Under the conditions of the theorem (1) and if Δ (the deviation
of the operator transition P) verifying the condition ‖Δ‖v < 1−γ

C , we have:
‖ν − ν‖v ≤ ‖Δ‖v‖ν‖vC

(
1− γ − C‖Δ‖v

)−1
, C = 1 + ‖I‖v‖ν‖v.

5 Stability of the Ideal Model

We define on E = N the σ-algebra ε engendered by the set of all singletons
{j}, j ∈ N. We consider the function v(k) = βk, β > 1 and we define the
norm: ‖μ‖v =

∑
j∈N v(j) | μ | ({j}), ∀μ ∈ mε. We also consider the measure

α({j}) = αj = p0j , and the measurable function h(i) =
{

1 if i = 0,
0 otherwise. .

Using the assumptions we obtain the following lemmas

Lemma 1. Let π the stationary distribution of the Markov chain Xn, then:

αI = 1, αh > 0 and απ > 0.

Proof. It is easy to show that :
• αI =

∑∞
j=0 α({j}) =

∑∞
0 poj = 1. • αh =

∑∞
j=0 α({j})h(j) = p00 > 0.

• πh =
∑∞

i=0 πih(i) = π0 = 1−ρ
1−ρ+λυλ

> 0.

Lemma 2. Suppose that the following conditions holds:

1. λ
∫ +∞
0

ud (B1(u)B2(u)) < 1, (Geometric ergodicity condition).
2. ∃a > 0/

∫∞
0 eaud (B1(u)B2(u)) < +∞, ( Cramer condition).

3.
∫ +∞
0 t | f2(t)− d

dt (B1(t)B2(t)) | dt < W
λ .

then, ∃β > 1 such that:

– ψ(λ−λβ)
β < 1. •

∫ +∞
0

e(λβ−λ)t | f2(t)− d
dt (B1(t)B2(t)) | dt < βW.

Where W is given by the formula (3.1).

Proof.
•We consider the function: K(β) = ψ(λ−λβ). K is continuous differentiable in
[1, a], so: K ′(β) = λ

∫ +∞
0

te(λβ−λ)tdt (B1(t)B2(t)) ,
K ′′(β) = λ2

∫ +∞
0

t2e(λβ−λ)tdt (B1(t)B2(t)) ,
then, K is a strictly convex function in [1, a]. We define the function :

L(β) = K(β)
β = 1

β

∫ +∞
0 e(λβ−λ)tdt (B1(t)B2(t)) .

For β = 1, L(1) = ψ(0) = 1 and for 1 < β < a , L′(β) = λβψ(λ−λβ)−ψ(λ−λβ)
β2 ,

From the first assumption we have:
L′(1) = λψ′(0)− ψ(0) = λ

∫ +∞
0

ud (B1(u)B2(u))− ψ(0) < 0.
So in the vicinity of 1, L is decreasing. Then, ∃β > 1 such that:
L(β) < L(1)⇒ L(β) < 1, so : ∃β > 1 : ψ(λ−λβ)

β < 1. Moreover, let’s consider:

β0 = sup {β : ψ(λβ − λ) < 1} , 1 < β0 < +∞. (5)
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The convexity of the function K(β) imply that :

ψ(λβ − λ) < β, ∀β ∈ ]1, β0 ] ⇒ ψ(λβ − λ) < β0,

• We put : ϕ(λβ − λ) =
∫ +∞
0

e(λβ−λ)t | f2(t) − d
dt (B1(t)B2(t)) | dt and we

consider the function Ω(β) = ϕ(λ − λβ).
For β = 1 : Ω(1) = ϕ(0) =

∫ +∞
0
| f2(t)− d

dt (B1(t)B2(t)) | dt = W.

For 1<β<a,Ω is continuous and differentiable, so:Ω′(β)= βϕ′(λβ−λ)−ϕ(λβ−λ
β2 .

The functions ϕ and ϕ′ are continuous, then:

lim
β→1+

Ω′(β) = lim
β→1+

[
λϕ′(λβ − λ) − ϕ(λ − λβ)

]
= λϕ′(0+) − ϕ(0+) (6)

ϕ′(0+) =
∫ +∞
0 t | f2(t) − d

dt (B1(t)B2(t)) | dt and ϕ(0+) = W . From the third
assumption we have :

λ
∫ +∞
0

t | f2(t)− d
dt (B1(t)B2(t)) | dt < W,

so Ω′(1+) < 0 then ϕ(β) − ϕ(1) < 0 in the vicinity of 1. It means that ∃β > 1
such that Ω(β) = ϕ(λβ−λ)

β < W.

Lemma 3. The operator T = P − h ◦ α is nonnegative and ∃γ < 1, such that
Tv(k) ≤ γv(k) for all k ∈ N.

Proof. We have T (i, {j}) = T ij = pij − h(i)α({j}), so :

T ij =
{

0, if i = 0,
pij ≥ 0, if i ≥ 1. ⇒ T is non negative.

Let’s compute Tv(k):
If k = 0, we have Tv(0) = 0. If k �= 0, we have :

Tv(k) =
∑

j≥0

βjTkj , 1 ≤ k ≤ j + 1,

= βk−1

∫ +∞

0

e(λβ−λ)tdt (B1(t)B2(t)) = βk−1ψ(λ− λβ).

We consider that γ = ψ(λ−λβ)
β . From the lemma (2), ∃β ∈]1, β0] such that γ < 1.

So, there exists β with 1 < β ≤ β0 such that:

Tv(k) ≤ γv(k), ∀k ∈ N, γ =
ψ(λ − λβ)

β
< 1. (7)

Lemma 4. The norm of the transition kernel of the chain Xn is bounded.

Proof. We have: ‖P‖ = ‖T + h ◦ α‖v ≤ ‖T‖v + ‖h‖v‖α‖v.

•‖T‖v = sup
k≥0

1
v(k)

∑

j≥0

v(j) | T kj |= γ < 1,

•‖h‖v = sup
k≥0

1/v(k) =
1
βk

= 1,
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•‖α‖v =
∑

j≥0

βj

∫ ∞

0

(λt)j

j!
e−λtf0(t)dt =

∫ ∞

0

e(βλ−λ)tdF (t) <∞,

with F (t) =
∫ ∞

0

λe−λw (B1(t)B2(t + w)) dw.

So: ‖P‖v ≤ 1 + β0 <∞.

Theorem 3. In the two tandem queues with blocking, the Markov chain Xn

representing the number of customers in the first station at the instant of the nth

departure from the first station, is strongly v-stable with respect to the function
v(k) = βk for all 1 < β ≤ β0. Where β0 is given by the formula (5).

Proof. The proof arises from the theorem 1. Indeed, all necessary conditions to
establish the v-strong stability required in the theorem 1 are satisfied and are
given by the above lemmas (1), (3), (4).

6 Deviation of the Transition Operator

Lemma 5. Let P (resp. P) be the transition operator associate to the Markov
chain Xn ( resp. Xn). Then:

∥
∥P − P

∥
∥

v
≤W +

∫∞
0

e(βλ−λ)tf1(t)dt.

Proof. We have :

∥
∥P − P

∥
∥

v
= sup

k≥0

1
v(k)

∑

j≥0

v(j) | pkj − pkj |, sup
k≥0

1
βk

∑

j≥0

βj | pkj − pkj |,

= sup

⎛

⎝0, sup
k>0

1
βk

∑

j≥0

βj | pkj − pkj |

⎞

⎠ ,

We put Q(k) =
∑

j≥0 β
j
∣
∣pkj − pkj

∣
∣ . If k �= 0 we have 1 ≤ k ≤ j + 1 , so :

Q(k) =
∑

j≥0

βj | pkj − pkj |=
∑

j≥k−1

βj | pkj − pkj |,

= βk−1 | pkk−1 − pkk−1 | +
∑

j≥k

βj | pkj − pkj |,

≤ βk

[∫∞
0

e(βλ−λ)t
∣
∣f2(t)− d

dt (B1(t)B2(t))
∣
∣ dt

β
+
∫ ∞

0

e(βλ−λ)tf1(t)dt

]

.

Using the lemma (2), we obtain:∥
∥P − P

∥
∥

v
≤W +

∫∞
0

e(βλ−λ)tf1(t)dt, with: limμ→∞
∫∞
0

e(βλ−λ)tf1(t)dt = 0.

7 Deviation of the Stationary Distribution

Theorem 4. Let’s π (resp. π) the stationary distribution of the real model,
[M/G/1/1→ ./G/1/1] with retrials, (resp. the ideal model [M/G/1→ ./G/1/1]).
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For 1 < β < β0 and ‖Δ‖v < 1−γ
1+c0

, we have:

‖π − π‖v ≤ c0(1 + c0)‖Δ‖v
(
1− γ − (1 + c0)‖Δ‖v

)−1
, where c0 = ψλ(λβ−λ)−γ

1−γ .

Proof. From the theorem (2) we have :

‖π − π‖v ≤ ‖Δ‖v‖π‖vC
(
1− γ − C‖Δ‖v

)−1
.

Or we have : ‖π‖v =
∑

j≥0 v(j)π = Π(β)

= βψλ(λβ−λ)−ψ(λβ−β)
β−ψ(λβ−λ) = ψλ(λβ−λ)−γ

1−γ = c0.

and ‖I‖v = supk≥0
1

βk = 1 So:

C = 1 + ‖I‖v‖π‖v = 1 + ψλ(λ−λβ)−γ
1−γ = 1 + c0. Finally, we obtain :

‖π − π‖v ≤ c0(1 + c0)‖Δ‖v
(
1− γ − (1 + c0)‖Δ‖v

)−1
.

8 Conclusion

This work is a first attempt to prove the applicability of the strong stability
method to a queueing networks. We have obtained the conditions under which
the characteristics of the tandem queues [M/G/1/1→ ./M/1/1] with retrials
can be approximated by those of the ordinary network [M/G/1→ ./M/1/1]
(without retrials). This allow us to justify the approximation established by E.
Moutzoukis and C. Langaris in [13].

In term of prospect, we propose to work out an algorithm which checks the
conditions of approximation of these two tandem queues and determine with
precision the values for which the approximation is possible. It will also determine
the error on the stationary distribution which had with the approximation.

References

1. Aı̈ssani, D., Kartashov, N.V.: Ergodicity and stability of Markov chains with re-
spect to the topology in the space of transition kernels. Doklady Akademii Nauk
Ukrainskoi SSR seriya A 11, 3–5 (1983)

2. Dai, J.G.: On positive Harris recurrence of multiclass queueing networks: A unified
approch via limite fluid limit models. Annals of Applied Probability 5(1), 49–77
(1993)

3. Dallery, Y., Gershwin, B.: Manufacturing flow line systems: a review of models and
analytical results. Queueing systems 12, 3–94 (1992)

4. Faramand, F.: Single line queue with repeated demands. Queueing Systems 6, 223–
228 (1990)

5. Fayolle, G., Malyshev, V.A., Menshikov, M.V., Sidorenko, A.F.: Lyaponov func-
tions for Jackson networks. Rapport de recherche 1380, INRIA, Domaine de
Voluceau, LeChenay (1991)

6. Ferng, H.W., Chang, J.F.: Connection-wise end-to-end performance analysis of
queueing networks with MMPP inputs. Performance Evaluation 43, 362–397 (2001)

7. Foster, F.G., Perros, H.G.: On the blocking process in queue networks. Eur. J.
Oper. Res. 5, 276–283 (1980)



Stability of Two-Stage Queues with Blocking 529

8. Gnedenko, B.W., Konig, D.: Handbuch der Bedienungstheorie. Akademie Verlag,
Berlin (1983)

9. Kartashov, N.V.: Strong stable Markov chains. VSP. Utrecht. TBIMC. Scientific
Publishers (1996)

10. Karvatsos, D., Xenios, N.: MEM for arbitrary queueing networks with multiple
general servers and repetative service blocking. Performance Evaluation 10, 169–
195 (1989)

11. Kerbache, L., Gregor, S.J.M.: The generalized expansion method for open finite
queueing networks. Eur. J. Oper. Res. 32, 448–461 (1987)

12. Li, Y., Cai, X., Tu, F., Shao, X., Che, M.: Optimisation of tandem queue systems
with finite buffers. Computers and Operations Research 31, 963–984 (2004)

13. Moutzoukis, E., Langaris, C.: Two queues in tandem with retrial customers. Prob-
ability in the Engineering and Informational Sciences 15, 311–325 (2001)

14. Pellaumail, J., Boyer, P.: Deux files d’attente á capacité limitée en tandem. Tech.
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Abstract. Detecting network intrusions is becoming crucial in com-
puter networks. In this paper, an Intrusion Detection System based on
a competitive learning neural network is presented. Most of the related
works use the self-organizing map (SOM) to implement an IDS. However,
the competitive neural network has less complexity and it is faster than
the SOM, achieving similar results. In order to improve these results,
we have used a repulsion method among neurons to avoid overlapping.
Moreover, we have taken into account the presence of quantitative data
in the input data, and they have been pre-processed appropriately to be
supplied to the neural network. Therefore, the current metric based on
Euclidean distance to compare two vectors can be used. The experimen-
tal results were obtained by applying the KDD Cup 1999 benchmark
data set, which contains a great variety of simulated networks attacks.
Comparison with other related works is provided.

Keywords: Competitive learning, network security, intrusion detection
system, data mining.

1 Introduction

As communications among computer networks grow, computer crimes increase
and network security becomes more difficult. Intrusion detection systems (IDS)
monitor network traffic to detect intrusions or attacks. The two main detection
methods of an IDS are misuse detection and anomaly detection. The misuse
detection method detects attacks storing the signatures of previously known at-
tacks. This method fails detecting new attacks and to include them, the signature
database has to be manually updated. Anomaly detection is another approach,
where a normal profile is established. Then, deviants from normal profile are
detected as attacks. Some anomaly detection systems using data mining tech-
niques such as clustering, support vector machines (SVM) and neural network
systems have been proposed [1,2,3]. The artificial neural networks provide many
advantages in the detection of network intrusions [4]. Neural network models
have usually been applied for misuse detection and anomaly detection.

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 530–537, 2008.
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The self-organizing map (SOM) has been used in anomaly detection since
it constitutes an excellent tool for data mining, knowledge discovery and pre-
serves the topology of the input data [5]. However, the SOM has an important
drawback: the computation time. Indeed, the number of neurons decreases the
network’s performance. In this paper, we have used a competitive learning neural
network to build an IDS, since this kind of neural network has less complexity
than the SOM and the results achieved are similar to that achieved with SOMs.
Moreover, we have taken into account the presence of symbolic data among the
input data, which have to be processed before being supplied as input data to
the neural network.

The IDS based on a competitive learning neural network (CLNN) was trained
with the KDD Cup 1999 benchmark data [6,7]. This data set has served as one of
the most reliable benchmark data set that has been used for most of the research
work on intrusion detection algorithms [8]. It consists of connection records pre-
processed from network traffic, where several attacks were simulated.

The rest of this paper is organized as follows. In the next Section, we provide
a description of the proposed approach. Section 3 presents some experimental
results obtained after testing our IDS with the KDD Cup 1999 benchmark.
Then, these results are compared to other related works. Section 4 concludes the
current paper.

2 Competitive Model

The learning process of a competitive neural network can be supervised or un-
supervised. In the supervised learning process, the input data must be labeled,
whereas the unsupervised learning process can use unlabelled input data. Unsu-
pervised learning algorithms have been extensively used to face data clustering
over several decades [9]. We have built our IDS facing the problem of distin-
guishing attacks from normal records as a clustering problem, where we have as
much clusters as different connection types we want to detect.

The proposed competitive learning neural network (CLNN) consists of a single
layer of n neurons, where each neuron has assigned a vector of m features,
called weight vector. The weight vectors are initialized with randomly selected
input patterns. The output neurons compete among themselves when an input
pattern is presented. The neuron with the smallest Euclidean distance between
its weight vector wi and the current input pattern x becomes the winner. The
winner’s weight vector is updated in order to approach the current input pattern,
following a learning rate α decreasing with time. The weight vector of the winner
is updated using the competitive learning rule:

wr(t+ 1) = wr(t) + α(t)[x(t) − wr(t)] (1)

where α is the learning rate, wr is the weight vector of the winning neuron r, x is
the input data, and t is the current time-step. The winner neuron represents the
closest cluster to the current input pattern and moves its weight vector to the
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input pattern. Therefore, after training each output neuron represents a cluster
of the input data set, and their weight vectors are in the centre of each cluster.

One shortcoming that arises is that different clusters can overlap, involving
bad clustering of the input data. For that reason, we have used a repulsion
rule to the winner on the rest of neurons. Thus, once the winner is updated,
the rest of neurons are moved further away from the winner as long as the
module of the difference between their weight vector wi and the winner’s weight
vector wr is less than a certain threshold Δ, as shown in (2). The neurons that
satisfy the previous condition, are moved further away from the winner neuron
guided by a repulsion rate β, as given in (3). This way, although it does not
guarantee optimal separation among clusters, it does avoid being clusters less
than a specified distance Δ.

‖wr − wi‖ < Δ (2)

wi(t+ 1) = wi(t)− β(t)[wr(t)− wi(t)] (3)

In order to compare the weight vectors with the input data, the Euclidean
distance has been used. Obviously, this distance measure can just be applied
to numerical data. However, in many applications symbolic data can exist in
addition to numerical data. That is the case of the Intrusion Detection Systems,
where we can find the values TCP, UDP i.e., as symbolic data from the ’pro-
tocol type’ feature. In such conditions, many related works have mapped these
qualitative data into quantitative values [10,8,11]. Although using this mapping
we can apply the Euclidean distance, symbolic values are also assigned a distance
among them, when symbolic values must just indicate whether they are present
or not and have no any distance associated.

This problem has been solved replacing the symbolic feature with as many
new binary features as possible values of that feature are. For example, if a
symbolic feature can have six different values, the feature will be replaced with
six new binary features, so that each feature represents a possible value of the
symbolic feature. Thus, in order to indicate a value of the symbolic feature, its
corresponding binary feature will be 1 and the rest of the new features will be
0. This way, we can use Euclidean distance whereas it is shown whether the
symbolic values are present or not. The pseudo code of the algorithm is shown
in the figure 1.

3 Experimental Results

The neural network was trained and tested with the KDD Cup 1999 benchmark
data set created by MIT Lincoln Laboratory and available on the University of
California, Irvine site [12]. This data set was used for the Third International
Knowledge Discovery and Data Mining Tools Competition to detect simulated
attacks in a network environment. For training, we have used the 10% KDD Cup
1999 training data set, which contains 494021 connection records, each with 41
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Input: X = x1, x2, ..., xm

Output: W = w1, w2, ..., wn

BEGIN
Randomly initializate the weight vectors wi, i = 1, 2, ..., n.
Normalize the weight vectors wi ∈ [0, 1].
Initialize the learning rate α, α < 1.
for xj ∈ X do

for wi ∈ W do
/* Compute distances */
d(xj , wi) = ‖xj − wi‖

end for
/* Compute the winner index */
r = argmin

i
d(xj , wi)

/* Update the weight vector of the winner */
wr = wr + α(xj − wr)
for wi ∈ W do

if ‖wr − wi‖ < Δ then
/* Update the weight vector of the neuron */
wi = wi − β(wr − wi)

end if
end for

end for
END

Fig. 1. Pseudocode of the proposed competitive model

features. It contains 22 different attack types and normal records. The 22 attack
types fall into four main categories [13]:

• Denial of Service (DoS): an attempt to make a computer resource un-
available to prevent legitimate users from using that resource.
• Probe: the location of weak points by mapping the machines and services

that are available on a network.
• Remote-to-Local (R2L): occurs when an unauthorized attacker from an

outside system exploits some vulnerability to gain local access as a user of
that machine.
• User-to-Root (U2R): occurs when an attacker with an user account on

the system is able to exploit some vulnerability to gain root access to the
system.

All the 41 features are numerical except three of them which are symbolic:
protocol type (i.e. TCP, UDP, ...), service (i.e. telnet, ftp, ...) and status of the
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connection flag. These features have to be mapped to numerical values in order
to compare two vectors with the Euclidean distance. However, as we mentioned
in Section 2, it makes no sense to map qualitative values into quantitative values
since it assigns an order among symbolic values of a feature. For that reason,
each symbolic feature has been replaced for new binary features, according to
the number of possible values that each feature can has. In the training data
set, the protocol type feature has 3 different values, the service feature 66 and
the status of the connection flag feature 11. Thus, we increase the number of
features from 41 to 118. Initially, a new feature has assigned the value 1 if the
replaced symbolic feature had assigned the value that represents that new feature
or 0 otherwise. Thus, each symbolic value is mapped into a quantitative value
without assigning an order among them.

In order to train our competitive neural network (CLNN), we have selected two
different subsets, S1 and S2, from the 494,021 connection records in the training
data set. Both subsets contain the 22 attack types and normal records with a
total of 100,000 and 169,000 connection records, respectively. After training, the
proposed neural network was tested with the entire 10% KDD Cup 99 testing
data set, which is composed of 311,029 connection records. In this test data set,
we find 15 new attack types which are not found in the training data set and,
for that reason we do not know their attack category. The distribution of the
different data subsets is shown in Table 1, where the new attack types existing
in the test data set are categorized as ’Unknown’.

During the training, each connection record was randomly selected from their
corresponding data subset. We used 7 neurons to detect each attack category
and normal records, and we establish the threshold for the repulsion condition
to Δ = 1. The training results of both subsets, simulated with the same training
data sets, are given in Table 2. Here, the detected rate is the ratio of the attacks
that were detected, the false positive rate is the ratio of the normal connection
records that were detected as attacks, and the identified rate is the ratio of
the connection records that were identified as their correct category, taking into
account the four attack categories and the category of normal connection records.
The computation time in the training phase was 31.55 and 108.35 seconds for S1
and S2, respectively, where 2 epochs were used. After training, the testing was
done with the 10% testing data set. These testing results are shown in Table 3.

On examining the results in Table 3, we achieved 99.99% detection rate for
both subsets, and false positive rates between 4.25% and 3.98%, respectively. In
order to build an IDS, an improved competitive learning network (ICLN) was
used in [10]. Their best result was 97.89% detection rate (we do not now the
false positive rate), but using between 9 and 20 neurons, whereas we have used
7 neurons. Also, they just used 7 attack types instead of the 22 attack types.
Most of the related works have used the self-organizing map (SOM) in network
security. In [8], a hierarchical Kohonen Map (K-Map) was proposed as an IDS.
It consists of three layers, where each layer is a single K-Map or SOM. They
achieved 99.63% detection rate and a false positive rate of 0.63% as best results,
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Table 1. Data distribution of different data subsets

Connection Category 10% Training S1 S2 10% Test

Normal 97278 30416 53416 60593

DoS 391458 64299 110299 223298

Probe 4107 4107 4107 2377

R2L 1126 1126 1126 5993

U2R 52 52 52 39

Unknown 0 0 0 18729

Table 2. Training results for S1 and S2

Training Set Detected(%) False Positive(%) Identified(%)

S1 99.99 0.66 94.76

S2 99.99 0.81 95.31

Table 3. Testing results for the proposed neural network

Training Set Testing Set Detected(%) False Positive(%) Identified(%)

S1 10% KDD Test 99.99 4.25 90.18

S2 10% KDD Test 99.99 3.98 90.24

Table 4. Comparison results for differents IDS implementations

Detected(%) False Positive(%) Neurons

CLNN 99.99 3.98 7

ICLN 97.89 - 15-20

K-Map 99.63 0.34 144

SOM 97.31 0.042 400

SOM (DoS) 99.81 0.1 28800-36000

but having several limitations. They used a training set of 169,000 connection
records and 22 attack types as we used. However, it was tested with just three at-
tack types, using a pre-specified combination of 20 features, concretely, 4 for the
first layer, 7 for the second and 9 for the third. Moreover, these three connected
SOMs were established in advance using 48 neurons in each level. In addition
to the limitations and the complexity of the net because of the number of neu-
rons used, it involves a pre-processing and a study of the problem domain. An
ensemble of self-organizing maps was also used in [13], in order to implement an
IDS. From this work, the SOM trained on all features with the best results was
chosen for comparing purposes. The SOM achieved a detection rate of 97.31%
and a false positive rate of 0.042% by using 400 neurons, whereas we used just
7 neurons improving the performance of the neural network. Another SOM was
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used in [14], providing detection rates that ranges between 98.3% and 99.81%
and false positive rates between 2.9% and 0.1%. However, it is just limited to
DoS attacks and the number of neurons ranges between 160x180 and 180x200
neurons. Furthermore, their best result (9.81% detection rate and 0.1% false
positive rate) was achieved by using just the one attack type (smurf), both in
the training and testing data set. Table 4 reports the performances and the
number of neurons used of the different mentioned IDS.

4 Conclusions

An instrusion detection system based on a competitive learning neural network
has been proposed in this paper. The simplicity of its architecture increases the
speed of the performance of the neural network. A repulsion mechanism based
on threshold Δ is provided to avoid overlapping clusters. Moreover, we have
taken into account the presence of qualitative data in the input data set. Unlike
other related works that map these qualitative data into quantitative data, we
have extended the dimensionality of the input data to include one feature for
each possible symbolic value. Thus, symbolic values can be used with the current
metric based on Euclidean distance.

In order to train and test our IDS, we have used the KDD Cup 1999 benchmark
data set. This data set contains both, qualitative and quantitative values, and
has been used for most of the research work on intrusion detection systems. We
have used the 10% KDD Cup 1999 training data set and the 10% KDD Cup 1999
testing data for training and testing, respectively. From the training data set,
we selected two subsets with 100,000 and 169,000 connection records and the 22
attack types existing in the training data set. The trained neural networks were
tested with the entire testing data set, which is composed of 311,029 connection
records and contains 15 new attack types. We achieved detection rates of 99.99%
and false positive rates between 3.98% and 4.63% with just 7 neurons.
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Abstract. Route guidance solutions used to be applied to single
transportation mode. The new trend today is to find route guidance
approaches able to propose routes which may involve multi transporta-
tion modes. Such route guidance solutions are said to be multi modal.
This document presents our contribution to multimodal route guidance
problem. Following our strategy, we introduce a new graph structure
to abstract multimodal networks. The graph structure is called transfer
graph. A transfer graph is described by a set of (sub) graphs called com-
ponents. They are connected via transfer points. By transfer point we
mean any node common to two distinct components of a transfer graph.
So a transfer graph is distinct from a partitioned graph. An example of
transfer graph is a multimodal network in which all participating uni-
modal networks are not merged, but are kept separated instead. Since
a multimodal network is reducible to a transfer graph, transfer graph
based approach can be used for multimodal route guidance. Finally, to
give meaning to our work, we try to insert our approach with the shortest
path service in Carlink project. This step is seen as the implimentation
of our algorithm, so we can get an idea on its performance.

Keywords: Multi modal transportation, multi objective optimization,
time dependent network, graph theory, shortest path algorithm, route
guidance.

1 Introduction

Multimodal transport, that is using two or more transport modes for a trip be-
tween which a transfer is necessary, seems an interesting approach to solving
todays transportation problems with respect to the deteriorating accessibility of
city centres, recurrent congestion, and environmental impact. One of this prob-
lems is to compute the shortest paht in a multimodal time dependent network.
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Shortest path are one of the best studied network optimization problems (see
e.g Bertsekas[3], Ahuja[1], and Schrijver[14]).

When investigating existing approches and algorithms on the topic, we ob-
serve that none of them is applicable to multi modal route guidance problems if
subjects to the following constraints i) the underlying multimodal network is as-
sumed to be flat and to contain no flat or hierarchical partitioning opportunity
like regional hierarchy; ii) involved unimodal network may be kept separated
and accessed separately; iii) if there are multiple network information sources
within a single mode, they may be kept and accessed separately. They are simply
disarmed. In fact relaxing these constraints is a precondition for them to work.

In the presentr work, a new approch for multi objective route guidance in time
dependent multimodal network is proposed. Unlike previous proposals, it is able
to compute multimodal route even if all involved networks are kept seperated and
must be accessed separately. Instead of building a solution limited to the common
view of multimodal route guidance, our strategy consist to find a fundamental
network representation which covers multimodals networks and solve the shortest
path problem on this abstract representation. This strategy has the advantage
of providing us with a general tool fot solving the shortest path problem on any
network reducible to the predefined abstract representation.

The present work has been done in the context of Carlink. Carlink is European
project aiming to develop an intelligent wireless traffic service platform between
cars supported by wireless tranceivers beside the road(s). The CARLINK sys-
tem has to response to the necessity of providing an output or a service after
occurring an event or receiving a request, interconnecting different modules and
supporting different communications. The base on our system is Service Oriented
Architecture (SOA). SOA is an evolution of distributed computing and modular
programming. SOA builds applications out of software services. Services are rel-
atively large, intrinsically unassociated units of functionality, which have no calls
to each other embedded in them. They typically implement functionalities that
most humans would recognize as a service, such as the information visualization
or the warnings generation.

Our objective is to create a transport service to calculate the shortest path
between two nodes of a multimodal multiobjectif network . This service can be
used directly by a user or also by other services whatsoever Route ”Service Plan-
ner,” ”Real Time Recommender road” or any other service. Such an application
required the presence of a database describing the transport network (stations,
roads, etc.) as well as information service providers of public transport (stops,
tables times, etc.) This information is stored on servers Carlink and have the
scope of the shortest path service.

2 Problem Description

Carlink route guidance service involves two basic functions: route planning and
travel monitoring. Many constraints have been attached to Carlink route guid-
ance service. First of all the service must be multi objective, i.e. user may specify
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Fig. 1. Shortest Path Service interaction

a set of preferences and these preferences must be used to find optimal advisory.
The service must also be multimodal, meaning that instead of computing paths
base on a single transportation mode, paths are computed base a subset of at least
two existing transportation modes (e.g. bus and rail). As a consequence and de-
pending on user preferences, a path from a given origin to a given destination may
pass trough nodes and links belonging to different transportation modes. A third
constraint central to Carlink vision of multimodal route guidance, is the necessity
to keep network information providers architecture as it is, i.e. distributed.

Though the finality is to build a multimodal route guidance system, the pri-
mary goal of the present work is to determine and implement algorithm(s) and
approach(es) for multimodal route guidance. All the constraints above are likely
to significantly determine design choices regarding them.

3 Classical Problems

Throughout this document, graph and related concepts will be frequently manip-
ulated. The current section aims to identify graph concepts and provide some
useful definitions. Classical shortest path problems in graph, as well as cor-
responding algorithms are also discussed. In the same vein, few words about
multiobjective and time dependent shortest path problems are tod.

3.1 Classical Shortest Path Problem

With the above setting, the general formulation of the shortest path problem
(SPP) can be stated as follow: given a graph G, a set of origin nodes O ⊆ N
and a set of destination nodes D ⊆ N , determine, for each node pair s ∈ O and
t ∈ D, a path p from s to t such that f (p) is minimal.

Depending on the size of O and D, there are four fundamental types of shortest
path query: the many-to-many query (|O| > 1 and |D| >1); the many-to-one
query (|O| >1 and |D| = 1); the one-to-many query (|O| = 1 and |D| >1) and
the one-to-one query (|O| = 1and|D| = 1). Any shortest path problem falls into
one of these categories. Each category raises a specific algorithmic challenge.



Transfer Graph Approach for Multimodal Transport Problems 541

Except the last one which only require to add a ”target reached” test as stop
condition to the one-to-many shortest path algorithm.

Let (N ,A) denote a given network, in which N is a set of n elements called
nodes,N = {v1, ..., vn} and A is a set of m elements called arcs A = {a1, ..., am} ⊆
N ×N . Each arc ak ∈ A can be identified by a pair (i,j), where i, j ∈ N . Each
arc ak = (i , j ) has associated a value, cak or ci,j , indicating the cost (or distance,
time, etc..) to cross the arc.

3.2 Multiobjectif Shortest Path Problem

In many works on SPP, the path cost is a single scalar function. However there
are some areas, like transportation, where one often needs to optimize path
according to more than one scalar functions e.g. travel time and cost. In this
case the underlying problem becomes a multi objective optimization problem.
Some research efforts have been done to address bi-objective and exceptionally
tri-objective shortest path. But concerning the demand of multi-objective opti-
mization algorithms designed to accept a variable, and unbounded, number of
objectives, the number of research effort is not that much. A SPP is said to be
multi objective if the path cost function f maps to a real vector of dimension
k ≥ 2, instead of a scalar. i.e. if P is the set of paths in a graph G, we have
f : P → Rk, k ≥ 2, instead of f : P → R. Each component fi ∈ f , (1 ≤ i ≤ k),
follows the definition of single objective shortest path cost function.

3.3 Time Dependent Shortest Path Problem

Let t denotes the time. In a time dependent network, each arc (i,j) is now
associated with a time dependent arc cost function cij(t) and a time dependent
traversal delay function dij(t). The arrival time at a node j after leaving a parent
node i at time t is given by arrival(t) = t + dij(t). When computing the SPT
from a given root s, the tree Ts(t), the potential Ci(t) and the predecessor Πi(t)
of a node i are all functions of time, but their expression may depend on the
network time model. More details can be found in [10].

In the discrete time dependent network model, the time is not assumed to
be continuous. Instead, an ordered set T = {t1, t2, ..., tq} of q discrete possible
times is fixed, and for each arc (i,j) in the underlying graph, it is imposed that all
departure time t, as well as all arrival time t+dij(t) belongs to T . Each arc is also
assigned a traversal delay for each time in T . The traversal delay of an arc (i,j)
for different time in T is often described as follow: dij = [d1, d2, ..., dq]. Figure
2 illustrates a discrete time dependent network model with T = {t1, t2, ..., t10}.
For simplicity, arc costs are assumed to always equal zero.

4 Transfer Graph Approach

According to the way they represent multimodal network and/or multimodal
problem, we have identified three main approaches when studying existing works
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Fig. 2. A time dependent network with arcs traversal delay

on multimodal route guidance: the multigraph based approach (see [5], [6], [8],
[9], [11], [13]), the constraint satisfaction problem (CSP) based approach (see [2]
and [4]), and the grid based approach (see [7]).

From our point of view, current approaches are simply not appropriated to
satisfy at least the three first multimodal route guidance characteristics listed
above, and as far as we know, no ready to use theoretical tool is currently
available for that. In this section we propose an approach which sets the basis
to solve the problem as specified. The discussion starts with a description of our
approach, followed by a formal description of transfer graph. Next we analyze
the shortest path problem in transfer graph. We then propose algorithms for
basic version of the problem. These basic algorithms will be revised later to
solve multi objective time dependent shortest path problem in transfer graph.

4.1 Approach Description

The most constraining requirement we have to manage is to compute multi-
modal routes while keeping all existing unimodal transportation networks sepa-
rated. To abstract the particular multimodal network configuration imposed by
this requirement, we will introduce an unusual graph structure which we call
transfer graph. In few words, a transfer graph is described by a set of graphs or
components and a set of transfers connecting them. Figure 3 illustrates how a
transfer graph looks like. The concept is well described in sections ahead where
a basic formalization is given. For the moment it is enough to observe that each
graph G1, G2, G3 is a transfer graph component. There are three transfers.
A transfer connects two components via transfer points, a transfer point being
a node common to the two components involved in the transfer. Observe that
source (the dark node) and destination (the doted node) may belong to more
than one component.

Let G=(N, A) denotes a graph. G may be decomposed into a set GS =
{G1, G2, · · · , Gq} of sub graphs. Each Gg = (Ng, Ag) is called a component and
is such that Ng ⊂ N and Ag ⊂ A. GS itself is such that N =

⋃
Ng∈GS Ng and

A =
⋃

Ag∈GS Ag. Unlike partitioned graph, given two distinct components Gg ,
Gg′ , having Ng ∩Ng′ = ∅ is not mandatory. However Ag ∩Ag′ = ∅ must always
hold.
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Fig. 3. Transfer graph illustration

Again, let two distinct components Gg , Gg′ ∈ GS . If Ng ∩Ng′ �= ∅, then any
i ∈ Ng ∩Ng′ is a transfer point. In other words a transfer point is a node which
belongs to more than one component. To express that Gg , Gg′ are connected
via node i ∈ Ng ∩ Ng′ , we use structure (g, g

′
, i) or ( g

′
, g, i) which denote

transfer between components. More literally a transfer provides the following
information: ”It may be possible to move from component Gg to component Gg′

via node i”. If transfers (g, g
′
, i) and ( g

′
, g, i) are not equivalents, then they

are directed. From here on, we assume that transfers are not directed.
For a decomposition GS of graph G, we write TS = {τ : τ = (g, g

′
, i) ∧

Gg, Gg′ ∈ GS ∧ i ∈ Ng ∩ Ng′ �= ∅} to denote the transfer set , i.e. the set of
all transfers derived from GS. Normally, TS is computed/derived from GS. But
it may be explicitly specified, especially in case some additional properties are
attached to each transfer. If TS = ∅, it means that there is no connection between
components. Two components Gg, Gg′ ∈ GS being connected iff (g, g

′
, i) ∈ TS

or (g
′
, g, i) ∈ TS.

So what is a transfer graph? We denote a transfer graph by the structure
TG=(N, A, GS, TS) where N is the set of all nodes; A = {(i , j ) :i, j ∈ N} is the
set of arcs; GS is a decomposition of the graph described by (N, A) as specified
above; and TS is the transfer set. From here on, to denote that an element or
an element feature x is viewed from a given component Gg, we will write xg.
So a vertex from component Gg will be denoted by ig, arc will be denoted by
ag = (i, j)g and a feature f of arc (i , j )g will be denoted by f g

ij .
Given a transfer graph TG, one may be interested by many features:

– Given a transfer graph node i ∈ N, the node containers of i is the set of
components containing a node i. It is denoted by NG i = {Gg : (g, g ′, i) ∈
TS ∨ (g ′, g, i) ∈ TS}.

– the set of transfer in which Gg is involved, we call it component transfer set
and denote it by TS g = {τ : τ = (g, g ′, i) ∨ (g ′, g, i) ∨ τ ∈ TS}
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– the set TP = {i : (g, g ′, i) ∈ TS} of all transfer points in a given transfer
graph or by the set TPg = {i : (g, g ′, i) ∈ TS ∨ (g, g ′, i) ∈ TSg} of all
transfers points within a transfer graph component Gg.

4.2 Shortest Path Algorithm in Transfer Graph

Consider a transfer graph TG=(N, A, GS, TS). Let s, t ∈ N be an origin-
destination pair and Gg ∈ GS be a component of TG. At a high level, paths in
a transfer graph can be divided into two groups: intra components paths and
inter component paths. An intra component path within Gg is any path which
connects two nodes i, j ∈ Ng while traversing only arcs belonging to Gg. On the
other hand, an inter component path within a transfer graph TG is any path
which connects two nodes i, j ∈ N while traversing arcs from at least two distinct
components. Intra component paths can be subdivided into two subcategories:
full paths and partial paths. A full path is a path which connects source to target,
while a partial path is any non empty path which is not a full path. Partial paths
fail into three sub categories: head paths, tail paths and intermediate paths :

– Full paths : An intra component full path is a path which connects a source
node s to a target node t. It is of the form p = 〈s , ag

0 , v1, a
g
1 , v2 · · · , t〉.

– Relevent Head paths : An intra component head path is a path which
starts from the source s and ends with any node different from target t. Head
paths are of the form p = 〈s , ag

0 , v1, a
g
1 , v2 · · · , x 〉 with x �= t .

– Relevant intermediate paths: An intra component intermediate path
starts from and ends with any node different from s and t. Intermediate
paths are of the form p = 〈x , ag

0 , v1, a
g
1 , v2 · · · , y〉 with x , y /∈ {s , t}.

– Relevant tail paths: An intra component tail path is a path which starts
from any node different from the source s and ends with target t. Tail paths
are of the form p = 〈x , ag

0 , v1, a
g
1 , v2 · · · , t〉 with x �= s .

Given a transfer graph TG=(N, A, GS, TS), and an origin-destination pair. s,
t ∈ N, assume that for all components Gg ∈ GS we have computed the following
relevant path sets: P∗g

s.t(the set of best intra component full path within Gg),
P∗g

s.−(the set of all best intra component head paths from s within Gg ), P∗g
+.t

(the set of all best intra component tail paths to t within Gg ) and P∗g
+.− (the

set of all best intra component intermediate paths within Gg ).
Having these relevant path sets in hand, it is possible to derive a special graph

from which all possible best inter component paths from s to t can be found.
We call this graph the relevant graph and use RG to denote it. The node set of
RG is a sub set of all intra component nodes. The arc set of RG is the set of all
computed relevant intra component partial paths viewed as edges. In fact RG
is a multigraph, but in general, its scale should faraway be smaller than that
of the equivalent multigraph of the underlying transfer graph. This is because
except origin and destination nodes, any other node appearing in RG iff it is a
transfer point. So the number of nodes in RG directly depends on the number
of transfer points in the whole transfer graph. In order to formally describe RG,
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Fig. 4. Intra component paths illustration

let RV g = TPg denotes the set of relevant nodes in component Gg. RV g is
simply the set of transfer points in Gg . Let RE g be the set of edges representing
relevant paths computed in component Gg.

From all RV g andRE g , we can respectively build RV = (
⋃

Gg∈GS RV g)
⋃
{s, t}

the set of relevant nodes from all component Gg, and RE =
⋃

Gg∈GS RE g the set
of relevant paths representative edges from all component Gg ∈ GS The relevant
graph is formally described by tuple RG=(RV, RE). If the transfer graph is con-
nected, then RG is also a connected graph. Otherwise, RG may not be connected.
Figure 5 shows the relevant edge set RE1 computed from component G1 of the
associated transfer graph.

Now assume we have built the relevant graph RG of transfer graph TG=(N,
A, GS, TS) given an origin-destination pair s, t ∈ N. With this setting, comput-
ing the shortest path from s to t in RG is simply the classical origin-destination
shortest path problem. Let PRG

s.t denotes the set of all possible inter component
full paths from s to t in RG, and let P∗RG

s.t be the set of all best inter component
full paths from s to t in RG. Running a single source shortest path algorithm on
RG will return a path p ∈ P∗RG

s.t passes through more than one component. When
considering a component Gg, it is easy to observe that the computation of each
kind of relevant best paths inGg from source s to target t corresponds to a variant
of the shortest path problem. More precisely it is easy to observe that:

– P∗g
s.t (the set of best full paths in Gg) corresponds to the set of solutions of

a standard one-to-one shortest path algorithm within Gg;
– P∗g

s.− (the set of best head paths in Gg) corresponds to the set of solutions of
a standard one-to-many shortest path within Gg, with destination nodes
set being the set of outgoing transfer points within Gg except t ;
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Fig. 5. Relevant path-edges from a transfer graph component

– P∗g
+.t (the set of best tail paths in Gg) corresponds to the set of solutions of a

standard many-to-one shortest path within Gg, with origin node set being
the set of incoming transfer points within Gg except s ;

– P∗g
+.− (the set of best intermediate paths in Gg) corresponds to the set of

solutions of a standard many-to-many shortest path within Gg, with origin
node set being the set of incoming transfer points within Gg except s and t,
and the destination node set being the set of outgoing transfer points within
Gg except s and t.

5 Conclusion

The work presented in this document has been done within multimodal route
guidance work package of the Carlink project. The goal was to investigate algo-
rithms and approaches in multimodal route guidance. Among other characteris-
tics, the targeted solution was expected to support multi objective route guidance
in time dependent multimodal network. Our mission was to dig into multimodal
route guidance problem, to propose a solid foundation on top of which Carlink’s
multimodal route guidance system will be built and to materialize our proposal
in an extensible route guidance library.
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Abstract. Rapidly changing weather conditions, especially in winter,
have caused numerous disastrous traffic accidents in Northern Europe and
in the Alpine region during recent years. Information about hazardous
weather and road conditions is often potentially available but difficult or
sometimes even impossible to deliver to drivers. This paper presents the
international CARLINK (Wireless Platform for Linking Cars) project [1]
of the Celtic Cluster Programme Call 3 whose aim is to develop an intel-
ligent wireless traffic service platform between cars supported with wire-
less transceivers along the roads. The platform consists of a specific set of
services, however not only these but variety of other services can be inte-
grated to this kind of a system. Two of the major services are real-time local
road weather service and incident warning service. The real-time local road
weather service is a solution where up-to-date local weather related infor-
mation is being collected from cruising vehicles and then further delivered
to other vehicles in the area. Incident warning service operates in the same
manner, but concentrates to the parameters related to traffic incidents or
accidents, and (depending on seriousness of the incident) delivers a warn-
ing of such events to the vehicles in the traffic network without delay. The
ultimate goal is to develop an intelligent communication platform for vehi-
cles so that they can deliver their own observations of traffic and weather
conditions to the platform core.

Vehicular networking is nowadays a widely studied research field, and
a large number of suggestions for vehicle-to-vehicle and vehicle-to-infra-
structure communications have been presented. The focus is typically on
bilateral communication between two vehicles or on broadcasting infor-
mation from one vehicle or infrastructure to vehicles in the surrounding
area. The CARLINK project is developing an intelligent hybrid wire-
less traffic service platform between cars supported with wireless base
stations beside the road(s). Communication between the cars will be ar-
ranged in an ad-hoc manner, supported with a wireless base station con-
nection to the backbone network, whenever possible. The ultimate goal
is to enhance traffic safety and smoothness, but also to generate com-
pletely new communication entity, allowing new types of applications,
services and business opportunities. Not only the encountering cars and
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the infrastructure can broadcast data, but all the data can be delivered
instantly over the communications network to all CARLINK-compliant
vehicles. High impact and extreme weather generated challenges are in-
creasing throughout the world, not least because of the climate change.
CARLINK can truly contribute to meeting these challenges. The pre-
liminary network simulations, communication tests and weather service
prototypes have already shown that a new kind of wireless communica-
tion environment can be created and it is indeed capable of enhancing
traffic safety.

1 Introduction

Car-to-car communication platform is currently a popular research topic, having
various different approaches. A common factor for this kind of networking topol-
ogy is Vehicular MANET (VANET), where MANET stands for Mobile Ad-Hoc
Networks. One of the major activities in this area is the Car-to-Car Communica-
tion Consortium (C2C-CC) driven by the major European car manufacturers and
aiming at generating decentralized floating car data (FCD) communication capa-
bilities between cars [2]. The objective in C2C-CC is to provide mainly broadcast-
type of services, such as broadcasting accident warnings from car-to-car and road-
side information such as intersection guidance from traffic infrastructure to car.
C2C-CC concentrates mainly on services and applications. In telecommunications
the aim is to support the standardization activities driven by IEEE (WAVE - IEEE
802.11p, IEEE 802.11 a/b/g) [2, 3]. Similar approach where cars distribute acci-
dent warning data from car-to-car and even forwarding warnings car by car in
ad-hoc networking manner was presented in 2006 in the IEEE Communications
Magazine [4]. The other example is the LIWAS traffic warning system [5], designed
to provide early warnings to vehicles about adverse road conditions like a slippery
road surface. The LIWAS system is currently under development and will consist
of two major parts: (a) sensors for determining the state of the road, and (b) com-
munication infrastructure supporting inter-vehicle communication. The most of
the European activities in this area are more or less related to the C2C-CC work,
as well as to the e-Safety initiative [6] of the European Union and the EU’s COMe-
Safety project. The most popular wireless high-speed communication approaches
are nowadays Wireless Local Area Networks (WLAN) also known as Wi-Fi (Wire-
less Fidelity), and WiMAX. WLAN is based on the IEEE 802.11 standard family.
The most common versions nowadays are the 802.11b and 802.11g standards op-
erating in the 2.4 GHz bandwidth and capable of up to 54 Mbps (.11g) or 11 Mbps
(.11b) data speeds, respectively. The WLAN standards support a moderate level
of mobility, e.g. users moving at walking speed.

The IEEE 802.16 family of standards specifies the air interface of both the fixed
and the mobile broadbandwireless access (BWA) systems for supporting multime-
dia services. The WiMAX system is based on these technologies and is sponsored
by an industry consortium called WiMAX Forum. IEEE 802.16-2004 for fixed and
IEEE 802.16e for mobile access, respectively, are the IEEE standards which define
the current structures of the WiMAX system. WiMAX has licensed worldwide
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spectrum allocations in the 2.3 GHz, 2.5 GHz, 3.3 GHz and 3.5 GHz frequency
bands and is capable of up to 31.68 Mbps data rates with a single antenna system
and up to 63.36 Mbps with a multiple antenna system. The WiMAX system is ca-
pable of supporting fast moving users in a mesh network structure. Systems with
users moving at speeds up to 60 km/h have been reported [7].

The IEEE standardization activity for the car-to-car communication environ-
ment is named as WAVE (IEEE 802.11p) [3]. The underlying technology in this
standardization work is called Dedicated Short-Range Communication (DSRC),
which is essentially the IEEE 802.11a standard adjusted for low overhead opera-
tions. The primary purpose of the DSRC is to enhance public safety applications,
to save lives and to improve traffic flow by vehicle-to-vehicle and infrastructure-
to-vehicle communications. In the U.S. the 75 MHz channel is allocated for the
DSRC in the 5.9 GHz spectrum [8].

Another related area of research is the service-oriented approach with a goal
to improve traffic safety and comfort. Weather conditions in winter, especially
when rapidly changing, are a reason behind numerous disastrous traffic accidents
in Northern Europe and in the Alpine region during the recent years. Information
about hazardous weather conditions is often potentially available but difficult or
sometimes even impossible to deliver to the drivers in the area. A tragic example
of such an incident is the chain collision of cars nearby Helsinki in March 2005
in the morning, where 3 persons lost their lives and tens of people were injured.
Although the hazardous driving conditions were forecasted by the Finnish Me-
teorological Institute already a day before the accident, several accidents took
place in a rather small geographical area. Temperature was below -10 C degrees
and the surface changed suddenly to very slippery because of light snow. There
were no methods to deliver road condition and accident information to all vehi-
cles and thus to prevent the accidents. Later on, several type of solutions have
been designed for the traffic safety improvement. One example is the Finnish
national “VARO” project where safety is being improved by delivering warnings
and route guidance to the end-user devices located in cars. A similar approach
is the provision of traffic congestion information to car navigation tools. Such
systems have been developed into various navigation equipments and are already
available in several countries. One approach to provide traffic services is to equip
a mobile handheld terminal with a tranceiver being able to receive broadband
data. Traffic and accident data can be obtained directly over the Internet with
this equipment. The Celtic Wing TV project is researching this scenario, relying
on the DVB-H broadcasting standard. Similar studies are ongoing by mobile
communication device manufacturers worldwide.

In the CARLINK project the aim is to build more comprehensive solution
for car networking, car to car communication purposes and traffic safety im-
provement. An intelligent hybrid wireless traffic service platform between cars
has been developed, supported with wireless transceivers acting as access points
along the roads. The ultimate goal of this concept is to enhance traffic safety,
as well as to allow communication between cars and between cars and common
communication infrastructure. The simulations and analysis evaluate the com-
munication efficiency of the platform.
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2 Platform and Services

The CARLINK wireless traffic service platform is designed to provide an infras-
tructure to a wide community of commercial and governmental traffic and safety
services. It is a wireless ad-hoc type communication entity with connectivity to
the backbone network via base stations. The platform itself is the key element
of CARLINK, but the services created to the platform have also a crucial role;
On one hand, they generate different ways to use and to exploit the platform,
proving it efficiency. But on the other hand the services are the showcase of the
platform towards the consumers; in order to make consumers interested in pur-
chasing the platform (and furthermore vehicle industry to integrate the platform
equipment to the vehicles) there is a need to have some key services interesting
and necessary enough for the consumers. CARLINK is not planning to build
up an extensive package of services, but just a couple of key services to prove
the applicability, usefulness and necessity of the platform, and so-called “killer-
application” to raise the public interest.

CARLINK has defined the example set of services for the platform listed in
the Table 1. The local road weather service (RWS) collects observed weather data
from vehicles and Traffic Service Base Stations (TSBS) which are installed by the
road weather stations and use these observations together with the weather infor-
mation from other sources to generate comprehensive precise local road weather
analysis and forecasts to be forwarded back to the cars. The cars measure air tem-
perature and TSBSs measure e.g. road surface and air temperature, state of the
road and precipitation. The incident/emergency warning service uses vehicle data
to generate warnings related to exceptional traffic conditions or accidents. The
traffic service will generate traffic logistics data for the public authorities. Finally,
the remaining services listed deliver commercial-like travel data to users on the
move. In this paper we concentrate on the local road weather service and the in-
cident/emergency warning service, since they together exploit most widely the
capabilities of the CARLINK platform, enhance traffic safety, and based on the
CARLINK partner expectations form the “killer-application” of the platform.

The Wireless Traffic Service Platform is divided into three parts: Traffic Ser-
vice Central Unit (TSCU), the base station network with Traffic Service Base
Stations (TSBS), and Mobile End Users (MEU) with ad-hoc connectivity and
(non-continuous) backbone network connectivity.

The overall structure of the platform is presented in Figure 1. The MEUs
form a wireless network. They do not have continuous connectivity but operate
in ad-hoc manner with each other whenever possible, typically when two cars
pass each other.

Always when a vehicle with a MEU passes a TSBS, it will get up-to-date traffic
platform information stored into the TSBS. The TSBS receives regular updates
to the traffic platform information from the TSCU, located in the fixed network
beyond the TSBS. The TSCU operates in the fixed network relying exclusively
on the existing communication solutions of the fixed networking. The TSBS acts
as an interface between the fixed and wireless networks. However, the MEU also
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Table 1. CARLINK services

Service name Brief Description
Transport Transport guidance and real-time timetables

Traffic Traffic logistics for traffic control centre

Local Road Weather Up-to-date local weather information for vehicles

Positioning Vehicle positioning

Route planner Planning route to expected destination

Parking places Real-time parking place availability info

Point of Interest Guidance to point of interest

Geo-coding Geometric data

Incident warning Instant warning of accidents and incidents ahead

transmits data to/from TSCU over the lower capacity (GPRS) connection when
critical weather, warning or accident information emerge.

The operation in the local RWS and the warning service are uniformly con-
structed of the procedure presented in the Figure 2. The TSCU maintains up-
to-date local road weather information and forwards it regularly to the TSBSs
in the area of interest/vicinity area. Each TSBS has therefore up-to-date lo-
cal road weather information, which is delivered to every MEU passing by the
TSBSs. The MEU receives and applies the weather data and in exchange it for-
wards the collection of its own weather and traffic related measurements. This
data is delivered back to the TSCU where it is used to update the local road
weather data and to generate potential additional warnings. The MEUs are also
exchanging data during the encounters: the MEUs deliver their own up-to-date
data to the other MEUs, and the more recent data will be used by all. In the
case of emergency, the two-layer networking procedure can be bypassed with the
parallel direct reliable low-capacity mobile phone network based communication
between the TSCU and the MEU. This channel may not be adequate for the
full scale data but, due to its practically complete coverage, critical emergency
data is delivered without delay.

The local RWS is derived from FMI’s (Finnish Meteorological Institute) road
weather model [9]presented in the Figure 3 is a one-dimensional energy balance
model which calculates vertical heat transfer in the ground and at the ground-
atmosphere interface, taking into account the special conditions prevailing at
the road surface and inside the ground below. The model also accounts for the
effect of traffic volume on the road. The output from a Numerical Weather Pre-
diction (NWP) model is typically used as a forcing at the upper boundary. This
information provides also the horizontal coupling between individual computa-
tional points of the model. The basic horizontal resolution of the FMI’s present
Road Weather Model is as sparse as 10 km which means that in principle the
model cannot resolve the meteorological features beyond this spatial scale. The
main body of calculations relate to the conditions within the ground, where the
vertical temperature distribution is solved to a depth of down to c. six meters.
The model atmosphere is considered as a forcing factor having an effect on the
ground surface through a number of variables like ambient temperature, relative
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Fig. 1. CARLINK platform structure

humidity, wind speed, short- and long-wave radiation, and precipitation. The
values of these variables can be inferred from observations or from a forecast,
i.e. the model does not make a distinction as to the source of the input data. The
heat balance at the ground surface is solved on the basis of these variables and
taking into account such additional factors as sensible and latent heat fluxes as
well as atmospheric stability. The effect of melting and freezing is also included
in the energy balance.

An additional forcing at the surface is the traffic volume, which causes not
only increased turbulence but also mechanical wear of e.g. snow, ice or frost
that prevails on the surface. A spatially constant traffic effect is assumed in
the model, and during the night time a smaller traffic factor is used. Further to
calculating the ground and road surface temperatures, the model performs a road
condition interpretation. Eight different forms of road surface description are
used: dry, damp, wet, frost (deposit), dry snow, wet snow, partly icy, and icy. The
model furthermore combines information of the road conditions, storage sizes
and certain weather parameters to produce a three-valued traffic condition index
describing the traffic conditions in more general terms. They are: normal, bad,
and very bad, and this same classification is used for traffic condition warnings
issued by FMI.
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Fig. 2. Operational model of Local RWS and Incident warning service

3 Technical Requirements

The platform services presented in the previous chapter set several requirements
for the CARLINK communication system. Networking challenges can be roughly
divided into fixed networking between the TSCU and the TSBS, communication
via the wireless base station between the TSBS and the MEU, wireless ad-hoc
communication between the MEUs, and reliable low-capacity communication
between the TSCU and the MEU, respectively.

The existing fixed networking methods provide service levels which clearly
fulfill the CARLINK requirements for the communication between TSCU and
the TSBS. For the communication between the TSBS and the MEU, ordinary
communication via a wireless base station without a need to hand off the con-
nection but with one extremely challenging element, the traffic speed (up to
100 km/h in our scenario), is required. The most popular solution for wireless
communication is the WiFi system which is based on the IEEE 802.11 standard
family. The latest version of the standard is the IEEE 802.11g standard, capable
of 54 Mbps data speed and with a coverage at least up to 100 meters (maximum
range allowing only 1 Mbps data speed). The use of this system at traffic speeds
is a challenging task. The time a vehicle stays in the area of the base station
is rather short for initiating the connection and carrying out data exchange.
Also the IEEE 802.11g standard is not especially developed for the network of
high-speed nodes, and the Doppler effect as well as fast-changing received power
level may decrease the performance even more. The 802.11 standardization fo-
rum has noted that existing 802.11 standards (a,b,g) are not optimal solutions
for fast nodes, and is tackling the issue of vehicular communication especially
in the 802.11p standardization work, based on IEEE 1609 standard family. The
WiMAX (Mobile WiMAX IEEE 802.16e) method is clearly more suitable for
this kind of networking due to its better coverage. However, neither the mo-
bile WiMAX based on IEEE 802.16e nor IEEE 802.11p components are not yet
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Fig. 3. Schematic of the road weather model

available in large scale. In the CARLINK research WiFi based on IEEE 802.11g
stands for existing communication product, while mobile WiMAX represents
interesting design alternative of emerging technologies. In this paper we have
analyzed 802.11g in the simulations developed in the NS-2 tool and in the sim-
ple test system based on the WiFi (IEEE 802.11b) wireless communication to
find out the possible constraints (like the Doppler effect caused by a fast moving
vehicle) and to prove the concept operability.

The technical challenges in the ad-hoc communication between the vehicles
are basically the same as in the base station-end-user communication except that
the encounter speed is doubled (and the communication time halved) because in
the extreme situation both counterparts are moving into the opposite directions
(towards each other). Hence, it is extremely hard to enable full scale ad-hoc
networking. In order to ensure platform operability the MEUs only to be able to
exchange their packed up-to-date data in encounter, not to allow the true ad-hoc
networking are required.

Finally, it is essential to ensure that the most crucial data will be exchanged
between the extreme parts of the network (from the MEU to the TSCU and back)
without any delay. For this purpose a standard GPRS data service developed for
the GSM mobile phone network is used. This solution guarantees the reliability
required in this particular scenario, even if the capacity may be too low for the
full-scale platform service.

4 System Description

Based on the technical requirements presented above, CARLINK has created
the platform structure illustrated in the Figure 1. On the top of the platform
there is the TSCU with connections to the underlying service cores, the local
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traffic weather service and the incident/emergency warning service. The TSCU
takes care of the user management. As a central unit of the system, the TSCU is
maintaining the interdependencies of all the platform elements. It also stores all
the data gathered from the platform and forwards the appropriate data both to
the road weather service (RWS) and to the incident/emergency warning service.
In the incident/emergency warning service platform there is the TSCU with
connections to the underlying service cores, the road weather service and the
incident/emergency warning service.

The incident/emergency warning service parameters are an airbag blast, a
push of the emergency button in the car, a tyre odometer and an engine status,
all of them including the GPS-position of the observed issue. The RWS core in-
cludes a weather forecast model generating a local road weather outlook based on
the FMI’s operational measurements. This model is supplemented with car mea-
surements (temperature and GPS-position of observations) to complement the
weather information. The resulting local road weather information is delivered to
the TSCU which is responsible for forwarding this data to the vehicles through
the CARLINK platform. Similarly, the incident/emergency warning service col-
lects vehicle data to build up warnings with these exact locations, returned to
the TSCU. Depending on the significance of the warning the TSCU selects the
appropriate path for the warning data distribution. The most critical warnings
(e.g. accident location) are delivered through the GPRS connection as rapidly
as possible, while the more informative-like warnings can be distributed through
the base stations.

There is a network of TSBSs below the TSCU (Figure 1), mainly acting as a
data transmitter from the TSCU to the MEUs and vice versa. The TSBS is also
collecting weather data itself and delivering it to the TSCU.

The MEUs in vehicles are the users of the CARLINK platform. They are gath-
ering raw platform data along the roads they are driving, delivering data up to
the TSCU and the underlying service cores and, finally, consuming the weather
and warning information (partially) derived from the vehicle based data. The
parameters gathered from the vehicle are the temperature, combined tyre odome-
ter and car gyroscope information, airbag blast notification, push of emergency
button notification and the GPS position for each data source. The gyroscope,
the tires and the GPS-system each have their own interfaces, while the push of
the emergency button will be gathered from the drivers user interface. The re-
maining parameters (temperature, airbag blast notification) are coming from the
vehicle CAN-bus gateway. The WLAN/WiMAX and the GSM/GPRS interfaces
are used for the communication with the TSBSs and the TSCU.

5 Conclusions

This paper has presented the CARLINK concept of an intelligent hybrid wireless
traffic service platform between cars, supported with wireless transceivers acting
as access points along the roads. The ultimate goal is to create an intelligent com-
munication platform for vehicles where they can deliver their own observations
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of traffic and weather conditions to the platform core. This information is deliv-
ered back to the vehicles as analyzed (and forecasted) information about road
weather conditions and as immediate incident warnings. Compared to car-to-car
or infrastructure-to-car solutions presented by the car industry the CARLINK
solution showcases a true bidirectional communication entity. Within CARLINK
not only the encountering cars, or the encountering car and the infrastructure,
can broadcast data, but all data can be delivered instantly through the network
to all CARLINK-compliant vehicles. The solution has been presented on concept
level, and the further work will cover comprehensive simulations and a system
test approval of our concepts.
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Abstract. In this paper we considered a WiMAX-based system archi-
tecture for car to car (C2C) communications. The aim is to design an
intelligent wireless traffic service platform which allows car to car and
car to transceiver stations communications. Conventional WiMAX sys-
tem was analysed as a basic platform due to its support for robust secu-
rity and for mobility. However, we found some problems with the system
for supporting C2C communications. As a solution, an optimized C2C
communication mechanism with neighbor detection and optimum route
decision module was proposed. This module uses available information
in the neighborhood and adds no extra cost of traffic.

Keywords: 802.16e, Mobile WiMAX, C2C communications.

1 Introduction

Broadband wireless stands at the confluence of two very remarkable growth
stories of the communications industry in recent years. Wireless and broadband
have both rapid mass-market adoption. Wireless mobile services grew from 145
million subscribers in 1996 to more than 2.685 billion in 2006 [1]. At the same
time, the Internet grew from 74 million users to 1.131 billion. The growth of
the Internet is driving demand for higher-speed Internet-access services. During
the same period, broadband subscription grew from almost zero to over 200
million subscribers [2]. Therefore, it is plausible that combining the convenience
of wireless with the performance of broadband will be the next frontier for growth
in the communication industry [3].

The primary aim of the WiMAX (worldwide interoperability for microwave
access) system was to find a competitive alternative to traditional wireline-access
technologies. It has evolved through four stages, albeit not clearly sequential:
narrowband wireless local-loop systems, first generation line-of-sight broadband
systems, second generation non-line-of-sight broadband systems, and standards-
based broadband wireless systems. The first standard, the original IEEE802.16,
completed in December 2001 and amendment for it is know as IEEE 802.16a.
Further revisions resulted in a new standard in 2004, IEEE 802.16-2004, which
replaced prior to versions and formed the basis for the first WiMAX solution and
was targeted fixed applications. In December 2005, the IEEE 802.16e-2005 was
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completed and approved as an amendment to the IEEE 802.16-2004 standard
that added mobility support. It is often referred to as Mobile WiMAX, too [3].

WiMAX is a wireless broadband solution that offers a set of features with a
lot of flexibility, such as OFDM physical layer, high peak data rates, scalable
bandwidth and data rate support, adaptive modulation and coding, link laayer
retransmission, support for TDD (time division duplex) and FDD (frequency di-
vision duplex), OFDMA (orthogonal frequency division multiple access), flexible
resource allocation, support for advanced antenna techniques, quality of service
support, robust security, support for mobility and IP-based architecture [3].

In this paperwe consider a systemarchitecture forC2Ccommunication.Theaim
is to design an intelligent wireless traffic service platform for car to car communi-
cation and for car to transceiver stations communication. Transceiver stations are
located beside the roads. The primary applications for the system architecture are
exchange of real-time local weather data, the urban transport traffic management,
and the urban information broadcasting between cars and cars and transceiver sta-
tions. The WiMAX system was analysed as a basic platform due to its support
for robust security and for mobility. Therefore, the organisation of the rest of the
paper is following. In section 2 a literature review from the WiMAX based C2C
communications is presented. Section 3 introduces existing system model for C2C
communications. Section 4 describes a developed optimized module for C2C com-
munication. Section 5 analyzes developed solutions and compares them to the ex-
isisting solutions. Finally, conclusions are presented in section 6.

2 Related Work

2.1 Reference Network Architecture

The IEEE 802.16e-2005 standard provides the air interface for WiMAX but
does not define the end-to-end WiMAX network. The Network Working Group
(NWG) of WiMAX Forum is responsible for developing the end-to-end require-
ments, architecture, protocols and communication mechanims for WiMAX using
IEEE 802.16e-2005 as the air interface. The NWG has developed a network ref-
erence model to serve as an architecture framework for WiMAX deployments
and to ensure interoperability among WiMAX equipment and operators. The
reference model envisions a unified network architecture for supporting fixed,
nomadic and mobile deployments and it is based on an IP model. The overall
network can be logically divided into three parts: mobile stations, an access ser-
vice network (ASN), and a connectivity service network (CSN). Mobile stations
are used by end users to access the network. The ASN comprises one or more
base stations and one or more ASN gateways. The CSN provides IP connectivity
and all the IP core network functions. [3]

2.2 Mobile WiMAX Car Implementations

In April 2005, KDDI succeeded testing of handover between Mobile WiMAX
Base Stations (BSs) and also with 3G, with applications such as multi-channel
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streaming, high quality VoIP and media switching [4]. In January 2008 at Con-
sumer Electronics Show (CES 2008), Intel demonstrated Mobile WiMAX car
racing show in which real-time video taken by the car was broadcasted to the
main exhibition hall. At the same CES 2008, Oki along with Alpine and Runcom
demonstrated their navigation system based on Mobile WiMAX. These proved
high performance of Mobile WiMAX networks with a variety of broadband ap-
plications such as VoIP, video streaming, and large-size file transfer. However,
these implementations were based on Point-to-MultiPoint (PMP) mode and had
no capability of exchanging messages between cars.

2.3 C2C Communications Based on WiMAX

To the best of our knowledge, no C2C Communication System has been im-
plemented until present. Several research has targeted at integration of routing
and scheduling mechanism for WiMAX vehicular networks [5] and Intelligent
Transportation System (ITS) [6], and design of C2C communication protocol
for fair multihop data delivery [7]. All of these are based on Mesh mode of Mo-
bile WiMAX standard. Mesh architecture is suitable for a network with medium
to high density. It expands coverage area and enables C2C communications. In
reality, however, it is likely that density of a traffic network vary due to many
reasons, for example deployment area and time of the day. Also multihop for-
warding may increase management cost, latency and packet loss rates.

2.4 Neighbor Detection Algorithms

HELLO based neighbor detection is used in many ad hoc routing protocols such
as AODV [8], DSDV [9] and OLSR [10]. In these algorithms, each node period-
ically broadcasts HELLO messages and advertises itself to its neighbors. This
HELLO message may include information of the transmitter’s neighbors, which
is useful for establishing multihop routes. Because message exchange is needed
more frequently in real-time mobile environment, HELLO based neighbor detec-
tion algorithms may reduce data throughputs in the whole network.

Handshake based neighbor detection is often used to avoid hidden terminal
problem. A node first send probe packet and the receiver replies with ACK. This
type of algorithm can be initiated by the sender whenever it needs to. A well-
known example of handshake based neighbor detection algorithm is RTS/CTS
(Request to Send / Clear to Send) algorithm adopted by IEEE 802.11. RTS/CTS
requires four-way message exchange.

Link state aware neighbor detection takes quality of wireless channel into
account. As an option, OLSR support usage of link state information for its
neighbor node management system. ETX [11] computes channel quality based
on successful delivery of probe packets in a given time frame. Because link state
is constantly monitored, link state aware neighbor detection is more reliable
than HELLO based or handshake based algorithms in which decision making is
based only on few times of message exchange. The disadvantage of this type of
algorithm is high cost of periodic probe transmissions.
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3 Existing System Model for C2C Communications

In this section, we consider WiMAX based system architecture for C2C com-
munications. We first introduce assumptions and requirements, then point out
problems with existing architectures, and finally analyze necessary functionali-
ties to enable C2C communications based on Mobile WiMAX.

3.1 Assumptions and Requirements

Our deployment scenario, a large-scale broadband wireless platform for local
road weather services, is mainly targeted at city or highway area. In our plat-
form, cars are driving freely at high speed (up to 100km/h), and constantly
collecting data from car sensors while travelling. Collected data from each car
is transmitted using our wireless platform and shared with data analysis centers
and other nearby cars. Each car is assumed to be equipped with omni-directional
antenna with the same transmission power. We also assume TDD duplex method
for the system. Table 1 shows system requirements derived from our scenario.
Wireless technologies (3G, WiMAX and WiFi) have been evaluated based on
these requirements. Scaling is based on three levels: A, B and C, in higher order.

3.2 Operation Modes of Mobile WiMAX

A Mobile WiMAX network consists of two types of devices: BS and Mobile Sub-
scriber Station (MSS). MSSs are registered to and controlled by the BS strictly
with node management system, such as device authentication, and resource al-
location mechanisms. With Mobile WiMAX, two independent operation modes
are defined: PMP and Mesh.

PMP Mode. In PMP mode, every MSS is accessible from/to BS with a single
hop. The advantage of PMP mode is its simplicity. It is easy to deploy and simple
to manage. For this, implementation of PMP mode is mandatory in every Mobile
WiMAX device.

Sender

Receiver

Base Station
1st Hop

2nd Hop NOT DELIVERED 
DIRECTLY

Fig. 1. Packet forwarding problem in PMP mode. Packets are always relayed by the
Base Station node, even when the sender and the receiver are in communication range.
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Table 1. Comparison of wireless technologies based on our requirements
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Although many traffic or transport services can increase usability and mo-
bility by using C2C communications, Mobile WiMAX’s PMP mode does not
support this type of communication. As illustrated in Fig. 1, even when the
sender and receiver MSSs are close enough from each other, packets are always
routed through the BS and arrive at the destination after two wireless hops.

This problem is caused by lack of knowledge at MSSs about their neighbor
nodes. Our study showed that the destination MSS may hear the signals from
the source, but cannot receive the packet successfully. Because the sender does
not know if the destination is in its transmission range, the only choice for the
next-hop MAC address used in the MAC header is the BS’s. Unmatching of
MAC addresses will be automatically detected and filtered out by hardware at
the receiver MSS.

Mesh Mode. In Mesh mode, packets may be exchanged between MSSs or
transferred by multiple hops with help of other MSSs. Thus, direct connection
to the BS is not necessary for MSSs in this mode. Some of the advantages of Mesh
mode are communication within local community and expansion of coverage area
with minimum hardware investment.

The Mesh mode is optional and not compatible with PMP mode, which means
that Mobile WiMAX Mesh networks can be possible only when all the nodes
have implemented this optional mode. In fact, however, the majority of Mobile
WiMAX devices in market are only capable of PMP mode.

Achieving sufficient system performance with wireless multihop architectures
has been a big research challenge for many years, due to constrains of radio
transmissions and complexity of routing and node management. Transmissions
over multiple wireless hops may cause degradation of system performance, not
only by increasing end-to-end delay but also by adding extra cost of using more
bandwidth and more risk of packet losses [12]. Ken Stanwood states following
challenges for mesh architectures: delays (transmission delays and processing
delays) due to multiple forwarding, limited capacity at tree branches, higher
load at root node, poor QoS achievement because of delay, expensive cost of
planning and management, complex routing, and compatibility problem with
PMP mode due to unique frame structure [13].

Furthermore, network connectivity of Mesh architectures is highly dependent
on the topologies. In a network where nodes keep moving freely at high speeds,
a fatal error may occur when there is no relaying MSS between the sending MSS
and the BS.

Although direct communications between neighbors is possible with Mesh
mode, we have concluded that assuring connectivity is the first priority and thus
Mesh is not the ideal solution for our wireless transport service platform in which
topology keeps changing along with the node movements.

3.3 Enabling C2C Communications for Mobile WiMAX

Our motivation of enabling C2C communications for our wireless transport sys-
tem is to increase usability and mobility, by optimizing transmission mechanism
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and minimizing several costs due to transmissions. Based on the system require-
ments and analysis explained in 3.1, we have selected Mobile WiMAX as the
best candidate technology for our large-scale wireless transport system. Deeper
analysis of Mobile WiMAX modes in 3.2 proved that PMP mode was more
suitable architecture than Mesh mode because of its wider compatibility, better
performance, and reliable connectivity, except that it still needs some mecha-
nisms in order to enable C2C communications. The fundamental mechanisms to
enable C2C communications based on Mobile WiMAX are: neighbor detection,
neighbor list management and routing decision making. It is our challenge that
the costs introduced by these new mechanisms, especially amount of traffic for
neighbor detection, should not exceed the original ones with PMP mode.

4 Optimized C2C Communication Mechanism

The future mobile communication platform for vehicles should support a variety
of services and allow sharing of localized information between cars and/or car
and the backbone infrastructure.

Our optimized C2C communication system is designed to add C2C commu-
nication capability to the standard Mobile WiMAX networks with PMP mode.
It uses existing traffic for neighbor detection, and select optimum route based
on the neighbor information. As a result, this system can achieve shorter packet
delivery time and conserve bandwidth for future needs.

Some of the characteristics of the system are:

– As efficient as PMP mode (no extra cost of delay, packet loss, scheduling)
– Direct communication within local community is possible (less load at BS,

less bandwidth consumption)

Neighbor
Detection
Module

Routing
Decision
Module

Applications

Neighbor
List

Wireless Channel

Network Interface

MSS

Physical-layer indication(s)

Fig. 2. Node components for Mobile Subscriber Station (MSS)
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– Neighbor discovery based on existing packets’ physical-layer information
– Adds broadcasting functionality at MSSs. Can be used for more localized

broadcasting (MSS’s transmission range is usually smaller than that of BS).

As illustrated in Fig. 2, our system consists of three components: neighbor
detection module, neighbor list, and routing decision module. We describe each
component in the following subsections.

4.1 Neighbor Detection Module

The neighbor detection module in our system senses physical indications of sur-
rounding nodes by listening to the signals.

– Step 1: Listen to incoming signals and obtain physical-layer parameters
– Step 2: Based on the parameters, compute one-hop away neighbors using

pre-defined threshold
– Step 3: If a neighbor is detected, update Neighbor List

As we have discussed in Section 2, the majority of existing neighbor detection
mechanisms detects neighbors by sending some message(s). For such ad hoc
networks, ensuring connections with neighbors is important since there is no
alternative path.

In our case with PMP mode, we already have a default route (connection) to
the BS, and want to optimize the route when direct connection to the receiver
is found possible. Thus, we avoid costly message-sending neighbor detection
approach but aim at using already available information in the neighborhood.
Physical information based detection approach can be seen in WiFi networks,
when a client selects the best Access Point to connect. Our solution adopt the
idea from WiFi’s AP detection mechanism, but apply it for neighbor MSS de-
tection by using available packets.

BS

MSS

MSSMSS
<listen><listen>

MANAGEMENT & 
OTHER TRAFFIC

BS

MSS

MSSMSS

Sender

Receiver

DATA

Listening Phase Sending Phase
* Neighbor detection based
on physical-layer
indication(s)

* Update of Neighbor List

* Direct C2C communication
using Neighbor List

Fig. 3. Neighbor detection and C2C communication processes
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Obtaining information from existing packets is rather easy in Mobile WiMAX
networks. Firstly, because each MSS is periodically and frequently communicat-
ing with the BS, for example to send resource allocation request or some other
control messages. Secondly, it is possible for a MSS to catch uplink traffic from
other MSSs, because the uplink and the downlink traffic use the same channel
(frequency) in TDD.

4.2 Neighbor List

Neighbor List is used to manage all neighbor nodes’ information. It simply keeps
track of information such as IP address and expiration time for each neighbor
entry. Because the information is used for real-time routing decision module,
each entry expires after a certain period of time if it does not hear any new
information from the same node.

4.3 Routing Decision Module

Routing decision is made at Routing Decision Module using Neighbor List. The
choice is either one direct hop to the receiver if the node is in Neighbor List, or
otherwise one hop to the default gateway (the BS).

After routing decision is made, packet header is prepared accordingly. Once
the receiver is detected as its neighbor, packets will be automatically directed
to the receiver node, and they no longer need to have the BS as intermediate
forwarder.

5 Discussion

In a conventional Mobile WiMAX network with PMP mode, communication
amoung MSSs on the same IP subnet was not possible at all because packets
were always relayed by the BS. Our optimized C2C module provides added
functionality for C2C communications to Mobile WiMAX networks in PMP
mode. By optimizing the routing decision, it reduces end-to-end latency and
packet loss rates. It also conserves bandwidth for future use. Because this module
uses available information in the neighborhood for neighbor detection, no extra
traffic is produced.

However, misuse of routing metric may cause more packet drops and degrade
system performance. In the future research, we will simulate our system and
conduct experiments to find reliable trigger point for routing decision making.

6 Conclusion

In this paper we considered a WiMAX-based system architecture for C2C com-
munications. The WiMAX system was analysed as a basic platform. We found
that the WiMAX was not an ideal system for C2C communications due to lack of
mechanisms, such as neighbor detection, neighbor list management and routing
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decision modules. We have designed these functionalities in our optimized C2C
module, with aim of conserving radio resource at the same time. Significance
of this module is that it uses existing traffic for neighbor detection. The neigh-
bor detection module senses physical indications of surrounding nodes. Based on
this neighbor information, optimum route is selected for transmissions. Our opti-
mized C2C communication mechanism can be used in Mobile WiMAX networks
with PMP mode, and it reduces extra cost of multihop forwarding, improves
end-to-end latency and decreases bandwidth usage.
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Abstract. The evaluation of new communication protocols for Vehic-
ular Ad-hoc Networks (VANETs) is a hot topic in research. An effi-
cient design and actual deployment of such software tools is crucial for
any VANET. The design phase is difficult and often relies on computer
simulation. The later evaluation of protocols in real VANETs is complex
due to many difficulties concerning the availability of resources, accurate
performance analysis, and reproducible results. Simulation is the most
widely solution to make a good design but it presents also an important
challenge: the fidelity of the simulation compared to the real results. In
this article we measure the differences between the simulation versus the
real results with actual moving cars in order to quantify the accuracy of
the VANET simulations inside the European CARLINK Project1. After
a thorough revision of the state of the art, we here go for an analysis of
JANE and VanetMobiSim/ns-2, two simulation frameworks. Later, we
have defined the scenario where both, simulations and real tests, will
be carried out. Our results show that JANE is more appropriate for
simulating applications, while ns-2 is more accurate in dealing with the
underlying mobile communication network.

Keywords: CARLINK, IEEE 802.11b, Simulation, VANETs, JANE,
VanetMobiSim/ns-2.

1 Introduction

Vehicular Ad-hoc Networks (VANETs) are created by equipping vehicles with
devices capable of wireless communication. The existence of such networks opens
the way for a large range of applications: providing real-time information about
traffic jams, accidents, and weather; that could be useful for developing a wider
set of car vehicles that keeps people connected in metropolitan routes and
highways in a clear advance to safer driving, a main issue in today’s society.

The evaluation of VANET protocols and applications in outdoor experiments,
on using large-scale networks to obtain significant results, is extremely difficult
for reasons like the limited/dynamic set of available resources, inaccurate perfor-
mance analysis, and often irreproducible results. Indeed, it is neither easy nor
cheap to have a high number of real vehicles and a real scenario amenable for

1 http://carlink.lcc.uma.es

H.A. Le Thi, P. Bouvry, and T. Pham Dinh (Eds.): MCO 2008, CCIS 14, pp. 568–578, 2008.
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VANET designers. It is also difficult to analyze protocols performance in a
inherently distributed, changing, and complex environment like a VANET [1].

Hence, simulation has become an indispensable tool. It allows to build inside
a computer a dedicated VANET for the evaluation of protocols: the number of
vehicles, the direction and velocity of their movement, the features of the wireless
network transceivers, the routing protocol, etc. Simulators also gather statistical
data about the network usage during the simulation, which allows to measure
the protocols performance. Moreover, it is possible to visualize the VANET in
order to easily analyze and conclude on protocol evaluation.

However, due to the complexity of any real scenario in which cars move, a
big amount of information related to the signal propagation is missed what is
bad news because it plays an important role in the performance of the outdoor
experiments: passing by obstacles, reflection problems, coverage signal interfer-
ences, etc. Thus, simulation also presents an important drawback: the fidelity of
the generated results.

The aim of the CARLINK Project is to develop an intelligent wireless platform
among cars. The global scenario considers the cars as data collectors that sends rel-
evant information viawireless technologies up to a central station (where this info is
processed). Inside this global scenario, the ad-hoc communications allows the cars
to communicatedirectlywitheachotherwithouttheneedof existing infrastructure.

In this paper, we first focus on the simulation of the CARLINK-UMA sce-
nario. This scenario consists in two cars moving at 30 km/h while transferring
different files between them. The cars follow different mobility models and they
are connected through the ad-hoc operation mode of the IEEE 802.11b standard.
The goal is to also reproduce the same scenario in outdoor experiments in order
to compare the simulated data with the real ones.

We have found that the results of the real tests performed at the Univer-
sity of Málaga (UMA) are an accurate estimation of the data rates that can
be achieved when using the ad-hoc WiFi for transferring files between cars.
These results could determine the type of applications that could run on top of
VANETs. To this goal, we use several simulators, we consider communications
and applications, and quantitatively analyze the results.

This paper is structured as follows: Section 2 summarizes the different alterna-
tives for VANETs simulation. Later, VanetMobiSim/ns-2 and JANE are selected
as the simulators of interest for the CARLINK Project and Section 3 gives an
overview about them. Section 4 defines the scenario where both, the simulations
and the real tests, will be carried out. Section 5 presents the simulated versus
the real experiments. Afterwards, these results are compared with each other,
and finally, Section 6 draws some conclusions about the methodology as well as
on the achieved results.

2 Simulation of VANETs

VANETs are a subclass of the Mobile Ad-hoc Networks (MANETs) in which
mobility patterns are more complex, since the network topology changes more
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frequently because of the higher node velocity and the nodes having to fulfil the
traffic rules. Therefore, a realistic mobility model implementation is as relevant as
a realistic ad-hoc communication network model in order to obtain good quality
VANET simulation results. Let us first discuss appropriate tools for simulating
either communications and mobility models in next section.

2.1 VANET Simulation Alternatives

Nowadays, we identify different approaches trying to through light on the
complex problem of simulating VANETs in a trustworthy manner. First, the
most widely used, the desingner could use a traffic simulator for generating real-
istic vehicular mobility traces that will be used as the input for a mobile ad-hoc
network simulator. Second, the designer could use a specially-designed VANET
simulator tool. Finally, some MANET application programming frameworks
allows the developer to test the applications via simulations.

The first approach used for simulating VANETs consist on using a traffic
simulator or a mobility model generator capable of generating mobility traces,
which are later evaluated by an existing specific MANET simulator. The public
availability of many of these MANET simulators is the main motivation for the
success of this approach. However, it has a major drawback: the majority of
VANET applications need vehicles to react to network events and it is difficult
to be modeled with this scheme of simulation. Most research community adopt
ns-2 (network simulator) [8] for MANET simulating. The number of traffic sim-
ulators which generates ns-2 format traces is large: the most comprehensive is
VanetMobiSim [3], however we can also find another as Videlio, RoadSim,
CARISMA, VISSIM, and MMTS. There are also traffic simulators that gener-
ate traces for other MANET simulators as CORSIM/TSIS, SJ04, SSM/TSM,
and STRAW. Finally, TraNS and MOVE combine the SUMO mobility model
generator and ns-2 simulator linking them in a unique tool.

The specially-designed VANET simulators join scalable vehicular mobility de-
scriptions and network stack modelling in a single tool. These combined
approaches have the big advantage of allowing a direct interaction between the
communication network system and the vehicular traffic dynamics, thus, the first
can influence the second. However, they also have a major drawback. The level
of detail of both modules is necessarily lower than that provided by ad-hoc sim-
ulation tools. GGCDCI06, MoVES, and the GrooveNet are examples of specific
VANET simulators.

Finally, there are some frameworks as JANE [4], a Java-based middleware
platform for MANET applications programming. It allows the developer to test
the applications in a simulation environment and, also, over real mobile devices.
See [5] for more details.

2.2 Selecting a Simulator

Once revised the different approaches for VANET simulation, this section is
devoted to giving some recommendations for choosing the most appropriate
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tool. First of all, the software which is distributed under commercial licenses, as
most specific VANET simulators, constitutes a major flaw to adopt them by the
research community. Thus, the use of a traffic simulator that consists of the traf-
fic generator traces and the MANET simulator is the most suitable choice. We
decided to use ns-2 as MANET simulator, since it is widely used by the research
community. So, we need a simulator to generate ns-2 format traces.

Furthermore, the selected simulator has to generate realistic mobility models
that reflects as closely as possible the characteristic behavior of the nodes as real
vehicles through road traffic by using macro-mobility and micro-mobility defini-
tions [2]. The simulator should be intuitive with no complex mobility definition.
This leaded us to also experiment with JANE [4], in order to have simulations
coupled to applications one of its salient feature.

3 VanetMobiSim/ns-2 and JANE Simulators

According to the previous recommendations, the chosen traffic simulator is
VanetMobiSim. It includes several options to specify the roads characteristics
(macro-mobility features) and the behavior of the mobility of the nodes (micro-
mobility features), the definition of them is done by using intuitive XML code,
and the output trace has ns-2 format. Moreover, JANE has been also selected
since it allows the development, simulation, and execution of high-level applica-
tions in an integrated way.

3.1 VanetMobiSim/ns-2 Simulator

The simulator used for most of the simulations in CARLINK is the combination
of the traffic simulator VanetMobiSim and the MANET simulator ns-2 [7].

VanetMobiSim is an extension to CanuMobiSim [9], a generic user mobility
simulator. CanuMobiSim provides an efficient and easily extensible mobility ar-
chitecture, but due to its general purpose nature, it suffers from a reduced level
of detail in specific scenarios. VanetMobiSim is therefore aimed at extending the
vehicular mobility support of CanuMobiSim to a higher degree of realism. The
main characteristics of this simulator are that it is specific for VANETs and
an open source platform; it supports both macro-mobility and micro-mobility
specification, and it uses intuitive XML code to specify the different simulations.
However the most important feature of VanetMobiSim is that it has been vali-
dated in actual communication scenarios [3] . Its main drawback is that it offers
a poor documentation.

ns-2 [8] is an open source network simulator, so it is freely available and the
user is able to modify the source code (C++ and OTcl). This characteristic
is really important, since it has allowed us to extend the simulator with the
VDTP protocol [6]. It provides a packet level simulation over a lot of protocols,
supporting several transport protocols, several forms of multicast, wired net-
working, several ad-hoc routing protocols and propagation models, data broad-
casting, satellite, etc. It incorporates different traffic generators as web, telnet,
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CBR (constant bit rate generator), etc. for using them in the simulations. Also,
ns-2 has the possibility of using mobile nodes. The mobility of these nodes may
be specified either directly in the simulation file or by using a mobility trace
file. In our case, the trace file is generated by VanetMobiSim. Finally, other im-
portant feature is that it incorporates several add-ons as the visualization tools
NAM2 (Network Animator) and TraceGraph3.

3.2 JANE: The Java Ad-Hoc Network Environment

JANE [4] is an open source Java-based middleware platform which is intended
to assist ad-hoc network researchers in application and protocol design. JANE
aims at providing a uniform workbench, supporting experiments ranging from
pure simulation of mobile devices, over hybrid scenarios with interaction among
simulated as well as real life devices, up to dedicated field trials as proof of
concepts. Therefore, JANE presents three different execution modes that enable
the execution of the tested source code from the simulation to the real devices
with a low effort. These execution modes are: simulation mode, hybrid mode, and
platform mode. In simulation mode, the complete environment is simulated: the
devices, the users and the ad-hoc network. In hybrid mode, the devices and the
ad,hoc network are simulated, but real users can interact with the simulation
by using emulated graphical interfaces. Finally, in the platform mode the whole
setting is real (actual mobile devices as PDAs, cellular phones, etc.).

A development process can be derived from the utilization of these three JANE
execution modes. It consists of a cycle which comprises three ordered phases:
simulation, emulation, and real execution. It starts with implementing, testing,
and evaluating algorithms and applications in a purely simulated environment.
In a second step, dedicated mobile devices can be cut out of a simulation run and
be transferred to a real mobile device in order to deal with real user interaction
and to evaluate the user experience. In a final phase, specific field trials can be
defined and executed on real mobile devices.

The main disadvantage of JANE is that this tool is not specialized for
VANETs. Therefore, it does not provide realistic mobility models for the simula-
tion of vehicular networks. Nevertheless, its well structured simulation
kernel could allow the developer to integrate a more accurate mobility model
component for overcoming this weakness.

4 The CARLINK-UMA Scenario

The CARLINK Project consider three scenarios for the exploitation of the intel-
ligent wireless platform that is going to be built at the end of the Project [10]:
the local weather service, the traffic management service, and the mobile end user
service. These services use both, infrastructure and ad-hoc communications, to

2 http://www.isi.edu/nsnam/nam
3 http://www.angelfire.com/al4/esorkor
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achieve their objectives. In the CARLINK-UMA scenario we focus on the study
of the inter-vehicle communications quality in which the VANETs are based on.

This section describes the scenario where the simulations and the real exper-
iments will be carried out. These conditions will be exactly the same in all the
cases in order to make a fair comparison. The goal is to transfer files between two
cars connected by using the ad-hoc operation mode of the IEEE 802.11b MAC
Layer Standard in a line-of-sight scenario. Concretely, each car is equipped with
one PROXIM ORiNOCO PCMCIA transceiver4 connected to a range extender
antenna. The wireless network cards output power is 12 dBm and the range
extender antennas gain is 7 dBi.

The mobility model consists of a road segment split into two lanes representing
bi-directional traffic. Depending on the initial and final positions, we differentiate
two scenarios: Scenario A and Scenario B (see Figure 1). In the first one, both
vehicles start at the initial position of the same lane, and they move in the same
sense along this lane separated by average 50 m (Figure 1.a). In Scenario B, one
vehicle starts the movement at the initial position of the first lane and the other
vehicle starts at the final position of the second lane, 500 m separated one from
the other, and they move in opposite directions (Figure 1.b). In both cases, each
vehicle move with a velocity equal to 30 km/h on average.

a) Scenario A b) Scenario B

Fig. 1. Mobility models

The experiments were composed of different tests. Each one consisted in con-
tinuously transferring a data file in one of the previously specified scenario A or B
(Figure 1). We used two different files: file 1 with 1-MB size (representing traffic
notifications, e.g. on road conditions) and file 2 with 10-MB size (representing
multimedia files, e.g. podcasting or streaming to cars).

We use the VDTP protocol [6] to make transfers among the vehicles. For
each transfer, VDTP splits the file into several chunks. The chunk size can be
configured manually. We have set its value to 25 KB in all the tests.

The complete experiment consisted of ten repetitions of every test. The
tests were named as follows: Test A1, Test A2, Test B1 and Test B2. In
this notation, the upper case character describes the scenario and the number
denotes the file used in each test.

4 http://www.proxim.com
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5 Real Tests Versus Simulation

This section presents the differences between real and simulated results. Firstly,
we present the results of real tests and simulations for each test. Secondly, we
present the difference between each simulator and the real tests.

Figure 2 shows the results of transferring ten times the file type 1 in the
Scenario A. The mean transmission time in the real tests is 1.618 seconds, with
a mean transmission rate equal to 626.992 KB/s. The mean transmission time
achieved using the VanetMobiSim/ns-2 simulations is 1.679 seconds, with an
mean data rate equal to 609.778 KB/s. In the case of the JANE simulations
the mean transmission time is 1.8 seconds, with a mean data rate equal to
563.812 KB/s. We can notice the high precision of the simulation with ns-2
compared to the actual values showed by the moving cars.
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Fig. 2. Individual transmission times for TestA1

Figure 3 shows the results of transferring ten times the file type 2 in the
Scenario A. The mean transmission time in the real tests is 17.328 seconds, with
a mean data rate equal to 585.176 KB/s. The mean transmission time achieved
using the VanetMobiSim/ns-2 simulations is 16.757 seconds, with a mean data
rate equal to 611.053 KB/s, somewhat too optimistic this time. In the case of
the JANE simulations, the mean transmission time is 17.9 seconds, with a mean
data rate equal to 564.494 KB/s, a better result for this high level tool.
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Figure 4 shows the results of transferring ten times the file type 1 in the
Scenario B. The mean transmission time in the real tests is 2.732 seconds,
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with a mean data rate equal to 371.404 KB/s. The mean transmission time
achieved using the VanetMobiSim/ns-2 simulations is 2.678 seconds, with an
average transmission rate equal to 391.451 KB/s. In the case of the JANE sim-
ulations the mean transmission time is 1.8 seconds, with a mean data rate equal
to 563.724 KB/s. It seems that small data files get JANE more confused, while
ns-2 is specially accurate.

Figure 5 shows the results of transferring ten times the file type 2 in the
Scenario B. The mean transmission time in the real tests is 20.198 seconds, with
a mean data rate equal to 502.017 KB/s. The mean transmission time achieved
using the VanetMobiSim/ns-2 simulations is 19.945 seconds, with a mean data
rate equal to 513.397 KB/s. In the case of the JANE simulations, none of these
transfers were successful (i.e., none of the files were completely downloaded from
the file owner to the file petitioner).
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Fig. 5. Individual transmission times for TestB2

In order to compare all these results, Figure 6 presents the mean data rate
for each test. It is easy to check that VanetMobiSim/ns-2 generates more realis-
tic results than JANE. Anyway, let us have a look to the numerical differences
presented in Table 1. Each entry (i, j) in this table denotes the absolute differ-
ence (in KB/s) between the real experiment and the simulation results with the
simulator i in the test j.

ns-2 presents the largest difference with the real experiment in Test A2: 25.877
KB/s. JANE presents the largest difference with the real experiment in Test B1:
192.32 KB/s. Moreover, it was not possible to transfer any file completely in
JANE with the same conditions as VanetMobisim/ns-2.
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Fig. 6. Mean data rate comparison between real and simulated tests

The configuration of the wireless network transceivers for each vehicle were
copied from the real specifications of the ORiNOCO card to both simulators
(detailed in 4). However, the coverage radius for the cars had very different
values in each one: 80 metres in JANE and 100 metres in ns-2. The smaller the
coverage diameter the smaller the time frame for the connection between the file
petitioner and the file owner in the Scenario B. That could be the reason for
the observed differences and advantages of ns-2 since it has a larger coverage.
Furthermore, the mean data rate achieved in JANE was also smaller than the
one achieved in ns-2 during all the tests. This explains the difficulties for JANE
in order to transfer the 10-MB file in the Test B2.

Table 1. Mean data rate differences (absolute value in KB/s) between real and simu-
lation results

Test A1 Test A2 Test B1 Test B2
JANE 63.18 20.682 192.32 N/A
VanetMobiSim/ns-2 17.214 25.877 20.04 11.38

6 Conclusions

In this work we have compared simulated versus real experiments about the
use of ad-hoc WiFi in VANETs. Firstly, we have deeply study the state of the
art in VANET simulation in order to select the most interesting tools for the
CARLINK Project: JANE and VanetMobiSim/ns-2. Secondly, we have defined a
common scenario for the fair comparison between simulation and real results: the
CARLINK-UMA scenario. Finally, we have presented the numerical differences
among them.

It is interesting to notice that the times between consecutive file transfers in
the simulations are very similar each other, contrary to the times obtained in the
real experiments (see figures 2, 3, 4 and 5). The simulation experience shows that
the real world communications are quite difficult to simulate in a trustworthy
manner. Due to its complexity, a lot of events related to the signal propagation
of the wireless transceivers, that play an important role in the real experiments,
are missed in the simulations: passing by obstacles, reflection problems, signal
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interferences, etc. It is advisable to keep this idea in mind when using the sim-
ulation results to evaluate any complex scenario before being deployed.

The results presented in Section 5 reveal that VanetMobiSim/ns-2 is the most
realistic VANET simulator. Therefore, we have decided to use it in order to per-
form further complex and larger-scale simulations for the CARLINK consortium.
Finally, due to its innovative method for developing new wireless ad-hoc network
applications, JANE is useful for testing complex high-level applications deployed
on VANETs. Indeed, we have developed two applications that have been suc-
cessfully tested in real VANETs: FSF and Puzzle-Bubble. These applications are
available for download from the CARLINK Project web site5.

The results achieved with VanetMobiSim/ns-2 are similar enough to the ones
obtained in the real experiments to consider this simulator as a reliable alterna-
tive for the evaluation of the communication protocols for CARLINK.

As a future work we plan to perform more complex simulations. Once we
have tuned the simulators configuration, we are able to simulate more realistic
scenarios in order to predict the performance of the real ones, e.g. urban and
highway environments.

The aim of the CARLINK Project is to develop an intelligent wireless platform
among cars that will provide three main services to improve the day to day
life of European drivers and citizens: the traffic local weather service will offer
accurate local weather forecast, the traffic management service will afford real
time traffic information for drivers and the mobile end user service gives useful
information to the citizens in order to choose the better route to reach their
destination, through private or public transportation systems. All these services
are supported by wireless communications by means of infrastructure and ad-hoc
communications. Therefore, the quality of the inter-vehicular communications in
VANETs is crucial for the success of the platform.
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Abstract. The aim of the research presented in this paper is finding
highly nonlinear balanced Boolean functions. These functions are useful
for bloc ciphers based on S-boxes. An hybridation of a DC (Difference
of Convex functions) programming approach and a Simulated Annealing
(SA) algorithm is developed.

Keywords: Boolean function, nonlinearity, balance, DC programming,
DCA (DC Algorithm), SA.

1 Introduction

Substitution boxes, aka S-Boxes, are a key component of modern crypto-systems.
Several studies and developments were carried out on the problem of building
high-quality S-boxes in the last few years. Qualities of such boxes, such as non-
linearity and balance, steer the robustness of modern block ciphers. Designing
suitable S-boxes is a difficult task, the objective being to optimize a maximum
number of criteria. We propose and compare in this work different approaches
for generating such Boolean functions. These functions feature high quality cryp-
tography criteria in order to become good candidates for building high-quality
S-boxes. In our work, nonlinearity and balance are the main criteria considered
for building high quality S-boxes based on Boolean functions. These properties
have been widely studied in the literature (see e.g. [1] [13] and references therein).

Many techniques have been suggested for building highly nonlinear balanced
Boolean functions. They vary from random search, hill-climbing, genetic
algorithms and hybrid approaches. (see e.g. [1], [3], [11], [12] and references
therein). However, due to the very large dimension of this problem in practice,
the standard methods in combinatorial optimization such as branch and bound,
branch and cut, cutting plan can not be applied. That is why, in a long time
there is no deterministic models and methods for it. Very recently the first deter-
ministic approach has been developed in [9] which is based on DC (Difference of
Convex functions) programming and DCA (DC optimization Algorithms). The
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authors reformulated the problem as a polyhedral DC program by using exact
penalty techniques in DC programming, and then used DCA, a robust approach
in continuous optimization for solving the resulting DC program. Since DCA
is a local approach, how to compute good initial points for it is an important
question from numerical points of views. In [10] several versions of the combined
DCA-GA (Genetic Algorithm) have been proposed.

Exploiting simultanously the efficiency of DCA and SA (Simulated Annealing),
in this paper, we will present some combined DCA-SA versions for this problem.

The paper is structured as follows: in Section 2 we present basic notations
of the Boolean functions and its cryptographic properties. Section 3 deals with
the optimization formulation of the problem and the DCA procedure. Section 4
describes the hybridation DCA-SA approach and the numerical results.

2 Basic Notations

A Boolean function: f : {0, 1}n → {0, 1} is a function which produces a Boolean
result.

The binary truth table of a Boolean function of n variables, denoted f(x), is the
truth table that contains 2n elements corresponding to all possible combinations
of the n binary inputs.

For a given table x = (x1, x2, ..., xn), the Boolean function f can be deter-
mined by the last column of its binary truth table, namely a binary vector in
dimension 2n.

Denote byB := {0, 1}. In this work we consider a Boolean function f as a vector
in B2n

. Hence the set of Boolean functions, denoted by F is exactly the set B2n

.
The polarity truth table of a Boolean function denoted f̂ is defined by f̂(x) =

(−1)f(x) = 1− 2f(x), where f̂(x) ∈ {1,−1}.
A linear Boolean function Lw(x), selected by w ∈ Zn

2 , is a Boolean function
given by (⊕ denotes the Boolean operation ’XOR’)

Lw(x) = wx = w1x1 ⊕ w2x2 ⊕ ...wnxn. (1)

An affine Boolean function Aw(x) is a Boolean function which can be represented
in the form

Aw(x) = wx⊕ c where c ∈ Z2. (2)

Two fundamental properties of Boolean functions are Hamming weight and Ham-
ming distance.

– The Hamming weight of a Boolean function is the number of ones in the
binary truth table.

– The Hamming distance between two Boolean functions is the number of
positions for which their truth tables differ.

Property 1. a) The Hamming weight of a Boolean function is given by:

hwt(f) :=
∑

x∈Bn

f(x) =
1
2

(

2n −
∑

x∈Bn

f̂(x)

)

. (3)
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b) The Hamming distance between two Boolean functions is computed as

d(f, g) :=
∑

x∈Bn

f(x)⊕ g(x) := (2n −
∑

x∈Bn

f̂(x)ĝ(x)). (4)

The Walsh-Hadamard Transform (WHT) of a Boolean function is defined as:
F̂ (w) :=

∑

x
f̂(x)L̂w(x).

Cryptographic properties

Boolean functions used in cryptographic applications have to satisfy various
cryptographic criteria. Although the choice of the criteria depends on the cryp-
tosystem in which they are used, there are some properties (balance, nonlinearity,
high algebraic degree, correlation immunity, propagation criteria) which a cryp-
tographically strong Boolean function ought to have. In this paper we will focus
on high nonlinearity and balance.

1. Balance: A Boolean function is balanced if its output is equally distributed,
its weight is ,then, equal to 2n−1.

2. Nonlinearity: The nonlinearity of a Boolean function is defined as the
minimum Hamming distance of the function from the nearest affine Boolean
function.

Property 2. The nonlinearity of a Boolean function f , denoted Nf , is related
to the maximum magnitude of WHT values, and given by

Nf := 2n−1 − 1
2

max
w∈Bn

|F̂ (w)|. (5)

3 A Deterministic Optimization Approach: DCA

3.1 A Deterministic Combinatorial Optimization Formulation

The object of our work is to generate highly nonlinear balanced Boolean func-
tions. In other words, we have to find a balanced Boolean function featuring a
maximal nonlinearity criterion. According to the above notations and proper-
ties, the problem of maximizing the nonlinearity of a Boolean function can be
written as ([9]):

max
f∈F

Nf = max
f∈F

min
w∈Bn

1
2

(

2n − |
∑

x∈Bn

f̂(x)L̂w(x)|
)

.

Denote by awx := L̂w(x) ∈ {−1, 1} for w, x ∈ Bn. It has been proved in [9]
that

max
f∈F

Nf = 2n−1 − min
u∈Bn

Ψ(f),
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where

Ψ(f) := max
w∈Bn

∣
∣
∣
∣
∣

∑

x∈Bn

awxfx −
1
2

∑

x∈Bn

awx

∣
∣
∣
∣
∣
.

Hence maximizing Nf amounts to minimizing Ψ(f) on Bn. For finding a
balanced Boolean function the next constraint is imposed

|
∑

x∈Bn

fx − 2n−1 |≤ b, (6)

with a nonnegative number b. Clearly that if b = 0, then the function is balanced.
Finally the following optimization problem is formulated in [9]:

β := min{Ψ(f) : 2n−1 − b ≤
∑

x∈Bn

fx ≤ 2n−1 + b, f ∈ Bn}. (7)

It is easy to see that the function Ψ is a polyhedral convex (by definition, a
function is polyhedral if it is a pointwise supremum of a finite collection of affine
functions). We are then facing the minimization of a convex polyhedral function
with binary variables under linear constraints. It is known that the last problem is
in fact equivalent to a mixed zero-one linear program (with exactly one continuous
variable). In our convenient for DC programming approach, for the moment, we
consider the problem in the form (7). This problem is of a very large dimension :
2n variables and 2n+1 constraints.

3.2 Continuous Optimization Formulation

In [9] Problem (7) is reformulated in the form of a continuous optimization prob-
lem. Let

p : IR2n

→ IR be the function defined by p(f) :=
∑

x∈Bn

min{fx, 1− fx}.

It is clear that p is a nonnegative concave function on [0, 1]n. Moreover p(f) =
0 iff f ∈ Bn. Hence Problem (7) can be expressed as

min

{

Ψ(f) : 2n−1 − b ≤
∑

x∈Bn

fx ≤ 2n−1 + b, p(f) ≤ 0

}

. (8)

Using exact penalty techniques one gets the more tractable continuous opti-
mization problem (t > 0 is the penalty parameter):

(Q) β = min {Ψ(f) + tp(f) : f ∈ K} ,

where

K :=

{

f : 2n−1 − b ≤
∑

x∈Bn

fx ≤ 2n−1 + b, 0 ≤ fx ≤ 1, ∀x ∈ Bn

}

.

More precisely, it is proved that (8) and (Q) are equivalent in the sense that there
exists τ0 ≥ 0 such that for every t > τ0, the two problems have the same optimal
value and the same set of optimal solutions.
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3.3 DC Formulation

Let χK be the indicator function of K, say χK(f) = 0 if f ∈ K, +∞ otherwise.
Since K is a convex set, χK is a convex function on IR2n

.
A natural DC decomposition of the objective function of (Q) is

Ψ(f) + tp(f) := G(f)−H(f),

with G(f) := χK(f) + Ψ(f) and H(f) := −tp(f). It is clear that G and H are
convex functions. Thus Problem (Q) is a DC program of the form

(Qdc) β := min{G(f)−H(f) : f ∈ IR2n

}.

Let ψw be the function defined by : ψw(f) :=
∣
∣
∣
∣
∑

x∈Bn

awxfx − 1
2

∑

x∈Bn

awx

∣
∣
∣
∣ . Then

ψw is a convex function, and Ψ(f) = maxw∈Bn ψw(f). Therefore, Ψ is a poly-
hedral convex function. Likewise the function H is also polyhedral convex . So
(Qdc) is a polyhedral DC program where all DC decomposition are polyhedral.
This property enhances DCA in the convergence theorem of DCA.

3.4 DCA to Solve (Qdc) ([9])

Applying DCA to (Qdc) amounts to computing, at each iteration k: vk ∈ ∂H(fk)
and fk+1 ∈ ∂G∗(vk). By the very definition of H , we can take vk as follows:

vk
x := −t if fk

x ≤ 0.5, t otherwise. . (9)

On the other hand, the computation of fk+1 ∈ ∂G∗(vk) is equivalent to the
solution of the following linear program :

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ − 〈vk, f〉 :
∑

x∈Bn

awxfx − 1
2

∑

x∈Bn

awx ≤ ξ,∀w ∈ Bn

−
∑

x∈Bn

awxfx + 1
2

∑

x∈Bn

awx ≤ ξ,∀w ∈ Bn,

2n−1 − b ≤
∑

x∈Bn

fx ≤ 2n−1 + b, 0 ≤ fx ≤ 1, ∀x ∈ Bn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (10)

The DCA applied to (Qdc) can be described as follows:

DCA Algorithm
Let f0 ∈ IR2n

, and ε be a sufficiently small positive number.
Repeat

Set vk ∈ ∂H(f) via the formula (9);
Solving the linear program (10) to obtain fk+1;
Set k := k + 1.

Until ‖ fk − fk−1 ‖< ε. Let us denote the feasible set of the linear program (10)
and its vertex set by Ω and V (Ω), respectively. Let f∗ be a solution computed by
DCA. The convergence of DCA is summarized in the next theorem whose proof
is essentially based on the convergence theorem of DCA applied to a polyhedral
DC program.
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Theorem 1. (Convergence properties of Algorithm DCA)

(i) DCA generates a sequence {fk} contained in V (Ω) such that the sequence
{Ψ(fk) + tp(fk)} is decreasing.

(ii) For a number t sufficiently large, if at iteration r we have f r ∈ {0, 1}2n

,
then fk ∈ {0, 1}2n

for all k ≥ r.
(iii) The sequence {fk} converges to {f∗} ∈ V (Ω) after a finite number of

iterations. The point f∗ is a critical point of Problem (Qdc). Moreover if
f∗

x �= 1
2 for all x ∈ Bn, then f∗ is a local solution to (Qdc).

4 An Hybridation DCA-SA Approach

4.1 Simulated Annealing (SA) Procedure

In the SA method, each point s of the search space is analogous to a state of
some physical system, and the function E(s) to be minimized is analogous to
the system internal energy in that state. The goal is to direct the system from
an arbitrary initial state to a state with possible minimum energy. At each step,
the SA heuristic considers some neighbor state s’ of the current state s, and
probabilistically decides whether moving the system to the state s’ or staying
with the state s. The probabilities are chosen such that the system ultimately
tends to move to states with lower energy. Typically the aforementioned process
is repeated until a minimum temperature is reached. The technique has the
following principal parameters:

– the temperature T
– the cooling rate α ∈ (0, 1)
– the number of moves N considered at each temperature cycle
– the maximum number ICMax of temperature cycles considered before the

search aborts.

In order to simultaneously exploit the efficiency of DCA and SA, we apply
DCA at each iteration of SA when the current solution obtained by SA is ac-
cepted. The combined DCA-SA scheme can be described as follows.

4.2 A Combined DCA-SA Scheme

1. Let T 0 be the start temperature.
2. Set IC = 0 (iteration count).
3. Randomly generate an initial current solution f̂curr.
4. while (IC < ICMax)
{

Repeat N Times
{
a- Generate f̂new = neighbour

(
f̂curr

)
.



Design of Highly Nonlinear Balanced Boolean Functions 585

{
b- Compute the difference in cost between f̂new and f̂curr ,
Δcost = cost

(
f̂new

)
− cost

(
f̂curr

)

c- If (Δcost < 0) then
{
c-1 Accept the move, f̂curr = f̂new .
c-2 Apply DCA procedure to improve the result.
}
d- Else
generate a value u from a uniform(0, 1) random variable.
If
(
exp−Δcost

T > u
)

{
d-1 Accept the move,
d-2 Apply DCA procedure to improve the result.

}
otherwise reject it.
}

5. T = T ∗ α (The geometrical law of decrease).
6. IC = IC + 1.
}

7. The current value of f̂ is taken as the final ’solution’.

We propose some variants to the combined algorithm which are based on the
above algorithm.

– SADCA1: the DCA-SA scheme where the evaluation function is the objec-
tive function Ψ(f) in (7).

– SADCA2: the DCA-SA scheme where the evaluation function is Clark’s
objective function

cost
(
f̂
)

=
∑

ω∈F n

∣
∣
∣

∣
∣
∣F̂ (ω)

∣
∣
∣− 2

n
2

∣
∣
∣
R

, R = 3. (11)

– Two phase DCA: the DCA-SA scheme where SADCA1 is applied in
Phase 1 and DCA is applied in Phase 2 from the point obtained in Phase 1.

5 Experimental Results

In this section, we test the three variants of the combined DCA-SA scheme with
the following schemes
SA: SA with the objective function Ψ(f) in (7) as the evaluation function;
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SAHC: Two stage approach of Clark and Jacob where SA is applied using the
cost function in (4.1), then followed by a traditional hill-climb.

For the simulated annealing SA, the search is terminated either when 300
temperature cycles are reached or when 50 consecutive cycles do not produce
an accepted move. At each temperature cycle, 400 moves are considered. The
corresponding values for both Similarly, in the simulated annealing Two phase
DCA, the search is stopped when either 45 temperature cycles are reached or 20
consecutive cycles do not produce an accepted move. 50 moves are considered at
each temperature cycle. A temperature factor α = 0.9 was used throughout. For
DCA implementation, the parameters b, ε are taken to be equal to 0, and 10−6,
respectively. Cplex 7.5 is used to solve the linear program. We have tested our
approaches on a machine equipped with an AMD Athlon 64 bits,dual core 3800+
(processor) . The following tables show the best non-linearity achieved. We will
compare our results with those presented in [4] by Clark and Jacob SAHC.

Careful observation reveals some interesting results.

– For (n ≥ 8) and (n < 12), although we considered only half of temperature
cycles and moves as used in [4], SADCA2 algorithm always gives the same

Table 1. Results for n=8

Technique CPU time DCA iter Non-linearity
SA 1h 46min 10sec - 114

SADCA1 53min 02sec 10 118

SADCA2 1h 12min 12sec 7 118

Two phase DCA 1h 20min 3 118

SAHC - - 116

Table 2. Results for n=9

Technique CPU time DCA iter Non-linearity
SA 3h 27min 30sec - 232

SADCA1 2h 26min 20sec 8 238

SADCA2 2h 53min 58sec 8 236

Two phase DCA 2h 54min 39sec 2 238

SAHC - - 236

Table 3. Results for n=10

Technique CPU time DCA iter Non-linearity
SA 4h 13min 27sec - 476

SADCA1 2h 58min 39sec 9 480

SADCA2 3h 33min 10sec 6 486

Two phase DCA 3h 40min 10sec 3 486

SAHC - - 484
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Table 4. Results for n=11

Technique CPU time DCA iter Non-linearity
SA 8h 34min 01sec - 968

SADCA1 6h 49min 50sec 5 978

SADCA2 7h 34min 15sec 4 986

Two phase DCA 7h 58min 04sec 2 978

SAHC - - 984

Table 5. Results for n=12

Technique CPU time DCA iter Non-linearity
SA 56h 46min 05sec - 1984

SADCA1 22h 19min 01sec 6 1986

SADCA2 25h 15min 10sec 6 1984

Two phase DCA 24h 12min 06sec 3 1986

SAHC - - 1990

nonlinearity as in [4] and even superior in some cases (n = 8). Therefore, it
is clear that using DCA in every temperature cycle improves the solution.

– In the Two phase DCA algorithm, only several iterations are needed to
reach the best solution after DCA is restarted.

– All Boolean functions generated by our algorithm are balanced.

6 Conclusion

We have proposed an hybridation approach that combines DCA and SA. Nu-
merical results show that the combined DCA-SA algorithm is much better than
the classical SA scheme. This combined algorithm is very efficient to find a good
initial point for DCA. Nevertheless, the two phase algorithm is the best among
three versions of the hybridation approach. It means that, in any case, the role
of DCA is crucial. In a future work we will improve the hybridation approach by
an in-depth analysis of the two important issues : ”when to restart DCA in the
SA scheme” and ”how many iterations of DCA needed to get a good solution in
each cycle of SA”. Computational experiments in the large-scale setting will also
be performed in order to evaluate suitably the effectiveness and the efficiency of
the algorithm.
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Abstract. In this work, we present a simple model for the automated
cryptanalysis of cryptographic protocols based on meta-heuristic search.
We illustrate our approach with a straightforward application in the form
of an attack against a slightly simplified version of an ultra-lightweight
authentication protocol for RFID environments called SASI. We show
how an attack based on Simulated Annealing can efficiently recover the
tag’s secret ID, which is the value the protocol is designed to conceal.

1 Introduction

In recent years there has been a proliferation of cryptographic protocols aimed at
providing security services in very constrained environments. The most common
examples are mutual authentication schemes for Radio Frequency IDentification
(RFID) systems, where the shortage of computational resources in tags makes
impossible to apply classical constructions based on cryptographic primitives
such as block/stream ciphers or hash functions.

Typical proposals are often forced to consist of a number of steps in which very
simple operations are performed over public and private values. In this work, we
present a general model for the automated cryptanalysis of such schemes based
on meta-heuristic search. We will illustrate our idea with an application against
a simplified version of one of the most prominent protocols proposed so far: an
ultra-lightweight authentication protocol for RFID environments called SASI.
We will be able to show how an attack based on a Simulated Annealing technique
can efficiently recover the tag’s secret ID, which is the value the protocol is
designed to conceal.

The idea of attacking cryptographic protocols by means of heuristic proce-
dures is not new: Clark et al. [4] presented a seminal work in this area where
they were able to break the PPP [8] identification protocol. It is, however, true
that since that work no further progress has been made in the field. Additionally,
the technique employed here is quite different from that used by Clark et al. The
related area of evolving or automatically designing cryptographic protocols by
means of different heuristic techniques has seen, on the other hand, considerable
success [5].
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The rest of the paper is organized as follows. In the next section, we present
our general model proposal for non-standard attack of cryptographic protocols.
After this, in Section 3 we describe a novel authentication protocol for RFID
environments called SASI, together with its simplified variant CR-SASI, which
succumbs to the attack introduced and analyzed in Section 4. Finally, in Section
5 we extract some conclusions.

2 General Attack Model

The main idea behind our approach is to transform the cryptanalysis of a security
protocol into a search problem, where search heuristics can be applied. In general,
during this search what we will try to find are the secret state values (keys,
nonces, etc.) of some subset of the involved parties. This, of course, could be
done in various ways, but the most natural approach is to measure the fitness of
the tentative secret values by the proximity of the messages produced by these
tentative solutions to the real public messages generated and exchanged during
the actual protocol execution.

Most cryptographic protocols should exchange one or more messages to ac-
complish their intended objective (authentication, key exchange, key agreement,
etc.), and in the vast majority of cases these messages are sent via an insecure
or public channel that can be easily snooped.

In our attack model, the cryptanalyst will try to infer the secret values that
the two parties are trying to hide by exploiting the knowledge of the exchanged
messages. In an robust, secure and well-designed cryptographic protocol, even
states that are very close to the real state should not produce messages that are
very close (for any useful distance definition) of the real public messages.

This should be done, typically, by means of a carefully design and message
construction based on the use of some highly nonlinear cryptographic primitives
such as block ciphers or hash functions. Weaknesses in a protocol design could
lead, on the other hand, to the lack of this desirable property, a fact that can be
exploited to mount a non-standard cryptanalytic attack based in some kind of
heuristic search guided by a fitness measuring distances between exchanged and
computed messages.

This shall exactly be the approach followed in the rest of the paper.

3 Description of the SASI Protocol

In 2007, Chien presented an interesting ultra-lightweight mutual authentication
protocol providing Strong Authentication and Strong Integrity (SASI), intended
for very low-cost RFID tags [1]. This was a much needed answer to the in-
creasing need for schemes providing such properties in extremely constrained
environments like RFID systems. As all the previous attempts to design ultra-
lightweight protocols have failed (essentially all proposals have been broken),
this new scheme was specially interesting.
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The SASI protocol is briefly described in the following, where R represents
the reader, T represents the tag, IDS stands for an index pseudonym, ID is
tag’s private ID, Ki represent tag’s secret keys and n1 and n2 are nonces. Each
message takes the form A→ B : m, meaning that sender A sends to receiver B
message m.

1. R→ T : hello
2. T → R : IDS
3. The reader uses IDS to find in the back-end database the tag’s secret values

ID, K1, and K2. Then R generates nonces n1 and n2 to construct messages
A, B and C as follows:
A = IDS ⊕K1 ⊕ n1

B = (IDS ∨K2) + n2

C = (K1 ⊕ K̄2) + (K2 ⊕ K̄1), where
K̄1 = Rot(K1 ⊕ n2,K1)
K̄2 = Rot(K2 ⊕ n1,K2)
where ⊕ stands for the usual addition modulo 2, + represents addition mod-
ulo 296, Rot(A,B) = A << wht(B) with wht(B) the Hamming weight of B,
and ∨ is the usual bitwise or operation. Finally, the reader sends to the tag
the concatenation of A, B and C:

R→ T : A‖B‖C
4. From A and B,respectively, the tag can obtain values n1 and n2. Then it

locally computes C and checks if the result of its local computation is equal
to the sent value. If this is the case, it updates the values of IDS, K1 and
K2 in the following manner:

IDSnext = (IDS + ID)⊕ (n2 ⊕ K̄1)
Knext

1 = K̄1

Knext
2 = K̄2

5. T → R : D, where D = (K̄2 + ID)⊕ ((K1 ⊕K2) ∨ K̄1)
6. Finally, R verifies D and, if it is equal to the result of its local computation,

it updates IDS,K1 and K2.

SASI has received no serious attacks yet, except for a couple of minor weak-
nesses that could be employed to mount two desynchronization scenarios [2].

3.1 CR-SASI: The Simplified SASI Protocol

CR-SASI is the simplified version of the SASI protocol we will cryptanalyze in
the paper. It is essentially identical to the published version, but for two minor
differences:

1. CR-SASI is a scaled-down version of SASI, which operates over Z32
2 while

SASI does it over elements in Z96
2

2. CR-SASI uses constant distance rotations, instead of the Hamming-dependant
rotations proposed by Chien.
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Any amount of non-zero rotation produces a similarly robust protocol, but
for reasons explained below we have fixed this rotation amount to 32

2 = 16. We
have experimentally found, anyway, that any other value produces a protocol
that is breakable in essentially the same way. An important observation is that
the amount of the rotation operation, as originally defined, is far from being
uniform. In fact, if we assume this second argument B to be random, then the
probability that the rotation amount takes value k is given by the formula:

Prob(wht(B) = k) =

(
32
k

)

232
(1)

which attains a maximum for k = 32
2 = 16 with an associated probability of

0.139949, or around 14% of the times. This additionally justifies our chosen value
(as it will be the most common) for the amount of left rotation in CR-SASI.

All in all, these two modifications should not greatly modify the security
characteristics of the underlying protocol, so the study of this variant is relevant
for understanding the security of the whole SASI protocol. It is important to
notice that constant distance rotations, such as that used in CR-SASI, are usually
part of cryptographic primitives and protocols, so they could have been part of
the original protocol proposal as they were components of modern cryptographic
primitives such as TEA[6], XTEA[9] and Salsa20[7], to name a few.

4 Cryptanalysis of the SASI Protocol

In the light of the equations that define the protocol (see Section 3) we can
initially see that the internal secret state we will look for is formed of the values:

State = {K1,K2, n1, n2, ID}

Assuming that message A is known (as it is the case), it can be seen than K1

and n1 are related (n1 = A ⊕ IDS ⊕ K1), so we can reduce the state size to
{K1,K2, n2, ID}.

Analogously, from the knowledge of message B we can conclude that K2 and
n2 are also related, following the equation n2 = B−(IDS∨K2). We can therefore
still reduce the state size to State = {K1,K2, ID}.

A further reduction is still possible, since ID also depends on {K1,K2}, al-
though in a more complex way, once {IDSnext, IDS} or D are known because:

ID = IDSnext ⊕ (n2 ⊕ K̄1)− IDS (2)

ID = D ⊕ ((K1 ⊕K2) ∨ K̄1)− K̄2 (3)

So we finally are left with a minimal state of the form State = {K1,K2}, where
no further reduction is possible. This implies that our set of possible solutions
are of the above described form, and have a size of 264.

Note that among the public messages {IDS,A,B,C,D, IDSnext} that can be
observed after one authentication session, we have used all except C and D to re-
duce the state space. These two lastmessageswillbe the baseof our fitness function.
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Starting from a candidate state {K ′
1,K

′
2}, and using public values {IDS,A,B,

IDSnext}, we will compute the corresponding values for messages C′ and D′,
and measure their distance to the known actual values of C and D. We will
try to minimize this distance in order to find values as close as possible to the
real {K1,K2} values. Different definitions of distance have been tried (euclidean,
edit, weighted, etc.) and could be useful, but we have got the best results with
the usual Hamming distance. In the general case of having N public messages
M1, . . . ,MN , the resulting fitness function is given by:

fS = −
N∑

i=0

dH(Mi,M
′
i) (4)

where Mi stands for the real (snooped) message and M ′
i is its approximation as

computed from the values of state S.
For our particular problem, equation (4) will have the form:

fS = −
(
dH(C,C′) + dH(D,D′)

)
(5)

For this optimization process, we will use Simulated Annealing as heuristic.
After extensive experimentation, the set of parameters which consistently lead
to good results are those shown in Table 1.

4.1 Experimental Results

We have implemented various versions of the same cryptanalytic method, which
start the cryptanalytic process after eavesdropping two, three or four consecu-
tive rounds of the protocol, respectively. As expected, the knowledge of more
authentication rounds leads to better attacks.

We have performed simulations for measuring the effectiveness of this approach.
In all the cases, we initialized all secret and public values of the protocol to the first
hexadecimal values of π, as taken from http://www.super-computing.org/. In
particular, the state values we are looking for are fixed to State = {0x243F6A88,
0x85A308D3}.

Results for five different runs, after capturing data from only two consecutive
authentication sessions are shown in Table 2.

It can be clearly seen that, although no solution is perfect, all of them are
quite close to the real secret state values. In fact, it is very easy to compute

Table 1. Simulated Annealing parameters for the cryptanalysis of CR-SASI

Initial Temperature 10

Cooling Rate 0.99

Max. Failed Cycles 100

Moves 1000

IC Max. 500
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the secret from these accurate approximations. Just a bitwise majority function
(weighted by the fitness as provided in Table 2) will lead to an almost correct
solution. Then, a simple trial and error process could be started to find the
correct values. In case of any doubt, more runs should improve the accuracy of
the attack.

We have experimentally found that about four or five runs are generally
enough to get results very close to the secret values, as in the case of the above
example. At worst, only 162 additional trials are needed for recovering the correct
keys.

Each of these runs takes approximately 800 seconds in a very modest laptop.
Furthermore, it is important to stress that they are completely parallelizable.
After obtaining the correct key values, the secret static ID will be easily re-
covered using either equation (2) or (3). This will allow a fraudulent tag (with,
say, altered prices or false stock information) to impersonate the legitimate tag,
possibly corrupting the back-end database with false data, after eavesdropping
only two consecutive authentication sessions.

The efficiency of this attack can be slightly improved just by observing more
sessions. We have performed tests after three and four consecutive sessions follow-
ing exactly the same approach described above, and the results were consistently
better.

However, with more authentication sessions there are approaches that do not
work after eavesdropping only two sessions that now become entirely possible. In
this case, the best attacking strategy becomes to try to infer the secret ID from
the best approximation found for {K1,K2}with the help of equations (6)–derived
from (2))– and (7):

ID = IDSnext ⊕ (n2 ⊕ K̄1)− IDS (6)

= IDSnext ⊕ ((B − (IDS ∨K ′
2))⊕ K̄ ′

1)− IDS (7)

After 10 runs following this scheme, we obtained the exact value of the secret ID
three times (see Table 3), and very good approximations to it (with a Hamming
distance to the real ID of 8 or less) in another six occasions. The best approxima-
tion was very easy to identify because it has the best fitness within the 10 runs.

Table 2. Attack results for five runs, after capturing two authenication sessions

K1=0x24FF6B8E K2=0x84E308D5 Fitness=-7.000000

K1=0x74300A88 K2=0x35ACA8C3 Fitness=-7.000000

K1=0x347FCA88 K2=0x35E368D3 Fitness=-6.000000

K1=0x343FCAC8 K2=0x35E36893 Fitness=-4.000000

K1=0x243F2A88 K2=0x85A348D3 Fitness=-1.000000

K1=0x243F?A88 K2=0x85A3?8D3 Majority weighted function

K1=0x243F6A88 K2=0x85A308D3 Real Values
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Table 3. Attack results for 10 runs, after capturing 4 authentication sessions

Fitness dH to ID

-21 0

-27 0

-26 0

-23 5

-33 9

-31 7

-31 3

-24 5

-33 8

-27 3

5 Concluding Remarks

In this paper, we have presented a new and efficient attack against a simplified
version of a novel and interesting ultra-lightweight authentication protocol.

This attack is performed by means of a non-standard technique (SA-based)
that we have shown as a particular instance of a more general attack methodology
against cryptographic protocols.

We believe that more and more of these non-standard attacks will be sucess-
fully employed against the new lightweight protocols designed for very con-
strained environments such as RFID systems and some kinds of sensor networs,
because in most of the cases they can’t allow the use of standard cryptographic
primitives.

Attacking the full SASI protocol with similar but improved techniques is a
future and interesting research direction.
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Abstract. In this document we present a new way to bound the prob-
ability of occurrence of an n-round differential in the context of dif-
ferential cryptanalysis. Hence this new model allows us to claim proof
of resistance against impossible differential cryptanalysis, as defined by
Biham and al. in 1999. This work will be described through the example
of CS-Cipher, to which, assuming some non-trivial hypothesis, provable
security against impossible differential cryptanalysis is obtained.

Keywords: Impossible Differential cryptanalysis, Provable security,
Symmetric ciphers

1 Introduction

The resistance against differential cryptanalysis has been studied since the attack
invention by Biham and Shamir (1990 [1]). Formal proofs based on the Markov
cipher approximation (Lai and Massey [2]) and related to the minimal number of
active S-Boxes in a differential characteristic are now well known. On the other
hand, it is hardly possible to evaluate a symmetric cipher w.r.t. impossible dif-
ferential cryptanalysis. Inspired by the work of Sugita and al. in [3], we are going
to introduce a new way to approach the probability of occurrence of an n-round
differential. Although this approach does not give better upper bound than has
already been done, it allows us to display a lower bound and then claim resis-
tance against impossible differential for an example cipher. The study focuses
on CS-Cipher (symmetric cipher introduced by Stern and Vaudenay in [4]); its
resistance against differential and truncated differential cryptanalysis has been
studied in [5]. As in [5] we will use the properties of CS-Cipher multipermutations
in order to decrease the complexity of computing our bounds.
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Let us note that our proof holds on the hypothesis that the symmetric cipher
is a Markov cipher and a Support Markov cipher (notion about to be introduced
in this document) with uniformly distributed round keys.

Notations and Material

An iterated or block cipher performs a sequence of rounds to encrypt a plaintext
of fixed size (block size). In all the sequel, the following notations and material
are used with respect to an iterated or block cipher.

n, m: Denotes respectively the block size in bits and in bytes (i.e. n = 8×m).
⊕⊕⊕: Denotes a group operation over the Galois field GF (2)8 (in all the sequel

this operation will be the bitwise addition modulo 2).
$$$x(x′): Denotes the difference between x and x′ by the ⊕ operation.

x⊕ x′ = $x(x′). Noted $x when not ambiguous.
iii-round Output (Oi(x)): Let x be a plaintext input of the cipher; Oi(x)

denotes the output after the ith round.
iii-round Differentials: For an iterated cipher, a pair (α, β) is a possible i-

round differential if and only if there is a pair of plaintext input (x, x′) such that
x ⊕ x′ = α and Oi(x) ⊕ Oi(x′) = β. Later on, a 1-round differential is simply
called a differential.
iii-round Characteristics: For an iterated cipher, a set Ω = {ω0, ω1, . . . , ωi}

is a possible i-round characteristic if and only if there is a pair of plaintext input
(x, x′) such that x ⊕ x′ = ω0 and ∀j ∈ {1 . . . i}, Oj(x)⊕ Oj(x′) = ωj . Hence, an
i-round characteristic is a sequence of i j-round differentials with j ∈ {1, . . . , i}.

Probability of a differential (DP fDP fDP f): Given a boolean function
f : GF (2)p −→ GF (2)q, for any α ∈ GF (2)p and any β ∈ GF (2)q we note :

DP f (α, β) = Pr
x
{x|f(x)⊕ f(x⊕ α) = β}

S-Boxes: Substitution boxes are fairly common in block ciphers, they are
functions that give the necessary non-linearity of encryption functions. The non-
linearity with respect to differential cryptanalysis is evaluated by computing the
DPS−Box.
Active S-Boxes for a given characteristic (or differential) are the encryption
function’s S-Boxes that present a non null difference for input.

Multipermutations: The notion of multipermutation was introduced by
Schnorr and Vaudenay in [6]. For our needs in this paper we will just define the
general idea of a (2, 2)-multipermutation over GF (2)8, of which complete de-
scription can be found in Vaudenay’s PhD thesis ([7]). A (2, 2)-multipermutation
over GF (2)8 can be seen as a permutation over GF (2)16 such that fixing the first
half of the input (respectively the second part) makes both half of the output
permutations of the second half of the input (respectively the first part).

Markov Chain: A sequence of discrete random variables (Xr, . . . , X0) forms
a Markov chain if and only if : ∀i ∈ {0 . . . r − 1},

Pr(Xi+1 = xi+1|Xi = xi, . . . , X0 = x0) = Pr(Xi+1 = xi+1|Xi = xi)
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Markov Ciphers: Denotes a subclass of iterated ciphers, first introduced by
Lai, Massey and Murphy in [2] to give a formal environment to iterated ciphers
and then lead to provable security against differential cryptanalysis. An r-round
iterated cipher is a Markov cipher when the sequence ($x = $y0,$y1, . . . ,$yr)
of round output differences forms a Markov chain. That is to say

Pr($yr = ωr|$y0 = ω0,$y1 = ω1, . . . ,$yr−1 = ωr−1) =
Pr($yr = ωr|$yr−1 = ωr−1)

CS-Cipher

CS-Cipher was introduced by Jacques Stern and Serge Vaudenay in [4]. In this
section we will just introduce its main characteristics. For more information, the
reader can refer to the original description.

CS-Cipher is an iterated block cipher of 64 bits block size, and 128 bits key
size. It consists of 8 iterations of a round function E followed by a bit-width
XOR operation (⊕) with the last 64-bits round key.

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

M M M M

MM M M

M M M M

C’

C

X7 X6 X5 X4 X3 X2 X1 X0

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Kr

Fig. 1. CS-Cipher round Block diagram. Function E.

Round Description The Figure 1 presents one round of CS-Cipher. The
XORed values Kr, C and C′ are respectively the 64-bits round key, a first and
a second constant.

By definition, M(x, y) = (μ(P (x), P (y)) (see Figure 2) , the functions μ and
P being respectively a (2, 2)−multipermutation over GF (2)8 and a non-linear
permutation over GF (2)8. They are defined as follows:

– μ(a, b) = (ϕ(a)⊕ b, Rl(a)⊕ b). Where Rl is a 1−bit shift circular rotation to
the left and ϕ is defined by ϕ(x) = (Rl(x)∧0x55)⊕x where ∧ represents the
bitwise AND. Hence the input/output pattern around a μ box will follow
one out of those six patterns (Stars meaning any non-zero values):

μ(0, 0) = (0, 0), μ(∗, 0) = (∗, ∗), μ(0, ∗) = (∗, ∗)
μ(∗, ∗) = (∗, ∗) or (∗, 0) or (0, ∗)
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P P

⊕ ⊕

ϕ
Rl

yx

Fig. 2. CS-Cipher M box

– P , defined by a 256-elements table, is CS-Cipher S-Box. Let us give upper
and lower bounds of P ’s differential probability :

DPmax = max
a�=0,b

DPP (a, b) ≤ 2−4

DPmin = min
a,b

DPP (a, b) ≥ 2−7

These values are easy to compute, one has just to compute all the possible
values of DPP (a, b) for any value (a, b) (there are 216 pairs).

Differential and Linear Cryptanalysis. In [5], Serge Vaudenay gives suffi-
cient arguments to heuristically prove the security of CS-Cipher against differen-
tial and truncated differential (when considering characteristics and not simple
differential). The formal treatment of differential cryptanalysis based on Markov
cipher is not detailed in the present document, please refer to [2] for a more
complete description.

Considering the probabilistic event :

Eωi,ω0 : {Oi(x) ⊕Oi(x′) = ωi | x⊕ x′ = ω0},

where (x, x′) are two plaintexts.
Randomly chosen plaintexts pair of difference ω0 will create an output dif-

ference ωi after i rounds with probability Pr
x,x′

(Eωi,ω0). Differential cryptanalysis

works when one can find (ω0, ωi) for which the value Pr
x,x′

(Eωi,ω0) is “high”.

Vaudenay proves that CS-Cipher is immune against any cryptanalysis using
statistics over differential characteristics which have more than 2 rounds. The
author can then claim immunity against all kind of differential attacks when CS-
Cipher has more than 4 rounds. Finally the study of resistance against truncated
differential, which corresponds to group sets of characteristics in order to improve
differential cryptanalysis, is evaluated to be strong enough after 5.33 rounds.

Impossible Differential Cryptanalysis. This type of attack was introduced
by Biham, Biryukov and Shamir in 1999 in [8]. From [8], in an Impossible differ-
ential attack, “a differential predicts that particular differences should not occur
(i.e., that their probability is exactly zero), and thus the correct key can never
decrypt a pair of ciphertexts to that difference. Therefore, if a pair is decrypted
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to this difference under some trial key, then certainly this trial key is not the
correct key. This is a sieving attack which finds the correct keys by eliminating
all the other keys which lead to contradictions.“

CSC*. For purpose of clarity, we are going to consider a slightly different cipher
than CS-Cipher, CSC*. This variant was introduced by Vaudenay in [5] in order
to simplify the proof of resistance. In CSC* the key schedule is replaced by a
true random generator of 25 64-bits round keys. Hence the CS-Cipher round
keys are replaced by 9 CSC* round keys and each XOR to constants C or C′

is replaced by a XOR to one of the CSC* round keys. The new cipher CSC*
can then be seen as a 24 rounds block cipher with a simple round function (see
Figure 3). The results found in [5] for CSC* are believed to hold for CS-Cipher,
and in this document we make the same assumption.

+ + + + + + + +

M M M M

X7 X6 X5 X4 X3 X2 X1 X0

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Kr

Fig. 3. CSC* round Block diagram

Notations. In all the sequel, we will use [5]’s notations to describe CSC*
components, thus the ith round of CSC* can be written as follow:

ρi = Lπ ◦ P 8 ◦ μ4 ◦ si−1

where, for any 64-bits element x = (x7, x6, x5, x4, x3, x2, x1, x0),

– si−1(x) = x⊕Ki (Ki is the ith round key)
– μ4(x) = (μ(x7, x6), μ(x5, x4), μ(x3, x2), μ(x1, x0))
– P 8(x) = (P (x7), P (x6), P (x5), P (x4), P (x3), P (x2), P (x1), P (x0))
– Lπ(x) = (x7, x5, x3, x1, x6, x4, x2, x0)

Hence, the block encryption CSC* can be written as:

Enc = s24 ◦ ρ24 ◦ . . . ◦ ρ1.

2 Output Differential

In this section we are going to introduce the notion of Support Markov Ci-
pher and show that under the hypothesis of Markov Cipher, Support Markov
Cipher and uniformly distributed round keys it is possible to display a lower
bound of r-round differential probability. Then, as an example we will apply
this proof to CS-Cipher and show that it is indeed resistant against impossible
differential.
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2.1 Formal Treatment for CSC*

Note: All probabilities are average probabilities over the key distribution (which
is assumed to be uniform).

Definition 1. The support function χ (referred as the characteristic function
in [3])

χ : (GF (2)k)m → (GF (2))m, (x0, . . . , xm) −→ (y0, . . . , ym)

such that

yi =
{

0 if the k uplet xi = 0,
1 otherwise.

Remark : for CS-Cipher and CSC*, k = m = 8.

Lemma 1. Let us consider a plaintext pair (x, x′) such that x⊕ x′ = $y0 and
the output differences ($yr, . . . ,$y0) generated by an encryption of x and x′ by
CSC*. We have for any i in {0, . . . , r − 1}:

χ($yi+1) = χ(Lπ ◦ μ4($yi)).

Proof. The proof, easy to obtain, is provided in an online version of this paper.

Definition 2. An r-round iterated cipher is a Support Markov Cipher when
the sequence (χ($x = $y0), χ($y1), . . . , χ($yr)) of round output differences
support forms a Markov chain.

Hereafter, in order to simplify the formulas, the sequence round output differ-
ences as random variables will be referred as the sequence (Xr, . . . , X0) instead
of ($yr, . . . ,$y0).

Lemma 2. Let us consider a Markov cipher E and its associated Markov chain
(Xr, Xr−1, . . . , X1, X0), we have trivially:

Pr(X1 = x1 | X0 = x0) ≤ DP
h(x′

1)
max Pr(χ(X1) = x′1 | X0 = x0),

where h : (GF (2))m → {0, . . . ,m} gives the Hamming weight.

Lemma 3. Let us consider a Markov cipher E and its associated Markov chain
(Xr, Xr−1, . . . , X1, X0), we have trivially:
if Pr(X1 = x1 | X0 = x0) �= 0 then

Pr(X1 = x1 | X0 = x0) ≥ DP
h(x′

1)
min Pr(χ(X1) = x′1 | X0 = x0),

where h : (GF (2))m → {0, . . . ,m} gives the Hamming weight.

Theorem 1. Let us consider CSC* as a Markov cipher and a Support Markov
cipher E and its associated Markov chains (Xr, Xr−1, . . . , X0).

Pr(Xr = xr | X0 = x0) ≤ [DPmax × (28 − 1)]h(x′
1)

×Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1)
×Pr(χ(Xr) = x′r | χ(X1) = x′1),

where h : (GF (2))m → {0, . . . ,m} gives the Hamming weight.



Provable Security against Impossible Differential Cryptanalysis Application 603

Proof. From the probability total formula

Pr(Xr = xr | X0 = x0)
=
∑

x1

Pr(Xr = xr | X1 = x1, X0 = x0)× Pr(X1 = x1 | X0 = x0)

From Lemma 2 and the fact that (Xr, Xr−1, . . . , X0) is a Markov chain, we have

Pr(Xr = xr | X0 = x0)
≤ DP

h(x′
1)

max

×
∑

x1

[Pr(Xr = xr | X1 = x1)× Pr(χ(X1) = χ(x1) | X0 = x0)]

From Lemma 1 we have χ(X1) = χ(Lπ ◦ μ4(X0)) and then

Pr(χ(X1) = χ(x1) | X0 = x0) =
{

1 if χ(x1) = χ(Lπ ◦ μ4(x0))
0 otherwise

Let us set x′1 = χ(Lπ ◦ μ4(x0)), we have

Pr(Xr = xr | X0 = x0)

≤ DP
h(x′

1)
max ×

∑

x1s.t.
χ(x1)=x′

1

1
Pr(X1 = x1)

× Pr(Xr = xr & X1 = x1)

And since Pr(X1 = x1) is a constant over all values of x1, we have

Pr(Xr = xr | X0 = x0)

≤ DP
h(x′

1)
max ×

Pr(χ(X1) = x′1)
Pr(X1 = 0)

× Pr(Xr = xr | χ(X1) = x′1)

Let us now introduce χ(Xr) in the equation

Pr(Xr = xr | X0 = x0) ≤ [DPmax × (28 − 1)]h(x′
1)

×
∑

x′
r

Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1)

×Pr(χ(Xr) = x′r | χ(X1) = x′1)

And since Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1) =
{

1 if χ(xr) = x′r
0 otherwise

Let us set x′r = χ(xr)

Pr(Xr = xr | X0 = x0) ≤ [DPmax × (28 − 1)]h(x′
1)

×Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1)
×Pr(χ(Xr) = x′r | χ(X1) = x′1)

Theorem 2. Let us consider CSC* as a Markov cipher and a Support Markov
cipher E and its associated Markov chains (Xr, Xr−1, . . . , X0).

Pr(Xr = xr | X0 = x0) ≥ [DPmin × 2−4 × (28 − 1)]h(x′
1)

×Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1)
×Pr(χ(Xr) = x′r | χ(X1) = x′1)

where h : (GF (2))m → {0, . . . ,m} gives the Hamming weight.
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Proof. As in the proof of Theorem 1, let us first introduce X1 in the equation

Pr(Xr = xr | X0 = x0)
=
∑

x1

Pr(Xr = xr | X1 = x1, X0 = x0)× Pr(X1 = x1 | X0 = x0)

From Lemma 3 and the fact that (Xr, Xr−1, . . . , X0) is a Markov chain, we have

Pr(Xr = xr | X0 = x0)
≥ DP

h(x′
1)

min ×
∑

x1, s.t.

DP (μ4(x0),L
−1
π (x1)) �=0

Pr(Xr = xr | X1 = x1)

Let us set
{
Possx0 = {x, s.t. DP (μ4(x0), L−1

π (x)) �= 0}
Suppx0 = {x, s.t. χ(x) = χ(Lπ ◦ μ4(x0))}

We are now going to estimate the value of
∑

x1∈Possx0

Pr(Xr = xr | X1 = x1) w.r.t.
∑

x1∈Suppx0

Pr(Xr = xr | X1 = x1).

One can easily note that Possx0 ⊂ Suppx0 and from CSC* characteristics,

Card({Possx0}) ≥ (2−4)h(χ(μ4(x0)))Card({Suppx0})

From the markovian property of the chain (Xr, Xr−1, . . . , X0), the value of
Pr(Xr = xr | X1 = x1) is independent to the fact that x1 ∈ Possx0 or
x1 ∈ Suppx0. Finally, we have

Pr(Xr = xr | X0 = x0)
≥ [DPmin × (28 − 1)]h(x′

1) × (2−4)h(x′
1) × Pr(Xr = xr | χ(X1) = x′1)

The proof ends exactly like in Theorem 1.

2.2 Results for CSC*/CS-Cipher

Let us assume an uniform distribution of the round keys and that CSC* and
CS-Cipher can be considered as Markov Ciphers and Support Markov Ciphers.

Theorem 1 and Theorem 2 give an upper and lower bound for the probability
of occurrence of a r-round differential.

In order to evaluate these bounds, we have to approach the two values
Pr(χ(Xr) = x′r | χ(X1) = x′1) and Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1).

1. Pr(χ(Xr) = x′r | χ(X1) = x′1). By definition, the set (χ(Xr), . . . , χ(X1))
forms a Markov chain, hence the complexity of computing P (χ(Xr)
= x′r | χ(X1) = x′1) for any value of x′r and x′1 is about r × 23m where m is
the cipher’s block size in byte (i.e. 224 for CS-Cipher, 248 for AES).
Let us detail the computation step :
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Data: For a value x′1 fixed
for j = 1 . . . r do

for i = 0 . . . 2m − 1 do
compute Pr(χ(Xj) = i|χ(X1) = x′1) :
2m−1∑

k=0

Pr(χ(Xj) = i|χ(Xj−1) = k)Pr(χ(Xj−1) = k|χ(X1) = x′1)

end
end

Note: From μ properties, we know there is at most 34(< 28) values of k in the
above sum where Pr(χ(Xj) = i | χ(Xj−1) = k) �= 0. Hence the complexity of
this computation is, for CSC*, slightly less than 23m.

2. Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1). Evaluating such a probability is a
hard problem in general, therefore we will discuss its approximation.

Due to the fact that the propagation of 0s bytes (i.e. non active S-Boxes) in a
differential characteristic is much more predictable than propagations of non-0s
bytes values (thanks to the non-linear permutations) we strongly believe that
the influence of χ(X1) on the value of non-0 bytes of Xr is substantially weaker
than its influence on null bytes of Xr. That is to say, the influence of χ(X1) on
χ(Xr) is stronger than its influence on Xr given the value of χ(Xr). Thus, if we
assume that
Pr(χ(Xr) = x′r | χ(X1) = x′1) = Pr(χ(Xr) = x′r)± ε

then
Pr(Xr = xr | χ(Xr) = x′r, χ(X1) = x′1) = Pr(Xr = xr | χ(Xr) = x′r)± ε±O(ε).

Results for CSC*:

– From computation we found that for r ≥ 11

Pr(χ(Xr) = x′r)−2−8∗m≤Pr(χ(Xr)=x′r |χ(X1)=x′1) ≤ Pr(χ(Xr) = x′r) + 2−8∗m

– We deduce from the above bounds that for r ≥ 11

Pr(Xr=xr | χ(Xr)=x′r , χ(X1) = x′1)
{
≥ Pr(Xr = xr | χ(Xr) = x′r)− 2−8∗m

≤ Pr(Xr = xr | χ(Xr) = x′r) + 2−8∗m

Finally, let us remark that

Pr(Xr = xr | χ(Xr) = x′r) = ( 1
28−1 )h(x′

r)

Pr(χ(Xr) = x′r) = (28−1
28 )h(x′

r) × ( 1
28 )m−h(x′

r) = (28 − 1)h(x′
r) × 2−8∗m
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And then after 11 rounds (i.e. 4 rounds of CS-Cipher) we have

Pr(Xr = xr | X0 = x0){
≥ (( 1

28−1 )h(x′
r) − 2−8∗m)((28 − 1)h(x′

r)2−8∗m − 2−8∗m)× [DPmin × (24 − 2−4)]h(x′
1)

≤ (( 1
28−1 )h(x′

r) + 2−8∗m)((28 − 1)h(x′
r)2−8∗m + 2−8∗m)× [DPmax × (28 − 1)]h(x′

1)

The final bounds of the probability of an r-round differential :

Pr(Xr = xr | X0 = x0)
{
≥ 2−8∗m[DPmin × (24 − 2−4)]h(x′

1) +O(2−8∗2∗m)
≤ 2−8∗m[DPmax × (28 − 1)]h(x′

1) +O(2−8∗m)

From the above lower bound, we claim that there is no impossible differential
on CS-Cipher after 4 rounds and thus CS-Cipher is immune against impossible
differential after 6 rounds.

3 Conclusion

Under the strong assumption that CS-Cipher acts very much like a Markov
and a Support Markov cipher, we can prove its resistance against impossible
differential. To our knowledge this is the first formal result on provable security
against impossible differential, even though it remains to be proven that the
model is a tight approximation of the cipher.

Future work should focus on this proof and expand the study to other ciphers
(particularly AES that has common features with CS-Cipher).
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Abstract. In this paper, we present a new algorithm, VNSOptClust,
for automatic clustering. The VNSOptClust algorithm exploits the basic
Variable Neighborhood Search metaheuristic to allow clustering
solutions to get out of local optimality with a poor value; it consid-
ers the statistic nature of data distribution to find an optimal solution
with no dependency on the initial partition; it utilizes a cluster validity
index as an objective function to obtain a compact and well-separated
clustering result. As an application for unsupervised Anomaly Detection,
our experiments show that (i) VNSOptClust has obtained an average de-
tection rate of 71.2% with an acceptably low false positive rate of 0.9%;
(ii) VNSOptClust can detect the majority of unknown attacks from each
attack category, especially, it can detect 84% of the DOS attacks. It
appears that VNSOptClust is a promising clustering method in auto-
matically detecting unknown intrusions.

Keywords: Unsupervised Learning; Automatic Partitional Clustering;
Variable Neighborhood Search; Unsupervised Anomaly Detection.

1 Introduction

Network intrusion attacks pose a serious security threat in a network environ-
ment. A wide range of attacks include attempts to destabilize the whole network,
to gain unauthorized access to file or privileges, and to prevent legitimate users
from using a service [24]. The goals of Intrusion Detection Systems (IDSs) are
to automatically detect intrusion attacks from the audit data, and to protect
vulnerable network systems with cooperation of static defense mechanisms such
as firewalls and software updates [22].

Given the significance of the intrusion detection problems, a number of intru-
sion detection approaches have been proposed. However, traditional signature-
based IDSs suffer from the following drawbacks: first, known signature
patterns have to be hand-coded into the systems; secondly, only known at-
tacks that have characteristic signatures can be detected [20]. Data mining
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based IDSs [4], [5], [16], [19], [20] require precisely labeled data or purely nor-
mal data in order to perform misuse detection or anomaly detection [24], [25].
In practice, neither precisely labeled data nor purely normal data is readily
available.

To solve the above problems, Portnoy et al. [24] proposed the concept of the
unsupervised anomaly detection clustering. The proposed method takes a set of
unlabeled data as input and the clustering is performed to separate intrusions and
normal instances using a distance-based metric. Once the data is clustered, the
normal instances form large clusters while anomalies appear in small clusters. The
main advantage of this unsupervised anomaly detection clustering algorithm is the
ability to process unlabeled data and automatically detect unknown intrusions.

In this paper, we present a new Variable Neighborhood Search (VNS) based
clustering algorithm, VNSOptClust, for solving the unsupervised anomaly de-
tection problem. The VNSOptClust algorithm adopts the basic VNS principle
to allow clustering solutions to get out of local optimality to reach a near-global
optimum; it considers the statistical nature of data to find a near-globally op-
timal solution with no dependency on the initial partition status; it utilizes a
cluster validity index as an objective function to obtain a compact, well-separated
partition. Based on the two assumptions1 in [24], VNSOptClust can automat-
ically detect intrusion attacks by clustering the unlabeled data and labeling
the large clusters as normal and small clusters as abnormal, respectively. The
simulation on the subsets of KDD-99 Cup dataset suggests that VNSOptClust
is effective in distinguishing anomalies in the dataset from the normal ones. It
has obtained an average detection rate of 71.2% with an acceptably low false
positive rate of 0.9%. In addition, VNSOptClust can detect the majority of un-
known attacks from each attack category. Especially, it can detect 84% of the
DOS attacks. Therefore, it appears that VNSOptClust is a promising clustering
method in automatically detecting unknown intrusions.

The remainder of the paper is organized as follows: In section 2, the related
work in the cluster analysis is reviewed. We confine our discussion on the par-
titional clustering methods for unsupervised anomaly detection. In Section 3,
the VNSOptClust algorithm is introduced in detail. In Section 4, experimental
results are reported. Finally, the conclusion is drawn.

2 Related Work in Cluster Analysis

Clustering is a discipline aimed at automatically revealing and describing
homogeneous groups or clusters in a dataset. The objective of clustering is that
the objects within a group be similar to each other and different from the
objects in other groups. In general, the clustering methods can be broadly
classified into two categories: hierarchical clustering and partitional clustering.
Hierarchical clustering methods build a tree structure for a nested sequence of
1 Two assumptions: First, the number of normal instances is overwhelmingly larger

than the number of intrusions; second, the intrusive instances are qualitatively dif-
ferent from the normal ones.



VNSOptClust: A Variable Neighborhood Search Based Approach 609

partitions whereas Partitional clustering methods produce a single partition. In
this paper, we will confine our discussion on partitional clustering problems.

The most popular partitional methods are K-means and its variants. K-means
is an iterative hill-climbing algorithm and the solution obtained depends on the
initial partition status (initial number of clusters with initial centroid seeds). In
order to detect the optimal number of initial clusters, an expensive fine-tuning
process is necessary. In addition, K-means is often stuck in a local optimum with
a poor value and fails to converge to a global optimum. To tackle the shortcom-
ings of K-means, a number of clustering methods have been proposed [8], [11],
[24]. The H-Means+ algorithm, an improved version of K-means, eliminates the
farthest point that currently contributes most to the total Sum of Squared Er-
rors to improve the clustering performance [11]. In [24], the authors proposed an
algorithm for automatic clustering. The algorithm uses a single-linkage cluster-
ing, which starts with an empty set of clusters and updates it iteratively. For each
data instance, if its distance to the centroid of the selected cluster is less than
predefined constant(Cluster Width) then this data instance is assigned to that
cluster. Otherwise, a new cluster is created. However, Portnoy’s algorithm still
requires the proper values of to be predefined manually for each given dataset.
To perform automatic clustering without predefining any constants, Guan et al.
[8] introduced the Y-means algorithm. Y-means applies postprocessing strate-
gies to adjust the initial number of clusters so that the initial number of clusters
and initial centroid seeds are not crucial to the clustering solutions. However,
Y-means still belongs to the category of local search heuristics. It often termi-
nates at a local optimum with no guarantee convergence to a global optimum.

To improve the convergence of the clustering performance, several
metaheuristic-based optimization methods have been introduced to solve the
global optimization problem. The philosophy of such metaheuristic methods is
to efficiently explore the search space, to escape from local optima, and to find
a near-optimal solution2. Among them, Simulated Annealing (SA) [26], Tabu
Search (TS) [1], and Genetic Algorithms (GAs) [2], [9], [18], [22], [29] are the
commonly-used methods in solving the global optimization problem. However,
the main drawbacks of such metaheuristic-based clustering algorithms are pa-
rameter selection and high computational complexity [32]. An ideal clustering
algorithm should be able to automatically detect near-globally optimal clusters
in reasonable time with no dependency on the initial number of clusters and the
initial centroid seeds and no need of critical parameter selection.

Variable Neighborhood Search (VNS) is a newly proposed metaheuristic
method for solving combinatorial and global optimization problems [12]. The
basic principle of VNS is to proceed to a systematic change of neighborhoods
within a local search routine. In comparison with other metaheuristics, VNS has
several advantages [14]: (i) In VNS, there are no critical parameters to be defined

2 Since finding the exact global solutions of the clustering problem in a reasonable
amount of computational time is an NP-hard problem [27], the goals of solving the
global optimization problem are to allow clustering solutions to get out of local
optima and to provide near-optimal solutions in reasonable time.
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while retaining its efficiency and effectiveness. (ii) VNS can provide near-optimal
solutions in moderate computing time.

Inspired by the successful applications of VNS (e.g., Traveling Salesman Prob-
lem [13], p- median Problem [10], Minimum Sum-of-Squares Clustering Problem
[11], Multi-source Weber Problem [6], [7], and Fuzzy Clustering Problem [3]), we
have developed a VNS-based clustering algorithm, VNSOptClust, in automati-
cally searching optimal clusters [31]. In this paper, we will apply VNSOptClust
to solve the Unsupervised Anomaly Detection problem.

3 The VNSOptClust Algorithm

VNSOptClust is developed from the basic VNS principle [12]. The basic idea
of VNSOptClust is to proceed to a systematic change of neighborhoods within
a local search routine. The search is centered around the current best solution
and explored increasingly distant neighborhoods until a better solution is found,
and then jumped there. VNSOptClust is an optimization process controlled by
a random perturbation routine, in which both descend to local optimal and es-
cape from local optima are reached. In this way, VNSOptClust allows clustering
solutions to get out of local optima and converge to a near-global optimum.
Moreover, VNSOptClust considers the statistical nature of data distribution,
eliminating the effect of outliers in clustering procedures, and handling the
appearance of empty clusters. Unlike traditional local search methods, VNSOpt-
Clust is not sensitive to the initial number of clusters and initial centroid seeds.
The general steps of VNSOptClust can be described as follows:

Step 1: Initialization
(1) Assignment : Partition the normalized data instances (Ij , j = 1, 2, ..., n, n is
the total number of data instances in the dataset) into p(arbitrary initial number
of clusters, p ∈ [2, 3, ..., n])clusters.
(2) Remove Empty Clusters : For each of p clusters, check for empty clusters. If
there are, remove them. The resulting number of clusters is p1.
(3) Splitting: For each cluster Ci, i = 1, 2, ...p1, identify outliers based on the
splitting condition3 and replace them as centroids of new clusters.
(4) Let PM and fopt

4 be the current incumbent partition and the current objec-
tive value for VNS heuristic search; choose stopping condition tmax(maximum
running time for the VNS heuristic search) and a value for the parameter
kmax(the maximum number of Neighborhoods to be searched).

Step 2: Termination (Outer Loop)
If the stopping condition is met, then stop.

3 Splitting condition: please refer to Section of Splitting for details.
4 The Objective function: We have employed Dunn’s Index, the Davies-Bouldin Index,

and Silhouette Validity Index respectively as an objective function and found the
clustering results are irrespective with the index being used.
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Step 3: First Neighborhood around current incumbent solution
Set k = 1, k is the current searching neighborhood.

Step 4: Inner Loop
If k > kmax or 2k > |c|, where |c| is the number of clusters in the current solu-
tion, then return to Step 2 and stop.

Step 5: Perturbation
Randomly choose k pairs of clusters from the current solution , and then merge
k pairs of clusters into k clusters; denote the so-obtained partition with P 1

M .

Step 6: Local Search
(1) Merging: With P 1

M as the initial solution, merge any two clusters in P 1
M

based on the merging condition5. The resulting number of clusters is p2.
(2) Assignment : Partition the normalized data instances into p2 clusters.
(3) Denote the resulting partition and the objective value with P 2

M and fnew

respectively.

Step 7: Move or Not
If fnew is better than fopt, then recenter the search around the new solution P 2

M :
Set fopt = fnew and PM ← P 2

M , and go to Step 3. Otherwise, set k = k + 1 and
go to Step 4.

It should be noted that VNSOptClust does not require any critical parameters to
be defined. Since VNSOptClust can automatically detect optimal clusters with
no dependency on the initial number of clusters [31], the value of the initial num-
ber of clusters is not sensitive to the clustering result. Parameters tmax, kmax

are defined based on the users’ expectation of how much time and how far the
VNS heuristic search performs. In our experiment, we used tmax = 2 seconds
and kmax = 10.

As observed, several strategies have been employed in VNSOptClust. VN-
SOptClust has taken into consideration the statistical nature of data distri-
bution to identify and remove outliers to improve the clustering performance;
its effectiveness has been implemented through the procedures of perturbation
and local search. We therefore present those strategies in the remainder of the
section.

Splitting. The purpose of the splitting procedure is to identify outliers, to
remove outliers from each cluster, and to replace them as centroids of new clus-
ters. As the Euclidean distance is used to measure the similarity between any two
data points, outliers can be treated as data points that are far from the cluster
centroid. VNSOptClust considers the statistical nature of data distribution and
applies the Chebyshev’s Theorem to determine the splitting threshold.

5 Merging condition: please refer to Section of Local Search for details.
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Chebyshev’s Theorem.
For any data distribution, at least (1 − 1/n2) of the observations of any set of
data lies within n deviations of the mean, where n is greater than 1.[30]

By applying Chebyshev’s Theorem, we observe that at least 94% of data ob-
jects lie within 4 standard deviations of the mean when n = 4. It can be assumed
that, given majority of data objects (94%) lie within 4 standard deviations of
the cluster centroid, the data objects that stay beyond the threshold 4σ can
be identified as outliers. Hence, we can define our splitting condition as follows:
given the cluster centroid, if any data point within the cluster whose distance
from the cluster centroid is greater than the threshold d = 4σ, then this data
point can be identified as an outlier. VNSOptClust removes the identified outlier
from the cluster and replaces it as the centroid of a new cluster. The splitting
procedure is repeated until no outliers exist.

Perturbation. The objective of the perturbation stage in the VNS heuris-
tic search is to provide a good start for the local search heuristic. To
implement the diversification of the VNS heuristic search, the perturbation
step randomly selects starting points from the increasingly distant neighbor-
hoods of the current best solution. The process of changing neighborhoods with
increasing cardinality in case of no improvements yields a progressive diver-
sification. Perturbation is critical for the VNS heuristic search since choosing
random starting points in the neighborhoods of the current best solution is
likely to produce a solution that maintains some good features of the current
best one.

In VNSOptClust, the local search routine employs the idea of merging two
closest clusters. To implement the diversification of the VNS heuristic search,
the perturbation step in VNSOptClust randomly select a starting point from
the neighborhoods of the current best solution by arbitrarily choosing k pairs
of clusters (start with k = 1) and merging these k pairs of clusters into k single
clusters. If there is no improvement in the VNS heuristic search, VNSOptClust
generates a progressive diversification process, in which k is incremented while
changing the neighborhoods, and a new perturbation step starts using a different
neighborhood.

Local Search. The random solution generated from the procedure of
Perturbation becomes the starting point of the local search. To address the
issue of dependency on the initial partition status, VNSOptClust applies the
Chebyshev’s Theorem in the cluster-merging step within the local search rou-
tine. According to Chebyshev’s Theorem, we observe that when n =

√
2, at

least 50% of objects are within 1.414 standard deviations of the mean. There-
fore, it can be assumed that, given two adjacent clusters, whose overlap is over
the threshold d = 1.414(σ1 + σ2) at least 50% of the data points from these
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two adjacent clusters are similar to each other. We can say these two adjacent
clusters are close enough to be merged. The merging procedure within the local
search routine is to create a compact, well-separated partition. After the merging
procedure, VNSOptClust can perform the assignment step to assign data objects
to these refined clusters. At the end of the Local Search process, a new partition
and new objective value are obtained. The new solution is compared with the
current best one and a decision whether to replace the current incumbent solution
with the new solution is made during the Move-or-Not stage.

4 Experimental Results

As an application to intrusion detection, VNSOptClust is tested on subsets of the
KDDCup 1999dataset [17].We have comparedVNSOptClustwith one automatic,
local search based clustering method (Y-means)6 [8] and one metaheuristic based
clustering method (IDBGC)7 [22]. The strategy for this comparison study is to cre-
ate the same experimental environment as mentioned in [22]. Five datasets are ex-
acted from the KDD Cup 1999 dataset. The statistical distribution of attack cat-
egories in each dataset is detailed in Fig. 1. Both Y-means and VNSOptClust are
coded in Java, and tested on these five datasets. All experiments run on Dell-Intel
(R) Pentium (R) M CPU 1.8GHz, 1.00GB of RAM.

To evaluate the performance of the clustering algorithms, we are interested in
two indicators: the Detection Rate (DR) and the False Positive Rate (FPR). DR
is defined as the number of intrusion instances detected by the algorithm divided
by the total number of intrusion instances present in the dataset, whereas FPR
equals the number of normal instances incorrectly classified by the algorithm as
intrusion divided by the number of normal instances in the dataset [24].

The comparative results of Y-means, VNSOptClust, and IDBGC are displayed
in Table 1. VNSOptClust has achieved an average detection rate of 71.2% with
a low false positive rate of 0.9%. As noted, the average FPR of VNSOptClust is
a bit higher than that of IDBGC, but within an tolerably low value according
to the definition in [24]. Hence, we can conclude that VNSOptClust is effective
in unsupervised anomaly detection.

The results in Table 2 suggest that under the condition of unsupervised
anomaly detection, VNSOptClust is able to detect the majority of unknown
attacks for each attack category. In particular, it can detect 84% of the DOS at-
tacks. Therefore, VNSOptClust is effective in automatically detecting unknown
intrusion attacks.

6 Y-means is a good representative of automatic local search based clustering method. In
[8], it has been applied for intrusion detection. Its performance has been compared with
H-means+, an improved version of K-means. It also has a better intrusion detection
rate than Portnoy’s algorithm [24].

7 In the literature, there are not many metaheuristic based clustering algorithms avail-
able for solving intrusion detection problems. The best solution of intrusion detection
based metaheuristic algorithms is taken from [22].
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Fig. 1. Attack Distribution in Each Dataset

Table 1. Comparative Results of Y-means, VNSOptClust, and IDBGC

Data set Y-means VNSOptClust IDBGC
(%) DR FPR DR FPR DR FPR

Dataset 1 64 2.0 63 0.4 68 0.8
Dataset 2 55 2.1 81 1.9 33 0.2
Dataset 3 56 1.7 79 0.6 74 0.4
Dataset 4 59 2.2 72 1.0 44 0.3
Dataset 5 52 1.8 64 0.2 79 0.4

Average 57.2 1.96 71.2 0.9 59.6 0.4

Table 2. Detection Percentage of Different Attack Categories

Data set DOS U2R R2L PROBE
(%) DR DR DR DR

Dataset 1 80 70 55 33
Dataset 2 78 80 78 90
Dataset 3 95 67 67 71
Dataset 4 87 72 69 50
Dataset 5 80 50 73 36

Average 84 68 68 56

5 Conclusion

In this paper, we applied a VNS-based clustering algorithm, VNSOptClust, in
solving the unsupervised anomaly detection problem. VNSOptClust adopts a
VNS metaheuristic procedure to allow clustering solutions to get out of local
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optimality with a poor value; it considers the statistical nature of data distribution
to find a near-optimal solution; it utilizes a cluster validity index as an objective
function of the VNS heuristic search to obtain compact, well-separated clusters.
Under the condition of unsupervised anomaly detection, VNSOptClust has ob-
tained an average detection rate of 71.2% with an acceptably low false positive
rate of 0.9%, and is capable of detecting the majority of unknown attacks for each
attack category. Therefore, VNSOptClust is a promising clustering method for
unsupervised anomaly detection.
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Duplessis, Sébastien 439

El-Amine Chergui, Mohamed 69
Elloumi, Sourour 43
Eloranta, Pekka 548

Frantti, Tapio 558
Furlan, João Batista 318

Gabrel, Virginie 126
Gallot, Denis 59
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Mabed, Hakim 97
Marichal, Jean-Luc 204
Merche, Jean François 538
Meyer, Patrick 204
Mohr, Esther 293
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