
Lecture Notes in Computer Science 5273
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Filip De Turck Wolfgang Kellerer
George Kormentzas (Eds.)

Managing Large-Scale
Service Deployment

19th IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management, DSOM 2008
Samos Island, Greece, September 22-26, 2008
Proceedings

13

Volume Editors

Filip De Turck
Ghent University
Dept. of Information Technology - IBBT - IMEC
Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium
E-mail: filip.deturck@intec.ugent.be

Wolfgang Kellerer
Ubiquitous Networking Research
DoCoMo Communications Laboratories Europe GmbH
Landsberger Str. 312, 80687 Munich, Germany
E-mail: kellerer@docomolab-euro.com

George Kormentzas
Universiy of the Aegean
Department of Information and Communication Systems Engineering
83200 Karlovassi, Greece
E-mail: gkorm@aegean.gr

Library of Congress Control Number: 2008934860

CR Subject Classification (1998): C.2, H.3.4, E.1, H.2.4, D.4.4

LNCS Sublibrary: SL 5 – Computer Communication Networks
and Telecommunications

ISSN 0302-9743
ISBN-10 3-540-85999-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-85999-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© IFIP International Federation for Information Processing, Hofstrasse 3, A-2361 Laxenburg, Austria 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12522026 06/3180 5 4 3 2 1 0

Preface

This volume of the Lecture Notes in Computer Science series contains all papers
accepted for presentation at the 19th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management (DSOM 2008), which was held
September 25-26, 2008 on the island of Samos, Greece. DSOM 2008 was the 19th
event in a series of annual workshops. It followed in the footsteps of previous suc-
cessful meetings, the most recent of which were held in San José, California, USA
(DSOM 2007), Dublin, Ireland (DSOM 2006), Barcelona, Spain (DSOM 2005),
Davis, California, USA (DSOM 2004), Heidelberg, Germany (DSOM 2003), and
Montreal, Canada (DSOM 2002). The goal of the DSOM workshops is to bring
together researchers from industry and academia working in the areas of net-
works, systems, and service management, to discuss recent advances and foster
future growth. In contrast to the larger management conferences, such as IM
(Integrated Network Management) and NOMS (Network Operations and Man-
agement Symposium), DSOM workshops have a single-track program in order
to stimulate more intense interaction among participants.

The theme of DSOM 2008 was “Managing Large-Scale Service Deployment”
focusing both on management of overlay networks and on virtualized service in-
frastructures. The concepts of abstract overlays and virtualization constitute key
contributors for efficient large-scale service deployment and testing. Scalable ab-
stract overlay networks accompanied with appropriate management techniques
offer flexibility for future service deployment and consumption with high qual-
ity of experience. Virtualization decouples service substantiation from its actual
realization over networking and IT infrastructures enabling wide-scale deploy-
ment of services. At the same time, DSOM 2008 continued its tradition of giving
a platform to papers that address general topics related to the management
of distributed systems. As a result, DSOM 2008 included sessions on decentral-
ized and peer-to-peer management, operations and tools, security and trust, and
measurements, monitoring and diagnosis.

Like the previous three DSOM workshops, DSOM 2008 was co-located with
several related events as part of the 4th International Week on Management of
Networks and Services (Manweek 2008). The other events were the 11th
IFIP/IEEE International Conference on Management of Multimedia and Mobile
Networks and Services (MMNS 2008), the 8th IEEE International Workshop on
IP Operations and Management (IPOM 2008), the Third IEEE International
Workshop on Modeling Autonomic Communications Environments (MACE
2008), the 4th IEEE/IFIP International Workshop on End-to-End Virtualiza-
tion and Grid Management (EVGM 2008), and the 5th International Workshop
on Next-Generation Networking Middleware (NGMN 2008). Co-locating these
events provided the opportunity for an exchange of ideas between research

VI Preface

communities that work on related topics, allowing participants to forge links and
exploit synergies.

DSOM 2008 attracted a total of 38 paper submissions by authors from 20
different countries. Each paper received at least three reviews by experts in the
field. A total of 14 submissions were finally accepted into the program as full
papers.

DSOM 2008 owes its success in large part to a dedicated community of re-
searchers from academia and industry that has formed over many years. First
and foremost, we want to thank the authors of the submitted papers–without
them, there would be no program. We also want to thank the members of the
Technical Program Committee and the additional reviewers for their constructive
and detailed reviews. A big “thank you” goes to Tom Pfeifer, our Publications
Chair, who played a big part in creating these proceedings. Finally, we want to
thank our patrons, HP, FP6 IST-UNITE project and FP7 ICT-HURRICANE
project, whose financial support was essential to making DSOM 2008 a great
event.

September 2008 Filip De Turck
Wolfgang Kellerer

George Kormentzas

DSOM 2008 Organization

Workshop and Program Co-chairs

Filip De Turck Ghent University, Belgium
Wolfgang Kellerer DoCoMo, Germany
George Kormentzas University of the Aegean, Greece

Publication Chair

Tom Pfeifer Waterford Institute of Technology, Ireland

Publicity Co-chair

Luciano Paschoal Gaspary Universidade Federal do Rio Grande do Sul,
Brazil

Treasurers

Sofoklis Kyriazakos Converge, Greece
Brendan Jennings Waterford Institute of Technology, Ireland

Website and Registration Chair

Sven van der Meer Waterford Institute of Technology, Ireland

Submission Chair

Lisandro Granville Universidade Federal do Rio Grande do Sul,
Brazil

Sponsoring Co-chairs

E. Pallis Centre for Technological Research of Crete,
Greece

I. Venieris National Technical University of Athens,
Greece

VIII Organization

Manweek 2008 Chair

George Kormentzas University of the Aegean, Greece

Manweek 2008 Vice Chair

Francisco Guirao European Commission

Manweek 2008 Advisors

Raouf Boutaba University of Waterloo, Canada
Brendan Jennings Waterford Institute of Technology, Ireland
Sven van der Meer Waterford Institute of Technology, Ireland

DSOM 2008 Technical Program Committee

Issam Aib University of Waterloo
Javier Baliosian University of the Republic of Uruguay
Claudio Bartolini HP Laboratories
Raouf Boutaba University of Waterloo
Nevil Brownlee The University of Auckland
Marcus Brunner NEC Europe Ltd.
Omar Cherkaoui University of Quebec in Montreal
Alexander Clemm Cisco Systems
Thierry Coupaye France Telecom
Luca Deri ntop.org
Yixin Diao IBM Research
Philippe Dobbelaere Alcatel-Lucent
Gabi Dreo Rodosek University of Federal Armed Forces
Metin Feridun IBM Research
Olivier Festor INRIA Nancy - Grand Est
Stéphane Frénot INRIA Amazones
Alex Galis University College London
Yacine Ghamri-Doudane LRSM - ENSIIE
Kurt Geihs Universität Kassel
Erol Gelenbe Imperial College London
Masum Hasan Cisco Systems
Heinz-Gerd Hegering Leibniz Supercomputing Center
James Hong POSTECH
Cynthia Hood Illinois Institute of Technology
Yangcheng Huang Ericsson
Gabriel Jakobson Altusys Corp.
Brendan Jennings TSSG, Waterford Institute of Technology
Alexander Keller IBM Global Technology Services

Organization IX

Yoshiaki Kiriha NEC
Frédéric Le Mouël INRIA Amazones / INSA Lyon
David Lewis Trinity College Dublin
Hong Li Intel Corporation
Jorge Lopez de Vergara Universidad Autonoma de Madrid
Emil Lupu Imperial College
Hanan Lutfiyya University of Western Ontario
Antonio Manzalini Telecom Italia
Saverio Niccolini NEC Europe Ltd.
Jose-Marcos Nogueira UFMG
Declan O’Sullivan Trinity College Dublin
Evaggelos Pallis Centre for Technological Research of Crete
Symeon Papavassiliou National Technical University of Athens
Luciano Paschoal Gaspary UFRGS
Fotini-Niovi Pavlidou Aristotle University of Thessaloniki
Aiko Pras University of Twente
Thierry Pollet Alcatel-Lucent
Juergen Quittek NEC Europe Ltd.
Danny Raz Technion
Akhil Sahai VMWare Inc, USA
Jürgen Schönwälder Jacobs University Bremen
Joan Serrat Universitat Politécnica de Catalunya
Adarsh Sethi University of Delaware
Rolf Stadler KTH Stockholm
Radu State LORIA - INRIA Lorraine
Burkhard Stiller University of Zurich and ETH Zurich
Sven van der Meer Waterford Institute of Technology
John Vicente Intel Corporation
Vincent Wade Trinity College Dublin
Tim Wauters University of Ghent
Carlos Westphall Federal University of Santa Catarina
S. Felix Wu University of California at Davis
Geoffrey Xie Naval Postgraduate School, Monterey
George Xylomenos Athens University of Economics and Bussiness
Yang Richard Yang Yale University
Makoto Yoshida The University of Tokyo
Lisandro Z. Granville UFRGS
Xiaoyun Zhu Hewlett Packard Labs

Additional Reviewers

Ioannis Anagnostopoulos University of the Aegean
Tiago Fioreze University of Twente
Fermı́n Galán Márquez Telefónica I+D
Alberto Gonzalez KTH Royal Institute of Technology
Eduardo Grampin Universidad de la Republica de Uruguay

X Organization

Dan Jurca KTH Royal Institute of Technology
Eleftherios Koutsoloukas National Technical University of Athens
Anh Le University of Waterloo
Angelos Lenis National Technical University of Athens
Christos Politis Kingston University
Vassiliki Pouli National Technical University of Athens
Anna Sperotto University of Twente
Yong Xiang University of Waterloo

Table of Contents

Decentralized and Peer-to-Peer Management

SOON: A Scalable Self-organized Overlay Network for Distributed
Information Retrieval . 1

Juan Li and Son Vuong

Dynamic Overlay Node Activation Algorithms for Large-Scale Service
Deployments . 14

Jeroen Famaey, Tim Wauters, Filip De Turck, Bart Dhoedt, and
Piet Demeester

Dynamic Querying in Structured Peer-to-Peer Networks 28
Domenico Talia and Paolo Trunfio

Web-Based Management of Content Delivery Networks 42
George Oikonomou and Theodore Apostolopoulos

Operations and Tools

Crawling Bug Tracker for Semantic Bug Search . 55
Ha Manh Tran, Georgi Chulkov, and Jürgen Schönwälder

A Runtime Constraint-Aware Solution for Automated Refinement of
IT Change Plans . 69

Weverton Luis da Costa Cordeiro, Guilherme Sperb Machado,
Fabŕıcio Girardi Andreis, Alan Diego Santos, Cristiano Bonato Both,
Luciano Paschoal Gaspary, Lisandro Zambenedetti Granville,
Claudio Bartolini, and David Trastour

SYMIAN: A Simulation Tool for the Optimization of the IT Incident
Management Process . 83

Claudio Bartolini, Cesare Stefanelli, and Mauro Tortonesi

Security and Trust

Flexible Resolution of Authorisation Conflicts in Distributed Systems . . . 95
Changyu Dong, Giovanni Russello, and Naranker Dulay

Trust Management for Host-Based Collaborative Intrusion Detection . . . 109
Carol J. Fung, Olga Baysal, Jie Zhang, Issam Aib, and
Raouf Boutaba

XII Table of Contents

Multi-constraint Security Policies for Delegated Firewall
Administration . 123

Cássio Ditzel Kropiwiec, Edgard Jamhour, Manoel C. Penna, and
Guy Pujolle

Measurements, Monitoring and Diagnosis

Changes in the Web from 2000 to 2007 . 136
Ramin Sadre and Boudewijn R. Haverkort

Ensuring Collective Availability in Volatile Resource Pools Via
Forecasting . 149

Artur Andrzejak, Derrick Kondo, and David P. Anderson

Adaptive Monitoring with Dynamic Differential Tracing-Based
Diagnosis . 162

Mohammad A. Munawar, Thomas Reidemeister, Miao Jiang,
Allen George, and Paul A.S. Ward

Maintenance of Monitoring Systems Throughout Self-healing
Mechanisms . 176

Clarissa Cassales Marquezan, André Panisson,
Lisandro Zambenedetti Granville, Giorgio Nunzi, and
Marcus Brunner

Author Index . 189

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 1–13, 2008.
© IFIP International Federation for Information Processing 2008

SOON: A Scalable Self-organized Overlay Network for
Distributed Information Retrieval

Juan Li and Son Vuong

Computer Science Department, University of British Columbia
2366 Main Mall, Vancouver, B.C., Canada

{juanli, vuong}@cs.ubc.ca

Abstract. Locating desirable resources and information from a large-scale
distributed system such as P2P system and grid is a very important issue.
However, the distributed, heterogeneous, and unstructured nature of the system
makes this issue very challenging. In this paper, we propose Self-Organized
Overlay Network (SOON), an unstructured P2P overlay architecture, to
facilitate sharing and searching semantically heterogeneous contents. In
particular, we have proposed a semantics-aware topology construction method
to group nodes sharing similar semantics together to create small-worlds. For
this purpose, we have designed an algorithm to extract a node’s ontology
summary and use that summary to compute the semantic similarity between
nodes. With this semantic similarity defined, nodes are grouped accordingly,
forming semantic virtual domains and clusters. Resource information
integration and searching can be efficiently performed on top of this topology.

Keywords: Overlay network, P2P system, Semantic Web, topology.

1 Introduction

A widely-held belief pertaining to social networks is that any two people in the world
are connected via a chain of six acquaintances (six-degrees of separation) [1]. The
quantitative study of the phenomenon started with Milgram’s experiments [2].
Milgram’s experiments illustrated that individuals with only local knowledge of the
network (i.e., their immediate acquaintances) may successfully construct acquaintance
chains of short length, leading to networks with “small-world” characteristics. In such
a network, a query can be forwarded along acquaintance chains taking it closer to the
destination. Randomized network constructions that model the small-world
phenomenon have recently received considerable attention. To model the routing
aspects of the small-world phenomenon, Kleinberg constructed a family of random
graphs [3]. He considered a 2D n × n grid with n2 nodes. Each node is equipped with
a small set of “local” contacts and one “remote” contact drawn from a harmonic
distribution. With greedy routing, the path-length between any pair of nodes is
O(log2n) hops, with high probability.

Small-world networks exhibit special properties, namely, a small average diameter
and a high degree of clustering. A small diameter corresponds to a small separation

2 J. Li and S. Vuong

between peers, while high clustering signals tight communities. Small-world graphs
contain inherent community structure, where similar nodes are grouped together in
some meaningful way. Intuitively, a network satisfying the small-world properties
would allow peers to reach each other via short paths while maximizing the efficiency
of communication within the clustered communities.

We draw inspiration from small-world networks and organize nodes in our system
to form a small-world topology, particularly from a semantic perspective. Our
objective is to make the system’s dynamic topology match the semantic clustering of
peers, i.e., there is a high degree of semantic similarity between peers within the
clustered community; this would allow queries to quickly propagate among relevant
peers as soon as one of them is reached.

In our overlay network, SOON, peers use their ontology summary to represent
their expertise. Unlike most existing systems, SOON does not assume a global
ontology but heterogeneous ontologies. We have designed a novel algorithm to
compute the semantic similarity between two nodes in the network; then we use the
semantic similarity as the metric to organize the network topology. Nodes are loosely
structured in this network. Each of them keeps track of a set of neighbors and
organizes these neighbors into a multi-resolution neighborhood according to their
semantic similarities. This way, the overlay network topology is reconfigured with
respect to peers’ semantic properties, and peers with similar ontologies are close to
each other. Information can be integrated and discovered through nodes’ current
neighbors, rather than by contacting some central hubs or virtual central hubs, such as
Distributed Hash Tables (DHTs). This architecture combines the efficiency and
scalability of structured overlay network with the connection flexibility of
unstructured networks. It achieves full distribution, high scalability, and robustness.

2 Semantic Metadata

Metadata, the data about data, is a crucial element of a sharing and discovering
infrastructure. An effective way of locating information of interest within large-scale
information intensive environments is providing and managing metadata about the
information. More important, metadata should be able to express the meaning of the
information. An ontology, “a shared and common understanding of a domain that can
be communicated between people and application systems”, as considered in modern
knowledge engineering [4], is precisely intended to convey that kind of shared
understanding. An ontological representation defines concepts and relationships. It
sets the vocabulary, properties, and relationships for concepts. The elements
accumulate more meaning by the relationships they hold and the potential inferences
that can be made by those relationships. This capability of formal ontologies to
convey relationships and axioms make them ideal vehicles for describing the
vocabulary for metadata statements, providing a rich formal semantic structure for
their interpretation. Therefore, we use ontologies to represent information metadata
semantics. To cope with the openness and extensibility requirements, we adopt two
W3C recommendations, the Resource Description Framework (RDF) and the Web
Ontology Language (OWL), as our ontology languages.

 SOON: A Scalable Self-organized Overlay Network 3

In our system the ontology knowledge is represented by OWL-DL and is separated
into two parts: the terminological box (T-Box) and the assertion box (A-Box) as
defined in the description logic terminology. The T-Box is a finite set of
terminological axioms, which includes all axioms for concept definition and
descriptions of domain structure, for example a set of classes and properties. The A-
Box is a finite set of assertional axioms, which includes a set of axioms for the
descriptions of concrete data and relations, for example, the instances of the classes
defined in the T-Box. Generally speaking, there are many more A-Box instances than
T-Box concepts. Separating the T-Box and A-Box enables different coarse-grained
knowledge indexing, thus increasing the scalability of the system.

3 Semantic Similarity

To organize peers according to their semantic properties, we need a metric to measure
peers’ ontology similarity. There has been extensive research [6, 7, 8] focusing on
measuring the semantic similarity between two objects in the field of information
retrieval and information integration. However their methods are very comprehensive
and computationally expensive. In this paper, we propose a simple method to
compute the semantic similarity between two peers; this can easily be replaced with
other advanced functions for a complex system.

3.1 Ontology Signature Set (OSS)

To measure the semantic similarity between peers, we need to extract each peer’s
semantic characteristics. The T-Box part of an ontology defines high-level concepts
and their relationships like the schema of a database. It is a good abstraction of the
ontology’s semantics and structure. Therefore, we use keywords of a nodes’ T-Box
ontology as its ontology summary. For each node, we extract the class and property
labels from its T-Box ontology, and put them into a set. This set is called this node’s
Ontology Signature Set (OSS). We can measure the similarity of two ontologies by
comparing the elements of their OSSs. However, a semantic meaning may be
represented by different labels in different ontologies, while it is also possible that the
same literal label in different ontologies means totally different things. Ontology
comparison based on primitive OSSs may not yield satisfying results. One
improvement is to extend each concept with its semantic meanings, so that
semantically related concepts would have overlaps. Based on this intuition, we use the
lexical database, WorldNet [5], to extend the OSS to include words which are
semantically related to the concepts from the original set.

WordNet is conceived as a machine-readable dictionary. It structures lexical
information in terms of word meanings. WordNet maps word forms in word senses
using the syntactic category as a parameter. Words of the same syntactic category that
can be used to express the same meaning are grouped into a single synonym set,
called synset. For example, the noun “computer” has a synset: {computer, data
processor, electronic computer, information processing system}. An intuitive idea of
extending an OSS is to extend each concept with its synset, i.e., its synonyms. In this
way, two semantically related ontologies would have common WordNet terms in their

4 J. Li and S. Vuong

extended OSSs. Besides synonyms, WordNet also includes other lexical semantic
relations, such as is-a, kind-of, part-of. Among these relations, is-a (represented by
hyponym/hypernym in WordNet) is the most important relationship; it explains a
concept by a more general concept. Therefore, we also extend OSS concepts with
their hypernyms.

After extension, an OSS may get a large number of synonyms for each concept.
However, not all of these synonyms should be included in the set, because each
concept may have many senses (meanings), and not all of them are related to the
ontology context. Having unrelated senses in the OSS will diminish the accuracy of
measuring the semantic similarity; thus we have to prune the expanded OSS to
exclude those unrelated terms. A problem causing the ambiguity of concepts in OSS
is that the extension does not make use of any relations in the ontology. Relations
between concepts are important clues to infer the semantic meanings of concepts, and
they should be considered when creating the OSS. Therefore, we utilize relations
between the concepts in an ontology to further refine the semantic meaning of a
particular concept. Only words with the most appropriate senses are added to the
OSS. Since the dominant semantic relation in an ontology is the subsumption relation,
we use the subsumption relation and the sense disambiguation information provided
by WordNet to refine OSSs. It is based on a principle that a concept’s semantic
meaning should be consistent with its super-class’s meaning. We use this principle to
remove those inconsistent meanings. The refined algorithm to extend the primitive
OSS is illustrated with the pseudocode in Fig. 1.

/* This algorithm generates the refined ontology signature
set OSS for an ontology, O */

createOss(Ontology O)
{
 OSS={};
 for each c ∈ {concepts of ontology O} do
 pc is parent concept of c
 add c, pc to oss
 for each Sc ∈ {senses of c} do
 Hc={hypernyms of Sc}
 for each Spc ∈ {senses of pc) do
 if Hc ∩ Spc !=null
 add Sc,Spc to OSS
}

Fig. 1. A refined algorithm to create the Ontology Signature Set of an ontology O

The algorithm in Fig.1 creates the refined OSS of an ontology by adding the
appropriate sense set of each ontology concept based on the sub-class/super-class
relationships between the parent concepts and child concepts. For every concept in an
ontology, we check each of its senses; if a sense’s hypernym has overlap with this
concept’s parent’s senses, then we add this sense and the overlapped parent’s sense to
the OSS set. In this way we can refine the OSS and reduce imprecision. Possible
improvements could be obtained by using other relations in the ontology.

 SOON: A Scalable Self-organized Overlay Network 5

3.2 Peer Semantic Similarity

To compare two ontologies, we define an ontology similarity function based on the
refined Ontology Signature Set. The definition is based on Tversky’s “Ratio Model”
[9] which is evaluated by set operations and is in agreement with an information-
theoretic definition of similarity [10].

Definition 1: Assume A and B are two peers, and their extended Ontology Signature
Sets are S(A) and S(B) respectively. The semantic similarity between peer A and peer
B is defined as:

|)A(S)B(S||)B(S)A(S||)B(S)A(S|

|)B(S)A(S|
)B,A(sim

−+−+
=

βα∩
∩

In the above equations, “∩” denotes set intersection, “–” is set difference, while “||”
represents set cardinality, “α” and “β” are parameters that provide for differences in
focus on the different components. The similarity sim, between A and B, is defined in
terms of the semantic concepts common to OSS of A and B: S(A)∩S(B), the concepts
that are distinctive to A: S(A)–S(B), and the features that are distinctive to B: S(B) –
S(A). With the similarity measure specified, we have the following definition:

Definition 2: Two nodes, node A and node B are said to be semantically equivalent if
their semantic similarity measure, sim(A,B) equals to 1 (implying sime(B,A)=1 as
well). Node A is said to be semantically related to node B, if sim(A,B) exceeds the
user-defined similarity threshold t (0<t≤1). Node A is semantically unrelated to node
B if sim(A,B)<t.

4 Self-organized Semantic Small-World Overlay

We follow the idea of the Kleinberg experiment to construct the semantic small-world
network. In Kleinberg’s experiment each node keeps many short-range contacts, as
well as a small number of long-range contacts. In our system, a node distinguishes
three kinds of neighbors based on their semantic similarity. A peer A’s neighbor, B,
can be one of these three types: (1) zero-distance neighbor (or semantically equivalent
neighbor), if sim(A,B)=1, (2) short-distance neighbor (or semantically related
neighbor) if sim(A,B)≥t (0<t<1 is A’s semantic threshold), (3) long-distance neighbor
(or semantically unrelated neighbor) if sim(A,B)<t. A node always tries to find as
many close neighbors as possible, but it also keeps some long distance neighbors to
reach out to other ontological clusters.

Nodes in the system randomly connect to each other through these three types of
neighbors. They produce a semantically clustered small-world topology as shown in
Fig.2. The clustered structure is not flat but multi-layered; nodes with similar
ontological topics, i.e., short-distance neighbors, form a domain (a region formed by
nodes with the same shape in the figure); inside the domain, nodes may create smaller
clusters (sub-regions in a domain with same color) if they share the same ontology
schema. For example, all peers in the medical domain are interested in medically
related information. They may be interested in different aspects of the medical

6 J. Li and S. Vuong

resources, and they may use different ontologies to describe their resources. They
connect with each other through short-distance links. Inside the medical domain,
nodes further organize themselves to finer-grained clusters based on their ontologies.
For example, node N1, N2, N5, N8 and N11 use the same ontology O3 (e.g., a medical
ontology, SNOMED-RT [26]). Clusters and domains do not have fixed boundaries;
they are formed by randomly connecting relevant nodes.

zero-dist neighbor
short-dist neighbor
long-dist neighbor

N2

N1 N5

N8 N11

N3
N4N6

N7

O1
O2

O3

Medical domain Bioinformatics domain

Simulation domain

Fig. 2. The semantic small-world network topology

The construction of an ontology-based topology is a process of finding
semantically related neighbors. A node joins the network by connecting to one or
more bootstrapping neighbors. Then the joining node issues a neighbor-discovery
query, and forwards the query to the network through its bootstrapping neighbors.
When a node N receives a neighbor-discovery query Q which tries to find neighbors
for a new joining node X, N computes the semantic similarity between X and itself. If
N is semantically related to X, N will send a reply to X. If the query’s TTL does not
expire, N computes the semantic similarity between X and each of its neighbors, and
forwards the query to semantically related neighbors. If no semantically related
neighbors are found, the query will be forwarded to N’s long-distance neighbors.

With the semantic small-world topology constructed, information discovery can be
efficiently performed. In most cases, a discovery query can be answered within
the querying node’s local domain, because queries reflect the querying node’s
ontology interest, and semantically related nodes are within the neighborhood of the
querying node. When a node issues (or receives) a query, it first chooses its zero-
distance neighbors to forward the query inside the local cluster. Since they use the
same ontology, the zero-distance neighbors are the best candidates to forward the
query to. Another important step in query processing is reformulating a peer’s query
over other peers on the available semantic paths. Starting from the querying peer, the
query is reformulated based on the inter-ontology mapping over the querying peer’s

 SOON: A Scalable Self-organized Overlay Network 7

short-distance neighbors, then over their short-distance neighbors, and so on until the
query TTL expires. Interested readers can refer our previous work [27] for the inter-
ontology mapping schemes. Sometimes, users may want to locate resources in other
semantic domains. In this case, they would first locate the related domain using the
long distance-neighbors.

6 Experiments

We have performed extensive simulation experiments to evaluate the performance of
our overlay network structure.

6.1 Setup

The test data is artificially generated. The T-Box ontologies are generated first, and
then individuals are created by instantiating classes. We assume for simulation
purposes that ontologies and queries are associated with a specific domain, and all
ontologies in the same domain have ontology mappings defined in advance. The
simulation is initialized by injecting nodes one by one into the network until a certain
network size has been reached. After the initial topology is created, a mixture of joins,
leaves, and queries are injected into the network based on certain ratios. The
proportion of join to leave operations is kept the same to maintain the network at
approximately the same size. Inserted nodes start functioning without any prior
knowledge.

For comparisons, we simulate our SOON overlay in conjunction with the learning-
based ShortCut overlay [11] and a random-walk based simple Gnutella overlay [25].
The ShortCut overlay, as will be described in the related work, is chosen as one
comparison reference since it is simple yet effective, and many popular applications
(e.g., [11], [12], [13], [14]) use this overlay as their basic routing overlay. Moreover,
it is comparable to our network in the sense that it creates clusters on top of the
unstructured network. Flooding-based Gnutella was chosen as another reference

Table 1. Parameters used in the simulations

Parameter Range and default value
network size 29~215 default: 10,000
initial neighbors (node degree) 5
average node degree 14
TTL 1~20 default 9
resource-discovery query walkers 3 (propagate exponentially)

neighbor-discovery query walkers 2 (propagate linearly)
ontology domains 1~10 default: 8
ontology schemas per domain 1~10 default:8
resources per node 1~10
die/leave probability per time slice per node 0-21%, 3% default
query probability per time slice per node 5%

sample of nodes to compute diameter 5%

8 J. Li and S. Vuong

network for its simplicity and prevalence, which, in fact, made it a widely used
baseline for many previous research efforts. The simulation parameters and their
default values are listed in Table 1.

6.2 Results and Discussion

Emergence of the small-world
As discussed, the topology of the peer network is a crucial factor determining the
efficiency of the search system. We expect that the SOON semantic neighbor
discovery scheme will transform the topology into a small-world network. To verify
this transformation, we examine two network statistics, the clustering coefficient (CC)
and the average network path length (APL), as indicators of how closely the topology
has approached a “small-world” topology. The CC is a measure of how well
connected a node’s neighbors are with each other. The CC of a node is the ratio of the
number of existing edges and the maximum number of possible edges connecting its
neighbors. The APL is defined as the average shortest path across all pairs of nodes.
The APL corresponds to the degree of separation between peers. In our experiment,
we use a random sample of certain percent of the graph nodes to compute APL.

0

0.05

0.1

0.15

512 1024 2048 4096 8192 16384 32768#node

C
C

SOON

ShortCut

Random

Fig. 3. Comparison of clustering coefficient

2

2.5

3

3.5

4

512 1024 2048 4096 8192 16384 32768#node

A
P

L

SOON

ShortCut

Random

Fig. 4. Comparison of average path length

We performed experiments to measure SOON’s CC and APL. An interest-based
ShortCut topology and a random power-law topology with the same average node
degree are used as reference topologies. The former has been proved to be a small-
world network [15]. Fig.3 and Fig.4 show plots of the CC and the APL as a function
of the number of nodes in the network. We observe that both the CC and the APL of
SOON are very similar to those of ShortCut. The CC of SOON and ShortCut are
much larger than that of the random power-law network, while the APL of SOON and
ShortCut are almost the same as that of the random network. This indicates the
emergence of a small-world network topology [16].

 SOON: A Scalable Self-organized Overlay Network 9

Scalability and efficiency
We examine the system performance in three different aspects, namely routing
scalability, efficiency, and accuracy. The performance is measured using the metric of
recall rate, which is defined as the number of results returned divided by the number
of results actually available in the network. First, we vary the number of nodes from
29 to 215 to test the scalability. The results are listed in Fig.5. As we expected, SOON
gets higher recall in all these different sized networks. In addition, SOON’s recall
decreases less with the increase in network size. Fig.6 illustrates the system efficiency
by showing the relationship between query recall rate and query TTL. With a small
TTL, SOON gets a higher recall rate than the other two network. This means that
SOON resolves queries faster than the others. In Fig.7 we show the effect of
dispatching a different number of walkers to search the network. We can see that with
the same TTL, SOON locates more results with fewer walkers.

SOON’s small-world topology effectively reduces the search space, and its
ontology summary guides the query in the right direction. This explains why SOON
scales to large network size and why it achieves higher recall with shorter TTL and
fewer walkers. Besides all these reasons, another factor contributing SOON’s overall
better recall rate is that SOON is able to locate semantically related results that cannot
be located by the ShortCut and random-walk. Because of the semantic heterogeneity
of our experimental setup, relevant resources may be represented with different
ontologies. SOON may use its ontology signature set to find semantically related
nodes and use the mapping defined to translate the query. Therefore, it can locate
most of the relevant results. However, for ShortCut and random-walk, they have no
way to find semantically related resources, but only resources represented in the same
ontology as the ontology of the querying node.

0

0.2
0.4

0.6
0.8

1

512 1024 2048 4096 8192 16384 32768node#

re
ca

ll

SOON

ShortCut

RandomWalk

Fig. 5. Comparison of average path length

0

0.2
0.4

0.6
0.8

1

1 2 3 4 5 6 7 8 9 10TTL

re
ca

ll SOON

ShortCut

RandomWalk

Fig. 6. Comparison of average path length

10 J. Li and S. Vuong

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7walker#

re
ca

ll

SOON

ShortCut

RandomWalk

Fig. 7. Comparison of average path length

Overhead and adaptability to dynamics
The good recall performance of SOON does not come for free. Generally speaking,
there is a tradeoff between query efficiency and maintenance overhead. Unlike
ShortCut and random-walk approaches, which only create query propagating
overhead, SOON also creates overhead for maintaining neighborhood relationship.
We expect the extra overhead is reasonable and the saving from query cost exceeds
the extra maintenance cost. To verify this, we examine the system’s overhead in terms
of accumulated bandwidth. System overhead has a close relation with the system
dynamics, as a system must maintain consistent information about peers in the system
in order to operate most effectively. Therefore, we measure the system dynamics
together with the overhead. To evaluate the adaptability to different levels of
dynamics, we measure the system overhead under different levels of peer “churn
rate”, referring to the rate of peers leaving/joining the system.

The experiment shown in Fig.8 gives an overview of how dynamics affect the system
performance. We find that SOON performs similarly to the ShortCut algorithm which is
proved to be resilient to churn [11]. When peers join or leave frequently, the
performance of ShortCut and SOON deteriorate gracefully. Churn does not affect the
two schemes dramatically because both algorithms do not depend on a strict structure to
perform routing as DHTs do. Their unstructured random topologies provide multiple
routes to a destination thus increasing the system resilience. In the worst case, they
degrade to random-walk.

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21

re
ca

ll SOON

ShortCut

RandomWalk
(%)

Fig. 8. Recall vs. churn rate

Fig.9 shows the accumulated bandwidth overhead of finding 10000 results under
different churn rates. From the figure, we can see that in most situations SOON
produces much less overhead than the other two methods. But when the system is
very dynamic, such as when the churn rate is beyond 20%, SOON produces much
more overhead. The high overhead problem of SOON in very dynamic environments

 SOON: A Scalable Self-organized Overlay Network 11

0
5

10
15
20
25
30

0 3 6 9 12 15 18 21

.

SOON

ShortCut

RandomWalk

(%)

Fig. 9. System overhead (accumulated bandwidth) vs. churn rate

can be solved by a simple solution: when the network is very dynamic, the system can
give up the ontology-based topology construction but resort to basic Gnutella random-
walk as the solution.

6 Related Work

Research has harnessed the power of semantic technologies to aid in information
representation, retrieval and aggregation over large distributed systems. P2P
technology has been used to improve the scalability and efficiency of the semantic
searching. For example, systems such as Edutella [17] and InfoQuilt [19] use broadcast
or flooding to search their semantic metadata, while many other projects, such as
RDFPeer [20] and OntoGrid [21] attempt applying DHT techniques to the retrieval of
the ontology encoded knowledge. pSearch [22] applies a dimension reduction
technique, called rolling index, on top of CAN to realize a semantics-based search.

Recently, there has appeared the idea of grouping nodes with similar contents
together to facilitate search. The latest super-peer-based Edutella [18] and Semantic
Overlay Network (SON) [23] rely on centralized server or super-peers to cluster
contents and nodes. Semantic Small Word (SSW) position peers and data objects in
the semantic space, so that peers with similar data objects form into clusters. It then
applies a dimension reduction technique on top of the DHT to realize a semantics-
based search. In SSW, semantics of data objects is represented by a multi-attribute
vector, but not Semantic Web-based data. Applications such as REMINDIN [11],
Helios[13], and Bibster [24] add semantic short-cuts to group nodes. The short-cut
approach relies on the presence of interest-based locality. Each peer builds a shortcut
list of nodes that answered previous queries. To find content, a peer first queries the
nodes on its shortcut list and only if unsuccessful, floods the query.

7 Conclusion

In this paper, we propose a self-organized semantic overlay network, SOON. It uses
an ontology-based representation of the information metadata. It enables peers to
automatically organize themselves according to their semantic properties to form a
semantic small-world topology, so that information retrieval can be effectively
performed within semantically related small-worlds. Our simulation results prove that
SOON improves interoperability among network participants and aids efficient
information discovery and access.

12 J. Li and S. Vuong

References

1. Barabási, A.L.: Linked: How Everything is Connected to Everything Else and What It
Means for Business, Science, and Everyday Life. Efficient information discovery and
access. Plume, New York (2003)

2. Milgram, S.: The small world problem. Psychology Today 67(1) (1967)
3. Kleinberg, J.: Navigation in a small world. Nature (406), 845 (2000)
4. Gruver, W.A., Boudreaux, J.C.: Intelligent Manufacturing: programming environments for

CIM. Springer, London (1993)
5. Miller, G.A., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.J.: Introduction to

WordNet: an on-line lexical database. International Journal of Lexicography (1990)
6. Jiang, J., Conrath, D.: Semantic Similarity Based on Corpus Statistics and Lexical

Taxonomy. In: Proc. Int’l Conf. Computational Linguistics (ROCLING X) (1997)
7. Lee, J., Kim, M., Lee, Y.: Information Retrieval Based on Conceptual Distance in IS-A

Hierarchies. J. Documentation 49, 188–207 (1993)
8. Rodriguez, M.A., Egenhofer, M.J.: Determining Semantic Similarity Among Entity

Classes from Different Ontologies. IEEE Transactions on Knowledge and Data
Engineering 15(2) (March/April 2003)

9. Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)
10. Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th International Conf.

on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1998)
11. Tempich, X., Staab, S., Wranik, A.: REMINDIN: semantic query routing in peer-to-peer

networks based on social metaphors. In: International World Wide Web Conference
(WWW), New York, USA (2004)

12. Sripanidkulchai, K., Maggs, B., Zhang, H.: Efficient content location using interest-based
locality in peer-to-peer systems. In: INFOCOM 2003 (2003)

13. Castano, S., Ferrara, A., Montanelli, S., Zucchelli, D.: Helios: a general framework for
ontology-based knowledge sharing and evolution in P2P systems. In: IEEE Proc. of DEXA
WEBS 2003 Workshop, Prague, Czech Republic (September 2003)

14. Castano, A., Ferrara, S., Montanelli, S., Pagani, E., Rossi, G.: Ontology addressable
contents in p2p networks. In: Proceedings of the WWW 2003 Workshop on Semantics in
Peer-to-Peer and Grid Computing (2003)

15. Iamnitchi, A., Ripeanu, M., Foster, I.: Small-world filesharing communities. In: Infocom,
Hong Kong, China (2004)

16. Watts, D., Strogatz, S.: Collective dynamics of “small-world” networks. Nature (1998)
17. Nejdl, W., Wolf, B., Qu, C., Decker, S., SIntek, M., Naeve, A., Nilsson, M., Palmer, M.,

Risch, T.: Edutella: A P2P Networking Infrastructure Based on RDF. In: WWW 2002,
Honolulu, Hawaii, USA, May 7-11 (2002)

18. Nejdl, W., Siberski, W., Sintek, M.: Design Issues and Challenges for RDF an schema-
based peer-to-peer systems. ACM SIGMOD Record 32(3), 41–46 (2003)

19. Arumugam, M., Sheth, A., Arpinar, I.B.: Towards peer-to-peer semantic web: A
distribuited environment for sharing semantic knowledge on the web. In: Proc. of the
International World Wide Web Conference 2002 (WWW 2002), Honolulu, Hawaii, USA
(2002)

20. Cai, M., Frank, M.: RDFPeers: A scalable distributed RDF repository based on a
structured peer-to-peer network. In: Proc. of WWW conference, NewYork, USA (May
2004)

21. OntoGrid project: http://www.ontogrid.net/

 SOON: A Scalable Self-organized Overlay Network 13

22. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-peer information retrieval using self-organizing
semantic overlay networks, In: Proceedings of 2003 Conference on Applications,
Technologies, Architectures and Protocols for Computer Communications (2003)

23. Crespo, A., Garcia-Molina, H.: Semantic overlay networks. Technical report, Stanford
University (2002)

24. Castano, A., Ferrara, S., Montanelli, S., Pagani, E., Rossi, G.: Ontology addressable
contents in p2p networks. In: Proceedings of the WWW 2003 Workshop on Semantics in
Peer-to-Peer and Grid Computing (2003)

25. Gnutella website, http://gnutella.wego.com/
26. College of American Pathologists. SNOMED RT - Systematized Nomenclature of

Medicine Reference Terminology, VERSION 1.1, USER GUIDE (2001)
27. Li, J., Vuong, S.: An Ontological Framework for Large-Scale Grid Resource Discovery.

In: Proceedings of the IEEE Symposium on Computers and Communications (ISCC
2007), Aveiro, Portugal (July 2007)

Dynamic Overlay Node Activation Algorithms
for Large-Scale Service Deployments

Jeroen Famaey�, Tim Wauters��, Filip De Turck��, Bart Dhoedt,
and Piet Demeester

Department of Information Technology (INTEC), Ghent University - IBBT
Gaston Crommenlaan 8, bus 201, B-9050 Gent, Belgium

jeroen.famaey@intec.ugent.be

Abstract. Due to overprovisioning of infrastructure nodes in overlay
networks, many nodes remain idle at times of low network load. Some of
these nodes could be temporary removed from the overlay topology and
could then be used for other purposes or alternatively be temporarily
shut down, to save energy.

In this paper we present several algorithms to select the subset of
overlay nodes that should be part of the overlay topology. This decision
is made based on the current and (estimated) future network load and the
locality of the clients and servers connected to the overlay network. As
network load or conditions change, additional nodes can be dynamically
(de)activated. Our algorithms can be used in conjunction with existing
overlay topology construction protocols.

Through extensive simulations, we have evaluated and compared the
performance of our algorithms.

1 Introduction

Recently, peer-to-peer overlay networks have been increasingly used to offer
services on the Internet, such as Voice-over-IP (e.g. Skype), filesharing (e.g.
Gnutella, BitTorrent), and Internet TV (e.g. Joost, Zattoo).

Although many protocols have been proposed to dynamically create and man-
age both structured and unstructured overlay topologies in a scalable manner,
little attention has been paid to deciding which candidate overlay nodes to ac-
tually include in the overlay network. Existing protocols merely include every
available candidate without any sort of node activation mechanism. As a conse-
quence, many nodes in overprovisioned overlay networks remain idle. By adding
a node activation phase to the overlay construction mechanism, the resources of
these idle overlay nodes can be freed. They could be used for other purposes or
be temporarily shut down to save energy. Additionally, if included in the overlay,
these idle nodes take part in control and management protocols and algorithms
� Funded by the Institute for the Promotion of Innovation by Science and Technology

Flanders (IWT-Vlaanderen).
�� Funded by the Fund for Scientific Research Flanders (FWO-Vlaanderen).

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 14–27, 2008.
c© IFIP International Federation for Information Processing 2008

Dynamic Overlay Node Activation Algorithms 15

run on top of the overlay network, adding extra control-traffic overhead and
negatively influencing overall performance and scalability [1].

In this paper, we propose two heuristics to select a suitable subset of the
available overlay nodes, to be used in the overlay topology. The first heuristic is
static and centralized, suitable for determining where to place the initial overlay
nodes. The second heuristic is fully decentralized and thus suitable for managing
large-scale topologies. Additionally, it is capable of dynamically adjusting the
subset of activated overlay nodes. To compare the solution of these heuristics to
the global optimal solution, we have also implemented an optimal algorithm to
solve the problem, based on an Integer Linear Programming (ILP) formulation.

The two heuristics are specifically designed for service hosting overlays. In
this case the overlay network consists not only of overlay nodes, which are re-
sponsible for routing client requests and selecting services, but also of clients
and service hosts. As input, the activation algorithms take into account the de-
mand generated by nearby clients, the demand satisfied by nearby service hosts,
and the bandwidth load on incoming and outgoing overlay links. As a result
the algorithms return which overlay nodes should be activated but also which
overlay node to use as the gateway for each client and service host. The goal is
to make sure there are enough resources available in the network to satisfy the
client demand, while minimizing the amount of activated overlay nodes.

The rest of this paper is structured as follows. Related work is discussed in
Section 2. The node activation and gateway selection problems are formally
described in Section 3. Section 4 gives a description of the designed algorithms.
An evaluation based on simulation results is presented in Section 5. And finally,
a brief summary of our work is given in Section 6.

2 Related Work

In the context of overlay service hosting platforms, most research has been aimed
towards service placement and server selection algorithms [2,3], while problems
related to overlay construction have received little attention. In the context of
general-purpose overlay networks, most research has been done towards con-
structing overlay topologies, both structured [4] and unstructured [5,6,7]. These
protocols include every available overlay node in the topology, instead of select-
ing a subset of required nodes, based on the current network load. Our node
activation algorithms can be used in conjunction with these overlay topology
construction protocols, to improve their resource usage, and the performance of
the resulting overlay network.

As mentioned in Section 1, the overlay node activation problem has received
little attention so far. As far as we are aware, the problem has only been stud-
ied in the context of intrusion-tolerant networks [1]. The authors propose an
algorithm that selects overlay nodes from a set of inactive ones to replace unre-
sponsive or compromised nodes. They, however, focus on security and Byzantine
fault tolerance. In contrast, our main goal is to maximize the satisfied client
demand, while minimizing the amount of idle resources.

16 J. Famaey et al.

3 Problem Formulation

Given is an underlying network topology represented by a bidirectional graph
U(N, E), with N a set of network nodes (e.g. clients, servers or routers) and E a
set of edges connecting these nodes. Each edge e has a distance de (e.g. one-way
transmission delay) and available bandwidth be.

Also given is a set of candidate overlay nodes O ⊆ N , a set of clients C ⊆ N
and a set of service-hosts S ⊆ N . Any two overlay nodes, clients or service-hosts
m and n are connected through a path of edges pm,n ⊆ E (called an overlay
edge) in the underlaying network (in our implementation the shortest hop-count
path). The distance dm,n and bandwidth bm,n between two overlay nodes m and
n are respectively defined as

∑
e∈pm,n

de and mine∈pm,n be.
Every overlay node o ∈ O has a limited amount of resources Ωo and a set

of nearby overlay nodes No ⊂ O (the neighbours of o). The neighbourhood set
No of o ∈ O contains all overlay nodes v ∈ O for which do,v ≤ D (with D a
predefined distance bound).

Every client and service-host u ∈ C∪S has an amount of required resources ωu

(e.g. CPU, memory), which represent the resources needed by the gateway (the
overlay node used to access the overlay network) to perform overlay-related tasks.
For clients this would consist of service discovery, server selection and request
routing. For service-hosts this would be service placement, service advertisement
and reply routing.

The set Mo denotes all u ∈ C ∪ S that have o ∈ O as nearest overlay node.
This set contains all clients and service-hosts for which du,o = minq∈O du,q.

Additionally we define a set of available services T . Each client c ∈ C has
requests for a subset of these services Tc ⊆ T . The variable rc,t denotes the
amount of requests per second of client c ∈ C for service t ∈ Tc. Each service-
host s ∈ S runs a subset of all available services. Each service t ∈ T has a
required amount of bandwidth βo

t per request and βi
t per reply. The service-host

that satisfies the demand of client c ∈ C for service t ∈ Tc is denoted by sc,t.
The goal of overlay node activation is to select a subset A ⊆ O of active

overlay nodes. Additionally a gateway o ∈ A should be selected for each client
and service-host u ∈ C ∪ S. Several constraints should be satisfied during the
activation process. These can be summarized as follows

∀o ∈ A :
∑

u∈Uo

ωu ≤ Ωo . (1)

∀o ∈ A, ∀u ∈ Uo : du,o ≤ K . (2)

∀e ∈ E :
∑

c∈C

∑

t∈Tc

⎛

⎝
∑

p∈πo
c,t∧e∈p

rc,t · βo
t +

∑

p∈πi
c,t∧e∈p

rc,t × βi
t

⎞

⎠ ≤ be . (3)

With Uo the set of clients and service-hosts using o ∈ A as gateway, K the
predefined maximum allowed distance between a client or service-host and their
gateway, and πo

c,t and πi
c,t respectively the set of overlay edges in the overlay

path from the client c to the service-host sc,t and back. Eq. 1 dictates that the

Dynamic Overlay Node Activation Algorithms 17

resources used by all clients and service-hosts using an overlay node as a gateway
should not exceed the available resources of that overlay node. Eq. 2 states that
the distance between a client or service-host and its gateway should not exceed
a predefined distance bound K. And finally Eq. 3 stipulates that the bandwidth
used on each underlay edge to send requests and replies for all clients should not
exceed the available bandwidth of that edge.

The optimization goal consists of three subgoals, which can be described as
follows

1. Satisfied client demand should be maximized. This means that enough band-
width should be available in the overlay network to send as many service
requests and replies between clients and service-hosts as possible.

2. A gateway should be provided for as many clients and service-hosts as pos-
sible.

3. Enough overlay nodes should be activated in order to maximize the first two
goals, but not more. This goal minimizes the amount of idle overlay nodes.

4 Algorithms Description

4.1 Integer Linear Programming Approach (ILP)

Based on the formal problem description given in Section 3 we can define an ILP
formulation for the problem. This formulation can be used to find the optimal
solution for the overlay node activation problem. Although this approach scales
very poorly, it is still useful for comparing the solution of the heuristics to the
optimal.

We will start by defining several decision variables used by the constraints
and objective function

– ao is 1 if o ∈ A (o is activated) and 0 otherwise
– gu,o is 1 if u ∈ Uo (o ∈ A is the gateway of u ∈ C ∪ S) and 0 otherwise
– q

o/i
c,t,m,n is 1 if pm,n ∈ π

o/i
c,t (with m, n ∈ O ∪ C ∪ S) and 0 otherwise

– r
o/i
c,t,m,n is the amount of satisfied requests of c ∈ C for t ∈ Tc on pm,n ∈ π

o/i
c,t

The ILP formulation consists of several constraints, which limit the possible val-
ues of the decision variables to valid solutions only. The first three constraints
are the same as the ones given in Section 3 (though formulated using the deci-
sion variables). Additionally, there are several other constraints. These include
constraints that make sure every client has only 1 gateway and that all gate-
ways and overlay nodes used for routing client requests or replies are activated.
Finally, there are also several flow conservation constraints.

The optimization goal of maximizing the total satisfied demand and number
of clients and service-hosts with a gateway while minimizing the total number
of activated overlay nodes, can be translated into the following ILP objective
function

max
∑

o∈O

(
∑

u∈C∪S

2 · ωu · gu,o

)

+

(
∑

c∈C

∑

t∈Tc

(
βo

t + βi
t

)
· ro

c,t,c,o

)

− ao .

18 J. Famaey et al.

Algorithm 1. The static node activation heuristic (STANA)
procedure SelectGateways()
1: for all o ∈ O do
2: for all c ∈ Co do
3: n ← o.GetMostSatisfyingGateway(c); Co ← Co \ {c}; Cn ← Cn ∪ {c}
4: for all o ∈ O do
5: for all s ∈ So do
6: n ← o.GetMostSatisfyingGateway(s); So ← So \ {s}; Sn ← Sn ∪ {s}

b ∈ O function o.GetMostSatisfyingGateway(u)
1: b ← o; r ← o.GetSatisfiableDemand(u)
2: for all n ∈ O do
3: if du,n ≤ K and ωu +

∑
v∈Cn∪Sn

ωv ≤ Ωn then
4: if

∑
v∈Co∪So

ωv <
∑

v∈Cn∪Sn
ωv or

∑
v∈Co∪So

ωv > Ωo then
5: if n.GetSatisfiableDemand(u) > r then
6: b ← n; r ← n.GetSatisfiableDemand(u)
7: return b

An algorithm to solve the ILP formulation was implemented using ILOG
CPLEX [8], which solves ILP problems using the simplex and interior point
methods.

4.2 Static Node Activation (STANA)

The pseudocode of the heuristic is shown in Algorithm 1. The heuristic is
initiated by calling the SelectGateways() procedure. First it attempts to find
the best gateway for each client (lines 1-3). Then it attempts to find the best
gateway for the service-hosts (lines 4-6). Co and So represent the clients and
service-hosts that have o as their gateway. They are initialized to the clients and
service-hosts in Mo.

The GetMostSatisfyingGateway() function returns an overlay node b for
the given client or service-host u. The number of requests of u that can be
satisfied is maximal if b is the gateway of u. The function iterates over all overlay
nodes (line 2). First it checks if the overlay node n meets the requirements to be
the gateway of u (line 3). The distance from u to n should be less than K and n
should have enough free resources (e.g. CPU). Subsequently the function checks
if n has a higher load than the current gateway o of u or if o is overloaded (line
4). The reason an overlay node will only transfer clients and service-hosts to
neighbours with higher load (unless it is overloaded) is based on the observation
that it would be easier to transfer all clients and service-hosts away from a node
with only few of them, than from a node with many. This allows the heuristic
to empty as many nodes with low load as possible and minimize the number of
overlay nodes that should be activated. Finally the function checks if n would
be a better gateway than the current best gateway b and replaces it if necessary
(lines 5-6).

Dynamic Overlay Node Activation Algorithms 19

After calling the procedure all overlay nodes o for which Co ∪ So �= ∅ will be
activated. All overlay nodes on the path from a client c to one of its service-hosts
sc,t or back will also be activated.

4.3 Dynamic Node Activation (DYNNA)

Although the static heuristic is interesting from a theoretical point of view and
for initial network dimensioning, it cannot adapt to changing conditions (such
as changes in client demand, underlying network conditions, or node churn). To
be able to quickly adapt to these changes we have devised a dynamic heuristic.
Additionally, this heuristic runs fully distributed and overlay nodes use only mea-
surable information from their direct neighbours (current resource load, overlay
edge transmission delay and overlay edge bandwidth usage). In contrast, the
static heuristic requires a view on the entire overlay network and needs informa-
tion on expected future bandwidth usage of each client and which service-hosts
each client will use.

Pseudocode for the dynamic heuristic is shown in Algorithm 2. Several new
variables are introduced: specifically Ωmin, Ωmax, βmin, βmax, bu

m,n, bout
u and bin

u .
Ωmin and Ωmax define the minimum and maximum resource load percentage of
an overlay nodes before it should attempt to transfer clients and service-hosts to
other overlay nodes. βmin and βmax have simular meanings, but for the overlay
edge bandwidth. bu

m,n denotes the used bandwidth on the overlay edge between
any two overlay nodes, clients, or service-hosts m and n. Finally bout

u and bin
u

denote the bandwidth currently provided to client u, respectively to and from
its gateway.

A node initiates the algorithm by calling the ReDistribute() procedure. This
could be done at fixed intervals or when the node detects a significant change in
resource load or bandwidth usage of its overlay edges. The heuristic consists of 5
phases. The first phase (lines 2-8) is only initiated if the resource load percentage
of the overlay node is greater than Ωmax, meaning it is either overloaded or nearly
overloaded. It will first attempt to transfer clients and service-hosts to its active
neighbours (lines 3-4). If this fails it will activate additional neighbours and try
to transfer clients and service-hosts to them (lines 5-8). The second phase (lines
9-11) is only initiated if the overlay node has a resource load of Ωmin or less
and the bandwidth usage of its outgoing links is less than βmin. This means
the node has very low load, and only few service requests or replies pass by
it. The node will attempt to transfer all its clients and service-hosts to active
neighbours, so it can deactivate itself. In the third phase (lines 12-16) the node
checks the available bandwidth on the links to and from its connected clients and
service-hosts (lines 12-14). All clients and service-hosts that might require more
bandwidth are, when possible, transferred to other nodes with more available
bandwidth (lines 15-16). In the fourth phase (lines 17-18) the node checks if
the average bandwidth usage on its outgoing overlay edges exceeds βmax. If it
does, the node attempts to increase the available bandwidth in the overlay by
activating extra neighbours. In the fifth and final phase (lines 19-20) the overlay

20 J. Famaey et al.

Algorithm 2. The dynamic node activation heuristic (DYNNA)
procedure o.ReDistribute()
1: T ← {} ; A ← GetActive(No) ; I ← No \ A ; Uo ← Co ∪ So

2: if
∑

u∈Uo
ωu > Ωmax · Ωo then

3: while HasNext(A) and
∑

u∈Uo
ωu > Ωmax · Ωo do

4: s ← GetNext(A) ; Uo ← Uo\ s.TransferNodes(Uo , {o})
5: while HasNext(I) and

∑
u∈Uo

ωu > Ωmax · Ωo do
6: s ← GetNext(I) ; s.Activate() ; A ← A ∪ {s} ; I ← I \ {s} ;
7: Uo ← Uo\ s.TransferNodes(Uo, {o})
8: Uo ← Uo\ o.GetOverloadingNodes(Uo)
9: if

∑
u∈Uo

ωu < Ωmin · Ωo and avgs∈A
bu
s,o

bs,o
< βmin then

10: while HasNext(A) and |Uo| > 0 do
11: s ← GetNext(A) ; Uo ← Uo\ s.TransferNodes(Uo , {o})
12: for all u ∈ Co ∪ So do
13: if bu

u,o > βmax · bu,o or bu
o,u > βmax · bo,u then

14: T ← T ∪ {u}
15: for all s ∈ A do
16: Uo ← Uo\ s.TransferNodes(T ∩ Uo, {o})
17: while HasNext(I) and avgs∈A

bu
o,s

bo,s
> βmax do

18: s ← GetNext(I) ; s.Activate() ; A ← A ∪ {s} ; I ← I \ {s}
19: if |Uo| = 0 and avgs∈A

bu
s,o

bs,o
< βmin then

20: o.DeActivate()

T ⊆ U function o.TransferNodes(U , V)
1: T ← {} ; A ← GetActive(No) ; W ← o.GetNodesInReach(U) ; V ← V ∪ {o}
2: if |W | > 0 then
3: for all u ∈ W do
4: if ωu +

∑
v∈Uo

ωv < Ωmax · Ωo then
5: if bout

u ≤ βmax · bu,o and bin
u ≤ βmax · bo,u then

6: Uo ← Uo ∪ {u} ; T ← T ∪ {u}
7: for all s ∈ A \ V do
8: T ← T∪ s.TransferNodes(W \ T , V)
9: return T

node deactivates itself if no clients or service-hosts use it as gateway and the
incoming bandwidth on its overlay edges is below βmin.

The TransferNodes() function recursively attempts to find a new gateway
for the clients and service-hosts in U . It returns a set T of all elements of U for
which a new gateway was found. A node first checks if it can act as a gateway for
any of the nodes in U (lines 3-6). Then it sends the remaining nodes to its active
neighbours (lines 7-8) who recursively do the same. The extra V parameter is
used to prevent loops. Nodes already visited in a recursive call will be stored in
V and are not visited again. GetNodesInReach() merely returns all clients and
service-hosts u ∈ U for which du,o ≤ K.

Note that the algorithm disconnects clients and service-hosts if a node is
overloaded and no replacement gateway is found (line 8 of ReDistribute()).

Dynamic Overlay Node Activation Algorithms 21

Additionally, the algorithm does not check if the distance to the current gate-
way has become larger than K (it will however check this when looking for a
new gateway). If a client or service-host has been disconnected or the distance
to its gateway has changed it is itself responsible to find a new gateway (by
reconnecting to another overlay node).

The join procedure for clients and service-hosts is described as follows. First
it contacts a random overlay node (most likely selected from a set of static
bootstrap servers) and requests a set of nearby overlay nodes. It then contacts
the nearest from this set of nearby overlay nodes. If that node is active and
it has enough free resources it will become the new gateway of the client (or
service-host). If it is inactive or it does not have enough free resources it will
attempt to find another gateway using the TransferNodes() function. If this is
unsuccesful the node will activate itself if it was inactive or disconnect the client
if it was already active.

5 Evaluation Results

In this section the performance, scalability and adaptability of the heuristics is
discussed based on simulation results. Performance is measured by comparing
the percentage of satisfied demand and activated overlay nodes to the opti-
mal solution (calculated using the ILP algorithm) for growing bandwidth load.
Scalability is evaluated by comparing results for a growing amount of available
overlay nodes. Finally, adaptability is studied by dynamically changing the de-
mand pattern. Satisfied demand is measured as the percentage of requests from
clients that can be processed by service-hosts.

For reference purposes, we also implemented an underlay algorithm (UND).
This algorithm routes data from the sender to the receiver directly via the
shortest-hop-count path in the underlay network.

Statistical analysis was used to interpret simulation results. A one-way ANOVA
[9] was used to compare several levels of a single factor. If an effect of the factor
was detected, a Tukey test [9] was performed to determine which averages actually
differed significantly. The ’homogeneity of variance’ prerequisite for ANOVA was
checked using a modified Levene test [9]. All statistics were performed using a 5%
signficance level.

5.1 Simulation Setup

Random underlay networks were generated using the BRITE topology generator
[10] with the hierarchical top-down model and Waxman’s algorithm. The band-
width of the links between underlay routers was chosen according to a uniform
distribution in the interval {5, 15}. Each router had on average an outdegree of
2. All routers were placed on a 200 × 200 grid and the link delay was chosen
directly proportional to the euclidean distance in this grid. A subset of all avail-
able routers was selected as access routers, all others are considered core routers.
Clients and service-hosts were connected to a randomly selected access router by

22 J. Famaey et al.

a fast and high-bandwidth link (0 ms delay and 100 Mbps bandwidth). Overlay
nodes were directly connected to the access routers and high-degree core routers,
also by fast, high-bandwidth links. The CPU resources of each overlay node were
chosen uniformly from the interval {6, 8}. As the resource requirements of each
client and service-host were set to 1, this means every overlay node could be the
gateway of at most 6 to 8 devices.

5.2 Performance Results

The goal of this simulation was to evaluate the performance of the heuristics in
terms of satisfied demand and amount of activated overlay nodes for different
bandwidth loads (Mbps). The bandwidth load is measured as the total band-
width needed by all client requests.

Because of the exponential time-complexity of the ILP algorithm, this simula-
tion was performed only on small networks. Each network contained 20 routers
and 12 overlay nodes.

Fig. 1 shows the simulation results as a function of bandwidth load (Mbps) and
for different values of K (maximum distance to the gateway). As expected, the
satisfied demand is inversely proportional and the number of activated overlay
nodes is directly proportional to the bandwidth load.

Statisticaly analysis showed that, in terms of satisfied demand, ILP did not
perform significantly better than DYNNA and only significantly better than
STANA for K = 150 at 20 Mbps and higher. For K = 50, ILP performed at
most respectively 7 and 9% better than DYNNA and STANA. On the other
hand, both heuristics performed up to 25% better than UND.

In terms of number of activated overlay nodes, ILP performed significantly
better than both heuristics (respectively at most about 15% for K = 50 and
25% for K = 150). STANA performed significantly better than DYNNA only
for K = 150, from 10 to 20 Mbps.

In summary, we can remark that the heuristics perform significantly better
than classic underlay-based routing. There is however little difference between
both heuristics. Additionally, for the heuristics there is little difference between
results for different values of K.

5.3 Scalability Results

In this section, we study the scalability of the heuristics in terms of satisfied de-
mand and amount of activated overlay nodes, for a growing number of candidate
overlay nodes. As the ILP algorithm was not used for this simulation, larger test
networks were possible. Tests were performed for networks with 2500 and 10000
underlay routers. The number of candidate overlay nodes was varied between 0
and 250.

Fig. 2 shows the simulation results as a function of available overlay nodes.
As more overlay nodes become available, the amount of satisfied demand and
number of used overlay nodes grows proportionally. It is striking that only a
portion of available overlay nodes is used, even if only few are available. This is

Dynamic Overlay Node Activation Algorithms 23

0 10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

bandwidth load (Mbps)

av
er

ag
e

sa
tis

fie
d

de
m

an
d

(%
)

ILP (K=50)
ILP (K=150)
STANA (K=50)
STANA (K=150)
DYNNA (K=50)
DYNNA (K=150)
UND

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

bandwidth load (Mbps)

av
er

ag
e

ac
tiv

at
ed

 o
ve

rla
y

no
de

s
(%

)

ILP (K=50)
ILP (K=150)
STANA (K=50)
STANA (K=150)
DYNNA (K=50)
DYNNA (K=150)

Fig. 1. The performance of the two heuristics (STANA, DYNNA) compared to the
optimal algorithm (ILP) and underlay routing (UND) in terms of satisfied demand (%)
(left) and activated overlay nodes (%) (right) for varying bandwidth load (Mbps) and
maximum gateway distance K (averaged over 30 iterations - the error bars represent
the standard error)

because the underlay paths corresponding to the overlay links of different overlay
nodes might overlap. One of those nodes might cause the bandwidth in these
links to become saturated. The algorithms will detect that there is no bandwidth
available in the incoming or outgoing links of the other overlay node and will
thus not use it.

24 J. Famaey et al.

0 25 50 75 100 125 150 175 200 225 250
0

10

20

30

40

50

60

70

available overlay nodes

av
er

ag
e

sa
tis

fie
d

de
m

an
d

(%
)

STANA (N = 2500)
STANA (N = 10000)
DYNNA (N = 2500)
DYNNA (N = 10000)
UND

0 25 50 75 100 125 150 175 200 225 250
0

50

100

150

200

250

available overlay nodes

av
er

ag
e

ac
tiv

at
ed

 o
ve

rla
y

no
de

s

STANA (N = 2500)
STANA (N = 10000)
DYNNA (N = 2500)
DYNNA (N = 10000)
AVAILABLE

Fig. 2. The scalability of the two heuristics (STANA, DYNNA) compared to underlay
routing (UND) in terms of satisfied demand (%) (left) and activated overlay nodes
(%) (right) for varying number of available overlay nodes and for networks with 2500
and 10000 underlay routers (averaged over 39 iterations - the error bars represent the
standard error)

Statistical analysis shows that DYNNA performs significantly better than
STANA in terms of satisfied demand from 100 available overlay nodes and on-
wards when using 10000 routers, but only from 200 onwards when using 2500
routers. Additionally, no significant differences were found between both heuris-
tics in terms of number of activated overlay nodes (for 2500 and 10000 routers).

Dynamic Overlay Node Activation Algorithms 25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
40

50

60

70

80

90

100

redistribution phase

av
er

ag
e

sa
tis

fie
d

de
m

an
d

(%
)

ILP
DYNNA
UND

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

50

60

70

80

redistribution phase

av
er

ag
e

ac
tiv

at
ed

 o
ve

rla
y

se
rv

er
s

(%
)

ILP
DYNNA

Fig. 3. The adaptability of DYNNA to dynamically changing demand compared to
ILP and UND, in terms of satisfied demand (%) (left) and activated overlay nodes (%)
(right) (averaged over 174 iterations - the error bars represent the standard error)

In summary, we have shown that, in line with the first experiment, there is
little difference between both heuristics in terms of the amount of overlay nodes
they activate. Additionally these simulations show that even when placing over-
lay nodes near hotspots (routers with high link degree) not all overlay nodes can
be efficiently used, because of bandwidth constraints. Therefore, the presented
node activation heuristics could prove to be very useful for deriving suitable
locations for overlay infrastructure nodes.

26 J. Famaey et al.

5.4 Dynamic Demand Results

In this section, DYNNA is evaluated in face of dynamically changing demand
patterns. Tests were performed on networks with 40 routers and 20 overlay nodes.
In our example scenario, the demand was initialized to 0 Mbps and subsequently
changed to 50, 200 and back to 50 Mbps. After each change in demand the
dynamic algorithm’s ReDistribute() was called 4 times on each node (called
redistribution phases), to make sure the solution stabilized before the demand
changed again. Consequently, demand increases occurred after phase 3 and 7
and a decrease after phase 11.

Fig. 3 shows the simulation results after subsequent redistribution phases.
The figure shows that in terms of satisfied demand, one redistribution phase is
needed for the results to stabilize after an increase in demand, and none after a
decrease. On the other hand, the number of activated overlay nodes needs one
redistribution phase to stabilize, both after an increase and decrease in demand.
Additionally, it should be noted that after a decrease in demand (phase 11) the
number of activated overlay nodes remains higher than it was before the identical
increase (phase 7). As an interesting side effect, satisfied demand remains closer
to optimal as well.

6 Summary

In this paper, we presented an optimal algorithm and two heuristics to solve
the node activation problem in the context of service hosting platforms. The
optimal algorithm (ILP) and the first heuristic (STANA) solve only a static
version of the problem. This means that the request pattern for all clients and
the entire network topology is known (or estimated) in advance. The second
heuristic (DYNNA) is capable of dynamically (de)activating overlay nodes to
cope with changes in demand patterns and client or service-host churn. To im-
prove scalability it can also be run in a distributed way, as each overlay node
only requires knowledge on its direct overlay neighbours and the links between
them.

Using extensive simulations, we showed that the dynamic (distributed) heuris-
tic performs as good, if not better, than the static heuristic. Additionally, we
showed that when bandwidth is plentiful, the heuristics do not perform signifi-
cantly worse than the optimal algorithm.

Overlay node activation mechanisms provide several advantages to any
overlay-based platform. First, dynamic node activation allows idle resources to
be temporarily freed and used for other purposes. Intelligent algorithms can re-
claim or free nodes to cope with fluctuations in overlay-resource demand. Second,
idle nodes no longer take part in overlay control and management protocols, im-
proving overall performance and scalability. And finally, static node activation
can be used to find suitable locations for infrastructure nodes.

Dynamic Overlay Node Activation Algorithms 27

References

1. Obelheiro, R.R., Fraga, J.S.: Overlay network topology reconfiguration in byzantine
settings. In: IEEE Pacific Rim Dependable Computing Conference (PRDC 2007),
pp. 155–162 (2007)

2. Karve, A., Kimbrel, T., Pacifici, G., Spreitzer, M., Steinder, M., Sviridenko, M.,
Tantawi, A.: Dynamic placement for clustered web applications. In: Proceedings of
the 15th International Conference on World Wide Web (WWW 2006), pp. 595–604
(2006)

3. Adam, C., Stadler, R., Tang, C., Steinder, M., Spreitzer, M.: A service middle-
ware that scales in system size and applications. In: 10th IFIP/IEEE International
Symposium on Integrated Management (IM 2007), pp. 70–79 (2007)

4. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations (SIGCOMM 2001), pp. 149–160 (2001)

5. Tang, C., Chang, R.N., Ward, C.: Gocast: Gossip-enhanced overlay multicast for
fast and dependable group communication. In: Conference on Dependable Systems
and Networks (DSN 2005), pp. 140–149 (2005)

6. Voulgaris, S., Gavidia, D., van Steen, M.: CYCLON: Inexpensive membership man-
agement for unstructured P2P overlays. Journal of Network and Systems Manage-
ment 13(2), 197–217 (2005)

7. Ganesh, A.J., Kermarrec, A.M., Massoulie, L.: Peer-to-peer membership manage-
ment for gossip-based protocols. Transactions on Computers 52(2), 139–149 (2003)

8. ILOG: CPLEX 10.0 User’s Manual. ILOG Inc., Mountain View, CA (2006)
9. Hill, T., Lewicki, P.: Statistics: Methods and Applications. StatSoft, Inc. (2006)

10. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: An approach to universal
topology generation. In: Proceedings of the Internation Workshop on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems (MAS-
COTS 2001) (2001)

Dynamic Querying in Structured

Peer-to-Peer Networks

Domenico Talia and Paolo Trunfio

DEIS, University of Calabria
Via P. Bucci 41c, 87036 Rende, Italy
{talia,trunfio}@deis.unical.it

Abstract. Dynamic Querying (DQ) is a technique adopted in unstruc-
tured Peer-to-Peer (P2P) networks to minimize the number of peers
that is necessary to visit to reach the desired number of results. In this
paper we introduce the use of the DQ technique in structured P2P net-
works. In particular, we present a P2P search algorithm, named DQ-DHT
(Dynamic Querying over a Distributed Hash Table), to perform DQ-like
searches over DHT-based overlays. The aim of DQ-DHT is two-fold: al-
lowing arbitrary queries to be performed in structured P2P networks,
and providing dynamic adaptation of the search according to the popu-
larity of the resources to be located. This paper describes the DQ-DHT
algorithm using Chord as basic overlay and analyzes its performance in
comparison with DQ in unstructured networks.

1 Introduction

Structured Peer-to-Peer (P2P) systems like Chord [1] keep association of re-
source identifiers to nodes using a Distributed Hash Table (DHT), which al-
lows to locate the node responsible for the resource with a given Id (or key)
with logarithmic performance bounds. As compared to unstructured P2P sys-
tems like Gnutella [2], however, structured systems provide a limited support to
complex queries. Although several extensions to basic DHT schemes have been
proposed to support, for instance, range queries [3], multi-attribute search [4],
and keyword-based search [5], DHT-based lookups still do not support arbitrary
queries (e.g., regular expressions [6]) since it is infeasible to generate and store
keys for every query expression. On the other hand, unstructured systems can
do it effortless since all queries are processed locally on a node-by-node basis [7].

Even if the lookup mechanisms of DHT-based systems do not support arbi-
trary queries, it is possible to exploit their structure to distribute any kind of
information across the overlay with minimal cost. For example, in [8] a tech-
nique for efficient broadcast over a DHT is proposed. Using such technique, a
broadcast message originating at an arbitrary node in the DHT overlay reaches
all other nodes without redundant messages in O(log N) steps. It can be used
to broadcast arbitrary types of queries, which can be then processed locally by
single nodes as in unstructured systems. We elaborate on such an approach by
proposing a P2P search algorithm, named DQ-DHT (Dynamic Querying over

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 28–41, 2008.
c© IFIP International Federation for Information Processing 2008

Dynamic Querying in Structured Peer-to-Peer Networks 29

a Distributed Hash Table), to provide efficient execution of arbitrary queries in
structured P2P networks. DQ-DHT is based on a combination of the broadcast
technique mentioned above with the Dynamic Querying (DQ) technique [9] used
in unstructured networks.

The goal of DQ is to minimize the number of nodes that is necessary to visit
in an unstructured network to obtain the desired number of results. The query
initiator starts the search by sending the query to a few of its neighbors and with
a small Time-To-Live (TTL). The main goal of this “probe” query is to estimate
the popularity of the resource to be located. If such an attempt does not produce
a sufficient number of results, the search initiator sends the query towards the
next neighbor with a new TTL. Such TTL is calculated taking into account both
the desired number of results and the resource popularity estimated during the
previous phase. This process is repeated until the expected number of results is
received, or there are no more neighbors to query.

Similarly to DQ, DQ-DHT performs the broadcast in an iterative way until the
target number of results is obtained. At each iteration, a new subset of nodes is
queried on the basis of the estimated resource popularity and the desired number
of results. Differently from DQ, DQ-DHT exploits the structural constraints of
the DHT to avoid message duplications and ensure higher success rate.

DQ-DHT has been particularly designed to serve as resource discovery mech-
anism for decentralized infrastructures like computational Grids. Large-scale
Grids are typically organized into multiple administrative domains. Within each
domain, one node is designated as information server to answer queries about
all the resources belonging to that domain. Since information servers are highly
reliable nodes, it is possible to build a P2P network of information servers having
a significantly lower churn rate than typical P2P networks. Thus, we consider
a scenario in which the DHT overlay is composed by information servers only,
which ensures a high stability of the overlay even in large-scale networks.

The work that most relates to DQ-DHT is the Structella system designed by
Castro et al. [10]. Structella replaces the random graph of Gnutella with the
structured overlay of Pastry [11], while retaining the content placement of un-
structured P2P systems to support complex queries. Queries in Structella are
propagated using either constrained flooding or random walks. Each node receiv-
ing a query evaluates it against the local content and sends matching content
back to the query originator. Beyond Structella, a few other works broadly re-
late to DQ-DHT for their combined use of structured and unstructured P2P
techniques (see for example [12] and [13]).

In this paper we describe the DQ-DHT algorithm using Chord as DHT overlay.
We analyze the performance of DQ-DHT through simulations under different
algorithm configurations. We also compare the performance of DQ-DHT with
that of DQ in unstructured networks. The simulation results show that DQ-DHT
generates much less network overhead (i.e., number of messages) than DQ, with
a comparable - and in some cases better - search time, and with a higher success
rate when the resource to be found is rare.

30 D. Talia and P. Trunfio

The rest of the paper is organized as follows. Section 2 provides a background
on the technique of broadcast over a DHT exploited by DQ-DHT. Section 3 de-
scribes the DQ-DHT algorithm. Section 4 analyzes its performance and compares
DQ-DHT with DQ. Finally, Section 5 concludes the paper.

2 Broadcast over a DHT

This section briefly describes the Chord-based implementation of the broadcast
algorithm designed by El-Ansary et al., as it is proposed in [8].

Chord uses a consistent hash function to assign each node an m-bit identifier,
which represents its position in a circular identifier space ranging from 0 and
2m − 1. Each node, x, maintains a finger table with m entries. The jth entry in
the finger table at node x contains the identity of the first node, s, that succeeds
x by at least 2j−1 positions on the identifier circle, where 1 ≤ j ≤ m. Node s is
called the jth finger of node x. If the identifier space is not fully populated (i.e.,
the number of nodes, N , is lower than 2m), the finger table contains redundant
fingers. In a network of N nodes, the number u of unique (i.e., distinct) fingers
of a generic node x is likely to be log2 N [1]. In the following, we will use the
notation Fi to indicate the ith unique finger of node x, where 1 ≤ i ≤ u.

To perform the broadcast of a data item D, a node x sends a Broadcast
message to all its unique fingers. The Broadcast message contains D and a
limit argument, which is used to restrict the forwarding space of a receiving
node. The limit sent to Fi is set to Fi+1, for 1 ≤ i ≤ u − 1. The limit sent to
the last unique finger, Fu, is set to the identifier of the sender, x. When a node
y receives a Broadcast message with a data item D and a given limit, it is
responsible for forwarding D to all its unique fingers in the interval]y, limit [.
When forwarding the message to Fi, for 1 ≤ i ≤ u− 1, y supplies it a new limit,
which is set to Fi+1 if it does not exceed the old limit, to the old limit otherwise.
As before, the new limit sent to Fu is set to y.

As shown in [8], in a network of N nodes, a broadcast message originating
at an arbitrary node reaches all other nodes after exactly N − 1 messages, with
log2 N steps. The overall broadcast procedure can be viewed as the process
of passing the data item through a spanning tree, rooted at the querying node,
which covers all nodes in the network. Since the spanning tree corresponds to the
lookup tree, which is a binomial tree in a (fully populated) Chord network [14],
also the spanning tree associated to the broadcast over a fully populated Chord
ring is a binomial tree.

3 Dynamic Querying over a DHT

In short, the DQ-DHT algorithm works as follows. Let x be the node that
initiates the search, U the set of unique fingers not yet visited, and Rd the
desired number of results. Initially U includes all unique fingers of x. Node x
starts by choosing a subset V of U and sending the query to all fingers in V . These

Dynamic Querying in Structured Peer-to-Peer Networks 31

fingers will in turn forward the query to all nodes in the portions of the spanning
tree they are responsible for, following the broadcast algorithm described above.
When a node receives a query, it checks for local items matching the query
criteria and, for each matching item, sends a query hit directly to x. The fingers
in V are removed from U to indicate that they have been already visited.

After sending the query to all nodes in V , x waits for an amount of time TL,
which is the estimated time needed by the query to reach all nodes, up to a given
level L, of the subtrees rooted at the unique fingers in V , plus the time needed
to receive a query hit from those nodes. Then, if the current number of received
query hits Rc is equal or greater than Rd, x terminates. Otherwise, an iterative
procedure takes place.

At each iteration, node x: 1) calculates the item popularity P as the ratio
between Rc and the number of nodes already theoretically queried; 2) calculates
the number Hq of hosts in the network that should be queried to hit Rd query
hits based on P ; 3) chooses, among the nodes in U , a new subset V ′ of unique
fingers whose associated subtrees contain at least Hq nodes; 4) sends the query
to all nodes in V ′; 5) waits for an amount of time needed to propagate the query
to all nodes in the subtrees associated to V ′.

The iterative procedure above is repeated until the desired number of query
hits is reached, or there are no more fingers to contact. Note that, if the item pop-
ularity is properly estimated after the first phase of search, only one additional
iteration may be sufficient to obtain the desired number of query hits.

An important point in DQ-DHT is estimating the number of nodes present
in the different subtrees, and at different levels, of the spanning tree associated
to the broadcast process. In the next section we discuss how we calculate such
properties of the spanning tree and introduce some functions that are used in
the algorithm (described in Section 3.2).

3.1 Properties of the Spanning Tree Associated to the Broadcast
Process

As recalled in Section 2, the spanning tree associated to the broadcast over a
fully populated Chord ring is a binomial tree. A binomial tree of order i ≥ 0,
Bi, consists of a root with i subtrees, where the jth subtree is a binomial tree of
order j − 1, with 1 ≤ j ≤ i. Given a binomial tree Bi, the following properties
can be proven [15]: 1) The number of nodes in Bi is 2i; 2) The depth of Bi is i;
3) The number of nodes at level l in Bi is given by the binomial coefficient

(
i
l

)
.

Given the binomial tree properties, we can calculate the properties of the
spanning tree associated to a broadcast initiated by a node having u unique
fingers (see Table 1).

Basically, in Table 1 we correct the binomial tree properties by a factor
c = N/2u, where N is the number of nodes in the network (which can be
estimated [16]), to compensate the fact that the value of u may be different from
the value of log2 N in case of not fully populated rings. Note that, since the
value of Di may be not an integer, we use the generalized binomial coefficient
to calculate N l

i .

32 D. Talia and P. Trunfio

Table 1. Properties of the spanning tree rooted at a node with u unique fingers F1..Fu

Notation Description Value

Ni Number of nodes in the subtree rooted at Fi, where 1 ≤ i ≤ u 2i−1
× c

Di Depth of the subtree rooted at Fi, where 1 ≤ i ≤ u log2 Ni

N
l

i

Number of nodes at level l of the subtree rooted at Fi, where
1 ≤ i ≤ u and 0 ≤ l ≤ Di

(
Di

l

)

Table 2. Aggregate functions operating on a set V of n unique fingers with indices
i1..in ∈ [1, u]

Function Returned result Value

N(V) Total number of nodes in the subtrees
associated to the unique fingers in V

∑

i=i1..in

Ni

D(V) Depth of the subtree associated to the
unique finger with highest index in V

Di where i = max(i1..in)

N(V, L)
Total number of nodes from level 0 to
level L of the subtrees associated to the
unique fingers in V

∑

i=i1..in

li∑

l=0

N
l

i
where li = min(L, Di)

Based on the spanning tree properties defined in Table 1, we define in Table 2
some aggregate functions operating on a set of unique fingers. Such functions
are used in the DQ-DHT algorithm presented in the next section.

3.2 DQ-DHT Algorithm

DQ-DHT defines two procedures: SubmitQuery, executed by a node to submit
a query, and ProcessQuery, executed by a node receiving a query to process.

SubmitQuery (see Fig. 1) receives the query Q and the desired number of
results Rd. It makes use of the functions defined in Table 2, and it is assumed
that the procedure is executed by a node x.

The procedure starts by initializing to 0 the current number of results Rc (line
1). The value of Rc is incremented by 1 whenever a query hit is received. A set
U is initialized to contain all unique fingers of node x (line 2), and Ht is set to
N(U), which corresponds to the total number of hosts that can be queried in the
network (line 3). The first subset V of fingers to visit is selected from U (line
4), and U is updated accordingly (line 5).

Afterwards, an integer L between 0 and D(V) is chosen (line 6). The value of
L represents the last level of the subtrees associated to V from which to wait a
response before to estimate the item popularity. The amount of time TL needed
to receive a response from those levels is then calculated as TH × (L + 2), where
TH is the average time to pass a message from node to node (line 7). The value
L+2 is obtained by counting one hop to pass the message from x to the fingers,
L hops to propagate the message up to level L, and an additional hop to return
the query hit to node x.

Dynamic Querying in Structured Peer-to-Peer Networks 33

procedure SUBMITQUERY(Q, Rd)
1: Rc ⇐ 0
2: U ⇐ all unique fingers of node x

3: Ht ⇐ N(U)
4: V ⇐ a subset of U

5: U ⇐ U \ V

6: L ⇐ an integer ∈ [0, D(V)]
7: TL ⇐ TH × (L + 2)
8: SEND(Q, V)
9: sleep(TL)

10: Hv ⇐ N(V, L)
11: Tr ⇐ TH × (D(V) − L)
12: while Rc < Rd and U �= Ø do
13: if Rc > 0 then
14: P ⇐ Rc/Hv

15: Hd ⇐ Rd/P

16: else
17: Hd ⇐ Ht + 1
18: end if
19: if Hd ≤ N(V) then
20: sleep(Tr)
21: Hv ⇐ N(V)
22: Tr ⇐ 0
23: else

24: Hq ⇐ Hd− N(V)
25: if Hq > N(U) then
26: V

′
⇐ U

27: else
28: V

′
⇐ subset of U with min. N(V ′) ≥ Hq

29: end if
30: U ⇐ U \ V

′

31: TV ′ ⇐ TH × (D(V ′) + 2)
32: SEND(Q, V

′)
33: sleep(max(TV ′ , Tr))
34: Hv ⇐ N(V)+ N(V ′)
35: V ⇐ V

′

36: Tr ⇐ 0
37: end if
38: end while

subroutine SEND(Q, V = {Fi1 ..Fin})
1: for i = i1 to in do
2: if i < u then
3: limit ⇐ Fi+1

4: else
5: limit ⇐ x

6: end if
7: send message M = {x, Q, limit} to node Fi

8: end for

Fig. 1. The SubmitQuery procedure

Then, Q is sent to all fingers in V invoking the subroutine Send described
below (line 8). After the wait (line 9), the number of nodes visited Hv is ini-
tialized to N(V, L) (line 10). While the popularity will be estimated considering
only levels from 0 to L, the query continues to be forwarded up to level D(V).
The additional amount of time Tr that would be necessary to get a response
from the remaining levels is therefore proportional to D(V) − L (line 11).

After this first phase, an iterative process takes place while Rc < Rd and
there are more fingers to visit (U �= Ø) (line 12). If at least one result has been
received, node x estimates the item popularity P (line 14), and the estimated
number Hd of hosts to obtain Rd results based on P (line 15). Otherwise (i.e.,
Rc = 0), Hd is set to Ht +1, meaning that it is likely that more than all available
hosts must be contacted to hit Rd results (line 17).

If Hd < N(V), it is expected to receive enough results from the fingers that
have been already contacted. Note that this may happen only if L < D(V),
because P is estimated on the basis of the results arriving from nodes up to level
L of the subtrees associated to V . Thus, only in this case, the search initiator
must wait for the additional amount of time Tr (line 20). After the wait, the
value of Hv is updated to include all nodes in V (line 21), and Tr is set to 0
(line 22).

Otherwise (Hd > N(V)), the number of nodes to be queried Hq is given by Hd

minus the number of nodes already queried (line 24). If Hq is greater than the
number of nodes available, the new set V ′ of fingers to visit is set to U (line 26).

34 D. Talia and P. Trunfio

procedure PROCESSQUERY(M = {x, Q, limit})
1: for i = 1 to u do
2: if Fi ∈]y, limit[then
3: if i < u then
4: oldLimit ⇐ limit
5: limit ⇐ Fi+1

6: if limit /∈]y, oldLimit[then
7: limit ⇐ oldLimit
8: end if
9: else

10: limit ⇐ y

11: end if
12: send message M = {x, Q, limit} to node Fi

13: else
14: exit for
15: end if
16: end for
17: for each local item matching Q do
18: send query hit to node x

19: end for

Fig. 2. The ProcessQuery procedure

Else, V ′ is the subset of U with the minimum value of N(V ′) which is greater
or equal to Hq (line 28). The elements in V ′ are removed from U (line 30), and
the time TV ′ needed to receive response from all levels of the subtrees associated
to V ′ is calculated (line 31).

After sending the query to all nodes in V ′ (line 32), x performs a wait (line
33), updates the number of hosts visited (line 34), and sets V to V ′ (line 35).
The waiting time on line 33 is the maximum between TV ′ and Tr, for managing
the case in which the time Tr needed to visit the levels remaining from the
previous phase is greater than the time TV ′ needed to receive a response from
all levels in V ′. As for lines 19-22, this may happen only on the first iteration,
since after that the timeout is always set to be proportional to D(V ′), and so
Tr = 0 (line 36).

The subroutine Send forwards the query Q to a set of unique fingers V . Basi-
cally, it implements the procedure executed by a node x to perform a broadcast
(see Section 2). The only difference is that we do not send the message to all
unique fingers of x, but only to those in V . The message M sent by x to a node
y includes the Id of the querying node (x), the query to be processed Q, and the
limit parameter used to restrict the forwarding space of node y.

ProcessQuery (see Fig. 2) is executed by a node y that receives a message
M containing the Id of the search initiator x, the query to process Q, and the
limit parameter.

The procedure broadcasts the query to all nodes in the portion of the spanning
tree node y is responsible for (lines 1-16), following the broadcast algorithm
described in Section 2. Then, it processes the query against its local resources,
and for each matching item sends a query hit directly to the search initiator
(lines 17-19).

4 Performance Evaluation

We evaluate DQ-DHT in terms of two performance parameters: number of mes-
sages (Nm) and search time (Ts). Nm is the total number of messages generated
during the search process, while Ts is the amount of time needed to receive the
desired number of results.

Dynamic Querying in Structured Peer-to-Peer Networks 35

The system parameters are: the number of nodes in the network (N) and the
resource replication rate (r), where r is the ratio between the total number of
resources satisfying the query criteria and N . The algorithm parameters are: the
initial set of unique fingers to visit (V), the initial number of levels (L), and the
desired number of results (Rd). Even if it is possible to choose V to include an
arbitrary subset of the unique fingers of the querying node, we consider the case
in which V = {Fi}, i.e., V includes only the ith unique finger, where 1 ≤ i ≤ u.
This permits to have, after the probe query, still u−1 unique fingers from which
to choose the new set of subtrees to query, this way improving the granularity
of search.

To analyze the message and time complexity of the algorithm we consider the
following worst case scenario: at each iteration (including the probe query) the
querying node chooses exactly one unique finger to contact, among those not
yet contacted. Therefore, the overall search process will complete in u iterations.
Since all subtrees are queried one after another, Nm = N−1, and so the message
complexity is O(N). In the same scenario the search time is the sum of the
times needed to query all subtrees in sequence, i.e., Ts = TH × ∑u

i=1(Di + 2),
where TH is the average time per hop. From Table 1, Di = log Ni = log(2i−1 ×
c) = i − 1 + log c, where c = N/2u. Thus, Ts = TH × ∑u

i=1(i + 1 + log c) =
TH × (1

2u2 + 3
2u + (log c)u). Since on average u = log N , we obtain that Ts =

TH × (1
2 log2 N + 3

2 log N). Therefore, the time complexity in the worst case is
O(log2 N).

The worst case scenario considered above is based on the very pessimistic
assumptions that, at each iteration, the current estimated value of the resource
popularity determines the inclusion in the next set V of exactly one unique finger
among those still available. In a more typical scenario, assuming a uniform distri-
bution of the matching resources across nodes, the popularity can be estimated
with enough accuracy during the probe query, thus allowing most searches to
complete in two iterations. In such two-iteration scenario the maximum search
time is the sum of the probe query time (which is proportional to L + 2) plus
the time to cover the deepest subtree that can be chosen for the second iteration
(i.e., the subtree associated to Fu): Ts = TH × ((L + 2) + (Du + 2)). Since on
average Du = log N − 1, Ts = TH × ((L + 2) + (log N + 1)) and so the time
complexity in such scenario is O(log N).

4.1 Simulation Analysis

We experimentally evaluated the behavior of DQ-DHT in different scenarios us-
ing a discrete-event simulator. All the tests have been performed in a randomly-
generated Chord network with N = 50000 nodes and a value of r ranging from
0.25 % to 32 %. Different combinations of the algorithm parameters V , L, and
Rd have been experimented. All the results presented in the following are calcu-
lated as an average of 100 independent simulation runs, where at each run the
search is initiated by a randomly chosen node.

We run a first set of simulations to evaluate the behavior of DQ-DHT varying
the initial set V of unique fingers to contact. At each run we chose V to include

36 D. Talia and P. Trunfio

 0

 10000

 20000

 30000

 40000

 50000

321684210.50.25

N
um

be
r

of
 m

es
sa

ge
s

Replication rate (%)

N=50000, Rd=100, L=5

V={F8}
V={F9}

V={F10}
V={F11}
V={F12}
V={F13}
V={F14}

 0

 5

 10

 15

 20

 25

 30

321684210.50.25

S
ea

rc
h

tim
e

(t
im

e
un

its
)

Replication rate (%)

N=50000, Rd=100, L=5

V={F8}
V={F9}

V={F10}
V={F11}
V={F12}
V={F13}
V={F14}

(a) (b)

Fig. 3. Effect of varying the initial set V , with L = 5 and Rd = 100: (a) number of
messages; (b) search time

one of the fingers between F8 to F14, with the initial value of L fixed to 5, and
Rd set to 100. The graphs in Fig. 3 show number of messages and search time
in function of the replication rate. The search time is expressed in time units,
where one time unit corresponds to the average time to pass a message from
node to node.

As expected, Fig. 3a shows that the number of messages decreases as the
replication rate increases, for any value of V . When V = {F8}, the average
number of messages passes from 48735 for r = 0.25%, to 360 for r = 32%. In
the opposite case, V = {F14}, the number of messages passes from 46473 for
r = 0.25%, to 8159 for r = 32%.

For high values of r (i.e., r = 16 − 32%), in most cases the probe query is
sufficient to obtain the desired number of results, and so the number of messages
corresponds to the number of nodes in the subtree associated to the finger in V .

For values of r lower than 2%, typically at least one additional iteration after
the probe query is needed. In these cases, the generated number of messages
depends on the accuracy of the popularity estimation, which is better when a
higher number of nodes is queried during the probe query (that is, when V
includes a finger with a high index). For instance, when r = 1%, the average
number of messages is 25207 for V = {F8}, 14341 for V = {F11}, and 13169 for
V = {F14}.

This suggests to start the search by contacting a finger with a high index (e.g.,
F14), when it is known that the resource is “rare.” When there is no information
about the popularity of the resource to be found, an intermediate finger (e.g.,
F11) should be used.

As shown in Fig. 3b, also the search time decreases as the replication rate
increases, for any value of V . When V = {F8}, the average search time passes
from 22.3 for r = 0.25%, to 16.1 for r = 32%. When V = {F14}, the search time
ranges from 24.4 for r = 0.25%, to 5.2 for r = 32%.

The graph shows that with low values of r it is convenient to contact a finger
with a high index, which leads to a lower search time with respect to fingers with

Dynamic Querying in Structured Peer-to-Peer Networks 37

 0

 10000

 20000

 30000

 40000

 50000

321684210.50.25

N
um

be
r

of
 m

es
sa

ge
s

Replication rate (%)

N=50000, Rd=100, V={F11}

L=2
L=3
L=4
L=5
L=6
L=7
L=8

 0

 5

 10

 15

 20

 25

 30

321684210.50.25

S
ea

rc
h

tim
e

(t
im

e
un

its
)

Replication rate (%)

N=50000, Rd=100, V={F11}

L=2
L=3
L=4
L=5
L=6
L=7
L=8

(a) (b)

Fig. 4. Effect of varying the initial value of L, with V = {F11} and Rd = 100: (a)
number of messages; (b) search time

a lower index. However, since the the main objective of DQ-DHT is reducing the
number of messages, an intermediate finger (e.g., F11) should be preferred in
most cases, even if this may result to an increased search time.

We run a second set of simulations to evaluate the effect of varying the initial
value of L. According to the results discussed above, we chose an intermediate
finger for the probe query (V = {F11}), and varied L from 2 to 8, with Rd fixed
to 100. The results are presented by the graphs in Fig. 4.

Fig. 4b shows that lower values of L generate lower search times. For instance,
when r = 1% the average search time passes from 17.1 with L = 2, to 25.2 with
L = 8. This is mainly due to the fact that the wait after the probe phase is
proportional to L, as described in Section 3.2.

On the other hand, Fig. 4a shows that very low values of L produce a signifi-
cant increase in the number of messages. For example, when r = 1% the average
number of messages passes from 14259 with L = 8, to 34654 with L = 2. The
excess of messages in the second case is due to the reduced accuracy in the esti-
mation of the resource popularity that is obtained considering only a few levels
of the subtrees associated to V .

In general, intermediate values of L produce the best compromise between
number of messages and search time. For the scenario analyzed here (V = {F11}),
the best result is obtained with L = 4, which generates a number of messages
similar to that produced by higher values of L, but with a quite lower search
time, as shown by the graphs in Fig. 4.

4.2 Comparison with Dynamic Querying in Unstructured Networks

In this section we compare the performance of DQ-DHT with that of DQ in
unstructured networks. Since DQ-DHT is designed to work on a DHT-based
network, while DQ works on unstructured networks, we adopted the following
approach to compare the two systems. First, we built a random Chord network

38 D. Talia and P. Trunfio

with N = 50000 nodes, and measured the average number of unique fingers
across all nodes, which resulted to be ū = 15.94. Then, we built an unstructured
overlay among the same nodes, in which each node is connected to ū other
random nodes, on the average.

As before, we measured the number of messages and the search time. In
addition, we evaluated the following performance parameters: duplication rate,
defined as the percentage of duplicate messages on the total number of messages;
success rate, defined as the percentage of successful searches on the total number
of searches performed.

For DQ in unstructured networks, we implemented the DQ+ algorithm pro-
posed by Jiang and Jin in [17], which is an enhanced version of the original
algorithm proposed by Fisk in [9]. The main difference between DQ+ and the
original DQ algorithm is briefly described in the following.

In the original DQ, after each iteration, the querying node calculates the total
number Ht of hosts to query to reach the desired number of results. Then, it
calculates the number Hn of hosts to query per neighbor as Ht/n, where n is the
number of neighbors that have not yet received the query. Finally, it calculates
the minimum TTL to reach Hn hosts through the next neighbor, and sends the
query towards that neighbor.

DQ+ adopts a “greedy” strategy. After each iteration, the querying node
estimates the total number Ht of host to query, and then calculates the minimum
TTL to reach Ht hosts via the next neighbor alone. To avoid overshooting of the
search space, DQ+ uses a confidence interval method to estimate the popularity
of the searched item. The simulation results presented in [17] show that DQ+
reduces the latency by more than four times with respect to the original DQ
algorithm.

The initial parameters of DQ+ are: the number of neighbors contacted during
the probe phase, n, and the TTL used for the probe query, t. We experimented
two configurations: i) n = 3 and t = 2; ii) n = 3 and t = 3. In both cases, the
maximum value of TTL allowed after the probe query is 5.

For DQ-DHT we chose the following configurations: i) V = {F14} and L = 5;
ii) V = {F11} and L = 4. The first configuration aims at minimizing the search
time, but at the cost of a higher number of messages. The second configura-
tion provides a better balance between number of messages and search time, as
discussed above.

The results of the comparison between DQ-DHT and DQ+ are presented in
Fig. 5. All the simulations have been conducted with a value of r ranging from
0.25 % to 32 %, and Rd fixed to 100. Moreover, each result is obtained as the
average of 100 independent simulation runs.

As shown in Fig. 5c, the success rate for replication rates greater or equal to
0.5% is 100% with both DQ+ and DQ-DHT. However, for r = 0.25%, DQ-DHT
has a success rate of 100%, while DQ+ has a success rate of only 8.5%. This is
due to the incomplete network coverage of the constrained flooding implemented
by DQ+, which in some cases fails to find the desired number of results even if
they are actually available in the network. On the contrary, DQ-DHT ensures a

Dynamic Querying in Structured Peer-to-Peer Networks 39

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

321684210.50.25

N
um

be
r

of
 m

es
sa

ge
s

Replication rate (%)

N=50000, Rd=100

DQ-DHT V={F14} L=5
DQ-DHT V={F11} L=4

DQ+ n=3 t=2
DQ+ n=3 t=3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

321684210.50.25

S
ea

rc
h

tim
e

(t
im

e
un

its
)

Replication rate (%)

N=50000, Rd=100

DQ-DHT V={F14} L=5
DQ-DHT V={F11} L=4

DQ+ n=3 t=2
DQ+ n=3 t=3

(a) (b)

 0

 20

 40

 60

 80

 100

321684210.50.25

S
uc

ce
ss

 r
at

e
(%

)

Replication rate (%)

N=50000, Rd=100

DQ-DHT V={F14} L=5
DQ-DHT V={F11} L=4

DQ+ n=3 t=2
DQ+ n=3 t=3 0

 10

 20

 30

 40

 50

321684210.50.25

D
up

lic
at

io
n

ra
te

 (
%

)

Replication rate (%)

N=50000, Rd=100

DQ-DHT V={F14} L=5
DQ-DHT V={F11} L=4

DQ+ n=3 t=2
DQ+ n=3 t=3

(c) (d)

Fig. 5. Comparison between DQ-DHT and dynamic querying in unstructured networks
(DQ+): (a) number of messages; (b) search time; (c) success rate; (d) duplication rate

complete network coverage and therefore maintains a success rate of 100% even
in presence of very low replication rates.

The search time in DQ+ and DQ-DHT is compared in Fig. 5b. As already
discussed above, the search time in DQ-DHT strongly depends on the choice of
the initial set V . With V = {F14} the search time of DQ-DHT is comparable
with (and in some cases better than) the search time of DQ+. This is obtained
at the cost of more messages than the case in which V = {F11}, but they are
much less than those generated by DQ+ for values of r < 2%.

Fig. 5a shows the number of messages generated by the two algorithms. DQ-
DHT with V = {F11} produces less messages than DQ+ for all values of r ≤ 16%,
while they generate approximatively the same number of messages for r = 32%.
For values of r lesser than 2% DQ-DHT outperforms DQ+ by more than a
factor two. For instance, for r = 1% DQ-DHT with V = {F11} generates 15025
messages, while DQ+ with t = 3 produces 40155 messages.

Note that, for low replication rates, DQ-DHT generates less messages with
V = {F14}, while it works better with V = {F11} for high replication rates.
This is due to the fact that with V = {F14} the minimum number of messages
sent to the network is higher, and so more messages than needed are generated

40 D. Talia and P. Trunfio

when the resource to be found is popular. On the other hand, a high number of
messages ensures a better accuracy in the estimation of the resource popularity,
leading to less messages when the resource to be found is rare.

The greater number of messages generated by DQ+ with respect to DQ-DHT
is mainly due to the message duplication caused by flooding. The percentage
of duplicate messages on the total number of messages is shown in Fig. 5d. As
expected, the duplication rate of DQ+ increases as the replication rate decreases,
reaching approximatively the value of 44% with r = 0.25%. DQ-DHT does not
suffer the message duplication problem, as each node receives the query at most
once. Therefore, the duplication rate for DQ-DHT is 0% for any value of r.

In summary, the simulation results presented throughout this section show
that DQ-DHT produces much less network overhead (i.e., number of messages)
than DQ+, with a comparable - and in some cases better - search time, and with
a higher success rate when the resource to be found is rare.

5 Conclusions

A way to support arbitrary queries in structured networks is implementing
unstructured search techniques on top of DHT-based overlays. Following this
approach, we proposed DQ-DHT: a P2P search algorithm that combines the dy-
namic querying technique with an algorithm for efficient broadcast over a DHT.
DQ-DHT has been particularly designed to be used in Grid scenarios, where it
is necessary to support arbitraries queries for searching resources on the basis of
complex criteria or semantic features.

The behavior of DQ-DHT has been analyzed through a simulator by varying
its initial configuration, in order to understand which are the best parameters
to use based on user/system requirements and objectives (i.e., minimizing the
number of messages or the search time). We also compared the performance of
DQ-DHT with that of the enhanced dynamic querying in unstructured networks
(DQ+). The simulation results show that DQ-DHT generates much less network
overhead than DQ+, with a comparable (and in some cases better) search time,
and with a higher success rate when the resource to be found is rare.

Acknowledgements

This research work is carried out under the FP6 Network of Excellence Core-
GRID funded by the European Commission (Contract IST-2002-004265).

References

1. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord:
A Scalable Peer-to-Peer Lookup Service for Internet Applications. In: ACM SIG-
COMM 2001, San Diego, USA (2001)

2. Gnutella Protocol Development. http://rfc-gnutella.sourceforge.net

Dynamic Querying in Structured Peer-to-Peer Networks 41

3. Andrzejak, A., Xu, Z.: Scalable, Efficient Range Queries for Grid Information Ser-
vices. In: 2nd IEEE Int. Conf. on Peer-to-Peer Computing (P2P 2002), Linköping,
Sweden (2002)

4. Cai, M., Frank, M.R., Chen, J., Szekely, P.A.: MAAN: A Multi-Attribute Address-
able Network for Grid Information Services. Journal of Grid Computing 2(1), 3–14
(2004)

5. Harren, M., Hellerstein, J.M., Huebsch, R., Loo, B.T., Shenker, S., Stoica, I.: Com-
plex Queries in DHT-based Peer-to-Peer Networks. In: Druschel, P., Kaashoek,
M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 242–250. Springer,
Heidelberg (2002)

6. Castro, M., Costa, M., Rowstron, A.: Debunking Some Myths About Structured
and Unstructured Overlays. In: 2nd Symp. on Networked Systems Design and
Implementation (NSDI 2005), Boston, USA (2005)

7. Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N., Shenker, S.: Making
Gnutella-like P2P Systems Scalable. In: ACM SIGCOMM 2003, Karlsruhe, Ger-
many (2003)

8. El-Ansary, S., Alima, L., Brand, P., Haridi, S.: Efficient Broadcast in Structured
P2P Networks. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735,
pp. 304–314. Springer, Heidelberg (2003)

9. Fisk, A.: Gnutella Dynamic Query Protocol v0.1 (2003),
http://www9.limewire.com/developer/dynamic query.html

10. Castro, M., Costa, M., Rowstron, A.: Should we build Gnutella on a structured
overlay? Computer Communication Review 34(1), 131–136 (2004)

11. Rowstron, A., Druschel, P.: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218. Springer, Heidelberg (2001)

12. Loo, B.T., Huebsch, R., Stoica, I., Hellerstein, J.M.: The Case for a Hybrid P2P
Search Infrastructure. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS,
vol. 3279. Springer, Heidelberg (2005)

13. Zaharia, M., Keshav, S.: Gossip-based Search Selection in Hybrid Peer-to-Peer
Networks. In: 5th Int. Workshop on Peer-to-Peer Systems (IPTPS 2006), Santa
Barbara, USA (2006)

14. Chou, J.C.Y., Huang, T.-Y., Huang, K.-L., Chen, T.-Y.: SCALLOP: A Scalable
and Load-Balanced Peer-to-Peer Lookup Protocol. IEEE Trans. Parallel Distrib.
Syst. 17(5), 419–433 (2006)

15. Preiss, B.R.: Data Structures and Algorithms with Object-Oriented Design Pat-
terns in C++. John Wiley & Sons, Chichester (1998)

16. Binzenhöfer, A., Staehle, D., Henjes, R.: Estimating the size of a Chord ring. Tech-
nical Report 348, Institute of Computer Science, University of Würzburg (2005)

17. Jiang, H., Jin, S.: Exploiting Dynamic Querying like Flooding Techniques in Un-
structured Peer-to-Peer Networks. In: 13th IEEE Int. Conf. on Network Protocols
(ICNP 2005), Boston, USA (2005)

Web-Based Management of Content Delivery
Networks

George Oikonomou and Theodore Apostolopoulos

Athens University of Economics and Business,
Department of Informatics,

Athens, Greece
{geo,tca}@aueb.gr

Abstract. Abstract overlay networks have been considered enablers of
efficient management for decentralized, large scale service deployments.
A Content Delivery Network (CDN) is an example of service falling
within this category. The result of our research is WebDMF, a man-
agement framework for distributed services based on the Web-Based En-
terprise Management (WBEM) family of specifications. Abstract design,
combined with a middleware layer of entities called “Representatives”,
makes WebDMF suitable for the management of a variety of services. De-
tails related to the management of each particular service are detached
from the representative logic. This paper discusses how WebDMF can
be used for the management of CDNs. A WBEM provider resides on
each host participating in the service deployment and implements CDN-
specific operations. WebDMF representatives decentralize, unify and co-
ordinate those on a deployment scale. Preliminary measurements on an
emulated network topology are also presented as an indication of the
solution’s viability and scalability.

Keywords: Content Delivery Networks, Web-Based Enterprise Manage-
ment, WebDMF, Distributed Services Management.

1 Introduction

The current paradigm of large scale decentralized service deployments poses
new requirements in the field of network and systems management. Legacy ap-
proaches, such as the Simple Network Management Protocol (SNMP) [1] focus
on single nodes and are best suited for devices. However, SNMP is considered
less appropriate for applications and services. Nowadays, abstract overlay net-
works are considered enablers of distributed services management. Techniques
used to access resources should be suitable for applications as well as devices.

WebDMF, the result of our research, is a Web-based Management Framework
for Distributed Services. Its core is based on the Web-based Enterprise Manage-
ment (WBEM) family of specifications [2,3,4]. It is not limited to monitoring but
is also capable of modifying the run-time parameters of the managed service. Due
to its abstract design it has wide scope and is suitable for the management of a
variety of services.

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 42–54, 2008.
c© IFIP International Federation for Information Processing 2008

Web-Based Management of Content Delivery Networks 43

WebDMF’s development consisted in the design of a CIM extension schema
and the implementation of a WBEM provider enabling CIM operations on classes
of this schema. The framework’s design, implementation and performance eval-
uation have been discussed in detail in [5]. We have particularly studied its
application on the management of grids and web server load-balancing schemes.

This paper extends our previous work by discussing how WebDMF can be used
for the management of Content Delivery Networks (CDNs). An open source tool
(OpenCDN) was used to install a test CDN deployment and perform measure-
ments. In this context, this paper’s main contribution is two-fold:

– We designed an extension CIM schema for OpenCDN hosts. For this schema,
we implemented a WBEM provider offering management facilities for hosts
participating in a CDN service deployment.

– We demonstrate how we can achieve management of the entire CDN deploy-
ment by combining WebDMF operations with the aforementioned provider.

Section 2 briefly outlines existing efforts in the field of management of content
delivery networks. In order to familiarize the reader with some basic concepts,
the section continues with an introduction to the WBEM standards family and
the OpenCDN tool. In Sect. 3 we present an overview of WebDMF’s architec-
tural design. In Sect. 4 we disclose the design and implementation of a WBEM
provider for OpenCDN hosts. Furthermore we demonstrate how this provider
can be integrated with a WebDMF network in order to perform management of
the OpenCDN deployment. Section 5 presents an experiment indicative of the
framework’s scalability and in Sect. 6 we discuss our conclusions.

2 Related Work

In the field of Content Delivery (or Distribution) Networks, the term ‘man-
agement’ is often used to describe a variety of different concepts. A theoretic
approach focusing on content consistency management in caching schemes has
been discussed in [6]. In [7], the authors present a “policy-based architecture for
the control and management of content distribution networks”. An agent-based
distributed management framework, using SNMP for data gathering from nodes
has been presented in [8]. Finally, UPGRADE-CDN is a platform for the devel-
opment of CDNs. It introduces a monitoring framework called “AMonitor” [9].
GLOBULE [10] is a collaborative content delivery network. This effort pro-
vides approaches and suggests solutions to large-scale, CDN-related problems.
Among other topics, the authors discuss content replication and consistency
management.

WebDMF goes past simple monitoring by providing active configuration man-
agement capabilities. Furthermore, in the context of this paper, the managed
resource is the deployment itself. This includes content, network links as well as
hosts participating in the deployment.

44 G. Oikonomou and T. Apostolopoulos

2.1 Web-Based Enterprise Management

Web-Based Enterprise Management (WBEM) is a set of management specifica-
tions published by the Distributed Management Task Force (DMTF). WBEM
is made up of three core components.

1. Model: The “Common Information Model” (CIM) is an object-oriented,
platform-independent approach for the modeling of management data [2].
It includes a “core schema” with definitions that apply to all management
areas. It also includes a set of “common models” that represent common
management areas, such as networks, hardware, software and services. Fi-
nally, the CIM allows manufacturers to define technology-specific “extension
schemas” that directly suit the management needs of their implementations.

2. Encoding: WBEM adopts the client-server paradigm. For the interaction
between entities (clients and managed elements), it uses a set of well-defined
request and response data packets. CIM elements are encoded in XML in
accordance with the xmlCIM specification [3].

3. Transport: The resulting XML document is transmitted over the network as
the payload of an HTTP message. This transport mechanism is called “CIM
Operations over HTTP” [4].

The term CIM-XML is often used to refer to the combination of 2 and 3 above.
A WBEM server is made up of components as portrayed in Fig. 1. The WBEM

client does not have direct access to the managed resources. Instead, it sends
requests to the CIM Object Manager (CIMOM), using CIM over HTTP. The
CIMOM handles all communication with the client. It delegates requests to the
appropriate providers and returns responses. Providers act as plugins for the
CIMOM. They are responsible for the realization of management operations for
a resource. Therefore, providers are implementation-specific. The repository is
the part of the WBEM server that stores definitions of the core, common and
extension CIM schemas.

A significant number of vendors have started releasing WBEM products. The
SBLIM open source project offers a suite of WBEM-related tools. Furthermore,
OpenPegasus, OpenWBEM and WBEMServices are examples of open source
CIMOM implementations. There are also numerous commercial solutions.

2.2 Open Source Content Delivery Network Software

The “Open Content Delivery Network” (OpenCDN) project is an open source
effort aiming to provide a platform for the deployment of content delivery services
for streaming multimedia. It operates by creating an overlay network of hosts.
These hosts stream content using an application layer multicast scheme. An
OpenCDN deployment is made up of three components:

– Origins: Nodes that host the original multimedia content.
– Request Routing and Distribution Manager (RRDM): A centralized control

entity that coordinates the streaming of content between nodes.

Web-Based Management of Content Delivery Networks 45

CIMOM

Provider

WBEM
Client

Resource

Repository
CIM

over HTTP M
anaged N

ode (Server)

Provider

Resource

Fig. 1. WBEM instrumentation

– Distribution Nodes (or Nodes): These are the hosts that perform stream
relay from the Origin to the final recipients.

Distribution nodes are organized hierarchically. Depending on their location
in the hierarchy they are classified as “First Hop”, “Transit” or “Last Hop”.
OpenCDN is written in PERL and uses XML-RPC messages for the communica-
tion between distribution nodes, origins and the RRDM. Adapters with existing
streaming technologies are used in order to achieve content relay. New adapters
can be written in order to provide support for more technologies. Further infor-
mation and technical details on OpenCDN’s design can be found in [11].

3 WebDMF: A Framework for the Management of
Distributed Services

WebDMF stands for Web-based Distributed Management Framework. It treats
a distributed deployment as a number of host nodes, called “Service Nodes”.
They are interconnected over a network and share resources to provide services
to the end user. This section summarizes the framework’s architecture and is
meant as an overview. Detailed technical design has been disclosed in [5].

WebDMF’s design is based on the WBEM family of technologies. Nodes func-
tion as WBEM entities; clients, servers or both, depending on their role in the
deployment. Communication between nodes is performed in accordance with
CIM-XML (see Sec. 2.1). WebDMF introduces a middleware layer of entities
called “Representatives”, forming a management overlay network. Representa-
tives issue WBEM requests to perform management operations on service nodes.
Once responses have been collected, they are unified in order to provide an ab-
stract view of the deployment to the user. This resembles the “Manager of Man-
agers” (MoM) approach. However, in MoM there is no direct communication
between domain managers. In WebDMF, representatives are aware of their peers

46 G. Oikonomou and T. Apostolopoulos

and communicate with them. Therefore WebDMF falls into the “Distributed
Management” category.

3.1 WebDMF Entities

A “Management Node” corresponds to a typical WBEM client. It is used to
monitor and configure various operational parameters of the distributed service.
Any existing WBEM client software can be used without modifications.

A “Service Node” is the term used when referring to any node - member of
the distributed service. For instance, in the case of a content delivery network a
service node is an intermediate relay or a node hosting content. A node’s role in
a particular distributed deployment does not affect WebDMF’s functionality. A
service node executes an instance of the (distributed) managed service and a CIM
Object Manager. WebDMF requests traverse the overlay network and eventually
reach CIMOMs on service nodes. This is where management operations take place.

WebDMF introduces an entity called the “Management Representative”. This
entity receives requests from a WBEM client (management node) and performs
management actions on the relevant service nodes. After a series of message
exchanges, it will respond to the initial request. A representative is more than a
simple ‘proxy’ that receives and forwards requests. It is further split into building
blocks, as shown in Fig. 2. It can act as a WBEM server as well as a client. Initial
requests are received by the CIMOM on the representative. They are delegated
to the WebDMF provider module for further processing. The module performs
the following functions:

– Determines whether the request can be immediately served.
– If the node can not directly serve the request then it selects an appropriate

representative and forwards it.

CIMOM

WebDMF Representative
Provider

Management
Node

Service Node
CIMOM

WBEM Client

Other
Representative

Representative

Fig. 2. The WebDMF representative. The solid line corresponds to the initial request
and the final response whereas dashed lines represent intermediate request-response
exchanges.

Web-Based Management of Content Delivery Networks 47

– If the request can be immediately served, the representative creates a list of
service nodes that should be contacted and issues intermediate requests.

– Intermediate responses are processed and a final response is generated.
– Finally, a representative maintains information about the distributed ser-

vice’s topology.

In a WebDMF deployment, a representative is responsible for the manage-
ment of a group of service nodes. The term “Domain” is used when referring to
such groups. Domains are organized in a hierarchical structure. The hierarchy’s
root node corresponds to the entire deployment. The rationale behind designing
the domain hierarchy of each individual deployment can be based on a variety
of criteria. For example a system might be separated into domains based on
nodes geographical locations. More sophisticated clustering techniques can also
be used.

3.2 WebDMF Operations and CIM Schemas

WebDMF defines two categories of management operations: i) horizontal and
ii) vertical. Horizontal operations enable management of the WebDMF overlay
network itself. Those functions can, for example, be used to perform topology
changes. The message exchange taking place does not involve service nodes and
the managed service is not affected in any way. On the other hand, vertical op-
erations read and modify CIM instances on service nodes, thus achieving man-
agement of the target application. Some common examples include:

– Setting new values on CIM objects of many service nodes.
– Reading operational parameters from service nodes and reporting an aggre-

gate (e.g. sum or average).

In line with the above, we have designed two CIM Schemas for WebDMF, the
core schema (WebDMF Core) and the request factory. They both reside on the
representatives repositories. The former schema models the deployment’s logical
topology, as discussed earlier. It corresponds to horizontal functions.

The latter schema corresponds to vertical functions. Users can call WBEM
methods on instances of this schema. In doing so, they can define management
operations that they wish to perform on the target application. Each request
towards the distributed deployment is treated as a managed resource itself. For
example, users can create a new request. They can execute it periodically and
read the results. They can modify it, re-execute it and finally delete it. Each
request is mapped by the representative to intermediate WBEM requests issued
to service nodes. Request factory classes are generic. They are not related in
any way with the CIM schema of the managed application. This makes Web-
DMF appropriate for the management of a wide variety of services. Furthermore,
the request factory does not need re-configuration when the target schema is
modified.

48 G. Oikonomou and T. Apostolopoulos

4 Management of Content Delivery Networks

4.1 A WBEM Provider for OpenCDN Hosts

In order to achieve WBEM management of an OpenCDN host, two things are
required: i) a CIM schema modeling management information and ii) a WBEM
provider. That provider should be OpenCDN-specific in order to be capable of
implementing operations on the managed resource. In this case, the managed
resource is a process running on the host, offering the service.

As part of our work, we designed a CIM schema for OpenCDN hosts. As
displayed in Fig. 3, the schema is made up of 9 classes. Seven of the classes
correspond to hosts, one class represents multimedia content and finally one
class represents a CIM association. Only class names and relationships are dis-
played in the figure. Properties and Methods are omitted for clarity reasons.
Class oCDN Host defines some properties and methods common to all OpenCDN
host types. Similarly, class oCDN Node defines attributes common to distribution
nodes, regardless of relay technology. These two classes are abstract (italicized
names) therefore can not have instances. Each instance of a non-abstract class
corresponds to a different host (or program).

Following the design of a CIM schema for OpenCDN, we implemented a
provider for classes oCDN DNode, oCDN Origin and oCDN RRDM. By calling WBEM
intrinsic methods on their instances, the user can achieve management of the re-
spective type of host. For example, the user can restart the DNode service or

oCDN_CPK

oCDN_DNode

oCDN_HNode

oCDN_Host

oCDN_Node

oCDN_Origin

oCDN_ProgramoCDN_RRDM

oCDN_OriginPrograms

Fig. 3. CIM schema for the management of OpenCDN hosts

Web-Based Management of Content Delivery Networks 49

modify its runtime parameters. To be more specific, the provider implements the
following functions:

– Start - stop service. This is performed by calling the CreateInstance and
DeleteInstance intrinsic WBEM methods respectively.

– Retrieve the names of all service instances running on a particular host.
This is achieved by the EnumerateInstanceNames method. Only instance
identifiers are returned by this method, without detailed property values.

– Read the configuration of a running service. The GetInstance method is
used to achieve this. Furthermore, if more than one service is offered by a host
(e.g. RRDM and DNode concurrently) then calling the EnumerateInstances
method results in a response containing the parameter values for all services.
Each service is represented by a separate CIM instance.

– Modify the configuration of a particular instance. This happens by calling
the ModifyInstance WBEM method.

The figure below (Fig. 4) displays a UML activity diagram for the case of
configuration modification. The user issues a ModifyInstance request which is
received by the CIMOM. If no errors occur during processing, the following steps
take place:

1. The CIMOM invokes the OpenCDN provider and delegates the request.
2. The provider checks the requested changes’ validity.
3. The provider maintains information of all running services in an instance

pool. Each instance corresponds to a different service. At this step the
provider searches the pool for the requested instance.

4. The provider performs changes on the instance. It also modifies the configu-
ration of the running process that offers the service and notifies the CIMOM.

5. A response is generated by the CIMOM and sent to the management station,
indicating successful completion of the management operation.

4.2 Integrating an Open CDN Deployment with WebDMF

The WBEM provider discussed in the previous section handles all management
requests for a single OpenCDN host. Its design is directly related to OpenCDN’s
implementation details and it can perform management operations directly on
resources. However, an OpenCDN deployment is made up of multiple hosts. This
is usually one RRDM and multiple origin and distribution nodes. Even with the
OpenCDN provider installed on each of them, they would still be treated as stand
alone entities in a typical WBEM-based management infrastructure. WebDMF
adds an abstraction layer that unifies the hosts as parts of a single service.

In WebDMF terminology (see Sect. 3), all OpenCDN nodes are treated as
“service nodes”. In order to integrate the CDN deployment with a WebDMF
management overlay, two steps need to be performed:

– The OpenCDN network needs to be broken down into domains. This is a
change in logical terms but does not cause any alterations on service nodes.

50 G. Oikonomou and T. Apostolopoulos

Fig. 4. UML activity diagram modeling a ModifyInstance operation. This operation
involves three actors (the CIMOM, the OpenCDN provider and the management sta-
tion). Swimlanes are used to group activities performed by the same actor.

– Representatives need to be installed and assigned for the aforementioned do-
mains. Nodes are registered on the representatives through WebDMF hori-
zontal operations, thus generating a virtual topology for the deployment.

Figure 5 displays a sample OpenCDN topology. Shapes indicate a node’s role
in the deployment (RRDM, relay or origin). Arrows show the path that a mul-
timedia stream would follow from the origin node towards the final viewer. This
topology has been broken down into three domains, different fill textures are used
to distinguish those. This domain structure adopts a two level hierarchy. The top
level (root of the tree) corresponds to the entire deployment. The second level is
the one displayed in the figure. This domain structure is just indicative. It would
be possible to use a multi-level hierarchy with super-domains and sub-domains.
For example Domains 1 and 2 could both be children of a single parent. In this
example topology, 3 representatives are being used, displayed with hexagons and
not linked with arrows to any other nodes. In line with the above, different fill
textures indicate which domains they have been assigned to.

Once the above two steps have been completed, a user can issue manage-
ment requests for the CDN by using WebDMF vertical facilities, as outlined
in Sec. 3.2. Representatives communicate among themselves registering changes
in the CDN deployment. They also map WebDMF requests to WBEM opera-
tions for classes of the OpenCDN CIM schema on the appropriate service nodes

Web-Based Management of Content Delivery Networks 51

Origin

Last Hop

First Hop

Transit

Domain 1

Domain 2

Domain 3

RRDM

Representative

Fig. 5. A sample OpenCDN deployment broken down into three WebDMF domains

(Sec. 4.1). Changes on nodes are performed by the OpenCDN WBEM provider
that resides on each node’s CIMOM.

4.3 Implementation Details

The WebDMF representative is implemented as a single shared object library
file (.so). It is comprised of a set of WBEM providers, each one of them im-
plementing management operations for a class of the WebDMF schemas. The
OpenCDN provider is also a single shared object file implementing WBEM op-
erations for classes oCDN Origin, oCDN RRDM and oCDN DNode. The interface be-
tween the CIMOM and providers complies with the Common Manageability
Programming Interface (CMPI) [17]. Providers themselves are written in C++.
This does not break CIMOM independence, as described in [17]. The represen-
tative was developed on Linux 2.6.20 machines. We used gcc 4.1.2 and version
2.17.50 of binutils. Testing took place using version 2.7.0 of the Open Pegasus
CIMOM.

5 Performance Evaluation

In order to evaluate WebDMF, we installed a testbed environment using Model-
Net [12] and executed various measurements. Results were obtained from actual
code execution on an emulated network topology, they are not simulation re-
sults. In this section we present the outcome of an experiment that is indicative
of WebDMF’s scalability.

52 G. Oikonomou and T. Apostolopoulos

R1 R2

service nodes

WBEM
client

Fig. 6. Emulated topology and test scenario

The topology emulated by ModelNet represents a wide-area network. It con-
sists of 300 virtual nodes situated in 3 LANs with each LAN having its own gate-
way to the WAN. The 3 gateways are interconnected via a backbone network,
with high bandwidth, low delay links. We also installed two WebDMF represen-
tatives (nodes R1 and R2). In our experiment, service nodes are OpenCDN origin
nodes. The management operation constitutes of setting them to register with
a different RRDM. This involves changing property values of the oCDN Origin
instances on service nodes. A client issues an initial WebDMF request to repre-
sentative R1 (this is a WBEM CreateInstance for class WebDMF RequestWBEM of
the request factory). R1 forwards the request to R2. R2 sends ModifyInstance
requests to service nodes. Responses follow the reverse path. Figure 6 portrays
the emulated topology and test scenario. For clarity reasons, we omit service
nodes residing in other domains.

In this experiment we wish to evaluate the impact of service node count on
the time needed to complete the management operation described above. We
repeated the experiment by gradually increasing the number of service nodes in-
volved in the operation. Starting with 10 service nodes, we increased the number
by 10 up to 270 (27 steps). For each step we executed the management opera-
tion 100 times. For each repetition we measured elapsed time with microsecond
accuracy. This resulted in a total sample of 2700 observations (27 steps x 100
repetitions). Figure 7 displays a scatter-plot of the observed values. The X axis
displays the number of service nodes involved in the operation. The Y axis cor-
responds to the total time needed to complete the management operation.

Based on the same sample we calculated a simple linear regression line using
the number of nodes as the independent variable. The resulting regression line is
plotted on the same diagram. For this regression, the R2 coefficient equals 0.993,
indicating strongly linear co-relation. Furthermore, residuals are distributed nor-
mally, indicating good fit of the regression line on the sample. More analysis of
the same sample and goodness-of-fit tests for this regression line on a second

Web-Based Management of Content Delivery Networks 53

Number of service nodes

280260240220200180160140120100806040200

T
im

e
in

 s
ec

on
ds

8

7

6

5

4

3

2

1

0

Impact of service node number on total completion time.

Fig. 7. Total completion time by number of service nodes. Circles represent observed
values. The solid line represents a linear regression whereas the dashed lines display
confidence intervals for the estimated values. Most of the observed values fall within
the boundaries.

sample verify the validity of those findings. Those results are not disclosed here
due to space limitations.

This experiment shows that under similar network load conditions, the time
needed to complete a WebDMF vertical operation is linearly related to the num-
ber of service nodes that a representative will have to contact. This is an indi-
cation of the framework’s scalability in dense service deployments.

6 Conclusions

In this paper we demonstrated how WebDFM can be applied in the field of Con-
tent Delivery Network management. This case study can be used to bring out
some of the framework’s advantages. Its open standards-based design facilitates
its integration with existing WBEM infrastructures. WBEM relies on web tech-
nologies (HTTP for transport and XML for content encoding). This provides
alternatives for security related problems such as firewall traversal. Existing en-
cryption techniques, such as HTTP over SSL, can be used off the shelf, without
need for modifications on the framework itself. WebDMF’s design is abstract.
By detaching the details of the managed service from the representative logic, it
is generic and suitable for the management of a wide variety of services.

WebDMF is resource-centric, something that may seem to be a step in the op-
posite direction compared to emerging, web service-based efforts [13,14].

54 G. Oikonomou and T. Apostolopoulos

However, those initiatives are model-agnostic. They do not define properties
and operations for the managed resources [14]. Recently, the DMTF published
preliminary specifications suggesting a method for exposing CIM resources with
WS-Man [15,16]. Further study of those documents shows that WBEM and WS-
Man are related technologies. By acting on the resource layer of a service-based
management deployment, WebDMF is complementary to those approaches.

References

1. Stallings, W.: SNMP, SNMPv2, SNMPv3, RMON 1 and 2. Addison Wesley, Read-
ing (1999)

2. CIM Infrastructure Specification. DMTF Standard, DSP0004 (2005)
3. Representation of CIM in XML. DMTF Standard, DSP0201 (2007)
4. CIM Operations over HTTP. DMTF Standard, DSP0200 (2007)
5. Oikonomou, G., Apostolopoulos, T.: WebDMF: A Web-based Management Frame-

work for Distributed Services. In: The 2008 International Conference of Parallel
and Distributed Computing (2008)

6. Zhou, S., Katto, J., Yasuda, Y.: Supporting Consistency Management in Dynamic
Content Distribution Overlays. In: The Joint International Conference on Auto-
nomic and Autonomous Systems and International Conference on Networking and
Services. IEEE Computer Society, Los Alamitos (2005)

7. Verma, D.C., Calo, S., Amiri, K.: Policy-based Management of Content Distribu-
tion Networks. IEEE Network 16(2), 34–39 (2002)

8. Bivens, A., Gupta, R., McLean, I., Szymanski, B., White, J.: Scalability and Perfor-
mance of an Agent-based Network Management Middleware. International Journal
of Network Management 14, 131–146 (2004)

9. Fortino, G., Russo, W.: Using p2p, Grid and Agent Technologies for the De-
velopment of Content Distribution Networks. Future Generation Computer Sys-
tems 24(3), 180–190 (2008)

10. Guillaume, P., van Steen, M.: Globule: A Collaborative Content Delivery Network.
IEEE Communications Magazine 44(8), 127–133 (2006)

11. OpenCDN Project, http://labtel.ing.uniroma1.it/opencdn/
12. Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostic, D., Chase, J., Becker,

D.: Scalability and Accuracy in a Large-Scale Network Emulator. In: 5th Sympo-
sium on Operating Systems Design and Implementation (OSDI) (2002)

13. Web Services for Management (WS Management). DMTF Specification, DSP0226
(2006)

14. An Introduction to WSDM. OASIS committee draft (2006)
15. WS-CIM Mapping Specification. DMTF Preliminary Specification, DSP0230

(2006)
16. WS-Management CIM Binding Spec. DMTF Preliminary Specification, DSP0227

(2006)
17. Common Manageability Programming Interface (CMPI), The Open Group Tech-

nical Standard (2004)

Crawling Bug Tracker for Semantic Bug Search

Ha Manh Tran, Georgi Chulkov, and Jürgen Schönwälder

Computer Science, Jacobs University Bremen, Germany
{h.tran,g.chulkov,j.schoenwaelder}@jacobs-university.de

Abstract. The Web has become an important knowledge source for re-
solving system installation problems and for working around software
bugs. In particular, web-based bug tracking systems offer large archives
of useful troubleshooting advice. However, searching bug tracking sys-
tems can be time consuming since generic search engines do not take
advantage of the semi-structured knowledge recorded in bug tracking
systems. We present work towards a semantics-based bug search system
which tries to take advantage of the semi-structured data found in many
widely used bug tracking systems. We present a study of bug tracking
systems and we describe how to crawl them in order to extract semi-
structured data. We describe a unified data model to store bug tracking
data. The model has been derived from the analysis of the most popular
systems. Finally, we describe how the crawled data can be fed into a
semantic search engine to facilitate semantic search.

Keywords: Bug tracking system, Bug crawler, Semantic search.

1 Introduction

Trouble ticket systems and bug tracking systems are widely deployed in the infor-
mation technology industry. Software and hardware companies use bug tracking
systems during the development cycle to track bugs and design issues, or during
later phases of the product lifecycle to keep track of defect reports and to obtain
quality indicators. Almost all large open source projects maintain online bug
tracking systems. In addition, there are many bug tracking systems supporting
people who package open source software components for various software dis-
tributions. Some companies provide special online support forums (also known
as communities or knowledge bases) for their products that often resemble bug
tracking systems.

The fast growing amount of online information that can be used to resolve
problems has led to a situation where system administrators and network op-
erators often use search engines in order to find hints how to resolve a specific
problem. However, it is our experience that searching in this way is not as ef-
ficient as we would like it to be; generic search engines do not seem to take
advantage of the data found in trouble ticket or bug tracking systems.

Trouble ticket systems and bug tracking systems contain semi-structured data.
Predefined fields are used to keep track of the status and metadata associated

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 55–68, 2008.
c© IFIP International Federation for Information Processing 2008

56 H.M. Tran, G. Chulkov, and J. Schönwälder

with a problem report while textual descriptions are used to describe the problem
and to document the process for resolving the problem. Exploiting this semi-
structured data has been considered a challenge. An early study in [1] suggests
avoiding textual descriptions as much as possible since they cause difficulties in
processing trouble tickets automatically. While this recommendation makes sense
from a programmer’s perspective, it clearly does not match the requirements of
users who prefer to write down free-form text. Other studies [2,3] exploit only
predefined fields that only use binary, numeric or symbolic values, an approach
that has several limitations. These works have experimented with using trouble
tickets as a basis for case-based reasoning (CBR) systems.

The semi-structured data contained in bug tracking systems is a valuable
resource. It can be used to construct specialized search systems that have access
to and knowledge of metadata out of reach to general text-based search engines.
It can also be used to build automated reasoning systems that help to diagnose
problems based on past experience. The goal of the work presented in this paper
is to build a semantics-based bug search system and a bug dataset that can
be used by a distributed case-based reasoning system which we are developing
[4,5]. The aim of our system is to find relevant information quickly and to cope
with the fact that the relevance of bug records changes quickly, due the short
lifecycles of today’s software products and services. Our contribution in this
paper is fourfold:

1. We present a study of popular bug tracking systems and their features that
can be used by semantic bug search or automated reasoning systems.

2. We present two methods to crawl bug tracking systems and to extract data.
3. Based on an analysis of the data models used by existing bug tracking sys-

tems, we develop a unified data model to store bug tracking data.
4. Finally, we apply a multi-vector representation (MVR) [5] to bug reports in

order to enable semi-structured bug data search on the bug database.

The rest of the paper is structured as follows: In Section 2, we provide a study
of some popular bug tracking systems. Section 3 explains how bug data can be
extracted from these systems and Section 4 describes the unified data model we
have developed to store the extracted bug data. Section 5 explains how the data
are used for finding similar bugs and provides an experimental evaluation. We
discuss related work in Section 6 before we conclude the paper in Section 7.

2 Bug Tracking Systems

Trouble ticket systems (TTS) have been widely used by network operators in
order to assure the quality of communication services. A bug tracking system
(BTS) is a special trouble ticket system used to keep track of software bugs. BTSs
in general aim to improve the quality of software products. They do so by keep-
ing track of current problems, and maintaining historical records of previously
experienced issues. They also establish an expert system that allows to search

Crawling Bug Tracker for Semantic Bug Search 57

Table 1. Overview of bug tracking systems and some of their features (as of October
2007). Items marked with * are optional for each site. † reads dependencies.

Tracker License Access Updates Schema Dep.† Search
Bugzilla MPL HTML,XML-RPC* SMTP, RSS* textual optional filter,keywords
Mantis GPL HTML, SOAP* SMTP, RSS graphical yes filter
Trac BSD HTML SMTP, RSS* graphical no filter,keywords

Debian BTS GPL HTML, SMTP SMTP unknown optional filter
phpBugTracker GPL HTML SMTP textual yes filter,keywords

Flyspray LGPL HTML SMTP,RSS,XMPP unknown yes filter,keywords

for similar past problems, and provide reports and statistics for performance
evaluation of the services [6].

We explore the features of several BTSs, focusing on several properties that
are important for obtaining data from them. For each BTS we checked whether
the BTS supports the functionality in question, and if so, which bug sites (i.e.,
specific installations of a BTS) support that function. A small sample of our
results for BTSs and sites is given in Table 1 and Table 2 respectively. An
explanation of each column in these tables is given below.

For each BTS, we looked at how the system is licensed for use, how its collec-
tion of bugs can be accessed, whether it is possible to easily receive notification
of updated data, whether the database schema used by the BTS was available,
whether the BTS keeps track of bug dependencies, and whether the BTS can be
searched for bugs with a given property.

The license of a BTS affects its popularity. Generally, large free software
projects tend to prefer a BTS licensed as free software itself. These projects
also tend to be the ones that make their BTS sites public. For this reason, we
excluded proprietary BTSs from our study.

The most important function of a BTS is retrieving bug reports in their most
current states. All systems must at a minimum have an HTML-based web in-
terface, but convenient automated retrieval requires a formalized programmatic
interface, either based on XML-RPC or SOAP. While all BTSs support e-mail
(via SMTP) as an update notification mechanism, e-mail is non-trivial to use
for a web application. For instance, to receive notifications for all bug reports
in a BTS by e-mail, an application would need to have its own e-mail address,
register an account with that e-mail address in the BTS, and subscribe for ev-
ery bug report of interest. Some systems support RSS or Atom feeds, which are
significantly easier to use by a program.

In order to understand the structure of the information stored in a BTS, we
investigated whether the underlying data model is documented. Some systems
provide this information in a textual format while others provide graphical rep-
resentations, usually in ad-hoc notations. Some systems do not provide a clear
description of the data model underlying the BTS and it is necessary to reverse
engineer the data model by looking at concrete bug reports.

Tracking any dependency relations between bug reports is useful, because it
helps to correlate bugs. Generally, a bug is dependent on another bug if it cannot
be resolved or acted upon, until the dependency is itself resolved or acted upon.

58 H.M. Tran, G. Chulkov, and J. Schönwälder

Table 2. Some popular bug tracking sites (as of October 2007). A plus indicates that
we were unable to get precise numbers and our numbers present a lower bound. † reads
dependencies.

Site System Version Bugs Activity Custom RPC RSS Dep.†

bugs.debian.org Debian BTS N/A 349346 1036 N/A no no no
bugs.kde.org Bugzilla unknown 9655+ 24+ light no no no

bugs.eclipse.org Bugzilla unknown 204600 746 heavy yes yes yes
bugs.gentoo.org Bugzilla unknown 183365 538 none no yes yes

bugzilla.mozilla.org Bugzilla 3.0.1+ 173885 721 none yes yes yes
bugzilla.redhat.com Bugzilla 2.18-rh 177724 unknown light yes yes yes

qa.netbeans.org Bugzilla unknown 116639+ unknown heavy no no yes
bugs.digium.com Mantis unknown 10765 63 none no yes yes
bugs.scribus.net Mantis 1.0.7 6142 24 none no yes yes

bugtrack.alsa-project.org Mantis 1.0.6 3430 22 none no no yes
dev.rubyonrails.org Trac 0.10.5dev 11493+ unknown none no yes no
trac.edgewall.org Trac unknown 5948 unknown none no yes no

bugs.icu-project.org Trac 0.10.4 5845 unknown none no yes no

Some systems allow full keyword search for their reports, while others
only support searching via a set of predefined filters applied on the entire bug
database. The former is more useful for an automated system that aims to pro-
vide keyword search capabilities itself.

Based on popularity and available documentation, we chose to focus on
Bugzilla, Mantis, Trac and Debian BTS. With the exception of the Debian BTS,
which is only used for the Debian operating system, the BTSs we chose all pub-
lish lists of known public sites that use them for bug tracking. Starting from
these lists, we investigated all sites that are accessible and did not require au-
thentication to browse their repositories (about 85 sites). Table 2 lists the sites
with the largest number of bugs for each BTS. For each site, Table 2 shows which
version of what BTS is used, how many bugs are stored there in total and how
many have been added in one week, indicating the activity of the site. The table
also specifies whether the site has been customized from its base BTS, whether
it supports a programmatic XML-RPC interface or RSS feeds, and whether the
site supports bug dependency relations.

The version of the underlying BTS largely impacts the set of available features.
For example, Bugzilla only supports RSS feeds as of version 2.20, and XML-
RPC as of version 3.0. Note that some sites hide this version number, possibly
because this information may be sensitive with respect to security exploits in
the BTS source code. The number of stored bugs and the rate of opening new
bugs indicate the popularity and activity of a site. The margin between the most
popular Bugzilla sites and the most popular sites using other BTSs is very large.
We believe that the reason is that Bugzilla was the first widely-known open-
source BTS when it was released in 1998. Mantis was only started in late 2000,
and Trac is even newer.

Some sites customize their BTS in order to provide better integration of the
bug tracker into the rest of their web site. While some sites only change the visual
appearance of the BTS (marked as “light” customization in Table 2), others
also modify the functionality of the BTS (marked as “heavy” customization).
Customized sites pose a problem for automated bug retrieval: a system that

Crawling Bug Tracker for Semantic Bug Search 59

is designed to derive structured data from presentational HTML (see Section
3.2) will generally fail to handle a significant change of a site’s appearance. In
addition, customizing a BTS naturally makes upgrading the site to a newer
version of the BTS much more difficult; therefore customized sites tend to lag
behind in version number, and consequently lack features such as RSS feeds or
XML-RPC support.

Programmatic interfaces provided by protocols like XML-RPC or SOAP can
be used by programs to directly query a bug tracker for structured data, without
having to guess the value of any fields presented in human-readable form (HTML,
SMTP). While this greatly simplifies interfacing to that bug tracker, no BTS
currently makes such an interface a default option. It is an optional feature
of the BTS at best, and not supported at all at worst. Only very few sites
actually deploy and enable such programmatic interfaces, and clearly relying on
their availability is not sufficient. RSS, on the other hand, is much more widely
supported. RSS feeds allow programs to query a bug tracker for any updated
bug reports, and while they are not as useful as XML-RPC interfaces, they still
provide a better alternative to SMTP update notification.

3 Retrieving Data from BTSs

This section describes ways to retrieve semi-structured data from BTSs. First, we
describe how we can exploit application programming interfaces (APIs) provided
by the BTSs themselves. Since such APIs are only available on some sites, we
have also implemented a web crawler specialized for bug tracking systems.

3.1 Exploiting APIs

The Bugzilla BTS provides an XML-RPC web service interface for users to
access and modify bug reports. Users can write an external tool to interact
with Bugzilla through several web service modules: The User module allows
applications to create user accounts and to log in/out using an existing account.
The Bug module can be used to file a new bug in Bugzilla, or to get information
about already filed bugs. The Product module allows applications to list the
available Products and to get information about them. Products are Bugzilla’s
top-level categories for bugs. Finally, the Bugzilla module provides functions to
retrieve some general information about a Bugzilla installation.

The Bugzilla XML-RPC API in addition allows programs to retrieve a large
number of bug reports in a single request using an array of bug identifiers. This
saves much time when downloading many bug reports from a single Bugzilla
website that supports XML-RPC.

We have implemented a crawler that uses several methods provided by the
Bugzilla web service interface. It acts like an XML-RPC client that submits a
bug identifier to a Bugzilla server and obtains the details of the bug (i.e., a list of
field-value pairs) from the Bugzilla server. Note that the XML-RPC API is rarely
available on production BTS installations (see Section 2) and is incomplete: it

60 H.M. Tran, G. Chulkov, and J. Schönwälder

Fig. 1. Architecture of the Buglook crawler

restricts users from retrieving any attachments from a bug report, as well as the
bug description or any related discussion entries. We access this information via
another tool (described below).

Unlike all other BTSs, the Debian BTS allows users to access the raw bug
data directly. Users can use the rsync utility to copy the whole bug database
from bugs-mirror.debian.org. Debian’s database is split into three sections: bts-
spool-db for the active bug report spool, bts-spool-archive for bug reports that
have been closed for a while and thus archived, and bts-spool-index for the bug
index files. Each bug report is stored in four different files whose names consist
of the bug number and either .log, .report, .status, or .summary as an extension.

3.2 Crawling with Buglook

While some BTSs provide a machine-readable web service interface to their bug
data, most do not. In all systems where such an interface is supported, it is an
optional feature, and because optional features require additional effort from an
administrator to be set up, they are rarely available. In addition, a web service
interface often provides much less data than the human-readable web interface
that is most commonly used. Clearly, relying on the availability of a web service
API is unrealistic. To solve this problem, we created Buglook [7], a tool which
attempts to directly use the presentational HTML-based web interface in order
to get as much access to information as ordinary users.

The problem with presentational HTML pages is that the same structure can
be presented in vastly different ways. As an example, consider an algorithm that
must detect the end of a bug report comment and the beginning of the next
one. In HTML, this boundary could be encoded as a closing <div> tag and the
opening of another <div>, or as a new paragraph (<p>), or why not a sequence
of newlines (
)? There is nothing preventing the same elements from being
used in another context, while being rendered differently (dictated by CSS tags).
No consistency can be expected.

To tackle this problem, we note the following: (i) Because bug report pages are
generated from a template, all bug reports within a single BTS site have the same
structure. An algorithm that can parse one bug report can parse all bugs in that
site. (ii) BTS sites that use the same software have similar bug structure, and
often similar appearance. The underlying BTS software determines the structure

Crawling Bug Tracker for Semantic Bug Search 61

of the data it can work with, and only allows presentational customization of the
displayed HTML pages. (iii) For each BTS, there is a canonical appearance. In
general, most sites do not find it necessary to customize their appearance, and
use the one that the BTS provides by default.

Buglook (Figure 1) uses a small set of parsers defined for each BTS’s canonical
appearance, together with specialized parsers for the most important customized
sites. These parsers, called “site modules”, can provide a very high degree of cov-
erage of all BTS sites. The set of sites covered by a site module is its “sitetype”.
Sitetypes are essentially equivalence classes of BTS sites, with respect to parsing.

Buglook’s bug extraction component consists of two essential parts - the set
of site modules, and a common component independent of all of them. The com-
mon component is responsible for generic tasks such as downloading web pages,
parsing HTML, etc. The site modules encapsulate all logic unique to a given
sitetype. This distinction allows more sitetypes to be supported with minimal
duplication of effort. To support a sitetype, a site module must implement a
fixed interface to the common component.

4 Unified Data Model

In order to integrate bug data from different BTSs into a single bug database,
we define a unified data model for bugs. This model must be simple and easy
to use for our purpose; it is not necessary to be able to represent all available
details of all systems. Our investigation of the database schemas of the four
BTSs we considered exposes several interesting observations. The bug formats
of Bugzilla, Trac and Mantis share many similar fields that can be classified in
two main groups:

1. The administrative metadata associated with a bug is often represented as
field-value pairs with very precise semantics, such as id, severity, reporter,
summary, among others.

2. The descriptions detailing the bug and any followup discussion or actions
are typically represented as free-form (i.e., non-formal) textual attachments.

Because the unified data model is used to support semantic search, we aim to
extract fields from bug reports in such a way as to minimize the loss of bug
information. We introduce new fields that establish the relationships between
bugs or provide for more sophisticated classification. The values of these fields
can be derived differently for each BTS: Mantis users can manually specify the

Table 3. Severity of bugs

Unified model Bugzilla Trac Mantis Debian
critical blocker, critical blocker, critical block, crash critical, grave, serious
normal major major major important, normal
minor minor, trivial minor, trivial minor, tweak, text, trivial minor
feature enhancement - feature wishlist

62 H.M. Tran, G. Chulkov, and J. Schönwälder

Bug

+id: in t
+author: emai l
+owner: emai l
+created: date
+updated: date
+resolved: date
+sever i ty : enum
+status: enum
+summary: s t r ing
+descr ipt ion: text

At tachment

+id: in t
+author: emai l
+created: date
+body: text

Package

+id: in t
+name: s t r ing
+version: str ing
+mainta iner: emai l
+descr ipt ion: text

Keyword

+id: in t
+name: s t r ing
+descr ipt ion: text

depends on

0..*

0..*

Component

+id: in t
+name: s t r ing
+contact : emai l
+descr ipt ion: text

belongs to

0..*

1

Sof tware

+id: in t
+name: s t r ing
+contact : emai l
+version: str ing
+desr ipt ion: text

is part of

depends on

0..*

0..*

contains

0..1

0..*

classified with0..*

0..*

Pla t form

+id: in t
+name: s t r ing
+descr ipt ion: text

occurs on

0..*

0..*

is related to

+0..*

+0..*

concerns

0..*

0..1

concerns

0..1

0..*

concerns

0..1

0..*

Fig. 2. Unified bug data model represented as a UML diagram

relation of a bug to other bugs when reporting it; Debian users can indicate
which package a bug relates to; and Bugzilla and Trac offer a keyword field that
enables the classification of bugs. To exploit data from a bug’s description and
its attachments, we use several text processing techniques [8,9].

Figure 2 shows our unified bug data model in the form of a UML class di-
agram. The central class is the Bug class. The id attribute of a Bug instance
uniquely identifies a bug. We use the URL where a bug can be retrieved as its
identifier. Most of the attributes of a Bug instance can be easily extracted from
the retrieved data. Our severity attribute is probably the most interesting to
fill correctly, because BTSs have very different severity classifications for bugs.
Table 3 shows how we map the severity values of the BTSs into our data model,
which only distinguishes the severity values critical, normal, minor, and feature.
The status attribute of a Bug instance only has two values: the value open
represents what BTSs call unconfirmed, new, assigned, reopened bugs while the
value fixed represents what BTSs call resolved, verified, and closed bugs.

Free-form textual descriptions are modelled as Attachment objects. Every
Attachment belongs to exactly one Bug object. Some BTSs provide information
about the platforms affected by a bug. We represent platforms (such as “Win-
dows2000” or “MacOS X”) as Platform objects. The Keyword class represents
keywords used to describe and classify bugs.

The left part of Figure 2 models what piece of software a bug is concerned
with. While some BTSs are only concerned with bugs in a specific piece of
software, software in larger projects is split into components and bugs can be

Crawling Bug Tracker for Semantic Bug Search 63

related to specific components. The classes Software and Component model
this structure. The Debian BTS is somewhat different from the other BTSs
as it is primarily used to track issues related to software “packages”, that is
software components packaged for end user deployment. Since there is a large
amount of meta information available for Debian software packages (dependency,
maintainer and version information), we have introduced a separate Package
class to represent packaged software.

5 Semi-structured Bug Data Search

BTSs only support keyword search and restricted meta-data search by pre-
defined fields and values (as discussed in Section 2); e.g., searching for bugs
with the resolved status or bugs with the critical severity. This section presents
the performance of different search algorithms on semi-structured bug data from
the unified dataset.

We have previously evaluated the combination of fulltext search and meta-
data search, namely ft-md search, on the CISI and MED bibliographic datasets
whose documents contain semi-structured data [5]. With the bug dataset, meta-
data search exploits significant keywords extracted from bug contents, such as
type of problems, scope of problems, typical symptoms, error messages and dis-
tinct terms. A set of keywords is represented by a field-value vector. The sim-
ilarity of two field-value vectors is estimated by the sum of weight values of
matched keywords. Fulltext search involves indexing terms from bug contents
using text processing techniques [8,9]. Each bug is converted to a term vector
which is then transformed to a real number vector (or a semantic vector) using
algebraic computation. The similarity of two semantic vectors is evaluated by
the cosine of these vectors.

We consider keyword search as baseline search that evaluates the similarity
between a bug and a query by simply matching keywords from the query to the
bug content without considering the significance of keywords. We use a matching
rate metric to compare the performance of the combination of search algorithms:
ft-md combining fulltext search and meta-data search, ft-bl combining fulltext
search and keyword search, and md-bl combining meta-data search and keyword
search. The matching rate r is the ratio of the number of the identical bugs
obtained by two search algorithms to the minimum number of bugs obtained by
these algorithms for a query:

r =
|Sx ∩ Sy|

min(Nx, Ny)
(1)

where Sx and Sy are the resulting set of search algorithms x and y per query,
|S| is the size of set S, and parameters Nx and Ny are the total number of
bugs obtained by search algorithms x and y per query. Intuitively, if two search
algorithms are good, the probability of a large number of identical bugs obtained
by these algorithms is high. This metric is more feasible and flexible than the
recall rate or precision rate metrics that require knowledge of the correct number

64 H.M. Tran, G. Chulkov, and J. Schönwälder

of relevant bugs per query. Note that it is difficult to obtain this number from a
new and large dataset.

The evaluation of a semantic bug search engine on a large dataset of several
hundred thousand bugs will be reported in another study. In these experiments,
the dataset contains 11.077 bugs, and the number of obtained bugs Nft, Nmd

and Nbl are set to 100 by sorting the resulting sets according to the similarity
value and selecting only the top N elements. A set of 50 queries include pieces
of textual descriptions, distinct keywords, typical symptoms and error messages
that are extracted from bug contents. Terms or keywords from bug contents
are stemmed by the Porter stemming algorithm [10] and weighted by the term
frequency-inverse document frequency (tf-idf). Semantic vectors are generated
by computing singular value decomposition using the single-vector Lanczos al-
gorithm [11] implemented in svdlibc. The experiments were performed on an
x86 64 GNU/Linux machine with two dual-core AMD Opteron(tm) processors
running at 2 GHz with 4 GB RAM.

The left plot shown in Figure 3 reports the average matching rate of ft-md,
md-bl and ft-bl over an increasing number of queries. The ft-md line stays at
at a matching rate of 0.3 on average and reaches 0.33 finally, whereas the md-bl
and ft-bl lines start lowly and reach 0.22 and 0.12, respectively. Ft-md found
more identical bugs than other combinations. Furthermore, md-bl obtained bet-
ter results than ft-bl. The results of the last two combinations are relatively
different, illustrating that bl search obtains less consistent and reliable results.
Bl search combines better with md search than with ft search because md and
bl both use keyword comparison to estimate similarity.

The query distribution for ft-md shown in the right plot in Figure 3 indicates
that more than 50% of the queries receives a matching rate higher than 0.3.
These queries tend to focus on specific distinct characteristics of bugs, whereas
the other queries tend to be more general or vague, resulting in a large number
of improper bugs obtained.

We relax the number of obtained bugs for only bl search, namely rlbl; Nrlbl

is set to 500. The left plot shown in Figure 4 shows that md-rlbl improves the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 10 15 20 25 30 35 40 45 50

M
at

ch
in

g
R

at
e

Number of Queries

Ft-md search
Md-bl search
Ft-bl search

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7

P
er

ce
nt

ag
e

Matching Rate

Queries

Fig. 3. Average matching rate by number of queries for ft-md, md-bl and ft-bl (left).
Query distribution by matching rates for ft-md (right).

Crawling Bug Tracker for Semantic Bug Search 65

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 10 15 20 25 30 35 40 45 50

M
at

ch
in

g
R

at
e

Number of Queries

Ft-md search
Md-rlbl search
Ft-rlbl search

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 5 10 15 20 25 30 35 40 45 50

M
at

ch
in

g
R

at
e

Number of Queries

Ft-md search, N = 100
Ft-md search, N = 80
Ft-md search, N = 60

Fig. 4. Average matching rate by number of queries for ft-md, md-rlbl and ft-rlbl
with a large number of bugs obtained by baseline search (left). Average matching rate
by number of queries with various numbers of bugs obtained by ft-md (right).

matching rate to 0.25 on average, whereare ft-rlbl remains unchanged. Rlbl
search and md search finds more identical bugs than rlbl search and ft search.
While md search is similar to rlbl search, it is much different from ft search in
the way of measuring similar bugs. Combining ft search and md search, therefore,
works well for semi-structured bug data.

We investigate further ft-md search by restricting the number of obtained
bugs; Nft and Nmd are both set to 100, 80 and 60. The right plot in Figure
4 indicates that the matching rate reduces when the number of obtained bugs
reduces. Note that bugs are chosen by their ranking. The ranking of obtained
bugs are different between ft search and md search. This is caused by three
reasons: first, while BTSs may contain duplicated bugs, the number of these
bugs is small, thus the number of truly similar bugs is also small; second, the
ranking values of obtained bugs contain errors from indexing and ranking bugs,
especially when a query is general, ranking many similar bugs is affected by
these errors; last, as described above, ineffective queries make results inaccurate.
These reasons also cause the low matching rate. However, since the bug dataset
is wide and diverse in scope, we believe that ft-md search achieving an average
matching rate of 0.3 is reasonable.

6 Related Work

The X.790 recommendation from ITU-T [12], the RFC 1297 from the IETF
[13] and the NMF501 and NMF601 documents from the TMF [14,15] define
terminology and basic functions for reporting and managing trouble tickets.
NetTrouble [16] introduces advanced features for trouble ticket systems (TTSs)
that include a distributed database concept for geographic dissemination, an
administrative domain concept for the multi-organizational characteristics of
network management environments, and an administrative model for hierarchical
decomposition. The work in [17] proposes a generic interface and a generic data

66 H.M. Tran, G. Chulkov, and J. Schönwälder

structure, namely customer service management trouble report, to support inter-
domain problem management between customer and service provider. Our work
towards a unified data model is to some extend related to these efforts. However,
instead of designing a feature rich data model from scratch, we took the opposite
approach to extract the common core from the data models used by existing
systems.

Since the problem-solving knowledge in TTSs can be exploited to search for
similar problems or infer typical solutions, several studies discussed in [1] have
used TTSs associated with artificial intelligence techniques for finding and re-
solving similar problems. A study in [2] has proposed a CBR system to resolve
network problems by retrieving similar problems and adapting solutions to novel
problems. Trouble tickets obtained by a TTS are used as cases for evaluating
the system. The DUMBO system [3] also takes advantage of TTSs to propose
solutions for network problems. This system provides six types of features to
represent trouble tickets, and employs similarity and reliability measurement
for proposing solutions. The main limitations of these systems, however, con-
tain the inexpressive representation of trouble tickets and the lack of trouble
ticket sources [1]. We consider these issues in this work by using the unified data
model that allows various bug reports to be collected in one bug database, and
by applying MVR to bug reports to enable semantic search on the bug database.

7 Conclusions

We have provided a study of existing BTSs with a specific focus on the four
most popular open source systems, namely Bugzilla, Trac, Mantis and the De-
bian bug tracking system. Widely used public BTSs based on these software
systems contain a large number of bug reports that can be used for building
bug datasets. Such datasets are invaluable for evaluating systems such as case-
based reasoning engines or semantic search engines. We have used web service
APIs and a special purpose web crawler (Buglook) to obtain a large number of
bug reports from several large BTSs. In order to store the data in an effective
way, we have developed a unified bug data model that is able to capture the
most important aspects of the data maintained by the various BTSs we have
analyzed. Our model enables interoperable aggregation of data from different
sources, useful for various purposes ranging from efficient wide-scale search to
automated reasoning systems.

The multi-vector representation method (MVR) [5] has been used to perform
semantic search experiments on the unified bug dataset. MVR exploits semi-
structured bug data to search for similar bugs with salient features. The experi-
mental results indicate that (i) the combination of fulltext search and meta-data
search (using MVR) outperforms the other combinations of fulltext search and
baseline search or of meta-data search and baseline search, (ii) baseline search
provides less consistent and reliable results, and (iii) the bug dataset is wide and
diverse in scope.

Crawling Bug Tracker for Semantic Bug Search 67

We are currently implementing a complete online semantic search system
that will accept user queries so that a larger number of users can test and
evaluate our system. This system also allows us to evaluate search latency and
bug synchronization on a large bug dataset. Future work involves extending
the unified data model to support another semantic bug search system, where
bug reports are represented in the resource description framework (RDF). In
addition, refined and unified datasets are used to evaluate the problem-solving
capability of our distributed case-based reasoning system. Such systems will
certainly be a practical tool for anyone who needs to troubleshoot a software
system with a public bug tracking system.

Acknowledgments. The work reported in this paper is supported by the EC
IST-EMANICS Network of Excellence (#26854).

References

1. Lewis, L., Dreo, G.: Extending Trouble Ticket Systems to Fault Diagnostics. IEEE
Network Special Issue on Integrated Network Management 7(6), 44–51 (1993)

2. Lewis, L.: A Case-Based Reasoning Approach to the Resolution of Faults in Com-
munication Networks. In: Proc. 3rd International Symposium on Integrated Net-
work Management (IM 1993), pp. 671–682. North-Holland, Amsterdam (1993)

3. Melchiors, C., Tarouco, L.: Fault Management in Computer Networks Using Case-
Based Reasoning: DUMBO System. In: Althoff, K.-D., Bergmann, R., Branting,
L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, pp. 510–524. Springer, Heidel-
berg (1999)

4. Tran, H.M., Schönwälder, J.: Distributed Case-Based Reasoning for Fault Man-
agement. In: Bandara, A.K., Burgess, M. (eds.) AIMS 2007. LNCS, vol. 4543, pp.
200–203. Springer, Heidelberg (2007)

5. Tran, H.M., Schönwälder, J.: Fault Representation in Case-Based Reasoning. In:
Clemm, A., Granville, L.Z., Stadler, R. (eds.) DSOM 2007. LNCS, vol. 4785, pp.
50–61. Springer, Heidelberg (2007)

6. Bloom, D.: Selection Criterion and Implementation of a Trouble Tracking System:
What’s in a Paradigm? In: Proc. 22nd Annual ACM SIGUCCS Conference on User
Services (SIGUCCS 1994), pp. 201–203. ACM Press, New York (1994)

7. Chulkov, G.: Buglook: a search engine for bug reports. Seminar Report. Jacobs
University Bremen (May 2007)

8. Deerwester, S., Dumais, S., Landauer, T., Furnas, G., Harshman, R.: Indexing by
Latent Semantic Analysis. Journal of the Society for Information Science 41(6),
391–407 (1990)

9. Berry, M.W., Drmac, Z., Jessup, E.R.: Matrices, Vector Spaces, and Information
Retrieval. SIAM Review 41(2), 335–362 (1999)

10. Porter, M.F.: An algorithm for suffix stripping. Readings in Information Retrieval,
313–316 (1997)

11. Golub, G.H., Underwood, R.: The block lanczos method for computing eigenvalues.
Mathematical Software III, 361–377 (1977)

12. ITU-T. Trouble Management Function for ITU-T Applications. X.790 Recommen-
dation (1995)

68 H.M. Tran, G. Chulkov, and J. Schönwälder

13. Johnson, D.: NOC Internal Integrated Trouble Ticket System Functional Specifi-
cation Wishlist. RFC 1297 (1992)

14. TMF. Customer to Service Provider Trouble Administration Business Agreement.
NMF 501, Issue 1.0 (1996)

15. TMF. Customer to Service Provider Trouble Administration Information Agree-
ment. NMF 601, Issue 1.0 (1997)

16. Santos, L., Costa, P., Simes, P.: NetTrouble: A TTS for Network Management. In:
ITS 1998, pp. 480–485. IEEE Computer Society, Los Alamitos (1998)

17. Langer, M., Nerb, M.: Defining a Trouble Report Format for the Seamless Integra-
tion of Problem Management into Customer Service Management. In: Proc. 6th
Workshop of the OpenView University Association (OVUA 1999) (1999)

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 69–82, 2008.
© IFIP International Federation for Information Processing 2008

A Runtime Constraint-Aware Solution for Automated
Refinement of IT Change Plans

Weverton Luis da Costa Cordeiro1, Guilherme Sperb Machado1,
Fabrício Girardi Andreis1, Alan Diego Santos1, Cristiano Bonato Both1,

Luciano Paschoal Gaspary1, Lisandro Zambenedetti Granville1,
Claudio Bartolini2, and David Trastour3

1Institute of Informatics, Federal University of Rio Grande do Sul, Brazil
2HP Laboratories Palo Alto, USA

3HP Laboratories Bristol, UK
{weverton.cordeiro, gsmachado, fgandreis, adsantos,

cbboth, paschoal, granville}@inf.ufrgs.br,
{claudio.bartolini, david.trastour}@hp.com

Abstract. Change design is one of the key steps within the IT change
management process and involves defining the set of activities required for the
implementation of a change. Despite its importance, existing approaches for
automating this step disregard the impact that actions will cause on the affected
elements of the IT infrastructure. As a consequence, activities that compose the
change plan may not be executable, for example, due to runtime constraints that
emerge during the change plan execution (e.g., lack of disk space and memory
exhaustion). In order to address this issue, we propose a solution for the
automated refinement of runtime constraint-aware change plans, built upon the
concept of incremental change snapshots of the target IT environment. The
potential benefits of our approach are (i) the generation of accurate, workable
change plans, composed of activities that do not hinder the execution of
subsequent ones, and (ii) a decrease in the occurrence of service-delivery
disruptions caused by failed changes. The experimental evaluation carried out
in our investigation shows the feasibility of the proposed solution, being able to
generate plans less prone to be prematurely aborted due to resource constraints.

1 Introduction

The increasing importance and complexity of IT infrastructures to the final business
of modern companies and organizations has made the Information Technology
Infrastructure Library (ITIL) [1] the most important reference for IT service
deployment and management. In this context, ITIL’s best practices and processes help
organizations to properly maintain their IT services, being of special importance to
those characterized by their large scale and rapidly changing, dynamic services.

Among the several processes that compose ITIL, change management [2] plays an
important role in the efficient and prompt handling of IT changes [3]. According to
this process, changes must be firstly expressed by the change initiator using Requests
for Change (RFC) documents. RFCs are declarative in their nature, specifying what

70 W.L. da Costa Cordeiro et al.

should be done, but not expressing how it should be performed. In a subsequent step,
an operator must sketch a preliminary change plan, which encodes high level actions
that materialize the objectives of the RFC. Latter steps in this process include
planning, assessing and evaluating, authorizing and scheduling, plan updating,
implementing, and reviewing and closing the submitted change.

Change planning, one of the key steps in this process, consists in refining, either
manually or automatically, the preliminary plan into a detailed, actionable workflow
(also called actionable change plan in this paper). Despite the possibility of manually
refining change plans, automated refinement has the potential to provide better results
for the planning phase, since it (i) decreases the time consumed to produce such
actionable workflows, (ii) captures the intrinsic dependencies among the elements
affected by changes, and (iii) diminishes the occurrence of service disruptions due to
errors and inconsistencies in the generated plans [4].

Since the inception of ITIL, there has been some preliminary research concerning
the automated refinement of change plans. For example, important steps have been
taken towards formalizing change-related documents [5], exploring parallelism in the
execution of tasks [3], and scheduling of change operations considering the long-term
impact on Service Oriented Architecture environments [6]. However, despite the
progresses achieved in the field, proposed solutions for change planning only consider
simple actions (installation, upgrade) and do not model the pre-conditions and effects
of more complex actions. The pre-conditions could be of a technical nature, such as a
memory requirement, or could impose constraints on the change process, for instance
requiring authorization before executing a given task. Effects model how actions
modify each element of the IT infrastructure (e.g., adding memory into a server or
modifying configuration parameters of a J2EE server). Without taking into account
such considerations, the actionable workflow, when executed, may be prematurely
aborted (e.g., due to lack of resources), leading to service-delivery disruption and
leaving the IT infrastructure in an inconsistent state.

To fill in this gap, we propose a solution for the automated refinement of change
plans that takes into consideration the runtime constraints imposed by the target IT
environment. In contrast to previous investigations, our solution focuses on the impact
that already computed actions will cause on the IT infrastructure, in order to compute
the subsequent ones. To this effect, we introduce in this paper the notion of snapshots
of the IT infrastructure, as representations of the intermediate states that the IT
infrastructure would reach throughout the execution of the change plan. As a result,
the refined change plans generated by our solution will be less prone to prematurely
termination, therefore reducing the occurrence of change-related incidents.

The solution proposed in this paper is evaluated through the use of CHANGELEDGE,
a prototypical implementation of a change management system that enables the
design, planning and implementation of IT changes. We have qualitatively and
quantitatively analyzed the actionable workflows generated from several different
preliminary plans, considering a typical IT scenario.

The remainder of this paper is organized as follows. Section 2 discusses some of
the most prominent research in the field of IT change management. Section 3 briefly
reviews the models employed to represent IT related information. Section 4 details
our runtime constraint-aware solution for the automated refinement of IT change
plans. Section 5 presents the results achieved using the CHANGELEDGE system.
Finally, Section 6 concludes the paper with remarks and perspectives for future work.

 A Runtime Constraint-Aware Solution for Automated Refinement of IT Change Plans 71

2 Related Work

In the recent years, several research efforts have been carried out in the area of IT
change design. In this section, we cover some of the most prominent investigations.

Keller et al. [3] have proposed CHAMPS, a system for automating the generation
of change plans that explore a high degree of parallelism in the execution of tasks.
Change planning and scheduling are approached as an optimization problem.
Although the system is able to evaluate technical constraints in the planning and
scheduling of changes, the scope is limited to Service Level Agreements and policies.
Since fine-grained control of resource constraints was not the focus of the work,
modifications on the infrastructure produced by the already processed tasks of the
plan under refinement are not taken into account when computing the subsequent
ones. As a consequence, the resulting change plans may not be executable in practice.

In a previous work [5], we have proposed a solution to support knowledge reuse in
IT change design. Although the solution comprises an algorithm to generate actionable
change plans, this algorithm also performs all the computations considering a static
view of the IT infrastructure. Actually, it was out of the scope of that work, as a
simplification assumption, to deal with runtime constraints in the refinement of change
plans.

Despite not directly related with the problem addressed in this paper, some
additional research efforts on change management published in the recent years merit
attention. Dumitraş et al. [6] have proposed Ecotopia, a framework for change
management that schedules change operations with the goal of minimizing service-
delivery disruptions. In contrast to CHAMPS, Ecotopia optimizes scheduling by
assessing the long-term impact of changes considering the expected values for Key
Performance Indicators. Trastour et al. [7] have formulated the problem of assigning
changes to maintenance windows and of assigning change activities to technicians as
a mixed-integer program. The main difference between this work and Ecotopia is the
fact that human resources are also taken into account. Sauvé et al. [8] have proposed a
method to automatically assign priorities to changes, considering the individual
exposure of each requested change to risks as its execution is postponed. Finally, in
another previous work [9], we have introduced the concept of atomic groups in the
design of change plans with the purpose of providing our end-to-end solution to IT
change management with rollback support.

Although change management is a relatively new discipline, the area has been
quickly progressing, as evidenced by the previously mentioned related work.
Nevertheless, in the particular case of change planning, the existing solutions are
severely lacking with respect to deployment feasibility and IT infrastructure
predictability. In the following sections we envisage a solution to address these issues.

3 Building Blocks of the Proposed Solution

In order to support the automated refinement of change plans, it is of paramount
importance to formalize the change-related documents. Actually, this was a major
concern in our previous work [5], in which we proposed models to (i) characterize
dependencies between the elements that compose the IT infrastructure, (ii) express

72 W.L. da Costa Cordeiro et al.

information about software packages available for consumption by a change process,
and (iii) express unambiguously the changes that must be executed on the managed
infrastructure. In this section, we briefly review the models that materialize this
formalization: IT infrastructure and Requests for Change & Change Plan.

The IT Infrastructure model is a subset of the Common Information Model (CIM)
[10], proposed by the Distributed Management Task Force (DMTF). It allows the
representation of computing and business entities comprising an organization, as well
as the relationship among them. For the sake of legibility and space constraints, we
present in Fig. 1 a partial view of the model.

The root class ManagedElement permits to represent any Configuration Item (CI)
present in the IT infrastructure (e.g., physical devices, computer and application
systems, personnel, and services). Relationships such as associations, compositions,
and aggregations, map the dependencies among the elements comprising the
infrastructure. In addition, Check and Action classes in this model represent relevant
information for managing the lifecycle of software elements (e.g., software upgrade
and application system installation/uninstallation).

Check

1
EnabledLogical

Element
Software
Element

System

Computer
System

Operating
System Service

User
Entity

Logical
Element

ManagedSystem
Element

Organizational
Entity

Managed
Element

1

Action

Setting
Check

SwapSpace
Check

DiskSpace
Check

*

*

1 0..1

Execute
Program

Reboot
Action

ModifySetting
Action

Memory
Check

SoftwareElement
VersionCheck

Alternate
SwDependency

0..1

1

Human
Action

SwChecks

SwActions

Action
Sequence

Fig. 1. Partial view of the IT Infrastructure model

Instances of class Check define conditions to be met or characteristics required by
the associated software element for it to evolve to a new state (e.g., deployable,
installable, executable, or running). Possible checks include verification of software
dependencies, available disk space and memory, and required environment settings.
Each instance of class Action, in its turn, represents an operation of a process to
change the state of the associated SoftwareElement (e.g., from installable to
executable). Examples of actions are invocation of a software installer/uninstaller,
manipulation of files and directories, and modification of configuration files.

In addition to being used to represent the current IT infrastructure, the same model
is also employed to define the Definitive Media Library (DML). The DML is a
repository that specifies the set of software packages (along with their dependencies)
that have been approved for use within the enterprise and that may be required
throughout the change process.

 A Runtime Constraint-Aware Solution for Automated Refinement of IT Change Plans 73

In regard to the Requests for Change & Change Plan model, it enables the design
of change-related documents and relies on both (i) guidelines presented in the ITIL
Service Transition book [2], and (ii) the workflow process definition, proposed by the
Workflow Management Coalition (WfMC) [11]. Classes such as RFC and Operation
allow expressing the changes designed by the change initiator, while ChangePlan,
LeafActivity, BlockActivity, SubProcessDefinition, and TransitionInformation enable
the operator to model the preliminary plan that materializes the change. Please refer
to our previous work [5] for additional information about this model.

4 Runtime Constraint-Aware Refinement of Change Plans

The models presented in the previous section represent the common ground for our
runtime constraint-aware solution for automated refinement of IT change plans. In
this section, we describe our solution by means of a conceptual algorithm, illustrated
in Fig. 2.

In order to support our solution, we formalize a change plan C, in the context of
this work, as a 4-tuple 〈A, T, a1, F〉, where A represents the set of activities (or actions)
A = {a1, a2, …, an⏐n ∈ N and n ≥ 1}; T represents a set of ordered pairs of activities,
called transitions, T = {l1, l2, …, lm⏐m ∈ N and m ≥ 1}; a1 is the begin activity of the
change plan (a1 ∈ A); and F represents the set of end activities of the change plan (F
⊆ A). A transition l = (ai, aj) ∈ T is directed from ai to aj, ∀ai, aj ∈ A, and may
represent a conditional flow.

We denote our solution as a function ƒ(C, I, R) = C′ (line 1), where C is the
preliminary change plan; I represents the state of the IT infrastructure as in the instant
in which the preliminary plan C is submitted for refinement; R represents the
Definitive Media Library (DML); and C′ represents the actionable workflow
generated as a result of the refinement process.

As a first step towards the refinement, the submitted plan C is copied to C' (line 2),
and the subset of unrefined activities contained in C is copied to A' (line 3). In a
subsequent step (line 4), ƒ creates an initial snapshot of the IT infrastructure, s0. In the
context of this work, we define snapshot as a representation of the differences
between the current state of the IT infrastructure and the state it would reach after the
execution of i activities contained in the change plan C (0 ≤ i ≤ ⏐A⏐). These
differences include, for example, newly installed (or removed) software, disk space
and memory consumed (or freed), modified settings, and created (or deleted) files and
directories (the dynamics of snapshots is further explained in Subsection 4.2).
Considering that no new activities were added to the change plan C at the point s0 is
created, this step will yield a snapshot that describes no differences in comparison to
the current state of the IT infrastructure.

As a last step, ƒ invokes the execution of ƒ'(C', R, I, s0, A') (line 5), which will
actually perform the refinement process. We assume that C' is passed to ƒ' by
reference. Therefore, modifications performed to C' will be visible outside ƒ'. After
the execution of ƒ', C' will be returned back to the operator (line 7), if refined (line 6).
We consider a change plan C as refined if and only if, ∀a ∈ A, dependencies of a are
already satisfied either by any ai ∈ A or by the current state of the IT infrastructure.

74 W.L. da Costa Cordeiro et al.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

ƒ(C, R, I) = C' {
 declare C' = copy of the preliminary change plan C
 declare A' = set of unrefined activities from the preliminary change plan C
 s0 = initial snapshot of I, after the execution of 0 activities
 ƒ'(C', R, I, s0, A')
 if (C' is refined)
 return C'
 else
 return false
}

ƒ'(C, R, I, si, A) {
 if (A is empty)
 return change plan C
 else {
 declare X: set of arrangements Y of activities
 ai = i-est activity ∈ A
 declare A' = A - {ai}
 if (ai has no computable dependencies, given I, si, and R)
 ƒ'(C, R, I, si, A')
 else {
 X = set of arrangements Y of first level dependencies of ai, given I, si, and R
 for each Yi ∈ X {
 declare C' = C + Yi
 declare A″ = A' ∪ Yi
 si+1 = new snapshot of the IT infrastructure I, given C', I, and si
 ƒ'(C', R, I, si+1, A″)
 }
 }
 }
}

Fig. 2. Conceptual algorithm for runtime constraint-aware refinement of change plan

In case the plan returned by ƒ' is not refined, the operator will receive a negative
feedback (line 9). This feedback will mean that an actionable and executable workflow
(for the preliminary plan C submitted) could not be achieved. Having this feedback, the
operator could reformulate and resubmit the preliminary plan, therefore starting the
refinement process over again.

Having presented a general view of our solution, in the following subsections we
describe in more detail the recursive search for a refined change plan, and the concept of
snapshots of the IT infrastructure.

4.1 Refinement of the Preliminary Change Plan

Function ƒ' solves the problem of modifying the received preliminary plan C into an
actionable workflow by using the backtracking technique [12]. This technique permits
exploring the space of possible refinements for C, in order to build a refined plan that
meets IT resource constraints. Fig. 3 illustrates the execution of ƒ' using a simplified
example. For the sake of clarity, only two levels of recursion are presented.

The preliminary plan C in Fig. 3 materializes an RFC to install an e-Commerce Web
application, and is composed of the task Install WebApp. This task represents a BlockActivity
derived from the set of actions necessary to install WebApp (arrow 1 in Fig. 3). The first
verification performed by ƒ' (line 13 in Fig. 2) is whether A, the set of activities that remain
unrefined in the received plan C, is empty or not. If A is empty, C is returned back to
ƒ. Considering the example in Fig. 3, ƒ' will receive in its first invocation (line 5) the
set A' = {Install WebApp}.

 A Runtime Constraint-Aware Solution for Automated Refinement of IT Change Plans 75

X =

Sw: WebSrv2Sw: WebSrv

Sw: LibX

Memory: 20 MB

Disk: 56 MB

Swap: 10 MB

Sw
Ch

ec
ks

Install WebApp

Memory: 30 MB

Disk: 100 MB

Swap: 30 MB

Install WebSrv

Sw: LibY

Install LibX

LibY : Sw

Disk: 10 MB

Install LibY

Sw: LibY

Memory: 35 MB

Disk: 50 MB

Swap: 20 MB

Install WebSrv2

WebApp : Sw
SwActions

WebSrv : Sw

WebSrv2 : Sw

Definitive Media Library

Disk: 2 MB

LibX : Sw
Activity
Install

WebSrv2

Activity
Install LibX

Refined Change Plan C'

Activity
Install LibY

Activity
Install

WebApp

Y1 Y2

Activity
Install

WebSrv

Activity
Install LibX

Activity
Install

WebSrv2

Activity
Install LibX

Preliminary Change Plan C Activity
Install

WebApp

Activity
Install LibY X' =

Y'1

(1)

(3)(2)

(4)

Fig. 3. Illustration of the functioning of ƒ'

The algorithm ƒ' starts by extracting an activity ai from A (line 17), generating a
new set A' (which contains all activities in A except ai) (line 18). In our example, ai is
the activity Install WebApp, and the resulting A', an empty set. Subsequently, ƒ' tests
whether ai has computable dependencies (line 19). An activity is said to have
computable dependencies if: (i) the Configuration Item (CI) modified by ai has checks
(SwChecks) mapped in the DML and/or relationships in the IT repository (e.g.,
shutting down service Service1 requires shutting down Service2 and bringing up
Service3), and (ii) the aforementioned dependencies (or checks) are not yet fulfilled in
neither the current state of the IT infrastructure nor the current snapshot.

If ai has no computable dependencies (i.e., if all pre-conditions for the execution of
ai are already satisfied in either the IT or the current snapshot), ƒ' invokes itself
recursively (line 20), in order to refine another activity of the resulting A'. Otherwise,
ƒ' computes the set of arrangements of immediate dependencies (or first level
dependencies) that (i) fulfill the pre-conditions for the execution of ai, and (ii) would
be executable in the current snapshot (considering the requirements of these
arrangements). The arrangements returned from this step will be stored in X (line 22).
In this set, Yi represents each of the arrangements.

In our example, Install WebApp has two computable dependencies described in the
DML: a web server (either WebSvr or WebSrv2) and a generic library (LibX).
Therefore, the computation of X (line 22) yields a set containing two arrangements of
possible immediate dependencies for ai. The first is Y1 = {Install WebSrv, Install
LibX}, and the second is Y2 = {Install WebSrv2, Install LibX}.

76 W.L. da Costa Cordeiro et al.

After that, ƒ' searches for an arrangement Yi in X that leads to a refined change plan
(line 23). Although more than one Yi may lead to a solution, the first Yi to be tested
will compose the refined plan. Considering the example, the first set tested was Y1
(arrow 2 in Fig. 3), while the second was Y2 (arrow 3).

The aforementioned test performed to an arrangement Yi comprises four steps.
First, a new change plan C' is created, by adding the activities in Yi to C (line 24).
Second, a new set of unrefined activities A" is built, as a result of the union of the sets
A' and Yi (line 25). This is necessary because activities in Yi may not be refined yet,
therefore requiring a future processing. Third, the impact of running activities in Yi is
computed (line 26), considering both the current view of the IT infrastructure (from I)
and the changes performed so far (materialized in the snapshot si). The result will be
stored in the snapshot si+1 (in our example, s1 represents an incremental view of the
snapshot s0, after the execution of Install WebSrv, Install LibX, and Install WebApp).
Finally, ƒ' is invoked recursively to refine C", given the newly computed A" and si+1
(line 27).

Observe that the addition of the activities in Yi to the change plan C' (line 24) takes
into account dependency (pre-requisite) information. In our example, since Y1 =
{Install WebSrv, Install LibX} is a set of dependencies of Install WebApp (i.e., Install
WebSrv and Install LibX must be executed prior to Install WebApp), adding these
activities to C" implies in the creation of the transitions li = (Install WebSrv, Install
WebApp) and li+1 = (Install LibX, Install WebApp), and subsequent addition of li and
li+1 to the set of transitions T of the change plan C".

Putting all the pieces together, recursive invocations of ƒ' is the mechanism
employed to navigate through all paths in the activity dependency tree (which
represents the dependencies between software packages captured from the DML).
From the example illustrated in Fig. 3, in the first invocation to ƒ' (line 5) the activity
Install WebApp is processed. In the first-level recursion (arrow 2 in Fig. 3) of ƒ' (line
27), the set of immediate dependencies Y1 is tested. Once the test fails, the recursion
returns, and then the set Y2 is tested (arrow 3). This yields a new first-level recursion
(line 27). Once the test to Y2 is successful, a second-level recursion is performed, now
to process the set Y = {Install LibY} (arrow 4). Since Install LibY has no computable
dependencies, a third-level recursion of ƒ' is performed (line 20). Finally, given that
there are no dependencies left to refine, the recursive refinement is finished, and the
resulting refined plan C' (Fig. 3) is returned back to ƒ' (line 14).

4.2 Snapshots of the IT Infrastructure

The concept of snapshot is the notion upon which the recursive search for a refined
change plan is built. Having the current snapshot si, the refinement algorithm may
foresee the new state of the IT infrastructure after the execution of the actions already
computed and present in the change plan C. Consequently, it will be able to identify
dependencies that are executable, and then continue the refinement process.

Fig. 4 illustrates the snapshots that are created during the refinement process of our
example. In this figure, CS stands for computer system, OS for operating system, and
SwElement for software element. The initial snapshot in our example is s0. The two
arrows from s0 represent two possible state transitions of the IT infrastructure after the
execution of each of the arrangements returned for activity Install WebApp. The first

 A Runtime Constraint-Aware Solution for Automated Refinement of IT Change Plans 77

transition (arrow 1 in Fig. 4) leads to snapshot s1a, which represents the state after the
execution of (the activities in) Y1 plus Install WebApp. The second transition (arrow
2), on the other hand, leads to s1b, which represents the state after the execution of Y2
(plus Install WebApp). The dashed arrow from s1a to s0 represents the failed test made
with Y1 (in this case, ƒ' goes back to the previous snapshot and attempts another
arrangement of immediate dependencies contained in X, Y2). Finally, the transition
from snapshot s1b to s2 (arrow 3) represents the second-level recursion to ƒ', when the
activity Install LibY is added to the partially refined plan C.

IT Infrastructure

HostedFS

Installed
Sw

InstalledOS : OS
- Mem: 256 MB
- Swap: 200 MB

:
SwElement

:
SwElement

: CS : CS

: CS

: FileSystem
- Space: 200 MB

: CS

: OS
- Mem: 206 MB
- Swap: 160 MB

: FileSystem
- Space: 42 MB

:
SwElement

:
SwElement

:
SwElement

: CS

: OS
- Mem: 201 MB
- Swap: 170 MB

: FileSystem
- Space: 92 MB

:
SwElement

:
SwElement

:
SwElement

: CS

: OS
- Mem: 201 MB
- Swap: 170 MB

: FileSystem
- Space: 82 MB

:
SwElement

:
SwElement

:
SwElement

:
SwElement

(3)

(1)

(2)

Elements of the IT that were added

Elements of the IT that were modified

Initial elements of the IT infrastructure

Fig. 4. Evolution of the snapshots as the change plan is refined

Considering the representation of differences, the snapshots in Fig. 4 hold
information about consumed resources and new settings present in the environment.
For example, the reader may note that after the execution of activities in Y2 and Install
WebApp, the IT infrastructure would evolve to a new state, represented by s1b. In this
new state, the computer system cs03 (i) has 108 MB less disk space available, and (ii)
has the newly installed SoftwareElements WebSrv2, LibX, and WebApp.

Also observe that installing new software in a computer potentially increases the
demand for more available physical memory (in the case of cs03, 55 MB more
physical memory and 30 MB more swap space). Although the use of memory and
swap space is flexible, the amount of such resource available for use imposes a limit,
in terms of performance, in the software that may be running concurrently.

It is important to mention that the scope of the proposed snapshots is restricted to
the change planning step. In addition, the information they hold is useful for the
proposed refinement solution only. As a consequence, they do not take place in other
phases of the change management process (e.g., change testing or implementation).

4.3 Considerations on the Proposed Solution

According to the change management process, there are intermediate steps between
the design and the actual implementation of a change. These steps are assessment and
evaluation, authorization and schedule, and plan updates. The time scale to go
through them may range from hours to days (or even weeks). During this period, the

78 W.L. da Costa Cordeiro et al.

IT infrastructure may evolve to a new, significantly different state (for example, due
to other implemented changes). In this context, the runtime constraint-aware plan
generated by our solution may not be executable upon implementation. This issue
(that has been long associated with the change management process) may be tackled
during the plan updates phase. The operator may either manually adjust the plan for
the new IT scenario or re-invoke the proposed algorithm, and document the revised
plan afterwards. From this point on, the time gap to implement the change should be
kept to a minimum.

Another important aspect worth discussing is the refinement flexibility provided to
the algorithm. This is regulated by the degree of detail of the preliminary plan
submitted. A loosely defined preliminary plan tends to allow the algorithm to perform
a broader search within the activity dependency tree. Consider, for example, an RFC
to install a certain web-based application. Assuming this application depends on a
Database Management System (DBMS), the operator may explicitly specify in the
preliminary plan the DBMS to be installed or leave it up to the algorithm. In the latter
case, the choice will be based on the alternative database packages available in the
Definitive Media Library and on the runtime constraints.

To deal with the aforementioned flexibility, one could think of the existence of an
automated decision threshold. This threshold could be specified in terms of number of
software dependency levels. During the refinement process, dependencies belonging
to a level above the configured threshold would be decided by the operator in an
interactive fashion. Otherwise, the algorithm would do this on his/her behalf.
Evaluating the pros and cons of setting a more conservative or liberal strategy is left
for future work.

5 Experimental Evaluation

To prove the conceptual and technical feasibility of our proposal, we have (i)
implemented our solution on top of the CHANGELEDGE system [5], and (ii) conducted
an experimental evaluation considering the design and refinement of changes
typically executed in IT infrastructures. Due to space constraints, we focus our
analysis on five of these changes. As a result of the refinement of preliminary plans
into actionable workflows, we have observed the correctness and completeness of the
produced workflows (characterizing a more qualitative analysis of the proposed
solution), in addition to performance indicators (quantitative analysis).

The IT infrastructure employed is equivalent to the environment of a research &
development department of an organization. It is composed of 65 workstations,
located in seven rooms, running either Windows XP SP2 or GNU/Linux. The
environment is also composed of four servers, Server1, Server2, Server3, and Server4,
whose relevant settings to the context of our evaluation are presented in Table 1.
Finally, the content of the Definitive Media Library is summarized in Table 2.

Table 1. Server settings

Server Name Installed Operating System Available Disk Space Total Physical Memory
Server1 None 20,480 MB 2,048 MB
Server2 Windows 2003 Server 71,680 MB 4,096 MB
Server3 Debian GNU/Linux 51,200 MB 4,096 MB
Server4 Debian GNU/Linux 102,400 MB 4,096 MB

 A Runtime Constraint-Aware Solution for Automated Refinement of IT Change Plans 79

Table 2. System requirements for the software present in the DML 1

Software Name Disk Space Memory Software Dependencies
e-Commerce Web App2 512 MB 128 MB SQL Server and Internet Information Server (IIS)

IIS 5.1 15 MB 16 MB Windows XP Service Pack 2 (Win XP SP2)
IIS 7.0 15 MB 16 MB Windows Vista Service Pack 1 (Win Vista SP1)

.Net Framework 3.5 280 MB 256 MB Internet Explorer (IE), IIS, and Win XP SP2
SQL Server 2005 425 MB 512 MB IE, Win XP SP2, and .Net Framework
SQL Server 2008 1,460 MB 1,024 MB IE and Win Vista SP1

IE 7 64 MB 128 MB Win XP SP2
Windows XP SP 2 1,800 MB - Windows XP

Windows Vista SP 1 5,445 MB - Windows Vista
Windows XP 1,500 MB 128 MB -

Windows Vista 15,000 MB 1,024 MB -

In regard to the submitted RFCs, the first two have as objective the installation of
an e-Commerce web application (WebApp), one of them having Server1 as target CI
and the other, Server3. The third RFC comprises two operations: one to install and
configure a network monitoring platform on Server4, and the other to install and
configure an authentication server on Server3. The fourth RFC comprises the
migration of the entire system installed on Server3 to Server4. Finally, the fifth RFC
consists in updating software packages installed in 47 out of the 65 stations that
compose the IT infrastructure (typical procedure in several organizational contexts).

A partial view of the actionable workflow generated from the first RFC is
presented in Fig. 5. Decision structures within the workflow were omitted for the sake
of legibility. Observe that the linkage between the activities present in the workflow
reflect the dependencies between the installed packages. For example, the e-
Commerce Web application depends on services provided by the SQL Server 2005
Database Management System and Internet Information Server 5.1. SQL Server 2005,
in its turn, depends on the previous installation of the .Net Framework 3.5.

The reader may also note that implementing this actionable workflow requires,
considering the information in Table 2, about 4,596 MB of disk space, and a
minimum of 1,168 MB of available physical memory, from Server1. Since this server
has sufficient disk space for the installation procedures present in the workflow, the
implementation of this RFC is likely to succeed. Moreover, all the installed software
should execute normally, given that the target server has sufficient physical memory.

Activity
Download
Service
Pack 2

Activity
Invoke SP
2 Installer

Activity
Invoke
.Net 3.5
Installer

Activity
Insert SQL
Server
2005 CD

Activity
Invoke SS
05 Installer

Activity
Configure
Domain
Password

Activity
Download
.Net 3.5

Activity
Invoke IIS
5.1
Installer

Activity
Download
Internet
Explorer 7

Activity
Invoke IE
7 Installer

Activity
Modify IIS
5.1 Cfg for
WebApp

Activity
Modify SS
05 Cfg for
WebApp

Activity
Invoke
WebApp
Installer

Activity
Reboot
Computer

Activity
Insert
Windows
XP CD

Activity
Invoke
WinXP
Installer

Activity
Reboot
Computer

Activity executed automatically

Activity executed by a human operator

Fig. 5. Partial view of the actionable workflow for the installation of WebApp

1 Source: http://www.microsoft.com
2 The e-Commerce Web Application system requirements were estimated.

80 W.L. da Costa Cordeiro et al.

An alternative plan to the one present in Fig. 5 is the one in which SQL Server
2008 is installed instead of SQL Server 2005, and Internet Information Server 7.0,
instead of IIS 5.1. As a consequence, Windows Vista and Windows Vista Service Pack
1 would be installed as well, instead of Windows XP Service Pack 2 and Windows XP,
due to the pre-requisite information. For the same reason, the installation of .Net
Framework 3.5 would not be present in this alternative plan. This plan would require
22,496 MB of available disk space from Server1 to be executable, amount beyond the
20,480 MB currently available. Therefore, it would not be generated by our solution,
since it is impractical considering the imposed resource constraints.

Table 3. Complexity of the change scenarios considering the number of activities and affected
configuration items (pre and post refinement)

Preliminary plan Refined plan
Scenario

Activities Affected
Stations

Affected
OSes

Affected
Software Activities Affected

Stations
Affected

OSes
Affected
Software

1 1 1 0 1 19 1 1 6
2 1 1 0 1 23 1 1 22
3 4 2 0 2 30 2 1 26
4 46 3 0 5 182 3 1 47
5 235 47 0 6 613 47 2 29

Table 3 presents, synthetically, the computational processing spent by the
CHANGELEDGE system to refine and generate actionable workflows for the five RFCs.
We highlight Table 3 the number of activities, as well as the number of computer
systems (stations), operating systems, and software affected in both the preliminary
(specified by a human operator) and refined plans (generated by the system). Taking
scenario 4 as example, one may note that the final change plan has 182 activities,
automatically refined from a 40% smaller plan.

The performance of the CHANGELEDGE system to generate the actionable workflows
characterized above is presented in Table 4. Our experiments were conducted on a
computer equipped with a Pentiumtm Centrino processor, 1.7 GHz of CPU clock, 2,048
KB of cache, and 512 MB of RAM memory. The system has performed satisfactorily,
demanding from a few hundreds of milliseconds (544) to a few dozens of seconds (57)
to generate the aforementioned plans. We have also calculated a confidence interval of
95% for the measured times, considering 10 repetitions of the refinement process for
each change document. As shown in Table 4, we expect the refinement time to vary
minimally, for each scenario. The results show that our solution not only generates
complete and correct plans, but has potential to reduce, in a significant way, time and
efforts demanded to this end.

Table 4. Refinement processing time

Confidence Interval of the Refinement Time Scenario Refinement Time (ms)
Lower Bound (ms) Upper Bound (ms)

1 544 535 552
2 942 937 947
3 1,754 1,736 1,771
4 3,879 3,811 3,947
5 57,674 57,482 57,866

 A Runtime Constraint-Aware Solution for Automated Refinement of IT Change Plans 81

6 Conclusions and Future Work

Change design is an undoubtedly fundamental building block of the IT change
management process. However, existing computational solutions to help the
generation of consistent, actionable change plans are still maturing and need more
work so as to eliminate some usual simplification assumptions. In this paper, we have
proposed a solution to automate the generation of change plans that take into account
runtime resource constraints. This is a very important aspect to be considered in order
to compute feasible plans, i.e., plans in which no technical or human resource
constraint is going to be violated during the execution of the plan.

The obtained results, although not exhaustive, were quite positive. The actionable
workflows generated automatically from preliminary plans (designed by human
operators) have respected the restrictions imposed by the target environment (e.g.,
memory and disk space constraints). Furthermore, the refinement of change plans ran
on the order of hundreds of milliseconds to dozens of seconds. This time is certainly
of lower magnitude than the time that would be required by an experienced operator
to accomplish the same task.

As future work we intend to investigate decision support mechanisms to help
operators understand the trade-offs between alternative change designs. In addition,
since our problem of IT change design concerns the realization of action sequences
from a description of the goal and an initial state of the IT environment, we plan to
explore how IT change design can take advantage of AI planning techniques [13].
There may be techniques from this field that our approach could benefit from,
whether they are on the topic of knowledge representation, planning algorithms, or
the integration of planning and scheduling.

References

1. Information Technology Infrastructure Library. Office of Government Commerce (OGC)
(2008), http://www.itil-officialsite.com

2. IT Infrastructure Library: ITIL Service Transition, version 3. London: The Stantionery
Office, p. 270 (2007)

3. Keller, A., Hellerstein, J.L., Wolf, J.L., Wu, K.-L., Krishnan, V.: The CHAMPS system:
change management with planning and scheduling. In: IEEE/IFIP Network Operations and
Management Symposium, vol. 1, pp. 395–408, 19–23 (2004)

4. Oppenheimer, D., Ganapathi, A., Patterson, D.A.: Why do internet services fail, and what
can be done about it? In: 4th Usenix Symposium on Internet Technologies and Systems,
Seattle, USA (2003)

5. Cordeiro, W., Machado, G., Daitx, F., et al.: A Template-based Solution to Support
Knowledge Reuse in IT Change Design. In: IFIP/IEEE Network Operations and
Management Symposium, Salvador, Brazil, pp. 355–362 (2008)

6. Dumitraş, T., Roşu, D., Dan, A., Narasimhan, P.: Ecotopia: An Ecological Framework for
Change Management in Distributed Systems. In: de Lemos, R., Gacek, C., Romanovsky,
A. (eds.) Architecting Dependable Systems IV. LNCS, vol. 4615, pp. 262–286. Springer,
Heidelberg (2007)

82 W.L. da Costa Cordeiro et al.

7. Trastour, D., Rahmouni, M., Bartolini, C.: Activity-based scheduling of IT changes. In:
First ACM International Conference on Adaptive Infrastructure, Network and Security,
Oslo, Norway

8. Sauvé, J., Santos, R., Almeida, R., Moura, A.: On the Risk Exposure and Priority
Determination of Changes in IT Service Management. In: Distributed Systems: Operations
and Management, San José, CA, pp. 147–158 (2007)

9. Machado, G., Cordeiro, W., Daitx, F., et al.: Enabling Rollback Support in IT Change
Management Systems. In: IFIP/IEEE Network Operations and Management Symposium,
Salvador, Brazil, pp. 347–354 (2008)

10. Distributed Management Task Force: Common Information Model,
http://www.dmtf.org/standards/cim

11. The Workflow Management Coalition Specification: Workflow Process Definition
Interface - XML Process Definition Language,
http://www.wfmc.org/standards/docs/TC-1025_10_xpdl_102502.pdf

12. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT
Press, McGraw-Hill (2001) ISBN 978-0-262-53196-2

13. Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J., Wu, D., Yaman, F.: SHOP2: An
HTN Planning System. Journal of Artificial Intelligence Research 20, 379–404 (2003)

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 83–94, 2008.
© IFIP International Federation for Information Processing 2008

SYMIAN: A Simulation Tool for the Optimization of
the IT Incident Management Process

Claudio Bartolini1,2, Cesare Stefanelli2, and Mauro Tortonesi2

1 HP Research Labs, Palo Alto, CA, USA
claudio.bartolini@hp.com

2 Engineering Department, University of Ferrara, Ferrara, Italy
{cstefanelli,mtortonesi}@ing.unife.it

Abstract. Incident Management is the process through which IT support
organizations manage to restore normal service operation after a service
disruption. The complexity of IT support organizations makes it extremely hard
to understand the impact of organizational, structural and behavioral
components on the performance of the currently adopted incident management
strategy and, consequently, which actions could improve it. This paper presents
SYMIAN, a decision support tool for the improvement of incident management
performance. SYMIAN is a discrete event simulator that permits to test possible
corrective measures for the IT support organization before the expensive actual
implementation. SYMIAN models the IT support organization as a queuing
system, considering both the time spent by operators working on incidents and
the time spent when waiting for operator's availability. Experimental results
show the SYMIAN effectiveness in the performance analysis and optimization
of the incident resolution time for a fictitious organization designed according
to real-life experiences.

Keywords: Business-driven IT management (BDIM), decision support,
Information Technology Infrastructure Library (ITIL), IT service management,
incident management.

1 Introduction

The IT Infrastructure Library (ITIL [1]) is a comprehensive set of concepts and
techniques for managing IT infrastructure, development, and operations. Developed
by the UK Office of Government Commerce (OGC), ITIL is today the de facto best
practice standard for IT service management. Among the processes that ITIL defines,
Incident Management is the process through which IT support organizations manage
to restore normal service operation after a disruption, as quickly as possible and with
minimum impact on the business.

Like other IT service operation processes, the incident management process has
objectives that are organization-specific and defined by the business management, e.g.,
compliance with SLAs for some (premium) customers, minimization of economic cost
in restoring service, or overall minimization of service disruption interval. The
achievement of business objectives in turn requires, at the business management level,
the definition and implementation of strategies in incident management.

84 C. Bartolini, C. Stefanelli, and M. Tortonesi

IT support organizations need to assess their performance in dealing with service
disruptions, in order to verify the effectiveness of their incident management
strategies and to evaluate possible alternative strategies. Frameworks such as ITIL
and COBIT [2] help by defining objectives for incident management, and usually
linking them to simple high-level organization-wide performance metrics such as the
mean time to incident resolution. However, the performance analysis of large IT
support organizations is non-trivial and might involve a large set of complex and
lower-level metrics.

The complexity of IT support organizations and the wide set of metrics to consider
make it extremely hard to assess the performance of currently adopted incident
management strategies. The evaluation of alternative strategies is even more difficult,
as the estimation of potential improvements in incident management requires both an
accurate modeling of the IT organization and the identification of critical parameters
at the organizational, structural, and behavioral level on which to operate. In
particular, the realignment of incident management strategies has to consider a large
set of possible operations, such as restaffing (the restructuring of the support
organization by increasing or cutting staffing levels, or the transfer of operators
around support groups, possibly on retraining), and the implementation of different
incident assignment and/or prioritization policies.

The complexity of the incident management domain makes it impossible to treat
the performance optimization problem analytically, and calls for simulation-based
approaches. In this context, the paper presents SYMIAN (SYmulation for Incident
ANalysis), a decision support tool based on discrete event simulation. SYMIAN is
designed to evaluate and to optimize the performance of the incident management
function in IT support organizations.
SYMIAN models the IT support organization as a queuing system, an approach that

is particularly well suited for the incident management application domain. In fact, it
allows to distinguish the two main components of the time to resolve an incident:
working-time, and waiting-time. Working-time is the time spent by operators working
on trouble-tickets (incidents in ITIL parlance). Waiting-time is the time spent by
trouble-tickets in the queues waiting for technicians to become available to operate
over them or to escalate them to other parts of the organization.
SYMIAN allows users to build an accurate model of a real IT support organization

and to verify its performance. In addition, SYMIAN permits to play out what-if
scenarios, such as adding technicians to a given support group, merging support
groups together, experimenting with alternative incident routing and/or prioritization
policies, before going through the expensive and time-consuming process of
implementing the actual corrective measures.

The SYMIAN tool has been applied for the performance improvement of several case
studies representative of the complexity of real-life IT support organizations. The results
demonstrated the effectiveness of the SYMIAN-based performance analysis and
optimization process.

The paper is structured as follows. Section 2 describes the abstraction of the incident
management process and the specification of the associated decision problem. Section 3
introduces the SYMIAN tool and section 4 sketches both its architecture and implemen-
tation. Section 5 presents experimental results obtained by the SYMIAN adoption in the
context of a realistic case study. Section 6 reviews related work and compares our

 SYMIAN: A Simulation Tool 85

approach with it. Finally, Section 7 provides conclusive remarks and future work
considerations.

2 Incident Management in IT Support Organizations

A typical IT support organization consists of a network of support groups, each
comprising of a set of operators, with their work schedule. Support groups are divided
into support levels (usually three to five), with lower level groups dealing with
generic issues and higher level groups handling technical and time-consuming tasks.
Support groups are further specialized by category of incidents that they deal with
(network, server, etc…) and divided into geographies, to ensure prompt incident
response (see Figure 1).

In particular, the Help Desk represents the interface for customers reporting an IT
service disruption. In response to a customer request, the Help Desk “opens” an
incident, sometimes called trouble-ticket or simply ticket. The incident is then
“assigned” to a specific support group, whose technicians either fully repair the
incident or “reassign” it to a different support group (usually escalating to a higher
support level). As a result, an incident might have different states and be handled by
different support groups throughout its lifetime. At each of these steps, the incident
record is updated with the pertinent information, such as current state and related
service restoration activity. If, for some reason, customers request the organization to
stop working on the incident, the incident is placed in a “suspended” state to avoid
incurring into SLO (Service Level Objective) penalties. Once the disruption is
repaired, the ticket is placed in “closed” state until the end-user confirms that the
service has been fully restored. In this case, the incident is “resolved” and its lifecycle
ends (see Figure 2).

The complexity of IT support organizations hinders the verification of the align-
ment of current organizational, structural, and behavioral processes with the
strategic objectives defined at the business management level. In fact, the

Fig. 1. Conceptual model of the IT support organization for incident management

86 C. Bartolini, C. Stefanelli, and M. Tortonesi

Fig. 2. Incident lifecycle

performance assessment of the incident management function is a very complex
procedure which involves the business impact evaluation of the current incident
management strategy, through the definition of a set of metrics that allow the
objective measurement of performance indicators [3, 4]. Performance analysis and
optimization are also organization-specific procedures, since the business impact of
service disruptions, and consequently the metrics to consider, vary with the nature of
the services and the types of disruptions that occur.

This paper does not consider the processes of business impact analysis and
performance metric selection, but instead focuses on the optimization of the
organizational, structural and behavioral processes for incident management
according to a specified set of metrics. Hence, without loss of generality, it considers
for performance optimization the ITIL-recommended objective of service disruption
time minimization, and two fundamental and complementary metrics: Mean Time To
(incident) Resolution (MTTR) and Mean Incidents Closed Daily (MICD).

MTTR and MICD are organization-wide metrics, and as such they provide little
insight on the internal dynamics of the organization. A comprehensive performance
analysis of the incident management process has to delve into a deeper level of detail.
More specifically, it needs to consider both inter- and intra- support groups dynamics,
along two orthogonal dimensions: the effectiveness of incident routing and the
efficiency of every single support group in dealing with the incidents. This requires
taking into consideration other performance metrics which can evaluate the
organization capability to directly forward incidents to the best equipped support
groups and the optimality of staff allocation and operator work shift scheduling.

While the application of specific metrics for the performance evaluation of real IT
support organization is almost straightforward, it is extremely difficult to evaluate the
impact of changes in the organization on these metrics. As a result, the performance
assessment of alternative organizations calls for decision support tools enabling what-
if scenario analysis.

 SYMIAN: A Simulation Tool 87

3 The SYMIAN Decision Support Tool

SYMIAN is a decision support tool for the performance analysis and optimization of
the incident management function in IT support organizations. In particular, SYMIAN
exploits a discrete event simulator to reproduce the behavior of IT organizations and
to evaluate their incident management performance.
SYMIAN enables its users to play out what-if scenarios, allowing them to assess

likely improvements in performance without having to go through the expensive and
time-consuming process of implementing organizational, structural and behavioral
changes. More specifically, SYMIAN allows users to incrementally specify the set of
changes to apply to the current organization in order to define an alternative
organization configuration that will be tested on a set of performance metrics. For
instance, SYMIAN allows modifications such as re-staffing support groups, merging
support groups together, experimenting with alternative work shifts, incident routing
and/or prioritization policies, or other such actions. SYMIAN guides users all along
the optimization process, providing ad hoc visualization of simulation results and, in
case a limited set of predefined metrics such as MTTR is considered, explicit tips for
the modification of some organization parameters such as the staff allocation.
SYMIAN models the IT support organization (in terms of the number of support

groups, the support level, the set of operators, the operator work shifts, the
relationships with other support groups, etc.) and permits to define the set of
performance metrics to consider for the optimization. SYMIAN then simulates the
organization behavior considering a user specified set of incidents, evaluating the
desired performance metrics.

At its core, SYMIAN implements an accurate model of the IT support organization.
Modeling the incident management function of IT support organizations is an arduous
task. In particular, the creation of a realistic model poses two main challenges: the
complexity of the IT support organization, and the extremely high volume of
incidents and service calls that a typical IT support organization experiences. In
addition, the effective adoption of an IT support organization in the context of a
decision support tool poses significant constraints on its computational complexity.
SYMIAN’s model is complex enough to capture the dynamics of a real IT support
organization, yet simple enough to allow for an efficient implementation and a user-
friendly configuration interface.
SYMIAN models the IT support organization as a queuing system. More

specifically, the simulated organization behavior emerges from the interaction of its
support groups, which are the basic elements of the SYMIAN queuing model. In
particular, each support group has a set of operators and a queue of incoming tickets.
In turn, every operator has a work shift and is unavailable when off duty. When an
operator is idle, he picks the ticket on top of the queue and starts working on it until
the operator shift ends or the incident is resolved or cannot be further processed and
needs to be forwarded to another support group. In the first case, the operator stops
working on the ticket and puts it back in the incoming queue. The ticket will later be
extracted from the queue following a configurable prioritization policy. Upon incident
closure or escalation, the operator takes another incident from the incoming queue or
remains idle if no more incidents exist.

88 C. Bartolini, C. Stefanelli, and M. Tortonesi

To model the relationships between support groups, and consequently the routing
of incidents through the simulated organization, SYMIAN uses a stochastic transition
matrix. For each support group, the transition matrix describes the probability that
incidents of any given category will be forwarded to a specific support group. This
model builds on top of the assumption of memory-less incident routing, i.e., the
probability of incident transition to a specific support group is independent of the
history of re-assignments that the incident went through up to that moment. While this
assumption allows for a considerable simplification of the model, extensive tests
performed with real-life data (using the same dataset as in [5]) on the SYMIAN tool
demonstrated that the model behaves with excellent fidelity. A full discussion of the
SYMIAN model validation is beyond the scope of the present paper.

Incidents are injected into the system by an incident generation entity which
models the aggregate behavior of customer incident reports. An accurate model of the
incident arrival/generation process is of critical importance for a realistic simulation.
To ensure a realistic input for the simulation, one possibility is to use traces of
incidents obtained from the analysis of the operational logs in real IT support
organizations. However, considering only real incident traces would limit the
applicability of the simulative approach to a small set of predefined input, thus
preventing its use to verify how the modeled organization would behave under heavy
incident load or under a specific set of incidents following a given inter-arrival or
severity pattern. As a result, there is the need to consider synthetic incident generation
according to configurable stochastic patterns.

To this end, SYMIAN allows for a highly configurable stochastic incident
generation. More specifically, SYMIAN divides incidents in several categories,
according to the amount of work they require for service restoration at every support
level. In addition, every incident category has several levels of severity, with an
increasing (average) time to incident closure or escalation to a higher level support
group. Every specific category and severity couple is assigned a random probability
distribution which allows the configuration of the amount of work required by
incidents. Incident inter-arrival time is also stochastically modeled according to a
random variable distribution.

4 SYMIAN: Architecture and Implementation

The architecture of the SYMIAN tool is depicted in Figure 3, that shows its main
components: the User Interface (UI), the Configuration Manager (CM), the Simulator
Core (SC), the Data Collector (DC), and the Trace Analyzer (TA).

The User Interface component allows users to load simulation parameters from a
file, to change current simulation parameters, to save current simulation parameters to
file, and to start simulations. UI provides both an interactive textual and a non-
interactive command-line interface.

The Configuration Manager takes care of the simulator configuration, enforcing
the user-specified behaviors, e.g., with regards to verbosity of tracing information,
and simulator parameters, e.g., the characterization of incident generation, the number

 SYMIAN: A Simulation Tool 89

Fig. 3. Architecture of the SYMIAN tool

and size of support groups, and the relationships between support groups, in the
domain specific model recreated by the Simulator Core component.

The Simulator Core component implements the domain specific model. SC has
three sub-components: Incident Generator (IG), Incident Response Coordinator
(IRC) and Incident Processor (IP). The Incident Generator generates incidents
according to a random distribution pattern which follows user-specified parameters,
and injects them into the system. The Incident Response Coordinator receives
incidents and dispatches them to the processing domain entities (support groups),
which are in turn implemented by the Incident Processor.

The Data Collector component collects data from the simulation that can be post-
processed to assess the performance of incident management in the modeled
organization. In particular, DC performs an accurate monitoring of support group
status, in terms of incoming incident queue size and operator activity, and a careful
tracking of incidents status. DC saves its simulation results data in a file that users can
then analyze with the Trace Analyzer component.
SYMIAN is implemented in the Ruby (http://www.ruby-lang.org/) programming

language. Ruby was chosen for its remarkable extensibility and its support for meta-
programming. The capability to easily redefine the behavior of time-handling classes
in the Ruby standard library allowed the implementation of a simulated clock which
models the flow of simulation-time in a very similar way to what happens in real life.
In addition, Ruby’s meta-programming enabled the definition of domain-specific
languages and their use in the realization of several simulator components. These
have proved to be particularly effective development techniques.

The availability of a wide range of high-quality scientific libraries was also a major
reason behind the adoption of Ruby. In particular, SYMIAN exploits the GNU
Scientific Library (GSL), via the Ruby/GSL bindings, for high-quality random
number generation, and it integrates with the Gnuplot data visualization tool to plot
some of the simulation results. Finally, SYMIAN exploits Ruby facilities to import
configuration parameters and export simulation results in the XML, YAML, and CSV
formats, in order to ease integration with external software for the automation of
multiple simulation runs and with scientific tools for post processing of simulation
results.

90 C. Bartolini, C. Stefanelli, and M. Tortonesi

5 Experimental Results

This section presents an experimental evaluation of the SYMIAN effectiveness in the
performance analysis and optimization of the incident management process. More
specifically, SYMIAN is applied to minimize the service disruption time in the
context of a case study IT support organization, with the constraint of preserving the
current number of operators.

As a result, the objectives of the performance improvement process are the
maximization of the mean incidents closed daily (MICD) metric, as well as the
minimization of the mean time to resolution (MTTR) metric.

The target of this experimental evaluation is the fictitious incident management
organization INCS’R’US, which is composed of 3 support levels (0-2), 31 support
groups, and 348 operators. The complete characterization of the 31 support groups is
presented in Table 1. To limit the complexity of the case study, the routing of
incidents in the INCS’R’US organization is assumed to be unidirectional, that is
support groups of level N can only receive incidents from support groups of level N-1
and escalate incidents to support groups of level N+1. In addition, an equal
probability of incident escalation to each of the support groups of immediately higher
level is assumed.
INCS’R’US deals with incidents modeled according to the characterization

provided in Table 2. Incidents have 4 categories (A-D) and 3 severity levels (1-3). For
every specific combination of incident category and severity, the amount of work that
incidents require for service restoration, at every support level, follows a uniform
random probability distribution. In Table 2, the abbreviated notation U(α), where α >
0, represents the uniform random variable distribution in the [0, α] interval.

Table 1. Support group characterization in the Incs’R’Us incident management organization

Support Level Support Group (Number of Operators) Work Shift

(25 operators) 7AM-3PM UTC

(25 operators) 4AM-12PM UTC

(25 operators) 12PM-8PM UTC

0 Help Desk (75)

(10 operators) 5PM-1AM UTC

SG1 (15), SG9 (12), SG15 (13), SG18 (5) 7AM-3PM UTC

SG2 (7), SG10 (7), SG13 (7) 8AM-4PM UTC

SG3 (15), SG19 (12) 12PM-8PM UTC

SG4 (4), SG11 (6) 2PM-10PM UTC

SG5 (14), SG16 (12), SG20 (6) 4AM-12PM UTC

SG6(12), SG17 (9) 3AM-11AM UTC

SG7 (5), SG14 (5) 5PM-1AM UTC

1

SG8 (6), SG12 (8) 9AM-5PM UTC

SG21 (9), SG25 (10) 2PM-10PM UTC

SG22 (8), SG26 (8) 9AM-5PM UTC

SG23 (7), SG27 (7) 8AM-4PM UTC

SG24 (9), SG28 (10) 5PM-1AM UTC

SG29 (9) 3AM-11AM UTC

2

SG30 (6) 4AM-12PM UTC

 SYMIAN: A Simulation Tool 91

Table 2. Stochastic characterization of the amount of work time (in seconds) required for
incident closure

 Severity Level 1 Severity Level 2 Severity Level 3
Category A L0: U(300)

L1: 0
L2: 0

L0: U(900)
L1: U(240)
L2: 0

L0: U(1800)
L1: U(900)
L2: U(120)

Category B L0: U(300)
L1: U(1200)
L2: U(120)

L0: U(600)
L1: U(2400)
L2: U(240)

L0: U(900)
L1: U(3600)
L2: U(480)

Category C L0: U(600)
L1: U(150)
L2: U(1200)

L0: U(900)
L1: U(300)
L2: U(2400)

L0: U(1200)
L1: U(450)
L2: U(3600)

Category D L0: U(900)
L1: U(1200)
L2: U(1200)

L0: U(1800)
L1: U(4800)
L2: U(4800)

L0: U(2400)
L1: U(6000)
L2: U(6000)

Category A models incidents which mostly require work at support level 0, and a
limited amount of work at higher support levels. Category B and C model incidents
which require work at every support level, but mostly at support level 1 and 2
respectively. Category D models incidents which require a significant amount of work
at every support level. For every incident, category and severity level are randomly
chosen, with uniform probability, at generation time. Incident inter-arrival times
follow a random exponential probability distribution with an average of 30 seconds.

A first simulation was conducted to evaluate the performance of the current
organization. The simulation covered three whole days of simulated time, starting
from 2PM UTC. The first 24 hours of simulated time were not considered for the
evaluation of the performance metrics, and were introduced only to prime the
simulation environment to avoid taking measurements on a cold start. Table 3 (first
column) provides the values for the MICD and MTTR performance metrics obtained
from the simulation. The table also shows the Mean Work Time (MWT) metric,
defined as the mean work time per closed incident, as an indication on the amount of
work spent on service restoration.

By analyzing the variation of the incident queue size at every support group using
both SYMIAN graphical visualization and time series analysis functions, it was easy to
realize that support groups SG1, SG4, SG7, SG8 and SG14 at support level 1 and
support group SG30 at support level 2 were a major performance bottleneck, while
the Help Desk and support groups SG3 and SG17 were oversized. As an example of
the effectiveness of visual analysis to locate performance bottlenecks, Figure 4 (a)
plots the variation of incident queue size at support group SG30.

To improve the organization performance, 8 operators were transferred from the
Help Desk to support groups SG1, SG4, SG7, and SG8 (2 operators for each group), 3
operators were transferred from support group SG3 to support group SG14, and 2
operators were transferred from support group SG17 to support group SG30. A new
simulation was then launched to assess the performance of the new organization.
Table 3 (second column) and Figure 4 (b) provide respectively the performance
metrics and the variation of incident queue size at support group SG30 for the new
simulation.

92 C. Bartolini, C. Stefanelli, and M. Tortonesi

Table 3. Performance metrics from the first and second simulation

 First simulation Second simulation
Total incidents generated 8609 8609
Incidents generated after warm-up 5728 5728
MICD 1811 2002
MTTR (in seconds) 53423 47047
MWT (in seconds) L0: 508, L1: 809, L2: 784 L0: 506, L1: 811, L2: 773

Fig. 4. Incident queue size at support group SG30 during the first (a) and second (b) simulation

The results of the second simulation proved that the reallocation of operators was
very effective in improving the whole system performance. In particular, the
INCS’R’US organization exhibited a 10.5% improvement of the MICD and a 11.9%
decrease of the MTTR.

Although the target of the previous performance optimization experiment is a
fictitious organization, the case study was carefully designed to be representative of
the complexity of real-life IT organizations. Therefore, the simulation results
demonstrate the effectiveness of the SYMIAN tool for the performance optimization
of the incident management function in IT support organizations.

6 Related Work

The present work contributes to the up and coming research domain of Business-
driven IT management (BDIM), which builds on the tradition of the research in
network, system and service management. BDIM has been defined as “the application
of a set of models, practices, techniques and tools to map and to quantitatively
evaluate interdependencies between business performance and IT solutions – and
using the quantified evaluation – to improve the IT solutions’ quality of service and
related business results”. For a thorough review of BDIM, see [6].

Some notable early works in BDIM include applications to change management
[7, 8, 9], capacity management [10, 11, 12], network security [13], and network
configuration management [14]. All these research efforts (possibly with the

 SYMIAN: A Simulation Tool 93

exception of [14]), limit their scope to the technology dimension of IT management,
thereby focusing on the fine tuning of systems configuration and on the introduction
of automation as means to improve the IT management processes.

The present work, instead, belongs to a recently emerged research area that focuses
on the other two fundamental dimensions of IT management: people and processes.
The interest on this topic arose as researchers started analyzing the relationships
between people, processes and technological optimization and the impact of
automation and process complexity on labor cost. As a representative example, we
cite Diao et al.’s recent research effort addressing the very important question of
when does it make sense to automate processes based on metrics of process
complexity [15, 16]. The main difference between our approach and theirs is that our
focus is in achieving significant improvements in the performance of the organization
through decision support and simulation techniques. In this context, in previous works
we have extensively studied the business impact of incident management strategies
[3, 4], using a methodology that moved from the definition of business-level
objectives such as those commonly used in balanced scorecards [17]. With respect to
those works, this paper follows a novel approach that the first time proposes and
implements detailed modeling of the inner functioning of the IT support organization
to support what-if scenario analyses.

The analysis of the incident management process and the IT support organization
model that we present in this paper share is founded on our work presented in [5].
However, here we push our modeling effort far beyond the definition of metrics for
the performance assessment of IT support organizations that we conducted in [5], all
the way to the design and implementation of the SYMIAN decision support tool.

7 Conclusions and Future Work

The performance optimization of large-scale IT support organization can be
extremely complex and might require additional help from decision support tools.
This paper presented the SYMIAN tool for the performance optimization of incident
management in IT support organizations. The application of SYMIAN in case studies
expressively designed to capture the complexity of real-life IT support organizations
demonstrated the tool effectiveness in the difficult performance analysis and
improvement process.

Future versions of SYMIAN will be complemented with the application of
automated techniques for the optimization of parameters, e.g., staff allocation, in the
context of specified performance metrics. The IT support organization model
implemented in SYMIAN is also currently being extended to consider operators with
skills that skew their expected working time for incidents of a given category and
priority policies in extracting incidents from queues.

Finally, a more comprehensive version of the SYMIAN tool will link performance
optimization metrics with key performance indicators or impact metrics that are
meaningful at the business level.

94 C. Bartolini, C. Stefanelli, and M. Tortonesi

References

[1] IT Infrastructure Library, ITIL Service Delivery and ITIL Service Support, OGC, UK
(2003)

[2] IT Governance Institute, COBIT 3rd edns (2000),
http://www.isaca.org/COBIT.htm

[3] Bartolini, C., Sallé, M.: Business Driven Prioritization of Service Incidents. In:
Proceedings of Distributed Systems Operations and Management (DSOM) (2004)

[4] Bartolini, C., Sallé, M., Trastour, D.: IT Service Management driven by Business
Objectives – An Application to Incident Management. In: Proc. IEEE/IFIP Network
Operations and Management Symposium (NOMS 2006) (April 2006)

[5] Barash, G., Bartolini, C., Wu, L.: Measuring and Improving the Performance of an IT
Support Organization in Managing Service Incidents. In: Proc. 2nd IEEE Workshop on
Business-driven IT Management (BDIM 2007), Munich, Germany (2007)

[6] Moura, A., Sauvé, J., Bartolini, C.: Research Challenges of Business–Driven IT
Management. In: Proceedings of the 2nd IEEE / IFIP International Workshop On
Business-Driven IT Management (BDIM 2007), Munich, Germany (2007)

[7] Keller, A., Hellerstein, J., Wolf, J.L., Wu, K., Krishnan, V.: The CHAMPS System: Change
Management with Planning and Scheduling. In: Proceedings of the IEEE/IFIP Network
Operations and Management Symposium (NOMS 2004). IEEE Press, Los Alamitos (2004)

[8] Sauvé, J., Rebouças, R., Moura, A., Bartolini, C., Boulmakoul, A., Trastour, D.:
Business-driven decision support for change management: planning and scheduling of
changes. In: State, R., van der Meer, S., O’Sullivan, D., Pfeifer, T. (eds.) DSOM 2006.
LNCS, vol. 4269. Springer, Heidelberg (2006)

[9] Trastour, D., Rahmouni, M., Bartolini, C.: Activity-Based Scheduling of IT Changes. In:
Bandara, A.K., Burgess, M. (eds.) AIMS 2007. LNCS, vol. 4543, pp. 73–84. Springer,
Heidelberg (2007)

[10] Aiber, S., Gilat, D., Landau, A., Razinkov, N., Sela, A., Wasserkrug, S.: Autonomic Self–
Optimization According to Business Objectives. In: Proceedings of the International
Conference on Autonomic Computing (2004)

[11] Menascé, D., Almeida, V.A.F., Fonseca, R., Mendes, M.A.: Business-Oriented Resource
Management Policies for e-Commerce Servers. In: Performance Evaluation, vol. 42, pp.
223–239. Elsevier Science, Amsterdam (2000)

[12] Sauvé, J., Marques, F., Moura, A., Sampaio, M., Jornada, J., Radziuk, E.: SLA Design
from a Business Perspective. In: Schönwälder, J., Serrat, J. (eds.) DSOM 2005. LNCS,
vol. 3775. Springer, Heidelberg (2005)

[13] Wei, H., Frinke, D., Carter, O., et al.: Cost–Benefit Analysis for Network Intrusion
Detection Systems. In: Proceedings of the 28th Annual Computer Security Conference
(October 2001)

[14] Boutaba, R., Xiao, J., Aib, I.: CyberPlanner: A Comprehensive Toolkit for Network
Service Providers. In Proceedings of the 11th IEEE/IFIP Network Operation and
Management Symposium (NOMS 2008), Salvador de Bahia, Brazil (2008)

[15] Diao, Y., Keller, A., Parekh, S., Marinov, V.: Predicting Labor Cost through IT
Management Complexity Metrics. In: Proceedings of the 10th IEEE/IFIP Symposium on
Integrated Management (IM 2007), Munich, Germany (2007)

[16] Diao, Y., Bhattacharya, K.: Estimating Business Value of IT Services through Process
Complexity Analysis. In: Proceedings of the 11th IEEE/IFIP Network Operation and
Management Symposium (NOMS 2008), Salvador de Bahia, Brazil (2008)

[17] Kaplan, R., Norton, D.: The Balanced Scorecard: Measures that Drive Performance.
Harvard Business Review 70(1), 71–79 (1992)

Flexible Resolution of Authorisation Conflicts in

Distributed Systems�

Changyu Dong, Giovanni Russello, and Naranker Dulay

Department of Computing, Imperial College London
180 Queen’s Gate, London, SW7 2AZ, UK

{changyu.dong,g.russello,n.dulay}@imperial.ac.uk

Abstract. Managing security in distributed systems requires flexible
and expressive authorisation models with support for conflict resolu-
tion. Models need to be hierarchical but also non-monotonic supporting
both positive and negative authorisations. In this paper, we present an
approach to resolve the authorisation conflicts that inevitably occur in
such models, with administrator specified conflict resolution strategies
(rules). Strategies can be global or applied to specific parts of a sys-
tem and dynamically loaded for different applications. We use Courteous
Logic Programs (CLP) for the specification and enforcement of strate-
gies. Authorisation policies are translated into labelled rules in CLP and
prioritised. The prioritisation is regulated by simple override rules spec-
ified or selected by administrators. We demonstrate the capabilities of
the approach by expressing the conflict resolution strategy for a moder-
ately complex authorisation model that organises subjects and objects
hierarchically.

1 Introduction

In modern enterprise systems restricting access to sensitive data is a critical
requirement. However, this usually involves a large number of objects which may
have different security requirements. The complexity of managing such systems
results in high administrative costs and long deployment cycles. This worsens as
a system expands because the effort and time required for management becomes
a burden. It is important that security management procedures are simplified
and automated to reduce administrative costs [1,2]. Policy-based management
is potentially a more appropriate solution where security management includes
support for the specification of authorisation policies, and the translation of
these policies into information which can be used by enforcement mechanisms.

� This research was supported by the UK’s EPSRC research grant EP/C537181/1 and
forms part of CareGrid. We also acknowledge financial support in part from the EC
IST EMANICS Network of Excellence (26854). The authors would like to thank the
members of the Policy Research Group at Imperial College for their support and to
Jorge Lobo at IBM T. J. Watson research center for his advice.

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 95–108, 2008.
c© IFIP International Federation for Information Processing 2008

96 C. Dong, G. Russello, and N. Dulay

Early authorisation models were usually monotonic and supported only one
type of policy. Most recent authorisation models are non-monotonic and sup-
port both positive and negative authorisation policies [3,4,5,6,7]. The advan-
tage of supporting both is greater flexibility, expressiveness and convenience.
However, conflicts can arise when both positive and negative policies are ap-
plicable at the same time. This type of conflict is referred to as a modality
conflict [8]. When applying a non-monotonic authorisation model in large dis-
tributed systems, modality conflicts are hard to avoid. They can arise due to
many reasons, such as omissions, errors or conflicting requirements. Therefore,
conflict resolution is an important practical requirement in systems that support
non-monotonic authorisation.

Many conflict resolution strategies have been developed. The most primitive
conflict resolution rules for authorisation policies include:

– Negative (positive) takes precedence. If a conflict arises, the result will be
negative (positive).

– Most specific (general) takes precedence. When policies defined at different
levels in a hierarchy conflict, the most specific (general) one wins.

– Strong and weak. Some policies are marked as strong authorisations and
others are marked as weak. In case they conflict, strong policies win.

However, real application may become so complex that using only one rule may
not guarantee solving the conflict (for example, when two strong policies con-
flict). In these cases, either the conflict ends up undecided or further resolution
rules must be applied to resolve the conflict. As a consequence, more and more
sophisticated conflict resolution rules are designed to fulfill the requirements
posed by applications.

On the other hand, different applications usually have different need for con-
flict resolution. For example, negative takes precedence would be one requirement
in military systems while positive takes precedence may be preferred in open sys-
tems. To make an authorisation model flexible, it is better not to fix the conflict
resolution strategy at design time, but leave it to the system administrators to
decide what is the appropriate strategy for a system or sub-system. This raises
the questions: how to express the variety of conflict resolution requirements that
exist in real-world applications and how to make it easy for administrators to
express such requirements. In this paper, we show how to capture and define au-
thorisation conflict resolution strategies using small Courteous Logic Programs
(CLP) [9].

We chose CLP for three main reasons: (1) it has a clear well-defined semantics
that is easy to understand; (2) the conflict handling in CLP is context-neutral,
i.e. it does not depend on what the application is, or on what hierarchies are
being used. This feature is vital to many policy frameworks, which must be flex-
ible in order to serve different applications; (3) the declarative nature of logic
programs makes it possible to separate the conflict resolution rules from the im-
plementation details, and therefore makes it possible to define resolution rules as
reusable meta-policies that can be published and used by different organisations
with only minimal changes to their existing policy management system.

Flexible Resolution of Authorisation Conflicts in Distributed Systems 97

2 Courteous Logic Programs

2.1 Overview

Courteous Logic Programs (CLP) is motivated largely by extended logic pro-
grams [10] where classical negation is permitted in rule heads and bodies. Ex-
tended logic programs are more expressive than normal logic programs where
the negative information is implicit. For example the statement: “Penguins do
not fly” can be expressed naturally as:

¬fly(X)← penguin(X).

However, explicit negation may also lead to contradictions. For example, with
the above statement and the following ones:

fly(X)← bird(X).
bird(X)← penguin(X).

penguin(tweety).

We can derive both ¬fly(tweety) and fly(tweety), which contradict each
other. The design goal of CLP is to preserve the expressive power brought by
explicit negation in extended logic programs while also guaranteeing a consistent
and unique set of conclusions. This is done by labelling the logic rules and pri-
oritising the labels. If two conflicting conclusions can be derived, the conclusion
being derived from a rule with a higher priority label will override the one with
a lower priority label. In the case that each conclusion is derived from multi-
ple rules with different priorities, the conclusion from the rule with the highest
priority wins.

We illustrate the intuition with a simple example. If we label the rule “birds
fly” with a label 〈bird〉, and the rule “Penguins do not fly” with a label 〈penguin〉.
Furthermore is we assume that there exists a super-penguin which can fly, and
its name is Tweety, then we have the following additional rules:

〈superPenguin〉 fly(X)← superPenguin(X).
superPenguin(tweety).

Of course by knowing X is a penguin, we can draw a more precise conclusion
about X than only knowing X is a bird. We would decide that 〈penguin〉 has
a higher priority than 〈bird〉, and 〈superPenguin〉 has a higher priority than
〈penguin〉.

The conclusion fly(tweety) can be drawn by two rules with labels {〈bird〉,
〈superPenguin〉} and ¬fly(tweety) can be drawn by one rule with la-
bel {〈penguin〉}. Although 〈penguin〉 overrides 〈bird〉, it is overriden by
〈superPenguin〉. Therefore the conclusion fly(tweety) is the winner because
it is supported by the rule with the highest priority.

CLP is also computationally tractable for the (acyclic) propositional case,
e.g. under the Datalog restriction. The entire answer set can be computed in

98 C. Dong, G. Russello, and N. Dulay

O(m2)time, where m is the size of the ground-instantiated program. This makes
CLP more attractive especially in our case because most of the authorisation
policies can be expressed in Datalog.

2.2 Syntax

A courteous logic program can be viewed as a union of two disjoint parts: the
main sub-program and the overrides sub-program.

The main sub-program is defined as labelled rules. A labelled rule has the
form:

〈lab〉 L0 ← L1 ∧ . . . ∧ Lm∧ ∼ Lm+1 ∧ . . .∧ ∼ Ln

where lab is an optional label for the rule, each Li is a literal. If a rule has a
label, the label is preserved during instantiation, all the ground instances of the
rule have the same label. A literal can be of the form A or ¬A where A is an
atom and ¬ is the classical negation operator. ∼ stands for negation-as-failure.

A special binary predicate overrides is used to specify prioritisation. overrides
(i, j) means that the label i has strictly higher priority than the label j. overrides
is syntactically reserved and cannot appear in the rule body. Given a set Lab of
all the labels in the program, overrides must be a strict partial order over Lab,
i.e. transitive, antisymmetric and irreflexive.

The program must be acyclic and stratified which means one can restructure
the program into separate parts in such a way that references from one part refer
only to previously defined parts.

2.3 Semantics

The semantics of CLP is defined using the concept of an answer set. Let C be a
courteous logic program, it has a unique answer set S which is defined as follows.

We use Cinstd to denote the logic program that results from each rule in C
having variables been replaced by the set of all its possible ground instantiations.
Letρ = p1, ..., pm be a sequence of all the ground atoms of Cinstd such that ρ
is a reverse-direction topological sort of the atom dependency graph. Reverse
means that body comes before head. We call ρ a total atom stratification of C.
For example, given the following logic program:

p(a)← q(a).
p(a)← p(b).

A total atom stratification is q(a), p(b), p(a). There may be multiple total strat-
ifications, but the answer set is independent of the total stratification choice.

Given a ρ such that all of the overrides atoms come before all the other atoms
and let pi be the ith ground atom in ρ, the answer set is constructed iteratively:

S0 = ∅
Si =

⋃

j=1,...,i

Tj , i ≥ 1

Flexible Resolution of Authorisation Conflicts in Distributed Systems 99

S =
⋃

i

Ti

where ∅ is the empty set and Ti is defined as follows:

Ti = {σpi|Candσ
i 	= ∅, ∀k ∈ Cand¬σ

i .∃j ∈ Candσ
i .overrides(j, k) ∈ Si−1},

Candσ
i = {j|labels(j, r), Head(r) = σpi, Body(r) ⊆ Si−1}

Here σ stands for a modality, either positive (+, usually omitted) or negative
(¬). ¬σ means the reverse modality of σ. label(j, r) means j is the label for rule
r. Head(r) is a ground literal in the head of the rule r, Body(r) is the set of all
ground literals in the body of r. The set Ti either consists of a single grounded
literal, or is empty. The literal is of positive sign (pi), or of negative sign (¬pi).

According to above definition, C |= p means that p is in the answer set of C.

3 Overview

Our approach is depicted in Figure 1. When a CLP-enabled policy system is
asked to decide on whether a (subject, target, action) request should be per-
mitted, it translates the authorisation policies associated with the request from
the underlying authorisation model (e.g. XACML) into labelled rules in CLP
(the main sub-program). The labelled rules for the request are then forwarded
to the policy decision point that makes the authorisation and uses the conflicts
resolution rules (the overrides sub-program) to resolve any conflicts by choosing
the rules with the highest priorities. If a system supports multiple authorisation
models, then a translation module is needed for each. Systems can also select
the conflict resolution rules needed on an application-by-application basis.

Fig. 1. Architecture of CLP-enabled policy system

4 Case Study: Hierarchical Conflict Resolution

To demonstrate the capabilities of CLP-based conflict resolution, we apply it
to a moderately complex authorisation model, Ponder2 [11]. Ponder2 supports

100 C. Dong, G. Russello, and N. Dulay

hierarchies that are used to define objects, entities and organisational structures
at different levels of scale from small embedded devices to complex services
and virtual organisations. It supports both positive and negative authorisation
policies. In Ponder2, managed objects (MOs) are organised in a tree-like domain
hierarchy according to various criteria such as geographical boundaries, object
type, responsibility and authority. Each domain in the hierarchy contains other
domains or MOs. Instances of MOs are allowed to be present in more than one
domain. In this way, if a domain represents a role then an instance of a MO can
be associated with multiple roles. The rationale for the authorisation model and
conflict resolution strategy are described in more detail in [12].

4.1 Domain Hierarchy and Authorisation Policies

Figure 2 shows a small concrete example of a hierarchically organised set of
Ponder2 authorisation policies for printers in a department. In the figure, each
circle represents a domain and the squares are MOs. A domain or an MO can be
addressed by its domain path which is a Unix-style path from the root domain
to the specified domain or MO. An MO may have multiple domain paths since
it can be in more than one domain. For example, there are two domain paths
for cd04: /Doc/DSE/Stud and /Doc/Stud/PhD.

Authorisation policies define what actions a subject can(not) invoke on a
target. If a domain is used as a subject or as a target, then the member MOs
of the domain inherit the policies defined for the domain. For example, in the
domain hierarchy shown in Figure 2, an authorisation policy P1 exists with
subject “/Doc”, target “/P tr” and action “print”, then when MO cd04 sends
a request for action print to MO hue, the policy must be considered in the
authorisation process.

The syntax of an authorisation policy is simple. auth+ means this policy
is a positive authorisation policy and auth- means it is negative. final is an
optional keyword which gives authorisation policies more priority than non-final

Fig. 2. Domains and Authorisation Policies for Printers in a Department

Flexible Resolution of Authorisation Conflicts in Distributed Systems 101

ones. Constraints can be used to limit the applicability of policies. In the example
shown in Figure 2, we can see there are six policies defined at different levels
between different domains. We summarise the policies below.

P1 is a general policy which gives all the members in the Department of
Computing (Doc) access to all the printers (Ptr). Policy P2 is a negative policy
which prevents students (Stud) from using colour printers (Colr). However, P3
says that if a student is registered as a PhD student (PhD), then he can use colour
printers. P4 is a final policy which permits all the members of the distributed
software engineering (DSE) group to use all the printers located at level 5 of
the Huxley Building. P5, P6 together say that the students in the DSE group
cannot access colour printers other than hue.

4.2 Translating Authorisation Policies to CLP Rules

When cd04 sends a print job to hue, the policies in Figure 2 are translated into
the labelled rules shown in Figure 3. The translation algorithm is specific to
the authorisation model. The translation module for Ponder2 evaluates all the
possible domain paths. The domain paths for cd04 are: {/Doc/DSE/Stud/cd04,
/Doc/Stud/PhD/cd04}. There are two domain paths for hue: {/P tr/Colr/hue,
/P tr/HuxBldg/Lv5/hue}. For simplicity, we refer to these paths as ps1, ps2,
pt1, pt2 afterwards. For each combination (psi, ptj), two rules are added: one
with a label 〈(p)〉 and the other with a label 〈(n)〉. The first 8 rules in Figure 3
apply the principle that the overall authorisation is the aggregation of the path
authorisation (see section 4.3). The translation module also generates a rule for
the default authorisation policy labelled 〈(d)〉.

The remaining 9 labelled rules in Figure 3 are generated for the actual policies
applied along a specific path combination. For each policy, the translation mod-
ule translates it into a labelled rule with head auth(psi, ptj , action) if the policy
is auth+, and ¬auth(psi, ptj, action) if the policy is auth−. These labelled rules
are used to derive the path authorisation for each path combination. The label
is of the form (type, tdis, sdis, mode). type is determined by the policy type. If
the policy is a final policy, then type = f . Otherwise type = n, which means it
is a normal policy. tdis, sdis are the distances regarding the path combination
(psi, ptj). If we view the domain hierarchy as a graph and each policy defined as
an arc between two nodes, then tdis is the number of nodes traversed from the
subject to the target through the “policy arc” and sdis is the number of nodes
traversed from the subject to the node where the arc starts. Finally, mode is
the modality of the policy. For an auth+ policy, mode = p, for an auth− policy,
mode = n.

Let’s take the (ps1, pt1) combination as an example to show how the poli-
cies are mapped into labelled rules. The policies relevant to this combination
are P1, P5, P6. P1 is a positive authorisation policy, so it is mapped into a
rule with head auth(/doc/dse/stud/cd04, /ptr/colr/hue, print). The label of this
rule is 〈(n, 5, 3, p)〉. Recall that P1 is a normal positive policy defined over
(/doc, /ptr, print). In the label, n means a normal policy, p means positive.
The distance from cd04 to the domain /doc is 3, the distance from hue to the

102 C. Dong, G. Russello, and N. Dulay

%auth(cd04, hue, print) defined for each path combination.
〈(p)〉 auth(cd04, hue, print)← auth(/doc/dse/stud/cd04, /ptr/colr/hue, print).
〈(n)〉 ¬auth(cd04, hue, print)← ¬auth(/doc/dse/stud/cd04, /ptr/colr/hue, print).

〈(p)〉 auth(cd04, hue, print)← auth(/doc/dse/stud/cd04, /ptr/huxBldg/lv5/hue).
〈(n)〉 ¬auth(cd04, hue, print)← ¬auth(/doc/dse/stud/cd04, /ptr/huxBldg/lv5/hue).

〈(p)〉 auth(cd04, hue, print)← auth(/doc/stud/phd/cd04, /ptr/colr/hue, print).
〈(n)〉 ¬auth(cd04, hue, print)← ¬auth(/doc/stud/phd/cd04, /ptr/colr/hue, print).

〈(p)〉 auth(cd04, hue, print)← auth(/doc/stud/phd/cd04, /ptr/huxBldg/lv5/hue).
〈(n)〉 ¬auth(cd04, hue, print)← ¬auth(/doc/stud/phd/cd04, /ptr/huxBldg/lv5/hue).

%default authorisation
〈(d)〉 ¬auth(cd04, hue, print).

%the first path combination,policies P1, P5 and P6
〈(n, 5, 3, p)〉 auth(/doc/dse/stud/cd04, /ptr/colr/hue, print).
〈(n, 2, 1, n)〉 ¬auth(/doc/dse/stud/cd04, /ptr/colr/hue, print).
〈(n, 1, 1, p)〉 auth(/doc/dse/stud/cd04, /ptr/colr/hue, print).

%the second path combination,policies P1, P4
〈(n, 5, 3, p)〉 auth(/doc/dse/stud/cd04, /ptr/huxbldg/lv5/hue, print).
〈(f, 3, 2, p)〉 auth(/doc/dse/stud/cd04, /ptr/huxbldg/lv5/hue, print).

%the third path combination,policies P1, P2, P3
〈(n, 5, 3, p)〉 auth(/doc/stud/phd/cd04, /ptr/colr/hue, print).
〈(n, 3, 2, p)〉 ¬auth(/doc/stud/phd/cd04, /ptr/colr/hue, print).
〈(n, 2, 1, p)〉 auth(/doc/stud/phd/cd04, /ptr/colr/hue, print).

%the fourth path combination,policy P1
〈(n, 6, 3, p)〉 auth(/doc/stud/phd/cd04, /ptr/huxbldg/lv5/hue, print).

Fig. 3. Labelled Rules for the Example

domain /ptr is 2, therefore tdis is the sum, 5, and sdis is 3. P5 is a negative
authorisation policy, so the labelled rule is with a label 〈(n, 2, 1, n)〉 and head
¬auth(/doc/dse/stud/cd04, /ptr/colr/hue, print). In the same way, P6 is trans-
lated into a labelled rule with a label 〈(n, 1, 1, p)〉.

4.3 Conflict Resolution Strategy

Although policies defined over hierarchies simplify configuration and manage-
ment they also give rise to conflicts. In Ponder2, when multiple policies along
the path from the subject to the target have different signs, conflict occurs.
Ponder2 resolves these types of conflict using the following rules: (1) the most
specific policy takes precedence; (2) if two policies are equally specific, the

Flexible Resolution of Authorisation Conflicts in Distributed Systems 103

negative one takes precedence. Informally, a policy that applies to a subdo-
main is more specific than a policy that applies to any ancestor domains. The
specificity is determined by the distance from the subject to the target using the
policy arc. In case 4-(a), the path from the subject to the target through p1 is
“s, c, a, d, t” and the path from the subject to the target through p2 is “s, c, d, t”.
The second path is shorter, so p2 is more specific than policy p1. Case 4-(b)
shows a not so intuitive example where both paths have the same length. In
such cases, Ponder2 gives higher importance to the subject side path. Therefore,
p2 is more specific than p1 because domain c is closer to s than domain a. Case
4-(c) shows an example where two paths have the same length and are defined
between the same levels, i.e. they are equally specific. According to rule (2), p1
“wins” because it is negative.

Fig. 4. Authorisation conflicts examples

Sometimes it is desirable that a general policy overrides more specific ones.
When a policy is defined as a final policy, it has a higher priority than the
normal ones. If more than one final policy exists, the conflict resolution rules for
final policies are: (1) the most general final policy takes precedence; (2) if two
policies are equally specific, the negative one takes precedence. In figure 4, final
policies are shown with a prefix [F]. In case 4-(d), a final policy “wins” even
though a normal policy p2 is more specific. In case 4-(e), the more general final
policy p1 overrides a more specific final policy p2. In case 4-(f), a final policy
p1 overrides another final policy p2 because they are equally general and p1 is
negative.

When there are multiple domain paths from a MO s to MO t, the domain
nesting rules cannot be applied because the policies are defined over different
paths. In such situations, the path authorisation for each path combination is
derived using the above rules. The overall authorisation is then determined by
aggregating the path authorisations. If one of the path authorisations is negative,

104 C. Dong, G. Russello, and N. Dulay

then the result is negative; if all the path authorisations are positive, then the
result is positive. In the examples shown in Figure 4-(g), (h), there are two path
combinations: (/e/s, /b/d/t) and (/a/c/s, /b/d/t). In case 4-(g), the path autho-
risation for the first combination is negative and for the second combination is
positive, therefore the overall authorisation is negative. In case 4-(h), the overall
authorisation is also negative because there is a negative path authorisation.
Note that the final keyword only affects conflict resolution in domain nesting
cases. A final policy cannot override a normal policy when the normal policy is
defined over other path combinations.

Administrators are required to define a default authorisation, either positive
or negative that is applied when an authorisation request has no applicable
policy.

4.4 CLP Conflict Resolution Strategy for Example

The conflict resolution rules for Ponder2 can be captured as a small overrides
sub-program in CLP that is used to prioritise the labels and resolve any conflicts.
Recall that we generated two kinds of labels when we translated Ponder2 policies
into CLP.

For the first set of labels (p),(n),(d), we define the following overrides rules:

overrides((n), (p)). (1)

overrides((p), (d)). (2)

overrides((n), (d)). (3)

The meaning of the above rules is that a negative path authorisation has the
highest priority, then the positive ones, and finally the default authorisation
which has the lowest priority.

For the set of labels of the form (type, dis1, dis2, mod), we have the following
overrides rules. First,

overrides((f, , ,), (n, , ,)) (4)

states that the priority of a final policy is always higher than a normal one. Then
among the final policies, the overrides rules are:

overrides((f,X1, ,), (f, X2, ,)) ← X1 > X2. (5)

overrides((f,X, Y 1,), (f, X, Y 2,)) ← Y 1 > Y 2. (6)

overrides((f,X, Y, n), (f, X, Y, p)). (7)

which state that a more general final policy always has more priority, and that
we always give higher priority to a negative policy if there is a “tie”.

For normal policies, the rules are reversed and the more specific policy wins:

overrides((n,X1, ,), (n, X2, ,)) ← X1 < X2. (8)

overrides((n,X, Y 1,), (n, X, Y 2,)) ← Y 1 < Y 2. (9)

overrides((n,X, Y, n), (n, X, Y, p)). (10)

It is easy to see that the overrides relations defined in the sub-program are
transitive, anti-symmetric and irreflexive, and therefore meet the requirement.

Flexible Resolution of Authorisation Conflicts in Distributed Systems 105

4.5 Resolving Conflicts in CLP

We now explain how CLP resolves conflicts for our example. For path combina-
tion (ps1, pt1), i.e. (/doc/dse/stud/cd04, /ptr/colr/hue, print), there are two la-
belled rules which permit the action. The labels of these two rules are {(n, 5, 3, p),
(n, 1, 1, p)}. There is also one rule which denies the action, whose label is
{(n, 2, 1, n)}. It’s clear that given the conflict resolution strategy in Section 4.4,
the following are true:

overrides((n, 2, 1, n), (n, 5, 3, p)).
overrides((n, 1, 1, p), (n, 2, 1, n)).

Although the negative rule overrides one of the positive rules, it itself is also
overridden by another positive rule. Therefore auth(/doc/dse/stud/cd04, /ptr/
colr/hue, print) is true because a positive rule has the highest priority. In the
same way, we get the following for the other path combinations:

auth(/doc/dse/stud/cd04, /ptr/huxBldg/lv5/hue).
auth(/doc/stud/phd/cd04, /ptr/colr/hue, print).

auth(/doc/stud/phd/cd04, /ptr/huxBldg/lv5/hue).

Once the authorisation status of each path combination has been decided, the
overall authorisation result can be decided. Given the above results, we can derive
auth(cd04, hue, print) from the CLP program and this is derived from rules
labelled 〈(p)〉. Although a conflicting authorisation, ¬auth(cd04, hue, print), can
also be derived from the default rule, the label of the default rule, 〈(d)〉, has a
lower priority than 〈(p)〉. Finally the request is authorised and cd04 can print
on hue.

5 Alternative Conflict Resolution Strategies

To support different resolution strategies, we simply change the prioritisation
rules (the overrides sub-program). In the example negative authorisations takes
precedence. If we want to change this to positive takes precedence, we only need
to modify rules (1), (7), (10) in Section 4.4 into:

overrides((p), (n)).

overrides((f,X, Y, p), (f, X, Y, n)).

overrides((n, X, Y, p), (n, X, Y, n)).

The most general final policy takes precedence can be changed to the most
specific final policy takes precedence by modifying rules (5),(6) into:

overrides((f,X1, ,), (f, X2, ,)) ← X1 < X2.

overrides((f,X, Y 1,), (f, X, Y 2,)) ← Y 1 < Y 2.

In this case, we can even combine rules (5), (6), (8), (9) into the following two
rules:

overrides((W,X1, ,), (W, X2, ,)) ← X1 < X2.

overrides((W,X, Y 1,), (W,X, Y 2,)) ← Y 1 < Y 2.

106 C. Dong, G. Russello, and N. Dulay

Ponder2 defines the most specific policy as the one with the shortest path from
the subject to the target and in the case that there are several ones with the same
path length, the one which is closest to the subject. We can change this to allow
the one closest to the target to win. In the context of the most general final/most
specific normal policy takes precedence, this can be done by modifying rules (6),
(9) into:

overrides((f,X, Y 1,), (f, X, Y 2,)) ← Y 1 < Y 2.

overrides((n,X, Y 1,), (n, X, Y 2,)) ← Y 1 > Y 2.

After modification, if two policies have the same distance, the one closer to
the target takes precedence. Many other variations are possible as long as the
override rules define a strict partial order.

Besides assigning priorities according to the domain hierarchy and inheritance,
our approach can easily support conflict resolution strategies based on other
factors. For example, which administrator defined this policy, who the owner of
a policy is, the date and time that a policy was enabled, etc. The translation
module needs to obtain all such information when an access request is made
and include the information in the labels of CLP authorisation rules. Strategies
would then assign priorities according to the new labels.

6 Related Work

Early authorisation models such as SeaView [13] and the Andrew File System
[14] employ a simple negative takes precedence rule to resolve conflicts. However,
as the authorisation models become more complex, such rules are not enough
for handling all the conflicts.

Woo and Lam [15,7] propose an access control model for distributed systems
where the management of authorisation is decentralised. The authorisation re-
quirements are specified as policy rules using a language similar to default logic.
Conflicts can be resolved by either positive takes precedence or negative takes
precedence. The problem of this model is that it has no hierarchical structure
for organising subjects or objects. Therefore, all the policies must be defined
instance by instance, which will be burdensome in large systems.

Bertino et.al. [3] propose an authorisation model for relational data manage-
ment systems. In this model, subjects are grouped in a group hierarchy and
authorisation policies are classified as strong and weak. Strong policies always
override weak policies and conflicts among strong policies are not allowed. The
administrators must be very careful to avoid the conflicts among strong policies.
The conflict resolution strategy is fixed in this model, while in our framework, the
resolution strategy can be tailored to meet different applications’ requirements.

Jajodia et.al. [6] proposed a flexible authorisation framework and a formal
language called Authorisation Specification Language (ASL). The subjects are
organised into hierarchies and the authorisation is defined as rows in an authori-
sation table. To define a full-fledged conflict resolution strategy, an administrator

Flexible Resolution of Authorisation Conflicts in Distributed Systems 107

needs to define the following: a propagation policy that specifies how to derive
authorisations according to the hierarchies and the authorisation table; a conflict
resolution policy that specifies how to eliminate conflicts; a decision policy that
decides the default authorisation in the absence of explicit specifications for the
access; a set of integrity constraints that impose restrictions on the content and
the output. The conflict resolution in this framework is quite flexible and pow-
erful, but complex to understand and support. Our approach is much simpler.
All the administrator needs to do is to decide an ordering over policies based on
the properties captured by the labels (modality, position in the hierarchy and so
on), and supply a small override program.

Benferhat et.al. [16] proposed a stratification-based approach for handling
conflicts in access control. They classify the information used in access control
as facts, rules without exceptions, and rules with exceptions. The information is
prioritised as follows: facts and rules without exceptions are always preferred to
rules with exceptions; for rules with exceptions, more specific ones are preferred
to the more general ones. After information has been stratified according to the
priority, conflicts can be solved by probabilistic logic inference or lexicographical
inference. However, this approach requires that the facts and the rules with-
out exceptions to be consistent and can only implement one conflict resolution
strategy for the rules with exceptions.

Chadha [17] argued that many application-specific runtime policy conflicts
can be addressed by re-writing policies. Rather than writing policies and defin-
ing complex resolution rules, it may be simpler to just re-write the policies. The
conclusions were based on the analysis of obligation policies and conflicts such
as redundant conflicts, mutually exclusive configurations or inconsistent con-
figuration. Authorisation policies and modality conflicts, which is the focus of
our work, were not discussed in detail. However, the author also concluded that
“conflicts such as modality conflicts that are application-independent should be
resolved automatically using conflict resolution tools”, which is exactly what our
approach trying to do.

7 Conclusions and Future Work

In this paper we express conflict resolution strategies in terms of Courteous
Logic Programs. Authorisations are dynamically translated into labelled logic
rules. The label for each rule is determined by a translation module specific
to each authorisation model and can use features such as the policy type, the
domain hierarchy and the policy modality. The priority of the label is defined
through a special overrides predicate and conflicts are resolved by choosing the
rule with the highest priority. The conflict resolution rules are not static and can
be dynamically changed according to domain-specific requirements.

The Ponder2 policy model was used as a case study and to demonstrate a
variety of conflict resolution strategies and how easy it is for administrators to
define their own. An implementation of our CLP translation module and PDP
is available as an option for Ponder2 and can be used instead of its Java-coded

108 C. Dong, G. Russello, and N. Dulay

conflict resolution strategy. The implementation is based on a Prolog version of
CLP engine. We hope to develop an implementation and a library of conflict
resolution strategies for XACML (Extensible Access Control Markup Language)
[18] in the near future, and to investigate how to combine multiple strategies.

References

1. Feridun, M., Leib, M., Nodine, M.H., Ong, J.: Anm: Automated network manage-
ment system. IEEE Network 2(2), 13–19 (1988)

2. Strassner, J.: Policy-based network management, solution for the next generation.
Morgan and Kaufmann, San Francisco (2004)

3. Bertino, E., Jajodia, S., Samarati, P.: A flexible authorization mechanism for re-
lational data management systems. ACM Trans. Inf. Syst. 17(2), 101–140 (1999)

4. Bertino, E., Samarati, P., Jajodia, S.: Authorizations in relational database man-
agement systems. In: ACM Conference on Computer and Communications Secu-
rity, pp. 130–139 (1993)

5. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification
language. In: POLICY, pp. 18–38 (2001)

6. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V.S.: Flexible support for
multiple access control policies. ACM Trans. Database Syst. 26(2), 214–260 (2001)

7. Woo, T.Y.C., Lam, S.S.: Authorizations in distributed systems: A new approach.
Journal of Computer Security 2(2-3), 107–136 (1993)

8. Lupu, E., Sloman, M.: Conflicts in policy-based distributed systems management.
IEEE Trans. Software Eng. 25(6), 852–869 (1999)

9. Grosof, B.N.: Courteous logic programs: Prioritized conflict handling for rules.
Research Report RC 20836(92273), IBM (1997)

10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

11. Ponder2: The Ponder2 project. www.ponder2.net
12. Russello, G., Dong, C., Dulay, N.: Authorisation and conflict resolution for hierar-

chical domains. In: POLICY, pp. 201–210 (2007)
13. Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M., Shockley, W.R.: The seav-

iew security model. IEEE Trans. Software Eng. 16(6), 593–607 (1990)
14. Satyanarayanan, M.: Integrating security in a large distributed system. ACM

Trans. Comput. Syst. 7(3), 247–280 (1989)
15. Woo, T.Y.C., Lam, S.S.: Authorization in distributed systems: A formal approach.

In: SP 1992: Proceedings of the 1992 IEEE Symposium on Security and Privacy,
pp. 33–50. IEEE Computer Society, Washington (1992)

16. Benferhat, S., Baida, R.E., Cuppens, F.: A stratification-based approach for han-
dling conflicts in access control. In: SACMAT, pp. 189–195 (2003)

17. Chadha, R.: A cautionary note about policy conflict resolution. In: Military Com-
munications Conference, 2006. MILCOM 2006, pp. 1–8 (October 2006)

18. XACML: Extensible access control markup language.
http://xml.coverpages.org/xacml.html

Trust Management for Host-Based Collaborative
Intrusion Detection

Carol J. Fung, Olga Baysal, Jie Zhang, Issam Aib, and Raouf Boutaba

David R. Cheriton School of Computer Science
University of Waterloo, Canada

{j22fung,obaysal,j44zhang,iaib,rboutaba}@uwaterloo.ca

Abstract. The accuracy of detecting an intrusion within a network of
intrusion detection systems (IDSes) depends on the efficiency of collab-
oration between member IDSes. The security itself within this network
is an additional concern that needs to be addressed. In this paper, we
present a trust-based framework for secure and effective collaboration
within an intrusion detection network (IDN). In particular, we define a
trust model that allows each IDS to evaluate the trustworthiness of others
based on personal experience. We prove the correctness of our approach
in protecting the IDN. Additionally, experimental results demonstrate
that our system yields a significant improvement in detecting intrusions.
The trust model further improves the robustness of the collaborative sys-
tem against malicious attacks.

Keywords: Intrusion detection Network, Trust Management, Collabo-
ration, Peer-to-Peer, Security.

1 Introduction

Intrusions over the Internet are becoming more dynamic and sophisticated. In-
trusion Detection Systems (IDSes) identify intrusions by comparing observable
behavior against suspicious patterns. They can be network-based (NIDS) or
host-based (HIDS). Traditional IDSes work in isolation and may be easily com-
promised by unknown or new threats. An Intrusion Detection Network (IDN) is
a collaborative IDS network intended to overcome this weakness by having each
members IDS benefit from the collective knowledge and experience shared by
other member IDSes. This enhances their overall accuracy of intrusion assess-
ment as well as the ability of detecting new intrusion types.

Intrusion types include worms, spamware, viruses, denial-of-service(DoS), ma-
licious logins, etc. The potential damage of these intrusions can be significant if
they are not detected promptly. An example is the Code Red worm that infected
more than 350,000 systems in less than 14 hours in 2001 with a damage cost of
more than two billion dollars [7]. IDS collaboration can also be an effective way
to throttle or stop the spread of such contagious attacks.

Centralized collaboration of IDSes relies on a central server to gather alerts
and analyze them. This technique suffers from the performance bottleneck prob-
lem. In addition the central server is a single point of failure and may become

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 109–122, 2008.
c© IFIP International Federation for Information Processing 2008

110 C.J. Fung et al.

the target of denial-of-service attacks. The distributed collaboration of IDSes can
avoid these problems. However, in such a collaborative environment, a malicious
IDS can degrade the performance of others by sending out false evaluations about
intrusions. To protect an IDS collaborative network from malicious attacks, it
is important to evaluate the trustworthiness of participating IDSes, especially
when they are Host-based IDSes (HIDSes). Duma et al. [3] propose a simple
trust management model to identify dishonest insiders. However, their model is
vulnerable to some attacks which aim at compromising the trust model itself
(see Sections 4 and 5 for more details).

In this work, we develop a robust trust management model that is suitable
for distributed HIDS collaboration. Our model allows each HIDS to evaluate the
trustworthiness of others based on its own experience with them. We also propose
a framework for efficient HIDS collaboration using a peer-to-peer network. Our
framework provides identity verification for participating HIDSes and creates
incentives for collaboration amongst them.

We evaluate our system based on a simulated collaborative HIDS network.
The HIDSes are distributed and may have different expertise levels in detecting
intrusions. A HIDS may also become malicious in case it has been compromised
(or the HIDS owner deliberately makes it malicious). We also simulate several
potential threats. Our experimental results demonstrate that our system yields a
significant improvement in detecting intrusions and is robust to various attacks
as compared to that of [3].

The rest of the paper is organized as follows. Section 2 presents the collab-
orative IDS framework and collaboration management mechanisms. Section 3
formalizes our trust management model. Section 4 addresses common attacks
on the collaboration and proves how our trust model cancels them. Section 5
presents the different simulation settings used and discusses the obtained results.
Section 6 discusses related work. Finally, Section 7 summarizes our contributions
and addresses future work directions.

2 HIDS Collaboration Framework

The purpose of this framework is to connect individual HIDSes so that they can
securely communicate and cooperate with each other to achieve better intrusion
detectability. Figure 1 illustrates the key components of our framework. Collab-
oration is ensured by trust-based cooperation and peer-to-peer communication.
The trust management model allows a HIDS to evaluate the trustworthiness
of its neighbors based on its own experience with them. The P2P component
provides network organization, management and communication between the
HIDSes. The collaboration is ensured by three processes, which are explained in
the following.

2.1 Network Join Process

In our framework, each HIDS connects to other HIDSes over a peer-to-peer
network. Before joining the network, a HIDS node needs to register to a trusted

Trust Management for Host-Based Collaborative Intrusion Detection 111

Alice Bob

RegistersSigns
certificate

Requests to join

Accepts+Acquaintance list

Host-based IDS

P2P Component

Trust Collaboration
Feedback

Requests/Tests

CA

Fig. 1. IDS Collaboration Framework

digital certificate authority (Figure 1) and get a public and private key pair
which uniquely identifies it. Note that we identify the (machine, user) tuple.
This is because a different machine means a different HIDS instance. In addition,
a different user of the same machine may have a different configuration of its
HIDS. After a node joins the HIDS network, it is provided with a preliminary
acquaintance list. This list is customizable and contains IDs (or public keys) of
other nodes within the network along with their trust values and serves as the
contact list for collaboration.

2.2 Test Messages

Each node sends out either requests for alert ranking (consultation), or test
messages. A test message is a consultation request sent with the intention to
evaluate the trustworthiness of another node in the acquaintance list. It is sent
out in a way that makes it difficult to be distinguished from a real alert ranking
request. The testing node knows the severity of the alert described in the test
message and uses the received feedback to derive a trust value for the tested
node. This technique helps in uncovering inexperienced and/or malicious nodes
within the collaborative network.

2.3 Incentive Design

Our framework also provides incentives to motivate collaboration. Nodes that are
asked for consultation will reply to only a number of requests in a certain period
of time because of their limited bandwidth and computational resources. Thus,
only highly trusted nodes will have higher priority of receiving help whenever
needed. In this way, nodes are encouraged to build up their trust. In addition,
our system accepts the reply of “don’t know” to requests in order to encourage
active collaboration in the network. This is explained in section 3.1.

112 C.J. Fung et al.

3 Trust Management Model

This section describes the model we developed to establish trust relationships
between the HIDSes in the collaborative environment. We first describe how we
evaluate the trustworthiness of a HIDS and then present a method to aggregate
feedback responses from trusted neighbours.

3.1 Evaluating the Trustworthiness of a Node

The evaluation of the trustworthiness of a node is carried out using test messages
sent out periodically using a random poisson process. After a node receives the
feedback for an alert evaluation it assigns a satisfaction value to it, which can
be “very satisfied” (1.0), “satisfied” (0.5), “neutral” (0.3), “unsatisfied” (0.1), or
“very unsatisfied” (0).

The trust value of each node will be updated based on the satisfactory levels
of its feedback. More specifically, the replies from a node i are ordered from
the most recent to the oldest according to the time tk at which they have been
received by node j. The trustworthiness of node i according to node j can then
be estimated as follows:

twj
i (n) =

n∑
k=0

Sj,i
k F tk

n∑
k=0

F tk

(1)

where Sj,i
k ∈ [0, 1] is the satisfaction of the reply k and n is the total number of

feedback. To deal with possible changes of the node behavior over time, we use
a forgetting factor F (0 ≤ F ≤ 1) which helps in assigning less weight to older
feedback responses [10]. Compared to Duma et al. [3], our model uses multiple
satisfaction levels and forget old experiences exponentially, while [3] only uses
two satisfaction levels (satisfied and unsatisfied) and all experiences have the
same impact.

We also allow a node to send a “don’t know” answer to a request if it has no
experience with the alert or is not confident with its ranking decision. However,
some nodes may take advantage of this option by always providing “don’t know”
feedback responses so as to maintain their trust values. In order to encourage
nodes to provide satisfactory feedback responses whenever possible, the trust
value will be slowly updated every time the node provides a “don’t know” answer.
The trustworthiness of a node i according to node j is then formulated as follows:

T j
i = (twj

i − Tstranger)(1 − x)m + Tstranger , (2)

where x is the percentage of “don’t know” answers from time t0 to tn. m is
a positive incentive parameter (forgetting sensitivity) to control the severity of
punishment to “don’t know” replies, twj

i is the trust value without the integra-
tion of “don’t know” answers (Equation 1), and Tstranger is the default trust

Trust Management for Host-Based Collaborative Intrusion Detection 113

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
gg

re
ga

te
d

T
ru

st
 V

al
ue

 W
ith

 D
on

’t
K

no
w

s

Percentage of Don’t Knows

m=0.3,Tw=1
m=0.3,Tw=0.7
m=1 ,Tw=1
m=2 ,Tw=1

 Tw=0.5
m=0.3,Tw=0

Fig. 2. Trust Convergence Curves with “don’t know” answers

value of a stranger. As illustrated in Figure 2, Equation 2 causes trust values
to converge to Tstranger with the increase in the percentage of don’t “know an-
swers”. Eventually, the trust value will become that of a stranger. This allows the
trust value of an untrusted node to slowly increase up to the level of a stranger
by providing “don’t know” answers. In addition, nodes with little experience are
motivated to provide “don’t know” answers rather than incorrect alert rankings.

3.2 Feedback Aggregation

Based on the history of trustworthiness, each node i requests alert consulting
only from those nodes in its acquaintance list whose trust values are greater
than a threshold thi

t. We also consider proximity, which is a measure of the
physical distance between the node that provides feedback and the node that
sends the request. Physical location can be an important parameter in intrusion
detection. HIDSes that are located in the same or close by geographical region
are likely to experience similar intrusions [1] and thus can help each other by
broadcasting warnings of active threats. Feedback from nearby acquaintances
is therefore more relevant than that from distant ones. We scale the proximity
based on the region the node belongs to.

After receiving feedback from its acquaintances, node j aggregates the feed-
back using a weighted majority method as follows:

Rj(a) =

∑
T j

i ≥thj
t

T j
i Dj

i Ri(a)

∑
T j

i ≥thj
t

T j
i Dj

i

, (3)

where Rj(a) is the aggregated ranking of alert a from the feedback provided by
each node belonging to the acquaintance list Aj of node j. T j

i (∈ [0, 1]) is the
trust value of node i according to node j. Dj

i (∈ [0, 1]) is the proximity weight of

114 C.J. Fung et al.

node i. thj
t is the trust threshold set by node j. Ri(a) (∈ [0, 1]) is the feedback

ranking of alert a by node i.
Compared to [3], our model only integrate feedback from trusted nodes while

[3] integrates feedback from all neighbors.

4 Robustness Against Common Threats

Trust management can effectively improve network collaboration and detect ma-
licious HIDSes. However, the trust management itself may become the target of
attacks and be compromised. In this section, we describe possible attacks and
provide defense mechanisms against them.

Sybil attacks occur when a malicious node in the system creates a large
amount of pseudonyms (fake identities) [2]. This malicious node uses fake iden-
tities to gain larger influence of the false alert ranking on others in the network.
Our defense against sybil attacks relies on the design of the authentication mech-
anism. Authentication makes registering fake IDes difficult. In our model, the
certificate issuing authority only allows one ID per IP address. In addition, our
trust management model requires IDSes to first build up their trust before they
can affect the decision of others, which is costly to do with many fake IDes.
Thus, our security and trust mechanisms protect our collaborative network from
sybil attacks.

Identity cloning attacks occur when a malicious node steals some node’
identity and tries to communicate with others on its behalf. Our communication
model is based on asymmetric cryptography, where each node has a pair of public
and private keys. The certificate authority certifies the ownership of key pairs
and in this way protects the authenticity of node identities.

Newcomer attacks occur when a malicious node can easily register as a
new user [8]. Such a malicious node creates a new ID for the purpose of erasing
its bad history with other nodes in the network. Our model handles this type of
attack by assigning low trust values to all newcomers, so their feedback on the
alerts is simply not considered by other nodes during the aggregation process.

Betrayal attacks occur when a trusted node suddenly turns into a malicious
one and starts sending false alerts or even malware. A trust management system
can be degraded dramatically because of this type of attacks. We employ a
mechanism which is inspired by the social norm:

It takes a long-time interaction and consistent good behavior to build up
a high trust, while only a few bad actions to ruin it.

When a trustworthy node acts dishonestly, the forgetting factor (Eqn.1) causes
its trust value to drop down quickly, hence making it difficult for this node to
deceive others or gain back its previous trust within a short time.

Collusion attacks happen when a group of malicious nodes cooperate to-
gether by providing false alert rankings in order to compromise the network.
In our system, nodes will not be adversely affected by collusion attacks. In our
trust model each node relies on its own knowledge to detect dishonest nodes.

Trust Management for Host-Based Collaborative Intrusion Detection 115

In addition, we use test messages to uncover malicious nodes. Since the test
messages are sent in a random manner, it will be difficult for malicious nodes to
distinguish them from actual requests.

5 Simulations and Experimental Results

In this section, we present the experiments used to evaluate the effectiveness and
robustness of our trust-based IDS collaboration framework.

5.1 Simulation Setting

In our simulation model, we have n nodes in the collaboration network ran-
domly distributed in a s × s grid region. The proximity weight of nodes is anti-
proportional to the distance between the nodes in the number of grid steps. The
expertise levels of the nodes can be low(0.1), medium(0.5) or high(0.95). In the
beginning, each node builds an initial acquaintance list based on the communi-
cation cost (proximity). The initial trust values of all nodes in the acquaintance
list are set to the stranger trust value (Tstranger). To test the trustworthiness of
all the acquaintances in the list, each node sends out test messages following a
Poisson process with average arrival rate λt. The intrusion detection expertise
of a HIDS is modeled using a beta function. A honest HIDS always generates
feedback based on its truthful judgment, while a dishonest HIDS always sends
feedback opposite to its truthful judgment. The parameters used in the simula-
tion are shown in Table 1.

To reflect a HIDS expertise level, we use a beta distribution for the decision
model of HIDSes. The beta density function is expressed in Eqn.5:

f(p|α, β) =
1

B(α, β)
pα−1(1 − p)β−1, (4)

B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt, (5)

Table 1. Simulation Parameters for Experiments

Parameter Value Description
λt 5/day Test messages frequency
F 0.9 Forgetting factor

Tstranger 0.5 Stranger trust value
tht 0.8 Trust threshold
m 0.3 Forgetting sensitivity

ThDK 1 Threshold of “don’t know” replies
s 4 Size of grid region
n 30 (+10) Number of HIDS

116 C.J. Fung et al.

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

Expertise Level = 0.1
Expertise Level = 0.5

Expertise Level = 0.95

Fig. 3. Decision DF for Expertise Levels

We define α and β as:

α = 1 +
(1 − D)

D

√
E(b − 1)
1 − E

, β = 1 +
(1 − D)(1 − E)

DE

√
E(b − 1)
1 − E

(6)

where E is the expected ranking of the alert. D (∈ [0, 1]) denotes the difficulty
level of a alert. Higher values for D are associated to attacks that are difficult to
detect, i.e. many HIDSes fail to identify them. L(∈ [0, 1]) denotes the expertise
level of an IDS. A higher value for L reflects a higher probability of producing
correct rankings for alerts. f(p; α, β) is the probability that the node with ex-
pertise level L answers with a value of p (1 ≥ p ≥ 0) to an alert of difficulty
level D, α ≥ 1, β ≥ 1, and b = 1/(1−L)2. For a fixed difficulty level, this model
assigns higher probabilities of producing correct ranking to nodes with higher
levels of expertise. For a node with fixed expertise level, it has a lower probabil-
ity of producing correct rankings for alerts with higher D values. A node with
expertise level 1 or an alert with difficulty level 0 represents the extreme case
that the node can rank the alert accurately with guarantee. This is reflected in
the Beta distribution by parameters α = ∞ and β = ∞. A node with expertise
level 0 or an alert with difficulty level 1 represents the extreme case that the
node ranks the alert by picking up answer randomly. This is reflected in the
Beta distribution by parameters α = 1 and β = 1 (Uniform distribution). Figure
3 shows the feedback probability distribution for IDSes with different expertise
levels, where the expected risk level is fixed to 0.7 and the difficulty level of test
messages is 0.5.

5.2 Results for a Honest Environment

The first experiment studies the effectiveness of IDS collaboration and the im-
portance of trust management. In this experiment, all IDSes are honest. 30 IDSes
are divided into three equally-sized groups, with expertise levels of 0.1, 0.5 and
0.95 respectively. We simulate the first 100 days to observe the trust values

Trust Management for Host-Based Collaborative Intrusion Detection 117

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

T
ru

st
 V

al
ue

Days

Expertise Level = 0.1
Expertise Level = 0.5

Expertise Level = 0.95

Fig. 4. Convergence of Trust Values for Different Expertise Levels during the learning
period

 0

 5

 10

 15

 20

 25

 30

150140130120110100

N
um

be
r

of
 In

fe
ct

ed
 N

od
es

Days

No Collaboration
No Trust Management

Trust Model of Duma et al.
Our Trust Model

Fig. 5. Number of Infected Nodes for a Honest Environment during the attack period

of nodes from each group, where nodes send only test messages to the others.
Figure 4 shows the average trust values of nodes with different expertise levels.
We can see that after 40-50 days, the trust values of all nodes converges to stable
values.

Starting from day 101, we inject one random attack to all the nodes in the
network in each day. The risk values of the attacks are uniformly generated from
[low, medium, high]. The difficulty levels of attacks are fixed to 0.5. Each IDS in
the network ranks the alert generated by the attack. If a node ranks “no risk”
or “low risk” for a high-risk attack, then it is assumed to have been infected.
We observe the total number of infected nodes in the network from day 101
to day 150 under different collaboration modes: no collaboration, collaboration
without trust management, the trust management adapted from the model of
Duma et al. [3] and our trust management method. The results of the total num-
ber of infected nodes are shown in Figure 5. In this figure, we can see that the
network in collaboration mode is more resistant to attacks than the network in

118 C.J. Fung et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.95/honest
0.5/honest

0.1/honest
0.95/malicious

T
ru

st
 V

al
ue

Report All
Report DK/m=0.3
Report DK/m=0.5

Report DK/m=1
Report DK/m=2

Fig. 6. Converged Trust Values for Different Expertise/Honesty Levels

 0

 5

 10

 15

 20

 25

 30

150140130120110100

N
um

be
r

of
 In

fe
ct

ed
 N

od
es

Days

No Collaboration
No Trust Management

Trust Model of Duma et al.
Our Trust Model

Fig. 7. Number of Infected Nodes for Dishonest Environment

non-collaborative mode. Trust management models further improve the effective-
ness of the collaboration. Our trust model performs better than that of Duma
et al. [3]. Almost all attacks are detected and almost no node is infected after
50 days.

5.3 Results for an Environment with Some Dishonest Nodes

The purpose of the second experiment is to study the effectiveness of the
collaboration model in a hazard situation where some nodes in the network are
dishonest. We look at a special case where only some expert nodes are dishonest
because malicious expert nodes have the largest impact on the system.

In this experiment, we have 10 expert nodes that are dishonest. There are two
cases, without and with “don’t know” replies. In the latter case, the percentages
of “don’t know” answers from nodes with expertise levels of 0.95, 0.5 and 0.1
are 0%, 4% and 45% respectively. The forgetting sensitiveness parameter (m)
varies from 0.3 to 2. Figure 6 shows the converged trust values of nodes with

Trust Management for Host-Based Collaborative Intrusion Detection 119

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 110 120 130 140 150

T
ru

st
 V

al
ue

s
of

 M
al

ic
io

us
 N

od
es

Days

Trust Model of Duma et al.
Our Trust Model

Fig. 8. Trust of Malicious Nodes

different expertise/honesty levels in “report all” case and “report don’t know”
case after 100 simulation days. When m is large, the punishment of reporting
“don’t know” is heavier. For m = 0.3, the nodes with medium (0.5) and low (0.1)
expertise levels will be slightly rewarded. Therefore, we suggest using m = 0.3 to
encourage non-expert nodes to report “don’t know” when they are not confident
about their replies.

After 100 days, we start injecting randomly generated attacks to all the nodes
in the network at a rate of one attack per day. Figure 7 shows the total number
of infected nodes under different collaboration modes. The number of infected
nodes in the no-collaboration case is about the same as that in Figure 5 because
the HIDSes make decisions independently. When there is no trust model or
using the model of Duma et al. [3] to detect malicious nodes, the total number
of infected nodes is larger than the corresponding case in Figure 5. The network
hence suffers from malicious nodes. The number of infected nodes remains very
small when using our trust model. This shows how important effective trust
management is for a HIDS collaboration system.

5.4 Robustness of the Trust Model

The goal of this experiment is to study the robustness of our trust model against
attacks. For the newcomer attack, malicious nodes white-wash their bad history
and re-register as new users to the system. However, a newcomer attack is difficult
to succeed in our system. This is because it takes a long time for a newcomer to
gain trust over the trust threshold. In our experiment, it takes about 15 days for
an expert node to gain trust of 0.8 to pass the threshold (as shown in Figure 4).

The second possible threat is the betrayal attack, where a malicious node
gains a high trust value and then suddenly starts to act dishonestly. This sce-
nario happens, for example, when a node is compromised. To demonstrate the
robustness of our model against this attack type, we add 10 expert nodes which
spread opposite alert rankings on day 110. Figures 8 and 9 show the trust

120 C.J. Fung et al.

 0

 5

 10

 15

 20

 25

 30

150140130120110100

N
um

be
r

of
 C

or
re

ct
 R

an
ki

ng
s

Days

Trust Model of Duma et al.
Our Trust Model

Fig. 9. The Impact of Betrayal Attack

values of the betraying nodes and the number of correct attack rankings be-
fore and after the betrayal attack when using the trust model of Duma et al.
and our trust model respectively. When using our trust model, we notice that the
impact of the betrayal attack is smaller and the trust of malicious nodes drops
down faster. This is because our trust model uses a forgetting factor. The trust
values of dishonest nodes rely more on recent experience and therefore decrease
more quickly. Our recovery phase is also shorter because we use a threshold to
eliminate the impact of dishonest nodes. Once the trust values of malicious nodes
drops under the trust threshold of 0.8, they are ignored in the alert consultation
process and their impact is completely eliminated.

6 Related Work

Most of the existing work on distributed collaborative intrusion detection re-
lies on the assumption that all IDSes are trusted and faithfully report intru-
sion events. For instance, [4] proposes a distributed information sharing scheme
among trusted peers to guard against intrusions. and [6] proposes a distributed
intrusion detection system based on the assumption that all peers are trusted.
However, both systems can be easily compromised when some of the peers are
(or become) dishonest. Duma et al. [3] address possibly malicious peer IDSes by
introducing a trust-aware collaboration engine for correlating intrusion alerts.
Their trust management scheme uses each past experience of a peer to predict
the trustworthiness of other peers. However, their trust model is naive and does
not address security issues within the collaborative network. For instance, in
their system, the past experience of a peer has the same impact on its final trust
values regardless of the age of its experience, therefore making it vulnerable to
betrayal attacks. In our model, we use a forgetting factor when computing the
trust to put more emphasis on the recent experience of the peer.

Different models have been proposed for trust management in distributed
networks [5,9]. [5] uses a global reputation management to evaluate distributed

Trust Management for Host-Based Collaborative Intrusion Detection 121

trust by aggregating votes from all peers in the network. Sun et al. [9] propose an
entropy-based model and a probability-based model, which are used to calculate
the indirect trust, propagation trust and multi-path trust. These models involve
a lot of overhead and are not suitable for our system because IDSes can be easily
compromised. They also suffer from collusion attacks.

Our model is also distinguished from the trust models developed for the ap-
plication of e-marketplaces [10]. We introduce the concepts of expertise level and
physical location to improve the accuracy of intrusion detection. We also allow
IDSes to send test messages to establish better trust relationships with others.
The alert risk ranking is categorized into multiple levels as well.

7 Conclusions and Future Work

In this paper, we presented a trust-based HIDS collaboration framework that
enhances intrusion detection within a host-based IDN. The framework creates
incentives for collaboration and we prove it is robust against common attacks on
the collaborative network. The conducted simulations demonstrate the improved
performance of our framework in detecting intrusions as well as its robustness
against malicious attacks.

As future work, we will investigate the design of a communication protocol for
the collaborative network, which takes privacy and efficiency issues into consider-
ation. We will also design an automatic feedback to satisfaction level converting
function, which takes risk levels of test messages, difficulty levels of test mes-
sages, and feedback from IDSes as inputs and generates satisfaction levels to the
feedback as output.

Furthermore, we intend to extend our trust model to go beyond a generalized
trust value for an HIDS. More specifically, since in practive HIDSes might have
different expertise in detecting different types of intrusions, we would want to
model the trustworthiness of a HIDS with respect to each individual type of in-
trusion. This will result in more effective trust management for assisting HIDSes
to seek advice from truly helpful others. The subjectivity of HIDSes needs to
be addressed when modeling their trustworthiness. HIDSes may have different
subjective opinions on the risk levels of alerts. They can be more or less sensitive
to certain intrusions.

Incentive design is another possible extension of our work. In the current
protocol, the system may encounter free-rider problem such that some nodes
forward the test messages to its neighbors and receive the rankings, then they
forward the aggregated feedback from its neighbors to the tester. Free-riders
can create unnecessary traffic in the network and degrade the inefficiency of
the system. Honest users may be taken advantage and be deceived by dishonest
“middle-agents”. In our future work, we will investigate this problem and cre-
ate corresponding incentive design to discourage free-riders and reward honest
participants.

122 C.J. Fung et al.

Finally, we also intend to evaluate the resistance of our framework against
collusion attacks; as well as investigate its scalability in terms of number of
HIDSes, rate and type of attacks.

References

1. Aycock, J.: Painting the internet: A different kind of warhol worm. Technical Re-
port, TR2006-834-27, University of Calgary (2006)

2. Douceur, J.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429. Springer, Heidelberg (2002)

3. Duma, C., Karresand, M., Shahmehri, N., Caronni, G.: A trust-aware, p2p-based
overlay for intrusion detection. In: DEXA Workshops, pp. 692–697 (2006)

4. Janakiraman, R., Zhang, M.: Indra: a peer-to-peer approach to network intrusion
detection and prevention. In: WET ICE 2003. Proceedings of the 12th IEEE In-
ternational Workshops on Enabling Technologies, pp. 226–231 (2003)

5. Jiang, T., Baras, J.: Trust evaluation in anarchy: A case study on autonomous
networks. In: INFOCOM. IEEE, Los Alamitos (2006)

6. Li, Z., Chen, Y., Beach, A.: Towards scalable and robust distributed intrusion
alert fusion with good load balancing. In: LSAD 2006: SIGCOMM workshop on
Large-scale attack defense, pp. 115–122. ACM Press, New York (2006)

7. Moore, D., Shannon, C., Claffy, K.: Code-red: a case study on the spread and vic-
tims of an internet worm. In: IMW 2002: Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment, pp. 273–284. ACM, New York (2002)

8. Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems.
Commun. ACM 43(12), 45–48 (2000)

9. Sun, Y., Han, Z., Yu, W., Liu, K.: A trust evaluation framework in distributed
networks: Vulnerability analysis and defense against attacks. In: INFOCOM. IEEE.
Los Alamitos (2006)

10. Zhang, J., Cohen, R.: Trusting advice from other buyers in e-marketplaces: the
problem of unfair ratings. In: ICEC 2006, pp. 225–234. ACM, New York (2006)

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 123–135, 2008.
© IFIP International Federation for Information Processing 2008

Multi-constraint Security Policies for Delegated
Firewall Administration

Cássio Ditzel Kropiwiec1, Edgard Jamhour2, Manoel C. Penna2, and Guy Pujolle1

1 LIP6, UPMC, 104 Avenue du Président Kennedy
75016 Paris, France

2 PPGIA, PUCPR, Rua Imaculada Conceição, 1155, 80215-901, Curitiba, Brazil

Abstract. This work presents a new policy based security framework that is
able handle simultaneously and coherently mandatory, discretionary and
security property policies. One important aspect of the proposed framework is
that each dimension of the security policies can be managed independently,
allowing people playing different roles in an organization to define security
policies without violating a global security goal. The framework creates an
abstract layer that permits to define security policies independently of how they
will be enforced. For example, the mandatory and security property polices
could be assigned to the risk management staff while the discretionary policies
could be delegated among the several departments in the organization.

1 Introduction

In large networks, using a collection of firewalls increases the network security by
separating public and private resources. It also permits to control the access of
internal users to internal resources, reducing the risks of attacks originated from the
inside of the network [1]. However, many difficulties arise when configuring large
networks. First, it is necessary to determine the rule set that must be applied to each
firewall, in a way that the overall security policy is satisfied [2]. Also, as firewalls of
diverse models and vendors can be present, it is necessary to consider the specific set
of rules that can be interpreted and enforced by each firewall in the network before
applying the configuration. The topology of the network and the placement of the
firewalls with respect to the users and resources is another aspect that must be
considered. Each firewall receives a rule set according to its location in the network.
If more than one firewall is present between a user and a resource, the rule set can be
combined in order to better explore the distinct features offered by the firewalls.
Ideally, the process of defining security policies should be decoupled from the
mechanisms that will actually enforce them over the network. In most organizations,
security policies are related to business goals, and are not anymore a purely technical
issue.

In order to address the aforementioned issues, this paper proposes a policy-based
security framework that introduces a new approach related to the security policy
definition and the generation of firewall configuration in a distributed environment.
The framework adopts a policy model with three dimensions of security policies:

124 C.D. Kropiwiec et al.

mandatory, discretionary and security property. Mandatory policies are coarse grained
and reflect the inviolable security restrictions in the organization. Discretionary
policies are fine grained, and are subjected to the mandatory policies. While
mandatory and discretionary policies are restrictions imposed to the right of access
from users to resources, the security property policies are restrictions imposed to the
paths connecting users to resources. In our framework a path must satisfy some
security requirements in order to be allowed. This permits to create policies which are
independent on the user or resource location. The motivation for this division is to
support the cooperation of multiple security staff in the security policy definition. For
example, the right to define mandatory and security property policies could be
assigned to an organizational-level risk management staff while the discretionary
policies could be delegated to the local administrators in several departments in the
organization.

The process of translating the three-dimensional high level security policy into
firewall configuration is highly complex. In order that the firewall configuration
respects the high level definition, we have formalized both the policy model and the
translating algorithm using the Z-language notation. The proof of some important
theorems permits to demonstrate the coherence of our approach with respect of
combining multiple policies.

The remaining of this paper is organized as follows: section 2 presents some
representative related works. Section 3 describes our proposed framework, presenting
both the security policy language and the translation algorithm. Section 4 presents the
Z-language representation of the framework and the theorem proving. Section 5
presents a case study, illustrating how the framework works. Finally, Section 6
concludes the paper and points to future developments.

2 Related Work

Presently, it is possible to find numerous academic or commercial firewall languages
proposed to simplify the firewall configuration process. These languages can be
classified according to criteria such as vendor independence, topology independency
and their level of abstraction.

Firewall languages are vendor dependent when they apply only to firewall devices
of a specific vendor. Some examples are the Cisco PIX [3] e Cisco IOS [4] languages.
On the other hand, vendor independent languages are not limited to a specific vendor.
This is the case of INSPECT language patented by CheckPoint [5]. A vendor can
create a firewall supporting the INSPECT standard by implementing a compiler that
translates the INSPECT language into the firewall’s native configuration instructions.

Languages are topology dependent when they were designed to represent the
configuration of each firewall isolated, i.e., the placement of the users and resources
with respect to the firewalls is taken into account by the network administrator and
not by the language compiler. The language used by the framework presented in [6] is
an example of topology dependent language. The framework represents firewall
configuration as high level policies based on the Ponder specification [7]. Even
though the high level language provides the use of symbols for masquerading host

 Multi-constraint Security Policies for Delegated Firewall Administration 125

and network addresses, it is still topology dependent, because there is no automated
strategy for selecting the sub-set of rules that applies for a specific firewall.

The languages are independent of topology when it is possible to represent both the
security rules and the network topology independently. In this case, rules are not
specific to each firewall. There is a mechanism or algorithm that evaluates
the network topology (i.e., the placement of users and resources with respect to the
firewalls) and translates the security policies into localized firewall configuration. The
framework described in [8] is an example of topology independent firewall
configuration. In [8] the access control policies are defined in three levels:
organizational, global and local. Policies at the organizational level are described in
natural language, and define security goals such as blocking offensive content and
scanning actions. Organizational policies are transformed into global filtering rules at
the global level. The subset of the global rules that concerns each firewall is separated
and distributed at the local level.

The languages employed for firewall configuration can be further classified
according to its level of abstraction. In low-level languages, the network configuration
is represented by a set of rules of type “if conditions are satisfied than enforce
actions”. The conditions are basically described in terms of the packet’s header fields.
Most languages found in the literature, such as the one employed by the Firmato
toolkit, are low-level [12]. On the other hand, the high-level languages uses a more
abstract concept, wherein the security policies says “what must be done” instead of
saying “how must be done”, i.e., the policy define an intention independently of the
mechanisms used to implement it. Some examples of policy based languages can be
found in [9], [10] and [11]. The framework presented in [9] permits to represent high-
level policies in the form of a list of data access rules (DACL), that declares
permissions of executing simple operations (read or write) on objects. The framework
translates the high-level policies into low-level policies suitable to be configured into
the firewall devices. An algorithm for checking the fidelity of the low-level policies
with respect to the high-level policies is also presented. The project presented in [10]
aims to automate the management of security policy in dynamic networks. The central
component is a policy engine with templates of the network elements and services
that validates the policy and generates the new security configurations for the network
elements when the security is violated. The work presented in [11] abstracts hosts and
area addresses by using names, which permits to easily determine which firewalls are
traversed by the communication flows. It defines an algorithm that, given a specific
topology, creates the filter set for each firewall or router. It also defines a second
algorithm that verifies if the resulting configuration violates any of access policies.

The work described in [14] adopts a graphic representation of security rules. The
work also defines the concept of security goals (e.g., top secret, mission critic, etc),
which impose additional security properties that are required in order to access an
object or perform a given access mode. At a lower level, a security goal is expressed
in terms of a security requirement vector, which defines the minimum levels of
properties such as confidentiality, integrity, availability and accountability. A security
assumption vector defines the same properties assigned for the principal and elements
along the path between the principal and the resource. In order of an access to be
granted, it is necessary that all properties of the security assumption vector satisfy the
corresponding properties in the security requirement vector. We have borrowed many
concepts related to the security property model from this work.

126 C.D. Kropiwiec et al.

3 The Framework

This work presents a new policy based security framework that is capable to handle
simultaneously and coherently mandatory, discretionary and security property
policies. The framework supports the definition of network security configuration for
systems formed by a set of users willing to access a set of protected resources. A
resource is a service delivered at a location, which can play the role of the source or
the destination of an access. A source location is the place where a user initiates an
access while a destination location is the place where one or more services are
delivered.

A user can access a resource if there is permission. Permissions are represented by
three different security models: mandatory, discretionary and security property. The
mandatory model defines permissions by classifying users and resources with
clearances and classifications. In the mandatory model, a permission is defined
whenever a user classification is greater then a resource clearance [13]. The
discretionary model defines permissions by mean of rules that relate users to
resources, including their possible sources and destinations. Finally, the security
property model defines permissions by assigning security levels to firewalls, and
locations.

The framework has two main components: an information model and a refinement
algorithm. The first includes all high level security information, whereas the second
allows security policy formulated by high level statements to be consistently
translated to firewall security rules.

3.1 The Information Model

The Information model is organized in five main blocks: the Inventory, the
Mandatory Model, the Discretionary Model, the Security Property Model, and the
Firewall Features Model, and is depicted in Figure 1.

The Inventory contains the objects and relationships necessary to build the security
policy. It is organized in two main objects groups. The first includes users, locations,
resources and services. A Service is modeled by the combination of a protocol and
two port numbers for the source and destination sides. For instance, the Telnet service
would be defined as TCP with destination port 23 and any source port. Although users
interact with services, permissions are granted to resources. A Resource consists of
one or more services delivered from one or more locations. For example, the E-mail
resource could be defined to represent SMTP, POP and IMAP services. A Location is
the place from where users access resources and also the place where a resource is
located. Physically it corresponds to a host or subnet, and is represented by an IP
address and a mask. When assigned to users, a location plays the source role, and the
destination role when assigned to resources. The User Located At and Resource
Located At classes indicate, respectively, the locations from where a user can initiate
an access or from where a resource can deliver a service. Users, locations and
resources can be organized in groups, what is modeled by a corresponding abstract
class. For example, an Abstract User can be a User or a User Group, which in its turn
can contains many abstract users, that is, many users or user groups.

 Multi-constraint Security Policies for Delegated Firewall Administration 127

Abstract User

User
User Group

Rule

Clearance

Abstract Resource

Resource Group Resource

Classification Abstract Location

Location

- IP/Mask:

Location Group

User Located At

Security Class

Protocol

Connection

Firew all

Firew all Features

Serv ice

- SourcePorts:
- DestinationPorts:
- Options:

ResourceLocatedAt

1..*

1..*
+Source 1..*

1..*

1..*

1

1..*

1

1..*

+SR
1

1..*
1..*

+Destination 1..*

+SA

1

+SA

1

0..1

1..*

1..*

0..1

1

1..*

+SA 1

Fig. 1. The Information Model

The second object group includes connections, locations and firewalls. The
Connection class represents connections between locations and firewalls or between
two firewalls. Together, they model the network topology. The Firewall Feature class
models firewall functionality, that is, its ability to perform some processing over the
network packets.

The Mandatory Model establishes the mandatory access control policy by
determining resource access according to a clearance versus classification schema.
Clearance levels are assigned to users wherever classification levels are assigned to
resources. A user is allowed to access a resource only if its clearance is equal to or
greater than the corresponding resource classification.

The Discretionary Model is constructed by a set of discretionary rules that state the
security actions to be enforced for specific service accesses. A service access includes
the service, a user, and the location from where he can initiate an access; and a
resource, and the destination from where it can be accessed. Examples of security
actions are: accept, deny, log, and forward. In this study we just consider the accept
action, and adopt the “anything not explicitly allowed is forbidden” strategy.

The Security Property Model provides fine-grained security information by
including configuration and location dependent constraints. Security property rules
enforce access control based on two properties, the security requirement (SR), which
is defined for destination locations, and security assumption (SA), which is defined
for source locations, firewalls and protocols.

Security requirements and security assumptions are specified by security levels
within a security class. The security level is a natural number ranging from one to
four, expressing the “strength” of one of the following security properties:
confidentiality, integrity, availability and accountability. The security level establishes
a total order over the security property set: the greater is the corresponding number (1,
2, 3 or 4) the stronger is security level. A security class is defined by an array of size
four. If sc is a security class, sc[1], sc[2], sc[3] and sc[4] correspond, respectively, to
its confidentiality, traceability, integrity and accountability security levels. Any

128 C.D. Kropiwiec et al.

entities that can be involved in resource accesses (i.e., locations, firewalls, and
protocols) have a security class.

Security requirements and security assumptions can change when the related
objects are combined. For example, John Doe trying to access a resource from the
Engineering subnet would probably have a different SA than when he is trying to
access the same resource from JD-Home host. Assuming that the corporation has
much more control over the Engineering subnet then the first combination should
result in a stronger SA. The protocol used by the object also changes its SA. For
example, John Doe at Engineering subnet accessing a resource through HTTPS
protocol introduces lower risk than when he is trying to access same resource from
the same subnet through HTTP. Consequently a stronger SA should be assigned to the
first. The modified security assumption is referred as effective security assumption
(ESA). The upper effective class operation (∪) over the security class set is defined to
compute it. Let sc1, sc2, …, scn, to be security classes such that sci = [x1i, x2i, x3i, x4i].

[])(sup),(sup),(sup),(sup 4321
1

iiiiiiii

n

i
i xxxxsc =

=
∪ (1)

Security assumptions along an end-to-end path are combined together to form the
overall security assumption (OSA). The permission to a user (from a source location)
willing access a resource (at a destination location) is granted only if the end-to-end
path OSA is at least as “strong” as the destination location SR. This involves the
comparison of security classes. Because there is a partial order over the security class
set, we are able to define its “strength”. When sc1 and sc2 are security classes such
that sc1 = [x1, x2, x3, x4] and sc2 = [y1, y2, y3, y4], the security class sc2 is stronger than
sc1 if yi ≥ xi, for i = 1..4.

The OSA is calculated as follows: First, compute the ESA for the (source location,
protocol) pair and for each (firewall, protocol) pair along the path. Then, the resulting
ESAs are combined along the end-to-end path. In this case the calculation should
retain the set of weakest security levels. For this, the lower effective class operation
(∩) is defined over the security class set as follows. Let sc1, sc2, …, scn, to be security
classes such that sci = [x1i, x2i, x3i, x4i].

[])(inf),(inf),(inf),(inf 4321
1

iiiiiiii

n

i
i xxxxsc =

=
∩ (2)

The Firewall Features Model contains the objects and relationships necessary to
represent the firewall security functionality. The Firewall Feature class models the
firewall ability to perform some processing over the network packets. For instance, a
stateful firewall has the ability (or feature) of keeping track the state of network
connections (such as TCP streams or UDP communication) flowing across it. This
concept was introduced in Firmato [12] where the following features, included in the
most common firewalls are listed: Names, Groups, IP Ranges, Stateful, Trust levels,
Directional, Default Stance, Predefined Services and Layer.

A service access introduces the need for firewall features along the end-to-end
path. For example, if the Email-plus resource represents a service that allows the
exchange of e-mails with attached videos, then the Predefined Services feature must
be present. The required features (RF) operation computes the set of all firewall

 Multi-constraint Security Policies for Delegated Firewall Administration 129

features that are necessary for a service access. On the other hand, the feature can be
supported by any of the firewalls along the path. In other words, the sequence of
firewalls within a path supports the union of individual features. The virtual firewall
(VF) operation computes the set of features supported along the path. If A =
RF(service access) and B = VF(path), the service access is feasible if A ⊆ B.

A service access determines a firewall rule, that is, a sequence of conditions that
must be satisfied to allow the access. We introduce the concept of firewall abstract
rule, a vendor independent syntax firewall rule, that is, a sequence of abstract (vendor
independent) conditions and the corresponding action. To build this abstract rule, one
should consider the objects included in the service access, obtaining, for each one, the
conditions registered in the inventory. For example, if John Doe is named in the
service access and its login name in the inventory is JDoe, then the corresponding
abstract condition is (login_name, JDoe). Also, if the Engineering subnet is named in
the service access and its IP address is 10.1.1.0/24, the corresponding abstract
condition is (IP_SRC, 10.1.1.0/24). Each abstract rule must be distributed along the
firewalls involved in a service access. The features supported by each firewall are
registered in the inventory. Please note that the RF operation assures that all necessary
conditions can be enforced by the firewalls along the path.

3.2 The Refinement Algorithm

The refinement algorithm is presented in the following, supported by the example
depicted in figure 2.

U R

 SP UC RC

H H

 S D Discretionary Rule: ((U)ser, (R)esource, (S)ource, (D)estination)
Mandatory: (User Clearance (UC), Resources Classification (RC))
Security Properties (SP): access related objects SA and destination SR

U R

U R

R

H2

H3

H6

H7

H8

P1

P2

P3 P4

P5

U R

U

R

R

H2

H3

H6

H7

H8

UH2

FW1, FW2 (P2)

FW1, FW3, FW6 (P3)

FW4, FW5 (P4)

U R

U R

U R

U R

H1

H2

H3

H4

H5

H6

H7

H8

a b

d

R

U R

U R

H2

H3

H6

H7

H8

P1 P2

P3 P4
P5

c

Fig. 2. A Refinement Example

1. Identify the set of (user, resource) pairs that hold the discretionary and
mandatory models: (i) Take all abstract users and resources that are referenced by
discretionary rules. (ii) Expand groups to individual users and resources. (iii) Select
all (user, resource) pairs for which user clearance is greater than or equal to resource
classification.

2. For the (user, resource) pairs obtained in step 1, compute the set of service
accesses, that is, ((user, source), (destination, resource), service) tuples, that hold the
inventory and discretionary model (Figure 2a). The source and destination locations
must be referred by a discretionary rule and be registered in User Located at or

130 C.D. Kropiwiec et al.

Resource Located at, respectively. Each resource is related to one or more services. If
the set is empty, terminate the algorithm.

3. Compute the set of possible paths for the service access computed in step 2
(Figure 2b): (i) For each service access, find a candidate path. (ii) Identify the
possible protocols for the candidate path, from the services delivered at the
corresponding destination. (iii) For each candidate path, compute the corresponding
OSA. If it is at least as stronger as the destination SR, include it in the set of possible
paths. (iv) If the set of possible paths is empty for all services accesses, terminate the
algorithm.

4. Compute the set of feasible paths for the service accesses that corresponds to a
possible path computed in step 3 (Figure 2c): (i) For each service access, compute A
= RF(service access). (ii) For each path in the set of possible path, compute B =
VF(path). (iii) If A ⊆ B, include the path in the set of feasible paths. (iv) If the set of
feasible paths is empty for all services accesses, terminate the algorithm.

5. Compute the set of abstract firewall rules for each service access that
corresponds to a feasible path computed in step 4 (Figure 2d): (i) For each firewall,
compute the set of service access in which it is involved. (ii) For each service access
in which the firewall is involved, produces an abstract rule with the conditions it can
implement.

4 Formal Representation, Analysis and Validation

The refinement algorithm must guarantee that translation process doesn’t cause the
violation of the policies. High-level and low-level policies must represent the same set
of permissions; otherwise, the whole system can be compromised. Two main
theorems must be demonstrated to validate the algorithm:

1. Every access allowed by the higher level policy should be supported by the
lower level policy (if they can be correctly enforced), and

2. No action allowed by the lower level policy should be forbidden by the higher
level policy.

The formalism used in this work for formal validation and analysis is based on Z
notation [15]. The Z notation is a formal specification language used for describing
and modeling computing systems. The Z/EVES tool [16] is used to aid in
representation and manipulation of Z notation. It is an interactive system for
composing, checking, and analyzing Z specifications.

The validation approach used in this work consists of representing the algorithm in
Z notation, creating theorems that represents the properties that the system must hold
and using the Z-Eves tool to automatically prove these theorems, thus validating that
the mathematical representation of the algorithm is consistent and complete.

The complete Z specification of the system and the proved theorems is very
extensive and complex to be entirely presented in this paper. However, to illustrate
how it is done, we present some excerpts in the following. The full Z specification is
available to download at [17]. As an example, Figure 3 presents the procedure for
handling discretionary rules.

 Multi-constraint Security Policies for Delegated Firewall Administration 131

 »_DiscretionarySchema________________________
1 Æ Rule: P User x P Resource x P Location x P Location x Action
 «_______________
2 ÆRule = (users, resources, sources, destinations, action)
3 Æif Euser: users • user = AnyUser
4 Æthen RuleUsers = Users
5 Æelse if users z Users then RuleUsers = users else RuleUsers = 0
6 Æif Eresource: resources • resource = AnyResource
7 Æthen RuleResources = Resources
8 Æelse if resources z Resources
9 Æ then RuleResources = resources
10 Æ else RuleResources = 0
11 Æif Esource: sources • source = AnySource
12 Æthen RuleSourcesExplicit = Locations
13 Æelse if sources z Locations
14 Æ then RuleSourcesExplicit = sources
15 Æ else RuleSourcesExplicit = 0
16 ÆRuleSourcesLocatedAt
17 Æ = { u: User; l: Location | u e users ¶ (u, l) e UserLocatedAt • l }
18 ÆRuleSources = RuleSourcesExplicit I RuleSourcesLocatedAt
19 Æif Edestination: destinations • destination = AnyDestination
20 Æthen RuleDestinationsExplicit = Locations
21 Æelse if destinations z Locations
22 Æ then RuleDestinationsExplicit = destinations
23 Æ else RuleDestinationsExplicit = 0
24 ÆRuleDestinationsLocatedAt
25 Æ = { r: Resource; l: Location | (r, l) e ResourceLocatedAt • l }
26 ÆRuleDestinations = RuleDestinationsExplicit I RuleDestinationsLocatedAt
 –_____________________________________

Fig. 3. Line 2 defines the structure of the rule. Lines 3 to 5 select the users referenced by the
rule in RuleUsers set. If AnyUser is present in the rule then the RuleUsers set must contain all
the users registered in the system. Otherwise, the specification checks if the specified users are
registered in the system and makes the RuleUsers set to include them if true. If the two previous
verifications are false, then RuleUsers set is empty, meaning that the rule is not valid for any
user. Lines 6 to 10 state the same logic for RuleResources set. Lines 11 to 18 specify how
RuleSources set is built. Note that lines 11 to 15 are similar to RuleUsers set specification. The
differences are at lines 16, 17 and 18. In the first two, the sources where the users can be
located are selected, while in line 18, the RuleSources set is defined as the intersection between
the sources specified in the rule and the locations of the users. The same logic is applied to
RuleDestinations set at lines 19 to 26.

With the algorithm modeled in Z, the next step is to specify the theorems and to
prove them. The two main theorems previously cited in this section were divided into
several small theorems, in order to make the demonstration process simpler. We
present some of these theorems in the following paragraphs.

132 C.D. Kropiwiec et al.

Theorem 1. “If a rule specifies a user and a resource and if the user clearance is less
than the resource classification, then the pair (user, resource) can not be a member of
the UsersAndResources set”. The Z-Eves code is presented in Figure 4.

Theorem 2. “For any protocol, source and destination allowed by the rule, if the OSA
is smaller than SR, then the tuple ((protocol, source, destination), firewalls) cannot be
a member of SecurePaths set”. The Z-Eves code is presented in Figure 5.

Theorem 3. “If the ((user, resource), (protocol, source, destination), firewalls) tuple
defines a service access across the firewalls (i.e., if the tuple is a member of the
Permissions set), then the rule must include these user, resource, source and
destination; the user clearance must be equal to or greater than the resource
classification; and the OSA for the (protocol, source, firewall) tuple must be equal to
or greater than the destination SR”. The Z-Eves code is presented in Figure 6.

theorem rule testMandatory
 MandatorySchema
 ¶ user e RuleUsers ¶ resource e RuleResources
 ¶ Clearance user < Classification resource
 fi ! (user, resource) e UsersAndResources

Fig. 4. Z representation of Theorem 1

theorem rule testSecurityProperties
 SecurityPropertiesSchema
 ¶ protocol e Protocol ¶ source e Location ¶ destination e Location
 ¶ firewalls e seq Firewall
 ¶ ((protocol, source, destination), firewalls) e RulePathsAndProtocols
 ¶ ! (OSA (protocol, source, firewalls), SR destination) e GOSA
 fi ! ((protocol, source, destination), firewalls) e SecurePaths

Fig. 5. Z representation of Theorem 2 - The GOSA set represents a relation between OSA and
SR, and their elements are those for which OSA is equal to or greater than SR. Thus, the tuples
(OSA, SR) that are not members of the GOSA set are those for which OSA is smaller than SR.

theorem rule testPermissions
 PermissionsSchema
 ¶ ((user, resource), (protocol, source, destination), firewalls) e Permissions
 fi user e RuleUsers ¶ resource e RuleResources
 ¶ Clearance user ˘ Classification resource
 ¶ ((protocol, source, destination), firewalls) e RulePathsAndProtocols
 ¶ (OSA (protocol, source, firewalls), SR destination) e GOSA

Fig. 6. Z representation of theorem 3 - If some permission is a member of the Permissions set,
then it must be present at discretionary, mandatory and security property policies

 Multi-constraint Security Policies for Delegated Firewall Administration 133

5 Example

According to our approach, only the framework has the credentials necessary to create
rules in the firewalls. The policy administrators need to use the framework in order to
manage the security policies. To illustrate the use of the framework, consider the
example in Figure 7. It supposes an imaginary university network (yet realistic), with
two firewalls separating 4 networks. The example illustrate how the mandatory and
security property policies constraints the discretionary policies, avoiding violation of
global security rules. For sake of simplicity, the security assumption and requirement
vectors have been reduced to two dimensions: [confidentiality, traceability].

Suppose that the mandatory and security property policies have been previously
defined (as presented in Figure 7) by a specialized department in the university,
responsible for the overall security. Now suppose that an administrator responsible for
creating discretionary policy decide to give full access permissions for all users with a
discretionary rule such as: “Any User from Any Location may Access Any Resource at
Any Location”. In spite of this rule the discretionary rules generated by the framework
would be defined as follows.

Fig. 7. Teachers and students can be located at Internet, Office or Lab network, and Guest users
can only be located at Internet. Teachers have mandatory level (clearance 4) necessary to
access resources http and ftp at Srv1 and Srv2, https and ftp at Srv3 (classifications 1, 2 and 3,
respectively). Students have mandatory level (clearance 2) to access resources http and ftp at
Srv1 and Srv2 (classifications 1 and 2, respectively). Guests users have mandatory level
(clearance 1) to access resources http and ftp at Srv1 (classification 1). Considering the security
property rules, https at Srv3 can be accessed from Office and Lab networks, and ftp can be
accessed from any network if using IPsec AH. Srv2 can be accessed from Office network with
http protocol. Srv1 can be accessed from any network (including Internet) using any protocol.

The rules for Firewall1 are:

• Permit Teachers, Students and Guests from Internet to access http and ftp
services at Srv1 – because the clearance of these users are greater than the
classification of resources at Srv1 and the OSA of the path [Internet, FW1] is
equal to SR of Srv1.

134 C.D. Kropiwiec et al.

• Permit Teachers from Internet to access ftp over IPsec AH at Srv3 – in this case,
the OSA of the path [Internet, FW1, DMZ, FW2] combined with ftp over IPsec
AH results in [4,3] that is greater than the SR [3,3] of Srv3 (the OSA were
obtained from the combination of individual ESA of network elements, that for
this situation are the following: Internet: [4,3], FW1: [4,4], DMZ: [4,3], FW2:
[4,4]), but only Teachers have clearance (4) greater or equal to classification of
resources at Srv3.

The rules for Firewall2 are:

• Permit that Teachers and Students access the http and ftp services at Srv1 from
Office and Lab – both Teachers and Students have clearance greater than the
classification of resources at Srv1, and the OSA of the combination these paths
and protocols are greater than the SR [1,1] of Srv1.

• Permit Teachers and Students from Office to have access to http services at
Srv2.

• Permit Teachers from Lab to have access to the https or ftp over IPsec AH
services at Srv3.

• Permit Teachers from Internet to have access to the ftp over IPsec AH service at
Srv3 – for the same reason of the second rule of Firewall1.

6 Conclusion

This paper has presented a framework capable of handling a multi-constraint security
policy model. The security policy permits to create discretionary rules which are
constrained by mandatory and security property policies. This is a very flexible
approach that permits to describe a large number of discretionary rules without
violating the primary security goals in a corporate environment. The motivation for
this division is to support the cooperation of multiple security staff in the security
policy definition. The policy model has been formalized and validated using the Z-
notation and the Z-Eves tool. There are, however, many aspects to be considered in
future studies. The methodology “anything not explicitly allowed is forbidden” should
be replaced by a more flexible approach capable of supporting negative policies.
Also, although a prototype has already been developed in Prolog, a broader scalability
study is necessary.

References

1. Markham, T., Payne, C.: Security at the Network Edge: A Distributed Firewall
Architecture. In: DARPA Information Survivability Conference and Exposition (DISCEX
II 2001), vol. I, p. 279 (2001)

2. Al-Shaer, E., Hamed, H.: Discovery of Policy Anomalies in Distributed Firewalls. In: 23rd
Conference of the IEEE Communications Society (INFOCOMM), pp. 2605–2616 (2004)

3. Cisco Systems Inc.: Cisco PIX Firewall Command Reference (2004),
http://www.cisco.com

4. Cisco Systems Inc.: Cisco IOS Reference Guide (2004), http://www.cisco.com

 Multi-constraint Security Policies for Delegated Firewall Administration 135

5. CheckPoint Software Technologies Ltd.: Stateful Inspection Technology (2005),
http://www.checkpoint.com/products

6. Lee, T.K., Yusuf, S., Luk, W., Sloman, M., Lupu, E., Dulay, N.: Compiling Policy
Descriptions into Reconfigurable Firewall Processors. In: 11th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, pp. 39–48 (2003)

7. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. In: Policy 2001: Workshop on Policies for Distributed Systems and Networks,
pp. 18–39 (2001)

8. Haixin, D., Jianping, W., Xing, L.: Policy-Based Access Control Framework for Large
Networks. In: Eighth IEEE International Conference on Networks, pp. 267–273 (2000)

9. Ou, X., Govindavajhala, S., Appel, A.W.: Network security management with high-level
security policies. Technical report TR-714-04, Computer Science Dept, Princeton
University (2004)

10. Burns, J., Cheng, A., Gurung, P., Rajagopalan, S., Rao, P., Rosenbluth, D., Surendran,
A.V., Martin, J.D.M.: Automatic Management of Network Security Policy. In: DARPA
Information Survivability Conference and Exposition, vol. II, pp. 12–26 (2001)

11. Guttman, J.D.: Filtering postures: local enforcement for global policies. In: IEEE
Symposium on Security and Privacy, pp. 120–129 (1997)

12. Bartal, Y., Mayer, A.J., Nissin, K., Wool, A.: Firmato: A novel firewall management
toolkit. ACM Transactions on Computer Systems 22(4), 381–420 (2004)

13. DOD: Trusted Computer Security Evaluation Criteria. DOD 5200.28-STD. Department of
Defense (1985)

14. Albuquerque, J.P., Krumm, H., Geus, P.L.: Policy Modeling and Refinement for Network
Security Systems. In: IEEE 6th International Workshop on Policies for Distributed
Systems and Networks, pp. 24–33 (2005)

15. Spivey, J.M.: The Z notation: a reference manual. Prentice Hall International (UK) Ltd,
Hertfordshire (1992)

16. Saaltink, M.: The Z/EVES system. In: Bowen, J.P., Hinchey, M.G., Till, D. (eds.) ZUM
1997. LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)

17. Kropiwiec, C.D.: Z-specification for Firewall Policies, Algorithms and Theorem Proofs
(2008), http://www.ppgia.pucpr.br/jamhour/Research/

Changes in the Web from 2000 to 2007

Ramin Sadre and Boudewijn R. Haverkort

University of Twente
Centre for Telematics and Information Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
P.O. Box 217, 7500 AE Enschede, The Netherlands

{r.sadre, b.r.h.m.haverkort}@utwente.nl

Abstract. The World Wide Web has undergone major changes in recent
years. The idea to see the Web as a platform for services instead of a
one-way source of information has come along with a number of new
applications, such as photo and video sharing portals and Wikis.

In this paper, we study how these changes affect the nature of the
data distributed over the World Wide Web. To do so, we compare two
data traces collected at the web proxy server of the RWTH Aachen. The
first trace was recorded in 2000, the other more than seven years later in
2007. We show the major differences, and the similarities, between the
two traces and compare our observations with other work. The results
indicate that traditional proxy caching is no longer effective in typical
university networks.

1 Introduction

Originally designed as a transport protocol for hypertexts, HTTP has become
the leading “container” protocol for a large variety of applications in the last
decade. Where in the past the web was primarily used for exchanging text-based
information, possibly with some pictures, the web now is a major source of both
texts and pictures of all sorts, but also of videos and music files. Yet, HTTP is
being used for downloading most of these.

In 2000 we collected a trace from the RWTH proxy server, primarily to study
object size distributions. Now, seven years later, we collected a similar trace, at
the same “point” in the internet, and compared it, in many ways, with the 2000
trace. Apart from the object size distribution, we now also studied object types,
and object constellation (sub-objects, links, and so on). In doing so, our aim
has been to understand changes in the network traffic (volume as well as other
characteristics) as generated by a large population of world-wide web users and
how those changes affect the efficiency of the proxy cache.

We are not the first ones to study the characteristics of world-wide web traf-
fic. Many studies have been reported so far (see the references at the end of
this paper), however, not many do a comparison in time, as we do. Of the true
comparable studies we found, we mention three. In [1], the authors study traces
collected in 1999, 2001, and 2003 at the up-link of the University of North Car-
olina. Since they use TCP/IP headers only they do not examine the type of

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 136–148, 2008.
c© IFIP International Federation for Information Processing 2008

Changes in the Web from 2000 to 2007 137

the documents requested by the clients. In [2], the accesses to three universitary
servers are studied; instead we analyze the accesses of clients located in a uni-
versity network to the whole WWW. Finally, [3] compares two traces collected
at the Boston University in 1995 and 1998. It mainly focuses on the impact of
the changes in the traces on different caching algorithms.

The remainder of the paper is structured as follows. In Section 2 we present
the general characteristics of the two traces. In Section 3 we make a detailed
comparison of various aspects of the traces: the response size and the type of
the transferred documents (Section 3.1), the characteristics of the queried URLs
(Section 3.2), the structure of the web pages (Section 3.3), and the cache ef-
ficiency of the proxy server (Section 3.4). We compare our major observations
and conclusions with other work in Section 4. Finally, Section 5 summarizes the
paper.

2 General Characteristics

The two traces that we examine in this paper have been extracted from the
access log files of the Squid web proxy server [4] of the RWTH Aachen. The
access log files have been collected at the proxy server from February 17, 2000
to March 12, 2000, respectively from August 6, 2007 to September 4, 2007. Both
time periods are similar in the sense that they both fall into the semester breaks
of the university. In 2000, main users of the university network were around 1950
scientists employed at the university and around 4350 students (out of 27400)
living in student apartment blocks. These numbers have not changed much from
2000 to 2007.

For the following studies we have focused on the HTTP-GET requests that
were processed with HTTP status code 200 (OK) or 304 (Not Modified) which
were by far the most frequent status codes in the log files. In the following we
denote the resulting data sets the “2000 trace”, respectively the “2007 trace”.
We used parts of the 2000 trace in previous publications [5,6,7,8,9].

Table 1 shows some general characteristics of the two traces. Row 4 gives
the overall number of requests recorded in the traces. Row 5 and 6 give the

Table 1. General characteristics

2000 trace 2007 trace
start date 2000-02-17 2007-08-06
end date 2000-03-12 2007-09-04
#requests 26,318,853 18,747,109

#requests 200 20,734,319 13,621,849
#requests 304 5,584,534 5,125,260

#clients 2831 1124
#requests\ICP 19,716,054 16,415,251
#clients\ICP 2787 1119

#reqs/client\ICP 7074 14670
volume [Gbytes] 237 866

138 R. Sadre and B.R. Haverkort

number of requests by status code. The (relatively) increased number of requests
with return code 304 in the year 2007 indicates that client-side caching is now
more common and efficient. Row 7 gives the number of unique clients that sent
requests to the proxy server. These rows show that less queries have been sent
by less clients to the server in the year 2007 than in the year 2000. It should
be noted that not all clients represent single hosts since the proxy server is also
queried by other proxy servers via the Internet Cache Protocol (ICP) [10]. When
ignoring those other proxy servers, we obtain the numbers shown in rows 8 and
9. We observe that the number of clients decreased while the average number of
requests per client (row 10) has increased by about 100% from 2000 to 2007. An
explanation for the latter will be discussed in Section 3.3. The exact reason for
the smaller number of clients is difficult to find because each department and
student apartment block of the university is independently administrated and,
hence, no information on the employed browser configurations is available.

Whereas the total number of requests has decreased, much more bandwidth
has been consumed by responses with status code 200 in 2007 than in 2000. Row
11 shows the volume of transferred documents measured in Gbytes. The cause
of this increase will be discussed in Section 3.1.

3 Detailed Comparison

3.1 Response Size and Type

In this section we study the size and type distribution of the responses with
status code 200, i.e., responses that transferred an entire document to the client.

Response size distribution. Table 2 gives some important statistics of the
response sizes (in bytes) as observed in the two traces. Although the median
is similar for both traces, there are extraordinary differences between the two
traces concerning the mean and the squared coefficient of variation of the re-
sponse size distribution (SCV). In previous work [5,7,9], we observed that the
response size distribution in the 2000 trace is heavy-tailed. The results shown
in Table 2 suggest that the degree of heavy-tailedness has further increased over
the last years. This is demonstrated by the log-log plots of the complementary
cumulative distribution function (CCDF) of the response size shown in Figure 1.

Table 2. Response size statistics (in bytes)

2000 trace 2007 trace
min 17 85
max 0.228 · 109 2.147 · 109

mean 12294.0 68275.2
median 2410 2780
SCV 320.9 3425.1

Changes in the Web from 2000 to 2007 139

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 100 1000 10000 100000 1e+006 1e+007 1e+008 1e+009

1-
F

(x
)

response size (bytes)

2000
2007

Fig. 1. CCDF of the response size

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 100 1000 10000 100000 1e+006

fr
eq

ue
nc

y

response size (bytes)

2000
2007

Fig. 2. Response size frequency (logarith-
mic bin size and normalized frequency)

We note that the CCDF of the 2007 trace decays significantly slower for very
large response sizes than the CCDF of the 2000 trace, i.e., it is more heavy-tailed.

We are also interested in the changes of the distribution of smaller response
sizes. Figure 2 shows for the two traces the histogram of the response sizes
with logarithmic bin sizes and frequencies normalized to the trace size. As al-
ready expected from the increased degree of heavy-tailedness, we observe that
the histogram of the more recent trace has a less developed waist in the range
of 2000–5000 bytes, whereas the number of responses larger than 10000 bytes
has considerably increased over a wide range. In addition, we observe that both
histograms exhibit several distinct peaks. Explanations for these peaks can be
found by a deeper analysis of the transferred documents in the following section.

Object types. To determine the types of the transferred documents we use
the MIME type [11] information found in the Squid log files. Although the sent
MIME type can be freely chosen by the server it is the only source of informa-
tion for objects dynamically generated by server-side scripts or applications. We
found 376 different MIME types in the 2000 trace and 384 different types in the
2007 trace. Table 3 show the frequencies of the ten most frequent types in the
2000 trace, respectively the 2007 trace. We observe a slight diversification of the
types: In 2007, the five most frequent types only cover 88.2% of all requests,
compared to 98.1% in 2000. Furthermore, it shows that the JPEG format and
the PNG format have gained popularity over the GIF format. This could, how-
ever, be a consequence of improved client-side caching since GIF images are, in
general, very small objects as shown in the following.

A different ranking is obtained when we examine the bandwidth consumed
by the different types. Table 4 shows the percentage of the overall traffic volume
(second column) consumed by the ten most bandwidth-consuming types in the
2000 trace, respectively the 2007 trace, and the corresponding average response
size for documents of these types (third column). The last column gives a rough
categorization of the content type. While in the year 2000, most of the traffic

140 R. Sadre and B.R. Haverkort

Table 3. Number of requests by type for the 2000 trace (left) and the 2007 trace
(right) as percentage of the trace size

type #
image/gif 53.2%
image/jpeg 24.9%
text/html 18.4%
application/x-javascript 1.1%
text/plain 0.5%
text/css 0.5%
application/octet-stream 0.3%
image/pjpeg 0.2%
(unspecified) 0.1%
video/mpeg 0.1%

type #
image/jpeg 33.3%
image/gif 28.5%
text/html 16.0%
application/x-javascript 6.9%
image/png 3.5%
text/css 2.5%
text/plain 1.8%
text/javascript 1.7%
application/octet-stream 1.3%
application/x-shockwave-flash 1.2%

Table 4. Fraction of traffic volume and average response size (in Kbytes) by type for
the 2000 trace (left) and the 2007 trace (right) (i: image; t: text; v: video; a: audio;
f: formatted).1 = application/octet-stream

type volume size cat
image/jpeg 21.5% 10 i
image/gif 15.5% 4 i
text/html 14.6% 9 t
application/msword 9.0% 4147 f
application/octet-stream 8.4% 672 f
application/zip 8.1% 1322 f
video/mpeg 6.8% 861 v
application/vnd.ms-excel 2.5% 3637 f
text/plain 2.2% 49 t
audio/mpeg 2.1% 3360 a

type volume size cat
application/octet-s.1 34.6% 1766 v/f
image/jpeg 6.6% 13 i
application/x-otrkey 6.6% 240610 f
text/plain 6.1% 231 t
video/x-msvideo 6.0% 109533 v
video/x-flv 5.9% 10954 v
video/flv 5.4% 6730 v
video/x-ms-wmv 3.2% 42636 v
text/html 3.1% 13 t
application/zip 2.5% 9632 f

volume was caused by “traditional” web site components (i.e., HTML documents
and images), we see that in the year 2007 nearly all traffic volume is generated by
either video clips or archive-file downloads.1 The average response sizes illustrate
that documents of these types are responsible for the higher mean response size
of the 2007 stream, as observed in Section 3.1. However, even the “traditional”
types HTML and JPEG have increased in size by about 30%.

The response size distributions for the different document types help to un-
derstand the shape of the size distribution of the whole trace (see Section 3.1).
In Figure 3, we show for both traces the response size histogram (with logarith-
mic bin size) for the whole trace (labeled “all’), for the most frequent document
types (“images”, “html” and, only for the 2007 trace, “x-javascript”) and for all
remaining types (“other”). Note that we have subsumed all image types (GIF,

1 Note that the MIME type application/octet-stream is not very meaningful here.
Only an inspection of the file name endings in the traces showed that most of the
objects of that type are either video clips or software archives.

Changes in the Web from 2000 to 2007 141

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 100 1000 10000 100000 1e+006

fr
eq

ue
nc

y

response size (bytes)

all
image

html
other

 0

 50000

 100000

 150000

 200000

 250000

 100 1000 10000 100000 1e+006

fr
eq

ue
nc

y

response size (bytes)

all
image

html
x-javascript

other

Fig. 3. Response size frequency by object type for the 2000 trace (left) and the 2007
trace (right) (with logarithmic bin size)

JPEG, PNG, etc.) under the “image” histogram. We do the following observa-
tions:

1. Image objects dominate the shape of the size distribution of both traces.
2. In the 2000 trace, the peaks in the range 300–400 bytes are caused by images

from some few, but, at the time of the measurement, very popular web sites.
21% of all image requests in this range refer to only five servers (two of them
are banner advertisment servers). In contrast, for the whole trace, the five
most frequently queried servers are only accountable for 4.3% of all image
requests.

3. In the 2007 trace, the three most distinct peaks are mainly caused by three
sites. The peak at byte size 400 in the image histogram is created by about
100000 queries to www.google-analytics.com. In the peak at size 6200
in the HTML histogram, about 43000 queries refer to the download page
of a file-sharing server. The Google search pages contribute with about
4000 queries to that peak. Similarly, the peak at the right end (byte size
250000) of the histogram nearly entirely consists of binary file downloads
related to an online role-playing game.

3.2 Queried URLs

Some important characteristics of the queried URLs are summarized in Table 5.
The second row gives the number of unique URLs queried by all clients. Row 3
gives the average number of requests per unique URL. Although the average
did not change significantly from 2000 to 2007, the distribution of the number
of requests per unique URL did, as illustrated by Figure 4. It shows, for both
traces, the number of queries per URL normalized to the total number of queries.
The shape of the log-log plot still follows Zipf’s law [12,3,13], but the slope has
changed. As can be seen, the most popular URLs in the 2007 trace are much
more often requested (in relation to the trace size) than their counterparts in the
older trace. Only the most popular URL has a comparable request frequency in

142 R. Sadre and B.R. Haverkort

Table 5. Characteristics of the queried URLs

2000 2007
#URLs 6,846,724 4,896,006

#request/#URL 3.84 3.83
#URLs (client) 5282 6038

1x-URLs 65.1% 76.7%
#servers 137832 99147

#URLs/server 49.67 49.38

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 1 10 100 1000 10000 100000

fr
eq

ue
nc

y

rank

2000
2007

Fig. 4. Normalized number of queries per
URL sorted by URL rank

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

fr
eq

ue
nc

y

number of URLs per server

2000
2007

Fig. 5. Histogram of the number of URLs
per server normalized to the number of
servers

both traces. In addition, the average number of distinct URLs a client accesses
has increased (row 4). Consequently, we observe an increase of URLs that have
been requested only once during the whole measurement period. Row 5 shows
their percentage in the two traces.

The last two rows show the number of queried servers (row 6) and the average
number of unique URLs per server (row 7). Again, the average did not change
while the distribution did as shown in Figure 5 which depicts for both traces
the histogram of the number of URLs per server, normalized to the number of
servers. We observe that the number of servers with 5 to 100 URLs has de-
creased. In contrast, the number of servers with only one or two distinct URLs
has considerably increased. It is difficult to identify the reason for this change
due the limited information stored in the traces. However, a manual inspec-
tion of the involved URLs showed that many of the “single-URL” servers are
not “real” web sites but servers providing services to other web sites, such as
visit counters, advertisements, etc. This implies that the interconnectivity of
servers has increased: web servers offer less URLs but more often refer to other
servers.

The servers with the largest number of distinct URLs are www.geocities.com
in the year 2000 (98168 URLs) and img.youtube.com in the year 2007 (106675
URLs). However, these two servers are not the targets of the largest number

Changes in the Web from 2000 to 2007 143

Table 6. Number of queries (as fraction of all queries) by server for the 2000 trace
(left) and the 2007 trace (right)

server queries
www.spiegel.de 1.02%
informer2.comdirect.de 0.98%
www.geocities.com 0.87%
www.heise.de 0.80%
www.africam.com 0.77%
ad.de.doubleclick.net 0.74%
www.ebay.de 0.68%
www.eplus.de 0.61%
www.consors.de 0.47%
ad.doubleclick.net 0.38%

server queries
www.spiegel.de 2.03%
image.chosun.com 1.93%
www.svd.se 1.71%
img.youtube.com 0.85%
images.gmx.net 0.76%
www.bild.t-online.de 0.75%
pagead2.googlesyndication.com 0.68%
www.heise.de 0.67%
www.google-analytics.com 0.64%
www.manager.co.th 0.62%

of requests, as illustrated by the lists of the ten most queried servers shown
in Table 6. We observe that in the year 2000 the five most queried servers re-
ceived approximately the same number of requests, whereas in the year 2007 the
difference between the servers at rank 1 and 5 was much larger.

3.3 Page Structure

An important question for the modeling of WWW traffic concerns the structure
of web pages, that is, how many documents does a web browser have to fetch
from the server in order to download the complete web page (called the page
size in the following). This question is difficult to answer if proxy server traces
are used as the only source of information. Given a sequence of queries sent by
a specific client, the hardest problem is to identify the first and the last request
for a specific web page.

A popular approach is based on the timestamps of the requests [1,14,15,16]. Let
a and b be two consecutive requests sent by the same client at time sa, respectively
sb, with sa < sb. The responses are sent back to the client at times ea, respectively
eb. We define that two requests belong to the same web page if sb −ea < δth where
δth is a predefined threshold. Note that sb−ea can be negative if the client software
sends requests in parallel. The best value for the threshold is usually unknown. It
has to be larger than the time that the client software needs to process a response
before it can send the next request. If the the threshold is too large, two requests
belonging to two different web pages may be wrongly associated. In [1,14,15], a
threshold of 1 second is used, assuming that the user certainly needs more than
1 second to react before calling the next web page.

We have calculated for both traces the mean page sizes that result from dif-
ferent thresholds (ignoring requests from other proxy servers, as described in
Section 2). The results are shown in Figure 6. The figure illustrates that it is
rather problematic to choose a specific threshold, such as 1 second, since the cal-
culated mean page size continuously increases with the threshold. Nevertheless,
we observe for a wide range of thresholds that the page size has doubled from

144 R. Sadre and B.R. Haverkort

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1000 2000 3000 4000 5000 6000

m
ea

n
pa

ge
 s

iz
e

time threshold (ms)

2000
2007

Fig. 6. Mean page sizes determined for different time thresholds for the 2000 and 2007
trace

Table 7. Cache efficiency and mean re-
sponse size (in bytes)

trace hit miss size hit size miss
2000 54.3% 45.7% 8980 16230
2007 23.0% 77.0% 9846 85737

Table 8. Fraction of dynamically cre-
ated responses by caching status

trace total hit miss
2000 21.2% 1.2% 20.2%
2007 37.1% 4.3% 32.8%

the year 2000 to 2007, which explains very well the 100% raise of the number
of requests per client as observed in Section 2. However, we advise to interpret
these results with caution for the following reasons:

– Client-side cached documents may not be recorded by the traces.
– The user may call two web pages at the same time.
– Some requests in the trace do not necessarily reflect “normal” human be-

havior. For example, we have identified a series of 2300 requests in the 2000
trace with very small inter-request times. A user was obviously using a tool
to download a complete copy of a web page. In another example, an adver-
tisement banner caused a client to send over 10000 requests.

3.4 Cache Efficiency

Statistics about the caching behavior of the proxy server in 2000 and 2007 are
shown in Table 7. The column titled “hit” and “miss” show the number of hits,
respectively misses, as fraction of the total number of requests in the traces. The
columns “size hit” and “size miss” give the mean size of the responses (in bytes)
in case of a hit, respectively miss.

We observe a drop of the cache efficiency from 2000 to 2007. Whereas the
mean size of cached documents has not changed very much, the probability for
a cache hit significantly decreased. These numbers can not be directly compared
because the proxy server has changed in terms of hardware and software from

Changes in the Web from 2000 to 2007 145

2000 to 2007. However, we identify several reasons for the large number of cache
misses that are more or less independent of the used server configuration:

1. The increased number of very large documents, as shown in Section 3.1.
Since proxies only have limited cache memory such documents generate cache
misses.

2. The increased number of URLs that have been only queried once, as dis-
cussed in Section 3.2.

3. The increased number of responses with status code 304 (see Section 2),
indicating that client-side caching has improved its efficiency.

4. The increased number of dynamically generated responses, although that
number can not be exactly determined because the traces do not include
enough information. Especially the HTTP header lines controlling the cache
behavior and the expiry dates would be helpful here.

An approach to identify dynamic documents is to scan the trace for URLs that
frequently change their response size. This method, however, is not applicable
here due to the large number of one-timer URLs. To get a very rough idea about
the number of dynamic documents we have analyzed the URLs themselves. We
have regarded an URL as dynamic when it contained form data or referred to
scripts or server pages (file endings .php, .asp, etc.). Table 8 shows for both traces
the resulting number of requests referring to dynamic documents as percentage
of the number of all requests in the trace (column 2), of all requests causing
a cache hit (column 3) and of all requests causing a cache miss (column 4). It
shows that the number of requests to dynamic documents has increased and
strongly contributes to the number of cache misses.

4 Comparison to Other Work

In the following, we give a summary of the important observations presented in
the previous sections. For each observation, we give, if available, references to
other publications that do (not) support it.

– Responses with status code 304 are more prevalent in 2007 than in 2000
(also reported in [2]).

– The volume of transferred documents (measured in bytes) significantly in-
creased (also observed in [1,2,3]).

– The heavy-tailedness of the response size distribution increased from 2000 to
2007. The increase has been also reported by [1,2,3] but not at that extend.
For example, the largest document observed in [2] for a trace from the year
2004 had a size of 193 Mbytes, whereas the largest file in our 2007 trace has
a size of around 2 Gbytes. The fact that sizes are heavy-tailed distributed
has been reported in many previous publications [17,18,19].

– “Traditional” web site components such as HTML documents and images are
still the most frequently transferred objects. However, the most bandwidth
consuming documents are now videos and compressed software archives.

146 R. Sadre and B.R. Haverkort

Other authors have observed similar trends [2] but only for single web servers.
We are not aware of recent studies on proxy servers of which the workloads,
in our opinion, better reflect the overall trends in the Internet. The doc-
ument type distributions found in the 2000 trace are consistent with the
results reported in an older study on proxy server workloads [20].

– We have shown that a few popular servers can have a considerable impact
on the size and type distribution of the transferred documents. The phe-
nomenon of concentration [17,21], i.e., the fact that a large part of all re-
quests concentrates on a few popular servers, has significantly increased (also
reported by [2]). However, the popularity of the URLs still follows Zipf’s
law [2,3,12,13,19].

– The number of servers only hosting one or two URLs has considerably in-
creased. Those servers are mostly providing services to other servers. This
implies an increased inter-connectivity of web servers in the Internet, as also
observed in [1].

– The number of one-timers (URLs only called once) has increased by 10%.
In contrast, [2] reports a decrease by 50% for web servers. This illustrates
the diversity of the documents as perceived by a proxy server in contrast to
single web servers.

– The complexity of web pages (measured in number of URLs) has increased
(confirmed by [1]). Older measurements can be found in [14,16].

– Cache efficiency for transferred documents has decreased. We believe that
one reason is the significant amount of responses that are dynamically gen-
erated. Other publications report much lower amounts of dynamic docu-
ments [2,20].

– Our results indicate that traditional proxy servers that aim to cache all
types of contents are not effective anymore in the studied network (and in
networks with similar usage characteristics). However, specialized caching
and distribution servers could provide better results as shown by simulation
for YouTube videos in [22].

In this paper we have mostly focused on the stationary properties of the Web
traffic. Some other publications have studied its time dynamics, especially cor-
relations in the request rate [2], appearance of new documents [23], and the
inter-reference time and the locality of references [2,24,25].

5 Summary

In this paper we have compared two data traces collected at the web proxy
server of the RWTH Aachen. One was collected in 2000, the other seven years
later in 2007. Through an elaborate data analysis, we show that the changes
the World Wide Web has undergone in recent years have had a major impact
on the volume and the nature of the observed traffic. Foremost, the size of the
transferred documents has significantly increased due to the emerging popular-
ity of bandwidth-consuming formats, such as videos and, surprisingly, binaries
(software updates). At the same time, web pages have become more complex,

Changes in the Web from 2000 to 2007 147

i.e., they now consist of more objects, refer more often to other web servers,
and more often rely on dynamically generated documents. For these (and some
other) reasons, the efficiency of proxy servers has significantly decreased, indi-
cating that traditional, non-specialized proxy servers that aim to cache all types
of contents are not effective anymore. On the other hand, our measurement data
also implies that client-side caching is now more common and efficient.

Our observations and their comparison to other work indicate that the changes
that we have observed in our traces are, to some extend, representative for the
global evolution of the World Wide Web. However, we realize that our conclu-
sions are limited by the fact that only one server has been studied in this paper.
Hence, we suggest that other researchers do similar comparisons with their old
traffic measurements.

As for the future, we plan to continue our study of web traffic in order to
observe changing workload patterns. At the same time, the traces we collected
can be used for some other interesting studies, such as changes in user behavior
and hyper-link topology.

Acknowledgments. We thank Wilfred Gasper, RechenzentrumRWTH Aachen,
for providing the anonymized 2007 trace.

References

1. Hernandez-Campos, F., Jeffay, K., Smith, F.: Tracking the Evolution of Web Traf-
fic: 1995-2003. In: MASCOTS 2003, pp. 16–25 (2003)

2. Williams, A., Arlitt, M., Williamson, C., Barker, K.: Web workload characteriza-
tion: Ten years later. In: Web Content Delivery, pp. 3–21. Springer, Heidelberg
(2005)

3. Barford, P., Bestavros, A., Bradley, A., Crovella, M.: Changes in Web client access
patterns: Characteristics and caching implications. World Wide Web 2(1-2), 15–28
(1999)

4. Squid (2007), http://www.squid-cache.org
5. El Abdouni Khayari, R., Sadre, R., Haverkort, B.: Fitting World-Wide Web request

traces with the EM-algorithm. In: Proc. of SPIE 4523 (Internet Performance and
Control of Network Systems), pp. 211–220 (2001)

6. El Abdouni Khayari, R., Sadre, R., Haverkort, B., Zoschke, N.: Weighted fair
queueing scheduling for World Wide Web proxy servers. In: Proc. of SPIE 4865
(Internet Performance and Control of Network Systems III), pp. 120–131 (2002)

7. El Abdouni Khayari, R., Sadre, R., Haverkort, B.: Fitting World-Wide Web request
traces with the EM-algorithm. Performance Evaluation 52(2-3), 175–191 (2003)

8. Haverkort, B., El Abdouni Khayari, R., Sadre, R.: A class-based least-recently used
caching algorithm for World-Wide Web proxies. In: Kemper, P., Sanders, W.H.
(eds.) TOOLS 2003. LNCS, vol. 2794, pp. 273–290. Springer, Heidelberg (2003)

9. Sadre, R., Haverkort, B.: Fitting Heavy-Tailed HTTP Traces with the New Strat-
ified EM-algorithm. In: IT-NEWS 2008 - 4th International Telecommunication
NEtworking Workshop on QoS Multiservice IP Networks, 2008 (QoS-IP), pp. 254–
261 (2008)

10. Network Working Group: RFC 2186, Internet Cache Protocol (ICP), version 2
(1997), http://tools.ietf.org/html/rfc2186

148 R. Sadre and B.R. Haverkort

11. Network Working Group: RFC 2045, Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies (1996),
http://tools.ietf.org/html/rfc2045

12. Zipf, G.: Relative frequency as a determinant of phonetic change. Reprinted from
the Harvard Studies in Classical Philiology, Linguistic Society of America, vol. XL
(1929)

13. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web Caching and Zipf-like
Distributions: Evidence and Implications. In: INFOCOM 1999. Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies, pp. 126–
134. IEEE Computer Society Press, Los Alamitos (1999)

14. Mah, B.: An Empirical Model of HTTP Network Traffic. In: INFOCOM 1997: Pro-
ceedings of the INFOCOM 1997. Sixteenth Annual Joint Conference of the IEEE
Computer and Communications Societies, pp. 592–600. IEEE Computer Society,
Los Alamitos (1997)

15. Barford, P., Crovella, M.: Generating representative web workloads for network and
server performance evaluation. In: SIGMETRICS 1998/PERFORMANCE 1998:
Proceedings of the 1998 ACM SIGMETRICS joint international conference on
Measurement and modeling of computer systems, pp. 151–160 (1998)

16. Arlitt, M.: Characterizing web user sessions. ACM SIGMETRICS Performance
Evaluation Review 28(2), 50–63 (2000)

17. Arlitt, M., Williamson, C.: Internet Web Servers: Workload Characterization and
Performance Implications. IEEE/ACM Transactions on Networking 5(5), 631–645
(1997)

18. Crovella, M., Bestavros, A.: Self-Similarity in World Wide Web Traffic: Evidence
and Possible Causes. IEEE/ACM Transactions on Networking 5(6), 835–846 (1997)

19. Crovella, M.: Performance Characteristics of the World Wide Web. In: Reiser, M.,
Haring, G., Lindemann, C. (eds.) Dagstuhl Seminar 1997. LNCS, vol. 1769, pp.
219–232. Springer, Heidelberg (2000)

20. Mahanti, A., Williamson, C., Eager, D.: Traffic analysis of a web proxy caching
hierarchy. EEE Network, Special Issue on Web Performance 14(3), 16–23 (2000)

21. Arlitt, M., Jin, T.: A workload characterization study of the 1998 World Cup Web
site. IEEE Network 14(3), 30–37 (2000)

22. Zink, M., Suh, K., Gu, Y., Kurose, J.: Watch global, cache local: Youtube network
traffic at a campus network: measurements and implications. Multimedia Comput-
ing and Networking 2008 6818(1), 681805–681817 (2008)

23. Cherkasova, L., Karlsson, M.: Dynamics and Evolution of Web Sites: Analysis,
Metrics and Design Issues. In: Sixth IEEE Symposium on Computers and Com-
munications (ISCC 2001), pp. 64–71. IEEE Computer Society, Los Alamitos (2001)

24. Almeida, V., Bestavros, A., Crovella, M., de Oliveira, A.: Characterizing reference
locality in the WWW. In: Fourth international conference on on Parallel and dis-
tributed information systems (DIS 1996), pp. 92–107. IEEE Computer Society, Los
Alamitos (1996)

25. Arlitt, M., Friedrich, R., Jin, T.: Performance Evaluation of Web Proxy Cache
Replacement Policies. In: Puigjaner, R., Savino, N.N., Serra, B. (eds.) TOOLS
1998. LNCS, vol. 1469, pp. 193–206. Springer, Heidelberg (1998)

Ensuring Collective Availability in Volatile
Resource Pools Via Forecasting�

Artur Andrzejak1, Derrick Kondo2, and David P. Anderson3

1 ZIB, Germany
andrzejak@zib.de
2 INRIA, France
dkondo@imag.fr

3 UC Berkeley, USA
davea@ssl.berkeley.edu

Abstract. Increasingly services are being deployed over large-scale com-
putational and storage infrastructures. To meet ever-increasing computa-
tional demands and to reduce both hardware and system administration
costs, these infrastructures have begun to include Internet resources dis-
tributed over enterprise and residential broadband networks. As these
infrastructures increase in scale to hundreds of thousands to millions of
resources, issues of resource availability and service reliability inevitably
emerge. Our goal in this study is to determine and evaluate predic-
tive methods that ensure the availability of a collection of resources.
We gather real-world availability data from over 48,000 Internet hosts
participating in the SETI@home project. With this trace data, we show
how to reliably and efficiently predict that a collection of N hosts will
be available for T time. The results indicate that by using replication
it is feasible to deploy enterprise services or applications even on such
volatile resource pools.

1 Introduction

Services are being deployed increasingly over large-scale computational and stor-
age architectures. Internet services execute over enormous data warehouses (such
as Google) and cloud computing systems (such as Amazon’s EC2, S3). Scien-
tific services are deployed over large-scale computing infrastructures (such as
TeraGrid, EGEE).

To meet ever-increasing computational demands and to reduce both hardware
and system administration costs, these infrastructures have begun to include In-
ternet resources distributed over enterprise and residential broadband networks.
Enterprises, such as France Telecom [1], are currently deploying a video-encoding
service where the computational load is distributed among the peers in a res-
idential broadband network. Universities, through academic projects such as
� This research work is carried out in part under the projects CoreGRID (Contract

IST-2002-004265) and SELFMAN (contract 34084), both funded by the EC, and
under the NSF award OCI-0721124.

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 149–161, 2008.
c© IFIP International Federation for Information Processing 2008

150 A. Andrzejak, D. Kondo, and D.P. Anderson

Folding@home [2], deploy scientific applications that use PetaFLOPS of com-
puting power from Internet resources.

Infrastructures of this scale are exposed to issues of availability and reliabil-
ity. Low mean-time-to-failures (MTTF) and entire system crashes have plagued
both service providers and customers. For example, when Amazon’s S3 storage
serviced crashed [3], numerous companies that depended on Amazon’s services
were stranded. In Internet environments, such as BOINC, resource unavailability
can be as high as 50% [4].

At the same time, resource availability is critical for the reliability and re-
sponsiveness (low response latency) of services. Groups of available resources
are often required to execute tightly-coupled distributed and parallel algorithms
of services. Moreover, load spikes observed with Internet services (such as the
commonly observed slashdot effect [5]) require guarantees that a collection of
resources is available.

Given this need, our goal in this study is to determine and evaluate predictive
methods that ensure the availability of a collection of resources. We strive to
achieve collective availability from Internet distributed resources, arguably the
most unreliable type of resource world-wide. Our predictive methods could work
in coordination with a virtualization layer for masking resource unavailability.

Specifically, the contributions of this study are the following:

– We determine accurate methods and parameters for predicting resource
availability. In particular, we investigate the factors that influence predic-
tion error and determine indicators of resource predictability.

– We show how these methods and indicators can be used for predicting the
availability of groups of resources and the associated costs. In particular, via
trace-driven simulation, we evaluate our prediction method for collections
of resources with different predictability levels. Our performance metrics
include the success of predictions, and the cost in terms of redundancy and
migration overhead for fault-tolerance.

Paper structure. In Section 2 we describe the data used in our study. Section 3 is
devoted to the concept of predictability estimation, while Section 4 describes and
evaluates the simulation approach used to ensure collective availability. Section 5
discusses related work. We conclude with Section 6.

2 Measurement Method

Our approach for gathering measurement data at a large-scale was to use the
Berkeley Open Infrastructure for Network Computing (BOINC) [6]. BOINC
serves as the underlying software infrastructure for projects such as SETI@home
[7] and is deployed currently across over 1 million resources over the Internet.

We instrumented the BOINC client to record the start and stop times of CPU
availability (independently of which application the BOINC local client scheduler
chooses to run). The factors that can cause CPU unavailability include machines
failures, power cycling, and user load. We term an availability interval as a period

Ensuring Collective Availability in Volatile Resource Pools 151

of uninterrupted availability delineated by a CPU start and the next CPU stop
as recorded by the BOINC client. The BOINC client would start or stop an
interval depending on whether the machine was idle. The meaning of idle is
defined by the preferences of the BOINC client set by the user. We assume that
the CPU is either 100% available or 0%. Our results in [4], and experience in [8]
have shown this to be a good approximation of availability on real platforms.

This modified BOINC client was then made available for download starting on
April 1, 2007. After a trace collection period of about seven months, the log files
of these hosts were collected at the BOINC server for SETI@home on February
12, 2008. By December 1, 2007 more than 48,000 hosts had downloaded and were
running the modified client. (By the end date, we had collected data from among
112,268 hosts, and the logs traced 16,293 years of CPU availability.) We use the
subset of hosts (>48,000) that were actively running the client on December 1,
2007, and use the trace data for these hosts up to the end date of February 12,
2008.

Our trace data also includes the demographics of hosts, when specified by the
BOINC user. About 32,000 hosts had specified host types. Of these hosts, about
81% are at home, 17% are at work, and 2% are at school.

3 Estimating Predictability and Forecasting Availability

This section focuses on forecasting the availability of individual hosts along
with the estimation of the forecast accuracy. Our prediction methods are
measurement-based, that is, given a set of availability traces called training data
we create a predictive model of availability that is tested for accuracy with the
subsequent (i.e. more recent) test data. For the sake of simplicity we refrain from
periodic model updates.

An essential parameter for successful host selection is the expected accuracy
of prediction (w.r.t. the test data). We designate it as (host) predictability. An es-
sential ingredient of our approach is that we compute estimators of predictability
from the training data alone. As we will show in Section 4, using this metric for
host selection ensures higher availability ratios. Together with average availabil-
ity, this metric allows also for fast elimination of hosts for which the predictions
are less accurate and thus less useful.

3.1 Prediction Methodology and Setup

We compute for each host a predictive model implemented as a Naïve Bayes
classifier [9]. A classification algorithm is usually the most suitable model type
if inputs and outputs are discrete [10] and allows the incorporation of multiple
inputs and arbitrary features, i.e., functions of data which expose better its
information content. We have also tried other algorithms such as decision trees
with comparable accuracy results. Since it is known that (given the same inputs
and prior knowledge) no predictive method performs significantly better than
others [11,12], we stick to this computationally efficient classifier.

152 A. Andrzejak, D. Kondo, and D.P. Anderson

Each sample in the training and test data corresponds to one hour and so it can
be represented as a binary (01) string. Assuming that a prediction is computed
at time T (i.e. it uses any data up to time T but not beyond it), we attempt
to predict the complete availability versus (complete or partial) non-availability
for the whole prediction interval [T, T + p]. The value of p is designated as the
prediction interval length (pil) and takes values in whole hours (i.e. 1, 2, . . .). To
quantify the prediction accuracy evaluated on a set S of such prediction intervals
we use the ratio (called prediction error) of mispredicted intervals in S to |S|.
The value of the parameter pil influences strongly the prediction accuracy. As
other factors likely affect accuracy, we have also studied the length of the training
data interval and the host type (i.e. deployed at home, work, or school).

To help a classifier, we enrich the original 01 data with features from the
following groups. The time features include for each sample calendar information
such as hour in day, hour in week, day in week, day in month etc. The hist
features are (for each sample) the sums of the recent k “history bits” for k =
2, 5, 10, 20, 50 and 100. They express information about the length of the current
availability status and the availability average over different periods.

3.2 Types of Predictable Patterns

There are several types of availability patterns that make a host predictable
[13,14]. As a type A we understand behavior with long (as compared to pil) con-
secutive samples (stretches) of either availability or non-availability. Patterns of
type B feature periodic or calendar effects, e.g. diurnal availability. For example,
host availability over weekends or nights would create patterns of the later kind.
Finally, availability of a host might occur after specific availability patterns (like
alternating on/off status etc.). We disregard the last type as it is unlikely to
occur in our scenario.

Knowing the predominant pattern type is helpful in designing the predictabil-
ity indicators. For type A, simple metrics like the average length of an availability
run might suffice, while type B requires more sophisticated methods like Fast
Fourier Transformation (FFT). We identify the predominant patterns type by
using different groups of features (from hist and time) in predictions and com-
paring the prediction accuracy. Obviously the hist features would lead to higher
accuracy for type A patterns, while the time features are likely to be useful in
presence of type B patterns.

3.3 Predictability Indicators

We have implemented as the predictability indicators a variety of metrics which
are likely to indicate patterns of type A, B and possibly others. All indicators are
computed over the training data only. The aveAva is the average host availability
in the training data. The aveAvaRun (aveNavaRun) is the average length of a
consecutive availability (non-availability) run. The aveSwitches indicator is the
average number of changes of the availability status per week.

Ensuring Collective Availability in Volatile Resource Pools 153

The last two indicators zipPred and modelPred are more involved and compu-
tationally costly. The former is inspired by [11] and is essentially the reciprocal
value of the length of a file with the training data compressed by the Lempel-
Ziv-Welch algorithm (raw, without the time and hist features). The rationale is
that a random bit string is hardly compressible while a bit string with a lot of
regularities is. To compute the last indicator, we train the classifier on half of
the training data and compute the classification error (as above) on the other
half. The modelPred value is then the reciprocal value of this error.

To compare indicators in their power to estimate the prediction error we
compute the Spearman’s rank correlation coefficient over all hosts for different
pil values. We also verify the correlations by visual inspection of scatter plots
(Figure 3).

3.4 Implementation and Running Time

The prediction and simulation experiments have been implemented and con-
ducted using the Matlab 2007b environment. This framework was complemented
by the PRTools4, a Matlab toolbox for pattern recognition [15]. As the Naïve
Bayes classifier for predictions we used the naivebc method of PRTools4 with
the default parameters.

Since Matlab is a partially interpreted language the running times of the algo-
rithms are only upper bounds of tailored implementations. However, a complete
experimental evaluation of a single host (including file operations, computation
of all predictability indicators, classifier training and approximately 330 predic-
tions in the test interval) required on average 0.25 seconds on a 2.0 GHz Xeon
machine under Linux.

Even if this time is negligible compared to a typical pil value, an efficient,
tailored implementation is likely to be much faster. Assuming that the length
of the training interval in hours (i.e. the length of the 01 training string) is n,
the upper bounds on the number of operations (per host) are as follows. The
computation of aveSwitches is O(n) with constant of 1 (other predictability
indicators are not used in a production scenario). An efficient computation of
the features hist and time requires time O(n) with a constant below 10 in each
case. An implementation of the Naïve Bayes classifier which precomputes all
conditional probabilities during training requires time O(nd) for training and
O(2d) for a prediction, where d is the number of features (below 20 in our
case). As an example, assuming a training interval of 30 days (n = 720) and
d = 20, a one-time feature computationa and training would require below 3 ·104

operations, and a single prediction about 40 operations. Note such a training is
performed only if a host has passed the aveSwitches test which itself costs merely
about n = 720 operations.

3.5 Experimental Evaluation

If not otherwise stated, the experiments used all the data described in Section 2
and the size of the training data was 30 days.

154 A. Andrzejak, D. Kondo, and D.P. Anderson

Fig. 1. Prediction error depending on the training data length and pil (left); Prediction
error depending on the host type and pil (right)

Factors influencing the prediction error. Figure 1 (left) shows the depen-
dence of the prediction error on the length of the training data and the pil value
for a subset of 10, 000 randomly selected hosts. While the error decreases sig-
nificantly if the amount of training data increases from 10 to 20 days, further
improvements are marginal. We have therefore used 30 days as the amount of
training data for the remainder of this paper. Figure 1 (right) illustrates that
the host type influences consistently the prediction error, with work and school
hosts being more predictable. Despite of this effect, the simulation results did
not show any significant differences between host types which can be attributed
to low magnitude of differences.

Both figures show a strong influence of the prediction interval length, pil,
on the prediction error. This is a consequence of increased uncertainty over
longer prediction periods and the “asymmetric” definition of availability in the
prediction interval (a short and likely random intermittent unavailability makes
the whole interval unavailable).

Types of availability patterns. As described in Section 3.2 we measured
the prediction error depending on groups of used data features for a group of

Fig. 2. Dependency of the prediction error on the data features

Ensuring Collective Availability in Volatile Resource Pools 155

3000 randomly selected hosts. Figure 2 shows the lower quartile, median, and
upper quartile values in the box while whiskers extend 1.5 times the interquartile
range from the ends of the box. The median error is largest when using only time
features and smallest when using both feature groups. While the magnitude of
the difference is low, the relative order of cases was consistent across all pil
values and host types. We conclude that most predictable hosts have availability
patterns of type A (long availability state stretches) with few hosts exhibiting
periodic or calendar predictability. Despite of this finding, we have included both
the time and hist features in the classifier training as the computation of the
them requires only linear time in the length of the training interval.

Evaluating predictability indicators. Table 1 shows correlations between
prediction error and various predictability indicators defined in Section 3.3 (rows
correspond to different prediction interval lengths). The strongest and most con-
sistent correlation values has the modelPred indicator. However, as it is compu-
tationally most expensive, we identified the aveSwitches indicator as a viable
substitute. For pil = 1, 2, 4 its correlation is comparable to modelPred, however
it becomes much weaker for pil = 8 and 16. We could not fully explain this phe-
nomenon, especially since the simulation results confirm its good quality even
for these high pil values. However, a visual inspection of scatter plots for pil = 2
and pil = 16 (Figure 3) reveals that while for pil = 2 the correlation is obvious,
for the higher pil value a relationship between the indicator and prediction error
still exists but it is blurred by many “outliers”. Finally, Table 1 confirms the
finding that there is no clear relationship between average availability aveAva
and the prediction error.

4 Evaluation of Group Availability Prediction Via
Simulation

4.1 Method

We conducted trace-driven simulation applying the predictor determined in the
previous sections. The predictor uses a training length of 30 days, which was
shown to minimize prediction error according to Figure 1. This predictor is
used to determine groups of available hosts, and the quality of the prediction is
evaluated in simulation.

Table 1. Spearman’s rank correlation coefficient between prediction error and various
predictability indicators (rows correspond to different pil values)

pil aveAva aveAvaRun aveNavaRun aveSwitches zipPred modelPred
1 -0.370 -0.594 0.085 0.707 -0.654 -0.724
2 -0.275 -0.486 -0.011 0.678 -0.632 -0.690
4 -0.119 -0.303 -0.119 0.548 -0.502 -0.640
8 0.194 0.056 -0.245 0.195 -0.127 -0.642
16 0.211 0.091 -0.185 0.057 0.062 -0.568

156 A. Andrzejak, D. Kondo, and D.P. Anderson

Fig. 3. Scatter plots of number of availability state changes per week (aveSwitches)
and the prediction error (random subset of 2000 hosts)

We divide the hosts into groups based on the best predictability indicator
described in Section 1, namely aveSwitches. To determine how to divide the
hosts, we plotted the distribution of the aveSwitches values among the hosts
(see Figure 4). The point (x, y) in Figure 4 means that y fraction of the hosts
have an aveSwitches value of x or greater. Given the skew of this curve, we
choose the median value of 7.47 near the “knee" of the curve to divide the hosts
into two groups with high and low predictability respectively.

The parameters for simulation include the number of hosts desired to be
available for some time period which is potentially longer than pil. In this case
one could simply use the predictor at the end of each pil interval and repeat until
the desired time period is reached. We refer to the total desired time period of
availability as the threshold (which is some multiple of pil). For example, if the
pil is 4 but the threshold is 12, we would rerun the predictor after time intervals
of 4 and 8 elapse.

Another parameter is redundancy. We define redundancy to be (R − N)/N
where N is the number of hosts desired to be available, and R is the number of
hosts actually used. The number of hosts we use in simulation are 1, 4, 16, 64,
256, 1024. The redundancy is in the range of [0, 0.50]. Due to space limitations,
the simulation results we present below are for a pil of 4, though we also tried
other pil values and observed similar trends.

The predictor is run using a test period of about two weeks which follow
directly the training period. For each data point shown in the figures below, we
ran about 30,000 simulations to ensure the statistical confidence of our results.
In total, we executed more than 2 million simulations.

4.2 Performance Metrics

We measured the performance of the predictions in simulation by a success rate
metric. In a simulation trial, we randomly choose R number of hosts from the
pool predicted to be available for the entire threshold. We run trials in this way
throughout the test period. We then count the number of trials where the number

Ensuring Collective Availability in Volatile Resource Pools 157

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Predictability (aveSwitches)

R
em

ai
ni

ng
 F

ra
ct

io
n

of
 P

re
di

ct
ab

ili
ty

 V
al

ue
s

num values: 48873

mean: 10.0459

median: 7.4667

min: 0

max: 165.9

Fig. 4. Distribution of aveSwitches

of hosts actually available A (out of R) is greater than or equal to the desired
number N . If A is greater than or equal to N for the entire threshold, then we
consider the simulation trial a success. Otherwise, it is considered a failure. This
fraction of the number of successes to total number of trials is defined as the
success rate.

We also measure performance by the host turnover rate for thresholds greater
in length than the pil. The turnover rate indicates the overheads (due to process
migration, or service re-deployment, for example) due to changes in the predicted
state of hosts from one sub-threshold to the next. We computed the turnover
rate by first determining an active set of R hosts predicted to be available during
some sub-threshold of length pil. In the following sub-threshold, we determine
which hosts in the active set are predicted to be unavailable. The fraction of
hosts in the active set that change from an available state to an unavailable
state from one sub-threshold to the next is the turnover rate. Our method for
computing the turnover rate gives an upper bound on fault-tolerance overheads.

We then compute the average turnover rate across all sub-thresholds of size
pil throughout the entire test period. We conduct this process for active sets
with different numbers of hosts and also different hosts randomly chosen from
the pool of hosts predicted to be available.

4.3 Results

In Figures 5 and 6, we show the success rate achieved for various levels of redun-
dancy and number of hosts desired. Figure 5 focuses on the high predictability
group, and Figure 6 focuses on the low predictability group. In each of the sub-
figures, we show the results in the entire range (left), and also for the zoomed-in
range (right) for success rates in [0.95,1.00] or smaller.

In Figure 5 (left), we observe that when redundancy is 0, the success rate de-
creases exponentially with the number of hosts desired. However, as redundancy
increases, the success rate increases dramatically as well. We observe the redun-
dancy necessary to achieve success rates of 0.95 or higher in Figure 5 (right). In
particular, if we look at the redundancy where the success rate is 0.95, we find that
redundancy of 0.35 can achieve 0.95 success rates for groups up to 1024 in size.

158 A. Andrzejak, D. Kondo, and D.P. Anderson

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Redundancy

Su
cc

es
s

R
at

e

1
4
16
64
256
1024

of hosts

(a) Complete range
0 0.1 0.2 0.3 0.4 0.5

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Redundancy

S
uc

ce
ss

 R
at

e

1
4
16
64
256
1024

of hosts

(b) Zoomed-in range

Fig. 5. Success rates versus redundancy for high predictability group and pil 4

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Redundancy

Su
cc

es
s

R
at

e

1
4
16
64
256
1024

of hosts

(a) Complete range
0.47 0.475 0.48 0.485 0.49 0.495 0.5

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Redundancy

S
uc

ce
ss

 R
at

e

1
4
16
64
256
1024

of hosts

(b) Zoomed-in range

Fig. 6. Success rates versus redundancy for low predictability group and pil 4

In Figure 6, we observe similar trends in terms of success rate versus re-
dundancy. However, we observe clear differences between the high and low pre-
dictability groups in the amount of redundancy needed to achieve the same
level of group availability. For example, with the high predictability group, a
redundancy of 0.35 will achieve success rates of 0.95 or higher. With the low pre-
dictability group, only the groups with 256 and 1024 desired hosts can achieve the
same level of success rates; at the same time, high redundancy greater than 0.45
is required. Thus grouping hosts by predictability levels using the aveSwitches
indicator significantly improves the quality of group availability prediction, and
consequently the efficiency of service deployment.

Services will sometimes need durations of availability longer then the pil. In
these cases, one can just reevaluate the prediction at the beginning of a new
prediction interval, i.e., sub-threshold. The question is what are the costs in
terms of service re-deployment across sub-thresholds. In Figure 7, we observe
turnover rates as a function of redundancy and the number of hosts. We observe
that the turnover rates are relatively low. The turnover rate is less than 0.024 for
the high predictability group, and about 0.115 for the low predictability group.

Ensuring Collective Availability in Volatile Resource Pools 159

0 0.1 0.2 0.3 0.4 0.5
0.015

0.016

0.017

0.018

0.019

0.02

0.021

0.022

0.023

0.024

Redundancy

H
os

t T
ur

no
ve

r R
at

e

1
4
16
64
256
1024

of hosts

(a) High predictability
0 0.1 0.2 0.3 0.4 0.5

0.09

0.095

0.1

0.105

0.11

0.115

Redundancy

H
os

t T
ur

no
ve

r R
at

e

1
4
16
64
256
1024

of hosts

(b) Low predictability

Fig. 7. Turnover rates versus redundancy for pil 4

This shows that the overheads (of process migration, or using a checkpoint server,
for example) with thresholds larger than the pil are relatively low. Observe that
the stated turnover rates are for two consecutive pil intervals. The cumulative
turnover rate for the whole threshold is r ∗ n where n is the number of sub-
thresholds and r is the turnover rate.

Another important aspect of Figure 7 is the relationship between the number
of hosts and turnover rate. We observe that the host turnover rate does not
increase dramatically with the desired number of hosts. Instead, it increases
only by a few percent even when the number of hosts increases by a factor of 4.
This indicates that turnover rate scales with an increase in number of hosts. We
also computed the turnover rates with a pil of 2. We found similar trends, and
and the turnover rates were either equal or an order of magnitude lower.

5 Related Work

Forecasting is an established technique in the arsenal of proactive management of
individual computer systems, with applications ranging from capacity estimation
to failure prediction [10,12]. This study differs from other prediction studies
in three main respects, namely types of hosts considered (inclusion of home
desktops versus only those in the enterprise), the type of measurements used for
the evaluation of prediction (CPU availability versus host availability), and the
prediction issues investigated (the accuracy of efficient and scalable prediction
methods, indicators of predictability, and the use and overheads of prediction of
group availability).

With respect to the types of measurements, our data set consists of traces
of CPU availability, which is a stricter and more accurate representation of
resource’s true availability. Most (P2P) availability studies [16,17,14] and pre-
diction studies [14] focus on host availability, i.e., whether the host is pingable
or not, instead of CPU availability. However, resources can clearly have 100%
host availability but 0% CPU availability. Paradoxically, in our more volatile

160 A. Andrzejak, D. Kondo, and D.P. Anderson

system, we find that simple prediction methods are suitable when applied with
predictability indicators.

Moreover, with respect to the types of hosts characterized, the studies in
[18,4] consider only resources in the enterprise (versus in home) environments.
By contrast, the majority of resources in our study lie on residential broadband
networks. Again, the time dynamics of CPU availability of home resources differ
from those in enterprises. For example, the mean availability lengths found in
this study are about 5.25 times greater than those in enterprise environments[4].
Also, the mean fraction of time that a host is available is about 1.3 times lower
than that observed in enterprise desktop grids[4]. The studies in [19] and [20]
focused solely on enterprise environments. For example, the Resource Prediction
System (RPS) [19] is a toolkit for designing, building and evaluating forecast
support in clusters. The Network Weather Service (NWS) is another well-known
system for predicting availability in Grids (composed of multiple clusters).

With respect to prediction issues studied, we focus on novel prediction issues
compared to previous works [14,19,20]. We focus on simple, scalable forecasting
methods coupled with an efficient approach to filter out non-predictable hosts.
Furthermore, we adjust our methods to types of predictable availability patterns
for enabling group availability prediction.

6 Conclusions

In in this paper we attempted to show that a deployment of enterprise services
in a pool of volatile resources is possible and incurs reasonable overheads. The
specific technical contributions are this paper were as follows:

– We showed that the primary reason for the predictability of certain Internet
hosts is the existence of long stretches of availability, and such patterns can
be modeled efficiently with basic classification algorithms.

– We also demonstrated that simple and computationally cheap metrics are
reliable indicators of predictability, and that resources could be divided into
high and low predictability groups based on such indicators.

– For the high predictability group, via trace-driven simulation, we found that
our prediction method can achieve 95% or greater success with collections
of resources up to 1,024 in size using redundancy levels of 35% or less.

– For the high and low predictability groups, we found that the host turnover
rates are less than 2.4% and 11.5% respectively. This indicates that predic-
tion across long thresholds with low overheads is possible.

As a future work we plan to extend our experiments to other host pools, including
PlanetLab. We also intend to study whether including additional features and
inputs (such as CPU, memory or network utilization) can improve the prediction
accuracy. Another research goal is to refine the predictability groups beyond low
and high types.

Ensuring Collective Availability in Volatile Resource Pools 161

References

1. Krishnaswamy, R.: Grid4all, http://www.grid4all.eu
2. Larson, S.M., Snow, C.D., Shirts, M., Pande, V.S.: Folding@Home and

Genome@Home: Using distributed computing to tackle previously intractable prob-
lems in computational biology. Computational Genomics (2003)

3. Carr, N.: Crash: Amazon’s s3 utility goes down, http://www.roughtype.com
4. Kondo, D., et al.: Characterizing and Evaluating Desktop Grids: An Empirical

Study. In: Proceedings of the IPDPS 2004 (April 2004)
5. Adler, S.: The slashdot effect: An analysis of three internet publications,

http://ldp.dvo.ru/LDP/LG/issue38/adler1.html
6. Anderson, D.P.: BOINC: A system for public-resource computing and storage. In:

Buyya, R. (ed.) Proceedings of 5th International Workshop on Grid Computing
(GRID 2004), Pittsburgh, PA, USA, November 8, 2004, pp. 4–10. IEEE Computer
Society, Los Alamitos (2004)

7. Sullivan, W.T., Werthimer, D., Bowyer, S., Cobb, J., Gedye, G., Anderson, D.:
A new major SETI project based on Project Serendip data and 100,000 personal
computers. In: Proc. of the Fifth Intl. Conf. on Bioastronomy (1997)

8. Malecot, P., Kondo, D., Fedak, G.: Xtremlab: A system for characterizing internet
desktop grids (abstract). In: Proceedings of the 6th IEEE Symposium on High-
Performance Distributed Computing (2006)

9. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers.
In: Proc. 11th Conference on Uncertainty in Artificial Intelligence, pp. 338–345.
Morgan Kaufmann, San Francisco (1995)

10. Vilalta, R., Apte, C.V., Hellerstein, J.L., Ma, S., Weiss, S.M.: Predictive algorithms
in the management of computer systems. IBM Systems Journal 41(3), 461–474
(2002)

11. Keogh, E.J., Lonardi, S., Ratanamahatana, C.A.: Towards parameter-free data
mining. In: Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 206–215 (August 2004)

12. Andrzejak, A., Silva, L.: Using machine learning for non-intrusive modeling and
prediction of software aging. In: IEEE/IFIP Network Operations & Management
Symposium (NOMS 2008), April 7-11 (2008)

13. Douceur, J.R.: Is remote host availability governed by a universal law? SIGMET-
RICS Performance Evaluation Review 31(3), 25–29 (2003)

14. Mickens, J.W., Noble, B.D.: Exploiting availability prediction in distributed sys-
tems. In: NSDI, USENIX (2006)

15. van der Heijden, F., Duin, R.P.W., de Ridder, D., Tax, D.M.J.: Classification,
Parameter Estimation and State Estimation. John Wiley & Sons, Chichester (2004)

16. Bhagwan, R., Savage, S., Voelker, G.: Understanding Availability. In: Proceedings
of IPTPS 2003 (2003)

17. Saroiu, S., Gummadi, P., Gribble, S.: A measurement study of peer-to-peer file
sharing systems. In: Proceedinsg of MMCN (January 2002)

18. Bolosky, W., Douceur, J., Ely, D., Theimer, M.: Feasibility of a Serverless Dis-
tributed file System Deployed on an Existing Set of Desktop PCs. In: Proceedings
of SIGMETRICS (2000)

19. Dinda, P.: A prediction-based real-time scheduling advisor. In: 16th International
Parallel and Distributed Processing Symposium (IPDPS 2002), vol. 10 (April 2002)

20. Wolski, R., Spring, N., Hayes, J.: Predicting the CPU Availability of Time-shared
Unix Systems. In: Proceedings of 8th IEEE High Performance Distributed Com-
puting Conference (HPDC8) (August 1999)

Adaptive Monitoring with Dynamic Differential
Tracing-Based Diagnosis

Mohammad A. Munawar, Thomas Reidemeister, Miao Jiang, Allen George,
and Paul A.S. Ward�

Shoshin Distributed Systems Group
University of Waterloo, Waterloo, Ontario N2L 3G1

{mamunawa, treideme, m4jiang, aageorge, pasward}@shoshin.uwaterloo.ca

Abstract. Ensuring high availability, adequate performance, and
proper operation of enterprise software systems requires continuous
monitoring. Today, most systems operate with minimal monitoring, typ-
ically based on service-level objectives (SLOs). Detailed metric-based
monitoring is often too costly to use in production, while tracing is pro-
hibitively expensive. Configuring monitoring when problems occur is a
manual process.

In this paper we propose an alternative: Minimal monitoring with SLOs
is used to detect errors. When an error is detected, detailed monitoring is
automatically enabled to validate errors using invariant-correlation
models. If validated, Application-Response-Measurement (ARM) tracing
is dynamically activated on the faulty subsystem and a healthy peer to
perform differential trace-data analysis and diagnosis.

Based on fault-injection experiments, we show that our system is ef-
fective; it correctly detected and validated errors caused by 14 out of
15 injected faults. Differential analysis of the trace data collected for
210 seconds allowed us to top-rank the faulty component in 80% of the
cases. In the remaining cases the faulty component was ranked within
the top-7 out of 81 components. We also demonstrate that the overhead
of our system is low; given a false positive rate of one per hour, the
overhead is less than 2.5%.

1 Introduction

Enterprise software systems are large and complex and their operators expect
high availability and adequate performance. Proper operation given these con-
ditions requires continuous monitoring. However, this increases operation costs
since monitoring data is expensive to collect [1] and analyze [2]. System oper-
ators are faced with a choice of low-cost minimal monitoring, costly detailed
monitoring, and prohibitively expensive tracing. Although detailed monitoring
and tracing incur significant overhead, the information they provide is often
essential for fault diagnosis. Given the performance ramifications, most enter-
prise software systems today operate with minimal monitoring, using a few key
� The authors gratefully acknowledge the support of IBM and the Natural Sciences

and Engineering Research Council of Canada (NSERC).

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 162–175, 2008.
c© IFIP International Federation for Information Processing 2008

Adaptive Monitoring with Dynamic Differential Tracing-Based Diagnosis 163

metrics tied to service-level objectives (SLOs). When SLOs are violated a hu-
man operator enables detailed monitoring in an attempt to diagnose the fault,
and, if unsuccessful, enables tracing. The quality of the final diagnosis is heavily
dependent on operator skill, but they can err [3], and may be overwhelmed by
the quantity of data collected.

We propose an alternative to this operator-driven approach: adaptive mon-
itoring with dynamic tracing-based diagnosis. Our alternative has three steps:
(1) error detection by monitoring of a minimal set of metrics via SLOs, (2) error
verification by monitoring an extended set of metrics using invariant regres-
sion models, and (3) diagnosis using a differential analysis of ARM trace data
collected from different peers. Each step is triggered based on analysis of data
obtained in the previous step. Our approach is intended to keep the monitoring
cost low during normal operation, only adding detailed monitoring and tracing
when needed.

1.1 Background

Enterprise software systems comprise a mix of in-house, vendor-supplied, and
third-party components, typically layered on standardized component frame-
works like .NET [4], CORBA [5], J2EE [6], etc. To help operators monitor these
systems, most components expose a variety of monitoring data at various gran-
ularity. Common data sources include performance metrics, correlated traces,
and log records. In this paper we focus on J2EE-based systems, which provide
monitoring data via management APIs such as Java Management eXtensions
(JMX) [7] and ARM [8, 9]. Even though we focus on J2EE, the approach dis-
cussed here can be applied to other frameworks easily.

The JMX interface allows us to sample system metrics (e.g., component
response-time, activity count, resource pool status, etc) periodically. These are
aggregate numerical values that reflect the state, behaviour, and performance
of components. ARM traces contain fine-grained instance-level details such as
order of component invocations and timing, which differ from the aggregate na-
ture of metrics data. The order of component invocations can be combined to
create complete paths. However, computing such paths in large-scale systems
has a cost, especially when operations are logged out of order.

2 Approach

To illustrate our approach, we consider a simple J2EE cluster scenario, com-
plete with load balancer, replicated application servers, and a common database
back-end. We assume that the front-end load balancer can regulate the work
assigned to a particular machine, and that admission control is in place to avoid
system saturation. In addition, we assume that manifestation of multiple faults
simultaneously in independent systems, is rare. As such, two faults, or even two
instances of the same fault, are unlikely to be manifest in different application
servers at the same time. However, a fault in a shared subsystem (e.g., database)
could affect all dependent subsystems.

164 M.A. Munawar et al.

Fig. 1. Adaptive monitoring in action

Any monitoring system has to balance complexity, overhead, and error-
detection capability. This insight guides our adaptive scheme: error hypotheses
are generated with minimal cost; these are consequently verified and diagnosed
within only a short period of performance degradation. Our approach has three
steps: Error detection with minimal monitoring, error verification with detailed
monitoring, and trace-based diagnosis. The effective cost of our system is then
a function of the false-positive rate. Figure 1 depicts the operating steps of our
approach, while Algorithm 1 describes its logic.

Minimal monitoring entails tracking a small set of important metrics and
detecting errors using SLOs. Because of its low overhead, we use it when system
conditions are deemed normal. Error verification involves monitoring a larger
set of metrics, and is thus more costly. We use invariant relationships between
metrics to track this larger set. When both SLOs and invariants indicate an
error, we enable tracing on the suspected subsystem and one of its peers deemed
healthy. We then perform precise diagnosis by comparing the collected traces.
As we discuss in Section 3.1, detailed monitoring is costly, it is used only when

begin Monitoring
mode := MINIMAL MONITORING;
while true do

switch mode do
case MINIMAL MONITORING

Monitor key metrics;
if anomaly detected then

mode := DETAILED MONITORING;

case DETAILED MONITORING
Check invariant regression models;
if error is confirmed for a cluster subsystem then

Reduce load submitted to the suspected faulty subsystem and a
non-faulty peer;
For both subsystems: mode := TRACING;

if error is confirmed for all cluster members then
Report error in shared subsystems;

if error is not confirmed then
mode := MINIMAL MONITORING;

case TRACING
Compare trace data from the suspected faulty subsystem and a non-faulty
peer;
Diagnose based on the differences;

end

Algorithm 1. Pseudo-code of our approach

Adaptive Monitoring with Dynamic Differential Tracing-Based Diagnosis 165

errors are detected in the first step. Tracing is costlier; it is enabled only when
errors have both been detected with SLOs and validated with invariants.

2.1 Error Detection

Under normal conditions we only monitor a small set of carefully chosen met-
rics by comparing observed values against pre-specified SLOs in the form of
thresholds. We check for SLO violations, which occur when the corresponding
thresholds are consistently crossed. The monitored metrics are selected by sys-
tem administrators based on four factors: they are sensitive to the state of a large
subset of internal components, and so can detect a broad range of problems; they
directly reflect users’ perception of the service; they are inexpensive to measure
and collect; and finally, problems that do not affect them are, by definition, not
pressing enough to warrant further investigation. In our evaluation we monitor
web page response times and number of failed requests of an Internet-based en-
terprise application. SLOs are typically defined based on contractual obligations
(i.e., service-level agreements) or user preferences. Alternatively, historical data
can be used to set SLOs such that a certain percentile of observations are within
specified bounds.

2.2 Error Verification

While SLO monitoring can be inexpensive, its simplicity and reliance on static
thresholds make it vulnerable to false alarms. False alarms not only require
administrators’ time, they also increase the monitoring overhead, as tracing is
unnecessarily triggered. The error verification step aims to limit the monitoring
cost that arises because of false alarms, while providing a robust means for
validating the existence of an error.

Our verification step entails collecting a larger set of system metrics, among
which stable, long-term correlations exist [10,11,12,13]. These correlations, also
known as invariants, are captured a priori in the form of regression models using
data collected from a healthy system. Each model associates two variables, one
of which can be used to predict the other. As such, we can check each metric’s
behaviour by ensuring that its observed values are in line with predictions of
the corresponding learned model. Verifying whether faults exist in the system
involves determining the ratio of models that do not fit observations; when this
ratio exceeds a specified level, the presence of faults is confirmed.

We have described our invariant-identification and error detection approach
based on simple linear regression in previous work [12, 13]. Here we extend it
to clustered systems, taking care to avoid identifying accidental correlations as
invariants. Such correlations arise because of replication and coupling among
subsystems. Replicated subsystems cause accidental correlations because they
expose the same metrics and, because of the load balancer, experience similar
workloads; as such, metrics that correlate within the subsystem, also correlate
between replicas. We therefore only learn correlations within replicas, rather
than between replicas. Similarly, coupling is caused by shared subsystems such

166 M.A. Munawar et al.

as the load balancer and the database. We avoid these correlations by discarding
models that relate metrics of any subsystem to metrics of a shared subsystem.

Error verification allows us to pinpoint faulty subsystems and identify healthy
subsystems. We do so by analyzing invariants on each subsystem and then com-
paring the results across peers. A healthy subsystem will exhibit none or few
model violations. If a single peer is experiencing model violations, we presume
it is the faulty peer; where multiple peers are experiencing violations, per our
assumption of a single faulty subsystem, we presume there is a common sub-
system causing the errors. The outcome allows downstream diagnosis engines to
readily select a non-faulty cluster member as a baseline.

2.3 Diagnosis

When an error is reliably detected, we enable ARM tracing on two peers: one
healthy and one suspected to be faulty. The detection and verification steps
determine which peer is deemed healthy and which is not; a non-healthy peer
would cause SLOs and invariant correlations to be violated. At this stage, equal
amounts of requests are directed towards the two peers, ensuring their behaviour
will be statistically similar, modulo the fault.

Timing Data: Many faults directly or indirectly affect the timing behaviour
of individual components. In particular, such faults change the distribution of
the time taken to complete operations. To diagnose timing-related faults, we
compare sample distributions of operation time instances, obtained from traces,
of a healthy subsystem to those of the suspected non-healthy one. We use the
standard χ2 Two Sample Test [14] to check whether the two distributions of time
values are different for a given significance level, α. This test does not require
us to assume any specific timing distribution or handle sample-size differences.
If the timing samples of a component are found to be statistically different, it is
further considered in the diagnosis.

Our diagnosis consists of a ranked list of components. The rank of a
component-operation pair is based on a score given by Equation 1, which is
the ratio of the average execution time in the two different peers:

S(Ck) =
max(μ1(Ck), μ2(Ck)) + 1
min(μ1(Ck), μ2(Ck)) + 1

(1)

μ1(Ck) and μ2(Ck) are the means of the two sample distributions for each
component-operation Ck, and 1 is added to ensure numeric stability. We take the
ratio of the maximum over the minimum value so that the full range of changes
between the two peers is captured.

Structural Data: We also use weighted component-connectivity graphs derived
from traces, represented as coincidence matrices, to diagnose faulty components.
Each edge represents a caller-callee relationship and the edge weight is deter-
mined by the number of times the relationship appears in traces. We use the
following three properties of the coincidence matrices for diagnosis:

Adaptive Monitoring with Dynamic Differential Tracing-Based Diagnosis 167

1. InCalls: Calls made to component Ck, IC(Ck) =
∑m

i=1 G(i, k).
2. OutCalls: Calls made by Ck to other components OC(Ck) =

∑n
i=1 G(k, i).

3. OutCalls–InCalls Ratio: CC(Ck) = OC(Ck)
IC(Ck) .

We use the same anomaly scoring function as for timing data, i.e., Equation 1
is applied to the structural measures IC(Ck), OC(Ck), and CC(Ck), to produce
individual scores and rankings. Because we aggregate the structural data in the
form of counts, we ignore all counts smaller than the minimal threshold tmin.

2.4 Diagnosis Integration

Each of the diagnosis methods focuses on distinct characteristics of system be-
haviour. We therefore combine their results to improve fault coverage. Let C

be the set of all components, and M be the set of diagnosis methods. For each
c ∈ C, a method m ∈ M reports an anomaly score s = m(c) ∈ [0, ∞). m(c) = 0
if m does not shortlist c as anomalous. The goal of integration is to combine
individual scores, mi(c), into a global score, ŝ:

ŝ:(m1(c), m2(c), . . . , mk(c)) → [0, ∞] ∀c ∈ C m1, m2, . . . , mk ∈ M

Simple Combination: We normalize the anomaly scores of the individual meth-
ods, mi, to the range [0, 1] and take their sum as the combined anomaly score ŝ.

ŝ =
k∑

i=1

m′
i(c) ∀c ∈ C m′

i(c) : mi(c) → [0, 1], i = 1, 2, ...k ∀c ∈ C

Weighted Combination: Some diagnosis methods can more accurately iden-
tify certain faults than others; this can be automatically determined via the
diagnosis results. For example, faults that affect operation times can clearly be
diagnosed by methods based on timing data; i.e., there is a large gap in anomaly
score between the faulty and non-faulty components. We thus give such meth-
ods more weight when their results indicate that they are accurate. Specifically,
we weight the scores produced by the analysis of timing data by the ratio of
the scores of the first- and second-ranked component. The other methods are
assigned weights as described in the simple combination approach.

3 Evaluation

We set up a small clustered enterprise application environment to evaluate our
adaptive-monitoring approach and differential trace-analysis methods. Our test-
bed, shown in Figure 2, comprises a DB2 UDB 8.2 database server, two Web-
Sphere 6 Application Servers (WAS), workload generators, a monitoring engine,
and a fault-injection module. We use this infrastructure to execute the Trade
benchmark [15], a J2EE application which implements an online stock-brokerage
system.

168 M.A. Munawar et al.

Fig. 2. Experimental Setup

The monitoring engine collects ARM and JMX data from the two application
servers. The metric data is collected every 10 seconds from the JMX interface
of the application servers and saved in a local database. For convenience, unless
otherwise stated, the metric data is collected throughout experiments for offline
analysis. Trace data is logged in files only when enabled; the files are then fetched
by the monitoring engine for analysis. While we could transfer the trace data
directly from ARM agents to the monitoring engine, we did not see a performance
gain when compared to logging.

The load generator creates randomized workload patterns, subject to a max-
imum. Because we simulate user activity, we implemented the load-balancing
logic as part of the load generation module. In practise, a separate workload
balancer would distribute the work among cluster members. When tracing is en-
abled, the load-balancing logic reduces and controls the load such that a roughly
equal amount of work is submitted to each application server.

3.1 Cost of Monitoring

We performed experiments to measure the overhead caused by the monitoring
logic (e.g., counter updates and time-stamping) and the data-collection logic. We
used a simplified setup with one application server, a database, and an open-
loop workload generator that enforces exponential inter-arrival time between
requests. The service time in similar systems has been observed to follow the
exponential distribution [16]. We thus model the system using an M/M/1 queue
and derive the mean service time (Ts) thus:

Ts =
1
μ

=
Tr

λTr + 1
(2)

where μ is the mean service rate, Tr is the response time, and λ is the request
arrival rate. For each monitoring configuration, we execute experiments at dif-
ferent load levels. We repeat each experiment five times at every load level. For

Adaptive Monitoring with Dynamic Differential Tracing-Based Diagnosis 169

Table 1. Effect of monitoring on service time

Service Time
Monitoring Level Mean (ms) Std. Error (ms) Overhead (%)

None 7.468 0.001 0.0
Minimal 7.604 0.001 1.8
Detailed 10.152 0.009 35.9
Logged Trace 12.414 0.089 66.2

each experiment, our analysis takes 60 samples (10 minutes) into consideration;
it excludes data collected during warm-up. Table 1 shows the mean service time
as a function of increasing monitoring levels. The service times shown represent
averages across the different load levels and the five repetitions. The standard
error reflects the variation in the mean results. These results confirm that mini-
mal monitoring has a small effect on performance, whereas detailed monitoring
and tracing significantly degrade performance. While this increase may be ac-
ceptable for a brief period, it cannot be incurred continually. In particular, the
overhead translates directly into the additional fraction of machines required for
a data center with monitoring to service an equal load as one without, not tak-
ing into account analysis machines. Tracing has higher overhead than detailed
monitoring. It also generates a larger amount of monitoring data which needs
to be analyzed. Our analysis does not account for such overhead. These results
support our claim that to contain the performance impact, detailed monitoring
should only be used when an error is suspected, and that tracing should only be
enabled if the error is confirmed.

Given these overhead numbers, we can estimate the cost of our adaptive mon-
itoring scheme by assuming a false positive rate of less than one SLO triggered
per hour, which is much more lenient than any system administrator would ac-
cept. With our setup and uniformly random workload, we have found that, using
percentile-based SLOs determined from historical data, such a false alarm tar-
get can easily be achieved, while maintaining good fault coverage. Since detailed
monitoring can refute the false positive in a minute, the mean service time of
our approach would be 59

607.604 + 1
6010.152 = 7.646, or an overhead of 2.39%.

Beside the measurement overhead, the analysis needed for our three-step ap-
proach incurs little computational overhead. During minimal monitoring, 20 met-
rics are tracked and each SLO can be checked in constant time. During detailed
monitoring, the cost of analysis is O(m · i) where m is the number of invariant
models and i is the number of sampling intervals considered. In our experiments

Table 2. Faults Parameters

Parameter Value Parameter Value

dlen 500 (ms) dwait [0, 100) (ms)
dmax ∞ eprob 0.3
linterval 1000 (ms) llock 0.5

170 M.A. Munawar et al.

m was close to 20000 for both application servers and detailed monitoring was
enabled for 6 sampling intervals. The analysis needed for tracing depends on
the method used. The cost of computing the InCalls and OutCalls measures
is O(c2 · s) where c is the number of components and s is number of entries
per component in the traces. For analyzing the timing data, we need O(c · s)
operations. In our experiments c, the number of components, was 81.

3.2 Faults and Fault-Injection Experiments

We have developed several types of faults to assess the effectiveness of our ap-
proach and methods. Delay-loop faults entail delaying completion of a selected
method for dlen time units. To configure these faults, we specify a component,
one of its methods, the delay-loop duration dlen, and a maximum number of
loop instances dmax. These faults can be configured in two ways: (1) uniform-
randomly spaced, by specifying a minimum random wait time between two delay-
loop-executions dwait; (2) probabilistic occurrences, by setting a probability of
occurrence eprob. Exception faults, with probability eprob, throw an unhandled
exception when a selected method is executed. A table-locking fault periodically
locks a chosen database table. The lock is activated for llock fraction of every
linterval time interval during the fault-injection period. We have also developed
a series of common operator-caused configuration faults, including authentica-
tion errors, incorrect thread-pool and connection-pool sizing, and component
deletion. We do not evaluate these faults in this work because of space limits.

Each of our fault-injection experiments consists of a warm-up period, a period
of normal activity during which we learn invariant regression models, and a
period during which the system is monitored. We inject faults in the last period,
while our monitoring is active. Unless stated otherwise, we use values listed in
Table 2 to configure faults. The typical duration of an experiment is one hour.

3.3 Error Detection

During minimal monitoring, we oversee response-time and failure count metrics
associated with all web pages of the Trade application. If either requests to a
page fail or the response time of a page violates the corresponding SLO in three
consecutive sampling intervals, we suspect presence of faults. Table 3 shows the
effectiveness of our error detection approach. Each row represents an experiment
where faults are injected in a method of a chosen component. We inject delay-
loops and exception faults in components of WAS1. Table-locking faults are
injected in the database.

The results show that all faults injected in WAS1 are detected. In the case of
QuoteBean, we see SLO violations on the non-faulty application server (WAS2),
which arise from the coupling induced by the database. We explain this further
in Section 3.4. For table-locking faults, we see that, except for ORDEREJB, SLOs
are violated on both WAS1 and WAS2. This is the expected behaviour, as both
depend on the database.

Adaptive Monitoring with Dynamic Differential Tracing-Based Diagnosis 171

Table 3. Error detection with SLOs and verification with invariant-correlation models

Faults Error Detection Error Verification
Type Component Detected Detected % Model with % Model with

on WAS1? on WAS2? Outliers WAS1 Outliers WAS2

Exceptions QuoteBean Yes No 4.8 0
OrderBean Yes No 5.6 0
HoldingBean Yes No 4.8 0
AccountProfileBean Yes No 0.5 0
AccountBean Yes No 1.7 0

Delay Loops QuoteBean Yes Yes 2.1 0.01
OrderBean Yes No 3.3 0
HoldingBean Yes No 2.9 0
AccountProfileBean Yes No 1.1 0
AccountBean Yes No 2.7 0

Table Locking QUOTEEJB Yes Yes 2.1 1.7
HOLDINGEJB Yes Yes 0.6 1.3
ORDEREJB No No 0.3 0.4
ACCOUNTEJB Yes Yes 2 1.9
ACCOUNTPROFILEEJB Yes Yes 1.8 1.5

3.4 Error Verification

In this work we only leverage intra-subsystem invariant correlations for each
cluster member (i.e., intra-WAS in our case). An example of such a correla-
tion is shown in Figure 3 where the number of requests to the TradeScenario
component is plotted against the number of store operation for the OrderEJB
component for both WAS1 and WAS2.

The intra-WAS models allow us to perform diagnosis at the level of cluster
members. A subsystem is faulty if a significant number of its invariants are
violated. In practise, the administrator would decide what is significant based

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400 450 500

O
rd

er
E

JB
 s

to
re

 c
ou

nt

TradeScenario request count

 WAS1
 WAS2

Fig. 3. Example of a stable correlation in both WAS1 and WAS2

172 M.A. Munawar et al.

on data collected during validation of the invariants. Because the target system is
dynamic with many sources of noise and the invariant models are statistical, we
cannot expect all models to hold at all times. Thus, after a thorough validation,
we expect none or a very small fraction of models to report outliers. Here, we
consider faults to exist if 0.5% or more of intra-WAS models report outliers.

Table 3 summarizes results obtained from the analysis of correlation models
for the experiments reported in Section 3.3. For both loop and exception-based
faults, at least 0.5% of models within WAS1, the faulty application server, re-
port outliers. Except for QuoteBeanwith loop-based faults, no model from WAS2
persistently reports outliers. Loop-based faults cause database connections to be
tied up for longer periods and also cause the associated threads on the database
to be unavailable. This limits the number of threads available to process work
from WAS2. This problem is visible in the case of QuoteBean, as it is the most
frequently used component of Trade. Nevertheless, very few models report out-
liers on WAS2 in this case. We are thus able to correctly confirm an error in
WAS1 in all cases.

Results for table-locking faults show a significant number of models report-
ing outliers on both WAS1 and WAS2 for all cases, indicating an error in the
database. Tracing is thus not enabled, as it will not provide additional informa-
tion on the status of the application servers. For the ORDEREJB table, the fraction
of models with outliers is below the 0.5% threshold. In Table 3, we see that these
faults are not detected using SLOs, thus neither detailed monitoring nor tracing
is enabled. This case represents a false negative for our monitoring system.

3.5 Diagnosis

We now evaluate the accuracy of diagnosis methods and their combination. Ta-
ble 4 summarizes the results obtained with the different methods. The first 10
results in Table 4 correspond to the first 10 results in Table 3; these represent
experiments in which we apply all three steps, i.e., detection, verification, and
diagnosis if required. Note that diagnosis using the χ2 test on the timing data
only reports components whose operation time distribution changes at the 0.05
significance level.

We see two interesting phemomena in these results: (1) no one method is
better than the rest, as the effectiveness of individual methods depends on the
fault and the faulty component; (2) combining diagnoses can produce a better
outcome than any single test; (3) the weighted combination generally beats the
simple combination, but is sometimes (about 20% of the cases) worse than the
best individual test.

For delay-loop faults, as expected, ranks using timing data are generally cor-
rect, while results with structural data are misleading. Given this, the weighted
combination produces an exact diagnosis for the first set of experiments with
delay-loop faults (lines 6–10), and only becomes weaker when the frequency of
timing faults drops very low, to about 3% of the time (lines 16–20).

We perform additional experiments to evaluate the sensitivity of diagnosis
based on trace data. The last 10 lines in Table 4 show the results of these

Adaptive Monitoring with Dynamic Differential Tracing-Based Diagnosis 173

Table 4. Ranks of faulty (component, operation) out of 81 possibilities for delay loop-
and exception faults. A rank of 1 is the most accurate diagnosis, while a rank of ∞
means that the component is not short-listed.

Fault Type Faulty Component Timing OutCalls/ InCalls OutCalls Simple Weighted
Data (OT) InCalls (CC) (IC) (OC) Combination Combination

Exceptions QuoteBean.getDataBean 1 ∞ 1 ∞ 2 1
OrderBean.getDataBean 9 2 1 3 1 1
HoldingBean.getDataBean 7 2 6 2 1 1
AccountProfileBean.getDataBean 1 ∞ 42 ∞ 9 6
AccountBean.getDataBean 6 1 68 9 6 7

Delay loops QuoteBean.getDataBean 1 ∞ 35 ∞ 7 1
dlen = 500ms OrderBean.getDataBean 1 5 11 8 1 1

dwait = (0, 100)ms HoldingBean.getDataBean 1 ∞ 61 28 8 1
AccountProfileBean.getDataBean 1 ∞ 39 ∞ 5 1
AccountBean.getDataBean 1 4 20 13 1 1

Delay loops QuoteBean.getDataBean 1 ∞ 48 ∞ 7 1
dlen = 500ms OrderBean.getDataBean 1 4 32 13 2 1

dwait = (0, 1500)ms HoldingBean.getDataBean 1 ∞ 34 12 6 1
AccountProfileBean.getDataBean 1 ∞ 16 ∞ 5 1
AccountBean.getDataBean 1 3 13 8 1 1

Delay loops QuoteBean.getDataBean 1 ∞ 20 ∞ 6 2
dlen = 100ms OrderBean.getDataBean 1 4 33 20 3 1

dwait = (0, 7000)ms HoldingBean.getDataBean 3 ∞ 12 12 6 7
AccountProfileBean.getDataBean 1 ∞ 11 ∞ 4 1
AccountBean.getDataBean 1 4 32 16 2 1

experiments. We show that we are able to exactly diagnose delay-loop faults
with loops lasting 500 ms with a random inter-loop gap with range (0, 1500) ms,
and within the top-7 even with a small disturbance of 100 ms with a random
inter-loop gap with range of (0, 7000) ms.

4 Related Work

Work in the area of error detection and diagnosis in enterprise software systems
can be broadly divided into issues of data acquisition and analysis. Much work
in data acquisition focuses on reducing monitoring overhead. Agarwala et al. [17]
propose classes of channels, each with different rate and granularity of monitoring
data; consumers can dynamically subscribe to these channels as needed. This
approach only allows control of the communication overhead. Recent work on
dynamic code instrumentation (e.g., [18,19]) focuses on how to efficiently adapt
monitoring logic but not on when to do so.

Comparative analysis based on peer subsystems has been applied to offline
diagnosis of known configuration faults (e.g., [20, 21]). Pertet et al. [22] apply
peer analysis to group communication protocols. But while their work pre-
sumes that the effects of the fault have spread, we assume efficient detection
and validation, allowing timely and precise diagnosis. Kiciman and Fox [23] use
peer comparison of paths to identify application-level faults. They, however,
require continuous trace collection. Mirgorodskiy et al. [24] describe a method-
ology to compare timing behaviour of similar processes in a parallel computing

174 M.A. Munawar et al.

environment. We focus on enterprise software systems which are often more dy-
namic than applications targeted in [24].

The use of invariant correlations between metrics for error detection and di-
agnosis was proposed both in our previous work [10] as well as by Jiang et
al. [11]. The latter work assumes that a fixed set of metrics is always collected
and no adaptation occurs. Agarwal et al. [25] also describe an approach to create
fault signatures based on correlation between change-points in different metrics.
Our prior work [12] is the first to demonstrate automated adaptive monitoring,
and focuses on achieving the benefits of continuous monitoring at a fraction of
the cost. The current work augments our earlier approach by diagnosing faulty
components using more-precise trace data instead of metric-based invariants.
Furthermore, the context of this work is a larger, clustered system, which allows
us to employ novel techniques such as differential trace analysis.

Trace data analysis has been studied extensively. Kiciman and Fox [23] per-
form statistical comparison of instance-level component interactions. By con-
trast, our trace analysis is more efficient as it uses aggregate component inter-
actions, and also looks at timing data. Kiciman and Fox also apply decision
trees to correlate failures with faulty components. Likewise, Chen et al. [26] use
clustering and Cohen et al. [27] use Bayesian models for the same purpose. Our
work differs from these works in that they ignore monitoring costs.

5 Conclusions

In this paper we describe our approach to adaptively monitor software systems.
Our approach consists of three, increasingly costly, steps: detection, verification,
and diagnosis. To the best of our knowledge, it is the first monitoring system
that automatically adapts from SLOs to tracing. It is also the first work that uses
peer comparison of invariant models based on metrics for error detection. Unlike
prior work that assumes continuous tracing, we enable detailed monitoring and
tracing only when needed, thus incurring less than 2.5% overhead. Our verifica-
tion approach uses peer comparison of invariant models of system metrics. We
devise diagnosis methods based on differential analysis of information extracted
from ARM traces and describe means to integrate their results. We show that
once a statistically significant problem is detected, it is accurately validated and
diagnosed. Our approach ensures that we only enable costly tracing when we are
confident that tracing will accurately diagnose the defect.

References

1. Fox, A., Patterson, D.: Self-repairing computers. Scientific American (June 2003)
2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Com-

puter 36(1), 41–50 (2003)
3. Pertet, S., Narasimhan, P.: Causes of failure in web applications. Technical Report

CMU-PDL-05-109, CMU Parallel Data Lab (December 2005)
4. Microsoft Corp: NET Platform, http://www.microsoft.com/net/

Adaptive Monitoring with Dynamic Differential Tracing-Based Diagnosis 175

5. Object Management Group, Inc.: Common object request broker architecture
(CORBA), http://www.corba.org/

6. Sun Microsystems, Inc.: Java 2 platform enterprise edition, v 1.4 API specification,
http://java.sun.com/j2ee/1.4/docs/api/

7. Sun Microsystems Inc.: JMX - Java Management Extensions,
http://java.sun.com/javase/technologies/core/mntrmgmt/javamanagement/

8. Johnson, M.W.: Monitoring and diagnosing application response time with ARM.
In: SMW (1998)

9. Rolia, J., Vetland, V.: Correlating resource demand information with arm data for
application services. In: WOSP (1998)

10. Munawar, M.A., Ward, P.A.: Adaptive monitoring in enterprise software systems.
In: SysML (June 2006)

11. Jiang, G., Chen, H., Yoshihira, K.: Discovering likely invariants of distributed trans-
action systems for autonomic system management. In: ICAC (2006)

12. Munawar, M.A., Ward, P.A.S.: Leveraging many simple statistical models to adap-
tively monitor software systems. In: Stojmenovic, I., Thulasiram, R.K., Yang, L.T.,
Jia, W., Guo, M., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742, pp. 457–470.
Springer, Heidelberg (2007)

13. Munawar, M.A., Ward, P.A.: A comparative study of pairwise regression techniques
for problem determination. In: CASCON, pp. 152–166 (2007)

14. Croarkin, C., Tobias, P. (eds.): Engineering Statistics Handbook, National Institute
of Standards and Technology (2006)

15. Coleman, J., Lau, T.: Set up and run a Trade6 benchmark with DB2 UDB.
IBM developerWorks, http://www128.ibm.com/developerworks/edu/dm-dw-dm-
0506lau.html?S TACT=105AGX11&S CMP=LIB

16. Tesauro, G., Das, R., Jong, N.K.: Online performance management using hybrid
reinforcement learning. In: Proceedings of SysML (2006)

17. Agarwala, S., Chen, Y., Milojicic, D., Schwan, K.: QMON: QoS- and utility-aware
monitoring in enterprise systems. In: ICAC (2006)

18. Dmitriev, M.: Profiling java applications using code hotswapping and dynamic call
graph revelation. In: WOSP, pp. 139–150 (2004)

19. Mirgorodskiy, A.V., Miller, B.P.: Autonomous analysis of interactive systems with
self-propelled instrumentation. In: MMCN (January 2005)

20. Mickens, J., Szummer, M., Narayanan, D.: Snitch: Interactive decision trees for
troubleshooting misconfigurations. In: SysML (April 2007)

21. Wang, H.J., Platt, J.C., Chen, Y., Zhang, R., Wang, Y.M.: Automatic misconfig-
uration troubleshooting with peerpressure. In: OSDI, p. 17 (2004)

22. Pertet, S., Gandhi, R., Narasimhan, P.: Fingerpointing correlated failures in repli-
cated systems. In: SysML (April 2007)

23. Kiciman, E., Armando, F.: Detecting application-level failures in component-based
internet services. IEEE Trans. on Neural Networks 16(5), 1027–1041 (2005)

24. Mirgorodskiy, A.V., Maruyama, N., Miller, B.P.: Problem diagnosis in large-scale
computing environments. In: Supercomputing Conference (2006)

25. Agarwal, M., Anerousis, N., Gupta, M., Mann, V., Mummert, L., Sachindran,
N.: Problem determination in enterprise middleware systems using change point
correlation of time series data. In: NOMS (April 2006)

26. Chen, M.Y., Kiciman, E., Fratkin, E., Fox, A., Brewer, E.A.: Pinpoint: Problem
determination in large, dynamic internet services. In: DSN, pp. 595–604 (2002)

27. Cohen, I., Goldszmidt, M., Kelly, T., Symons, J., Chase, J.: Correlating instru-
mentation data to system states: A building block for automated diagnosis and
control. In: OSDI, pp. 231–244 (December 2004)

Maintenance of Monitoring Systems Throughout
Self-healing Mechanisms

Clarissa Cassales Marquezan1,2, André Panisson1, Lisandro Zambenedetti Granville1,
Giorgio Nunzi2, and Marcus Brunner2

1 Federal University of Rio Grande do Sul - Porto Alegre, Brazil
{clarissa, panisson, granville}@inf.ufrgs.br

2 NEC Europe Network Laboratories - Heidelberg, Germany
{marquezan, nunzi, brunner}@nw.neclab.eu

Abstract. Monitoring is essential in modern network management. However,
current monitoring systems are unable to recover their internal faulty entities forc-
ing the network administrator to manually fix the occasionally broken monitoring
solution. In this paper we address this issue by introducing a self-healing moni-
toring solution. This solution is described considering a scenario of a monitoring
system for a Network Access Control (NAC) installation. The proposed solution
combines the availability provided by P2P-based overlays with self-healing abil-
ities. This paper also describes a set of experimental evaluations whose results
present the tradeoff between the time required to recover the monitoring infras-
tructure when failures occur, and the associated bandwidth consumed in this pro-
cess. Based on the experiments we show that it is possible to improve availability
and robustness with minimum human intervention.

1 Introduction

Network and service monitoring is an activity essential to identif problems in underly-
ing IT communication infrastructures of modern organizations. Monitoring is typically
materialized by systems that periodically contact elements (e.g., network devices and
services) to check their availability and internal status. A monitoring system may be
simple (like the Multi Router Traffic Grapher (MRTG) [1]) or complex, being com-
posed of as diverse entities as monitors, agents, and event notifiers. The information
collected and processed by monitoring systems enables human administrators, respon-
sible for managing the IT infrastructure, to identify (and possibly predict) problems,
and thus react in order to keep the managed infrastructure operating in a proper way.

Monitoring systems must run uninterruptedly to ensure that failures in the managed
elements are detected. Problems in the monitoring systems break the monitoring pro-
cess and can lead the human administrator to believe that the managed elements are
working properly even when they are not. Robust monitoring systems should thus em-
ploy mechanisms not only to identify failures on the managed infrastructure, but also
to recover the faulty monitoring solution itself. Currently, however, most monitoring
systems force the administrator to manually recover the occasionally broken solution.
Such a manual approach may not drastically affect the monitoring of small networks,
but in larger infrastructures the approach will not scale and should be replaced efficient

F. De Turck, W. Kellerer, and G. Kormentzas (Eds.): DSOM 2008, LNCS 5273, pp. 176–188, 2008.
c© IFIP International Federation for Information Processing 2008

Maintenance of Monitoring Systems Throughout Self-healing Mechanisms 177

alternatives. The self-managed approach is one alternative emerging as a solution for
the manual approach. Typically, a self-managed system is built on top of self-* features
capable to reduce the human intervention and provide more efficient results.

In this paper we address the problem of monitoring systems that lack self-healing-
ness feature by considering the example of a Network Access Control (NAC) [2] in-
stallation. A NAC secured network is composed of devices and services (e.g., routers,
firewalls, RADIUS servers) that control how users and devices join the network. Tra-
ditional monitoring systems (i.e., without self-healing support) fail to protect NAC, for
example, in two situations. First, consider a crashed RADIUS server whose associated
RADIUS monitor crashed too. In this case, the administrator reacts to the RADIUS
problem only when users complain about unsuccessful login attempts. Worse than that,
however, is the second situation. Suppose a failure in the rogue user service responsi-
ble for detecting unregistered devices, and another failure in the monitor associated to
it. In this case, unregistered devices will silently join the network without generating
user complains. In contrast to the first situation, the “silent failure” remains because
no signal is issued either by network users or, and most seriously, by the now broken
monitoring system.

Recent researches on autonomic management certainly present self-* concepts that
could be used to address the aforementioned problems. Such researches, however, take a
mostly abstract approach and rarely touch concrete implementation issues. In this paper,
in turn, we investigate the employment of self-* features to actually implement, deploy,
and evaluate a self-healing monitoring system able to recover from internal failures
without requiring, at some extend, human intervention. The goal of our research is to
understand the advantages and drawbacks of using self-* features in a real scenario of
a service monitoring system.

The monitoring elements of our solution implement two main processes: regular
monitoring (to monitor final devices and services) and recovery (to heal the monitoring
system). We evaluate our solution in terms of recovery time when fail-stop crashes
occur in the monitoring system. In addition, we also measure the traffic generated by the
communication between the elements of our solution. This leads us to the contribution
of showing the tradeoff between the recovery time and associated network traffic. The
determination of such tradeoff is important because it shows when a faster recovery
process consumes too much network bandwidth. On the other side, it also shows when
excessively saved bandwidth leads to services that remain unavailable longer.

The remainder of the paper is organized as follows. In Section 2 we review network
monitoring systems in terms of self-* support, distribution, and availability. In Section
3 we introduce our self-healing architecture for NAC monitoring, while in section 4
we evaluate our proposal in an actual testing environment, presenting associated results
and their analyses. Finally, the paper is concluded in Section 5.

2 Related Work

Although network and service monitoring is widely addressed by current investigations
[3] [4] and products on the market [5], we review in this section solutions that are mainly
related to the aspects of self-monitoring and self-healing on distributed monitoring.

178 C.C. Marquezan et al.

Distributed monitoring are specially required in large-scale networks, like country
or continental-wide backbones [6] [7]. Most of the research in this area propose com-
plex monitoring system that generally identify internal failures and employ algorithms
to reorganize itself without the failed components. In this sense, the solutions present a
certain level of self-awareness and adaption, although self-healing is in fact not present,
i.e., failing entities are not recovered or replaced. It means that in scenarios where most
of the monitoring entities crash, the monitoring systems stop working because no mech-
anism is employed to maintain the execution of the monitoring entities.

Yalagandula et al. [8] propose an architecture for monitoring large networks based
on sensors, sensing information backplane, and scalable inference engine. The commu-
nication among the entities relies on a P2P management overlay using Distributed Hash
Tables (DHTs). Prieto and Stadler [9] introduce a monitoring protocol that uses span-
ning trees to rebuild the P2P overlay used for the communications among the nodes of
the monitoring system. Both Yalagandula et al. and Prieto and Stadler work can reor-
ganize the monitoring infrastructure if failures are detected in monitoring nodes. After
such reorganization the failing nodes are excluded from the core of the rebuilt monitor-
ing infrastructure. Although reorganized, with a few number of nodes, the monitoring
capacity of the system is reduced as a whole. Again, adaptation in the form of infras-
tructure reorganization is present, but proper self-healing it is not.

Few investigations in fact explicitly employ autonomic computing concepts in
system monitoring. Chaparadza et al. [10], for example, combine self-* aspects and
monitoring techniques to build a traffic self-monitoring system. The authors define that
self-monitoring networks are those that autonomously decide which information should
be monitored, as well as the moment and local where the monitoring task should take
place. Nevertheless, such work does not define how the monitoring system should react
in case of failures in its components. The meaning of self-monitoring in this case is
different than the one of our work. While self-monitoring in Chaparadza’s work means
autonomous decision about the monitoring process, in our view self-monitoring is about
detecting problems, through monitoring techniques, in the monitoring system itself.

Yangfan Zhou and Michael Lyu [11] present a sensor network monitoring system
closer to our view of self-monitoring. The authors’ contribution resides on the use of
sensors themselves to monitor one another in addition to performing their original task
of sensing their surrounding environment. Although self-monitoring is achieved, given
the restrictions of the sensor nodes (e.g. limited lifetime due to low-capacity batteries)
the system cannot heal itself by reactivating dead nodes.

Considering the current state of the art, there is a necessity for new approaches for
self-monitoring systems. New proposals should explicitly include, in addition to self-
awareness already available in the current investigations, self-healing support on the
monitoring entities in order to autonomously keep the monitoring service up. In the
next section we thus present our self-healing approach for monitoring infrastructures.

3 Self-healing Architecture for Monitoring Infrastructures

The self-healing architecture built in our investigation forms a P2P management over-
lay on top of the monitored devices and services. The usage of P2P functionalities in

Maintenance of Monitoring Systems Throughout Self-healing Mechanisms 179

our architecture provides a transparent mechanism to enable communications target
to publish, discover, and access management tasks inside the overlay. In this way, the
control of such basic communications is delegated to the P2P framework used to imple-
ment our architecture. Furthermore, in a previous work we have presented that network
management based on P2P can aggregate benefits, like reliability and scalability, on
the execution of management tasks [12]. Now, we use P2P overlays to have the trans-
parency on basic overlay operations, to distribute the identification of failures and also
to provide scalability on the recovery process.

The overlay proposed in previous work is called ManP2P and its architecture has
been described in the work of Panisson et al. [13]. In this current paper, we extend the
ManP2P functionalities in order to explicitly support self-healing processes. We believe
that combined, self-healing and P2P overlays can bring together a self-monitoring in-
frastructure able to address current problems on monitoring systems. In this section we
review the ManP2P architecture, present self-healing extensions, and exemplifies their
employment in the concrete scenario of a NAC installation.

3.1 P2P Management Overlay and Services

The collection of management peers forms the ManP2P management overlay. Each peer
runs basic functions (e.g., granting access to other peers to join the overlay or detecting
peers that left the P2P network) to maintain the overlay structure. In addition, each peer
hosts a set o management services instances that execute management task over the
managed network. In our specific case, such tasks are monitoring remote equipments.
A management service is available if at least one single instance of it is running on the
overlay. More instances of the same service, however, must be instantiated in order to
implement fault tolerance. Figure 1 exemplifies a scenario where management services
(LDAP monitors, Web servers monitors, rogue user monitors) for a NAC installation
are deployed on the ManP2P management overlay.

Fig. 1. NAC meta-monitoring infrastructure

180 C.C. Marquezan et al.

In Figure 1, peers #1 and #2 host service instances, pictured as a triangle, that monitor
an LDAP server. Peer #4, on its turn, contacts both the Web server and the rogue user
service because it hosts management services to monitor these elements. The special
services of self-healing and configuration, depicted as black and gray circles respec-
tively, will be explained farther in this paper. Each peer, in summary, may host different
services at one. In the extreme cases, there could exist peers with no management ser-
vices (thus useless peers) or peers hosting one instance of each available management
service (this possibly becoming an overloaded peer).

We consider that the a management service is able to heal itself if, after the crashing
of some of its instances (possibly due to peers crash), new instances become available,
thus recovering the service and guaranteeing its availability. In order to cope with that,
two functions must be supported: failure detection and service instance activation.

3.2 Failure Detection

Failures in a management service are detected by a self-monitoring procedure where
each service instance, in intervals of t seconds, sends a signal (heartbeat) to all other
instances of the same service to inform that the former is running. Self-monitoring, in
this sense, means that there is no external entity monitoring the instances of a man-
agement service deployed inside the overlay. Indeed, the instances of the management
service themselves can monitor their liveness throughout the heartbeat messages. So, if
one instance crashes, the other instances will miss the former’s heartbeats and then will
initiate the process to recover this instance, as it will be explained later on this paper.

Heartbeats that get lost in the network may wrongly suggest the unavailability of a
service instance. Instead of immediately assuming an instance as down given the lack
of a heartbeat, it first becomes suspect by the other instances. In order to double check
the availability of the suspicious instance, one of the other alive instance tries to contact
the suspicious instance back. If no contact is possible, the suspicious instance is finally
declared unavailable. Assuming s as the time spent to double check the availability of
a suspicious instance, the maximum detection time is td = t + s.

The distribution of heartbeats from one service instance to all others is accomplished
using group communications. At the network level, in the best case, group communi-
cation is supported by multicast communications. In this case, the number of heartbeat
messages h issued by i service instances in t seconds will be h = i. However, if mul-
ticasting is not available, the notifying service instance is forced to send, via unicast,
copies of the same heartbeat to all other instances. In this case, the number of messages
will be h = i2 − i. In this way, the presence of multicasting directly influences the
network traffic generated by the failure detection function.

Failure detection is essentially a consensus problem. Solutions on this topic, com-
ing from the dependability field, could be employed and formalisms used to model
and validade our detection approach. Instead of that, however, we preferred to use the
practical approach of actually implementing the aforementioned function. Although no
formal proof is provided, our experiments have shown that this approach is effective in
detecting failures in the management service instances.

Maintenance of Monitoring Systems Throughout Self-healing Mechanisms 181

Table 1. Service policy repository

Management service Minimum instances Activate instances
LDAP monitor 2 1

Web server monitor 2 2
Rogue user monitor 2 1

3.3 Service Instance Activation and Policies

Instance activation is crucial to recover the management service that just lost some of
its instances. It is on instance activation that the self-healing and configuration services,
presented in Figure 1, play a key role.

Once an instance detects a remote crashed one, it notifies the self-healing service
that determines how many, if any, new instances of the faulty service must be activated.
To do so, the self-healing service internally checks a repository of service policies that
describes, for each management service, the minimum number of instances that must
be running, as well as the number of new instances that must be activated once the
minimum boundary is crossed.

Table 1 shows the service policy repository for the NAC installation of Figure 1. As
can be observed, the LDAP monitoring service must have at least 2 instances running.
In cause of failure, another new one instance must be activated. In the case of the Web
server monitor, on the other hand, although 2 instances are running, whenever activation
is required 2 other new instances will be initiated. If the number of remaining running
instances of a services is still above the minimum boundary, the self-healing service
ignores the faulty service notifications. For example, in the case of the rogue user mon-
itor from Figure 1, if a single instance crashes no action will be executed because the
remaining 2 instances do not cross the minimum boundary. Although it is outside the
scope of this paper stressing the administration and usage of management service poli-
cies (refer to the work of Marquezan et al. [14] for that), we assume that policies are
defined by the system administrator and transferred to the self-healing service instances
long before any failure occurred in the P2P management overlay.

Once required, the self-healing service tries to activate the number of new instances
defined in the service policy by contacting the configuration service. Such configuration
service is then responsible for creating new instances of the faulty service on peers that
do not have those instances yet. A peer hosting solely a configuration service can be
seen as an spare peer ready to active new instances of any service in failure.

Different than the failure detection function, instance activation is performed outside
the group of instances that implement the failing management service. That is so be-
cause decoupling the instance activation function from the services that require them
allow us to more flexibly deal with the number of components for each function. That
directly impact on the number of message exchanged in the overlay.

So far, we have defined a self-healing architecture that extends the ManP2P function-
alities. However, to ensure that the failure detection and instance activation functions
work properly, two requirements must be filled on the P2P management overlay. First,
each management service (including the self-healing and configuration services) must
run at least 2 instances in order to detect and recover problems on the management

182 C.C. Marquezan et al.

service. That is so because a single faulty instance cannot react itself if it is crashed,
then at least another instance is required. Second, each peer must not host more than
one instance of the same management service in order to avoid several instances of that
service crashing if the hosting peer crashes too. We assure that the maintenance of the
monitoring infrastructure can be accomplished while these requirements are fulfilled.

3.4 System Implementation

As mentioned before, our architecture extends the ManP2P system. The implementation
of our architecture in an actual monitoring system is than based on the previous code of
ManP2P. Figure 2 depicts the internal componentes of a peer of our solution.

Components are divided by the core peer plane and management service plane. The
core peer plane’s components are responsible for controlling the communication mech-
anisms between peers. At the bottom the JXTA and network multicast components im-
plement group communication using unicast (via JXTA) or network multicast. On top of
them, the group manager and token manager components control, respectively, group
membership and load balancing (via a virtual token ring). Messages are handled by the
message handler component that interfaces with Axis2 to communicate with the man-
agement service plane’s components. A ManP2P component on the top of the core peer
plane is used to implement complementary functionalities that are not inside the scope
of this paper.

Fig. 2. Meta-monitoring architecture

Maintenance of Monitoring Systems Throughout Self-healing Mechanisms 183

At the management service plane the regular monitoring services are found. Al-
though located in this plane, monitoring services themselves do not monitor remote
instances for fault detection; this verification is in fact performed by the group manager
component. That is so because we wanted the self-monitoring function to be native
in any peer, freeing the developer of new management services to concentrate their
efforts on the management functionalities he/she is coding without worrying about
self-monitoring. At the management service plane the self-healing and configuration
services are also found. As mentioned before, they are responsible for activating new
instances of monitoring services when required. The black little square inside the self-
healing service represents the policies that define the minimum number of instances of
each management service, as well as the number of new instances that must be activated.
Peers and internal monitoring services have been coded in Java using Axis2, JXTA, and
ManP2P previously developed libraries. Monitoring services have been specifically de-
veloped as dynamic libraries that can be instantiated when required be a hosting peer.

4 Experimental Evaluation

In our experimental evaluation we measured the recovery time and the generated net-
work traffic when fail-stop crashes occur in peers of the proposed self-healing monitor-
ing infrastructure. We evaluate the effects of such failures considering variations on: (a)
the number of simultaneously crashing peers, (b) the number of peers in the manage-
ment overlay, and (c) the number of management services running on the overlay.

We have run our experiments in a high performance cluster, called LabTec from
the GPPD research group at UFRGS [15], from which we used 16 nodes to host the
management peers of our architecture. The recovery time and the generated traffic have
been measured capturing the P2P traffic and timestamping it using a packet capture
tcpdump software. Traffic volume is calculated considering the headers and payload
of all packets generated by the system operations. Recovery time has been measured 30
times for each experimental case and computed with a confidence interval of 95%.

Although the size of P2P systems is typically of scales much higher than 16 nodes,
we emphasize here that we do not believe that, in an actual management scenario of
a single corporation, administrators would use a large number of managing nodes. We
thus assume that 16 peers are sufficient for most actual management environments.
Over the P2P management overlay we deployed up to 12 different NAC management
services (namely, monitors for LDAP, DNS, DHCP, Radius, data base, Web servers,
rogue user, firewall, proxy, access point, switches, and routers), in addition to the self-
healing and configuration special services required in the recovery process. The single
service policy enforced in all management services of our experiments defines that at
least 2 instances per service must be running and, in case of failures, just 1 another
instance must be activated per crashed instance.

Considering the above, two main sets of experiments have been carried out: multi-
ple crashing peers, and variable number of peers and services. These experiments and
associated results are presented in the next subsections.

184 C.C. Marquezan et al.

4.1 Multiple Crashing Peers

The first experiment was designed to check the performance of the self-healing moni-
toring architecture when the number of simultaneously crashing peers hosting manage-
ment services increases until the limit where half of them are broken. In addition, we
want to check whether the number of instances of the self-healing and configuration
services influences the recovery time and generated traffic.

For this set of experiments, we used to following setup: 12 management services are
always deployed, each one with 2 instances running on the overlay. The total 24 service
instances (i.e., 12 × 2) are placed along 8 peers, each one thus hosting 3 (i.e., 24 ÷ 8)
service instances. The number of crashing peers varies from 1 to 4. Since each peer hosts
3 instances, the number of crashing instances varies from 3 (12.5%) to 12 (50%), out
of the total of 24 instances. Additional 4 peers have been used to host the self-healing
and configuration services. Their varying number of instances has been organized, in
pairs of self-healing/configuration, as follows: 2 and 4 instances, and 4 and 4 instances.
Finally, we consider that group communication support is implemented interchangeably
using multicast and unicast.

Figure 3 shows in seconds the time taken by the monitoring system to detect and
activate new instances of the crashing services using the “spare” cluster nodes that host
the configuration service. The first occurrence of 3 crashing services correspond to the
situation where 1 peer fails; 6 crashing services correspond to 2 failing peers, and so
on. No value is provide in 0 (zero) because with no failing peers there will not be any
crashing service. Figure 4, in its turn, presents the network traffic generated by the
management overlay in this recovery process. In this case, for 0 (zero) there exists an
associated network traffic because, in the self-monitoring process, heartbeat messages
are constantly sent regardless the presence or not of a failure.

The recovery time as a function of the number of crashing peers stayed mostly con-
stant. With that we can conclude that the system scales well considering a manage-
ment scenario of 16 nodes. There is a little variance on the recovery time as a function
of the self-healing and configuration services. In fact, such difference is the result of

0

10

20

30

40

50

60

70

0 3 6 9 12

Recovery time (secs)

Number of crashing services2 self-healing, 4 configuration (unicast)
4 self-healing, 4 configuration (unicast)
2 self-healing, 4 configuration (multicast)
4 self-healing, 4 configuration (multicast)

Fig. 3. Recovery time with multiple crashing

0

1000

2000

3000

4000

5000

6000

0 3 6 9 12

Traffic (Kbytes)

Number of crashing services2 self-healing, 4 configuration (unicast)
4 self-healing, 4 configuration (unicast)
2 self-healing, 4 configuration (multicast)
4 self-healing, 4 configuration (multicast)

Fig. 4. Traffic to recover crashing peers

Maintenance of Monitoring Systems Throughout Self-healing Mechanisms 185

employing multicast or unicast. When peers use multicasting they quickly become
aware of changes in the system, and can rather react faster. Using unicast, however,
more messages are sent, delaying the communication and, as a consequence, the reac-
tions. In summary, the recovery time is not strongly influenced either by the self-healing
and configuration services or by the number of crashing services. There is, however, a
little influence from the use of multicast or unicast in the group communication support.

Network traffic, in its turn, presents a stronger influence of multicast or unicast sup-
port. As can be observed in Figure 4, multicast-based communications saves more
bandwidth, which is expected. The important point to be observed, however, is that
with the increasing number of crashed services the traffic generated to recover them is
closely linear, but with doubling the number of failures, the traffic generate does not
double together. Although not so efficient as in the case of recovery time, the band-
width consumption is still scalable in this case. Putting these two parameters together
and observing the graphs, if multicasting is used the number of self-healing and config-
uration services and the number of crashing peers do not influence the recovery time,
and slightly increase the bandwidth consumption. In the case of unicast, however, the
option of employing 2 self-healing instances instead of 4 is better, because this setup
reacts slightly faster yet generating less traffic.

4.2 Varying Number of Peers and Services

The second experiment shows the relationship between recovery time and
generated traffic when single crashes occur (which tends to be more frequent than mul-
tiple crashes) but the number of peers and services varies. We consider the recovery
process when the number of management services increases (from 1 to 12, i.e. from 2
to 24 instances) over three setups where 2, 6, and 12 peers are used to host the manage-
ment services. In addition to single crashes, we also fixed the number of 2 self-healing
and 2 configuration services instances, hosted by 2 peers. We did so because, as ob-
served before, the number of such instances few impacts on the recovery time.

In Figure 5, where the recovery delay is presented, services communicating via mul-
ticast are depicted with dashed lines, while services using unicast are depicted with solid

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

0 2 4 6 8 10 12 14

Recovery time (secs)

Peers1 serv. (ucast) 6 serv. (ucast) 12 serv. (ucast)

1 serv. (multicast) 6 serv. (multicast) 12 serv. (multicast)

Fig. 5. Recovery time for multiple peers

0,00
200,00
400,00
600,00
800,00

1000,00
1200,00
1400,00
1600,00
1800,00

0 2 4 6 8 10 12 14

Traffic (Kbytes)

Peers1 serv. (ucast) 6 serv. (ucast) 12 serv. (ucast)

1 serv. (multicast) 6 serv. (multicast) 12 serv. (multicast)

Fig. 6. Recovery traffic with multiple peers

186 C.C. Marquezan et al.

gray lines. The recovery time when only 2 peers are employed is usually higher because
each of the 2 peers hosts more service instances. When one of the peers crashes, more
instances need to be activated. On the other extreme, with 12 peers, each peer hosts less
services, leading to the situation where a crashing peer actually triggers the activation
of less service instances.

The fact that more instances need to be activated as the result of a more load peer can
be observed in Figure 6, that shows the traffic generated to recover the system. Again,
multicast communications save more bandwidth than unicast, as expected. However, it
is important to notice now that the number of services in each peer influences too. For
example, 6 instances running on the same peer (line “6 serv. multicast”, with 2 peers
in the x axis) despite being multicast still takes longer and generates more traffic to
recover the system than the case where, via unicast, only 1 services is deployed (line “1
serv. unicast”, with 2 peers in the x axis).

This confirms that the number of peers and service instances must be similar in
order to recover more promptly the system without generating too much traffic. If an
administrator is restricted in terms of peers available, he/she must try to restrict the
number of services employed as well. If new services are required, however, the option
of also increasing the number of peers should be considered.

Now considering the whole picture, administrators should not worry about simulta-
neous crashes nor the number of self-healing and configuration services. Increased mul-
tiple crashes are more scare, and even if they happen the system is able to recover rea-
sonably fast. As observed, the number of serf-healing and configuration services does
not affect the overall performance of the system. However, administrator should do pay
attention to the number of available peers and service instances, as mentioned before.
Finally, the employment of multicast and unicast in the group communication mecha-
nism influences in the recovery time (less) and the generated traffic (more). Choosing
multicast whenever possible helps to improve the response time of the system. Unfortu-
nately multicasting is not always available, which forces the administrator to use unicast
to implement group communication.

5 Conclusions and Future Work

We have presented in this paper the design and evaluation of a P2P-based self-healing
monitoring system employed in a NAC environment. The solution achieves self-healing
capacity by splitting in two different processes the functions of failure detection and
system recovery. Failure detection is executed inside management services that monitor
final devices, while system recovery relies on special services called self-healing (that
decides when new service instances must be activated) and configuration (that activates
the new service instance as an reaction for the self-healing service decision).

The results of our experimental evaluations allow us to conclude that the number
of instances of the self-healing and configuration service is not a major player in the
performance of the system. They also permit us to state that simultaneously crashes on
the management services does not influences so expressively the system performance
either. A network administrator willing to employ a self-healing monitoring solution
should not concentrate his/her efforts in finding an ideal number of self-heling and

Maintenance of Monitoring Systems Throughout Self-healing Mechanisms 187

configuration services. Our experiments employed 2 and 4 instances, respectively, and
the system response was satisfactory. The fact that must be observed, however, is the
group communication solution available on the managed network: multicast turns re-
covery faster while consuming less network bandwidth. Unfortunately, IP multicasting
can not always be provided, and unicast ends up being chosen in such situations.

The most important aspects that must be observed in a self-healing monitoring solu-
tion is the number of peers employed in the P2P management overlay and the number
of service instances deployed. With few instances, there is no need for several peers.
On the other hand, with a large number of instances the number of peers should grow
consistently, otherwise, on the occurrence of a failure, the recovery time will be higher
and more network bandwidth is consumed by the intensive P2P traffic generated.

Currently, we are working on the optimization of the detection mechanism because
the current version of it is responsible for a considerable amount of generated traffic.
Another future work is the investigation about how service policies impact on the con-
sumed network bandwidth and recovery time of our system.

Acknowledgement

Thanks to Dominique Dudkowski and Chiara Mingardi for contributing with this pa-
per, and also to the Network and Support Division team at Data Processing Center of
UFRGS for the experience exchanged on the development of the UFRGS NAC system.

This work was partly funded by the Brazilian Ministry of Education (MEC/CAPES,
PDEE Program, process 4436075), and by the European Union through the 4WARD
project in the 7th Framework Programme. The views expressed in this paper are solely
those of the authors and do not necessarily represent the views of their employers, the
4WARD project, or the Commission of the European Union.

References

1. Oetiker, T.: MRTG - The Multi Router Traffic Grapher. In: LISA 1998: Proceedings of the
12th USENIX conference on System administration, Berkeley, CA, USA, USENIX Associ-
ation, pp. 141–148 (1998)

2. López, G., Cánovas, O., Gómez, A.F., Jiménez, J.D., Marı́n, R.: A network access control
approach based on the AAA architecture and authorization attributes. J. Netw. Comput.
Appl. 30(3), 900–919 (2007)

3. Perazolo, M.: A Self-Management Method for Cross-Analysis of Network and Application
Problems. In: 2nd IEEE Workshop on Autonomic Communications and Network Manage-
ment (ACNM 2008) (2008)

4. Trimintzios, P., Polychronakis, M., Papadogiannakis, A., Foukarakis, M., Markatos, E.,
Oslebo, A.: DiMAPI: An Application Programming Interface for Distributed Network Mon-
itoring. In: Proceedings. 10th IEEE/IFIP Network Operations and Management Symposium,
2006. NOMS 2006, pp. 382–393 (2006)

5. Packard, H.: Management Software: HP OpenView (2008),
http://www.openview.hp.com/

6. Agarwal, M.K.: Eigen Space Based Method for Detecting Faulty Nodes in Large Scale En-
terprise Systems. In: IEEE/IFIP Network Operations and Management Symposium (NOMS
2008) (2008); CDROM

188 C.C. Marquezan et al.

7. Varga, P., Moldován, I.: Integration of Service-Level Monitoring with Fault Management for
End-to-End Multi-Provider Ethernet Services. IEEE Transactions on Network and Service
Management 4(1), 28–38 (2007)

8. Yalagandula, P., Sharma, P., Banerjee, S., Basu, S., Lee, S.J.: S3: a scalable sensing service
for monitoring large networked systems. In: INM 2006: Proceedings of the 2006 SIGCOMM
Workshop on Internet Network Management, pp. 71–76. ACM Press, New York (2006)

9. Prieto, A.G., Stadler, R.: A-GAP: An Adaptive Protocol for Continuous Network Monitoring
with Accuracy Objectives. IEEE Transactions on Network and Service Management 4(1), 2–
12 (2007)

10. Chaparadza, R., Coskun, H., Schieferdecker, I.: Addressing some challenges in autonomic
monitoring in self-managing networks. In: 13th IEEE International Conference on Networks,
p. 6 (2005); CDROM

11. Zhou, Y., Lyu, M.R.: An Energy-Efficient Mechanism for Self-Monitoring Sensor Web. In:
2007 IEEE Aerospace Conference, pp. 1–8 (2007)

12. Granville, L.Z., da Rosa, D.M., Panisson, A., Melchiors, C., Almeida, M.J.B., Tarouco,
L.M.R.: Managing Computer Networks Using Peer-to-Peer Technologies. IEEE Commu-
nications Magazine 43(10), 62–68 (2005)

13. Panisson, A., Melchiors, C., Granville, L.Z., Almeida, M.J.B., Tarouco, L.M.R.: Design-
ing the Architecture of P2P-Based network Management Systems. In: Proceedings. IEEE
Symposium on Computers and Communications (ISCC 2006), pp. 69–75. IEEE Computer
Society, Los Alamitos (2006)

14. Marquezan, C.C., dos Santos, C.R.P., Nobre, J.C., Almeida, M.J.B., Tarouco, L.M.R.,
Granville, L.Z.: Self-managed Services over a P2P-based Network Management Overlay.
In: Proc. 2nd Latin American Autonomic Computing Symposium (LAACS 2007) (2007)

15. GPPD: Parallel and Distributed Processing Group – GPPD (2008),
http://gppd.inf.ufrgs.br/new/

Author Index

Aib, Issam 109
Anderson, David P. 149
Andreis, Fabŕıcio Girardi 69
Andrzejak, Artur 149
Apostolopoulos, Theodore 42

Bartolini, Claudio 69, 83
Baysal, Olga 109
Both, Cristiano Bonato 69
Boutaba, Raouf 109
Brunner, Marcus 176

Chulkov, Georgi 55

da Costa Cordeiro, Weverton Luis 69
De Turck, Filip 14
Demeester, Piet 14
Dhoedt, Bart 14
Dong, Changyu 95
Dulay, Naranker 95

Famaey, Jeroen 14
Fung, Carol J. 109

Gaspary, Luciano Paschoal 69
George, Allen 162
Granville, Lisandro Zambenedetti 69,

176

Haverkort, Boudewijn R. 136

Jamhour, Edgard 123
Jiang, Miao 162

Kondo, Derrick 149
Kropiwiec, Cássio Ditzel 123

Li, Juan 1

Machado, Guilherme Sperb 69
Marquezan, Clarissa Cassales 176
Munawar, Mohammad A. 162

Nunzi, Giorgio 176

Oikonomou, George 42

Panisson, André 176
Penna, Manoel C. 123
Pujolle, Guy 123

Reidemeister, Thomas 162
Russello, Giovanni 95

Sadre, Ramin 136
Santos, Alan Diego 69
Schönwälder, Jürgen 55
Stefanelli, Cesare 83

Talia, Domenico 28
Tortonesi, Mauro 83
Tran, Ha Manh 55
Trastour, David 69
Trunfio, Paolo 28

Vuong, Son 1

Ward, Paul A.S. 162
Wauters, Tim 14

Zhang, Jie 109

	Front matter
	Chapter 1
	SOON: A Scalable Self-organized Overlay Network for Distributed Information Retrieval
	Introduction
	Semantic Metadata
	Semantic Similarity
	Ontology Signature Set (OSS)
	Peer Semantic Similarity

	Self-organized Semantic Small-World Overlay
	Experiments
	Setup
	Results and Discussion

	Related Work
	Conclusion
	References

	Chapter 2
	Dynamic Overlay Node Activation Algorithmsfor Large-Scale Service Deployments
	Introduction
	Related Work
	Problem Formulation
	Algorithms Description
	Integer Linear Programming Approach (ILP)
	Static Node Activation (STANA)
	Dynamic Node Activation (DYNNA)

	Evaluation Results
	Simulation Setup
	Performance Results
	Scalability Results
	Dynamic Demand Results

	Summary

	Chapter 3
	Dynamic Querying in Structured Peer-to-Peer Networks
	Introduction
	Broadcast over a DHT
	Dynamic Querying over a DHT
	Properties of the Spanning Tree Associated to the Broadcast Process
	DQ-DHT Algorithm

	Performance Evaluation
	Simulation Analysis
	Comparison with Dynamic Querying in Unstructured Networks

	Conclusions

	Chapter 4
	Web-Based Management of Content Delivery Networks
	Introduction
	Related Work
	Web-Based Enterprise Management
	Open Source Content Delivery Network Software

	WebDMF: A Framework for the Management of Distributed Services
	WebDMF Entities
	WebDMF Operations and CIM Schemas

	Management of Content Delivery Networks
	A WBEM Provider for OpenCDN Hosts
	Integrating an Open CDN Deployment with WebDMF
	Implementation Details

	Performance Evaluation
	Conclusions

	Chapter 5
	Crawling Bug Tracker for Semantic Bug Search
	Introduction
	Bug Tracking Systems
	Retrieving Data from BTSs
	Exploiting APIs
	Crawling with Buglook

	Unified Data Model
	Semi-structured Bug Data Search
	Related Work
	Conclusions

	Chapter 6
	A Runtime Constraint-Aware Solution for Automated Refinement of IT Change Plans
	Introduction
	Related Work
	Building Blocks of the Proposed Solution
	Runtime Constraint-Aware Refinement of Change Plans
	Refinement of the Preliminary Change Plan
	Snapshots of the IT Infrastructure
	Considerations on the Proposed Solution

	Experimental Evaluation
	Conclusions and Future Work
	References

	Chapter 7
	SYMIAN: A Simulation Tool for the Optimization of the IT Incident Management Process
	Introduction
	Incident Management in IT Support Organizations
	The SYMIAN Decision Support Tool
	SYMIAN: Architecture and Implementation
	Experimental Results
	Related Work
	Conclusions and Future Work

	Chapter 8
	Flexible Resolution of Authorisation Conflicts in Distributed Systems
	Introduction
	Courteous Logic Programs
	Overview
	Syntax
	Semantics

	Overview
	Case Study: Hierarchical Conflict Resolution
	Domain Hierarchy and Authorisation Policies
	Translating Authorisation Policies to CLP Rules
	Conflict Resolution Strategy
	CLP Conflict Resolution Strategy for Example
	Resolving Conflicts in CLP

	Alternative Conflict Resolution Strategies
	Related Work
	Conclusions and Future Work

	Chapter 9
	Trust Management for Host-Based Collaborative Intrusion Detection
	Introduction
	HIDS Collaboration Framework
	Network Join Process
	Test Messages
	Incentive Design

	Trust Management Model
	Evaluating the Trustworthiness of a Node
	Feedback Aggregation

	Robustness Against Common Threats
	Simulations and Experimental Results
	Simulation Setting
	Results for a Honest Environment
	Results for an Environment with Some Dishonest Nodes
	Robustness of the Trust Model

	Related Work
	Conclusions and Future Work

	Chapter 10
	Multi-constraint Security Policies for Delegated Firewall Administration
	Introduction
	Related Work
	The Framework
	The Information Model
	The Refinement Algorithm

	Formal Representation, Analysis and Validation
	Example
	Conclusion

	Chapter 11
	Changes in the Web from 2000 to 2007
	Introduction
	General Characteristics
	Detailed Comparison
	Response Size and Type
	Queried URLs
	Page Structure
	Cache Efficiency

	Comparison to Other Work
	Summary

	Chapter 12
	Ensuring Collective Availability in Volatile Resource Pools Via Forecasting
	Introduction
	Measurement Method
	Estimating Predictability and Forecasting Availability
	Prediction Methodology and Setup
	Types of Predictable Patterns
	Predictability Indicators
	Implementation and Running Time
	Experimental Evaluation

	Evaluation of Group Availability Prediction Via Simulation
	Method
	Performance Metrics
	Results

	Related Work
	Conclusions

	Chapter 13
	Adaptive Monitoring with Dynamic Differential Tracing-Based Diagnosis
	Introduction
	Background

	Approach
	Error Detection
	Error Verification
	Diagnosis
	Diagnosis Integration

	Evaluation
	Cost of Monitoring
	Faults and Fault-Injection Experiments
	Error Detection
	Error Verification
	Diagnosis

	Related Work
	Conclusions

	Chapter 14
	Maintenance of Monitoring Systems Throughout Self-healing Mechanisms
	Introduction
	Related Work
	Self-healing Architecture for Monitoring Infrastructures
	P2P Management Overlay and Services
	Failure Detection
	Service Instance Activation and Policies
	System Implementation

	Experimental Evaluation
	Multiple Crashing Peers
	Varying Number of Peers and Services

	Conclusions and Future Work

	Back matter

