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This book is intended to serve as a textbook, typically covered in two semesters, 
primarily for undergraduate students in the fields of aeronautical, civil and me- 
chanical engineering. Nevertheless several chapters-particularly the latter-can 
be incorporated in a first-year graduate program. The book is based on class notes 
for courses in solid mechanics and mechanics of materials that I have taught over 
the past 30 years in the United States, Europe and Israel. The reader is assumed to 
be familiar with the basic ideas of mechanics, principally statics. 

In general, as an overview, the book presents the material with an emphasis 
on theoretical concepts. However, although fundamental concepts are emphasised, 
technological, practical and design applications are illustrated throughout by a large 
number of examples. 

From a perusal of the Table of Contents, it might appear that the book is similar 
to other textbooks on the subject. Indeed, much of the subject matter is rather 
‘classical’, as it treats a subject that has been part of engineering curricula for many 
decades, if not longer. The question then arises: Why another book on this subject? 
I believe that the approach of this book to the subject is quite different from most 
others and that its rational approach and level is such that it will appeal to instructors 
who wish to emphasise the fundamental ideas of solid mechanics. 

One might say that the text is a compromise between the approach as found, for 
example, on the European continent (where the most general theory is first presented 
leading later to simplified and approximate ‘strength of material’ results) and the 
approach of engineering schools in the United States, where an ad hoc treatment 
is often preferred. In an ad hoc approach, many of the fundamental and unifying 
ideas are overlooked and neglected in most textbooks on the subject. 

To avoid this pitfall, here the basic concepts are first developed in Part A of 
the book, starting with an introductory chapter (Chapter 1) where it is stressed 
that solid mechanics is based on three fundamental ideas: namely (a) the laws of 
mechanics, (b) the kinematic (i.e. geometric) equations describing the deformation 
of  a solid and (c) the basic equations (i.e. constitutive equations) that describe the 
general material behaviour of a solid. These fundamental ideas are illustrated in 
the first introductory chapter by some simple one-dimensional examples. The next 
few chapters (Chapters 2-4) are devoted to a careful development of the three basic 
concepts (that were introduced in Chapter 1) of solidmechanics: stress, as ameasure 
of the intensity of internal force (Chapter 2); strain, as a measure of the intensity 
of deformation (Chapter 3) and material behaviour, on a phenomenological level, 
as described by various types of constitutive equations (Chapter 4). In this last 
chapter in particular, the reader is given a general global view of materials that are 
classified into several types. The concepts of ‘micro’ and ‘macro’ scales, necessary 

xvi i 
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for a modern approach to an understanding of materials, are introduced. These 
features serve to give the student a better idea of the overall picture of the behaviour 
of solids. In Chapter 5,  the results of the previous chapters are summarised and the 
general approach to the analysis of specific problems is presented. 

It should be pointed out that several features of Part A do not appear, to the 
author’s knowledge, in most other textbooks dedicated for courses in this subject. 
To cite but one example: the equality of the conjugate shear stress is shown to be 
equally valid for bodies not in a state of equilibrium. (Too often, based on the usual 
approach using static equilibrium, students are erroneously led to believe that this 
property holds true only for a body in equilibrium. As a consequence, the symmetric 
property of the tensor is then believed to be valid only for a state of equilibrium.) 

The fundamental ideas that were developed in Part A are then applied in Part B: 
Chapters 6-1 1 cover the basic applications to simple structural elements encoun- 
tered in practice: axial behaviour, torsion, flexure and buckling. More advanced 
topics (such as general torsion, unsymmetric bending of beams, etc.), which are 
usually covered in a second semester, are treated in Chapters 12 and 13 and in the 
chapters of Part C where the concepts of energy and virtual work are carefully de- 
veloped. Each topic is illustrated by means of numerous illustrative examples. As a 
particular feature, believing that it is not sufficient to only show the solution, many 
examples are immediately followed by extensive comments in order to provide an 
interpretation of the solution and encourage the student to develop physical insight. 
Such comments are often accompanied by graphs to illustrate the effects of the 
governing parameters. 

In developing the relations for the behaviour of various elements, the derivations 
follow either from plausible physical assumptions or from direct conclusions based 
on the deformation pattern. At each stage, it is emphasised which solutions are 
‘exact’ within the theory and which are ‘approximate’. To illustrate this point, I cite 
but thee examples: (1) ARer having developed the simple expressions for the axial 
stress and elongation of a prismatic rod, the expressions are not blithely applied 
to rods of varying cross-sections. Instead, the reader i s  shown quantitatively when 
such an approximation is permissible. (2) After having developed the expression 
for the flexural stress in beams, it is shown (using the equations of equilibrium 
derived in Chapter 2) that this expression is ‘exact’ only for pure bending or when 
the moment varies linearly along the beam. (3) While discussing the deflections of 
relatively stiff beams using linearised Euler-Bernoulli beam theory, a clear upper 
bound to the error is derived; the student is not expected to merely accept, with no 
quantitative explanation, that the beam must be sufficiently stiff. These examples 
serve to illustrate the underlying philosophy of the book, namely that the reader 
must be provided with rigorous analytical explanations and is not expected to accept 
‘hand waving’ explanations. 

Another goal of this text has been to eliminate unnecessary errors, simplifications 
or misconceptions that often arise in introductory courses - errors that are to be 
later undone, as the student pursues more advanced studies. Thus, I have attempted 
to write a text so that students ‘get it right the first time’. From the above comments, 
it is clear that as the principal aim of the treatment is to provide the student with 
a broad and fundamental understanding of basic principles, the book attempts to 
present the reader with several unifying ideas. In this respect, the book provides the 
student with a thorough preparation for more advanced studies in the field. 

A word about the mathematical level: although not requiring a knowledge of 
‘higher mathematics’, it is assumed that the student has a good preparation in 
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differential and integral calculus, differential equations and linear algebra (i.e., a 
reasonable knowledge of mathematics). I have not attempted to avoid mathematics 
where it is appropriate and necessary, particularly in the latter chapters of the book. 
(Too often, students question as to why they are subjected as undergraduates to 
mathematics courses when little use is made of what they have studied.) In fact, I 
view a course in solid mechanics as an excellent opportunity to expose students to the 
application of mathematics to engineering problems, to reinforce their mathematical 
studies and thus enhance their analytical abilities. 

Although, as mentioned above, the text has been prepared for a two-semester 
course, instructors may wish to skip various sections at their discretion. I have 
indicated by means of a symbol (0) certain sections and subsections that may be 
omitted on a first reading without loss of continuity. 

Over 600 problems, of varying degrees of difficulty, are included in the text. 
Most of these are not numerical in nature, since I believe students should be en- 
couraged to first work out the solutions algebraically. Those problems (not neces- 
sarily more difficult) that require a deeper understanding of the subject or a more 
sophisticated approach are indicated by an asterisk (*). Answers to about half of the 
problems are provided. Since any modem engineering curriculum provides students 
with a reasonable facility with computers, computer-related problems can be found 
throughout the text. These problems are generally not of an artificial nature; rather 
they require the use of a computer (e.g., for the solution of transcendental or quartic 
algebraic equations). Students are therefore encouraged to write algorithms using, 
at their discretion, FORTRAN or other software such as MAPLE, MATHEMATICA or 

Finally, I acknowledge my debt to my teachers who had taught me while I was 
an undergraduate and graduate student at Columbia University; in particular, to 
Raymond Mindlin and Mario Salvadori from whom I learned to understand the 
beauty of mechanics and applied mathematics and who taught me much of what I 
know today. 

I wish to thank my department colleagues Leslie Banks-Sills, Shmuel Ryvkin 
and Leonid Slepyan, who read parts ofthe manuscript during the preparation of this 
text, and for their discussions, comments and suggestions, as well as Dan Givoli 
of the Technion, Israel Institute of Technology. A word of thanks is also due to the 
Department of Engineering of the University of Cambridge (UK) where this book 
was completed while 1 was on sabbatical leave, unencumbered by usual university 
obligations . 

I would appreciate receiving comments-both positive and negative-and sug- 
gestions for fmher improvements from readers of this text. 

MATLAB. 

Raymond Parnes 
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1.1 Introduction 
Solid mechanics is a branch of mechanics that has many applications. In ancient 
times, solid mechanics was of interest primarily for the construction of structures 
and buildings. The pragmatic knowledge of this subject was based on empirical rules 
that were accumulated, basedon both the successes (and failures) in the construction 
of previous structures. Starting with Galileo and Newton, attempts were made to 
determine rational laws governing the general behaviour of solids. Great progress 
was made in the understanding ofthe behaviour of solid bodies during the eighteenth 
and nineteenth centuries, notably by Bernoulli, Euler, Coulomb, Navier, Poisson, 
Cauchy and others. The study of mechanics has continued into the present century, 
and well-developed theories and principles have been elaborated. An understanding 
of the basic laws of solid mechanics is of particular importance in mechanical, 
aeronautical and civil engineering. With the advent of modern materials, it has 
been necessary to develop more refined theories to ultimately achieve the most 
efficient design of the relevant structures. 

The study of solid mechanics has as its goal, the determination of the deforma- 
tion and internal forces existing in a body when subjected to external loads. Solid 
mechanics is based on the following: 

(a) Physical laws that describe the behaviour of solids in accordance with exper- 
imental data obtained in a laboratory. The laws must thus accord with the 
general behaviour as found in the real world. 

(b) Mathematical deductions to express these laws, based on simpltjjhg assump- 
tions. Such assumptions must often be made to render the solutions tractable. 
In other words, one wishes to model a problem in the simplest fashion, pro- 
vided it leads to solutions that adequately describe the actual behaviour of the 
body. 

Let us consider a typical problem that, in its simplicity, reveals several aspects 
of our study. We consider a plank AB of length L, which rests at two ends. We 
wish to know if it can support a person whose weight is P = Mg, standing at a 
distance a from the left end, as shown in Fig. (1.1.1 a). From our previous study of 
rigid-body mechanics, we know that the supports at A and B can be idealised as 
‘simple supports’. Furthermore, we may represent the force exerted by the person 
on the plank by a concentrated force P. Thus we replace the actual problem by the 

3 
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Figure 1.1.1 

idealised model shown in Fig. (1.1.1 b). From rigid-body mechanics, we can then 
find the reactions at A and B, which clearly depend on the force P. 

Now, since the plank is not rigid, it will deform and assume a curved shape, as 
shown in the figure, when subjected to the load P. From our study of solid me- 
chanics, we should want to determine (a) the maximum load that the plank can 
support, (b) the displacement of all points of the plank, i.e., the shape of the de- 
formed curve and (c) the internal forces existing within the plank. Clearly, these 
quantities depend upon the geometry of the plank, namely, the length L ,  the po- 
sition a of P and the geometry of the cross-section and the material. In this case, 
since we assume that the plank is made of wood, the behaviour depends also on 
the type of wood. However, if the plank were made of steel or some other ma- 
terial, the characteristics of the material would obviously have to enter into our 
calculations. 

In particular, to establish the maximum force that the plank can bear, we must 
first determine not only the internal forces that exist but also the intensity of the 
internal forces. The intensity of internal forces will lead us to the concept of skress. 
On the other hand, to determine the deformation, we will require a measure of the 
intensity qf deformation; this will lead us to the concept of strain. 

Now, the analysis of this simple problem must evidently be expressed in terms of 
mathematical equations. Thus, it should be clear from this discussion that we will 
encounter three types of equations, namely 

(a) Equations of mechanics (in this case, equations of equilibrium) that are written 
in terms of forces and/or ‘stresses’. 

(b) Kinematic equations, i.e., equations describing the geometry and deformation 
of the body. Clearly, these are written in terms of the displacement of points of 
the body and involve ‘strain’. 

(c) Equations that describe the general mechanical behaviour of the material and 
which are characteristic of given materials. These equations will involve the ma- 
terial properties of the body. Such equations are called, in general, constitutive 
equations. 

Thus, based on the discussion of this simple problem, we remark that thee 
basic concepts exist in the study of solid mechanics: stress, strain and the intrinsic 
behaviour of a material, as described by its constitutive equations. 

In the first part ofthis book, we shall consider these concepts in detail and establish 
them on a firm mathematical basis in order to enable us to apply them to relevant 
engineering problems. 

In the next sections of this chapter, we first consider some idealisations that are 
used in solid mechanics and introduce and elaborate on the above concepts via some 
simple one-dimensional problems. 
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1.2 Forces, loads and reactions - idealisations 

In studying the behaviour of deformable bodies, we must consider how loads are 
applied. Furthermore, in considering the application of loads and their reactions, it is 
usually necessary to make certain idealisations. The extent and type of idealisations 
are, of course, dependent on the degree of refinement of the analysis that we require. 

In general, all forces and loads are represented by means of vectors. We recall 
that in rigid body mechanics, a force can be represented by a ‘sliding vector’; i.e., 
one can write equations by considering a force anywhere along its line of action. 
However, in studying deformable bodies, this is no longer true: one must stipulate 
the actualpoint of application qf the force. To show this, consider two bodies [Figs. 
(1.2.1 a and b)] subjected to three forces Fl , F2 and F3. Ifthese are rigid bodies then, 
in both cases, the equations of equilibrium, M = 0, are the same. 
Since, by definition, a rigid body does not deform, we do not consider any internal 
deformation. However, if the bodies are deformable bodies, then clearly, the body 
in Fig. (1.2. la) is in compression while that in Fig. (1.2.1 b) is under tension. It is 
therefore evident that the two bodies will behave quite differently; the first will tend 
to become smaller, while the second will become larger. Thus we see that in solid 
mechanics it is necessary to prescribe not only the line of action of a force but also 
the point of application of the force. 

F = 0 and 

Figure 1.2.1 

(a) Types of loads 
In solid mechanics, a body may be subjected to two types of applied loads: contact 
forces and body forces. 

Contact forces are forces that are applied to the body, usually on its external 
surface, by direct contact [Fig. (1.2.2a)l. Body forces are forces that act upon a 

Flgure 1.2.2 
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Figure 1.2.3 

body through action at a distance. Such forces are assumed to act on the particles 
of the body and may thus be either constant or may vary throughout the body. 
Gravitational force is an example of a body force: for each particle of mass rn, the 
particle 'feels' the gravitational attraction [Fig. (1.2.2b)l. A magnetic force acting 
on, say, an iron bar, is another example of a body force [Fig. (1.2.2c)l. It is noted 
that body forces have units of Newton/metre3 (N/m3). 

(b) Representation of forces and loads 
In our previous discussion, we represented all forces by means of vectors. This  
clearly is an idealisation of a concentrated force acting at a point. Such a case can 
never, in fact, exist in nature, for we know that a force can only be applied over 
some small but finite area; it is for this reason that we state that a concentrated force 
is but an idealisation. We therefore consider the following representations. 

(i) Distn'bured loads. A Ioad acting over a finite area is called a distributed load. 
For example, consider a cylindrical block, whose cross-section is A and whose 
weight is W ,  resting on a plate [Fig. (1.2.3a)l. For simplicity, we assume 
that the weight of the cylinder is evenly distributed over the cross-section. 
The distributed load that acts upon the plate is then represented by W/A 
[Fig. (1.2.3b)j. Note that the units of this distributed load are N/m2. 

(ii) Concentrated force or point load. Consider a distributed load, as described 
above, acting over a small area AA about some point x p ,  y p  [Fig. (1.2.4a)l. 

Figure 1.2.4 

Let p = W /  A A denote this distributed load which, in effect, is a pressure. We 
now consider the case where the pressure p ( x ,  y )  increases indefinitely, i.e., 
p -+ 03, while A A -+ 0. The resultant force is then defined as 

(1.2.1) 

Figure 1.2.5 

Thus, Eq. (1.2.1) is to be taken as the mathematical definition of an ide- 
alised concentrated load P acting at x P ,  y p  [Fig. (1.2.4b)l. Note that the unit 
of P is the Newton. Therefore, when we represent a concentrated load by 
means of a vector, we implicitly use the idealisation defined mathematically by 
Eq. (1.2.1). We shall find that this idealisation is generally acceptable in our 
study of solid mechanics. 

(iii) Line loads. If a distributed load is acting over a relatively thin strip, it is called 
a line load and is a function of a single coordinate, say, x [Fig. (1.231. We 
note that the line load may be constant or may be a function, which we denote 
by q(x). Note too that the units of q are N/m. Thus we observe that, at any 
point, there exists a load of intensity q ( x )  given in Nlm. The resultant force R 



1.2 Forces, loads and reactions - idealisations 7 

of the load between any two points, x = a and x = b, is then given by 

R =  q(x)dX. (I  .2.2) i 
Note that the resultant force is represented by the area under the load function 

q(x). Line loads are commonly encountered in the study of beams. 

Figure 1.2.6 

Concentrated loads acting on beams are idealisations, defined in a manner analo- 
gous to Eq. (I .2.1). Thus, consider a line load q ( x )  acting over a small distance A x  
between two points x p  and x p  + A x  [Fig. (1.2.6a)I. As before, let us now consider 
the case where the intensity q ( x )  of this distributed load increases indefinitely, i.e., 
q(x) + 00, while A x  4 0.  The resultant force is then defined as 

xp+Ax ,. 
(1.2.3) 

Thus, Eq. (1.2.3) is the one-dimensional definition of  an idealised concentrated load 
P acting at x = x p  [Fig. (1.2.6b)l. 

As we have observed, the concept of the concentrated force P acting at a point, 
as defined either by Eq. (1.2.1) or by Eq. (1.2.3), is an artificial one and is physically 
unrealistic. However, it is a useful concept that simplifies considerably the solution 
of many problems. Moreover, because this concept is an artificial one, it can often 
lead to solutions that contain spurious discontinuities at the point of application of P ,  
which contradict actual physical behaviour. Upon realising that the basic idealisation 
is indeed artificial, we are then usually willing to disregard these spurious results. 

(c) Reactions and constraints - idealisations 
A body is usually supported in such a way that at certain points no motion can 
take place; constraints are therefore said to exist at these points. For example, 
in the beam shown in Fig. (1.2.7a), a constraint against translation in the x -  and 
y-directions exists at point A, while at point B there is a constraint against motion 
in the y-direction. These constraints are idealised by a ‘pin’ at A and a ‘roller’ at 
B. The forces that provide these constraints (i.e., which prevent the motion) are 
called reactions: note that to each constraint there corresponds a component o f  the 
reaction. Thus at point A, there exist reactive components Rh and RA,, while at 
point B there exists only a single component, RBy [Fig. (1.2.7b)l. We refer to point 
A as a (frictionless) pin support and to point B as a roller support. Collectively, 
the beam is said to be ‘simply supported’. The above are in fact idealisations, in 
the sense that we are referring to points in the beam at which concentrated reactive 
Components (i.e. concentrated forces) are acting. 

We note that a ‘pin’ can exist within a structure composed of several elements. For 
example, consider the structure shown in Fig. (1.2.8a) consisting of two elements 

Figure 1.2.7 

Figure 1.2.8 
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AC and BC supported by pins at points A and B. The two elements are connected 
by a pin at point C. The role of this pin at point C is to provide a constraint against 
relative translation of the two elements; that is, AC and BC cannot move apart. Note, 
however, that if the two elements are not rigid, then there can indeed be relative 
rotations of these two elements [Fig. (1.2.8b)I. Thus we observe that a pin does 
not provide any constraint against rotation. [A pin existing within components of a 
structure is also referred to as a (frictionless) ‘hinge’. Thus a hinge cannot transmit 
a moment from one component of a structure to another.] 

Now consider a beam shown in Fig. (1.2.9a), embedded in a rigid support at 
point A. The idealised model then is as shown in Fig. (1.2.9b). Such a support 
provides constraints against both translation and rotation at the point. In addition 
to the reactive components R k  and RAY, the reaction providing the constraint 
against rotation is a moment MA as shown in Fig. (1.2.9~). Such a beam is called a 
eantilevered beam with a fixed end at A. 

From the above discussion, we therefore find it particularly useful to define a 
reaction, in general, as follows: a reaction at a point is theforce that is required 
to satis& a given corresponding prescribed constraint (i.e., to prevent a prescribed 
motion) of a body or structure at the point. 

Figure 1.2.9 

1.3 Intensity of internal forces - average stresses 

We introduce here the concept of stress as a measure of the intensity of internal 
forces acting within a body via a simple problem. 

Consider a structure, shown in Fig. (1.3. la), consisting of a beam, BC, pinned at 
points B and C. A wire, CD, of cross-sectional area A ,  supports the pin at C and is 
attached to point D. A vertical force P = 18,000 N = 18 kN acts at point C as shown. 

Figure 13.1 

From statics, we note that both the element and the wire are subjected to forces 
only at their ends; therefore, being two-force bodies, it necessarily follows that the 
lines of action of the resultant end forces must fall along the longitudinal axis of 
both BC and CD. 

Isolating the pin at C, we therefore have, from statics [Fig. (1.3.1 b)], 

f’ + Fv = 0 ++ ~ / ~ F c D  = 18 ++ FCD = 30 kN, 

where FCD and FBC are the axial forces in the respective elements. Note that the 
wire CD is therefore under tension and the element BC is in compression. 
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Let us now investigate the internal force in the wire. To this end, we imagine 
that we ‘cut’ the wire at some arbitrary point H [Fig. (1.3.lc)l. From equilibrium 
we conclude immediately that there exists a normal force F = FCD = 30 krN acting 
on any cross-section. Let us assume that this force is uniformly distributed over 
the cross-sectional area A. Then the intensity of the force per unit area i s  FIA. 
We denote this quantity by T and will refer to it as the average normal stress; 
thus 

(1.3.1) - F 
A ’  

Note that the units of CT in the SI system are N/m2. This unit is defined as a Pascal 
(Pa); i.e., 1 N/m2 = 1 Pa. In engineering practice, one often deals with quantities 
that are given in thousands or millions of Pascals; thus we oRen use multiples of 
Pascals, defined as follows: 

a=- 

1 N/m2 = 1 Pa 
103 N/m2 = 1 kPa (kilo-Pascal) 
106 N/m2 = 1 MPa (mega-Pascal) 
109 N/m2 = I GPa (giga-Pascal). 

Now, let us say that the diameter of the wire is 15 mm, Then A = m 2  = 
5 6 . 2 5 ~  mm2 = 1.77 x 10-4 m2. Hence 

= 169.5 x 106 Pa = 169.5 MPa. 
- 30.0 x 103 N 
c T =  

1.77 x 10-4 m2 
We wish to determine whether the wire can withstand this stress. Now it is evident 
that various materials are ‘stronger’ than others. In more precise terms, the maxi- 
mum stress that a particular material can withstand is a characteristic of the material. 
Let us say that CD is made of low-carbon steel. For such steel, the maximum ulti- 
mate stress that the material can withstand in tension is, based on laboratory tests, 
ault = 400 MPa. (The ultimate normal stress, cult, of various steels can be found, 
e.g., in tables giving these properties.) Clearly, since in this case, T < 400 MPa, the 
steel wire can sustain the load P = 18 kN. However, in designing the structure, one 
usually wishes to provide for a ‘safety factor’. This may be done by introducing a 
maximum allowable stress, rsallOw, for the material. We therefore define the safety 
factor, S.F., as+ 

0;lt . S.F. = -, 
 allow 

thus 
%It 

Qallow = - S.F‘ 
If we choose, for example, a safety factor of 2.0, it foXlows that a,tlOw = 400/2.0 = 
200 MPa. Hence, we may state that since T = 169.5 < 200 MPa for the problem 
at hand, the structure is ‘safe’ according to the prescribed safety factor of 2.0. 

Let us now assume instead that CD is made of aluminium with ault = 160 MPa and 
S.F. = 1.6 such that oallow = 100 MPa. We therefore conclude that the wire cannot 

The allowable stresses, asllOw. for a given engineering structure, are usually given according to engi- 
neering specifications and depend on the type of structure to be designed. on conditions of loadings. 
variations of material properties, etc. 
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sustain the applied load and will fail since ;iT: > c ~ , l l ~ .  Therefore a thicker wire is 
required. In order to satisfy the condition 7 < nallOw, we require a cross-sectional 
area 

30kN 30 x 103 
a,n, 100 MPa 100 x 106 

= 0.30 x 10-3 m2 = 300 mm2, - - - F A = - - .  

and therefore an aluminium wire of radius r = 
19.54 mm. We would then use in practice a wire of 20-mm diameter. 

= 9.77, or of diameter d = 

The preceding analysis is a primitive example of engineering design. 
Now there exists a second type of stress: shearing stress. To introduce this, let 

us first consider two smooth plates connected by a rivet (whose cross-section is A )  
and subjected to two forces P as shown in Fig. (1.3.2a). Clearly the rivet is holding 
the plates together. Let us ‘cut’ the body along the plane BC (we imagine that the 
rivet has been cut along this plane) and isolate the lower portion as a free body. It 
is important to realise that whenever we make such an imaginary cut in a body, the 
internal forces of the whole body must then be considered as external forces acting 
on the isolated free body. 

Figure 13.2 

Equilibrium conditions for this lower portion require that a force P act along 
the surface of the cross-section [Fig. (1.3.2b)l. We observe that the force P here is 
acting tangentially in the cross-sectional area. As before, we assume that this force 
is uniformly distributed over the area A ;  we denote the average intensity of this 
force by t; i.e., 

- P 
A ’  

t = - -  (1.3.2) 

We refer to this quantity, acting tangentially to the area A ,  as the average shear 
stress in the rivet and note too that the SI unit is Pa. 

Thus, we conclude that there can exist two types of stresses, a normal stress and 
a tangential shear stress. Both are measures of the intensity of force per unit area. 
In the above two cases, there existed but one type of stress on each area. We shall 
soon discover that both normal and shear stress may exist simultaneously on a given 
area. 

It should be emphasised here that we have only obtained the average stresses 
based on the assumption, in both cases, that the internal force on an area is uniformly 
distributed. This is sufficient to introduce the basic idea of stress as intensity of force 
per unit area. However, we will find in our later discussion that in many bodies, 
internal forces are not always distributed uniformly over an area and that it will be 
therefore necessary to define the stress at a point. 
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1.4 Intensity of a normal force acting over an area - refinement 
of the concept: normal stress at a point 

Consider a rod subjected to an axial force P such that the normal force on each sec- 
tion, lying in the y-z plane, is F = P [Fig. (1.4.1 a)]. As in the previous discussion, 
the average normal stress is 7 = F/  A, based on the assumption that the force F is 
uniformly distributed over the area A .  We now wish to refine this concept; i.e., we 
no longer will assume the uniform distribution but instead assume that the stress 
varies over the cross-sectional area, i.e., (T = ab,  z) .  Let us now consider that the 
total area to be the sum of small elemental areas A A ,  such that on each of these 
areas an incremental part of the total force A F is acting [Fig. (1.4.1 b)]: clearly, the 
incremental force A F is then given by 

AF 2 a ( y , z ) A A ,  (1.4. la) 

where the incremental area A A surrounds the point 0 [Fig. (1.4.1 b)]. (Note that 
the symbol = has been used here; although a varies only slightly over AA, 
it cannot be assumed to be constant over the AA.) Hence 

AF 
AA 

a(y,z) 21 -< ( 1.4.1 b) 

Clearly, as AA 3 0, AF -+ 0. However, taking the limit as AA -+ 0, we have 

AF d F  - crcv, z )  = lim - __. - 
A A 4 0  AA d A '  

(1.4. lc) 

which represents the normal stress component at the point Ocv, z). 

Figure 1.4.1 

Thus we see, according to Eq. (1.4.1 c), that the normal stress at a point can now 
be defined as the limiting case of incremental normal force divided by incremental 
area at the point. In the next chapter, we will generalise this concept to forces that 
are not necessarily normal to the plane. 

Now, the total resultant force F acting on the cross-section is evidently given 
by F = T;z, A F  and therefore, as AA --+ 0 and the number of incremental areas 
approaches infinity, from Eq. (1.4.1 a) we obtain, in the limit, 

F = / d F  = / /adA.  (1.4.2) 
A 

We note that the internal force F ,  as given by Eq. (1.4.2), represents a resul- 
tant force due to a summation of all the (T stresses acting over incremental 
areas. It is in this sense that internal forces are often referred to as internal stress 
result ants . 
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We observe, in passing, that if cr is constant, i.e., not dependent on the particular 
element d A ,  then from Eq. (1.4.2), 

(1.4.3) 
A 

and we recover the expression cr = F,f A. Thus we see that, only in this particular 
case, is the average normal stress, 5 ,  equal to the actual normal stress existing at 
each point of the cross-section. 

1.5 Average stresses on an oblique plane 

We consider again a rod of cross-section A that is in equilibrium when subjected 
to forces P acting along the x-axis [Fig. (1.4.la)l. In our previous treatments, the 
normal stress was found on a cross-section lying in the z-plane perpendicular to 
the applied load. However, we are not limited to making a cut only along planes 
of a cross-section; indeed we may cut the bar along any plane passing through an 
arbitrary point H and isolate the two parts as a free body. Let us therefore imagine, 
for example, that we cut the bar at some arbitrary point, H, by means of a plane 
whose unit normal n lies in the x-y plane and is inclined with respect to the x-axis 
by a given angle 8 as shown in Fig. (1.5.1). We then isolate the left segment. Let A’ 
denote the area of the oblique plane of the cut. 

Figure 1.5.1 

Then, since any arbitrary part of the bar is in equilibrium, a force P clearly must 
be acting on the cut in order to satisfy equilibrium in the x -direction. We now resolve 
this force into two components: a component F’ acting normal to the plane of the 
cut and a component V’ acting tangential to the plane as shown in Fig. (1.5.1). 

Now, from equilibrium 

X F ’  = 0 ++ F’COSO + V‘sinQ = P.  (1.5.la) 

X Fy = 0 ++ F’sinQ - V’coso) = 0. (1.5.1 b) 

Equations (1.5.1) represent two equations in two unknowns, whose solution is 
readily given by 

F‘ = P COS 8 ,  (1.5.2a) 

V’ = P sinQ. (1.5.2b) 

We thus find that on this oblique plane the equilibrium conditions require that both 
a normal force F’ and a tangential force V’ act on the plane of the cut. The average 
intensity of these forces is then, by Eqs. (1.3.1) and (1.3.2), 

- F’ PcosO P 
A‘ A/cosO A 

( T = - = - -  - -COS20, (1.5.3a) 

V’ PsinO P P 
A’ A/cosQ A 2A 

r--=-- - - sinOcos8 = - sin2Q. (1.5.3b) - 
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We therefore observe that there exist on the plane of the cut both normal stresses 
and tangential stresses. In particular, if 0 = 45", 0 = PJ(2A)  and 7 = P / ( 2 A ) .  
Note too that if 0 = 0, then 7j: = PIA and 7 = 0; that is, we recover the average 
stresses existing on a cross-section. 

1.6 Variation of internal forces and stresses with position 

In our previous discussion, forces and stresses acting on cross-sections were found 
to be independent of the location of the cross-section. (For example, in the cases 
examined in Sections 3 and 5 ,  point H along the longitudinal axis was arbitrary.) 
This clearly is not the general case; one often wishes to determine how the internal 
forces vary with the location of a cross-section. To this end, consider a triangular 
plate ABC of mass density p (having a weight W) and constant thickness t ,  hanging 
from a support BC and subjected to gravity g acting downward [Fig. (1.6.1 a)]. We 
wish to determine the internal forces acting at any cross-section DE, located at a 
distance y from the apex A due to its own weight. Note that the total weight W of 
the plate is given by W = pgbth/2. 

Figure 1.6.1 

If we isolate the lower portion [Fig. (1.6. lb)], we note that a gravitational force 
pg du acts on each element of incremental volume dv of this portion of the plate. 
(Note that the gravitational forces are in fact body forces as described previously 
in Section 2.) Having made the cut along DE, we note too that in general there may 
exist a resultant force F and shear force V acting along the plane of the cut. 

From equilibrium, E F, = 0 + + V = 0 and E Fy = 0 4 --;r F - isv i p g  du = 
0 where the triple integral is over the volume of the segment ADE. Since pg is 
constant, noting that the width c of DE is c = by/ h and that the volume of the lower 
segment is tcy/2, we have 

(1.6.1 a) 

The area of the cross-section at any location y is given by A(y) = ct = bty/ h, and 
hence the average normal stress acting on any cross-section is 

(1.6. lb) 

The internal force F ( j )  and average stress F, are thus seen to vary parabolically 
and linearly, respectively, with y [Fig. (1.6.2)j. Figure 1.6.2 
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1.7 Strain as a measure of intensity of deformation 

Having defined stress as a measure of the intensity of internal forces in a body, 
we now consider the second concept of importance in solid mechanics; namely, 
strain as a measure of the intensity of deformation. This is a purely geometric (or 
kinematic) concept, not intrinsically related to forces. It is important because one 
wishes to know how a mechanical system deforms for, inreality, no body is perfectly 
rigid. 

To illustrate this concept, consider two rods, A and B, resting freely on a table: 
rod A is 10 cm long and rod B is 100 cm long, as shown in Figs. (1.7.la and b), 
respectively, Assume that in each case, the rods undergo the same elongation, which 
we denote by 6. Then it is evident that if, for example, 6 = 1 cm, this elongation 
is far more significant for the short bar (whose length has changed from 10 to 
11 cm) than for the long bar (whose length has changed from 100 to 101 cm). In 
other words, the ‘intensity’ of the deformation of rod A is much greater than that 
of rod B. We wish to have a measure to this ‘intensity’. Clearly a useful quantity is 
6 /L ,  where L is the original length. 

Figure 1.7.1 

Thus, assume that a rod, originally of length L ,  deforms to a length L* 
[Fig. (1.7.2)]. Then 6 = L* - L .  We define the ratio 

(1.7.1) 

Figure 1.7.2 
as the average strain or the average engineering strain. Note that the strain E is a 
non-dimensional quantity. 

In most problems encountered in engineering practice, one deals with mate- 
rials that are relatively stiff (e.g., steel, aluminium, or other metals). Hence the 
strain that one encounters in such materials is often very small, i.e., of the order 
O(lO-J). For example, if a steel bar has length L = 60 cm = 0.6 m and elon- 
gates by 6 = 1.5 mm = 1.5 x 10-3 m, the resulting average strain is, according to 
Eq. (1.7. l), 

- 1.5 x 10-~ 
E =  = 2.5 10-~.  

0.6 
In this discussion, we have implicitly assumed that the bar deforms uniformly 

along its length. However, let us say that it deforms due to heating, which is not 
uniform along the longitudinal axis. The average strain then does not provide an 
indication of the deformation at any point along the bar. We must therefore con- 
sider the deformation more carefully and find the strain at each cross-section of 
the bar. 

Let x denote the longitudinal axis of an undeformed rod [Fig. (1.7.3a)l. Let us 
assume the horizontal displacement u of any cross-section located at the coordinate 
x is known, that is, U = U(.). Now, the rod may be considered to be composed of 
a series of elements, each of length Ax.  If u ( x )  denotes the displacement of the 
cross-section originally at x, then u(x + Ax) = u(x )  + Au is the displacement of 
the right side of the deformed element [Fig. (1.7.3b)l. The average strain ofthe 
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Figure 1.7.3 

element, given by Eq. (1.7. l), is then 

Taking the limit, we have 

or 

(1.7.2) 

(1.7.3) 

Thus we have obtained the strain E = E, in the x-direction, which exists at any 
cross-section. It is of importance to observe that the strain E is dependent on the 
relative displacements of points in the rod. 

Note that from Eq. (1.7.3), du(x) = . dx. Hence integrating this expression, 
we have 

that is, 

(1.7.4a) 

(1.7.4b) 

Since the total elongation 6 
elongation in terms of the strain at any point, namely 

U L  - U@, we thus have an explicit expression for the 

L 

6 = /6(X)dx. 
0 

Note that if E(X) is constant, then 6 I= EL. 

( I  .7.4c) 

Exarnple1.1: A rod, originally of length L .  is heated non-uniformly [Fig. 
(1.741. The increase in temperature, AT, is given by AT = kx(L - x), where k 
is a constant. The temperature increase at the mid-point is known to be 50°C. 
Determine the elongation 8 of the bar if a! is the coefficient of thermal 
expansion. Figure 1.7.4 
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Figure 1.8.1 

Figure 1.8.2 

Figure 1.8.3 

Solution: Since AT(x = L / 2 )  = 50°C, k = 200/L2. Consequently, AT = 
g x ( L  - x). Noting that the strain E ( X )  = a A T ( x ) ,  from Eq. (1.7.4c), 

0 0 

Let us assume that the length of the bar is L = 100 cm and that it is made of steel, for 
which a =I 11.7 x 10-6[1/oC]. (Note that the units of a are [l/"C]. The elongation 
is then S = 3.9 x 10-2 cm= 0.39 mm. 0 

1.8 Mechanical behaviour of materials 

As we have previously noted, it is evident that if a solid body is subjected to forces, it 
will respond differently depending on the material ofwhich it is made. For example, 
steel, aluminium and wood behave differently. We thus must find a way of describing 
the general mechanical behaviour of these materials and express the behaviour in 
mathematical terms. The equations that describe the mechanical behaviour of a 
material are referred to, in general, as constitutive equations and are based on 
experimental evidence. These equations, which must describe the real behaviour of 
materials as they exist in nature, are established from experiments performed in a 
laboratory. The simplest test that one can perform on a given material is a standard 
tension test, which we now describe. 

Let us consider a specimen of cross-sectional area A to which we apply a slowly 
increasing axial load P. Let us assume that we initially inscribe two points on the 
rod a distance L0 apart [Fig. (1.8.1)]. (The length LO is commonly called a gauge 
length.) Now, as we slowly increase the force P from zero, at each value of loading, 
we can measure the distance L between these two points and thus we obtain the 
elongation 6 = L - LO for each value of P .  Clearly, S and P are related and we can 
plot a P-6 curve as shown in Fig. (1.8.2). This curve, however, is not of much use, 
for it depends on the dimensions of the specimen being tested and not intrinsically 
on the material itself; i.e., it depends on (a) the cross-section of the rod, A, and 
(b) the original gauge length, Lo. Therefore, let us calculate 

(1.8.1) 

and plot the ZF-? curve as shown in Fig. (1.8.3). This curve is called the standard 
stress-strain curve. (At this point we drop the notations ZF and Z and will refer 
to the stress a and strain 6 with the clear understanding that these are average 
values.) We observe that the a+ curve, being a curve of force per unit area versus 
elongation per unit length, represents the behaviour of the material itself, since it is 
independent of the geometry of the rod. 

Note that in describing the test, it was mentioned that the load is slowly ap- 
plied, and thus we implicitly assume that the curve is independent of the rate of 
loading. This is true of many (but not all) materials, e.g., metals such as steel and 
aluminium, provided the loading rate is sufficiently small. We therefore assume that 
the behaviour is 'rate-independent'. 

We now consider the a+ curve obtained from a standard test on a typical ductile 
material: for example 'low-carbon steel', whose a+ curve is shown schematically 
in Fig. (1.8.4). (This steel, which is of common use, consists mainly of iron and 
relatively small quantities of carbon.) 
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Figure 1.8.4 

The behaviour may be described as follows: as the load is increased from zero, the 
stress-strain relation is essentially linear, up to a certain stress level, aP, called the 
proportional limit, Thus the proportional limit is defined as the maximum stress 
for which a linear stress-strain relation exists. As the load increases, the stress 
reaches a value ay at which, with no further increase in the load, the metal deforms 
continuously; that is, the steel suddenly ‘yields’. The stress ay is therefore called the 
yield point of the material. A typical value of the strain E at which yielding occurs 
in steel is 1 O - 3 .  This yielding usually continues over a wide range of strain. (Note 
that the curve is parallel to the E axis during yielding and may be so until the strain 
reaches a value of the order of 0.2.) At this point, it is necessary to increase the 
load to cause the rod to elongate further; hence the stress increases. This behaviour 
is called strain-hardening. The stress thus increases over this range and reaches 
a maximum value cult, called the ultimate stress or more precisely the nominal 
ultimate stress. At this point, the stress drops off sharply while the rod continues 
to elongate until rupture takes place. For reasons that would become apparent in 
Chapter 4, the entire cr-e curve obtained during the test is referred to as the nominal 
stress-strain curve. 

Let us now return to consider the initial behaviour with ci 5 aP, i.e., where the 
stress ci does not exceed the proportional limit. It was observed that the ci-e relation 
in this range is linear. Consequently, this initial part of the cuye can be represented 
by the equation of a straight line: 

ci = E E ,  (1 A.2) 

where the constant E ,  representing the slope of the line, is called the Young’s 
Modulus. Note that the units of this modulus are given in N/m2(1 N/m2 = 1 Pa). 
A typical value for steel is E = 200 x 109 Pa = 200 GPa. We observe that E is a 
measure of the stiffness of the material. Thus, the larger the value of E ,  the greater 
the stress required to deform the material. 

It should be mentioned here that the relation ci = E E  (valid for a 5 aP ) is a 
typical example, perhaps the simplest, of what is called, in general, a constitutive 
equation. Indeed not all materials can be described by such a simple constitutive 
equation. 

Now, let us consider again that we start to load the material from point 0 to some 
arbitrary point B such that a = C ~ B  I ap and that we then remove the load; i.e., 
we ‘unload‘ the material. We find, upon loading and unloading repeatedly, that the 
behaviour follows the same ci+ curve provided that we remain below ap. Indeed, 
if we load the material within this range and then remove the load completely, the 
strain, after removal of the load, is E = 0. Thus the body recovers its initial length. 
The material is therefore said to exhibit elastic behaviour in this range. As a result, 
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the constant E is often called the Modulus of elasticity, a terminology that seems to 
be preferred in engineering practice. In fact, the material is said here to be linearly 
elastic. (It should be pointed out that although the linear elastic range is in the range 
(I 5 up, there may also exist a nonlinear elastic region where the cr+ relation is no 
longer linear. We leave this for a later study.) 

Now, let us assume that we load the rod from point 0 until we reach point 
C on the (I+ curve of Fig. (1.8.4). At this point, we then remove the load. We 
would find that as we remove the load, the behaviour follows a line CD, which 
is parallel to the original straight line portion of the (I+ curve. Thus, when we 
have completely removed the load, there is a permanent strain ED in the material, 
represented by point D. The material thus is said to behave as aplastic material, if (I 
exceeds q,. 

The above is a description of what takes place during a typical tension test on 
steel. At this stage, we have not attempted to provide explanations for the behaviour; 
we have only given a description of the phenomena, A more elaborate explanation 
for the behaviour will be given at a later stage, but the more fundamental study of the 
phenomena in terrns of the structure of the material requires an understanding at the 
atomic or crystal level. Such studies belong to the field of materials science. At this 
stage, we are content to provide a phenomenological description of the behaviour 
of materials to pursue our study of solid mechanics. 

1.9 Summary 

In this chapter, we have introduced the three basic concepts that are required in 
the study of solid mechanics: stress, strain and the constitutive equations. These 
concepts were introduced by means of simple one-dimensional problems. In our 
future study, it will be necessary to generalise these basic concepts to enable us to 
treat typical problems of solid mechanics as encountered in engineering practice. 

PROBLEMS 
In all the following problems, assume that the stresses are identical to the average 
stresses. 

Throughout this book, problems that require a deeper understanding of the subject or a more 
sophisticated approach have been indicated by an asterisk C).  

1.1: Two cylindrical rods A3 and BC, welded together, as shown in Fig. (lP.l), are 
subjected to a force 30 kN at B and an unknown force P at C. Determine (a) the force 
P such that the same normal stress exists in each segment of the rod and (b) the force 
P such that the tensile stress in BC is equal in magnitude to the compressive stress in 
AB. Indicate whether the P is a tension or compression force in each case. 

Figure 1 P.l 
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1.2: The shearing stress at failure of a steel plate is given as t = 90 MPa. (a) Determine 
the force P required to  punch a 20-mm diameter hole if the thickness of the plate is 
t = 4 mm, as shown in Fig. (1P.2); (b) What is the average normal stress B in the punch 
when subjected to  this force? 

1.3: A rectangular block of brass ( E  = 100 GPa) and allowable stress 0 = 120 MPa, 
whose cross-section is 40 mm x 60 mm, supports a compressive load P. Determine the 
maximum force P that may be applied if the block is not to  shorten by more than 
0.05%. 

1.4 An aluminium control rod of circular cross-section is to  be designed to lengthen 
by 2 mm when a tensile force P=40,000 N is applied. If the allowable stress is  
c =20 MPa and E =70 GPa, determine (a) the smallest permissible diameter D and 
(b) the shortest length of the rod. 

1.5: The frame shown in Fig. (1P.5) consists of three pin-connected 3-cm diameter 
rods. Determine the average normal stress in rods AB and AC if the force P =60 kN. 

1P.2 

1.6:* A truss, consisting of two pin-connected rods AB and AC (each made of the 
same material whose density is p (N/m3) and each having the same cross-sectional 
area A), supports a force P as shown in Fig. (1 P.6). The truss is to  be designed such that 
/cl, the maximum allowable normal stresses (in absolute value), are the same in each 
member. 
(a) Show that under these conditions, the weight W of the truss is Figure 1P.5 

(b) Assuming that P is much greater than the total weight Wof the truss, determine 
the angle p for which the truss has minimum weight, thus yielding an optimal design. 
What is the minimum weight Wexpressed non-dimensionally as &? 

1.7 Two tubular rods are connected, as shown in Fig. (1P.71, by means of an adhesive 
whose allowable shear stress is t =4 MPa. Determine the permissible axial force P that 
the connection can carry. 

Figure 1P.6 

Figure I P.7 

1.S: A steel rod of length L = 2  m, fixed a t  A, is heated by a linearly varying tem- 
perature ST(x), as shown in Fig. ( I  P.8). The coefficient of thermal expansion is a = 
11.7 x 10-6[l/oC]. 
(a) What is the strain E ( X )  at any point x of the rod? (b) Determine the displacement 
4 x )  at  any cross-section of the rod; (c) What is the total elongation AL of the rod? 
(d) Determine the average strain z in the rod. 
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Figure 1 P.8 

Figure lP.9 

The following problems are to be solved using a computer. 

1.9 A three-bar truss, each of whose members has a cross-sectional area A = 2.0 cm2, 
is subjected to a load P = 30 kN that  is inclined with respect to the x-axis by a varying 
angle a, as shown in Fig. (1P.9). Plot the normal stress in AB and BC as a function of a 
for 0 5 a 5 180". 

1.10: For the truss of Problem 1.6, plot the  weight of the truss in non-dimensional 
terms, i.e. A, as a function of f i  for 0 < fi  -= 90". 



2.1 Introduction 

We have seen that stress as a measure of the intensity of internal forces is a funda- 
mental concept in solid mechanics. In the previous chapter, the idea of stress was 
introduced by means of some simple one-dimensional cases. However, the concept 
of stress is more complex. As will become evident from the treatment below, the 
quantities found previously are only components of stress. In order to develop more 
fully the concept of stress, it is necessary to consider first the three-dimensional 
case which, in general, exists in reality, From this more general case, we consider 
the simpler two- and one-dimensional cases. 

Since the stress in a body is dependent on the existing internal forces, we first 
consider and analyse these forces. 

2.2 Internal force resultants 

Consider a body, located in an x .  y ,  z coordinate system, under a set of external 
forces F1, F2, . . . , F,, [Fig. (2.2.1)]. According to Newton’s laws of mechanics, 
the body must satisfy two basic principles: the principle of linear momentum. and 
the principle of angular momentum. If the body is in equilibrium then these prin- 
ciples reduce to the vector equations M = 0. Moreover, since all F = 0 and 

Figure 2.2.1 

points in the body are in a state of equilibrium, it is clear that these laws must be 
satisfied for any arbitrary portion of the body. Let us therefore imagine that we cut 
the body by means of a plane (whose area is A )  that passes through some point 0 
and that we isolate the two portions of the body. First, we recognise that there are 

21 
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Figure 2.2.2 

Figure 2.23 

an infinite number of planes passing through the point 0. To identify any specific 
plane, we construct a unit vector, normal to the plane, which we denote by n. The 
vector n thus specifies the orientation of the plane in the x ,  y ,  z coordinate system. 
We shall hereafter refer to this plane as the n-plane. Upon isolating the two portions 
of the body, it is important to recognise that the top part of the body exerts forces on 
the lower portion and that the lower portion exerts (equal and opposite) forces on 
the upper portion. 

Having isolated the two portions of the body, we examine, for example, the lower 
portion as shown in Fig. (2.2.2) and consider it as a ‘free body’. In addition to the 
known external forces F, ,  which act on the original exterior surface ofthe body, we 
must also represent the forces acting on the plane of the cut that the upper portion 
exerts on the lower portion, We wish to determine these unknown internal forces 
using the laws of mechanics. These forces acting on the plane of the body will, in 
general, be distributed over the cut in some arbitrary way. At this stage, we are not 
interested in determining the distribution of forces but wish merely to determine 
the resultant effect. Now, whatever the distribution of these internal forces, it is 
known that any force system can always be represented by a single resultant and a 
moment; we denote these by the vectors F* and W ,  respectively, shown as acting 
on the n-plane in Fig. (2.2.2).+ Note that while the vectors F* and W represent 
the resultant internal force system, this force system must be considered as part of 
‘external forces’ when acting on the entire cut section of area A of the isolated free 
body. 

If this free body is in equilibrium, then 

(2.2.la) 

(2.2.1 b) 

where Flat and & f l e x ,  represent the forces and moments due to the externally applied 
force system. Clearlyy in principle, the two unknown vectors F* and W ,  which are 
required to maintain the isolated portion of the body in equilibrium, can be found 
from these two vector equations. We now define two other mutually perpendicular 
directions by means of unit vectors s and t ,  both of which lie in the plane of the cut 
[Fig. (2.2.3)j. Since n is perpendicular to the n-plane, the three vectors n, s and t 
are said to form an orthogonal triad. We may then resolve the internal resultant F* 
and W into scalar components as follows: 

F* = F n +  V,s+  K t ,  

RP= T n i - M , s + M , t .  

(2.2.2a) 

(2.2.2b) 

The component F appearing above is referred to as a normal force component 
or more briefly, the normal force acting on the n-plane. The components V, and 
K, which act tangentially to the n-plane, are called the shear forces in the s- and 
t-directions, respectively [Fig. (2.2.4a)l. 

The component of W in the n-direction, T ,  represents the moment about the 
normal n-axis; i.e., T E M,. It is therefore called the torsional moment (or the 
torque) since it tends to twist the body. On the other hand, the components M, and 

To distinguish the moment vector from the force vector, the moment vector is drawn wrth a double arrow. 
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Figure 2.2.4 

Mt are called bending moments about the s- and t-directions since they tend to 
bend the body about the s- and t-axes, respectively [Fig. (2.2.4b)l. 

We emphasise here that the above quantities represent resultant forces and mo- 
ments acting on the n-plane and that, at this stage, no consideration is made as to 
their distribution over the plane of the cut. 

Since F* and M* represent the resultant efFect of the upper portion on the lower 
portion of the body, it is clear, according to Newton’s Third Law, that the lower 
portion also exerts an effect that is equal and opposite on the upper portion of the 
body [Fig. (2.2.5)]. 

Figure 2.2.5 

We illustrate these ideas in the following examples, 

Example 2.1: A body, consisting of a pipe lying in the x- t  plane, is subjected 
to a vertical force P = 250 N as shown in Fig. (2.2.6). Determine the compo- 
nents of the resultant farces and moments at the sections a-a and b-b. 

Solution: In the following calculations, positive forces indicate that the force is 
acting in the positive coordinate direction; positive moments act about positive axes 
according to the right-hand rule. (For the present, this will sufice. However, we will 
find, in future treatments, that it is necessary to adopt a different sign convention 
appropriate to solid mechanics.) 
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Figure 2.2.6 

Figure 2.2.7 

(a) Section a-a: To determine the forces at a-a, we consider the isolated body shown 
in Fig. (2.2.7a). Note that the shear forces at this section are V, and V,.t 

F, = O + +  V, = 0, 

+ t xFv = 0 4 +  V, -250 = O + +  Vy =250N, 

F, = o 4-t F = 0. 

For simplicity, only non-zero moments are shown in the figure. 



2.2 Internal force resultants 25 

Letting (E Mx)a denote the sum of the moments about an x-axis passing through 

- < - + ( ~ M x ) a = O + + ( 2 0 ) ( 2 5 0 ) + M x  = O + + M x  =-SOOON-cm, 

a-a, etc. we have 

(b) Section b-b: Making a cut at b-b and isolating the free body [Fig. (2.2.7b)], we 
have 

Fx = 0 ++ F = 0, 

+ f E F y  = O-++ Vy -250 = O + +  Vy =250N,  

F, = o++ v, = 0. 

- + x ( M x , b  = 0 -++ (60)(250) + Mx = 0 ++ M, E T = - 15,000N-cm. 

Note that the minus sign indicates that T acts in the opposite sense to that shown 
in Fig. (2.2.7b). 

( ~ M y ) h = o + + h + = o  

+ ( E M z )  b = o++ Mz - (80)(250) = o++ Mz = 20,000N-cm. 
0 

Example2.2: A beam ABC consists of two elements, fixed at A, pinned at 
point B and simply supported at point C, as shown in Fig. (2.2.8). Determine 
the internal force resultants occurring at points D and E, due to the uniform 
line load w (N/m) acting between B and C. 

Figure 2.2.8 

Solution: We first note that this is a two-dimensional problem. Therefore, since all 
forces F act in the x-y plane, the only moments that can exist are moments about the 
z-axis, which we denote below by M ,  i.e., M EZ M,. 

Considering the body ABC, we note that there exist four unknowns RAx, R A ~ ,  

(2.2.3a) 

(2.2.3b) 

MA and RG [Fig. (2.2.9a)l. The equilibrium equations for this body are 

F, = o ++ R~ = 0, 

+ f E F ~  = o + +  RAY + R~ - WL =o, 
v’ + ( E M , ) ,  = 0 -++ -MA + 2LRc - wL(3L/2) = 0. (2.2.3~) 

Having immediately found R k  = 0, we observe that we are left with two remaining 
equations [Eqs. (2.2.3b) and (2.2.3c)I and three unknowns ( R A ~ ,  Rc and MA); 



26 internal forces and stress 

Figure 2.2.9 

we therefore require a third equation. However, a pin exists at point B. Therefore 
MB = 0 since (as the pin, by definition, does not provide a constraint against rotation 
at B) no moment can be transmitted by the pin from one part of the beam to the 
other. This provides us with the additional equation: we thus make a ‘cut’ at B and 
isolate BC as a free body [Fig. (2.2.9b)I. Note that although we must now show the 
forces R B ~  and R B ~  (as external forces), which represent the effect of the segment 
AB on BC, these do not appear in the moment equation if taken about point B. 
Thus, for member BC, we have 

s;.’ + (x M:), = 0 -+a RcL - (wL)(L/2) = 0 -+-+ Rc = wL/2. 

Substituting this in Eqs. (2.2.3b) and (2.2.3c), we have 

R, = -Rc + WL = wL/2 and MA = 2RcL - 3wL2/2 = -wL2/2. 

Note that the minus sign appearing in MA indicates that it is acting in a direction 
opposite to the assumed direction shown in Fig. (2.2.9a). 

Having found the external reactions, we may now fmd the internal force resultants 
at D and E: 

At D: Isolating A-D [Fig. (2.2.9c)], 

F’ = 0 -++ F = 0, 

v’ + (c M,>, = 0 4 3  M 4- w L 2 / 2  - (WL/2)(L/2) = 0 

43 M = -wL2/4. 

At E: Treating AE as an isolated body [Fig. (2.2.9d)], 

E F, = o++ F = O, 

+ t EFv = 0 3 +  wL/2 - wL/2 - v = 0-++ v = 0, 

Y’+ ( ~ M z j E = O + + M + ~ L 2 / 2 -  (wL/2)(3L/2) 

+ (wL/2)(L/4) = 0 -++ M = wL2/8. 
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It should be noted that the same results at section E could be obtained by considering 
0 equilibrium of EC as a free body. The reader is urged to verify this. 

Exarnple2.3: A magnet is attached at the free end of an iron bar whose 
cross-sectional area is A, as shown in Fig. (2.2.10a). The attraction force f is 
found to  decay exponentially, that is, 

f (x)  = ce-'IL (N/m3) 

as shown in Fig (2.2.10b), where c i s  a constant. Determine the normal force 
F(x) that exists at any cross-section. 

Soiution: We note that the magnet exerts body forces on each element of the rod. 
Let us make a cut at some arbitrary cross-section located at x [Fig. (2.2.1Oc)l. Then, 
since at any cross-section 6 ,  f ( 6 )  = ce-"', from Fx = 0, the total force on the 
cross-section is given by 

X X 

F ( x )  = 1 f(6)Adij = CA 1 e-e/L dij = -cALe-(/' /j = cAL(1 - e-x/t). 
0 

0 0 
(2.2.4) 

The variation of F(x)  is shown in Fig. (2.2.1 Od). U 

2.3 State of stress at a point: traction 

It is evident that the internal force system F* and W shown in Fig. (2.2.2) may be 
considered to be composed of small increments AF* and AM*, each acting over 
a small area AA surrounding any point 0 of the n-plane [Fig. (2.3.1)]. We now 
examine the area surrounding this point. 

Figure 2.2.10 

(a) Traction 
Let us confme our attention to point 0 and the increment of area AA surrounding it. 
Now if we shr ink  the area A A to zero, it is clear that both AF* -+ 0 and A nn* + 0. 
We now define the following ratio: 

Furthermore, we assume thatt 
AM* 

lim - - - 0. 
A A - 0  AA (2.3.2) 

This assumption is based on experimental evidence and, in general, is found to be 
valid for solids encountered in engineering practice. 

We first observe that T,,  which acts in the same direction as AF*, is a vector. The 
quantity Tn is called the traction. We observe, too, that according to its definition, 
the traction T ,  represents an intensity of force per unit area and that it acts in some 
arbitrary direction with respect to the n-plane. In the SI system, this quantity is 
given in units ofN/m2, which, as we noted in Chapter 1, is defined as a Pascal (Pa). 

t As a result of  this assumption. we eliminate the existence of  what are known in solid mechanics as 'stress 
couples' in the body. 
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Having noted that the vectors AF* and T,  act in some arbitrary direction with 
respect to the n-plane, we resolve them into their scalar components in the n-, s- 
and t-directions defined by the unit vectors n, s and t ,  respectively, as described in 
the previous section. 

Following Eq. (2.2.2a), the scalar components of AF* in the n-, s- and 
t-directions are denoted by A F ,  AV, and AV,, respectively. The quantity A F  
thus represents an increment of normal force while A V,  and A V,, which act tan- 
gentially to the n-plane at point 0, represent increments of the shear forces in the 
s- and t-directions, respectively. Thus we have 

AF* = AFn + AV,s + A q t .  (2.3.3) 

Substituting this in Eq. (2.3.1), we may therefore write 

(2.3.4) 

Now we denote the limits of these ratios as follows: 

. (2.3.5) Av, 
tnt = lim - A F  A Yv a, = lim - tns = lim - 

A A + O  A A ’  A A + D  AA ’ AA-O AA 

Hence 

T, = a,n + Z,,S + zntt. (2.3.6) 

The traction T,, shown in Fig. (2.3.2), which represents the intensity of the force 
acting on an n-plane per unit area, thus has been resolved into components normal 
and tangential to the n-plane. 

Figure 2.3.2 

The following definitions and remarks are now in order: 

II It is important to emphasise that the traction T ,  depends on the particular n-plane 
passing through the point 0. In general, a different traction exists on each n-plane. 

H The scalar quantities, a,, tns and tnt, are stress components, which represent 
intensity of force per unit area. Clearly, they have units of Pascals. 

I a, acts on a plane whose normal is n and acts in the direction of n. We shall refer 
to a, as the normal component. 

II z,, and tnt act tangentially to the n-plane in the s- and t-directions, respectively. 
Thus tns and znt are called the shear components acting on the n-plane. The 



2.3 State of stress at a paint: traction 29 

first subscript in the t terms refers to the plane over which it is acting while the 
second subscript refers to the direction in which it acts. 

U Note that it is not necessary to prescribe two subscripts to the normal component 
a, since it is understood that this component acts in the same n-direction, which is 
normal to the n-plane. Indeed, the symbol a, has been introduced to distinguish 
it from the shear stress components tar and tns. However, at times, it is more 
appropriate to use a different notation: namely, a, t,,. Thus, when using the 
letter t to indicate a normal component, it is then also necessary to use two 

We now examine these quantities when referred to a Cartesian coordinate system 
x ,  y ,  z (with unit vectors i ,  j ,  k, respectively). 

subscripts. 

Figure 2.3.3 

Let us consider the particular case where n lies in the x-direction, and let s 
and t lie in the y -  and z-directions, respectively. Thus, here n 3 i ,  s --+ j ,  t -+ k 
[Fig. (2.3.3a)l. The traction is said to be acting on the x-plane; WE denote this 
traction by T,.  Hence, we have 

T,  = a;i + txy j + t x zk  

or, in the alternative notation, 

T,  = tx,i + txy j + txzk.  (2.3.7a) 

Similarly, for the y-plane, let n -+ j ,  s 3 i, t -+ k [Fig. (2.3.3b)l so that 

T y  = tu.i + ay j + ty,k 

or 

T ,  = tYxi + t yv j  + tyzk.  (2.3.7b) 

For the z-plane, we let n 3 k, s -+ i ,  t -+ j [Fig. (2.3.3c)I. Then 

TZ = ttxi + tzy j 4- a,k 

or 

T,  = zzxi + tZ,v j + tz,k. (2.3.7~) 

In passing, we observe from Eqs. (2.3.7) that the various stress components are 
given by the following scalar products; namely, 

a, = T, - i ,  ay = T ,  - j ,  oZ = T, ’  k (2.3.Xa) 

txy = T, j ,  t,, = T ,  . k, (etc.). (2.3.8b) 
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Thus, in general, we may write 

a, = T, . n (2.3.9a) 

and 

where n and s are unit vectors (In1 = 1st = 1) given by n = n,i + 
s = ~ , i  + s y j  + s,k. 

+ n,k and 

(b] Sign convention 
At this stage of our treatment, it is necessary to adopt a sign convention. 

We first define a positive and negative plane with respect to a coordinate system 
as follows: 

A positive (negative) plane is one for which the outward normal is acting in the 
positive (negative) coordinate direction. [Thus the planes shown in Figs. (2.3.3) 
are all positive planes.] 

At times it is convenient to use a different terminology: we refer to the plane as 
a ‘face’; thus one refers to the ‘positive x-face’ instead of the ‘positive x-plane’, 
the two terms being synonymous. 

Positive and negative components are defined as follows: 

A positive component acts on a positive face in a positive coordinate direction; or 
A positive component acts on a negative face in a negative coordinate direction. 

Therefore, in accordance with this convention, 

A negative component acts on a positive face in a negative coordinate direction; or 
A negative component acts on a negative face in a positive coordinate direction. 

It is convenient to represent the above components acting at a point, which appear 
in Figs. (2.3.3), by means of a single figure. This representative figure is shown in 
Fig. (2.3.4) where all the stress components are acting. It is important to note that 
this figure is but a pictorial representation that permits one to show the components 
acting on the positive and negative planes by means of a single figure. The eZement 
as shown in Fig. (2.3.41, therefore, is not meant to necessarily represent aphysical 
element of the body. 

We observe that all the stress components shown in Fig. (2.3.4) are positive com- 
ponents in accordance with the above sign convention. According to our definition 
and sign convention, we also observe from this figure that a positive a,, compo- 
nent, a, > 0, indicates tension while a negative a, component, a,, < 0, indicates 
compression. 

(c) The stress tensor 
Using the symbol T,, 
point; these are shown in the array 

a,, we have seen that there exist nine components at a 
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Figure 2.3.4 

These components define the stress at a point; the components are referred to as 
stress components. Therefore, in order to define the state of stress existing at a 
point, it is necessary to specify nine scalar components. (It is interesting to note the 
analogy with a vector in three-dimensional space: in order to specify a vector, it is 
necessary to specify three scalar components.) 

The array of these nine stress components is called the stress tensor, which we 
sometimes denote by the symbol T.  We shall see that it is not simply because it is 
represented by an array that we call r a stress tensor, but rather because the compo- 
nents obey certain specific laws and r possesses certain specific properties. These 
laws and properties will be found in our subsequent treatment. We mention, how- 
ever, that the stress tensor is said to be a second-rank tensor, since two subscripts 
are required to specify its scalar components.+ 

At this point, we should also note that in order to specify the traction (vector) T,,  
it is necessary to know three components of stress acting on the n-plane. Therefore, 
it follows that if the traction on three different (orthogonal) planes passing through 
a point are known, then all the components of stress are known. 

(d) €quality of the conjugate shear stresses 
We have observed above that, in principle, it is necessary to specie nine stress 
components in order to define the state of stress existing at a point. While this is 
true, we shall find that three of these are not independent. 

Now, in general, the stress components will vary from point to point. That is, 
E,, = t&, y .  z), txy = t x y ( x ,  y .  z), etc. or symbolically, T = ~ ( x ,  y ,  z). Let us 
isolate an infinitesimal element Ax Ay Az, having density p, surrounding a point 
0 (which is located at its centre) through which x-, y -  and z-axes are assumed 

t The terminology tensor IS perhaps new to the reader. Indeed, at this stage we do not attempt to justify 
the use of tfus term hut simply accept it as a name. As we shall see, in order for a mathematical quantity 
to he called a tensor, it must obey specific laws. We shall find that the stress tensor obeys these laws and 
it is far this reason that it is  called a tensor. 
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Figure 23.5 

to pass [Fig. (2.3.5)]. Since these are axes of symmetry, they therefore are also 
principal axes of the element. Now, let us assume that stress components are 
acting on each face of the element as shown in the figure. (Note that all com- 
ponents shown in the figure are positive according to our sign convention. For 
simplicity, we have not shown stress components acting in the z-direction.) Since 
the element is infinitesimal, we may also assume that the components are act- 
ing at the centre of each face. It is important to note that Fig. (2.3.5) repre- 
sents a real physical element of the body (as opposed to Fig. (2.3.4), which was 
merely a convenient pictorial representation). However, although the element is 
small, we may not assume that the stress components on opposite faces are the 
same. Thus, for example, the stresses on the right (positive) face of the element, 
which is located at the coordinate x 4- Ax/2, must be assumed to be different than 
those on the left (negative) face, which is located at the coordinate x - A.x/2; 
that is, 

Similarly, 

where y f Ay/:! represent the y-coordinate of the top and bottom plane, respec- 
tively. 

In addition to the stress components, we must also assume that a body force B 
acts through point 0. These forces (which were defined in Chapter 1, and have 
units of N/m3) act at various points of the body, Denoting the components of B by 
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B,, By and B,, we have 

B = B,i + B y j  + BZk. (2.3.10) 

Now, this element must satisfy the principle of angular momentum. In particular, 
let us consider the equation of angular momentum about the z-axis: 

Z M z  = 8,. (2.3.1 la) 

where 8, = y, the rate of change in angular momentum about the z-axis is given 

ti, = IZZ& + (I,, - Iyy)8,dy. (2.3.1 Ib) 

In the above equation, I,,, Iyy and I,, represent the mass moments of inertia about 
the x-, y -  and z-principal axes, respectively; 8,, 8, represent the angular velocities 
and 6, denotes the angular acceleration about the z-axis. For simplicity, let us 
consider the case where the element does not rotate about the x- or y-axes. We then 
have, from Eqs. (2.3.1 la) and (2.3.1 Ib), 

M, = IZZ6,. (2.3.11 c) 

We note further that in the expression for MZ, components acting in the z-direction 
will not appear in Eq. (2.3.1 lc); it is for this reason that they were omitted from 
Fig. (2.3.5). 

bY+ 

We recall that the moment of inertia I,, appearing above can be written as 

Izz = pAxAyAzki, (2.3 I 1 2) 

where kz is the radius of gyration of the element about the z-axis. (The expressions 
for I,, and iyy are similar with k, replaced by k, and ky , respectively). It is important 
to note that k, is of the order of A!. (where At, a characteristic dimension af the 
element, is an infinitesimal of the same order as Ax, Ay or Az) . 

Taking moments about the z-axis passing through point 0 (and observing that all 
the stress components a,, a,,, tzx and tzv, as well as the body forces pass through 
this axis and therefore do not contribute to M,), we find, from Eq. (2.3. I lc), 

(2.3.13) 

Now,$ 

(2.3.14a) 

(2.3.14b) 

See, for example, Beer and Johnston, Victor Mechanicsfor Engzneers. 
We assume here that all stress components vary ‘smoothly’ with x, y and z. 
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Substituting Eqs. (2.3.12) and (2.3.14) in Eq. (2.3.13), 

[txy - r,,,]AxAyAz 2 ~AXAYAZ<@,  (2.3.1 5a) 

and dividing through by Ax Ay Az: 

(2.3.15b) 

Taking the limit as Ax -+ 0, A J ~  -+ 0 and Az -+ 0, and recalling that k,” is of order 
At2, it follows that 

lim k, = 0. 
AC+O 

(2.3.15~) 

We therefore obtain in the limit, txy - zyx = 0; that is, 

t x y  = t y x .  (2.3.16a) 

It is important to understand that by taking the limit as Ax + 0, Ay --f 0 and Az 4 0 
(and implicitly A t  3 0), we have established that the property txy = tv, exists at 
a point. 

Similarly, taking moments about the x- and y-axes and proceeding in the same 
manner, we obtain 

ryz  = Z2.Y (2.3.16b) 

and 

Tzx = Txzt (2.3.16~) 

respectively. 
The equalities given by Eqs. (2.3.16) are referred to as the equality of the ‘conju- 

gate shear stresses’ at apoint. Thus we have found that the shear stress components 
acting at a point in perpendicular directions on any two mutually perpendicular 
planes are always equal. These equalities at a point are shown in Fig. (2.3.6). Again, 
it emphasised that Fig. (2.3.6) is merely apictorial representation, which permits the 
representation of the shear stresses existing at the various planes passing through 
point 0 and does not represent a physical element. 

Figure 2.3.6 

As a result of the equality of the three conjugate shear stresses, the stress tensor 
at a point contains only six independent components, namely 

XXY 

?zx = Txz t z y  = t y z  Tzz 

(”” T V X  = zxy ryy 

We observe immediately that the stress tensor is symmetric. Thus we refer to the 
stress at a point as being represented by a second-rank symmetric tensor. 
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It is important to emphasise that equilibrium is not a requirement for the equality 
of the conjugate shear stresses; indeed the equality of the conjugate shear stresses 
is valid for bodies with angular accelerations. It should be pointed out, however, 
that the equality of the conjugate shear stresses follows also from the assumption 
given by Eq. (2.3.2). In fact, if this assumption were not valid, we would find that 
txy # ty,, etc. and nine independent components would remain. 

Now, there exist many bodies where the stress state at a point is such that all 
the stress components that act in a particular direction vanish. For example, such a 
case exists in a plate that lies in the x-y plane and which is subjected to forces that 
lie only in this plane [Fig. (2.3.7)]; in this case, all stress components acting in the 
z-direction will vanish and the array representing the resulting two-dimensional 
stress tensor contains only four non-zero components. We refer to the body as be- 
ing in a state of 'plane stress'. The stress tensor, in this two-dimensional case, is 
written as 

(F: = zxy ") ryy . 

We thus observe that for this two-dimensional case, there exist only three indepen- 
dent stress components: t,,, tyu and txy = tux. We shall analyse such a state of 
stress in greater detail in a subsequent section. 

Having shown that the principle of angular momentum leads to the equality of 
the conjugate shear stresses at a point, it remains for us to satis@ the principle of 
linear momentum for any element in a body. 

Figure 2.3.7 

2.4 Stress equations of motion and equilibrium 

Consider a body of mass density p in a x ,  y ,  z coordinate system as shown in 
Fig. (2.4.1). In general, such a body may be subjected to external forces F as well 
as body forces B that act at various points of the body and have components B,, 
By and B,, as defined in Eq. (2.3.10). 

Figure 2.4.1 

Due to the forces F and B, it is clear that the various points of the body will 
displace and internal stresses will exist within the body. Let us consider a point 
P ( x ,  y .  z )  located in the body. From the previous sections, we have established that 
there exist nine stress components, six of which are independent (a,, cry. 0,. txr = 
ty,, ryz  = r%y9 %x = rxz). 
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We fmt denote the displacements by 

U = uE + v j  + wk. (2.4.1 a) 

Now, as we observed previously, the stress components may vary from point to 
point, i.e., in general, they are functions of x ,  y and z.  The variation of the stress 
state throughout the body is often referred to as the stress field. We shall assume 
that the stress field is continuous; i.e., there exist no discontinuities in the stresses 
and that all partial derivatives with respect to the coordinates exist. 

Let us consider an element Ax Ay Az at the general point P(x, y ,  z )  where, here, 
we have taken the point P to be at the corner of the element as shown in Fig. (2.4.2). 
Now, according to the principle of linear momentum, C F = mii, where m, the 
mass of the element, is given by P A X  Ay Az .  Isolating this element as a free body, 
the above stresses are considered as ‘external forces’ acting upon it. Applying the 
principle of linear momentum in the x-direction, the stress components acting in 
the x-direction as well as the body force B, are as shown in Fig. (2.4.2). As before, 
we may assume that the stresses act at the centre of each face. 

Figure 2.4.2 

From linear momentum in the x-direction, i.e., C F, = mu, we have 

-OXAYAZ + (CI; + Ao,)AYAz - t yXAxAz  + (tvx + h t , , ) A x A ~  
- tzxAxAy + (tzx + Arz,)AxAy + B,AxAyAz = pAxAyAzi i  (2.4.2a) 

or 

Aa,AyAz + AtyxAxAz + AtzxAxAy + B,AxAyAz = pAxAyAzu .  
(2.4.2b) 

- A0-X +-+- At,, A%, + B, = pu (2.4.2~) 
Ax Ay Az 

Taking the limits as An -+ 0,  Ay -+ 0 and Az -+ 0, and recalling that in the limit, 

Upon dividing by AxAyAz,  we obtain 
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by definition, the above ratios are partial derivatives, we obtain 

Similarly, E Fy = mu and E F, = mw, yield respectively, 

If the body is in equilibrium, U = v = iij = 0, and hence 

(2.4.3a) 

(2.4.3b) 

(2.4.3~) 

(2.4.4a) 

(2.4.4b) 

(2.4.4~) 

It is important to note that the above equations are valid for any body, i.e., they do 
not depend upon a particular material. In fact, these equation are valid for fluids as 
well as for solid bodies. 

Although Eqs. (2.4.3)-(2.4.4), known as the equations of motion and equilibrium, 
respectively, were derived in terms of a Cartesian coordinate system, it should 
be mentioned that similar equations (although of different form) exist for other 
coordinate systems. 

Equations (2.4.3) and (2.4.4) demonstrate that the stress components may not 
vary arbitrarily from point to point within a body. They must vary in a prescribed 
manner such that they satisfy Eqs. (2.4.3) for an accelerating body, or Eqs. (2.4.4), 
if the body is in equilibrium; otherwise they will violate the principles of linear 
momentum or equilibrium. 

Example 2.4 The stress field of a body is given as 

a, = a#, ay = 6ax29 ,  az = cxyz2, 

where a, 4 c are constants (whose units are Pa/m6). In addition, the body 
forces are known to be zero throughout the body. 

Under what conditions do these stresses represent a state of equilibrium 
at all points of the body? 

Solution: In order for the body to be in equilibrium, the above stress field must 
satisfy Eqs. (2.4.4). Substituting in these equations, with B = 0, 

3 txv = h 3 y ,  tyz = cx*yZ, tm = cx y, 

4ax3 + bx3 = 0 

3bx2y + 12ax2y + cx2y = 0 

3cx=y + C X 2 Z  + 2cxyz = 0 

6) 
(ii) 
(iii) 

We first observe that in Eq. (iii), the constant c is the coefficient to terms of various 
diflerent powers of the coordinates x , y andz. Therefore, equilibrium in the z-direction 
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can be satisfied at all points P(x, y ,  z )  of the body only if c = 0. The remaining two 
equations, ( i )  and (ii), reduce to 

(4a + b)x3 = 0 and 3 (4a f b)x2,v = 0, 

respectively, and are satisfied at all points P(x, y ,  z )  only if b = -4a. 0 

2.5 Relations between stress components 
and internal force resultants 

For simplicity, let us consider a rod of cross-sectional area A whose outward normal 
is in the x-direction as shown in Fig. (2.5.1). We denote here the normal force acting 
on this plane by F and the shear forces in the y -  and z-directions by V, and V,, 
respectively. 

Figure 2.5.1 

The components of the traction at any point P(x, y )  on this plane are given by 
[cf. Eq. (2.3.5)] 

A F  
cr, = lim -, 

A vv 
txy = lim - 

A A + O  A A '  

A A 4 0  A A  

A v, 
txz = lim - 

A A + O  A A '  

(2.5. la) 

(2.5.lb) 

(2.5.1 c) 

Therefore, acting on an infinitesimal area A A about the point P, we have 

A F  2: axA.4, (2.5.2a) 

(2.5.2b) AVv N t x y A A ,  

AV, 2: txZAA.  (2.5.26) 

Now the resultant of these forces on the entire plane is, clearly, the sum of all these 
incremental forces over the area, i.e., 

F = ' F ~ - \ A F .  (2.5.3a) 

V, = x A V y ,  (2.5.3b) 

V, = AV,. ( 2 . 5 3 ~ )  
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Substituting Eqs. (2.5.2) and taking the limit as the incremental areas shrink to 
zero, we obtain 

F = // a&, z)dA, (2.5.4a) 
A 

(2.5.4b) 
A 

A 

For the case where a, = const., F = a, f f A  dA = a, A. Similarly, if zx,v and z,, are 
constant over the area, we obtain Vy = tXp A and V, = T,, A; hence 

(2.5.5a) 

(2.5.5b) 

(2.5.5~) v, 
A 

Txz = -. 

The first expression, a, = F/A, is often found to be true for a prismatic bar sub- 
jected to a system of applied axial forces such that a resultant normal force F acts 
on the section. However, we shall find that this result depends on the line of action 
of F. (We shall study this case in greater detail in Chapter 6.) 

On the other hand, as we shall see in Chapter 8, the expressions zxy = V,/A and 
T,, = V z / A  cannot, in general, represent the true stress components at all points in 
a section. These expressions merely yield some average shear stress component on 
the section, as found, for example, in Chapter 1. 

Consider now the moments resulting from the stresses acting on the section. 
We note from Fig. (2.5.1) that the stresses acting on the element AA produce 
incremental moments about the y- and z-axes, respective1y:t 

A M ,  = zo;(y, z)AA. (2.5.6a) 

AMz = -JJO,(JJ, z)AA. (2.5.6b) 

Hence, as before, upon taking the sum and the limiting case as A A -+ 0, we obtain 

A 

(2.5.7a) 

(2.5.7b) 
A 

The moments My and M, about axes that lie in the plane of the cross-section are 
called bending moments since they tend to bend a straight rod into a curved shape. 

The signs of the moments are according to the right-hand rule. 
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It is worthwhile to observe that if a, = const., then 

A 

M, = 
~~ y dA . 

(2.5.8a) 

(2.5.813) 
A 

If, in particular, point 0 is the centroid of the cross-section [Fig. (2.5.1)], then 
My = M, = 0; i.e., the moments about y- and z-centroidal axes due to ox = const. 
acting over a section are zero. 

Consider now the incremental moment about the longitudinal x-axis caused by 
the stress components zXy and zx, (note that a, can produce no moment about this 
axis since it acts parallel to the x-axis): 

AM, = ~ ( L A A )  - z(tXyAA), (2.5.9a) 
which yields a total moment 

Mx = //L.rxz - zrxy)dA. (2.5.9b) 

The moment Mx about the longitudinal x-axis of a rod is called the torsional 
moment since it tends to twist the rod, and is usually denoted by T = Mx . 

A 

Figure 2.5.2 

In the above, we have discussed the state of stress in a Cartesian x, y, z system. 
Now, if the geometry of a body is defined in terms of another coordinate system, for 
example, a cylindrical coordinate system, it is clearly more reasonable to express 
the stress components in this more natural system rather than in a Cartesian system. 
For example, if we have a circular rod, we would use a polar system defined by 
coordinates Y ,  0, x [Fig. (2.5.2)]. In this case, it is customary to define the unit vec- 
tors in this coordinate system by the symbols er, ee, ex, respectively. The resulting 
traction at any point on the x-plane is then 

(2.5.10) Tx = axex + Zxrer + txoe%. 

These stress components are shown acting on the x-plane in Fig. (2.5.2). It is 
worthwhile to mention that the equality of the conjugate shear stresses remains 
equally valid irrespective of the coordinate system used. Thus, since the r-, 8- and 
x-directions are mutually perpendicular, we have, for this system, 

(2.5.1 1) rxr = Trx t tr% = Qr 9 zx% t e x  - 
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It should be emphasised that, at all points, the stress t x e  acts in a circumferential 
direction in this coordinate system. 

The expressions for the moments given by Eqs. (2.5.6)-(2.5.9), were obtained 
for a Cartesian x ,  y ,  z coordinate system. Expressions for the moments M ,  and Mz 
in terms of the stresses (c,, rXrq t x e )  acting on the x-plane are 

Kv = - / / ( r  C0S6)ox dA, 
A 

(2.5.12a) 

(2.5.12b) 
A 

where 8 is measured from the negative z-axis as shown in Fig. (2.5.2).t 
On the other hand, the torsional moment T M, is given by 

T = / / r s , o ( r ,  Q)dA. (2.5.12~) 
A 

This last expression will be found particularly useful in treating the problem of 
torsion of rods having circular cross-sections. 

Example 2.5: Stress components acting on a rectangular cross-section as 
shown in Fig. (2.5.3) are given by 

a x  = ay2.z t x y  = B(d2 - U”), rxz = v(d2 - U”)(@ - $1, 
where a, B and y are coefficients. Determine the resultant internal forces and 
moments acting on the section. 

Salutiaiz: From Eqs. (2.5.4) 
d h 

F = // ox(y, z )  dA = a y2 dy z dz = ay3/3/!, 1 z2/21b_, = 0 S S  
A -d b 

8#?bd3 vy = // rxy(y, z)dA = 2Bb (d2 - y2)dy = 2bp[d2y - y3/3]fd = - i 3 -  
A -d 

Similarly, 

V, = / I  r&, z)dA = -b3d3. 64Y 
9 

A 

From Eqs. (2.5.7), 

d h 

Mz=-//yox(y,z)dA=-a S S  y3dy zdz=0 .  

Figure 2.5.3 

A -d -b 

+ See previous footnote, p. 39. 
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By direct substitution in Eq. (2.5.9b), we find 

Mx = /fk. - ztxy)  dA = 0. 
- d  17 

Example 2.6: Stress components acting on a circular cross-section of radius 
R and area A as shown in Fig. (2.5.2) are given by 

q,r2 zor(R - r )  r 
a, = - R2 I zxr = R2 I 7x0 = to31’ 

where a0 and to are constant stress values. 

the torsional moment T = Mx acting on this cross-section. 

Solution: 

Determine the resulting normal force F ,  the bending moments Mx, My and 

ngoR2 OOA 
2 2 

r3dr=--  -- 
A 0 

R 2n 

since s,”” COS 0 d9 = 0. 

Similarly, 

M, = - / / ( r  sin0)o; dA = 0. 
A 

n R3 T = // rt&, 9)dA = 
A 0 U 

2.6 Stress transformation laws for plane stress 
(a) Derivation 
We recall that there exists a two-dimensional state of stress in which all stress 
components in a particular direction, say z, vanish. In this case the stress tensor at 
a point was seen to be represented by the array 

(;I = t x y  T x y )  t y y  * 

Now consider an element at a point l? Let us assume further that all stress com- 
ponents do not vary with the z-coordinate. We recall that such a two-dimensional 
state of stress is called plane stress. Since the z-dependency has been eliminated, 
we may represent the state of stress by means of a two-dimensional figure of an 
infinitesimal element as shown in Fig. (2.6.1}. (We may think of this element as 
having unit thickness in the z-direction.) In this figure, we have drawn all stresses 
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Figure 2.6.1 

as positive according to our adopted sign convention. Let us assume that the three 
independent stress components are given with respect to the x, y coordinates; i.e., 
we assume that the stresses acting on both the x- and y-faces are known. In ad- 
dition, body forces B may be assumed to be acting on the element. We now wish 
to determine the stress components that exist on any other arbitrary n-face whose 
normal lies in the x-y plane. 

To this end, we define the n-plane, by means of a normal n, which makes an 
angle 6) (positive counter-clockwise) with respect to the positive x-axis. We further 
define, as before, the unit vector t as being tangential to the plane; i.e., n and 2 
are mutually perpendicular. (Note that the angle between t and the positive x-axis 
then is always 0 + x/2 according to our definition.) Since we wish to determine 
the stress components existing on this plane, we therefore ‘cut’ the element along 
this plane and isolate it as a free body [Fig. (2.6.2)]. 

Note that the isolated portion is now a triangular element ABC. Let Ax, Ay and 
As denote the infinitesimal lengths of AB, BC and AC, respectively. Clearly, having 
made the ‘cut’ there must exist unknown normal and shear stresses acting on the 
n-plane. We denote these by a, and tnt, respectively. 

Now, this element must satisfy the (vector) equation of linear momentum 

E F = m i i ,  (2.6.1) 

where the mass of the element is 

1 1 1 
2 2 4 

nz = -pAxAy= -pAs2sin0cos6 = -pAs2sin20 (2.6.2) 

Figure 2.6.2 and p is the mass density. 
Instead of resolving the above linear momentum equation inx- and y-components, 

it is more convenient here to resolve the vector equation in the n- and t-directions; 
thus we must satisfy the scalar equations 

F,, = mii, (2.6.3a) 

and 

(2.6.3b) 

where U, and U, are the accelerations in the n- and t-directions, respectively. 
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From Eq. (2.6.3a), we obtain 

O;, As - (ax Ay) cos 8 - (cry Ax) sin 8 - ( txy Ay) sin 8 

As2 P - (tYxAx)cos8 + B,- sin28 = -As2sin28ii,,, (2.6.4a) 
4 4 

where B is represented in terms of its components as B = B,,n + B,t. But 

An = As sin%, Ay = As cos0. (2.6.4b) 

Dividing Eq. (2.6.4a) through by As and substituting Eqs. (2.6.4b) in it, we find 

1 
4 

an - a, cos2 8 - a, sin2 8 - 2txJ, sin8 cos6 = -As sin28 (pti, - B,,). (2.6.5) 

Upon taking the limit as As  -+ 0, the right-hand side goes to zero, and it follows 
that 

a,, = ox cos2 8 + a.v sin2 8 + 2tXy sin 0 cos 8.  (2.6.6a) 

Recalling the identities, 

1 1 
2 2 

we obtain an alternate form of Eq. (2.6.6a), namely 

c0s26 = -(1 +cos28), sin2@ = -(1 -cos28), sin26 =2sin8cos8, 

a, CY 

2 2 
o;, = -(1 + cos 28) + -(1 - cos28) + txy sin28 

or 
0, +ay a, - ay 

2 +- 2 cos 28 + t,,, sin 28, an = - (2.6.6b) 

Similarly, from Fr = mu,, 

tntAs + (axAy) sin8 - (ayAx) cos 8 - txY(cos2 8 - sin2 @)As 
1 
4 

= -As2 sin28(pii, - Bb). (2.6.7) 

Again, dividing through by As, using Eqs. (2.6.4b), and taking the limit as As + 0, 
we obtain 

(2.6.8a) 

Upon noting that cos2 8 - sin2 8 = cos 26, we obtain an alternative form for tnt, 
namely 

tnt = tXY(cos 2 8 - sin 2 8) - (a, - a,,) cos 6 sin 6 .  

sin 28. (2.6.8b) 

Equations (2.6.6a) and (2.6.8a) or alternatively Eqs. (2.6.6b) and (2.6.8b) are called 
the transformation laws for plane stress. These expressions thus permit us to deter- 
mine the stress components that exist on an arbitrary plane passing through a point 
in terms of the stresses existing on the x-  and y-coordinate planes. One may also 
think of these laws as prescribing the stress components in any coordinate system 
(here the n-t system) in terms of the scalar quantities in the x-y system. Thus 
they transform the scalar quantities in one coordinate system to another coordinate 
system. It is for this reason that they are referred to as ‘transformation laws’. In 

0;l - 4. 
2 

tn* = tXY cos28 - ~ 
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physical terms, the two-dimensional state of stress at a point, (ax, ay. txy), is equiv- 
alent to the state of stress defined by the components fan. at, tnc). This equivalence 
is shown pictorially in Fig. (2.6.3). 

Figure 2.63 

It should be emphasised that the derivation of the above transformation laws 
does not require an  equilibrium state and thus these expressions are also valid at 
all points of a body undergoing accelerations. It is also important to emphasise that 
these laws are true for any specijicpoint of a body; indeed one can only refer to the 
state of stress a t  apoint. This feature should be clearly evident since, in the process 
of deriving these laws, it was necessary to take the limit As + 0 . 

We shall find that the transformation laws possess certain interesting properties; 
these will be investigated in the next section. 

Example 2.7: A body is subjected to forces such that cy is the only non-zero 
stress component at a point. The remaining stress components a, = txy = 0 
[Fig. (2.6.4a)l. Determine the stress components that exist on planes whose 
normals are oriented by 45" and 135" with respect to the x-plane. 

Figure 2.6.4 

Solution: On the 45" n-plane: 6 = 45". sin26 = 1 ,  cos28 = 0. Therefore, from 
Eqs. (2.6.6b) and (2.6.8b), 

ay tnt = - 0.Y [Fig. (2.6.4b)l. 
2 

cr, = - 
2 '  

On the 135" n-plane: 6 = 1 3 5 O ,  sin26 = -1, cos26 = 0. Therefore 

tnt = -- a' [Fig. (2.6.4c)I. OY Crn = - 
2 '  2 

It is important to note the directions of the shear stresses on the two given planes. U 
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Further examples illustrating the transformation laws are deferred to a subsequent 
section. 

(&) Remarks on the transformation Iaws 
(stress as a tensor: invariants of a tensor) 
Any quantity for which its (two-dimensional) scalar components transform from 
one coordinate system to another, according to Eqs. (2.6.6) and (2.6.Q is called 
a two-dimensional symmetric tensor of rank 2. Here, in particular, the tensor 
is a stress tensor. However, there are other quantities, for example, moments and 
products of inertia (viz., Zxx, Iy,. -Ixy),  which transform according to the same 
laws. Therefore, one may state that the moment and products of inertia are also 
scalar Components of a second-rank symmetric tensor. Thus, by definition, a tensor 
is a mathematical quantity that transforms according to certain laws, 

Tensors, as governed by their transformations laws, possess several properties. 
We develop these properties (in two dimensions) for the second-rank symmetric 
stress tensor. 

Recall that Eq. (2.6.6b) represents the normal stress component a, acting on the 
n-plane whose normal n is inclined at an angle 6 with respect to the x-axis. We also 
recall that the unit vector t was then defined as being inclined at an angle 6 + n/2 
with respect ro the x-axis. Consequently, the normal stress component a, is given 
bY 

a, +ay a, -ay 
at = - 2 +- 2 cos 2(8 + n/2) + tXy sin 2(8 + n/2) (2.6.9a) 

or 

0, +a, 0, - a y  a,=:--- cos 26 - txy sin 26. 
2 2 (2.6.9b) 

Adding Eqs. (2.6.6b) and (2.6.9b) we obtain immediately 

0, + 0; = a, + a, = Z,, (constant). (2.6. SOa) 

From Eq. (2.6.10a) we observe that, for any given point, the sum of the normal 
stresses in any two orthogonal directions is a constant. While the three-dimensional 
case is beyond the scope of our treatment, we state here that for this case, 

0, + oy + az = z,,; (2.6. lob) 

i.e., the sum of the normal stresses in any three orthogonal directions is a constant. 
Similarly, from Eqs. (2.6.6b), (2.6.8b) and (2.6.9b), we find, after some simple 

algebraic manipulations, 

ono, - tnt 2 = axay - t,, 2 = IU2 (constant). (2.6.1 1) 

The constants Zg, and Z,, appearing in Eqs. (2.6.10) and (2.6.1 1) are called 
invariants. These equations demonstrate that the two-dimensional symmetric stress 
tensor possesses two invariant quantities that are truefor any set ofmutuallyper- 
pendicular stress components, irrespective of their orientation in space. (In the 
three-dimensional case, which again is beyond the scope of our treatment, we obtain 
three invariants.) These invariant properties are significant characteristic properties 
of tensors. 
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(c) Transformation law of a vector: the vector as a tensor 
In our previous development, we found that the symmetric (two-dimensional) array 
of the stress components transformed according to a law given by Eqs. (2.6.6) and 
(2.6.8). This law was stated as being the transformation law for a symmetric tensor 
of rank 2. We further observed that there exist, in this case, two invariants that 
remain valid irrespective of the orientation of the coordinates x, y. 

We now digress from our study of solid mechanics to demonstrate that the con- 
cepts of transformation laws and invariants, as found in the investigation of the 
stress tensor, are concepts that have been encountered previously, namely, for a 
vector. 

Figure 2.6.5 

To this end, we consider a two-dimensional vector P lying in an x-y plane. Now, 
a vector is defined by two quantities: (a) its magnitude I PI and (b) its orientation; 
for example, the angle a with respect to the x-axis (in the two-dimensional case) 
[Fig. (2.6.5a)l. On the other hand, this vector may be defined, instead, by its two 
scalar components P, and P, as shown in Fig. (2.6.5b). We further note that the 
square of the magnitude of P is given by 

[PI’ = P,2 + P;. (2.6.12) 
Now, instead of defining the vector P by means of its x -  and y-components, it is clear 
that the vector P may also be defined by means of any other two mutually orthog- 
onal components. Let us therefore construct another set of orthogonal coordinates, 
n and t ,  oriented with respect to the x-y system by an angle 8 as shown in 
Fig. (2.6.5b). We denote the scalar components in this n-t system by P,, and P,, 
respectively. Then, clearly, 

P,, = P, cos0 + P, sine, (2.6.13a) 

Pr = -P, sin0 + P,cose. (2.6.13b) 

Equations (2.6.13) are, in fact, transformation laws that transform the scalar compo- 
nents of a vector in a single coordinate system, the x-y system, into the components 
of another coordinate system, the n-t system. They are the analogues to the transfor- 
mation laws given by Eqs. (2.6.6) and (2.6.8) for the second-rank symmetric tensor. 

Let us consider the quantity ( P i  + P:). Substituting Eqs. (2.6.13) we have 

P: + P: = (P: cos2 6 + P,” sin’ 8 + 2P, P,, sine, cos6) 

+ (P: sin2 6 I- P; cos’@ - 2 P X 4  sine COSO), 

= P,2 + P; 
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that is, 

P,2 + P; = P,2 + P; = [PI2 = I .  (2.6.14) 

This last equation expresses the invariant quality of the vector; i.e., the sum of the 
squares of any two orthogonal components of the two-dimensional vector equals a 
constant. Here, this constant has a simple physical interpretation: it represents the 
square of the magnitude of the vector. Thus we observe that a vector possesses a 
single invariant. In our examination of the two-dimensional symmetric stress tensor, 
we noted that there exist two invariants, I,, and &. Thus the invariant represented 
by Eq. (2.6.1 4) represents the analogue to Eqs. (2.6.10) and (2.6.1 1). 

Indeed, in mathematics, a vector is referred to as afirst-rank tensor. (Note that 
only a single subscript is required to specify its components.) Thus, quantities such 
as a vector, or stress are called tensors since they obey specific transformation laws 
such that certain invariant properties are maintained for all coordinate systems. 

Figure 2.7.1 

2.7 Principal stresses and stationary shear stress values 

(a) Principal stresses: stationary values of a, 

We have seen in the previous section that if a (two-dimensional) state of stress, a,, 
ay and txy = ryux, is known at a point, then the normal stress a n  and shear stress tnr 

for any n-plane passing through this point can be obtained by means of the trans- 
formation laws. We note that a,, = a,,(8) and tnt = tnt(6). Now it is obvious that, 
as they depend on 6, these stress components have maximum and minimum values, 
i.e. stationary values [Fig. (2,7.1)]. We first investigate the stationary values of a,. 

Treating a, as a function of 6, the necessary condition for stationary values is 

dun - = 0. 
d8 

From Eq. (2.6.6b), 

dcn - = -(a, - cy) sin 26 + 2tx, cos 28. 
d8 

(2.7.1) 

(2.7.2) 

Setting this derivative to zero, we obtain 

(2.7.3) 

Now Eq. (2.7.3) possesses two relevant roots, 8, and &, which define two planes on 
which the maximum and minimum stresses on act [Fig. (2.7. l)]. These maximum 
and minimum values of a, are called collectively the principal stresses, and the 
planes upon which they act are referred to as the principal planes. 

Before examining these roots in detail, we first observe, by comparing 
Eqs. (2.6.8b) and (2.7.2), that 

G . V  tan28 = 
2 

(2.7.4) 

Hence we immediately conclude that tnr = 0 on the plane for which % = 0. Thus 
we have established that on a principal plane, tnt = 0; that is, no shear stress 
component exists on a principal plane. 

We now tunt our attention to a more thorough examination of Eq. (2.7.3). We 
have remarked that this equation possesses two roots, 61 and 62. Clearly, since a,, is 



2.7 Principal stresses and stationary shear stress values 49 

a function of 8, these roots correspond to the maximum and minimum values of a, 
[Fig. (2.7. l)] . We shall hereafter associate a1 and 02 with the maximum and mini- 
mum values of a, * respectively (algebraically, a2 5 a l )  acting on the corresponding 
principal planes defined by 6, and 82. 

Figure 2.7.2 

Upon plotting Eq. (2.7.3) as a function of 28 [Fig. (2.7.2)], one observes that a 
relation exists between the two roots, namely 282 = 281 f n; that is, 

o2 = e, f n/2. (2.7.5) 

Thus we immediately conclude that the two principal planes are mutually 
perpendicular. 

Now, having defined 81 to be the plane of maximum a,, it is necessary to identify 
definitely the root. Indeed, fiom Fig. (2.7.2), it is certainly not clear which root 
corresponds to 81 and which to 82. However, since the maximum value a1 occurs at 
8 = 81, it necessarily follows that 

(2.7.6) 

for 6 = 81. From Eq. (2.7.2), we find 

d2a, - = -2[(a, - a,) cos28 + 2txy sin281 
do2 

Hence, making use of Eq. (2.7.3), we find 

d2 a, 
dQ2 
-- (2.7.7b) 

Noting that the term in parenthesis is always positive, we observe that the sign 
of the second derivative depends on the sign of the product txv sin 28. Hence it 
follows that 3 < 0 at 6 = 81 (a) if txy > 0 and 0 < 281 < n or@) if txy < 0 and 
-n < 281 < 0. 
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We thus have established a criterion to identify the 81 principal plane upon which 
the maximum principal stress acts; namely 

If zxy > 0, then 0 < €J1 < n/2 
If zxy < 0, then -312 < < 0. 

Having established this criterion, it is useful to examine fbrther tan 26 as a function 
of 26 [as shown in Fig. (2.7.3)]. If the quantity &- > 0, then the root 81 ac- 
cording to our criterion will correspond to, say, point A 1 if txy > 0; if 5 > 0 and 
rxy < 0, then the root 61 will correspond to point B1. On the other hand, if '& < 0 
and rx"v > 0, then the root 61 will correspond to point CI while if this quantity is 
negative and rxp < 0, then 61 will correspond to point D1. 

Figure 2.7.3 

Figure 2.7.4 

Now, we recall that the two principal planes defined by 61 and 82 are mutually 
perpendicular. Thus, once the angle 61 is known, the 62 plane, upon which the 
minimum principal stress cr2 acts, is given by Eq. (2.7.5). For consistency we shall 
use 

e2 = e1 + ~ 1 2 .  (2.7.8) 

Having found the roots 8, and 62, the principal stresses (11 and a2 may be given 
by Eq. (2.6.6b). To determine sin261 and cos281, we may use the trigonometric 
identities 

(2.7.9a) tan 28 - rx.v sin28 = 
41 +m2B - Jr- 

-=4-- 
and 

(2.7.9b) 1 (ox - crv)/2 cos28 = 

On the other hand, we may turn to Fig. (2.7.4) where a, is taken as the abscissa 
and tnt as the ordinate. We note from this figure that tan281 is in agreement with 
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Eq. (2.7.3). Denoting the hypotenuse by R, we have 

R = {(y)' + r$. (2.7.10a) 

Then clearly, 

T.Y (2.7. lob) sin281 = -. 
R 

a x  - a y  cos281 = - 
2R ' 

Similarly, since = -k n/2, 

(2.7.1 Oc) a x  - @y Tx.v 

R 
sin 282 = - -, cos 262 = - - 

2R ' 

Substituting this in Eq. (2.6.6b), 

or 

Similarly, 

(2.7. 

(2.7. 

In passing, it is worthwhile noting, from Eqs. (2.7.1 l), that 

cI1 + cI2 = CTX + a y ,  (2.7.12) 

i.e., we observe again that the sum of the normal stresses on any two orthogonal 
planes is an invariant at a point. 

(b) Maximum and minimum shear stress componenfs 
The planes of stationary shear stress are determined from tnt, given by Eq. (2.6.8b), 
in a similar manner. As in the preceding analysis, the necessary condition for sta- 
tionary values of rnt is 

drn, - = 0. 
d@ 

Noting that 

drn, - = -2r,, sin28 - (ox - q,) cos 28, d0 

(2.7.13) 

(2.7.14) 

we find that the planes of stationary shear stresses are given by the roots of 

(2.7.15) tan28 = --. 
As before, this equation possesses two relevant roots, which we denote here by 8,, 
and 082, and where again, 

Os2 = %,I f n/2. (2.7.16) 

cr, - *y 

2TX, 
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Figure 2.7.5 

Now we observe that the right-hand side of Eq. (2.7.15) is the negative reciprocal 
of the right-hand side of Eq. (2.7.3). 

Recalling that for any angle #. tan(# + n/2) tan # = -1, we conclude that 

esl = o1 - n/4 (2.7.17a) 

and by Eq. (2.7.16), 

es2 = e1 + n/4. (2.7.17b) 

where we have chosen the positive sign. (It is noted that the positive and nega- 
tive signs appearing in Eq. (2.7.16) define the same physical planes given by OS2; 

however, one will represent a positive face and the other, a negative face.) 
The maximum and minimum values of tnt are then obtained by substituting 

the appropriate values for 0,1 and 4 2  in Eq. (2.6.8b). The trigonometric quantities 
appearing in this equation can be obtained by a construction shown in Fig. (2.7.5). 
Noting that again, the hypotenuse R is given by 

we have 

(2.7.18a) 

(2.7.18b) t X . V  

R 
cos2es1 = -. 

Similarly 

(2.7.18~) 

(2.7.18d) G y  cos 20,2 = - - 
R *  

Upon substituting in Eq. (2.6.8b), we find, after simple algebraic manipulations, 

and 

(2.7.19a) 

Using Eqs. (2.7.1 1), we readily observe from Eq. (2.7.19a), that 

0 1  - 0 2  
rmax = - 2 .  

(2.7.19b) 

(2.7.20a) 

Since, in our two-dimensional analysis, we have assumed that a, = 0, it should be 
mentioned that this last expression is valid provided 0 1  > 0 and a 2  c 0. 

Although, as we have previously stated, a three-dimensional analysis is beyond 
the scope of our present treatment, we mention here that in such cases, there exist 
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three principal stresses. 0 3  5 0 2  5 a1, and that 

(2.7.20b) 

(c) Summary of results 
It is worthwhile to summarise several of the basic results obtained relating to prin- 
cipal planes and stresses and to stationary shear stresses. 

U Principal planes are mutually perpendicular. 
I The shear stress tnt = 0 on a principal plane. 
I rmm = 
II Planes of stationary shear stress are oriented at 45" with respect to the principal 

planes. 

LTma*-orma 
2 

These results are summarised pictorially in Fig. (2.7.6) where n 1 ,  n2 denote the unit 
normal to the respective principal planes, and n,l , nsz denote the unit normal to the 
planes of stationary shear. 

Figure 2.7.6 

Finally, it is observed that we have not found that the normal stress on acting on a 
plane of stationary shear stress is zero. It is left as an exercise to show that on such 
planes, cn = v. 
(d) Parametric representation of the state of stress: the Mohr circle 
In the preceding section, the transformation law for the normal stress a,, 
[Eq. (2.6.6b)I 

cr, $- 0 " V  0; - 0 y  +- cos 28 + rxy sin 28 an = - 
2 2 

was established. Let us rewrite this as 

0, +a, 0, -ay 
2 2 a,,---=- cos 28 + twy sin 28. (2.7.2 1 a) 

We also recall the transformation law for tnt, namely Eq. (2.6.8b), which we repeat 
here: 

sin 28. (2.7.2 lb) 0; - Qy 

2 
tnt = tX." cos 28 - - 
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Figure 2.7.1 

We now take the square of each of Eqs. (2.7.21) and add them; we obtain 

However we recognise the right-hand side of Eq. (2.7.22) as being R2, where R, 
defined by Eq. (2.7. lOa), is a known quantity; i.e., 

Thus, we have 

(2.7.23) 

(2.7.24) 

Now since a,, ay and tx-v are given, Eq. (2.7.24) has the form 

(a, - a)2 + T : ~  = R2. (2.7.25) 

where a = 9 is known. 
Equation (2.7.25) clearly has the same form as (x - a)2 + y2 = R2, which is 

the equation of a circle with centre at x = a, y = 0 and radius R in an x-y plane. 
Hence, if we construct a a,-tnf plane (with a, as abscissa and tat as ordinate) and 
plot Eq. (2.7.25) in this plane [Fig. (2.7.7)],' we recognise that it represents a circle 
whose centre is at [(ox + cY)/2, 01 and whose radius R is given by Eq. (2.7.23). 

This feature of the transformation law was first observed by Mohr and the circle 
is called a Mohr circle. We thus recognise that the Mohr circle is but a parametric 
representation of the transformation laws (26 being the parameter), and that the 
coordinates of each point on the circle represent the normal stress a, and shear 
stress tnr acting on the various planes passing through a point. 

In order to determine the Mohr circle, we recall that, in general, three quantities 
are required to define any circle: either three points on the circle, or two points 
lying on the circle and the coordinates of the centre. Having established that the 
centre 0 of the Mohr circle [(an + ay)/2,0] lies on the abscissa, and that each point 
represents the stress components on a different plane of the body, it is sufficient 
to know only two points: namely, (a) the point representing the stress components 
existing on the x-plane (a, and txy) and (b) the point representing the components 
on the y-plane (qv and tux). 

Thus, we may construct the Mohr circle as follows [Fig. (2.7.8)) 

Define the a,-zmt space with positive znf in the downward direction. (Note that 
positive downward is an arbitrary choice.) 
Plot the stresses acting on the x-plane; we denote this point by €? Note that on 
the x-face, a, = ox, tnf = txy [see Fig. (2.7.9a)l. 
Plot the stresses acting on the y-plane; we denote this point by Q. Note that on 
the y-face, an = ay, tnt = -tyx = -txy [see Fig. (2.7.9b)l. Note too that point 
Q is diametrically opposite to point P on the Mohr circle. 

t Note that positive tnr has been taken downward. The reason for this choice will soon become apparent. 
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Figure 2.7.8 

Figure 2.7.9 

m Construct the line connecting points P and Q. This line PQ then intersects the a, 

I Draw a circle with radius R = OP = OQ about its centre, point 0. 

By constructing the Mohr circle in this manner, we observe readily that the coordi- 
nates of the centre are [(ax + ay)/2, 01. Furthermore one establishes immediately 
that the circle will intersect the rr,-axis at two points; namely 

axis at point 0, the centre of the circle. 

(2.7.26) 

which as we observe, represent the principal stresses a1 and 0 2  as found previously 
[see Eqs. (2.7.1 l)]. 

We recall now that the transformation laws, as givenby Eqs. (2.6.6b) and (2.6.8b), 
contain trigonometric terms whose argument is 28, where positive 8 is measured 
counter-clockwise with respect to the x-axis. Hence, to determine the point re- 
presenting the stress (afl, tflt) existing on any arbitrary n-plane whose normal n is 
inclinedwith respect to the x-axis at angle 8, we measure 28 counter-clockwise with 
respect to the line OP (since we recall that P represents the x-plane). (The motivation 
for defining znf positive as downward in the an-tnt space now becomes apparent; in 
both the physical x-y space and the afl-t,, space, positive 8 is counter-clockwise.) 



56 internal forces and stress 

We may verify from the Mohr circle that the principal plane on which 01 acts is 
given by 

which agrees with Eq. (2.7.3). 

analytically, may be readily observed fiom the Mohr circle; namely 

m The principal planes are orthogonal. 
m Planes of maximum and minimum shear stress are oriented at 45" with respect 

tmax = R ,  tmln = - R  or tmax = y. 
The essential feature of the Mohr circle is that it gives us a complete pictorial 
representation of the state of stress existing at a point. Although it is useful in this 
sense, as developed here, it should nevertheless only be considered essentially as 
a parametric representation of the analytical two-dimensional transformation laws 
derived previously. 

In all the following examples, we first solve the problems analytically and then 
verify the solutions via the Mohr circle. 

The reader should pay special attention to the related solutions of Examples 2.8, 
2.9 and 2.10. 

Other properties of the state of stress at a point, which were previously established 

to the principal planes. 
a -a 

Example 2.8 Given the state of stress a, = 14 MPa, c,, = -10 MPa, txv = 
5 MPa [Fig. (2.7.10a)l. Determine the principal stresses and the correspon- 
ding principal planes. 

Figure 2.7.10 

Sulutiun: Using Eqs. (2.7.1 I), 

Therefore, 01 = 15 MPa, 02 = - 11 MPa. 

equation 
From Eq. (2.7.3), the principal planes are determined according to the roots of the 

t x  v 5 
6.-oi. 12 

tan28 = L - - - - - 0.416. 
2 
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Figure 2.7.11 

According to the established criterion [following Eqs. (2.7.7)], since -cxy =- 0,201 = 
22.6 -++ 01 = 11.3". [This corresponds to point AI o f  Fig. (2.7.3).] Therefore, by 
Eq. (2.7.5), 02 = 01 + ~ / 2  = 101.3". 

The corresponding Mohr circle is shown in Fig. (2.7.1 1) and the principal stresses 

From the M o b  circle, we note too that tmaX = = 13 MPa and that 641 = 
U 

and planes are shown in Fig. (2.7. lob). 

e1 - 4 4  = -33.7". 

Example 2.9 Given the state of stress a, = 14 MPa, ay = -10 MPa, txv = 
-5 MPa [Fig. (2.7.12a)l. Determine the principal stresses and the correspond- 
ing principal planes. 

Figure 2.7.12 

Solution: Using Eqs. (2.7.1 I), the principal stresses are, as before, (11 = 15 MPa, 
(12 = - 1 1 MPa. Moreover, from Eq. (2.7.3), 

5 
".-01 12 

- -0.416. -cXY tan20 = - = __  - 
2 

According to the established criterion, since txy -= 0,201 = -22.6 -+4 O1 = 
-11.3". [This corresponds to point D1 o f  Fig. (2.7.3).] Therefore, by Eq. (2.7.5), 
e2 = + x i 2  = 78.7". 
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Figure 2.7.13 

The corresponding Mohr circle is shown in Fig. (2.7.13) and the principal stresses 
0 and planes acting on the physical element are shown in Fig. (2.7.12b). 

Example 2.10 Given the state of stress a, = -14 MPa, ay = +10 MPa, txv = 
-5 MPa [Fig. (2.7.14a)l. Determine the principal stresses and the correspond- 
ing principal planes, 

Figure 2.7.14 

Solution: Using Eqs. (2.7. I I), 

-14 + 10 It /( -142- 10)' + 52 = -2 f 13. 
2 c1.2 = 

Therefore, 01 = 1 1 MPa and a2 = - 15 MPa. 

equation 
From Eq. (2.7,3), the principal planes are determined according to the roots of the 

Since tXp < 0,281 = -157.4" +-+ 81 = -78.T. [This corresponds to point B1 of 
Fig. (2.7.3).] Therefore, according to Eq. (2.7.5), $2 = 81 + n/2 = 1 1.3". 

The corresponding Mohr circle is shown in Fig, (2.7.15) and the principal stresses 
and planes acting on the physical element are shown in Fig. (2.7.14b). 

From the Mohr circle, we note too that tmax = = 13 MPa and that ##I = 
81 - n/4 -123.7'. 0 
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Figure 2.7.15 

Example 2.11: Given the state of stress ox = uy = 0 and txy = to > 0 [Fig. 
(2.7.1 6a)l. Determine the principal stresses and planes. 

Figure 2.7.16 

Solution: From Eqs. (2.7.1 1), the principal stresses are crl = to and a2 = --to. The 
principal planes defined by the roots of the equation, 

Hence, since to > 0, 61 = 90" ++ 81 = 45" and therefore 62 = 135". The Mohr 
circle, shown in Fig. (2.7.17), is observed to be a circle of radius R = to with centre 
at the origin of the on-tnr plane. 

Figure 2.7.17 
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The state of stress prescribed in this example and shown in Fig. (2.7.16) is called 
cl 

Example2.12: Given the state of stress a, = 0, ay = 10 kPa, q.. = 0 [Fig. 
(2.7.18a)l. Determine an and tnt on a plane whose normal n i s  inclined at 
(a) 6 = 30" and at (b) 6 = 120" with respect to the x-axis. 

a state of pure shear. 

Figure 2.7.18 

Solution: 

(a) From Eq. (2.6.6b), 

cos 26 + txv sin 28. +- a, = ~ 

O x  + a y  0; - - a y  

2 2 
Substituting the appropriate values and noting that cos 60" = 0.5, sin 60" = &/2, 
we find a, = 2.5 kPa. 

Figure 2.7.19 

Similarly, from Eq. (2.6.8b), 

sin28 = 2.5& = 4.33 kPa. a, -ay 
2 

z,* = tx-v cos 28 - - 

(b) Using 8 = 120", we obtain similarly a, = 7.5 Wa and rat = -2.5fi = 
-4.33 kPa. 

The stress components acting on the physical element are shown in Fig. (2.7.18b) and 
0 the Mohr circle representation is given in Fig. (2.7.19). 

Figure 2.7.20 
Example 2.13: Given the state of stress a, = ay = -00 (where a0 > 0) and 
txy = 0 [Fig. (2.7.20)]. Analyse the state of stress. 
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Solution: According to Eqs. (2.6.6b) and (2.6.8b), we note that o,, = -00 and 
t;rt = 0 for all values of 8. Furthermore, according to Eq. (2.7.23), the radius of 
the Mohr circle R = 0; hence we note that the Mohr circle, in this case, degenerates 
to a point located at (-CO, 0) in the o,-t,, plane [Fig. (2.7.21)]. 

Such a state of stress is called a hydrostatic state of stress at a point. Note that in 
this case the normal stress is the same for all planes and no shear stress exists on any 

0 plane passing through this point. 

02.8 Cartesian components of traction in terms of stress 
components: traction on the surface of a body' 

It is often more convenient to express the traction T ,  on a given n-plane in terms of 
its Cartesian components rather than its normal and tangential components, o,, tfls 

and tnr, as in Eq. (2.3.6). Although the expressions developed below are valid for 
any n-plane at an interior point of a body, they are particularly useful in expressing 
external contact forces acting on the surface S ofthe body. As shown in Fig. (2.8. I), 
these contact forces may be either distributed over a given area of S or concentrated 
forces or couples.$ Such distributed forces are thus prescribed in terms of traction 
vectors T ,  where n is the unit normal vector at any point to the surface S. For 
simplicity, we confine the discussion to a two-dimensional system of plane stress 
in the x-y plane; the unit normal vector is given by 

n = c o s 8 i + s i n O j .  (2.8.1) 

Figure 2.7.2 I 

Figure 2.8.1 and Figure 2.8.2 

Now, for a two-dimensional case, the traction T ,  acting on an n-plane can be re- 
presented in terms of two perpendicular components in the n- and (say) t-directions; 
i.e., 

T,  = a,n + t f lr t .  (2.8.2a) 

Since any vector can be defined by its scalar components, the traction may instead 
be given in terms of its scalar components X ,  and Y, in the x- and y-directions, 
respectively; i.e., 

T ,  = X,i + Y , j .  (2.8.2b) 

Subject material in this section is ophonal and. as it is not necessary in the first 13 chapters, may be 
deferred until a reading of Chapter 14. Throughout this book, the symbol (0) has been used before 
certain sechondsubsections that may be omitted on first reading, without loss of continuity. 

t We note that a concentrated force represents a particular case of distributed forces in which the intensity 
of the distributed force per area tends to infinity as the area tends to zero. [See Eqs. (1.2.1) and (1.2.3).] 
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Figure 2.8.3 

From the development of Section 6, it is clear that there exists a relation between the 
components X,, and Y, and the stress components at all points of the body including 
points on the surface S. We obtain these relations by proceeding exactly as with 
the derivation of the stress transformation laws. To this end, consider an element 
having density p near the surface S [Fig. (2.8.2)] and let a, 3 t,,, ty.v and txy be 
the stresses acting on this element. Then from the principle of linear momentum, 

F, = mii, where m = $As2 sin26 [see Eq. (2.6.2)] , we have 

(2.8.3) P 
4 

- txx Ay - ty,Ax + &As = -As2 sin26 U. 

Dividing through by As, 

AX P 
4 t,,- + X,, = -As sin28 U ,  -txx- - AY 

As . As 

noting that 2 = cos 6 ,  2 = sine, and taking She limit as As + 0, we obtain 

X ,  = txx cos@ + t, sine. (2.8.4a) 

The component of traction Y,, in the y-direction is obtained similarly from )3 F’ = 
m v: 

-tyYAx - t,,Ay + Y,As = f A s 2  sin26 U.  
4 

Dividing through, as before, by As and taking the limit as As + 0, we obtain+ 

Y,, = t7v,v sin 6 + txJl cos 6. (2.8.4b) 

We may now rewrite these expressions in a slightly different form that is more 
appropriate for future developments. Just as we denoted the angle 6 as defining the 
orientation of the unit normal n with respect to the x-axis, we now denote the angle 
q as the orientation with respect to the y-axis [Fig. (2.8.3)]; then 

n = cos 6i + cos $ j ,  (2.8.5) 

where sine = cos t,b, Therefore 

x,, = t,, COS e + ty, COS +, 
Y,, = t,.“ cos 8 + tyy cos q. 

(2.8 ha) 
(2.8.6b) 

Letting I I ,  E cos 8 and I I y  = cos $ be the ‘direction cosines’ of the vector n, we 
may write 

n = 4,i + ly j ,  (2.8.7) 

t It is worthwhile to mention here that, while we have established the desired results, namely Eqs. (2.8.4), 

Treating T,, given by Eq. (2.8.2a), as a vector, its scalar components in the x -  and ydirections are, 
we could also obtain them in a simpler fashion. 

respectively, 

X , = T , ,  i ,  Y,, =T,.j. (a) 

n. i = cos@. n. j == sin@; 1 .  i = -sin@, t . j = cos@, cb-e) 

Then, since 

substituting the expressions for a,, and tnt given by Eqs. (2.6.6a) and (2.6.8a), respectively, into 
Eq. (2.8.2a), using Eqs. (b to e) and performing the required operations, leads directly to Eqs. (2.8.4). 
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Hence, using this notation, the components of the traction T, are rewritten sim- 
PlY as 

(2.8.8a) 

(2.8.8b) 

It is important to observe that if, for a given 8, and e,, X, and Y, are known, then 
in general, it is not possible to determine all the stress components at a point on 
the surface S.t (Indeed it may not be possible to find any of the stress components.) 
However, if t,,, t,,,, and txy are known, then clearly X, and Y, are determined. 

The expressions of Eqs. (2.8.8) will prove useful in relating the components of 
traction on the surface of a body in terms of the stress components existing at points 
on the surface S .  

Example 2.14 Consider a rod (of unit width) subjected to given applied trac- 
tions Tn as shown in Fig. (2.8.4). What are the known stress components in 
each sector of the surface boundary S, namely in the sectors AB, BC, CD, DE, 
etc. (Note: q here are given in units of Pa.) 

Figure 2.8.4 

Solution: 

On AB: 
4, = 0, t ,  = 1; X, = 0, Y,, = -41 are given. 
It follows that tyy = -q1, 

E ,  = 1, t y  = 0; 
It follows that txx = tyx = 0; 

4, = 0, tY = -1; X, = 0.592, Y, = -0.5&2 are given. 
It follows that q,,, = 0.5Aq2; 

4, = t y  = OS&; 
None of the stress components (t,,, ryy. txu) can be deternined. 

ex = 0, t y  = - 1 ;  X ,  = 94. Yn = 0 are given. 
It follows that tV, = - q 4 ,  tYr = 0; 

t, = -1, E ,  = 0;  X, = -95, Y, = Oare given. 
It follows that txx = q ~ ,  tx.v = 0; tyy remains unknown. 

T.?, = 0; 

X,, = Y, = 0 are given. 

T , ~ ,  remains unknown. 
On BC: 

t,,,, remains unknown. 
On GD: 

tyx = -0.5q2; tx*-x remains unknown. 
On DE: 

Xn = Y, = 0.5&93 are given. 

On EE: 

txx remains unknown. 
On AF: 

t This 1s evident since it IS clearly impossible to solve for three unknowns ( rxx ,  tyy, rxy) from the two 
simultaneous equations, Eqs. (2.8.8). 
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PROBLEMS 

Section 2 

2.1: A 12-m long rigid bar is suspended by two wires and supports a load of 
1200 N, as shown in Fig. (2P.l). What are the components of the internal force 
system at  a cross-section (a) 2 m from each end and (b) at  the centre? 

Figure 2P.1 

Figure 2P.2 

Figure 2P.3 

2.2: The bent rod shown in Fig. (2P.2) is simply supported a t  A and by a roller a t  C. 
Find the components of the internal force resultants a t  cross-sections B and D. 

2.3: Member ABCD, shown in Fig. (2P.3a), is welded at A to a rigid plate a-e, which 
is anchored to the ground by means of two boits b and c. A force of 600 N is  applied 
as shown at  D. (a) Find the normal force, shear force and moment a t  the cross-section 
A and C. (b) If the plate is attached to the ground by means of the two bolts as shown 
in Fig. (2P.3b), determine the forces in each bolt and indicate whether in tension or 
compression. 

2.4 The upward lifting force acting on a helicopter rotor blade is distributed as 
shown in Fig. (2P.4). Determine the bending couple and shear force acting on the 
cross-section a t  A. 

Figure 2P.4 
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2.5F The lift force on the wing of an airplane, shown in Fig. (2P.51, is given as 

q(x) = ~sin(xx/2L). 

Determine the bending couple and shear force acting on the cross-section a t  A. 

2.6: A thin triangular plate having thickness t hangs under i ts own weight, as shown 
in Fig. (2P.6). The density of the plate is p (N/m3). Determine, at any cross-section a 
distance y from the top, the internal force system (consisting of a moment and a 
normal force acting a t  the centre of each cross-section). 

2.7: A solid cone made of a material whose density is p (N/m3) hangs from a pin a t  
i t s  vertex, as shown in Fig. (2P.7). Determine the normal force acting on a cross-section 
located a t  a distance yfrom the vertex. 

2.8F A magnet is attached to  the ends of an iron rod whose cross-section is A, as shown 
in Fig. (2P.8). The attraction force acting a t  any distance, x, is given as f ( x )  = ~ 

where c is a constant having dimensions (N/m3) and a i s  a non-dimensional constant. 
(a) Plot f (x )  in the range 0 ": x / L  ": 1 for several values of a: a = 0, 1,2,5. (b) Determine 
the normal force F (x)  at  any cross-section, as a function of x. (c) Using a series expansion 
for the expression for (b) obtained above, show that for a+O, the normal force 
approaches F(x )  = c k .  

Figure 2p.5 

+,/& 

Fipure2P.6 

Figure 2P.7 Figure 2P.8 

2.9: Express the shear force V(x )  and moment M ( x )  as a function of x for the beams 
shown in Figs. (2P.9a-j) and sketch the variation with x. (Note: Assume, for all cases, 
positive shear force V and moment M ,  as shown in the figure). 

Figure 2P.9 
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Figure 2P.9 (Continued) 

2.10: Express the shear force V(x) and moment M(x) as a function of x in terms of 
P I ,  f 2 ,  al and a2 in the two regions 0 5 x < al and al < x 5 a2 for the beams shown in 
Fig. (2P.10). 

2.11: Express the shear force V(x) and moment M(x) as a function of x in terms of w 
and P for the beam shown in Fig. (2P.11). Sketch the variation with x if P = wf . 
2.12: Express the shear force V(x) and moment M(x) within the span AC as a function 
of x for the beams shown in Figs. (2P.12a-e) and sketch the variation with x. 

Figure 2P.10 

Figure 2P.11 

Figure 2P.12 
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2.13: The rod shown in Fig. (2P.13) is subjected to  an eccentric load as shown. Deter- 
mine the shear force, and bending and torsional moments as a function of x. 

Figure 2P.13 

2.14 The bent pipe shown in Fig. (2P.14) i s  subjected to a force P having components 
Px, Pu and Pz as shown. Determine the components of the internal force system at  any 
cross-section. Express the answers in terms of x, y and 2: where appropriate. 

2.15: (a) A thin circular member, AB, lying in the x-yplane, as shown in Fig. (2P.l5a), 
is subjected to  two forces Px and P,,. Determine the resulting internal forces at any 
cross-section in terms of R and 8. (b) If the circular member is subjected to  a bending 
moment h40 and a torsional moment TO as in Fig. (2P,15b), what is the resulting internal 
force system a t  any cross-section? 

Figure 2p.14 

Figure 2P.15 

2.16 Two rods, AC and BC, each weighing 10 N/m, lie in a vertical plane and are 
pinned at each end, as shown in Fig. (2P.16). Determine, as a function of 5 (shown in 
the figure), the internal force system (normal force, shear force and moment) a t  any 
cross-section of the rod AC. 

2.17:' A beam of length L is pinned a t  A and is  to  be supported by a roller located a t  
point B, as shown in Fig. (2P.17). The beam is subjected to  a uniformly distributed load 
w (Nlm). Determine the ratio b/L for which the largest absolute value of the bending 
moment in the beam is a minimum. What is this value? 
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Figure 2P.20 

Section 4 

2.18: The following stress field is found to  exist in a body: 

where a, band c are constants. Assuming no body forces act on the body, for which 
values of a, band c is the body in a state of equilibrium? 

2.19: At any arbitrary point of a beam subject to  zero body forces, the stress com- 
ponents are given as ay = a, = ryz = 0 where the remaining stress components are 
not zero. Show that the equilibrium equations are satisfied only if a, has the form 
a, = a + bx where a and bare functions of y andlor z or are constants. 

Section 5 

2.20 A homogeneous circular cylinder of length f and radius R hangs under i t s  own 
weight W (N), as shown in Fig. (2P.20). Determine the stress ay at  any cross-section, 
assuming the stresses are constant for any given cross-section. 

2.21: The stress distribution on a beam having a triangular shape, as shown in Fig. 
(2P.21) i s  given by 

a, = Ay+ 83, txy = rxz = 0. 

Determine the normal force F and the moments My and MZ due to  this stress distri- 
bution in terms of a, A and B. 

2.22: A circular cylinder of radius R i s  twisted a t  i t s  ends by a torsional moment, 
T = M,, as shown in Fig. (2P.22). (a) The stress distribution at any cross-section is given 
as a, = tx, = 0, rxR = kr, where r is the varying radial coordinate and k is an un- 
determined constant. Evaluate kand express txe in terms of r, R and T .  (b) If the stress 
distribution due to  T is given as a, = rxr = 0, txe  = ro (a constant), evaluate ro in terms 
of R and T. 

2.23:’ The stress distribution on a circular cross-section lying in the y-zplane, as shown 
in Fig. (2P.23)’ i s  given by a, = 0, rxy = -200z(MPa) and sXz = 200y (MPa). Determine 
the components of the internal force system acting on the cross-section. 

2.24: The beam shown in Fig. (2P.24) is subjected to  a bending moment M about the 
z-axis. The stress distribution on a cross-section is given by 

where c is a constant, 0 5 c 5 hf2, and a0 is a given constant stress. (a) Sketch the 
distribution of a, as a function of y. (b) Determine M in terms of 4 c, hand CO. (c) For 
a constant ao, what is the value of c for which the moment M is  a maximum? What is 
the value of this maximum moment? 

2.25: A bent bar having a square cross-section (b x 6) is subjected to  eccentric forces, 
as shown in Fig. (2E25). The stress distribution on any cross-section is assumed to be 
ay = 6 + Cy, txy = r,, = 0, where B and C are constants. (a) Determine 8 and C in 
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terms of P, b and e. (b) What is the stress at point d if e = 0 and if e = 4b? Indicate 
whether tension or compression in both cases. 

2.26F A member, ABC, with i = 1 m, is welded at A t o  a rigid plate c -d  whose di- 
mensions are 50 cm x 50 cm, as shown in Fig. (2P.26). The plate is anchored to  the 
ground by means of a single bolt (which is  anchored in the same plane as ABC). A 
force of 11,000 N is applied at B and a force of 1000 N is applied at C as shown. 
(a) Assuming that the pressure exerted between the ground and the plate varies lin- 
early from c to  d, determine the maximum pressure. Where does it occur? (b) The load 
at B is removed such that the member ABC is subjected only t o  the force P = 1000 N 
at C. Assuming that the linearly varying pressure between the ground and the plate 
can only be compressive, determine (i) the maximum compressive pressure and (ii) the 
force exerted by the bolt if b = 10cm. 

Figure2p.21 

Figure 2P.22 

Sections 6 

2.27: Verify the expression for the second invariant of (plane) stress given by 
Eq. (2.6.1 1). 

2.28: At a given point in a body in a state of plane stress with rxy = 0, the ratio of the 
invariants, 2, is found t o  be equal t o  300 MPa. If it is known that the stress uy = -So,, 
determine U, and tmlmax. 

2.29: On a plane passing through an arbitrary point P, two rectangular Cartesian 
systems, (x, y)  and (n, t), are constructed as shown in Fig. (2P.29). For each of the plane 
stress cases listed below, (i) determine the required quantities and (ii) sketch the equiv- 
alent states of stress (in the two coordinate systems). 

(a) U, = 200, ay = 400, rXy = 400 MPa; 6' = 30". Find U,,, at, tm. 
(b) ux = -400, ay = 0, rXy = 300 MPa; 6' = -30". Find a,,, at, rm. 
(c) a, = 0, ay = 0, 7xy = 300 MPa; 6 = 45". Find an, ut, rm. 
(d) a, = 1200, oy = 800, rXy = -800 kPa; 6' = 120". Find U,,, at rm. 
(e) a n  = -100, at = -50, Tnt = 100 MPa; 6 = 30". Find U,, ay, sXp 
(f) U, = 200, uy = 100, 
(g) a n  = 100, U,, = 200, r,,t = 0 MPa; 6' = 60". Find U,, txy, ut. 
(h) U,, = 100, ay = -200, rm = 0 MPa; 6 = 60". Find ux, T,~, uf. 

= 50 kPa; 6 = 45". Find at, zm. 

2.30 Let n, s and t be three directions in a given x-y plane such that the n-direction 
lies along the x-axis, as shown in Fig. (2P.30). (a) Determine txy in terms of U,,, U, and U* 

if a = 45" and (b) Determine rXy in terms of am us and at if a = 60". 

Figure 2P.23 

Figure 2P.24 
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2.31F For each of the following plane stress states at a point lying in the x-y plane 
of Fig. (213291, determine the angle 8 of the direction n with respect to  the x-axis. 

(a) U, = U, = 100, txy = 500, U,, = 400 MPa. 
(b) U, = 100, U, = -100, txy = 150, U,, = 0 MPa. 
(c) U, = -uy = -txV = c, (c = constant) un = 0 MPa. 

2.32: A rectangular block is formed by gluing together two wooden wedges, as 
shown in Fig. (2P.32) where a = 6 cm, b =  8 cm and c = 4 cm. The joint fails if the 
shear stress in the adhesive exceeds 600 kPa. What is the permitted range of U, if 
a compressive stress U, = -300 kPa and shear stress t,, = 400 kPa are applied and all 
other stress components are zero. (Note: Assume the stress state in the block is uniform 
at all points). 

2.33: A rectangular block is formed by gluing together two wooden wedges, as 
shown in Fig. (2P.32) where a = b = c. The joint fails if the normal tension stress at the 
adhesive interface exceeds 400 kPa. What i s  the maximum permitted value of U, if a 
compressive stress ay = -300 kPa is applied and all other stress components are zero. 
(Note: Assume the stress state in the block is uniform at all points). 

2.34 The shear stress distribution on a circular cross-section lying in the y-z plane, 
as shown in Fig. (2P.341, is given by t,, = C1 z and txz = C2 y. Show that if C2 = -Cl, 
the resultant shear stress t = t2 + tx7;- acting on the plane at any point P i s  directed 
in the circumferential @-direction; i.e., t = txs. 

Section 7 

2.35: For each of the plane stresscases listed below (with a, = r,, = ryz = 01, (i) deter- 
mine the principal stresses u1 and u2, (ii) determine tmax, (iii) determine the principal 
directions with respect to the x-axis as defined by e1 and Q2, (iv) sketch an element 
showing principal stresses and directions and (v) sketch the appropriate Mohr circle 
showing u1, u2, 281, 282 and tmax on the circle. 

(a) U, = 60, ay = 0, t,,, = 40 MPa. 
(b) U, = 200, U, = -200, txy = -200 kPa. 
(c) U, = 900, U, = 100, t,, = 200 MPa. 
(d) a, = 400, U, = 800, txy = -600 kPa. 
(e) U, = -200, U, = -100, txy = 200 MPa. 
(4 U, = 2000, ay = 500, txv = -500 kPa. 
(9) U, = -120, U, = 40, txy = -20 MPa. 
(h) U, = 240, U, = 0, txy = 120 MPa. 
(i) U, = -200, U,, = 100, r,, = 320 kPa. 
(j) U, = 0, U, = 240, txy = 120 MPa. 

G--- 

2.36: States of plane stress are shown by means of Figs. (2P.36 a-e). For each of the 
cases listed below, (i) determine the principal stresses and directions, (ii) sketch the 
equivalent states of stress and (iii) sketch the appropriate Mohr circle. 

2.37: Let n, sand t be three unit vectors lying in a plane as shown in Fig. (2P.30). (a) If 
U,, = 100 MPa, U, = 50 MPa and ut = 20 MPa, determine the principal stresses and di- 
rections (with respect to  the vector n) if (Y = 45* and show these by means of a sketch. 
(b) If U,, = 100 MPa, us = -20 MPa and at = 60 MPa, determine the principal stresses 
and directions (with respect to  the vector n) if IY = 60° and show these by means of a 
sketch. 

2.38 A circular cylindrical shaft of radius R is subjected to  an axial force F and a 
torsional moment T ,  as shown in Fig. (2P.38a). The resulting normal and shear stresses 
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a t  the surface of the shaft, as shown in Fig. (2P.38b), are given respectively by ux = F / A  
and rM = T R / I ,  where A is the cross-sectional area of the shaft and J is a geometrical 
property of the cross-section. (a) Determine the principal stresses at the surface. 
(b) Determine the principal direction with respect to  the x-axis if T = 4 F R and J / A  = 
kz (a constant). (c) Repeat parts (a) and (b) for the case where the axial force F = 0 
and T f 0. 

2.392 States of plane stress at a point, lying in the x-y plane of Fig. (2P.29), are given 
as follows: 

(a) a, = 80, cry = -120 MPa. If o1 = 220MPa, determine 02, 61 and & (i) if it is 

(b) ox = SO, cry = 120 MPa. If ut = 220 MPa, determine u2, 61 and 02 (i) if it is known 

(c) uy = 40, txy = -30 MPa. If crt = 80MPa, determine 02, 01 and 62. 
(d) oy = 40, rXy = -30 MPa. If a2 = -80 MPa, determine 01, 61 and @z. 

known that rxy > 0 and (ii) if it is known that rxy -= 0. 

that rXy =. 0 and (ii) if it is known that rxy .<: 0. 

Note: Verify answers via the appropriate Mohr circle. 

Section 8 

2.40: A rectangular plate ABCD of thickness t, lying in the x-y plane as shown in Fig. 
(2P.40), i s  subjected to  a loading of in-plane surface tractions. The stress field is given as 

a, = CI sin(kx), ay = CZ y2 sin(kx), rXy = C3 y cos(kx); k = n/2a, 

Figure 2R36 
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Figure 2P.38 

where C1, C2 and C3 are constants. (a) For what ratios C2/C1 and C3/CI does this stress 
field represent a state of equilibrium? (b) Determine the Cartesian components of  the 
surface tractions, Xn and Yn, acting on each of the segments AB, BC, CD and DA and 
show these by means of a sketch. (c) Verify that for the ratios determined in (a), the 
plate is globally in equilibrium, i.e., the external forces representing the surface trac- 
tions over the entire boundary ABCD maintain the plate in equilibrium with respect 
t o  both force and moment equilibrium. (Take moments about point A.) 

2.41F A trapezoidal plate ABCD of thickness t, lying in the x-y plane as shown in Fig. 
(2P.41), i s  subjected t o  a loading of  in-plane surface tractions. The stress field is given by 

ax = CI 2% ay = C2 9, Txy = c3 xv', 

where C1, CZ and C3 are constants having units of N/mS. Repeat parts (a), (b) and 
(c) of  Problem 2.40 for this case. 

2.42:" In Section 7, the principal directions and stresses for the case of plane stress 
were obtained by setting 3 = 0. It was then observed that the shear stress, tntr van- 
ishes on the principal plane. Alternatively, the principal plane can be defined as the 
plane on which the shear stress vanishes. It then follows that the traction, T,, acting 
on this plane is in the principal direction, that is, T, = an where U is  a (scalar) constant. 
(a) Using this alternative definition and the expressions of Eqs. (2.8.8), show that this 
leads t o  the following homogeneous equations on the unknowns ex and e,: 

( t x x  - a)& + %ye, = 0, (9 

(ii) 

where ex and t ,  are defined by Eqs. (2.8.7). Show that the condition required for the 
existence of a solution t o  Eqs. (i) and (ii) leads t o  a quadratic equation 

a2 - /,,a + I, = o (iii) 

[where I,, and I, are the plane stress invariants; see Eqs. (2.6.10), (2.6.1111 whose 
roots, 01 and u2, are the two values of the principal stresses given by Eqs. (2.7.1 1). 
(b) Show that the ratio l y / e x  leads to  Eq. (2.7.3), which defines the principal direc- 
tions. Note: In the framework of  linear algebra, q2 are the eigenvalues and t ,  and t ,  
define the eigenvectors n of the problem. 

The following problems are to be solved using a computer. 

2.43: Using the transformation laws for plane stress [Eqs. (2.6.6a) and (2.6.8a)1, write 
a computer program t o  determine am at and tnt for any given state of stress, ax, a,, txy 

and 9. Check the program by using some of the stress states given in Problem 2.29. 

2.44: Given a state of plane stress, ux, a, and txy, write a program t o  determine the 
principal stresses ul and a2 and the principal directions 81 and 8,. Check the program 
by using some of the stress states given in Problem 2.35. 
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2.45: Given a state of plane stress, a, E txx, cY E tvy and txy, (a) write a program t o  
find the roots, CI, of Eq. (iii) of Problem 2.42, that is, t o  determine the principal stresses 
07 and a2; (b) determine the principal directions 61 and 02. Check the program by using 
some of the stress states given in Problem 2.35. 

2.46: Given the state of plane stress, ox = 50, cry = 1OOP txy = 150 MPa. On what 
plane (defined by the angle e of i ts normal n with respect t o  the x-axis) is the normal 
stress U,, = 225 MPa? Note: The value B can only be determined numerically. 



3.1 Introduction 

Forces, when applied to a body, will evidently cause the body to deform. Since 
there exists no body in nature that is infinitely stiff, the concept of a rigid body, as 
used in rigid-body mechanics, is merely an idealisation. In solid mechanics, we are 
specifically concerned with the study of deformable bodies; in fact, as we have seen 
in Chapter 1, a primary goal of solid mechanics is to determine the deformation 
of a body that is subjected to external loads. Consequently, we require a means 
to describe mathematically the deformation and, in particular, we wish to describe 
the intensity of the deformation of a body. In Chapter 1, this idea, introduced for 
a simple one-dimensional case, led to the concept of strain. Since bodies usualiy 
are not one-dimensional, it is necessary to examine and generalise the concept of 
strain. 
Our goal in this chapter will be to define a measure of the deformation of a body. 

Now, ‘deformation’ is essentially described by the changes of geometry of a body. 
Therefore, in this chapter, we will be concerned only with defining the geometrical 
changes that occur in a body irrespective ofthe cause of the deformation. The 
deformation may be caused by external forces or perhaps by changes in temperature 
of the body, but at this stage of our study, the causes are totally immaterial: we are 
interested here only in deformation as an intrinsic concept. 

3.2 Types of deformation 

Consider a body initially at rest. Let us assume, for example, that a set of forces is 
applied, which causes the body to move. If the body is idealised as a rigid body, the 
motion in general, will be a combination of translation and rotation such that the 
distance between any two points in the body remains constant. However, if the body 
is a deformable body, then in addition to the translation and rotation, the elements of  
the body will deform as shown in Fig. (3.2.1). In order to describe the deformation 
of the body, we first examine a small element. To this end, let us consider the simple 
two-dimensional rectangular element Ax Ay [Fig. (3.2.2a)l. Such an element can 
undergo two types of deformation: 

(a) The element may undergo a change in size: the length Ax changes to Ax* i.e., 
Ax -+ Ax*; similarly, Ay -+ Ay*. We observe that in this case the element 
retains its rectangular shape [Fig. (3.2.2a)I. 

(b) The element may undergo a change in shape without any change in length of 
Ax or Ay; in this case, the element becomes a parallelogram [Fig. (3.2.2b)l. 
This distortion of the element, may thus be described by the angle change from 

74 
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its original right angle iAPB to the angle iA*PB*. We denote the change in 
angle by y ;  thus y E LAPB - iA*PB*. 

In general, however, an element does not undergo only one type of deforma- 
tion but undergoes simultaneously a change in size as well as a distortion. The 
total motion of the element may thus be decomposed into (a) rigid-body motion, 
(b) change in size and (c) distortion as is shown in Fig. (3.2.2~). (The position after 
only rigid-body motion is shown by the dashed lines in this figure.) 

From this discussion, we therefore conclude that two measures of deforma- 
tion are required: namely (i) elongation (or shortening) of a line element and 
(ii) changes in angles. We therefore seek a means to describe the deformation 
mathematically. This description is expressed in terms of a quantity called strain. 

3.3 Extensional or normal strain 
Consider a point P in a body located in an x ,  y .  z coordinate system. Let point Q 
be a neighbouring point, an infinitesimal distance As from P [Fig. (3.3.la)l. The 
points P and Q can be defined in the coordinate system by means of the position 
vectors r p ,  rQ, respectively. The vector p'r? is then represented by As n, where n 
is a unit vector that defines the orientation of the infinitesimal line segment PQ 
[Fig. (3.3.lb)l. 

Figure 3.3.1 

Now, let us assume that point P displaces to P* by up and Q displaces to Q* by UQ, 

such that the distance IP*Q*i is As*. We define the extensional strain E, of an in- 
finitesimal line segment at point P, which is originally oriented in the n-direction, as 

AS* - AS 
E,(P) = lim 

Q-p As 
A s - 4  

(3.3.1) 

From its definition, a positive extensional strain, E,(P) > 0, denotes an extension 
(lengthening) of the segment, while E,(P) c 0 denotes a contraction (shortening) 
of the segment. From its definition, it is clear that E, is a non-dimensional quantity. 

It is important to observe that the deformed segment P*Q" is not necessarily 
parallel to the segment PQ. Thus, according to our definition, E, denotes the exten- 
sional strain of the line segment that was oriented in the n-direction in its initial or 
tindeformed state. 

It should be noted that if the orientation of the unit vector n is in the x- ,  y- 
or z-direction, then the respective extensional strains for segments lying in these 
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coordinate directions are denoted by E ~ ,  E, and E ~ .  From the definition of the ex- 
tensional strain, the new (deformed) length As* of the original segment is given 
bY 

As* "v ( 1  + E,) As (3.3.2a) 

and the change in length, e E ds, of As is 

e 2 E,As. (3.3.2b) 

Having defined the extensional strain E, at apoint, let us consider a line segment AB 
within a deformable body of jn i te  length L ,  and which is initially oriented in the 
n-direction as shown in Fig. (3.3.2). Due to deformation of the body, assume that 
the segment AB deforms to the curve A*B*. Let us also assume that the extensional 
strain E, existing at all points along AB is known. We wish to determine the length 
of the curve A*B* as well as its elongation. 

Figure 3.3.2 

Now, clearly, we may consider the original line AB to be composed of N number 
of infinitesimal segments of equal lengths As as shown. Let PI denote point A 
and P, denote point B with P, denoting some intermediate point, If E, is known 
at all points, then a typical segment As between P, and P,+1 becomes As;. From 
Eq. (3.3.2a), we then have 

AS; 2: [ l  + E , ( P ~ ) ]  AS. (3.3.3) 

mote that, as opposed to Eq. (3.3.1), Eqs. (3.3.2) and (3.3.3) have been written with 
a 2 sign since the expressions are not taken in the limit, i.e., they are written for a 
small segment in the neighbourhood of a point, but not at the point.] 

Hence if we divide the segment AB into a large number of segments As, we have 

AS: 2: [I + ~ n ( P l ) ]  AS 

AS; 2: [l + E,(&)] AS 
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The deformed length L* of A*B* is then 
m-1 m-1 

L* = E AS: = [I + E, (&) ]  AS.  (3.3.4) 
2 = 1  z=l 

Now, if we increase the number of increments infinitely such that As -+ 0, then in 
the limit the summation becomes, by definition, 

L L 

(3.3.5) 
0 0 

where E , @ )  denotes that E ,  depends on the parameters along the line AB. Note that 
the change in length, A L , of A B is given by 

AL = t.,(s)dr. (3.3.6) i 0 

Example 3.1: A wire, located along the y-axis, is heated in such a way that 
the strain a t  any point y is given by E,, = ky/L, where k is a constant [Fig. 
(3.3.3)l. Determine the change in length of the wire. 

Solution: From Eq. (3.3.6), 

Figure 3.3.3 

0 0 

Note that the average strain F,,, given by S, = A L / L  = k / 2 ,  is equal to the exact 
U extensional strain only at the point y = L /2. 

Example 3.2: A wire of finite length L, initially lying in the x-direction, is 
stretched along a rigid track, which is a parabola y(x) = hxz. All points of the 
wire displace in the y-direction only [Fig. (3.3.4)]. Compute the strain ex at  all 
points x of the wire. 

Figure 3.3.4 
Solution: We consider the wire in its initial position to be composed of a number 
of infinitesimal segments, each of length Ax.  mote that here Ax replaces As of 
Eq. (3.3.1).] Then, from Eq. (3.3.1), 

AS* - AX 
E ,  = lim 

Az+0 AX ' 
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where As* is the deformed length of the segment of the wire when stretched along 
the track. From geometry, 

AS* = ~ [ ( A X ) ~  + (Ay)2] = J[l + ( A ~ / A x ) ~ ]  AX 

Hence 

E ,  = lim {J[1 + ( A ~ / A X ) ~ ]  - 1) = J[1 + ( d ~ / d x ) ~ ]  - 1. 
A x i O  

But dy/dx = 2bx. Therefore 

E , @ )  = J1 + 4b2XZ - 1. 

Observe that when x = 0, E ,  = 0 and that the maximum strain occurs at x = L .  This 
may be readily observed from Fig. (3.3.4); the greatest deformation occurs in the 
segment CD, which deforms to C*D*. 

It is of interest to note that if bx << 1, i.e., if bx is an infinitesimal quantity, then 
making use of the binomial theorem, it follows that E , @ )  = 2b2x2, i.e., the strain is 

0 a quadratic h c t i o n  of x . 

3.4 Shear strain 

Consider again point P and two neighbouring points Q and R, such that the infinites- 
imal segments, PQ and PR, are mutually perpendicular as shown in Fig. (3.4.1). 
Thus LRPQ = x/2.  Further let the unit vectors n and t denote the orientation of 
the line segments PQ and PR, respectively. As before, assume that due to deforma- 
tion the displacements P 4 P", Q -+ Q* and R -+ R* are given by up, UQ and UR, 
respectively. 

Figure 3.4.1 

We define the shear strain ynr at P as the change in angle between two line 
segments originally in the orthogonal n- and t-directions; thus 

1 J k  
ynt(P) = - - lim LR*P*Q*. 

2 3  
(3.4.1) 

We note that since the shear strain defines the change in angle between two line 
segments emanating from point P in the n- and t-directions, it is necessary to use 
two subscripts with y to define these two directions. Moreover, it should be clear 
that, in general, the shear strain will be different depending on the orientation of 
the n- and t-directions. 
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It is also worthwhile to observe that ynr > 0 signifies that the angle between the n- 
and t-directions decreases. Note too that the shear strain component, having units 
of radians, is a non-dimensional quantity. 

Finally, it is important to observe that, based upon its definition, ynt = yfn .  

Example 3.3: Points A and C of a rectangular plate shown in Fig. (3.4.2) dis- 
place to points A* and c* along the x- and y-axes, respectively, so that the 
rectangle is deformed into a parallelogram. Lines that were initially parallel 
to  the x-y axes remain parallel lines. (a) Compute the shear strain yxy at all 
points in the plate. (b) Compute the shear strain yxy assuming that yxv <c 1. 

Figure 3.4.2 

SoZutiun: 

(a) At point P, 

or 

yx<” = tan-’(0.2413) + tan-’(0.24/2) = 0.0798 + 0.1 194 = 0.1993 

(b) Assuming yxy << 1, the angles between the sides of the parallelogram and the 
x -  andy-directions are small. Therefore, recalling that fora << 1, sin a 2: tan a 2: 

a, we have, at P, 

yxy = 0.2413 + 0.2412 = 0.2000. 

Note that, using the property of small arguments, the percent error is (0.1993 - 

Since all parallel lines were stated to remain parallel after deformation, the an- 
gle changes are the same at all points and hence the shear strain yxy is constant 

0.2000)0/0.1993 =: -0.0037 = -0.37%. 

throughout the plate. 0 

Example 3.4 A plate ABCD lying in the x-y plane [Fig. (3.4.3a)I is deformed 
such that C --f C*, D -+ D*, etc. Point P displaces in the y-direction to  P* by 
an amount A = ab (where a is a constant) such that the diagonals PA and PB 
remain straight lines in the deformed state [Fig. (3.4.3b)I. Calculate the shear 
strains ynt, where the n- and t-directions lie along the diagonals. 

SuZutiun: From geometry, it is evident that the angle LBPA of the undefomed plate 
is a right angle. We denote the angle LAP*B by 8. Then, since point P moves in the 
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Figure 3.4.3 

y-direction, by symmetry, we observe that the shear strain at P is 

Ynt 0 
2 4 2  
-- _ - - -  

and hence 

Ynr 
2 

tan - = tan (: - :) . 

Recalling the trigonometric identity, 

tanx f. tany 
tan(x f y )  = 

1 r tanx tan$ 

we find 

Now, from geometry, 

Substituting in Eq. (3.4.2c), 

(3.4.2a) 

(3.4.2b) 

(3.4.2~) 

(3.4.2d) 

(3.4.3a) 

and therefore, 
a! 

ynt = 2tan-' - (3.4.3b) 2+a' 
For example, if a! = 0.02, ynt = 0.0198, while if a! = 0.3, ynt = 0.259. 
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In the above analysis, we determined the strain ynt for two values of a: (a) an 
infinitesimal value, a = 0.02, describing a small deformation that results in an in- 
finitesimal strain ynt = 0.0198 and (b) a finite value, a = 0.3, describing a relatively 
large deformation. We now re-examine the problem for the first case of infinitesimal 
strain. 

If ynr << 1, by definition, we observe that the rotations are small; in particular, the 
diagonal AP rotates by an infinitesimal amount. As a result, we note that the angle 
LAP*E 2: 45". Moreover, from Fig. (3.4.3b), we observe that the angle LPAP* = 
ynr /2 .  Let us construct the line segment PF perpendicular to AP" [Fig. (3.4.3c)l. 
Examining the triangle FPP*, lPFl = ab sin45" = a b d / 2 .  Then 

(3.4.4) 

and hence ynt = a. 
If a i s  small, e.g. a = 0.02, the resuking strain, ynt = 0.02, is infinitesimal and 

differs from the exact result given above by 1%, while if a is not infinitesimal, e.g. 
a = 0.3, we obtain a relatively inaccurate value, i.e., ynt = 0.3, with an error of 
15.6%. 

We thus observe that if the strains and rotations are infinitesimal, we may obtain 
extremely accurate results using a much simplified analysis. We shall find this 
conclusion to be true in general. 

3.5 Strain-displacement relations 

Since strain is a measure of the deformation of a body, it is clear that it depends on the 
displacements of points within the body. The variation of displacements, U, given as 
a function of the spatial coordinates [e.g., U = u(x, y. z) in a Cartesian coordinate 
system] is referred to as a displacement field. In particular, the strain at points 
within the body is a result of the relative displacements of various points within 
the body. Although points of a rigid body also may undergo relative displacements, 
the distance between any two points of a rigid body must remain constant. In a 
deformable body, however, the distance between any two points, in general, does 
not remain constant and as a result, both extensional and shear strains will exist 
at the various points of the body. In our treatment below, explicit relations for the 
strains in terms of the displacement field will be derived. However, to provide a 
better insight in the analysis of strain resulting from known displacements in a 
body, we first examine the resulting strains in some simple problems. 

For simplicity, we shall investigate two-dimensional cases; i.e., cases where 
all displacements are in a plane. We consider here the plane of deformation to be the 
x-y plane, where (a) there exists no displacement component in the z-direction and 
(b) U = u(x, y). This type of two-dimensional deformation represents a case called 
plane strain. 

(a) Some preliminary instructive examples 
We examine the strains resulting from given displacements in a body via the 
following examples. 

Example 3.5: Consider a plate ABCD lying in the x-y plane. The sides of the 
plate are unity and point A is assumed to lie initially at the origin of the 
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Figure 3.5.1 

x, y coordinate system [Fig. (3.5.1a)l. Let the displacements of the plate be 
U = ui + v j ,  where the components in the x- and y-directions are given by 
the expressions 

(3.5.1) 

Here a! and p are positive constants. Note that while #l is given as infinitesimal, 
a! is finite. Determine (a) the average extensional strains Fx along AD and 7, 
along AB and (b) the shear strain at point A. 

Solution: We first determine the position of the plate after deformation. The orig- 
inal coordinates of A are (0,O). Due to the displacement, A -+ A*, and hence the 
coordinates of A* become (0 + UA, 0 + UA) = (a, 2a). Similarly, the coordinates of 
B(0, l), which moves to B*, become (0 + UB, 1 + Q) = (a + j3,1 + 2a). Points C* 
and D* can be determined similarly. Thus, after deformation the coordinates of the 
corners of the plate are given by 

dx, Y) = a + BY# v(x, y) = 2a - Bx, #? <( 1 * 

A*: (a, 2a); B*: (a + /?, 1 + 2a); 

C*: (1 +a + /?, 1 +2a - #I); D* : (1 + C X , ~ C X  - j?). 

Since the displacement components U and U vary linearly with the x -  and y-coordinates, 
the straight edges of the piate ABCD remain straight edges in the deformed plate 
A*B*C*D", as shown in Fig. (3.S.la). From the figure it would appear that the 
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displacement pattern, as given, results in a rigid-body motion. We therefore examine 
the new lengths of the elements. For example, for the edge AB, we obtain 

/A  * B * 2  I = [(a+P)-m]*+ [(I +2a)-2aI2 = 1 + P 2  

and hence 

(A*B*J = d m .  (3.5.2a) 

Recalling now the binomial expansion 

f i= 1 + x / 2 - - x 2 / 8 $ ~ ~ ~ ,  x < < l ,  

it follows that 

+ * a . .  (A*B*I = 1 + - - - P2 P4 
2 8  

(3.5.2b) 

Since /3 << 1, we neglect all infinitesimals of the second order. Hence 

IA*B*I 2: 1 .  (3.5.3a) 

Similarly, we find 

IB*C*( 2: 1 .  

IC*D*l 2: I ,  

ID*A*/ 2s 1. 

(3 S.3 b) 

(3.5.36) 

(3.5.3d) 

Thus, according to this 'first-order' analysis, the lengths of the edges of the plate 
do not change, and hence, according to its definition, we conclude that the average 
extensional strains Fx = 0 (of the segments AD and BC) and Fy = 0 (of AB and CD). 

U 
Several features of these results should be emphasised: 

U The finite parameter a appearing in this problem defines rigid-body translation. 
To show this, we set j? = 0 and, for example, let a = 1.25. The element then 
undergoes translation as shown in Fig. (3.5.lb). Observe that such a finite value 
of a does not result in deformation of the element. 

U Consider now a finite value of @, say j? = 1.25. Setting a = 0, the element 
assumes the position as shown in Fig. (3.5.1~). Thus we observe that a finite 
value of j? results both in rotation and deformation of the element. We also note 
from Eq. (3.5.2) that forjnitej? the strains do not vanish since (A*B*I f IABI, 
etc. 

m On the other han4 if j? is an infi&esimal, i.e., 1/31 << 1, then as we have seen in 
Fig. (3.5.1a), the rotations are small (to first order in 6) and we note, for example 
from Eq. (3.5.3a), that the strains vanish if all second-order infinitesimals are 
neglected. 

m The strains that were obtained are averuge strains over the length of the sides; 
i.e., we have not found the strains at a point. 

We leave it as an exercise to show that at point A, yxy = 0 if << 1. 

Example 3.6: We consider the same plate ABCD lying in the x-y plane as in 
the previous example. However, the displacement components, U and v, in 
the x- and y-directions are now given respectively by 

(3.5.4) u(x, y) = a! + By# v(x, y) = 2a + Bx, B << 1. 



84 Deformation and strain 

Note that the displacement field defined by Eq. (3.5.4) differs from that of 
Eq. (3.5.1) only by the change of sign of the @x term appearing in the 
v-displacement component. (We shall find that this sign difference results 
in a very different displacement pattern from that of the previous exam- 
ple.) Determine (a) the average extensional strains Fx and Zy, (b) the average 
extensional strain along the line AC and (c) the shear strain yxy at point A. 

Solution: As in Example 3.5, the coordinates of the corners of the deformed plate 
are readily obtained; namely 

A*: (a, 2a); 

C*: (1 + a  +PI 1 +2a + p ) ;  
B*: (a + 8,  1 + 2a); 

D*: (1 fa ,2a + p ) .  

The resulting position of the deformedplate is shown in Fig. (3.5.2). The new lengths 
of the edges of the plate A*B*C*D*, calculated as in the previous example, are 

IA*B*I 2: 1 ,  (3.5.5a) 

IB*C*I 2: 1, (3.5.5b) 

IC*D*I 2: 1, (3.5.5c) 

[D*A*[ 2: 1, (3.5.5d) 

where the symbol 21 is used to indicate that the relation is approximate up to first 
order in /3 for /? << 1. Therefore, the average strains are Fx = 0 and FY = 0 along 
the respective line segments. Consequently, we conclude that the deformed plate 
A*B*C*D* is a parallelogram (and more specifically a rhombus). Now, although the 
extensional strains vanish for line segments that lie in the x -  and y-directions, it is clear 
from Fig. (3.5.2) that the line segment AC of the undeformed plate changes length 
and hence the extensional strain of this line segment does not vanish. Moreover, we 
note that, as opposed to the previous example, the shear strain yxy f: 0 since clearly 
the right angles no longer remain right angles at point A. 

Figure 3.5.2 
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We first define the orientation of the line segment AC by means of the unit vector 
n [Fig. (3.5.2a)j. Then, according to the definition given in Eq. (3.3.1), the average 
strain 7" along AC i s  given by 

(3.5.6a) 

since IACI  = 42. 

therefore 
Now, IA*C*I2 = [(l + a5 + p )  - aI2 + [(I + 2a + j?) - 2aI2 = 2(1 + ,@2 and 

IA*C*J = d ( l +  p).  (3.5.6b) 

Substituting in Eq. (3.5.6a), 

(3.5.7) 

To calculate yxy at A, we denote the inclination of A*B* and A*D* with respect to they- 
andx-directions by41 and $2, respectively [Fig. (3.5.2)]. Then, clearly, since the shear 
strain represents the change in the right angle, yny = 41 + 432. Now, since << 1, the 
rotations in this example are infinitesimals. Noting that sin& 2: f = ,f? and (since 
for x << I ,  sinx 2: x) therefore $1 = j?. Similarly, 432 = p. Therefore yxy = 28 at 
point A. From Fig. (3.5.2), we might anticipate that the shear strain yxy = 28 at all 

U points in the plate, although at this stage we cannot prove this assertion. 

We observe from the above two examples, that the expressions are considerably 
simplified when the strains and rotations at all points of a body are small. In many 
problems encountered in engineering practice, we find that this is precisely the case. 
[For example, in Chapter 1, we noted that strains in the elastic range of steel were of 
the order of O(10-3).] We therefore shall derive expressions for the strains in terms 
of displacements under the above assumption of infinitesimal strains and rotations. 

(&) Strain-displacernent relations for infinitesimal strains and rotations 
For simplicity, we consider atwo-dimensional body lying in the x-y plane, as shown 
in Fig. (3.5.3). Let P(x, y) represent a general point in the body, and let 

u(x, y) = u(x .  y ) i  + u ( x ,  y ) j  (3.5.8) 

denote the displacement of any point l? 

Figure 35.3 
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We analyse the deformation of the body under the following assumptions: 

possess continuous partial derivatives with respect to these coordinates. 
I The displacements u(x, y )  vary continuously with the spatial coordinates and 

m The strain components at all points P are infinitesimal. 
I All elements of the body undergo infinitesimal relative rotations. By ‘infinitesimal 

relative rotations’ we mean rotations such that neighbouring points undergo small 
rotations with respect to each other. 

Consider now a rectangular element PQSR having sides Ax and Ay, as shown in 
Fig. (3.5.4). Due to deformation, P + P*, Q + Q* and R -+ R*. The coordinates 
of these points after deformation are given by 

P*: (x + U ,  y + U); Q*: [x + Ax + (U + Au), y + (V  + AD)]; 

R*: [x + ( U  + Au),y + Ay + ( v  + AD)] 

Now, from Eq. (3.3.1), 

or 

(3.5.9a) 

since lPQl = Ax. 
We note that 

Ip*Q*l= ~ [ ( A X  -4- A u ) ~  + Au2] = J[(1 + A u / A x ) ~  + ( A v / A x ) ~ ]  Ax. 

Hence, by Eq. (3.5.9a), 

E ,  = lim J[(l+ Au/Ax)’ + (AD/AX)’] - 1 
Ax+O 

or 

E ,  = J[(1 + au/ax)2  + (av/ax)2] - 1. (3.5.9b) 

Figure 3.54 
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Similarly, fkom its definition, 

(3.5.1 Oa) 

we obtain 

E y  = q"(i + av/ay)2 + (aU/ay)21- 1. (3.5.1 Ob) 

We now examine the order of magnitude of the ratios e,  e,  E, $ under the 
restriction of small strains and small relative rotations. 

Let us first consider the rotations PQ -+ P*Q* and PR + P*R*. Denoting the 
orientations of the deformed segments with respect to the x- and y-directions by 
a and #?, respectively [Fig. (3.5,4)], we note that the segment PQ at point P(x, y) 
undergoes a rotation given by 

AV AV/ Ax 
Ax-0 (1 + E) tana = lim = lim 

Ax-tO AX + AU 

or 
av/ax 

1 + au/ax 

av/ax 
1 + au/ax * 

tana! = 

If the relative rotation a! is infinitesimal, then for a! << 1, tan a 2 a; i.e., 

a =  

(3.5.1 la) 

(3.5.1 lb) 

Let us now assume momentarily that a u / a x  << 1; i.e., au/ax is also infinitesimal. 
It then follows from Eq. (3.5.1 lb) that a = av /ax  and therefore av/ax must also 
be an infinitesimal; thus 

a = a q a x  << 1 .  (3.5.12a) 

Similarly, by examining the rotation of PR + P*R*, we conclude that if the relative 
rotation of RP is small and if av/ay << 1, then 

p = a u p y  << 1. (3.5.12b) 

Using the property of Eq. (3.5.12a), and negzecting injinitesimals of second order, 
we find, fiom Eq. (3.5.9b),i that 

or 

Ex = (1 + E) - I ,  (3.5.1 3 b) 

+ Note that J[l + au/ax]2 = J[l + 2au/ax + (au/ax)']. Hence, alternatively, by neglecting the 
second-order infinitesimal ( a ~ / a x ) ~  in addihon to (au/ax)2 in Eq. (3.5.9b) and making use of the 
binomial theorem, 

= 1 + ~ / 2  -x2 /8  +. . . . 
we obtain Eqs. (3.5.13b) and (3.5.14a). 
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and hence 
a u  
ax* 

E ,  = - (3.5.14a) 

Note that the above development was based on our previous assumption that au/ax 
is an infinitesimal. It then follows that E ,  as given by Eq. (3.5.14a) is also infinites- 
imal. Thus the entire development is consistent with small strain theory. 

Similarly, using the property of Eq. (3.5.12b), we find, from Eq. (3.5. lob), that 
a v  

E y  = - 
ay 

(3.5.14b) 

is the infinitesimal strain in the y-direction. 

P is given by 
The shear strain yxy can be obtained by noting that the change in angle at point 

1 
J I  

2 Ax-0 
VXV = - - lim :R*P*Q* = 01 + f?. 

&+O 

From Eqs. (3.5.12), we have 
av au 

Yxy = - + -. 
ax ay 

(3.5.1 5 )  

Thus we have obtained explicit two-dimensional expressions for the infinitesimal 
strains in terms of the displacements U = u(x, y): 

a u  
ax' 

E ,  = - 

a V  
E y  = - 

ay ' 
a v  au 

Y x y  = - + - 4  ax ay 

(3.5.16a) 

(3.5.16b) 

(3.5.16~) 

Hence, if the displacement field U(X , y) is known at all points of a body, the strain 
components are imrnediately obtained by taking the partial derivatives as given by 
the above equations. 

The following comments are now in order. The derivation ofthe above expressions 
for the strain components was based on several assumptions: 

(a) Relative rotations of the line segments are small. [This assumption led to 
Eq. (3.5.1 lb).] 

(b) The partial derivatives au/ax and av/ay are infinitesimals. [This additional 
property was necessary to obtain Eqs. (3.5.12), namely that av/ax and au/ay 
are infinitesimals.] 

(c) Note that as a result o f  the assumption (b), we conclude that the resulting strains 
E ,  and E ~ ,  given by Eqs. (3.5.16a) and (3.5.16b), are also ifitesimals. 

Similarly, from assumption (a), it follows by Eq. (3.5.16~) that yxy is also infinites- 
imal. 

Thus to sumarise, the strain-displacement relations given by Eqs. (3.5.16) are 
valid for a body whose elements undergo infinitesimal strains and infinitesimal 
relative rotations. The expressions are said to be within the limitations of small 
strain theory. Moreover, since all these derivatives are of the first order (essentially 
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all second-order infinitesimal terms are neglected), small strain theory is often also 
referred to as being a linear theory. 

For simplicity, the above expressions were derived for the two-dimensional case. 
For a three-dimensional body in an x ,  y. z coordinate system, with displacements 
U given by 

u(x, y, z)  = ui + vj + wk, (3.5.17) 

one fhds the following equivalent expressions consistent with small strain theory: 

E,  = -, (3.5.1 8a) 

E y  = -, (3.5.18b) 

EZ = - (3.5.18~) 

au 
ax 
av 

ay 
aw 
a Z  

and 
av au 

yxp = - + -, 
ax a.v 
a w  a v  

Vyz = - + - 
ay aZ’ 
au  a w  
az ax yzx = - + -. 

(3.5.1 8d) 

(3.5.18e) 

(3.5.18f) 

Example 3.7: A body is deformed such that the displacements at any point P 
are given by 

1 
6 U = - [x3yi i- 3y”j + (z - 4)*xyk], o 5 x, y F I, 

where 6 >> 1 is a constant. Determine the strain components a t  all points of 
the body. 

Solution: From Eqs. (3.5.18), 

aw a v  I 2 
yyz = - f - = -(z - 4) x ,  

a v  au x3 
yxy = - f - = - 

ax ay B ’  ay az B 
au aw I 
a Z  ax B 

y;, = - f - = -(z - 4yy. 

U 
Example 3.8: We reconsider the plate ABCD examined previously in Example 
3.5 [Fig. (3.5.1)l of this section, for which the displacement components a t  
each point are, as before, 

Determine the strain components at each point P(x, y, z). 
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Solution: For this two-dimensional problem, Eqs. (3.5.16) yield 

Ex = Ey = yxr = 0 

displacement field represents a rigid-body motion. 
at all points. Thus, since the strains are zero everywhere, we conclude that the given 

U 

It is important to observe that in Example 3.5, we were only able to find that av- 
erage values of the strains along the line segments were zero, Hence, we previously 
could only surmise that the plate ABCD undergoes only rigid-body motion, since 
it was not possible to prove that the strains vanish everywhere. It is only from the 
derived expressions of Eq. (3.5.16) which yield the strain at all points, that we have 
conclusively shown that the plate undergoes only rigid-body motion. 

Example 3.9 We reconsider the plate ABCD examined previously in Example 
3.6 [Fig. (3.5.2)] of this section, for which the displacements components at 
each point are, as before, 

u(x, y )  = a + By, v(x, y)  = 2LY + Bx, B << 1. 

Determine the strain components ex, ey, yxy at any point P(x, y, z). 

Solution: For this two-dimensional problem, Eqs. (3.5.16a) and (3.5.16b) yield 
again E, = ey = 0 at all points. Thus the extensional strains of any line segment 
parallel to the x- or y-axes vanish everywhere. 

However, for the shear strain yxy, given by Eq. (3.5.16c), we find 

a v  a u  
yxr = - + - = 28. 

ax ay 

Thus, as we anticipated in Example 3.6, the shear strain is constant throughout the 
plate. cl 

There also exist cases where the displacement field u(x, y ,  z )  is unknown but 
where the strain field E(X , y , z )  is known within a body. In such cases, the strain- 
displacement relations, Eqs. (3.5.18), can be integrated to yield, together with 
appropriate boundary conditions on the surfaces, displacements U at all points 
within the body, We illustrate this for a two-dimensional case in the following 
example. 

Example 3 .10  A rectangular plate ABCD, lying in the x-y plane, is deformed 
to A*B*C*D*, asshown in Fig. (3.5.5), such that lines AB and AD remain straight 
lines and 6 / 1  << 1 and S/ h << 1. The extensional strains at any point P(x, y) are 

Figure 3.5.5 
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given as 

ex = aFh, X 2 Y  dY = a-, XY2 
L h2 

where a << 1. 
By integration of the strain-displacement relations, (a) determine the dis- 

placement field u(x, y); (b) determine the coordinates of points B*, c *  and D*; 
(c) show that the edges B*C* and C*D* remain straight lines; (d) determine 
the angle between the edges B*C* and C*D* at point C*. 

Solution: 

(a) Using Eq. (3.5.18a), 2 = ax2y/L2h, integrationyieldsu(x. y )  = ax3y/3L2h + 
A b ) ,  where A b )  is a function of y only. Since the edge AD remains a straight 
line, u(0. y )  = y ;  it then follows that A&) = V. Hence, 

x3y 6 .  y 
u(x.y)  = a - + i. 

3L2h h 
Similarly, using Eq. (3.5.18b), -$ = axy2/Lh2, integration yields v(x ,y )  = 
axy3/3Lh2 + B(x) ,  where B ( x )  is a function ofx only. Noting that u(x, 0) = F, 
it follows that B(x)  = 9 and hence 

xy3 6.x  
V ( X ,  y )  = a ~ + -. 

3Lh2 L 
Therefore 

(b) The coordinates of points B*. C* and D* are then calculated as follows: 

xB* = xg + u(L,  0 )  = L , 
xc* =xc + u(L,  h )  = L +aL/3  + 6 ,  
xD* =1: XD + U(0, h)  = 6 ,  

yR'=yE?+v(L,0)=6,  
y p  = yc + u ( L ,  L )  = h +ah/3 + 6 ,  
,m = ,m + ~ ( 0 .  h )  = h. 

(c) The coordinates of points along B*C* are given by 

X*  = + u ( L . y ) = L  + ( l / h ) ( ~ L / 3  + S > * y ,  

y* = y + v ( L ,  y )  = y + aUy3/3h2 + 6 .  

Since x* is a linear function of y ,  the edge B*C* is a straight line. 
Similarly, the coordinates of points along C*D* are 

X* = x + U(X, h )  = x + ax3/3L2 + 6 ,  

y* = h + V ( X .  h)  = h i- ( I /L)(nh/3 + 6 )  + x. 

Since y* is a linear function of x, the edge C*D* is a straight line. 

after simplification, 
(d) Using Eq. (3.5.18~1, ynr = ax3/3L2h + ay3/3Lh2 + 6 ( l / h  + I/,!,). Hence, 

Therefore, LD*C*B* = n/2 - yxrlc. 

Note that B*C* i s  not parallel to A*D* nor is C*D* parallel to A*B* D 
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3.6 State of strain 

As has been seen, the deformation of a body can be described Completely by means 
of the extensional and shear strains at all points of the body. 

Consider now the three-dimensional body shown in Fig. (3.6.1) in an x ,  y ,  z 
coordinate system, which undergoes deformation. We may consider this body to 
be composed of  an infinite number of infinitesimal parallelepipeds (e.g. cubes) and 
may regard the total deformation of the body as the total effect of the deformation 
of the elemental cubes. Let us therefore examine the deformation of an individual 
cube, neglecting rigid-body motion (since by definition it does not contribute to the 
deformation). 

Figure 3.6.1 

We note first that the sides originally of lengths Ax,  Ay and Az ,  respec- 
tively, may change lengths, so that the new lengths are (1 + E , )  A x ,  (1 + c y )  Ay and 
(1 + E,)  A z ,  as shown in Fig. (3.6.2a). 

Figure 3.6.2 

We note too that the elementary rectangular parallelepiped can distort to a general 
parallelepiped as shown in Fig. (3.6.2b). As is clear from our previous discussion, 
this distortion can be measured by the changes in angle between the coordinate lines; 
that is, the angle changes between x and y ,  y and z ,  and z and x line segments, 
which we denote by yX.", yyz and yzx , respectively. 

Hence we note that to describe completely the deformation of an element at a 
point, we require six independent strain quantities: E,, ey,  E ~ ,  yXy, yyz and y,,, as 



3.7 Two-dimension rmation law for infinitesimal strain corn 

shown in the array 

Yzx Yzy vcz 

We observe that this array is a symmetric array since, by de$nition, yxy = yr.. yyz = 
rzyt Yxz  = Y z x .  

Now. as in the case of stress, there exist two-dimensional cases of strain where the 
displacement in a particular direction, say w in the z-direction, is zero and where 
the remaining non-zero displacements, U and v ,  are functions only of x and y .  Thus 
U = u ( x ,  y)i + v(x ,  y)j. As previously mentioned, such a two-dimensional state of 
strain is called plane strain. From Eqs. (3.5.18), it follows that cz = yvz = yrx = 0, 
and hence for the case of plane strain, we have 

tx F>* 
where yxu = yyx. 

The above arrays have the same appearance as the arrays for the symmetric 
second-rank tensor of Section 3 of Chapter 2. We might therefore be inclined to 
believe that these mays also represent second-rank symmetric tensors. However, 
in order to make this assertation, we must prove that the scalar strain components 
transform according to the same transformation laws as the scalar stress compo- 
nents. In the following section, we derive the appropriate transformation law for 
these scalar components and will discover that the above arrays do not represent 
second-rank tensors. 

3.7 Two-dimensional transformation law for infinitesimal 
strain components 

Let us assume that the infinitesimal strains ex, cy and yxv are known at any point 
of a body situated in an x, y coordinate system. We derive here expressions for 
the strain components in any arbitrary direction (of the x-y plane) in terns of the 
above known strain components; we call these derived expressions, as in the case 
of stress, the transformation laws. 

It is possible to derive these laws by means of two different approaches: a geo- 
metric approach and a more formal analytic approach in which we make use of the 
strain-displacement relations of Section 3.5. 

Each approach has its advantages. However, because the geometric approach 
provides more physical insight into the concept of strain, we first derive the trans- 
formation law for the extensional strain from simple geometric considerations. 

(a) Geometric derivation 
For simplicity we examine a two-dimensional state of strain at a point, i.e., we 
assume that all points undergo displacements in the x-  and y-directions only. Con- 
sider therefore an element PAQB with sides A x  A y  in the neighbourhood of a 
point P, which undergoes displacements such that P 3 P*, A -+ A*, Q + Q" and 
B + B*, as shown in Fig. (3.7.1). As we have noted previously, an element may 
undergo both rigid-body displacements and deformation. However, since we have 
shown that the strains depend solely on the deformation, we disregard all rigid-body 
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Figure 3.7.1 

motion. Therefore, taking P as our reference point, we disregard the displacement 
up =* and analyze the deformation with respect to point P* in the deformed 
state. 

Let us assume that the deformation of the element is known, i.e., the infinitesimal 
strains E,, er and yxy = yy, are known at the given point I? 

We now pose the following question: if the above strains are known, what is the 
strain of a line segment PQ whose initial orientation (before deformation) was at 
some angle 8 with respect to the x-axis [Fig. (3.7.2a)]? (Note that 8 is taken positive 
in the counter-clockwise direction.) 

Figure 3.7.2 

To this end, let the unit vector n define the initial orientation of the line segment 
PQ, and let the unit vector t ,  lying in the x-y plane, defrne a direction perpendicular 
to n. Further, let As = IPQI. In more precise terms, we wish to determine the 
extensional strain E ,  of the segment PQ. In addition, we shall determine the change 
in angle between the original n- and t-directions due to the deformation of the 
element. Clearly, this analysis is purely a problem of geometry. 

Now since the strains are known, the deformation of the rectangular element of 
Fig. (3.7.2a) is known and appears as in Fig. (3.7.2b). Note that we have drawn the 
deformed element as a parallelogram. We may justig this on the following bases: 
(a) the element PAQB is assumed initially to be inhitesimal and consequently the 
strain at the adjacent points in the neighbourhood of P must be approximately the 
same as at P, and (b) in the limit, we shall shrink the element to a point by taking 
Ax Oand Ay 4 0.t 

t Consequently, while the geometric analysis for the infinitesimal eIement is, in general, an approximation, 
it IS exact only in the limit (i.e., at a point). 
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Having denoted the initial length of the line segment PQ by As, we let As* = 

(3.7.1 a) 

IP*Q*I. Now, according to Eq. (3.3.2a), 

As* 21 (1 + E,) As 

and 

/P*A*( 2: (1 + E,) Ax, (3.7.1 b) 

IP*B*I 2: (1 + E,) Ay. (3.7.1~) 

Furthermore, for the parallelogram P*A*Q*B*, we observe that IA*Q*I = /P*B* I 
and that the angle @ 5 LB*P*A* = n/2 - yxy [Fig. (3.7.2b)l. 

We now make use of the cosine law for the triangle P*A*Q*: 

(As*)2 2 IP*A*12 + IA*Q*I2 + 21P*A*I . IA*Q*f COS @. (3.7.2) 

Noting that cos @ 2 cos(n/2 - yxy) = sin yxy 21 yx,v for infinitesimal yxy and sub- 
stituting Eqs. (3.7.1) in Eq. (3.7.2) we obtain 

(1 + E,)~ As2 = (1 + E , ) ~  Ax2 + (1 + E,)~ Ay2 + 2( 1 + E,)( 1 + E,)Y,~ AX Ay. 
(3.7.3a) 

Expanding 

(1 + 26, + E:) As2 2: (1 + 2 ~ ,  + E:) Ax2 + (1 + 26,+ E:) Ay2 

+ 2(l + + cy + E ~ E , ) ~ ~ . ~  Ax Ay. 

Neglecting all second-order infinitesimals, we have 

(1 + 26,) As2 2: (1 + 26,) Ax2 + (1 + 26,) Ay2 + 2yxy Ax Ay (3.7.3~) 

and noting that As2 = Ax2 + Ay2, we obtain, after dividing through by As2, 

26, 2: 2~,(Ax/As)~ +2~, (Ay/As)~  + 2yx,,(Ax/As)(Ay/As). (3.7.3d) 

Now 

COSO = AXIAS, (3.7.4a) 

sin8 = AylAs. (3.7.4b) 

Noting, upon taking the limit, that the approximation 2: becomes an equality, we 
finally obtaint 

E, = ~ , ~ 0 ~ ~ 8 + ~ , s i n ~ 8 + y ~ , s i n 8 c o s 8 .  (3.7.5a) 

Using the standard trigonometric identities [see Eq. (2.6.6)], Eq. (3.7.5a) can be 
written in the alternate form: 

Ex + E y  Ex - cos28 + sin28. 
2 E ,  = ~ +- 2 2 (3.7.5b) 

Equations (3.7.5) thus provide a means to obtain the extensional strain E~ in any 
given n-direction with respect to the x ,  y coordinate system, provided E, and y,, 
are known. These equations thus represent the transformation iaw for the extensional 
strain from the x , y coordinate system to another coordinate system, oriented with 
respect to the first by an angle 6. 

+ See previous footnote. 
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Weobserve that Eqs. (3.7.5)resembleY inform, thetransformationlaw,Eqs. (2.6.6) 
for the normal stress a, given in Chapter 2. However, a casual comparison reveals 
that they are somewhat different since a factor of 1/2 appears in the yxv term in 
Eq. (3.7.5b), which does not appear in Eq. (2.6.6b). We shall not pursue this com- 
ment, but will return to this remark only afier deriving the transformation law for 
the shear strain term. 

Now, although the transformation law for ynt can be obtained by a similar geo- 
metric approach, the derivation is less straightforward since it leads to some rather 
cumbersome geometry. We therefore resort to a different analytical approach that 
yields the transformation laws for both extensional and shear strain components. 

(6) Analytic derivation of the transformation laws 
We consider a body in anx-y plane undergoing deformation where the displacement 
o f  any point P ( x ,  y) in the plane [Fig. (3.7.3a)l is given by 

U ( X ,  y )  = u i  + zrj, (3.7.6) 

where u(x, y) and V ( X ,  y) describe the displacement field. Then, if all strains and 
rotations are infinitesimal, the strain-displacement relations are [Eqs. (3.5.16) re- 
peated here] 

au 

ax ’ €x = - (3.7.7a) 

(3.7.7b) 

(3.7.7c) 

Figure 3.73 

It is useful to note that the extensional strain component in a particular direction is 
given by the partial derivative of the displacement component in the given direction 
with respect to the coordinate in the same direction. On the other hand, the terms 
for the shear strain component are expressed in terms of partial derivatives of the 
displacement components in a given direction with respect to coordinates in the 
orthogonal direction. 

Now, instead of resolving the displacement vector U into components in the x -  
and y-directions, we recognise that the vector may also be resolved into components 
in any arbitrary orthogonal directions. To this end, we first define two directions by 
means of the orthogonal unit vectors n and t ,  where n is inclined by the angle 8 
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with respect to the x-axis [Fig. (3.7.3b)l. Then, 

U = u,m+ utt. (3.7.8a) 

From this figure we note that the components of the vector, U, and Ut, in the n- and 
t-directions, respectively, are given by 

un = U cos6 + u sine, 

ut = -U sin6 + ucos6. 

(3.7.8b) 

(3.7.8~) 

It is clear that we may consider the inclined axes as representing anew n , t coordinate 
system. Hence, we may consider U, and ut to be functions of the coordinates n and t;  
Le., U, = u,(n, t )  and ut = ui(n, t). Therefore, analogously to Eqs. (3.7.7), we may 
write 

aun 
E, = -, 

an 
8% 
at 

Et = -, 

au, au, 
I'nt = + -. an at 

(3.7.9a) 

(3.7.9b) 

(3.7%) 

Now, there exists also a relation between the x, y coordinate system and the n ,  t 
system. Consider, for example, an arbitrary point P, which may be represented by 
P(x, y )  in the x, y coordinate system, or by P(n, t )  in the n,  t coordinate system 
[Fig. (3.7.4)]. Then from the figure, we observe that the following relations exist 
between the coordinate systems ( x ,  y )  and (n ,  t): 

x =ncos@--tsin6, 

y = n sin6 + t cos6; 

(3.7.1 Oa) 

(3.7. lob) 

that is, we consider x = x(n ,  t ;  6) ,  and y = y (n ,  t ;  6) ,  where 6 i s  a parameter. From 
Eqs. (3.7.10), we note that 

ax 
- = case, (3.7.1 la) Fi@re3.7.4 an 
ax 
at 
- = -sine, 

- sine, 
an 

- = cos@. 

ay 

ay  
at 

-- 

(3.7.1 Ib) 

(3.7.1 lc) 

(3.7.1 Id) 

Taking partial derivatives of U, = u,[x(n, t ) ,  y(n,  t)], we have, from Eq. (3.7.9a), 

au, au, ax au, ay 
E , = - - = - -  +-- an ax an ay  an 

and, making use of Eqs. (3.7.1 la) and (3.7.1 lc), we find 

3% au, 
E ,  = - cos6 + -sine. 

ax ay  

(3.7.12a) 

(3.7.12b) 
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Substituting from Eq. (3.7.8b), we obtain 
E ,  = (-cos@ au + 

ax 
or 

a U  a v  au 
ax ay 

E ,  = -cos2 0 + -sin’ 0 + (E + ay> sin8cos0 (3.7.13) 

from which, using Eqs, (3.5.16), we can write 

E ,  = E, cos2 e + cY sin’ 8 + yxy sin0 cos@. (3.7.14) 

We note that Eq. (3.7.14) is identical to Eq. (3.7.5a), i.e., we have rederived the 
transformation law for E, via this more formal, analytic approach. This approach 
permits us to obtain the transformation law for ynr (i.e., the change in angle between 
the n- and t-directions) in a very simple mariner. 

We first note that 
au, au, 
an a t  Ynr = - + -. (3.7.15a) 

Again, considering U, and ut to be functions of [x(n ,  t) ,  y(n,  t)], taking the partial 
derivatives with respect to n and t and making use of Eqs. (3.7.10), we find 

au, aut 8% au, a U ,  aun - = - cos8 + -sin$, 
an ax ay at  ax ay 

sin0 4- -cos0. (3.7.15b) - = -- 

Substituting in Eq. (3.7.15a), combining terms and making use of Eqs. (3.7.8), we 
obtain 

which, again by Eqs. (3.5.16), we can write as 

Ynt = yXy(cos2 0 - sin’ 0) - 2(rx - ey)  sin0 cos e. (3.7.1 6) 

(c) The infinitesimal strain tensor - two-dimensional 
transformation laws 
It is useful to collect together the transformation laws for E ,  and ynt as previously 
derived 

E, = E ,  cos2 0 + cY sin’ o + yxy sin 0 cos 8, (3.7.17a) 

ynt = yxy(cos2 6 - sin’ 6) - 2 ( ~ ,  - E ~ )  sin8 cos@. (3.7.17b) 

Using, as before, the standard trigonometric identities, the alternative form of these 
laws is 

cos 20 + EY sin 28, Ex - Ey +- 2 
E ,  = - (3.7.18a) 6, + Ey 

2 2 

ynt = yxy cos28 - ( E ,  - E ~ )  sin20. (3.7.18b) 

We note that Eqs. (3.7.17) and (3.7.18) resemble the transformation laws for the 
stress components [Eqs. (2.6.6) and (2.6.8) respectively] as derived in Chapter 2, 
They would be identical laws if a, and oy could be replaced by E, and cy and zxy 
by yXy. However, we note that in Eqs. (3.7.17) and (3.7.18) the yXy terms differ by 
a factor of I /2 with the corresponding t,,, terms of Eqs. (2.6.6) and (2.6.8). 
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Now, we recall from Chapter 2, that a second-rank symmetric tensor is said to 
be one for which its scalar components transform (in two dimensions) according to 
the laws given by Eqs. (2.6.6H2.6.8). Indeed, it was precisely because the stress 
components obey these transformation laws that stress was said to be a seeond-rank 
symmetric tensor. 

In the case ofthe array shown in Section 5 of this chapter, we observe that because 
of the factor 1 /2, the transformation laws for these scalar components do not satisfy 
the transformation laws for a second-rank symmetric tensor. Consequently, the array 
of scalar components shown in Section 5 does not represent a tensor. 

Therefore, let us now define the quantities 

Furthermore, as in the case of stress, we introduce a new notation for the extensional 
strain, namely, E,, = cX,  eyy = E~ and E,, = E,. 

With this change in notation, and taking into account the definition of E,? etc., 
we write the following array: 

EYX EYY 
E,, €2, €2, 

where, now 

a u  
ax' 

E,, E E ,  = - 
av 

ay ' 
- Eyy = E, = - 

(3.7.20a) 

(3.7.20b) 

aw 
az ' 

Ezz E EZ = - 

Ex, = (G + ;) 7 

6,. = 5 (F + E) 7 

C i x  = 2: (% + $) . 

(3.7.20~) 

(3.7.20d) 

(3.7.20e) 

(3.7.20f) 

1 a v  

I aw 

1 a u  

With these new dekitions, the transformation laws of Eqs. (3.7.18) become 

(3.7.2 1 a) 

sin 28. (3.7.21b) 

Comparing Eqs. (3.7.21) with Eqs. (2.6.6b)-(2.6.8b), we observe that they are now 
identical since there now exists a direct correspondence: 

Ex +€, Ex - Ey 
-t- cos 28 + E.." sin 28, En = - 

2 2 
Ex - E ,  E,' I= cZy COS 28 - - 

2 

TXX +--f Exxt Zyy +--+ E,,, t x y  +--+ Ex,, 

rnn f-3 E m ,  t n t  +--* E n t .  

Thus, Eqs. (3.7.2 1) represent the (two-dimensional) transformation laws for the 
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array of scalar components shown above. The strain components of this array, as 
in the case of stress, are therefore components of a second-rank symmetric tensor. 
Hence, we have shown that strain at a point is represented by a second-rank tensor; 
thus we refer to the strain tensor at a point. 

Several remarks are now in order: 

a According to its definition, the shear strain eXy = iyZy, for example, represents 
3 the angle change between two line segments that lay initially in the x- and 
y -directions before deformation occurred. 
Double subscripts nn appearing in the extensional strain E,,, indicate extension of 
a line segment that was oriented initially in the n-direction before deformation. 
(For convenience, we sometimes will use the notation 6,. Thus, in cases where 
the symbol 6 appears with only one subscript, it will denote extensional strain 
according to the identity, t n n  5 € 8  .) 

m Having established that the strain components at a point are components of a 
second-rank symmetric tensor, these components have the same properties as 
the stress tensor. In particular, they satisfy the same invariant properties. Thus, 
analogously to the case of plane stress [see Eqs. (2.6.10)-(2.6.11)], the two- 
dimensional strain components satisfy the condition 

En + €2 = E ,  + ey = 1,1 (constant) 

and 

(3.7.22a) 

(3.7.22b) 

where I,  and 4 2  are invariants. As in the case of stress, for the three-dimensional 
strain tensor, there exists a third invariant. 

Although we have not treated the case of three-dimensional strain, we mention here, 
that in that case, the first invariant is then given by 

E ,  + € y  f d  = & I ,  (3.7.23) 

that is, the sum of three extensional strain components at a point in any three 
mutually perpendicular directions is always a constant. In Section 10 of this chapter 
below, we will find that this invariant lends itself to a physical interpretation. 

E , ~ ,  etc.; that is, it will signifi one-hal'fthe angle change. 
Hereafter, and throughout the book, the expression shear strain will signifi 

3.8 Principal strains and principal directions of strain: 
the Mohr circle for strain 

The extensional strain at a point E ,  clearly varies with the orientation 8 of the 
n-direction since according to Eq. (3.7.21a), E ,  = E,,($). Treating E ,  as a function 
of 8, the necessary condition for stationary values is 

den - =o.  
d0 

(3.8.1) 

We might therefore proceed with the analysis exactly as with the case of two- 
dimensional stress in Chapter 2. However, in the previous section, we have ob- 
served that the two-dimensional strain components cx ,  ey and E , ~  yxy/2 satisfy 
the same transformation law as the two-dimensional stress components U,, ay and 
try. Therefore all expressions derived for the principal directions, principal stresses, 
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etc., of Chapter 2 (Section 7), will be the same, if we replace a, by E,, cry and 
t,? by cxY. Thus, it is not necessary to rederive the expressions for the strains; we 
need only replace the stress terms with the corresponding strain terms. In particular, 
corresponding to Eq. (2.7.3) we obtain the equation 

(3.8.2) 

whose two relevant roots are denoted by 01 and 62 with 02 = 61 + n/2. 
However, although the mathematics follow by analogy, it is necessary to make a 

distinction in interpreting these angles. While 01 and $2 of Chapter 2 denoted the 
orientation of the normal to the principal planes, here 61 and 02 denote the mutually 
perpendicularprincipal directions of the strain. Thus 61 denotes the direction of the 
line segment (existing at a point) for which the maximum value of E, occurs and 02 
denotes the direction of the line segment which has the minimum value of E , .  

Analogously to the case of stress, the shear strain E , ~  = 0, where n and t lie in the 
two orthogonal principal (strain) directions. Thus, the right angle existing between 
the two orthogonal principal directions (in the undeformed state) does not change as 
a result of deformation; i.e., line segments lying in the body in these two orthogonal 
directions remain mutually perpendicuiar after deformation. 

The stationary values of E, are called the principal strains. As with stress, we let 
E I  and €2 denote the maximum and minimum algebraic values of strain, respectively. 
Then corresponding to Eqs. (2.7.1 I), these are given by 

and 

(3.8.3a) 

2 
Ex + Ey Ex - Ey 

E 2  = - 2 - J<T) + E $ .  (3.8.3 b) 

Thus, for any given values of E,, cY and ex,,, we find that a line segment oriented at 
an angle 61 with respect to the x-axis will undergo the largest extension, € 1 .  Further- 
more, the smallest extensional strain (which, if G~ < 0, signifies a contraction) will 
occur for a line segment defined by 62 = 61 + n/2. This is shown in Fig. (3.8.la) 
where the two principal directions are defined by the lines n 1 and n2. (We note here 
that the relevant root of 61 lies in the quadrant as defined by the criteria established 
in Chapter 2, for stress: namely here, according to the sign of 

We note that the angle between the two orthogonal principal directions remains 
a right angle since the shear strain €12 = 0. Thus, line segments PC and PD (which 
lie originally in the directions nl and n2 respectively) lie, after deformation. in 
the perpendicular directions ny and n; [Fig. (3.8.la)l. All other sets of mutually 
perpendicular line segments at a point will not remain orthogonal after deformation 
since then, E , ~  # 0. Analogously with the case of stress, the largest and smallest 
shear strainwill occur fortwoline segments [denotedbyn,, andn,2 inFig. (3.8.lb)], 
which are oriented at 45" with respect to the principal directions. Letting nSl -+ 
nzl,  n,2 -+ n:2, we note that n:, and n.:2 , the directions after deformation, are no 
longer mutually perpendicular [Fig. (3.8.lb)l. 
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Figure 3.8.1 

As in the case of stress, the transformation laws lead to a parametric representation 

(Em - i- ~ , 2 ~  = R~ (3.8.4a) 

analogous to Eqs. (2.7.25), namely 

with 

(3.8.4b) 

and where a = 9. 
Thus one can construct a Mohr circle for strain with radius R and with the centre 

of the circle lying on the E,-axis at coordinates [(cX + ~ ~ ) / 2 , 0 ]  in the E,-+ space. 
The construction follows exactly as with the Mohr circle for stress [Fig. (3.8.2)J. 

The principal strains €1 and E:! are then given by 

(3.8 Sa) 

(3.8.5b) 

We illustrate the analysis by means of two typical examples. 
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Figure 3.8.2 

Example 3.11: A plate is subjected to  shear forces such that at a point, the 
strains are ex = ey = 0 and txy = 2k (where 0 < k << 1). Determine (a) the 
extensional strain E" far a line segment oriented at 0 = 30" with respect to  
the x-axis, (b) the shear strain ent and (c) the principal strains and directions a t  
this point, Draw the Mohr circle representing the state of strain at this point. 

SOlUti@il: 

(a) From Eq. (3.7.21a), the extensional strain in the n-direction is 

E, = eXy sin60" = k&. 
Similarly, the strain et in the t-direction (with 8 = 30 + 90 = 120") is 

= exv sin240" = -k&. 
(b) The shear strain enf ,  obtained from Eq. (3.7.21b) with 0 = 30", is enI = k. 
(c) The principal strains, given by Eqs. (3.8.3), are 

€1 = cXy 2k, €2 = -cXy = -2k. 

The principal directions are given by Eq. (3.8.2), namely 
2k 

t . - ( w O  tan20 = - Exy - - - -+ 00. 

2 

Since exy > 0, 281 = 90" and therefore 01 = 45". The direction of n2 is then 
given by 02 = 135". 

The Mohr circle representing the state of strain is given in Fig. (3.8.3), which we 
U recognize to be a strain state in pure shear. 

Example 3.12 The state of plane strain at a point is  given by cx = 10 x IO-? 
ey = -6 x exY = 8 x 10e3. Determine (a) the strain E" of a line segment 
at the point inclined at 0 = 30" with respect to  the x-axis, (b) the change in 
angles between two line segments originally oriented at 30" and 120" with 
respect to  the x-axis and (c) the principal strains and directions. Figure 3.83 
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Solution: 

(a) From the transformation law, Eq. (3.7.21a), with 8 = 30", 

E x  + €y Ex - cy 
f, = - +- cos 28 3- eXy sin 28 2 2 

1 = [i(4) 1 + i(16H0.5) 1 + 8(&/2) x 10-? = 12.93 x 10-3. 

(b) The shear strain between the two line segments originally at 30" and 120" with 
respectto the x-axis is cnt(O = 30"). Noting that sin28 = d J 2  andcos 28 = 0.5, 
Eq. (3.7.21b) yields 

E , ~  = eXy cos28 - - Ex - Ey sin28 = [8(0.5) - $J?/2)] 16 x 10-3 2 

= -2.93 x 10-3. 

Therefore, the angle between these two line segments increases by 5.86 x 10M3 
rad = 0.34". 

The line segments (n and t )  before and aRer deformation (denoted by n* 
and t*) are shown (exaggerated) symbolically in Fig. (3.8.4a). 

Figure 3.8.4 

(c) The principal strains €1 and €2, given by Eqs. (3.8.3), are 

or 

€1 = 13.31 x 10-3, €2 = -9.31 x 10-3. 

The principal directions are given by the roots of Eq. (3.8.2), namely tan 20 = & = + 
=I 1. Therefore 01 = 22.5'. 
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The deformation of the line segments lying originally in the principal directions 
(nl and n2) are shown symbolically in Fig. (3.8.4b). Note that these line segments 
remain orthogonal after deformation as opposed to the line segments of 
Fig. (3.8.4a). 

The Mohr circle representing the state of strain at this point is given in Fig. 
(3.8.5). 

Figure 3.8.5 
a 

3.9 The strain rosette 

One often wishes to obtain the two-dimensional state of strain at a point of a body 
experimentally in a laboratory. While it is impossible to measure the strain at a 
point, it is possible to measure the elongation or contraction of a short line segment 
in the vicinity of a point when a body undergoes deformation. In this case, we 
assume the strain state to be constant in the neighbourhood of the point. 

We consider here the case of plane strain in the x-y plane. Now, to specie the 
state of strain for this case, one usually must know ex, E,, and ex,, . However, it is very 
difficult to measure experimentally the change in angle between two line segments. 
Nevertheless, as we shall see, it is possible to find the above three components by 
measuring the extensional strain components in any three arbitrary directions lying 
in the plane. 

To show this, we recall the two-dimensional transformation law for strain, given 
in the form of Eq. (3.7.17a), namely 

~ ~ ( 6 )  = E ,  cos2 8 + ey sin2 6 + 2exy sin8 cos 8 ,  (3.9.1) 

where 26, has been substituted for yXr. 
Assume now that we are able to measure the extensional strain of three arbitrary 

line segments a, b, c, as shown in Fig. (3.9.1). We denote the orientation of these Figure 3.9.1 
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segments with respect to the x-axis by $a, $, e,, respectively. Then it follows fiom 
Eq. (3.9.1) that 

E ,  E E,(&) = E ,  cos2 $a + sin' $8 + 2exy sine, COS$,, 

Eb = E,(%) = E ,  cos'% + cy sin2% -t 2~,+,, sin% cosh,  

E ,  = = E ,  cos2 0, + cy sin2 0, + 2eXy sine, cos@,. 

(3.9.2a) 

(3.9.2b) 

(3.9.2~) 

Now the values of E,, Eb and E, as well as the orientation $a, &5 and 0, are known. 
Hence, we may consider Eqs. (3.9.2) to be three simultaneous equations in the three 
unknowns, E,, and eXy. 

Various devices exist in the laboratory to determine experimentally the strains 
of line segments in three given directions. Such devices are called strain rosettes. 
Standard strain rosettes exist to measure strains along line segments that are oriented, 
for example, at 30", 45" or 60" with respect to each other [Fig. (3.9.2a,b,c)j. Based 
on such measurements, the strain components in x - and y-coordinate directions 
( E , ,  E?, and E,,,) can be found as is illustrated in the following example. 

Figure 3.9.2 

Example 3.13: Assume that strains are measured by a 45" rosette such that 
b is oriented along the x-axis and line segments a and c are at -45" and 45" 
with respect to the x-axis [Fig. (3.9.2b)j. Let ea, Eb and ec denote the measured 
strains. Determine the strain components ex, E,, and ex,,. 

Solution: Since b i s  along the x-axis, then by definition, E ,  = € b .  

Along a: sin(-45") = - f i / 2 ,  cos(-45") = d / 2  

Along c: sin(45") = &/2 = cos(45") = &/2. 

Substituting in Eqs. ( 3.9.2a and c): 

0 . 5 ~ ~  - eXy = E ,  - 0.5~b 

0.5r.y f E,y = 6,  - 0.5Eb 

Solving for the remaining components, E,, and E , ~ ,  

1 
Exy = 5 (E, - €a), Ey = E ,  - Eb. 

Thus the three components in the x ,  y coordinate directions have been obtained. 0 
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3.10 Volumetric strain-dilatation 

In our previous discussion, we defined two types of strain at a point: extensional 
strain and shear strain. Analogous to the definition of the extensional strain as the 
ratio of change in length to original length of a line segment, one may define a 
measure of the change of volume of an element existing at a point as the ratio of 
change of volume of an element to the original volume. 

To this end, consider an elementary rectangular parallelepiped dx dy dz as shown 
in Fig. (3.10.1). The volume of this element i s  then 

dY = dxdydz. (3.10.1) 

Figure 3.10.1 

Let us assume that this element undergoes deformation where A -+ A*, B -+ 
B*, C -+ C*, D -+ D*, etc. such that dx -+ dx*, dy -+ dy*, dz -+ dz*. Then, by 
Eq. (3.3.2a), 

dx* = IOA*I = (1 +(E,)&, (3.10.2a) 

dy* = lOC*I = (1 + eY) dy, (3.10.2b) 

dz* = lOE*I = (1 + E , ) & .  (3.10.2~) 

In addition to the changes of length of the sides, the element also distorts so that 
right angles no longer remain right angles, as shown in Fig. (3.10.1). For simplicity, 
let us assume that the plane QA*B*C* lies in the x-y plane. The volume dY* of the 
deformed element is then given by 

dV* = [Area(OA*B*C*)][dz* cos yrz] (3.10.3a) 

or 

dY* = [dx* dy* COS yxu][&* COS yxzJ = dx* dy* dz* COS yx,, cos yxz- (3.10.3b) 

Substituting fiom Eqs. (3.10.2), 

d Y* = (1 + E x ) (  1 + g y ) (  1 + E,)  dx dy dz COS yxy cos yxz. (3.10.4) 
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We recall the Taylor series expansion for cosx, 

x2 x4 

2! 4! 
cosx = 1 - - + - - .... 

Then, if I yxy 1 << 1, I yxz 1 << I ,  upon dropping second-order infinitesimals, it fol- 
lows that cos y,,, zz 1, cos y,. N 1. Hence after expanding Eq. (3.10.4), we obtain 

dV* =(1 + E , + E ~ + E , + E ~ E ~ + E ~ E , + E , E , + E , E ~ E , ) ~ ~ ~ ~ ~ ~ .  (3.10.5a) 

Dropping again all second-order infinitesimal terms, we obtain finally, 

dV* = (1 + E, + E,, + E,) dx dy dz. (3.10.5b) 
Now, analogously to the definition of extensional strain, we define A, the measure 
of volumetric strain, as 

dV* - dV 
dV * 

A =  (3.10.6) 

Substituting Eqs. (3.10.1) and (3.10.5b), 
(1 + E ,  + E~ + E ~ )  dx dy dz - dx dy dz 

A =  (3.10.7a) 
dx dydz 

or 

A = E, + E~ + E,. (3.10.7b) 
This measure of volumetric strain, A, is called the dilatation. We emphasise that 
this expression for the dilatation is valid only for infinitesimal strains and rotations. 

Using Eqs. (3.5.laj(3.5.lc), we note that for a given displacement field in a 
body, U(X, y, z) = ui + u j + wk, the dilatation A is given by 

au  a v  a w  
ax ay a Z  

A = - + - + - .  (3.10.8a) 

This simple expression may be written in vector form as 

A = V * U ,  (3.10.8b) 

where V = $i + -.$j + 2 k .  Thus, for a given displacement field, U(X, y.  z), the 
dilatation is given by the divergence of U. 

Finally, upon comparing Eq. (3.10.7b) with Eq. (3.7.23), we observe that the 
invariant 161 is equal precisely to the dilatation A. Hence this invariant has an 
immediate physical interpretation: namely, it represents the volumetric strain at a 
point. Since the invariant is independent of any particular coordinate system, we 
note that the volumetric strain at a point is a scalar quantity that does not depend 
on the coordinate system that has been chosen. Indeed, fkom a simple physical 
reasoning, we might have concluded that volumetric strain cannot depend on any 
particular directions. 

PROBLEMS 

Section 3 

3.1: A 200-cm long copper wire is heated non-uniformly causing an extensional strain 
which is linearly proportional to the distance from one end of the wire. If the elonga- 
tion of the wire is 1 cm. (a) What is the average extensional strain in the wire? 
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(b) What is the largest extensional strain in the wire? (c) What is the extensional 
strain a t  the centre of the wire? (d) If one end of the wire is  fixed and x is the distance 
from this end, what is the displacement u(x) at any point x? 

3.2: A rigid rod AD is  pinned at  A and supported by a wire BC, as finite in Fig. (3P.2a), 
and subjected to a load P at  D. Due to the load, the rod undergoes a finite rotation 
0 as shown in Fig. (3P.Zb). (a) Determine the average strain 5 in the wire as a function 
of 8. (b) If 8 <( 1, show that the average strain is given by? = 9.  

Figure 3P.2 

3.3: A heavy vertical cable ABC of length f = 200 m is  attached at the top, A, to a 
crane. Due to i ts  own weight, the strain at  any intermediate point B is proportional 
to the distance below B. When carrying a given load P at C, the strain is increased 
uniformly by 0.001. If due to i ts own weight and the load P, the cable undergoes a 
change in length AL = 60 cm, what is the strain a t  the top? 

3.4* A segment of wire AB lies along the line y = mx/b, as shown in Fig. (3P.4). The 
wire is strained and displaced to lie along the line y = nx/b(rn < n) in such a way that 
any point originally a t  the coordinate x/bis displaced to Y / b =  ;(x/bl2. (a) Show that 
the extensional strain a t  any point of the wire is given by 

where x is the original coordinate of the point. (b) Determine the average strain in 
the wire. 

3.5:" A segment of wire AB lies along a parabola y=  ax2. The wire is stretched to the 
shape of a parabola y = isrZ (b > a) such that any point originally at  x lies a t  bx/a [see 
Fig. (3P.511. Determine the extensional strain 6, as a function of x.  

3.6: The definition of extensional strain E,, at a point P, given by Eq. (3.3.1), is known as 
a Lagrangian definition (since the reference is  with respect to the original length 
As). On the other hand, one might define extensional strain with reference to the 
deformed length As* (i.e. in a Eulerian sense) as 

AS* - AS 
b(P) = lim ~ 

Q4 AS* 
AS*-*O 

where Q* -+ P* as Q -+ P [see Fig. (3.3.1b)l. Show that 

cn(P) - Cn(P) = E n ( P ) i i n ( P ) ,  

and hence if both en(P)  << 1 and & ( P )  << 1, the difference of these two definitions is 
small, i.e. of second order. 
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Figure 3P.7 

Figure 3P.10 

3.7: A closed circular wire, as shown in Pig. (3P.7), is heated non-uniformly such that 
the extensional strain is  given by 6 = kcos2 8.  Determine the increase in length of the 
wire. 

3.8 The average circumference of the earth (considered as a perfect sphere) is as- 
sumedtobe L ~40,102 km=40,102,000rn.lmaginethataropeof length L isstretched 
to a length I *  = 40,102,006 m and then wound around the earth tat the equator) in 
the shape of a perfect circle. (a) Calculate the average strain in the rope; (b) Prior to 
making any further calculations, estimate intuitively which creature could crawl (or 
hop) under the rope: (i) an ant, (ii) a frog, (iii) a cat or (ivf a human being? (c) Based 
on a calculation, check the proper answer to (b). 

3.9 A circular hoop 50 cm in diameter is heated uniformly so that the enclosed 
area is increased by 0 . 5 ~  cm2. To a first-order approximation, calculate the average 
extensional strain in the hoop. 

3.10 Point B of a plate is  displaced to B*, where the horizontal and vertical compo- 
nents of displacement are U and v, respectively, as shown in Fig. (3P.10). (a) Express 
the average extensional strains in AB and BC, in terms of U, v and L ;  (b) Determine an 
approximate expression for these averag9 strains if U << L and v << L. 

3.11: A straight wire AB of length L isstretched and displaced to the position A T ,  as 
shown in Fig. (3P.111. Denoting the horixpntal and vertical displacement components 
of point A and B as U& VA and UB an# I&, respectively, show that if UA << L, VA << 
L,  UB << L and VB << L, the average extrjnsional strain in the wire is given by 

L L 

Figure 3P.11 

Figure 3P.12 

Section 4 

3.12: A thin triangular plate ABC, with edge AC fixed, is deformed to a shape AB*C, as 
shown in Fig. (3P.12). The uniform extenfianal strains along the n- and t-directions are 
given by cn = 0.006 and et = 0.005, respctfllvely. Noting that the strains are infinitesi- 
mal, determine, to first-order approximeion, the change in angle, yM, due to shear 
a t  point B. 

3.13: The rectangular plate OABC, having dimensions a x 4 is deformed uniformly to 
OA*B*C (i.e., with constant strain ex 10, in the x-direction), as shown in Fig. (3P.13). 
Compute, to first-order approximatian, the change in angle, y ~ ,  at point P. 
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Figure 3P.13 

3.14* An L-shaped plate lying in the x-y plane, Fig. (3P.14a). undergoes uniform 
extensional strains cx and ty at  all points such that all straight lines within the plate 
remain straight and all points along the x- and y-axes remain on the axes. Assuming 
that cx and ey are infinitesimals, determine the change in angle, ynt. Express the answer 
in terms of ex, ey and 8. 

3.15 (a) Determine ynt of Problem 3.14, assuming that ex and ty are not necessarily 
infinitesimals. Express the answer in terms of ex, cY, a and b. (b) Simplify the expression 
obtained in (a) for the case where tX and ty are infinitesimals, and express the answer 
in terms of ex, ty and 6. Note: The following relations may prove to  be useful: 

Section 5 

3.16 In the following problems, points of a plate (0 5 x 5 I, 0 5 y 5 1) lying in the 
x-y plane undergo displacements U and v in the x- and y-directions. respectively. For 
each case, (i) compute the strains ex E txx, ty z tuv and the change in angle, yxy; 
(ii) plot the deformed shape of the plate if a = b = c = 0.1 and indicate the coordinates 
of the corners of the deformed plate. 

(a) u=ax+by, v=hrc+cy, Ota,bc<< l  

(c)u=ax+ky, v=-2ax, O<a,b<<l. 
(b) u = ~ x ,  v = O #  Q < a < < l  

3.17:* A square plate (L x L), as shown in Fig. (3P.l7a), is deformed as shown in Fig. 
(3P.17b) such that (i) points along the edges AB and AD do not move, (6) CD is stretched 
uniformly in such a way that no point of the plate displaces in the y-direction and 
(iii) all vertical lines of the plate remain straight lines. Determine ex and yxy at any 
point of the plate in terms of 8, L and the original coordinates of the point. 

Figure 3P.14 

Figure 3P.17 
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3.18 The rectangular plate shown in Fig. (3P.18) undergoes, while deforming to  
OA*B*C*, changes in angle given by 

yXy = ax/ L + b/ H + c(x/ L Xyl H b 
where a, 4 c << 1. Compute, t o  first-order approximation, the difference in length 
between the lines O*A* and B*C* if all horizontal lines remain parallel t o  the x-axis. 

3.19 Given a square plate ( L  x L )  lying in the x-y plane, which is  deformed such 
that the extensional strains and changes in angle are given respectively by 

bx ax by L '  y x y = - + - ,  Ex = - L '  E y = -  
ay 

L L  
where 0 < a << 1 and 0 < b << 1 are known constants. The following boundary condi- 
tions on the displacements are specified : MO, 0) = v(0,O) = O,u(O, L) = e. Determine 
the displacements dx, y) and v(x, y) in the x- and y-directions, respectively. Express the 
answers in terms of a, 4 e and L .  

Section 7 

Nore: The symbol p appearing in problems of  this and subsequent sections denotes 
10m6 -'micron'; e.g., E = 4 0 0 ~  5 400 x 10-6 = 0.004. 

3.20 Verify the expression for the second invariant of  (plane) strain given by Eq. 
(3.7.22b). 

3.21: At a given point in a body in a state of  plane strain with cxy = 2 x 10-3, the 
ratio R of  the invariants, R EE = 4 x 10-3. If it is known that the stress ey = -4exr 

'*I 
determine possible values of cX.  

3.22:* At a given point in a plate lying in the x-y plane with E= = t, = tzy = 0, the 
ratio R of the invariants, R EE ?, is  found t o  be equal to 4 x 10-3. If it is known that 
the strain eY = -4eX, determine the possible range of values of eXy that can exist if this 
is to represent a state of plane strain, 

3.23: On a plane passing through an arbitrary point P, two rectangular Cartesian 
systems, (x, y) and (n, t), are constructed as shown in Fig. (3P.23). For each of the plane 
strain cases listed below, determine the required quantities. 

(a) ex = 200~, eY = 4 0 0 ~ ,  cXy = 400fi; 0 = 30". Find ern et em. 
(b) G~ = -4OOp, ty = 0, eXy = 300p;O = -30". Find E,,, e t  tnt. 

(c) ex = 0, eY = 0, cXy = 3 0 0 ~ ;  6 = 45". Find ern eI E ~ .  

(d) ex = 1.20 x 10-3, eY = 0.80 x 10-3, cXy = -0.80 x 10-3;6 = 120". Find ern et em. 

(e) En = -loop, Er = -5Op, EM = 100p;O = 30". Find ex, eY, cxy. 
(f) tx = 0.20 x 10-3, ty = 0.10 x 10-3, f,, = 0.05 x 10-3;0 = 45". Find tXy, tt E ~ .  

(9) E,, = loop, ey = 20011, Ent = 0;6 = 60". Find ex, txy, et. 
(h) E,, = loop, ty = -2OOp, cnt = 0;8 = 60". Find E,, txy, et. 

3.24 Let n, s and t be three directions in a given x-y plane such that the n-direction 
lies along the x-axis, as shown in Fig. (3P.24). (a) Determine cXy in terms of  E& E* and E t  

if LY = 45". (b) Determine txy in terms of E,,, cS and Et if LY = 60". 

3.25F For each of the following plane strain states at a point lying in the x-y plane of 
Fig. (3P.23), determine the angle 8 of the direction n with respect t o  the x-axis. 

(a) ex = ty = loop, cXy = 500~ ,  tn = 4 0 0 ~ .  

(c) tx = -cy = -eXy = c, (c = constant), E, = 0. 
(b) E X  = loop, ty = -100~, t ; y  = 150/~ ,  En = 0. 
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3.26 Determine the principal strains and the corresponding principal directions with 
respect to the x-ycoordinates of Fig. (3P.23) for the following given two-dimensional 
strain states. Draw the associated Mohr circle and show all critical quantities, i.e. 
€1, €2, 281, 2%. Note the changes due to the f values of the various strain components. 

(a) cx = 20p, ey = 40p, exy = 60p. 
(b) EX = ZOp, ~y = 40p, €xy = -6Op. 
(c) EX 20/1, ~y = -4Op, 60p. 
(d) EX = 20pt ~y = -40~, = -6Op. 
(e) cx = -2Op, ey = 40p, cXy = 60p. 
(0 = -2Op, ~y 40p, ~ x y  = -601.1. 
(9) ex -2Op, ~y -4Op, EXY = 60p. 
(h) EX = -2Op, ey =: -40p, ~ x y  =: -6Op. 

3.27: For each of the plane strain cases listed below (with ez = cxz = eyr = 01, (i) de- 
termine the principal strains €1 and €2,  (ii) determine the principal directions as defined 
by 81 and e2 and (iii) sketch the appropriate Mohr circle showing el, e2, 28, and 2& on 
the circle. 

(a) ex = 6Op, cy = 0, cxy = 40p. 
(b) ex = 0.20 x 10-3, cy = -0.20 x 10-3, cxy = -0.20 x w3. 

(d) ex = 0.40 x 
(c) c, = 9mp, Ey = loop, GXY = 200p. 

Q ex = 2.0 x 10-3, cv = 0.5 10-3, Exy = -0.5 10-3. 

(i) ex = -0.20 x IO-~ ,  ey = 0.20 x IO-~, cXy = 0.32 x 104. 

ey = 0.80 x 10-3, cXy = -0.60 x 10-3. 
(e) ex = -2OOp, ey = -loop, eXy = 200p. 

(9) EX - 120p, ey = 40p, EXY = - 2 0 ~ .  
(h) ex = 240p, ty = 0, eXy = 120p. 

(j) trx = 0, ey = 240p, exy = 120p. 

3.28: Let n, s and t be three unit vectors lying in a principal plane as shown in 
Fig. (3P.24). 

(a) If Cn = loop, es = 5 0 ~  and et = 20p, determine the principal strains and direc- 

(b) If €n = lOOp, es = -2Op and 6t = 60p, determine the principal strains and direc- 

3.29:" States of plane strain a t  a point, lying in the x-y plane of Fig. (SP.231, are given 
as follows: 

(a) E, = 8 0 ~  cy = -120~.  If €1 = 220p, determine 62, er and e2 (i) if it is known that 

(b) ex = 80p, ey = 1 2 0 ~ .  If €1 = 2 2 0 ~ '  determine ~ , e ,  and & (i) if it is known that 

(c) cY = 40p, exy = - 3 0 ~ .  If €1 = 80p, determine €2, e1 and @ (i). 
(d) ey = 40p, exy = -3011.. If €2 = -Sop, determine €1, e1 and e2 (i). 

tions (with respect to the vector n) if a! = 45". 

tions (with respect to the vector n) if a! = 60". 

cxy > 0 and (ii) if it is known that exy c 0. 

eXy > 0 and (ii) if it is  known that exy .c 0. 

Note: Verify answers via the appropriate Mohr circle. 

Section 9 

3.30 Determine the state of (plane) strain, ex, ey, exy, from the foliowing @-strain 
rosette measurements [see Fig. (3P.ZO)I: 

(a) €a = loo/&, Eb = 300p, cc = -5Op;e = 45", where a lies on the x-axis. 
(b) ca = -60011, Eb = ZOO@, ec = 0; 0 = 45"' where b lies on the x-axis. 

Problems 113 

Figure 3P.30 
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(C) €a = 50p, Eb = -200p, cc = -400~; f3 = 45”, where c lies on the x-axis. 
(d) 
(e) €a = -3OOp, Eb = 0, ec = 300fi;O = 30”, where b lies on the x-axis. 
(0 €3 = -%lop, Eb = -1oOop, E ,  = -15OOp;O = 30”. where c lies on the x-axis, 

3.31: Show that, for a 45” strain rosette, the principal strains can be given by 

= loop, 6b = 200~6, = 300fi;e = 30°, where a lies on the x-axis. 

3.32:* Show that the state of plane strain cannot be determined from measurements 
of three independent shear strains a t  a point. 

3.33:* Original data from measurements of a strain rosette lying in the x-y plane 
have been lost. However, based on the original data, the following is known at a 
point: (i) the ratio of the invariants, R s = 0.75 x 10-3 and (ii) the ratio of the 
principal strains Q / E ~  = 3. What are the possible values of the shear strain cnt in any 
arbitrary orthogonal directions, that can exist at this point? 

Section 10 

3.34 A plate whose area is A and which lies in the x-y plane in the space (0 5 x 5 
a, 0 5 y 5 b) undergoes plane strain deformation. At any point P(x, y), the dilatation 
is given as 

k 
A 

A = -(x - a)’(y - b)2, 

where k << 1 and has dimensions (l/m2). Determine, in terms of a and b, the change 
of area, SA, of the plate due to  the deformation. 

3.35: A square plate whose area is A and lies in the x-y plane in the space (0 5 x 5 
L, 0 5 y 5 L f  undergoes plane strain deformation. The displacements in the x- and 
y-directions a t  any point P(x, y) are given as 

where a f L << 1, bf L << 1 are known constants. Determine the change in area, 6A, of 
the plate due to  deformation in terms of a, band L . 
3.36 A plate lying in the x-y plane in the space (-a/2 5 x 5 a/2, -b/2 5 y 5 b/2) 
undergoes plane strain deformation due to  non-uniform temperature changes 6T(x, y) 
given as 

ST(x, y) = STo + S f i  COS - cos2 [ (”a”) (a)]. 
Determine the change in area of the plate, 6A, in terms of &To, 6 f i ,  a, 4 and the 
coefficient of thermal expansion, a. 

Review and Comprehensive Problems 

3.37:” A hollow cylinder, shown in Fig. (3P.37a), is deformed by rotating the outer 
surface through a small angle # while holding the inner surface fixed as shown in 
Fig. (3P.37b). Assuming that the cylindrical surfaces remain circular and that all radial 
planes remain plane, determine to  first-order the change in angle y,e a t  any point 
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P, located at a radial distance r from the axis. Show specifically where the first-order 
approximation is used in the solution. 

3.38 A segment of a circular ring containing an arc nn' having an original initial 
radius pLas shown in Fig. (3P.38a), is deformed into a segment such tkat the radius of 
the arc nn' becomes R as shown in Fig. (3P.38b). Fibres along this arc nn' are known to 
u_dergo no stretching (i.e. eo = 0, where B is in the circumferential direction). (The arc 
nn' therefore is  said to represent a 'neutral surface'.) Further, due to this deformation 
all cyss-sections remain plane and perpendiaular to the 'neutral surface', i.e. to the 
arc nn'. Show that the strain of any point 9 measured a distance q from the neutral 
surface, is given by 

Figure 3P.38 

Note: This expression reduces to ex(P) = q / R  when p .+ QO, i.e., when the segment 
becomes an element of a straight beam lying in the x-direction. 
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Figure 3P.39 

3.39 Strains in the triangular plate ABC of Fig. (3P.39), lying in the x-y plane, are 
given as 

ex = ay, cY = 2 e y ,  exy = ax + 2~1x9, 

where aL << 1, bL3 << 1. (a) Determine the increase in length of the edge BC; (b) de- 
termine E,, along the edge AC; (c) determine the increase in length of the edge AC and 
(d) determine the angle between the lines DB and DC at  point D, after deformation 
if aL = 0.05 and bL2 = a. Express the answer in degrees. 

3.40: The displacement of a given point of the plate ABCD [Fig. (3P.40)1, lying in the 
x-y plane, is given as 

where a << 1. (a) Determine the extensional strain a t  any point lying along the line At; 
(b) determine the change in length of line AC; (c) determine the principal strains a t  
point F; (d) Is AC a principal direction of strain at point F? Why? 

Figure 3P.40 

Figure 3P.42 

3.41:* Points of a plate (0 5 x 5 1, 0 5 y I 11, lying in the x-y plane, undergo dis- 
placements U = ax + Zby, v = cx + by in the x- and y-directions, respectively, where 
a, band c are three undetermined constants, 0 < a, 4 c << 1. (a) Express the principal 
strains €1 and €2 a t  any point P(x, y) in terms of a, b and c; namely, express el as a func- 
tion of the three variables, i.e. €1 = q(a, 4 c); (b) express the direction of the principal 
direction 81 with respect to  the x-axis in terms of a, band c; (c) obtain the ratios a/c and 
b/c, which yield the extreme values of the extensional strains c1 and ez; (d) from the 
results of (c), determine this maximum value of cl and the direction el; (e) by means of 
a sketch (indicating the coordinates of the the corners of the deformed plate), show 
that the plate remains a square while undergoing rigid-body rotation and increasing 
in size. What is the increase in area, AA, of the plate? 

3.42: The displacements in the x- and y-directions of a given point P(x, y) of the plate 
ABCD, lying in the x-y plane [see Fig. (3P,42)], are given as 

L 4  ' L 5  
u = a  xqy  - L /2)2 x2r" 

where a << L. (a) Determine the strains ex, E,, and cxy at any point P(x, y); (b) deter- 
mine the change in length of line BC; (c) determine the change in length of line OC; 
(d) determine the angle a t  point C*, which exist between the edges B*C* and C*D after 
deformation, if a/L = 0.02, Express the answer in degrees; (e) denoting the original 
and final areas of the plate as A and A*, respectively, determine the ratio S = y. 
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3.43* A square plate ABCD undergoes plane strain to ABC*D, as shown in Fig. (3P.431, 
in such a way that points along the x- and y-axes remain fixed and such that the 
displacement of any point P(x, y) in the y-direction, v = 0. The displacement in the 
x-direction is given as u(x, y) = kxy/L2, where Ik/L I << 1. (a) Determine the extension 
AAC of line AC; (b) determine the increase in length of the parabola y = x2/L passing 
through point E, due to  the deformation; (c) determine the resulting average strain F 
of the diagonal AC and of the parabola AEC. 

3.44:* A rectangular plate ABCD [see Fig. (3P.44)], lying in the x-y plane, undergoes 
deformation such that (i) points lying on the y-axis undergo no displacement, (ii) the 
strain in the x-direction is constant, i.e. ex = c, (Icl << 1) and (iii) the shear strain at 
any point P(x, y) is given by exy = ax/L + by/L where 0 < b 5 a << 1. (a) Determine the 
displacements u(x, y) and dx, y) in the x- and y-directions, respectively; (b) determine 
the principal strains a t  any point P(x, y); (c) if a = 2b= c, along which line of the plate 
do points lie such that the x and y directions are the principal directions of strain? 
Show this line by means of a sketch. (d) Determine the principal strains for all points 
P along the line obtained in (c) above. At what point on this line does the maximum 
value Ie2I occur? Show by means of a sketch and indicate the values of €1 and €2 a t  
this point. (e) Sketch the deformed plate if a = 0.2, b= 0.1, c = 0.05 and indicate the 
coordinates a t  the corners of the deformed plate. 

3.45:" A square plate OABC, lying in the x-y plane, is deformed to OA"B*C* as shown 
in Fig. (3P.45). The following conditions (boundary conditions) are known: (i) The edges 
OA and OC remain on the x- and y-axes, respectively; (ii) the displacements of points 
A and C along the axes are e << L, as shown in the figure; (iii) the stretches along the 
axes are uniform; i.e., the strains ex and f y  along the respective axes are constant and 
(iv) the displacement of point B in the y-direction is 2e. Within the plate, the verti- 
cal lines are known to remain parallel to  the y-axis and the shear strain a t  any point 
P(x, y) is given as ex,, = axy/2L ', where a is  a constant to be determined. (a) By integra- 
tion of the strain-displacement relations, and making use of the boundary conditions 
given by (ib(iv) above, show that the displacements u(x, y) and dx, y) in the x- and 
y-directions. respectively, are 

(b) What is the average extensional strain K of the diagonal OB? Express the answer 
in terms of e and L, making use of the condition e<< L. (c) Determine the strain 

of the line segment of OB at point D, the intersection of the two diagonals. 
(d) Determine the angle (in degrees) between the two diagonals after deformation if 
e=O.lL. 

3.46:* A square plate OAK, lying in the x-y plane, as shown in Fig. (3P.46), is de- 
formed to  OA*B*C*, subject to the following conditions: (i) OA and OC remain on 
the x- and y-axes, respectively; (ii) the displacement of points A and C along the 
x- and y-axes, respectively, is e, as shown in the figure; (iii) the strains along the x- and 
y-axes are uniform, i.e. constant; (iv) the displacement of point B in the x-direction 
is 2% (v) within the plate, lines originally parallel to  the x-axis remain parallel to  the 
x-axis; (vi) the shear strain at any point P(x, y) is given by cxY = f$, where a << L is an 
undetermined constant. (a) Express conditions ( i )  to (v) in mathematical terms. (b) By 
integrating the strain-displacement relations, show that the displacements U and v in 
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the x- and y-directions are given, a t  any point P(x, y), by 

Figure 3P.46 

u=e($+;), 

ey 
"= r' 

(c) Making use of Eqs. (I) and (11) above, determine the coordinates of B* (xg., m). 
Based on these coordinates, evaluate to  first order the change in length AOB of line 
OB subject to  the condition 0 5 ell << 1. (d) Determine the extensional strain E~ a t  any 
point P along OB and by integration, evaluate the change in length AOB of line OB. 
(e) Determine (i) the displacement (U( of point D and (ii) the component of displace- 
ment of point D in the direction of line OB. (0 Determine the change of area of the 
plate due to  the deformation. 

The following problems are to be solved using a computer. 

3.47: Using the transformation laws for plane strain [Eqs. (3.7.21)], write a computer 
program to determine cm et and cnt for any given state of strain, ex, E ~ ,  cXy and 8. 
Check the program by using some of the strain states given in Problem 3.23. 

3.48: Given a state of plane strain, E ~ ,  and eXy, write a program to determine the 
principal strains ~1 and c2 and the principal directions e1 and 82. Check the program by 
using some of the strain states given in Problem 3.27. 

3.49 Write a computer program to  determine the state of plane strain (ex, ey, 
from data obtained from a @-strain rosette [see Fig. (3.9.1)1, i.e. from measurements 
of E*, Eb and cC. Check the program using measurements given in Problem 3.30. 

3.50 Given the state of plane strain, ex = 2 x 10-3, ey = 4 x 10-3, cxy = 6 x 10-3. In 
what direction (defined by the angle f3 with respect to  the x-axis) is the normal strain 
E,, = 9 x IOw3? (Note: The value e can only be determined numerically.) 

3.51: Given the state of plane strain, cX = 400p, ey = -300pI cXy = 600~. In what 
direction (defined by the angle B with respect to the x-axis) i s  the normal strain 
E,, = 700p? (Note: The value e can only be determined numerically.) 

3.52: Given the state of plane strain, ex = -2OOp, G~ = ISOp, exy = 60p.  In what di- 
rection (defined by the anglee with respect to  thex-axis) isthe shear strain ent = 180@? 
(Note: The value e can only be determined numerically.) 
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4.1 Introduction 

In our previous treatment, the laws of mechanics and kinematic relations (or more 
specifically geometric refations) that describe the deformation of a body have been 
developed. This led us to the definitions of two concepts: stress as a measure of 
intensity of internal forces and strain as a measure of the intensity of deformation; 
concepts that clearly are valid for any deformable body and thus independent of the 
material; the definitions and derived relations are as valid for a fluid as for a rod 
made of steel, Now a Auid and steel evidently behave quite differently. Therefore it 
is clear that to determine the behaviour of a given body, it is necessary to specify the 
general character of the mechanical behaviour of the material itself; this behaviour 
must be specified in mathematical terns. The mathematical equations describing 
the general behaviour of a material are known as Constitutive equations. Thus, it 
is only when we introduce the constitutive equations in the problem that we specify 
the material under consideration. 

Constitutive equations are equations that relate the various quantities (e.g. stress, 
strain, stress rate, etc.) governing the general behaviour of materials. However, these 
equations are idealised equations since they take into account only certain effects. 
One could, for example, consider thermodynamic effects, electromagnetic effects, 
etc., on the behaviour of bodies. Since our goal here is to study the mechanical 
behaviour of bodies, we shall exclude these effects; we shall consider constitutive 
equations that relate only the mechanical variables in describing the behaviour. 

It is important to observe that while the constitutive equations are simplified equa- 
tions, they must nevertheless describe as accurately as possible the real behaviour 
of a material in nature. Thus we may say that constitutive equations describe the 
behaviour of a representative model that conforms with experimental data obtained 
for a given material. 

4.2 Some general idealisations 
(definitions: 'micro' and 'macro' scales) 

The idealisations that we make depend on the level at which a problem is to be 
studied and the purpose required. For example, all matter is known to be com- 
posed of atoms and corresponding molecules and/or crystals having characteristic 
dimensions measured in Angstroms or possibly microns. To understand certain phe- 
nomena, it is necessary to consider the behaviour at this level, be it at the atomic, 
such as in solid state physics or at the microscopic level. One studies materials at 
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Figure 4.2.1 

this level in order to understand why the material behaves in a particular way. In- 
deed this falls within the discipline of material sciences. However, in our treatment, 
we shall be interested in a more global approach, namely, in how a body behaves 
(e.g., under certain loading conditions). Our approach can therefore be said to be 
a phenomenological approach under a macroscopic scale. Hence, in using such an 
approach, the atomic or microscopic composition is ‘blurred’, and consequently 
we do not consider the atoms, molecules, etc., to lie at discrete points but instead 
consider the material to be distributed continuously at all points in a given space. 
The body is therefore said to constitute a ‘continuum’ since its particles are assumed 
to be located continuously at all points throughout a given (n, y ,  z)  space.t 

Before proceeding with a description of the mechanical behaviour, i t  is necessary 
to establish a precise terminology. We first observe that a body may be considered 
to be either homogeneous or inhomogeneous. A body is said to be strictly homoge- 
neous if it possesses the same materialproperties at allpoints in the body. We shall 
refer to this definition as the definition on the ‘micro-scale’ since we refer here to 
the behaviour at various points in the body. That is, if we consider a body as shown 
in Fig (4.2.1), the material is micro-homogeneous if, given any two points in the 
body, PI and Pz, it has the same property at both points. If the material behaviour 
changes from point to point, then the material is said to be inhomogeneous on the 
micro-scale. 

Figure 4.2.2 

Let us now consider a real material such as steel, which is composed o f  iron 
crystals, of carbon (and possibly minute parts of other elements). If one examines 
steel under a microscope, it appears as is shown in Fig. (4.2.2); it is clear that 
the behaviour of the iron crystals will be different from that of the carbon. Thus 
the steel cannot, in fact, be said to be strictly a homogeneous material on the 
micro-scale. However, let us consider a small representative element of steel, for 
example, element ‘a’ as shown in Fig (4.2.2), which consists of a large number of 
randomly oriented crystals, In this case, we do not consider the material at a point 
but more globally, i.e. on a ‘macro-scale’. It is clear that the several elements, e.g. 
elements ‘a’ and ‘b’, each containing crystals of iron and carbon, constitute the same 

It should be noted that in the previous treatment of stress and strain, the body was implicitly considered 
to be a continuum. 



4.3 Classification of materials 121 

representative material. In this sense, although the steel is not micro-homogeneous, 
it can be said to be homogeneous on the macro-scale or ‘macro-homogeneous’. 

As another example, if we consider concrete (which is composed of cement, sand 
and gravel) [Fig. (4.2.3)], one does not require a microscope to observe that the 
material is not micro-homogeneous. Nevertheless, if we are interested in the global 
behaviour of the concrete, we may consider the material to be macro-homogeneous 
in the same sense as previously discussed; namely, the behaviour of a representative 
element is the same everywhere in the b0dy.t 

Now, let us consider the behaviour of a material at a given point. A material 
that behaves in such a way that its properties are the same in all directions is said 
to be isotropic. Thus, since an isotropic material exhibits the same behaviour at a 
given point in all directions, the material is said to have no ‘preferred’ directions. 
On the other hand, if the material exhibits a different behaviour, depending on the 
direction, it is said to be an anisotropic material. For example, wood clearly is an 
anisotropic material since it behaves differently if it is under tension in the direction 
of the grain or perpendicular to the grain [Figs. (4.2.4a and b)]. 

Now if we consider again, for example, steel or concrete, it is clear that neither 
material exhibits isotropic properties at a point; that is, they both are anisotropic 
on a micro-scale. However, observing Figs. (4.2.2) and (4.2.3), it is quite evident 
that the component parts in any finite representative element appear to be randomly 
oriented. Thus, for example, if we examine a representative element of concrete, 
it clearly does not have any preferred direction, and therefore, statistically, the 
properties are the same in all directions. Thus, we may consider the material to be 
isotropic on the macro-scale. 

Since our subsequent treatment will be concerned with the global behaviour 
of bodies (e.g., subjected to external forces), our interest will be with the macro- 
behaviour of such bodies. Hence, in using the terms ‘homogeneous material’ or 
‘isotropic material’ our reference to these properties will be on the macro-scale. 

4.3 Classification of materials: viscous, elastic, visco-elastic 
and plastic materials 
Based on tests conducted in the laboratory, there exist several broad classes of 
solid materials. These materials are best classified according to the different types 
of constitutive equations that characterise their behaviour. We may define these 
classes broadly as follows: 

(a) Elastic material 
An elastic material is one for which, at any given point, there exists a direct relation 
between the state of stress and state of strain. Denoting the stress and strain tensors 
symbolically by r and E ,  i.e.$ 

Clearly, in more precise analyses of fracture in solids, or in the realm of solid state physics, where one 
must consider the material on a micro-scale, the concept of macro-homogeneity loses its validity. 
Here we use the notation ox = txx , uy E tyy, n, I trz; ex = exx, etc. 
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respectively, we define an elastic material as one for which the constitutive equation 
is of the form 

7- = f(€), T(€ = O)=O. (4.3.1) 

Note that implicit in its definition, the state of stress at points in the elastic body de- 
pends solely on the final deformed state of the body, that is on the final strain. 
Thus the stresses do not depend on the manner in which the deformation oc- 
curred. 

In the following section, we shall elaborate at length on the properties of elastic 
materials. 

(b) Viscous material 
A viscous material is one for which the stress at a point is a function of the strain 
rate; i.e., 

T = f(de/dt). (4.3.2a) 

For example, the relation might be a linear relation of the form 

7 = a(ds/dt) s a&, (4.3.2b) 

where a is a constant of viscosity. In this case, the material is said to exhibit 
linear viscosity. (Such materials are on the ‘borderline’ between a solid and fluid, 
depending on the viscous nature of the material.) 

(c) Visca-elastic material 
A visco-elastic material is one for which the constitutive equations express the 
stress and stress rates as a function of the strain and strain rates; thus they have the 
general form 

f(7, i ,  +, . . .) = g(€ ,  4, ii, . . .). (4.3.3a) 

A material of this class having a linear relation, e.g., where the strain depends 
linearly not only on the stress but also on the stress rate, as in 

E = a7 + p i ,  (4.3.3b) 

where a and p are material constants, is said to be a simple linear visco-elastic 
material. Hence the deformation of a body of such a material will depend not only 
on the applied force but also on how fast or slowly the force is applied. The material 
is said to be rate-sensitive. 

(d) Plastic material 
A general definition of a plastic material is not quite as straightforward. It appears 
that the simplest definition would be that the stresses in a material undergoing plastic 
behaviour are such that they do not depend on the final state of strain but rather 
(as opposed to elastic materials) on the manner by which the state of strain was 
arrived at; that is, on the previous history of the material. 

Because the majority of design and analysis problems encountered in engineering 
deal with elastic materials, in our subsequent treatment we shall limit our discussion 
mainly to elastic materials. However, where appropriate, we shall also consider 
plastic behaviour of materials. 
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4.4 Elastic materials 

(a) Constitutive equations for elastic materials: general 
elastic and linear elastic behaviour, Hooke's law 
(i) General elastic behaviour 
As defined above, an elastic material is characterised by a relation between the state 
of stress and state of strain at a point. 

For simplicity, let us first consider the case of uniaxial stress where all stress 
components with the exception of a, = t,, vanish. Thus we consider a rod of length 
L and cross-section A under uniaxial tension. Then, as discussed in Chapter 1 ,  
by applying a tension force P of gradually increasing magnitude to the rod and 
measuring the change in length AL during a simple tension test, we calculate the 
stress a, = P I A  and E ,  = A L / L  and thus obtain the stress-strain curve of the 
material, as shown in Fig. (4.4.1).+ 

Now, let us say that we apply a load to the undefomed rod up to point B of 
Fig. (4.4.1) and then remove this load (i.e., we return to the point a, = 0). Clearly, 
if the rod is elastic, it will return to its undeformed shape, E ,  = 0. If we now reapply 
the same load, we return to point B. Alternatively, if we reduce the load to, say, 
any point C and then reapply it, we arrive again at point B on the a-+ curve. Thus, 
implicit in the definition of an elastic material as given above, an elastic material 
has the following properties: 

UI The final stress state at a point depends solely on the final strain state (and vice 
versa); that is, it does not depend on the 'loading history'. 
The a+ curve defined by the constitutive equation must be a unique curve; e.g., 
the relation between the stress a, and strain E ,  must be a one-to-one relation. Thus, 
for example, a constitutive equation defined as a, = kr; [Fig. (4.4.2a)l cannot 
represent an elastic material since for any given a,, there exist two possible strains, 
namely 4-m and -m. However, the constitutive equation, defined as 
a, = ke;, only for positive strains, i.e. ex ? 0 [Fig. (4.4.2b)], does represent an 
elastic material since the strain is uniquely determined. 

Figam 4.4.1 

Figure 4.4.2 

Let us imagine that, starting from the undeformed unstressed state, we now load 
the specimen represented in Fig. (4.4. I )  successively by a series of gradual incre- 
mental loads. We would find that there is a maximum stress for which the material 

We assume here that, at all points in the rod, U, = F, and E ,  = Zx, where F, and F, are the average 
stress and strain on a cross-section. 
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behaves elastically. We call this stress the Elastic limit and denote it by 5E. Thus 
in Fig. (4.4. l), if the stress a, 5 DE, the material behaves as an elastic material; if 
the material is stressed to, say, point D, then it will not return to its initial shape; 
i.e., the rod will have a permanent deformation (or ‘set’) since it undergoes plastic 
deformation. Indeed, if the specimen is loaded to CD, ‘unloading’ will take place 
along a different curve as shown by the dashed line in the figure. (We discuss this 
unloading process in the next section.) 

We now generalise the above ideas to materials where three-dimensional states 
of stress and strain, r and E ,  exist. We therefore define an elastic material as one 
whose constitutive equation is of the form 

7 = f ( E ) ,  T ( E  = 0) = 0 (4.4.la) 

and which possesses a unique inverse, written symbolically as 

E = f - l ( r ) ,  E ( 7  = 0) = 0. (4.4. lb) 

The general stress-strain curve of an elastic material is represented symbolically 
in Fig. (4.4.3). We note that if the state of strain at a point is given, the state of 
stress at the point is immediately known and vice versa. Furthermore, as a result of 
the unique one-to-one relationship given by Eq. (4.4. I), we again conclude that the 
behaviour of an elastic material is independent of the loading history; the material 
has but one ‘memory’, namely its initial undeformed state to which it returns when 
all stresses vanish. 

(ii) Linear elastic material: Hooke’s law 
A particular case of an elastic material, which is of great importance, is the case 
of a linear elastic material, namely one for which the stress and strain states are 
linearly related; i.e., f and f-’ are linear functions. 

For convenience, let us again consider the simplest states of stress: uniaxial stress 
and the state of pure shear. 

We consider first the uniaxial state of stress, a, E txx, where all other stress 
components are zero. For this case, the linear relation is given by 

0, = Eex .  (4.4.2) 

where E(E  > 0) is the modulus of elasticity. We note that the modulus of elasticity 
E represents the slope of the stress-strain curve. We note too that the relation is 
analogous to that of a linear spring having stiffness k (Nlm). In this case, the relation 
between an applied force P and the change in length of the spring A t  is P = khtl. 
For this reason an elastic material is often represented by a model consisting of a 
spring, as in Fig. (4.4.4). 

Indeed, many, but not all, materials behave initially as linear elastic Materials, 
providedthe stress and strain are sufficiently small; that is, provided that a, does not 
exceed a certain value. Thus one may find that the a-+ curve in uniaxial behaviour 
appears as shown in Fig. (4.4.5). The linear relation (4.4.2) then holds provided that 
ax 5 a,,, where ap denotes the proportional limit. 

Let us now consider the case of pure shear, for example, in the x-y plane. 
We note that if a shear stress txr is applied to a linear elastic material, then any 
element will undergo shear deformation where we denote the angle measuring 
this deformation by yXy. The resulting t-y curve in shear is plotted as shown in 
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Fig. (4.4.6). The relation will be linear provided t 5 tp (where tp is the proportional 
limit in shear); i.e., 

txy = Gy,, or yxy = -. 

Here the proportionality constant G ( G  > 0)  is called the shear modulus or the 
modulus of rigidity. Note that both E and G are positive constants and have units 
of N/m2 or Pa. 

Having discussed the behaviour for the simplest states of stress, we turn again 
to consider the general three-dimensional state of stress and strain, where we recall 
that there exist six independent components of stress (t,,, tyy, zzz, t X y ,  tyz. t,,) and 
strain (E,, , eYy, E,, eXy, cyr,  E,=). Since for a linear elastic material, the state of stress 
is linearly related to the state of strain, it is reasonable to assume that, in principle, 
for an anisotropic material, any given stress component is linearly dependent on 
all six strain components. Thus we may write the general linear relation in the 
following form: 

(4.4.3) h.v 
G 

Figure 4.4.6 

Txx = c l 1 E x . r  $. c l 2 E y y  + C13Ez.z $. c 1 4 E x y  + c 1 5 E y z  + C16Ez.z 

ty.v = c 2 l E x x  f C 2 2 E y y  + c 2 3 6 z z  + c 2 4 E x y  + C 2 5 E y z  + C26Ez.x 

Tzz C31Ex.x + c 3 2 E y y  f C 3 3 E z z  + C34Ex.v + C 3 5 E y z  + C36Ez.x 

Zxy = C41Ex.x + c 4 2 E y y  f C 4 3 E z z  + C 4 4 E x y  $. c 4 5 E y z  + C46Ezx 

tyz = C5lEx.x + C 5 2 E y y  + c 5 3 E z z  + C 5 4 E . x ~  + c 5 5 E y z  + C56Ez.x 

rzx  = C61Exx $. C 6 2 E y y  C 6 3 E z z  f C64Cxy + C 6 5 E y z  + C66Ez.x 

(4.4.4) 

where the constants ( C ~ I ,  C 1 2 ,  . . . , c 6 6 )  are material constants for any particular 
material. Alternatively, one might write the linear relations as strains in terms of 
stresses: 

Ex,  = B 1 l t a - x  $. B12ty .v  + B 1 3 t z z  f B 1 4 t . r ~  + B 1 5 t . v ~  + B 1 6 t z x  

Eyy B 2 1 L  + B 2 2 t y y  + B 2 3 T z z  + B 2 4 t x y  + B25t . z  + B 2 6 t z x  

€22 = B31rx.x + B 3 2 Z y y  + B 3 3 t z z  + B 3 4 t x y  + B 3 5 r y z  + B36Tzx 

~ x y  = B 4 1 t x x  + B 4 2 t y y  + B 4 3 t z z  + B 4 4 t x y  + B 4 5 ~ y z  + B 4 6 t . m  

Eyz = B51t.u + B52r.y + B 5 3 ~ z z  + B 5 4 t x y  + B 5 5 t y z  + B 5 6 t z x  

Ezx = B 6 l t x x  + B62t .y  f B63T.m + B 6 4 Z x y  $. B 6 5 t y z  f B66Zzx 

(4.4.5) 

where the constants (B11, B l 2 ,  . . . , B 6 6 )  again are different material constants (but 
related to the constants, C),  for the particular material. 

The above represents the most general linear elastic stress-strain relation; this 
relation is referred to as the generalised Hooke 5. Law for anisotropic materials. It 
therefore appears that to describe a linear elastic material in its greatest generality, 
we would require 36 independent constants. Although it is beyond the scope of 
our present study, we mention here that, in fact, 15 of these constants are not 
independent and that therefore the most general anisotropic linear elastic material 
can be described by 2 1 independent constants. 

The purpose of the above discussion of a general linear anisotropic material has 
been to consider the behaviour of materials in the framework of the general theory. 
Now, there exist various degrees of anisotropy in a body and evidently, as a material 
becomes less anisotropic, there will exist fewer number of independent constants. 
Thus the number of independent material constants required to describe a linear 
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elastic material clearly diminishes as the material approaches isotropy; we shall 
limit our treatment below to these simplest materials, i.e. isotropic materials.? 

Recalling that an isotropic material is one whose properties are the same in 
all directions, we therefore wish to develop the stress-strain relations for a linear 
isotropic elastic material when subjected to a general state of stress. 

As in the previous discussion, we again start from the simple case of a uniaxial 
state of stress a, # 0, where we recall from Eq. (4.4.2) that the strain E ,  is given by 
E ,  = a,/E. Let us assume that the element is subjected to a tensile stress a, > 0 
in the x-direction. The resulting strain E ,  > 0 therefore describes an extension of 
the given element in the x-direction. However, due to a, > 0, contractions take 
place in both the y -  and z-lateral directions; i.e., the element undergoes lateral 
strains < 0 and E, < 0, as shown in Fig. (4.4.7). Moreover, since the material is 
isotropic, the strains cy and E ,  due to a, must necessarily be the same since neither 
the y-axis nor z-axis is a ‘preferred direction’. In fact, upon measuring such strains 
in the laboratory, the strains E ,  and E ,  for a linear elastic material are found to be 
proportional to E,; that is, 

E y  = -U€,, (4.4.6a) 

E ,  = -U€,, (4.4.613) 

where U 2 0 is called the Poisson ratio. Thus, for a uniaxial state of stress, a, # 0, 
we have 

(4.4.7a) 0, 
E ,  = - 

E ’  

(4.4.710) * X  

E y  = 

E,  = -U-. 
E 

(4.4.7c) 

Figure 4.4.7 

Note that the Poisson ratio v is a non-dimensional constant. These equations 
express the fact that the strain in a direction perpendicular to an applied stress is 
always proportional (and of opposite sign) to the strain in the direction of the stress, 
the coefficient of proportionality being - u /  E.  

Consider now a general three-dimensional state of stress. Let us assume that the 
state of stress at the point is such that a,, ay and a, are all acting on an element. 
As we have seen, the strain E ,  in the direction that is perpendicular to a stress 
component a, is given by ey  = -va,/E. Since there are no preferred directions 

t We recall that by the term ‘isotropic’ we refer to an isotropic material on the macro-scale. 
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Figure 4.4.8 

for an isotropic material, it follows that the effect on the strain E ,  due to the stress 
a,, must be the same as the effect of a, upon E,,; thus the strain E ,  due to ay is given 
by -uay/E. The two-dimensional effect, neglecting the z-direction, is shown in 
Fig. (4.4.8). Similarly, E ,  due to a, will be given by -va,/E. Since all the relations 
are linear, we may superimpose the effects of a,, av and a,; thus we obtain 

or 
1 
E E ,  = -[a, - U(Uy +a,)]. (4.4.8a) 

Furthermore, since there are no preferred directions for an isotropic material, the 
effect of normal stresses acting in the y-, x- and z-directions on the strain cy in the 
y-direction must be the same as the effect of the normal stresses acting in the x-, 
y- and z-directions, respectively, on the strain E, in the x-direction. We may arrive 
at similar conclusions for the strain E, by using the same arguments based on the 
definition of isotropy. Therefore we have 

1 
E 

EY = -[a,, - U(% + Cx>l 

and 
1 
E Ei. = -[a2 - u(a, + ay)]. 

(4.4.8b) 

(4.4.8~) 

Note that, having established Eqs. (4.4.6) and (4.4.7), Eqs. (4.4.8a-4.4.8~) follow 
directly simply fiom the basic definition of isotropy. 

If we examine the behaviour due to shear, we conclude that since the isotropic 
material has no preferred directions, the shear relations in the y-z and z-x planes 
must be of the same form as that in the x-y plane, as given by Eq. (4.4.3); thus 

Yyz  = - ZY. (4.4.9a) 
G 

and 

(4.4.9b) 

Combining the above, and recalling that the shear strain is defined as half the 
change in angle (e.g., E,,, = yx,,/2,etc.), the general stress-strain relations for a 
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linear elastic material are 

Figure 4.4.9 

E ,  = $6, - U(CY + o,)] Exy = 2 L  2G 

Note that the above represents six scalar relations between the six independent stress 
and strain components. We observe that any shear strain component is proportional 
only to the corresponding shear stress component and is independent of the normal 
stress components. These linear relations are known as Hooke5. law for a linear 
isotropic elastic material. It therefore would appear that in order to represent the 
constitutive equation for a linear elastic material, we require three constants: E ,  G 
and w. We now show that only two of these are independent constants. 

We first note that Hooke’s law is valid for any state of stress and strain. Let 
us therefore consider a two-dimensional state of stress with a; = z,, = zyZ = 0, 
and furthermore, for this case of plane stress, let us consider, in particular, an el- 
ement in a state of pure shear with txy .Z: 0, a, = cry = 0 [Fig. (4.4.9)]. For this 
case of pure shear, the principal stresses 01 = zx,, and 0 2  = -txy are immedi- 
ately determined. [The corresponding Mohr circle is shown in Fig. (4.4.10a). Note 
that this case of pure shear was treated in Example 2.1 1 of Chapter 2.1 Using 
Hooke’s law (with a, = 0), the strains in the corresponding directions, €1 and €2, are 
given by 

Substituting for the values of crl and 0 2 ,  we obtain 

XXY 

E E1 = - ( l+  w), 

€2 = --(1 XxY + U ) .  E 

(4.4.1 la) 

(4.4.1 1 b) 

(4.4.12a) 

(4.4.12b) 

Figure 4.4.10 
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Recalling that the shear stress acting on any principal stress plane vanishes (here 
t12 = 0), it follows from Hooke’s law that the shear strain with respect to the ‘1’ 
and ‘2’ directions also vanishes, i.e., €12 = 0. Hence, the shear strains €1 and €2 are 
actually principal shear strains. 

Now, instead of first determining the principal stresses and then using Hooke’s 
law to find the principal strains, let us reverse the process; i.e., we first use Hooke’s 
law and then determine the principal strains. 

Thus, for the given case of pure shear with a, = a.,, = 0, it follows that 
E ,  = cy = 0. Furthermore, using Hooke’s law, the shear strain E,,, = 8. There- 
fore, the strain state is also one of pure shear, and hence (e.g., as seen in the Mohr 
circle for strain [Fig. (4.4.10b)]), the principal strains €1 = E,,, and €2 = -E,,,. It 
follows that 

Upon comparing Eqs. (4.4.12) with (4.4.13), we conclude that 

E G=:- 
2(1 + U ) ‘  

(4.4.13a) 

(4.4.13b) 

(4.4.14) 

Thus, we have found that only two of the three elastic constants ( E ,  G, U )  are 
independent: given any two constants, the third may be determined. 

At this stage, it is useful to further define another constant. From Hooke’s law, as 
given by Eqs. (4.4.10), it follows that 

1 
E ,  + E,, + E - -(1 - 2u)(ax + ay + a,). (4.4.15) 

Now, from Chapter 3, we recall that the dilatation A, which represents the volu- 
metric strain, is given by A = E ,  + E ,  + E ,  [see Eq. (3.10.7b)l and that this is the 
first invariant of strain [Eq. (3.7.23)]: Furthermore, from Chapter 2, we note that 
the quantity appearing on the right-hand side of Eq. (4.4.15) is precisely the first 
invariant of stress [Eq. (2.6.1Ob)l. Thus, Eq. (4.4.15) is valid at any given point, 
irrespective of the chosen coordinate system. Let T here define the mean normal 
stress at a point: 

“ - E  

We may then write Eq. (4.4.15) as 

where 
E 

3(1 - 2 ~ ) ‘  
K =  

(4.4.16) 

(4.4.17) 

(4.4.1s) 

The constant K is called the bulk modulus. Note that Eq. (4.4.17) expresses the 
volumetric strain at a point in terms of the mean stress existing at the point. For 
example, Eq. (4.4.17) permits one to determine the dilatation for a hydrostatic state 
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of stress. Indeed, the bulk modulus is widely used in fluid mechanics. From physi- 
cal reasoning, we conclude that K 2 0. 

Finally, using the properties that E > 0, G > 0 and K > 0, we can established 
certain limits on the Poisson ratio. Since E > 0,  G > 0, 

E 
G = -  ++ l + u > O + +  -1 < U .  

2(1 + U) 
Similarly, since E > 0, K 2 0, 

K =  E ++ 1 - 2~ 2 0 ++ U 5 0.5. 
3 (1 - 2 u )  

Therefore we have established bounds on the Poisson ratio; namely 

-1 < U 5 0.5. (4.4.19) 

While these are theoretical bounds, the Poisson ratio for real materials is found to 
fall in the range 0 5 U 5 0.5. Typical values for U and E are: steel, U = 0.30, E = 
200 GPa; copper, U = 0.35, E = 100 GPa; aluminum, U = 0.33, E = 70 GPa. 
(Other typical values of mechanical properties for selected materials are given in 
Appendix D.) 

It is interesting to note from Eq. (4.4.18), that as U + 0.5, the bulk modulus K + 
00. Thus as U approaches 0.5, h -+ 0; namely, the material becomes incompressible. 
Thus, whatever the state of stress, the volume of any given element tends to remain 
constant as U -+ 0.5. 

(6) Elastic strain energy 
(i) Development of the concept 
The concept of elastic strain energy, as energy ‘stored’ in a body due to deformation, 
can be introduced most simply by considering some very familiar examples. 

As a first example, let us consider the operation of a mechanical watch in order 
for the hands of the watch to move, one winds a spring. In doing so, one deforms 
the spring from its relaxed state. The hands of the watch are seen to move as the 
spring unwinds: energy is transferred (in the form of kinetic energy) to the watch 
hands by the spring. In effect, energy was ‘stored’ in the spring due to its initial 
deformation. 

w Another, more simple example, is that of a model airplane that flies under the 
action of a propeller. In such model airplanes, the propeller rotates due to the 
unwinding of a rubber band. Thus, by initially twisting the rubber band, one 
stores energy in it; this stored energy is then released to the propeller as the 
rubber band unwinds. 

These two simple examples illustrate the idea of storage of energy in an elastic 
body by means of deformation; such energy is called elastic strain energy. Having 
considered this basic concept, we now define this form of energy more precisely in 
terms of known mechanical quantities. 

To this end, let us consider a rod of length L and cross-sectional area A(x)  sub- 
jected to a uniaxial load P ,  as shown in Fig. (4.4.1 l), where the material properties 
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Figure 4.4.11 

of the elastic rod are represented by the stress-strain curve shown in Fig. (4.4.12). 
We note that for the elastic material a, = a,(~,). 

Let us assume that we apply the load P statically, i.e., we start from a zero force 
and gradually increase P until it reaches its final value P = Pf. For any intermediate 
value 0 5 P 5 Pf,  the entire rod will lengthen, causing all elements in the bar to 
elongate. Consider a small element of cross-section AA and original length Ax. 
The force on this small element will then be A F  = a, AA and the resulting strain 
will be E, [Fig. (4.4.13)]. 

The length of the element under the load P is then given by (1 + E,) Ax, and 
its elongation is E, Ax [see Eqs. (3.3.2)]. Consider now that P is increased by a 
small amount dP, causing an increase in the strain, de,; the element thus elongates 
by an additional amount dE,Ax. The work done by the stress components when 
P + P + d P  is then 

d(A W )  = [o,(E,) AA](~E, Ax) 

or (4.4.20) 

d(A W )  = [a,(~,) d~ , ]  (AA Ax). 

In the above, A W signifies that the work is done on a differential element and ‘d’ 
that the work is due to an increase in value of P by d P  . Now, if we wish to determine 
the total work done by the stresses when P goes fiom zero to its final value P f ,  we 
must sum up all the increments of d(A W ) .  In the limit, this summation becomes an 
integral and the work done by the stress a, on this element is 

(4.4.21) 

where E: denotes the final strain occurring when P = Pf. 

stresses is obtained by integrating over the volume of the body, V ;  thus 
Letting AS2 = AA Ax denote avolume element, the total work W of the internal 

The term in bracket is the work done by the stresses per unit volume and we see 
that it is a h c t i o n  only of the final strain state, E,’. 

Now, for an elastic material, the work W is ‘stored’ within the body as energy. 
We call this stored energy the elastic strain energy, since it is stored in the body 
as a result of deformation. We shall call the strain energy per unit volume, strain 
energy density and denote it by U0; thus 

U0 = a, (E,) dE,. 1 0 
(4.4.23) 
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The total strain energy stored in the body, U ,  is then given by 

(4.4.24) 

In passing, it is worth observing that it is possible to represent the strain energy 
density geometrically. From the known geometric representation of the integral of 
Eq. (4.4.23), it is clear that U0 may be represented by the area under the stress- 
strain curve, as in Fig. (4.4.14a). Indeed, we note that the units of the area are 
(N/m2). (m/m); i.e. (N m)/m3 or energy per unit volume. 

Figure 4.4.14 

As an example, assume that the elastic material obeys the law ox = ke:, E,  L 0, 
k > 0 [Fig. (4.4.2b)l. Then 

€E 

(4.4.25) 

We now consider the special case of the linear isotropic elastic material. For the 
case of uniaxial stress, a, = Eex ,  since all other stress components vanish for a 
slender bar. Then, substituting in Eq. (4.4.23), 

(4.4.26) 
J 
0 

Using again the stress-strain relation, we may write 

(4.4.27) 

These three alternate expressions are equally valid. We also observe that the strain 
energy density for a linear elastic material is represented by the triangular area in 
Fig. (4.4.14b). 

At this point, we shall simplify our notation. For convenience we shall drop the 
superscript f and write Eq. (4.4.23) for the general uniaxial case as 

U, = /ax(c,) dc,. (4.4.28) 
0 
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Similarly, Eq. (4.4.27) for the linear case becomes 

(4.4.29) 

In the above, it must be clearly understood that the quantities represent thefinal 
actual values of the stress and strain components. Since the modulus E > 0, it 
follows from Eq. (4.4.29) that the strain energy density U0 is always positive for 
any E, + 0. Although the proof is beyond the scope of our treatment, we mention 
here that it can be shown that U ,  is always positive for any state of strain. The strain 
energy U0 is therefore said to be ‘positive definite’. 

Our purpose here has been to introduce the concept of strain energy via a simple 
uniaxial state of stress. In Chapter 14, we shall consider strain energy under general 
states of stress and strain and shall find that strain energy proves not only to be an 
important concept in the study of solid mechanics, but also proves to be of great 
use in solving various types of problems. 

There exists, in particular, a very fundamental principle for elastic materials, 
namely the principle of conservation of energy. We prove this principle here for the 
simple case of a uniaxial state of stress. 

(ii) Conservation of energy 
Consider a rod having a cross-sectional area A and length L, which is subjected to 
an axial load P, as shown in Fig. (4.4.15). The rod then undergoes displacements 
u(x) under a state of uniaxial stress a, = P/AJ where all other stress components 
vanish. Using Eq. (4.4.29), we first express the strain energy density in the form 

(4.4.30a) 

Substituting for aX, and using the strain-displacement relation, E, = 
[Eq. (3.5.18a)], 

(4.4.30b) 

Noting that the elementary volume ds2 = A - dx, the total strain energy U in the 
body becomes 

Integrating, and observing from Fig. (4.4.15) that u(0) = 0, we obtain 

(4.4.3 1) 

(4.4.32) 

We recognise the displacement u(L) as the elongation A of the rod, i.e. the dis- 
placement of the external force P [Fig. (4.4.15b)l. Hence, the right-hand side of 
Eq. (4.4.32) represents the work W = of the statically applied force P. Thus 

Figure 4.4.15 

t We assume, as before [see footnote p. 1231 that 0; = Tx,  
t For a linear elastic matenal, we may give the following heuristic explanation for the ‘ 1/2’ term: If a load 

IS applied stuticuNy to a linear body, then the ‘average’ force applied i s  equal to the sum of one-half the 
initial (zero) force and the final force P. The work done is then the product of the ‘average’ force and 
the displacement through which it acts. 
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we have 

U =  w. (4.4.33) 

This last relation leads to the statement of the principle of conservation of energy: 

If a linear elastic body is in equilibrium under an external force system, then the 
internal strain energy due to deformation is equal to the work of the externally 
applied force system. 

This basic principle is, in fact, applicable to all elastic bodies. The above restricted 
proof was confined to a linear elastic body under a uniaxial state of stress. In 
Chapter 14, we shall provide a more general proof for a body under a general state 
of stress. 

4.5 Mechanical properties of engineering materials 

(a) Behaviour of ductile materials 
We discuss here some of the mechanical properties of materials that are commonly 
encountered in engineering practice. While we recall that a description of the be- 
haviour of materials was given in Chapter 1, we elaborate here on the behaviour 
and properties of materials and define certain terms in a systematic manner as they 
appear in our discussion. 

A material commonly used in engineering practice is structural steel, which 
consists mainly of iron combined with a small percentage of carbon. We develop 
several ideas and dekitions based on a description of a tension test on steel since 
the behaviour of this material is typical of a number of ductile metals. 

Ductility: The property of amaterial that enables it to undergo plastic deformation 
to a considerable extent and to sustain a load before fracture. A material that is 
not ductile is said to be ‘brittle’. 

As in our previous discussion, we describe a simple standard tension test on a 
specimen (having cross-sectional area Ao and gauge length Lo) under a statically 
increasing applied load P.  By measuring the elongation A L  at incremental steps 
of P,t we obtain the typical (T+ curve [Fig. (4.5.1)] where (T and E are given by 

A L  U = - ,  P E=:-. 

A0 Lo 
(4.5.1) 

For reasons that will become clear, the stress (T and strain E ,  as calculated above, 
are called the nominal stress and nominal strain, respectively. The corresponding 
a+ curve is referred to as the nominal stress-strain curve. 

Initially the (T-+ curve is linear and follows Hooke’s law with (T = E E .  The linear 
relation is valid for all stresses that do not exceed the ‘proportional limit’ aP. Note 
that E is represented by the slope of the (T-+ curve. 

Proporh’onal Limit (ap): The largest stress which a material is capable of sustain- 
ing without deviating from Hooke’s law. 

Initially, the material behaves elastically but if stressed to some value that exceeds 
(TE, the Elastic limit, the material ceases to behave elastically. 

t We should note that in an actual tension test, one applies a deformation (i.e. strain) in incremental steps 
and. via a device called a loading cell, one then measures the applied load. 
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Figure 4.5.1 

Elastic Limit (0~): The largest stress under which the material behaves elastically 
and for which no permanent deformation exists when a load is removed. 

Note here that, by definition, ap and aE are dzferent points. However, for steel and 
for many other ductile metals, the difference between them on the a-+ curve is often 
indistinguishable so that aE 2: ap. Hence, for such metals, they may be considered, 
in practice, to coincide. 

As the material is stressed beyond ap, the curve deviates from a straight line and 
at some value of stress the curve becomes horizontal. The material is thus said to 
‘yield’; that is, with no apparent increase in stress, the material undergoes increasing 
deformation. The stress at which this yielding occurs is called the yield point or 
yield stress. 

Yield stress or yield point (+): The stress in a material at which there occurs a 
large increase in strain with no appreciable increase in stress. 

Having reached the yield stress, the material undergoes increasing strain (several 
orders of magnitude greater than that at the onset of yielding, ey). This stage is 
referred to as pZustic deformation. Now, let us imagine that the specimen yields 
until it reaches some strain, say point C of the a-+ curve, and that upon reaching 
this strain, the load is slowly removed; that is, the stress is reduced to zero. The 
material is said to undergo ‘unloading’. The unloading process is described by an 
‘unloading path’, which is found to be parallel to the original linear elastic curve. 
[Thus, the unloading path in this case is from point C to point D of Fig. (4.5. l),] If the 
specimen is now reloaded, the reloading curve will follow the straight line DC, until 
it rejoins the original a-+ curve. The specimen will then continue to yield along 
the horizontal segment of the a-+ curve until some point, point F, after which an 
increase in stress is required for any further deformation. This latter phenomenon is 
known as strain-hardening. The stress is then observed to increase until it reaches 
some maxirnum (ultimate) value, the nominal ultimate stress, which we denote as 
nuit. Having reached this point, we observe that the material then yields rapidly 
under a decreasing stress until the specimen finally ruptures. 

Nominal ultimate tensile stress (cult): The maximum stress, in a tension test, cal- 
culated as oult = P,,/Ao (where A0 is the undeformed original cross-sectional 
area), which a specimen is capable of sustaining. 

An interesting and perplexing question can now be posed: why does the material 
apparently rupture under a stress that is less than the nominal ultimate tensile stress. 
The key to the answer lies in the term ‘nominal’. To explain this apparent paradox, 
it is first necessary to describe more precisely the deformation of the specimen. 
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We recall that, according to Hooke’s law for linear elastic behaviour, when an 
element is subjected to a tensile stress a, z 0, lateral contractions occurs in the 
cross-section of the element. Clearly, the same is true for the overall dimensions 
of the cross-section of the specimen. Although the lateral contractions are quite 
small while in the elastic range, with increasing deformation of a ductile material, 
these lateral contractions become quite large and important. As a result, the original 
cross-sectional area A. of the specimen decreases considerably in a region of large 
deformation. This effect, which starts as P approaches Pmax, is known as ‘necking’ 
of the specimen [as shown in Fig. (4.5.2)] and becomes particularly significant as cr 
approaches cult. As a result, a cross-section of initial area A0 is reduced, inthe region 
of necking, to an area A ,  which is considerably smaller than Ao. Consequently, the 
average stress, calculated according to CT = P/Ao,  yields but a nominal value; we 
therefore now write onOm = oult = P/Ao. 

Figure 4.5.2 

The more exact average stress, i.e. ‘true’ average stress in this region, given 
instead by gme = P / A ,  is a more accurate reflection of the state of stress.+ Thus, 
specifically, while the nominal ultimate tensile stress is calculated as crUlt = Pm/Ao, 
the true average stress under this load is ame = Pm,/A, from which we note that 

> oult. As the ratio A / A o  during necking decreases (in fact just prior to rupture 
it may be of the order of 0.10), the ratio ome/crnom can become quite large. 

If we now examine the strains, the expression for the strain E = AL/Lo, while 
quite valid for small strains (of the order of lOP3),  fails to provide a good or ‘true’ 
measure of deformation for larger deformations. We therefore refer to this strain as 
the ‘nominal strain’, i.e., E,, = AL/Lo. For large deformations, amore physically 
significant measure of the strain would be to consider the small change of strain 
occurring for each incremental increase of length d l / t  (where t is the current length 
at any stage of the deformation). Then the ‘true’ strain Etme is given by 

or in the limit 

(4.5.2a) 

(4.5.2b) 

Lo 

Then, since the final length L ,  expressed in terms of the nominal strain Enom, is given 

t We note that the stress crrrue is the average true stress. The actual state of stress in the region of necking 
and final rupture is found to be extremely complex and cannot be treatedby the methods developed here. 
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by L = (1 + cnom)L0, we find the relation between the nominal and true strain: 

Etrue = ln(1 + Enom). (4.5.3) 

Now, as mentioned at the beginning of the discussion, the a+ curve, as shown in 
Fig. (4.5. l), represents a nominal stress-strain curve. If we were to plot atrue vs. Etrue, 

the curve would appear as the dashed curve in Fig. (4.5.3). Thus we have essentially 
answered the paradox: the specimen only appears to rupture under a stress smaller 
than the nominal ultimate stress; in fact, the true average stress at rupture is much 
larger than cult. Note that the nominal and true IT+ curves differ only in the region 
of relatively large strains. 

Figure 4.53 

However, although it is clear that the nominal stress does not accurately reflect 
the true stress state during plastic flow (yielding), the nominal ultimate tensile stress 
cult is nevertheless a useful quantity since it serves as a nominal measure of the 
stress that the material is capable of sustaining. Thus, for example, after calculating 
the maximum stress due to a given load on a structure or body, it is possible to 
determine whether the calculated stress is acceptable by comparing with the cult 
according to some established criteria (e.g., a factor of safety). Moreover, although 
oult is but a nominal quantity, it provides us with a measure of the relative strengths of 
various materials; thus, for example, one may state that steel (with 0;tt = 400 MPa) 
is far stronger in tension than cast iron (with ault = 170 MPa). 

We recall now that the area under the a+ curve represents the energy of defor- 
mation per unit volume. As a result, the area under the a+ curve up to (IE, the 
elastic limit, represents the maximum elastic strain energy of deformation (per unit 
volume). Accordingly, the following property is defined: 

Modulus of resilience (MR): The modulus of resilience is the greatest strain 
energy (per unit volume) that a body can absorb without undergoing any perma- 
nent deformation. It is calculated as the area under the (I+ curve for (I 5 CTE in 
a tension test [Fig. (4.5.3)]. (For the common case CE 2i ap, MR = g.) 

Similarly, we define another quantity related to energy absorption of a material: 

Modulus oftoughness (MT): The modulus of toughness is calculated as the total 
area under the nominal stress-strain curve of a material from its undeformed 
state until rupture. It represents the nominal maximum strain energy (per unit 
volume) that a body can absorb before fracture, or conversely, the strain energy 
(per unit volume) required to cause a material to fracture. 
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It is evident that MT, as defined above, is a rather fictitious quantity and does not 
represent the real energy of deformation of any given material. However, it provides 
a useful measure of the relative ability of various materials to absorb energy. Thus, 
for two different materials of the same strength, the MT of a very ductile material 
will be much greater than that of a moderately ductile material. 

From the above discussion, it is clear that the behaviour of materials in the range 
beyond the elastic limit is considerably more complicated than the initial elastic 
behaviour. To treat problems in this range, certain simplifying models are used. 
These will be discussed in the next section. 

Having described the behaviour of steel as a ductile material under tension, we 
now consider the behaviour in compression. From laboratory tests, we observe 
that initially, in the elastic range, the C T - E  relation is the mirror image of tension; 
that is, the behaviour follows Hooke’s law as shown in Fig. (4.5.4). Note that the 
modulus of elasticity E is the same in compression as in tension. Furthermore, for 
large compressive strains, no necking occurs; instead local bulging, which causes 
a slight increase in the cross-sectional area, may occur [Fig. (4.5.5)]. However, this 
bulging effect is not as significant as the necking effect and therefore the nominal 
and true 0-e curves in compression are approximately the same. 

In the above discussion of the behaviour of steel as a ductile material in tension, 
we note that a sharp yield stress oy exists. However, we mention here that there 
also exist materials, such as aluminum alloys which, although they exhibit ductile 
behaviour, do not possess a definite yield stress; their 0-6 curve appears as in 
Fig. (4.5.6a). 

Figure 4.5.6 

If such a material is to be used in engineering design, it is necessary to define 
some measure of an allowable design stress. Since, as we have observed no yield 
point exists, one must therefore choose a value arbitrarily; this value is called the 
yield strength or alternatively the proof stress and will be denoted by aYs (to 
distinguish it from the measured yield stress C T ~ ) .  A standard method of defining 
the yield strength is to first choose a strain arbitrarily and, from this point, draw a 
straight line parallel to the initial slope of the CT-E curve, The stress at which this 
line intersects the C T - G  curve is then defined as the yield strength [Fig. (4.5.6b)l. 
This common method is referred to as the ‘offset method’ and one therefore refers 
to the ‘yield strength for a given percent offset’ or the ‘percent proof stress’. For 
example, the yield strength shown in the figure is for a typical offset of 0.2%. 
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Finally, we mention here that some ductile materials may indeed initially be- 
have elastically but not linearly. The results of a standard tension test can then be 
expressed by nonlinear empiric expressions, which represent closely the resulting 
CT-E curve. One such typical expression is the Ramberg-Osgood equation, valid for 
loading behaviour of ductile materials; namely 

(4.5.4) 

where C1, Cz, C3 are constants and n is an integer. 

sinh law, given as 
Another approximation for ductile materials, for example copper, is the so-called 

cc = €0 sinh(cr/oo), (4.5.5) 

where €0 and 00 are prescribed constants. 

(b) Behaviour of brittle materials 
Brittle materials are characterised by their inability to undergo large deformation; 
hence a material which is not ductile, is said to be brittle. Cast iron, concrete, stone 
and ceramics are typical examples of brittle materials. The CT-E curve of a brittle 
material in a standard tension test has the usual form as shown in Fig. (4.5.7a). We 
note that this curve is characterised by the absence of a yield point. The material 
ruptures at the maximum value of the attained stress; we observe that the largest 
strain E which a brittle material attains is quite small and that no necking occurs. 
Thus, in a tension test for brittle materials, no distinction is made between the 
nominal and true U-+ curves. 

Figure 4.5.7 

The maximum strain is often given as a percentage. Thus, the brittleness (or 
conversely the ductility) of the material is often measured by the maximum 
strain that a material can undergo before fracturing; this quantity is often de- 
fined as the percentage of elongation (or strain) in a specified (original) gauge 
length: 

L - L o  

LO 
100, -. 

where L and Lo are the final and original gauge lengths of the specimen. 
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Figure 4.5.8 

Moreover, very often, the initial behaviour of brittle materials, while approxi- 
mating a linear behaviour, is not always truly linear. In this case, it is convenient 
to describe the initial behaviour as following Hooke’s law, using an approximate 
value for the modulus of elasticity. Recalling that E for a linear elastic material 
is represented by the slope of the (T+ curve, we define the ‘tangent modulus’ Et 
as the tangent to the (T--E curve, i.e., Et = da/dE at a given point on the curve. fn 
particular, at the point (a = 0. E = 0), we obtain the initid tangent modulus (E,)o 
[see Fig. (4.5.7a)l. 

As discussed above for the case of ductile materials having no definite yield 
stress (yield point), if a brittle material is to be used in engineering design, it is also 
necessary to define arbitrarily a yield strength or proof stress, ays, as a measure of 
an allowable design stress. Since, as we have observed, no yield stress exists for 
brittle materials, one must choose a value arbitrarily. As previously described, the 
yield strength (TYS can be defined as the intersection of the a-+ curve with a straight 
line parallel to the initial tangent of the (T-E curve that passes through the arbitrarily 
chosen strain offset [Fig. (4.5.7b)’J. Note that here one must first determine the initial 
tangent modulus (E&. 

Another method for establishing the yield strength is to arbitrarily decide on its 
value as a fraction of the ultimate strength of the material. For cast iron with an 
ultimate strength in tension of cr = 170 MPa, one might choose to arbitrarily define 
the yield strength, say, as (“U‘S = 100 MPa. Corresponding to this stress value, we 
may also arbitrarily define the secant modulus of elasticity, E$, as the slope of a 
straight line between the origin (a = E = 0) and the intersection of the a-+ curve 
at ays [Fig. (4.5.7b)l.t Using this method, one first chooses arbitrarily the strain 
offset and then determines the secant modulus E,. 

It is clear that the modulus of toughness (as represented by the area of the a.+ 
curve up to the point of rupture) of a brittle material is far less than that for ductile 
materials. Indeed, a main characteristic of brittle materials is their inability to absorb 
energy of deformation. This explains, for example, why if apiece of chalk- a typical 
brittle material - is dropped from arelatively low height, it will fracture immediately 
upon hitting a rigid surface, while the same piece, if made of rubber, will deform 
without breaking. 

The modulus of resilience and modulus of toughness, being measures of the 
ability of a material to absorb energy, are important factors in designing structural 
parts to resist impact or dynamic loads. 

The general shape of the stress-strain curve for brittle materials in compression 
resembles closely that of a tension test with a significant exception: the compressive 
stress at which fracture occurs is far greater than the maximum tensile stress. Indeed, 
it may often be greater by an order of magnitude. It is a characteristic of brittle 
materials that they are relatively strong in compression and particularly weak in 
tension. 

(c) Behaviour of rubber-like materials 
The initial behaviour of plastics or rubber-like materials is generally elastic but 
nonlinear and can be described by a stress-strain curve as shown in Fig. (4.5.8). 
We note the absence of a yield point. Thus, if a material having a given elastic 

t It is evident that the values of ays obtained by these two methods are not necessarily the same since 
they are detemned arbitrarily, The two different values of c q s  are shown u1 Fig. (4.5.7b). 
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limit oE, as in the figure, is subjected to a stress cr 5 CTE, the behaviour will be 
elastic. 

At this point, it is worthwhile to recall again that the area under the 0-6 curve 
within the elastic range represents the elastic energy absorbed by a unit element of 
the material. According to our definition of elastic behaviour, if the stress c < UE is 
now removed, the material will ‘unload’ along the unique 0-6 curve. In the process 
of unloading, energy is retrieved; the material is said to ‘give off’ or ‘return’ all the 
stored energy. 

However, let us now consider the case where the specimen is loaded along the 
U--€ curve to a stress (r > CTE, say along the curve OCB. Since 0 > aE, it will then 
unload along the curve BDF (since, by definition it no longer behaves elastically). 
As we have observed, energy is retrieved from the material during the unloading 
process. However, we note that the area under the curve BDF is less than that under 
the original elastic curve OCB. Thus we conclude that some of the energy is not 
retrieved, namely that represented by the area OCBDF (shown shaded in the figure). 
We therefore conclude that this area represents dissipation of  energy. 

From the above discussion, we reach an important conclusion: following its basic 
definition, an elastic material is one for which no dissipation of energy can take 
place. Note that this conclusion follows directly from the unique one-to-one relation 
[Eqs. (4.4.1)] between stress and strain of the material. 

4.6 Plastic behaviour: idealised models 

As we have seen, the behaviour in the plastic range is much more complex than 
the simple relations governing elastic materials: for example, Hooke’s law. Thus if 
we consider the stress-strain curve o f  Fig. (4.5.1), it is clear that some simplifying 
assumptions must be made if one is to treat a problem of such a material outside the 
elastic range. One therefore must model the material in such a way that it adequately 
approximates the behaviour of the material. Noting that the stress-strain curve is 
approximately horizontal for a large range of strains, for example, 10-3 5 E 5 0.1 
(i.e. for about two orders of magnitude), and observing that the yield point ay does 
not deviate greatly from the mP, a reasonable model is to assume that the CT+ curve 
is as shown in Fig. (4.6.1) with a. representing the yield stress. Note that in this 
case, we assume implicitly that a0 = op = cy. This simplification permits one to 
obtain reasonable solutions to many problems that would otherwise prove to be 
intractable. The material represented by this CT- curve is called an ideal elastic- 
plastic material or a perfect elastic-plastic material. Note too that in this model 
the unloading path is parallel to the initial elastic load path. 

A further Simplification can also be made. Since the elastic behaviour of the ma- 
terial occurs within a small range of the strains (i.e., the major behaviour takes place 
in the plastic range) one chooses, at times, to neglect the elastic range completely, 
The resulting U-€ curve representing this model then appears as in Fig. (4.6.2). 
Thus, according to this model, the material undergoes no deformation (i.e. it re- 
mains rigid) provided d < 00. Hence such a material is referred to as a rigid plastic 
material. 

The phenomenon of strain-hardening, discussed in Section 5, can also be treated 
by means of a simplifying model. Depending on the given material, one can, for 
example, approximate the Q+ curve by means of two straight lines as shown in 
Fig. (4.6.3). In this case, the material is known as an elastic strain-hardening ma- 
terial or a linear-hardening material. Such a material is typically described by 
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the relations 

(4.5.6) 

where a! i s  a constant, which depends on the material. 
We thus observe that one may choose various models to  describe the material. 

The type and choice of the model will clearly depend on the type and range of 
behaviour that i s  to be studied. 

PROBLEMS 

4.1: The state of stress in a steel plate lying in the x-y plane (E = 200 GPa, U = 0.3) 
is given as ox = 20 MPa, oy = -30 MPa. = 40 MPa, a, = T~~ = T~~ = 0. Determine 
the principal strains and the principal directions with respect t o  the x-axis. 

4.2 Show that the principal directions of strain are normal t o  the principal stress 
planes at any point of a linear isotropic elastic material. 

4.3: Show that for a state of plane stress in the x-y plane (az = txr = tr? = 01, Hooke's 
law relating the extensional strain components to  the extensional stresses may be 
written as 

Ex + U€y Ey + U € x  
f f x = E -  f f y = E -  

I - U Z '  I - $ '  

and that 

€2 = -2- I - U  (Ex + E y ) .  

4.4 Recalling that for a state of plane strain in the x-y plane, E ,  = 0, show that the 
extensional strains, ex and ey, from Hooke's law are given by 

.I I 

= [ffx - u*ffyl, Ey = +by - u*ffxl, 
E" 

where 

and U * =  --..!.- E* = - E 
(1 - u 2 )  (1 - U ) '  

and that 0, = u(ux + uy) 

4.5: From strain rosette measurements at a point on the surface of a thin aluminum 
plate (E = 70 GPa, U = 0.30) lying in the x-y plane, the following strain components 
are known: 

EX = 60p, eY = 30p, ~ x y  = 1 5 ~ .  

Using the results of Problem 4.3, determine the principal stresses 01 and 0 2 .  

4.6 A linear elastic plate with modulus of elasticity E and Poisson ratio U is subject 
t o  a uniform compressive stress CO, as shown in Fig. (4P.6), such that at all points 
the only non-zero stress is a, = a0. (a) Show that the change in slope of line AC, 
A 3 tan(a + &a) - tan a, is given by 

1 Figure 4P.6 
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(b) If uo/E << 1 show that A (b/a)(l + v)(oo/E). (c) What is  A if the material is in- 
compressible? (d) Calculate (i) the change in slope and (ii) the change of angle, 6a 
(in degrees), if a=24 v = 0.25 and ex= 10-3. (e) Derive an expression for the change 
of angle, 6a in terms of U, and the ratios b/a and a o / E .  (f) Re-evaluate 6a using the 
numerical values given in (d) above. 

4.7: Hooke's law can be written in the form 

ox = AA + 2pex, ay = AA + 2peY, a, = AA + 2pez, 
rxy = 2PExyr ryz = 2peyn ki = 2P+xr 

where A = ex + ey + E= is the dilatation and A and are called the Lame constants. 
Show that the following relations exist (i) between E, U and A, p and (ii) between E, G 
and A, p: 

E 
p,=- 

€ U  

2 0  + U )  
(i) A = 

(1 - 2u)(l +U)' 

G(E - 2G) 
3 G - E  , 

(ii) p 3 G, A = 

4.8: Using the results of Problem 4.7, show that an alternative expression for the 
bulk modulus K as defined in Eq. (4.4.18), written in terms of A and p, is K = v. 
4.9: A hard rubber cylinder (E = 1.5 MPa, U = 0.401, inserted in a pressurised tank, 
is subjected t o  a hydrostatic pressure p of 10 MPa; i.e., ox = a, = 00 = -pat  all points 
within the body. If the cylinder is 20 cm in diameter and has a height h of 50 cm, 
determine the change in (a) diameter, (b) height of the cylinder and (c) volume. Note: 
Assume that the cylinder behaves as a linear isotropic elastic material. 

4.10 The data given in the table below was obtained from a tensile test of a 1.50-cm 
diameter specimen of a magnesium alloy. A 5-cm gauge length extensometer was 
used. (a) Plot the stress-strain curve; (b) determine the proportional limit and the 
elastic modulus; (c) determine the yield strength for a 0.2% offset; (d) determine both 
the tangent modulus Et and the secant modulus E,, for a yield strength oys = 260 MPa. 

4.11: Show that etrue > enOmr where etrue is defined in Eq. (4.5.2b) and where enom = 
AL/Lo << 1. 
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4.12: The Ramberg-Osgood equation describing the stress-strain curve of a material 
during loading is given as 

3 
U 

E = - + c*( E) I 
Cl 

where C1 = 1.5 x loll, C2 = 200, C3 = 2.5 x 10IO. (a) Determine (i) the initial tangent 
modulus (E&, (ii) the tangent modulus Et and the secant modulus E, for a given yield 
strength UYS = 175 MPa. (b) Determine the elastic energy U0 per unit volume stored 
in the material (N m/m3) if the material is loaded to  a stress U = 175 MPa. 

4.13: Given a material whose loading curve is represented by the Ramberg-Osgood 
equation [Eq. (4.5.411, with C1, C2, C3 positive. Show, for any stress U ,  that the secant 
modulus is always greater than the tangent modulus, i.e., €, /Et  z 1 for any integer 
value n z 1. 

The following problems are to be solved using a computer. 

4.14 Write a program to plot the ratio K / €  as a function of Poisson's ratio U and plot 
this ratio for 0 5 U < 0.5. 

4.15: Using the results of Problem 4.7, write a program to plot the ratio A / €  as a 
function of Poisson's ratio U and plot this ratio for 0 5 U < 0.5. 



5.1 Introduction 

In this brief chapter, we review and summarise the previously developed results. 
In particular, we recall that three fundamental relations have been derived and 
developed, namely (a) the equations of mechanics, (b) the kinematic equations and 
(c) the constitutive equations. These relations must, in general, be satisfied at all 
points within a body. 

In the following chapters, we shall use the derived relations to analyse a number 
of problems of practical interest. However, since a major portion of our future study 
will be devoted to the analysis of linear elastic members -rods, beams, shafts, etc. - 
it is worthwhile and instructive to first discuss these problems from an overall, or 
general, point of view. 

We recall that, in principle, our goal in solid mechanics is to determine internal 
forces and describe the deformation of a body when subjected, say, to external 
forces; specifically, we wish to determine the following quantities at all points P in 
abody [Fig. (5.1.1)]: 

II three displacement components: U, v, w 
II six strain components: ex, ey,  E,, exy, eyZ, eZx 
II six stress components: ox, ay, a,, txy, t,,, tzx 

We thus observe that, essentially, there exist 15 unknown quantities at each point 
of a body. However, as shown in Table 5.1, there also exist 15 equations for these 
unknowns. It is therefore reasonable to assume, in principle, that one can theoret- 
ically solve for the unknowns. If unknowns are found which satisfy all the given 
equations as well as the boundary conditions on the body (e.g., the applied forces), 
the solution is then said to be an exact solution to a given problem. This approach 
is that of the theory of elasticity, and in particular, the equations in Table 5.1 are 
referred to as the equations of linear elasticity. However, this approach is usually 
quite mathematical and, at this stage, is beyond the scope of our present study. 

5.1., 
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Table 5.1 Summary of unknowns and relations - linear isotropic elastic bodies 

Nevertheless, there exists another fruitful, but simpler approach; namely that of 
mechanics of materials. Using this approach, instead of attempting to satisfy all 
the relevant equations at all points of the body, we seek solutions that satisfy the 
relevant equations globally; for example, at the cross-sections of a rod or a beam. 
This approach can then lead to either exact or approximate solutions, depending 
on the problem at hand. Indeed, one is often satisfied to obtain approximate but 
reasonably accurate solutions, which are of practical importance for a wide range 
of engineering structures; such solutions are often called engineering solutions. In 
the case of approximate solutions, one can then determine the degree of accuracy 
by substituting the solution back in the exact equations of elasticity. 

In the following chapters, we shall apply the mechanics-of-materials approach to 
various types of problems and, in particular, we shall study the behaviour of simple 
bodies that are subjected to various loading conditions. As we have seen previously, 
in practice, most solids undergo rather small deformations while in the elastic range. 
Since this is particularly true of most engineering structures encountered in prac- 
tice, in the subsequent chapters, we therefore shall generally limit our treatment to 
bodies undergoing small strains (and rotations). Consequently, in addition to the 
equations of equilibrium, and Hooke’s law, we note that the strain4isplacement 
relations are also 1inear.t Thus, as a result of this limitation, the equations govern- 
ing the behaviour of the mechanical system (e.g., those shown in Table 5.1) are 
all linear and the mechanical system itself is therefore said to be linear. Linear 
systems possess an important property, namely the property of superposition. We 
demonstrate below that, subject to the above conditions, this property, known as the 
principle of superposition, can be applied for both strains and stresses. 

t We recall that infinitesimal strains also imply linearity since the strains are expressed in terms of lin- 
ear spatial derivatives of the displacements of the body where all quadratic spatial derivative of the 
displacements are neglected. (See footnote p. 87). 
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5.2 Superposition principles 

(a) Superposition of infinitesimal strains 
Consider a body that, due to various causes, undergoes deformations where all 
strains are infinitesimal. If such a body is subjected only to infinitesimal strains, it 
follows that the strains are simply additive and that we may therefore superimpose 
the strains. To show this, let us, for simplicity, again consider the case of a rod that 
undergoes axial elongation. For example, assme that the rod is first heated and 
that due to the temperature increase, the strain of any element Ax is given by 6:') 

[Fig. (5.2.la)l. The length ofthe element therefore becomes [see Eq. (3.3.2a)l 

Ax* 2: [I + E:')]Ax. (5.2.1 a) 

Now, let us assume that in addition the rod is also subjected to an axial force P 
such that each element undergoes an additional strain, d2) [Fig. (5.2. Ib)]. Clearly, 
due to E : ~ ) ,  the element will change length from Ax* to Ax**; thus we have 

Ax** 21 [I + E;~)]Ax*. (5.2.1 b) 

Substituting Eq. (5.2.1 a), 

Ax** 2 [I + ~ ; ~ ) ] [ 1  + e:')]Ax 

or 

Ax** 2: [I + E:') + E : ~ )  + E:''E:~)]AX. (5.2.1 c) 

If the strains are infinitesimal, the last terms above are infinitesimals of higher order 
and therefore, keeping only the linear terms, we have 

Ax** 2: [ 1 + E:') + E : ~ ) ]  Ax. (5.2.2) 

Now, using the definition of extensional strain given in Chapter 3 [see Eq. (3.3.1)], 
the total strain with respect to the initial undeformed element, Ax, is given by 

Figure 5.2.1 

Ax** - AX 
E ,  = lim 

A x - 4  Ax (5.2.3) 

Comparing Eqs. (5.2.2) and (5.2.3), we observe that 

E ,  =:E!') + p .  (5.2.4a) 

Thus, in this case we conclude that if a body undergoes infinitesimal strains, we 
may then determine the total strains by simple addition; we say that the strains can 
be 'superimposed'. 

It is clear that if strains E,,, E,,,, etc. exist in the body, then similarly, they can also 
be superimposed by simple addition; i.e., 

E y  = E?) + E,?), (5.2.4b) 

Ex,, = E,,, (') + E$. (5.2.4~) 

It is important to emphasise that in referring to the superposition of the strains, we 
can only superimpose the same components of the strain tensor; thus, for example, 
we may not superimpose E:') + E , : ~ ) .  
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Figure 5.2.2 

(b) Basic principle of superposition for linear elastic bodies 
We consider here a two-dimensional body under plane stress (az = txz = t?,. = 0) 
under a set of forces such that at any point the state of stress is a:’), a?) [Fig. (5.2.2a)I. 
Using Hooke’s law, Eq. (4.4.10), the strains E:’), E.:” at the point are given by 

1 1 
#l) - vaj1’1, E!’ =F &rj” - vax’”]. (5.2.5a) 

Let us say that due to some other forces, a second state of stress, a,’2’, of’, exists at 
the point [Fig. (5.2.2b)l; then 

,(2) , = - E [a, (2) - U$’], E;) = [a:’ - uax’2’]. (5.2.5b) 

If all the strains are infinitesimal, then according to Eqs. (5.2.4a), the strains are 
simply additive; thus for the total strain, we may write 

1 1 

Ex = E p  + E p  
or 

+ ( r 3  - u[aj” + a:’]. (5.2 ha) 
1 

E, = z[a;” 

E?, = 2 [a!’ + af’] - U [ail’ + a;2’] * 

Similarly, 

(5.2.6b) 

Now, the total stress state, a, and ay, due to the combined applied stress state, is 
given by [Fig. (5.2.2c)l 

(5.2.7) 

1 

a, = a,“’ +a;? a?, - - #) + 4 2 ) .  

It follows that 

(5.2.8a) 

(5.2.8b) 

Thus we observe that the total strain at the point due to two separate ‘causes’, ‘ 1 ’ and 
‘2’ , can be found by simple addition of the two effects. Note that to do so, we require 
that the strains be infinitesimal and that the elastic stress-strain relation be linear. 
The principle is therefore referred to as the principle of linear superposition. We 
shall find that the use of this principle leads to considerable simplifications in the 
analysis of problems in mechanics since it permits us to analyse separately the 

1 

1 
E 

E - -[ax - ua,], 
“ - - E  

E y  = -[a?, - ua,]. 
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behaviour due to any particular cause. Thus, for example, when a body is subjected 
to a complex loading system, the principle also permits one to identify the effect 
due to any specific load. 

In the following example, we demonstrate that the principle of superposition 
becomes invalid for an elastic material whose constitutive law is nonlinear. 

Example 5.1: Consider a rod of uniform cross-section A subjected to an axial 
load as shown in Fig. (5.2.3a). The stress-strain relation of the material is 
given as [Fig. (5.2.3b)I 

aX = k&, 2 0. (5.2.9a) 

Determine the total elongation AL of the rod, assuming that the stress crx at  
any point of the rod is given by the average stressFx = P /A ;  that is, a, = P /A. 

Figure 5.2.3 

Solution: From Eq. (5.2.9a), E ,  = ( ~ ~ / k ) ~  and hence 
2 

E x  = (&) 
Then, using Eq. (3.3.6), 

(5.2.9b) 

where c = L/(kA)2. Thus we note that for any given force P the elongation varies 
with the square of P. 

Let us consider the application of three separate forces: P I ,  P2 and P3 = Pl + P2. 

Due to PI:  

Due to P2: AL2 = cP; 

Due to P3: 

AL1 = cPl 2 

AL3 = cP3 2 

Therefore AL3 = c(P1 + P z ) ~  = (P12 + Pz2 + 2P1 P2) # A L I  + AL2. 
Thus, the elongation of the bar due to the force P3 cannot be obtained by superim- 

posing the elongations due to PI and P2, respectively; the principle of superposition 
clearly is not valid here since we cannot simply add the effects separately. 

Finally we re-emphasise that the principle of superposition is valid only under 
conditions of (a) infinitesimal strains and (b) linear stress-strain relations.$ We note 

0 too that these are necessary, but not sufficient, conditions. 

t See previous footnote. 
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5.3 The principle of de Saint Venant 

The principle of de Saint Venant, first based mainly on physical intuition and stated in 
1855, is of great practical importance and is used repeatedly in solid mechanics. We 
find it appropriate to first introduce the principle by means of a simple example. To 
this end, let us consider a bar of uniform cross-section subjected to a tensile force P 
[Fig. (5.3. l)]. If the load is a point load as shown in the figure, a very complex stress 
state will exist at all points in the vicinity of the point of application. For example, 
it is clear that near and on the right end, the stresses will be very great at points 
lying on the x-axis, while for all points (x = L , y # 0,  z # 0) the surface traction 
on the end surface, T,  = 0 and hence at these end points, ox = T,, = T,, = 0. 

Figure 5.3.1 

If we imagine the undeformed rod to be composed of elements as shown in 
Fig. (5.3.2a), the deformation will appear as shown in Fig. (5.3.2b). We observe, 
however, that the complex deformation pattern at the right end is highly localised. 
Indeed, at points away fiom the vicinity of load application, the deformation, and 
therefore the distribution of stresses appear to be quite uniform. Thus, since the 
complex stress state is highly localised, we conclude that at points sufficiently far 
away from the applied loads, the strain and stress states do not depend on the precise 
manner in which the force is applied. Having developed these ideas, we now state 
the principle of de Saint Yenant: 

Two different distributions of force acting on the same portion of a body have 
essentially the same effect on those parts of the body that are sufficiently distant 
from the region of load application provided that the applied force distributions 
represent equivalent force systems (namely, they possess the same resultants that 
pass through the same line of action). 

By ‘sufficiently distant from the region of load application’ we shall mean at 
distances roughly greater than the largest dimension of the surface acted upon. 
Moreover, by ‘essentially the same effect’, we mean that any dzyerence in the 

Figure 5.3.2 
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stresses (or strains) due to the two separately applied distributions is less than these 
calculated stresses (or strains) by several orders of magnitude. Or, in other words, 
the stress and strain fields at points sufficiently distant from the region of application 
are essentially the same due to the two distributions 

To illustrate the principle, let us consider specifically a rod of rectangular cross- 
section b x h ,  (b < h),  loaded as shown in Figs. (5.3.3a and b). Near the end, the 
strain and stress states will be quite different in each case. However, at points located 
roughly at a distance greater than h ,  the three different loading systems will produce 
the same effect. 

Figure 5.3.3 

It is of interest to observe that, as a corollary to the principle, a self-equilibrating 
system (i.e., one whose resultant R = 0) produces no stress or deformation in a 
region away from the points of application. This is illustrated in Figs. (5.3.4a and b). 

Figure 5.3.4 

We mention here that although first enunciated in 1855, no exact or complete 
proof exists to the principle of de Saint Venant. However, it has been verified 
repeatedly, for various bodies and loading conditions, by sophisticated analyses, 
numerical solutions and laboratory experiments. Its justification should therefore 
be accepted mainly based on sound empirical evidence although it is also clear that 
its acceptance can be based largely on physical intuiti0n.t 

In the following chapters, we shall tacitly apply the principle of de Saint Venant 
in the analysis of all problems. However, we note that in applying the principle 

t Note that the pnnciple was given only for linear elastic solids. However, based purely on intuition and 
using the same type of reasoning, one should expect the principle to be valid for a body undergoing 
nonlinear elastic or even plastic behaviour. In practice, the pnnciple is therefore usually also applied to 
such bodies. 
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to bodies subjected to concentrated forces, we are able, using the mechanics-of- 
materials approach, to determine the behaviour only at points far away from the 
applied loads; implicitly, we neglect all localised eflects near the points of load 
application. Therefore, the solutions that we shall obtain will be valid only if the 
regions of localised complex stress-strain states represent but a small portion of the 
entire body. As a result, the mechanics-of-materials solutions can be valid only for 
relatively long slender bodies (e.g. rods, shafts or beams) where the major portion 
of the body is distant from any applied loads. 
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6.1 introduction 

In this chapter, we study the behaviour of an element where one dimension, in 
the ‘longitudinal’ direction, is considerably greater than the other two, namely the 
dimensions defining the cross-section. One refers to such an element as a ‘rod’ (or 
at times a ‘bar’). In particular, we study here the behaviour of a rod that is subjected 
to an axial force acting in the longitudinal direction. Although this represents the 
simplest possible case and loading condition, the resulting relations permit us to 
treat several interesting types of problems that are encountered in practice. 

We shall discuss mainly elastic behaviour but at a later stage will consider the 
behaviour when the material enters the plastic range. 

6.2 Elastic behaviour of prismatic rods: basic results 

Consider a long prismatic elastic rod, i.e., a rod of constant cross-sectional area A 
and of length L whose longitudinal axis lies along the x-axis. The rod is assumed 
to be linearly elastic with modulus of elasticity E and Poisson ratio v. Let the rod 
be subjected to an axial load P ,  which acts along this x-axis [Fig. (6.2.la)l. Note 
that we have not specified the exact location of this axis; we know only that this 
axis intersects the cross-sections (lying in the y-z plane) at some point 0 as shown 
in Fig. (6.2.la). 

From equilibrium, the resultant internal force system at any cross-section consists 
of an axial force F = P (as in Chapter 2), which acts along the x-axis [Fig. (6.2. lb)]. 
Furthermore, the moments about the y- and z-axes of the cross-section are neces- 
sarily zero; thus the internal force system acting on any cross-section is given by 

F = P ,  My = 0 ,  M , = O .  (6.2.1) 

Now, it is reasonable to assume that due to this applied load, the rod will undergo 
extension in the axial x-direction. We therefore make the following assumptions on 
the deformation based on physical reasoning: 

(a) the axis remains straight after deformation, and 
(b) all plane cross-sections remain plane and perpendicular to the x-axis. 

It is these kinds of assumptions, namely plausible assumptions on the nature of the 
deformation, which are typical of the approach generally referred to as mechanics 
of materials. 

As a result o f  the above assumptions, all points in a given y-z plane have 
the same displacements in the x-direction. Thus, if we consider a small segment 
as shown in Fig. (6.2.lc), any line segment (or ‘fibre’) AB undergoes the same 
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Figure 6.2.1 

strain E,; therefore E, cannot be a function of y or z but, at most, is a function only 
of x; that is, E, = &). Moreover, as a result of assumptions (a) and (b) above, the 
shear strains E , ~  = 0 and€,, = 0 throughout the rod. Since txy = ~GE,,, t,, = ~GE,.., 
this assumption leads us to conclude that the shear stress components 

txy = 0,  tx,- = 0 (6.2.2) 

at all points of the rod. 
Since we are studying a linear elastic isotropic bar, the stress-strain relations for 

normal stress and strain components are governed by Hooke's law [Eqs. (4.4.10)]: 

1 
E 
1 

1 

Ex = -[a, - v(.y + az)I, 
Ey = [ a y  - 4% + aJ1, (6.2.3) 

E - -[a, - u(ax + ay)]. " - - - E  
For simplicity, let us for the moment, consider a rod having a rectangular cross- 
section, as shown in Fig. (6.2.2). Clearly, since no external forces are acting on the 
top and bottom faces of the rod, U,, = 0 and zyz = 0 on these surfaces. Similarly, 
a, = 0 and zzy = 0 on the two lateral surfaces of the rod; thus, in particular, 

O;(y = fd/2)  = 0, a& = f b j 2 )  = 0, tyzo' = f d / 2 )  = 0, 

tzy(z = fb /2 )  = 0. (6.2.4) 

We now limit our analysis to that of a long rod, namely one for which b << L and 
d << L , that is, a rod for which the lateral dimensions are small relative to the length 
L.  Since these stress components vanish at the boundary of the cross-section, and 
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Figure 6.2.2 

since the distance between the lateral surfaces is relatively small, it is reasonable to 
assume that the stresses a,,, a, and tVZ cannot vary very much from top to bottom or 
from one side to another within the cross-section. Therefore, we make the following 
reasonable Q S S U ~ ~ ~ ~ O F Z :  the stress components ay = 0, a, = 0, t,, = 0 at all points 
in the rod (in addition to t,,, = t,, = 0 as previously established). Note that we are 
able to make this assumption only for relatively long thin rods. Clearly, if the rod 
i s  short and stubby, the above reasoning does not hold and therefore the results 
obtained below will not be valid for relatively short rods. 

Based on the above assumption, the stress-strain relations, Eqs. (6.2.3), reduce to 

a, 
E, = - 

E '  
(6.2.5a) 

Ey = -v-, (6.2.5b) 
E 
a, 
E 

E= = -U-. (6.2%) 

In particular, a, = EE,  and since E, can only be a function of x, we note that, at 
most, 0; = a&) also. 

We now consider the cross-section to be composed of a large number of incre- 
mental areas dA. Then, as in Section 5 of Chapter 2, on each area dA an incremental 
force d F  = a, dA acts [Fig. (6.2.3)] and consequently the total normal force F is 

F = // ax(x)dA. 
A 

(6.2.6) 

Since a, is independent of y and z, F = a, f f A  dA = a, A and therefore we have 
the simple relation 

(6.2.7) 
F 

a, = - 
A '  

Furthermore, we recall from Chapter 2 [Eq. (2.5.8a)], that dM, = a, . z dA; hence 
Figure 6.2.3 

My = //a, .zdA = a, zdA. ss 
A A 

However, from Eq. (6.2. 1), Ivfv = 0. Therefore 

//zdA=O. 
A 

(6.2.8) 

(6.2.9a) 
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Similarly, from Eq. (2.5.8b), M, = - ox [SA y dA = 0, and therefore 

/ /ydA = 0. (6.2.910) 
A 

Since the integrals appearing in Eqs. (6.2.9) vanish, it follows by definition, that 
point 0 is the centroid of the cross-section. Thus, consistent with our assumptions 
(namely that the x-axis does not bend, and that ay = o, = 0), we have established 
that the longitudinal x-axis must be a centroidal axis. Hence we conclude that a 
uniform stress distribution of 0; will exist only if P passes through the centroid; 
only in this case, is it true that ox = 5. 

Now, from Eq. (6.2.5a), the strain at any cross-section x of the rod is 

Ox F 
Ex = - =- 

E E A '  
(6.2.10) 

The elongation dA of any element dx [Fig. (6.2.4a)l is then, according to Chapter 3 
[Eq. (3.3.2b)], dA = E ,  dx = & dx. Hence the total elongation A of the rod is 

(6.2.1 1) 

If A and F = P are constants, we have finally [Fig. (6.2.4b)l 

(6.2.12) 

The following example serves to provide an idea of the order of magnitude of the 
elongation of an elastic rod as encountered in engineering practice. 

Figure 6.2.4 

Example 6.1: A steel rod ( E  = 200 GPa, U = 0.25) with cross-sectional area A= 
4cm2 and L = 240 cm is subjected to an axial force P s 50,000 N. (a) Determine 
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the elongation of the rod. (b) If the cross-section is a circle, what is the change 
in the original diameter D? 

Solution: 

(a) From Eq. (6.2.12), 

= 1.5 x 1OP3 m=0.15 cm. (501000)(2.40) 
A =  

(200 io9)(4 x 10-4) 

We observe that for such a rod, the total elongation is very small indeed. Note that 
the behaviour remains elastic since 5, = = 125 x 106 N/m2 = 125 MPa 
does not exceed the yield point of steel, a.v = 200 MPa. 

(b) The original diameter D = 2y/;47n. From Eq. (6.2.5b), ey  = -0.25PIEA = 
- 0.156 x 10-3. Therefore the change in diameter, dD = ey D = 2ey + = 
- 0.353 x 10-3 cm. Note that the negative sign of dD indicates a shortening 
ofthe diameter. We observe that the ratio IdDl/A = 0.0024; that is, the change 
in the dimensions of the cross-section is much smaller than the elongation of 
the rod. 

Example 6.2: As in Example 2.3 of Chapter 2, a magnet is attached a t  the free 
end of an iron rod of length L and cross-sectional area A, as shown in Fig. 
(6.2.5). The magnetic force of attraction can be represented by the function 
f(x)=ce-X’L (where c is a constant with units N/m3). Assuming that the rod 
behaves as a linear elastic material with modulus of elasticity E determine 
the extension due to  the attractive magnetic force. 

Figure 6.2.5 

Solution: The normal force F(x)  acting on any cross-section was found, in 
Example 2.3, to be [Eq. (2.2.4)] F ( x ) = c A L [ l  - e-x/L]. Using Eq. (6.2.1 l), simple 
integration yields 

cL2 A = - [I - e-,/L] d~ -, 
CL E i Ee 

0 0 

6.3 Some general comments 

(a) In the development of expressions for axial loading of a rod, we observe that 
there exist two key points in the derivation: (i) the basic assumptions on the 
deformation pattern and (ii) the assumption that the stresses ay and a, vanish 
at all points in the interior of the rod. Once these assumptions had been made, 
we arrived at the simple expressions for a, and the axial elongation, and we 
concluded that the stress a, is uniformly distributed over the cross-section only 
if the axial force acts through the centroid. It is important to observe that we 
did not initially assume the x-axis to be a centroidal axis. 
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(b) We also recall that in Chapter 1 we defined the average stress a, on a cross- 
section as T, = f . From the derived expression of the preceding section, a, = 5,  
we now see this gives the true stress at all points in the cross-section when the 
axial force acts through the centroid. Indeed, this simple expression is known 
to be an ‘exact’ expression according to the linear theory of elasticity. [We may 
further check the validity by verifying that all points of the rod are in equilib- 
rium according to Eqs. (2.4.4).] Note that for the prismatic rod considered, the 
cross-sectional areas are constant and hence cr, is not a function of x. 

(c) From Eq. (6.2.12), we observe that the elongation A is linearly proportional to 
the applied force P and inversely proportional to the quantity ‘EA’. We therefore 
refer to E A as the axial rigidity of the rod since, for a rod of given length L 
subjected to a given force P ,  the elongation will decrease as E A increases. We 
observe that the axial rigidity is a function of the material property E and of 
the geometric property A, the cross-sectional area. 

(d) We note, according to Eqs. (6.2.5b) and (6.2.5c), that non-zero strains ey and 
E, exist in the rod and since U 5 0.5, I E ~ / E , I  < 1 and I E , / E ~ ~  < 1. From these 
equations, we also observe that ey and E, are of opposite sign to E,; therefore, 
as expected, for a rod in tension the lateral dimensions contract while, if the 
rod is in compression, the lateral dimensions increase [Fig. (6.3. l)]. However, 

Figure 6.3.1 

we recall that for a thin rod the lateral dimensions of the cross-section are, by 
definition, much smaller than the longitudinal dimension. Therefore, due to the 
application of an axial load, the changes in dimensions of the cross-section 
will be much smaller than the elongation (or shortening) of the rod. Letting A* 
denote the cross-sectional area of the deformed rod due to such changes, we 
may write 

A* = A(1f dA/A), (6.3.1) 

where dA, representing the change in area, is given byt 

ldAl = // Icy + E ~ I  dA = f E,[ + . A  (6.3.2) . .  k A 

since E ,  and E, are assumed to be only functions of x. (Note that for a tensile 
force &th cr, > 0, dA < 0.) 

Note that IdA I 2 I& [(I + ex )(1 + t;) - 11 d AI = I.& [cX + 
since IGI << 1. IcYyl << 1. 

+ w,~] dA I = [ ( E ,  + ~ y ) l  dA 
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Thus, for infinitesimal strains [say of order 0(10-3)], dA/A = ( E ,  + cz)  << 1 is 
an infinitesimal. Now, since the deformed cross-sectional area is A+, it follows, 
in principle, that a uniform distribution of the stress a, would require that a, be 
given by the expression a, = F/ A*. However, using the binomial expansion 

we may write, using Eq. (6.3.1), 

Since dA/A is an infinitesimal, we may drop such terms and thus recover 
Eq. (6.2.7), namely a, = F / A .  This expression for a, is thus seen to be consis- 
tent within the accuracy of our (first-order) linear theory. 

(e) We point out here that, throughout this book, our treatment will be confined to 
bodies that undergo small strains and changes in geometry. Therefore, although 
in principle, we examine all bodies in their deformed state, we neglect inJinites- 
imal changes in geometry (with respect to the original geometry) and there- 
fore we write all expressions in terms of the given original geometry (lengths, 
areas, etc.). This procedure, consistent with the ‘linear theory’ as discussed in 
Chapter 5 ,  will be followed in all subsequent developments in this book. 

(f) Finally, it should be remembered that in the above analysis we have implicitly 
invoked the principle of de Saint Venant. Clearly, as discussed in Chapter 5 ,  
this principle is valid in the case of axial loading of a rod only for long thin rods 
and fails to have any validity for short rods. 

The use of the principle of de Saint Venant is particularly useful in the analysis 
of a rod where more than a single force is applied or for rods consisting of more 
than one component where an abrupt change in cross-section occurs. For example, 
for the rod with applied forces as shown in Fig. (6,3.2), we obtain, from the free- 
body diagram, the resultant axial force F = PI in BC while in the region CD, 
F = Pz; i.e., our simple free-body analysis leads to a discontinuous axial force at 
the cross-section C. Furthermore, at C, we note that there is a discontinuity in the 
cross-sectional areas. As a result of these discontinuities, there can no longer be a 
uniform distribution of stresses in the region of C. However, for a long thin rod, we 
may consider the behaviour in this region to be a localised effect. For such rods, 
these localised effects are usually neglected by implicitly invoking the Principle of 
de Saint Venant. 

Figure 63.2 
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Example6.3: if the rod shown in Fig. (6.3.2) is composed of two elements 
having cross-sectional areas A. and ZAo, determine the total extension of 
the rod due to  applied axial forces acting through the centroid a t  points B, 
C and D. 

Solution: From a free-body diagram, the axial force in element BC is FBC = PI and 
in CD, FCD = P2. Note that both segments are under tension. The total lengthening is 
A = ABc f AcD Or 

We observe that in this problem, we have disregarded the local effects in the region 
of C when calculating A. This is permissible only if each segment of the rod is 
sufficiently long. 

6.4 Extension of results 

According to the discussion of the previous section, the expressions given by 
Eqs. (6.2.7) and (6.2.12) are ‘exact’ for the case of a prismatic rod. Let us now 
consider the case of a non-prismatic rod, that is, a rod for which A = A(x) 
[Fig. (6.4.1)]. Clearly a, will then be a function of x. Now, recalling that the 
analysis for the prismatic beam was based entirely on assumptions (a) and (b) of 
Section 2, it is evident that if we accept the same assumptions for the present 
case of the non-prismatic rod, and follow the development of Section 2 step by 
step, we conclude that the distribution of a, over the cross-section is uniform, 
with 

F 
B -- 
- A(x) ‘  

(6.4.1) 

However, we show now that, in particular, assumption (b), namely that plane sec- 
tions remain plane and perpendicular to the x-axis is no longer valid for the case 
of non-prismatic rods. We recall that from this assumption it follows that the 
stresses tzr = tyx = 0 [see Eqs. (6.2.2)]. Hence, if we can demonstrate that for a 
non-prismatic rod there must exist non-zero shear stresses, we will have shown that 
our basic assumption is no longer valid for non-prismatic rods. 

Figure 6.4.1 

To do so, let us consider the simple case of a rod with varying depth but whose 
width b is constant with respect to x, as shown in Fig. (6.4.2a). We first isolate 
a small wedge-shaped element as in Fig. (6.4.2b). Now, on the right face (having 
area b - Ay), there exists a force [a,(b . Ay)]. Clearly, if no shear stresses exist, 
the wedge cannot be in equilibrium in the x-direction. Thus we see that for a non- 
prismatic rod, shear stresses must necessarily exist and therefore plane sections will 
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Figure 6.4.2 

no longer remain plane as in our basic assumption. To examine the magnitude of 
such shear stresses, we consider equilibrium in the x-direction: 

so that 

(6.4.213) 

where y(x) represents the variation of the depth with x. 
Taking the limit as Ax + 0, we note that tyx -+ 0 as Ay/Ax -+ 0, i.e., as the 

slope of the upper surface of the rod tends to zero. However, if 0 c Ay/Ax << 1, 
then 0 < 1 tyx /ax I << I. Therefore we conclude that for a rod with a slowly vary- 
ing cross-section, our basic assumption will have a small error. Consequently, 
Eq. (6.4.1) is a good approximation if A(x) is a slowly varying function of x, 
e.g., for rods having a relatively small taper as in Fig. (6.4.2a). For rods with a 
strong variation of A(x), Fig. (6.4.3), Eq. (6.4.1) may lead to highly inaccurate 
results. t 

Figure 6.4.3 

The above analysis can also be applied to rods containing a notch or cut-out 
[Fig. (6.4.4a)l. If we examine, for example, a small wedge in the region of the notch 
where Ay/Ax is not small [Fig. (6.4.4b)], we arrive at the conclusion that shear 
stresses of the same order of magnitude as ax will exist; consequently Eq. (6.4.1) 
will not yield a good approximation for ax in this localised region. The equation 
will simply give some average a, acting on the cross-section in the sense of our 

t From the viewpoint of the principle of de Saint Venant, we are led to the same conclusion. From 
Fig. (6.4.3), we observe that for a rod with a large taper, d2 is necessarily of the same order of magnitude 
as L .  We recall, following our discussion in Chapter 5 (Section 3) that according to de Saint Venant's 
pnnciple, a soluhon for stresses due to applied concentrated forces, as applied here, is valid only at 
distances dl .<: x .c L - d2. In this case, the range of validity of x is insignificant compared to the entire 
rod. It therefore is evident that the principle cannot be invoked for rods with a strong vanation in A ( x ) .  
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Figure 6.4.4 

discussion in Chapter 1 .t However, invoking again de Saint Venant’s principle, 
the stresses at distances far removed from these localised regions are given by 
Eq. (6.2.7). 

For rods where Eq. (6.4.1) yields a good approximation for ox, it follows that the 
elongation of the rod A is given by Eq. (6.2.1 1): 

L L 

0 0 

(6.4.3) 

6.5 Statically indeterminate axially loaded members 

Up to this point in the previous developments, it has always been possible to deter- 
mine the internal forces in a body by means of the equations of statics. However, 
as we shall see, it is not always possible to do so, in general, for all systems; that 
is, there exist systems for which the equations of statics are not sufficient to permit 
one to obtain all forces: such mechanical systems are said to be statically indeter- 
minate. The simplest statically indeterminate systems, encountered in the case of 
axial loading, are examined here. To illustrate these ideas, we consider the following 
specific problem. 

Figure 6.5.1 

Consider a rigid (but weightless) plate, which is suspended by three symmetri- 
cally placed wires at A, B and c ,  as shown in Fig. (6.5.1). The centre wire is steel 

t More sophistlcated analyses, based on the theory of elasticity, are possible, but are beyond the scope of 
our study. We simply mention here that in these localised regions the stress field usually conslsts of high 
stresses defined by stress concentration factors. 
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(with modulus of elasticity, E, = 200 GPa and cross-sectional area A,)  and the two 
outer aluminium wires each have cross-sectional areas A ,  and modulus of elasticity 
E,  = 70 GPa. Note that the lengths of the steel and aluminium wires are L ,  and La, 
respectively. A load P is assumed to be applied at the centre point C. We wish to 
determine (a) the resisting force in each wire and @) the downward displacement 
of the plate, assuming elastic behaviour. 

We denote the resisting force in the steel wire by F, and let Fa, and Fa2 be 
the forces in the aluminium wires, as shown in the free-body diagram of the plate 
[Fig. (6.5.2)]. 

From the equations of equilibrium, we have 

(6.5.1 a) 

It is important to observe that, according to the free-body diagram, all the resisting 
forces in the wires have been assumed to be under tension. 

Figure 6.5.2 

Taking moments about point C, 

E M .  = bFal - bFa2 = 0 (6.5.1 b) 

from which Fa, = Fa2. We therefore denote the force in each of the aluminium wires 
by Fa; i.e., Fa Fal = F,z.t 

Equation (6.5.la) then becomes 

2Fa + F, = P. (6.5.2) 

Note that we have used all the equations of equilibrium (C F, = 0 is satisfied iden- 
tically) but are unable to determine the two unknowns, Fa and F,, from the single 
equation, Eq. (6.5.2). It is for this reason that the problem is said to be statically 
indeterminate, since the equations of statics are not sufficient to yield the solution. 
Clearly, we require another equation to solve for the two unknowns. 

Now, if we consider the deformation for this system, we observe that due to the 
symmetry of the problem, the rigid plate must necessarily remain horizontal. It 
follows that the downward displacement A at all points is the same [Fig. (6.5.3)]; 
specifically, the elongation of the steel and aluminium wires must be identical. Thus 
we write 

A, = A,. (6.5.3) 

[Note that in Fig. (6.5.3), the downward displacement A corresponds to elongations 
of the wires. This elongation is consistent with the assumed tension of the wires. We 
also remark that Eq. (6.5.3) is an equation that represents the geometric compatibizity 
of the system. Although this comment may appear here to be superfluous, it is, as we 
shall see, an essential feature in the solution of statically indeterminate problems.] 

Now, from Eq. (6.2.12), we write, for the aluminium and steel wires, 

(6.5.4a) Figure 6.5.3 

(6.5.4b) 

t Note that we might have initially concluded from symmetry that the two aluminium wires carry the same 
load; however, we should observe that this is not an independent conclusion smce, in fact, it is denvable 
from equations of mechanics. 
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respectively. Then using the equation of geometric compatibility, 

FaLa FsLs 
EaAa EsAs 
-- -- 

from which 

Substituting in the equation of equilibrium, Eq. (6.5.2), 

(6.5.5a) 

(6.5.5b) 

(6.5.6a) 

(6.5.6b) 

We now consider a numerical case; let us assume that L 
that A ,  = 0.5A, with A,  = 0.05 cm2. Then, 

L ,  = La = 30 cm and 

(6.5.7a) 
20 
27 

F? = - P = 0.741 P. 

From Eq. (6.5.2), we obtain 

Fa = 0.5(P - Fs) = 0.130P. (6.5.78) 

The stresses a, and Da in the steel and aluminium, respectively, are, from Eq. (6.2.7), 

Fa 
AS Aa 

a,=-- Fs - 14.82P (N/cm2), a, = - = 5.20P (N/cm2) (6.5.8) 

To find the displacement of the plate, we use either of Eqs. (6.5.4); e.g., 

FsL, 
E,A, 

0.741 P . (30 x 10-2) 
(200 x 109)(0.05 x 10-4) 

A=- - - - -  - = 2.22 x 1 0 - ~ ~ m ,  

= 2.22 x lO-’P cm (P in Newtons). 

We observe, for the numerical example considered above, with La = L,,  that 74% 
of the load P is carried by the steel wire and only 13% is carried by each of the 
aluminium wires. 

A further examination of the above results leads us to greater physical insight. 
For the present case (La = L, )  we have, from Eq. (6.5.6b), 

Then, since Fa = 0.5( P - F,), 

(6.5.9a) 

(6.5.9b) 
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Note that for La = L,, Eq. (6.5.5a) yields 

(6.5.10) 

Thus we see that the resisting forces in the wires are proportional to their axial 
rigidities as defined in Section 3. A plot of Eqs. (6.5.9) is shown in Fig. (6.5.4). We 
observe that for the case of a relatively thin steel wire, e.g., E,A,/ EaAa = 0.3, we 
have F,/P = 0.1304 and Fa/P = 0.4348. For a large ratio, e.g., ESAsIEaAa = 9.0, 
we find F,/P = 0.8182 and Fa/P = 0.0909. When ESAsIEaAa = 1, we have 
F,/P = Fa/P = 0.333, that is, each wire carries an equal portion of the load. In the 
limiting case, as E,  As /EaAa = 0, it is clear that F, = 0; that is, the entire load is 
carried by the aluminium wires alone. 

Figure 6.5.4 

From an analysis of this simple problem, we arrive at an important and generally 
valid conclusion: in a statically indeterminate structure consisting of several com- 
ponents, each component tends to resist applied loads in proportion to its relative 
stzflness. This very general principle provides us with a physical insight that proves 
to be very useful in understanding the behaviour of more elaborate and complex 
indeterminate systems encountered in structural mechanics. 

To illustrate further some of the ideas in the solution of statically indeterminate 
problems, we consider the following example. 

Example 6.4 A rod consisting of two rigidly connect elements, '1' and '2II 
is rigidly held at the top and bottom a t  points B and D, as shown in Fig. 
(6.5.5). The cross-sectional areas and moduli of elasticity are AI, €1 and 4, E 2, 
respectively. A force P is applied along the 'collar' a t  C such that i t s  resultant 
passes through the centroid. Determine the resisting reaction at B and D. 

Solution: Let us assume that the reactions at B and D are both upward; we denote 
these reactions by RB and RD, respectively, as shown in the free body of Fig. (6.5.6a). Figure 6.5.5 
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[While the assumed upward directions of both of the reactions follow logically from 
physical intuition, it should be noted that the assumed positive direction is completely 
arbitrary.] From Fig. (6.5.6b), with the above assumed reactions, rod 1 is clearly under 
tension since Fl = RB while rod 2 is in compression since F2 = RD. 

From equilibrium, we write 

Z F ~  = R~ + ipI, - P = o (6.5.1 la) 

or 

Fi + F2 P .  (6.5.11b) 

Again, we evidently require a second equation to solve for the two unknowns. As in the 
previous example, this additional equation is an equation of geometric compatibility. 

Now, in order to be consistent with our assumed forces, in considering the deforma- 
tion of the rods, we must assume that rod 1 will elongate; similarly, we must assume 
that rod 2 shortens (since, according to the free-body diagram, it has already been 
assumed that it is in compression). We denote the assumed elongation of rod 1 by A1 
and the shortening of rod 2 by A2 . 

However, from the physics of the problem, rods 1 and 2 do not detach from 
one another, nor do they overlap. Thus, the assumed elongation of rod 1 must be 
equal to the assumed shortening of rod 2. The geometry of deformation is shown in 
Fig. (6.5.7), where for pictorial clarity, we have offset the two separate bars. 

The condition of geometric compatibility is therefore 

Now, from Eq. (6.2.12), 

Substituting in Eq. (6.5.12), 

(6.5.12) 

(6.5.13) 

(6.5.14) 

and since Re = Fl(+FI -+ tension) and RI, = F2(+F2 -+ compression), we have 

From the equation of equilibrium, Eq. (6.5.1 lb), we find 

[1+ ~~] F2 = P 

from which 

Then, substituting back in Eq. (6.5.1 lb), 

(6.5.15) 

(6.5.16) 

(6.5.17a) 

(6.5.17b) 
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For the case where L1= L2 = L ,  

R B =  [ ] P ,  R D =  [ E2A2 ] P .  (6.5.17~) 
EiAi + E2A2 Ei Ai + E2A2 

Having found F1 = RB, F2 = RD, the stress a in each rod is given by 

(6.5.1 8) 

Note again that since Fj represents a tension force, positive (11 is a tensile stress; sim- 
ilarly, since RD represents a compressive force, positive a2 represents a compressive 
stress. 

As mentioned above, the assumed positive sense for each of the unknown forces RB 
and RD may be chosen arbitrarily. In order to emphasise this point and to clarify some 
aspects of the solution, we shall solve this same problem under different assumptions. 

Alternative solution: We consider the identically same problem as above 
[Fig. (6.5.5)]. Let us now choose the unknown reactive force RB to be in the downward 
direction and RD to be in the upward direction, as shown in Fig. (6.5.8a). Clearly, 
this now implies that rods 1 and 2 are both in compression with F1 = RB (+F1 -+ 
compression) and F2 = RD (+Fz -+ compression) [Fig. (6.5.8b)l. From equilibrium, 

x~~ = R~ - R% - P = o (6.5.1 9a) 
and hence 

F2- F1 = P.  (6.5.19b) 

We now consider the deformation. Since both bars have implicitly been assumed to 
be in compression to maintain consistency, they must both be assumed to shorten as 
shown in Fig. (6.5.9) (where again for pictorial simplicity the bars have been drawn 
offset). Now, fiom the physics of the problem, there can be no separation of the two 
rod elements. Therefore, fiom Fig. (6.5.9), we have 

A1 + A2 = 0. 
Here, again 

(6-5.20) 

(6.5.21) 

Note that, just as the assumed positive values of the forces F1 and F2 signify compres- 
sion, so do A1 > 0 and A2 > 0 signify contraction. (This is in contrast to the A1 and 
A2 of Eq. (6.5.13) where A1 > 0 represented elongation, while A2 z 0 represented 
a contraction.) Substituting Eq. (6.5.21) in Eq. (6.5.20), we have 

Fl 

and hence using Eq. (6.5.19b), 
r 

l1 + 

from which 

ElAl L2 F2 (6.5.22) - - --- 
E2A2 Li 

(6.5.23) 
E2-42 L1 

E2'42L1 
[EiAiL2 + E2A2L1 

(6.5.24a) 
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Then, substituting back in Eq. (6.5.22), 

Figure 6.6.1 

The stresses in rods 1 and 2 are then given, as before, by 

(6.5.24b) 

(6.5.25) 

Note, however, that F 2  > 0 while FI < 0. Since positive F1 RB was taken to be 
compression, the negative value obtained in the solution indicates that physically the 
normal force F1 is under tension (which agrees with the physics of the problem and 

For emphasis, we summarise here the general features that characterise the proce- 
dure for solving statically indeterminate problems subjected to axial loads: 

rn Equations of equilibrium are written in terms of unknown external forces which 
are chosen as positive in an arbitrary direction. 

a The positive internal normal forces are then determined according to the free body 
diagrams of each element. (These will then be either tension or compression). 
The equation of geometric compatibility must be written in terms of elongations 
(or shortening) of an element which are consistent with the assumed tension (or 
Compression) of the element.? 

with the previous solution). 0 

6.6 Temperature problems: thermal stresses 

An interesting class of problems whose solutions can be obtained quite simply us- 
ing the relations developed in Section 2 of this chapter occurs in problems due to 
temperature changes of a rod. 

Consider first a bar of length L, which is subjected to a change of temperature A T .  
Due to such a temperature change, the bar, in general, will undergo a change of length 
AT,  given by [Fig. (6.6.1)] 

A ~ = C X L . A T ,  (6.6.1) 

where a is the coefficient of thermal expansion. For example, for steel a = 11.7 x 

Now, if there is no restraining force, for example, if the bar is resting on a fric- 
tionless table, it will expand or contract fkeely (depending if AT > 0 or AT < 0, 
respectively) and hence no internal stresses will be induced. However, if there is a re- 
straining force, that is, a force which prevents a free expansion or shortening, internal 
stress will occur. The internal stresses induced by these restraining forces are called 
thermal stresses. We now illustrate this idea by means of a simple example. 

1 0 -6 cm/cm/" c I 

Example 6.5: A steel rod of cross-sectional area A, length L, modulus of elas- 
ticity E (E =200 GPa) and coefficient of thermal expansion a! undergoes a 

t We mention that the procedure as outlined here is, in principle, a general procedure used in the analysis 
of any statlcally indetermtnate system. Since the unknowns appearing in the resulting equations are 
forces, this general procedure is known, in structural analysis, as thefovce method. The ideas of the force 
method will be used in Chapters 7 and 9 to solve indeterminate problems due to torsion of rods and 
bending of beams. 
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change of temperature AT, Determine the resulting stress if the bar is held 
between two rigid walls as shown in Fig. (6.6.2a).t 

Solution: Solutions to this class of problems are easily obtained using the superpo- 
sition principle; i.e., we first imagine that the rod expands freely with no restraint by 
an amount AT [Fig. (6.6.2b)l. For this simple case, it is clear that the walls actually 
exert a compressive force so as to prevent the rod from expanding in the longitudinal 
direction [Fig. (6.6.2c)l. Thus, if we imagine that the process takes place in two stages, 
the wall will then exert a compressive force R to 'push back' the rod to its original 
length. Denoting the shortening effect of the reaction R by A R ,  AR = %,$ we have 
the simple relation 

AR = AT. (6.6.2a) 

This relation is again, in fact, a trivial example of an equation of geometric compat- 
ibility, which, written explicitly, is 

RL 
AE - = a L * A T  (6.6.2b) 

Figure 6.6.2 

or 

R = A E a  * AT.  (6.6.2~) 

The axial stress is therefore (I = Ea AT. We observe that for this problem, the solu- 
tion is independent of the length L .  It is important to note here that we have implicitly 
assumedpositive R to be compression and hence the positive stress (I here corresponds 
to a compressive stress. Assuming a temperature increase of 50°C, the stress in the 
rodisa=(200x 109).(11.7x 10-7)-(50)=11.7x 107N/m2=117MPa. U 

Example 6.6: Consider two bars of different materials (brass and steel), 
having the same cross-sectional area A, which are held rigidly a t  B and C 
and are initially separated by a gap '8' [Fig. (6.6.3)]. The temperature of 
the entire system is increased by an amount AT, which is greater than that 
required to close the gap. Determine the resulting axial stress. 

Figure 6.6.3 

Solution: As the temperature is increased, the rods will first elongate freely, accord- 
ing to Eq. (6.6.1), until the gap is closed. Clearly, since the existing supports at B and 
C are rigidly fixed in space, the supports will then exert forces that tend to restrain 
any subsequent elongation due to a further increase in temperature. 

In solving this problem, we again make use of the principle of superposition; i.e., 
we first determine the free elongation due to the temperature increase disregarding 

t We assume implicitly that the wall is fnctionless and therefore that the rod is free to deform laterally 
with no constraints. 

t Note that although the length of the bar after the temperature change is imagined to be L* = L -k AT 
(AT << L )  [see Fig. (6.6.2b)], in calculating AR,  we use the length of the onginal geometry, L [see 
comment (e) of Section 6.31. 
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any restraints. To these elongations, we then superimpose the effect of the restraints. 
We denote the free-temperature effect by AT and the restraint effect by A R .  

Thus, assuming that the bars are allowed to expand freely, the free expansions of 
the brass and steel bars are A: and AT, respectively. 

However, since the two supports are rigid, aRer the gap has been closed, these 
supports clearly exert compressive resisting forces that tend to prevent any further 
elongation of the system. Moreover, since no other external forces are acting on this 
system, it follows from equilibrium that the reacting forces must evidently be the 
same [Fig. (6.6.4a)l; we denote these (unknown) reactive forces by R. Thus both the 
steel bar and the brass bar are subjected to the same compressive axial force F = R,  
as shown in the free-body diagrams of Fig. (6.6.4b). 

Figure 6.6.4 

Due to the resisting compressive axial force R ,  the shortening of the two bars is 
given by 

(6.6.3) 

Then, using superposition, the final changes in length are 

Ab = A t  - A t ,  A, E= A: - A:. (6.6.4) 

The deformation of the bars, showing the temperature and reactive effects of the bars, 
is shown in Fig. (6.6.5). From the simple geometric relations of this figure, we write 

Ab 4- A, = 6. (6.6.5) 

Note that this relation is the basic geometric compatibility equation governing the 
deformation of this system. Substituting Eqs. (6.6.4), 

(A: - A:) + (A: - A:) = 6, (6.6.6a) 

Figure 6.6.5 
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which we rewrite as 

A; + A %  = A,T +A: -6 .  

Now, from Eq. (6.6.1), we have 

A,T = abLb * AT,  A: = asL, * A T  

Substituting Eqs. (6.6.3) and (6.6.7) in Eq. (6.6.6b), we have 

(6.6.6b) 

(6.6.7) 

(6.6.8) 

from which we finally obtain 

We consider a numerical example that proves to be instructive. Let 

A = 3cm2. L = Lb = L ,  = 100cm, 

Note that we have not yet assigned here a value to 6. Furthermore, we recapitulate 
the properties of the two materials 

AT = 80°C. 

Eb = 120 GPa, E, = 200 GPa, 
ab =E 18.7 x "c-' , a, = 11.7 x 10-6 "C-'. 

From Eq. (6.6.9), 

(6.6.10) 

Substituting the above values, 

(3 x 10-4). (2.4 1022) 
R =  [(30.4 x 1OV6). 80 - S/L]  

3.2 x 10" 
or 

R = 22.5 x 106(2.432 x 10-3 - 6 / L )  

If, for example, 6 = 0.2 cm, then with L = 100 cm, R = 9720 N from which we find 
(J = 32.4 MPa (compression) in both bars. 

It is instructive to compare this result with the case 6 = 0, that is, when no gap 
exists. The reactive force is then R = 54,720 N and U = 182.4 MPa. U 

From the numerical results of the above problem, we observe that the thermal 
stresses induced by the given temperature changes are reduced from (T = 182.4 MPa 
to (T = 32.4 MPa (i.e. by 82%) by the mere introduction of a very small gap of 6 = 0.2 
cm in the system. 

The important influence of the gap in a system may be seen more clearly if we 
examine the above problem where both rods are of the same material. Thus letting 
Eb = E, = E and 

R =: A E ( a A T  - 6 / 2 L )  (6.6.1 la) 

=a, =a, Eq. (6.6.10) becomes 

and therefore the stress U in the system is 

(6.6.1 lb) 
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We note that the quantity ‘a AT ’ is usually very small (generally of the order of 1 0-4 
for AT 5 l0OOC). Hence we observe that for a small gap S with S/L  of this same 
order, the stress (T is reduced considerably. 

Indeed, the magnitude of stresses in any statically indeterminate mechanical or 
structural system is very sensitive to ‘gaps’ existing in the system. With this knowl- 
edge, one often purposely introduces, if possible, such gaps in the design of a struc- 
ture, in order to minimise induced thermal stresses. This result has many practical 
applications in the construction of structures. For example, ‘construction joints’ in 
bridges and roadways are usually introduced to prevent high induced stresses due to 
temperature changes. 

The above problem, representing a typical example of the evaluation of thermal 
stresses due to axial loading, is in fact a statically indeterminate problem. We em- 
phasise again that, as is true for this class of problems, we require an appropriate 
equation of geometric compatibility in addition to the appropriate equation(s) of 
equilibrium. 

6.7 Elastic-plastic behaviour: residual stresses 

At this stage, we have considered only elastic behaviour under axial loadings. How- 
ever, as discussed in Chapter 4, it is clear that if the loads acting on a body are 
sufficiently large, the body may cease to behave elastically and may enter the plas- 
tic range. We introduce here a simple problem to illustrate the analysis of a system 
in which elastic-plastic behaviour occurs. 

Consider a system consisting of a rigid (weightless) plate, supported symmetri- 
cally by steel and (hard drawn) copper wires, as shown in Fig. (6.7.la). The copper 
and steel wires each have the same cross-sectional area A .  A force P is applied 
at the centre. The steel and copper wires are each assumed to behave as an ideal 
elastic-plastic material with CT-C diagrams as given in Figs. (6.7.2a and b), respec- 
tively. 

Figure 6.7.1 
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Figure 6.7.2 

We consider the case as a force P ,  of gradually increasing magnitude, is ap- 
plied (loading) and which is removed (unloading) after the system undoes plastic 
deformation. Specifically, we wish to determine 

rn the load P = P,, at which yielding first occurs and the corresponding vertical 

rn the ultimate load Pult that the system can carry. 
rn The vertical displacement hutt as P approaches PUlt. 
rn The permanent deformation after unloading. 

displacement Ay; 

Using the condition of symmetry, the same force F, exists in each of the copper 
wires. (Note that by taking M = 0 about the midpoint of the plate, we arrive at 
the same result.) From equilibrium, Fy = 0, we have [Fig. (6.7.lb)l 

2F, + F, = P ,  (6.7.1) 

where F, and F, are the forces in the steel and copper wires, respectively. Note that 
this equation is independent of the material properties and therefore remains always 
valid. 

Due to the rigidity of the plate and the symmetry of the system, we immediately 
write the geometric compatibility equation 

A, = A,. (6.7.2a) 
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We find it here more appropriate to express the compatibility equation in terms of 
the axial strains in the wire; thus (since the wires are of the same length L), we have 

Es = E, .  (6.7.2b) 

Evidently, the initial behaviour of the system is elastic provided P c Py. Yielding 
first takes place when the stress in one of the wires, steel or copper, reaches the 
value (00)~ or ( c r ~ ) ~ ,  respectively. From Fig. (6.7.2), this is equivalent to stating 
that yielding occurs when the strain first reaches ( E &  or (E&. Using the given 
numerical values as shown in this figure and the G-E relations, cr = E E ,  these strains 
are (E& = 1.5 x lOP3 and (GO) ,  = 2.0 x 10-3. Since (E& < (E&, it follows that 
yielding will first take place in the steel wire when the strain E ,  reaches (E& 

From Eq. (6.7.2b), the strain in the copper E ,  = (E& at this first yielding and thus 
the corresponding stress in the copper wire is 

= (120 x 109) - (1.5 x 10-3) = 180 x 106 N/m2. (6.7.3) G, = 

Hence the forces in the wires are 

Fs = (300 x 106) - A and F, = (180 x 106). A ,  (6.7.4) 

respectively. (We note that this value of F, is the maximum force Fslmax that the 
steel wire can carry.) 

Then by Eq. (6.7.1), the force P at the first yielding is 

Py = (300 x 106) * A + 2(180 x 106) * A =L: (660 x 106) A (6.7.5a) 

and the corresponding displacement is 

A , = ( E ~ ) ~ - L = ( ~ S X  10-3).L. (6.7.5b) 

As P increases beyond Py, the stress in the steel remains constant, (00)~ . However, 
the stress in the copper increases gradually with increasing P until it reaches the 
value (GO), with a corresponding strain (CO),. Thus, the maximum force that the 
copper wire can carry is F,l,, = (240 x 106) A .  At this point, the force P has 
reached its ultimate value, Pult, given by 

P u ~ t  = Fslmax + 2Fclmm = (300 x 106)A + 2(240 x 106)A = (780 x 106)A. 
(6.7.6a) 

As P reaches P = Pult (which occurs just as the copper yields), the displacement is 

(6.7.6b) = ( E ~ ) ~ L  = 2.0 x ~ o - ~ L .  

Thereafter the system continues to yield under Pult. 

A plot of the load-displacement relation is shown in Fig (6.7.3). The original 
line OB represents purely elastic behaviour; the line BC represents partly elastic 
behaviour (of the copper) and plastic behaviour (of the steel); the horizontal line 
CG represents purely plastic behaviour (yielding) of the entire system. We note that 
the slope of the line OB is considerably greater than BC. Recalling that the slope is 
a measure of the stiffness, a physical explanation is clear: initially, both the copper 
and steel wires offer resistance to deformation resulting in a relatively stiff system. 
Once the steel wire has yielded, the only resistance to increased deformation is 
due to the copper wire and hence the system is less stiff, as reflected by the lower 
slope of BC. At P = P,,, the copper yields and assuming that the force P = Puit is 
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Figure 6.7.3 

thereafter maintained, all wires having yielded, the entire system undergoes increas- 
ing deformation as represented by the horizontal line P = PUlt. 

Let us assume that the load is slowly removed when the displacement reaches 
A = A, (with the corresponding strain, ED = AD/L in the wires). The system is 
said to undergo 'unloading'. We recall from Chapter 4 [Fig. (4.6. l)], that for a given 
material having ideal elastic-plastic behaviour, the unloading is elastic and is repre- 
sented by a line on the c-E diagram, which is parallel to the original loading curve. 

We now wish to study the behaviour of the system during unloading. The respec- 
tive g-6 curves for the steel and copper (representing both loading and unloading) 
are shown in Fig. (6.7.4). It is clear that since the system has undergone plastic 
deformation, we cannot expect that it will return to its original position: that is, 
the system will undergo a permanent deformation after the load is completely re- 
moved. We denote the resulting permanent displacement by S and denote eF = 6 /  L 
as the corresponding (final) permanent strain. Note that the compatibility condition, 
Eq. (6.7.2b), remains valid; i.e., the strain in all the wires must be identical for this 
symmetric system. We wish to determine 6. 

We observe that after removal of the load, the equilibrium equation, Eq. (6.7.l), 
with P = 0, is 

(6.7.7a) 2F,F + F: = 0 

and hence 

as F = - 2 q .  F (6.7.7b) 

where the superscript F indicates the final value after removal of the load. Thus if 
both c," # 0,0," # 0, the two stresses must necessarily be of opposite sign; either 
the copper is under tension and the steel in compression or vice versa.t 

Now, the general c-6 equations of the straight (unloading) lines for the copper 
and steel are, respectively [see Fig. (6.7.4)], 

(6.7.8a) 

(6.7.8b) 

t Since the slope of the steel is greater than the corresponding slope of the copper, it is clear that unloading 
will take place at a faster rate in the steel than in the copper. Furthermore, for the given nurnencal values 
of the m a t e d  properties as shown in Figs. (6.7.2a and b), We therefore can anticipate that 
U," > 0 and U," < 0 when the load P is removed. 

z 
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Figure 6.7.4 

In particular, the final strains existing in the copper and steel, E: and E:, are given 
by Eqs. (6.7.8) with 0, =a: and a, =:U:, respectively. But, from compatibility, 
E: = c:; we therefore have 

(6.7.9a) 

from which it follows that 

Using Eq. (6.7.7b), we find, upon solving for a,", 

F (ao)C * - (00)s 
0, = 

2 + (Es/Ec) 
(6.7.10) 

Substituting the appropriate numerical values, a: = 27.3 x 106 N/m2 = 27.3 MPa 
(tension). Then from Eq. (6.7.7b), a," = - 54.6 MPa (compression). 
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The permanent deformation 6 is then found by substituting in either of Eqs. 
(6.7.8): e.g., 

(6.7.1 1) 

Let us assume that ~ ~ = 4 . 0 x  10-3. Then 6=4.Ox 10-3L-(1.77x 1Ow3). 

Thus we note that if a system undergoes plastic deformation, not only will there be 
a permanent state of deformation (after removing all external loads) but also a non- 
zero state of stress may thereafter exist in the unloaded system. The stresses .,” and 
..E: are therefore called residual stresses. We emphasise, however, that such residual 
stresses as calculated above can only exist in a statically indeterminate system. 

L =2.23 x 10-3~.  

PROBLEMS 
Note: In all problems below, the material behaviour of the members is assumed to  be 
linear elastic unless specified otherwise, Neglect all localised effects in the solution of 
problems. 

The following constants are t o  be used in solving the problems. 

Steel E,=200GPa, aS=11.7x 10-6(oC-1) 
Aluminium Ea = 70 GPa, aa = 23.6 x 10-6 (“C-l) 
Brass Eb = 120 GPa, 01b = 18.7 x (“c-’) 
Bronze Ebr = 105 GPa, abr=18 X 10-6(oc-’) 
Copper E,, = 120 GPa, acu = 16.9 x 10-6 PC-’) 

Sections 2 4  

6.1: A cylindrical steel rod of length L = 50 cm and cross-sectional area A is subjected 
t o  an axial tensile force P = 12 kN. If the allowable tensile stress is sallow= 120 MPa, 
and the maximum permitted elongation is  AL =200p,=200 x 10-6m, determine the 
minimum required diameter d. 

6.2: A rod, consisting of two segments AB and BC with moduli of elasticity €AB and 
EBC, respectively, is subjected t o  axial loads, as shown in Fig. (6P.2). If C is not permitted 
to  displace, determine the required ratio AAB/ABC. 

6.3: A cylindrical rod, part of a sensitive instrument, consists of two segments AB and 
BC bonded to  each other, each having the same cross-sectional area A = 140 mm2, as 
shown in Fig. (6P.3). Segment AB is  aluminium. As a design specification, it is required 
that under a compressive axial load P = 12 kN, the displacement of C is not t o  exceed 
1 mm nor be less than 0.9mm. Which material($ can be used for segment BC - steel, 
aluminium, brass, bronze or copper? 

6.4 A linear isotropic elastic cylindrical rod with modulus of elasticity E is fixed at 
one end and subjected, as shown in Fig. (6P.4), t o  a force located at point 0, which 
attracts any given element of thickness Ax with a (body) force given by A f  = SAAX, 
where A is the cross-sectional area of the rod, x i s  the distance from 0 t o  the element 
Ax and k is a constant. Determine the elongation of the rod. 

6.5: Body forces, varying as f(x)= Cex/a (where C is constant having units N/m3), act 
in the x-direction on a prismatic rod having axial rigidity A€ and length a, as shown in 
Fig. (6P.5). (a) Showthat the resulting stressa, at any cross-section, x, is ox = Ca(e - ex/a) 
and (b) determine the change in length AL of the rod. 
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6.6: A copper-nickel alloy tube 40 cm in length, whose cross-sectional area is 
A=60 mm2, is subjected t o  an axial tensile force of 8000 N. The material behaviour 
of the copper is governed by the 'sinh law' [given by Eq. (4.5.5) of Chapter 41 with 
00 = 100 MPa and ~0=0.006. Determine the change in length AL. 

6.7: A tapered rod AB with modulus of elasticity E and thickness t, having a width 
varying Iinearlyfrom a t o  b(a I: b) and length L, is subjected to  axial forces P, as shown 
in Fig. (6P.7). Assuming that the taper i s  sufficiently small (i.e., << I), the normal 
stress can then be assumed to  be uniformly distributed over the cross-section, i.e., 
CJ = & is a reasonable approximation t o  the true state of stress. Using this approxima- 
tion, show that the change in length of the rod is AL = w or in non-dimensional 
terms, - = w, where A0 is the cross-sectional area at A. 

(Note: See computer-related Problem 6.42.) 

6.8: A rigid rod ABCD is simply supported at A and by a steel wire at C, whose cross- 
sectional area, A, = 15 mm2. Under zero load, a gap 6=2 mm exists at the right end 
between D and F, as shown in Fig. (6P.8). (a) Determine, in terms of E$, A, 8, h, L and 
P, the distance from A (i.e., the distance a) at which a load P should be applied such 
that the right end makes contact with point F. (b) Sketch the position a/L as a function 
of P in terms of the non-dimensional quantity w. If h=2 m and the maximum load 
P that can be applied is P =900 N, what is the shortest distance a/L? 

6.9: A rigid plate is supported by cylindrical steel and brass rods whose diameters 
are as shown in Fig. (6P.9). Determine a, the position of the load P, if the rigid plate 
remains horizontal. 

6.10: By means of a rigid end plate, an axial force, P = 120 kN, passing through the 
x-axis is applied to  the composite member consisting of a steel core and an outer 
aluminium cylindrical shell, as shown in Fig. (6P.10). Determine (a) the axial stress in 
the core and in the shell and (b) the change of length AL. 

Figure 6P.10 

6.1 1: Astructure consists of a rod BC, which is simply supported at C and supported by 
a steel wire BD, whose cross-sectional area is A, = 1.2 cm2. A load P = 18 kN is applied 
at point B, as shown in Fig. (6P.11). Assuming that the rod BC is rigid, determine VE, 

the vertical component of displacement of point B. 
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6.12:* Determine the horizontal and vertical components of displacement of point B, 
UB and VB respectively, of the structure of Fig. (6P.11) if the rod BC i s  made of aluminium 
and has a cross-sectional area, A, = 3 cm2. 

6.13: A compressive axial force P = 500 kN is applied, by means of a rigid plate, to  
a concrete column 3 m in height and having cross-sectional dimensions 20cm x 30cm 
[see Fig. (6P.13a)l. The column contains 8 steel reinforcing bars, placed uniformly 
within the column, each of whose cross-sectional area is A, = 2 cm2 [see Fig. (6P.13b)l. 
The modulus of elasticity of the concrete is E E  =2OGPa. If the plate remains horizon- 
tal, determine (a) the compressive stress in both the concrete and the steel bars and 
(b) the shortening, AL, of the column. 

Figure 6p.1' 

Figure 6P.13 

6.14 Rigid plates are connected to the ends of a composite rod, made of two ma- 
terials, as shown in Fig. (6P.14). The moduli of elasticity of the two components of 
the rod are €1 and €2, where € 1  > €2. Determine the value of e (measured from the 
interface) a t  which an axial load must be applied to produce a uniform extensional 
strain throughout any cross-section. 

Figure 6P.14 

6.15* A structure, consisting of an elastic rod AB having axial rigidity €oAo, is sup- 
ported by means of a wire a t  A (whose axial rigidity is A,€,) and simply supported at 
B. A force P, making an angle a! with the rod, acts a t  point A, as shown in Fig. (6P.15). 
Determine the ratios UA/L and WAIL of the horizontal and vertical components of 
displacement of point A, as a function of a!. 

(Note: See computer-related Problem 6.43.) 

6.16: A composite rod of length L ,  having a cross-section as shown in Fig. (6P.16), 
i s  made of two materials with moduli of elasticity € 1  and € 2 .  A load P is applied a t  Figure 6P.15 
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the end plates such that the strain i s  uniform throughout any cross-section. Determine 
(a) the value of e, as shown in the figure and (b) the elongation of the composite rod. 

Figure 6P.16 

Section 5 

6.17: A rigid rod ABCD is suspended by means of three identical wires, as shown in 
Fig. (6P.17), and carries a load P at B. (a) Determine the tensile force in each wire as a 
function of P and the ratio b/a. (b) If 6=3a, P = 19 kN and the allowable tensile stress 
in the wires is CT = 100 MPa, what are the required diameters of  the wires? 

Figure 6P.17 

6.18: A pin-connected truss is composed of three rods of  the same material. The 
cross-sectional area of rod BD is A0 and that of AD and CD is Al. The truss is subjected 
to  a force P at D, as shown in Fig. (6P.18). (a) Show that if A0 =A,,  the axial forces are 
given by 

(0 < p < 900). 
P cos2 p P 

I + 2  cos3p FAD = FCD = FBD = 1 + 2 ~ 0 ~ 3  p' 

(b) For thiscase, namely if A0 = At, determine the required cross-sectional area if the al- 
lowabletensilestressintherodsiso=120MPa, if P=50kN and i fa=3mandh=4m. 

Figure 6P.18 
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6.19* The rods of the truss shown in Fig. (6P.18) have different cross-sectional areas 
and are made of different materials: rods AD and CD are made of steel with AI =A,  
and rod BD is made of aluminium with A. = Aa. (a) If the allowable stresses in the steel 
and aluminium are given as aSlall = 120 MPa and aalall =90 MPa, determine the angle 
p such that each rod is stressed t o  i t s  maximum allowable value when subjected t o  the 
load P ,  as shown in the figure. [Note that this value provides the optimal configura- 
tion for the given material properties and cross-section of the rods.] (b) If A0 =2cm2 
and A, =4cm2, what i s  the maximum allowable load P .  

6.20: A tapered member having constant thickness t is welded at A and B t o  rigid 
supports, as shown in Fig. (6P.20). Assuming that the taper is small (i.e., a - b << L )  such 
that the axial stress can be considered to  be uniform at any cross-section, (a) determine 
(in terms of a, band P) the reactions at A and B due t o  an axial load P acting at the 
centre and (b) show that if b -+ a, RA = RE = P 12. 

6.21: A tapered member, as shown in Fig. (6P.21), having constant thickness t i s  rigidly 
attached to  supports at A and B. Assuming that the taper is small (i.e., a - b << L )  such 
that the axial stress can be considered t o  be uniform at any cross-section, (a) determine 
(in terms of a, band P )  the reactions at A and B due to  an axial load P acting at the 
centre, C and (b) show that if a -+ b, RA = R g  = P 12. 

6.22: A tapered member, as shown in Fig. (6P.22), having constant thickness t is rigidly 
attached to  supports at A and B. An axial force P is applied at section D located a dis- 
tance a L  from A (0 i a 5 0.5) as shown in the figure. Assume that the taper is small 
(i.e., a - b << L )  such that the axial stress is uniform at any cross-section. (a) Show that 
the reactions at A and B are given, respectively, by 

In[(l - 2a)a + 2abI - In a 
211nb- Ina] 

RA = P 

2Inb- h a - l n [ ( l  -2a)a+2abl 
2[lnb- Ina] 

R g  = P 

(b) Show that if a = 0.5, RA = RB = P 12. 

Figure 61322 

6.23: A conical rod ACB whose diameter varies linearly from do > 0 t o  D is rigidly 
attached t o  supports at A and B, as shown in Fig. (6P.23). A force P is applied at the 
centre C. Determine the reactions at A and B in terms of do, D and P .  

Figure 6P.23 
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Section 6 

6.24: A bronze and an aluminium rod, having cross-sectional areas A, = 1800mm2 
and Abr = 1500 mm2 respectively, are bonded together as shown in Fig. (6P.24) and are 
placed between two rigid supports such that a gap 6 = 0.6 mm exists at the left end. 
Determine (a) the compressive reaction on the rods due t o  a uniform temperature 
increase of  150% (b) the stress in each rod and (c) the resulting change in length of 
each rod. 

6.25: An assembly consists of  a steel bolt whose cross-sectional area is As =0.6cm2 
surrounded by a hollow aluminium cylinder of cross-sectional area Aa = 1.5cm2, as 
shown in Fig. (6P.25). Determine (a) the stress in each member and (b) the change in 
length if the entire assembly undergoes an increase of temperature AT  = 50°C. 

Figure 6P.24 

Figure 6F.25 

6.26: An assembly is designed t o  be used at very high temperatures. The assembly 
consists of a titanium rod whose cross-sectional area is AT = 0.6 cm2 surrounded by 
a hollow monel alloy cylinder of cross-sectional area AM = 1 .5cm2. The assembly is 
bounded by rigid end plates, as shown in Fig. (6P.26a). The titanium as well as the 
monel are assumed t o  be elastic-perfectly plastic with stress-strain curves as shown in 
Fig. (6P.26b). Determine the change in temperature A T  at which first yielding occurs. 
(Given: CXT = 9.5 x 1 0-6 OC- ' ,  CXM = 13.9 x 1 Ow6 'C-'.) 

Figure 6P.26 

6.27: An assembly, consisting of a rigid plate, i s  supported by means of two steel rods 
each having a cross-sectional area A, = 5 cm2 and length h= 2 m. A copper rod with 
Acu = 10cm2 is inserted at the centre where a gap 6 = 0.50 mm exists between the rod 
and plate, as shown in Fig. (6P.27). If the temperature of the entire system is increased 
by 60"C, determine (a) the axial stress in the copper and steel rods, (b) the deflection 
of the rigid plate. 

Figure 6P.27 
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6.28:* Given that all rods of the truss of Fig. (6P.18) have identical axial rigidities (i.e., 
AoEo = A1 E 1 =A€) and undergo the same increase in temperature A T .  (a) Determine 
the axial force in each member due to  this increase in temperature in terms of the 
geometry, and the coefficient of thermal expansion a. Show that the force in rod BD 
is a maximum when p = 64.4'. 

(Note: See computer-related Problem 6.44.) 

6.29:" The square frame shown in Fig. (613.29) consists of four aluminium rods that 
are pinned a t  the corners and braced by two diagonal steel wires. The ratio of the 
cross-sectional area of the aluminium rods to that of the steel wires is given as 20:l. 
Determine the axial stress in both the rods and wires if the entire frame is subjected 
to an increase in temperature of 40°C. 

Section 7 

6.30 A rigid plate BCDF is simply supported a t  B and by two wires whose cross- 
sectional areas are A=0.5cm2 at  C and D, as shown in Fig. (6P.30). The wires are 
assumed to behave as elastic-perfectly plastic materials with a yield stress of a0 and 
modulus of elasticity E. A load P i s  applied a t  point F. Determine, in terms of 00, A 
and h, (a) the force Py at which yielding first takes place, (b) the displacement of point 
F when P = Py, (c) the ultimate load Pult, (d) the displacement of point F as P reaches 
Puit and (e) plot P vs. AF and show the values a t  all critical points. 

6.31: A rod BCD of cross-sectional area A and made of an elastic-perfectly plastic 
material (with modulus E and yield point 00) is rigidly attached to  supports a t  B and 
D. Initially, the bar is free of all stresses. An axial force P is applied a t  C, as shown in 
Fig. (6P.31). (a) Determine the displacement SC of the cross-section a t  C as P increases 
from zero to  i t s  ultimate value, P,lt. (b) Plot the results P vs. Sc, and show all critical 
points on the graph. 

6.32:* Given three rods of equal length L and cross-sectional area A. The rods are 
fixed a t  A and D, are connected a t  B and C and are subjected to a slowly applied 
axial toad P,  as shown in Fig. (6P.32a). The rods are assumed to behave as elastic- 
perfectly plastic materials; the modulus of elasticity of rods AB and CD is given as 
€1 and that of BC is E2 = E 1/4, where the stress-strain curves of the two materi- 
als are shown in Fig. (6P.32b). (a) Determine (in terms of 00, A, L and E) the re- 
lation between the displacement SC of point C and P for values 0 p P .<: P,,,. 
(b) Plot P vs. SC showing all critical values on the graph. (c) If the road is loaded 
until Sc=6aoL/E,  what is the permanent displacement Sclperm after the loads are 
removed. 

Figure 6P.32 

Review and comprehensive problems 

6.33:* Given a plate (a x b) lying in the x-y plane, as shown in Fig. (6P.33), subjected 
to a distribution of body forces f = Cex/a (where C is a constant having units N/m3), 
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which act in the x-direction. The material properties of the plate are given as E and 
U, respectively. (a) Show, by means of a simple sketch, that due to  the symmetry of 
the applied loads, txy(x, 0) = 0. (b) If b << a, one may then assume, upon making use of 
this given geometry, that txy(x, y) = O  at all points of  the plate. Explain the reasoning. 
(c) Making use of the assumption of (b), show that the solution to  the stress equations 
of  equilibrium for plane stress yields a stress field ay=O and a,, as given in Problem 
6.5. (d) Determine the angle LABD after deformation where the distances between 
A, B and D are assumed t o  be infinitesimal. (e) Determine the displacements in the 
x- and y-directions of point B. 

Figure 61333 

6 .34  Making use of the principle of conservation of energy for a linear elastic body 
(see under Hooke's law in Chapter 41, solve part (a) of Problem 6.8. 

6.35: A wire AB of length L is pre-stressed to  a given tension TO and attached t o  rigid 
supports at the two ends. A weight Wis attached at some intermediate point, located 
at a distance a=aL (0 5 a! 5 I), from one end, as shown in Fig. (6P.35). Show that the 
tensile reactions RA and Re at A and B, respectively, are 

RA = W(ff - 1 + Y), Re = w(ol+ Y), 
where y = To/ W. 

(Note: See computer-related Problem 6.45.) 

6.36:* An elastic cylindrical rod of diameter D, modulus of elasticity E and length 
L is inserted in a bore having the same diameter. To lower the rod, an axial force P 
must be applied at the top, as shown in Fig. (6P.361, t o  counteract the frictional force 
f(y) along the lateral surface, which is found to  vary as f=ky2,  where k has units 
N/m4. (a) Assuming that plane cross-sections in the rod remain plane, determine the 
the axial stress a(y) at any cross-section. (b) Determine the change in length AL of the 
rod when the force P is applied. 

6.37:* A circular cylindrical rod of length L whose material density is p (N/m3), hangs 
from a rigid support, as shown in Fig. (6P.37). The radius of the rod varies parabolically 
as r(y) =r, + (fb - ra)(y/L)2, where f b  - r, << L such that the variation of the cross- 
sectional area is 'slow'. (a) Assuming that all cross-sections remain plane, determine 
the (average) axial stress ay at any cross-section y. (b) Show that the elongation AL of 
the rod is given by 

where ,B =rb/ ra - 1 and < = y/L. (c) What is an appropriate criterion for #I, that permits 
use of the above approximation? 

(Note: See computer-related Problem 6.46.) 
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6.38:* Ashock absorber consists of  a steel rod (with modulus of elasticity E,) of diam- 
eter d= 4 cm and length L = 30 cm, surrounded by a rubbery material which is  encased 
in a rigid cylindrical shell whose inner diameter i s  D= 50cm, as shown in Fig. (6P.38a). 
When subjected t o  an axial force P, the system deforms as shown in Fig. (6P.38b). The 
rubbery material is assumed t o  behave elastically with a shear modulus G =6 MPa. 
(a) Determine the displacement 6 of the bottom of the rod, in terms of d, D, G and P. 
(b) Evaluate (a) for the given numerical values of the parameters of the problem if 
P = 100 kN. (c)Assuming that all cross-sections of the rod remain plane, determine the 
shortening AL, of the rod, in terms of d, D, E,, L and P .  (d) Evaluate AL numerically. 

Figure 6P.37 

Figure 6P.38 

6.39 An elastic rod of length L and uniform cross-sectional area A, whose material 
behaviour is elastic-perfectly plastic with modulus of elasticity E, yield point 00 and 
coefficient of thermal expansion 01, is welded t o  two rigid supports while at a tem- 
perature TO after which it undergoes an increase in temperature AT. (a) What i s  the 
largest increase in temperature AT= ATE for which the rod remains elastic? (b) Deter- 
mine the residual stress if the rod is first subjected t o  a uniform temperature increase 
AT > ATE and then cooled down to  i t s  original temperature TO. Indicate if in tension 
or compression. (c) Evaluate the results numerically if the rod is  made of steel, with 
5 0  = 250 MPa and AT = 60°C. 

6.40 Composite materials are often made of thin carbon graphite fibres or high- 
strength glass fibres (each having a cross-sectional area Af and modulus of elasticity 
El ) ,  which are embedded in a 'soft matrix' (usually consisting of an epoxy) whose 
modulus of elasticity is E,. Ef i s  usually orders of magnitude greater than E,, i.e. 
Ef >> E,. A representative element, having an area A, of the cross-section of this ma- 
terial is shown in Fig. (6P.40). 

(a) Assuming that a perfect bond exists at the fibre/matrix interfaces, and that all 
cross-sections remain plane under axial loading and undergo a strain E ,  deter- 
mine the ratio of the axial stress in the fibre, cf, t o  that in the matrix, am. 

(b) If nfibres exist within the representative cross-sectional element, determine the 
axial resultant force P ,  which exists on the area Ain terms of q, am, Af, A, and n, 
where A, is the cross-sectional area of the matrix within the element. 
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Figure 6P.40 

(c) Defining the fibre volume fraction, vf, of the fibres as vf=nAr/A and that of 
the matrix as Vm = Am/A (where A, is the net area of the matrix) (note that vf + 
Vm = I), show that the "average" axial stress 5 on the cross-section, defined as 
o = 5 ,  in terms of of, om, vf and Vm, is given as B = vf of + Vm am. 

(d) Upon defining the effective modulus of elasticity for this material as E,H = z ,  
show that Eefi can be expressed as E,tf = vf Ef + Vm E m .  

(e) Typical material constants for carbon fibres embedded in an epoxy matrix are 
Ef = 300 GPa and E, = 2.4 GPa, respectively. (i) Using these values, evaluate E,ff 
for a composite material with a typical value vf = 0.2, (ii) determine the average 
stress B and the change of length of a rod if an axial force P =6000 kN acts in 
the direction of the fibres on a rod whose cross-sectional area is A=4 cm2 and 
whose length is L =4m and (iii) determine the stresses of and o, in the fibres 
and matrix, respectively. 

- 

6.41: Using the results of Problem 6.40, repeat part (e) of Problem 6.40 for a typi- 
cal glass/epoxy composite having the following properties: €f = 72 GPa, E m  = 2.4 GPa 
with vf = 0.45. 

The following problems are to  be solved using a computer 

6.42: Write a computer program to  evaluate the elongation of the slightly tapered 
rod of Problem 6.7, having length f ,  in terms of the non-dimensional quantity, viz. in 
terms of in the range 1 5 b/a 5 10 and plot the results. For what range of b/a 
are the results meaningful? 

6.43: Write a computer program (a) t o  evaluate the forces fAB/P and fAc/P of the 
structure of Problem 6.15 as a function of  a and (b) the displacements UA and VA in 
non-dimensional form (i.e., uAAoEo/Pf ,vAAofo/f f )  and plot the results for values 
0 5 a 5 180°C. 

6.44: Plot the forces FAD and FBD in rod AD and BD, respectively, of the truss of 
Problem 6.28 in non-dimensional terms (i.e., fAD/AE E A T ,  etc.) as a function of p, and 
determine numerically the maximum/minimum values of the defined ratios. 

6.45: (a) Using the results given for the pre-stressed wire of length L of Problem 
6.35, express the ratio p = Re/&, in terms of the position of the weight, a =a/L and 
y = To/ W. (b) For several discrete values of p (1 < ,!I < CO), plot a family of  curves for 
y as a function of a [this does not require a computer]. For what position of a does 
Re =2RA and RB = 3RA if y = 1.5 and y = 1, respectively. (c) Alternatively (for several 
discrete values of y, 1 .= y < 10) plot a family of curves for p as a function of a. 
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(d) What are, respectively, the required pre-tensions (as measured by y )  in order that 
/3 > 2 and /3 < 3 irrespective of the position of the weight, 01. (e) What conclusions may 
be drawn from the above curves. 

6.46 Using the results given for Problem 6.37, evaluate numerically the integral that 
yields the change in length (given in non-dimensinal form, &) of the parabolically 
tapered rod and plot as a function of p =rb/ra - 1, where r, and rb are shown in Fig. 
(6P.37). 



7.1 Introduction 

In this chapter, we study the behaviour of slender elastic rods, which are subjected 
to moments about their longitudinal axis. We limit our study to rods that have the 
shape of a circular cylinder with cross-sections as shown in Fig. (7.1.1). Due to 
these moments, it is evident that the rod will twist: the rod is then said to be in 
torsion and the applied moment is referred to as a torsional moment or torque. 
We shall use these two terms interchangeably. 

Figure 7.1.1 

Circular rods under this force system are, in practice, referred to as shafts, as 
they are often used to transfer energy from engines, for example, in automobiles, 
aircraft or other machinery. 

We shall be interested in determining the internal stresses and the rotation due to 
applied torques. We first study elastic behaviour and, at a later stage, will consider 
elastic-plastic behaviour of such rods. 

7.2 Basic relations for elastic members under pure torsion 

(a) Deformation analysis: conclusions 
based on axi-symmetry of the rod 
We consider a prismatic circular rod of radius R whose longitudinal axis lies along 
the x-axis, which passes through the centroids of the cross-sections, point 0. Ap- 
plied torsional moments M, zi T are assumed to act at the two ends, as shown in 
Fig, (7.1.1). Note that the same moment then exists at all cross-sections of the rod; 
that is, the resisting torque is not a function of x. The rod is therefore said to be in 
a state of ‘pure torsion’. 

In our study, we adopt the following sign convention for the torque T :  T > 0 
if it acts on a positive x-face of the rod in a counterclockwise direction. Note that 

190 
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this is equivalent to stating that T > 0 if its vector representation acts on a positive 
(negative) x-face in the positive (negative) x-direction according to the right-hand 
rule [Fig. (7.2,1)]. Correspondingly, a positive rotation of a section occurs in the 
counterclockwise direction when viewed from the positive x-axis. 

According to the discussion of Chapter 5,  and as seen in the previous analysis of 
axial loadings, we recall that to obtain the solution, we are required to satisfy three 
types of equations: (a) equations of equilibrium, (b) strain-displacement relations 
and (c) stress-strain relations (Hooke’s law) governing elastic behaviour. 

Figure 7.2.1 

Following the methodology discussed in Chapter 5 and used in the previous 
chapter, we start our analysis by considering the possible deformation pattern of 
the rod, based on plausible physical reasoning. 

For any given circular cylindrical rod, we observe that the rod is symmetric about 
the x-axis, which passes through the centres 0 of the cross-section; there are clearly 
no ‘preferred directions’ in the plane of the cross-sections. The system is therefore 
said to be axi-symmetric about the x-axis. It follows that the cross-sections will 
rotate about point 0 (i.e., about the x-axis of symmetry). We refer to point 0 as the 
centre of twist of the cross-section. 

We first investigate whether plane cross-sections remain plane or whether they 
warp under the applied torque. To do so, let us assume that the sections actually 
warp so that the rod appears as in Fig. (7.2.2). Since the rod is prismatic, i.e., all 
cross-sections are identical, and since the same moment M, = T acts throughout 
the rod, the warping must be identical at all cross-sections. In particular, we note 
from the assumed deformation shown in the figure that the right end ‘bulges out’. 
Furthermore, if the rod is observed from a point along the x-axis to the right of the 
rod, the applied moment appears to be acting in the counterclockwise direction. 
Let us imagine that we now observe the rod from a point on the x-axis to the left 
of the rod. From this vantage point, the torque T again appears to be acting in 
the counterclockwise direction. However, the left-hand cross-section appears to be 
‘bulging inward’. Now, since we have established that due to the symmetry of the 
member, all cross-sections deform identical&, it is not possible that if viewed from 
the right the cross-section bulges out and if viewed from the left it bulges inward 
under the same torque.+ We therefore conclude that no bulging can occur; that is, 
all cross-sections must remain plane and do not warp. Moreover, due to the axi- 
symmetry of the cross-section, all planes cross-sections remain perpendicular to 
the longitudinal x-axis. 

Figure 7.2.2 

Let us now investigate the deformation within the cross-section. Due to axi- 
symmetry, it is evident that in twisting, all points at the outer edge of a given 
t Note that, as viewed from either end. the torques are seen to act in the same sense; in this case, as 

counterclockwise. This IS essential to the arguments of symmetry. 
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cross-section will rotate through the same angle. We now examine the deformation 
of radial lines emanating from point 0. Let us assume that if viewed from the right, 
straight radial lines as in Fig. (7.2.3) deform as shown in Fig. (7.2.4a). However 
if viewed from the left, the deformed lines appear as in Fig. (7.2.4b). Now, we 
observe that the torque T is acting in the same sense (here, counterclockwise) in 
both Figs. (7.2.4a and b). Since all sections deform identically, the two patterns 
must show an identical appearance if viewed from either the right or left ends. 
Therefore, noting that an identical appearance can exist only if the radial lines 
remain straight, we conclude that all (straight) radial lines must remain straight 
lines after deformation (twisting). 

Figure 7.2.3 

Figure 7.2.4 

Thus, based on simple arguments of symmetry, it is possible to conclude that 
(a) cross-sections rotate with respect to the centre of twist lying along the x-axis, 
(b) cross-sections remain plane, (c) all plane cross-sections remain perpendicular 
to the longitudinal x-axis and (d) radial lines remain straight. We emphasise that 
these are not assumptions. Finally, we should mention that these conclusions are 
valid only for a circular cross-section, since perfect axi-symmetry can exists only 
for such sections. 

Having established the basic deformation pattern, let us now consider the resulting 
strains in the rod. Before determining these strains, we fist remark that since we 
are examining a circular member, it is clearly more natural to use a polar coordinate 
system (r, 6, x), as shown in Fig. (7.2.5), rather than a Cartesian system. We refer to 
the r-coordinate as the radial coordinate and the 6-coordinate as the circumferential 
coordinate. 

Figure 7.2.5 

As a result of conclusions (b) and (c) above, namely that all cross-sections remain 
plane and perpendicular to the longitudinal x-axis, we conclude that line segments 
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in the x- and r-directions remain orthogonal and therefore, since there is no change 
in angle, E,, = 0. From conclusion (d) above, all radial lines remain orthogonal 
to the circumferential direction and hence E,.@ = 0. Therefore, by Hooke’s law, 
txr = ~GE,,  = 0 and z,.e = 2Gcr0 = 0. Thus, the only non-zero shear stress in the 
rod is t x e  = TO,. 

(b) Basic relations 
Due to the applied torque, the cylinder will twist and any line originally parallel to the 
x-axis (a ‘generator’ of the cylinder) will assume the shape of a helix [Fig. (7.2.6)]. 
Since we are interested in determining the strain at any point within the circle, let us 
consider an imaginary circle within the rod of arbitrary radius r and let P be some 
point on the circle through which a generator of the imaginary cylinder is drawn, 
passing through all the cross-sections, as shown in Fig. (7.2.7a). 

Figure 7.2.6 

Figure 7.2.7 

For convenience we consider the left end, x = 0, to be fixed against rotation, and 
let Cp(x) denote the rotation at any section x. Since Cp is not constant, we examine 
an element Ax within the rod, as shown in Fig. (7.2.7b), and let ACp represent 
the relative rotation of the two cross-sections, Ax apart. We denote two points of a 
typical generator, as P and Q, at the two ends ofthe element. Since we are considering 
the relative rotation, we examine the geometry assuming the section at P is fixed. 
Due to the rotation A@, point Q will thenrotate to Q*, as in Fig. (7.2.7b), and the line 
segment PQ --+ PQ*. Thus we note that the line PQ* is no longer parallel to the x-axis 
and, in particular, after deformation PQ is no longer perpendicular to the segment 
PM lying in the circumferential direction 6. The change of angle differs by y , where 
y E LQPQ*. We recall from its definition, that the change in angle between two 
line segments, which were originally orthogonal, is represented by the shear strain. 
Since PQ and PM were originally in the x- and f3-direct@, we therefore denote this 
angle by .yxe.+ From the geometry of Fig. (7.2.7b), QQ* = r + A$. Furthermore, 
from this figure, may write Q- 21 y . Ax. Hence we have 

.yxe . Ax 2: r . A+. (7.2.1) 

Dividing through by Ax and taking the limit, 

(7.2.2a) 

t Here we have referred loosely to y E yxe as the shear strain. 
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Thus, based on the displacement pattern, we find that the shear strain yx@ is propor- 
tional to the radial distance from the centre oftwist. Note that Eq. (7.2.2a) expresses 
a strain-displacement relation. Recalling that we defined the shear strain as y/2, 
we have 

(7.2.2b) 

which, we observe, is a purely geometric relation and is independent of the material 
behaviour of the rod. 

Since we are studying the behaviour of an elastic member, we now apply Hooke's 
law, namely Eq. (4.4. IO), 

7 x 0  = 2Gex0, (7.2.3) 

and therefore 

(7.2.4) 

Thus, the shear stress is proportional to the radial distance from the centre of 
twist 0 and acts in a circumferential direction, as shown in Fig. (7.2.8). The shear 
deformation of typical elements is shown for a portion of the imaginary cylinder in 
Fig. (7.2.9). 

From equilibrium, the internal resisting moment M, at any cross-section must 
be equal to the applied torque T ,  i.e., Mx = T .  Moreover, the resisting torque at the 
cross-sections is, in effect, the stress resultant of the shear stresses (as defined in 
Chapter 2). Now, from Fig. (7.2.8), the incremental moment about the x-axis due 
to the shear stresses 7 x 0  acting on an element dA at a distance r from the x-axis is 
[see also Eq. (2.5.12c)l 

AT = r . 7x0  dA. (7.2.5a) 

Substituting Eq. (7.2.4), 

d4 AT = Gr2-  dA. dx 
(7.2.5b) 

Therefore, the total moment T acting on the cross-section of area A is given by 

and since d@/dx is independent of dA, 

(7.2.6a) 

(7.2.6b) 
A 

We denote the integral by J ,  i.e., J = JJA r2 dA, which we recognise as the polar 
moment of the area about the x-axis.+ Thus, 

(7.2.7) 

t This is also referred to loosely as thepolar moment of inertia (see Appendix A.l). 
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Now, 2 represents the rate of change of the angle of twist. Since we are considering 
the case ofpure torsion, i.e. T + T(x), it follows that forthis case: 2 is also constant 
through the rod. We denote this constant by O and therefore m t e  

d4 - = 0. 
dx  

(7.2.8) 

From its definition, we observe that O represents the ‘unit angle of twist’; that is, 
0 represents the relative rotation of two cross-sections a unit distance apart. Note 
that 0 has units of ‘radians per length’ (e.g., radm). 

Thus, from Eq. (7.2.7), the unit angle of twist is given by the simple expression 
T 
1 a=:- (7.2.9) 

G J ’  
Substituting Eqs. (7.2.8) in Eq. (7.2.4), 

d4 zxe = Gr - = GrO,  
dx  

and therefore, by Eq. (7.2.9), the shear stress is finally given by 
Tr 

zxe = - 
J ‘  

(7.2.10) 

(7.2.1 1) 

This last expression relates the shear stress to the torque existing at the section. 
It is of interest to note that if T is known, the shear stress zxe is independent ofthe 
material properties; that is, the stress is the same for a rod of any given material. 
For convenience, in our subsequent development, we shall denote the shear stress 
due to torsion by t; i.e., we let t E zxe. 

From Eq. (7.2.1 l), we observe that the maximum stress occurs at the outer edge 
r = R ,  i.e. 

T R  
z,, = - 

J ‘  
(7.2.12) 

The shear stress distribution of z = zxe(r) is shown in Fig. (7.2.10). We note that 
the shear components act in the circumferential direction at all points within the 
cross-section. From Eq. (7.2.12), we note too that a rod of material having a yield 
point zo in shear, will behave elastically provided the torque T does not exceed the 
elastic torque TE given by‘ 

t o  J TE = - 
R ’  (7.2.13) 

At this stage we calculate the polar moment of the area, J ,  for a solid rod. Noting 
that an incremental area dA is given by dA = r dQ dr [Fig. (7.2.1 la)], we have 

2n 

t We assume here effectively that TO = TE ,i.e.. that the proportional limit, the elastic limit and the yield 
point in shear TO coincide; namely, the material is an ideal elastic-plastic material (see Chapter 4, 
Section 6).  



196 Torsion of circular cylindrical rods: Coulomb torsion 

Substituting this value in Eq. (7.2.12), we find that the maximum shear stress in 
a rod is given by 

(7.2.15) 

that is, the maximum shear stress occurring in a solid rod is inversely proportional 
to R3.  

Using Eq. (7.2.7), we may now determine the relative rotation of any two cross- 
sections, say x = x0 and x = x1 (xo c XI), by simple integration: 

Therefore 

or 

Cp1-40=- j !  T (x )  dx.  
GJ 

For pure torsion, T = constant, 

(7.2.16) 

(7.2.17) 

(7.2.18) 

Note here that the notation Cpllo represents the rotation of the sectionxl with respect 
to section XO. Using this notation, it is clear that 

4011 = -4110 = 4 4 1  - 4 0 ) .  (7.2.19) 

If $0 = 0 and x1 = L ,  

T L  
$J(L) = GJ’ (7.2.20) 

which is the rotation of a cross-section at x = L when the end x = 0 is held fixed 
under a state of pure torsion. 

We note, by comparing Eqs. (7.2.9) and (7.2.20), that the angle of twist Cp for the 
case of pure torsion is 

cp=O.L.  (7.2.2 1) 

We observe that the unit angle of twist 0 is proportional to the torque T and 
inversely proportional to G J .  We therefore refer to the quantity G J  as the torsional 
stz$4ess or torsional rigidity of the circular rod. Note that the torsional rigidity 
depends on a material property (here, the shear modulus 6‘) and the geometry of 
the cross-section. 
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Now, the above development was not necessarily limited to solid rods. Indeed, 
the only restriction placed on the development is that the rods be circular. Thus, all 
the relations remain valid for a hollow rod having inner and outer radii R, and R,, 
respectively, as shown in Fig. (7.2.1 lb). However, instead of the polar moment of 
the cross-sectional area for the solid rod, given by Eq. (7.2.14), we now have 

2n 
J = ( / r 3 d r )  d6 = ,(R: 1 - R f )  / dB = n ,(R: - Rf). (7.2.22) 

0 

The above development, first derived by Coulomb in 1784, is known as the 
Coulomb torsion solution for circular cylinders. 

Example 7.1: (a) What is the maximum torque TE that can be applied to a 
solid steel cylindrical shaft 8 cm in diameter [Fig. (7.2.12)l if the shaft is to 
remain elastic? The elastic limit in shear and the shear modulus are zo = 
145 MPa and G = 76 GPa, respectively. (b) Determine the relative rotation of 
the two ends due to  this torque if L = 2.0 m. 

Solution: 

(a) From Eq. (7.2.13), the maximum elastic torque TE is TE = y. 

Figure 7.2.12 

For R = 4 cm, J = n R 4 / 2  =I: 128n cm4, and therefore TE = (145 x 102)(128n)/ 
4 = 14.58 x 105 N-cm = 14,580 N-m. 

(b) From Eq. (7.2.9), 
14,580 

(76 x 109)(128n x 10-*) 
= 0.048 rad/m = 2.7"Im. TE 

GJ 
@ = - =  

Therefore, the relative rotation is Cp = OL = 5.4". 0 

We observe that for usual materials encountered in engineering practice, the unit angle 
of twist 0 is indeed very small. 

7.3 Some comments on the derived expressions: extension of the 
results and approximations 

(a) Comments on the solution 
(i) The expressions derived in the preceding section, namelyt 

Tr 
J '  

r = -  

1 
@ = - -  

G J '  

(7.3.1 a) 

(7.3.lb) 

t In the rest of this chapter, the shear stress t, when written without subscripts, denotes t x g ;  i.e., 5 = t x o .  
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are valid only for prismatic circular cylinders under pure torsion. Since the 
shear stress t = t,o acts in the circumferential direction at all points within 
the cross-section, in particular, at the outer edge, r = R,  the shear stresses act 
tangentially to the circle defining the cylinder. 

We recall from the previous section that as a result of the deformation pattern 
resulting from the axi-symmetry of the problem, we determined that the stress 
component in the radial direction is txr = 0 at all points, r 5 R,  within the 
rod. We might also have reached this conclusion by consideration of the stress 
state existing at the boundary r = R of the rod. Let us therefore consider the 
case assuming that non-zero components t,, are acting on the cross-section at 
the outer edge, r = R. Since shear stress components always exist in conju- 
gate pairs, stress components zr, = zxr would then exist on the outer lateral 
cylindrical surface of the rod, as shown in Fig. (7.3.la). However, the r = R 
lateral surface - i.e., the ‘r-face’ -is a free surface, and consequently no stress 
component can exist on it; i.e., tr+ = 0 [Fig. (7.3.lb)l. Therefore, it necessar- 
ily follows that txr = 0 in the cross-section at r = R. We therefore conclude 
that at allpoints of an edge corresponding to afree lateral suface, the resul- 
tant shear stress in the cross-section must always act tangentially to the edge 
[Fig. (7.3.lc)l.t Moreover, because of axial symmetry of the rod, t,, = 0 at 
the point 0. Recalling that the above treatment pertains to relatively slender 
rods (i.e., rods whose diameters are small compared to their length), and since 
7,. = 0 at the ends of the diameter as well as at the centre, we expect that any 
variation of z,, over a relatively small diameter would necessarily be small, 
that is infinitesimal. Hence, we assert that txr = 0 everywhere throughout the 
rod. Moreover, since the lateral surface r = R is a free surface, trr = 0 must 
also be true. Following the same above reasoning for trx given for slender rods, 
we conclude that trr = 0 everywhere throughout the rod.* While it appears, 
from the above argument, that this latter assertion is merely an assumption, we 
mention here that this assertion is indeed correct and conforms with an exact 
solution found according to the Theory of Elasticity. Moreover, according to 
this exact solution, all normal stresses vanish on the coordinate surfaces, that 
is trr = tee = txx = 0 throughout the rod.! 

Figure 73.1 

t This statement is not limited to rods subjected to torsion but is a general statement valid for all bodies 
at points existing at a free surface. 

1: Note that a similar argument (leading to the conclusion that u ~ ,  = U, = 0 throughout the rod) was used 
in Section 2 of Chapter 6 for slender rods under axial loadings. 

8 These conclusions will be shown to be true in Chapter 12. 
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(ii) We observe that when stating that ‘the rod is subjected to a torque T at a 
particular section’, we have not specified in what manner this torque is applied. 
For example, it might be applied by means of a gear acting on the outer lateral 
surface. On the other hand, it might be applied at the longitudinal axis by means 
of a wrench, as in Fig. (7.3.2). Irrespective of the manner by which the torque 
is applied, it is clear that a complex state of stress (in equilibrium with the 
given applied torque) will exist near the section of application. Such a complex 
stress state cannot be described by the expressions (7.3.1) above. However, as 
mentioned in Chapter 5 ,  provided this stress distribution has a resultant equal 
to T ,  these expressions will be valid, according to the principle of de Saint 
Venant, at points sufficiently distant from the point of the applied torque. For 
example, for the shaft shown in Fig. (7.3.3), the calculated stresses t x 6  are 
only valid at a distance s > d ,  from section B. Thus, by invoking the principle 
of de Saint Venant, we assert that, for a sujiciently long shaji, L >> d, the 
Coulomb solution describes the behaviour of the shaft except in these localised 
regions. In practice, we therefore essentially neglect these localised effects 
and assume that the behaviour of the entire rod is described by the Coulomb 
solution. 

Figure 13.2 

The same reasoning applies if a torque is applied at a particular interior 
section, for example, at x = xc (i.e., at section C) of Fig. (7.3.3); we then 
disregard effects in the localised region xc - d < x < xc + d. 

Figure 7.3.3 

The above comments are equally valid for a rod whose cross-section changes 
abruptly, such as section D of Fig. (7.3.3), where again, a more complex stress 
distribution exists. Therefore, in treating such problems, we again implicitly 
neglect such localised effects. 

Having found that the shear stress varies linearly from the centre of twist 
for circular cross-sections, one might expect the same to be true for non- 
circular cross-sections - for example, for a rectangular cross-section, as shown 
in Fig. (7.3.4), whose centre of twist coincides with its centroid. However, we 
have found that the shear stress must always act tangentially at all points lo- 
cated at the edge of a cross-section. It follows that for this cross-section, the 
shear stresses txy and txz at a corner (e.g., point B) must necessarily be zero, for 
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otheswise non-zero stress zyx and tzx would be acting on the lateral surfaces. 
Now, if the shear stresses are proportional to the distance from the centre of 
twist of this section, they clearly will not be zero at the corners since the cor- 
ners are the farthest points from the centre, point 0. Thus we conclude that for 
this rectangular section, shear stresses do not vary linearly with the distance 
from the centre of twist. Indeed, this will be shown to be true for any non- 
circukar cross-section. Solutions for the torsion of non-circular cross-sections 
are far more complex than the Coulomb solution; these will be treated later in 
Chapter 12. 

Figure 7.3.4 

(b) An approximation for thin- wall circular tubular cross-sections 
We derive here an approximate relation for the average shear stress existing in a 
thin-wall tubular circular cross-section. Consider a closed thin-wall section having 
inner and outer radii R, and R,, respectively. By a 'thin wall', we mean a section 
whose thickness t is small with respect to the mean radius E of the tube, i.e., 
t / R  << 1, where 

We first observe that for a thin-wall section, the shear stress, as given by 
Eq. (7.3.la), cannot vary greatly across the thickness of the wall in the small 
interval R, 5 r 5 R,. According to Eq. (7.2.22), the polar moment of the cross- 
sectional area for this cross-section is 

2 

= (R,  + R,)/2 [Fig. (7.3.5a)l. 

(7.3.2) 7t 
J = - (R," - Rf); 

the shear stress is therefore given by 

Figure 7.3.5 

2Tr - _. 
2Tr 

t =  
Z(R0" - R4) z(R0' - R 2 ) .  (R0' + R?)' 

We first note that 

(R i  - Rf )  = (R,  + R,)(R, - RI) =Z 2X * t 

and 

( R i  + R2) = [ E  + t / 2 f  + [E- - t / 2 f  = 2 X 2  + t2/2 

= 2 E 2 [ 1  + ( t /2E)7 2: 2 x 2  

(7.3.3) 
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since t / E  << 1. It follows that t = Tr/2nE3t .  The average stress t at r = 
then given by 

is 

T 
t=- 

2nE 2t 
or 

T 
2At 

t=-, 

(7.3.4a) 

(7.3.4b) 

where A = nE represents the area within the circle of radiusE. 
This expression is thus an approximation for the average shear stress acting in 

the circumferential direction within the thin wall, as shown in Fig. (7.3.5b). Since 
we have observed that the shear stress has a small variation throughout the wall 
thickness, this simple expression proves to be an excellent approximation, provided 

In Chapter 12, it will be shown that Eq. (7.3.413) yields the average shear stress 
t / E  << 1. 

in a closed thin-wall tubular section having any arbitrary geometry. 

(c) Extension of the results: engineering approximations 
(i) Torsion of non-prismatic rods 
We recall that the expressions developed in the preceding section are based on 
the conclusions that all plane sections remain plane and all radial lines remain 
straight lines. These fundamental conclusions were established using arguments of 
symmetry, which are valid only for rods whose cross-sections do not vary with the 
longitudinal coordinate x, that is for prismatic circular rods. 

Let us now consider a circular rod with a varying radius R = R(x),  as shown 
in Fig. (7.3.6). Clearly, since the cross-sections are not identical for such a non- 
prismatic rod, the arguments of symmetry of the previous section cannot be used 
and therefore the conclusions are no longer valid; that is, for non-prismatic rods, 
we can no longer deduce that plane cross-sections remain plane, nor can we as- 
sert that radial lines remain straight. However, the deviation from the behaviour 
of the prismatic rod evidently depends on how sharply the radius R ( x )  varies 
with x.  If this variation is relatively small, then the deviation from our conclu- 
sions will be relatively small. Hence, for rods whose cross-sections vary slowly 
with x, it is reasonable to expect that the above expressions will yield a good 
approximation to the true solution. Thus instead of Eqs. (7.2.9) and (7.2.11), 
we write 

TY 

m 
1 

O(x) = - 
G J(x)  ’ 

(7.3.5a) 

(7.3.5b) 

again with the clear understanding that these are but approximations. 

Figure 7.3.6 
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(ii) Rods subjected to a general torsion, T = T(x) 
The above analysis has been concerned with a circular rod in pure torsion. Now 
let us assume that the rod is subjected to torsional moments, not only at the ends 
but continuously along its axis; i.e., there exists a distribution of torques, say t(x) 
(having units N-dm), which is a function of x ,  as shown in Fig. (7.3.7), such that 
the torque at any section is T = T(x) .  Then, again, the arguments of symmetry, 
which were used to establish the basic displacement pattern, no longer hold true: 
since one can no longer state that all cross-sections deform identically, one cannot 
assert that plane sections remain plane and that all radial lines remain straight 
lines. Consequently, the results given by Eqs. (7.2.9)-(7.2.21) are no longer exact. 
However, if we now assume that any warping of the sections is small and that straight 
lines do not deviate much from straight lines in the deformed state, then, starting 
from this basic premise, we arrive at the same expressions, except that T now is a 
function of x.  It then follows that, in lieu of Eqs. (7.2.9) and (7.2.1 I), we have the 
approximate expressions 

Figure 7.3.7 

(7.3.6a) 

(7.3.6b) 

Example 7.2 An aluminium shaft (with yield strength in shear, to = 55 MPa, 
and shear modulus G = 26 GPa) is composed of two segments AB and BC, as 
shown in Fig. (7.3.8a). Externally applied torques, Tl = 8,000 N-m and T2 = 
5,000 N-m are applied a t  B and C, respectively. Determine the maximum shear 
stress in each section and the total angle of twist a t  C if the shaft i s  held fixed 
a t  A. 

Solution: From the free-body diagrams [Fig. (7.3.8b)], we find that TAB= 
13,000 N-m in sector AB and TBC = 5000 N-m in sector BC. The torque T(x) is 
plotted as a function of x in Fig. (7.3.8~). 

From Eq. (7.2.14), with R = 6 cm, JAB = n R4/2 = 648n cm4. Similarly, in sector 
BC, JBC = 128n cm4. 

In sector AB: t x e  = = (13 x 105). & = 3830 N/cm2 = 38.3 MPa. Using 
Eq. (7.2.19, 

2.0 
(26 x 109)(648n - 10-*) @B - dA = ~ - = 4.91 x 10-2rad. TABLAs - (13 x 103). 

G JAB 
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Figure 7.3.8 

In sector BC: z,~ = = (50 x 104) . = 4970 N/cm2 =I 49.7 MPa. 

1 .o 
(26 x 109)(128n . 10-') 

Cpc - $q3 =L - T ~ ~ L ~ ~  - - (5  103). = 4.78 x 10-*rad. 
G JBC 

Noting that C ~ A  = 0, the total angle of twist Cpc is therefore 

Cpc = ( C ~ B  - @A) + (Cpc - &) = (4.91 + 4.78) x 10-* = 0.0969 rad = 5.55". 

Note that we have implicitly neglected the localised effects at sections A, B, and C .  
cl 

Example 7.3: A series of rotating gears acts along the surface of a circular 
shaft of radius R and length L ,  producing a torque t(N-mlm) per unit length 
along the shaft, as shown in Fig. (7.3.9a). Determine the maximum shear 
stress in the shaft and the angle of twist Cp at x = 0. Express the answer in 
terms of t, RI J ,  L and G. 

Figure 7.3.9 

Solution: Using a free-body diagram [Fig. (7.3.9b)], we note that the torque T ( x )  
at any section x is given by T ( x )  = -t . x. The linear variation of T ( x )  is shown in 
Fig. (7.3.9~). The maximum torque therefore occurs at the right end and is given by 
T = -tL.  
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Figure 7.4.1 

From Eqs. (7.3.6), 

T R  t L R  
J J 

I I---=:-, rmax - 

-tx 
G J  

@(x) = -. 

(7.3.7a) 

(7.3.7b) 

Since, here, the torque T = T(x) ,  we can no longer use Eq. (7.2.18) or (7.2.20) to 
determine the rotation, but must instead use Eq. (7.2.17); thus 

Since CP, = 0, we find that the section at x = 0 rotates through an angle 

tL2  
(PA - 2 G J '  

Note that (PA > 0 indicates a counterclockwise rotation. 

(7.3.8a) 

(7.3.8b) 

0 

7.4 Some practical engineering design applications of the theory 

The results obtained in the previous section find particular use in the application 
to several engineering design problems. We consider two such applications in the 
examples below. 

Example 7.4 It is required to design a shaft such that when subjected to  a 
torque, the maximum shear stress and unit angle of twist 0 should be kept to 
a minimum. Because of space limitations, the maximum permitted diameter 
is 5 cm. Two members are available: a solid shaft having a radius R = 1.5 cm 
and a hollow tubular section with inner radius Ri = 2.0 cm and outer radius 
R, =2.5 cm [Fig. (7.4.1)]. Determine the ratio of maximum shear stress of 
the solid to hollow section, z, and the ratio @,/@h, where OS and @h 

denote the unit angle of twist for the solid and hollow shafts, respectively. 

Solution: We note first that the cross-sectional areas of the two shafts are the same; 
namely A ,  = n R 2  = 2.2% and A h  = n(R2 - R:) = n(6.25 - 4) = 2 . 2 5 ~ .  

For the solid shaft, 

T 
@ -- 

- GJ,' 

while for the hollow shaft, 

(7.4.la) 

(7.4. lb) 

(7.4. lc) 

(7.4.Id) 
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If the two shafts are subjected to the same torque, then 

@ s  Jh 

@h Js 
_- ._  - .  

(7.4.2a) 

(7.4.2b) 

For the given values, 

= 4.51. jh n(R: - R“/2 R4 - R4 (2.514 -24 
JS ~4 j 2  R4 1 .54 
-0- - - --  _. 

Therefore 
OS - = 4.51. rmax, 1.5 

zrnax, 2.5 o h  
--- - x 4.51 = 2.72, 

We therefore conclude that for two members having the same cross-sectional area, 
the hollow one is much more efficient than the solid one. The solid member is less 
efficient because stresses in the section close to the centre of rotation contribute little 
to the resisting torque as the ‘lever arm’ (with respect to the x-axis) at these points 
is relatively small. In the case of the hollow shaft, all points in the cross-section have 
relatively large lever arms, Thus, in the hollow cylinder, the stresses provide a greater 
contribution to the resisting torque. (Although, as we have observed, a hollow shaft 
is indeed more efficient than a solid one, we mention here that other design criteria, 
such as stability of the shaft, may nevertheless often require that a solid shaft be used 
in the design.) 

Example 7.5: Two steel shafts are to be connected by means of eight bolts 
acting through the flanges of the shafts, as shown in Figs. (7.4.2a and b). 
The bolts are evenly spaced and are located along a circle whose diame- 
ter is &=20 cm. If the average permissible shear stress in the bolts is t = 
40 MPa, determine the minimum required diameter dof each bolt if a torque 
T = 5600 Nm must be transferred between the shafts. 

Figure 7.4.2 

Solution: Since the Eunction of the bolts is to transfer the torque, they must each 
exert a force, in the circumferential direction, F b  = 2T/n4,  [Fig. (7.4.3)]. Clearly 
this force is transmitted via shear stresses, Zb, in the bolts. Assuming that the average 
shear stress in the bolt is evenly distributed throughout its cross-section, we write 
t b  = F b  j A b ,  where A b  is the cross-sectional area of each bolt. Therefore we have 

(7’4.3) Figure 7.4.3 
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and hence 

= l.75cm2. 
2 . (5600 x 102) 

A b  = 
8 * (20) (40 x 102) 

The required diameter is therefore d = 2- = 1.49 cm. In practice one would 
use bolts with a diameter d = 1.5 cm. 

It is worthwhile to remark on the use of the term ‘average permissible shear stress 
in the bolt’. From previous observations, we recall that shear stresses at the edge 
of a cross-section, which represents a free lateral surface, must necessarily be zero. 
Therefore, in using the above relation t b  = FblAb, we obtained but a rough average 
value; it clearly does not represent the true shear stress distribution found in the cross- 
section. Such an expression is a typical example of crude approximations, which are 

0 

Circular shafts evidently are widely used in transmitting power in machinery. For 
example, in an automobile, power of the engine is transferred to the wheel axes by 
means of a circular shaft. Similarly, shafts are used to transfer power in electric motors. 
We consider a practical application of the theory to such a problem. 

often used for engineering design purposes. 

Example 7.6: The solid steel shaft of Example 7.1 ( D - 8  cm, to= 145 MPa) is 
t o  be used as a transmission shaft t o  transmit power from an electric motor. 
Determine the maximum power that the shaft can deliver and remain elastic 
if it rotates with NI=: 1200 rpm (revolutions per minute). Express the answer 
in Watts. [Note: Watt = 1 N-m/s.] 

Solutioa: In Example 7.1, the maximum elastic torque TE was found to be T, = 
14,580 Nm. 

Recalling that power represents work per unit time, we first calculate the work 
done by the torque TE. Now, since the work of a torque (torsional moment) is given 
by W = T a ,  where a is the angle through which the torque rotates, the work done 
in one revolution is W = 2n T .  If the shaft rotates, for example, at N revolutions per 
minute, the power P (work per minute) of the torque is then 

P = 2nNT ( N  = rpm). (7.4.4a) 

Alternatively, power can also be expressed as work per second in terms of Hertz 
(Hz = frequency per second) according to the relation 

P = 2n.f T (f = Hz). (7.4.4b) 

Substituting T = TE in this last expression (with f = 1200160 = 20 Hz), 

P = 2n f  T, = 2n(20)(14,580) = 1832 x 103 N-m/s= 1832 kW. 

Thus we find that the given shaft can transmit up to 1832 kW and still remain elastic. 
0 

7.5 Circular members under combined loads 

Consider a solid shaft of radius R (with polar moment of area, s) subjected to a 
torque T as well as an axial load P acting along the centroidal x-axis, as shown in 
Fig. (7.5.1). From Eq. (6.2.7), the axial stress is C T ~  = 5, while from Eq. (7.2.12), 
the maximum shear stress is t n e  = y. 

From the previous results, we have determined that for elastic behaviour, the 
strains and rotations are indeed quite small. Consequently, since the relations are also 
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Figure 7.5.1 

linear, according to the discussion of Chapter 5, use of the principle of superposition 
is permissible. 

We now examine an infinitesimal element near the outer edge of the rod, as shown 
in Fig. (7.5.2a), with the stresses a, and zxe acting upon this element. If the element 
is sufficiently small, its curvature can be neglected and therefore the state of stress 
may be considered to be two-dimensional, as in Fig. (7.5.2b). Consequently, the 
stress components acting in any given direction can be calculated using the stress 
transformations laws, Eqs. (2.6.6) and (2.6.8) of Chapter 2 [where the coordinate 0 
corresponds to -y of Fig. (2.6.1)]. 

Figure 7.5.2 

In particular, if P = 0, the element is in a state of 'pure shear', as shown in 
Fig. (7.5.3a). Therefore, according to the results of Chapter 2 (see Example 2.1 l), 
the principal planes will, for this case, be oriented at 45" to the x-axis with principal 
stresses a1 = t and 02 = -t, as shown in Fig. (7.5.3b). Recalling that brittle materi- 
als are weakest in resisting tensile stresses, we expect a rod made of brittle material 
to fracture along such 45" lines. Indeed, from simple experiments, we find that 
brittle rods subjected to torsion fracture along a 'helicoidal' surface [Fig. (7.5.411. 

Figure 7.5.3 

Figure 7.5.4 

7.6 Statically indeterminate systems under torsion 

Consider a rod fixed at two ends A and C against rotation and subjected to a torque 
T at B, as shown in Fig. (7.6. la). We wish to determine (a) the stress in sector AB 
and BC and (b) the angle of rotation &. 
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Figure 7.6.1 

Let TA and TC denote the resisting moments at A and C, respectively [Fig. 
(7.6.lb)l. Note that we have assumed the two resisting torques TA and TC to be 
acting in the clockwise directions, as seen from the right. [An equivalent vector 
representation of the torques is shown in Fig. (7.6.lc)l. Then, for equilibrium 
C M, = 0, we write, according to the free-body diagram of Fig. (7.6.lb or c), 

TA 4- Tc = T.  (7.6.1) 

Considering portions of sectors AB and BC as free bodies [Fig. (7.6.2a)], we note 
that within AB, T = TA and within BC, T = Tc. The variation of T with x is shown 
in Fig. (7.6.2b). Note that we have used the adopted sign convention for torsional 
moments, 

Figure 7.6.2 

Since there exist two unknowns, TA and Tc, and only a single equation of equi- 
librium, the system is statically indeterminate. Consequently, we require a second 
equation to solve for the two unknowns. 

Let us therefore consider the geometry of the deformation. Clearly, the rotation 
of section B with respect to A must be the same as that with respect to C; that is, 

~ B I A  =: &ticr (7.6.2) 
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where 4$1~ and +Blc denote respectively the rotation of section B relative to A 
and C.t 

We observe that this is essentially an equation of geometric compatibility as 
discussed in the previous chapter. 

Using Eq. (7.2.18) with these values, we may write 

Substituting in Eq. (7.6.2), 

(7.6.3a) 

(7.6.3b) 

(7.6.4) 

which is the equation of geometric compatibility written explicitly in terms of the 
torques. 

Thus we now have two simultaneous equations [Eqs. (7.6.1) and (7.6.4)], in the 
two unknowns. From Eq. (7.6.4), we find 

and substituting in Eq. (7.6.1), 
T 

Then, since TC = T - TA, 
T 

Tc =T: '+2$ 

(7.6.5a) 

(7.6.5b) 

(7.6.5~) 

Finally, the maximum shear stresses in each sector are, according to Eq. (7.2.12), 

TAB RA 
JAB 

TAB = -, (7.6.6a) 

(7.6.6b) TicRC 
TBC = -, 

JBC 

where TAB = TA and TBC = -Tc . 
Substituting in either of Eqs. (7.6.3), the rotation of section B is given by 

(7.6.7) 

It is instructive to consider the particular case where the two sectors AB and BC 
have the same length; i.e., a = c. Using Eq. (7.6.5a) for this case, 

TA JAB 

Tc JBC' 
-- -- (7.6.8) 

t From Eq. (7.6.2), - &~IC = 0. However from @. (7.2.19), ~ B I C  = -&IB and therefore (PCIB + 
&jp = 0; that is, $CIA = 0. Thus, Eq. (7.6.2) is equivalent to stating that the two support sections A 
and C do not rotate with respect to each other. 
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Now, recalling that the quantities GJAs and GJBc represent the torsional stiffness 
of the two components AB and BC, we observe that the torque resisted by each 
component is proportional to its stiffness. Thus we find confirmation of the general 
remark given in Section 5 of Chapter 6,  namely ‘in a statically indeterminate system 
consisting of several components, each component tends to resist applied loads in 
proportion to its relative stiffness’. 

7.7 Elastic-plastic torsion 

In the preceding sections we have considered only torsion of cylindrical rods, which 
behave elastically where the shear stress and the unit angle o f  twist 0 are, respec- 
tively, 

Tr T 
z = J f  @ = -  G J ‘  

(7.7.1) 

We now wish to study the problem as the rod enters the plastic range. It is clear that 
the T-0 relation given above is valid only for elastic behaviour; we determine here 
the corresponding relation when the rod behaves plastically. 

To this end, we consider a rod of radius R subjected to pure torsion, whose 
material behaviour is elastic-perfectly plastic as described by the t-y curve of 
Fig. (7.7.1), where to is the yield point in shear.+ 

If the torque T is applied statically, the initial behaviour will be elastic with shear 
stresses given by Eq. (7.7.1). We note that the rod will behave elastically provided 
the applied torque does not exceed the elastic torque TF. given by 

t o  J TE - 
R 

or, expressed explicitly in terms of the radius, 

(7.7.2a) 

(7.7.2b) 

Thus, Eq. (7.7.1) is valid in the range 0 5 T 5 TE. Specifically, when the torque T 
reaches the value T = TE, the stress in the outer fibres of the cross-section, r = R,  is 
t = to with yo, the corresponding strain at the outer edge, as shown in Fig. (7.7.1). 

yne, at any point within the 
rod, is given by 

We first recall from Eq. (7.2.2a) that the strain y 

(7.7.3) 

Since the unit angle of twist 0 is constant with respect to r ,  y varies linearly with r .  
We emphasise that this relation for the strain is a geometric relation and therefore 
independent of the material behaviour. Consequently, Eq. (7.7.3) remains valid for 
plastic as well as elastic behaviour; that is, for all values of IT I 

Let us now assume that the torque is increased such that T > TE. Under such 
torques the rod will rotate further; that is, 0 will increase. As T increases be- 
yond TE, the strains y ,  while remaining linear with r ,  will increase according to 
Eq. (7.7.3). Hence, when T > TE, the outermost fibres (r = R )  enter the plas- 
tic range; we thus note that plastic behaviour occurs initially in the outer region 
of the rod while the inner zone behaves elastically [Fig. (7.7.2)]. For successively 

0. 

In this section, we shall refer to y yx0 as the shear strain. 
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Figure 7.7.3 

increasing torques, T, < T, < Tz < T3 , etc., the strain distribution will appear as in 
Figs. (7.7.3b-e). Noting that for y 2 yo, t = to, the corresponding stress distribu- 
tion will appear as shown in this figure. We observe that with increasing T ,  the 
plastic zone increases and the elastic zone decreases. Let b denote the location of 
the elastic-plastic interface. From Fig. (7.7.3), we observe that y(r  = b)  = yo and 
therefore t(r = b) = to. Since the stress in the elastic zone is proportional to the 
strain y [according to the relation t(r) = Gy(r )  = GOr], it therefore also varies 
linearly with v ;  hence the stress distribution in the rod for any T > T, is given by 

Furthermore, we note that at the interface r = b, yo = bO and hence 

TO O = -  
Gb' 

The stress resultant representing the torque is given by 

T = t(r). Y dA = r 2 t ( r )  dr do, .i"i . .  
A 0 0  

as in Eq. (2.5.12~). 
Substituting Eq. (7.7.4) in the appropriate zones, 

b 

T = 2n [ p(7) dr  + j tor2 *] . 
0 h 

which, upon integration, yields 

(7.7.4) 

(7.7.5) 

(7.7.6) 

(7.7.7) 
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As T continues to increase, b decreases, and in the limit b .+ 0; that is, the 
entire cross-section behaves plastically. The corresponding torque is then called the 
ultimate plastic torque, denoted by T,; thus 

2n 
Tp = -R3to, 

3 
(7.7.8) 

We observe from Eq. (7.7.7) that this is the largest possible torque which the rod 
can sustain; as T 4 T,, the rod continues to yield freely. 

In passing, we note from Eqs. (7.7.8) and (7.7.2b), the ratio 

T 4  P=:- 
TE 3 '  

(7.7.9) 

Thus we observe that the rod is capable of sustaining a torque T,, which is 33% 
greater than the elastic torque TE. 

Clearly, b = R when T 5 TE and, as shown above, b 4 0 when T -+ Tp. The loca- 
tion ofthe elastic-plastic interface when TE 5 T 5 Tp, namely the relation b = b(T), 
is readily obtained from Eq. (7.7.7): 

(7.7.10) b = [4R3 - :]'I3 = R [ ,  (1 - m)] 3T . 

Substituting Eq. (7.7.8), we may write this in a more convenient form as 

(7.7.1 1) 

The variation of b (T) is shown in Fig. (7.7.4); we observe that the elastic-plastic 
interface approaches the centre 0 of the rod very rapidly as T approaches Tp. 

Figure 7.7.4 

Substituting Eq. (7.7.1 1) in Eq. (7.7.5), 

TE 5 T -= Tp, (7.7.12a) TO TO 

Gb GR[4(1 - T/Tp)]'/3' 
@ = - - - =  
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Since = TE RI J ,  we obtain finally 
I 

(7.7.1217) 

which, using Eq. (7.7.9), we can write in the alternative form, 

3 2'P TE 5 T < Tp. (7.7.12c) 
4GJ[4(1 - T/Tp)] ' /3  ' 

Thus, the 2'-0 relations for plastic behaviour is seen to differ considerably from 
the simple elastic relation of Eq. (7.7.1). In particular, as T --+ Tp, 0 + CO, in- 
dicating that the rod is yielding (rotating) freely. From the non-dimensional 2'-0 
relation, plotted in Fig. (7.7.5), we observe that the slope of the curve, which repre- 
sents the torsional stiffness of the rod, decreases sharply as the rod starts to exhibit 
plastic behaviour. 

Figure 7.7.5 

PROBLEMS 
In all the following problems, neglect localised effects near junctures and at points 
of load application. Assume linear elastic behaviour for all problems unless otherwise 
specified. 

The following constants are to be used in solving the problems. 

Steel E,  = 200 GPa, G, = 76.0 GPa 
Aluminium E,  = 70 GPa, G, = 26.0 GPa 
Brass Eb = 120 GPa, Gb = 42 GPa 
Bronze Ebr = 105 GPa, Gbr = 45 GPa 

Section 2 
7.1: A rod of length L = 120cm, and whose diameter is 1.6 cm, is subjected to a 
torsional moment T = 3000 N-cm. It is required that the relative rotation of the two 
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ends be greater than 3.5" and not t o  exceed 7.2". What possible material(s), of those 
listed above, can be used for the rod? 

7.2: A hollow steel shaft whose outer diameter is 60 mm is subjected to  a torque 
T = 3000N-m. What i s  the required thickness of the shaft if the maximum shear stress 
is not t o  exceed 100 MPa. 

7.3: It is required t o  replace a solid shaft of diameter d by a hollow shaft (i.e., a 
cylindrical tube) of the same material such that in both cases, the maximum shear 
stress does not exceed a given allowable stress when subjected to  the same torsional 
moment T .  Determine the outer diameter D of the tube if the wall thickness is D/20. 

7 . 4  A solid shaft of diameter D is made of a material whose stress-strain relation 
in shear i s  given as t = c m  with 0 5 5, 0 5 y .  Determine the relation between the 
unit angle of twist 0 and an applied torsional moment T .  

7.5: A circular cylindrical rod is composed of two or more homogeneous materials, 
say 'a' and 'b', as shown in Fig. (7P.5), each having different material properties. Is 
it necessary to  make an assumption that, when subjected t o  a torque T ,  all cross- 
sections remain plane and radial lines remain radial or is this a valid conclusion, as in 
the case (considered in Section 2 of this chapter) of a rod consisting of a homogeneous 
material? 

Figure 7P.5 

7.6: A solid shaft of diameter d and made of a homogeneous material i s  subjected to  
a torsional moment T .  What percentage of this torque is resisted by the material of the 
inner core, i.e., within a radius 0 5 r 5 d/4 and within the outer sector d/4 5 r 5 d/2. 

7.7: A solid aluminium shaft, 2-m long, is t o  be subjected to  a torque T = 6000 PI-m. 
If the allowable shear stress is Z,II = 40 MPa and the relative rotations of the ends of 
shaft is not t o  exceed 1 .So, determine the minimum required diameter. 

Section 3 

7.8: A cylindrical shaft ABC consists of a steel segment AB with an allowable shear 
stress rallow = 100 MPa, rigidly connected, as shown in Fig. (7P.8), t o  segment BC, which 
is made of brass and has a diameter of 50 mm. The brass has an allowable shear stress 
tallow = 40 MPa. Determine (a) the maximum permissible torsional moment T that can 
be applied without exceeding the allowable shear stress in BC and (b) the minimum 
required diameter d of AB under this torque T .  

Figure 7P.8 

7.9: A solid steel shaft having a diameter of 80 mm is subjected t o  torques by means 
of gears, as shown in Fig. (7P.9), which are equally spaced 1.25 m apart. Determine 
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Figure 7P.9 

(a) the maximum shear stress in the shaft and indicate in which segment this occurs, 
(b) the rotation of section D with respect t o  B and (c) the rotation of section E with 
respect t o  A. 

7.10: A solid shaft is composed of two segments: AB (made of aluminium) and 
BC (made of steel), as shown in Fig. (7P.10). The shaft i s  subjected to  a torques T1 = 
600N-m and Tz = l000N-m. Determine the required diameter if the allowable shear 
stresses in the steel and aluminium are given as ts = 80 MPa and ta = 50 MPa, respec- 
tively, and if the free end i s  not t o  rotate more than Cp = 2.5". 

Figure 7P.10 

7.11: A solid tapered shaft AB of length L i s  subjected to  a torsional moment T a t  A 
and held fixed against rotation at B, as shown in Fig. (7P.11). Determine the angle of 
rotation Cp,?, if ro << L .  (Note: Assume that all cross-sections remain plane and that all 
radial lines remain radial.) 

Figure 7P.11 

Section 4 

7.12: A gear-shaft system consists of identical steel shafts having diameter d, as 
shown in Fig. (7P.12), where A is fixed against rotation. The diameters of gears B and 
C are 250 and 100 mm, respectively. A torsional moment T = l000N-m is applied at 
D. Assuming no slippage of the gears, determine the required diameter of the shafts 
if the allowable shear stress is t = 60 MPa and if the rotation of the cross-section D is 
not t o  exceed 1.5". 

7.13: Determine the maximum shear stress in an elastic rotating shaft, 40 mm in 
diameter, which transmits 100 kW of power at a speed of 800 rpm. 

7.14 Determine the required diameter of a solid steel shaft if the shearing stress i s  
not t o  exceed 90 MPa and if it is  t o  transmit 400 kW of power at a speed of 50 Hz. 

7.15: A shaft is designed to  transmit 600 kW of power from an electric generator. 
The diameter of the shaft i s  4 cm and the maximum allowable shear stress is 80 MPa. 
What is the required speed (rpm) of the generator? 



216 Torsion of circular cylindrical rods: Coulomb torsion 

Figure 7P.12 

Section 5 

7.16: A solid circular steel shaft AD of diameter d =  3cm and length L is placed 
between two frictionless rigid walls such that they provide no constraint against rota- 
tion. Torsional moments TO = 500 N-m are applied a t  B and C, as shown in Fig. (7P.16). 
If the temperature of the entire shaft i s  increased by AT = 50°C, determine the prin- 
cipal stresses and the principal directions e1 and 82 (with respect to  the longitudi- 
nal x-axis), which exist in segment BC a t  the outer lateral surface, r = d/2. (Given: 
E = 200 GPa, a = 11.7 x 10-6 "C-'.) 

Figure 7P.16 

7.17: A hollow circular shaft having an outer radius R, and inner radius Ri = R,/2 
is subjected to  a torque T and an axial load P I  where T = P R,/4. Determine (a) the 
principal stresses that exist a t  the inner lateral surface r = Ri and the outer surface 
r = R,. (Express answers in terms of P and ft,.) and (b) the principal directions 81 and 
et (with respect to  the longitudinal x-axis) and evaluate in degrees. 

Section 6 

7.18: A steel and a bronze rod are rigidly bonded to form a shaft of length L = 4m, 
which is  fixed against rotation a t  the two ends A and C, as shown in Fig. (7P.18). 
A torsional moment T is applied at B. If the allowable shear stress in the steel and 
bronze is 125 and 40 MPa, respectively, determine (a) the maximum torque T that can 
be applied and (b) the angle of rotation (in degrees) of section B. 

Figure 7P.18 
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7.19:* A gear-shaft system, consisting of  two shafts connected by a gear B of radius 
b = 100 mm and a gear C of radius c=40 mm, is fixed against rotation at A and D, as 
shown in Fig. (7P.19). A torsional moment T = 5000 N-m is applied t o  gear B. (a) Show 
that the ratio of the torque (T& (i.e., the torque exerted by gear C on gear B t o  that 
of the torque ( T C ) ~  (representing the torque exerted by gear B on gear C) is given as 
& = :. (b) Determine the maximum shear stress in shaft AB and CD. 

Figure 7P.19 

7.20: The shaft shown in Fig. (7P.20) consists of a steel segment AC rigidly connected 
t o  a bronze segment CD. The shaft is restrained at A and D against rotation. If torques 
T = 20 kN-m are applied at B and C, determine (a) the maximum shear stress in both 
the steel and bronze segments and (b) the angle of rotation (in degrees) of section B. 

Figure 7P.20 

7.21:* Acylindrical shaft ACof a material with shear modulus G and having diameter 
d and length L is fixed at both ends against rotation. A distributed torsional moment 
t(x) (N-m/m), which varies along the axis as t(x)= tdl + (x/Ll21, is applied as shown in 
Fig. (7P.21). Assuming that plane cross-sections remain plane and that all radial lines 
remain radial, determine (a) the reactive torques at A and C and (b) the rotation a t  
the cross-section at the midpoint B. 

Figure 7P.21 
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7.22:* A torque T = 10 kN-m is applied t o  a steel shaft 80 mm in diameter. While the 
shaft is under the torque, a brass sleeve of thickness t = 10 mm is slipped into place 
and rigidly attached to  the steel shaft at i t s  ends, as shown in Fig. (7P.221, after which 
the torque is released. Determine {a) the resulting shear stress in the brass and the 
steel and (b) the relative rotation of the two ends of the steel shaft. 

Figure 7P.22 

Figure 7P.25 

Section 7 

7.23: The solid steel shaft of radius R = 40 mm i s  assumed to  behave as an elastic- 
ideal plastic material with a yield point to = 145 MPa. Determine (a) the maximum 
moment TE, which can be applied prior t o  initial plastic behaviour; (b) the radius of 
the elastic zone, r = b, if the rod is subjected to  a torque T = 18 kN; (c) the unit angle 
of twist 0 (in deg/m). 

7.24 Given a hollow rod with inner and outer radii Ri and Ro, respectively, made of 
a material that is assumed to  behave as an elastic-ideal plastic material with a yield 
point in shear to and shear modulus G during elastic behaviour. Determine (a) the 
torque TE under which yielding first occurs; (b) the unit angle of twist 0 when T = TE, 
(c) the limiting torque Tp and (d) 0 when T -+ Tp. 

7.25:* A hollow shaft of length 120 cm, whose cross-section i s  shown in Fig. (7P.25), 
is subjected to  a torsional moment T .  The shaft is made of steel, which is assumed to  be- 
have as an elastic-perfectly plastic material with to = 180 MPa. Determine 
(a) the torque T = Ty at first yielding, (b) the relative rotation of the two ends, $, 
when yielding first takes place, (c) the torque T when the radius of the interface fb 
separating the elastic and plastic zones is 30mm, (d) the ultimate plastic moment Tp 
and (e) the unit angle of twist 0 as the rod becomes fully plastic, i.e. as T -+ Tp. 

7.26: A torsional moment is applied to  a solid cylindrical rod of radius R whose 
material behaviour is elastic-pefectly plastic with a yield stress to. The torque is applied 
until the rod becomes fully plastic (i.e., T = Tp) and is then removed. Show (a) that 
residual shear stresses within the rod vary linearly with the radial coordinate r and 
(b) that the residual stress at r = 3R/4 is zero. 

7.27:* A steel shaft of diameter d = 75 mm i s  tapered over a length L = 180 mm to  
a diameter of 60 mm, as shown in Fig. (7P.27), and is  subjected to  a torsional moment 
T = 8000 N-m. Assume the steel behaves as an ideal elastic-plastic material with to = 
145 MPa. Determine (a) the radius of the elastic zone within the segment AB, (b) the 
length of the segment (i.e., as measured from C) that behaves fully elastically, (c) the 
ultimate torsional moment Tp that can be applied t o  the shaft and (d) the length of 
the segment (as measured from C) that behaves fully elastically when Tp i s  applied. 
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Figure 7P.27 

7.28:* Asolid cylindrical rod of radius R is made of a linear strain-hardening material 
having the following stress-strain relation in shear [see Fig. (7P.28)]: 

r i TO 

where c > 0 i s  a constant and where ro is the yield stress. 

Figure 7P.28 

Show that the relation between the unit angle of twist, 0, of the rod and an applied 
torque T TE (where TE i s  the maximum elastic torsional moment) is given by 

where p = GRO/ro L 1 is a non-dimensional parameter defining the unit angle of 
twist. (Note: See computer-related Problem 7.48.) 

Review and comprehensive problems 

7.29 A composite cylindrical rod, whose cross-section is shown in Fig. (7P.29), is com- 
posed of material 'a' that serves as an inner core, and an outer surrounding material 
'b'. The shear moduli of the two materials are G, and Gb, respectively. Assuming per- 
fect bonding between the two materials, determine the unit angle of t w i s t  @ in terms 
of RI ,  Rz, G, and Gb if the rod is  subjected t o  a torque T .  

7.30: A hollow tapered shaft of constant thickness t, having a mean radius 0 i Fa 5 
R(x) < E b  = 2Rar is subjected to  torsional moments, as shown in Fig. (7P.30). Assuming 

Figure 7P.29 

Figure 7P.30 
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Figure 7P.31 

the taper i s  small (i.e., Fa << L )  and that t << Ra, determine the relative rotation of the 
two ends, ~ B I A ,  in terms of T, Fa, t, L and G. 

7.31: Two composite shafts A and B, each of  outer radius R, are constructed by gluing 
together as laminates, successive thin cylindrical cylinders, each consisting of  an elastic 
material having a different stiffness [see Fig. (7P.31)I. In shaft A, laminates of increasing 
stiffness are glued together; the resulting radial variation of the shear modulus of the 
cylinder is expressed as G(r) = Gor/R, where GO is the shear modulus of the outermost 
laminate. In shaft B, laminates of decreasing stiffness are glued together resulting in a 
shear modulus expressed as G(r) = GO [I - r /R] .  Both shafts are subjected t o  the same 
torsional moment, T. (a) Determine the unit angle of  twist 0 for both shafts A and B; 
(b) determine the ratio OA/@B; (c) provide a physical explanation for this ratio. 

7.32:" A hollow shaft i s  made by rolling a 5-mm thick plate into a cylindrical shape 
with an outer diameter d = 120 mm. The edges are then welded together along 
the resulting helical seams, which are oriented by an angle 6 = 60" with respect t o  
the x-axis, as shown in Fig. (7P.32). What is the maximum torsional moment that can 
be applied to  the shaft if the allowable shear and tensile stresses in the weld are 
50 and 100 MPa, respectively. 

Figure 7P.32 

7.33: A solid cylindrical rod of radius R is subjected to  a torsional moment T .  The 
material behaviour of the rod is governed in shear by the relation t = ky", where k 
is a given constant, n is an integer and y is the change in angle between two fibres 
originally oriented in the longitudinal x and circumferential directions. (a) Show that 
the nonlinear relation between T and 0, the unit angle of twist, is given by 

(b) Determine the maximum shear stress in the rod in terms of T and R. 

7.34 A circular cylindrical shaft AB fixed at B, is subjected t o  a uniformly distributed 
torsional moment t o  (N-mlm), as shown in Fig. (7P.34). The material behaviour of the 
shaft in shear i s  given as t = ky2, 0 5 y .  Assuming plane sections remain plane and 
radial lines remain radial, determine (a) the shear stress t x e  = tx&, x) and (b) the 
rotation of the free end A. 

F'igure 7P.34 

7.35:" A solid composite cylindrical rod of length L ,  made of two materials, a core 'a' 
and a sleeve 'b', having shear moduli Ga and Gb respectively, is subjected to  a torsional 
moment T, as shown in Fig. (7P.29). 

(a) Determine the ratio &, where ta and t b  are the shear stress in a and b, 

(b) Determine the unit angle of rotation if G, = 6Gb and R1 = fiRzj2. 
respectively. 
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(c) For the values given in part (b), what part of the total applied torque T does 
the core a resist? 

Note: Give answers t o  the above in terms of Ga and R I .  

(d) If, prior t o  the application of the torque, a thin wire (with modulus of  elasticity 
E,) is, as shown in Fig. (7P.35). wound around the cylinder in the form of a helix 
(making 45" with the x-axis), determine the stress in the wire after a torque T 
is applied. 

Figure 7P.35 

7.36 A 60-mm diameter monel rod (G = 65GPa) is used as a solid shaft. To increase 
the stiffness of the shaft a stainless steel tube (G = 86 GPa) with inner diameter 60 mm 
is placed over the monel shaft so as to  form a composite member. Assuming perfect 
bonding between the steel and monel core, determine the required thickness of the 
tube if the sleeve is t o  decrease the unit angle of t w i s t  of the shaft by 60%. 

7.37: A shaft ABC, made up of two segments AB and BC, is fixed at A and subjected 
to  a torque T,  as shown in Fig. (7P.37). The modulus of rigidity of the material and 
the yield stress in shear of the shaft material are G and to, respectively. Determine 
(a) the largest torque TE under which the shaft behaves elastically, (b) the rotation ac 
of section C when T = TE, (c) the magnitude of the torque T = Tb (r, 5 Tb 5 Tp) that 
initiates plastic behaviour in segment AB and the ratio TE, /T~ and (d) the radius r = b 
of the elastic zone in segment BC when T = 0.15Tb. 

Figure 7P.37 

7.38:* An assembly, consisting of a solid steel alloy cylindrical core, encased within 
a hollow aluminium shaft is fixed against rotation at A. A rigid plate at the end B is 
bonded t o  the steel and aluminium, as shown in Fig. (7P.38a). The two materials are 

Figure 7P.38 
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assumed to  behave as linearly elastic-perfectly plastic materials whose stress-strain 
relations in shear are shown in Fig. (7P.38b). Atorque T is applied to  the assembly. De- 
termine (a) the maximum torque T = TE that may be applied such that the behaviour 
of the entire assembly remains elastic and (b) the maximum ultimate torque Tp that 
the system can sustain. 

7.39: A steel rod, 20 mm in diameter, is  subjected t o  a torsional moment T, as shown 
in Fig. (7P.39). Assuming the steel behaves as a perfectly elastic-plastic material with 
TO = 150 MPa, determine fa) the torque required to  cause the free end to  twist by 25" 
and (b) the radius b of the elastic core under this torque. 

Figure 7P.39 

7.40:* Two solid cylindrical steel shafts, each having a diameter of 40 mm, are con- 
nected by means of gears 8 and C, as shown in Fig. (7P.40). The shaft AB i s  fixed at A 
and plates D and E provide no rotational constraints. (a) If the allowable shear stress 
i s  90MPa, what is the largest torque T that can be applied at F. (b) Determine the 
rotation & due t o  the torque 7. 

Figure 7P.40 

7.41: Given two shafts made of the same material - a solid and a hollow shaft - 
each having the same cross-sectional area, as shown in Fig. (7P.41). The two shafts are 
subjected t o  torsional moments TS and Th, respectively. Assuming p = Ri/f)&9-5 I), 

and show that (a) the maximum stress in the two shafts i s  the same if 
(b) the unit angle of twist 0 i s  the same if 

1-82 

= l+gr 
= m. 
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Figure 7P.41 

7.42:* A composite cylinder whose cross-section, as shown in Fig. (7P.42a), composed 
of material A in the core surrounded by material B, i s  subjected t o  a torque T .  Both 
the materials are perfectly bonded and are assumed to  behave as ideal elastic-plastic 
materials; the stress-strain curves in shear are shown in Fig. (7P.42b) and the shear mod- 
uli are given as GA = 25 GPa and GB = 80 GPa, respectively. Determine (a) the torque 
T = T, at which first yielding takes place, (b) the unit angle of twist when T = T,, and 
(c) the ultimate torsional moment T = T,. 

Figure 7P.42 

7.43:* A shaft consists of segment AB of an aluminium alloy, which is connected 
t o  a steel alloy segment BD by means of a flange coupling, attached by four bolts, 
as shown in Fig. (7P.43). The diameters d of both segments are 75 mm. The bolts, 
each having a cross-sectional area of 150 mm’, are placed on a circle of diameter D = 
200 mm. The allowable shear stress in the bolts is given as 60 MPa. The assembly is fixed 
at A and D against rotation and a torque is applied at section C as shown. Determine 
(a) the maximum torque T that can be applied, (b) the maximum shearing stress in 
segments AB, BC and CD and (c) the rotation of the flange coupling. 

Figure 7P.43 
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Figure 7P.46 

7.44: An oil drill of length L = 2600 m is composed of a bit, which is  attached toa solid 
steel shaft whose diameter is 30 cm. While drilling the well, the bit, which is attached to 
the bottom of the shaft, starts to  rotate only after the shaft has made three complete 
revolutions a t  the surface. Determine the maximum shearing stress in the shaft. 

The following problems are to be solved using a computer 

7.45: It is required to  replace a solid shaft of diameter d by a hollow shaft (i.e., a cylin- 
drical tube) of the same material such that in both cases, the maximum shear stress does 
not exceed a given allowable stress when subjected to  the same torsional moment T. 

(a) Determine the outer diameter D of the tube if the wall thickness is D/k, where 

(b) Plot the cross-sectional area of the tube A in terms of the non-dimensional ratio 

(c) What conclusions can be drawn from the curves? 

2 5 k, and plot D/d as a function of k. 

as a function of k. 

7.46: Two solid steel rods AB and CH, each having a diameter d, are rigidly connected 
to  a hollow shaft EF whose outer diameter is D, as shown in Fig. (7P.46). If torques T are 
applied to  the endsA and H, determine (a) the ratio D/dif the unit angle of twist in the 
segment EF isthe same as in the rods and (b) the ratio D/d (to six or more significant 
figures) if the maximum shear stress in both the shaft EF and the rods is the same. 

7.47:* A hollow circular shaft having an outer radius Ro and inner radius Ri = 
kR, (0 5 k < 1) i s  subjected to  a torque T and an axial load P, where T = p PRO (0 5 p ) .  

(a) Show that the principal stresses a1 and u2 and the principal direction 81 (with 
respect to  the longitudinal x-axis), which exist a t  the outer surface r = Ro, are 
given respectively by 

+ + 16p2]’/2 
P 

01,2 = 

(b) By means of a computer, plot a family of curves for the non-dimensional ratios 
q R ; / P  and u z R f / P  as a function of kfor several discrete values of p. 

(c) By means of a computer, evaluate the principal direction 81 (in degrees), and 
plot 81 as a function of kfor several discrete values of p .  

7.48: For the rod made of a strain-hardening material with a stress-strain relation as 
given in Problem 7.28, the relation between the applied torque T 1 TE and the unit 
angle of twist is given as 

where p = GR@/to 2 1 is  a non-dimensional parameter defining the unit angle of 
twist. Plot the values TITE as a function of p for several values of c: c = 1, 2, 3, . . . . 



8.1 Introduction 

An important element very often encountered in engineering structures is a ‘beam 
element’. Geometrically, a beam is characterised in the same manner as a rod, 
which was previously studied: namely, it is an element where one dimension, called 
the longitudinal dimension, is considerably greater than the remaining two dimen- 
sions that define the cross-section. However, as opposed to a rod, we refer to an 
element as a ‘beam’ if there exist components of the applied forces, which are 
perpendicular to the longitudinal axis. We then refer to these applied forces as 
transverse forces or lateral forces. Due to such forces, the beam no longer remains 
straight but will deform and undergo bending. The beam is then said to be in a state of 
‘ flexure’. 

Our goal in this chapter is to establish the basic relations governing the flexure 
of beams and to determine the resulting stresses due to the flexural deformation. 

These relations are dependent on the internal force resultants existing at the cross- 
sections of the beam. Although force resultants were considered with some gener- 
ality in Chapter 2, it is necessary to reconsider these quantities more specifically, 
and to some greater depth, as they apply to beams. 

8.2 Resultant shear and bending moments - sign convention 

(a) Some simple examples 
We consider a beam whose longitudinal axis coincides with the x-axis. Furthermore, 
we shall restrict our study, at this stage, to beams for which all applied transverse 
loads lie in the x-y plane and for which all couples act about the z-axis [Figs. (8.2. l a  
and b)], It follows that all internal forces in the z-direction must vanish as must all 

Figure 8.2.1 
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moments about the x- and y-axes. Consequently, the internal resultant force system 
acting on any cross-section will then consist only of a force F" and a moment M* 
whose sole component acts in the z-direction [Fig. (8.2.lc)], i.e.* 

F* = Fi + V,j, (8.2.1 a) 

M* = -M,k. (8.2.lb) 

We note that this is a particular case of the general expression for internal forces 
given in Chapter 2 [Eqs. (2.2.2)], where y1 -+ i, s -+ j and t --+ k.  

Since we are interested in studying the effect of flexure, we shall generally con- 
sider only those cases where the transverse applied forces not only lie in the x-y 
plane but act only in the y-direction so that F ,  the axial force, vanishes at all cross- 
sections. Further, noting that there is but one shear force component Vv and a single 
moment component M, for ease of notation, we shall set V E V,, and-M E M'. We 
now consider two simple cases, given in the following examples. 

Example8.1: A simply supported beam AB is subjected to  a constant uni- 
formly applied load q(x) = w acting downward, as shown in Fig. (8.2.2a). 
Determine the shear force V(x) and the moment M(x) at all cross-sections. 

Figure 8.2.2 

Solution: From the equilibrium equations Fv = 0 and M, = 0, we find that 
the reactions at A and B are R = wL/2.  Proceehing as in Chapter 2, we make a 
cut at some general cross-section located at the coordinate x, and isolate the two 
segments of the beam. We may then analyse either of these segments as a free body. 
Choosing arbitrarily the left-hand segment [Fig. (8.2.2b)], the equilibrium equations 

t Note that in Eq. (8.2.lb), W is defined with a minus sign such that +Mz points in the negative 
z-direction. This i s  done in order to be consistent with the sign convention to be adopted in subsection 
(b) of this sechon. 
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are then 

+ f E Fy = 0 +-+ wL/2 - V ( X )  - w x  = 0 -+-+ Y ( x )  = w(L/2 - x), 

f-+ X ( M z ) ,  = 0 -++ -(WL/2)X + (wsc)(x/2) + M(x)  
wx 

= 0 ++ M ( x )  = -(L -*), 

where <+ C(M,),  indicates that the sum of the moments is taken about the z-axis 
passing through the section at x. Note too that the above expressions are valid for all 
O l X ( L .  

We may now plot the expressions for V and M as a function of x. These are shown 
in Figs. (8.2.2~ and d), respectively. We observe that the shear V varies linearly withx 
while the moment M is a quadratic function of x. The maximum value, which clearly 
occurs at x = ~ / 2 ,  is M ( L / ~ )  = wL2/8 .  

Such graphs of V ( x )  and M ( x )  plotted as a function of the position x are commonly 
called shear and moment diagrams. U 

2 

Example 8.2: Determine the resultant shear V(x)  and moment M(x) for the 
simply supported beam loaded by a concentrated force P acting a t  the cen- 
tre, x= L / 2 ,  as shown in Fig. (8.2.3a), and plot the shear and moment 
diagrams. 

Figure 8.2.3 

Solution: From equilibrium, the reactions at A and €3 are RA = RB = P/2.  As 
in the previous example, we make a cut at a section x and write the equilibrium 
equations for the isolated segment as a free body. However, here, we note that we 
obtain a different result if we make a cut at a section to the left or to the right of 
P [Fig. (8.2.3b) or (8.2.3c), respectively]. Thus it is necessary to analyse two separate 
cases. 
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Figure 8.2.4 

For 0 < x < L/2 [Fig. (8.2.3b)], we obtain 

+ f F, = 0 -++ -P/2 + V ( X )  = 0 -++ V ( x )  = P/2, 

f-+ C ( M J x  = 0 -+-+ -(P/2)x + M(x)  = 0 -++ M ( x )  = Px/2. 

+ ?- E F;. = 0 -++ -P/2 + P + V ( x )  = 0 +-+ V ( x )  = -P/2, 

f-+ C ( M &  = 0 ++ -(P/2)x + P(x - L/2) + M(x) 

Similarly for L/2 .c x < L [Fig. (8.2.3c)], we obtain 

P 
2 

= 0 -+-+ M(x)  = -(L -x). 

The corresponding shear and moment diagrams are shown in Figs. (8.2.3d and e), 
respectively. 0 

We note that the moment diagram is linear in the two regions of x and that M is 
a maximum at x = L/2 ,  where M(x = L/2) = P L/4. On the other hand, the shear 
is constant in the two regions. However, our solution leads to a discontinuity in 
U at x = L/2! Clearly this requires an explanation, for, in general, we would not 
expect such a discontinuity in nature for a static problem. (However, we mention 
here that in dynamic cases, one may encounter discontinuities such as at wave fronts 
of propagating waves in solids.) 

To explain this discontinuity, it is necessary to recall the definition of a con- 
centrated force as developed in Chapter 1. From that discussion, it was seen that a 
concentrated force is an idealisation which represents a force of high intensity, acting 
over a very small area; indeed, a concentrated force does not exist in nature. Thus, in 
reality, we are essentially examining a beam subject to a force system, as shown in 
Fig. (8.2.4a), where A + 0. For this system, with A # 0, the shear diagram ap- 
pears as in Fig. (8.2.4b). Hence, the discontinuity, as shown in Fig. (8.2.3d), is but 
a result of our idealisation. With this interpretation, we shall continue to make use 
of this idealisation, but with the clear understanding that the true results, as found 
in nature, do not lead to such discontinuous solutions. 

We note that in the above examples, the shear force V and moment M are linearly 
dependent on the applied forces w and P. Following our discussion in Chapter 5 ,  
if we assume that the beam undergoes small deformations, the combined effect of 
w and P on the beam may be obtained by linear superposition of the two solutions. 
These are shown in Fig. (8.2.5). 

In obtaining the above solutions, the direction of positive shear forces and mo- 
ments were chosen arbitrarily as in Figs. (8.2.2b) and (8.2.3b and c). Now, in order 
to be consistent, it is necessary to adopt a sign convention for these forces and 
moments as well as for applied forces. 

Finally, before establishing the sign convention, it is appropriate at this point to 
consider the effect of moments and shears on the deformation of the beam. From 
the basic principles of mechanics, we are aware that, in general, moments tend to 
cause rotation of a body. In particular, in the case of beams, the moment will tend 
to cause each segment of the beam to rotate and deform; the global effect on the 
entire beam will then be to cause the beam to undergo bending, as shown in Fig 
(8.2.6a). On the other hand, as was discussed in Chapters 3 and 4, shear forces 
tend to cause rectangular segments to undergo distortion and assume the shape of 
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Figure 8.2.5 

parallelograms [Fig. (8.2.6b)l. Inour study below, we shall consider these two effects 
separately. 

(b) Sign convention 
To establish properly a sign convention for beams, it is first necessary to establish a 
coordinate system since the sign convention depends directly on the coordinate 
system used. To this end, we define a right-hand coordinate system xyz with 
x pointing to the right and positive y pointing downward [Fig. (8.2.7)]. The beam 
is oriented with respect to this coordinate system such that its longitudinal axis 
coincides with the x-axis.+ The cross-sections of the beam therefore lie in the 
y-z plane. 

We now recall the standard sign convention (as defined in Chapter 2) that defines 
the faces of the cross-section: a positive (negative) face is one for which the outward 
normal is acting in the positive (negative) coordinate direction. 

The sign convention for the shear forces V E yv is then defined as follows: 

RI A shear force V EE Vy is said to be positive if it acts on a positive (negative) 
x-face of the cross-section in the positive (negative) y-direction [Fig. (8.2.8a)l. 
Conversely, a negative shear force V acts on a positive (negative) face in the 
negative (positive) y -direction. 

Recalling also that M E M,, i.e. M represents the moment about the z-axis, the 
following sign convention is adopted for the moment M :  

RI A moment M is said to be positive if it tends to cause the beam to bend such that 
extension occurs in those fibres defined by positive y-coordinates [Fig. (8.2.8b)l. 

t Note that here and in all subsequent treatment of flexure of beams, the x-coordinate is measured from 
the extreme left end of the beam. 
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Figure 8.2.8 

It is emphasised that in using this sign convention, the concept of positive or 
negative moments as being clockwise or counter-clockwise is totally irrelevant. For 
example, the vector representation for positive moments acting on a positive face is, 
according to the right-hand rule, shown in Fig. (8.2.8~). Moreover, we note that the 
vector representing positive M points in the negative z-direction. Thus we observe 
that the adopted sign convention is also independent of a vector sign convention; it 
is often referred to as being a mechanics-o8materials sign convention. For further 
clarity, positive V and M are also shown in plane view in Fig. (8.2.8d). 

The following sign convention is adopted for applied lateral loads q(x): 

Positive (negative) forces q ( x )  act in the positive (negative) y-direction 
[Fig. (8.2.8e)l. 

In anticipation of this sign convention, the direction of positive forces and mo- 
ments appearing in Examples 8.1 and 8.2 were assumed consistent with this adopted 
convention. 

8.3 Differential relations for beams 

Consider the beam shown in Fig. (8.3.la), which is subjected to transverse forces 
q(x). Clearly, due to the applied loads, shear forces V and moments M will exist 
at any cross-section. In general these will not be constant but will vary with x; that 
is, V = V ( x )  and M = M(x) .  Let us consider an arbitrary element of width Ax 
such that the left cross-section is located at the coordinate x and the right face is at 
coordinate x + Ax. On the right side, the shear and moments are then V ( x )  + A V 
and M ( x )  + A M ,  respectively, as shown in Fig. (8.3.lb). (Note that we have takcn 
all forces and moments to be positive according to the adopted sign convention.) 

We now consider the equilibrium of the element in the deflected state. 

Figure 83.1 
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From equilibrium in the y-direction, + F, = 0, 

- V(X) + [ V(X) + A V] + q(F)AX = 0,  

where x 5 X < x + Ax, (Note that in writing q@)Ax we have implicitly used 
the mean-value theorem to represent the total lateral applied force acting on the 
element.) Therefore, upon dividing through by Ax and taking the limit as Ax 0, 

(8.3.1) 

since AV -+ OandT+ x as Ax -+ 0. 
Moment equilibrium about point 0 yields 

<+ ( M,) = - M ( x )  + [ M ( x )  + AM] - [ V(x) + A V] Ax 
0 - [q(T) A x ] ~  AX = 0, 

where 0 < a < 1 .  (Note here that the location of the resultant of the lateral force 
is unknown; the parameter a is introduced to indicate that the resultant passes 
somewhere between x and x + Ax.) 

Dividing through by Ax and taking the limit as Ax -+ 0, 

A M  
lim - - - l im[V(x)+AV+aq(Z)Ax] 

Ax+O Ax A x 4 0  

and therefore 

Combining Eqs. (8.3.1) and (8.3.2), we find 

(8.3.2) 

(8.3.3) 

At this point, the reader is urged to return to Examples 8.1 and 8.2 and observe 
that Eqs. (8.3.2) and (8.3.3) are satisfied. Note that in Example 8.1, the lateral 
load q(x) = w ,  a constant, for all 0 < x <L, while in Example 8.2, &) = 0 for all 

= V(x), we arrive at an important conclu- 
sion: the moment is stationary (i.e. has a maximum or minimum value) at those 
cross-sections where the shear force V = 0. 

x # L / 2 .  
Finally, since from Eq. (8.3.2), 

8.4 Some further examples for resultant forces in beams 

We present here some relatively elementary examples. While the solutions are rather 
simple, the reader is urged to read carefully the comments and conclusions to better 
understand some of the important features of the general results. 

Note that in all subsequent problems, positive directions of unknown V and A4 
are taken in accordance with the adopted sign convention. 

Example 8.3: A simply supported beam AB of length L is subjected to  an 
applied couple 6 at  A, as shown in Fig. (8.4.1a). Determine the shear V(x)  
and moment M(x) and draw the shear and moment diagrams. 

Solution: Since no component ofthe appliedloading system exists in the x-direction, 
it is clear that there exist no reactive components in the x-direction; i.e., Fx = 0 
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Figure 8.4.1 

is satisfied identically. The reactions RA and RB in the y-direction [Fig. (8.4.lb)l are 
first obtained from the remaining equilibrium conditions for the entire beam: 

?+ ~ ( M . ) B  = 0 ++ MO + RAL = 0 ++ RA = --, MO (8.4.la) 
L 

+ ~ ~ F ~ = O + + R A + R B = O + +  R B = - R A = - .  MO (8.4.lb) 
L 

Note that the negative sign appearing for RA indicates that the reactive force is 
downward. 

To obtain the internal shear and moment, we make a cut at an arbitrary section 
x ,  0 c x < L [Fig. (8.4.lc)l. Then, using equilibrium of either segment (here we 
again arbitrarily choose the left segment) as a free body, we have 

MO 
L + t Fy = 0 ++ RA - V ( x )  = 0 --f+ V ( x )  = RA = --, (8.4.2a) 

(8.4.2b) 

From this trivially simple example, we first make several observations: 

rn We note that the shear force V ( x )  is negative; i.e., it is acting physically in the 
negative y-direction on the positive x-face. 

rn Furthermore, the shear force V is constant throughout the beam. Noting that no 
lateral applied forces are applied to the beam, i.e. q ( x )  = 0, we observe from 
Eq. (8.3.1) that the shear force must indeed be constant. 

rn From the above expressions, we also observe that the derivative of the M ( x )  is 
precisely V(x) ,  in accordance with Eq. (8.3.2). 

The shear and moment diagrams are shown in Figs. (8.4. Id and e). Note too that the 
moment M(x = L )  =E 0, i.e. the moment at B vanishes. This is necessarily so since, 
by definition, a simple support provides no moment reaction against any rotational 
constraint. 0 
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Example 8.4 A cantilever beam AB of length L is loaded by a transverse load, 
varying linearly from WO (Nlm) at A to zero at B, as shown in Fig. (8.4.2a). 
Determine V(x)  and M(x) and draw the shear and moment diagrams. 

Figure 8.4.2 

Solution: Since the lateral load q varies linearly, we obtain immediately an expres- 
sion for q(x); namely 

&) = wo(1 - x/L) (N/m). (8.4.3a) 
To obtain V ( x )  and M(x) ,  we make a cut at any arbitrary section x, 0 i x < L ,  and 
arbitrarily isolate the right-hand side [Fig. (8.4.2b)l. Note that by using this segment as 
a free body, no unknown reactive components appear. Consequently, it is not necessary 
to first find the reactions (at A) in order to solve this problem. (This is in contrast to the 
previous example, Example 8.3, where it was first necessary to determine the reaction.) 

Isolating the free body, we first observe that the total downward resultant force 
of the applied load, represented by the small triangle of Fig. (8.4.2b), is (w0/2) 
(1 - x / L ) ( L  - x) = (woL/2)(1 - x/L)’ .  The location of this resultant is immedi- 
ately known, namely it occurs at the third point from the cross-section located at x, 
namely at x + ( L  - x)/3 = ( L  + 2x)/3L [Fig. (8.4.2b)l.t We then have for equilib- 
rium of the free body 

+ f Fy = 0 +=+ V ( x )  - (WoL/2)(1- X / L ) *  = 0 

2 (8.4.38) WO 

2L 
+-+ V ( x )  = -(L -x) , 

wo(L - x)2 L - x 
= O  

2L 3 
?+ C ( M &  = 0 +-+ M ( x )  + 

wo(x - L)3 
6L  ’ 

-++ M ( x )  = 

Note here again, that Eqs. (8.3.1) and (8.3.2) are satisfied. 

(8.4.3~) 

t Note that n is measured from point A, the extreme left end of the beam. See previous footnote, p. 229. 



234 Symmetric bending of beams - basic relations and stresses 

The shear and moment diagrams are given in Figs. (8.4.2~ and d). The shear is 
seen to vary quadratically and the moment to be a function of x3. We observe that 
at A, x = 0, the shear and moments reach their maximum absolute values; namely 
VA = woL/2 (N) and MA = - w0L2/6 (N-m). We note that these values represent 
the force and moment acting on the negative x-face at the section of A; that is, they 
represent the reactions which the wall exerts on the beam at A. Physically, the posi- 
tive value of V ,  indicates that the wall exerts an upward force on the beam; note too 
that the reactive moment MA acting on the negative x-face of the beam is, in fact, 
counter-clockwise. 0 

At this stage, it is worth making a further observation: since = V(x) ,  it is 
evident that if at any point x, V > 0, then the slope of the moment diagram will be 
positive; if V < 0, the slope of M ( x )  is then negative. Furthermore, if the slope of 
V ( x )  is positive (negative) at any point x, then the second derivative of M ( x )  will be 
positive (negative). Since the sign of the second derivative of a function defines the 
sign of the curvature, we conclude that if the slope of Y is positive (negative) at any 
point x, then the curvature of M ( x )  at this point will be positive (negative). These 
conclusions are obviously o f  great assistance in checking the shear and moment 
diagrams and in preventing possible errors. 

Example8.5: A beam ABCD is loaded at point A and D, as shown in Fig. 
(8.4.3a). Determine V(x) and M(x) for all 0 < x  < L + 2a and draw shear and 
moment diagrams. 
Solution: From equilibrium of  the entire beam [Fig. (8.4.3b)], we obtain RB = Rc = 
P .  Isolating the segment 0 < x < a [Fig. (8.4.3c)l we have, from equilibrium, 

t E?,, = o -+-+ -P - V ( X )  = o +-+ ~ ( x )  = -P (aconstant), 

.f+ ~ ( M Z > .  = 0 ++ M ( x )  + Px = 0 ++ M ( x )  = -Px. 

Figure 8.4.3 
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For an arbitrary cross-section between B and C (a < x < L + a )  [Fig. (8.4.3d)], 

+ t C F y = O + +  - P + R B - V ( X ) = ~ .  

Since 

RB = P +-+ V ( X )  = 0 

C+ z ( ~ ~ ) ~  = 0 +4 PX - R ~ ( X  - a )  + M ( X )  

= 0 43 M ( x )  = -Pa (aconstant). 

Similarly, upon cutting the beam at any arbitrary point between C and D and isolat- 
ing the segments [noting that here it is preferable to analyse the right-hand segment 
for equilibrium; see Fig. (8.4.3e)I we obtain V ( x )  = P,  M ( x )  = P[(L  + 2a) - XI, 
L + a  < x  c L +2a.  

The shear and moment diagrams are shown in Figs. (8.4.3f and g). We observe that 
between B and C, V = 0 and A4 = - Pa.  Thus the moment does not vary in the beam 
between B and C. This is consistent with our general results, Eq. (8.3.2); namely, 
if the shear is zero, the moment must be constant. Within this span (BC) the beam 
is said to be in pure bending. The state ofpure bending is an important one in the 

0 

Example 8.6: A beam ABCD, as shown in Fig. (8.4.4a), is fixed a t  A and simply 
supported a t  D. The two segments ABC and CD are connected by a pin a t  C. 
The beam is loaded asshown, where the segment BE is assumed to be rigidly 
attached to  the beam at  B. Determine expressions for F(x), V(x), M(x) and 
plot their variation with x. 

development of beam theory as we shall see below. 

Figure 8.4.4 



236 Symmetric bendinq of beams - basic relations and stresses 

Sodution: First, we replace the horizontal force acting at E by an equivalent force 
system consisting of a horizontal force at B and a couple of 360 N-m [Fig. (8.4.4b)l. 
We also observe from this figure, that there exist four reactive components. However, 
we recall, from Chapter 2, that the pin provides no constraint against relative rotation 
of the two beam segments AC and CD. Therefore, as the pin cannot transmit any 
moment from one segment to the other at point C, it follows that MC = 0. 

Recalling that x is measured from point A, an expression for the vertically applied 
lateral load is immediately obtained; thus, using the property of similar triangles, we 
have 

4(x) 600 - ++ q(x) = 5O(x - 6)N/m, 6 < x 5 18 X - 6  12 
600(12) - Moreover, the total resultant force of this vertically applied load is R, = - 

3600 N; this resultant force acts 4 m to the left of point D. 
We are now in a position to determine the reactions. Since a horizontal force 120 N 

is acting, it is clear that the. horizontal reaction at A must be R h  = 120 N (to the left). 
To obtain the vertical reactions, we proceed as follows: we consider the entire 

structure ABCD. From equilibrium: 

c"t- T ; 3 ( M z ) ~  = 0 -+-+ MA + 18R~,  + 360 - 4(3600) = 0, 

+ t Z F ,  = 0 -++ RAY + RD -3600 = 0. 

Note that at this stage it is not possible to solve for the three unknowns, MA, RA, 
and RD using these two equations. However, making use of the fact that Mc: = 0, we 
now isolate segment CD. From equilibrium [Fig. (8.4.4c)I 

F4- X ( M z ) c  = 0 -++ 1 2 R ~  - 8(3600) = 0 -++ RD = 2400 N. 

Substituting into the preceding equation, we find R A ~  = 1200 N; it then follows 
from the first equation that MA = -7560 N-m. 

Having found all the reactions, one may, as in the previous examples, determine 
the internal forces, ( F ,  V and M) in the various segments of the beam, AB, BC and 
CD, by making suitable cuts and using the equations of equilibrium on the appropriate 
free bodies, as shown in Figs. (8.4.3d-f) respectively. One thus obtains 

Segment AB: 0 < x < 3 

F = 120, V = 1200, M = 1 2 0 0 ~  - 7560 

Segment BC: 3 < x < 6 

F = 0, V = 1200, M = 1 2 0 0 ~  - 7200 

Segment C D  6 < x < 18 
25 
3 F = 0, V = - 2 5 ( ~  - 6)2 + 1200, A4 = --(X - 6)3 + 1 2 0 0 ~  - 7200 

The resulting variations of F,  V(x) and M(x) are shown in Figs. (8.4.4g-i), respec- 
tively. It is worthwhile to point out several features as shown in the diagrams: 

A constant axial force F exists in the segment AB and is zero from B to D. 
IB A discontinuity of 360 N m exists in the moment diagram at point B(x = 3). This 

discontinuity is due to the applied couple of the same magnitude. (Thus we note that 
just as a concentrated force acting within a beam causes a discontinuity in the shear 
V; a concentrated moment - a couple - causes a discontinuity in the moment M). 
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The moment at C is zero. This provides a check on our calculations since a pin is 

m At point A, V = 1200 N and M = -7560 N m. 

These quantities correspond to the reactive vertical force and moment of the wall on 
the beam. Thus the wall exerts an upward reactive force on the beam and a counter- 
clockwise moment (which is required to prevent rotation of the beam at A). Note that 
these directions are immediately known since they were chosen consistent with the 
adopted sign convention for shear and moment. 

From the expression for V ( x )  in segment CD, as given above, we may immediately 

known to exist at C .  

determine the cross-section x = xcr at which V = 0; thus 
-25(x,, - 6)2 + 1200 = 0 ++ (xcr - 6)2 = 48 ++ x,, - 6 

= 4& ++ xcr = 4 6 +  6 
As was concluded in Section 3, the moment M will have a stationary value at this 
section. Substituting xcr = 4 f i  + 6 in the expression for M(x)  given above, we find 

M(x,,) = --(xcr - 6)3 + 1200x,, - 7200 = 32006N-m. 

From the moment diagram it is clear that this is actually a maximum value. However, 
we may establish analytically that this value must be a maximum, using the general 
expression $$? = - q ( x )  as given by Eq. (8.3.3). Noting that in this example, q ( x )  
is positive for x > 6, we find that dr2 < 0, thus indicating that M ( x )  is maximum 
at x = xcr. U 

25 
3 

d*M(x) 

We observe that in all the previous examples, Examples 8.1-8.6, simple ex- 
pressions for the shear forces and moments were immediately obtainable since the 
resultants of the applied forces as well as their location were readily known. Al- 
though this is usually true for simple variations of force (e.g., linear, quadratic, etc.), 
in general one does not know, a priori, the resultant and its location for arbitrarily 
varying given loads 4(x ) ,  as shown in Fig. (8.4.5). It is therefore useful to establish 
explicit relations for the shear forces and moments for such cases; these relations 
are expressed by integral expressions as derived below. 

Figure 8.4.5 

8.5 Integral relations for beams 

Consider a straight beam subjected to an arbitrary lateral load q ( x ) ,  as shown in 
Fig. (8.4.5a). At this stage, we consider only continuous applied loads and exclude 
concentrated forces and moments. Let us assume that the shear force and moment 
are known at some point x = XO, i.e. V(x0)  and M(x0) are given. We wish to obtain 
the shear force V ( x )  and moment M ( x )  at some other arbitrary section x, x > xo, 
a finite distance apart [Fig. (8.4.5b)l. From the differential expression, Eq. (8.3.1), 
we have 

dV(x) = -q(x)dx. (8.5.1 a) 
Taking the integral on both sides, 

T d V  = - 1 q ( x ) d x ,  (8.5.1 b) 
W O )  xo 
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we obtain 

Recalling that the variable appearing within the integral is but a dummy variable, 
we rewrite Eq. (8.5.1~) as 

(8.5.2) 

It is important to note that V(x) is a function of the upper limit x appearing on the 
right-hand side of Eq. (8.5.2). 

Now, similarly, from Eq. (8.3.2), 

dM(x) = V(X) dn. (8.5.3a) 

Integrating both sides, 

(8.5.3b) 

Here, to avoid confusion, we have called the dummy variable, appearing on the 
right-hand side, 6 .  

Substituting Eq. (8.5.2), we obtain 

(8.5.4a) 

or, upon noting that V(x0) is a constant, 

xo \xo / 

Now, the double integral appearing on the right-hand side, may be treated as follows. 
Recalling the expression from the differential calculus, 

s udv = U V  - J vdu, 

we let 

(8.5.5a) 

(8.5.5b) 

(8.5.5~) dv = dc, 
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from which 

Hence, making use of Eq. (8.5.5a), we have 

(8.5.5d,) 
(8.5.5e) 

(8.5.6) 

Therefore, finally, substituting in Eq. (8.5.4b), 
X 

M ( x )  = M(xo) + V(X0)  ' (x - .o> - /(x - t )q( t )d t -  (8.5.7) 

XO 

Equations (8.5.2) and (8.5.7) are thus explicit expressions for the shear V ( x )  and 
moment M ( x )  at any cross-section xg < x , provided the shear and moment at xo are 
known. 

These equations lend themselves to a physical interpretation if we recall, from 
the calculus, that the definition of the Riemann integral is given by 

h 

Thus from Eq. (8.5.2), we have 

(8.5.8) 

(8.5.9) 

while from Eq. (8.5.7), 
n 

M(x)  = M(x0) + V(x0)  - (x - xg) - lim z(x - 4;)q(&)At.  (8.5.10) 

These sums are readily interpreted as being the sum of the individual effect of 
small forces, represented by infinitesimal rectangles (each located at a different & 
on the shear and moments [see Fig. (8.5. la)]). Note, for example, that the quantity 
(x - &)q( t r )A t  [essentially the product of the incremental force &)At located 
at et, times (x - &), its lever arm to x] represents the contribution of this force to 
the moment M at x . 

With this interpretation in mind, we may now immediately write down the ex- 
pression for the shear and moments if, in addition to q ( x ) ,  a number n of con- 
centrated forces P (positive downward) acting at xI (XO < xJ < x) and a number 

A6-0 
n+Oo r=l 
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Figure 8.5.1 

rn of concentrated moments (couples) ck acting at X k  (Xo < Xk < x) are applied 
[Fig. (8.5. lb)]: 

(8.5.11a) 

(8.5.1 lb) 

Finally, it is worth observing that the integral expressions are, in effect, equations 
that represent the equilibrium conditions of any segment of a beam, whose two end 
cross-sections are a finite distance apart. 

Weillustrate theuse ofEqs. (8.5.2)and (8.5.7)bymeans ofthefollowingexample. 

Example8.7: A simply supported beam AB of length L is subjected, as 
shown in Fig. (8.5.2a), to an exponentially decaying lateral load given by 
q ( x )  = We-x’L, where W is a constant. Determine V(x)  and M(x), draw the 
shear and moment diagrams and find the maximum value of M(x). 

Solution: Since the supports at A and B are simple supports which provide no 
constraint against rotation, the moment M = 0 at x = 0 and x = L . Furthermore, as 
explained in the previous examples, the shear at A represents the upward reaction RA 
[Fig. (8.5.2b)l. 

Now, the integral relations developed above relate the shear forces and moments at 
any two cross-sections separated by a finite distance. Thus, since the load expression 
q ( x )  is valid throughout the beam, we set xo = 0 and x = L in Eq. (8.5.7); hence, this 
equation becomes explicitly 

0 = 0 + RAL - W ( L  - (F)e-8/L d t  i n 
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Figure 8.5.2 

or 

Upon evaluating at the upper and lower limits, we obtain 

WL 
e 

RA = -. 

The shear V ( x )  and moment M ( x )  can now be evaluated directly using Eqs. (8.5.2) 
and (8.5.7), respectively, with xo = 0 [with V ( q )  = RA as calculated above] and with 
x representing any cross-section; thus 

M ( x )  = -x - W (x - 4 ; )  e-p/L d4; = WL wL e i 
0 
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The shear and moment diagrams are shown in Figs. (8.5.2~ and d), respectively. To 
find the maximum value of M ,  we determine the value x = x,, at which Y = 0; thus 
from the expression for V ( x ) ,  9 = 1 - In(e - 1) = 0.459 

Substituting in the expression for M(x) ,  we find M,, = M(x,,) = 0.7794 WL2. 
0 

As we have seen, the use of the integral expression for beams permits us to establish 
expressions for V ( x )  and M ( x )  for any arbitrary applied force. Thus we need not 
know, a priori, the resultants nor the location of the resultants of the applied lateral 
forces. 

However, Eqs. (8.5.2) and (8.5.7) have other important uses. Assume, for exam- 
ple, that instead of being given an analytic expression for the lateral applied loads, 
these loads are prescribed numerically in tabular form. The integral expressions 
can then be applied directly, where the integrals may be evaluated numerically by 
means of a computer. It is therefore evident that, given their generality, the integral 
expressions may prove quite useful in practice. 

From our study in the above sections, we are in a position to determine the total 
resultants (shear forces and moments) for a beam subjected to arbitrary lateral loads, 
which are applied in the x-y plane. We now consider the deformation and stresses 
resulting from the bending of the beam. 

8.6 Symmetrical bending of beams in a state of pure bending 

(a) Some preliminary definitions and 
limitations - deformation analysis 
Consider a prismatic beam, that is, one having a constant cross-section of 
area A, which is initially straight with a longitudinal axis lying along the x-axis 
[Fig. (8.6. la)]. We note that at this stage of the analysis, the x-axis is not necessarily 
the centroidal axis. 

Figure 8.6.1 
Since we wish here to investigate solely the effect of bending (i.e., we wish to 

exclude the possibility of twisting effects) we impose the following limitations in 
our study; that is, we restrict our analysis to cases for which 

(i) The y-axis, passing through the cross-sections, is an axis of symmetry. (The 
x-y plane is then a plane of symmetry). For example, cross-sections of this 
class may be rectangular, triangular, or may be such sections as are found 
in engineering practice: e.g., I-sections, channel sections, etc., as shown in 
Fig. (8.6.lb). 



8.6 Symmetrical bending of beams in a state of pure bending 243 

(ii) All applied loads lie in the x-y plane of symmetry and all applied couples act 
about the z-axis only. Thus, as in the previous sections, we consider beams for 
which the moments are M = M,. 

Bending that conforms to conditions of (i) and (ii) is called symmetrical bending. 
It follows, from (i) and (ii), that because of this symmetry, the beam will bend without 
twisting; thus, all points lying in the x-y plane remain in this plane. However, due to 
the bending of the beam, the longitudinal axis of the initially straight beam assumes 
a curved configuration with a curvature denoted by ~ ( x ) .  As a result, all points 
lying in the x-y plane displace in the y-direction; we refer to the y-displacements 
of these points as the lateral displacements (or deflections) of the beam. 

In addition, at this stage, we wish to eliminate the effect of shear in the beam; we 
therefore impose a further limitation to our study: 

(iii) We investigate the case where the beam is in a state of pure bending, namely 
M = const., i.e. M # M(x);  hence, by Eq. (8.3.2), the shear V = 0 throughout 
the beam. 

As a result of this last limitation, and the prismatic property of the beam, it follows 
that the deformation caused by the constant moment is the same at all cross-sections 
of the beam; thus the curvature K of the beam does not depend on the x-coordinate. 
The reciprocal of the curvature K is the radius of curvature, R, of the deformed 
longitudinal axis; i.e., R = 1 / ~ ,  where for pure bending, R # R(x);  i.e. R = const. 
[Fig. (8.6.2)]. 

Figure 8.6.2 

We now examine the deformation of the cross-sections resulting from the lim- 
itation of (iii) above. Let us assume that due to the bending, the beam deforms 
as shown in Fig. (8.6.3a), where the beam is viewed from the negative z-axis. 

Figure 8.6.3 
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Note that in a state of pure bending, all cross-sections must be assumed to de- 
form, as shown in the$gure, in exactly the same manner. If we now consider the 
same beam as viewed from the positive z-axis, the deformation appears as in Fig. 
(8.6.3b). Now, clearly the deformed beam cannot appear both as in Fig. (8.6.3a) and 
Fig. (8.6.3b) simultaneously; the appearance of the deformed beam must be the 
same since it is subjected to the same load. Figures (8.6.3a and b) will be identical 
only if all cross-sections, originally plane in the undeformed state, remain plane after 
deformation [Fig. (8.6.3c)I (i.e., if no warping of the cross-section takes place) and 
if the plane cross-sections remain perpendicular to the deformed longitudinal axis. 

Thus we reach an important conclusion: a beam in a state ofpure bending de- 
.forms in such a way that all cross-sections remain plane and remain perpendicular 
to the deformed longitudinal axis. It is to be emphasised that this pattern of defor- 
mation, here, is not based on an assumption; it is a conclusion based on physical 
reasoning. However, it should be remembered that the arguments used in reaching 
this conclusion are valid only for prismatic beams in a state of pure bending. 

This conclusion forms the basis for the development of expressions that relate 
the deformation and stresses to the forces existing in a beam. 

(6) Moment-curvature relations and flexural stresses in an elastic 
beam under pure bending: Euler-Bernoulli relations 
We consider a long slender straight beam with a (constant) cross-section symmetric 
with respect to the y-axis and subject to pure bending with moment M = const. 
[Figure (8.6.2) represents the beam in the undeformed and deformed state.] The 
beam is made of a linear elastic material with modulus of elasticity E and Poisson 
ratio v . 

We now examine a typical element, originally of length Ax in its undeformed 
state [Fig. (8.6.4a)l. Due to the bending, the element assumes the shape shown in 
Fig. (8.6.4b). Since the two planes definedby the end cross-sections of the deformed 
element are no longer parallel, their intersection in the x-y plane must be along a 
line passing through some point 0, the centre of curvature [see Fig. (8.6.4b)l. We 
denote the (constant) radius of curvature of the deformed longitudinal axis by R and 
let A@ be the subtended angle between the two end cross-sections of the element 
after deformation. Clearly, in the deformed state, some fibres (a) elongate and 
others (2) shorten. There must exist, therefore, some fibres (&?), originally lying 
in the plane P of the undeformed element, which neither shorten nor elongate. 
The x-axis is taken to lie along this plane and thus, because of symmetry, this 
plane is the original x-z plane [Fig. (8.6.4a)l. (Note, however, that although it is 
known to intersect the cross-section, its location has not yet been established.) Let N 
denote the intersection of the plane P, with the cross-section. ARer deformation, the 
plane P becomes a curved surface P’, with typical fibres lying along the arc of 
Fig. (8.6.4b); for these fibres, the extensional strain is, by delkition, E ,  = 0. The 
surface P’, which contains fibres for which cX = 0, is called the neutral surface. 
The x-y plane of the deformed element is shown in Fig. (8.6.4~). 

Clearly, as previously defined, let R be the radius of curvature to the deformed 
&?fibre. Because of the symmetric nature of the cross-section and loading, the 
line N in the undeformed element, falls on the z-axis as shown. This line, which 
represents points for which E ,  = 0, is called the neutral axis. The fibres m‘, n’, t’ 
and the neutral axis, as they appear in a cross-sectional view, are shown in 
Fig. (8.6.4d). 
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Figure 8.6.4 

From geometry, the arc length n'iil = RA6. But since E, = 0 for the nn' fibres, 

RA6 = Ax. (8.6.la) 

Consider now the fibres mm' located at some distance y of the undeformed element, 
measured perpendicularly from the neutral axis, i.e. from the line N [Figs. (8.6.4a 
and c)]. After deformation, the arc length = (R + y)A6. But since all fibres 
in the element were initially of length Ax, the strain E ,  in the mm' fibres is given 
bY 

r;;;;l' - AX (R +y)A6 - RA6 
Ex = - - (8.6.lb) 

Ax R A6 
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i.e. 

Y 
Ex = - 

R‘ 
(8.6.1~) 

From Eq. (8.6.lc), we observe that the strain E ,  varies with the perpendicular 
distance from the neutral axis. Note that Eq. (8.6.1 c) describes the variation of E, 

in the cross-section; it is a geometric relation and in this sense, it is a kinematic 
equation. It is important to observe too that the above relation is valid for beams 
made of any material since we have not considered any material properties in 
the analysis. However, we now introduce the constitutive equations for the linear 
elastic (and isotropic) beam material, which, as we have seen in Chapter 4, are in 
fact Hooke’s law [Eqs. (4.4.10)]: 

1 

1 

E ,  = ,[Ox - v@,, + a,)l, 

E,, = -&J - v(az + a,)], 
E ,  = ,[a, - v(ax + a,,)]. 

(8.6.2) 
1 

Furthermore, since shear effects have been eliminated for this case of pure bend- 
ing, it follows that all shear stresses (t,,,, txz, t,,,) and strains ( E , ~ ,  E,,, E,,,) vanish 
throughout the beam. 

Now, the above relations are considerably simplified if we recall that we are 
considering long slender beams. As in our analysis of thin rods under axial loads, 
we first observe that a,, = 0 at the top and bottom lateral surfaces. (For example, if 
the beam is of a rectangular cross-section [Fig. (8.6.5)], this is immediately evident 
since these top and bottom surfaces are free surfaces.) Similarly on the two lateral 
side surfaces, a, = 0. Now, we recall that a long beam is one for which the lateral 
dimensions are small with respect to the longitudinal dimension. Consequently, 
the distance between the top and bottom, and between the lateral side surfaces are 
relatively small. It is therefore reasonable to assume that there cannot be any great 
variation of a,, and a, between the corresponding surfaces; i.e., a,, and a, must 
remain relatively small. As a result of our limitation to long beams, we therefore 
neglect a,, and a, with respect to a, and thus, in effect, assume that ay = a, = 0 at 
all points throughout the beam. (Notice that this is an assumption based on physical 
reasoning and not a conclusion.) Hence the stress-strain relations, Eqs. (8.6.2), 
become 

1 
E, = E J O X ’  

V 
E,, = --a,, 

E 
V 

E ,  = ---a,. 
E 

(8.6.3a) 

(8.6.3b) 

(8.6.3~) 

Figure 8.6.5 
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Combining Eq. (8.6.3a) and Eq. (8.6.lc), we obtain 

EY a, = -. 
R 

(8.6.4) 

Thus along the line N representing the nn’ fibres ( y  = 0), i.e. the neutral axis, the 
stress a, =O.  From Eq. (8.6.4), we note that the stress also varies linearly with 
the perpendicular distance from the neutral axis. The stress a, is referred to as the 
flexural stres or bending stress since it results from bending of the beam. 

The moment about the neutral axis, which we have established to coincide with 
the z-axis, is given by [see Eq. (2.5.7b)lt 

M = // ya, dA. 
A 

Substituting Eq. (8.6.4), 

M =: J’s y (9) dA = //y2dA. 
A A 

(8.6.5a) 

(8.6.5b) 

However, I = SAS y2  dA is the second moment of the cross-sectional area about 
the neutraE axis. Hence we obtain the moment-curvature relation 

E I  M = : -  
R 

(8.6.6a) 

or since the curvature K = 1/R, we may write 

M = EIK. (8.6.6b) 

This moment-curvature relation is known as the Euler-Bernoulli relation for elastic 
beams and is always valid when M and I are taken about the neutral axis. (Note 
that at this stage, we still have not yet established the location of the neutral axis 
since the location of the z-axis is still unknown.) 

This last equation may be interpreted as the moment required to cause the beam 
to bend to a curvature K ;  we observe that this moment is linearly proportional to 
K and to the quantity E I .  This latter quantity is called the flexural rigidity; it 
depends on the stiffness of the material E and on the given geometric property of 
the cross-section, I .  

Consider now the resultant force F acting normal to the cross-section in the 
x-direction, and given by 

F =//u,dA. 
A 

Substituting Eq. (8.6.4) for a,, 

(8.6.7a) 

(8.6.7b) 
A A 

Since for pure bending, the resultant normal force on the cross-section must vanish, 
i.e. F = 0, it follows that SAS y dA = 0, which, by definition, defines the z-axis 
as a centroidal axis. Thus, since the neutral axis lies on the z-axis, we have now 

t In Chapter 2 positwe y-diremon was taken upward, while here positive y-direction IS downward. This 
accounts for the difference in sign. 
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Figure 8.6.6 

established that the neutral axis must alwayspass through the centroid ofthe cross- 
section. Hence fibers lying initially along the n-centroidal longitudinal axis undergo 
no extension (or contraction). The longitudinal axis of a beam passing through the 
centroids, when subjected to flexure, is therefore said to undergo ‘ inextensional 
deformation’. 

Combining Eq. (8.6.4) and the moment-curvature relation, Eq. (8.6.6a), the ex- 
pression for the flexural stress becomes 

(8.6.8) 

Because the neutral axis coincides with the z-axis in the case of pure symmetric 
bending, we shall rewrite Eqs. (8.6.6a) and (8.6.8) explicitly as 

E Izz  Mz = - 
R ’  

(8.6.9a) 

(8.6.9b) 

with the clear understanding that although we haveprescribed I,, and Mz as being 
about the z-axis, we are in fact taking these quantities about the neutral axis. 

The above expressions for the flexural stress, Eq. (8.6.9b), and the Euler-Bernoulli 
relation, Eq. (8.6.6), are basic relations that govern the flexure of beams under pure 
bending. 

Substituting Eq. (8.6.9b) in Eqs. (8.6.3), we obtain the simple expressions for the 
strains, namely 

M*Y 
E Z Z  

E, = -, (8.6.9~) 

(8.6.9d) 

(8.6.9e) 

The linear variation in the cross-section of the flexural stress a, with y is shown in 
Fig. (8.6.6). We observe that the maximumflexural stress occurs at the points farthest 
Erom the neutral axis. Note, however, that since we have made use of Eqs. (8.6.2), the 
derived expressions are valid only for linear elastic behaviour of the beam, provided 
that the flexural stress is less than the proportional limit, i.e. lo,l 5 

Returning now to the expression for the flexural stress, it should be noted that for 
M > 0, a, > 0 (tension) for y > 0, and a, < 0 (compression) for y < 0. (The reverse 
is clearly true for M < 0.) While we observed that the expression is valid for a 
flexure stress below the elastic and proportional limit, it is of interest to note that it 
is independent of any material constants. Thus, for a given M ,  a, is the same for all 
linearly elastic beams having the same cross-section, irrespective of the material. 

Finally, since, as previously noted, the magnitude of a, is greatest at the point 
farthest from the neutral axis, we may write 

(8.6.10a) 

where c =Iylmax. 
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Alternatively, 

(8.6.10b) 

This leads us to the definition of the section modulus S, given as 

S = E -  I,, (8.6.1 Oc) 
C 

from which we have 

(8.6.1 Od) 

or 

lMzl = S b x I m a x *  (8.6.10e) 

Note that the section modulus S is a geometric property of the cross-section (whose 
dimensions are m3); this section property is found to be very useful in the engineer- 
ing design of beams. 

The subscripts z were used here to specie clearly that the quantities are to be 
taken about the z-axis. However, since we are considering only moments about this 
axis, we shall, in general, hereafter adopt (with the exception of Section 12 below) 
the simplified notation, M and I ,  with the clear understanding that M Mz and 
I EE Izz. 

We illustrate two interesting applications of the above relations by means of the 
following examples. 

Example 8.8: A beam of rectangular cross-section, as shown in Fig. (8.6.7a), is 
made of steel, with E = 200 GPa. The maximum permissible stress a, i s  given 
as ux = 120 MPa. (a) Determine the maximum permissible moment that the 
cross-section can withstand. (b) What is the radius of curvature R of the beam 
if all cross-sections are subjected to the same moment. 

Figure 8.6.7 

Solution: 

(a) For this cross-section, the second moment of the area I =Izz is calculated as 
follows [Fig. (8.6.7b)l: 

(8.6.1 1) 
I = //y2dA = b T y 2 d y  = b [ % ] ~ ~ , 2  = - bd3 

12 + 
A -d/2 
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With b = 2 cm and d = 6 cm, I = = 36 cm4 = 36 x 1OW8 m4. 12 
Therefore, 

(gx)maxI (120 x 106)(36 x IO-') 
Mmax = - - - = 1440N-m. 

Ymm 3 x 10-2 
(b) From the Euler-Bernoulli relation, 

E I  
A4 14.4 x 102 

(200 x 109)(36 x lows) R=-- - = 50.0 m. 

It is worthwhile noting that the radius of curvature of this relatively stiff (steel) 
beam is very large. 0 

Example 8.9 A thick cable i s  composed of individual strands of copper wire 
each of diameter d = 1 .O mm and behaves as an ideal elastic-plastic material. 
The originally straight cable i s  to  be wound about a spool of diameter D [Fig. 
(8.6.8)]. Determine the smallest diameter D of the spool such that the stress 
in the strands should not exceed CO. (Note that this requirement is necessary 
if the wire i s  to  be straight after it unwinds.) 

Figure 8.6.8 

Solution: From Eq. (8.6.10b) or (8.6.10e), 

is the maximum moment that the wires can sustain and still remain elastic. (Note that 
the section modulus is S = &.) 

The moment in the strands, as a function of curvature is given, according to the 
moment-curvature relation, Eq. (8.6.6), by 

E I  E l  M = : - = -  
R 012 '  

Equating the above two expressions, 
E 

D = -d. 
g 0  

Using typical values for copper (CO = 80 MPa, E = 100 CPa), 

= 1.25 m. (100 x 109)(1.0 x 
80 x 106 

D =  
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It should be observed that for a relatively stiff material (i.e., large E) ,  one requires a 
0 relatively large diameter spool; increasing d has the same effect. 

Example 8.10: A simply supported elastic beam AB, having an arbitrary sym- 
metric cross-section and whose flexural rigidity is E I ,  is subjected to end 
couples M at  each end, as shown in Fig. (8.6.9a). The depth of the beam is 
given as d. Determine (a) the lateral displacement A at  the mid-point [Fig. 
(8.6.9b)I for any given applied end couples M, assuming elastic behaviour, 
(b) the largest moment ME for which the beam remains elastic. Assume that 
the maximum stress for elastic behaviour is a, =a0 [Fig. (4.6.1)l and (c) the 
lateral displacement A at the mid-point of the beam when subjected to the 
end couples M= M. 

Figure 8.6.9 

Solution: 

(a) For the given applied end couples M ,  the moment at any cross-section will be A4 
and thus the beam is in a state of pure bending with constant radius of curvature 
R. Therefore, the shape of the beam in the deformed state will be a portion of 
an arc of a circle whose subtended angle we denote as 28. Moreover, as we have 
seen, the strain of fibres originally along the x-axis is E, = 0; i.e., the fibres AB 
are said to be inextensional. Hence, the length AB* along the arc is L = 2R6' or 
8 = I 2R [Fig. (8.6.9b)l. 

Now, from geometry, 

A = R(l  - COS@) (8.6.12a) 

or 

A = R [I -COS ( ~ ~ 1 .  
Substituting from the general Euler-Bernoulli relation R = %, 

A = E  M [ l - c o s ( ~ ) ] .  

(8.6.1215) 

(8.6.13) 

We note that this is an 'exact' result in accordance with our theory. We shall use 
this result later in evaluating the accuracy of a linearised theory for deflections of 
beams. 

(It is worthwhile to evaluate the displacement A numerically in order to es- 
tablish an order of magnitude of A under typical conditions. For example, let us 
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assume, for simplicity, that the beam is of length L = 2 m and is made of alu- 
minium, with EA = 70 GPa and a0 = 50 MPa. Furthermore, let us assume that 
the beam is of rectangular cross-section with b = 2 cm and d = 2c = 6 cm and 
that end moments M = 300 N-m are applied. Then the displacement A, given by 
Eq. (8.6.13), is A = 0.595 cm. Note that the ratio A/L = 2.976 x 10-3, which is 
indeed very small. Such small displacements are typical of many beams encoun- 
tered in engineering practice). 

(b) The beam will behave elastically provided ja,J 5 00. Therefore, the maximum 
elastic moment M = ME that can be applied, according to Eq. (8.6+10b), is 

(8.6.14) 

since, for any arbitrary symmetric cross-section of depth d ,  c can always be 
expressed as c =ad, where 1/2 5 a < 1. [For the case of a rectangular cross- 
section, a = 1/2. Hence for the numerical values given previously in part (a), 
ME = 600 N-m. Therefore, the behaviour of the beam, when subjected to end 
couples M = 300 N-m, as in the numerical case of part (a), is seen to be within 
the elastic range.] 
Substituting Eq. (8.6.14) in Eq. (8.6.13), the maximum deflection A due to ME 
becomes 

(8.6.15) 

It should be noted that Eq. (8.6.15) represents the largest possible mid-span deflec- 
tion of the beam in the elastic range. It is of interest to observe that this maximum 
deflection depends on the stiffness of the material (through the ratio E/ao) and 
on the depth of the beam (through the ratio L / d )  but not on the specific shape of 
the cross-section. 

Again, we observe that this is an exact result consistent with Euler-Bernoulli beam 
theory. 

Substituting the same numerical values as above in Eq. (8.6.15), we obtain for 
the rectangular cross-section (using a = 1/2), the maximum elastic deflection at the 

0 mid-span, Amax = 1.190 cm, and hence A/L = 5.95 x 10-3. 

o(c) Axial displacements of beams under pure bending 
As noted previously, in a beam under flexure, fibres lying along the neutral surface 
undergo no extension. It is of interest to determine the axial displacement of such 
fibres in a beam under pure bending and, in particular, the axial displacement at 
the end points. Let us therefore consider the beam of Example 8.10 where we 
observed, from Fig. (8.6.9b), - that point B has moved to B*. We wish to determine 
the displacement A, G BB* and, specifically, the ratios Ax/L and A,/A. From 
simple geometry, A, = L - 2R sine. Since R = E I / M  and 6 = L/2R, we obtain 

2Er sin (E) 
2 E I  

A , = L - -  
M 

or 

A, =,[I --sin("")]. 2E I 
M L  2 E I  

(8.6.16a) 

(8.6.16b) 
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Clearly, A, increases with increasing moment M and therefore reaches its maxi- 
mum value under elastic behaviour when M =  ME as given by Eq. (8.6.14). 
Therefore, under this moment, 

A , = L  [ I - -  2Ead sin ( )]. COL 2Ead 

Letting y = &, we may write 

A , = L  1--sin- . [ ; :I 
Similarly from Eq. (8.6.13, 

A = "[i Y -cos$]. 

(8.6.17a) 

(8.6.17b) 

(8.6.1 8) 

Now, for most engineering materials within the elastic range, DO/E = O( 10-3), and 
consequently y is an infinitesimal, i.e. y << 1. Using the series representations for 
sin and cos, we therefore have 

and 

from which 

A, Y 2  --- - 
L 24 

and 

A, Y = -  - 
A 3 '  

(8.6.19b) 

(8.6.20a) 

(8.6.20b) 

Letting (I! = 1/2, and using ao/E = IOw3, we obtain, say for L / d  = 20, the upper 
bounds 

A, A, - = 1.7 x 1OW6 and - = 6.7 x 10-3. 
L A 

Similarly for L/d = 100, 

A, A, - = 4.2 x 10-4 and 
L A 

- = 3.3 x lop'. 

Noting that the ratio A, /L is an infinitesimal of second order, we thus observe that 
theprojectedlength L* onthex-axis is L* = L ( l  - A,/L) % L .  Hence, consistent 
with a linearised theory, we make no distinction between L* and L and therefore 
use the original length L, for example, in writing the equations of equilibrium. 
[See comment (e) of Section 3 in Chapter 6.1 While the above has been shown to 
be true for the specific example of pure bending considered here, a more general 
expression, derived later in Chapter 9, yields the same result for cases other than 
pure bending. 
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(d) Comments on the solution - exactness of the solution 
We first collect together the results obtained above for the elastic beam in a state of 
pure symmetric bending: 

E I  
b ’ 

(8.6.21) ay = a, = 0 ,  rxY = tyz = zZx = 0,  

, E x y  = Er, = r,, = 0. 

Now, clearly, the above quantities satis@ the stress-strain relations. Furthermore, 
if we substitute the stresses in the equations of equilibrium, Eqs. (2.4.4) (with all 
body forces B = 0), we find that these equations are satisfied identically. In fact, 
all the relevant equations (called the equations of linear elasticity) are satisfied. 
Hence we may conclude that the solution obtained is ‘exact’ within the context of 
linear elastic theory. 

(e) Methodology of solution - the methodology 
of mechanics of materials 
It is appropriate, at this point, to reflect on the methodology that has been followed 
to derive the above relations. Indeed, as may already be evident, the methodology 
used in deriving the relations for pure bending of a beam is precisely the same as 
that used previously in the derivations of the relations for axial deformation and for 
torsion. 

We recall that, in general, it is necessary to satisfy three sets of equations: (a) the 
geometric (kinematic) relations of deformation, (b) the stress-strain relations and 
(c) the equations of equilibrium. 

In considering axial behaviour, torsion and flexure, respectively, the investigations 
proceeded basically along the same five steps: 

(a) The fundamental first step was to establish a deformation pattern, based either 
on a physically plausible assumption (as in the case of axial deformation) or a 
physical conclusion (as in the case of torsion and bending). 

(b) From the deformation pattern, the variation of strain in the cross-section was ob- 
tained from simple geometric considerations; that is, from strain-displacement 
relations. These are essentially geometric relations, which define the strain in 
terms of a global deformation quantity of the cross-section, namely E ,  = const., 
6 or 1/R (for axial, torsional and flexural behaviour respectively). 

(c) Then, making some reasonable assumptions - again based on plausible phys- 
ical reasoning - on the stresses, we introduced the stress-strain relations; this 
then yielded the variation of stress in the cross-section in terms of the global 
deformation quantity. 

(d) Upon using equations of mechanics, namely the relation between stresses in 
the cross-section and the ‘stress resultant’ ( F ,  T ,  M ,  respectively), the global 
deformation of the cross-section was expressed in terms of the stress 
resultant. 

(e) Upon substituting back in (c), we obtained explicit expressions for the varia- 
tion of stresses in terms of the stress resultants and a geometric property of the 
cross-section. 

This methodology is shown clearly in the following block diagram for the three 
types of phenomena previously considered. 
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Strain-displacement Stress-strain Eqs. of - - 
relations Hooke’s law mechanics 

Back 

substitution 
c 

I 

(a) 
Deformation 
pattern 

(c> 

Resulting 
stress 

Cross-sections 
remain 
plane 

(d) 
Deformation 
in terms of 

(b) 
Resulting 
strain 
distribution 

Ex = E x @ ) ,  

distribution 

U, = EeX 

~ ~ , 3 = G @ r  

EY x- 

stress result 
F 

T O = -  
GJ 

R EI 

= E2 

L = M  
II 

in terms of 
stress result 

ux = F/A 

We observe that the quantities E A, G J ,  E I are analogous; namely, they represent 
the axial, torsional and flexural rigidity of a member, respectively. In each case the 
rigidity is a product of a material property (representing stiffness of the material) 
and a geometric property of the cross-section. 

8.7 Flexure of beams due to applied lateral loads - 
Navier’s hypothesis 

In our previous discussion, we developed the expressions for flexure of beams that 
are in a state o f  pure bending, M f M(x) ;  in particular, we obtained the Euler- 
Bernoulli relations and expressions for the flexural stress, 

which we have seen are ‘exact’ solutions. It is important to re-emphasise that these 
expressions were derived based on the fundamental conclusion: plane sections re- 
main plane and perpendicular to the deformed longitudinal axis. 

Consider now a beam subjected to typical arbitrary transverse loads acting in 
the x-y plane of symmetry [Fig. (8.7.1a)l. In this case, the moment M = M ( x )  
and V ( x )  f 0 [Figs. (8.7.lb and c)] and thus we no longer have a state of pure 
bending. Consequently, we can no longer conclude rigorously from the fundamental 
arguments o f  symmetry that plane cross-sections remain plane in the deformed state. 
However, careful experiments performed in a laboratory show that, although some 
warping of the cross-section does take place, such warping is extremely small for 
long slender beams and indeed is quite negligible. 

We therefore make the following important assumptions: we assume (a) that even 
under such loading conditions, plane sections still remain plane after deformation 
and that they remain perpendicular to the deformed longitudinal axis. This assump- 
tion is called Navier’s hypothesis. Furthermore, we shall assume (b) that the lateral 
stresses ay and az are small compared to a,. 

If we accept these assumptions, we again arrive at both Eqs. (8.6. lc) and (8.6.4). 
Then, proceeding from this point in the derivation, we consequently obtain the 
same Euler-Bernoulli relation and the same expression for the flexural stresses a,. 
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Figure 8.7.1 

However, since M = M(x),  we then have 

and 

(8.7.la) 

(8.7.1 b) 

Nevertheless, we recognise that the above relations, Eqs. (8.7.la) and (8.7.lb), are 
not exact; they are merely very good approximations, which yield errors of a very 
small percentage. Consequently, they are widely used in engineering analyses of 
beams since they provide very accurate solutions to a wide variety of engineering 
problems. [Equations (8.7.1) are often referred to as engineering beam formulas.] 

We shall, however, show, at a later stage, that the expression for the flexural stress 
is exact not only for M = const. but also when M is a linear function of x .  

Example 8.11: A wooden member of length L = 3 m, having a rectangular 
cross-section 3 cm x 6 cm, is to be used as a cantilever beam with a load 
P = 240 N acting a t  the free end [Figs. (8.7.2a and b)]. Can the member carry 
this load if the allowable flexural stress, both in tension and in compression, 
is  (qJall = 50 MPa? 

Solution: The moment M = M, at any cross-section is given as M(x)  = -Px 
[Fig. (8.7.2c)I. 

From Eq. (8.6.1 I), the second moment of the area about the z-axis is Zzz = 5, 
where b and d are the dimensions in the z- and y-directions, respectively. Substituting 
in Eq. (8.7,lb), the stress in any cross-section of the bottom fibres A [located at 
y = d /2  of Fig. (8.7.2b)l is 

MY M(x)(d/2)  6 W X )  fix=-- - =E---- 

Z bd3/12 bd2 * 
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Figure 8.7.2 

Similarly, the stress in the top fibres B (with y = -d/2) is [Fig. (8.7.2b)l 

The largest (absolute) value of the stresses will occur at the fixed end, x = L ,  where 
N ( L )  = - P L . Therefore, at x = L , 

We observe that at A the fibres are in compression while at B they are in tension. It 
is also worthwhile to note that the stresses are inversely proportional to the square 
of the depth of the section. This implies immediately that in using such a member, 
it is preferable to use the beam oriented as shown in Fig. (8.7.2e), rather than as in 
Fig. (8.7.2d). 

Ifthe beam is oriented as in Fig. (8.7.2d), with b = 6 cm and d = 3 em, the allowable 
load is 

(ax)allbd2 (50 x 106)(6 x 10-2)(3 x 10-2)2 
= 150 N. - - 

6 L  6 x 3  Pall = 

For a beam oriented as in Fig. (8.7.2e), with b = 3 cm and d = 6 em, 

(ax)aIibd2 (50 x 106)(3 x 10-')(6 x 10-2)2 
= 300 N. - - 

6 L  6 x 3  Pail1 
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Thus the beam can carry the given load P = 240 N only when oriented as in 
Fig. (8.7.2e). 0 

Example 8.12: A simply supported beam of length L = 4 m is subjected to 
a uniform load w=400 N/m over i t s  entire span [Fig. (8.7.3a)j. The cross- 
section of the beam i s  made of two pieces of wood, which are glued together 
by a strong adhesive so as to form a monolithic T-section, as shown in Fig. 
(8.7.3b). (The allowable tension and compressive stress of the wood is  given as 
gall = 25 MPa.) Determine the largest compressive and tensile flexural stress 
in the beam, assuming the beam behaves elastically. 

Figure 8.7.3 

Sodution: In Example 8.1, the moment M ( x )  in the beam was determined. From the 
moment diagram, shown again in Fig. (8.7.3c), the maximum moment M =  = 

Since the terms in the expression for the flexural stress, cr, = Mzy/IZz,  are taken 
about the centroidal z-axis of the cross-section, it is first necessary to locate the 
centroidal axis. Letting 7 be the distance of the centroidal z-axis measured from the 
bottom of the section, and considering the T-section as a combination of the two 
rectangular component elements, we have 

o(4p = 800 N-m. 
8 

Using the parallel axis theorem (see Appendix A. 1) (and recalling that for each of 
the rectangular components, the second moment of the cross-sectional area about its 
own centroidal z-axis, Izz = bd3/12 [see Eq. (8.6.1 l)]), we calculate I Iz, of the 
entire section: 

+ 2 4 ~ 2 ~  + - cm = - m4. 
3 

10-5 
+ 1 6 ~ 3 ~  =--- I I? 3 [2:283 
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The stress at the bottom fibres (A) of the section is then 

= 72.0 x 105 N/m2 = 7.2 MPa. 
MYA (800)(3 x 10-2) 

- 
1/3 x 10-5 CxlA= 7 - 

Similarly, the stress at the top fibres (B) of the section is 

Note here that the stress O-A is a tensile stress and CTB is compressive. The variation 
(with y )  of ox in the cross-section is shown in Fig. (8.7.3d). Since the magnitudes of 
both G,~A and o x I ~  are less than the prescribed (o&kl = 25 MPa, the beam is in the 
elastic range. 0 

As we have seen, if M = M(x) ,  then from Eq. (8.3.2) is clear that V ( x )  # 0; that 
is, a shear force exists, in general, on any given cross-section. It necessarily follows 
that shear stresses must exist on these cross-sections. We derive expressions for 
these shear stresses in the following section. 

8.8 Shear stresses in beams due to symmetric bending 

(a) Derivation 
We consider a prismatic elastic beam having flexural rigidity EI and subjected to 
lateral loads such that M = M ( x )  [Fig. (8.7,1)], where, at any cross-section, the 
flexural stresses are given by Eq. (8.7. Ib). Now since M = M(x) ,  the stresses vary 
from section to section, i.e. ox = o;c(x, U). Let us consider an element of the beam of 
width Ax, which we isolate as a free body, as shown in Fig. (8.8.1). If, for example, 
M(x)  varies positively with x, then for any given y ,  ox@) -= o,(x + Ax). We note 
moreover that since the resultant thrust F on each of the two end cross-sections of 
the element vanishes, the element is in equilibrium in the x-direction. 

Figure 8.8.1 

Let us make a cut of the element by means of an arbitrary plane H (whose normal 
n is perpendicular to the x-axis), as shown in Fig. (8.8.2a), and let b denote the 
length of the cut (the line K) in the cross-section [Fig. (8.8.2b)l. Note that the area 
of this plane is then b x Ax.  

We now isolate the two portions of the element and consider them as free bodies. 
We choose arbitrarily to examine the equilibrium of the bottom part, and denote the 
area of the cross-section of this bottom portion by 2 [Fig. (8.8.2a)l. Now, clearly, 
this isolated portion of the element cannot be in equilibrium in the x-direction 
under the two flexural stresses o,(x) and a& + Ax)  alone. However, we recall 
that whenever we make a cut in a body, we must consider the stresses that act upon 
this cut. In particular, shear stresses tnx exist that act tangentially along the plane 
H. Let t tnx denote the average shear stress, which acts in the plane H, where we 
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Figure 8.8.2 

observe, we have takenpositive t to be acting toward the left [Fig. (8.8.2a)l. (Note 
that at this point we have abandoned the standard sign convention for stresses since 
we have taken positive tnx to act in the negative x-direction.) 

We now wish to satisfy equilibrium in the x-direction. Taking + )3 F, = 0, we 
have 

~ 

A A 

or 

But, by Eq. (8.7.lb), a&, y) = 7. Substituting in the above and noting that 
M ( x )  and Z are not functions of dA, we have 

r 1 

or recombining 

(8.8.1 d) 

Taking the limit as Ax -+ 0 

[M(x + Ax) - M ( x ) ]  

- 
A 

t = - lirn 
Zb AX+O ( Ax 

A 
(8.8.1 e) 

since, by definition, the limiting process yields the derivative. 
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Finally, using Eq. (8.3.2), dM(x)/dx = V ,  we have 

(8.8.2) 

We recall now that the above integral is, by definition, the (first) moment of the area 
A about the z-axis; we denote this by the symbol Q 
- 

QZ, that is, we let 

Q = //ydA. 
A 

Hence we finally obtain 

V Q  t=--- 
I b  . 

(8.8.3) 

(8.8.4a) 

For emphasis, recalling that V = V,,, I = I=, and Q E Qz,  we rewrite Eq. (8.8.4a) 
explicitly as 

(8.8.4b) 

Now we recall that in the above derivation, t zz tnx was defined as the average 
shear stress acting on the plane H of area b x Ax. However, in the process of the 
derivation, we have taken the lirnit as Ax +- 0 [see Eq. (8.8.le)J. Hence t no longer 
represents the average stress on the plane H but rather yields the average shear stress 
existing at points along K, the line of the cut. However, from the equality of the 
conjugate shear stresses, it is also true that t = tnx = E,, [Fig.(8.8.2c)]. This latter 
term defines the shear stress acting on the plane of the cross-section. Consequently, 
we conclude that the expression for t, given by Eqs. (8.8.4), represents the average 
shear stress in the cross-section that acts at points along K, the line of the cut of 
length b, and that acts perpendicular to this line. 

Since the usual sign convention for stresses was abandoned, it is necessary to 
define what we mean by a positive (and negative) sign for t. We recall that t, as it 
appears in the derivation, was originally taken to be acting to the left in Fig. (8.8.2a). 
Hence apositive value oft, acting on the cross-section (having apositive x-face), 
as calculated by Eq. (8.8.4), represents a stress that is directed inward toward the 
area of the isolatedportion represented by the area 2. Similarly, a negative value 
represents a stress component directed out of this area 2. 

We illustrate the use of Eq. (8.8.4) by means of the following examples. 

Example 8.13: A beam of rectangular cross-section of width b and depth 
d = 2c, as shown in Fig. (8.8.3a), is subjected to a positive shear force V E Vu. 
Determine the shear stress distribution for t along any line D-D, which is 
parallel to the z-axis; i.e., determine t = t-(y). 

Solution: Since we are interested in t along D-D, we imagine that we make a 
cut along this line and isolate the two portions [Fig. (8.8.3b)l; we choose to apply 
Eq. (8.8.4) to the lower portion. (Note that we have arbitrarily chosen the lower portion; 
we may equally choose the upper portion - the final physical result must clearly be Figure 8.8.3 



262 Symmetric bending of beams - basic relations and stresses 

the same.) Thus we have 

(8.8.5) 

that is, the y-dependency is a function of Qb) alone. 
Now, because of the simple geometry of the area 2, we need not use here the 

integral expression, Eq. (8.8.3), to calculate Q, which represents the moment of this 
area; instead we obtain the moment of 2 as follows: 

Noting that I = = y, we obtain 

3 v  
4 bc T O i )  = - -i;(c2 - y2). 

Finally, since the cross-sectional area A = 2bc, 

(8.8.6a) 

(8.8.6b) 

From Eqs. (8.8.6), we make several observations: 

(i) At y = f c ,  t = 0; that is, the average shear stress vanishes at points along the top 
and bottom of the cross-section. Now, since the shear stress z acts on the plane 
of the cross-section, the condition TO, = dzc) = 0 is a physical necessity; if this 
were not so, we would violate the physical boundary conditions for the beam. It 
is worthwhile to explain this point in some detail. Assume, for a moment, that 
TO, = f c )  were not equal to zero. Then recalling that t ZE txn = tnn, we would 
then have tn& = kc) # 0. Now tnx at y = f c  represents the shear stress on 
the bottom and top lateral surfaces, respectively [Fig. (8.8.4)]. Clearly, the shear 
stresses on these two ‘free’ surfaces must vanish. Thus the physical condition 
leads to the required boundary condition TO, = kc) = 0, which is satisfied by 
our solution. 

Figure 8.8.4 

(ii) For V > 0, t(y) 2 0 since y2 5 c2. Thus the directions of the shear stress are 
everywhere directed into the area 2 (downward in this case), as shown in 
Fig. (8.8.5a). 

(iii) The distribution of the average shear stress in the cross-section is parabolic with 
y [Fig. (8.8.5b)l. Furthermore, t is a maximum at y = 0, i.e., along the z-axis; 
this maximum value is z = 5 5. We note that it is always possible to express the 
maximum shear stress as 

(8.8.7) 
V 
A t = k - - ,  
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where k is a constant, which depends on the geometry of the cross-section, and 
A is the cross-sectional area. Thus for the rectangular cross-section considered 
here, k = 3/2; for a circular cross-section, k = 4/3. For these two geometries, the 
maximum shear stress acts at points along the neutral axis. It should be pointed 
out, however, that while this occurs very often, it is not necessarily true that the 
maximum shear stress always lies along the neutral axis for all cross-sections. 
Thus, although the value for k is the same, namely k = 3/2, for a cross-section 
having a triangular shape, in that case, the maximum shear stress does not occur 
at the neutral axis. 0 Figure 8.8.5 

Example 8.14 Consider a beam whose cross-section is symmetric about both 
the y- and z-axes, as shown in Fig. (8.8.6a). Assume that a shear force V V, > 0 
i s  acting on the cross-section. (The cross-section component (ii), ABC (or DEF), 
is called the flange of the section; the component (iii), BE, is referred to  as 
the web.) Determine the average shear stress t acting along the lines a-a, 
c-c, and d-d in terms of V and I. (Note that the line a-a is just below the top 
flange and line d-d is immediately to the left of the web.) 

Figure 8.8.6 

Solution: Since V and I are constants, the shear stress along the three given lines 
will depend solely on Q and b. 

Along a-a: We isolate the rectangular portion denoted by (i) in Fig. (8.8.6b). 
Then, b = 2  cm; Q = (2 x 4) x (-4)= -32 cm3 ++ t = -gv - -16v. 

Note that for V > 0, t < 0, which indicates that the stress is physically pointing 
out of the area (i), i.e. upward. This result is shown in Fig. (8.8.6e). 

Along c-c: We isolate the entire upper part of the cross-section above the z-axis. Let- 
ting (i), (ii) and (iii) represent the rectangular components of the areas [Fig. (8.8.6c)], 
we have b = 3 cmand Q =2[(2 x 4) x (-4)] + (2 x 12) x (-7) + (6 x 3) x (-3) = 
-286 cm3 -++ t = -y$. 

2 1 -  I 
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Again, for V > 0, a negative z indicates that the stress is acting out of the area 
[in this case downward, as shown in Fig. (8.8.6el. 

Along d-d Here, upon making a cut along d-d, we find it convenient to choose the 
L-shaped portion definedby the rectangular components (i) and (iv) [Fig. (8.8.6d)I. We 
thenhave b=2 cm; Q = ( 2 x 4 ) x 4 + ( 4 . 5 x 2 ) x ( 7 ) = 9 5 c m 3 + + t = ~ ~ =  

Note that since t > 0, the shear stress is pointing into the area I?, i.e. to the left 
47.55 

in Fig. (8.8.6e). 

The shear stresses (due to a positive shear V, > 0) acting at points throughout 
the section are shown in Fig. (8.8.6f). Such a distribution of shear stresses is, for 
obvious reasons, often referred to as the shearflow. 

We observe that the idea of ‘left’ and ‘right’ or ‘up’ and ‘down’ are totally 
irrelevant in determining the proper direction in which the shear stress acts. The 
direction is determined solely from a consideration of the sign with respect to the 
area 2 which was used as the isolated portion. (Since the use of Eq. (8.8.4) implies 
isolating a portion 2 of the cross-section, one may always choose either portion as 
the isolated fiee body; one usually chooses the more convenient area, as was done 
in calculating t at d-d above. However, as was pointed out previously, the choice 

0 is irrelevant; both choices lead to the same physical solution). 

(b) Limitations on the derived expression 
We first recall that t, as given by Eq. (8.8.4), yields the average value of the 
shear stress along points lying on a line of length b oriented in some arbitrary 
direction. We note too that the end points of this line always lie on lateral sur- 
faces of the beam. Because Eq. (8.8.4) leads only to average values o f t ,  one may 
obtain, in certain cases, results that violate the actual physical boundary condi- 
tions of a problem. Consider, for example, a circular cross-section, as shown in 
Fig. (8.8.7a), subjected to a shear force V .  Use of Eq. (8.8.4) then leads to an 
average value o f t  along line a-a, which acts perpendicularly to this line. Now, 
it is clear that the shear stress on any lateral surface must vanish. Hence, because 
of the equality of the conjugate shear stresses, the shear stress t in the cross- 
section at points along the outer boundary (e.g., point B) must act tangentially 
to the circumference in order to satisfy this condition. This reasoning follows 
precisely the same as discussed in comment (i) of Example 8.13. (Recall also 
that this was found to be true in our discussion of torsion in Chapter 7.) Thus the 
average t, as calculated by Eq. (8.8.4), does not satisfy the boundary conditions 
in this case. In fact, the boundary condition will only be satisfied ifthe lateral 
suyfaces are perpendicular to the line K at the two end points. (Note that in 

Figure 8.8.7 
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Examples 8.13 and 8.14, the boundary conditions were satisfied along all lateral 
surfaces.) 
Since Eq. (8.8.4) leads to average values of the shear stress along points lying 
on a line of length b, we should expect the accuracy of the results to depend on 
the length b. Now, if b is relatively small (with respect to other dimensions of 
the cross-section), one may expect only a small variation o f t  along this line. 
Hence, if b is relatively small, the calculated value o f t  will be reasonably close 
to the true value for any given point along the line. However, if b is relatively 
large, Eq. (8.8.4) may lead to relatively inaccurate results. This is illustrated 
for the cross-section shown in Fig. (8.8.7b), where it is clear that the use of 
Eq. (8.8.4) will lead to far more accurate results for t along line a-a than along 
line c-c. 

The use of Eq. (8.8.4) therefore must be used with great care. Nevertheless, 
although it provides but average values, this expression proves to be very useful 
in yielding reasonably accurate values for the shear stress in a large variety of 
problems. 

We shall use the derived expression for t (as well as for CT,) in a subsequent 
section in applications to the design of beams as encountered in typical engi- 
neering practice. However, we first continue to analyse some implications of the 
derived expressions in order to better understand the limitations and applicability 
of these expressions. 

(c) Shear effect on beams - warping of the cross-sections due to shear 
As we have seen, for all states, except for the case of pure bending, there exist 
shear forces V ( x )  # 0 and consequently shear stresses t exist throughout the cross- 
section. Now, as discussed in Chapter 4, such shear stresses lead to shear deforma- 
tion; that is, any rectangular element subjected to shear stresses will undergo shear 
strain and deform into a parallelogram. If we consider an element Ax in the x-y 
plane, between two adjacent cross-sections, each small sub-elemental rectangle will 
deform.+ 

For the case where V = V ( x ) ,  each cross-section will deform, i.e. warp, differ- 
ently. As aresult the length of any fibre betweenthe cross-sections will be affected by 
this difference in warping. However, if V = const., it is clear that all cross-sections 
deform identically and consequently, for this case, the length of fibres between 
any two cross-sections does not change, as shown in Fig. (8.8.8). Thus, we may 
conclude that when V = const., jibres originally parallel to the x-axis will undergo 
no extension due to warping of the cross-sections. 

Figure 8.8.8 

8.9 Re-examination of the expression for flexural stress 
a, = M y / / :  further engineering approximations 

(a) Examination of equilibrium state 
We recall that the expression for the flexural stress was derived for a state of pure 
bending in the absence of warping of the cross-sections. By invoking Navier's 
hypothesis, we have seen that the expression may then also be applied to beams 

t Warping at any given cross-section thus depends on the shear strain cxy which is a function ofy as well as 
ofx. [For example, for a beam having a rectangular cross-sechon (see Example 8.12), sxy = 3 V/4AG at 
y = 0 and sxu = 0 at y = f c  with sub-elements near the neutral axis undergoing the largest deformation 
while at y = f c ,  the sub-elements undergo no deformation.] The overall warping deformation of the 
cross-section may be represented by a weighted average in terms of a shape factor 01 which depends 
on the shape of the cross-section; one then refers to the average shear stmin in the cross-section as 
cxy(x) =a! V(x)/2AG where A IS  the cross-sectional area. 
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subjected to lateral forces. We examine here the implications of this generalised 
engineering use of the expression. 

Now, we recall from Chapter 2 that (in the absence of body forces B )  the stresses 
in a body must satisfy the equations of equilibrium, Eqs. (2.4.4), namely 

atxz aty, ao, 
ax ay aZ - +-+-=o.  

(8.9. la) 

(8.9.1 b) 

(8.9.1 c) 

Here we use the notation a, E txx, ay = tyy, az E t,,. 
We recall that in the derivation of the expression for the flexural stress it was also 

assumed, for long slender beams, that ay = az = 0. We now show that even for the 
case V # 0 we may assume tyz to be zero for such beams. (To visualise better the 
physical situation, let us concentrate on a beam of rectangular cross-section [Fig. 
(8.9.1)].) We first observethat alongthelateralsurfacesofthebeam, tyzb = kc) = 0 
and tzy(z = fb /2 )  = 0. Thus, on all lateral surfaces, zzy = 0. Moreover, since we 
are concerned here only with symmetrical bending of beams of symmetrical cross- 
sections, it follows that at all points along the y-axis, cyz = 0 and hence tyz = 0. 
Furthermore, since the cross-sectional dimensions of long slender beams are rel- 
atively small, it is therefore reasonable to assume that tzy = 0 at all points in the 
beam. [Note that tx,y and t,,, which act in the cross-section, cannot be assumed to 
vanish everywhere - indeed these are the stresses arising due to the resultant shear 
forces V . ]  

Figure 8.9.1 

We therefore study the implications of the assumptions 

0; = a, = t.?, = 0 

for the case where shear stresses are acting on the cross-sections. 
Substituting Eqs. (8.9.2) in Eqs. (8.9.lb) and (8.9.1~)~ we find 

- 0; a z,, 
an 
-- 

hence 

(8.9.2) 

(8.9.3a) 

(8.9.3b) 

(8.9.4a) 

(8.9.4b) 
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where fib, z )  and f2b. z )  are arbitrary functions. Substituting back in Eq. (8.9.la), 

(8.9.5) 

where got ,  z )  is again any arbitrary function of y and z .  
Therefore, upon integrating, 

0, = x g b ,  z )  + c, (8.9.6) 

where C is either a function of y and z ,  or an arbitrary constant (with respect to x ) .  
Thus we observe that CT, is, at most, a linear function of x .  

Therefore, we immediately conclude that to be consistent with the assumptions 
of Eqs. (8.9.2), the stress o-,, as given by a, = F, will satisfy Eqs. (8.9.1) only 
if M(x) has the form 

M ( x )  = ax + b; (8.9.7) 

that is, the moment M can either be a constant or a linear function of x. For any 
other variation of M(x) ,  the equations of equilibrium are not satisfied ! 

We now give a physical interpretation to this apparently contradictory result. Let 
us recall that the expression for the flexural stress ox was rigorously derived for 
a state of pure bending (A4 = const., V = 0)  for which all cross-sections remained 
plane. Why then does this expression appear to be equally valid for a linear variation 
with x? We first note, however, that if A4 = ax, then V = a (a constant); i.e., the same 
shear force acts on all cross-sections. Now, in the previous section, we observed that 
if V = const., the longitudinal fibres undergo no extension due to shear since, in this 
case, all cross-sections warp identically; thus, the strain E ,  in the fibres is not affected 
by shear deformation. Hence, in this case, the extension of the fibres depends only 
on bending of the beam, and consequently the expression E ,  = y /  R remains valid. 
As this is the fundamental starting point in the derivation, the expression for flexural 
stress remains valid when M is a linear function of x .  

For beams with M(x) not of the form given by Eq. (8.9.7), we shall neverthe- 
less continue to invoke NavierS hypothesis with the knowledge (as discussed in 
Section 7) that any warping effects are negligible. In the following sections, we 
therefore continue to use the expressions for flexural stress and shear stresses, 
Eqs. (8.7.lb) and (8.8.4) respectively, and apply them to the design of beams as 
encountered in engineering practice. 

(b) flexural stress in a non-prismatic beam - 
an engineering approximation 
As we have observed, the expressions for the flexural stress, Eq. (8.7.lb), are exact 
only for an elastic beam with constant cross-section where the moment varies as 
M(x)  = ax + b. 

Consider now a non-prismatic member, such that A=&) and I = I ( x )  
[Fig. (8.9.2)], subjected to a state of pure bending. In this case, since we cannot 

Figure 8.9.2 
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invoke arguments of symmetry, it is clear, from the derivation, that we cannot ex- 
pect Eqs. (8.7.1) to provide an exact solution even for pure bending. Nevertheless, 
if the cross-sectional properties do not vary sharply, that is, if the variation of 
I ( x )  is not great, we may assume that an approximate value for the stress 0;; is 
given by 

(8.9.8) 

Equation (8.9.8) provides a good engineering approximation for such a beam with 
small variations of the cross-section. To justify this assertion, consider, e.g., a lin- 
early tapered beam having, for simplicity, rectangular cross-sections with constant 
width b, as shown in Fig. (8.9.3a). Let us assume that the flexural stress ox has been 
calculated according to Eq. (8.9.8). We now isolate a small triangular portion of 
width Ax and height Ay [Fig. (8.9.3b)l. Acting on the cross-sectional area of this 
element, as represented by Ay . b, there exists a stress ex as calculated above. How- 
ever, we note that the triangular element cannot be in equilibrium under this stress 
alone, since F' = 0 is not satisfied. Therefore, there must exist shear stresses t 
acting on the horizontal surface b Ax.  For equilibrium, we require that t Ax = 0;c Ay 
so that t = 0; 2 . In the limiting case, as Ay/Ax -+ 0, t + 0, which is a correct 
result for pure bending. However, if 2 is relatively small, then It/axl << 1. Hence, 
from this simple analysis, we may conclude that although there is a shear effect, 
it will be relatively small, and consequently, for a beam with a small taper [i.e., 
one for which the depth d(x) varies slowly], Eq. (8.9.8) will yield a good approx- 
imation to the flexural stress. It is clear that for a beam with a relatively large 

Figure 8.9.3 
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taper [Fig. (8.9.3c)], Eq. (8.9.8) will yield results of substantial error; therefore the 
expression cannot be used for such beams.* 

If in addition, we again invoke Navier’s hypothesis, Eq. (8.9.8) may then be used 
as an engineering approximation for the flexural stress in beams subject to arbitrary 
lateral loads, i.e. when A4 = M ( x )  is a general function of x. 

8.1 0 Engineering design applications for beams 
We present here, by means of the following examples, typical design problems as 
encountered in engineering practice. 

Example 8.15: A structural steel member whose cross-section is given as a 
5102 x 14 section, as shown in Fig. (8.10.la), spans a length i =2 m. (This 
represents a typical manufactured cross-section called a rolled section. The 
geometric dimensions and properties of such standard sections are given in 
tables, such as in Appendix E.) The dimensions of the specified section, as 
found in the table (see p. 705), are as follows: d= 101.6 mm, Q = 7.4 mm, 
& = 71 mm, tw = 8.3 mm.t in addition, the second moment of the area of 
the cross-section and the section modulus, as found in the same table, are 
I = 2.83 x 106 mm4 and 5 = 55.6 x 103 mm3, respectively. The member is to be 
used as a simple supported beam with a span of length L =2 m in order to 
carry a concentrated load P a t  the centre. The allowable flexural and shear 
stresses are given as call = 150 MPa and r,11 I= 100 MPa, respectively. What i s  
the maximum force P that the beam can support? 

Figure 8.10.1 

Solution: To determine the maximum value of P ,  we must consider both flexure 
and shear effects due to M ( x )  and V ( x )  as obtained in Example 8.2. 

Considering flexure, we have, from Eq. (8.6.10e), 

IMzlalt  =SIOxIm, =(55.6 x 103)(150) = 83.4 x 1 0 5 N - ~  = 8340N-m, 

Since Mmax = y ,  Pall = = 16,680 N is the maximum allowable force as gov- 
erned by the flexure criterion. 

To consider the shear criterion, we note that the maximum shear stress here occurs 
at points along the z-axis. Therefore, following Eq. (8.8.4b), the allowable shear force 

t We note too that for a beam having a large taper, de Saint Venant’s pnnciple can no longer be applied 
since, according to its geometry, the largest depth is of the same order of magnitude as the span length. 
In designating a steel section as Sxxxyy, or Wxxxyy, etc., xx designates tlie normal depth of 
the beam and yy designates the mass per unit length. namely kg/m. It is noted that the properties 
appearing in the standard tables are given in mm. These units prove to be convenient since 1 N/mm2 = 
1 N/(10-6 m2) = 10 N/m2 = 1 MPa. 
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Figure 8.10.2 

on the section is Vall= tall 9, where Q, the moment of the isolated area as shown in 
Fig. (8.10.lb), is 

Q = (71 x 7.4)[-(50.8 - 3.7)] + (8.3 x 43.3)(-21.7) = -32.55 x 103mm3. 
(233x10 )x ,”’I . = 0.722 x 105 N=72,200N. Therefore, Ival l l  =(loo)[ 3 2 . 5 5 ~ 1 0  

From the results of Example 8.2, V,, = 5 and therefore Pall = 2V = 144,400N. 
Thus, in this case, the allowable force P is clearly governed by the moment 

cl criterion; i.e., the allowable load on the beam is P = 16,680 N. 

It is worthwhile to mention that in general, as the length of a span increases, the 
flexure criterion tends to predominate while for relatively shorter beams, the shear 
criterion tends to predominate. (It is important to recall that all expressions derived 
in this chapter are valid only for long slender beams and therefore are inapplicable 
to short beams. However, when referring to ‘relatively short’ beams, one still means 
beams such that the ratio of length to depth is large). 

We observe that the area A ,  of the web BE is given approximately by A, = ad,, 
where d, is the depth of the web. (For the given section here, d,” = 101.6 - 14.8 = 
86.8 mm.) It is instructive to consider the expression t == 2, which represents the 
average shear stress in the web. If we use this simple formula, we note that we 
obtain, in this case, V = TA,,, = (100) (86.8 x 8.3) = 72,000 N. Comparing with 
the value V = 72,200 N obtained above, we note that this simple formula yields, 
for such sections, a very good approximation relating the shear force to maximum 
shear stress in the web; consequently, it is often used to obtain shear stresses in the 
web for this type of cross-section. Justification of this empirical formula follows 
from a comparison with the actual shear stress distribution in the web, as shown in 
Fig. (8.10.2). Thus we observe that the shear force Vy in this type of cross-section 
is carried essentially by the web. 

Example 8.16: For the beam of the cross-section of Example 8.15, previously 
considered [Fig. (8.10.la)], the maximum allowable centre-span load, as gov- 
erned by the flexure criterion, was calculated to  be P = 16,660 N. 

Two steel plates, each of width 71 mm and thickness t= 6 mm are now at- 
tached, as shown in Fig. (8.10.3a), to  the top and bottom flanges by means of 
rivets (each having a cross-sectional area A, = 95 mm2) to  form a monolithic 
’built-up’ section, as shown in Fig. (8.10.3b). Determine (a) the maximum 
allowable midspan load if the maximum allowable stresses are as given in 
Example 8.15; namely aall = 150 MPa, tall = 100 MPa and (b) the maximum 
permissible spacing s of the pairs of rivets [Fig. (8.10.3a)l if the allowable 
shear stress in the rivets is z, = 53 MPa. 

Solution: 

(a) By attaching the plates to the two flanges, it is clear that the plates contribute to 
increase the second moment of the area I,, of the section. To calculate I E Izz we 
make use of the parallel axis theorem; thus 

101.6 
I = 2.83 x 106 + 2 +(71 x 6 ) [ ~  +3].) = 5.30 x 106mm4. 

From Eq. (8.6.10b), 
o ~ I  (150)(5.30 x 106) 

I= 14.0 x 106N-mm = 14,000N-m, 
56.8 Mma, =L - d/2 - 
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Figure 8.103 

where, in the above, the depth of the built-up section is d = 113.6 mm. 
Hence, Pall = 

We note that by attaching the two plates, the maximum permissible moments 
that can be carried by the section has been increased from 8340 to 14,000 N m. 

(b) The above calculations are based on the assumption that the section behaves as 
a monolithic unit; i.e., there is no slippage between the plates and the flanges. (If 
there were such slippage, then the above calculations would have no validity.) We 
recognise too that any slippage is prevented by the rivets, which hold the two parts 
of the section together, thus creating the monolithic section. The rivets must there- 
fore carry the shear between the flange and the attached plate. To prevent such 
slippage it is therefore necessary that the rivets be suficiently strong in shear. Now, 
treating the section as an equivalent monolithic unit, the shear stress at the plate- 
flange interface, according to Eq. (8.8.4) [with Q = -(71 x 6). (50.8 + 3) = 
-71 x 6 x 53.8 mm3], is 

= 28,000 N. 

= 60.9x10-6VN/mm2 = 6 0 . 9 ~ 1 0 - ~ V  MPa. 
(5.3 x 106)(71) 

Noting, from Example 8.2, that V = P/2, it follows that for Pall = 28,000 
N [as found in part (a)] the equivalent average shear stress t = (30.45 x 1OW6) 
P = 0.853 MPa. 

While t is the average shear txn acting in the cross-section, since z,, = txn, it 
also represents the average ‘equivalent shear stress’ acting in the plane ofthe inter- 
face. Hence, the equivalent horizontal shear force VH acting over a segment (b x s) 
of the interface is VH = 0.853 x (71 x s) = 60.6s N [Fig. (8.10.3c)], where s has 
units of mm. 

Now, let us assume that each rivet can carry a force in shear given by Fr = 
trAr = (53) (95) = 5035 N. (Note that this too is an engineering approximation, 
usedrather empirically, since tr = Fr/Ar yields only an approximate average value 
of the shear stress in the rivet.) 

Since any pair of rivets must carry this shear force VH, we equate the two; 
therefore from 2Fr = VH, we obtain 

2 x 5035 
60.6 

S =  = 166 mm = 16.6 cm. 
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In engineering design, one would specify conservatively a maximum distance of 
16 cm. 0 

8.1 1 Bending of composite beams 

The expressions developed previously for bending of beams were derived under the 
assumption that the beam is composed of a single homogeneous material. Let us 
now consider the case of beams that are made of two or more materials: such beams 
are referred to as composite beams. In analysing the behaviour of these beams, it 
is necessary to modify our derivation slightly although, as we shall see below, the 
basic ideas remain the same. 

For convenience, we consider a beam subjected to pure bending, which is made 
up of two materials, say materials ‘1 ’ and ‘2’, having moduli of elasticity El and 
E2 respectively, as shown in the cross-section of Fig. (8.1 1.1). We denote the cross- 
sectional area of each material by A1 and A2, respectively, such that the total cross- 
sectional area A = A I  + A?. 

Figure 8.11.1 

From Section 6, we recall our conclusion that for a beam undergoing pure bending 
( M  = const.), all cross-sections remain plane and perpendicular to the deformed 
longitudinal axis. From an analysis of the geometry, the strain E ,  was found to be 
given by Eq. (8.6. lc), namely 

Y 
E x  = - 

R’ 
(8.1 1.1) 

where R EE 1/1c is the radius of curvature. We emphasise here again that this relation 
is independent of the material. 

Using Hooke’s law and assuming, as previously, that for long beams CY,, = oZ = 0 
at all points within the beam, the flexural stresses in materials ‘ 1 ’ and ‘2’ are then 
given, respectively, by 

Ely a;, = El&, = - 
R ’  

E2Y axz = EZE, = -. R 
The moment about the neutral axis, is given by Eq. (8.6.5a), namely 

M = // ycx dA. 
A 

Substituting Eqs. (8.11.2), 

(8.11.2a) 

(8.1 1.2b) 

(8.11.3a) 

M = -! R PI// y2 dA + E2 // y2 dA] (8.11.3b) 

AI A2 
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or 

where 

(8.11.3~) 

(8.1 1.4a) 

AI 

I2 = // y2  dA (8.11.4b) 
A2 

are the second moments of the areas A and A2, respectively, about the neutral axis 
such that I ,  the second moment of the area of the entire cross-section, is given by 
I = I ,  +I2. 

Equation (8.11.3~) thus represents the Euler-Bernoulli relation for the composite 
beam. We note, however, that the location of the neutral axis has not yet been 
determined. To find its location, we recall that the resultant normal force F ,  acting 
normal to the cross-section in the x-direction, is given by 

F = //ox dA. 
A 

Substituting Eqs. (8.1 1.2), we find 

(8.1 1.5a) 

Now, since for the case of pure bending, the normal force F = 0, we then have 

(8.1 1.6) 
A2 

This last relation then defines the location of the neutral axis. 
We observe that Eqs. (8.1 1.2) and (8.1 1.3~)  correspond to Eqs. (8 h.4) and (8.6.6a) 

respectively (which were derived for a homogeneous beam), and degenerate to these 
equations when El = E2 = E.  

Let us now consider the case when E2 = n El ,  where n (n 2 1) is some constant. 
Equations (8.11.2), (8.11.3~) and (8.1 1.6) thenbecome 

(8.1 1.7a) 

(8.1 1.7b) 

El M = --(I1 R +nI2). (8.11.7c) 

11 ydA + n / /  ydA = 0. (8.1 1.7d) 
AI A2 

The above expressions lead to a very simple and physical interpretation of the 
results. We first note, from Eqs. (8.1 1.2a) and (8.1 1.2b), that the incremental forces 
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over an incremental element area A A in the two materials is given by 

El A F i =  -y * A A ,  
R 
nE1 AF2 = -y * A A ,  
R 

which we may rewrite as 

El AF1 = --y- A A ,  
R 
El 
R AF2 = -y (nAA). 

(8.1 I .8a) 

(8.1 1.8b) 

(8.11.8~) 

(8.11.8d) 

We may interpret this last expression for A Fz as an incremental force located at 
apoint y p o m  the neutral axis, which acts on an equivalent fiber of material 1 over 
an element having an equivalent area, n AA [Fig. (8.1 1.2)]. With this interpretation 
in mind, we recognise that we may consider the actual cross-section [Fig. (8.1 1.3a)I 
as being equivalent to a section composed of a single homogeneous material (in 
this case with E = E l )  whose geometry is as shown in Fig. (8.11.3b). Such an 
equivalent cross-section that consists solely, e.g., of material 1, is often referred 
to as a transformed cross-section. Thus the behaviour of the composite beam can 
be obtained by analysing the equivalent transformed section. Denoting the second 
moment of area of the transformed cross-section section by 7, we note that 

- 
I = 11 + nr2. (8.1 1 -9) 

Figure 8.11.2 

Figure 8.1 1.3 
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It then follows from Eq. (8.1 1 .7~)  that the curvature of the beam K is given by 

1 M  
R El?' 

/(--=- 

Substitution in Eqs. (8.1 1.7a) and (8.1 1.7b) then leads to 

MY a,, = 7, 

nMY a;, = _.. 

I 

I 

(8.1 1.10) 

(8.11.1 la) 

(8.1 1.1 1 b) 

The resulting stress distribution in the actual cross-section is shown in Fig. (8.1 1.3~). 
Noting that 

(8.11.12) 

Ai A2 

represents the %st moment of the transformed cross-section about the neutral axis, 
we conclude, from Eq. (8.1 1.7d), that the neutral axis of the actual cross-section 
coincides with the centroidal axis of the transformed cross-section. The location is 
shown symbolically in Fig. (8.1 1.3). 

Example 8.17: A beam consisting of steel and brass (with E, = 200 GPa and 
Eb = 100 GPa respectively), bonded together to  form a rectangular cross- 
section as shown in Fig. (8.11.4a), is subjected to  a given moment Ad= 
25 N-m. Determine (a) the maximum stress in the brass and steel, (b) the 
flexural stress in the brass and steel at the interface and (c) the radius of 
curvature R of the beam at the cross-section. 

Figure 8.11.4 

Solution: For the given materials, the ratio n = 2001 100 = 2. Therefore the equiv- 
alent brass transformed cross-section is as shown in Fig. (8.1 1.4b). 

The location of the neutral axis, 7 (i.e., the centroid of the transformed cross- 
section), is 

= 5.0 mm. (6 x 8) (8) f (12 x 4) (2) 
48 + 48 

j ? =  



276 Symmetric bendinq of beams - basic relations and stresses 

Using the parallel axis theorem, 

= 1184mm4 = 1.18 x 10-9m4 

(a) The maximum stress in the brass at B (with y = -7.0 mm) is 

= -148.3 MPa(compression). 

The maximum stress in the steel at A (with y = 5.0 mm) is, for n = 2, 

axs = T 2My = 2(25)(5'0 10-3) = 211.9 x 106N/m2 = 211.9MPa(tension). 
I 1.18 x 10-9 

(b) At the interface, y = 1 mm, the stresses in the brass and steel are 0,b = 2 1.2 MPa 
and axs = 42.4 MPa, respectively. Note that here a,., = naxb and that both are 
tensile stresses. The stress distribution in the actual cross-section is shown in 
Fig. (8.1 1.4~). 

(c) Using Eq. (8.11.10), the radius of curvature of the beam R = E T / M  is then 
(100 x 109)(1.18 x 10-9) 

25 
= 4.72 m. R =  D 

8.12 Combined loads 
We have, up to now, considered only forces acting in an x-y plane of symmetry 
such that the moments at a cross-section are M = M,. We now consider the case 
of a prismatic beam of cross-sectional area A such that both the y- and z-axes 
are centroidal axes of symmetry (with second moments I,, and Iyy respectively). 
Furthermore, we assume that the beam is subjected to both moments Mv as well 
as M, [Figs. (8.12.la and b)]. (Note that since we are considering in this section 
moments about both the y -  and z-axes, we must abandon the simplified notation, 
M = M, and I Izz). Clearly, in this case, we obtain the flexural stress due to 
M,, by interchan ing the y -  and z-subscripts in Eq. (8.6.9b) and hence due to My, 
we obtain a - 2. Analogous to the sign convention for M, (as established in 
Section 8.2b) we define a positive moment My as a moment that tends to cause 
tension in fibres with positive z-coordinates. 

5 
- I Y Y  

Figure 8.12.1 

Now, if the beam is linearly elastic and undergoes small strains, then, as discussed 
in Chapter 5, we may use the principle of linear superposition. Thus we may write 

(8.12.1) 
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We observe that the neutral axis always passes through the centroid of the section 
(y = z = 0). Note too that, following the discussion of Section 8.6d, the above 
expression is ‘exact’ for the case of pure bending as well as when My and M, are 
linear functions of x (see Section 8.9). 

[While Eq. (8.12.1) is valid, as mentioned above, for the case where both the 
y- and z-axes are axes of symmetry, we shall show, in Chapter 13, that this require- 
ment is overly restrictive. Indeed, it will be shown that it is only necessary that the 
y- and z-axes be principal axes of the cross-section for Eq. (8.12.1) to remain valid]. 

Invoking again Navier’s hypothesis, Eq. (8.12.1) may also be used if the beam is 
subjected to moments My and M, due to applied loads that act in a plane inclined 
by an angle 6 with respect to the y-axis, as shown in Fig. (8.12.2). Since clearly any 
load P can be resolved into components in the y- and z-directions (P, = P cos 6 
and P, = P sin 6 ) ,  My is due to lateral forces P, and M, is due, as before, to lateral 
P, forces. 

We may proceed further with the use of the principle of linear superposition. 
Assume now that in addition to these lateral forces, the beam is subjected to an 
axial load F acting through the centroid [Fig. (8.12.3)]. Then, using the results of 
Chapter 6, we have 

Figure 8.12.2 

F M,y Myz 
a, = - +- + -. 

A I,, I y y  
(8.12.2) 

Note that, in addition to lateral forces, axial forces that do not pass through the 
centroid of the cross-section cause moments M, and M, in the beam. This feature 
is illustrated in the following example. 

Figure 8.12.3 

Example 8.18: A member having a circular cross-section of radius R is sub- 
jected to a compressive force P applied with an eccentricity ewith respect to 
the longitudinal x-axis [Fig. (8.12.4a)l. Determine the largest value of e such 
that no fibres are in tension, i.e. such that for all points in the section, a, I 0. 

Figure 8.12.4 

Solution: We first replace the given force system, as shown in Fig. (8.12.4a), by an 
equivalent force system [Fig. (8.12.4b)l consisting of a compressive axial force P 
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acting through the origin, and moments, 

M, = Pesin#, (8.12.3a) 

M, = Pecos#, (8.12.3b) 

where we note that for 0 < # c n/2, My > 0 and M, > 0. 
Therefore, from Eq. (8.12.2), 

P (Pecos#)y + (Pesin#)z 

P Pe 
A 

Cr, = -- + (8.12.3~) 

- - -- +-j-(~cos#+zsin#) ,  (8.12.3d) 

A I,, I V Y  

where, due to the axial symmetry of the cross-section, I=  Zyy =I,, = q. 
We observe that the moments My and M, will tend to cause fibres with positive 

y- and z-coordinates to be in tension. Letting y = r cos8, z = r  sine, where 8 is 
measured from the positive y-axis [Fig. (8.12.4c)], 

P Per 
A I  

ox = -- + -(cos8 cos# + sin8 sin#). (8.12.4b) 

Clearly, from Eq. (8.12.4b), points on the edge r = R have the greatest tendency to 
be in tension. To determine the specific critical point, we take the derivative 

do, PeR PeR - = -(- sin8 cos # + cos 8 sin#) =I - sin(# - 8).  
d8 I I 

(8.12.5) 

Setting % = 0, as anticipated, the critical point is given by 8 = 9, namely the point 
B of Fig. (8.12.4~). Substituting in Eq. (8.12.4b) with r = R, we find 

1 
0, = P( - 2 + $) 

The required condition ox 5 0 then leads to 

I R  
A R  4 

e ( - = -  

(8.12.6) 

(8.12.7) 

since, for a circle, ZIA = R2/4. 
Thus we have established that if an eccentric compressive force acts at points within 

the quarter point from the centroidal x-axis, no tensile stresses will exist within the 
circular member. The shaded area representing these points, as shown in Fig. (8.12.5), 
is often referred to as the ‘core’ of the section. U 

We remark that the ‘core’ of a section is a geometric property and depends on 
the particular geometry of the cross-section. In this example, the core is axially 
symmetric; that is, e f e(4). For other geometries, the core will also possess 
a symmetry but will depend on the y -  and z-axes. For example, the core of a 
rectangular section is as shown in Fig. (8.12.6). 

8.13 Elastic-plastic behaviour 

(a) Fully plastic moments - location of the neutral axis 
In the preceding analyses of this chapter, we considered only elastic beams, and 
found for elastic behaviour, that (a) the neutral axis coincides with the centroidal axis 
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and (b) the flexural strain and stress vary linearly with the perpendicular direction 
from the neutral axis. 

As will become evident, when the material enters the plastic range, the above 
conclusions cease to be valid. We investigate here a beam subjected to (positive) 
end moments M = M ,  [Fig. (8.13.1a)l (such that a state of pure bending exists 
throughout the beam) and assume that the moments, applied statically from A4 = 0, 
are progressively increased. 

Figure 8.13.1 

We consider a beam having the T-shaped cross-section of Example 8.12, where, 
for this section, we recall that A =40 cm2, I,, = 1000/3 cm4 and the location of 
the centroidal z-axis is given by U =  3 cm [Fig. (8.13.1b)l. 

We assume here that the member is composed of an elastic-perfectly plastic 
material having a stress-strain (0 ox, E = E , )  curve, as shown in Fig. (8.13.2), 
where the yield point 00 (assumed here, for convenience, to have units of N/cm2) 
is the same in tension and compression. 

Figure 8.13.2 

As M is initially applied, the beam behaves elastically and the stress and strain 
distributions vary linearly withx [according to Eqs. (8.6.9b) and (8.6.9c)], as shown 
in Fig. (8.13.3a). 
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Figure 8.13.3 

From Eq. (8.6. lob), the maximum moment ME (called the elastic moment) that 
the section can sustain in the elastic range is 

(8.13.1j 

Thus for M 5 ME the beam behaves elastically. When the moment reaches the 
limiting value M = ME, the strain and stress distribution still varies linearly with 
y .  We note that the top fibres ty = -7j, being farthest from the neutral axis, are the 
first to reach the plastic range, JE( = €0 and 101 =CO [Fig. (8.13.3bjl. 

We now assume that the loading is increased such that the applied moment 
M > ME. Such moments tend to increase the bending of the beam, that is, they 
cause a greater curvature K . Now, we recall that the strain E in the beam, given by E = 
KY y / R ,  is independent of the material. (This geometric relation follows from 
the conclusion that plane sections remain plane after deformation - a conclusion 
valid for a state of pure bending and for any material). Consequently this expression 
remains valid irrespective of the elastic or plastic material behaviour. Clearly, as the 
curvature K increases the strain E increases according to the relation E == ~ y .  Hence 
the cross-sectional zone for which J E ~  > €0 becomes larger as values of M I M E  > 1 
increase. 

Consequently, for successively increasing moments, ME < M1 < MZ < M3 . . ., 
the strain and stress distribution will appear as in Figs. (8.13.3c-e). Note that while 
the upper fibres first enter the plastic range, the bottom fibres initially continue to 
behave elastically. However, for some given value of M ,  the strain in the bottom 
fibres reaches EO after which the lower fibres also enter the plastic range. 

Thus, as the moment M increases, the plastic zones increase and the elastic zone 
decreases. In the limiting case [Fig. (8.13.3f)], the entire cross-section exhibits plas- 
tic behaviour; for positive moments, the entire lower portion of the beam is clearly 
in tension with o = go while the upper portion is in compression with 0 = -00. 
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The moment M at the cross-section for this limiting case is called the fully plastic 
moment and is denoted by Mp. 

We now wish to consider the location of the neutral axis for this limiting case, 
M = Mp. We recall that the conclusion that the neutral axis coincides with the 
centroidal axes was based purely on an elastic analysis. We therefore have no reason 
to assume that this is so during plastic behaviour. 

Now, since the beam is solely in flexure (no axial forces are applied), we may 
locate the neutral axis in the limiting case from the equations of equilibrium, 

F, = 0. Noting that 

we have, from the given stress distribution for this case, 

(8.13.2a) 

(8.13.2b) 

by which it follows that 

where A,,,, and Acomp represent the areas of the tension and compression zones, 
respectively. 

Thus we note that when the fully plastic moment Mp acts, the neutral axis no 
longer necessarily lies along the centroidal axis; instead it lies on an axis that bisects 
the total area of the cross-section into equal tension and compressive zones. 

For the section considered, when subjected to a fully plastic moment, the neutral 
axis is therefore located at yp = % = 1.66 cm from the bottom [Fig. (8.13.3f)l. The 
uniform stresses f a 0  acting on the section are shown in Fig. (8.13.4). 

It should be mentioned, however, that the shift of the neutral axis, from its cen- 
troidal axis position during elastic behaviour, to its final location when A4 = Mp 
does not occur suddenly. It is clear that the position changes continuously with 
M > ME; for this section, it moves progressively downward [see Fig. (8.13.3)]. Al- 
though, its location, as a function of M can be established in principle for any given 
cross-section, we shall not pursue this topic here. 

Having located the neutral axis in the limiting case, the fully plastic moment Mp 
can be readily found by calculating this moment about the neutral axis. However, 
recalling that a force system consisting only of a moment (couple) produces the 
same moment about any set ofparallel axes, we find it more convenient to calculate 
Mp about the axis a-a [Fig. (8.13.1b)], which passes through the lower face of the 
section. Hence we obtain Mp as follows: 

Figure 8.13.4 

Mp = -00 (T x 12) x 6 5 + a0 [(16 x 6) + (12 x i) x ~] 
260 

3 
=I: -00 =c: 86.6600. 

It is of interest to note that = - = 1.82; that is, the fully plastic moment is 
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82% greater than the elastic moment. Indeed, Mp is the largest possible moment 
that a cross-section can carry; for this reason, Mp is often referred to as the ultimate 
moment. 

(b) Moment-curvature relation for beams of rectangular 
cross-section in the plastic range 
We consider here an elastic-perfectly plastic beam of rectangular cross-section 
(b x d )  whose material behaviour is, as before, shown in Fig. (8.13.2). In this case, 
the centroidal z-axis also bisects the area and hence the neutral axis remains on the 
centroidal axis during plastic behaviour. (It is for this reason that we investigate this 
simpler case of the rectangular beam since we then need not consider any change 
in the location of the neutral axis.) 

For this rectangular section, the elastic moment ME is readily found from Eq. 
(8.6.10b): 

(8.13.3) 

since the stress at the top and bottom fibres is ~ f o o ,  respectively. 
Thus initially, for M ( M p ,  the strain and stress distributions are as shown 

in Figs. (8.13.5a and b). Let us now consider that the applied moments are 
increased such that ME < M < Mp (where A4p represents the fully plastic 
moment, as defined above). Clearly, as discussed previously, the strain and stress 
distributions for such an intermediate value of M are as shown in Figs. (8.13.6a 
and b), respectively. When the moment reaches the fully plastic moment, i.e. 
M = Mp, the elastic zone disappears and the fiexural stress is 0; = foo, respec- 
tively, in the remaining tensile and compressive plastic zones of the cross- 
section. 

Figure 8.13.5 

Now for values ME < A4 < Mp, it is clear that the Euler-Bernoulli relation for 
elastic beams, = E, is no longer valid. As in the preceding example, with 
M > ME, the central zone of the cross-section exhibits elastic behaviour while 
in the top and bottom zones the material behaves plastically. Let y = f L  represent 
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Figure 8.13.6 

the elastic-plastic zone interface. Thus IyI ( &  defines the elastic zone while 
4 < IyI < d / 2  defines the plastic zone. By definition, at the interface, 161 = €0, i.e. 

We now investigate the moment-curvature relation for M > ME and determine 

Since the relation E = y /  R is still valid for -d/2 5 y 5 d /2  (i.e. throughout the 

IEl,=*l =Go.  

c = C(M).  

crowsection) and since by definition I E ~  = EO at the interface, we write 

EO = c/R.  (8.13.4) 

The strain distribution in the cross-section, for ME 5 M < Mp, is then given by 
[Fig. (8.1 3.6a)l 

E < -60, -d/2 < y < 4, plastic zone (8.13 Sa) 

(8. I 3.5b) 

E > €0, l? < y < d/2 ,  plastic zone. (8.1 3 Sc) 

Y GO.’) = LEO, ) y \ (  e ,  elasticzone c 

The stress distribution, for ME 5 M < Mp, is then [Fig. (8.13.6b)l 

CT = -CO, -d/2 < y < 4, plastic zone (8.13.6a) 

(8.13.6b) 

CT = 00, l < y < d/2 ,  plastic zone. (8.13.6~) 

Y Y 
c c LT = EE =I -EEO = -00, -C < y < t ,  elastic zone 
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The stress resultant representing the moment M E  lMzl is given by [see 
Eq. (8.6.5a)l 

A --c 

where c = d/2.  
Substituting Eqs. (8.13.6), 

or 

ha0 M = -(3d2 - 4C2). 
12 

Solving for C in terms of M ,  we obtain 

(8. 1 3.7a) 

(8.13.7b) 

(8.13.8a) 

Now it is more meaningful to express C in terms of the ratio MIME.  From 
Eq. (8.13.3), boo = and therefore we writc 

Note that for M = ME, Eq. (8.13.8b) yields C = d / 2 ;  for this value of C we recover, 
from Eq. (8.13.6b), the stress distribution of Fig. (8.13.5b). 

Now, the fully plastic moment is reached when C = 0 [Fig. (8.13.7)]. Substituting 
C = 0 in Eq. (8.13.7b), we find 

bd2 
Mp=ao--. 

4 
(8.13.9) 

RecallingEq. (8.13.3), wetherefore have 2 = f. SubstitutingbackinEq. (8.13.8b), 
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Figure 8.13.7 

we may now express l in terms of the ratio $ : 

, ME = 2/3Mp 5 M 5 Mp. (8.13.10) 
2 

Thevariationof& vs. 8 isshowninFig.(8.13.S),wherewenotethatforM 5 ME, 

The moment-curvature relation is then readily established by noting from 

e = 1. 

Eq. (8.13.4) that €0 = f so that a0 = EEO = F. Hence 

1 0 0  

R El?' 
_ - _  - 

Substituting for l as given by Eq. (S.13.10), leads to 

(8.13.11) 

0 0  1 
_. , ME < M < Mp. (8.13.12a) 

1 

R E.Jl(dI2) 4 1  - M/Mp 
- -  

Finally, using Eq. (8.13.9), we may obtain an expression for E I I R  in terms of the 
moment ratio, namely 

2/3ME < M < Mp. (8.13.12b) ET 2 MP 
R 3.Jl.Jl-MIMp' 
-- _.- 

The variation of K I 1/R with the moment ratio M/Mp is shown in Fig. (8.13.9). 
We observe that for M 5 ME, E I / R  varies linearly with M according to the Euler- 
Bernoulli relation. 

It is of interest to note from the analytical expression, Eqs. (8.13.12), that as 
M -+ Mp, 1 / R -+ 00; that is, the radius of curvature R -+ 0 when the entire section 
behaves plastically. This limiting case represents a 'plastic hinge' in the beam: at a 
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section for which M = Mp, there is a sudden change in the slope (a kink) of the beam 
[Fig. (8.13. IO)]. Physically this corresponds to a sudden yielding of all the fibres in 
the cross-section in accordance with ideal elastic-plastic material behaviour. 

Figure 8.13.10 
PROBLEMS 

For all problems below, the x-axis is to be taken at the extreme left end of the struc- 
ture. Assume elastic behaviour unless specified otherwise. 

Sections 2-4 

8.1: Sketch the shear and moment diagrams for the beams shown in Figs. (8P.la-d) 
and give the values of all critical ordinates (in terms of a, band L). Indicate in which 
segment (if any) of the beam a state of pure bending exists. 

Figure 8P.1 

8.2: The beam shown in Fig. (8P.2) is subjected to two vertical forces and an eccentric 
horizontal force, each having the same magnitude P. (a) Sketch the shear and moment 
diagrams and show all critical ordinates (in terms of a, bandlor c). (b) What is the 
required value of e if segment BC is to  be in a state of pure bending? Sketch the 
resulting moment diagram. 

Figure 8P.2 

8.3: Express the shear force V(x) and moment M(x) as a function of x for the beams 
shown in Figs. (8P.3a-j). Sketch the variation with x showing all critical values (max- 
ima and minima) and verify that the expressions satisfy the relations dM(x)/dx= 
V(x), dV(x)/dx = -q(x) and d2M(x)/dx2 = -q(x). 

8.4 Express the shear force V(x) and moment M(x) as a function of x in terms of 
PI, P2, at and a2 in the two regions 0 5 x < a1 and at < x 5 a2, for the beams shown 
in Fig. (8P.4) and verify that the expressions satisfy the differential relations for beams. 
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Figure 8P.3 
8.5: Express the shear force V(x) and moment M(x) as a function of x in terms of w 
and P for the beam shown in Fig. (8P.5). Sketch the variation with x if P = WL and 
verify that the expressions satisfy the differential relations for beams. 

Figure 8P.4 

Figure 8P.5 

8.6 Determine the axial force F and express the shear force V(x) and moment M(x) 
within the span AC as a function of x for the beams shown in Figs. (8P.6a-e). Sketch 
the variation with x and verify that the expressions satisfy the differential relations 
for beams. 

8.7:* Beam ABC is  subjected to an eccentric horizontal force P and a uniformly dis- 
tributed load w(N/m), as shown in Fig. (8P.7), where 0 i: P 5 WL 2/8e. (a) Determine the 
expressions for V(x) and M(x) in segments AB and BC. (b) Sketch the shear and moment 
diagrams and show all critical values. (c) What value of P (in terms of w, L and e) will 
yield the (algebraically) smallest maximum moment in segment AB, i.e. in 0 5 x 5 1 /2. 



288 Symmetric bending of beams - basic relations and stresses 

Figure 8P.6 

Figure 8P.7 

Evaluate this maximum moment and sketch the shear and moment diagrams for this 
value of P. 

8.8 For the structure ABCD containing a hinge at B, as shown in Fig. (8P.8), (a) de- 
termine V(x)  and M(x) and (b) draw the shear and moment diagrams. 

Figure 8P.8 

8.9 The structure shown in Fig. (8P.9) consists of two beams ABC and DEF, respec- 
tively, which are connected by means of a roller. Sketch the appropriate shear and 
moment diagrams for each beam and show all critical ordinates. 

8.10: The structure shown in Fig. (8P.10) consists of two beams ABC and DEF, contain- 
ing a hinge at B and E, respectively, and connected by means of  a roller. Sketch the 
appropriate shear and moment diagrams for each beam and show all critical ordinates. 
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Figure 8P.9 

8.11: Shear and moment diagrams are given for each of the beam structures shown 
in Figs. (8P.l la-c). Determine the loadings on the beam for each case. 

Figure 8P.10 

Figure 8P.11 

Section 5 

8.12: A cantilever beam AB, as shown in Fig. (8P.12), free at A (x = 0) and fixed at 
B (x = L) ,  is subjected t o  a loading q(x) = qo(x/L)", where n z 0 is an integer. (a) Prior 
t o  solving this problem, estimate whether one should expect the reactions at B t o  
increase or decrease with increasing values of n, (b) determine the shear V(x) and 
moment M(x), (c) find the reactions Re and & and (d) sketch the shear and moment 
diagrams for n = 0, 0.5, 1 and 2. 

8.13: For the loading q(x) = 90 sin(nx/2L) of the simply supported beam shown in 
Fig. (8P.13), (a) determine the reactions at A and B, (b) determine V(x) and M(x) and 
(c) sketch the shear and moment diagrams. 

8.14* A simply supported beam AB is subjected t o  a variable loading, as shown in 
Fig. (8P.14), which is given by the approximating expression qa(x) = qo(1 - e-ax/L). Figure 8P.12 
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(a) Evaluate the reaction (RA)a due to Q. (b) Determine expressions for V(x, a )  and 
M(x, a). (c) Determine expressions for V(x) and M(x) as a + 00. To what loading 
does this correspond? (d) If the loading, instead, is expressed by the approximation 
%(XI = 40 tanh(ax/L), based on an analysis of the relative magnitudesof qa and qb [i.e. 
without evaluating the resulting reaction (RA)bl, estimate if (RA)b isgreater or less than 
( R d a .  

Section 6 

8.15: A beam of depth d is subjected to  end couples. Upon bending, the resulting 
extensional strain E ,  at  the bottom of the beam is E ,  =et > 0 and E ,  < 0 a t  the top. 
(a) Determine the radius of curvature K of the middle surface (i.e., the surface midway 
between the bottom and top of the beam) in terms of co et and d. (b) What is the strain 
a t  the middle surface? Express the answer in terms of l7 and R, the radius of curvature 
to the neutral axis. (E) If the neutral axis lies on the middle surface, show that et = -cc. 

8.16: A long high-strength copper wire (E =120GPa), 3 mm in diameter, i s  wound 
about a 1.5-m diameter drum. Determine (a) the bending moment in the wire and 
(b) the maximum flexural stress in the wire. 

8.17J Material along the lateral surfaces of a long circular cylindrical log is to  be 
sawed off to  form a rectangular cross-section b x  d, as shown in Fig. (8P.17). If the 
resulting beam is to  be subjected to a moment about the z-axis, determine (a) the 
optimal ratio d/b that minimises the curvature of the beam and (b) the ratio d/b that 
minimises the maximum flexural stress. 

8.18 A beam having a square cross-sectional area of 64 mmz i s  subjected to a pure 
moment. The strain 6, a t  the top of the cross-section is  found to  be 1600p. Determine 
(a) the radius of curvature of the deformed beam and (b) the moment acting on any 
cross-section if the beam is made of a high-strength steel (E = 200 GPa) and (c) the 
maximum flexural stress. 

8.19: A beam, whose cross-section is as shown in Fig. (8P.19), is subjected to a mo- 
ment M about the z-axis. If the allowable stress is  120 MPa, determine the maximum 
permissible moment that can be applied. 

8.20 A beam whose cross-section consists of a semi-circle of radius R, as shown in 
Fig. (8P.20), is subjected to a moment about the horizontal axis. (a) Determine the 
maximum flexural stress (in absolute value), i.e. Ju,lmaX in terms of M and R. (b) What 
are the maximum tensile and compressive stresses if R = 2cm and M = 10,000N-cm. 

8.21: A beam having a rectangular cross-section (i.e, width band depth d) is subjected 
to  a moment M,. The beam is  made of a material whose stress-strain relation is given 
by U = CL@, where 01 > 0 is a constant and 0 < n is an odd integer, i.e., n = 1, 3, 5, . . .. 
(a) Show that the flexural stress a is given by U = [ W l ] M y " .  (b) Show that the 
relation between the moment and the curvature K = 1/R of the beam is given by 
K = 2 s  M1/". (c) Show that (a) and (b) above yield the Euler-Bernoulli relations 
if a E and n = 1. 

8.22: A beam having a rectangular cross-section (with width band depth d) is sub- 
jected to a moment M. The beam is  made of a material whose behaviour can be 
described by 

€ 2 0  
-alt.l", € 5 0  = 1 
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where a L 0 is a constant and 0 .<: n 5 1. Show that the expressions for the flexural stress 
c and the radius of curvature K for this case, 0 c: n 5 1, are identical t o  those of Problem 
8.21 for the case 1 5 n, n odd. 

8.23: A prismatic beam is composed of two or more homogeneous materials, say 
'a' and 'b', as shown in Fig. (8P.23), each having different material properties. Is it 
necessary to  make an assumption that, when subjected to  a bending moment M, all 
cross-sections remain plane and perpendicular t o  the deformed longitudinal axis or 
is this a valid conclusion, as in the case (considered in Section 6 of this chapter) of a 
beam consisting of a homogeneous material. 

8.24 A rectangular beam (b x d), as shown in Fig. (8P.23), is composed of two ma- 
terials, 'a' and '&, having moduli of elasticity E, and Eb respectively. Determine the 
location of the neutral axis as measured from the interface of the two materials. 

8.25:* A rectangular beam (b x d), as shown in Fig. (8P.25), is composed of thin lam- 
inates each having a different modulus of elasticity. The resulting inhomogeneous 
beam can be considered as having a varying modulus of elasticity, approximated by 
the expression E ( q )  = Eo[l + p(q/d)l, where q is measured from the top of the beam 
and p is a constant. Determine (a) the location p of the neutral axis (measured from 
the top of the beam) and (b) the radius of curvature of the neutral surface if the beam 
is subjected t o  a moment M about the horizontal axis. 

8.26: The cross-section of a steel beam (E =200GPa) is constructed my means of 
plates, which are welded together to  form an I-section, as shown in Fig. (8P.26). 

(a) Determine the section modulus S = / /c  of the cross-section. Compare the re- 
sults with a similar standard wide flange section, e.g. a W203x36 section, as 
given in the tables of Appendix E (see footnote p. 269). 

(b) If the maximum allowable flexural stress in the beam is  150 MPa, what i s  the 
maximum permissible moment M that can be applied about the z-axis? 

(c) What isthe resultant axial force in the flange abc underthis positive moment M? 
(d) What is  the resultant axial force in the upper part, bd, of  the web under this 

(e) What part of the total moment M i s  resisted by the two flanges and what part 
moment? 

by the web? 

What conclusions can be drawn from these answers? 

8.27:" A beam having a trapezoidal cross-section, asshown in Fig. (8P.27), issubjected 
to  a given moment M about the horizontal axis. Determine the maximum elastic mo- 
ment M = ME under which the beam behaves elastically if CE is the elastic limit. 

Sections 7 and 8 

8.28 The overhanging beam shown in Fig. (8P.28a) is simply supported at B, fixed at E 
and contains a hinge at C. The cross-section and location of the neutral axis are shown 
in Fig. (8P.28b). The moment of inertia about the neutral axis is given as / =720 cm4. 
(a) Draw the shear and moment diagrams and show all critical ordinates. (b) Deter- 
mine the maximum flexural tensile and compressive stresses a, and indicate, by means 
of a sketch, at which cross-sections and at which points within the cross-section they 
occur. (c) Determine the maximum average shear stress Itx,,l, which occurs along the 
line c-c in the cross-section and indicate the direction of  the shear stress acting on a 
positive x-plane. 

8.29 The wooden beam, shown in Fig. (8P.29a), is subjected to  several concentrated 
loads. The cross-section of the beam consists of four wooden components, which are 
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Figure 8P.28 

Figure 8P.29 

glued together, as shown in Fig. (8P.29b). Determine (a) the maximum flexural ten- 
sile stress existing in the beam, (b) the maximum compressive stress, (c) the maximum 
shear stress in the beam and (d) the maximum shear stress in the glue. 

8.30: The wooden beam, subjected t o  two vertical forces applied at points B and C 
[Fig. (8P.30a)], has a cross-section as shown in Fig. (8P.30b). Determine (a) the maximum 
tensile and compressive flexural stresses cr, in segment BC and indicate, by means of a 
figure, where they occur in the cross-section and (b) the average shear stress along 
line c-c, which exists in segment CD. indicate, by means of a figure, the direction of t 
acting on a positve x-plane. 

Figure 8P.30 
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8.31: The S305 x 47 steel beam (E = 2OOGPa) shown in Fig. (8P.31) i s  subjected t o  
two vertical forces, P = 50 kN, which are applied at points B and C. Determine (a) the 
maximum tensile and compressive flexural stresses a, in segment BC, (b) the average 
shear stress along line c-c, which exists in segment AB, (c) the average shear stress 
in the web at the neutral axis (i) using the expression of Eq. (8.8.4) and (ii) assuming 
that the shear stress is distributed uniformly over the web of the section. What is the 
percentage difference in the two answers? and (d) the radius of curvature of the beam 
within segment BC. 

Figure 8P.31 

8.32: Determine the average maximum shear stress components along lines a-a and 
c-c for the beam shown in Fig. (8P.32). Indicate the directions of the shear stress acting 
on a positive x-plane by means of a sketch. 

Figure 8P.32 
8.33:* A circular pipe with inner and outer radius a and b, respectively, is used as a 
cantilever beam. A vertical force P, acting along the axis of symmetry, as shown in 
Fig. (8P.33), is applied at the free end of the beam. (a) Based on symmetry consid- 
erations, what conclusions can be drawn about the shear flow in the cross-section? 
(b) Determine the average shear stress in the pipe, rxO, along the line c-c, as a func- 
tion of 8. (c) If the pipe is a thin wall section with t=  b- a << R, where R=(b+ a)/2 i s  
the mean radius, show that the shear stress rx@ is given by the approximate relation 
rxe = VsinQ/xRt. (d) Show that the resultant of the shear stresses existing in the entire 
cross-section is in equilibrium with the vertical load P. 

8.34" A beam having a triangular cross-section, as shown in Fig. (8P.341, is subjected 
t o  a positive shear force V,. (a) Determine the maximum average shear stress rxy in 
the cross-section and the location of the line c-c along which this stress occurs. Express Figure 8P.33 
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the answer as rxy= k 2 ,  where A is the cross-sectional area of the beam. (b) Are the 
boundary conditions satisfied at the end points of the line c-c? Explain. 

8.35: Repeat Problem 8.34 for a diamond-shaped cross-section shown in Fig. (8P.35). 

8.36: The cross-section of a beam shown in Fig. (8P.36) consists of a flange whose 
width is equal t o  the depth of the beam (b = d), both having the same thickness t. The 
beam is subjected to  a shear force acting in the y-direction. Determine the possible 
range of the ratio K = f,%La, namely the ratio of the average shear stress in the web 
at the neutral axis t o  that along line a-a. 

8.37: A beam is made up of four wooden components, which are glued together to  
form a cross-section, as shown in Fig. (8P.37). (a) Determine the average shear stress in 
the glue, ( r ) ,  due t o  a vertical shear force V, acting in the y-direction and (t), due t o  
a shear force V, acting in the z-direction. (b) If the cross-section is square (i.e., bo = do 
and bi = d,) and if V, = V ,  show that 3 = 

8.38: A beam made up of four wooden components, which are glued together to  
form a cross-section, as shown in Fig. (8P.381, is subjected t o  a shear force V, acting in 
the y-direction. Determine the average shear stress in the glue along the line c-c. 

8.39:* A beam ABC, having a triangular cross-section, is simply supported at points 
A and B (where a 5 L), as shown in Fig. (8P.391, and is subjected to  a uniformly dis- 
tributed load w. (a) Determine the ratio a/L such that the largest tensile stress existing 
a t  points c of the cross-section is equal t o  the largest tensile stress existing at points 
d. (b) Based on the value a/L obtained above, sketch the resulting shear and moment 
diagrams and show all critical ordinates. (c) Based on the same value of a/L, determine 
the maximum shear stress ltxyl existing in the beam if the cross-section is an equilat- 
eral triangle with sides b. Express the answer in terms of  w, L and b. [See comment 
(iii) following Example 8.13.1 

a--a 

( gfb2 . * &) 

Figure 8P.37 

8.40: Two C305 x 45 channels are connected to  two plates, each 260 mm x 15 mm, by 
means of bolts, as shown in Fig. (8P.40), t o  form the cross-section of a simply supported 
beam. If the bolts are spaced 80 cm apart, and each bolt can carry an allowable force 
in shear of 450 N, determine the maximum load P that can be applied at the centre 
of the beam (assuming that this shear criterion is  the governing criterion). 

Figure 8P.38 

Figure 8P.39 
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8.41: Four angles Ll02 x 102 x 9.5 are connected to  a plate 12-mm thick by means of 
two 20-mm diameter bolts (spaced 100 mm apart along the longitudinal axis) t o  form 
a cross-section, as shown in Fig. (8P.41). The section is used as a cantilever beam loaded 
atthefreeend byaforce P =240 kN.Assuming theshearstressisdistributed uniformly 
over the cross-section of each bolt, determine the average shear stress in the bolts. 

8.42: The cantilevered beam shown in Fig. (8P.42) has a rectangular cross-section 
of  constant width but of varying depth h(x). The beam is loaded at the free end. 
(a) Assuming that cross-sections remain plane and perpendicular t o  the deformed lon- 
gitudinal axis, determine the required variation of the depth h(x) in order that the 
maximum value of the flexure stress at all cross-sections be constant over the length 
of the beam, 0 5 x E: L. (Such a beam is referred t o  as a beam of constant strength.) 
(b) Recalling that the expression a,= My//(x) is only a good approximation if the lat- 
eral surfaces of the beam have a small slope 6 with respect t o  thex-axis, say 161 = 5", use 
this criterion and the answer from part (a) t o  determine the range of x/L for which the 
given expression for U, is a good approximation for a given beam with ho/L = 1/15. 

8.43:" Asimply supported wooden beam whose constant width is band whose depth 
h(x) varies with x i s  t o  be used as a beam of constant strength such that the maximum 
flexural stress is constant over i t s  entire length L, 0 c x < L. The beam is subjected t o  a 
distributed load 9(x) = qosin(ax/L), asshown in Fig. (8P.43). The maximum permissible 
flexural stress is given as ao. (a) Determine the maximum required depth ho a t  x =  L/2 
in terms of the given parameters and loading. (b) Determine the required variation of 
h(x) in terms of ho. (c) Referring t o  the limitation given in part (b) of Problem 8.42, and 
using the same criterion, determine the range of the loading 90 that can be applied 
to  the beam while satisfying the given criterion over i t s  entire length. (d) Using the 
result of (c) above, determine the maximum loading 90 and the required depth ho if 
uo=lOMPa, b=lOcmand L=3m. 

Section 70 

8.44: A cantilevered steel beam whose cross-section is specified as a W254x45 sec- 
tion, is loaded as shown in Fig. (8P.44). Determine the total allowable load on the 
beam if the allowable flexural stress and shear stress are specified as u = 150 MPa 
and t = 80 MPa, respectively. (Assume that the shear stress in the web is uniformly 
distributed over the area of the web.) 

8.45: A simply supported beam of length L [whose cross-section is, say, a standard 
(51, or channel (C) section] is t o  carry a load W (NI, uniformly distributed along i t s  
length. Assume that all properties of the cross-section are known, namely the section 
modulus S, the depth of the beam d and the dimensions of the flange and web. The 
allowable flexural and shear stress are given as oallow and tatlow. (a) Determine, the 
allowable load (Wr according t o  the flexure criterion and (W), according t o  the shear 
criteria in terms of the given parameters. (Assume that the shear force i s  resisted by 
the web and that the shear stress in the web is uniformly distributed over the area of 
the web.) (b) Determine the ranges of L for which the flexure criterion governs and 
for which the shear criterion governs the design. What conclusion can be drawn from 
this result? (c) For a steel beam of length 5 m with a cross-section 5203x34, determine 
the allowable load Wif callow = 200 MPa and tallow = 100 MPa. 

8.46: A wooden beam ABC, containing a hinge at B, is loaded, as shown in Fig 
(8P.46a), by means of a uniformly distributed load between A and B. Several wooden 
components are nailed together t o  form a cross-section, as shown in Fig. (8P.46b), with 
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Figure 81346 

Figure 81347 

In = 2 x 106 mm4. The maximum shear force that can be carried by each nail is given 
as f = 300 N. What is the maximum permitted spacing of (a) nails 'a' in the segment 
BC and (b) nails 'b' in the segment BC? 

8.47: A beam is made up of four component parts, which are glued together to  form 
a hollow box section, as shown in Fig. (8P.47). The allowable flexural stress of the wood 
is given as 25 MPa and the allowable stress in the glue is given as 2 MPa. The beam is 
t o  be used as a simply supported beam 2 m in length, and subjected to  a load W(N), 
which is uniformly distributed over i t s  entire length. Determine the maximum load W 
that the beam can carry. 

8.48: A W254x67 steel beam CD, 6 m in length, is subjected t o  a force of 200 kN, 
which is  t o  be applied via a steel beam AB of length L placed symmetrically as shown in 
Fig. (8P.48).TheallowableflexuraIand shearstressaregiven as 140MPaand85 MPa, re- 
spectively. (a) Determine the shortest permissible length L of the beam AB. (b) Choose 
the most suitable structural W-section (namely a beam having the least weight per 
unit length) from the tables (see Appendix E) that may be used for the beam AB. 

Figure 8P.48 

8.49:* Consider a steel beam having either a W- or 5-section with given lo, section 
modulus SO and depth d. Assume, as in Example 8.16, that it is required to  strengthen 
the beam in flexure by adding plates having dimensions b x t a t  the top and bottom 
flanges [see Fig. (8.10.3b)l thus increasing the section modulus to  S> SO. Show that 
if the thickness t << d, the increased modulus i s  given by the approximate expression 
s = so + btd. 

8.50: Asteel beam ABCD, containing a hinge at C, is simplysupported at B and fixed at 
D, as shown in Fig. (8P.50). Using an allowable flexure stress CY = 180 MPa, an S-section 
of minimum weight was originally chosen t o  support a load P =60 kN at A. (a) What 
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Figure SE50 

section was chosen? (b) Due to changes of the loading, it is now required to  strengthen 
the beam to resist flexure in the segment CD in order to carry a load P = 120 kN at  A by 
attaching plates (having the same width as the flanges) to  the top and bottom flanges 
by means of two bolts at each flange, as shown in Fig. (8.10.3). Using the result given in 
Problem 8.49, determine the required thickness of the plates. Check that the resulting 
flexural stress is within the allowable limits. (c) Determine the maximum permissible 
spacing of the bolts, s, along the longitudinal axis if the thickness of the plates is 
25 mm, if the bolts are 20 mm in diameter and if the allowable shear stress in the bolts 
is t = 50 MPa. (Assume the shear stress in the bolts is the average stress distributed 
uniformly over the cross-section.) 

8.51:* A beam is made up of two identical angles, which are connected by means of 
two bolts, as shown in Fig. (8P.51). When the beam is subjected to vertical loads acting 
along the y-axis, should one expect the bolts to  undergo shear? Justify the answer 
(i) by physical reasoning and (ii) by analytical reasoning based on Eq. (8.8.4). 

8.52: A cantilever beam is made up of two L127 x 127x9,s angles and a plate 
(254 mm x 10mm). The angles and plate are connected by means of 20-mm dia- 
meter bolts 'a' and 'b' as shown in Fig. (8P.52). A load P = 2000 N acts a t  the free 
end of the beam in the y-direction. Determine (a) the maximum flexural tensile and 
compressive stress in the beam and (b) the maximum shear stress in bolts 'a' and 'b' 
(assuming that the shear stress is uniformly distributed over their cross-sections) if the 
bolts are spaced a t  40-cm intervals along the longitudinal axis. 

Section I 1  

8.53 By bonding two aluminium bars (E =70GPa) to  two brass bars ( E  = 105 GPa), it 
is  possible to  form two different composite cross-sections of a beam, as shown in Figs. 
(8P.53a and b). If a moment M = 2 kN-m acts about the z-axis, determine the maximum 
flexural stress in the aluminium and the brass for each case. 

Figure 8P.53 

8.54 An aluminium bar ( E  =70GPa) and a steel bar (E =200GPa) are bonded to- 
gether to  form a composite cross-section, as shown in Fig. (8P.54). Determine (a) the 
maximum flexural stress in the steel and aluminium if the beam is subjected to a 
pure positive moment M= 1200 N m about the horizontal axis and (b) the radius of 
curvature of the deformed beam. 
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8.55: A rectangular wooden beam (1 50 mm x 250mm) with E = 12 CPa is reinforced 
by means of two steel plates (E = 200 GPa), as shown in Fig. (8P.55). (a) If the allowable 
stress in the wood and steel are given as 12 and 200 MPa, respectively, determine the 
maximum permissible moment that can act about the z-axis. (b) Determine the radius 
of curvature of the beam under this moment. 

Figure 8P.54 

Figure 8P.55 

Figure 8P.56 

8.56 A wooden beam (E = 10GPa) having a rectangular shape (150 mm x 350 mm) 
is reinforced by means of a steel plate (E = 200 GPa), which is fastened securely to  i t s  
top face, as shown in Fig. (8P.56). Determine the maximum flexural stress in the wood 
when the maximum stress in the plate is 75 MPa. 

8.57:* The cross-section of a rectangular reinforced concrete beam, reinforced by 
steel rods as shown in Fig. (8P.57a), can be considered as a composite of two materials: 
concrete and steel. As is characteristic of all brittle materials, concrete being such a 
material, is very weak in tension and cracks form in the tension zone when the beam 
undergoes flexure. It is therefore usual, when designing reinforced concrete beams 
according to elastic theory, t o  assume that the concrete can withstand compression 
but no tension, i.e. the concrete i s  assumed to  withstand only flexural stresses U 5 0. 
Tension in the beam is therefore assumed t o  be carried only by the steel rods whose 
(total) cross-sectional area is denoted as A,. Based on this assumption, the transformed 
section is as shown in Fig. (8P.57b). 

Figure 8P.57 

(a) Denoting the modulus of elasticity of the concrete and steel as E, and E,, re- 
spectively, and letting E ,  = nE,, show that the location of the neutral axis p of 
the rectangular beam is given by the expression 

- y=*[(l+e!)"2-l]. b 
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(b) Show that if the beam is subjected to a positive moment M about the neutral 
axis, the maximum stress in the concrete and steel is given by 

3M 
%(3d - 7) 

0, = 
6M 

bp(3d - 7)' 0;: = - 

8.58 A reinforced concrete beam, 8 m in length, has a rectangular cross-section as 
shown in Fig. (8P.57a), with b= 200 mm and h= 350 mm. Four steel rods, each 15 mm 
in diameter, are placed 75 mm from the bottom of the beam. A concentrated force 
P = 10 kN, located a t  the centre of the beam, acts in the y-direction. If E, = 200 GPa 
and E, = 15 GPa, determine the maximum flexural stress in the concrete and the steel. 

8.59:" In designing a rectangular reinforced concrete beam, it is often desired to 
achieve a 'balanced design', namely one for which the maximum stress in the concrete 
and steel are equal to  the maximum allowable stress in the two materials, 0, and B,, 

respectively. Show that for such a balanced design, the location p of the neutral axis 
is given by 

where p and dare as shown in Fig. (8P.57b) and E,  and E,  are the respective moduli 
of elasticity. 

Section 12 

8.60: A cantilevered beam is subjected to  axial and transverse loads, as shown in 
Fig. (8P.60). Determine the flexural and shear stresses a t  points a, b and c due to the 
applied loading. 

Figure 8P.60 

8.61: An eccentric vertical load P is applied (with an eccentricity e) to the free end 
of a cantilever beam having a circular cross-section as shown in Fig. (8P.61). Determine 
the maximum shear stress that exists in the beam and indicate, by means of a sketch, 
where it occurs in the cross-section. 

Figure 8P.61 
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8.62:* An elastic circular bar of radius R and length L, fixed at x=O, i s  subjected 
t o  an eccentric force P at i t s  free end. The force, lying in the x-y plane and inclined 
at an angle a! with respect t o  the x-axis, acts at point B (x= L, y= e) as shown in Fig. 
(8P.62a). (a) Locate the position of the neutral axis at the section x=O in terms of 
the given parameters of the problem, i.e. determine yo = yo(L, R, 4 a!). (b) If P acts in 
the x-direction (a! =O), where must the force be applied (i.e., what must be the value 
of e) such that a, = O  at point C of Fig. (8P.62a)? (c) If P, acting in the x-directions is 
applied at point B [as found in (b) above], and an additional torque T = Pe is applied, 
as shown in Fig. (8P.62b), what is  the maximum shear stress tmaX at point D? On which 
plane (defined by i t s  normal n with respect t o  the x-axis) does tmax act? 

Figure 8P.62 

8.63: A simply supported steel beam ABC is loaded as shown in Fig. (8P.631, where 
P = 200 kN is inclined by an angle of 30" with respect t o  the x-axis. In addition, an axial 
compressive force acts a t  the end C. Determine the maximum tensile and compressive 
stresses a, that exists (i) immediately to  the left of point B and (ii) immediately t o  the 
right of B if the cross-section is a W305x97 section. 

Figure SP.63 

8.64:" An eccentric compressive force P is applied at point B in the x-direction with 
an eccentricity with respect t o  the centroidal longitudinal axis of a beam having a 
rectangular cross-section b x  d, as shown in Fig. (8P.64). Show that the resulting stress 
a, is compressive (i.e., a, 5 0) throughout the cross-section, provided that the force is 
applied within the 'core' of the cross-section, as shown in Fig. (8.12.6). 
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Figure 8P.64 

8.65: A beam ABCD having a square cross-section with sides b is supported a t  points 
E and F and is loaded as shown in Fig. (8P.65). Determine the maximum flexural stresses 
and the maximum shear stress that exist in segments BC and CD. Note: b << L. 

8.66: A force P = 500 N is applied a t  point A to  a bent rod, as shown in Fig. (8P.66). 
Determine the normal and shear stresses a t  points B and C. 

Figure 8P.65 

Figure 8P.66 

8.67:* Three strain gauges are attached to an aluminium rod (€ =70GPa), 1 cm x 
1 cm in cross-section a t  points A, B and C, as shown in Fig. (8P.67). When P and F are 
applied, the following readings are obtained: = 550~, E B  =400p and EC = -300~. 
Determine the magnitude of P, F and the position b of P as measured from B. 

Figure 8P.67 
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8.68: Given a cylindrical rod AB of length L, diameter dand whose material density is 
p (N/m3). As shown in Fig. (8P.68), the rod is supported a t  A by means of a linear tor- 
sional spring having constant /J (N-rnlrad) such that when the rod is inclined by an 
angle 0 with respect t o  the vertical axis, the spring exerts a moment M=@. Deter- 
mine the minimum angle 6 with respect to the vertical axis at which a tensile stress 
occurs in the rod. 

8.69: A circular wire having diameter d i s  wound as a helix (with radius R )  t o  form 
a coiled spring, as shown in Fig. (8P.69). If a tensile force P i s  exerted at the two ends, 
determine the maximum shear stress within the wire. (Note: The average maximum 
shear stress in a rod of circular cross-section of area A, when subjected t o  a shear force 
V, i s t=$s . )  

Section 13 

8.70: The cross-section of a beam, whose material behaves as an ideal elastic-plastic 
material with yield stress in tension and compression f a 0  [see Fig. (8P.70b)], has a tri- 
angular shape as shown in Fig. (8P.70a). Determine (a) the maximum moment m that 
can be applied about a horizontal axis of the cross-section for i ts behaviour to  remain 
elastic, (b) the location yp of the neutral axis (measured from the apex) as the moment 
reaches the fully plastic moment MP and (c) the value of MP and the ratio Mp/ME. 

Figure 8P.70 

Figure 8P.73 

8.71: A steel beam, assumed to  behave as an elastic-perfectly plastic material (with 
E = 200GPa and yield stress a0 = 200MPa), has a square cross-section with area A= 
100 cm2. The beam is bent by end couples, which cause strains E = 0.004 at the top of 
the beam. Determine (a) the depth of  yielding, 4, within the cross-section and (b) the 
magnitude of the applied bending couples. 

8.72: Determine the maximum elastic and plastic moments for a W762 x 196 steel 
beam, which is assumed to  behave as an elastic-perfectly plastic material with a. = 
250 MPa. 

8.73: Determine the maximum elastic and plastic moments for a beam, which is as- 
sumed to  behave as an elastic-perfectly plastic material with yield point fa0 if the 
cross-section is a square with sides a and the moment is applied about i t s  diagonal, as 
shown in Fig. (8P.73). 

8.74* A beam with a cross-section, shown in Fig. (8P.74). is subjected t o  bending 
about the horizontal axis. Determine the ultimate plastic moment Mp if the beam 
material i s  elastic-perfectly plastic with yield stress fao. 

8.75:* A beam of rectangular cross-section consisting of a linearly elastic core (with 
modulus of elasticity E )  bonded to  top and bottom plates, as shown in Fig. (8P.75), 
is subjected to  a moment about the z-axis. The plates consist of a rigid-plastic ma- 
terial with a yield stress +ao [see Fig. (4.6.2)]. (a) What is the smallest value of the 
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bending moment M,, that will cause the beam t o  deform? (b) Assuming that plane 
cross-sections remain plane and perpendicular t o  the deformed longitudinal axis, ob- 
tain the bending-curvature relation. 

8.76:* A beam, in a state of pure bending, having a rectangular cross-section b x d 
i s  subjected to  a moment about the z-axis, as shown in Fig. (8P.76a). The linear strain- 
hardening behaviour of the beam is  described bythe stress-strain curve of Fig. (8P.76b), 
where El and € 2  are the moduli of elasticity in the two regions. 

(a) Show that if the flexural strains at the bottom and top of the cross-section are 
&em respectively, the moment M acting on the beam is given as 

M = w"n, 12 { [3 - (2) '1 (1 - 2) + *$ (E!?)}. 
(b) (i) Determine M if the strain E,,,= f3.6 x 10-3 and if b= 20 mm, d= 30 mm, €1 = 

IOOGPa, €2 =50GPa, GO= 120MPa and (ii) sketch the stress distribution in the 
cross-section due to  the moment. 

(c) The beam specified in (b) is now unloaded, i.e. the moment is reduced t o  zero. 
Sketch the stress distribution, CT,,load acting on the cross-section due to  this un- 
loading. Determine the residual stresses arcs and sketch their distribution in the 
cross-section. 

Review and comprehensive problems 

8.77: The differential relations for a beam subjected to  a distributed load q(x) were 
found t o  be [see Eqs. (8.3.1)-(8.3.3)1 

Show, by a similar derivation that if, in addition, a distributed moment m(x) (N-mlm) 
also acts on the beam about the z-axis [see Fig. (8P.7711, the differential relations are 

d2 M(x) dm(x) - = V(x) + dx), - - - -q(x) and - - - 4 x 1  + - d M(x) d V O  
dx dx dx2 dx ' 

Figure 8Y.77 

8.78: Acomposite material of infinite length is made of periodically spaced laminates 
having different moduli of elasticity, as shown in Fig. (8P.78a). When subjected t o  
loading and/or temperature changes in the x-direction, it is found that shear stresses 
z = ~Asin(2nx lL)  (where A 2 0 is a constant), acting in the x-direction, exist along 
the (i) interface of a typical laminate over a given length L within the composite, as 
shown in Fig. (8P.78b). (a) If the thickness of the typical laminate is h, determine the 
resulting moment M(x) a t  any cross-section of the fibres. (Note: Assume that M = 0 a t  
x = 0.) (b) Determine the curvature K(X) of the laminate if i t s  modulus of elasticity i s  
€ and, based on the curvature, sketch the approximate deformation of the laminate 
assuming it undergoes no deflection in the vertical direction at x=O and x= L. 
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Figure 8P.78 

Figure 8P.79 

Figure 8P.80 

8.79: A beam having a cross-section, as shown in Fig. (8P.79), is made of  an ideal 
elastic-plastic material such that the yield stress is +a0 in tension and compression, 
respectively, and TO in shear. Determine (a) the maximum elastic moment & about 
the z-axis in terms of GO and R ,  (b) the maximum shear V that can be exerted for the 
beam to  remain elastic and (c) the ultimate plastic moment Mp in terms of  00 and R. 

8.80:* A beam of length L, consisting of a material for which the allowable stress is 
sallow, rests on a frictionless surface and is subjected t o  two symmetrically applied loads 
P at positions from the ends represented by a > 0, as shown in Fig. (8P.80). The beam is  
t o  be designed using various available square cross-sections, b x b. (a) Assuming that 
the reactive pressure exerted by the surface on the beam is constant over the length 
L, sketch the shear and moment diagrams and label all maxima and minima in terms 
of P, L and a. (b) Segment BD is coated at the top of the beam with a thin brittle 
adhesive (namely one which it is assumed cannot support any tension). Based on a 
flexural criterion, determine the location of the loads that leads t o  an optimal design 
of  the beam, i.e. which minimises the dimension b. What is the required dimension b? 

8.81: A simply supported beam, having a linearly varying depth d(x), as shown in 
Fig. (8P.81), carries a load P at the centre. Determine the cross-section at which the 
maximum flexural stress a, occurs and find (Assume that the taper issuff iciently 
small so that warping of any cross-section i s  negligible.) 
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Figure 8P.81 

8.82 A wooden cantilever beam of length L ,  having a rectangular cross-section with 
constant width b but varying depth h(x), carries a total load W(N), which varies lin- 
early as shown in Fig. (8P.82). The maximum allowable flexural stress is  10 MPa. Assume 
that plane cross-sections remain plane. (a) Determine (i) the required depth ho at the 
support B if L/b=40 and W= 5 kN and (ii) the required variation h(x) if the maximum 
flexural stress in the beam is  to be the same at all cross-sections. (b) It is  known that 
the expression 0, = My// (x) is only a good approximation if the lateral surfaces of the 
beam have a small slope with respect to  the x-axis, 8, say lel = 5". Using this criterion 
and the answer of part (a), determine the range of x/L for which the given expression 
for the flexural ox i s  a good approximation when the beam is subjected to  the given 
load W= 5 kN if L = 2 m. (c) For the same ratio b/L, allowable stress o and total load 
Was given above, determine the required length L of the beam if the above criterion 
is satisfied a t  all cross-sections. 

8.83: Repeat part (a) of Problem 8.82 for the same loading Wand ratio b/L if the 
average shear stress reaches the same maximum value T = 2 MPa at  all cross-sections. 

8.84 A composite beam whose cross-section [as shown in Fig. (8P.84)J consists of two 
materials'A' and 'B' having different moduli of elasticity, E B >- €A, is subjected to a mo- 
ment about the z-axis. Determine the maximum flexural stress in each of the materials. 

8.85: A pipe consists of an external steel (E =200GPa) pipe bonded to an internal 
aluminium (E = 70 GPa) pipe to form a composite cross-section, as shown in Fig. (8P.85). 
Determine (a) the maximum stress in the aluminium and steel if the cross-section is 
subjected to  a moment of 2500 N-m and (b) the radius of curvature of the composite 
beam a t  the cross-section. 

8.86* A beam, having a rectangular cross-section b x d [Fig. (8P.86b)l (whose second 
moment about i ts  horizontal centroidal axis is I ) ,  is made of a material having differ- 
ent moduli of elasticity in tension and compression, namely Et and E, respectively, as 
shown in Fig. (8P.86a). The beam is subjected to  a positive bending moment M about 
the z-axis. (a) Show that the curvature-moment relation of the deformed beam can 
be written as K = 4 E * / '  

Figure 8P.86 



306 Symmetric bending o f  beams - basic relations and stresses 

where E * ,  the equivalent modulus of elasticity, i s  

(b) Determine the maximum flexural tensile stress. 

8.87:* A beam, whose cross-section consists of a semi-circle, is subjected to  a vertical 
shear force V acting in the y-direction. Show that the average shear stress txy along 
the line a-a of the cross-section shown in Fig. (8P.871, i s  given by 

1 241t V 1 [ sin3 B - ;(2B - sin 28) . 
(9n2 - 64)R2 sin 8 rxy = 

Figure 8P.87 

(Note: See computer-related Problem 8.97.) 

8.88:* Given an elastic beam with modulus of elasticity E, whose cross-section is 
a rectangle ( b x  d) and which has an initial radius of curvature p ,  as shown in Fig. 
(8P.88a). A moment is applied in order to  straighten out the beam [see Fig. (8P.88b)l. 

(a) Noting that while the beam undergoes deformation, there exists a surface for 
which the strain F = 0 (namely, the neutral surface represented by the line N-N'), 
and letting p be the radius of curvature to  the neutral surface, show that when 
the beam is straightened the strain at any arbitrary fibre i s  F = -&, where q 
denotes the perpendicular distance from this surface to  an arbitrary fibre. 

(b) Show that the neutral surface does not pass through the centroid of the cross- 
section; i.e. c1 #c2, where c1 and c2 are shown in the figure. (Note that 
Cl + c2 = d.) 

(c) (i) Show that the location of the neutral axis (which depends on the ratio 
a = d J p )  is given by 

c2 ( l - a ) e a - - l  
d - a( l  -em) ' 

_.- 

Figure 8P.88 
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(ii) Show that the moment required t o  straighten out the beam is given by the 
expression 

(d) Obtain a simplified expression, 

for the location of the neutral axis, c2/d, if the curvature is relatively small, i.e. 
if d/p << 1. 

(e) Showthat if the curvature is relatively small, the moment required t o  straighten 
the beam i s  given by IMI = E / / p ,  namely the same moment as i s  required t o  
cause a straight beam to  be bent into a curve with radius p .  (We conclude that 
the Euler-Bernoulli relations may be applied to  a beam with initial curvature 
K = l / p  for the case d /p  << 1. Clearly, this i s  not so if the condition d / p  << 1 i s  
not satisfied.) 

[Hint: For parts (d) and (e), use appropriate series expansions for the logarithmic and 
exponential terms appearing in (c) above. 

(Note: See computer-related Problem 8.101 .) 

8.89* Two separate thin elastic strips ‘A’ and ‘B, having the same rectangular cross- 
section b x  2c, (with moment of inertia 10) are bent by end couples MA and MB, as 
shown in Fig. (8P.89), such that the radius of curvature of the common interface 1-1 
is RO and such that no separation exists at the interface. (a) Show that the required 
relation between the moments is MA = M[l + 2c/Ro + 2 ( c / R 0 ) ~  + . . .I and therefore 
if c << Ro, MA 2: /MB. (b) The two strips are subsequently glued together and the mo- 
ments are then removed. Assuming that c << Ro, (i) determine the resulting flexural 
stress in each strip and (ii) sketch the stress distribution in the combined cross-section. 
(Note : For the case c << Ro, the Euler-Bernoulli relation, M = E I /  R, remains valid [see 
part (e) of Problem 8.881.) (c) Determine the resulting final radius of curvature of the 
interface, R, of the combined strips in terms of Ro. 

8.90* A beam of length L ,  simply supported at A and at a variable point B as shown 
in Fig. (8P.901, i s  subjected to  a uniform load qo over i t s  entire length. It i s  desired to  
optimise the design of the beam by minimising the (absolute) value of the maximum 
moment in the beam. (a) Determine the position of B (i.e., find b), that yields this op- 
timal solution. (b) Determine the maximum resulting (absolute) value of the moment 
in the beam. (c) Sketch the variation of I MI,,, between A and B and that of I MBl as a 
function of b/L for 0 < b/L 5 1. 

8.91: An elastic beam having a square cross-section (a x a) is subjected to  a moment 
M = Mz, about the z-axis, as shown in Fig. (8P.91 a). (a) Determine the maximum flexu- 
rat stress I(ax)aI. (b) By removing material at the top and bottom corners, a cross-section 
as shown by solid lines in Fig. (8P.91 b) is obtained. Show that the resulting maximum 
stress (fJx)b is given as 

[where a represents the cut over a fraction of the depth, see Fig. (8P.91 b)] and thus 
obtain the ratio R,  = & = (a - 1)2(3a + 1). (c) For which values of a is R, > 1 and 
R, < I ?  What does this imply physically? 

(Note: See computer-related Problem 8.100.) 
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Figure 8P.91 

Figure 8P.92 

8.92: A moment A4 5 M 5 MP causing plastic behaviour is applied about the diago- 
nal of the cross-section of a square beam whose diagonal length is d = 2c, as shown in 
Fig. (8P.92). The beam material is elastic-perfectly plasticwith yield point fao. (a) Deter- 
mine the relation between M and the location of e ,  the interface of the elastic and plas- 
t i c  zones. (b) Verify that A4 = and MP = $ when l = d/2 and e = 0, respectively. 
(c) Expressing M/Mp as a function of  t jd ,  plot the non-dimensional ratio M/Mp vs. e fd. 

8.93: In deriving the expression for the flexural stress under pure bending, a, = y, 
the stress ay is assumed t o  be negligible; i.e. ay << a,. Consider now, for example, a sim- 
ply supported beam of length L, having a rectangular cross-section b x d, subjected 
t o  a uniformly distributed load 90, as shown in Fig. (8P.93). It i s  clear that near the 
ends x = 0 and x = L, the moment M is very small and therefore, as x approaches 
the end points, a, -+ 0. Since the maximum compressive value of ay directly under the 
load is layl = qo/b, the assumption lay/axl << 1 is  clearly contradicted in this region. 
(a) Show that if L/d >> 1, the region where this contradiction occurs is negligible with 
respect t o  the length L and may therefore be disregarded in an analysis. For exam- 
ple, estimate IaY/axl directly under the load 90 for the cases A f L  = 0.05 and 0.10 with 
L/d= 20 and 100, where A is a small distance away from the ends. (b) Determine 
IaY/axl directly under the load 90 at x / L  = 0.5 if Lid = 20. 

Figure 8P.93 

8.94* In deriving the expression for the flexural stress under pure bending, a, = F, 
the stress ay i s  assumed t o  be negligible; i.e., layl << Ic,~. Consider now, for example, a 
beam of rectangular cross-section, b x 2c, subjected t o  lateral loads q(x), as shown in 
Fig. (8P.94a). Clearly since the stress ay = q/bat the top of  the beam and ay=O at the 
bottom, ay = f(y), i.e ay varies with y and is  not zero throughout the beam. Note that 
here positive ay is compressive. 

We first isolate an element (bx  2c x dx) [see Fig. (8P.94b)I; shear forces V and 
V + AV act on the two faces as shown. Let us now isolate a portion of  the element, 
b x ( 2  - a)c x dx, where y = -at (0 5 a 5 I), as shown in Fig. (8P.94~). Since q(x) # 0, 



Problems 309 

Figure 8P.94 

V = V(x) on any cross-section; therefore, acting on this portion of the element there 
exist, in addition t o  q(x), (i) shear forces (which are due to  the shear stresses txy) on the 
left and right faces, which we denote as AV and d(AV), respectively, and (ii) a stress 
a,,. (Note that here 'A' refers to  the portion of the cross-section and 'd' refers t o  the 
difference of the left and right faces.) 

(a) From equilibrium considerations, show that 

and hence, using the relation dV(x)/dx = -q(x), 

where Q(y) is the first moment about the centroidal z-axis of the portion of the 
cross-section b x (1 - a)c. 

(b) By evaluating the integral, obtain an expression for oy, namely 

or 

(c) Plot ay as a function of y in the beam. What is oy at the neutral axis? 
(d) Show that directly under the load q, the ratio R, = $ ( f ) 2  at the centre 

of a simply supported beam subjected to  a uniformly distributed load qo and 
therefore R, << 1 if d/L << 1. 
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The following problems are designed t o  require the use of  a computer. 

8.95: The following loads, acting on a cantilever beam of length L, free at x= 0 and 
fixed at x =  L, were measured along i t s  length during an experiment. 

(a) By means of a computer, plot the load as a function of x/L. (b) Integrating Eqs. 
(8.5.2) and (8.5.7) numerically, determine the shear Vand moment M a t  the pointsx/L. 

8.96 The following loads, acting on a simply supported beam of length L, were 
measured along i t s  length during an experiment. 

(a) By means of a computer, plot the load as a function of x/L. (b) Integrating 
Eqs. (8.5.2) and (8.5.7) numerically, determine the shear V and moment M at the 
points x/L. (c) Based on a numerical analysis of the curve obtained in (a) for the given 
load, it appears that the loading could be represented analytically by the expression 
q(x) = 1 - e-x/L. Assuming this i s  correct, obtain the shear and moment by integrating 
this expression analytically according to  Eqs. (8.5.2) and (8.5.7). (d) Using a computer, 
plot the results of (b) and (c) on the same graph and compare the results. 

8.97: The average shear stress rxy due to  a shear force V acting in the y-direction on 
a semi-circular cross-section is  given as (see Problem 8.87) 

rxy = (9n2 - 64)R2 sin6 
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where 8 is as shown in Fig. (8P.87). (a) Derive the transcendental equation whose roots 
determine the location of the line along which the maximum shear stress occurs and 
solve the equation numerically. (b) (i) Evaluate the location of this line as measured 
by j7, the distance from the top of the beam and (ii) determine numerically the value 
of k according to  the relation tmax = k z ,  where A i s  the area of the cross-section. 

8.98:* A solid rod having a cross-section of radius a with modulus of elasticity E and 
yield point &ao is assumed to  behave as an elastic-perfectly plastic material. The rod 
is subjected t o  a bending moment M, which increases incrementally from zero to  A%, 
the maximum elastic moment, and subsequently to  M = Mp, the fully plastic moment 
[Fig. 8P.981. 

Denoting the elastic-plastic interface by l ,  
(a) determine analytically the expression for the moment M as a function of the 

(b) verify that M, as obtained in (a) above, yields ME and Mp as [ / a  = 1 and t / a  -+ 0 

(c) rewrite the expression obtained in (a) above in terms of M/Mp and Q'a; 
(d) by means of a computer, solve numerically for e/a in terms of the ratio M/Mp 

(e) using a computer, plot a curve, l/a vs. M/ Mp for values 0 I M/ Mp I 1; 
(0 (i) write an expression for the curvature of the rod K = 1 / R  in terms of E l ,  

Mp and f(M/Mp), where ! / a  = f(M/Mp) i s  the function that was determined 
numerically in (d) above and (ii) using a computer, plot M/Mp vs. E / / R  for 05 

ratio L/a; 

respectively; 

for values &IMP i M/Mp i 1; 

pigure8p.98 

M/Mp 1 .  

8.99: In Problems 8.21 and 8.22, two beams having a rectangular cross-section (with 
width band depth d) and subjected to  a moment Mwere considered. In the first beam, 
the stress-strain relation was given as 

u = a ~ " ,  n = l , 3 , 5  ..., 
where a 2 0 is a constant. In the second beam, the stress-strain relation was given as 

where 0 c; n 5 1. 
For both beams the expression for the curvature K was found to  be identical, namely 

(a) Using a computer, (i) plot the stress-strain curve, i.e. u/a vs. E ,  for the cases 
n = 0.5, 1, 2 and (ii) plot the relation K vs. M for the cases n = 0.5, 1, 2. (b) For which 
beam, governed by n = 0.5 or n = 2, would one expect the beam t o  be stiffer when 
(i) M is very small and (ii) M is relatively large? (c) For what value of M would the two 
beams bend with the same curvature? 

8.100: Referring to  Problem 8.91, the ratio R, = & of the maximum flexural stress 
in the two cross-sections of Figs. (8.91a and b), respectively, when subjected to  the 
same moment M is given as R, =((.U - 1)*(3a + 1).  It is desired t o  optimise the design 
by removing material atthe top and bottom corners in orderto minimise the maximum 
stress in the beam. (a) Determine the optimal values of (Y and the resulting value of R,. 
(b) Plot R, VS. a. 
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8.101: Referring to Problem 8.88, the location of the neutral axis in the rectangular 
cross-section of a beam having depth d and initial radius of curvature p, is  

c2 

d - a(l -e') ' 
where a = d/p and where c2 i s  as shown in Fig. (8P.88a). A simplified expression for 
the case dfp << 1 is 

(1 - a)ea - 1 _ -  

Using a computer, plot the two expressions as functions of a = d/p on the same graph 
and determine the range of d / p  for which the difference is within 10%. 



9.1 Introduction 

We consider a linearly elastic prismatic beam having a symmetric cross-section 
such that its longitudinal axis lies along the x-axis and define the y-axis (whose 
positive direction is, as in Chapter 8, taken downward) to be the axis of symmetry of 
the cross-sections. Furthermore, we consider only symmetric bending, i.e., bending 
due to moments that act only about the z-axis [Fig. (9.1.1)]. 

Figure 9.1.1 

In Chapter 8, it was established that for such a beam, the neutral axis coincides 
with the centroidal z-axis; we shall therefore make no further distinction between 
these two axes although conceptually, when referring to the z-axis, we shall mean 
the neutral axis. 

As previously derived, the basic relation governing the bending of beams is the 
Euler-Bernoulli relation, 

E I K  = M ,  (9.1. la) 

where E I ( I  = Izz) represents the flexural rigidity of the beam and where the cur- 
vature K ( I K  I = 1/R) lies in a plane perpendicular to the neutral axis, namely in the 
x-y plane. 

This relation, derived for a state of pure symmetric bending, was seen to be exact. 
By the use of Navier’s hypothesis, the expression, generalised to apply to beams 
subjected to bending due to arbitrary lateral symmetric loads, becomes 

E I K ( x )  = M(x).  (9.1.1 b) 

313 
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Based on this equation, we investigate in this chapter, the lateral deflection of the 
longitudinal axis for beams subjected to transverse loads. For a beam subjected to 
loads that lie in the x-y plane, the deflection, which is perpendicular to the neutral 
axis, will be in the y-direction. 

Since we are only concerned with the deflection of the longitudinal x-axis, we 
represent the beam by means of a single line; thus, the beam is represented here by 
a one-dimensional element. We denote the lateral deflection of the longitudinal axis 
of the beam by v(x) [Fig. (9.1.2)]. The curve defined by v(x) is called the elastic 
curve. 

9.2 Linearised beam theory 

From the previous discussion, a beam will bend, under any given loading condition, 
in the shape of the elastic curve v(x). Now, fiom the calculus, the curvature I K  I = k, 
for any curve lying in the x-y plane, is given by (see Appendix B.1) 

(9.2.1 a) 

In order to be compatible with the adopted sign convention for beams, as given in 
Chapter 8, we define positive curvature K > 0 as+ 

d2v(x)/dx2 

{ 1 + [ d ~ ( x ) / d x ] ~ } ~ ’ ~  ’ 

K(X) = - (9.2. lb) 

With this definition, positive (negative) curvature K then corresponds to positive 
(negative) moments as shown in Fig. (9.2.1), and is therefore in agreement with 
Eqs. (9.1.1 ). Substituting the above equation in Eq. (9.1. Ib), we have 

= M(x) 
d2v(x)/dx2 

11 + [dv (x ) /d~]~}”~  
EZK(X) = -EI 

or 

d2 v(x) 
Ef- d x 2  =: -[{I + [dv (~) /dx ]~$ /~ ]  M(x). (9.2.2) 

We observe that this is a highly nonlinear equation whose integration, in general, 
is rather complicated. 

Now, we limit our investigation to beams having a relatively large flexural rigid- 
ity E l ;  that is, to relatively stiff beams such that their maximum deflection is 
small compared to the span length. It follows that the slope of the deformed beam, 
1 m\ << I .  Therefore, this term can be considered an infinitesimal with respect to 
unity and the expression for the curvature reduces to dx 

d2 u(x) 
dx2 ’ 

K -- (9.2.3) 

t Note that in Appendix B.l positive .v is taken in the upward direction. Since, in denving the beam 
relations, positwe t~ IS taken in the downward direction, a positive curvature K must be defined with a 
minus sign. With this definition, a curve v(x)  with a positive cnrvature K will then have, as its centre of 
curvature, points 0 which tend to lie in the negative y half-plane. 
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Hence, for beams undergoing small rotations (and displacements), the Euler- 
Bernoulli relation of Eqs. (9.1.1) becomes$ 

(9.2.4) 

We observe that Eq. (9.2.4) is thus the linearised form of the fundamental 
equation, Eq. (9.2.2), and consequently, we refer to this equation as the govern- 
ing equation for linear beam theory. 

Equation (9.2.4) is the basic equation by which we shall calculate the deflections 
of beams. We note that although the restriction to small displacements may seem 
severe, it is applicable to a host of engineering problems for which the flexural 
stiffness is sufficiently great such that all displacements are very small compared 
to the span length. 

It is obvious that the integration of Eqs. (9.2.4) yields deflections due solely to 
bending; deflections due to shear deformation in the beam are not considered here. 
We shall show, in a later treatment, that the effect of such shear deformation on the 
deflections is negligible for relatively long beams. 

Now, upon recognising that Eq. (9.2.4) is essentially a second-order differential 
equation, it is evident that two constants of integration must necessarily appear in 
its solution. Therefore, to complete its solution for any particular beam, we require 
appropriate boundary conditions that describe the support conditions of the beam; 
these boundary conditions (associated with a second order differential equation) 
can involve only the function itself or the first derivative, dvldx, or a combination 
of these.$ 

We consider here several cases: 
For a simply supported beam as shown in Fig. (9.2.2a), the displacement at the 

two ends A and B vanish. Thus the appropriate boundary conditions are v(0) = 0 
and v(L) = 0. 

For the cantilever beam of Fig. (9.2.2b), the support at A(x = 0) provides a 
constraint against both displacement and rotation. Hence the appropriate boundary 
conditions are v(0) = 0 and 9 = 0. 

We recognise that the boundary conditions are conditions on the geometry of the 
beam; hence the appropriate boundary conditions associated with the second-order 
differential equation of a beam are referred to as geometric boundary conditions.§ 
Finally, it is worthwhile to note that Eq. (9.2.4) is readily integrable, provided the 
expression for M(x) is kn0wn.1~ For the case of statically determinate beams, one 
can always write an explicit expression for M(x) in terms of known quantities from 
the equations of statics. For indeterminate beams one must resort to other means, 
as we shall see below. 

Figure 9.2.2 

t Note that, according to the theory of differential equations. Eq. (9.2.4) 1s defined in an open domain, not 
at the boundary of the domain. 

t We recall, in general, that associated boundary conditions for an nth-order differential equation can 
involve, at most, deavatives of  order (n - I). 

5 In Section 12 of this chapter, we will encounter other types of  boundary conditions, namely ‘mechanical 
boundary conditions’. 

11 It is emphasised here that the second-order differential equatlonis integrable in terms ofanalytic fmchons 
only if and 9 are continuous within the domain of validity of the equation. Thus, for example, 
a ‘hinge’ may not exist within the domain since this implies a discontinuity in the slope of the beam. We 
emphasise that the continuity conditions are not required at the end points of  the domain. 
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09.3 Accuracy of the linearised beam theory 

Although it was stated that it is permissible to use a linearised beam theory to obtain 
the deflections v(x) of relatively stiff beams, we wish to establish an order of the 
error incurred if we are to use the linearised theory with some confidence. 

It is clear that the error depends on the difference between the linearised expres- 
sion for the curvature [Eq. (9.2.3)], K = -d2v(x)/dx2, and the exact expression for 
K as given by Eq. (9.2. lb). This difference clearly increases with increased bending 
and therefore with increased moment M. Hence the greatest error occurs for a beam 
subjected to the largest possible moment such that elastic behaviour is maintained; 
thus the greatest error in using linearised theory occurs for a beam subjected to 
M = ME, the elastic moment, as defined in Chapter 8. 

An estimate of the error can be obtained by comparing the deflection from the 
linearised theory with the exact deflection obtained using the relation of Eq. (9.1.1). 
We now recall that for a simply supported beam of flexural rigidity E I ,  length L 
and depth d subjected to a constant moment M = ME [see Fig. (8.6.9) or (9.3.la)], 
the exact mid-span displacement A was found in Example 8.10 to be [Eq. (8.6.15)] 

A = !%?! [ 1 - cos (%-$)I , 1/2 5 a < 1, (9.3.1) 
g o  

where a0 represents the elastic limit (or proportional limit, in the model), and 
a, (1/2 5 a < 1) is a parameter defining the distance of the furthest point in the 
cross-section from the neutral axis [Fig. (9.3. Ib)]. 

Figure 9.3.1 

Let us therefore calculate the displacements of this same beam according to 
the linearised theory. Since, for this beam, M = constant over the entire span, 
we integrate Eq. (9.2.4) [i.e. here, Eld2v(x)/dx2 = -M,  constant] subject to the 
boundary conditions v(0) = v (L)  =E 0. Upon integrating, we obtain the general 
solution 

MX2 
E l ~ ( x )  = -- + AX + B ,  

2 
(9.3.2) 

where A and B are constants of integration. From the condition v(0) = 0, it follows 
that B = 0. From v(L)  = 0, we obtain A I= y. Therefore the elastic curve, which 
we note is a parabola, is 

MX 
2EI  

v(x, = -(L - x). (9.3.3) 

Clearly, this is an approximation resulting from the linearisation, for the true shape 
is known to be a portion of a circular arc with a (constant) radius of curvature R 
[see Fig. (9.3.la)l. To examine the error, we calculate the mid-span deflection at 
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x = L/2. Letting 6 = v(L/2), Eq. (9.3.3) yields 

ML2 a=---- 
8EI ' 

(9.3.4) 

Now, the maximum error occurs, as we have seen, for the beam subjected to the 
maximum elastic moment ME which, by Eq. (8.6.14), is ME = s. Hence under 
this moment, 

(9.3.5) 

We now compare the exact deflection A [Eq. (9.3.1)] with the deflection 6 ,  ob- 
tained from the linearised theory. To do so, we expand the cosine term appearing 
in Eq. (9.3.1) in its Taylor series (upon recognising that << 1) and retain the first 
three terms: 

cos (22) = 1 - i( 2 %">' 2Ead  + -!-( 24 %.). 2 E a d  + . . . . (9.3.6) 

Therefore Eq. (9.3.1) becomes: 

that is, 

We then have, from Eq. (9 .33 ,  

We observe immediately that the exact deflection A is less than 8, calculated 

To obtain the accuracy of the linearised deflection 6, we calculate the percentage 
according to the linearised theory. 

error (using a = 1/2) noting again that oo/E << 1; thus 

(9.3.9) 

According to our previous discussion, Eq. (9.3.9) provides us with an upper bound 
on the error. We observe that this bound error depends on two ratios: the ratio $ 
and the length-to-depth ratio. (Note that it does not depend on the specific shape of 
the cross-section.) 

Now typical values for the ratio 2 for materials encountered in engineering prac- 
tice are O(10-3). For long slender beams, say with 4 21 100, the error, according 
to Eq. (9.3.9), is then of the order 0(10-3), i.e. about 0.1%. For less slender beams, 
e.g. L /d  = 20, the error is of the order of 0.01 %. 

Thus from this simple analysis, we may conclude that the linearised theory will 
yield displacements of great accuracy for beams as encountered in usual engineering 
practice. 
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Having established an estimate for the accuracy of the linearised theory, we 
illustrate the method by means of some simple examples. 

9.4 Elastic curve equations for some ‘classical’ cases 

Among statically determinate beams, we find, in particular, two common ‘classical’ 
cases: simply supported beams and cantilever beams. In both cases, the equation of 
the elastic curve is readily found by integration of the linear second-order differential 
equation given above. We illustrate here the method of solution for several loading 
cases. 

Example 9.1: A simply supported beam of flexural rigidity N and length L 
is subjected to  a uniformly distributed load w(N/m), as shown in Fig. (9.4.1). 
(a) Determine the equation of the elastic curve v(x). (b) Evaluate the displace- 
ment 6 = v(L/2)  if the beam is made of wood (€ = 10 GPa), has a rectangu- 
lar cross-section (with b = 6 cm and d = 12 cm such that I = 864 cm4) and if 
w =  1200 N/m and L = 4 m. 

Solution: 

(a) The moment M(x), from Example 8.1, is given by M(x) = yx(L - x), 0 < x < 
L . [Shear and moment diagrams are shown in Figs. (9.4.2a and b).] 
Substituting M(x) in Eq. (9.2.4), we have? 

W 
EIv”(x) = --(Lx -x2), 0 < x < L. (9.4.1) 2 

The associated boundary conditions (B.C.) are v(0) = v(L) = 0. 
Integrating the above equation, we obtain 

v(x) = - ( - - Lf + - t ; )+Ax+B,  
2 E I  

(9.4.2a) 

where A and B are constants of integration. Frym B.C. v(0) = 0, B = 0. From 
the second boundary condition v(L) = &(-% + $) + AL = 0, we find A = 
- Therefore 

W 
v(x) = - (x4 - 2 ~ ~ 3  + ~ 3 ~ )  

24EI 
(9.4.2b) 

represents the equation of the elastic curve. Note that this is a quartic equation. 
The maximum displacement, which occurs at the centre x = L/2, is 

5wL4 
6 ?E v(x = L/2) = - 

384EI * 
(9.4.3) 

Furthermore the slope 0 = tan-’ v‘ 2: v‘(x) of the deflected beam at any point x 
is given by 

v’(x) = -(4x3 - 6Lx2 + L3); (9.4.4a) 
W 

24EI 
the largest slope occurs at x = 0 and x = L ;  at point A, 

(9.4.4b) 

t The simplified prime notation, U’@) E 9, u”(x) %, etc., is used here and throughout this 
chapter. Note, too, that Eq. (9.4.1) is defined only in the open region, 0 .c: x i: L .  (See footnote p. 315.) 
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The shape of the elastic curve is shown in Fig. (9.4.2~). 
(b) For the given numerical values, 

= 4.63 x IOW’ = 0.0463m. 5(1200)(4)4 
(384)(10 x 109)(864 x 10-8) v ( L / 2 )  = 

We note in passing that the ratio 6 / L  = = 1.12 x 10-2 is very small. Moreover, 
using the same numerical values, the largest slope of the beam, from Eq. (9.4.4b), i s  
found to be 6, = 0.03704 rad = 2.12”. These numerical results thus conform with 

U the assumptions leading to linearised theory. 

Example 9.2: A force P acts at  the free end of a cantilever beam AB of length 
L and flexural rigidity €I, as shown in Fig. (9.4.3). Determine the equation of 
the elastic curve and the displacement of B under the load. 

Solution: From the equations of statics, the reactions at A are RA = P and MA = 
- P L . Therefore, the moment M ( x )  is 

(9.4.5a) M(x)  = - P L  + Px = P(x - L ) ,  0 5 x i. L 
and hence the governing equation, EIv”(x )  = -M(x) ,  becomes Figure 9.4.3 

E Iv”(x)  = - P(x  - L ) ,  0 < x < L , (9.4.5b) 

with the associated boundary conditions v(0) = v’(0) = 0. Integrating the above equa- 
tion, we obtain 

EIv’(x)  = -P(x’/2 - L x )  + A ,  (9.4.6a) 

and using the B.C. v’(0) = 0, A = 0. Integrating once more, 

E I v ( x )  = - P ( x 3 / 6  - L x 2 / 2 )  + B;  (9.4.6b) 

from B.C. v(0) = 0. B = 0. Therefore 

Px2 
v(x)  = --(x - 3L).  

6 E I  
(9.4.7a) 

We note that here the elastic curve, shown in Fig. (9.4.3), is defined by a cubic equation 
with the maximum deflection, occurring at point B(x = L) ,  

PL3 v(L) = - 
3EI  * 

(9.4.7b) 

U 

Having found the results for a cantilever beam of constant flexural rigidity E I , we 
wish to examine some cases where the flexural rigidity varies with x ,  i.e., I = I ( x ) ,  
in order to examine the effect on the maximum displacement. We do so in the 
following example for two particular cases. 

Example 9.3: A force P acts a t  the free end of a cantilever beam AB of length 
L but having variable flexural rigidity €/(x) [Fig. (9.4.411. Let us assume that 
the beam has a rectangular cross-section, with a variable width b(x). Conse- 
quently, since I (x) = b(x)d3/12, I (x) and b(x) have the same dependency on x.  
We examine two cases: Beam (i), where I (x) varies linearly along the length 
as / ( x )  = / o ( l  - x / L ) ;  Beam (ii), where / (x )  is assumed to vary parabolically as 
I(x) = l0(l - x 2 / L 2 ) .  The variations of b(x) are shown in Figs. (9.4.5a and b), 
respectively. We wish to  determine v(x) and the deflection a t  the free end. 
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Figure 9.4.4 

Figure 9.4.9 

Solution: Since the beam is statically determinate, the moment M(x)  is indepen- 
dent of the cross-section and is therefore the same as in Example 9.2 [Eq. (9.4.5a)l. 
Consequently, the governing equation is 

(9.4.8) EZ(X)V”(X) = PL( l  - x /L ) ,  0 < x < L .  

The boundary conditions are, as in the previous example, v(0) = v’(0) = 0. 

Solution for Beam (i): Z(x) = Zo(1 - x / L )  
We recognise that Z(x) and M(x)  have the same dependency on x .  Therefore, the 
linearised Euler-Bernoulli equation becomes simply 

EIod’(x) = PL.  

Integrating twice and using the above boundary conditions, yields 

EZov(x) = PLx2/2.  

The maximum deflection at the free end is therefore 
PL3 
2EIo 

v(L)  = -. 

Solutionfor Beam (ii): Z ( X )  = ~ o ( 1  - X ~ / L ~ )  
Substituting in Eq. (9.2.4), we find 

1 - x / L  
1 -X2/LZ 

EZ~V”(X)  = PL . 

or 
PL 

EZ~V”(X> = - 
1 + x / L ’  

Integrating once, we obtain 

E Z ~ V ’ ( X )  = P L ~  In(l+ X / L )  + A .  

From B.C. v’(0) = 0,  A = 0. Recalling the indefinite integral, 

ln(z) dz = z[ln(z) - I], 

a second integration yields 

Elov(x)  = PL3(l  + x/L)[ln(l + x / L )  - 11 + B. 

From B.C. v(0) = 0, B = PL3.  Therefore the elastic curve is given by 

PL3 
E10 

v(x)  = - {(l + x / L )  [ ln( l+ x / L )  - 11 + 11 

and hence the deflection at the free end is 
PL3 PL3 

v(L)  = -(2In2 - 1) = 0.38629-. 
E Io EZ 

(9.4.9a) 

(9.4.9b) 

(9.4.9c) 

(9.4.10a) 

(9.4. lob) 

(9.4.10~) 

(9.4.1 la) 

(9.4.1 lb) 

13 
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It is interesting to compare the results of this example with that of Example 9.2. 
For the beam of cmnstant EIo, we found AB = & = 0.333%, while for Beam (ii) 
AB = 0.38629PL3/EIo andforBeam(i), AB = 0.5PL3/EIo. Clearly, the increased 
displacements are due to the lower overall flexural rigidity of Beams (i) and (ii). While 
we observe that the maximum deflection depends on the flexural rigidity of a beam, 
we point out that for statically determinate beams subjected to applied loads, the 
maximum moments are independent of theflexural rigidity. 

Finally, it is worthwhile here to make a general comment. Having examined several 
beam systems in this chapter, we observe specifically that the magnitude of the de- 
flections of a beam is inverselyproportional to theflexural stiffness, EI. Indeed, this 
relation is always found to be true for any beam governed by the linear Euler-Bernoulli 
relations. 

Example 9.4 A simply supported beam AB having flexural rigidity El and 
length L is subjected to a couple MA at point A, as shown in Fig. (9.4.6a). 
Determine (a) the equation of the elastic curve, (b) the displacement at the 
centre point (x = L /2), (c) the location and magnitude of the maximum de- 
flection and (d) the slope of the beam at A. 

Solution: 

(a) From equilibrium, the reactions are RA = MA/L (downward) and RB = MA/L 
(upward). The resulting moment is therefore 

M ( x )  = MA(1 - x/L), 0 5 x 5 L (9.4.12a) 

and hence the governing equation is 

EIV”(X) =: -&&(I - X / L ) ,  0 < X < L (9.4.1213) 

subject to the boundary conditions v(0) = v(L) = 0. [The moment diagram is 
shown in Fig. (9.4.6b).] 

Integrating the above equation twice, Figure 9.4.6 

EIV‘(X) = -kf~(X - X2/2L) + A (9.4.13a) 

EIV(X) = -MA(x2/2 - X3/6L) AX B. (9.4.13b) 

From BC v(0) = 0, it follows that B = 0. Then, from v(L) = 0, we find A = 
MAL/3. Hence 

(x3 - 3Lx2 + 2L2x). v(x) = - M A  

6EIL 
(b) The mid-point deflection at x = L/2 is therefore 

M A L ~  
v(L/2) = - 

16EI ’ 

(9.4.13~) 

(9.4.13d) 

(c) Setting v’(x) = 0, the maximum displacement occurs at x given by the solution of 
the equation, 3x2 - 6Lx + 2L2 = 0, whose (relevant) root is x = (3 - d ) L / 3 .  
Substituting this in Eq. (9.4.13c), we find the maximum displacement to be 

M A L ~  v,, = -- 
27 E I  ’ 

(9.4.13e) 
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(d) The slope 6~ = v’(0) at point A is given by 

Figure 9.4.7 

(9.4.14) 

The elastic curve and calculated quantities are shown in Fig. (9.4.6~). 0 

Example 9.5: The simply supported beam of length I! and having flexural 
rigidity El i s  subjected to a concentrated force P acting a distance a from the 
left end, point A, as shown in Fig. (9.4.7a). Determine (a) the equation of 
the elastic curve and (b) the maximum deflection if the load is  applied at the 
centre (a = L /2). 

Solution: From statics, the reactions are RA = P(L - a) /L  and R g  = Pa/L .  The 
resulting shear and moment diagrams are shown in Figs. (9.4.7b and c). We observe, 
from the moment diagram, that the moment M(x)  in the beam is represented by two 
different functions of x, which are as follows: 

P(L - a )  
L 

x, O ~ x c a  M ( x )  = (9.4.15a) 

Pa 
L M ( x )  = -(L -x), a 5 x 5 L .  (9.4.15b) 

Thus we note that there exist two separate domains AC and CB which we shall 
call domains D1 and Dz,  respectively. Mathematically, for the open domains, we 
write D1: {x 10 < x < a} ;  Dz: {x I a < x < L}.  We therefore must write the Euler- 
Bernoulli equation separately for each domain. Denoting the deflections in the two 
domains by u1(x) and ZIZ(X), respectively, we have 

Domain l (0  < x < a )  Domain 2 (a < x < L )  

Elv;’(x) - P(L - a )  
L 

X 

Integrating successively, 

Pa 
E I v ~ ( x )  =: --(L L - X) 

(9.4.16a,b) 

Pa 
2L 

= -(L - x)2 + Az 
(9.4.16c,d) 

P(L  - a)x3 Pa 
6L + A l x  + B1 E I v ~ ( x )  = --(L - x ) ~  + AZX + Bz E I v l ( x )  = - 

6L 
(9.4.16e,f) 

We note that there then exist four constants of integration, A1 , AZ , B1 and Bz. We 
therefore require four associated boundary conditions. Clearly, for the two end points, 
we have 

(9.4.17a) 

(9.4.17b) 

The remaining two boundary conditions are determined from the physics of the beam: 
the deflections v1 and vz of the beam must clearly be the same at x = a. Furthermore, 
since no hinge exists at x = a, there can be no finite relative rotation of the two 
segments of the beam at x = a; that is, no ‘kink’ exists in the beam at this point. 
Therefore the slope of the beam at x = a must be the same, and hence, we write the 
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boundary conditions as 
(9.4.17~) 
(9.4.17d) 

These two boundary conditions are thus essentially ‘continuity conditions’. 
From Eqs. (9.4.17a and b), we find 

Bt = O  and Bz=-A2L. 

Equations (19.4.17~ and d) become 

P(L - a)a3 Pa(L - a)3 
- (L - a)A2 

6L 
- +aA1 =: - 

6L 
P(L - a)a2 Pa(L - a y  + A2. 2L + A s  = - 

2L 
These are two simultaneous equations in the two unknowns A S  and A2, whose solu- 
tions are 

Pa(L - a)(2L - a) Pa(L2 - 2 )  
6L ’ 

A1 = - , A 2 = -  
6L 

Substituting in Eqs. (9.4.16e) and (9.4.16), we arrive at the expressions for the 
deflections 

P(L - a)x 
VI(X) = 6EIL [a(2L - a) - x2], 0 5 x 5 a (9.4.18a) 

Pa(L - x) 
7J2(x) = 6EIL [x(2L - x) - 21 ,  a < x < L .  (9.4.18b) 

For the particular case of the beam loaded at the centre (a = L/2) [Fig. (9.4.8)], the 
deflection becomes 

Px  
48EI 

u1(x) = - (3L2 -4x2), 0 5 x 5 L/2 (9.4.19a) 

P(L -x)  
[3L2 - 4(L - x ) ~ ] ,  L/2 5 x 5 L. (9.4.19b) 

Figure 9.4.8 48EI v2(x) = 

The deflection at x = L/2 under the load for this case is then 

PL3 
u(x = L/2) = - 

48EI. 
(9.4.20) 

The elastic curve for this case is shown in Fig. (9.4.8). The slope of the beam in the 
domain 0 5 x 5 L/2 is readily found 

v’(x) = - (L2-4x2)* 
16EI 

(9.4.21) 

Note that u’(L/2) = 0 as it must be for this symmetric case. 0 

Although the solution to this problem was quite straightforward, we observe that 
the calculations become somewhat complicated since there exist two domains. If, 
for example, we have a beam subjected to loads as in Fig. (9.4.9), we observe that 

Figure 9.4.9 
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there exist five domains; in each we must integrate the differential equation and 
it becomes necessary to evaluate 10 constants of integration from 10 boundary 
conditions. 

Now, there exists a class of functions, called singularity functions, which per- 
mits us to extend the domain of validity of an equation and thus leads to substantial 
simplifications in the calculations. We shall consider these functions and their ap- 
plication in Section 7. 

09.5 Axial displacements due to flexure of a beam 
under lateral loads 

In Chapter 8, the upper bound for the axial displacement of a simply supported beam 
of length L (0 5 x 5 L )  under pure bending was shown to be an infinitesimal of 
second order. Specifically, the axial displacement, Ax, of a roller support at x = L 
was found to be [see Eq. (8.6.20a)l 

Y 2  A, =: - 
24' 

Here 

a0L y = -  
Ead 

(9.5.1) 

(9.5.2) 

where 00 is the maximum elastic stress, d is the depth of the beam and a. 
(1/2 < a < 1) is a coefficient as previously defined. 

We wish to establish a general expression for the axial displacement u(x) at any 
point of the elastic curve of the beam due to lateral loading, namely for cases where 

Let us therefore consider a beam for which the displacement in the x-direction 
is zero at n = 0; for example, either a pinned support or a clamped support [see 
Fig. (9.5.la orb)]. Let v(x) represents the deflection due to lateral loads. 

M = M(x). 

Figure 9.5.1 
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Recalling that the elastic curve is inextensible, it is possible to establish an ex- 
pression for A, in terms of v(x) and more specifically in terms of v’(x). We proceed 
as follows. 

We first denote the displacement to the left of any point of the elastic curve by 
U@); i.e., we take here positive u ( x )  in the negative x-direction. 

Consider now a typical element of length dx of the elastic curve, as shown in 
Fig. (9.5.1~). In the deformed state, the length is given by 

dP2=[ ( l -$ )dx l2+  dv2, 

or 

ds2 = [ (1 - $)2 + (32] dx2. 

(9.5.3 a) 

(9.5.3b) 

Now since flexural deformation is inextensional - that is, there is no change in 
the length ofthe fibre lying on the elastic curve namely originally on the longitudinal 
centroidal axis [see Section 6b of Chapter 81, upon setting dP2 = dx2,  

2 

= 1 .  (9.5.4a) 

Solving for duldx, 

du 
dx 

Now, by the binomial theorem, 

1 1 
2 

(1 - (v72]1/2 = 1 - +’)2 - ,(v’)4 + . . . , 

(9.5.4b) 

(9.5.5a) 

Consistent with linear theory, recalling that lv’l << 1, we neglect all terms higher 
than the quadratic 

1 
[l - (219211’2 2: 1 - -(v‘)2, 

2 
and therefore, from Eq. (9.5.4b), 

- z T  1 -  1 - - ( v )  =-(v). 
dx du [ : l 2 1  : / 2  

Integrating, 

0 

Since u(0) = 0, we finally obtain for A, u(L),  

0 

(9.5.5b) 

(9.5.6) 

(9.5.7) 

(9.5.8) 
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Figure 9.5.2 

We now consider a specific case, namely a simply supported beam of length L 
subjected to a uniformly distributed load w (N/m), as shown in Fig. (9.4.1). Due to 
this loading, the slope v'(x) was found to be [see Eq. (9.4.4a)l 

W 
v'(x) = - (4x3 - 6Lx2 + L3). 

2 4 ~ 1  
Substituting this in Eq. (9.5.8), we get 

(9.5.9) 

and integrating the polynomial, we obtain 

17w2L7 
70(24B I )2  * 

A, = (9.5. lob) 

Recalling that the maximum moment in this case, occurring at x = L /2, is M,,, = 
wL2/8,  and noting from Eq. (8.6.14) that ME = %, we have wL2 = 8 ~ o l / ~ ~ d .  
Substituting in Eq. (9.5.10b), we find 

For an upper bound, we let a = 1 / 2  and therefore obtain 

(9.5.1 la) 

(9.5.llb) 

As was mentioned previously, for relatively stiff beams as encountered in engineer- 
ing practice, ao/E = O(lOP3). Therefore, taking ao/E = lOW3, we obtain for the 
cases L / d  = 20 and 100, 

A x  A, - = 1.08 x lOU5 
L L 

and 

respectively. Thus we observe that these are infitesimals of the second order and 
hence 

L* = L ( l -  A, /L)  = L .  (9.5.12) 

This justifies using the original length L when analysing problems according to 
the linear theory of beams. As the reader will notice, this has been the case in the 
solution of all examples previously studied. 

It is worthwhile to point out here that since axial displacements of beams un- 
dergoing flexure due to transverse loads are of second order, in analysing a beam 
according to linear theory, we neglect stretching of an elastic curve. As a result, for 
beams supported, e.g. as in Fig. (9.5.2), the reactive axial forces are neglected in a 
linear analysis since they are only second-order effects. 

- = 2.69 x 10-4, 

9.6 Deflections due to shear deformation 

In determining the deflections of beams, displacements were obtained by integrat- 
ing the Euler-Bernoulli equations; thus we considered deformation only due to 
bending. For cases other than pure bending, i.e. when Y f: 0, it is clear that a beam 
undergoes deformation due to shear, and consequently, it would seem appropriate 
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to also calculate the deflections due to such deformation. In practice, however, dis- 
placements due to shear are very small compared to those due to flexure and are 
therefore generally neglected. We now seek to justify such practice. 

To do so, we consider two cases: a cantilever beam of length L subjected to a 
concentrated force P at the end [Fig. (9.6. la)] anda simply supported beam of length 
L subjected to a uniformly distributed load w (N/m), as shown in Fig. (9.6.2a). The 
displacements due to bending, which we denote here by Vb for the two cases, are 
given by Eqs. (9.4.7b) and (9.4.3), respectively: namely 

and 

(9.6.la) 
Figure 9.6.1 

(9.6.1 b) 

where E I is the flexural rigidity of the beam. These are shown in the respective 
figures. 

Figure 9.6.2 

Let us, for simplicity, consider the beams to have rectangular cross-sections b x d 
with I =E bd3/12. In this case, the deflections are given explicitly by 

4PL3 
v@) = - 

Ebd3 
and 

(9.6.2a) 

(9.6.2b) 

We now derive approximate required expressions for the corresponding deflec- 
tions due to shear deformation.+ If we consider the beam to be composed of a series 
of elements, dx, then due to the shear stress, any rectangular element deforms into 
a parallelogram and, according to Hooke’s law, the angle changes, y ,  are given by 

t We pomt out here that since we do not consider the variation of the shear stress in the cross-section (see 
Section Sc, Chapter S), the present analysis, is but approximate. A correction to this analysis, which 
takes the vmation into account, is obtained by use of a ‘shape factor’. More accurate displacements due 
to shear deformation are determined using methods given in Chapter 14. 
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Figure 9.63 

y = t/ G, where G is the shear modulus. Recalling from Eq. (8.8.6b) that the shear 
stress along the z-axis of a rectangular section is given by r = g, it follows that 

(9.6.3) 

and hence the relative displacement, dv,, of any two cross-sections, dx apart, is 
[Fig. (9.6.3)] 

Therefore, assuming v,(x = 0) = 0, integration yields 

(9.6.4a) 

(9.6.4b) 
0 

Let us first consider the case of the cantilever beam where V = P (constant). For 
this case, the shear deformation of the beam is independent of x and appears as in 
Fig. (9.6.1b). The resulting deflection v,(L) of the free end is then given by 

3PL 
v,(L) = - 

2AG 
0 

and since A = b 9 d ,  we have 
3PL 

v,(L) = - 
2bdG' 

(9.6.5a) 

(9.6.5b) 

For the case of the simply supported beam, the shear force Y = w(L/2 - x). Sub- 
stituting in Eq. (9.6.4b), the mid-span deflection [Fig, (9.6.2b)I is given by 

L P  
3w12 

2AG 16AG 
v,(L/2) = - 

0 

or 
3wL2 

v,(L/2)  = - 
16bdG' 

(9.6.6a) 

(9.6.6b) 

We now calculate the ratio t; that is, the ratio of the displacement due to shear 
to that due to flexure. From Eqs. (9.6.1), (9.6.5b) and (9.6.6b), the ratios for the 
cantilever beam and simply supported beam are, respectively, 

and 

Recalling Eq. (4.4.14), G = &, we finally have 
2 

v s  3(1 + U )  d 
vb 4 

(9.6.7a) 

(9.6.7b) 

(9.6.8a) 
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and 
2 

us 3(1 + U )  d 
vb 
- _. - T ( L )  . (9.6.8b) 

We observe that this ratio is quite small for L >> d ,  namely for long beams where 
the length of the beam is much greater than its depth. For example, if L = 20d, 
for the case of the cantilever beam, U,/% = 1.88(1 + U )  x 10-3 while for the case 
of the simply supported beam, U , / %  = 1.5(1 + U) x 10-3. Recalling that U 5 0.5, 
we observe that for these cases, U , / %  21 1/500. From these results, it is clear that 
the longer the beam, the smaller the influence of shear deformation. 

We thus conclude that in calculating the deflection of long beams, one is generally 
quite justified in neglecting displacements due to shear deformation. 

9.7 Singularity functions and their application 

(a) Definition of singularity functions 
Singularity functions are defined in such a way that they enable us to write a single 
expression for a polynomial function of any degree n (0 5 n) over various domains. 

The singularity fknction is denoted by means of brackets ' (. .) ', called Macaulay 
brackets, and is defined as follows: 

(x - k)" = { g - k ) " ,  k <x, n > O  
x <  k,  n > 0 .  

In particular,+ 

1, k l x  
0, x < k .  (X - k)* = 

(9.7.la) 

(9.7.lb) 

Thesingularityfunctions (x - k)", II = 1 and2,areshowninFig. (9.7.la); (x - k)' 
is shown in Fig. (9.7.lb). Thus whenever the argument within the brackets (. .) is 
negative or zero, the singularity function is equal to zero. From its basic definition, 
we observe the interesting property 

(9.7.2) (x - k)" = (x - k)" - (-I)"(k - x)", n > 0. 

Note that (x - k)" + - ( k  - x)". 

Figure 9.7.1 

t From its definition, we observe that when n = 0 we obtain, as a particular case of the singularity function, 
the 'Heaviside function', conventionally denoted by H(x - k )  [i.e., (. . .)* E H(. . .)I. We shall see later 
that the Diruc-delta jknction (known also as the impulse function) is another particular case of the 
singularity function. 
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The singularity function ( x  - k)“ is defined to behave according to the ordinary 
rules of scalar algebra. In particular, among its operational properties the singularity 
function satisfies the elementary rules of integration of polynomials; that is,+ 

(x - k)”+’ 
(X  - k)“ dx = +C, n L O .  s n + l  

(9.7.3) 

Before proceeding with some applications, it is important to emphasise that the 
use of singularity functions, as developed here, will be limited to beams where the 
moment M(x) is expressed in terms of polynomial functions. 

(6) Applications 
We fis t  illustrate the application of singularity functions to the problem previously 
considered in Example 9.5. In that problem, we observed that there exist two ex- 
pressions for M(x);  namely Eqs. (9.4.15a) and (9.4.15b). Using the definition of 
the singularity function as given by Eq. (9.7. la), we may now combine these two 
equations into the single equation, 

M(x)  = p ( L  - ‘ ) x  - ~ ( x  - a ) ,  o 5 x 5 L ,  (9.7.4) 
L 

i.e. an equation whose domain extends over the entire length of the beam. 
Substituting Eq. (9.7.4) in Eq. (9.2.4), we have (with b = L - a )  

Pbx 
L 

Elv”(x)  = -- + P(x - a ) ,  0 < x < L (9.7.5) 

subjected to the boundary conditions v(0 )  = v(L)  = 0. 
We note that since there now exists a single diflerential equation that is valid 

over the entire domain of the beam, its integral leads to only two constants of 
integration. Indeed, this is the main advantage in using singularity functions. Thus, 
since Eq. (9.7.5) is valid in 0 < x < L, the only boundary conditions that exist 
are at x = 0 and x = L and these are sufficient to solve for the two constants of 
integration.$ (Note that this is in contrast to the calculations of Example 9.5, where 
two additional boundary conditions existed at x = a [and which were necessary for 
evaluating the constants of integration].) 

Integrating Eq. (9.7.5), and using the property of Eq. (9.7.3), we obtain 

Pbx2 P 
Elv’(x)  = -- + - ( x  - a)2 + ~1 2L 2 

and 

Pbx3 P 
6L 6 

E l v ( x )  = -- + - (x  - a)3  + ClX + e,. 

(9.7 ha) 

(9.7.6b) 

From B.C. v(0 )  = 0, the constant C2 = 0 since, according to the definition of 
Eq. (9.7. la), the term in the brackets (. .) vanishes when x < a .  Then using again 

t We should note that we have not attempted to give a rigorous mathemahcal treatment of the singulanty 
function. It IS sufficient for our purposes to define the function and give its operational properties. A 
ngorous development of singulanty functions and the related Heaviside and Delta-dirac funchons IS 
treated in the branch of mathematics known as distribution theory. 

t Note that since U and its denvatives. U’ and U”. are implicitly assumed to be continuous within the domain 
of validity (see footnote, p. 315), as opposed to the treatment of this problem in Example 9.5, boundary 
conditions at x = a are superfluous and, in fact, inappropnate. 
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the definition when x > a, from v (L)  = 0, we have 

PbL3 P 
6L 6 

+ -(L -a)" + C,L = 0 -- 

or 
Pbz PbL 
6L 

e, = -- + 6. (9.7.7) 

Substituting C1 back in Eq. (9.7.6b), we get 

(9.7.8) 1 h 3 X  
L 

+ ( x - a j 3 - - + b L ~  . 

The reader is urged to check that this expression is identical to the deflection as 
given by Eqs. (9.4.18). 

The following examples illustrate other aspects and techniques in the use of 
singularity functions. 

Example 9.6: Determine the deflection of an 'overhanging beam' of flexu- 
ral rigidity €I, that is subjected to a uniformly distributed load as shown in 
Fig. (9.7.2a). 

Figure 9.7.2 

Solution: From the equations of statics, reactions are immediately found [see 
Fig. (9.7.2b)l to be a downward reaction RA = wL/8  and an upward reaction 
RB = 5wL/8. The moment expressions are then 

W L  

8 
M(x)  = --x, 0 < x ( L ,  (9.7.9a) 

U J L  5wL w 
M ( x )  = --x + -(x - L )  - -(x - L)*, 8 8 2 L 5 x 5 3L/2.  (9.7.9b) 

The shear and moment diagrams are shown in Figs. (9.7.2~ and d). 
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Using singularity functions, the moment expressions can be combined into a single 
expression, namely 

2 WL 5wL W 
M(x)  = -- (x - L) - -(x - L) , 8 x+8 2 0 5 x 5 3L/2, (9.7.9c) 

which we note is valid throughout the length of the beam. Substituting Eq. (9.7.9~) 
in EZv”(x) = -M(x) ,  

2 WL 5wL W 

8 8 2 
EZv”(x) = -x - - {x - L)  + - (x - L) , 

Integrating this, we obtain 
WL 2 5wL W 

EZv’(x) = -x - - (x - L)2 + - (x - L)3 + A ,  
16 16 6 

0 < x < 3L/2. 

0 < x < 3L/2, 

(9.7.10) 

(9.7.11a) 
WL 5wL W 

48 48 24 EZv(x) = -x3 - -(x - L)3 + -(x - L)4 + AX + B,  0 < x < 3L/2. 

(9.7.1 lb) 

From the boundary condition v(0) = 0, we find B = 0. Similarly, the boundary con- 
dition v(L) = 0 leads to % + AL = 0, from which A = -wL3/48. 

Substituting B and A back in Eq. (9.7.1 1 b) and simplifying, we obtain 
W 

V ( X )  = -[-Lx(L2 - x2) - 5L(x - L)3 + 2(x - L)4]. (9.7.12) 

The shape of the elastic curve is shown in Fig. (9.7.3). As expected, we observe that 
the beam deflects upward in the region 0 5 x 5 L, and deflects downward in the over- 
hanging part. From the figure, we note also that the curvature ofthe beam (K 2: 4’ c 
0) is negative throughout the beam [see Fig. (9.2. l)]. This is in agreement with the rela- 
tion v”(x) = - 9, since from the moment diagram, we note that M ( x )  < 0 for all x .  

U 

48EZ 

Example 9.7: Determine the deflection v(x) of a cantilever beam of flexural 
rigidity El  and length L due to a load P acting at any arbitrary point x = {, 
as shown in Fig. (9.7.4a). 

Solution: Denoting the unknown reactions as in Fig. (9.7.4b), from equilibrium, 

V ( x )  = P((  - X ) O ,  (9.7.13a) 

M ( x )  = P[-( + x - (x - ()I = -P(( - x ) ,  (9.7.13b) 

upon using the property of Eq. (9.7.2). The beam is therefore governed by the equation 

(9.7.1 4a) 

F’ = 0, RA = P ,  MA = - P(, and hence the shear and moment expressions are+ 

EZv”(x) ==. P(( - x) + P ( x  - (), 0 < x < L 

or alternatively by 

EZV”(X) = P((  - x ) ,  (9.7.1 4b) 

and subjected to boundary conditions v(0) = v’(0) = 0. 

t Differentiating Eq. (9.7.138), 
1 - (c - x)’, we observe, in comparing Eqs. (9.7.13a) and (9.7.138), that the known relation 
V ( x )  of Eq. (8.3.2) holds true. 

= P[I  - (x - oO]. Noting from Eq. (9.7.2) that (x - 5 ) O  = 
= 
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Following the procedures as developed previously, upon integrating Eq. (9.7.14a) 
and using the above boundary conditions, we obtain 

(9.7.15a) 
P 

6 E I  
c )  = -[3cx2 - x3 + (x - c ) ~ ] .  

Alternatively, integrating Eq. (9.7.14b) yields 

(9.7.15b) 

We observe that the above expressions are equivalent. 
We note here that we have denoted the deflection v as being a function of two 

variables: x, the coordinate of the cross-section, and <, the position of the load P .  
Thus, from eqs. (9.7.15), 

P 
6 E I  v(x, <) = -(3<x2 - x3), 

v(x, 0 = --(3C2X - c 1, 

x 5 < 

c 5 x. 
(9.7.15~) 

P 3 
6El 

Hence, while v(x) is represented by a cubic expression in x when x < c ,  the elastic 
curve is described by a linear equation in x for < < x; i.e., the beam has zero curvature 
in this latter region. Indeed, this must be so since the moment M = 0 in this region. 

The deflection at point B (c  5 x = L),  AB v(L ,  <), is then 

(9.7.16a) 
P 

6 E l  AB = -(3Lc2 - c3). 
If the load acts at the free end (< = L) ,  the displacement is 

PL3 
A, = - 3 E I ’  (9.7.16b) 

We observe that this is the same result as given by Eq. (9.4.7b). 0 

In the following example, we illustrate an additional technique in the use of 
singularity functions. 

Example 9.8: Determine the deflection of the elastic curve for the cantilever 
beam ABC of flexural rigidity El and length L ,  as shown in Fig. (9.7.5a), when 
subjected to a uniformly distributed load w(N/m) over a length 0 5 x 5 a. 

Solution: From simple statics, the upward reaction at A is RA = wa and the moment 
MA = -wa2/2. The resulting shear and moment diagrams are shown in Figs. (9.7.5b 
and c). Furthermore, the expression for the moment is 

(9.7.17) 

while fora 5 x 5 L ,  M = 0. 
We again wish to represent the moment M(x) by means of a single expression for 

all x, 0 5 x I: L. To do so, we imagine that upward and downward distributed loads 
of magnitude w exist between B and C, as shown in Fig. (9.7.5d). Clearly, the addition 
of these imaginary loads cancel out and therefore the reaction RA and moment MA Figure 9.7.5 
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are as given above. From Fig. (9.7.5d), the moment expression for the entire beam is 

wa2 wx2 w 
2 2 2  

M ( x )  = -- +wax - - + -(x - a ) 2 ,  0 5 x 5 L ,  (9.7.18a) 

and hence we have the equation 

wa2 wx2 w 
2 2 2  

EIv”(x) = - - wax + - - -(x - a)2 ,  0 < x < L (9.7.18b) 

subject to the boundary conditions v(0) = 0, v’(0) = 0. Integrating the equation, we 
get 

wa2x wax2 wx3 w 
EIv’(x) = - - - + - - -(x - a ) 3  + Ci, 

2 2 6 6  
0 < x < L .  (9.7.18~) 

From ~‘ (0 )  = 0, it follows that C1 = 0. Integrating once more, we have 

wa2x2 wax3 wx4 w 4 EIv(x) = - - - +----(x--) +C2, O < X < L .  (9.7.18d) 4 6 24 24 
Now, using the boundary condition v(0) = 0, C2 = 0. Upon simplifying, we obtain 

W 
v (x )  = -[6a2x2 - 4ax3 + x4 - (x - a)4]. 

24EI (9.7.19) 

It is worthwhile to consider the deflection in each region. In the region AB, 
W 

V ( X )  = -[6a2x2 - 4ax3 + x4], (9.7.20a) 24EI 
and thus we note that the elastic curve assumes the shape of a quartic equation. 

In the region BC, 
U) 

V ( X )  = -[6a2x2 - 4ax3 + x4 - (x - a)4] ,  
24E I 

which after simplification, becomes 

wa3 
v (x )  = - (4x - a), a 5 x 5 L .  

24EI (9.7.20b) 

Observe that in this region, the deflection is a linear hnction of x, that is, the elastic 
curve is represented by a straight line and hence the curvature K = 0. [The elastic 
curve ofthe beam is shown in Fig. (9.7.5a).] This is in accord with the Euler-Bernoulli 
relation E I K  = M since, as was seen previously, M = 0 in the region BC. 

Finally, at x = L ,  

wa3 v(L) = - (4L - a).  
24EI 

(9.7.21) 

From the general solution above, upon setting a = L ,  we recover the solution for 
the classical case of a cantilever beam uniformly loaded over its entire length L 
[Fig. (9.7.6)], namely 

wx2 
v(x)  = - (6L2 - 4Lx + x 2 )  

24EI 
(9.7.22a) 

Figure 9.7.6 
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and the deflection A at point C(x = L) is 

wL4 A = -  
8 E I '  

(9.7.22b) 

U 

Example 9.9: A beam ABC, having flexural rigidity E/  and length 3 L ,  is sub- 
jected to a load, as shown in Fig. (9.7.7a). Determine the equation of the 
elastic curve v(x). 

Figure 9.7.7 

Solution: Taking moments about point B of the element BC, we find Rc = P/2. 
From equilibrium of the entire beam ABC, MA = -PL /2 and RA = P/2. The re- 
sulting moment diagram for M(x),  given by 

PL  P 
2 2  

M ( x )  =C -- + -X - P(x - 2L), 0 5 x 5 3L, (9.7.23) 

is shown in Fig. (9.7.7b). 
We note that since a hinge exists at point B, the slope of the beam, 8, and hence 

the first derivative U', is discontinuous at this point. Now, we recall that Eq. (9.2.4) 
is integrable in terms of analytic functions only if the first and second derivatives of 
U ( X )  are continuous within the domain of the equation. Therefore, to integrate the 
equation in terms of such functions, point B may only lie at the boundary of a domain 
(see footnote, p. 3 15). Thus, although the domain of validity for M ( x )  given above 
is 0 5 x 1. 3L,  we may not use Eq. (9.2.4) over this entire domain; instead, we must 
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write separate equations in the two open domains, D1: {XI 0 < x < L}; 9 :  {x I L c 
x < 3L},namely 

PL p 
2 2  -x, EIvY(x) z= - - (9.7.24a) 

PL P 
2 2  

EZIJ~(X) = - - -x + P(x  - 2L), (9.7.24b) 

where IJI and u2 represent the deflections in the two respective domains. 
The boundary conditions are clearly 

(9.7.25a) 

(9.7.25b) 

(9.7.25~) 

(9.7.25d) 

(Note that, as opposed to Example 9.5, we do not impose a continuity condition on 
U’ at the boundary between the two domains, here x = L .) 

Integrating Eq. (9.7.24a) and using boundary conditions, Eqs. (9.7.25a) and 
(9.7.25b), we find 

PLx2 Px3 
EIVl(x) z= - - - 

4 12 
(9.7.26a) 

Integration of Eq. (9.7.24b) yields 

PLx2 Px3 P EIv2(x) = - - - + -(x - 2L)3 + Ax + B. 
12 6 

(9.7.26b) 
4 

From the boundary conditions v2(3L) = 0 and q (L)  = v2(L), we find, respectively, 

PL3 
6 

3AL + 3  = --, 

A L + B = O .  

Solving Eqs. (9.7.27) for the two constants of integration 

PL3 
12 ’ 12 * 

B = -  PL2 A=--- 

Hence, after simplifying, the elastic curve is given by the expressions, 

P 
12EI 

7J1(x) = -(-x3 + 3Lx2) 

+3 + 3 ~ ~ 2  + 2(x - 2 ~ ) 3  - ~2~ + L ~ I .  

and 
P 

12EI 
212(x) = - 

(9.7.27a) 

(9.7.27b) 

(9.7.27~) 

(9.7.28a) 

(9.7.28b) 

We now verify the assumed discontinuous character of the slope, 6 2: U‘, at the hinge 
B(x = L). Differentiating Eqs. (9.7.28) and setting x = L, we find 

PL2 
V ; ( L - )  = - 

4 E I  
(9.7.29a) 
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and 

(9.7.29b) 

where x = L -  and x = L+ signify the values in the two contiguous domains at B. 
Thus, at the hinge, there exists a discontinuity in the slope, A0 v$,(L+) - v i (L- )  = 

Cl -- A”,:. The elastic curve and the discontinuity lA0 I are shown in Fig. (9.7.7~). 

9.8 Solutions for statically indeterminate beams 
by integration of the differential equation 

In the previous sections of this chapter, as well as in Chapter 8, we have considered 
only statically determinate beams. As in the case of statically indeterminate rods 
under axial or torsional loading (discussed in Chapters 6 and 7), there also can exist 
beam structures that are statically indeterminate, that is, beams for which it is not 
possible to obtain unique solutions for the reactive forces (reactions and moments) 
from the equations of statics. In such cases, we require additional equations: such 
additional equations are, as we previously have seen, equations of geometric com- 
patibility. There exist several methods for analysing statically indeterminate beams. 
We first consider a method of solution via integration of the differential equation 
of beams. With this in mind, we study the following problem. 

Consider the beam AB of length L , fixed at point A, simply supported at B and 
subjected to a uniformly distributed load w ,  as shown in Fig. (9.8.la). There then 
exist three unknown reactions, RA, MA and RB, as shown in Fig. (9.8.lb). However, 
we have but two equations of equilibrium, namely 

(9.8.la) C F ~  = R A +  R~ - W L  = o 
WL2 

M I ,  = MA + RAL - = 0. (9.8.lb) 

Clearly, it is not possible to obtain a unique solution for the three unknowns since 
we have here an ‘extra’ unknown.+ Nevertheless, it is possible to write the following 
expression for the moment M ( x )  in terms of the unknowns, namely 

wx2  
M(X) MA f RAX - -. 

2 
Substituting this in Eq. (9.2.4), we have 

wx2 
EIv”(x )  = -MA - RAX + -, 

2 
(9.8.2b) 

Now the boundary conditions for this problem are 

v(0) = 0, (9.8.3a) 

v‘(0) = 0,  

v (L)  = 0. 
(9.8.3b) 

(9.8.3~) 

Before proceeding with the solution, we note that upon integrating the differential 

t Since we have here three unknowns and two equations, there exist an infinity of solutions to these 
equations. We require, however, a unique solution; namely one which governs the actual behaviour of 
the beam. 
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equation (9.8.2b), two unknown constants of integration will appear, say C1 and 
Cz. However, from Eqs. (9.8.3), we observe that three boundary conditions ex- 
ist; i.e., we now have an ‘extra’ equation. Thus the number of equations now 
balances the number of unknowns. [Observe that at this stage there exist five un- 
knowns (RA, RB, MA, C1 and Qandfive equations,Eqs. (9.8.la) and(9.8.lb)and 
Eqs. (9.8.3aH9.8.3~). We shall return to this point after completing the solution.] 

To proceed with the solution, upon integrating Eq. (9.8.2b) once, we have 

(9.8.4a) 

From v’(0) = 0, C1 =I: 0. Integrating once more, 

(9.8.4b) X2 x3 wx4 
E I v ( x )  = -MA-- - RA- + - + Cz. 2 6 24 

From v(0) = 0, Cz = 0. Finally, from the boundary condition v(L) = 0, we obtain 

L2 L3 wL4 
-MA- - R A T  + - = 0. 2 24 

(9.8.5) 

Equations (9.8.1) and (9.8.5) are thus three equations sufficient to solve for the 
remaining three unknowns RA, RB and MA, These equations yield 

(9.8.6a) 

(9.8.6b) 

(9.8.6~) 

Observing the forces acting on the beam, shown as a free body in Fig. (9.8.2a), we 
note that the (negative) moment MA is required to prevent any rotation of the beam 

Figure 9.8.2 
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at point A. Substituting RA, MA and C2 back in Eq. (9.8.4b) and simplifying, we 
obtain the expression for the elastic curve: 

wx2 
48EI 

v(x)  = - (2x2 - 5Lx + 3L2). 

The deflection at the centre x = L/2 is then 

WL4 
192EI * 

v(L/2) = - 

(9.8.7a) 

(9.8.7b) 

The elastic curve is shown in Fig. (9.8.2a). Once the reactions have been obtained, 
we may readily find explicit expressions for the shear V ( x )  and moment M(x) ,  
namely 

W 
Y ( x )  = -(5L - 8x) 

8 
W 

M ( x )  = - ( A 2  + 5Lx - 4x2). 
8 

(9.8.8a) 

(9.8.8b) 

The corresponding shear and moment diagrams are shown in Figs. (9.8.2b and c). 
We note that M = 0 at x = 0.25L. This corresponds exactly to the point of zero 

curvature of the elastic curve, as may be seen by comparing Figs. (9.8.2a and c). 
0 

We return to reconsider the number of unknowns and the number of equations; 
in doing so, we can interpret the meaning of the ‘extra’ equation mentioned above. 
As we observed previously, integration of the differential equation leads to two 
unknown constants C1 and C2. Now, there clearly exist three boundary conditions in 
this problem, namely Eqs. (9.8.3). We observe also that had the beam been a simple 
cantilever beam, we would have had but two boundary conditions, v(0) = v’(0) = 0; 
clearly, these would have been suecient to solve for C1 and C2 for a cantilever 
beam. However, since we have a fixed-end beam, which is supported at point B (i.e., 
providing a constraint against vertical displacement at B), there exists an additional 
boundary condition v(L) = 0. Thus the ‘extra’ boundary condition, v(L) = 0, is an 
additional ‘statement’ that expresses the geometric condition of the beam. Hence, 
as in our previous discussion of indeterminate systems, we again observe that the 
extra equation is, in fact, an equation of ‘geometric compatibility ’. 

Such a point is often referred to as a point of contrqfiexure. 

9.9 Application of linear superposition in beam theory 

In the previous sections, we derived expressions for the deflection of the elastic 
curve, using linear beam theory, namely the relation EIv”(x) = -M(x) .  In all 
cases, the resulting displacements were found to be functions of the geometry and 
inversely proportional to the flexural rigidity E I .  Moreover, the displacements were 
found to be linearly dependent on the applied loads. 

Let us consider, for example, the case of the cantilever beam AB under two 
separate loading conditions such as a uniformly distributed load w and an end 
load P as shown in Figs. (9.9.lb and c), respectively. Let us denote the maximum 
deflection at the free end B due to these two loading conditions by A; and A:, 
respectively. From Eqs. (9.7.22b) and (9.4.7b), these are 

(9.9.1 a) 
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Figure 9.9.1 

and 
PL3 
3 E I .  

= - (9.9.lb) 

Since the displacements are linear functions of the applied load, it follows that 
the principle of linear superposition is applicable;+ thus the deflection A under the 
combined loading w and P [Fig. (9.9.la)l is given by AB = Ag + A; or 

wL4 PL3 
8 E I  3 E I  

AB I= - + -1  (9.9.1~) 

Similarly, for the case of a simply supported beam ACB, the deflection due to a con- 
centrated load applied at C and due to a uniformly distributed load w [Figs. (9.9.2a 
and b)] are, from Eqs. (9.4.3) and (9.4.20), 

5wL4 
384E I 

= - 

and 
PL3  A: - 
48EI'  

(9.9.2a) 

(9.9.2b) 

Figure 9.9.2 

Again, using the principle of linear superposition, the deflection under the com- 
bined loading system [Fig. (9.9.2c)l is 

5wL4 PL3  
Ac = - +- 384E I 48E I '  

(9.9.2~) 

As was previously mentioned, the use of the principle of superposition proves quite 
useful for elastic bodies satisfying a linear theory, since one may analyse each case 
separately and superimpose the results. 

t We note also that since the radii of curvature are large, the strains in the beam, ex = y / R ,  are necessarily 
small. This necessary requirement for application of linear superposition, as developed in Chapter 5 
(Section 2), is therefore also sattsfied. 
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It is worthwhile here to reconsider the indeterminate beam [Fig. (9.8. la)] analysed 
in Section 8, in the context of the principle of superposition. From the free body of 
Fig. (9.8. lb), we may consider the beam to be subjected to the following forces: the 
applied load w ,  the reactions RA and RB and the moment MA = -wL2/8.  Now, the 
basic digerence between the given indeterminate beam and an equivalent simply 
supported beam is the restraint against rotation at the fixed end that is provided 
by the moment MA. Thus we may consider the given indeterminate beam to be an 
equivalent simply supported beam subjected to the applied load w and a (negative) 
moment MA = -wL2/8.  Since all the relations are linear, we apply the principle 
of superposition, as shown symbolically in Figs. (9.9.3a-c). From Eqs. (9.4.3) and 
(9.4.13d), we have, respectively, 

5wL4 hfAL2 
A: =: - and A F  = - 

384EI 16EI '  
(9.9.3a) 

Therefore, from our known result, MA = -wL2/8,  we may readily calculate the 
deflection AC as 

~ W L ~  ( - - W L ~ / S ) L ~  W L ~  -- - 
192EI' 

A, =I: - 
384EI 4- 16EI 

(9.9.3b) 

Note that this is precisely the same result obtained in Section 8 [Eq. (9.8.7b)l. 

Figure 9.9.3 

We thus observe that one may obtain solutions to more complex problems by 
superimposing the separate solutions of more simple problems. However, even if 
the latter solutions are not known, one can nevertheless ofien gain great physical 
insight on the qualitative behaviour of a more complex structure by superposing 
the effects of several individual forces. For example, for the present beam structure 
considered, it required but little experience to reason that a negative moment MA is 
necessary to maintain zero slope at A. Consequently, from Figs. (9.9.3), one might 
immediately have concluded qualitative& that the deflection at the mid-span of 
the given indeterminate beam is less than that of an equivalent simply supported 
beam: 

In this section, we confined the discussion of the principle of superposition to 
concentrated forces and moments (couples). We shall return to a more general dis- 
cussion of superposition in Section 1 1 ofthis chapter and will develop its application 
for more general loadings. 

The quantitative result for the deflection Ac, given in Eq. (9.8.7b), however, requiredprevious knowledge 
of the magnitude of MA (as was obtained in Sechon 8). 
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Figure 9.10.1 

As we shall presently see, the principle of superposition, as developed in this 
section, proves to be particularly useful in analysing indeterminate beams. 

9.10 Analysis of statically indeterminate beams: the force method 

In Section 8, a method of solution for statically indeterminate structures was de- 
veloped via integration of the governing differential equation together with the 
associated boundary conditions. We consider here another method, known as the 
force method, to solve for indeterminate structures. 

(a) Development of the force method 
Let us again consider the indeterminate beam, fixed at one end and simply supported 
at the other, subjected to a uniformly distributed load w [Fig. (9.10. I)]. This problem 
was previously solved in Section 8 [see Fig. (9.8. l)] by integration of the governing 
differential equation. We recall that there exist three unknown reactions, RA, MA 
and RB, but only two equations of equilibrium, M = 0. However, it 
is clear that if, for example, the reaction RB did not exist (i.e., if RB = 0), the beam 
would still be capable o f  carrying the applied load w. Indeed the beam would then 
be a statically determinate cantilever beam. Thus, the additional support existing at 
B of the indeterminate beam may be considered to be an ‘extra’ reaction. Such an 
unknown reaction is referred to as a redundant reaction (‘redundant’ in the sense 
that if this reaction were absent, it would still be possible to maintain the beam 
in equilibrium). However, although the equations of equilibrium can be satisfied 
with RB =E 0, this value of the redundant will notprovide the necessaly constraint 
against a vertical displacement at B. 

Thus, choosing RB as the redundant reaction, we consider the beam AB to be 
subjected to the uniformly applied distributed load w and to an unknown force 
R B ,  as shown in Fig. (9.10.2a). Note that, at this stage, we do not state that the 
beam cannot displace at point B; that is, we essentially release the constraint. 

Fy = 0, 

Figure 9.10.2 

The resulting cantilever beam is therefore called the released beam (or in general 
terms, the released structure) corresponding to the given indeterminate beam. To 
complete the problem, it is necessary to reimpose the constraint at a later stage. 
Now, as in the previous section, we make use of the principle of superposition; that 
is, we consider the beam to be subjected to two separate systems such as (a) the 
uniform load w and (b) an arbitrary upward force RB, as shown in Figs. (9.10.2b 
and c). Clearly, the displacement of point B, AB, is then given by AB = A$ + A:. 
From the previous section, Eq. (9.9. Ic), we note that for the given w and (upward) 



9.10 Analysis of statically indeterminate beams 343 

force RB, the displacement of the released beam is given by 

W L ~  R ~ L ~  
AB=--------- 

8 E I  3 E I  ’ 
(9.10.1) 

However, since the beam is, in fact, simply supported at B, we now impose the 
necessary constraint; that is, we stipulate the geometric compatibility of the system, 
namely 

AB = 0. (9.10.2) 

It is important to observe that the equation of geometric compatibility is written on 
a displacement that corresponds to the chosen redundant. 

Therefore, from Eq. (9.10.2), we obtain+ 
3wL 

RB =: - 
8 ’  

(9.10.3) 

which is the same result as found in Section 8 [Eq. (9.8.6b)l. 
Having determined RB, the remaining two reactions are found from the equations 

of statics, 
In solving this problem, we chose RB to be the redundant reaction. However, the 

choice of the redundant reaction is not unique. Indeed, one may choose any reac- 
tive force to be redundant, provided the remaining reactions on the released structure 
are suficient to maintain the system in equilibrium under applied loads. We illustrate 
this by means of the following example. 

F,, = 0 and M = 0, to be RA = and MA = -&. 8 

Example 9.10: Determine the reaction for the indeterminate beam of 
Fig. (9.10.1) by choosing the reacting moment MA as the redundant. 

Solution: Upon choosing MA as the redundant, we have essentially released the 
constraint against rotation at A and therefore the ‘released structure’ now is a simply 
supported beam, as shown in Fig. (9.10.3a), which is subjected to the uniform load 
w and (at this stage) an arbitrary moment MA. The rotation 6~ at A due to w and MA 
[given, respectively, by Eqs. (9.4.4b) and (9.4.14)] denoted by 6; and O f ,  respectively, 
is shown in Figs. (9.10.3b and c). Using superposition, we obtained 

Figure 9.10.3 

(9.10.4) 

Note that, since here RB is assumed to be upward, as opposed to Eq. (9.9.2c), a minus sign appears in 
Eq. (9.10.1) for the deflection due to RE. We emphasise that had we instead chosen RB to be downward, 
Eq. (9.10.1) would have contained a positive sign and hence we would have obtained RB = -3wL/8, 
thus indicating that RB is, in fact. upward. 
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To satisfy geometric compatibility of the given beam, we stipulate as before the geo- 
metric compatibility on the ‘displacement’ that corresponds to the chosen redundant 
‘force’. Thus, here, we stipulate that 

@A = 0. (9.10.5) 

Therefore, from Eq. (9.10.4); 

wL2 M* = -- 
8 ’  

(9.10.6) 

which we note is the same result as obtained in Section 8 [Eq. (9.8.6c)l. As before, 
the remaining unknown reactions RA and R g  are obtained from the equations of 
equilibrium. 0 

Example 9.11: Using the force method, determine the reactions at A, B and 
C for the beam having flexural rigidity N, as shown in Fig. (9.10.4a). Obtain 
the expression for the shear V(x)  and moments M(x) and draw the shear and 
moment diagrams showing all critical values. 

Figure 9.10.4 

Solution: Let us choose the centre reaction Rc as the redundant (upward) force. 
Hence the released structure consists of a simply supported beam subjected to the 
uniformly distributed load w and an unknown force Rc [Figs. (9.10.4b and c)]. 
The equation of geometric compatibility on the displacement that corresponds to 
the chosen redundant is therefore 

Ac = 0. (9.10.7) 

t Note that the negative sign here indicates that a counter-clockwise moment MA IS acting on the beam. 
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From Eq. (9.9.2c), the combined deflection at C due to the two force systems is 

5wL4 RcL3 
384EI 48EI' 

-- Ac = - 

where 0 < Ac denotes a downward deflection. Using Eq. (9.10.7), we find 

5wL 
Rc =: - 

8 .  

(9.10.8) 

(9.10.9) 

It follows from the equations of equilibrium that RA = RB = %. The resulting shear 
and moment expressions are then readily written as 

V(X) = 3wL/16 - WX, 

V(X) = -3wL/16 -I- w(L - x), 

M(x) = 3wLx/16 - wx2/2, 

M(x) = 3wL(L - ~ ) / 1 6  - w(L - ~ ) ~ / 2 ,  

0 5 x 5 L/2, 

L/2 5 x 5 L. 

Shear and moment diagrams are shown in Figs. (9.10.4d and e). The elastic curve 
is shown in Fig. (9.10.40. We note that there is a change in the curvature at the 
cross-section where M = 0. cl 

In the following example, we illustrate the use of the force method for the case 
where there is but a partial restraint to the displacement. 

Example 9.12: Using the force method, determine the reaction of the linear 
spring (having constant k) acting on the beam ACB having flexural rigidity El 
when subjected tothedownward uniformly load w, asshown in Fig. (9.10.5a). 

Figure 9.10.5 

Solution: We denote the (upward) force that the spring exerts on the beam by Rc. 
We observe from Fig. (9.10.5b) that since there exist three unknown reactions, the 
system remains statically indeterminate. 

Due to the applied load w and the upward force Rc acting on the beam, the deflection 
of point C of the released beam is, as before [Eq. (9.9.2c)], 

(9.10.10a) 

where we recall that 0 < AC denotes a downward deflection of point C of the beam. 
Now, since it is assumed that the spring exerts an upward force on the beam, it follows 
that the beam exerts a downward force Rc on the spring. Denoting the compression 
of the spring by A,, the spring will compress by an amount 

RC A, = - 
k '  

(9.10. lob) 
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Since the spring and the beam do not separate, the required geometric compatibility 

Ac = A,. (9.10.11) 

equation is 

Substituting Eqs. (9.10.10a) and (9.10.10b) in Eq. (9.10.1 l), we find 

5wL4 RcL3 Rc -_ - - -  
384EI 4 8 E I -  k 

and hence 
5wL 1 

Rc =Z - 
8 1 +48EI /kL3 '  (9.10.12a) 

We observe that Rc depends on the relative stiffness of the spring to the flexural 
stiffness of the beam, i.e. on the non-dimensional parameter 

kL a = -  
48EI '  

Thus we may writet 

(9.10.12b) 

The variation of Rc with a is shown in Fig. (9.10.6). We observe that Rc approaches 
the value Rc = 5wL/8 asymptotically with increasing values of a. Moreover, we 

Figure 9.10.6 

t It is significant to observe that in all previous problems solved in this chapter, solutions have yielded 
reactions that are independent of the stiffness of the system and, in fact, independent of the material 
properties of the system. However, we note here that Rc is a funchon of the relative stifjizess of the 
component parts ofthe system. To explain this difference, we first observe that in all previous problems, 
the displacement of the chosen redundant was zero. For the present problem, however, the redundant 
(here, Rc) undergoes a displacement. It is this difference in behaviour, which accounts for the dependency 
of the redundant on the relative stiffness of the structure components. Thus, when a chosen redundant 
undergoes (an unknown) non-zero displacement, the redundant will always be found to depend on the 
relative stiffness o f  the structure components. [This explanation is valid in general for all structures 
having a linear force-displacement behaviour. It IS  given here ex cuthedra since it is beyond the scope 
of our treatment to provide a general proof; the proof falls within the realm of structural mechanics.] 



9.10 Analysis of statically indeterminate beams 347 

observe that as k + 00, we recover the value Rc = 5wL/8 ,  which is the reaction 
exerted by a simple support at C, as found in Example 9.1 1. Note also that for k = 0, 
which represents a spring having no rigidity, Rc = 0. 

Example 9.13: Determinethe reaction at B forthe indeterminate beam shown 
in Fig. (9.10.7a), which is subjected to a force P acting a t  some point { to  the 
right of point A. 

Figure 9.10.7 

Solution: We again release the constraint at B and choose the reaction RB as 
the redundant reaction. We denote the downward displacement of point B of the 
released structure due to the force P by AL. Similarly, we arbitrarily denote A: 
as the upward displacement of B of the released structure due to the unknown 
force RB [Figs. (9.10.7b-d).t The equation of geometric compatibility then 
becomes 

A; - A; =: 0. (9.10.13) 

From Eqs. (9.7.16), 

2 3  RsL3 A<==-(3L{ - { ) ,  A:=- 
6 E I  3EI  ' 

(9.10.14) 

Substituting Eqs. (9.10.14) in the compatibility equation (9.10.13), we find 

P RsL3 
-(3L(2 - {3) - - = 0 
6 E I  3EI  

(9.10.15a) 

and therefore 
P 

RB = -(3L{' - C3).  (9.10.15b) 

We observe that RB = RB({) is clearly a function of the position of the applied 
load P but varies linearly with the magnitude of P. A plot of RB as a function of {/L 

0 

2 ~ 3  

is shown in Fig. (9.10.8). 

t Note that here we have chosen a positive direction for A; to be upward. It IS important to note that the 
choice of positive directions i s  totally arbitrary. Clearly, the sign of A: appearing in the compatibility 
equation [here, Eq. (9.10.13)] will then depend on the chosen positive direction. 
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Figure 9.10.8 

(b) Comments on the force method 
Having developed the force method for indeterminate beams and investigated sev- 
eralproblems, it is worthwhile, at this stage, to observe several features and comment 
on the method. 

H In order to implement the method, the separate displacements at a given point 
of the released structure corresponding to the chosen redundant must be known 
(i) due to the applied loading and (ii) due to the redundant force itself, (If these 
quantities are unknown, then they must necessarily be calculated. Thus the method 
requires that these quantities be known or given.) While, at this stage of our 
study, these quantities can be obtained only by integration of the basic governing 
differentia1 equations, we mention here that there exist other methods for finding 
these quantities. (These methods are considered in Chapter 14.) 

H A statically indeterminate structure is, by definition, one for which there ex- 
ist more unknowns than independent equations of equilibrium. Therefore, it is 
possible to find an infinite number of solutions to these equations. However, there 
exists but a unique solution that satisfies both equilibrium and the geometric con- 
ditions of the structure. The equation of geometric compatibility thus is the nec- 
essary additional equation required to yield the unique solution for the unknowns. 
The method developed in this section is referred to as the Force method since the 
basic equations of compatibility are written in terms of unknown forces. (This 
method i s  often also referred to as theflexibility method of anaZysis.)t 

t It should be mentioned that there exist other methods for analysing statically indeterminate structures in 
which the required equations are wntten in terms of unknown displacements. Such methods are referred 
to as displacement methods or stiffness methods. 
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a Finally, we should mention that in our study, we have discussed only cases where 
there exists but one redundant force; that is, the number of unknowns is greater 
than the number of equilibrium equations by one. The resulting structures anal- 
ysed here are therefore said to have 'one degree of indeterminacy'. In practice, 
there exist structures for which there may be many degrees of indeterminacy. 
While the concepts of the force method, as developed above, are valid for all 
such structures, a treatment of the force method for systems having an n-degree 
of indeterminacy is beyond the scope of our study and lies within the realm of 
structural mechanics. 

09.1 1 Superposition - integral formulation: the fundamental 
solution and Green's functions 

In Section 10, we discussed the principle of superposition for linear elastic beams 
in the context of concentrated forces and moments (couples). We develop here a 
general integral formulation of the principle of superposition as applicable to beams. 
We shall find that the principle has wide applicability and, for a given (statically 
determinate or indeterminate) beam, we can, using superposition, obtain solutions 
due to any arbitrary loading condition if a specific solution (of the given beam), 
referred to as the fundamental solution, i s  known. 

(a) Development and applications 
Let us consider, for example, the cantilever beam, shown in Fig. (9.1 1 .l),  subjected 
to any arbitrary varying load q(x). We wish to find the deflection of point B. Now, 
it is clear that the given applied load may be represented as being made up of a 
set of n infinitesimal loads, each situated at a point x = Cz and having magnitude 
q(&)  Ay, where A{ = L / n  [Fig. (9.1 1.2a)l and each of the (small) loads produces 
a displacement Au [Fig. (9.1 1.2b)l of point B. 

We recall from Eq. (9.7.16a) or (9.10.14) that for a force P located at x == {,, the 
deflection at B is given by 

(9.1 1.1) 

Note that here we have used two variables L and {, the first to indicate that the 
deflection is at L and the second to indicate that the deflection is due to a force P 
located at c2, 

Since the displacement is linearly dependent on the applied load, it is clear that 
due to a unit load P = 1, the deflection at x = L is [see Fig. (9.1 1.2c)l 

r:). (9.1 1.2) 

Therefore, using linear superposition, the displacement A v due to an incremental 
load q(Cz) A< acting at x = {, is [Fig. (9.1 1.2b)I 
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Hence, the displacement v(L) due to the set of loads q({I)A{ acting along the 
beam is 

or 

(9.11.4a) 

(9.1 1.4b) 

Upon letting n --+ 00 such that A{ --+ 0, we recognise that the limiting sum is, by 
definition, the integral from 0 to L.  Thus we obtain 

(9.11.5) 

It is convenient to define the displacement v(L)  due to a unit load acting at x = { 
by G,,(L, {) = v (L ,  { ) I p x l .  Hence, from Eq. (9.1 1.2), we have explicitly 

1 
G,(L, {) = -(3LC2 - C3). 

6 E I  
(9.1 1.6) 

We may now write Eq. (9.1 1.5) as 

v(L) = j d O G " ( L .  C)dT. 

We thus observe that the displacement at point B due to any arbitrary varying 
load distribution may be obtained by simple integration as in Eq. (9.11.7) i f  
G,(L, {), the displacement of point B(x = L )  due to a unit load acting at {, 
is known. The above integral is therefore often referred to as the superposition 
integral. 

We mention here that in mathematics, G,(L , {) is called a Green's function for 
the deflection at B since it represents the effect due to a unit loading. When appearing 
in the integral it is referred to as the 'kernel' of the integra1.t 

In the above, we have found the Green's function for the deflection at B. The 
more general Green's function that represents the deflection of any point x in the 
beam due to a unit load P = 1 acting at { may now be readily written by setting 
P = 1 in Eq. (9.7.15a); thus the Green's function for the deflection at any point 
x is 

(9.1 1.7) 
0 

1 
6 E I  G,(x, {) = ---[3{x2 - x3 + (x - {)3], 0 5 x 5 L ,  0 5 { 5 L .  (9.11.8) 

The deflection of any point x in the beam due to an arbitrary varying load q ( { )  is 

t In structural mechanics, the function G,(L,  () is also called the influence function for the displacement 
at B. 
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then given byt 

(9.1 1.9) 

0 

Use of the above formulation is illustrated in the following example. 

Example 9.14: Using the Green's function for the deflection at B [Eq. (9.1 1.6)], 
determine the deflection of the free end of the cantilever beam due to (i) a 
uniformly distributed load m, (ii) a linearly varying distributed load and (iii) 
a sinusoidal load, as shown in Figs. (9.1 1.3a-c), respectively. 

Figure 9.11.3 

Solution: 

(i) Substituting the uniformly distributed load, q(<) = WO, in Eq. (9.1 1.7), 

v ( L )  = - ](3LC2 - c3)d<, 
6 E I  

0 

which upon simple integration yields 

W ~ L ~  
v ( L )  = - 

8 E I  ' 

(9.1 1.10) 

(9.1 1.1 1) 

We observe that this is the same result as in Eq. (9.7.22b). 

Eq. (9.1 1.7), 
(ii) Substituting the linearly varying load of Fig. (9.11.3b), q(<) = wo(1 - < / L ) ,  in 

t 

which, by a simple integration, yields 

W ~ L ~  
v ( L )  = - 

30EI '  

(9.1 1.12) 

(9.1 1.13) 

Using the conventional notation for Green's functions, the first vanable defines the point at which the 
behaviour occurs while the second variable describes the location of the unit force causing the response, 
i.e. the 'source' of the response. 
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Figure 9.11.4 

(iiij Substituting the sinusoidal load of Fig. (9.1 1.3cj, q(<) = W O  sin n</2L, in 
Eq. (9.11.7j, 

- (3Lr2  - c3)d<. (9.11.14) 
6 E I  2L 

0 

Integrating and substituting the upper and lower limits, we obtain 

2 W 0 ~ 4  
n 4 ~ ~  

v(Lj = -(n2 - 4n + 8). (9.1 1.1 5 )  

0 

(b) Generalisation: Green‘s functions for shears, moments, 
etc. in beams 
We observe that the application of the integral formulation of superposition provides 
a very simple means to obtain the response of a linear elastic system to any arbitrary 
loading system, once the response to a unit load, that is, the Green’s function, is 
known. While we have developed here the Green’s function for the deflection, 
clearly one may also determine the Green’s function for, say the moment or shear 
at any point x of a beam.+ For example, the moment M ( x )  in the cantilever beam of 
Fig. (9.7.4aj due to a load P acting at a point x = < [Eq. (9.7.13bjl is 

M(x)  = P[-C + x  - (x - <)I -P(< - x ) .  (9.11.16) 

Hence by its definition, the Green’s function for the moment, which we denote by 
G,&, C), is given by 

A plot of GM(x ,  <), known as the influence line for M(x),  is shown in Fig. (9.1 1.4) 
as a h c t i o n  of < for any given x. Note that when x > <, G,&, <) = 0. 

Using this as the kernel of the superposition integral, the moment at any point x 
due to an arbitrarily varying load q(<) is then given by 

M ( x )  = q(<)GM(% <)d<. (9.1 1.1 8) i 0 

.i 0 

Thus, to calculate the moment due to a varying load q(<) = wo(1 - </I,), we 
integrate as follows: 

-wJc) = --WO (1 - < / L ) ( <  - x) d< (9.11.19a) 

t In Chapter 14, we develop a simple means to obtain such Green’s functions in statically determinate 
beams. 
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Using the property of Eq. (9.7.la), the bracketed term ({ - x)  = 0 for < < x. 
Therefore we have 

L 

Noting the indefinite integral, 

1 c3 
- { /L ) (<  - x)d{ = -x{ + -(1+ x/L)c2 - - + C, 2 3L 

where C is a constant of integration, and substituting the appropriate upper and 
lower limits, we find 

M(x) = WO((XL/~  - L2/6) - (x2/2 - x3/6L)) 

or 
WO 3 WO M(x) = -(x /L - 3x2 + 3Lx - L 2 )  = -(x - L)3. (9.11.19~) 6 6L 

Note that this same result [Eq. (8.4.3c)I was found from the equations of statics in 
Example 8.4 of Chapter 8. 

As a fbrther example, let us assume that the linearly varying load, q(<) = 
w0(l - </L) ,  of Example 9.14 is applied over a length 0 5 x 5 c, c 5 L 
[Fig. (9.1 1.5)] and that we wish to find the shear force Y(x) for any point un- 
der this load; i.e., 0 5 x 5 c. We may easily find V(x) using the Green’s function 
Gv(x, <) according to the relation 

(9.1 1.20a) 
A 

where the load is applied between arbitrary points A and B. For our problem, we 
have 

C 

Y(x) = 1 q(<)Gv(x, {Id< 
0 

We note from Eq. (9.7.13a) that Gv(x, {) is given by 

(9.1 1.20b) 

The Green’s function Gv(x, {), i.e. the influence line for V(x), is shown in 
Fig. (9.1 1.6) as a function of { for any given x. Note that G ~ ( x ,  {) = 0 for x > <. 
From Eq. (9.1 1.20b), we write 

(9.1 1.21a) 
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Using the property of Eq. (9.7.lb), 
C 

V(x) = wof(1 - {/L)d{ = WO[{ - {2/2L]1z, (9.11.21b) 
X 

and evaluating, we obtain 

WO 2 
2 

V(x)  = -[x /L - 2x + c(2 - c/L)] , 0 5 x 5 c. (9.11.22a) 

If the load is applied over the entire length AB (c = L), 

WO 2 WOL V ( X )  = -(x /L - 2~ + L) = -(1 - x/Lj2, (9.11.22bj 
2 2 

which is identical with the result given by Eq. (8.4.3bj. 

Example 9.15: Part A: (i) Determine the Green’s function, Gm GM(ZL, 0, 
of the moment a t  C,forthestatically determinate beam shown in Fig. (9.1 1.7a). 
(ii) Plot the influence line for A&, G M ~ ,  as a function of {. (iii) Using the Green’s 
function, determine the moment MC due to a uniformly distributed load w 
(N/m) acting over the entire length of the structure. Part 5 Repeat Part (A) 
for the upward reaction Rc at  point C. 

Figure 9.1 1.7 

Solution: Part A :  (i) In order to determine G M ~ ,  we must satisfy equilibrium con- 
ditions for any {; the function therefore will depend on which region of the beam the 
load is situated. We proceed as follows: 

For0 5 ( 5 L: 
Isolating AB as a free body, [Fig. (9.1 1.8a)l 

P 
L 

E M B  = 0 +4 RAL - P ( L  - {) = 0 ++ RA = - (L  - {). (9.11.23a) 
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Figure 9.11.8 

Now, treating AC as a free body [Fig. (9.11.8b)], 

C M c  = 0 -+-+ Mc = ~ R A L  - P(2L - 5 ' )  (9.11.23b) 

and therefore, from Eq. (9.1 1.23a), 

Mc = 2P(L - 5') - P(2L - 5') = -P<. (9.11.23~) 

ForL 5 < 5 2L: 
Isolating AB as a free body [Fig. (9.1 1.8c)], we find from MB = 0 +-+ RA = 0. 
[Note that RA = 0 for all L 5 < 5 4L]. Therefore, again using AC as a free body 
[Fig. (9.1 1.8b)], we obtain, from Eq. (9.1 1.23b), MC = -P(2L - <). 

For2L 5 5' 5 4L: 
Here it is clear that RA = 0. Hence MC = 0. 

Upon setting P = 1 in Eqs. (9.1 1.23), we write the Green's function as 

O r < i L ,  

2L 5 5' 5 4L. 
G M ( ~ L , < ) =  5'-2L, L ( { i 2 L ,  (9.1 1.24) [;' 

(ii) A plot of G M ( ~ L ,  5) is shown in Fig. (9.1 1.7b). 
(iii) The moment due to a uniformly distributed load w acting over the entire region, 
0 5 5' 5 4L,is 

MC E M(2L) = w G M ( ~ L ,  <)d(. (9.1 1.25) s" 0 

We recognise here that the integral represents the area under the G M ~  function. There- 
fore, MC = -wL*. 
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Part B: (i) To determine Rc, we again consider each sector of { separately. 
F o r O i {  ( S L :  
Treating AD as a free body [Fig. (9.1 1.8d)], 

MD = 0 -++ ~ L R A  + LRc - P(3L - f )  = 0 

from which, 

(9.1 1.26a) 
P 
L 

Rc = -3R.4 4- -(3L - {). 

For05 { 5 L:  
We have fromEq. (9.11.23a), RA = f ( L  - {) and hence 

2pr  3P P 
Rc = --(L L - {) + 4 3 L  L - {) = -. L 

For L 5 { 5 3L: 
RA = 0, and therefore 

P 
Rc = z ( 3 L  - {). 

(9.11.26b) 

(9.1 1.26~) 

For3L 5 { 5 4L: 
It is clear, from MD = 0 for the free body AD that Rc = 0. 

The Green’s function GRc is therefore given by 

X l L ,  0 5 { 5 L ,  
G R ( ~ L ,  {) =: 3 - { / L ,  L 5 { 5 3L,  (9.1 1.27) 

3L 5 s  5 4 L .  
~ 0, 

(ii) A plot of GR(2L,  {) is shown in Fig. (9.11.7~). 
(iii) The reaction Rc due to a uniformly distributed load w acting over the entire 
region, 0 5 { 5 4L,  is 

Rc E R(2L) =I w G R ( ~ L ,  {)d{. (9.1 1.28) ii 0 

We recognise here that the integral represents the area under the G R ~  function. There- 
U fore, Rc = 3 W L  . 

(c) Some general cornmenis 
As we have just seen, once the Green’s function has been obtained (for a de- 
flection, moment, shear, etc.) it is then possible to determine the corresponding 
response (deflection, moment, shear, etc.) due to any arbitrary loading by using 
the appropriate Green’s function as the kernel in the superposition integral. Thus 
the Green’s function may be said to provide a ‘key’ to solutions under general 
loading conditions. Hence the Green’s function G ( x ,  (), which is the solution at 
x due to a unit force acting at f , is said to represent the fundamental solution for 
a physical problem. 
While, in the above, we have developed Green’s functions for one-dimensional 
cases, we mention here that Green’s functions exist also for two or three-dimen- 
sional bodies. Nevertheless, the basic ideas remain the same. However, it is 
important to emphasise that Green j .  functions can only be used to obtain solutions 
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jor a system whose behaviour is governed by linear equations such that the 
resulting solutions depend linearly on the applied loads. 

9.12 The fourth-order differential equation for beams 

(a) Development and applications 
Consider a beam under any arbitrary loading q(x), as shown in Fig. (9.12.1). As- 
suming small rotations, lv’I << 1, the beam was found to be governed by the Euler- 
Bernoulli equation [Eq. (9.2.4)], 

d2v(x) 
d x 2  

E I ( x ) -  = -M(x). (9.12.1a) 
Figure 9.12.1 

We also recall that equations of equilibrium for an element, 
yielded Eq. (8.3.3), namely 

Fy = 0,  M = 0, 

(9.12.lb) 

Therefore, upon differentiating Eq. (9.12.la) twice with respect to x and using 
Eq. (9.12.lb), we find 

For the case where E1 = constant, we obtain+ 

d4v(x) 
d x 4  

EI- =: q(x). 

(9.12.2a) 

(9.12.2b) 

For the present we shall assume q(x)  to be a smoothfunction; hence we exclude here 
concentrated forces and couples. (We postpone treatment of these loading cases.) 

We thus observe that a beam may be considered to be governed either by a second- 
order differential equation [Eq. (9.12.1 a)] or a fourth-order differential equation 
[Eqs. (9.12.2)]. Let us first consider the advantages and disadvantages of these two 
equations. 

In our previous solutions, we have used the former equation. We note, however, 
that in using this equation, it is first necessary to obtain, using equations of stat- 
ics, an expression for M(x)  at all points in the beam. For beams under relatively 
‘conventional’ loads, finding M ( x )  is a relatively simple matter. However, for more 
complex loadings, finding the correct expression for M ( x )  may prove to be a tedious 
task. For example, for the (indeterminate) beam shown in Fig. (9.12.2), one must 
first use the equations of statics to find relations existing among the reactive forces 
at A and B to write an expression for M(x).  

Figure 9.12.2 

t We mention here that for the fourth-order differential equation to be integrable in terms of analytic 
functions, it is necessary that the first four denvatives be continuous within the domain of validity of the 
equation. Such continuity conditions need not necessarily be satisfied at the end points of the domain. 
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Figure 9.1 2.3 

However, as a distinct advantage, solutions to the second-order differential equa- 
tion require, as we have seen, only two integrations and yield two constants of 
integration. Appropriate boundary conditions for any given specified beam are then 
used to solve for the unknowns. As we noted previously in Section 9.2, these bound- 
ary conditions can only involve either the deflection v itself or its derivative dvldx. 
In either case, these derivatives describe geometric boundary conditions. 

In using the fourth-order equation, Eq. (9.12.2), we first note that the right-hand 
side, representing the applied loading, is a known quantity. Thus, as a distinct ad- 
vantage, one may proceed to integrate the equation directly, since it is not necessary 
to first solve equations of equilibrium. However, as a disadvantageous feature, we 
require four integrations in which four constants of integration appear. 

The four constants of integration are then determined using four boundary con- 
ditions. These may depend on U, dvldx, d2v/dx2 and/or d3v/dx3. 

While v and dv/dx at a point represent geometric boundary conditions, the latter 
two represent ‘mechanical’ boundary conditions. 

This is clear since, by Eq. (9.12.la), E I  9 = -M. Thus, if the moment M is 
known at a particular point, this provides a condition on the second derivative. 

Recalling Eq. (8.3.2), dM/dx = V ,  we observe, upon taking the derivative of 
Eq. (9.12.la), that 

(9.12.3a) 

and if EI = constant, 

d3 v 
d x 3  

E I -  =: -V. (9.12.3b) 

Thus, if the shear V is known at a point, this provides a condition on the third 
derivative. 

As an example, for the beam of Fig. (9.12.2), the following boundary conditions 
are required when using the second-order equation: 

AtA: v = o ,  v ‘ = o  
AtB: v = O  

However, when using the fourth-order equation, we require the following boundary 
conditions: 

AtA: U = 0 ,  U’ = 0 
AtB: v = O  
At C: V” = 0, v’” = 0 

The latter boundary conditions express the mechanical conditions that at the free 
end C (with no load applied), the moment M = 0 and the shear V = 0. 

We now illustrate the use of the fourth-order equation in the following example. 

Example 9.16: Determine the deflection v(x) of the elastic curve for the sim- 
ply supported beam of Fig. (9.12.3) subjected to a load 

T X  
q(x) = qo sin - L ’  (9.12.4) 
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Solution: Using the fourth-order equation, we have 

d4v(x) nX 
E I -  =qOsin-, 0 < x  < L. 

d x 4  L 
(9.12.5) 

Noting that the moments M = 0 at simple supports, the associated boundary con- 
ditions for this problem are 

~ ( 0 )  = 0, ~ ” ( 0 )  = 0, v(L) = 0, v”(L) = 0. (9.12.6) 

Integrating Eq. (9.12.5) successively, we obtain 

qoL n x  EIU”’(X) = --cos - + A ,  
n L 

(9.12.7a) 

TCX 
E I v ” ( x )  = -qo(L/x)2 sin - + A x  + B,  (9.12.7b) 

L 
x x  Ax2 
L 2  

E I v ’ ( x )  = q o ( L / ~ ) ~  COS - + - + B X  + C, (9.12.7~) 

n x  Ax3 Bx2 
L 6  2 

E I v ( x )  = q ~ ( L / n ) ~  sin - + - + - + Cx + D, (9.12.7d) 

where A ,  B, C and D are constants of integration. From v”(0) = 0, B = 0 and there- 
fore from v”(L) = 0, A = 0. From v(0)  = 0, D = 0 and therefore from v(L) = 0, 
C = 0. Therefore, the deflection is given by 

q 0 ~ 4  E X  

n 4 ~ 1  L 
v ( x )  = - sin -. (9.12.8a) 

The elastic curve is also shown in Fig. (9.12.3). We observe that the maximum 
deflection at x = L/2 is 

~ O L ~  v(L/2) = - 
n 4 ~ ~  * 

(9.12.8b) 

Having obtained the deflection, viz. Eq. (9.12.8a), we may readily obtain the moments 
and shears at any point, using Eqs. (9.12. la) and (9.12.3b), respectively. For example, 
the shear forces at the end points A and B(x = 0, L) are, from Eqs. (9.12.7a) and 
(9.12.3b) with A = 0, respectively, 

qoL Y = A-. 
n (9.12.9) 

As we have noted previously, these shear forces clearly represent the reactions at 
A and B. 

We observe that had we used the second-order differential equation, it would have 
been necessary first to obtain the reactions at A and B and then to write explicit 
expressions for the moment M ( x )  before proceeding with the integration. Thus, in 
solving this problem, it is clearly preferable to use a fourth-order equation. 

(b) The fourth-order differential equation for 
concentrated force and couple loadings 
In differentiating twice to obtain the fourth-order equation, Eq. (9.12.2), 
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Figure 9.12.4 

we assumed implicitly that q(x) was a smooth function. We now wish to treat the 
case of applied concentrated forces and couples. To this end, let us assume that a 
concentrated force P and a couple C are applied at points xp and xc, as shown in 
Fig. (9.12.4). 

However, how does one represent such applied loads in the fourth-order equations, 
Eq. (9.12.2a) or (9.12.2b)? Let us first treat the case of the concentrated load P. We 
first note that for an applied load P ,  q ( x )  = 0 at all points x f xp. We therefore 
wish to represent P by means of a function that is zero for all x # xp but which is 
not zero at x = xp. Furthermore, we recall from Chapter 1 [see Eq. (1.2.3)] that a 
concentrated force acting at point xp may be considered as the limiting case of a 
load q(xp) -+ CO over a small interval Ax, as Ax -+ 0. 

Now there exists a function, known as a Dirac-delta function, denoted by 6, which 
has the following properties: 

(9.12.10) 

It is worthwhile to consider the character of the function 6 since, being defined by 
its integral property, it is not a function in the ordinary sense. Assume, momentarily, 
that x = xp + E for small E ,  i.e. for 0 < E << 1 .  Then, from its definition, the 
integral equals unity. Furthermore, since the integral has the same value, namely 
unity, for all values x > xp, we conclude that the integrand a(( - xp) = 0 whenever 
x < xp or x > xp. Thus, as the integrand contributes nothing to the integral for 
these values of x, we observe that the entire contribution to the integral occurs 
in the infinitesimal region about xp as E -+ 0. It follows that 6 -F CO in the range 
xp < x < xp + E as E + 0 [Fig. (9.12.5)]. 

We note that this agrees precisely with the idealisation, mentioned above, which 
led to a definition of a concentrated load. Thus we may represent a concentrated 
force having magnitude P and acting downward at xp by PS(x - xp). Recalling 
the definition of the singularity function with n = 0, Eq. (9.7.lb), we may rewrite 
Eq. (9.12.10) more simply as$ 

X 

(9.12.11) 
0 

We now treat the representation of a couple acting at a point xc. First we note that a 
couple can always be considered as a system of two forces C/ Ax acting in opposite 
directions a distance Ax apart, for example, at x, and at x, + Ax [Fig. (9.12.6)]. 

Now, as we have just noted, each of these forces can be represented by means 
of the 6-function; i.e., -& . 6 ( x  - x,) and & a 6  [x - (x, + Ax)], respectively. 
Hence the system, consisting of these two forces, is given by 

I S [ X  - (x, + Ax)] - 6 ( ~  - x,) 
Ax 

or 

t Thus the Dirac-delta function, S(x - xp), may be considered as the denvative of the singularity function 
( x  - Xp)O. 
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Upon taking the limit as Ax + 0, we note that this last expression becomes, by 
definition,$ the derivative -CA6(x - xc). Hence we may represent apositive couple 
C 

+ 0, having magnitude C [i.e., positive as shown in Fig. (9.12.4)] by 

d 
dx 

-C--S(x - x,) = -C6’. 

Using the property of integration, we note thatt 

/ ; [6(x - x,)] dx = 6(x - xc). (9.12.12) 

Finally, we mention here that the Dirac-delta knction, 6(x - xp), has another inter- 
esting but very useful property. Having observed that 6(x - xp) + 00 as x + xp 
and that otherwise 6 = 0 [see Fig. (9.12.5)], the product of any finite function f ( x )  
with 6(x - xp) appearing in an integrand cannot contribute to the integral at points 
other than xp - E < x < xp + E .  Thus, making use of the mean-value theorem in 
the generalised sense,§ 

00 00 / f ( x ) 6 ( x  - x,)dx = f ( x p )  / 6(x - x,)dx = f(xp). 

Note that the above is equally true if the limits ] -00, 00[ are replaced by any finite 
values, say [a, b], provided a < xp < b. 

(9.12.13) 
--03 -00 

We now apply our results in the following example. 

Example 9.17: A concentrated load P and a couple C are applied to a sim- 
ply supported beam of length L ,  as shown in Fig. (9.12.7). Determine the 
equation of the resulting elastic curve. 

Solution: Since the given loading is represented by 

q ( x )  = P6(x - a)  - C6‘(X - b), (9.12.14a) 

the governing equation in 0 < x < L is 

dv4(x) 
dx4 

EI- = P6(x - a) - CS’(x - b), (9.12.14b) 

subject to the boundary conditions v(0) = ( L )  = v”(0) = v”(L) = 0. 
Integrating, and using the properties of Eqs. (9.12.1 1) and (9.12.12), we obtain 

EIV”’(X) = P ( x  - a)O - CS(x - b) + AI (9.12.15a) 

EIv”(x)  = P ( x  -a ) ’  - C(X - b)’ + A ~ x  + A2. (9.12.15b) 

t Note that the appearance of the minus sign before Ax in the numerator of the above expression leads, 
in the limiting case, to - $ 

t The derivative of the Dirac-delta funcbon is sometimes called a doublet. It is worthwhile menboning 
that the Dirac-delta function 8 ,  as well as its denvative S’, are not functions (and certainly not analytical 
functions) in the ordinary sense. They, as well as singularity functions, are ‘functions’ only when 
considered within the theory of distributions, as was mentioned in the footnote on p. 330. Note also that 
we have limited ourselves here to simply giving their operational properties. 

5 Since the Dirac-delta function is not a function 111 the usual sense, the ‘denvation’ here is clearly only 
heuristic and is not meant to be rigorous. 

Figure 9.12.7 
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From v"(0) = 0, A2 = 0 while v"(L) = 0 yields 

1 
L A I  =Z -[C - P(L - U ) ] .  

Integrating again, 

P A1x2 
2 2 EZv'(x) = -(x - u ) ~  - C ( X  - b)' + - + A3 

and 

P C A1x3 - -(x - 
6 2 6 

EIv(x)  = -(x - + - + A ~ x  + A4. 

From v(0) = 0, A4 = 0 while from v(L)  = 0, we obtain 

+ A3L = 0. 
P C A ~ L ~  
6 2 6 
- ( L  - 4 3  - -(L - b)2 + - 

Substituting the value of A1 and solving for A3, yields 

C 
6L 6L 

A3 = p ( L  - q L 2  - ( L  - a y ]  + -[3(L - b)2 - L2]. 

Thus the deflection is given by 

+ ~ 3 x 1  
3 c  A1x3 

V ( X )  = - -(x - a )  - -(x - b)2 + - 
E I  " 6 2 6 

(9.12.16) 

(9.12. 

(9.12. 

7a) 

7b) 

(9.12.18) 

(9.12.19) 

(9.12.20) 

with A I  and A3 given by Eqs. (9.12.16) and (9.12.19), respectively. 

with C = 0, 
Let us consider the effect of load P acting alone at the mid-point U = L/2 .  Then, 

V(X) = - -(x - ~ / 2 ) 3  - - + - . 
2EI " 3 

x3 6 8  L2x1 
(9.12.21) 

The shape of the elastic curve is shown in Fig. (9.12.8a). We note that the deflection 
at x = L / 2  is v(L/2)  = $&, which agrees with the result given in Eq. (9.4.21). 

/&- 
I 

Figure 9.12.8 
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If the couple C is acting alone at the point b = L j2, then with P = 0, 

(9.12.22a) C 
A1 = - 

L 
and 

-CL 
A3 = - 

24 * 
(9.12.22b) 

Hence for this case, 

- L/2)2 + - x3 - - Lx]. (9.12.23a) 
E I  6L 24 

The shape of the elastic curve for this case, which we observe is anti-symmetric, 
is shown in Fig. (9.12.8b). The largest deflection in the left-hand region occurs at 
x = &L/6 and has magnitude 

43 CL2 lvl = -- 
216 E I  ' 

If C is acting alone at A (i.e., b = 0), then with P = 0, 

(9.12.23b) 

(9.12.24a) 
C CL 
L 3 

A1 = -  and A 3 = - - - .  

Substituting these in Eq. (9.12.20), we find 

(x3 - 3Lx2 + 2L2x). (9.12.24b) 
C 

6EIL 
v(x) = - 

The shape of the elastic curve is shown in Fig. (9.12.8~). Note that this is the 
same result [Eq. (9.4.13c)l as obtain in Example 9.4 for a simply supported beam 

0 subjected to an end couple. 

Example 9.18: A concentrated force P i s  applied at a variable point q to a 
cantilever beam having flexural rigidity N, as shown in Fig. (9.12.9). Deter- 
mine the deflection v(x) of the elastic curve. 

Solution: The load q(x) is therefore represented as P6(x - q). Hence the differential 
equation, EId'") = q(x),  becomes 

Figure 9.12.9 

d4v(x) 
dx4 

EI- = PS(X - q), 0 < x < L (9.12.25) 

subject to the boundary conditions v(L) = v'(L) = 0 and ~"(0)  = ~"(0) = 0. 
Integrating, and using the property of Eq. (9.12.1 l), 

EIvN'(x) = P(x  - q)' + A .  (9.12.26a) 

Since ~'"(0) = 0, A = 0. Integrating again and using the boundary condition v"(0) = 
0, we have 

E I v N ( x )  = P ( x  - q) .  (9.12.26b) 

Upon subsequent integrations, we obtain 

P 
2 

EIv'(x) = -(x - q)' + C (9.12.26~) 
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and 

(9.12.26d) 

Boundary condition v’(L) = 0 yields C = - 5 ( L  - q)3 while v(L)  = 0 yields D = 

P 
6 

EIv(x) = -(x - q)3  + CX + D. 

$(Z - q)2(2L + q). 
Hence, we obtain 

P 
6 E I  V ( X )  = -[(x - q)3  + ( L  - Q ) ~ ( ~ L  + q - 3x)]. (9.12.26d) 

Note that upon letting q = L - <, we recover the expressions for v(x), as given by 
Eq. (9.7.15b), keeping in mind that x here is measured from the free end of the beam. 

U 

Figure 9.12.10 

Throughout this chapter, it has been emphasised that the domain of validity of the 
governing differential equation is an open domain; i.e., it excludes the boundary 
points. Although it may have appeared that this feature may is not relevant in 
the solutions obtained till now, the following example illustrates specifically the 
relevance and importance of such considerations. 

Example 9.19: A cantilever beam AB i s  subjected to  a couple MO at the free 
end, as shown in Fig. (9.1 2.10). Determine the displacement v(x) of the beam. 

Solution: Since no applied load q(x) exists in the region 0 < x < L ,  the governing 
equation EIv’”(x) = q(x) is, in effect, simply 

d4 v(x)  
dx4 

EI- = O ,  0 < X  < L .  (9.12.27) 

We note here that one might be tempted to represent the applied couple loading by 
means of a doublet, namely as -MO 6’(x) [see, e.g., Eq. (9.12.14a)], as was done in 
Example 9.17. We observe, however, that in that example, the moment and forces 
were applied within the open domain. In the present example, this is not possible 
since the applied couple MO is applied at x = 0, which is not within the given domain 
of the differential equation, 0 c x < L .  

The appropriate boundary conditions, compatible with Eq. (9.12.27), are 

EIv’”(0) = 0, (9.12.28a) 

EIv”(0) = -MO, (9.12.28b) 

v’(L) = 0, (9.12.28~) 

v(L)  = 0. (9.12.28d) 

Integrating Eq. (9.12.27), we obtain Elv”’(x) = A ,  and therefore A = 0 according to 
Eq. (9.12.28a). Integrating once more, we obtain EIv”(x) = B. From Eq. (9.12.28b), 
we have B = -MO and hence EIv”(x) = --MO. Upon integrating again twice and 
using the remaining boundary conditions, we find 

EI(v) = M0(--x2/2 + L X  - L2/2) (9.12.29a) 

or 
Mo(L - x)2 

2 E I  * 
V ( X )  = - (9.12.29b) 

Thus the displacement is a parabola with VA = -MoL2/2EI. 0 
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09.13 Moment-area theorems 

In the above sections, integration of the Euler-Bernoulli beam equation, Eq. (9.2.4) 
(which we repeat here as), 

d2v(x) 
dx2 

E I ( x ) -  = -M(x) ,  (9.13.la) 

yielded the equation of the elastic curve, that is, the deflection of the beam. We 
now develop two relations, known as the moment-area theorems, which express 
the displacement and slope of a beam at any cross-section, located at x ,  in terms of 
those quantities that exist at another cross-section, say at XO. In the following, we 
assume that x > xo [Fig. (9.13.1)]. While the solutions to beam problems obtained 
by application of these theorems lead to the same solutions obtainable by integra- 
tion of Eq. (9.13. 1 a), the moment-area theorems often simplify considerably the 
calculations. As we shall find, the moment-area theorems are particularly useful, 
for example, in determining deflections for beams where I = I ( x ) .  

To develop these theorems, we first note that Eq. (9.13.1 a) can be written as 

Figure 9.13.1 

E l ( x ) -  - = -M(x) .  
d x d x  [dv(x’l (9.13. lb) 

Recalling that Eqs. (9.13.la) and (9.13.lb) are only valid provided Iv’(x)l << 1, it 
follows that the slope (8 I << 1 at any x is given by 

dv 
dx 

6(x) 21 tan6 = -. 

Thus we may write Eq. (9.13.1b) as 

which we recognise as a fkst-order differential equation on 8(x).t 
Dividing through by E l ( x ) ,  we then have 

Taking the integral on both sides, 

(9.13.2) 

(9.1 3.3 a) 

(9.1 3.3 b) 

(9.13.4a) 

we obtain 

(9.13.4b) 

Recalling that the variable appearing within the integral is but a dummy variable, 

Note that Eq. (9.13.3a) is therefore integrable in terms of analytic functlons only if do/& is continuous 
within the domain of interest, i.e. here between xo and x as shown in Fig. (9.13.1). [See footnotes 
following Eqs. (9.2.4) and (9.12.2).] We therefore exclude the presence of a ‘hinge’ within this domain. 
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we rewrite Eq. (9.13.4b) as 

(9.13.5) 
xo 

It is important to note that, since xo is fixed (i.e., a number), and e(x0)  is assumed to 
be known, O(x) is a function only of the upper limit x appearing on the right-hand 
side of Eq. (9.13.5). 

Now, from Eq. (9.13.2), 

dv = Q(x)dx. (9.13.6a) 

Integrating on both sides, 
X X 

(9.13.6b) 
W O )  xa xa 

where here (to avoid conhsion in its use below) we have called the dummy variable, 
appearing on the right-hand side, 6. 

Substituting Eq. (9.13.5), we obtain 

and, upon noting again that e (x0)  is a constant, 

v(x)  = v(x0) + B ( X 0 )  * (x - xo) - j [ (9.13.8) 
xo xo 

Now, the double integral appearing on the right-hand side may be simplified as 
follows. Recalling, from the differential calculus, the expression for ‘integration by 
parts’,+ 

/ u dv* = uv* - / v* du, (9.13.9a) 

we let 

xo 

dv* = d t  

from which 

v* = (. 

(9.13.9b) 

(9.13.9~) 

(9.13.9d) 

(9.13.9e) 

t In keepmg the conventional notation used for integration by parts, we denote here the variable by U* to 
avoid confusion with the displacement I@). 
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Hence, making use of Eq. (9.13.9a), we have 

(9.13.10) 
Finally, substituting in Eq. (9.13.8), 

Equations (9.13.5) and (9.13.1 I), known as the moment-area theorems, are explicit 
expressions for the slope 8(x) and displacement v(x)  at any cross-section xo < x, 
provided that ~ ( x o )  and v(x0) are known at XO. 

The above relations lend themselves to a simple and immediate geometric inter- 
pretation. Instead of drawing the moment diagram for a given beam, we f is t  plot 
instead diagram'. Since the definite 
integral represents the area under a function between the lower and upper limits, 
we may therefore interpret Eq. (9.13.5) as follows: the difference in the slopes of 
the beam, ~ ( x o )  - 8(x ) ,  is represented by the area under the diagram between 
the two points, xg and x (x > xg) [Fig. (9.13.2a)l. 

as a function of x thus obtaining an ' 

Figure 9.13.2 
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If we denote the area of the diagram between xo and x by AI;,,, we may 

e ( x )  = e(xo) - ~ 1 ; ~ .  (9.13.12) 

Equation (9.13.1 1) may also be interpreted geometrically. We first note that 
the difference of displacements, v(x)  - ~(xo), is expressed by two terms: 
(i) O(x0) . (x - XO) and (ii) the integral -lX:(x - t)G dt. We consider each term 
separately. 

Since 101 << 1, we may replace the term O(x0) a (x - XO) by (x - XO) a tanO(x0). 
We therefore observe that this term represents the distance DF at the cross-section 
x, as shown in Fig. (9.13.2). 
The integral &:[(x - $) M ( t ) / E I ( $ ) ]  d t  represents the ‘first moment’ of the 
area under the ‘ M / E I  diagram’ between xo and x, when taken about the point 
x; we denote this term by Qx as a measure of the 
(downward) vertical distance FE, i.e. between the beam at x and the tangent to 
the beam at XO, as shown in Fig. (9.13.2b). 

depend on the sign of M(x) ,  they may be positive 

therefore rewrite Eq. (9.13.5) symbolically as 

We then interpret - Qx 

[Note that since A I:, and Qx 

or negative.] Hence the geometric representation of Eq. (9.13.1 l), 

xo 

is 

CE = CD +DF +FE. 

Using the symbolic notation Qx 1;” as defined above, we rewrite Eq. (9.13.1 1) as 

4x1 = ~ ( ~ 0 1  + ~ ( x o )  * (x - X O )  - Q x  Izo- (9.13.13a) 

We note also that with xo < x, we have the relation 

(9.13.1313) 

where, here, QxoIzo is the first moment of the area under the ‘ M / E I  diagram’ 
between xo and x, when taken about the point XO. We observe that this relation is 
consistent with Fig. (9.13.2b). 

It is clear that in addition to the moment-area theorems, the solution to any 
given beam problem requires the use of the appropriate boundary conditions. We 
illustrate the use of the moment-area theorems in the following examples where 
we shall develop several simplifying techniques. 

Example 9.20 Two cantilever beams, I and I I ,  each of length I and fixed at 
x = 0, are subjected to a load P at the free end. Beam I has a constant flexural 
rigidity Nand Beam I I  has flexural rigidity as shown in Figs. (9.13.3a and b). 
Determine the deflection and the slopes of the two beams at the free end. 

Solution: Since the beams are statically determinate, the moment in both beams is 
identical; namely M(x) = - P L + Px. 
Solution for Beam L 
The resulting M / E I  diagram is shown in Fig. (9.13.3~). 
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Figure 9.13.3 

We let x0 = 0 and x = L in the first moment-area theorem. The boundary condi- 
tionsarethenv(x0) = @(no) = 0.Recognisingthat AI; = -PL2/2EI,  Eq.(9.13.12) 
becomes 

(9.13.14a) 

Similarly, noting that the moment about x = L of the triangular area appearing in 
Fig. (9.13.3~) is QL~," = (-PL2/2EI)(2L/3) = -PL3/3EI,  Eq. (9.13.13a) be- 
comes 

PL2 
e(L) = e(xO) - ~ 1 : ~  = -. 

2 E I  

L PL3 
vB = v ( ~ )  = v(xg) + e(xo) .  L - Q L I ~  = - 3 E I '  

(9.13.14b) 

We note that this is the same result obtained in Example 9.7 [Eq. (9.7.16b)l. 

Solution for Beam It 
For this beam, the boundary conditions are the same; i.e., v(x0 = 0)  = e(x0 = 0 )  = 0. 
However, the resulting M / E I  diagram is as shown in Fig. (9.13.3d). Decomposing 
the M / E I  diagram into component regions [(i), (ii), (iii), according to the dashed 
lines shown], we calculate the required quantities as follows: 

4 
or 

L 7PL2 
AI, = -- 

8 E I  I 

(9.13.15a) 

Then 

Q L I , "  =: (-g). (F) + (-%). ($) f (-E). 8 E I  (g) 
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or 

Substituting in Eqs. (9.13.12) and (9.13.13), with x = L ,  we find 

7PL2 &=-- 
8EI  

and 

(9.13.15b) 

(9.13.1 6a) 

(9.13.16b) 

The elastic curves for the two beams are sketched in Figs. (9.13.3e and 0, respec- 
tively. comparing the results, we note as expected, that the deflection of Beam (11) is 

U considerably larger than that of Beam I. 

Since application of the moment-area theorems requires calculations of the areas 
A I:, and Qx I:o, it is evident that these theorems are of practical value mainly in 
cases where the areas of M / E I  (or their component parts) are simple geometric 
shapes since, for such cases (e.g., rectangles, triangles, parabolas, etc.), both the 
surface areas and the location of their centroids are known quantities. 

For beams subjected to either concentrated loads, or distributed loads q ( x ) ,  which 
are expressed in terms of polynomials of any degree [e.g., q(x) = w, wx or wx2], 
one can decompose the M / E I  diagram into these simple component shapes by 
drawing the moment diagram ‘by parts’. This technique, which is also particularly 
useful for indeterminate beams, is illustrated in the following two examples. 

Example 9.21: A simply supported beam AB of constant flexural rigidity El 
and length L is subjected to a uniformly distributed load w [Fig. (9.13.4a)l. 
Determine (a) the deflection at x = L / 2 ,  (b) the slope of the beam at x = L/4 
and (c) the deflection at x = L / 4 .  

Figure 9.13.4 

Solution: We note that this problem was solved as Example 9.1 by integration of 
the differential equation where the moment is 

wLx wx2 
M(x)  = - - -* 

2 2 ’  
(9.13.17) 

the resulting moment diagram shows a parabolic variation with M,,, = wL2/8 at 
x = L/2 [Fig. (9.13.4b)l. The boundary conditions are v(0)  = v(L)  = 0. 
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Now, the surface area and centroid of the area bounded by the axis and the M /  E I 
diagram is, in generally, not known a priori between, say xo = 0, and any arbitrary 
x > 0 (although these could be calculated). We therefore draw the M / E I  diagram 
‘by parts’: that is, we plot each term of Eq. (9.13.17) separately. Thus here we plot 
wLxI2EI and -wx2 /2EI  separatelyasinFigs. (9.13.5aandb). Werecognisethatthe 
first term represents the contribution to the moment due to the reaction at A while 
the second represents the contribution due to the downward uniform load w .  [Clearly, 
the algebraic sumofFigs. (9.13.5aandb)yields the moment diagramofFig. (9.13.4b).] 
Moreover, the resulting geometric shapes of the separate M /  E I diagrams are now 
seen to be simple shapes with known properties. 

Figure 9.13.5 

(a) To calculate v (L /2 ) ,  we note from Eq. (9.13.1 1) or (9.13.13), that we require 8 at 
some point xo < L / 2 .  Since this is an unknown quantity we proceed as follows: 
upon noting the boundary conditions, we let xo = 0 and x = L in Eq. (9.13.13a), 
from which we find 

Now, from Figs. (9.13.5a and b), 

wL4 
24EI 

=E- 

and therefore 

wL4 
8(0) = - 

24E I ’ (9.13.18b) 

which agrees with Eq. (9.4.4b). 

Eq. (9.13.13) explicitly as 
Now, setting xo = 0 and x = L / 2  and using the B.C. v(0) = 0, we write 

L 
v ( L / 2 )  =E 8(0) * - Q~p1;’~. (9.1 3.1 9a) 
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Then 

3wL4 
384EI' 

=- 

Substituting the calculated values in Eq. (9.13.19a), we obtain 

wL4 3wL4 5wL4 
v(L/2) = - - - - 

48EI 384EI - 384Bl' (9.13.19b) 

which is the same result obtained in Example 9.1 [Eq. (9.4.3)]. 

slope B(L/4) is given by 
(b) Having found 6(0), and setting now xo = 0 and x = L/4 in Eq. (9.13.12), the 

B ( L / ~ )  = e(o) - ,410"'~. (9.13.20) 

From Figs. (9.13.5a and b), 

1 wL3 wL3 5wL3 
= EI [4 - 3841 = m' (9.13.21a) 

Substituting Eqs. (9.13.18b) and (9.13.21a) in Eq. (9.13.20), we obtain 

w ~ 3  5 w ~ 3  1 1 ~ ~ ~  e ( ~ / 4 )  = - - - _. - - 
24EI 38481 384EI'  

(9.13.21b) 

The deflection v(L/4) is similarly found by setting xo = 0 and x = L/4 in 
Eq. (9.13.13): 

(9.13.22a) 

where1 

Then, substituting 8 (0) and the above in Eq. (9.13.22a), we obtain 

wL4 7wL4 19wL4 
v(L/4) = - - ~ - - 

96EI 6144EI 2048EI' 
- (9.13.22b) 

The elastic curve and calculated quantities are shown in Fig. (9.13.4a). 0 

The moment-area theorems can also be applied to statically indeterminate beams 
as illustrated in the following example. They therefore provide another means of 
determining the unknown reactions for such beams. 

t Note that the required areas of the component parts, wL3/64 and -wL3/384, respectively, have been 
calculated previously in Eq. (9.13.21a). To find Q, we therefore need only multiply by the respective 
distances from x = L/4  to their centroid. 
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Example 9.22: A statically indeterminate beam (having constant fl) of length 
L, is fixed a t  one end A and simply supported at B, as shown in Fig. (9.1 3.6a). A 
load P is applied a t  the centre as shown. Determine the unknown reactions. 

P EI 
A 

I 

Solution: We denote the unknown reactions by R A ,  MA and Rg, as in Fig. (9.13.6b). 
Clearly, the two equations of statics, 

E F ~  = RA+ RE - P = o (9.13.23a) 

and 
P L  
2 

= MA - REL i- - =: O, (9.13.23b) 

cannot provide a unique solution for the three unknowns. However, we may write the 
expression for the moment M(x) in terms of the unknowns; namely 

M(x) = MA + RAX - P(x - L / 2 ) ,  0 5 x 5 L .  (9.13.24) 

We now plot the above three terms separately in Figs. (9.13.7a-c); that is, we plot 

Noting the boundary conditions v(0) = v’(0) = v(L)  = 0,  (0 = v’), we let xo = 0 
the M / E I  diagram ‘by parts’. 

andx = L and writing Eq. (9.13.13) explicitly as 

v(L)  = ~ ( 0 )  + O(0) + L - Q L  16, (9.13.25a) 

upon substituting the boundary conditions, we conclude that 

Q L  I; = 0. (9.13.2513) 

Now, from Figs. (9.13.7), 

But, since by Eq. (9.13.25b), this quantity must be zero, we have 

2 4 M ~  + ~ R A L  = PL.  (9.13.26) 

Thus, together with Eqs. (9.13.23), this last equation is the additional equation required 

Figure 9.13.6 
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Figure 9.13.7 

to solve for the three unknown reactions. Upon solving, we obtain 

11P 
RA = - 

16 ' 
(9.13.27a) 

(9.13.27b) 

We observe that the result for R g  is in agreement with Eq. (9.10.15b) (for 5 = L/2) 
of Example 9.13. 

Substituting in Eq. (9.13.24), we find the explicit moment expression, 

(9.13.28) 

0 

P 
-[-3L + 1 IX - 1 6 ( ~  - L/2)]. 
16 M ( x )  

The resulting moment diagram is shown in Fig. (9.13.8a). We note that M = 0 at 
x = 3L/11 E= 0.2727L. Hence at this point, the elastic curve has zero curvature. This 
permits us to sketch qualitatively the shape of the elastic curve quite accurately as 
in Fig. (9.13.8b). Thus, although the exact deflections have not been calculated here, 
we observe that the direct relation between the deformation and internal resultants 
(here, the relation between the sign of the curvature and the sign of the moment M )  
provides an excellent means for understanding the qualitative behaviour of the beam. 
Thus, knowing the variation of the moment, we were able to sketch the approximate 
deflection of the beam, as in Fig. (9.13.8). 

However, with some experience, one can often easily first visualise the deformation 
of a structure due to applied loads. Indeed, such an intuitive visualisation of the 
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Figure 9.13.8 

deformation of a structure often provides the best basic understanding of the behaviour 
of a structure and leads one to a qualitative estimate of the internal stress resultant. 

PROBLEMS 
In all problems below, the x-axis is t o  be taken at the extreme left end of the structure. 
Assume elastic behaviour. 

Sections 2 and 3 
9.1: A simply supported prismatic beam, having a rectangular cross-section with 
depth d, length L and flexural rigidity E/, is subjected t o  end couples M2 = ME, as 
shown in Fig. (9P.11, causing maximum flexural stresses +ao. (a) Determine the coor- 
dinates (XO, yo) of the centre of curvature 0 of the beam according to  the (i) exact 
theory and (ii) linear theory of beams. (b) Evaluate the coordinates (to four significant 
figures) for typical values €/a0 = 103 and L / d  = 100 according t o  both the (i) exact 
and (ii) linear theory. 

Figure 9P.1 
9.2: A cantilever beam, having a cross-section that i s  symmetric with respect t o  both 
the y- and z-axes, with flexural rigidity E/, depth dand length L, is fixed a t  x = 0. The 
beam is subjected t o  a vertical load P at the free end, as shown in Fig. (9P.2). 

What is the exact radius of curvature, Re,, at the section, x = L/2? Give answer 
in terms of P, L and El. 
Due t o  the load P, the elastic curve, according to  the linearised theory of beams, 
is given as v(x)=g(3Lx-x2).  (i) Determine the radius of  curvature of the 
elasticcurve, RL, a tx=  L/2 according to  linear beam theory, i.e. using Eq. (9.2.1). 
(ii) Assuming that P causes a maximum stress a0 in the beam, showthat the ratio 
3 is 

Figure9P.2 

(iii) Using the appropriate series expansion, obtain a simplified expression, 
namely 

Evaluate this ratio for a material with ao/E = 10-3 and for two cases, L / d =  
20 and100, using the two expressions in (b). Compare the results. 
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Section 4 

9.3: By integrating the Euler-Bernoulli beam equations, E/v"(x) = -M(x), (i) deter- 
mine the equation of the elastic curve for the beams shown in Figs. (9P.3a-i), 
(ii) evaluate the maximum deflection and (iii) sketch the elastic curve. 

Figure 9P.3 

9.4: By integrating the Euler-Bernoulli beam equations, Nv"(x) = -M(x), (i) deter- 
mine the equation of the elastic curve, namely 

v(x) = -- ' O x  (6x4 - 15Lx3 + 10L2x2 - L 3 )  
360EIL 

Figure 9P.4 

for the beam shown in Fig. (9P.4) and (ii) sketch the elastic curve. (Note: See computer- 
related Problem 9.102.) 

9.5: By integrating the Euler-Bernoulli beam equations, Nv"(x) = -M(x), (i) deter- 
mine the equation of the elastic curve for the prismatic beams shown in Figs. (9P.5a-4 
(ii) evaluate the maximum deflection and (iii) sketch the elastic curve. 
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Figure 9P.5 

9.6: The cantilever beam shown in Fig. (9P.6) issubjected t o  an exponentially decaying 
load q(x) = qoe-aX/L, where a 2 0 is a constant. By integrating the Euler-Bernoulli 
beam equations, Elv"(x) = -M(x), (a) Determine the equation of the elastic curve for 
the cantilever beam, shown in Fig. (9P.6), subjected to  the exponentially decaying 
load. (b) Evaluate the maximum deflection. (c) By taking the limit as a 3 0, obtain 
the maximum deflection for the beam under a load QO distributed uniformly over i ts 
entire length L, namely vmax = &. 
9.7: Determine the deflection A at the free end of the cantilevered beam whose 
cross-section varies as shown in Fig. (9P.7). 

9.8 Given a simply supported non-prismatic beam, as shown in Fig. (9P.8), whose 
whose flexural rigidity is El(x), where I (x) = I0 sin(nx/ L). The beam is subjected to  
a symmetrically distributed load q(x) = sin(nx/L). (a) Determine the equation of the 
elastic curve. (b) Determine the maximum displacement and the slope of the beam at 
x = L/2. (c) Sketch the loading and the elastic curve. 

9.9:* Thesimplysupported non-prismatic beam of Problem 9.8with /(x) = / O  sin(nx/L) 
is subjected t o  an anti-symmetric loading q(x) = sin(2nx/L). (a) Determine the equa- 
tion of the elastic curve. (b) Determine the displacement and the slope of the beam at 
x = L/2. (c) Determine the maximum displacement and indicate where it occurs. (d) 
Sketch the loading and the elastic curve. 

9.10: A beam AB with flexural rigidity El, simply supported at A and by a linear spring 
[whose constant i s  k (N/m)] at B, is subjected t o  a uniformly distributed load w (N/m), 
as shown in Fig. (9P.10). (a) By integrating the Euler-Bernoulli relation, determine the 
equation of the elastic curve v(x). Express the answer in non-dimensional terms x/L 
and the non-dimensional ratio a E El/kL3. (b) Show that if k -+ 00, i.e. 1y = 0, the mid- 
span deflection is given by the expression v(L/2) = &. (c) Express the deflection of 
the beam for the limiting case of a rigid beam, i.e. E/ + 00 with finite 0 < k. (d) Sketch 
the displacement of the beam for the two limiting cases of (b) and (c) above. 

9.11: A beam AB having flexural rigidity El is free at one end B and is anchored at the 
other end A t o  a wall. The wall support i s  assumed to  provide only a partial restraint 
against rotation. The beam is therefore represented by a linear torsional spring that 
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Figure 9P.11 

Figure 9P.14 

provides a (negative) moment at A, which is linearly proportional t o  the slope 0 x v;, 
i.e. MA = -PO,  where ,f3 is a constant having dimensions (N-mlrad), as shown in 
Fig. (9P.11). (a) By integrating the Euler-Bernoulli relation, determine the equation of 
the elastic curve v(x). Express the answer in non-dimensional terms x/L  and the non- 
dimensional ratio y = E I / p L .  (b) Show that if B + 00, the deflection at the free end is 
given by the known expression for the rigidly supported cantilever beam, v(L) = g. 
(c) Express the deflection v(x) of the beam for the limiting case of a rigid beam, i.e. 
€1 -+ 00 if 0 < B is finite. (d) Sketch the displacement of the beam for the two limiting 
cases of (b) and (c) above. 

Section 5 

Note: In solving problems in this section, use can be made of results found in Sections 
3 and 4 of this chapter or Appendix F. 

9.12: The exact axial displacement 
end couples M = ME, causing a maximum stress CO, i s  given as [see Eq. (8.6.17b)l 

of a simply supported beam subjected to  

(A,y)ex = L 1 - -sin - , ( ; i) 
where y = $. (a) Determine A, according to  the the linear beam theory. (b) Show 
that for y << 1, the ratio [(A,) - (Ax)exI/(Ax)ex = 1 + &. 
9.13: (a) Determine an expression for the axial displacement u(x) of points lying on 
the elastic curve of a cantilever beam, with flexural rigidity El and length L = 2 m, 
which is subjected t o  a concentrated force P acting at the free right end. (b) Evaluate 
the displacement A,/L 3 u(L)/L if E = 100 GPa, I = 10-5 m4 and P = 3 kN. 

9.14 A wooden cantilever beam (E = 15GPa) having a 'T-Section', as shown in 
Fig. (9P.14, is subjected t o  a uniformly distributed load w(Nlm) over i ts entire length L .  
If the maximum flexural stress in the beam is 10 MPa, and the length i s  2 m, determine 
the axial displacement A, of the free end and evaluate the ratio A,/L. 

Section 6 

9.15: Given a cantilever beam of rectangular cross-section b x  d of length L and 
whose material properties are E, G and U. (a) Determine an approximation for the 
deflection v, at the free end of the elastic curve due to  shear deformation if the 
beam is subjected t o  a uniformly distributed load w(N/m) over i t s  entire length and 
(b) evaluate the ratio v&, where vf i s  the deflection due to  flexure. Express the answer 
in terms of the depth-to-length ratio d/L and the Poisson ratio U. 

9.16: Given a simply supported beam of rectangular cross-section b x d of length L 
and whose material properties are E, G and U. (a) Determine an approximation for 
the deflection, v,, at the centre of the elastic curve due t o  shear deformation if the 
beam is  subjected to  a concentrated load P (N) at the mid-span and (b) evaluate 
the ratio vs/vf where vf is the deflection due to  flexure. Express the answer in terms 
of the depth-to-length ratio, d/L,  and the Poisson ratio, U. 

Section 7 

9.17: Using singularity functions, (a) determine the equation of the elastic curve for 
the cantilever beam shown in Fig. (9P.17), (b) evaluate the deflection at the free end 
and (c) sketch the elastic curve. 
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Figure 9P.17 

9.18: A steel (E = 200GPa) cantilever beam of length L i s  subjected to  a linearly 
varying load, as shown in Fig. (9P.18). Using singularity functions, (a) determine the 
equation of the elastic curve, (b) evaluate the deflection at point B, at the free end, 
point C, and determine the ratio vC/v13 and, (c) if L = 4 m and the cross-section of the 
beam is given as W O 3  x 22, evaluate the deflection at the free end if w= 6kNlm. 

9.19: A simply supported beam having flexural rigidity N i s  subjected to  two sym- 
metrically placed loads P where a 5 L/2, as shown in Fig. (9P.19). (a) Determine the 
equation of the elastic curve v(x). (b) (i) Evaluate the displacement at the mid-point in 
terms of P, L, a and E l  and (ii) determine the displacement when a = L/2. 

9.20:" A simply supported prismatic beam of length L with flexural rigidity El is 
subjected t o  an applied couple MO at x = a, asshown in Fig. (9P.20). (a) Using singularity 
functions, determine (i) the equation of the elastic curve v(x) and (ii) the deflection 
at x = a. (b) For what values of a/L will the deflection be stationary (maximum or 
minimum) t o  the left of the applied couple? 

9.21: The overhanging beam ABC, shown in Fig. (9P.21), is subjected t o  a uniformly 
distributed load w(N/m) over i ts  entire length. (a) Using singularity functions, (i) obtain 
the equation of the elastic curve v(x), namely 

WL 4 

24EI 
v(x) = - { ( x / L ) ~  - 2[1 - (a/L ) * ] ( x / L ) ~  + [l - 2(a/L)*](x/L) - 2(1 +a/L)'(x/L - 

and (ii) the deflection vc of point C. (b)* For what value of  a/L will the deflection 
vc = O? (Note: See computer-related Problem 9.103.) 

9.22: A concentrated load P acts, as shown in Fig. (9P.22), on an overhanging beam 
ABC. (a) Determine (i) the equation of the elastic curve v(x) and (ii) the maximum 
upward displacement in segment AB. (b) Sketch the elastic curve. (c) For what value of 
a/L will the maximum upward displacement in segment AB be equal t o  the downward 
displacement VC? Determine the value of this displacement IvI. 

9.23: A simply supported beam ABCD is subjected to  a uniformly distributed load 
over the segment BC, as shown in Fig. (9P.23). Determine the deflection at the centre 
of  the beam. 

Figure 9P.23 

9.24:" Given a beam ABC, containing a hinge at point B and loaded as shown in 
Fig. (9P.24). (a) Using singularity functions, determine the equation of the elasticcurve. 
(b) Determine the deflection at B and at D, midway under the load w. (c) Determine 
the discontinuity of the slope at the hinge. (d) Sketch the elastic curve. 
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Figure 9P.24 

Section 8 

Solve Problems 9.25-9.35 by integrating the differential equation, f/v"(x) = -M(x). 
Use singularity functions where appropriate. 

9.25,9.26: For the indeterminate beams shown in Figs. (9P.25 and 9P.26), (a) deter- 
mine the reactive forces and moments due to  the applied loads, (b) plot the shear 
and moment diagrams, showing al l  maximum and minimum values, and (c) sketch the 
elastic curve and evaluate the maximum deflection. 

Figure 9P.25 

Figure 9P.26 

Figure 91327 

9.27: For the indeterminate beam shown in Fig. (9P.27), subjected t o  the distributed 
load q(x) = qO(x/L)*, (a) determine the reactive forces and moments due to  the given 
loads, (b) plot the shear and moment diagrams, showing al l  maximum and minimum 
values, and (c) sketch the elastic curve. 

9.28: For the propped cantilever beam shown in Fig. (9P.28), (a) determine the re - 
actions and moment at A due to  the load q(x) = %cos(nx/2L), (b) draw the sheair 
and moment diagrams, showing all maximum and minimum values, and (c) obtain thc? 
explicit expression for the elastic curve, v(x), namely 

(Note: See computer-related Problem 9.104.) 

Figure 9P.28 

9.29: For the indeterminate beam shown in Fig. (9P.291, (a) determine the reactions 
due to  the applied loads, (b) plot the shear and moment diagrams, showing all max- 
imum and minimum values, and (c) obtain the explicit equation of the elastic curve, 
namely 

I 3 

v(x)= &/{32(:)1-28(2) +3x-2(2x- L)4-5(2x-L)3 

Figure 91329 and sketch the elastic curve. (Note: See computer-related Problem 9.105.) 
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9.30: For the indeterminate beam shown in Fig. (9P.30)' (a) determine the reac- 
tions due to  the applied load, (b) plot the shear and moment diagrams, showing 
all maximum and minimum values, (c) obtain the explicit equation of the elastic curve, 
(d) evaluate the maximum deflection Jvlmax in the segment AB and (e) sketch the elastic 
curve. 

9.31-9.33: The beams shown in Figs. (9P.31-9P.33) are statically indeterminate to  
degree two, since there exist four unknowns (namely RA and RB in the y-direction and 
MA and ME) and only two remaining equations of equilibrium, M = 0. 
[Note that, according t o  the comment at the end of Section 5 of this chapter, the equal 
and opposite axial reactions, (R& = ( R B ) ~ ,  are neglected when using linear beam 
theory.] (a) Determine the reactive forces and moments at A and B. (b) Plot the shear 
and moment diagrams, showing all maximum and minimum values. (c) Sketch the 
elastic curve. (Note: Use of symmetry due t o  the symmetrically applied loads simplifies 
the solution.) 

F, = 0 and 

Figure 9P.32 and Figure 9P.33 

9.34 An elastic beam of flexural rigidity E/ is simply supported at the ends A and B 
and supported, as shown in Fig. (9P.34), at point C by means of a linear spring having 
stiffness k. (a) Determine the reaction of the spring in terms of the given quantities. 
(b) Determine the required value of k (in terms of El and L) t o  cause the moment 
at point C t o  be zero. (c) Sketch the moment diagram using the value of k obtained 
above and show maximum values of M and indicate where they occur. 

9.35: An elastic beam ABC is fixed at point A and simply supported by a rod BD, 
as shown in Fig. (9P.35). The flexural rigidity of the beam is  given as El and the axial 
rigidity of the rod is given as A€.  A uniformly distributed load i s  applied over the span 
AB. Determine (a) the reaction and moment at point A, (b) the deflection v(x) within 
the span AB and (c) the vertical displacement of point C. Express answers in terms of 
w, L and the non-dimensional ratio, a = hl /AL3.  

Sections 9 and I0 

Problems 9.36-9.48 are to be solved using the force method and/or the principle of 
superposition. In solving problems in this section, use can be made of results found 
in Sections 3 to 7 of this chapter or given in Appendix F. 

9.36: Determine the required relation between MO and w t o  render BE = 0 [see 
Fig. (9P.36)]. 

Figure 9P.36 

9.37: Determine the required relation between the upward force P and w to  render 
@E = 0 [see Fig. (9P.37)l. 

9.38 Determine the required relation between MO and P if v(LI2) = 0 [see 
Fig. (9P.38)]. 
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9.39: Determine the required relation between MO and w if v(L) = O  [see 
Fig. (9P.39)]. 

9.40 Solve for the reactive forces and moment acting on the beam of Fig. (9P.25) if 
(a) the released structure i s  a cantilever beam clamped a t  A and if (b) the released 
structure is a simply supported beam. 

9.41: Solve for the reactions on the beam of Fig. (9P.29) if the released structure is 
simply supported at points A and B. 

9.42: Solve for the reactions on the beam of Fig. (9P.30) if the released structure is 
simply supported at points A and C. 

9.43: Solve for the reactions on the beam of Fig. (9P.34) if the released structure is 
simply supported a t  points A and B.  

9.44:* Solve for the reactive forces and moments on the beam of Fig. (9P.31) if (a) 
the released structure i s  a cantilever beam clamped at A and free at B and if (b) the 
released structure i s  simply supported at A and B. (Note: This problem is statically 
indeterminate t o  degree two.) 

9.45:* Solve for the reactive forces and moments on the beam of Fig. (9P.32) if (a) 
the released structure is a cantilever beam clamped at A and free at B and if (b) the 
released structure is simply supported at A and B. (Note: This problem is statically 
indeterminate t o  degree two.) 

9.46: (a) Solve for the reactive forces and moments of  the beam of Fig. (9P.35) if the 
released structure i s  a cantilever beam clamped at Aand free at B, (b) determine the dis- 
placement at point C (express the answers in terms of w, L and the ratio 01 = hl/AL3) 
and (c) determine the above quantities if 01 -+ 0. To what, physically, does this cor- 
respond? 

9.47: Solve for the reactive forces and moment of the beam of Fig. (9P.47) if the 
released structure is a (a) cantilever beam clamped at Aand (b) simply supported beam. 

9.48: A beam system, consisting of two beams ACB and FHG, each of flexural rigidity 
Nand supported as shown in Fig. (9P.48), is subjected to  a force P at H. Determine the 
deflection of points C and H. 

Section 1 7  

9.49: Making use of the Green's function for the deflection of  a prismatic cantilever 
beam of length L with flexural rigidity El [Eq. (9.1 1.6)], determine the deflection of 
point B of the beam under a load q(x) = q o  cos(%), as shown in Fig. (9P.5b). 

9.50 Making use of the Green's function for the deflection of a prismatic cantilever 
beam of length L with flexural rigidity El [Eq. (9.1 1.6)], (a) obtain the deflection of 
point B of the beam due to  an exponentially decaying load, as shown in Fig. (9P.50), 
namely 

1) + e-Y6 - 301' - 2a3)l. 

(b)* Evaluate the deflection at B when 01 -+ 0. (Note: See computer-related Problem 
9.106.) 

9.51: Making use of singularity functions (or using the results found in Section 9.7), 
(a) obtain the influence function (Green's function), G&, c), for the deflection of a 
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simply supported prismatic beam having flexural rigidity Nand  length L, namely 

(b) Simplify the expression for Gd(L, 5). 

9.52: Asimply supported prismatic beam with flexural rigidity E/ issubjected to  a uni- 
formlydistributed load w(N/m), as shown in Fig. (9P.52), acting over a length 0 5 x 5 a. 
(a) Using the Green'sfunction, Gd(x, c), given in Problem 9.51, determine the equation 
for the elastic curve v(x) and (b) determine v(x) if the uniform load is distributed over 
the entire length of the beam. 

9.53: Making use of the influence function given in Problem 9.51, determine the 
deflection at the mid-point C of a simply supported beam of length L and flexural 
rigidity E/ if the loading is as shown in (a) Fig. (9P.3h) and (b) Fig. (9P.5~). 

9.54 Making use of the influence function given in Problem 9.51, (a) obtain the 
deflection at point C if the beam is subjected to  an exponentially decaying load, as 
shown in Fig. (9P.541, namely 

v(  f) = -"3Qa(a2 9b - 8) + 48e-Or/' + 3a2 - 241. 
48a4 E/ 

(b)* Evaluate vc when a -+ 0. (Note: See computer-related Problem 9.107.) 

9.55: Based on the influence function given in Problem 9.51 for a simply supported 
beam of length L, (a) (i) determine the deflection at x = L/2 due to  a load P = 1 
acting a t  { 5 L/2 and (ii) determine the deflection at any point x 5 L/2 due t o  a load 
P = 1 acting at c == L/2. (b) What conclusion can be drawn from the results of  (i) and 
(ii) ? Explain by means of a sketch. (Note:The same conclusion isvalid for a load acting 
at 5 2 L/2.) 

9.56: Given a simply supported beam of length L, as shown in Fig. (9P.56). 
(a) Obtainthe influencefunctionsG~~ Gv(x,, cland G w  GM(x, clfortheshear 

force VC and moment Mc, respectively. Sketch the influence lines showing al l  
critical ordinates in terms of x, and L. 

(b) If a uniformly distributed load w (Nlm) is applied between points C and B, de- 
termine Vc and MC in terms of w, x, and L. 

(c) (i)Forpoint Clocatedatx, = Lf4,sketchtheinfluence linesandshowthecritical 
ordinates in terms of L. (ii) A uniformly distributed load w(N/m), representing 
a given equipment, acting over a span length L/4, is t o  be applied t o  the beam. 
Where must the equipment be placed in order t o  minimise Mc? What is the 
minimum value of A+. 

(d) If the equipment [represented by w (Nlm) above] i s  instead placed within the 
region L/8 5 2' 5 3L/8, determine A+ = M(xc = L/4). 

(e)* Since the equipment i s  movable, it is necessary to  consider the worst case in or- 
der to  properly design the beam due t o  flexure. Between what points will the 
given equipment cause A+ (x, = L/4) t o  be maximum? What is the maximum 
moment? 

9.57: Given an overhanging beam ABCD containing a hinge at B, as shown in 
Fig. (9P.57). (a) Determine the Green's functions (influence functions) for (i) GRA 
GRW, c), (ii) Gut = GRUa + Ll, 0, (iii) G M ~  = GM(O, c) and (iv) Gv,, = G d a  + L1+, 5) .  
(b) Sketch the influence lines for the above quantities as a function of 1;. Indicate values 
of all critical ordinates. (Note: VC+ indicates the shear force immediately to  the right of  
point C.) 
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Figure 9P.58 

Figure 9P.70 

9.58* Given the indeterminate beam shown in Fig. (9P.58). (a) Determine the influ- 
ence function for the reaction at B and the moment MA at A (Note: The influence 
functions may be determined either by integration of  the differential equation or 
by using results given in Section 9.7 or given in Appendix F.) (b) Sketch the influence 
functions GR&) and G M ~ ( < ) ,  showing critical ordinates. (c) If a vertical applied load 
P = 1 kN acts on the beam, determine the maximum moment (MA( if the beam is 2 m 
in length. Where is P applied? 

Section 72 

in Problems 9.59-9.65, (a) determine the equation of  the elastic curve, (b) evaluate 
the maximum deflection and (c) sketch the elastic curve. Solve by integration of  the 
fourth-order differential equation EWV(x) = 9(x). 

9.59: Obtain the solution for the cantilever beam loaded, as shown in Fig. (9P.3a). 

9.60: Obtain the solution for the cantilever beam loaded, as shown in Fig. (9P.3e). 

9.61: Obtain the solution for the simply supported beam loaded, as shown in 
Fig. (9P.3i). 

9.62: Obtain the solution for the simply supported beam loaded, as shown in 
Fig. (9P.5a). 

9.63: Obtain the solution for the cantilever beam loaded, as shown in Fig. (9P.5b). 

9.64: Obtain the solution for the cantilever beam loaded, as shown in Fig. (9P.6). 
Show, in the limit a! -+ 0, that the maximum deflection reduces to  v,,, = g .  
9.65 Obtain the solution for the simply supported beam loaded, as shown in 
Fig. (9P.19). 

Problems 9.66-9.70 are to be solved by integration of  the fourth-order differential 
equation €/v1"(x) = 9(x). 

9.66 Determine the equation of the elastic curve for the beam shown in Fig. (9P.4). 

9.67: (a) Obtain the equation for the elastic curve for the simply supported beam 
loaded, as shown in Fig. (9P.24), and (b) evaluate the deflection at points B and D. 

9.68 Given the indeterminate beam, with flexural rigidity E/, subjected t o  a uni- 
formly distributed load w (Nlm), as shown in Fig. (9P.31). (a) Obtain the equation for 
the elastic curve, (b) evaluate the displacement at the mid-point x = L /2, (c) sketch the 
elastic curve and (d) determine the reactions and moments at the end points, x = 0, L. 

9.69: Solve Problem 9.68 for a concentrated load P applied at the mid-point x = L/2 ,  
as shown in Fig. (9P.32). 

9.70:" An elastic beam with flexural rigidity €/ i s  clamped at A and supported by a 
linear spring at 5, whose constant is k (Nlm). The beam is subjected t o  a uniformly 
distributed load w (N/m), as shown in Fig. (9P.70). (a) Determine the equation of the 
elastic curve v(x), namely 

kL 
48E/ 

(b) Determine the reactions and end moment at A (express the answer in terms of a). 
(c) Evaluate the answers to  (b) for two limiting cases: (i) a! + 00 and (ii) a + 0. 
(Note: See computer-related Problem 9.108.) 
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Section 13 

Problems 9.71-9.78 are t o  be solved using the moment-area method. 

9.71: A cantilever beam, fixed at x = 0 and having flexural rigidity El, is subjected 
t o  a uniformly distributed load walong i ts entire length L. Determine the slope and 
displacement at the free end, x = f .  

9.72: A concentrated load P acts at point C (x = a) on a simply supported beam with 
flexural rigidity N a n d  of length L, as shown in Fig. (9P.72). Determine the displace- 
ment under the load. 

9.73: A simply supported beam with flexural rigidity El and length f is subjected t o  
end moments MA and MB, as shown in Fig. (9P.73). Determine (a) the slopes at A and 
B and (b) the deflection at the mid-point of the beam. 

9.74 A linearly varying load acts on a cantilever beam AB with flexural rigidity El, as 
shown in Fig. (9P.3f). Determine the deflection at the free end. 

9.75:* A propped cantilever beam, having flexural rigidity El, is fixed at A and sim- 
ply supported at B. A couple MO is applied at C (x = a), as shown in Fig. (9P.75). 
(a) Determine the reactions and the moment at point A. (b) Determine the deflection 
va t  point C of load application. (c) For what ranges of  values of a/L will the moment 
at A be positive and for which negative? (d) For what range of values of a/L will 
the beam deflect upward and for which downward? Sketch the elastic curve in both 
cases. 

9.76: A couple MO is applied at an intermediate point C t o  a fixed-end beam having 
flexural rigidity El, as shown in Fig. (9P.76). (a) Determine the reactions and fixed-end 
moments MA and MB and (b) the deflection of point C. 

Figure 9P.16 

9.77: A simply supported beam ACB has flexural rigidity El0 within the segment AC 
and aEl0 (0 < a) within segment CB, as shown in Fig. (9P.77). A concentrated force P 
acts at point C. (a) Determine the displacement VC. (b) For the case a = b = L/2, deter- 
mine the displacement vc for a = 1 and for the limiting cases (i) a -+ 0 and (ii) a -+ 00. 

Explain the results of (i) and (ii) in physical terms and sketch the elastic curve where 
appropriate. 

9.78: An indeterminate beam ACB, fixed at both ends A and B, has flexural rigidity 
€10 within the segment AC and aEl0 (0 < a) within segment CB, as shown in Fig. (9P.78). 
A concentrated force P acts at point C. (a) Obtain the reactions RA and MA. (b) Obtain 
the displacement vc in terms of the given parameters, (c) For the case a = b= L/2, 
determine the reactions and the displacement vc for a = 1 and for the limiting cases 
(i) a --f 0 and (ii) a -+ 00. Explain the results of (i) and (ii) in physical terms and sketch 
the elastic curve where appropriate. 

Review and comprehensive problems 

9.79: The simply supported beam of length L and flexural rigidity El is subjected 
t o  a linearly varying distributed load, as shown in Fig. (9P.79). (a) Determine the 
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equation of the elastic curve v(x) and evaluate the displacement at x = L/2. (b) In 
which segment AC or CB, does the maximum deflection occur? 

9.80: Repeat Problem 9.79 for a loading, as shown in Fig. (9P.80). 

9.81: A simply supported beam of length L, having flexural rigidity El, is subjected 
to  a distributed load q(x) = ~sin(2nx/L).  (a) Sketch the loading and determine the 
deflection v(x) and (b) evaluate v at x = L /4 and x = L /2. 

9.82:* The elastic beam of flexural rigidity E/, containing a hinge a t  B, as shown in 
Fig. (9P.821, is fixed at A and supported at C by a linear elastic spring of stiffness k. 
The beam is subjected to  a uniformly distributed load w(Nlm). (a) Draw the shear and 
moment diagrams and show the value of all critical ordinates. (b) Determine (i) the de- 
flectionv(x)forO 5 x 5 2L and(ii)evaluatevatpointD.(c)Determinethevalueofk(as 
a function of Eland L) that causes deflections of points Band C t o  be equal. (d) Forthe 
value of kdetermined in (c), determine the deflection of  (i) point B or C and (ii) point D. 

9.83 An eccentric force P is  applied at point D to  the free end of a cylindrical beam 
of radius R and length L, as shown in Fig. (9P.83). The modulus of elasticity of the rod 
material i s  E and the Poisson ratio is v = 0.25. Assume that all strains and rotations 
are small. If the ratio of the displacements in the y-direction of points A and D is 
VD/VA = 1.0125, what is the ratio R/L of the rod? 

Figure 9P.83 

9.84:" Given a simply supported non-prismatic beam, as shown in Fig. (9P.8), whose 
whose flexural rigidity i s  &/(x), where /(x) is given as /(x) = iosin(nx/L). The beam 
is subjected t o  a symmetrically distributed load q(x) = qosin(3nx/L). (a) Sketch the 
loading and determine the equation of the elastic curve. (b) Determine the maximum 
displacement and the slope of the beam at x = L/2. (c) Sketch the elastic curve. 

9.85: (a) Verify, by induction, i.e. by considering several values of n(n = 0, 1,2, , . .), 
the validity of Eq. (9.7.2), namely 

(x - k)" = (x - k)" - (-l)"(k - x)", n 2 0, 

and thereby, (b) show that the two expressions for the moment M(x) in the beam of 
Example 9.7 [see Eq. (9.7.13b)l are equivalent. 

9.86: The indeterminate elastic beam of flexural rigidity El, shown in Fig. (9P.86), 
fixed at A and supported at C by a linear elastic spring of stiffness k, is subjected to  a 
concentrated force P at B. Using the force method and superposition, determine the 
force in the spring. 

9.87: The indeterminate beam having flexural rigidity &/ is supported at a C by means 
of a spring having constant k and is loaded, as shown in Fig. (9P.87). Determine the 
reactions on the beam. 
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9.88: The overhanging beam ABC of flexural rigidity El  is fixed at A and subjected to  
a concentrated force P at C, as shown in Fig. (9P.88). (a) Using the force method and 
superposition, determine the reaction acting on the beam and (b) draw the shear and 
moment diagrams. 

9.89:* The cantilever beam ABC, fixed at A, has a flexural rigidity a€lo (0 <: a!) over the 
span AB and E/, over the span BC, as shown in Fig. (9P.89). A concentrated force P acts 
at the free end C. (a) Using appropriate singularity functions, determine the equation 
of the elastic curve. (b) Evaluate the displacement at C for ct = 1 and the limiting case 
ct -+ 00. Sketch the elastic curve for these two cases. 

9.90:” A beam AB having flexural rigidity E/,  simply supported at the ends and sup- 
ported at the centre by means of a linear elastic spring having constant k (Nlm), i s  
subjected t o  a uniformly distributed load w (N/m), as shown in Fig. (9P.34). (a) De- 
termine the required value of the spring constant k if the moment at the centre C is 
(i) @ = 0 and (ii) @ = -wL2/48. (b) Sketch the shear and moment diagrams for both 
cases (i) and (ii). 

9.91: Given the beam and loading shown in Fig. (9P.25). By means of the fourth-order 
differential equation, (a) determine the equation of the elastic curve, (b) obtain the 
reactions on the beam, (c) draw the shear and moment diagrams and (d) sketch the 
elastic curve. 

9.92:* Given a continuous beam, simply supported at A, B and C, subjected to  a uni- 
formly distributed load wover the span BC, as shown in Fig. (9P.92). Using the moment 
area theorems, (a) determine the reactions, (b) evaluate ME and draw the moment 
diagram and (c) sketch the elastic curve. 

9.939 A beam AB is fixed at A and simply supported at B. In addition, as shown in 
Fig. (9P.93), the beam is partially restrained at B by means of a linear torsional spring, 
whose constant is p (N-m/rad); i.e., the spring tends t o  restrain the slope 6 a t  B by exert- 
ing a restraining moment M = pQ. (a) By integrating the Euler-Bernoulli beam equa- 
tion, Nv”(x)= -M(x), and the equations of equilibrium, determine all the external 
reactions acting on the beam. (b) Obtain the limiting cases for the above reactions for 
the two cases: (i) p --f 0 and (ii) B -+ 00. (c) Sketch the free body of the beam for cases 
(i) and (ii), showing all reactions and moments. Sketch the elastic curve for both cases. 

9.94* A linear elastic beam of length L and flexural rigidity El  is simply supported at 
one end B and at the other end C by means of an elastic wire of length h a s  shown in 
Fig. (9P.94). The axial rigidity of the wire is  given as &Ec and i ts coefficient of ther- 
mal expansion is  a! (I/”C). The beam is subjected to  a uniformly distributed load qo. 
Determine the required change in temperature A T  such that, under this loading, the 
vertical deflection of the mid-point of the beam, point D (x = L/2), should be zero. 
Indicate whether the temperature change represents cooling or heating. 

9.95:* An elastic beam BCD, having a flexural rigidity El, is fixed at i t s  two ends B and 
D. An elastic rod GH made of the same material and whose cross-sectional area is A, 
is suspended at H, leaving a gap S << L between the rod and the beam at C, as shown 
in Fig. (9P.95). The rod, whose coefficient of thermal expansion is a! (“C-I), is heated 
uniformly and undergoes a change of temperature AT. Assuming that A T  is greater 
than that necessary to  close the gap 6, determine the reactions at B and D as a function 
of A T  and the parameters of the problem. 

9.96 A beam system consists of two beams of flexural rigidity €/subjected t o  a couple 
MO at point E, as shown in Fig. (9P.96). Determine the displacement of point C. 



388 Symmetric bending o f  beams 

9.97:* Two cantilever beams, AB and CD, each of flexural rigidity El, are connected by 
means of a linear spring having constant k, as shown in Fig. (9P.97). A concentrated 
force P acts at the mid-point of beam CD. (a) Determine the resulting force Rs in the 
spring, namely 

(b) Determine the reactions and resisting moments at A and D and the displacement of 
C in terms of P, L and the non-dimensional parameter of the system, a. (c) Evaluate 
RA, RI, and vc for the two limiting cases: a = 0 and a -+ 00. (Note: See computer- 
related Problem 9.109.) 

Figure 9P.97 

9.98* A beam ACB of flexural rigidity El i s  initially supported at the ends and at the 
mid-point. Due t o  settlement of the ground, a gap 6 now exist between the mid-point 
of the unloaded beam and the support at the mid-point C. When the beam is subjected 
t o  a uniformly distributed load w (Nlm), as shown in Fig. (9P.98), the three reactive 
forces are known to  be equal. Determine the gap 6 in terms of the given parameters 
of the system and the load w. 

9.99: An initially straight elastic beam with flexural rigidity E/ is clamped at A, as 
shown in Fig. (9P.99). A device exists at point D, which actuates a downward attractive 
electromagnetic force on point B, which is linearly proportional t o  AB only if AB > 0 
and otherwise is  zero, i.e. when AB = 0, F = 0 and when AB > 0, F = YAB,  where y 
(N/m) is a constant. (a) Determine the deflection at B if a uniformly distributed load 
90 is applied over the length of the beam. (b) For what values of y will the deflection 
AB be finite? What is the significance if theoretically, AB -+ oo? 

9.100:* A series of loaded beams (each having the same flexural rigidity El), (i) to  (iv), 
i s  shown in Fig. (9P.100). In each case, with P = wL, the loadings cause a deflection 
AB at B. Without making any calculations, determine for each series, the sequence of 
beams (a) t o  (d) in the order of increasing deflection, AB. 

Figure 9P.100 



Problems 389 

9.101:* Given a 'continuous beam' having flexural rigidity El, namely one supported 
along i ts length by a series of simple supports, as shown in Fig. (9P.I01a), and 
subjected to  loadings within each span. Consider now two adjacent spans, with 
supports a t  i - 1, i and i + 1, as shown in Fig. (9P.I01b), where the moments a t  
the cross-sections are Mi-1, M; and M;+f, respectively. Due to the linearity of the 

Figure 9P.101 
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problem, we may consider, in the context of superposition, each span to  be subjected 
separately to  (a) the end moments and (b) the applied transverse loadings q-~,;(x) 
and q,,+l(x), as shown in Fig. (9P.l01c), The resulting 'M/N' diagram, drawn 'by parts', 
then appears as in Fig. (9P.101d). (a) Using the moment area theorems, derive a relation 
between the moments Mj-1, and M;+I, namely 

where Qi-11;-, and Q;+l$+' are the first moments, (M&, of the moment diagrams 
(not the 'M/EI' diagram), due to  the transverse loading of the equivalent simply sup- 
ported spans, about i - 1 and i + 1 in the spans (i - 1, i) and (i, i + I), respectively. 
The above equation, valid here for the case of prismatic beams with constant E/,  is 
known as the three-moment equation, and was first: derived by Clapeyron in 1857. 
(b) Using the three-moment equation, determine the moment ME in the beam shown 
in Fig. (9P.921, solve for all reactions and draw the shear and moment diagrams. 
(c) Using the three moment equation, determine the moments ME and MC in the 
beam shown in Fig. (9P.101e). 

The following problems are designed to  require the use of a computer. Note: In Prob- 
lems 9.102-9.105, determine the quantities to  four significant figures or more. 

9.102: Referring t o  the simply supported beam of Problem 9.4, (a) verify the given 
expression for v(x) and (b) by means of a computer program, determine numerically 
the location of the maximum deflection IVImax in the beam and evaluate IVlmax. 

9.103: Referring to  the overhanging beam of Problem 9.21, (a) verify the given ex- 
pression for v(x), (b) by means of a computer program, determine numerically the 
location of the maximum deflection IVlmax in the segment AB as a function of a/L in 
the range 0 5 a/L 5 1, (c) evaluate the non-dimensional ratio, 5$1~;;4F, and (d) using 
an appropriate plotting routine, plot the resulting ratios as a function of a/L. 

9.104 Referring to  Problem 9.28, (a) verify the given expression for v(x), (b) by means 
of a computer program, solve the relevant transcendental equation numerically t o  de- 
termine the location of the maximum deflection lvlmax in the beam and (c) evaluate 
the ratio, -. 

9.105: Referring to  Problem 9.29, (a) verify the given expression for v(x), (b) by means 
of a computer program, determine numerically the location of the maximum deflec- 
tion lvlmax in the beam segment AB and evaluate lvlmax and (c) determine analytically 
the location of the maximum deflection lvImax in the beam segment BC and evaluate 
IVlmar- 

9.106: Referring to  Problem 9.50, (a) verify the given expression for vc = v(L) and 
(b) by means of a computer program, evaluate the non-dimensional ratio, q o L ~ ~ a E , ,  for 
severalvaluesofcu,e.g.O, 0.25, 0.5, 1.0, 2.0, 5.0, ..., andshowthesevaluesinatable. 

9.107: Referring t o  Problem 9.54, (a) verify the given expression for vc = v(L/2) and 
(b) by means of a computer program, evaluate the non-dimensional ratio, 5qoL~384E,,  

forseveralvaluesofa, 0, 0.25, 0.5, 1.0, 2.0, 5.0, ..., andshowthesevaluesinatable. 

9.108 Referring to  Problem 9.70, (a) verify the expressions for the given ratios, 
Rn/wL, RB/wL and MnfwL2, (b) evaluate these ratios as a function of a(0 5 a 5 20) 
and (c) using an appropriate plotting routine, plot the ratios as a function of a. 
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9.109: Referring t o  Problem 9.97, (a) verify the given expression for the force in 
the spring, (b) determine the non-dimensional ratios of the reactions and moment, 
RA/ P, RD/  P, MA/ P L, MD/ P L, as a function of a, (c) repeat (b) for the non-dimensional 
ratio, vc = $$, and (d) using an appropriate plotting routine, plot these quantities as 
a function of a. 

9.1 1 0  The beam system shown in Fig. (9P.110) consists of two beams AB and CD, hav- 
ing the same length L and the same flexural rigidity El.  (a) Write a computer program 
t o  determine the deflection of point B in terms of a/L and (b) using an appropriate 
plotting routine, plot the deflection VB as a function of a/L. 

9.111: The beam system shown in Fig. (9P.111) consists of two prismatic beams of 
different lengths, AB and CD, having flexural rigidities E l l  and €12, respectively. 
(a) Write a computer program to  determine the deflection of point B in terms of 
the parameters 11 /12  and b/L and (b) via a computer, plot a family of curves showing 
the deflection VB as a function of b/L for various values of l l / 1 2  0. 
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10.1 Introduction 

Pressure vessels, which have wide applications, in practice, as containers of fluids 
or gases under pressure, are of considerable engineering interest. In particular, if 
the wall thickness of these vessels is small in comparison with the overall dimen- 
sions, the vessel is said to be a thin-wall vessel. As we shall see, the thin wall 
characteristic leads to simple analyses particularly for the commonly encountered 
geometric shapes: cylindrical and spherical vessels. Pressurised vessels represent 
a special case of what are more generally known as thin shells; hence, instead of 
referring to the containers as vessels, we shall refer to them as cylindrical thin shells 
or spherical thin shells. 

10.2 Thin cylindrical shells 

We consider a long thin elastic cylindrical shell of length L with inner and outer 
radius R, and R,, respectively, and wall thickness t = R, - R,. The mean radius R 
is then R = (R,  + R,)/2. We construct apolar coordinate system (x, r, 0) where the 
x-axis denotes the longitudinal axis, i.e. the axial direction, ofthe cylinder, as shown 
in Fig. (10.2.1). By a thin shell we mean one for which t / R  << 1. (In practice, a 
shell is said to be a thin shell if t /  R 0.10.) The behaviour of the material is elastic 
with modulus of elasticity E and Poisson ratio v. The closed shell is subjected to 
an internal hydrostatic pressure p .  

Figure 10.2.1 

Following the usual mechanics-of-materials approach, we consider the defor- 
mation of the shell and arrive at specific conclusions based on plausible physical 
reasoning. 

Since the pressure is hydrostatic, the same pressure p evidently acts normally to 
the internal surface of the wall at all points. Thus we observe that the deformation 

392 



10.2 Thin cylindrical shells 393 

does not depend on the circumferential coordinate 8; that is, the behaviour is the 
same at all points of the shell located a distance r from the x-axis; the problem is 
said to be axi-symmetric. Moreover, since the pressure is obviously in the outward 
direction, it is reasonable to assume that the radius will increase. Let U = u(R)  
denote the outward displacement of a point on the mid-circZe C whose initial radius 
is R [Fig. (10.2.2)l. 

Using the property that the wall thickness t << R, we now make a reasonable 
assumption; namely we assume that any change in the thickness t of the wall is 
infinitesimal; the thickness t is therefore assumed to remain constant. Consequently, 
the radial displacements, U,., at all points R, 5 r 5 R, of the shell is the same. 
Since U ,  is constant throughout the thichess, we may write U ,  = U (  R )  = U for all 
r, R - t/2 5 r 5 R + t/2. 

Therefore, due to the outward displacement of the shell, the length of a circumfer- 
ential segment, @ = r AO, lying along a circle of any given radius r ,  will increase 
to P?? = (r + u)AO [Fig. (10.2.2)]. Hence the strain E @  in this circumferential di- 
rection is 

Figure t0.2.2 

(r + u)AQ - r AQ U 
= rAQ = - *  ( 10.2.1 a) 

r 
Noting that r = R f at/2 = R(l f at/2R), where 0 5 a! 5 1, and using the bi- 
nomial expansion, we have 

E @  = U = -  [ I F - +  y (aR()2 - + . * *  ] . (10.2.lb) 
R(l f a t / 2 R )  R 

Upon dropping the infinitesimal terms, t / R << 1, 
U 

E# = -. -- R 
(10.2.2) 

We thus conclude that for the case of thin-wall shells, the strain at all points in the 
wall can be considered to be independent of the variable radial distance, r ,  from the 
x-axis. 

We now examine the deformation in the longitudinal direction. Due to the 
pressure p ,  it is evident that since this pressure is also acting against the ends 
of the cylinder, the cylinder will tend to elongate [Fig. (10.2.3)] and all cross- 
sections will remain plane. It follows that due to the axi-symmetry of this problem, 
the cross-sections must then necessarily remain perpendicular to the longitudinal 
x-axis. Moreover, physical reasoning justifies the assumption that the longitudinal 
displacement throughout the wall thickness is also constant; consequently, we con- 
clude that the displacement in the x-direction is again independent of the radial 
coordinate and therefore, E,  $: E x @ ) .  

Figure 10.2.3 

Due to the uniform pressure p ,  it is clear that at any point in the cylinder, there 
exist normal stresses a,, c@, ax, as shown in Fig. (10.2.4). Furthermore, since the 
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Figure 10.2.4 

pressure is uniform, no shear stresses can exist in the cylinder; i.e., t r e  = rex = 

Using the stress-strain relations, i.e. Hooke's law for the elastic shell, we have 

E e  = --[Q - ~ ( c T ,  + a;)I1 

rxr = 0.1 

1 
E 

(10.2.3a) 

1 
Ex = --[a3 E - u(0, + ae)]. ( 1 0.2.3 b) 

From physical considerations, we note that on the inner wall surface, or(r = R - 
t/2) = -p, while on the outer wall, a,(r E= R + t/2) E= 0. Thus it is clear that the 
stress or at any intermediate point r is 

-p < a,.(r) < 0. (1 0.2.4) 

We now make a basic assumption; namely, we assume that (0; I is negligible 
compared to ae and a,. At this stage, this is mere& an assumption that will be 
justified a posteriori. Upon neglecting 0; , we then have, in particular, 

( 1 0.2.5a) 

I 
E~ = -(ox - Vac). (10.2.5b) 

Since E ,  and €0 are both independent of r ,  we observe from Eqs. (10.2.5) that the 
stresses 00 and ox must also be independent of r ;  that is, they do not vary across 
the wall-thickness. 

Having established the above, we now examine the equilibrium of a segment of 
the cylinder using the free body, as shown in Fig. (10.2.5). From symmetry about 
the vertical axis, it is clear that Fy = 0, and noting 
that the (downward) resultant Fp due to the pressure p is Fp = p + 2(R - t/2)Ax = 
2pRAx(l - t/2R) = 2pRAx) we write 

208 (tax) - 2pRAx = 0 ( 10.2 ha) 

E 

F, = 0 identically. Taking 

and hence 

a$ = P R  -. (10.2.6b) 

The circumferential stress as, as given above, is usually referred to as the hoop 
stress. 

t 

t Since all cross-sections remain perpendicular to the x-axis, radial and circumferential directions remain 
perpendicular to the n-direction. Therefore, cxr = c , ~  = 0 and it follows that txr = r,c,o = 0. 
From Fig. (10.2.5), the total downward force Fp may alternatively be calculated as 

Fp = r(p cos6)R(1 - t / R )  An d0 = p R  (1 - t f R) . Ax cos 6 d6 = 2pRAx 
-RI2 7' 

-n/2 

f o r t l R  << 1. 
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Figure 10.2.5 

To satisfy equilibrium in the x-direction, we isolate the free body as shown in 

F, = n ( R  - t/2’)2p - aX(2nRt)  = 0 

Fig. (10.2.6): 

or 

R2(1 - t /2R)2p - 2Rta, = 0. 

and upon neglecting again t / R  << 1 ,  we obtain for the ‘longitudinal stress’, 

PR a,=-. 
2t 

( 1 0.2.7) 

Note that since R l t  >> 1 ,  the stresses 0 0  >> p and a, >> p .  Recalling Eq. (10.2.4), 
10, I -= p ,  it follows that 

lorl << 0 0  and lo,l << a,. 
We thus have justified at this stage the previously used assumption, which led to 

Having found the stresses at, and a,, Eq. (10.2.5a) yields 
Eqs. (10.2.5), namely that a,. is negligible with respect to a, and as. 

(2 - v )R  
E@ = ‘ P  2t E (10.2.8) 

Figure 10.2.6 
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Figure 10.2.7 

and hence, from Eq. (10.2.2), viz. U = REQ,  

(2 - v)R2 
U =  * P *  2t E 

(10.2.9) 

Thus we observe that the outward radial displacement is proportional to the 

Similarly, using Eq. (10.2.5b), the elongation of the cylinder, AL, in the 
square of the cylinder radius, 

x-direction is given by 

(1 - 2u)RL 
AL = L E x  = - P  2Et 

(10.2.10) 

While we have considered here cylinders that are subjected to a constant pressure 
p ,  thus yielding expressions that are independent of x, it is also possible to consider 
cases where the pressure varies with x, i.e. p = p(x). For example, consider the 
case of a vertical cylinder (open at the top) filled to a height h with a fluid whose 
density is p, as shown in Fig. (10.2.7), in which case p = px. Then, at any level x, 
equilibrium of a segment of height Ax leads, in lieu of Eq. (10.2.6b), to 

O < X < h .  (10.2.11) 

We note, however, that for this particular case (i.e., for an open cylinder), ox = 0. 
Finally, it is worthwhile to recall that in the above analysis we have considered 

long cylindrical shells. Assume, for example, that the cylinders are closed at the 
ends by plates as shown in Fig. (10.2.8). Then clearly, these plates will tend to 
resist any deformation at the ends, in particular, any outward displacement of the 
cylindrical wall. Consequently, as a result of this resistance, near the ends, the shell 
cannot deform freely and will therefore assume a deformed shape as shown in 
Fig. (10.2.9). However, we observe from this figure that the deformation due to the 
end constraints is highly localised. Therefore the stresses and strains obtained by 
the above analysis are not valid in the end regions. However, by invoking this effect 
as being similar to that encountered in the principle of de Saint Venant, we may 
conclude that the stresses and displacements given above are valid away from the 
ends of the cylindrical shell and that the above analysis is therefore only valid for 
relatively long cylindrical thin shells. 
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10.3 Thin spherical shells 

The analysis of a thin elastic spherical shell having mean radius R and wall thick- 
ness t ( t  << R )  subjected to an internal pressure p follows closely that of the thin 
cylindrical shell [Fig. (10.3. l)]. However, we note that for the case of the spherical 
shell, there exists complete axial symmetry; that is, there are no preferred direc- 
tions. (For example, as opposed to the cylindrical shell, one cannot refer here to a 
unique ‘axial direction’.) 

Figure 10.3.1 

Furthermore, due to the uniformity of pressure at all interior points of the shell, 
it is clear that the outward displacement cannot vary with the location of the point. 
Thus, for a relatively thin shell, the radial displacement can, as in the previous case, 
be assumed to be constant throughout the thickness of the shell and hence we may 
write U = u(R).  

For convenience, we define a meridian (longitudinal) coordinate 8 and a coordi- 
nate 4, defining the ‘latitude’ of points on the sphere [Fig. (10.3.2)]. However, due 
to the perfect radial symmetry the behaviour of the shell is independent of 8 and 4; 
moreover, the behaviour is the same in both the meridian and the latitudinal direc- 
tions. Now, following the same reasoning as for the thin cylindrical shell, due to the 
outwarddisplacementu, thestrainintheshellwillbegivenasulR [seeEq. (10.2.2)). 
But, since as discussed above, the response is the same in the meridian and latitudinal 

Figure 103.2 
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directions, we denote the strain simply by E ;  i.e., E = €0 = E + .  Therefore, we write 
U 

E = -  
R‘ 

(10.3.1) 

It follows also that 5 0  = 04 throughout the shell; we therefore denote the stresses by 
5 [Fig. (10.3.2)]. Furthermore, as with the cylindrical shell, we may neglect 5, with 
respect to 5 0  = a+. Since these are orthogonal directions, Hooke’s law is then simply 

( 1  - u ) 5  

E .  
E =  (10.3.2) 

We also note that since E is independent of r ,  so also is the stress a; that is, CJ does 
not vary across the wall thickness. To determine 5,  we isolate, as a free body, a 
hemisphere obtained by cutting the sphere along any arbitrary great circle as shown 
in Fig. (10.3.3). Then 

2nRt + 5 = n ( R  - t / 2 ) 2 .  p 2: n R 2 .  p (10.3.3a) 

since t /  R << 1 ; hence the stress in the shell is given by 

PR 
2t 

5 = -. (10.3.3b) 

Combining Eq. (1 0.3.1 )-( I0.3.3), the outward displacement of the shell is 

(1 - v)pR2 
U =  

2Et 
(10.3.4) 

Figure 10.3.3 

10.4 Comments and closure 

The preceding analyses for pressure vessels are the simplest possible analyses of 
thin shells. The simplicity is possible due to (a) the simple cylindrical and spherical 
geometries of the shell, (b) the axi-symmetry or spherical symmetry of the applied 
normal pressure p at all points of the shell and (c) the validity of the assumptions 
governing very thin shells. Solutions for shells having more complex geometries, 
for example, thin shells of revolution (shells whose geometries are defined by the 
rotation of a curve about an axis), or those subjected to spatially variable pressures 
can only be obtained using a far more elaborate treatment. 

We note also that for the cases of thin shells considered in this chapter, it was pos- 
sible to assume that all internal stresses act tangentially to the shell geometry; that 
is, no shear and hence no moments were assumed to exist in the shell. The resulting 
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stresses are referred to, in general, as membrane stresses. For shells where the above 
assumptions are no longer valid or where simple geometries no longer exist, the 
analysis is far more complex. The behaviour of shells under these conditions is 
a study in itself and falls within the branch of solid mechanics known as shell 
theory. 

Sections 2 and 3 

10.1: A compressed-air cylindrical tank, 80 cm in diameter, i s  fabricated by welding 
a plate 8 mm in thickness along a helix that i s  at an angle (11 = 60" with respect t o  the 
longitudinal axis, as shown in Fig. (lOP.1). If the allowable normal and shear stresses in 
the weld are 160 and 90 MPa, respectively, determine the allowable internal pressure. 

10.2: A number of 10-mm thick square plates are t o  be welded together to  form 
a pressurised cylinder 1.6 m in diameter. Two options are proposed: one by welding 
them, as shown in Fig. (10P.2a), and the other, by welding along 45" angles, as shown in 
Fig. (1OP.2b). If the allowable normal and shear stresses in the weld are 120 and 80 MPa, 
respectively, determine the maximum allowable internal pressure in each case. 

Figure 10P.1 

Figure 10P.2 

10.3: An open thin-wall pipe having length L is t o  be placed between two walls that 
are a distance L - A apart. The pipe, with material properties E and Poisson ratio U, 

having mean radius R and thickness t (t << R),  i s  therefore compressed by an amount 
A << L and placed between the two rigid frictionless walls (therefore providing no re- 
straint against radial displacement a t  the two ends), as shown in Fig. (10P.3). The pipe 
is  then subjected to  an internal pressure until a critical pressure pcr is reached. (The crit- 
ical pressure pcr is such that when p > per, leakage occurs at the smooth walls due t o  a 
shortening of the pipe.) (a) Determine pCr in terms of the given parameters of the prob- 
lem. (b) If the pipe, of initial length L = 3.5 m, radius R = 40cm and t = 1 cm, is made 
of aluminum with E = 70GPa and U = 0.33, evaluate pcr if the walls are 349.5cm apart. 

10.4 A cylindrical vessel shown in Fig. (10P.4) is used as a storage tank. Determine 
the maximum normal stress when the tank is  filled half way to  the top with water. 

10.5: If the storage tank shown in Fig. (10P.4) is filled with oil having a specific density 
of 0.9, t o  which height can it be filled if the normal stress is not t o  exceed 20 MPa? 

Figure 
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10.6: A thin-wall cylinder of inner radius R and thickness t (t/R << 1) is first heated 
from room temperature in order to  force it over another cylinder of the same wall 
thickness but of outer radius R + 8 ,  where 6 << R.  (Assume that there is sufficient Iu- 
brication between the cylinders so that the cylinders are free to  expand axially.) Both 
cylinders are of the same linear elastic material. (a) Determine the circumferential 
stress in the inner and outer cylinders. (b) Determine the interacting radial stress or 

acting a t  the interface between the two cylinders. (c) VerifL that the ratio 

10.7: A compressed-air tank, of constant wall thickness t (t/R << I), closed a t  the 
ends and having a cross-section as shown in Fig. (10P.7), is subjected to an internal 
pressure p. Based on the same assumptions used in deriving the relations found in this 
chapter, (a) determine the expression for the maximum circumferential stress in terms 
of R, t and p if ci = 4 and indicate where it occurs in the cross-section; (b) determine 
the expression for the axial stress in terms of R, t and p if a = 4 and, (c) evaluate the 
maximum circumferential and axial stresses if R = 0.25 m, t = 2 cm if p = 1.6 MPa. 

10.8 A thin-wall cylindrical pressure vessel of mean radius R (t  << R )  is repaired by 
welding a helical crack, which makes an angles 0 < a < n/2 with respect to  the x-axis, 
as shown in Fig. (10P.8). The failure stress in the weld is TO in shear and 00 = 220 in 
tension. The cylinder is closed a t  both ends and subjected to  an internal pressure p .  
Determine, as a function of a! and other appropriate parameters, the pressure p a t  
which failure will occur. Indicate whether failure occurs due to tension or shear. 

<< 1. 

Figure 10P.8 

10.9* In a temperature-controlled laboratory experiment, a closed thin-wall cylindri- 
cal specimen of length L, having mean radius Rand wall thickness t(t/R << I), is placed 
vertically in a pressure tank of height H > L + S such that a gap S exists between the 
top of the specimen and the pressure tank. The specimen is made of a material hav- 
ing modulus of elasticity E, Poisson ratio U and a coefficient of thermal expansion, 
a (“C-’) .  If the specimen is subjected to an external pressure p, what is the maximum 
allowable temperature change A T  if no contact i s  permitted between the top of the 
specimen and the pressure tank? 

10.10:* A cylindrical pressure vessel, of diameter d =  50 cm and length L = 4 m, is 
constructed by winding a long thin aluminum sheet, of thickness t = 6 mm, whose ma- 
terial properties are E = 70 GPa and U = 0.33. The seams, oriented a t  an angle ci = 45” 
with respect to the longitudinal axis, are welded together as shown in Fig. (lOP.1). 
The allowable normal and shear stresses in the weld are specified as o = 90 MPa and 
II = 60 MPa, respectively. The corresponding allowable stresses in the aluminum are 
given as CT = 100 MPa and t = 50 MPa, respectively. (a) Express the (first-order) change 
in volume dV of the cylinder due to an internal pressure in terms of p, E, t, L and 
U. (Note: The first-order change dV is based on the assumption that dV is  small with 
respect to i ts  original volume V, i.e., dV/V << 1.) (b) Determine the allowable internal 
pressure, pall, which can be applied to the cylinder. (c) Based on the expression ob- 
tained in (a) evaluate dV numerically when p =  pall. (d) Determine the exact change 
in volume of the cylinder, AV, due to the internal pressure p = pail. 
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10.11: A thin-wall spherical vessel of mean radius R and thickness t is fabricated by 
welding together two hemispheres. After filling the sphere with a fluid whose density 
is p (N/m3) and which is under pressure p, the shell is lifted by means of a cable at- 
tached at i t s  top. Neglecting the dead weight of the shell itself, determine the normal 
stress within the weld if the weld lies along the shell's 'equator'. 

Review and comprehensive problems 

10.12:* A thin-wall cylindrical vessel of mean radius R, thickness t and length L 
(t << R << L), containing a fluid whose density is p (N/m3) and which is under pres- 
sure p, is t o  be lifted by means of  cables. Two options that are available are shown 
in Figs. (10P.12a and b), respectively. Neglecting the dead weight of the shell itself, 
determine the stresses at points A, B and C. Which is  the preferable option? 

Figure 10P.12 

10.13: Given a long thin-wall cylindrical open pipe, whose mean radius is R and 
whose thickness is t (t << R ) .  The ends of the pipe are attached to  two rigid walls and 
the pipe is subjected t o  an internal pressure p. Noting, for this case, that the axial 
strain ex = 0 and assuming a constant radial displacement U, show that 

PR PR 1 - u2 pR2 
E t '  

t ,  ETx=u-, U=- -  08 = - 
t 

where E and U are the modulus of elasticity and Poisson ratio of the pipe, respectively. 

10.14 Given a closed pressure vessel whose cross-section is as shown in Fig. (10P.7). 
Based on the same assumptions used in deriving the relations found in this chapter, 
show that the axial stress crx can never equal (ao)max. 

10.15:* The ends of two open concentric thin-wall cylindrical pipes, having the same 
material properties (modulus of elasticity E ,  Poisson ratio U) and the same thickness 
t, are welded to  a rigid support and to  a rigid plate, as shown in Fig. (1OP.15). The 
inner pipe is  subjected t o  an internal pressure p. Determine (a) the stresses in the 
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Figure 10P.15 

pipes and (b) the axial displacement A, of the rigid plate. (Note: Assume that there 
exists no constraint against radial displacements at the wall and at the plate.) 

10.76: Two open thin wall cylindrical pipes, having different radii, RI  and Rz ( R z  > 
R I ) ,  but the same material properties, E and U, and thickness t, are connected to- 
gether by means of welds to  a thin rigid plate and attached to  rigid walls, as shown in 
Fig. (10P.16). The pipes are then each subjected to  an internal pressure p. Determine 
(a) the stresses in the pipes and (b) the axial displacement A, of the rigid plate. (Note: 
Neglect the thickness of the rigid plate and assume that there exists no constraint 
against radial displacements at the wall and at the plate.) 

Figure 10P.16 

10.17:* A thin-wall cylindrical pressure vessel of mean radius R is fabricated by weld- 
ing a plate of thickness t along a helix, which is at an angle a with respect t o  the 
longitudinal axis, as shown in Fig. (lOP.1). The allowable normal and shear stresses in 
the weld are given as 00 and to, respectively, and it is specified that a. = nso, where 
n > 1. (a) Determine the minimum value, n = nmln, for which it is possible that both the 
the normal stress and the shear stress are equal t o  their respective allowable values 
when the cylinder is subjected to an internal pressure p. (b) If n = nmln, determine the 
angle a of the weld for which C78 = CTO and t = to. 

10.18:" An open conical pressure vessel with wall thickness t and whose shape is de- 
fined by the angle a and varying radius R, is suitably supported at i t s  top, x = L. The 
vessel i s  filled to  a level h, as shown in Fig. (10P.I8a), with a fluid whose density is p 
(N/m3). (a) Assuming, as in the case of cylindrical vessels, that the resulting stresses 
within the wall do not vary across the thickness, using equilibrium considerations, 
derive an expression for the stress cr+ [see Fig. (lOP.l8b)], namely 

px h- z x  tana 

Ztcosff 
U+ = ( 3 ,  , O<x<h. 

(b) Determine the location 0 x < h a t  which the maximum stress q, occurs and eval- 
uate (qJmaX. (c) Determine q, at sections above the fluid level. (Note: Neglect the dead 
weight of the vessel.) 
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Figure 1OP.18 

10.19:* A hemispherical tank of mean radius R and thickness t, t << R, is supported 
by means of a flange, as shown in Fig. (10P.19a). The tank is filled t o  the top by a 
fluid whose density is p (N/m3). (a) Determine the stress ccb along the meridian as a 
function of the angle 6 [see Fig. (10P.19b)l and (b) evaluate us at a depth y =  R / 2 .  
(Note: Neglect the dead weight of the vessel.) 

Figure 10P.19 



11 .I Introduction 

The analysis of elastic bodies has, as one of its main goals, the determination of 
internal stresses and strains when the body is subjected to external loads. We often 
wish to find these quantities in order to determine the maximum loads that will 
cause the member to fail. In our previous study, the calculation of maximum loads 
was usually based on a criterion that was dependent on the given material. For 
example, failure is often assumed to occur when a resulting stress (or strain) in the 
material exceeds some stress (or strain), which is a characteristic of the material. 
Under uniaxial loading, this characteristic stress may be taken to be the yield point 
oy . Thus, we have always assumed that we may not exceed some material property. 

As an example, consider a rod of cross-section A and length L1 subjected to 
an axial compressive load P [Fig. (1 1.1.1 a)]. Assume that the rod is made of a 
given elastic material represented by a stress-strain curve as shown in Fig. (1 1.1.2), 
where op is the proportional limit and ay the yield point. Clearly, in such a case, 
the maximum load that can be applied is P,,, = ay A ;  we note that this calculation 
clearly depends on the material property oy and is independent of the length. 

Now consider a series of rods, as in Figs. (ll.l.lb-e), each having the same 
cross-sectional area, A ,  but different lengths: L 1  < L.2 .= L3 . . . , and assume that 
in each case an axial load P is applied statically. For rods, say, of length L2 and 
L3, the same maximum load may also be given by P,,, = ayA. However, if the 
rod is sufficiently long, say L 5 ,  it is clear that the rod will buckle under some load 
P < P,,, = oyA. That is, as the load is increased slowly from zero, the rod will 
suddenly ‘fail’ (i.e., buckle) when the load reaches a certain value P = o A ,  where 
o < ay. Thus, buckling occurs although the stress may be well below oy, and so, 
in this case, the stress ay is no longer the governing criteria of failure. Instead, 
the length (in our case, Ls)  now becomes a factor that determines the maximum 
load that can be applied; thus the criteria for failure is no longer dependent on 
the material stress property. As we shall see, determination of the load at which 
buckling occurs requires a completely different type of analysis. 

404 
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Figure 11.1.1 

Let us again consider the long rod, loaded statically by an axial compressive force 
that increases continuously from zero. For small values of P ,  the rod will sustain 
the load and remain straight, but as P reaches a critical value, the rod suddenly 
buckles - this is a case of instability, i.e., the straight line configuration that was 
in stable equilibrium has suddenly become unstable. Our goal will be to determine 
the load at which this instability occurs. 

We now pose some questions: If the load P is applied perfectly axially through 
the centroid, and if the rod is perfectly straight, why then does the rod buckle? 
Moreover, why does the rod not buckle immediately and why does it buckle only 
when the load reaches a certain value P (which, we have seen, is independent of (T,,)? 

The answer to these questions can only be given after we have studied the phe- 
nomenon of instability. 

Figure 11.1.2 

11.2 Stability and instability of mechanical systems 

In order to study stability and instability of mechanical systems, it is necessary 
to define these terms more precisely. With this in mind, consider a ball that can 
roll under the force of gravity g on a given track whose shape is as shown in 
Fig. (11.2.1). We note that at point A, for example, the ball is not in equilib- 
rium; at points B and C ,  however, the ball is in a state of equilibrium. But clearly 

Figure 11.2.1 
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points B and C represent two different types of equilibrium states: at point B, the 
ball is in a state of ‘stable equilibrium’; on the other hand, at point C, the ball 
is in ‘unstable equilibrium’. Although this agrees with our physical intuition, we 
must, however, express these ideas in terms that are amenable to a mathematical 
treatment. To this end, we note the following: (a) if the ball, originally at point B, is 
given statically a small displacement and then released, it will return to its (original) 
position at B and (b) if the ball is given a small displacement from its equilibrium 
position at point C, it will not return; instead it will continue to roll and reach another 
equilibrium position (namely, point B if the displacement is to the right of point C) .  

In the study of mechanical systems, we use a more general terminology that is 
more appropriate to the systematic analysis of stability and instability; i.e., we use 
the term ‘perturbation’ instead of ‘small displacement’. Thus, rather than referring 
to the ‘small displacement of a mechanical system’, we refer to the ‘perturbation 
of a mechanical system’. 

We now generalise the above ideas and define stable and unstable equilibrium as 
follows: 

A mechanical system is said to be in stable equilibrium if, when given a pertur- 
bation from its equilibrium position, it returns to the same equilibrium position. 
The system is said to be in unstable equilibrium if, when given a perturbation, 
it does not return to its original equilibrium position but continues to displace. 

Now consider the ball on the track at some point D (a general point along the 
horizontal track). If we give the ball a small displacement, it will neither return to 
its original position, nor will it continue to displace further. Such an equilibrium 
state is said to represent neutral equilibrium, Thus we may state 

A mechanical system is said to be in neutral equilibrium if, when given a 
perturbation from its equilibrium position, it neither returns to, nor moves 
further away from, the given equilibrium position. That is, there exist two 
adjacent positions, both of which are in a state of equilibrium. 

In order to better understand the phenomenon of instability of rods under com- 
pressive loads, we first investigate the simpler cases of a rigid bar as given in the 
models of the following section. We will observe that in the course of examining 
such a simple model carefully, we obtain answers to the questions that were posed 
in the preceding section. 

11.3 Stability of rigid rods under compressive loads: 
the concept of bifurcation 

Consider a rigid rod AB of length L ,  subjected to a vertical force P at B and 
supported at point A by means of a linear torsional spring having constant B 
[Fig. (11.3.1a)l; that is, the spring exerts a (restoring) moment, given by 

M A  = Be, (1 1.3.1) 

on the rod (which tends to return the rod to its vertical position) whenever the rod 
rotates by an amount 9. 

We wish to examine equilibrium for any position 0 5 I Q  I. Taking moments about 
point A [Fig. (11.3.1b)], 

( c M ) ~  = MA - PL sine = 0, (11.3.2) 
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Figure 11.3.1 

we obtain 

- PL sin0 = 0. ( 1 1.3.3) 

Clearly, for 0 = 0, all values P 1 0 satisfy this equilibrium equation. If 8 # 0, 
then 

p=- P I L  e # o  
sin 0/e ’ 

(11.3.4) 

Thus, the force P = P(0) ,  as calculated by Eq. (1 1.3.41, is the vertical force that 
is required to maintain the rod in equilibrium when the latter is inclined at any given 
angle 0. A plot of this equilibrium force P ( 0 )  as a function of 0 is given by the 
curve BC of Fig. (1 1.3.2). We also note, from Eq. (1 1.3.4), that lim P = @ / L .  

In addition to the solutions represented by the curve BC, &;‘have observed 
that for 0 = 0, all values of P are solutions to the equilibrium. Thus the heavy line 
OD of Fig. (1 1.3.2) also represents solutions to the equilibrium equation. 

At this stage of the analysis, it is worthwhile to examine, in the context of the 
above solutions, the physical behaviour of the rod as it is loaded slowly, from 
P = 0, with increasing values of P. Starting from P = 0 [point 0 of Fig. (1 1.3.211, 
we observe that as P increases, possible solutions can only fall along the line OB, 
for which 0 = 0. Thus below point B, there exists only one equilibrium position, 
namely 0 = 0. Consequently, since there exist no other equilibrium positions for 
P < B /  L ,  points along OB necessarily represent a state of stable equilibrium. 

As the force P is increased fbrther, it will reach point B; we observe that the 
solution can then follow two different paths: BC or BD. These paths are called 
branches of the solution. Since, from point B, one can follow either branch BC 
or BD, point B is called a bifurcation point. Note that both branches, BC and 
BD, represent equilibrium states. We now examine these branches more closely to 
determine the type of equilibrium. 

Consider a generic point along branch BC, e.g. point E, and assume that 8 = 01 
at this point [Fig. ( I  1.3.3)]. Then, according to Eq. (1 1.3.4), 

Figure 11.3.2 

(1 1.3.5) 

is required to satisfy equilibrium. Assume now that PI is the actual force acting on 
the rod. Let us now imagine that the rod, in this equilibrium state, is given a small 
perturbation E > 0; i.e., let 61 -+ 61 + E .  (The statement ‘the rod is given a small 
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Figure 11.3.3 

perturbation E' has the following physical meaning here: the rod is moved by some 
external force other than P, for example, a light wind, which causes the rod to move 
to the position 61 + E . )  Now, the equilibrium force required to maintain the rod in 
the new position 81 + E is, again according to Eq. (1 1.3.4), 

(1 1.3.6) 

However, since PI is the actual force acting on the rod, the rod will return to the 
81 position, i.e., to the equilibrium position from which it was displaced. Similarly, 
with PI acting on the rod, let 81 + 81 - E ;  then the required force for equilibrium 
is P;' < P. But P1 is acting on the rod; therefore the rod returns to its 81 position. 

Thus, since the rod will always return to point E when given a perturbation about 
this point, we conclude from the previous definitions, that point E represents a stable 
equilibrium. Since point E is a general point on the branch BC, this branch is said 
to represent points of stable equilibrium. 

Consider now branch BD with 8 = 0. Assume, again, that the same force 
PI > B / L  is acting on the rod, as represented by the generic point F on the branch. 
Let us give the rod a small perturbation E ;  i.e., 8 = 0 + 8 = 0 + E = E .  (Again, as 
in the case of point E, the cause of this perturbation E can be thought of as being 
due to some external force acting on the rod.) Then, from Eq. (1 1.3.4), 

(11.3.7) 

is the force required to maintain the rod in the position 8 = E ,  for I E  1 << 1. 
Now, as we have seen, P = B/L  represents the force at the point B of 

Fig. (1 1.3.2). But PI > B/L  is actually assumed to be acting; thus, under this load 
P ,  the rod cannot stay in the position 8 = E .  (Note that there is no point in the 
neighbourhood of F for which P = B / L  is the equilibrium load.) Therefore, the rod 
will snap to a position 8 = 01, represented by point E on the branch BC. We thus ob- 
serve, according to the previous definitions, that the branch BD represents unstable 
equilibrium positi0ns.t Consequently, we finally conclude that when 8 = 0, stable 

We have determined the stable and unstable nature of the branches using physical reasonmg. We men- 
tion here that the stable and unstable character of the branches can only be established in a ngorous and 
clear-cut way hy energy considerations. Stability analyses using an energy approach will be treated in 
Chapter 15. 
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equilibrium is represented only by points along the path OB. In physical terms, if 
6 = 0, the rod will be in stable equilibrium only if P < B/L .  

Hence, the critical force P ,  defined as 

(11.3.8) 

is the force such that if a force P < P,, is acting, the rod will remain in stable 
equilibrium in the position 6 = 0; if P > P,,, the 6 = 0 position is one of unstable 
equilibrium. Having examined the cases when P < B / L  and P > B / L ,  we now 
examine the rod when subjected to a force P = B / L ,  as represented by the point B 
of Fig. (1 1.3.2), with 6 = 0. Assume that this is the actual force acting on the rod. 
If the rod is given a perturbation E such that 6 = 0 -+ 6 = 0 + E = E , then 

B 
PCI = L’ 

(1 1.3.9) 

We note that in this perturbed position 6 = E, the required equilibrium force, given 
by Eq. (1 1.3.9), is the same as the force existing when the rod is in the position 
8 = 0. Thus, under the same force, two adjacent equilibrium positions are possible: 
6 = 0 and 6 = E. Since these two adjacent positions represent equilibrium states, we 
conclude, from the previous definitions of Section 1 1.2, that these are neutral equi- 
librium states; hence the rod will neither return to 8 = 0, nor will it rotate any further. 

We may, therefore, finally conclude that if P = P,,, the rod is in neutral equi- 
librium. 

As we now observe, by associating the critical force with a state of neutral equilib- 
rium, we have found a simple means to calculate Pc,: namely, we determine the force 
P required to maintain the rod in equilibrium in a perturbed position 6 = E. Thus we 
give the rod a small inJinitesima1 rotation 16 I > 0. Because we are now considering 
only infinitesimal rotations 16 I << I ,  we may use the known relation sin 6 2: 6. The 
equilibrium equation, Eq. (1 1.3.3), then is reduced to the linearised equation 

(PL - p)e = 0. ( 1 1.3.1 Oa) 

If 6 f 0, it follows that 

(1 1.3. lob) P E = - ,  

which we recognise as the critical load PO. Thus, by making use of the linearised 
equation, we obtain the critical load, i.e. the load that causes the system to be in 
neutral equilibrium: we do so by examining equilibrium of a state 18 I > 0, which is 
in the neighbourhood of the 6 = 0 position. 

While the linearised equation provides us with a simple means to determine P,,, 
we observe that we no longer can find P = P(6); i.e., we can no longer find the 
general force-displacement relation. This, essentially, may be considered as the 
‘penalty’ for using the linear equation. We illustrate the technique by means of 
the following example. 

B 
L 

Example 11.1: A rigid rod of length L is simply supported a t  point A and 
by a linear spring of stiffness k a t  B, which acts as a restoring force. (Note 
that in this model, the spring is assumed to remain horizontal.) The rod is 
subjected to a vertical force P a t  C, as shown in Fig. (1 1.3.4a). Determine 
the critical load Pc,. 



410 Stability and instability of rods under axial compression 

Figure 11.3.4 

Solution: Consider the rod in a displaced position 6 [Fig. (1 1.3.4b)l. Taking mo- 
ments about point A, 

(E M )  = (ka sin 6)(a cos 6) - PL sin 6 = 0. ( 1 1.3.1 1 a) 
A 

Noting that for 16 I <( 1, sin 8 21 8 and cos 6 1, we obtain the linearised equation 

(1 1.3.1 lb) (ka2 - PL)8 = 0 .  

Hence, for 8 # 0, 

ka2 p = -  
L 

(1 1.3.1 1 c) 

i.e., the critical load is P,, = F. U 

The study of the simple models above has provided us with a better understanding of 
the phenomenon of stability and instability of a mechanical system. It is worthwhile 
to summarise some of the conclusions derived from this study. In particular, we note 
the following: 

II a critical load P,, has been defined as the maximum load below which a straight 
rod remains in stable equilibrium or, alternatively, PO is the smallest load that can 
maintain the rod in a perturbedposition, 

II the load P,, is associated with the force that causes the system to be in neutral 
equilibrium; as a result, 

II a simple method to determine P,, has been established: namely, we satisfy the 
equilibrium equations of the system, which is given a small perturbation. The 
resulting linearised equations then immediately yield P,, (although general force- 
displacement relations can no longer be determined). 

Finally, we should mention that the analysis of the simple model of this section 
reveals the fundamental ideas of ‘bifurcation theory’, which govern the study of 
instability of mechanical systems. We observed that the critical load P = P,, occurs 
at the bifurcation point. In Fig. (1 1.3.2), point B is referred to as a stabZe bifurcation 
point since the path BC (representing the displaced configuration) corresponds to 
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stable equilibrium positi0ns.t As we shall see, while more complex systems may 
perhaps require a more sophisticated mathematical treatment, we shall follow the 
same line of reasoning; it will not be necessary to introduce any new concepts. 

Having established the above ideas, it is now possible to treat the original problem 
posed in Section 1 1. I ,  namely the instability of an elastic rod subjected to an axial 
force. As will be evident, the restoring force that tends to return the rod to its original 
straight line position is not a supporting spring (as has been the case in the examples 
of the present section), but rather the elasticity of the rod itself. 

11.4 Stability of an elastic rod subjected to an axial 
compressive force - Euler buckling load 

Consider a rod of cross-sectional area A ,  length L and made of a material whose 
stress-strain curve is given by Fig. (1 1.1.2), such that its flexural rigidity is E I .  
Assume that the rod is resting on simple supports and that it is subjected to an 
axial force P acting through the centroid of the cross-section [Fig. (1 1.4. la)]. We 
wish to find the critical load Pcr that will cause the rod to buckle. In the context of 
the previous discussion, we must determine a force P that is required to maintain 
the rod in a buckled configuration [Fig. (1 1.4.lb)l. Indeed, as we have seen, the 
smallest force for which this is possible is the critical force Pcr and under this force, 
the system will be in neutral equilibrium. 

Figure 11.4.1 

Let the deflected shape of the rod be given by u(x) ,  where v(x)  denotes the lateral 
displacement of any cross-section. Clearly, when in this configuration, the rod is in 

t In our subsequent treatment using energy considerations, we shall also determine ‘unstable bikcation 
points’ Although at this stage of our study the stable and unstable nature of the bifurcation point is 
irrelevant in obtaining the cntical load Pc,, we mention here that the cntrcal load P,, of Example 11.1 
represents the force at an unstable bifurcation point. This will be shown to be true in Chapter 15 where 
Example 1 1.1 is reconsidered in the context of energy considerations. 
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flexure, and hence its behaviour is governed by the Euler-Bernoulli relation 

EIK(X) = M(X),  (1 1.4.1) 

where K ( X )  is the curvature at any cross-section x .  From equilibrium of a free body 
[Fig. (1 1.4.1c)], the resulting moment at any cross-section x is 

M ( x )  = P v ( x )  . (1 1.4.2) 

Substituting in Eq. (1 1.4.1) and using the expression for the radius of curvature, 
Eq. (9.2. lb) of Chapter 9, the explicit equation of the rod is then given by 

~ r d y ~ )  + {i + [ v ’ (x ) ]2 }3 /2  v ( x ) ~  = o (1 1.4.3) 

Note that this differential equation, which incorporates the equilibrium equations 
of the rod, is valid for large as well as infinitesimal values of v(x) .  Solutions to 
this highly nonlinear equation are given in terms of elliptic integrals that yield a 
relation between P and v ( x ) .  It is worthwhile to note that this nonlinear equation 
is the analogue to Eq. (11.3.3) for the simple model of the rigid rod studied in 
Section 11.3 above. 

Now, if we are merely interested in obtaining the critical value of the force, P,,, 
which is required to maintain the rod in a deflected position, this load may be 
determined, as we have previously seen, by examining equilibrium of the rod in its 
displaced position as represented by a small perturbation from the original position. 
Thus, in this case, we shall consider the displacement v ( x )  to be small (with respect 
to L ) ,  from which it follows that v’(x) must be an infinitesimal, i.e. Iv’(x)l<< 1. 
Hence, following the same reasoning as in Section 2 of Chapter 9, Eq. (1 1.4.3) 
yields the linearised equation 

E l v ” ( ~ )  = -M(x)  (1 1.4.4a) 

or 

E l v ” ( x )  + P v ( x )  = 0 .  (11.4.4b) 

Note that this linear differential equation is the analogue to the linearised equation, 
Eq. (11,3.10a), of Section 11.3. 

In addition to this equation, one must also satisfy the boundary conditions 

v(0) = 0 ,  

v ( L )  = 0. 

(1 1.4.5a) 

(1 1.4.5b) 

It is convenient to divide Eq, (1 1.4.4b) through by E I ;  thus we have 

v”(x)  3. P v ( x )  = 0 ,  (1 1.4.6) 

where 

2 p  = -  
E I  

(1 1.4.7) 

In mathematics, the differential equation (1 1.4.6), together with the associated 

The general solution to Eq. (1 1.4.6) is 
boundary conditions (1 1.4.5), is known as a boundurll-value problem. 

v ( x )  = Asinhx +Bcoshx.  (1  1.4.8) 
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From the boundary condition of (1 1.4.5a), v(0) = 0 -+ B = 0, and hence 

u(x)  = A sin hx . (1 1.4.9) 

Applying the second boundary condition, Eq. ( 1  1.4.5b), one finds 
AsinhL = 0. (11.4.10) 

Now, if A = 0, we obtain the trivial solution v(x)  = 0 for all x. However, we 
recall that we are required to investigate the rod in the dispZuced conjgurution, i.e. 
v(x) $i 0; therefore A clearly cannot vanish. [It is worthwhile to note that stating that 
we must satisfy Eq. ( 1 1.4.10) with A $: 0 corresponds to satisfying Eq. ( 1 1.3.1 Oa) 
of the preceding section with 8 # 0.1 Therefore, we arrive at the characteristic 
equation 

sinhL = 0, (11.4.11) 

which, here, is a transcendental equation whose roots are given by 

h L = n z ,  n = l , 2 , 3  ,... (1 1.4.12a) 

or 

(1 1.4.12b) 

Substituting Eq. (1 1.4.12b) in Eq. (1 1.4.9), 

(1 1.4.13) 

Hence, we have found that the governing equation, namely Eq. (11.4.6), when 
subjected to the boundary conditions, Eqs. (1 1.44, can be satisfied only if A. as- 
sumes the discrete values of Eq. (1 1.4.12b). Moreover, the buckled configuration 
must be of the form given by Eq. (1 1.4.13). 

In mathematics, the discrete values of h are called the eigenvulues and the 
corresponding functions describing v ( x )  are called the eigerzfunctions. In terms 
of mechanics, the functions describing the buckled shape of the rod are called 
buckling modes. 

We observe that the constant A remains undetermined. Thus, although we have 
established the shape of the rod in the buckled configuration, from our analysis, we 
are unable to determine the magnitude of the displacements (since A ,  the amplitude 
of the displacement, remains an unknown). This remark accords with that following 
Eq. (11.3.10b). 

Finally, combining Eq. (1 1.4.12b) with the definition of A given by Eq. (1 1.4.7), 
and noting that we have examined the neutral equilibrium state, we obtain 

nnx 
v(x)  = A sin - 

L ’  
n = 1 , 2 , 3 ,  ... 

n2n2EI 
L2 P,, = - , n = 1 , 2 . 3  ,... (1 1.4.14) 

Thus there exists a set of critical loads ( Pcl.),, n = 1,2 ,3 ,  , . . . According to our 
previous discussion, these loads are the axial forces that are required to maintain 
the rod in the corresponding buckled shapes, namely u(x)  = A sin(nnx/L). For 
example, in order to maintain the rod in the shape v(x)  = A sin(nx/L), an axial 
force not less than P = (P,& must be acting [Fig. (1 1.4.2a)l. To maintain the rod 
in the shape v (x )  = A sin(2nx/L), a larger axial force, P = (Per):! = 4(PCr)1, 
must act on the rod [Fig. ( 1  1.4.2b)l; a force P < (P& is insufficient to maintain 
the rod in the shape v ( x )  = A sin (2nxlL). 
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Figure 11.4.2 

At this point, several questions can be raised: namely, how does the rod be- 
have if P > (Pcr)l? Also, if the rod has buckled under the load P = (P& and if 
the force P is further increased so as to reach (Pc,)2, will the rod assume the shape 
v(x)  = A sin (2nx /L)?  To answer these questions, we first note that if the rod buck- 
les in the first mode (n = I), the amplitude of the displacements will increase for 
loads P > (P&, but the rod will not assume the form of the second buckling mode, 
sin (2nx lL ) .  However, from our analysis, we are unable to determine the increased 
displacements (since the problem has been analysed using the linearised relation 
which, we recall, precludes the determination of a load-displacement relation). We 
shall return briefly to this question of ‘post buckling’ at the end of this section. 

In view of the above, how then, can we amve at the deflection v (x )=  
A sin ( 2 n x l L )  under (P&? In order for this equilibrium state to exist, it is initially 
necessary to prevent the displacement at the mid-point x = L / 2 ;  this state can be 
achieved only if a constraint against lateral displacement exists at this point, for 
example, a brace as in Fig. (1 1.4.3). Thus, although the solution is also mathemati- 
cally valid for any n 2 2, it corresponds to a physical situation that can only occur 
if the rod is braced at points x = L/n,  2L/n, .  . . , (n - l)L/n. In the absence of 
such a bracing, the load at which the straight rod ceases to be stable is given by 

The force (P& - indeed the entire solution to this problem - was first obtained 
by Euler in 1744. It is therefore customary to define (Pcr)l as the Euler buckling 
load PE; thus 

P = (Pcr)l. 

(11.4.15) 

is the smallest critical axial force; when subjected to a force P 2 PE, a straight 
rod ceases to be in stable equilibrium. 

It is clear that PE = PE(L). Plotting this as a function of L [Fig. (1 1.4.4)], we note, 
as expected, that as L --f 00, PE -+ 0; i.e., the critical load decreases to zero as the 
lengthincreases.Ontheotherhand,accordingtoEq.(11.4.15),asL 4 0, PE -+ 00. 

Now, while this is mathematically correct, this result is clearly in contradiction with 
physical reality. Indeed, we know from our previous discussion of Section 1 1.1 that 
the maximum load that can be applied to a short rod is a finite force, namely P = ay A. 
Consequently, it is necessary to investigate this obvious discrepancy between the 
mathematical solution and physical reality. We first note that corresponding to PE, 
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there exists a compressive stress CE, 

(11.4.16a) 

Using the definition of the radius of gyration, r ,  of the cross-section, r 2  = I / A ,  OE 
is given by 

(1  1.4.16b) 

The ratio L / r  is a measure of the slenderness of the rod and is therefore commonly 
called the slenderness ratio. The variation of aE with L / r  is shown in Fig. (1  1.4.5). 

Now, we recall that we have been investigating the stability of a linearly elastic 
rod for which the stress-strain curve is as given in Fig. (1 1.1.2). It follows that the 
stress OE as calculated above must fall below q,, the proportional limit; otherwise the 
entire solution is invalid as it contradicts the basic assumption of linear elasticity. 
Hence the criteria for validity of the elastic solution is OE 5 qP from which we 
obtain the domain of validity of the slenderness ratio, namely 

(1 1.4.17) 

The stress CE for elastic buckling within the domain of physical validity is shown 
as a solid line in Fig. (1 1 . 4 3 ,  while the spurious part of the solution given by 
Eq. (1 1.4.16b) is shown by the broken line. Moreover, as L + 0, we have previously 
established that amax = ay A .  The curve describing the actual behaviour for rods with 
L / r  5 (L/r )cr  is shown by the solid line. For values immediately to the left of the 
abscissa, ( L  /r)cr, the rod is said to undergoplastic buckling. However, this is beyond 
the scope of our present study.+ 

While we have been concerned with determining the critical load in the elastic 
range, the behaviour of a rod under loads P > PE is often of interest. Such be- 
haviour, as mentioned above, is referred to as post-buckling behaviour. Consider, 
for example, the simple rod in the first buckling mode, n = 1 , where A = v( L /2) 
represents the mid-span displacement. From physical reasoning it is clear that A 
will increase with increasing values of P. Although post-buckling behaviour is 
beyond the scope of our study, we mention here that the load-displacement curve 
will have the shape as shown in Fig. (1 1.4.6). From our analysis, where we consider 
the rod only in the region of the bifurcation point, we have implicitly assumed a 
behaviour as shown by the dashed line. 

11.5 Elastic buckling of rods under various boundary conditions 

Elastic stability solutions exist for other support conditions; among these are several 
classical support conditions that are combinations of simple supports, fixed supports 
and free ends of the rod. 

As an example, let us consider the case of a rod, clamped at one end and simply 
supported at the other [Fig. (1 lS.Ia)], subjected to an axial compressive load P. 
From equilibrium, we note that, as opposed to the previous case of a simply sup- 
ported rod, unknown reactions R exist at A and B [Fig. (1 lS.lb)]. The moment 

t While the problem of elastic buckling of a rod was examined by Euler in the 18th century, plastic 
buckling was only treated in the 20th century, namely by von Kannan, Engesser and others. 
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F’igure 11.5.1 

M ( x )  is then [Fig. (1 lS.lc)] 

M ( x )  = Rx + Pv(x) .  (1 1 S.1) 

Substituting in Eq. (1 1.4.4a), 

E ~ v ” ( x )  + Pv(x)  = -Rx (11.5.2a) 
or 

(1 1.5.2b) 
2 R P 

v”(x) + h v(x) = --x, h2 = - , E l  E1 
with appropriate boundary conditions 

u(0) = 0 

v(L) = 0 

d(L)  = 0. 

The general solution to Eq. (1 1.5.2b) is 

(1 1.5.3a) 

(1 1.5.3b) 

(11.5.3~) 

(11.5.4) 
R 
P u(x)=Asinhx+Bcoshx --x. 

From v(0) = 0, B = 0 so that 
R 
P 

v(x)  = A sin hx - -x. 

Differentiating 
R 

v’(x) = Ah COS hx - - 
P 

and substituting in the boundary condition v’(L) = 0, we find R = AhP cos AL. 
Hence 

v(x)  = A(sinhx - hx . cos hL). (1 1.5.5) 

Finally, using the boundary condition v(L)  = 0, and noting that A # 0, we obtain 

sinhL - hL  coshL = 0 
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or 

tanhL = AL. (11.5.6) 

Thus, the characteristic equation for the eigenvalue A, Eq. (1 1.5.6), is a transcen- 
dental equation whose lowest root is 

aL = 4.4934.. .. (11.5.7) 

Substituting in the definition of h2, h2 = P/EI, we obtain 

P = (4.4934. . EI 
.I2 F .  (1 1.5.8a) 

In terms of mathematics, P represents the lowest discrete value for which, with 
boundary conditions given by Eqs. (1 1.5.3), a non-zero solution u(x) f 0 exists. 
In terms of mechanics, it is the smallest force required to maintain the rod in a 
buckled position; hence, according to our previous discussion, it represents the 
critical buckling load for this problem. 

Upon noting that 4.4934. . . =I 1.4303~ 2: &, we express the load PCr in a con- 
venient form as 

Z ~ E I  
P,, = - 

(0.7L)2 ‘ 
(1 1.5.8b) 

We observe again that while the buckling mode is given by Eq. (1 1.5.5), the 
amplitude remains unknown, since we cannot solve for the constant A .  It is of 
interest to give an interpretation to the factor ‘0.7L’ appearing in Eq. (1 1 S.8b). To 
do so, we investigate the curvature of the rod in the buckled shape. Differentiating 
Eq. (1 1.5.5) twice, we obtain 

u”(x) = -Aa2 sinhx. (1 1 S.9) 

Now, since A f: 0, ~ ” ( x )  = 0 for values x = 0 and hx = x. Hence 
x x  n = 0.7. - = - -  - 
L aL 4.4934 ... 

We thus conclude that at x/L 2: 0.7, uN(x) = 0; that is, the buckling mode has a 
point of zero curvature at x 2: 0.7L, as shown in Fig. (1 1.5.1b). Since the moment 
is proportional to the curvature, M(x)  = 0 at this cross-section. This provides us 
with an immediate interpretation of the ‘0.7’ factor: namely, since the moments at 
x = 0 and x = 0.7L are zero, the value of the critical load P,, for the present case 
is the same as that of a simply supported rod of length 0.7L. 

Following the same procedure, the critical load of a rod with fixed and free ends, 
subjected to an axial force P [Fig. (1 1.5.2a)], is found (upon solving the govern- 
ing second-order differential equation with the appropriate boundary conditions) 
to be 

TC~EI  
P,, = - 

4L2 * 

The corresponding buckling mode is 

v(x) = A 1 -cos- 1 ( xx 2L 1 

(1 1.5.10) 

(1 1.5.1 1 a) 

Y 

(b) 

Figure 11.5.2 
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where, here, x is measured from the fixed end.+ Alternatively, if x is measured 
from the free end [see Fig. (1 1.5.2b)], we obtain the same value for P,, and v ( x )  is 
expressed as 

v(x) = A sin- - 1 . ( ;; 1 (1 1.5.1 lb) 

Note that Eqs. (11.5.11a) and (11.5.11b) are equivalent; i.e., the shape ofthe buck- 
ling mode is the same. 

The critical loads for several classical cases are summarised in Figs. (11.5.3) 
where the shapes of the buckling modes are shown. We note that the expressions 
for the critical loads can all be written in the same form, namely$ 

n 2 ~ ~  
Pcr = - 

(a L)2 ’ 
(11.5.12) 

where a! is given in Figs. (1 1.5.3) for each case. 

Figure 11.5.3 

We observe that the critical loads for all these classical cases are obtainedusing the 
same basic method of analysis: equilibrium equations are written in a deflected state 
under the assumption of infinitesimal displacernents thus yielding linear digerential 
equations. These, together with the appropriate boundary conditions then lead to the 
characteristic equation of  an eigenvalue problem. As in the cases previously con- 
sidered, the characteristic equations are generally transcendental equations whose 
roots (eigenvalues) correspond to the critical loads. 

While the above are the usual classical conditions, evidently other cases may 
exist. For example, let us consider the case of a simply supported rod ACB con- 
taining an interior support at C located at some arbitrary point a = y L , as shown in 

t While this result can be easily established using Eq. (11.4.4a), we shall obtain this solution in 

5 Solutions for the case of a rod of length L, fixed at either one or both ends, using Eq. ( 1  1.4.4a), are left 
Section 11.9 using a fourth-order differential equation. 

as problems (see Problems 1 1.13 and 1 1.14). 
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Figure 11.5.4 

Fig. (1 1.5.4a). Clearly, the critical load will depend on the location of C. We recall 
from our previous discussion that if C is located at the mid-span, a = L / 2 ,  the 
critical load is P,, = 4n2 E I / L 2  [Fig. (1 1.4.3)]. 

The analysis proceeds as before; however, we note that there now exist non-zero 
reactions RA,  RB and Rc as in Fig. (1 1.5.4b). 

Taking moments about point C ,  we have the relation 

U R A  = ( L  - u)RB. (1 1.5.13) 

We observe, however, that the structure is statically indeterminate since clearly 
we cannot solve for the three unknown reactions with two equations of equilibrium. 

To determine P,,, we first write, as before, the moment expressions M ( x )  in 
terms of P and the unknown reactions, e.g. R A  and RB.  However, note that dif- 
ferent expressions for M ( x )  exist in the two domains D I :  {x 10 .= x < a }  and 
D2: {x I a < x < L } ;  hence we obtain two separate second-order differential equa- 
tions and therefore two general solutions, q ( x )  and I J ~ ( x ) ,  each of which contains 
two constants of integration. Thus, we have effectively five unknowns: the four 
constants and an unknown reaction, for example, RA [since by Eq. (1 1.5.13), RB 
can be expressed in terms of RA].  However, there exist five boundary conditions, 
namely 

vl(0) = q ( a )  = vz(a) = = 0 and .',(a) = u;(a). (11.5.14) 

Substituting the general solutions in the above boundary conditions yields the char- 
acteristic equation for the eigenvalue h2 = P I E I :  

yhL(1 - y)sin(hL) - sin(yhL) - sin[(l - y)hL] = 0, (11.5.15) 

where y a/L . 
When y =0.5 (a = L/2) ,  the above equation is reduced to 

(1 1.5.16) 

whose lowest root yields the critical load P,, = 4n2EI/L2 as found above. 

Eq. (1 1.5.6), i.e. 
When y -+ 0 (a -+ 0), Eq. (1 1.5.15) reduces to the characteristic equation, 

tanhL = h L ,  (1 1.5.17) 

whose lowest root was seen to yield the critical load PO = Z ~ E ~ / ( O . ~ L ) ~ .  We 
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recall that this is the critical load for the structure of Fig. (1 1 S.3b). A clear physical 
explanation for this result is shown by means of Fig. (1 1 S.5 ) :  as the interior support 
C approaches point A, the slope at A necessarily approaches zero. We recognise 
that the condition of zero displacement and slope at a given point corresponds to a 
fixed-end support as shown in Fig. (1 1.5.3b). 

Figure 11.5.5 

As another example, consider a rod ACB, fixed at A and free at B, consisting oftwo 
segments AC and CB with flexural rigidities E I and a E  I (0 < a), rigidly attached 
at B, as shown in Fig. (1 1.5.6). An axial compressive force acts at B through the 
centroid. In this case, the governing differential equations are EIvY(x) = -M(x)  
and a E l u ; ( x )  = -M(x) ,  respectively, in the two domains D1: {x 10 < x < y L }  
and D2: {x 1 y L  < x < L} .  Using the appropriate boundary conditions and condi- 
tions at B[ v l ( yL)  = u&L) and v ; ( y L )  = v i ( y L ) ] ,  one obtains the characteristic 
equation 

tan(yhL) = cot [ (' -L)hL] ,  h = ,/m, c = &. (11.5.18) 

The development is left as an exercise (see Problem 11.39). 

Figure 11.5.6 

In the derivation of the above solutions, we have considered rods only for the cases 
of an axial compressive force passing through the centroid. Now, it is clear that such 
rods can also be subjected to axial loads that are applied with an eccentricity with 
respect to the centroidal axes. Moreover, rods may also be subjected simultaneously 
to both axial and lateral loads. In the following sections, we investigate the behaviour 
under these loading conditions. 

11.6 Rods under eccentric axial loads - the 'secant formula' 

In the previous development, it was assumed that the axial compressive force passes 
through the centroid of a perfectly straight rod. However, in fact, this is an ideal- 
isation since no rod is perfectly straight. Moreover, although structures are often 
designed based on this idealisation, the actual loading may be applied eccentrically 
with respect to the centroid, either due to imperfections in the rod or misalignments. 
In fact, very often, it is known a priori, that the load is applied eccentrically. 

We therefore study the behaviour of a rod under an eccentrically applied axial 
load. In this case, the ability of a rod or column to withstand an eccentric load can 
be determined based on an allowable stress, As we shall see, the development also 
leads to a new mathematical interpretation of instability, which proves to be very 
usekl. 
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Figure 11.6.1 

Consider a simply supported rod of length L and flexural rigidity E I, pinned 
at the ends and subjected to a load P applied with an eccentricity e, as shown in 
Fig. (1 1.6.1a). Due to P ,  the rod deforms, as shown in Fig. (1 1.6.1b). Clearly, the 
moment at any point x is 

M ( x )  = P[e  + v(x>] (1 1.6. la) 

and the governing differential equation is 

E l v ” ( x )  + Pv(x> = -Pe (1 1.6.2a) 

or 

v”(x) + ~ ’ v ( x >  = -he, = ,/m (1 1.6.2b) 

subject to the boundary conditions v(0) = v(L)  = 0. 
The solution to Eq. (1 1.6.2b) is 

v ( x )  = A sin hx + B cos hx - e. (1 1.6.3) 

Using B.C. v(0) = 0,  B = e, while v ( L )  = 0 leads to 

e(l - coshL) 
A =  

which, using standard trigonometric identities, can be rewritten as 

sinhL ’ 

A = e tan ( y )  . 

Hence 

v(x> = e [  tan (:) sinhx +coskx - 1 . 1 

(1 1.6.4a) 

(1 1.6.4b) 

(11.6.5) 

It is interesting to note here that the constants of integration are known explicitly 
in terms of the given eccentricity e and thus, in contradistinction, for example, 
with Eq. (1 1.4.1 3), the magnitude of v ( x )  is known. [This is true since, clearly, as 
opposed to the case of a non-eccentric load, the rod deforms for any load P > 0.1 
By symmetry, the maximum deflection occurs at the centre, x = L/2. Hence, letting 
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Figure 11.6.2 

s 5E v(L/2), 

1 + cos (hL/2) - 1 = .[ sin2@L/2) 
cos (AL/2) 

or 

6 = e[  sec (F) - 11, 

(1 1.6.6a) 

(1 1.6.6b) 

where, by definition, sec (AL/2) = [cos (hL/2)]-1. 
Before proceeding with the development, we observe an interesting feature: 

If e # 0, then if kL =x, sec(AL/2) -+ 00, i.e. 6 -+ 00.t Now, for this value of 
h,  we have P = q, which is precisely the Euler buckling load PE that causes 
instability. Thus, we arrive at a mathematical interpretation of a load causing in- 
stability, namely it is the load that causes the depection to approach inJnity.t This 
is readily seen from a 6 - P plot, as shown in Fig. (1 1.6.2), where we observe that 
for e = 0, the deflection 6 = 0 for P P,, while if e > 0, 6 increases both with P 
and with increasing values of e, and approaches infinity as P -+ PE. 

Now, the maximum moment in the rod is Mmax = P(6 + e). Hence, the maximum 
compressive flexural stress ox that occurs in the rod is [see Eq. (8.12.2)] 

f (11.6.7) 
omax=-+-=-  P Mmmc P [  I +  p ( 6 r T e ) ~ ]  

A I A 

where A and r = are the area and radius of gyration of the section, respec- 
tively, and c is the largest distance from the neutral axis to a fibre in compression.§ 
Substituting 6 from Eq. (1 1.6.6b), we have 

and using the definition of A,  h = d m ,  we obtain finally 

(1 1.6.8a) 

(1 1.6.8b) 

This expression, which relates the maximum flexural stress (due to an eccentri- 
cally applied load) to the average stress, cave P /  A ,  due to a load applied through 
the centroid of the section, is known as the secant formula for columns. We note, 
in passing, that the relation between Omax and P is highly nonlinear. 

Now, throughout the development, elastic behaviour has been assumed; the de- 
rived expressions are therefore valid provided that o 5 up, where op is the propor- 
tional limit of the rod material. Let us consider, for example, the behaviour of a 
steel rod. In this case, the yield stress ay differs but little from up, i.e. ay N ap. In 

t If e = 0, then clearly 6 = 0 for all values of h # n L and if A. = n L ,  the value of 6, being the product of 
zero and infin@, is undetermined. This is consistent with the undetermined value of the deflection for 
a concentric axial loading [see Eq. ( I  1.4.13)]. 
We note that, using linearised theory, a deflection Iu(x)l 2 I i s  clearly not physically relevant and 
therefore 6 -+ CO IS physically meaningless. Nevertheless, the association 6 -+ 00 with instability of a 
system is mathematically valid. 

J Note that here the radius of gyration does not necessarily correspond to the minimum I ofthe section (as 
is the case of a concentncally loaded rod) since bending occurs in a plane perpendicular to the neutral 
axis, which depends on the given eccentricity of the axial load. 
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such a case, upon setting a,, = ay, we may write 

and therefore 

P 0" 

(1 1.6.9a) 

(1 1.6.9b) 

A typical plot showing a family of cwves of a,,, vs. L / r  is shown in Fig. (1 1.6.3) 
for a steel column with ay = 240 MPa and E = 200 GPa.? Such figures are often 
used, together with appropriate safety factors, in the design of columns and form 
the basis of a number of empirical design formulas. Finally, it is worthwhile to 
observe from the figure that the eccentricity e has a relatively small effect for very 
long columns and becomes increasing significant for shorter columns. 

Figure 1 1.6.3 

11.7 Rods under combined axial and lateral loads: 
preliminary remarks 

We now consider structural members, as shown in Fig. (1 1.7.1 a), subjected to both 
lateral loads and an axial force. We recall that we have treated, in fact, such a case 
in Chapter 8. However, lateral displacements were neglected when calculating the 
effect of the axial force on the moments in the member (see e.g. Example 8.18). 

Figure 11.7.1 

t Note that since the quantity 'cave' appears on both sides of Eq. (1 1.6.9h), the curves can only be obtained 
numerically. 
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For cases where these displacements are sufficiently small such that the effect of 
the axial load on the resulting moment is insignificant (compared to the effect of 
the lateral loads), the solutions thus obtained are reasonably accurate. However, 
such solutions are only approximate if the axial force has a considerable influence 
on the moments. In the treatment below, we shall therefore obtain more accurate 
solutions by taking into account the lateral displacements. Members that are treated 
in this manner are usually called beam-columns [Fig. (11.7.la)l when the axial 
load is compressive, and are called tie-rods when the axial force is in tension 
[Fig. (1 1.7. lb)]. 

In particular, we shall be interested in determining the effect that the axial forces 
have on the displacements, moments and internal shearing forces. In order to de- 
termine the behaviour of such members, we must first derive the basic governing 
differential equations of beams under the given loading conditions. 

11.8 Differential equations of beams subjected to combined 
lateral loads and axial forces 

We consider an elastic member with flexural rigidity El(x), located in the x-y 
plane, where the positive y-direction is taken as downward [Fig. (1 1.7. l)]. Lateral 
displacements v(x) are defined as positive in the positive y-direction. We again limit 
our treatment to beams for which the lateral displacements are small compared to the 
span lengths so that the slopes 8 = U' are infinitesimals, i.e. 111'1 << 1. Furthermore, 
we retain the same sign convention for the moments M(x),  the shear forces and 
the lateral loads q(x),  as defined in Section 2(b) of Chapter 8. Let us recall that 
the beam equations, Eqs. (8.3.1) and (8.3.2), for the case where no axial force is 
present, are 

(1 1.8.1 a) 

(11.8.1b) 

where M(x)  and V(x) are the moments and shear forces at a cross-section and the 
Euler-Bernoulli relation is 

El(x)v"(x) = -M(x) .  (1 1.8. lc) 

The governing equation for the member, obtained by combining eqs. (1 lAla),  
(1 1.8. lb) and (1 1.8. lc) is then 

d2 - [El (x)v"(x) ]  = q(x) .  
d x 2  

(1 1.8.2) 

We now turn our attention to members that are also subjected to axial forces. lt is 
worthwhile first to note that the Euler-Bernoulli relation, El(x)v"(x) = -M(x) ,  
remains valid if axial forces P act on the member. Here, P is taken as a compressive 
force. 

Consider an element Ax of the member of Fig. (1 1.7.la) in the deflected state 
[Fig (1 1.8. l)]. Let Q ( x )  denote the vertical component of the shear force acting on 
the cross-section according to the usual sign convention. 
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Figure 11.8.1 

From equilibrium in the y-direction, F, = 0, 

-Q(x) + [Q(x> + AQ] + q(F) Ax 0, (11.8.3) 

where x 5 X < x + Ax. Therefore, upon dividing through by Ax and taking the 
limit, 

(1 1.8.4) 

since A Q  + 0 andY j. x as Ax --f 0. 

yields 
Observing that the axial force P is constant, moment equilibrium about point 0 

E M 0  = -M(x)  + [ M ( x )  + AM] - P A v  - [Q(x) + AQ] AX 
- [ q ( X )  A x ] ~  AX =E 0, 

Dividing through by Ax and taking the limit as Ax + 0, 

(1 1.8.5a) 

where0 < (11 < 1. 

AV 
lim - - 

Ax+O Ax Ax-0 Ax Q ( x )  + AQ + P- + (11q(T) Ax] 

and therefore 

-- dM@) - Q ( x )  + Pv’(x) . 
dx 

Letting 

we obtain the familiar form 

-- dM(x) - V ( x ) .  
dx 

FromEqs. (11.8.1~) and(11.8.5d), it follows that 

d dM(x) -[[El(x)v”(x)] = -- = - V ( x )  
dx dx 

and therefore 

(11.8.5b) 

(11.8.5~) 

(1 1.8.5d) 

(11.8.6) 

d2 d 
-[E~(X)U”(X)] = --[Q(x) + Pv’(x)]  
dx2 dx 
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Figure 11.8.2 

or 
a2 
U 

- [EI (x )v” (x ) ]  = q(x) - Pv”(x) 
dx2 

by Eq. (11.8.4). 
When E I = constant, this reduces to the simple equation 

d4v(x) d2v(x) + P-y- = q(x ) .  dx 
EI- 

dx4 

(1 1.8.7a) 

(1 1.8.7b) 

In order to interpret the term V appearing above [defined by Eq. (1 1.8.5c)], we 
recall that for infinitesimal slopes v’, cos (U’) 2 1 and sin (v’) 21 v‘. Hence, we note 
that Eq. (1 1.8.5~) is actually the limiting case of 

(11.8.8) V ( x )  = Q(x) cos (v’) + P sin (U’). 

We observe from Fig. (1 1.8.2) that V is therefore the resultant shear force acting 
tangentially on the deformed cross-section. 

Note that if P = 0, then V ( x )  = Q cos (v’) 2 Q for infinitesimal v’; that is, the 
vertical shear force IQ and the shear force V become (almost) identical. (Thus, in our 
study of beams in Chapter 8, it was neither necessary nor possible to distinguish, as 
we now do, between Q and V and therefore we denoted the shear force simply by I/. 
However, based on the present development, it becomes clear that when one refers 
to the shear force V ,  one means the force acting tangentially to the cross-section in 
the deformed state.) 

In analysing a member as a beam-column, one has the choice of using either the 
second-order differential equation, Eq. (1 1.8. lc), or the fourth-order differential 
equation, Eq. (1 1.8.7a) or (1 1.8.7b). Clearly, the second-order differential equation 
has a simpler solution and might seem to be preferred. However, if one starts with 
this equation, it is first necessary to establish an expression for the moment M(x) .  
At times, this is not convenient and rather complicated. In such cases, it may be 
preferable to use the fourth-order equation since the inhomogeneous term q(x) is 
a known quantity representing the applied loads. Note, however, that in using the 
second-order equation, proper boundary conditions are only on the displacement 
U or the slope v’. Additional appropriate boundary conditions taking into account 
shear and moment conditions must be used when working with the fourth-order 
equation.$ 

11.9 Stability analysis using the fourth-order 
differential equation 

In Sections 4 and 5 of this chapter, the stability of rods under a compressive ax- 
ial load was analysed using the second-order differential equation, Eq. (1 1.4.4a). 
As mentioned above, we may alternatively use the fourth-order equation, namely 
Eqs. (1 1.8.7) by setting the lateral load q(x) = 0. 

For this case, therefore, Eq. (1 1.8.7a) reduces to 

d2 
dx2 
- [EI (x )v” (x )  + Pv(x)] = 0 (1 1.9. la) 

t We recall here that the appropriate boundary conditions for an nth-order differenhal equation can involve 
only derivatives up to order (n - I ) .  
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and for a prismatic rod with EZ = constant, 

EIv“(x) + Pv”(x) = 0. (1 1.9. lb) 

From Eqs. (1 1.8. Ic) and (1 1.8.6) for the prismatic rod, we have 

EId’(x) = -M(x) ,  (1 1.9.2a) 

EZv”(x) = - V(x) . ( I  1.9.2b) 

As an example, let us now consider, using the governing equation, Eq. (1 1.9.1 b), the 
stability of a prismatic rod with free and fixed ends subjected to an axial compressive 
force P ,  as shown in Fig. (1 1.5.2b). 

At the free end, x = 0, M(0) = 0 and the vertical component of the shear force 
acting on the section in the deformed state is Q = 0. Therefore, from Eq. (I I .8.5c), 
V(0) = Pv’(0). 

The boundary conditions at the free end x = 0 are then 

v”(0) = 0, (11.9.3a) 

EZv‘”(0) -Pv’(O), (I 1.9.3b) 

while at the fixed end, we have 

v (L)  = 0, 

v’(L) = 0 .  

(11.9.3~) 

(1 1.9.3d) 

We therefore must solve the differential equation, Eq. (11.9.1b), subject to the 
boundary conditions of Eqs. ( 1  1.9.3). 

As before, dividing Eq. (1 1.9.1 b) through by E I ,  we have 

(1 1.9.4) Vyx) + h2V”(X) = 0, A 2 p  = - 
EI’ 

whose general solution is 

v(x) = A sinhx + B coshx + C x  + D. (11.9.5) 
Upon differentiating, 

d(x) = Ahcoshx - Bhsinhx +C,  

~ ” ( x )  = - A  h2 sin hx - B h2 cos hx, 

v”’(x) = -A h3 coshx + B h3 sinhx. 

(11.9.6a) 

(11.9.6b) 

(1 1.9.62) 
Note that, from the definition of A, we may write (I  1.9.6~) as 

v”’(x) = -(-A coshx + B sinhx). 
P h  
E l  (1 1 .9.6cf) 

UsingEqs.(l1.9.3a)and(11.9.6b),v”(O)=O, B = O .  
Using Eq. (11.9.3b), [Elv”’(O) = -PV’(O)],~ and Eq. (11.9.6a), we obtain 

From Eq. (1 1.9.3d), v’(L) = 0 and using Eq. (1 1.9.6a), we have AA cos h L = 0 

(1 1.9.7) 

-AA = -(AA + C),  ffom which it follows that C = 0. 

and since h + 0, we obtain the characteristic equation 

cosh L = 0, 

It IS worthwhile to note again that at the free end the shear force V # 0. 
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whose roots are 
n n  
2L ’ A=--- n = l , 3 , 5  (.’.. (11.9.8) 

Then from Eq. (11.9.3c), v(L)  = 0, we have A sinAL + D = 0 or D = 
- A  sinAL = - A  sin (nn/2) .  Hence for the lowest root, n = 1, D = - A ,  

Using this root, it follows directly that 

The corresponding buckling mode is then 

(1 1.9.9) 

(1 1.9.10) 

We observe that these results were given by Eqs. (1 1 S.10) and (1 1.5.1 1). 

11.10 Beam-column subjected to a single lateral force F 
and an axial compressive force P 

Consider the beam-column with constant E I ,  as shown in Fig. (1 1.10.1 a). Since 
the moments in this beam are expressed rather easily, we shall analyse this case 
using Eq. (1 1.8.1~) rather than Eq. (1 1.8.7b). From equilibrium, the moments in 
the assumed deflected configuration are [Fig. (1 1.10. lb)] 

F 
L 

Fa 
L 

M ( x )  = -(L - a)x f Pv, 0 5 x 5 a (1 1.10. la) 

M ( x ) = - ( L - x ) + P v ,  a < x s L .  (1 1.10. lb) 

Substituting in Eq. (1 1.8.1 c), we obtain separate differential equations in the two 
domains, namely 

F 
L 

E I v l ( x )  + Pvl(x)  = --(L - a ) x ,  0 < x < a,  (11.10.2a) 

Fa 
L 

EIv;’(x) + PVZ(X)  = --(L - x ) ,  a < x < L ,  (11.10.2b) 

where v1 and v2 denote the deflections in the two domains, respectively. 

Figure 11.10.1 



11.10 Beam-column subjected to  a single lateral force F 429 

Now, dividing through by E I and setting 

h2 = P / E I ,  (1 1.10.3) 

we have 

F(L - U ) X  
, O < x < a ,  (1 1 .10.4a) 

, a < x < L. (11.10.4b) 

E I L  
V Y ( X )  + h 2 V , ( X )  = - 

U;(.) + h2V2(X) = - 
Fu(L - X) 

E I L  

The general solutions to these two equations are then 

F(L - U ) X  
(11.10.5a) 

P L  ’ 
v l (x )  = A ,  sin hx + B1 cos hx - 

Fa(L - x) 
P L  ’ 

(1 1 .10.5b) v~(x) = A2 sin hx + B2 cos hx - 

where A I ,  A2, B1 and B2 are constants of integrations. Appropriate boundary con- 
ditions for this problem are 

VI(0) = 0, 
V2(L) = 0 

and 

( 1 1.1 0.6a) 

(11.10.6b) 

(11.10.6~) 

(1 1.10.6d) 

The latter boundary conditions represent continuity of the deflection and slope, 
respectively, at x = a.  From Eqs. (1 1.10.6a) and (1 1.10.6b) we find, respectively, 

v ~ ( O )  = B1 = 0 ( 1 1 . 1 0.7a) 

and 

sin h L 
cos hL 

B2 = -- A:! = -tanhLA2, 

Hence, 

F(L - U ) X  

P L  
vl(x) = A I  sinhx - 

(11.10.7b) 

(1 1.10.8a) 

Fa 
P L  

v&) = Al(sinhx - tanhLcoslx) - - ( L  -x). (11.10.8b) 

Noting that 
F(L - U )  

P L  
V ;  (x) = Alh COS hx - 

v;(x) = Azh(c0s hx + tanhL sinhx) + -, 
(1 1.10.9a) 

(11.10.9b) 
Fa 
P L  



430 Stability and instability of rods under axial compression 

Figure 11.10.2 

substituting in Eqs. (1 1.10.6~) and (1 1.10.6d) and using simple trigonometric iden- 
tities, we obtain, after some algebraic manipulations, 

F sinh(L - a)  
P h  sinhL 

AI = - 

and 

(1 1.lO.lOa) 

(1 1-10. lob) 

Therefore, finally, 
F sinh(L - a) F(L - U )  

PL 
x, 0 5 x 5 a (11.10.11a) q ( x )  = - sinhx - 

P h  sinAL 
and 

F sin ha Fa 
P L  P h  sin hL 

sinh(L - x) - -(L - x), zI2(x) = -- a 5 x 5 L. (11.10.11b) 

For convenience, and future use, we note that 

F sinX(L - a) F(L - -U)  

P L  
(1 1.10.12a) zI;(x) = - coshx - 

P sinhL 
F h  sinh(L - a)  

P sinhL 
F A 2  sin h( L - a)  

v;’(x) = -- sin hx 

q ( X )  = -- coshx . 
P sinhL 

(1 1.10.12b) 

(1 1.1 0.12c) 

Similar expressions exist in the region a 5 x 5 L. 
Now, it is of interest to examine the behaviour of the beam-column in order to 

determine the effect of the thrust P. For convenience, we shall consider the case 
when F acts inthe centre, i.e. a = L/2 [Fig. (1 1.10.2)]. Equation (1l.lO.lla) then 
becomes 

F sinhL12 F 
sinhx - -x . 

2 P  u,(x) = - 
P h  sinhL 

(1 1.10.13). 

Note that U ~ ( X )  has a similar expressions with x replaced by ( L  - x). At x = L/2 
(where vl  = v2), 

F sin2(hL/2) F L  
P h  sinhL 

-- 
4P * 

v(L/2) = - (1 1.10.14) 

It is convenient to define the parameter 

p = - = -  ( 1 1.1 0.1 5a) 

Then 
P L2 
4 E I ’  

p2 = - 

4EI  
P = F p ,  

SEIp3  
P h  = - 

L3 

(11.10.15b) 

(1 1.10.15~) 

(1 1.10.15d) 
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and therefore 

FL3 sin2p F L 3  

Since sin 2 p  = 2 sin p cos p, we rewrite this equation as 

(1 1.10.16a) 

(1 1.10.16b) 

We recognise immediately that 8 = represents the mid-span deflection of a 
simple beam when no thrust P exists [see Eq. (9.4.20)]. Thus 

(11.10.17) 

The effect of P is then clearly given by the bracketed term [ 3(ta7-w)]. 
While the analysis is complete at this point, the expressions in terms of P do 

not provide any significant insight for a physical interpretation. (For example, does 
it have any meaning to give a result for, let’s say, P = 1000 N or P = 2000 N?) 
Clearly, one needs to relate the force P to some known reference axial force. The 
most appropriate force, in this case, is the Euler buckling load PE = n 2 E I / L 2 ,  
from which we can construct the ratio PIPE. With this in mind, we may write, from 
Eq. (ll.lO.l5a), 

(1 1.10.1 8) 

Using this relation, one may now calculate the effect on v(L/2) for various ratios 
PIPE.  Thus, for example, if PIPE = 0.25, p = n/4 and tanp = 1. Hence, for 
this ratio of PIPE,  from Eq. (11.10.17), we find v(L/2)  = 1.346; i.e., an axial 
force which is 25% of PE will increase the centre-span deflection by 34%. For 
PIPE = 0.50, v (L /2)  = 1.998. 

II 

Let us also consider the following two limiting cases: 

P -+ PE: Then p -+ n/2 and tanp 3 00. Therefore v(L/2)  -+ 00. We thus 
observe, as was shown in Section 1 1.6, that one may associate the critical load 
leading to instability as the load which causes the deflection to approach infinity. 
P -+ 0: Then p -+ 0. Noting that the bracketed term is undefined at p = 0, we 
make use of the series expansion for tan p; thus 

3 
3(tanp-p) = - [ (p+p3/  3 + 2 p 5 / 1 5 + . . . ) - p ]  (11.10.19) 

P3 w3 
and hence in the limit, as p +. 0, 

= 1, 3(tan p - p) 

P3 

so that we recover v(L/2)  = 6. 

The effect of P on the displacement v ( L / 2 )  is shown as a function of 6 in 
Fig. (1 1.10.3). 
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Figure 11.10.3 

Substituting for v1 (x) from Eq. (1 1.10.13) in Eqs. (1 1.8. l), an expression for the 
moments (for 0 5 x 5 L/2) may be readily obtained: 

E I F h  sinhL/2 F sinhL/2 
P sinhL A sinhL 

M ( x )  = -EIv;’(x) = - sinhx = - sinhx. 

(1 1.10.20a) 

Similarly, the shear term V becomes, using Eq. (1 1.8.5d), 

dM(x) - F~inhL/2  
dx sin h L 

V = - -  COS ax 

so that at x = 0, 
F 

2 C O S ( ~ L / ~ ) ’  
V(0) = 

(1 1.10.20b) 

(11.10.2Oc) 

This last term is easily seen to be equivalent to 

V(0)  = F/2 + Pv’(0). (1 1.10.21a) 

Finally, using Eq. (1 l.lO.l5a), the moment at the centre span becomes according 
to Eq. (1 1.10.20a), 

(1 1.10.2 lb) 

from which we obtain the two limiting cases (a) and (b): 

(a) As P -+ PE (p  -+ n/2), and therefore M(L/2) -+ 00. This result is consistent 

(b) As P -+ 0 (p -+ 0), and M(L/2) -+ FL/4; i.e., we recover the moment ex- 
with the fact that when P -+ PE, the member becomes unstable. 

isting in a beam with no axial force present. 

11 .I 1 Some comments on the solution: 
use of linear superposition 

From the previous example, we make an interesting observation: we observe that 
the solution of the beam-column does not lead, as in the previous case of the study 
of instability of compressive members (subjected only to axial loading), to an eigen- 
value problem. Indeed, as we have seen, an equilibrium state exists in the deflected 
state for any value of P ,  no matter how small; that is, a deflected position can be 
maintained for aZZ values of P. Clearly, this is because the lateral force acting on 
the member also provides a necessary force to cause a deflection. Mathematically, 
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the difference between the stability analysis and the present problem may be ex- 
plained by observing that the equations governing beam-columns contain an inho- 
mogeneous term involving lateral loads, as opposed to the homogeneous differential 
equation for a column. [Compare, e.g., Eq. (11.8.7b) with Eq. (1 1.9.lb).] 

At this point, it is also worthwhile to consider the possibility of the use of linear 
superposition. Let us first rewrite, for example, Eq. (1 1.10.1 la) explicitly in terms 
of the given forces F and P.  After substituting the definition of A, we obtain 

which we rewrite symbolically as q ( x )  = F 1 f ( x ,  P). 
We observe immediately that while q ( x )  is a linear function of F ,  f ( x ,  P )  is 

clearly a nonlinear function of P ;  hence vl (x) does not vary linearly with P .  Indeed, 
it is a highly nonlinear function of the axial force P. Thus, linear superposition can 
be used only with respect to the applied force F and only for a given constant 
axial force P [Fig. (1 1.1 1.1 a)]. On the other hand, it is not permissible to construct 
solutions using linear superposition for a constant force F but different thrusts P 
[Fig. (1 1.1 1.1 b)]. 

Figure 11.11.1 

We now pose a significant question: why does such a nonlinear relation exist 
between the deflection v and the axial force P? To answer this question, we ex- 
amine the original expression for the moment M ( x )  given by Eqs. (1 1.10.1) in the 
deflected state of the beam. We observe that the product ‘ Pv(x)’ appears within this 
expression and that v(x)  was, at this stage of the analysis, an unknown quantity. This 
is in contrast to all previous analyses, where in expressions for moments, shears, 
etc., such products involving an unknown never appeared. Indeed, it is because of 
such products, that our present analysis leads to a nonlinear relation, Eq. (1 1.1 1. I), 
between the force P and the deflection. 

It now becomes possible to generalise our conclusions. We first recall that equi- 
librium equations of mechanics of deformable bodies are always written in the 
deformed state. When, in the case of linearly elastic bodies, the unknown displace- 
ments do not appear explicitly within the equilibrium equations, the resulting force- 
displacement relations will be linear. (This was indeed the case in the treatment 
of members in Chapters 6 9 . )  However, when unknown displacements appear 
explicitly in the equilibrium equations as products with a force term, then the 
resulting forcdisplacement relation will be nonlinear. 

011.12 Tie-rods 

- The analysis of a tie-rod, subjected to a tensile axial force (which we denote as 
P > 0), as shown in Fig. (1 1.12. I), may be treated in a similar manner. Clearly, 
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based on physical intuition, we expect the displacements v(x) and moments M ( x )  
to be reduced with increasing values of ?r. As opposed to the moment expressions 
given by Eqs. (1 1.10. I), we now have [Fig. (I  1.12.2)] 

F(L - (1.) 
x - F v ,  O < x < a ,  (11.12.la) 

M(x)=-(L-x) -Pv ,  a ( x ( L .  (11.12.1b) 

L 
M(x) = 

Fa 
L 

As in the previous example, we obtain the differential equations 

-2 F(L - U )  
X,  E I L  

V Y ( X )  - h q ( x )  = - (1 1.12.2a) 

Fa 
E I L  

(1 1.12.2b) 
-2 

v;’(x) - h U&) = --(L - x), 

where, here, 
- 

-2 P A = -  > 0. 
E I  

(11.12.2c) 

At this point, we may solve the problem analogously as in the preceding case of 
the beam-column, making use of the same boundary conditions, Eqs. (11.10.6). 
However, although the analysis is straightforward, we may arrive at the solution in 
a much simpler manner: we note that the equations of this problem become iden- 
tical to those of the beam-column if we replace P by -P, and h2 by --;i”. Thus 
we set 

P = -P, (1 1.12.3a) 

h 2 = - h  -2 (11.12.3b) 

so that 

h = Z I ;  
(where z = &f is imaginary) in all expressions appearing in Section 1 1.10. 

ment vl,  

Then, substituting Eqs. (1 1.12.3) in Eq. (1 1.10.1 la), we obtain, for the displace- 

F sin[zX(L - a)]  F(L - a )  
VI(X) = -_ sin(z?C)+ - x. (11.12.4) 

Z P ~  sin(zI;) P 



11.13 General comments and conclusions 435 

Notingthatsinz6 = I sinh6, cosz6 = coshe, tan26 = z tanh6,Eq.(11.12.4)be- 
comes 

F(L - a )  
sinhh+ __ X. (11.12.5) 

F sinhh(L - a )  
Vt(X) = --= 

P A  sinhXL P 
Furthermore, upon considering the case for P located at the centre, a = L/2, 

since p = z i i ,  where p = hL/2, we replace Eq. (1 1.10.17) for the deflection v ( x )  
at x = L/2 by 

v -  (;) - _. [3(p - tnnhii)] 
ii3 

Similarly, from Eq. (1 1.10.21b), the moment M(L/2) becomes 

(1 1.12.6a) 

(11.12.6b) 

We then observe: 

(i) i f P  -+ 0, (p -+ 0) then y -+ 1 
(ii) if PE << P ,  1 << p then << 1. 

Upon substituting in Eqs. (11.12.6), we obtain for P/Pe  = 0.25, v(L/2) = 
0.8036 and M(L/2) = 0.8357. I fP /PE = 0.5, v (L/2) = 0.6718 and M(L/2) = 
0.724y.  

The effect of the axial tension force on the displacement v(L/2) and on the 
moments, is shown in Fig. (1 1.12.3). In contrast to the beam-column, we observe, 
as expected, that the tensile force P tends to reduce the lateral displacements, shears 
and moments. 

11.13 General comments and conclusions 

In this chapter, we have established the basic ideas required for the analysis of the 
stability and instability of rods subjected to axial compressive loads. The critical 
load P,, at which the straight rod ceases to be in stable equilibrium, was found to 
be the force that leads to a neutral equilibrium state. In other terms, the critical 
load P,, may also be considered as being the smallest force that can maintain the 
rod in a deflected position. By studying the simple model of a rigid rod, it was 

Figure 11.12.3 
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possible to incorporate all the basic ideas of stability analysis. Indeed the ideas 
were developed via the simple model as they could be expressed in terms of the 
most simple mathematics. The stability analysis of elastic rods, while leading to a 
more complex mathematical treatment, was based on the same essential ideas. 

For the case of beam-columns, we observe that the behaviour of the member is 
quite different: equilibrium states can exist in the deflected position for all values of 
a compressive axial force. This is reflected mathematically by the inhomogeneous 
nature of the governing differential equation (due to the lateral loading term) and 
hence we are not led to an eigenvalue problem. Thus, in this case, one cannot 
physically refer, in the same sense, to instability of a beamcolumn. 

Finally, as mentioned previously, we recall that there exists another approach to 
the analysis of stability; namely an energy approach. By considering stability via 
such an energy approach, it will be possible to gain further insight into the problem; 
this approach will also lead to the development of methods that yield approximate 
solutions in cases where exact solutions are unobtainable. We defer such a study to 
a later chapter. 

Section 3 

11.1: Determine the value of the critical load for the rigid rods shown in Fig. (1 lP.l). 

Figure 11P.1 

11.2: Two rigid rods, each of length 1 ,  connected by a hinge and a torsional spring 
with constant 0 (N-m/rad) a t  B, are supported a t  A and C, as shown in Fig. (1 1 P.2). The 
rods are subjected to two axial forces P acting a t  B and C. Determine the value of the 
critical force Per. 
Note: The systems of Problems 11.3-1 1.8 are two-degree-of-freedom systems since 
the displaced configurations are defined by means of two independent parameters 
(either angles of rotation and/or displacements). The determination of the critical 
loads is based on the concept of neutral equilibrium, namely that two arbitrary ad- 
jacent equilibrium states are in equilibrium, i.e. the original (vertical) state and the 
perturbed state. 

Figure llP.2 
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11.3: The system shown in Fig. (11P.3) consists of two rigid rods supported 
by torsional springs with constant j3 (N-mlrad). Determine the value of the critical 
load. 

11.4 Given a system consisting of a rigid rod supported by linear springs with con- 
stants k1 and k~ and by a torsional spring with constant ,S, as shown in Fig. (llP.4). 
(a) Determine the critical load Pc, in terms of k,, k2, p and L .  (b) Determine the value 
of L that leads to a minimum value of Pcr. What is (Pcr)mgn? 

l l .S:*  A system, consisting of two rigid rods, each of length L ,  is supported by a 
torsional spring having constant b1 (N-m/rad) a t  A and a torsional spring with con- 
stant & at  the hinge 6, as shown in Fig. (1 1 P.5a). (a) Determine the critical axial force 
P that causes instability. (b) Based on the answer to (a) and letting y = p2/p1, show 
analytically that the critical force P of the system of Fig. (1 1 P.5b) i s  greater than that 
of Fig. (1 1P.5a) for any finite value of j3. 

Figure llp.3 

11.6: Two rigid rods, each of length 2 L  are connected a t  C by means of a hinge and 
are simply supported a t  A and by linear springs with constant k (N/m) a t  B and D, as 
shown in Fig. ( I  1 P.6). Determine the critical axial load P that causes instability of the 
system. 

11.7:* The system shown in Fig. (1 1P.7) consists of two rigid rods AC and CB, each of 
length L ,  which are hinged a t  C and are supported by a linear spring with constant kat 
B and a torsional spring with constant j3 at  C. (a) Determine the critical load Pc,. (b) If 
the values for the constants are given as k = 5 Nlcm and j3 = 500 N-cmlrad, determine 
the critical load when (i) L = 1 2  cm and (ii) L = 8 cm. (c) Given the values k and j3 in 
(b), for what length L will the system can carry the greatest load P before instability 
occurs? What is this load? 

Figure llP.7 
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11.8: A system consisting of three rods, AB, BC and CD, whose total length is L, 
is supported by springs with constant k (N/m) at the hinges B and C, as shown in 
Fig. (llP.8). An axial load P acts at A. (a) Determine the critical load Pcr. (b) What 
should be the ratio of b/a in order to  maximise PJ What is (Pcr)max? 

Figure 1 IP.8 

Figure 11P.9 

Figure 11P.10 

Sections 4 and 5 

11.9: A measuring rod, made of wood, is assumed to  behave elastically with E = 
10 GPa. The length of the rod is  2 m and the dimensions of the cross-section of the rod 
are 10 mm x 16 mm. The rod is subjected to  an axial compressive force P. (a) Under 
what force will the rod buckle, assuming the rod to  be pin-connected at both ends, as 
shown in Fig. (1 1P.9a). In what plane will the rod buckle? (b) Determine the buckling 
load of the rod if, in addition to  the two end supports, the rod is  braced a t  point B 
in such a way that, as shown in Fig. (11P.9b), no displacement in the r-direction can 
occur at this point. In what plane will the rod buckle? 

11.10: It is required t o  design a-column 3 m in height, which is pinned at both ends. 
Two options are available: (a) a steel (E = 200 GPa) angle 76 x 76 x 12.7 and (b) two 
steel angles 51 x 51 x 9.5, which are bolted together t o  form a monolithic section, 
as shown in Fig. (11P.10). In each case the axial compressive force acts through the 
centroid of the section. (Note that, from the given tables of Appendix E, the total 
mass in the two cases is the same.) Determine the Euler buckling load for options 
(a) and (b). 

11.11: A rod AB of flexural rigidity E l  and length L is fixed at A and free at B. A 
compressive axial force acts at the free end. Given that the cross-section of the rod is 
an angle section a x 3a with thickness t (t << a). A rigid plate is attached at the free 
end, as shown in Fig. (1 lP. l  I), such that the load P acts through the centroid of the 
cross-sections. Determine the critical load in terms of E, a, t and L. 
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Figure 11P.11 

11.12: A system, which consists of three rods each of length L and flexural rigidity 
E I ,  and which are connected by means of a hinge at B, is subjected to  a force P, as 
shown in Fig. (1 1P.12). The system is assumed t o  fail due to  buckling. (a) Can the rods 
buckle independently or must they buckle simultaneously? Explain, using sketches. 
(b) Determine the critical load Pcr. 

Note: In Problems 11.13-11.21, it is required to solve the problem starting from the 
basic governing equation, €/v"(x) =-M(x), together with the appropriate boundary 
conditions. 

11.13: A cantilever rod of length L and flexural rigidity E I is subjected t o  an ax- 
ial compressive force P acting through the centroid, as shown in Fig. (11P.13a). 
(a) Determine the loads causing instability and the lowest buckling load PE,. (b) What 
is the buckling mode (eigenfunction), v = v(x), corresponding to  P,,? Sketch the buck- 
ling mode. (c) If the cross-section of the rod is a rectangle, as shown in Fig. (1 lP.13b), 
express P,, in terms of f, band L . 

Figure 11P.12 

Figure llP.13 

11.14* A rod AB having flexural rigidity E /  and length L i s  fixed at A. While the rod 
is free t o  move in the longitudinal x-direction at B, there exists a constraint that pre- 
vents rotation a t  B. An axial compressive force P acts through the centroid, as shown 
in Fig. (1 1P.14a). (a) Obtain the characteristic equation 

sin (2) [tan (g) - $1 = 0, = g, 
(b) Determine the lowest critical load P,, and the corresponding buckling buckling 
mode v = v(x). Sketch the buckling mode. (c) If a simple support, preventing deflec- 
tion at the mid-point is attached to  the rod as shown in Fig. (11P.I4b), determine the 
critical load P,, for instability. Sketch the corresponding buckling mode. 

11.15: A rod AB of length L and flexural rigidity E l  is pinned at A and supported 
by means of a torsional spring having constant j3 (N-m/rad). An axial compressive 
force acts at the free end B, as shown in Fig. (1 1 P.15). (a) Show that the characteristic 

Figure llP.14 



440 Stability and instability o f  rods under axial compression 

equation whose lowest root yields the critical load P,, is  given by 

BL K E l  
I2 

tan(hL) = -, h = -, 12 = -. 
hL 

(b) Determine Pcr for the limiting case B 4 00 and sketch the bucking mode. (c) De- 
termine Pw for the limiting case E l -+ 00 and sketch the bucking mode. (Note: See 
computer-related Problem 11.47.) 

11.16:: ArodABof length L andflexural rigidity€ I isfixedat Bandsimplysupported 
by a linear elastic spring having constant k (N/m) (k > 0). A force P acts as shown in 
Fig. (1 1P.16). (a) Show that the characteristic equation whose lowest root yields the 
critical load P,, i s  given by 

tan(hL) = hL[1 - (hL)’/uI, h = m, 01 = kL3/&l .  

(b) What is the eigenvalue h and P,, for k-+ 00? (Note: See computer-related 
Problem 11.48.) 

11.17: An elastic rod AB of length L and flexural rigidity E l is fixed at A and con- 
nected by means of a hinge t o  a rigid strut BC of length a = y L, which is  supported at 
C, as shown in Fig. (1 1 P.17). An axial compressive force acts at C. Determine the char- 
acteristic equation whose lowest root yields the critical load Pcr. (Note: See computer- 
related Problem 11.49.) 

11.18* An elastic rod AB of length L and flexural rigidity E l is fixed at A and rigidly 
connected at B t o  a rigid strut BC of length a, which is supported at C, as shown in 
Fig. (1 1 P.18). An axial compressive force acts at C. (a) Determine the characteristic equa- 
tion whose lowest root yields the critical load PO. (b) From the characteristic equation 
obtained above, determine the critical load P,, for the limiting case a -+ W. Sketch 
the model that represents this limiting case. (c) Obtain the characteristic equation for 
the limiting case a -+ 0. Sketch the model that represents this case? 

11.19: An elastic rod AB of length L and flexural rigidity E I is  simply supported at 
A and rigidly connected at B t o  a rigid strut BC of length a = yL, which is supported 
at C, as shown in Fig. (11P.19). An axial compressive force acts through the centroid 
of  the system at C. (a) Determine the characteristic equation whose lowest root yields 
the critical load Pc,. (b) From the characteristic equation obtained above, determine 
the critical load P,, for the limiting case a -+ 0. Sketch the model that represents this 
limiting case. (c) Repeat (b) for the limiting case a -+ 00 (Note: See computer-related 
Problem 11.49.) 

11.20F A rigid bar BC of length y L is rigidly attached t o  a linear elastic rod AB of 
flexural rigidity E I and length L, as shown in Fig. (1 1 P.20). The system, simply SUP- 

ported at A and B, i s  subjected t o  an axial compressive force P acting through the 
centroid at C. (a) Determine the characteristic equation whose lowest root yields the 
critical load P,,. (b) Obtain the critical load PCr for the limiting casescr -+ 0 and 01 -+ W. 

Sketch the models that correspond t o  these cases. 

11.21:* An elastic rod ACB, having flexural rigidity E l and length L, is simply sup- 
ported at A, B and C, as shown in Fig. (1 1.5.4a), and is subjected to  an axial force P a t  
B [see also Fig. (1 IP.21)]. (a) Obtain the characteristic equation, namely Eq. (1 1.5.151, 
for the eigenvalue h corresponding t o  the critical load P: 

yaL(i - y )  sin(1L) - sin(yhL) sin[(l - y ) h ~ ]  = 0, a2 = P / E / .  
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(b) From the above characteristic equation, show that if y = 0.5, i.e. when the support 
C is at the mid-span, the characteristic equation reduces to  

s in(g)[ tan(+)-+]  =o, 

whose lowest root yields the critical value, fcr = 4 E / / L 2 .  (c) Show that as y + 0, 
the characteristic equation reduces to  tanyL = y L ,  namely Eq. (11.5.17). (Note: See 
computer-related Problem 11 30.) 

Figure llP.21 

Sections 8 and 9 
11.22: The deflection of the rod ACB, shown in Fig. (11P.22), is given by [see 
Eq. (1 1.6.5)l 

v(x) = e[ tan (+) sin hx + coshx - I], = 

(a) What are the reactions RA and Re? What is the shear force VC V(L/2)? (b) Deter- 
mine the shear force V(x) and evaluate VA = V(x = O), Ve = V(x = L) and VC. Explain 
differences with RA and Re by means of sketches. Why is there no difference with VC 
given in (a)? 

Note: Solve the stability problems of problems 11.23-1 1.26 using the fourth-order 
equation, NwiV(x)+ PV'(x) = 0, together with the appropriate boundary conditions. 

11.23: (a) Derive the characteristic equation, (b) determine the buckling mode and 
(c) the critical buckling load P,, for Problem 11 .I 3. 

11.24: (a) Derive the characteristic equation and (b) determine the buckling mode 
for Problem 11 .I 5. 

11.25:* (a) Derive the characteristic equation and (b) determine the buckling mode 
for Problem 11.16. 

11.26: (a) Derive the characteristic equation and (b) determine the buckling mode 
for Problem 11.17. 

Sections 10 and I I 
11.27: The beam-column AB of length L and flexural rigidity E / is subjected to  a uni- 
form load w(N/m) and a compressive force P acting through the centroid, asshown in 
Fig. (11P.27). (a) Determine the deflection v(x). (b) Evaluate v(L/2) at the mid-point 
and express this as v(L/2) = 6 .  f(p), where 6, the mid-point displacement of a rod 
subjected to  only the uniform load, is given by 6 = & and p = (n/2)I/P/75; [see 
Eq. (11.10.18)]. (c) Show that as p -+ 0, v(L/2) --f S. (d) Show that v(L/2) -+ CO as 
f -+ f E ,  i.e., instability is  associated with an infinite deflection. (e) Determine the 
moment M(x) and shear force V(x). 

11.28:* A beam-column AB of length L, flexural rigidity E /  and fixed at A, is sub- 
jected to  a uniformly distributed load wand an axial compressive force f ,  which passes 
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Figure llP.28 

through the centroid at the free end B, as shown in Fig. (1 1P.28). (a) By means of the 
governing differential equation E I V''(X) = -M(x), determine the deflection v(x) and 
evaluate v(L) at the free end. (b) By associating the infinite displacement, v(L) --f 00, 

with instability, determine the critical load P,, for a cantilevered rod. (c) Determine 
the ratio (where 6 = wL4/8E I i s  the deflection at the free end if P i s  not acting) 
and express this ratio in terms of P/Pcr .  

11.29: Given the beam column AB of length L and flexural rigidity E I subjected to  
the linearlyvarying load q(x) and an axial compressive load P,  as shown in Fig. (1 1 P.29). 
(a) Determine the deflection v(x). (b) Determine the shear and moments, V(x) and 
M(x), and evaluate extreme values. (c) Evaluate V(x = 0) and show by means of a 
figure why it is not equal t o  qoL/6. 

Figure llP.29 

11.3W A linearly elastic beam-column having a flexural rigidity E l ,  i s  subjected to  
a thrust P and a moment MO, as shown in Fig. (llP.30a). (a) Determine the lateral 
displacement, v(x). (b) From part (a), write the solution for the system subjected t o  
a force P acting at the end C of  a rigid bar BC, as shown in Fig. (11P.30b). (c) Deter- 
mine Ac, the horizontal displacement of point C, assuming small rotations. (Assume 
that the horizontal displacement of point E) is negligible.) (d) Rederive the expression 
for AC if the lateral displacement v(x) i s  neglected in the moment expression, i.e. if 

Figure 11P.30 
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M = M(P, e, L;x). Note that this leads to  a linearised solution. (e) Show that for small 
values of the non-dimensional quantity P L 2 / E / ,  the linearised approximation of the 
solution obtained in (c) above, approaches that of (d). (Hint: Expand the solution of 
(c) in a Taylorseries.) (f) Explain why, although the beam is made of a linearly elastic ma- 
terial, the results of part (c) are nonlinear. (Note: See computer-related Problem 11 5 1  .) 

Review and comprehensive problems 

11.31: Two rigid rods, AB and BC, having length a and b, respectively, are connected 
by means of a hinge at B t o  which is attached a torsional spring with constant p 
(N-m/rad), as shown in Fig. (1 1P.31). An axial compressive load is applied at C. (a) De- 
termine the critical load P,, in terms of L ,  and c, where c E alb. (b) What is the ratio 
albfor which Pcr will be a minimum? What is (Pcr)mtn? 

11.32: A rigid strut BC of length a is attached to  a rod AB of length L and flexural 
rigidity E I .  Acompressive axial force P acts at C, as shown in Fig. (1 1 P.32). (a) Determine 
the characteristic equation whose lowest root yields the critical value P,, for instability. 
(b) Evaluate P,, for the limiting cases a -+ 0 and a -+ CO. 

11.33: For the beam-column AB, shown in Fig. (1 1 P.33)' subjected to  a force F at the 
mid-span and a compressive thrust P,  the deflection v(x) is given by Eq. (1 1.10.1 3) and 
hence the slope 6 2: v'(x) is given by the expression 

F 

(a) Show, for infinitesimal v', that the shear V at x = 0, given by Elv"'(x) = -V(x), is 

F 
V(0) = 

2 cos li. L 12' 

and that this is equivalent t o  

V(0) = F / 2  + P V'(0). 

(b) Show that if P /PE is sufficiently small, the expressions above reduce to  the approx- 
imate relation 

where PE = n 2 E / / L 2  i s  the Euler buckling load. (Note: See computer-related 
Problem 1 1.52.) 

11.34 A simply supported rod AB of length L and flexural rigidity E /  i s  subjected t o  
two eccentrically applied loads, asshown in Fig. (1 1 P.34). Determine the deflection v(x). 

11.35:* A linear elastic circular rod of radius R and length L ,  fixed at A and simply 
supported at B, rests against a linear elastic spring of stiffness k (N/m), as shown in 
Fig. (11P.35). The modulus of elasticity of the rod is E and the coefficient of thermal 
expansion is a. The rod is slowly subjected t o  an increasing temperature AT such that 
both the rod and the spring come under compression. (a) Determine the critical tem- 
perature increase, AT,,, under which the rod will buckle. (b) What i s  the elongation 
of the rod, e, immediately before buckling takes place? (c) What is AT,, if k - t  CO? 

11.36: 'Due to  a compressive axial load passing through the centroid, a rod will al- 
ways buckle in a plane that contains a principal centroidal axis of the cross-section'. 
Comment on the validity of this statement, and give reasons. 



444 Stability and instability of  rods under axial compression 

11.37: A rod AB of length L and having flexural rigidity E / i s  simply supported at A 
and at B by a wire BC whose axial rigidity is €A, as shown in Fig. (1 1P.37). Determine 
the deflection v(x) of the rod in terms of E, I ,  A, L and a. (Note: Assume rotations 
are infinitesimal.) 

11.38 An axial compressive force P acts on a simply supported elastic rod consisting 
of two rigidly attached segments AC and CB with flexural rigidity E 1 and a € / ,  0 < a,  
respectively, as shown in Fig. (1 1P.38). (a) Obtain the characteristic equation for the 
eigenvalue a = m, namely 

c [tan ($) - tan ( ~ ) ]  = tan(yaL)[ 1 + tan ($) tan ($)I, 
where c = &. (b) By examining the limiting cases y = 1 and y 3 0, verify that the 
roots of the characteristic equation correspond to  the known Euler buckling loads. 
(Note: See computer-related Problem 1 1.53.) 

11.39:* An axial compressive force P acts on an elastic rod fixed at A and free at B. 
The rod consists of two rigidly attached segments AC and CB with flexural rigidity E I 
and a €  1 (0 < a), respectively, as shown in Fig. (1 1P.39). (a) Show that the characteristic 
equation for the eigenvalue a = m, is given by Eq. (1 1.5.18), namely 

where c = ,hi. (b) By examining the limiting cases y = 1 and y 0, verify that the 
roots of the characteristic equation correspond to  the known Euler buckling loads. 
(Note: See computer-related Problem 11.53.) 

11.40" Two rods AB and CD having flexural rigidity € 1  and fixed at A and D, are 
connected by means of hinges at B and C to  a bar BC, as shown in Fig. (11P.40). A 
vertical force P acts at B. Determine the characteristic equation whose lowest root 
yields the critical load Pc,.. 

11.41: A rigid bar ACB is placed horizontally on three identical (massless) rods, which 
are fixed at one end and are rigidly attached to  the bar, as shown in Fig. (1 1 P.41). The 
rods are of length L and flexural rigidity E 1 .  Determine the maximum permissible 
weight Wof  the horizontal bar if bucking is not t o  occur. 

11.42: A spring of length LS, having an unknown constant k (Nlm), is  situated in 
a frictionless slot of radius R [see Fig. (11P.42a)l. In order to  determine k, an elastic 
rod of length L < L,, having the same radius R, i s  inserted in the slot, as shown in 
Fig. (11P.42b). The rod is found t o  buckle under a critical load Pcr. (a) Determine k 
in terms of E, R, L and Per. (b) Determine the value of k if the rod is made of steel 
( E  = 200GPa), R = 2 cm, L = 2 m, and if P,, = 50,000 N. 

11.43:* Aforce P acts on a horizontal bar BC, which is  connected by means of hinges, 
t o  two rods, AB and CD, as shown in Fig. (1 1P.43). Rod AB is fixed at A and rod CD is  
hinged at D. Both rods have the same flexural rigidity E 1 .  Failure is assumed t o  occur 
due t o  buckling of the rods when P reaches P,,. Determine (a) the position of the load 
P, namely a, for which P,, is a maximum and (b) (fcr)max. 

11.44:* A linear elastic circular rod having flexural rigidity E 1 and length L is inserted 
in a smooth (frictionless) circular slot of length L, > L and the same radius as the rod. 
The rod is inserted by applying a force P,  as shown in Fig. (1 1P.44). If the slot contains 
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Figure 11P.42 

a linear spring of initial length L ,  whose constant i s  k, determine the maximum value 
of k if buckling is not t o  occur as P increases until y = L .  

11.45:* A system consists of two rods AB and BC, which are connected by means of 
a hinge at B, as shown in Fig. (1 1P.45). The two rods have the same flexural rigidity 
E l .  Failure is assumed t o  occur due to  buckling when a force P is applied at B. (a) Can 
each rod buckle independently or must they buckle simultaneously? Explain. (b) At 
what angle cp with respect t o  BC should the force be applied in order to  maximise the 
critical force P,,? (c) Determine (PcrImax in terms of El, L and a. 

11.46:* A rod ACB having flexural rigidity E l  and length L is simply supported at the 
two ends A and B and by a spring of constant k (N/m), at the mid-point C, as shown 
in Fig. (1 1P.46). For which values of k will the rod buckle such that vc = 0. (Note: See 
computer-related Problem 11.54.) 

The following problems, which require the use of a computer, are to be solved in 
conjunction with the referenced problems. 

11.47: Referring t o  Problem 11.15, express the given characteristic equation as 
tan(g) = a/q, where g = hL is  a non-dimensional variable, and (a) Determine, by means 
of a computer, the roots of the transcendental equation. (b) Using a plotting routine, 
plot the non-dimensional ratio & as a function of a, where Pcr(fi+W = n2E 1/4L2. 

11.48: Referring to  Problem 11.16, (a) rewrite the given characteristic equation as 
tang = g(l  - a’/.), where k L 3 / E I .  (b) By means of a computer, solve 
the above transcendental equation for 9, determine the critical load as a function of 
g and using an appropriate plotting routine, plot PCr/Pc: as a function of a, where PE 
i s  the Euler buckling load. 

11.49: Referring to  Problem 11.17 or 11.19, (a) rewrite the relevant characteristic 
equation in terms of the non-dimensional variable, a = hL,  and determine, by means 
of a computer, the roots of the transcendental equation for y > 0. (b) Using a plotting 
routine, plot 4 as a function of y. 

= hL and a 

Figure 11 P.44 
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Figure llP.46 

11.50: Referring to  Problem 11.21, (a) determine the roots of the characteristic equa- 
tion for values 0 < y 5 0.5 and (b) using a plotting routine, plot the non-dimensional 
quantity P,,/PE (where PE = x2EI/L2), as a function of y in this range. 

11.51: Referring to  Problem 11.30, (i) prepare a table of numerical results of the 
non-dimensional displacement LAc/ea as a function of P L * / E I  (0 5 PL2/EI 5 31, as 
obtained in parts (c) and (d) of Problem 11.30, and (ii) using a plotting routine, plot 
the two curves on the same graph. Determine the percent error of the approximate 
solution of (d) and interpret the behaviour of the curves. For what values of P L 2 / E I  
is the percent error less than 10%? 

11.52: Referring t o  Problem 11.33, (a) by means of  Eq. (I), determine the effect of 
P on V(0)  as a function of P/PE(O 5 P/PE < 3) and (b) using a plotting routine, plot 
the results of (a) and the approximate relation [Eq. (3) of Problem 11.331 on the same 
graph. For what values of PIPE is the approximate relation accurate t o  within 10%? 

11.53: Referring t o  Problem 11.38 or 11.39, rewrite the relevant characteristic equa- 
tion in terms of the non-dimensional variable 9 = kL and choose one or more of the 
following options: 

(i) By means of a computer, determine the roots (eigenvalues), q, of the relevant 
transcendental equation for discrete values of 01 E f i  (0 < 01 5 1) and, using a 
plotting routine, plot the resulting family of  curves asa function of y(0  5 y 5 1). 

(ii) By means of a computer, determine the roots (eigenvalues), q, of the rele- 
vant transcendental equation for discrete values of y (0 5 y 5 1) and, using 
a plotting routine, plot the resulting family of curves as a function of 01 = 
f i ( 0  < a 5 1). 

11.54 Referring t o  Problem 1 1.46, (a) verify that the characteristic equation for buck- 
ling in the symmetric mode is given by 

tan< - r + r3ia = 0, 

where = hL/2 = $-m and (y: = kL3/16E 1 .  (b) Using a plotting routine, plot a 
graph of P /  PE vs. 01 (where PE is the Euler buckling load) for the case of symmetric buck- 
ling and show that if 01 ? A ~ ,  buckling occurs in the anti-symmetric mode with vc = 0. 



12.1 Introduction 

In the development below, we consider the stresses and deformation of relatively 
long prismatic elastic members of arbitrary cross-section subjected to torsion. We 
first establish a Cartesian coordinate system (x. y ,  z ) ,  where the y -  and z-axes lie in 
the plane of the cross-section and the x-axis is the longitudinal axis [Fig. (12.1.1)]. 
A torque T 5 M, is applied about the x-axis as shown, and all sections rotate about 
this axis without changing their shape; we refer to points on the x-axis as the centre 
of twist. As we shall see, the analysis of torsion of members of arbitrary cross- 
section is much more complex than that of members whose cross-sections consist 
of circles. Let us therefore first recall the solution for members of circular cross- 
section, as developed in Chapter 7 .  This solution was based upon the following 
conclusions (which were deduced from symmetry considerations): 

II all plane cross-sections remain plane after deformation, 
all radial lines remain radial straight lines, 

II circular cross-sections remain circular. 

Figure 12.1.1 

From the above, using strain-displacement and elastic stress-strain relations, it 
was found that the resultant shear stresses vary linearly with r ,  the radial distance 
measured from the x-axis, and more specifically the shear stress component in the 
circumferential direction 0 was found to be given by the expression 

Tr 
z,(j = - ( 12.1.1 a) 

J ’  
where J is the polar moment of the cross-sectional area about the x-axis. Further, 
the unit angle of twist 0 (i.e., the relative rotation of two cross-sections a unit 
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distance apart) was given by 
T 

GJ’  
@=:- (12.1 .lb) 

where G J is the torsional rigidity. 
Now, the above assumptions and results are valid only for members of circular 

cross-section, the solution of which was obtained by Coulomb in 1784. The more 
general solution for the torsion of members of arbitrary cross-section was given in 
1855 by de Saint Venant. As we shall see, the results are rather startling when we 
compare them with the circular case. We list here three interesting results (which 
will be shown to be true for elliptic and rectangular sections): 

all cross-sections (except circular cross-sections) warp, i.e., points displace non- 
uniformly in the longitudinal x-direction; 
the maximum torsional shear stresses at the edge generally occur at points that 
are closest to the centre of twist (the x-axis) [compare with Eq. (1 2.1.1 a)], 
if two members of the same material and same cross-sectional area (but different 
shapes) are subjected to the same torque, the one having an area with a smaller 
polar moment will have a greater torsional rigidity [compare with Eq. (12.1.1 b)] 
provided that the cross-sections are ‘simply connected’.+ 

We now wish to consider the solution of the general torsion problem, which is 
usually referred to as the de Saint Venant torsion solution. In developing this solu- 
tion, it is no longer possible to use the traditional mechanics-of-materials approach 
as was the case with the Coulomb solution for circular members. Instead we require 
a more exact approach; namely, we must use the basic equations of the theory of 
elasticity. However, before doing so, we first discuss and indicate the aspects of the 
approach that will be used. 

12.2 Semi-inverse methods: uniqueness of solutions 

Let us recall that in solving a problem in solid mechanics where known forces 
(tractions) are applied to a body, we are interested in determining (i) the state of 
stress at all points (six independent quantities) and (ii) the displacements at all 
points (three independent quantities) within the body. Then, from the resulting 
displacements, we can also obtain (iii) the strains within the body. 

Thus, in general, recalling our discussion in Chapter 5, we must solve for 15 un- 
knowns: 6 stress components, 6 strain components and 3 displacement components. 
(See Table 5.1 of Chapter 5.) 

On the other hand, as we have also seen in Chapter 5, for an elastic body there 
exist, in general, 15 equations: (a) 3 stress equations of equilibrium, (b) 6 strain- 
displacement relations, and (c) 6 elastic stress-strain relations. In addition, (d) the 
stress state at the boundary of the elastic body must correspond to the known 
tractions that exist at the surface. 

It is quite understandable that to solve in a straightfonvard manner for all the 
unknowns, using the 15 equations, is a very difficult, if not impossible, task. 

Now, instead of assuming that absolutely nothing is known about the stresses 
or displacements in the body, it is reasonable to use some physical knowledge and 

t Mathematically, a cross-section is said to be simplv connected if the cross-section contains no ‘holes’ 
If the cross-section contains n holes, it is said to be n + 1 connected. Thus a pipe IS said to be doub& 
connected. In general, one refers to a crowsectton as being either simply connected or multi-connected. 



12.3 The general de Saint Venant torsion solution 449 

intuition, based on plausible reasoning and assume, for example, that the displace- 
ments behave according to a certain pattern. 

In making assumptions on the displacements it will also be reasonable to assume 
that the displacements are continuous throughout the body and that all displacements 
are ‘single-valued’, i.e., the displacement of any point is described by a single vector. 

Let us say that we have made some physically plausible assumption on the dis- 
placement pattern (satisfying the above conditions), and that from these we can 
satisfy the relevant equations within the body and the boundary tractions [i.e., 
(a)-(d) above]. We will then have a solution to the problem, Such a solution, ob- 
tained by making certain ‘guesses’ in the unknowns and then satisfying all relevant 
equations, is known as a semi-inverse method. 

Assume now that we are able to obtain a solution that satisfies all the relevant 
equations; we then pose the following question: is it possible that there exists some 
other solution that also satisfies these equations and the surface traction? For ex- 
ample, if we were to start with a different assumption on the basic displacement 
pattern, could we then obtain a new and different solution? Fortunately, there exists 
a uniqueness theorem, which may be stated as follows: If internal stresses and com- 
patible displacements satisfying the relevant equations (equilibrium, stress-strain, 
strain-displacement) are found and if the prescribed (known) boundary conditions 
on the body are satisfied, then the solution obtained is the only possible solution, 
i.e., the solution is unique. 

Thus, a solution obtained by the semi-inverse method is the solution of the 
problem. 

The above uniqueness theorem, which was stated without proof, is a general 
theorem valid for all linear elastic media subject to small strains. We shall accept 
this uniqueness theorem without proof, based on physical intuition. (A rigorous 
mathematical proof, which is beyond the scope of our study, may be found in any 
text on the theory of elasticity, and is based on a consideration of the total energy 
of a system.) 

Having accepted the uniqueness theorem as given above, we can now proceed 
confidently with the de Saint Venant torsion problem. 

12.3 The general de Saint Venant torsion solution 

Consider a linearly elastic prismatic member of arbitrary cross-section, as shown 
in Fig. (12.3.la), subjected to a torque T M,. 

Figure 12.3.1 

In general, the cross-section may have any number of holes say n, as shown in 
Fig. (12.3.lb), i.e., it may be multi-connected or may have no holes, i.e., it may be 
simply connected. 

We denote the external boundary curve by CO and all interior boundary curves 
byC,, i = 1.2 ,..., n. 
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Let the continuous displacement of a generic point P be given by 

U = ui + vj + wk. (12.3.1) 

Without loss of generality, we assume that the displacement v and w of all points 
in the plane x = 0 are zero; i.e., the cross-section at this plane is assumed to be 
fixed against rotation. Note that we have not assumed U to be zero. 

Since we expect shear stresses to exist on the cross-section, we denote the shear 
stress components on any x-plane by txy and txz, as shown. 

The solution to the problem is restricted to those cases for which strains and 
relative rotations are small. 

According to the semi-inverse method, we shall now make a basic assumption 
on the displacement pattern, based on a physically plausible argument. 

Due to an applied torque, all cross-sections clearly will undergo rotations (without 
changing shape); i.e., all cross-sections are assumed to rotate about the x-axis, 
namely the 'centre of twist' with respect to the section x = 0, which is assumed 
iixed. Denoting the unit angle of twist by 0, the rotation of a plane located at any 
x will then be Ox. Thus, the relative rotation of two cross-sections, a distance Ax 
apart, is 0Ax.  

Figure 12.3.2 

Let the distance from the centre of twist to the generic point P(x, y ,  z )  be denoted 
by R [Fig. (2.3.2)]. Then, if the unit angle of twist 0 is small, the relative dis- 
placements PP* in a cross-section, located at x 4- Ax (with respect to those - -  at the 
cross-section located at x), are perpendicular to the radial line OP (i.e., PP* I OP). 
These displacements are therefore given by 

- 
PP* = R * (0 * Ax). 

The displacement components in the y -  and z-directions are then 

AV = -E* - sin(LPP*Q) = -ROAx sin(iP0y) 
= -ROAX(Z/R)  -OAX z (12.3.2a) 

and 

AW = (E*) * COS(LPP*Q) = ROAX . COS(LPO~) 
= ROAx(y/R) = OAX * y . ( 12.3.2b) 
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Furthermore, we shall assume that the displacement components of points in 
the x-direction (and all its partial derivatives) are continuous, but are independent 
of x; i.e., allplanes warp identically. 

Thus, we start the solution with the following basic assumption on the displace- 
ment pattern:+ 

U = u b ,  z) ,  (1 2 -3.3 a) 
AV = - o A x  . Z  (12.3.3b) 
AW = @Ax . y ,  (1 2.3.3~) 

(continuous, class c2) 

where we note that in the limit A x  -+ 0, 

a w  
- = o y ,  
ax 

( 1 2.3.4a) 

(S2.3.4b) 

Now, observing that AV and A w  are not functions of y and z ,  respectively, and that 
all cross-sections are assumed to rotate with respect to the fixed cross-section at 
x =E 0, it follows that v and w are not functions of y and z respectively.$ Therefore, 
from the strain-displacement relations, Eq. (3.7.20), we have 

au av aw 
ax ay az 

E,, = - = 0,  Eyy = - = 0 ,  E=, = - - - 0. (12.3.5a) 

Furthermore, since all cross-sections rotate without changing shape, lines that were 
initially orthogonal remain mutually perpendicular; specifically, lines originally 
parallel to the y -  and z-axes remain orthogonal after deformation. It follows that 

I a w  
2 ay 

Eyz = - (- + E) = 0. (12.3.510) 

However, 

(12.3.Ga) 

(12.3.Gb) 

Then, from the stress-strain relations, Eqs. (4.4. lO), we obtain 

z,, = zvv = zzz = t,, = 0, (S2.3.7a) 

By class C2 we mean that u(y, z )  as well as its partial derivatives up to the second order with respect to 
y and z is assumed conhnuous. 
To demonstrate this assertion, we first note that integration of Eqs. (12.3.4) yields 

2) = -ox2 + E@, z ) ,  (a) 
w = oxy + &(y, 2 ) .  0) 

Since the cross-section at x = 0 is assumed to be fixed against rotation, it follows that E = 6 = 0 
identically and therefore v and w are not functions of y or z, respectively. Thus, we have 

U = - 0 x z .  (C)  

w = o x y .  (d) 
It is worthwhile to observe that Eqs. (c) and (d) are valid only if /Ox 1 << 1 and are otherwise spurious. 
[We note here, in passing, that Eqs. (c) and (d) will not be used in the analysis.] 
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and the only remaining non-zero stresses are 

txy = ~GE,,  = G (g - 0,). (12.3.7b) 

(12.3.7~) 

In passing, we observe from the above that the only existing stresses t,, and z,, 
are continuous functions of y and z (and do not depend on x). 

Up to this point, we have made use of the strain-displacement and the stress- 
strain relations. Let us now examine the stress equations of equilibrium, Eqs. (2.4.4). 
From Eq. (2.4.4b), 

we note that the second and last terms vanish by virtue of Eq. (12.3.7a) while 
the first term vanishes since try is not a function of x. Thus this stress equation 
of equilibrium is Satisfied identically. Repeating the same process, we see that 
Eq. (2.4.4~)~ 

a txz  at,, atzz 
an ay a Z  

+ - + - = 0, - 
is also satisfied identically. 

Consider now the first equation of equilibrium, Eq. (2.4.4a), 

atxx at,, atzx + - + - = 0. - 
ax ay aZ 

Since txx = 0, this reduces to 

f 12.3. Sa) 

(12.3.8b) 

which is the remaining equation that must be satisfied throughout the body. 
At this point of the development we have resolved the problem down to two 

unknown stress components, which are continuous in y andz. Now, upon examining 
Eq. (12.3.8b), we observe that if we could express the shear stress components in 
terms of a single function +(y, z), we might simplify the problem even further. 

Let us therefore assume that there exists an unknown continuous function 4 0 ,  z )  
of class C2 such that the stress components are given by 

a4 
ay a 

txz = -- 

Then, Eq. (12.3.Sb) is satisfied identically since 

- _ - -  - 0  a2$ a2+ 
ayaz azay 

(12.3.9a) 

( 1 2.3.9b) 

(1 2.3.10) 

for such a continuous function of (y, z).  Such a function, whose partial derivatives 
yield stress components, is called a stress function. 
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We now seek the appropriate equation that the stress function 4Cy, z )  must satisfy. 
From Eqs. (12.3.7b) and (12.3.7~)~ we have 

- a4 = G (g - 0,) , 
az  (12.3.11a) 

(12.3.1 1 b) 

Operating on Eqs. (12.3.1 la) and (12.3.11b) by a/az and a/ay respectively, 

(12.3. 

(12.3. 

and adding these last two equations, we obtain 

However, we have assumed u(y.  z )  and its partial derivatives to be continuous. 
Therefore the expression in the parentheses vanishes, and we remain with 

(12.3 12) 

Equation (12.3.12) is thus the equation that the stress function must satisfl. We 
observe that this equation corresponds to the physical condition that all displace- 
ments U are continuous and single-valued. 

We note that Eq. (12.3.12) can be written more concisely as 

V24 == -2GO, 

where 

(12.3.13) 

is the (two-dimensional) Laplacian operator. Equations of the type of Eq. (12.3.12) 
are known in mathematics as Poisson equations. 

We may also determine the equation governing the displacement u(y,  z). Oper- 
ating on Eqs. (12.3.1 la) and (12.3.1 lb) by & and respectively, we obtain 

(12.3.14) 

Subtracting the second of Eq. (12.3.14) from the first, we have by Eq. (12.3.10), 

(12.3.15) 

or 

v2u = 0. 
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Equations of the type of Eq. (12.3.15) are known as Laplace equations. 
Summarising at this point, the problem has been reduced to obtaining the stress 

function ~ C V ,  z )  satisfying the equation V24 = -2GO. Once this function has 
been determined, the two non-zero stress components are determined from Eqs. 
(1 2.3.9). 

Furthermore, noting that txv and txz are the scalar components of the traction 
(vector) T, acting on the x-plane [see Eq. (2.3.7a)], the resultant shear stress acting 
on this plane can be obtained simply from the relation [Fig. (12.3.3)It 

/2 

I-c,RI = (.x", + t;J 'j2 = [ ( $)2 + ( ~ ) 2 ]  . (12.3.16) 

Figure 12.3.3 

Now, this resultant shear stress that acts on the x-plane can be expressed in 
terms of components in any two perpendicular directions lying in this plane. Let us 
therefore resolve the resultant shear stress t,R in the two perpendicular directions, 
e.g., into t,, and txs, as shown in Fig. (12.3.3). We wish to obtain an expression for 
these components in terms of 4.  Let n and s be orthogonal unit vectors lying in the 
cross-sectional plane, which specify the n- and s-directions. Further, we denote by 
a the angle that n makes with the y-axis. Then 

txn = txy cosa + txz sina. 
t,, = -txy sina + txz cos a. 

( 12.3.17) 

But, from geometry [Fig. (12.3.4)] 
ay az az ay 
an as an as 

cosa = - = - and sina = - = --. 
Therefore substituting Eq. (12.3.9) and the above in Eq. (12.3.17), there results 

Figure 12.3.4 '#'. (12.3.1813) 

t Here the upper case R is used simply to signify the 'resultant' shear stress rather than a component of 
the stress tensor. 
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We then have 

From Eq. (12.3.18a) we note that the shear stress component z,, acting in the 
n-direction is equal to the ‘slope’ of Cp in the s-direction, while z,, is given by the 
negative of the ‘slope’ of Cp in the n-direction. We shall have reason to return to this 
remark subsequently. 

Let us now return to our main problem: determining the stress function Cp. Al- 
though we h o w  the equation that this function must satisfy [viz. Eq. (12.3.12)l at 
all points in the interior of the body, this is not sufficient to determine Cp. Additional 
information is required, namely, we must know the boundary conditions that Cp must 
satisfy; i.e., we must determine conditions that Cp must satisfy at all points on the 
external boundary CO and on any internal boundaries C, (if such boundaries exist).+ 

However, we notice that we have not yet specified the tractions existing on the 
lateral surfaces of the element, implying that these tractions must vanish. It is this 
condition that provides us with a mathematical statement of the boundary condition 
on Cp. 

Consider any boundary C, (i = 0, 1 ,2 ,  . . . , n) of the body. Let n now be defined 
such that a t  all points on the boundary, it represents a direction normal to the 
boundary [Fig. (12.3.5)]. Then it follows that s is always tangential to the boundary 
line. 

Figure 12.3.5 

Now, as mentioned above, physically, any lateral boundary (interior as well as 
exterior) is tractionfree, i.e. the surface traction T ,  = 0; specifically z,,, = 0. 

But, since z,, = znx it follows that txn = 0 at any boundary, i.e., at the edge of the 
cross-section. Thus we conclude that the shear stresses existing at  all points [ving 
on the boundaries C, must act tangentially to C, . Hence, using Eq. (12.3.18a), we 
have on any boundary C, , the boundary condition 

(1 2.3.1 9) 

Since s represents the parameter tangential to the boundary, Eq. (12.3.19) states 
that the function Cp does not change as we proceed along any boundary; thus, on 
any boundary C, , the stress function has a constant value, i.e. 

Cpl,=k,, i = O , l ,  ..., n ,  (12.3.20) 
According to the mathematical theory of differential equations, it is proved that to obtain a solution for 
a function governed by a Poisson equation in a given domain, one must specify either the function (or its 
normal derivative) everywhere on the boundary ofthe domain. Such a problem is known in mathematics 
as a Dirichlet Problem (or a Neumann Problem). 
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Figure 12.3.6 

where k, are constants. It should be emphasised that, while Q, must be constant 
on any single boundary, the value of the constant is usually different from one 
boundary C, to another. We note, however, that the values of the constants k, are as 
yet unknown. 

We have thus determined, from the physical condition of traction-free surfaces, 
the mathematical boundary condition that Q, must satis@. This condition together 
with Eq. (12.3.12) is sufficient to properly state the problem on 4. We observe too, 
at this stage, that 0, appearing in Eq. (12.3.12), is still an unknown quantity. 

We have yet one remaining task before completing the general solution: viz. we 
must find the relation between the applied torque T and the function 4. 

To this end, consider the increment of torque dT about the x-axis produced by 
txy and txz acting over an infinitesimal area at point P [Fig. (12.3.6)]. Using a 
right-handed sign convention, 

dT = (-txy dA) * z + (txz dA) * y 

or 

dT = (-txyz + t,,~) dA . (12.3.2 la) 

Integrating over the net area A, 

T = //(-txyz 3. t,,y)dA. ( 12.3.2 1 b) 
A 

Substituting from Eqs. (12.3.9), 

T = // [- ( g ) z  - ( $ ) y ]  dA. 
A 

Then, noting that 

we may rewrite Eq. (12.3.21~) as 

T = - // [ + """1 az dA + 2 // Q, dA. 
A A 

(1 2.3.2 1 c) 

(12.3.22a) 

(1 2.3.22b) 

(12.3.23) 

We now wish to transform the first surface integral over the area A appearing 
above into a line integral along the boundaries Ci. To this end, we recall Green's 
Theorem in a plane (for a multi-connected region) [see Eq. (B.2.3) of Appendix 
B.21: 

// (? - E) dy dz = f ( P  dy + Q dz) - f: f ( P  dy + Q dz), 
r=l c, 

A CO 
(12.3.24) 

where P and Q are continuous functions of y and z with continuous first partial 
derivatives within the domain and on the boundaries C, . 
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Letting P = -Cpz, Q = Cpy, Eq. (12.3.23) becomes, according to Green’s theo- 
rem, 

T = - (yCp dz - z@ dy) + k(yCp dz - zCp dy) + 2 // Cp dA . (12.3.258) 
A f 1-1 

CO 

But, according to Eq. (12.3.20), Cp is constant along any boundary; i.e., # = k, 
on any C,. Taking the constants outside the integral, we have 

T = -ko 0, dz - z dy) + 2 k, f (y dz - z dy) + 2 // Cp dA . (12.3.25b) 
CL A r = l  

CO 

We now wish to express these simpler line integrals as surface integrals. Thus, 
-z, we transform back again using Green’s theorem, but now letting Q 

to surface integrals: 
y, P 

where A denotes the net area of the cross-section, A0 the total area within the 
external boundary CO and A, (i = 1,2,  , . .) denotes the area ofthe ith hole within C, . 

For a simply connected cross-section, i.e. if no interior holes exist, the relation 
naturally becomes 

T = 2 / / +  dA - 2k0 A ,  ( 12.3.26b) 
A 

where A is the actual cross-sectional area. 

torsion problem, we summarise the results as follows: 
Having completed the derivation of the general solution of the de Saint Venant 

Summary of general de Saint Venant torsion solution 

The problem is resolved to one of obtaining a stress function Cp(y, z )  satisfying 
the partial differentiale quation 

V2Cp = -2GO 

and subject to the boundary condition 

+Ic,  = k l ,  (i = 0, 1 ,2 , .  . . , n )  

on any boundary C,. 
The stresses within the body are then given by 

aCp aCp 
az ay * 

txy = -, t x z  = -- 

1 The relation between the applied torque T and Cp is 

T =2//CpdA-Zk0A0+22k~A,.  r=l 

A 
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It is worthwhile to recall that we originally defined the x-axis to be the 'centre of 
twist'. For cross-sections with axes of symmetry, it is clear that the centre of twist 
lies on such axes of symmetry. However, if no axis of symmetry exists, the location 
of the centre of twist remains, at this stage, unknown and indeed, its location cannot 
be determined here. (The location of the centre of twist for elastic members will be 
established later after consideration of energy principles.) 

Finally, we make an additional but important comment. We observe that in obtain- 
ing the general solution, we have not stipulated any constraints on the displacements 
U@, z )  in the axial direction other than that they be continuous. (Specifically, we 
also note that zxx is zero.) Consequently, the displacement U@, z )  at any section of 
the member can displace freely, and not necessarily uniformly in the x-direction. 
Thus, in the de Saint Venant torsion solution, we implicitly assumefree warping of 
any cross-section. 

We now apply this general solution to the specific problem of the torsion of a 
member having an elliptic cross-section. 

12.4 Torsion of a member of elliptic cross-section 

Let the semi-major and semi-minor axes of the cross-section be denoted by a and 
h respectively, b 5 a [Fig. (12.4.1)]. 

Figure 12.4.1 

Recall that the equation of an ellipse is 

v2 z2 
- - + - = : 1  (12.4.la) 
a2 b2 

or 

(12.4. lb) 

Now, we observe that if we assume a stress function 40.1, z )  of the form 

(12.4.2) 

where K is an unknown constant, then on the boundary CO, Cplc,, = 0. Thus we have 
already satisfied the boundary condition that the stress function 4 is a constant on 
the boundary, namely ko = 0. 

Now, we have assumed that Eq. (12.4.2) is of a form that satisfies Eq. (12.3.12). 
To see if this is possible, we substitute in this latter equation: 

K ($ + 6) = 2/c (s) = -2GO. (12.4.3a) 
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Hence, the equation is satisfied if 

K =-(-)GO. a2b2 
a2 + b2 

(12.4.3b) 

Therefore, we conclude that we have indeed found a stress function 

(12.4.4) a2b2 

which satisfies both the partial differential equation and the required boundary 
condition. 

From Eq. (12.3.26b), we obtain with ko = 0, 

(12.4.5) 

This integral may be evaluated directly. However, its value can be found very 
simply if we recall that 

dA = I,, = - 4 '  
nab3 

dA = A = nab, .. y2dA = I=, = - 
A A A 

(12.4.6) 
where rye,, and I,, are the known second moments of area of an ellipse about the 
y- and z-axes, respectively. 

Therefore, Eq. (12.4.5) becomes 

1 nab nab 
T = 2~ [ 4 + - - nab = -K (nab) 

4 

and hence 
T 

nab a 

K = -- 

Substituting in Eq. (12.4.3b), 

T = n  (-)G@, a3b3 
a2 + b2 

(12.4.7) 

(12.4.8) 

which is of the form T = CG . 0. 

torsional rigidity; thus, this quantity is given by 
Now, recalling the Coulomb solution of Chapter 7, the ratio $ clearly is the 

CG = x  (-)G. a3b3 
a2 + b2 

(12.4.9) 

We observe again that the torsional rigidity is a function of the geometry, repre- 
sented by the torsional rigidity constant C, as well as of the shear stiffness of the 
material, G. 

We emphasise here that the expression 

T (1 2.4.10) 
@=I- 

GC ' 
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Figure 12.4.2 

relating the unit angle of twist 0 to the torsional moment T, is a general relation 
that is valid for all members subject to torsion. Thus, according to the linear theory 
developed above, the unit angle of twist 0 is always inversely proportional to the 
torsional rigidity GC. 

Having determined the stress function Cp(’y,z), we find the shear stresses by 
takingpartial derivatives according to Eqs. (12.3.9)usingEqs. (12.4.2) and(12.4.7). 
Thus 

(12.4.1 la) 

2T 
8.Y - - K ( $ )  = ( - ) V .  na3b 

( 1 2.4.1 1 b) a4 
txz = -- - 

The resultant shear stress Z,R is, by Eq. (12.3.16), 

(12.4.1 lc) 

For b < a, the maximum shear stress occurs at point Cy = 0, z = f b ) ,  that is, at 
points D of Fig. (12.4.2): 

(12.4.11d) 

Note that points D are the points on the boundary which are closest to the centre 
of twist (a confirmation of the statement of Section 12.1). The general distribution 
of the resultant shear stress over the cross-section is shown in Fig. (12.4.2), where 
the directions of the resultant stresses t,~ are seen to lie along concentric ellipses. 
We notice, in particular, that the resultant shear stress always acts tangentially along 
the boundary. (We recall that this pattern is necessary at the boundary in order to 
have a traction-free surface.) 

Finally, it is clear that the centre of twist of an elliptic cross-section lies at 
point 0, the intersection of the axes of symmetry. 

In closing it is worth noticing that the case of a circular cross-section is a de- 
generate case of the elliptic section. Setting a = b = R,  the radius of the circle, we 
obtain from Eq. (12.4.9), 

2T 
nab2 ‘ ITxRlD = b x y / ~  = - 

nR4 c=:- 
2 ’  

which is recognised as the polar moment J of a circle about the x-axis. 
Furthermore 

or 
Tr 
J l?rRl = - (1 2.4.12) 

since r = (y2 + z2)1’2 is the radial distance from the centre of twist to a point P 
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[Fig. (12.4.3)l. Thus, we have recovered the Coulomb solution for torsion of a 
circular member, as given in Chapter 7. 

We now recall that in Section 1 of this chapter, it was stated that, in general, 
warping takes place in a member subjected to torsion; only if its cross-section is a 
circle does warping vanish {i.e., plane cross-sections remain plane). In this latter 
case, the displacement in the x-direction is U = const. (e.g., zero). For all other 
geometries, cross-sections will warp; that is, there exist displacements U = U&,  z),  
which are functions of y and z. We now verifL this statement by investigating the 
displacement U for the elliptic section. 

From Eqs. (12.3.712) and (12.3.7~)~ we have 

(12.4.13a) 

(12.4.13b) 

Substituting for txv and txz from Eqs. (12.4.1 la) and (12.4.1 Ib), we obtain 

- = ( $ + @ ) z ,  8U 

- = - (& + @) y .  

ay 

a u  
a Z  

Integrating each of the above, 

(1 2.4.14a) 

(1 2.4.14b) 

(12.4.15a) 

(12.4.15b) 

where f, (2) and f i b )  are functions of z and y respectively. Clearly, since we assume 
that the displacement U is unique, both expressions must therefore describe the same 
displacement. 

Subtracting Eq. (12.4.15b) from Eq. (12.4.15a), we find 

[$(;+$-) +2@]yz+1;(z)-/z(y)=O. (12.4.16a) 

However, from Eq. (12.4.3a), we note that the bracketed term 

G (1 b2 + $-) +2@ = 0. (1 2.4.16b) 

Therefore, we arrive at the condition fi(z) = f 2 b ) .  Now a function of y can be 
equal to a function of z at all points only if both functions are, in fact, the same 
constant, say B. Thus we find 

Figure 12.4.3 

fi(4 = f2b) = B. (1 2.4.16~) 
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Adding Eqs. (12.4.15a) and (12.4.15b), and using Eq. (12.4.16c), we obtain, 

( 12.4.17a) 

To evaluate the constant B we observe, using an argument of symmetry, that 
at point 0, the displacement must necessarily be zero, i.e., u(y = 0, z = 0)  = 0. 
Consequently, B = 0. It follows that 

U ( y , Z )  =: E (L - $) y z  
G b2 

or, using Eq. (12.4.7), 

T a2 - b2 
G na3b3 

u(y, z )  = - - ~  

(1 2.4.17b) 

( 12.4.1 7c) 

We also note here that Eq. (12.3.15), V2u(y ,  z )  = 0, is identically satisfied. 
From the expression for u(y,z), we observe that U < 0 in the first and third 

quadrants; in the second and fourth quadrants, U > 0 [see Fig. (12.4.4)]. Thus we 
find that the cross-sections do indeed warp. Moreover, we observe that for the case 
of a circular cross-section with a = b = R,  ~ b ,  z )  = 0 identically. Hence, we have 
verified that plane cross-sections will remain plane for members having a circular 
cross-section. 

12.5 Torsion of a member of rectangular cross-section 

We consider here a rectangular cross-section (a x b)  shown in Fig. (12.5.1). As 
discussed in the previous sections, we seek a stress function $01. z )  that satisfies 
the Poisson equation, Eq. (12.3.12), i.e. 

which is subject to the boundary condition 

(1 2.5.1 a) 

(1 2.5.1 b) 

Without loss of generality, we set ko = O.t 
Now, in general, it is much easier to solve Laplace equations than Poisson 

equations. We therefore seek to transform the mathematical problem consisting of 
Eqs. (12.5.1) to a system with a Laplace equation and associated boundary con- 
ditions. We thus proceed as follows: noting that the Poisson equation is a lin- 
ear equation, we assume that +(y,z)  can be decomposed into two parts; i.e., 
we let 

+@* 2)  = (PO@) + $1 (Y * z )  (12.5.2) 

such that Cpo(y) satisfies the simple ordinary differential equation 

- -2G0 d2$o 
dY2 

0 2 + o ( y )  = - - (1 2.5.3a) 

t Since the stress components rX.” and rxz depend only on the derivatives of @(y, I?), we can always choose 
one of the constants k, arbitrarily without affecting the stresses. We therefore choose ko = 0. 
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and such that, on the boundary y = f a / 2 ,  

(boo., = f a / 2 )  = 0. (12.5.3b) 

Note that $o(y), being a function only of y ,  is not a constant on the z = f b / 2  

Using the linearity property of the differential equation, 41 (y , z) must then satisfy 
boundary. 

the Laplace equation 

(12.5.4) 

Furthermore, on the boundary v = f a / 2 ,  we require that 

41(fa/2, z) = 0. ( 1 2.5.5a) 

In addition, since ko = 0, &(y, z) must assume values so as to make the 

40b) + 41@, z = fb/2) = 0. (12.5.5b) 

Thus we observe that instead of having to solve the original Poisson equation, 
we must now solve two equations: the simpler Laplace equation with the associated 
boundary conditions [Eqs. (12.5.5)] and the ordinary differential equation with 
boundary conditions given by Eq. (12.5.3b). 

Integrating Eq. (12.5.3a) andusing the condition ofEq. (12.5.3b), we readily find 

( 1 2.5.6) 

We now turn our attention to 4101, z), which must satisfy Eq. (12.5.4). Let us 

(12.5.7) 

# = 40 + 41 = 0 everywhere on CO; hence 41 must also satisfy the condition 

400i): 
#o(v)= -GO(y2 -a2/4). 

suppose that ~ $ 1  cv. z) can be represented in the form+ 

( P l o f ,  z )  = YOi, * Z(Z>. 

where Ycv) and Z(z) are each a function of a single variable. 
Substituting in Eq. (12.5.4), we obtain 

d2Y d2Z -z+ ---Y = 0, 
dy2 dz2 

which, upon dividing through by Y . Z, yields 

- d2 Y/dv2 d2 Z/dz2 
Y Z 

= -- - -a2, a constant, (1 2.5.8) 

wherea2 > 0. 
Note that we have set both terms of Eq. 12.5.8 equal to a constant. We justify this 

as follows: we note that the first ratio, is a function only of y while the second 
ratio is a function only of z. Clearly, for this to be true at all points in the body, these 
two ratios can be equal to each other only if they are equal to a (same) constant 
(which we have called -a2). The justification for the minus sign appearing above 
will become apparent later. 

5 )  

' This form of solution for a partial differential equation IS known, In mathematics, as separation of 
variables. 
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Figure 12.5.2 

Multiplying out, from Eq. (12.5.8), we obtain 

d2 Y - f a2Y(y) = 0, 
dY2 

( 12.5.9a) 

(12.5.9b) 

Solutions to Eqs. (12.5.9) are 

Y(y) = A cosay + B sinay, 

Z(z) = C cosh a z  + D sinhaz, 

( 12.5.1 Oa) 

( 12.5.1 Ob) 

where cosh and sinh are the hyperbolic functions. Hence, by Eq. (12.5.7), 

$ 1 0 1 , ~ )  = (Acosay +Bsinay)(Ccoshaz+Dsinhaz), (12.5.11) 

where A, B,  C and D are arbitrary constants. Note that this form of $1 01 , z )  satisfies 
Eq. (12.5.4) for all values of these constants and for any value of a. 

We now show that two of these constants are zero. To do so we consider the 
anticipated stress distribution on the cross-section, using arguments of symmetry 
and anti-symmetry. Due to a torque acting on the cross-section, we conclude by 
symmetry that for a given y and z [Fig. (12.5.2)], 

G , v c Y ,  z) = -%,01, -4, 
~ X Z c v ,  4 = -Gz(--y, z). 

(12.5.12a) 

(12.5.128) 

We first recall Eqs. (12.3.9), 

( 12.5.1 3a) 

(1 2.5.13b) 

Then, from Eqs. (12.5.12a) and (12.5.13a) it follows, using Eq. (12.5.10b), that 

C sinh(az) + D cosh(az) = -C sinh(-az) - D cosh(-cxz). 

Recalling that the cosh and sinh hyperbolic functions are even and odd functions, 
respectively, we have 

C sinh(az) + D cosh(az) = C sinh(az) - D cosh(az), (12.5.14a) 

from which we find D = 0. 
Similarly, using Eqs. (12.5.12b), (12.5.13b) and (12.5.10a), and noting the even 

and odd properties of the cos and sin functions, respectively, we obtain the 
relation 

A sin(ay) + B cos(ay) = A sin(ay) - B cos(ay) (12.5.14b) 

from which we conclude that B = O.* 

t We note that from the anti-symmetry of the shear stresses, t&, z )  = rxy(-.v, z), rxz(y, z )  = 
rxz(y. -z), appearing in Fig. (12.5.2), we would also obtain the same result, namely B = D = 0. 
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Equation (12.5.11) therefore reduces to 

$I@, Z) = K C O S U ~  * CoshUz, ( 12.5 15) 

where K 

K 7' 0 and cosh(az) 2 1, we therefore require that 

AC is an unknown constant.? 
Now, from Eq. (12.5.5a), we must satisfy the condition $l(fa/2, z) = 0. Since 

cos(aa/2) = 0 

from which 
nn 
a 

a=-, n = 1 , 3 , 5  ,.... (1 2.5.16) 

Therefore, for any odd value of n, solutions for $1, given by 

nny nnz 
a a $~,(y,z)=K,cos----cosh-, n =  1 ,3 ,5  ,.,., (12.5.17) 

will satisfy the condition $1(fa/2, z) = 0. Note that we have attached a subscript 
n in the above expressions to indicate that there are many (indeed an infinity of) 
solutions, 

411, $13. $15, $17, * * + 9 

which satisfy the above boundary condition as well as Eq. (12.5.4). Therefore, 
the sum of all these solutions also satisfies the equation and boundary condition 
Eq. (12.5.5a). Thus we let 

(12.5.18) 

Then from Eqs. (12.5.2) and (12.5.6), we have 

00 n n v  nnz 
K, cos - cosh -. 

a a 
$cv, z) = -GO(y2 - a2/4) + (12.5.19) 

n odd 

We note that Eq. (12.5.19) satisfies the original equation, Eq. (12.5.la), 
and $(y = rta/2, z) = 0. It remains for us to satisfy the boundary condition 
$(y, z = fb /2 )  = 0, i.e., Eq. (12.5.5b). Therefore, we set 

00 

G o b 2  - a2/4) = ( K ~  cosh ""> cos z. (12.5.20) 
2a a n odd 

We recognise that the right-hand side of Eq. (12.5.20) is actually the Fourier 
series representation (in the y-variable) of the function on the left side where the 
Fourier coefficient is given by the term within parentheses (. - .). 

To solve for this coefficient (effectively, to obtain K,) we multiply both sides 
of the equation by cos y, integrate over the interval y = -a/2 to y = a/2 and 

t It is worthwhile to note that we started with four unknown arbitrary constants A ,  B ,  C and D and have 
amved at a single constant K, using arguments based on physical reasoning of the problem. The above 
discussion is a very good illustration of applied mathematics in solving an engineenng problem: we use 
the physics of the problem to 'help' us solve a rather complex mathematical problem! 
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sum over the odd values o f  n . Upon interchanging the summation and integration 
processes, we obtain 

mnY 
COS - dy = GO 2 K, cosh * / cos ___ 

2u (y2 - u2/4) COS - dy. 
U 

2 

(12.5.21) 

J nny mny 
a a 

_ _  _ _  n odd 

Then from the orthogonality condition 

(1 2.5.22) nny mny u/2, m = n  j cos a cos - 
a _ _  

we find 

a 

nnY 
2 2u s U 

a nnb 
K n -  cosh - = GO (y2 - U ~ / ~ ) C O S  - dy. (12.5.23a) 

Upon integrating, the expression for K ,  becomes 

(12.5.2313) 

Substitution in Eq. (12.5.19), yields the final expression for c$@, z): 

Having established the stress function, the stresses are then readily obtained; 
upon differentiating term by term, 

(12.5.25a) 

The resulting shear stress distribution is then as shown in Fig. (12.5.3). 
Examining these expressions, the maximum value of txz is seen to occur at points 

DCV = fu /2 ,  z = 0) of Fig. (12.5.3). Thus 

Figure 12.5.3 
(12.5.26a) =: GOU Q. 

.7=0 
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where 

8 0 °  1 
x2 odd n2 cosh e. Q=l----Z (12.5.26b) 

The maximum value of txy occurs at the points B 0, = 0, z = fb /2)  of 
Fig. (12.5.3) and is given by 

By evaluating Eqs. (12.5.26) and (12.5.27), it can be shown that for b > a ,  

lzx,(fa/2,O)l 1 b x y ( 0 ,  fb/2)l. (12.5.28) 

Thus the maximum shear stresses ItlmBx, as given by Eq. (12.5.26a), occur at 
points D, the points on the boundary, that are closest to the centre of twist. 

We observe now that 0, the unit angle of twist, has, at this stage, not yet been 
obtained. However, we have not made use of the remaining relation [Eq. (12.3.25a)l 

T =2//40,,z)dA. (1 2.5.29) 
A 

Substituting Eq. (12.5.24) in Eq. (12.5.29) and integrating, we find 

T = Pba3G0,  (12.5.30a) 

where 

Hence, we have again obtained the T - 0 relation 

T 
@=-,  

GC 

( 1 2.5.30b) 

(1 2.5.3 1 a) 

where 

C = pba3. (12.5.3 lb) 

The maximum shear stress zD = 1 z lmax can now be evaluated in terms of the 
torque. Substitution of Eqs. (12.5.31) in Eq. (12.5.26a) yields 

If we define the non-dimensional constant 

we may then write 
T 

(12.5.32) 

(1 2.5.3 3a) 

( 1 2.5.3 3b) 

A sumnary of the final results and a numerical evaluation of the constants p ,  Q 
and y for various values of b/a are presented in the accompanying table. 
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12.6 The membrane analogy 

The de Saint Venant torsion solution, as developed in Section 12.3, is a general 
solution under the assumption of free warping. However, there exist but very few 
cross-sectional shapes for which one may obtain specific exact and closed-form 
solutions. Indeed the elliptic section and the equilateral triangular section are among 
the few shapes that yield such solutions, while that for a rectangular cross-section 
is expressed as a series solution. 

For more geometrically complex shapes, an exact solution is difficult, if not 
impossible, to find. However, the general de Saint Venant solution does serve a 
very important purpose. We are fortunate that there exists a very useful analogy, 
called the membrane analogy, which will permit us to obtain approximate stress 
functions 4 for a variety of sections. Moreover, the membrane analogy also permits 
one to determine the stress distribution and torsional rigidity experimentally. 

To develop the idea behind this analogy, we now concentrate our discussion on 
the behaviour of a membrane and we momentarily digress from our discussion of 
torsion. 

Let us therefore start by considering a thin flexible membrane stretched over an 
arbitrary area. (With a view to our subsequent analogy with torsion, we assume that 
the membrane has the same shape as the cross-section of a member under torsion). 
For simplicity we consider first a simply connectedmember (i.e., having no internal 
boundaries). 

Let the membrane be under an initial tension force F (N/m), attached at the 
boundary CO, and let the membrane be subjected to a uniform pressure p .  The 
membrane in the undeflected and deflected position is shown in Figs. (12.6.la) 
and (12.6.lb), respectively. Note that in the deflected position, the tensile force F 
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Figure 12.6.1 

acts, at all points, tangentially to the membrane; at the boundary CO, the angle of 
inclination is a@). 

We assume that the membrane is stretched suEciently such that, due to the 
pressure, it undergoes only small deflections w from the undeflected position in 
the y-z plane of a Cartesian coordinate system, as shown in Figs. (12.6.lb and c). 
(Note that following the assumption of small deflections, la I << 1 .) The equation 
governing the deflection w of the membrane, Eq. (C.5), as derived in Appendix C, 
is then 

(12.6.1) 

We notice immediately an analogy with the Poisson equation governing the stress 
function 4, Eq. (12.3.12), namely, 

Torsion Membrane 
4 W 

2 G 0  P I F  

Further, since the membrane is attached at the external boundary CO, the deflection 
along CO is constant (and is, in fact, zero). 

Thus, although the two physical phenomena are quite unrelated, they are governed 
by similar equations. Because the two phenomena are described mathematically 
by analogous equations, the deflection of the membrane is said to be analogous 
to the stress function of a member under torsion. Therefore, as given above, the 
displacement w of the membrane is a direct analogy to the stress function 4 . 

Before proceeding with a discussion and the consequences of this analogy, it is 
worthwhile to consider the use and importance of any analogy in the analysis of 
physical problems. 

In the case with which we are concerned, where 4 and w are analogous, it is 
evident that the displacement of a stretched membrane due to a uniform pressure is 
rather simple to visualise since, from experience with the physical world, we have 
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some physical intuition of the shape a membrane will take under such a pressure 
loading. On the other hand, the form of the stress function q5 is an abstract concept 
with which we have no experience. An analogy is therefore always useful when it 
permits an understanding of one phenomenon by considering another phenomenon 
with which one is more familiar (in this case the membrane). 

Let us now return specifically to the membrane analogy. Due to the analogous 
relation q5 - w, we have seen that we may now think of the stress function in terms 
of the deflection of a membrane having the same shape as the cross-section of 
the rod undergoing torsion [Fig. (12.6. l)]. With this interpretation in mind, and 
choosing arbitrarily ko = O,t the expression for the torque is 

A A 

The second integral may immediately be interpreted as the volume under the 
deflected membrane. Thus the torque T is proportional to twice the volume under 
the displaced membrane [Fig. (12.6.2a)l. The analogy also gives us a very accurate 
description of the stress distribution. 

We fist note that it is possible to describe the deflection of the membrane by 
drawing ‘contour lines’ representing points of constant deflection, on the projected 
y-z plane [Fig. (12.6.2b)l. 

Figure 12.6.2 

Now, let the parameter s be taken tangentially along any such contour (w or 
q5 constant). Then, according to the definition of a ‘contour line’, it follows that 
- 2 = 0 and therefore by analogy 

a4 - = 0. 
as 

( 12.6.2) 

Hence, by Eq. (12.3.18a), txn = 0 on all contours of q5 = const. Thus, by Eq. 
(12.3.18c), the resultant shear stress t , ~  is 

(1 2 A.3) 

i.e., the resultant shear stress at any point acts in the direction of the contour and 
is proportional, at the point, to the slope of the membrane normal to the contour. 
Hence, the largest shear stress occurs at those points where the contours are closest 
to each other, i.e. where the membrane is steepest. 

This may be illustrated best by considering two known solutions: the circular and 
elliptic members. We note that forthe circular member [Fig. (12.6.3)], the magnitude 

t See footnote p. 462. 



ofthe slope of the membrane at the centre is zero and increases continuously as we 
a~proach the edge. ence the shear stress is greatest at the edge. Further, since the 
resultant shear stress is always in the direction tangential to the contour, the shear 
stress acts along concent~c circles. 

~ i ~ i l a r 1 y ,  the shear stress d i s t ~ ~ u t i o n  of an elliptic cross-section is shown in 
Fig. (12.6.4). We note that the resultant shear stress is greatest at points D where the 
contours are closest to each other, that is, again where the slope of the membrane 
is steepest. F u ~ h e r ~ o r e ~  we note that the resultant shear stress at the edge always 
acts tangentia~ly to the bounda~y. 

Having discussed the membrane analogy for simply connected members, the 
analysis for multi-connected members is very simple. We merely require that at all 
boundaries Cl ,  the a~alogous me~brane  have a constant value w = yi, where yl 
may be a different constant on every C, . For example, for the triply connected area 
(contai~ing two internal bounda~es), as shown in Fig. (12.6.5), the values at the 

y analogy with Eq. (12.3.26a), with y() = 0, the torque T is proportio~al to 
dary are y1 and ’y2.  ~ i t ~ o u t  loss of generality, yo is set at zero. 

twice the volume under the ~ e ~ e c t ~ d  me~brane  as follows: 

n n  n 

(12.6.4) 

where again A is the net area under the actual membrane and A, is the area 
within C, . 



472 Torsion of elastic members of arbitrary cross-section: de Saint Venant torsion 

Figure 12.7.5 

12.7 Torsion of a member having a narrow 
rectangular cross-section 
(a) Derivation of membrane analogy solution 
As an example of the usefulness of the membrane analogy in obtaining solutions, 
we shall solve the problem of a member having a narrow rectangular cross-section, 
shown in Fig. (12.7.la). 

Figure 12.7.1 

We denote the thickness by t and the height by b, where t << b. A Cartesian 
coordinate system is established with origin at the centre, as shown. 

If we consider a rectangular area to be covered by a stretched membrane, based 
on our physical intuition, the deflection of the membrane due to a pressure will 
be as in Figs. (12.7.lb and c). Contour lines of equal deflection are shown in Fig. 
(12.7.ld). 

Thus if b is much greater than the thickness t ,  it is evident that over an overwhelm- 
ing part of the area the membrane will have a cylindrical shape, i.e. the curvature in 
the z-direction vanishes (a2w/az2 = 0). (The only parts of the cross-section where 
this is not true are near the ends, but those regions are not significant for a narrow 
section. Therefore if we assume that the membrane takes on a purely cylindrical 
shape, that is, if we neglect the end effects, our solution will not be valid near these 
ends.) With this approximation, the equation of the membrane becomes 

(12.7.1) 
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Note that w now is a function of y alone. Therefore the analogous equation for 
the stress function Cp =I ‘(y) becomes 

-- - -2GO. d2’ 
dY2 

(12.7.2) 

Letting ICO = 0, the boundary condition on 4 is then 

(Po/ = f t / 2 )  = 0. 

We note, however, that the boundary condition at y = -t/2 may be replaced by 
a simpler condition, since by symmetry, the slope $ vanishes along y = 0. Hence, 
we shall use equivalent boundary conditions 

(12.7.3) 

Integrating Eq. (12.7.2), and substituting the above boundary conditions, we 

(1 2.7.4) 

The torsional rigidity is obtained as follows. Noting that Cp(y = t/2) = ko = 0, 

obtain 

Cpcv) = GO(t’/4 - y2), 
which is the equation of a second degree parabola. 

we have from Eq. (12.3.26b), 

A 

T 612 t /2 

= 2GO /- /- [(t2/4 - y2)dy] dz = 2 G 0  (t3/4 - t3/12) dz 
-612 - t / 2  -b /2  

or 

T = GObt3/3. 

Therefore the torsion rigidity TI  O is given by 

T bt3 
0 3 
_ -  - G-. 

(12.7.5a) 

(12.7.5b) 

Defining the torsional rigidity constant C as before, such that T/O = GC, 

bt3 C = -  
3 

(12.7.5~) 

The shear stresses may be immediately determined from the partial derivatives 

First, we note that 
of 4. 

Then, by Eq. (12.7.4), 

txz = -- ” = ~ G O Y  
aY 

or, substituting from Eqs. (12.7.5b) and (12.7.5c), 

2Ty 2Ty 
tnz = - - - - 

bt3/3 C ’ 

(1 2.7.6) 

(1 2.7.7) 

(12.7.8a) 
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The maximum resultant shear stress zXR (which, here, is equal to zxz) occurs at 
the edges y = Itt/2; i.e., 

Tt 
C 

z x R  = &-. (12.7.8b) 

Note that the resultant shear stress acts along the contours and is directed in the 
z-direction [Fig. (12.7.2a)l. 

It will be noticed that the shear stress, as obtained in our solution, does not vary 
with z. This is consistent with our initial assumption that (p describes a cylindrical 
surface. However, near the ends z = fb /2 ,  the membrane deflection, and hence the 
stress function is certainly a function ofboth y andz. Therefore, as mentionedabove, 
our solution may be said to be valid at all points except near the ends z = fb /2 .  
Away from these regions, which for t << b are relatively very small, the results 
obtained are accurate. The true directions of the shear stresses are shown in Fig. 
(12.7.2b).t 

Thus we see again that it is only possible to obtain results that are consistent 
with initial assumptions. Had we not been satisfied with such an approximation, we 
could not have solved the problem so easily. The inaccuracy near the ends is the 
penalty we have to expect from our simplification. 

Before closing, we notice that the above solution may be readily extended to the 
torsion of a member having a cross-section consisting of a narrow curved arc, as 
shown in Fig. (12.7.3). If R is the radius of curvature to the centreline and a the 
subtended angle, then b += aR.  Hence, from Eq. (12.7.5c), 

C = aRt3/3 

while ( z , R ) ~ ~  is still given by Eq. (12.7.8b). 
If a approaches 2n, the cross-section consists of a circular tube with a slit, as 

shown in Fig. (12.7.4a). (Note that this is still a simply connected member, since 
there is only a single boundary.) For this section, 

(12.7.9) 

The shear stresses acting in the section are shown in Fig. (12.7.4b). A section 
through the analogous membrane is shown in Fig. (12.7.4~). 

Based on our qualitative discussion, it is clear that the solution obtained here 
using the membrane analogy is approximate. Having found the exact solution for a 
general rectangular cross-section, we may now determine the error incurred by this 
approximation. 

(b) Comparison of exact solution with membrane analogy 
solution for narrow rectangular sections 
The numerical results presented in the table of Section 12.5 permit us to compare 
the exact values of tmax and C for torsion of a narrow rectangular section with 
the approximate values as obtained using the membrane analogy. Denoting the 
narrow width of the rectangle by t, the exact solution given by Eqs. (12.5.31b) and 

t Recall that we have determined in Secbon 12.3 that the shear stress existing at all points on a boundary 
must be tangential to the boundary. 
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(12.5.33b), upon letting a t ,  becomes 
T t  

“3 y)(bt3 /3)1’ 
 ex) = /3bt33 rmax(ex) = 

while the membrane analogy solution [Eqs. (12.7.5~) and (12.7.8b)l is 
T t  

~rnax(rna) = - bt3/3 
C(ma) = 0.333bt3, 

From the tabulated values of ection 12.5, we observe, as expected, that the 
~embrane  analogy solution fails to provide a good approxi~ation for ratios of b/ t 
which are not su~ciently large; the solution becomes exact only in the limit as 
b/ t -+ 00. To obtain a quantitative n~easure of the error, we calculate the relative 
errors as follows: 

From the table we find the following: 

For b / t  = 5 

Cerr = 1/(3 * 0.291) - 1 = 0.145 = 14.5%, 
 err = 3 * (0.291) - 1 = -0.127 = -12.7%. 

Forb/t = 10 

* 0.312) - 1 =I: 0.068 = 6.8%’ 
re,, = 3 * (0.3 12) - 1 = -0.064 = -6.4%. 

First we note that the torsional rigidity as calculated from the membrane analogy 
solution is always greater than the true torsional r igidi~,  while the approxi~ate 
maximum shear stresses are less than the true values. However, for b / t  > 10 we 
observe that the approximate solution gives an error of less than 6.8%. Such an 
error is usually acceptable in many engineering applications, and consequently, 
the approxi~ate e~pressions are generally used in practice for relatively narrow 
~ e ~ b e r s .  

The results of ~ection 12.7 are now used in considering the problem of an ‘open- 
section’ prismatic member subjected to an applied torque 7‘. 

y an ‘open section’, we mean a cross-section that is defined by a single bound- 
ary; mathe~atically we have ~ e s c r i b ~ ~  such a section as being ‘simply co~ec ted , .  
In particular we shall consider open sections consisting of a series o f  thin rectan- 
~ u l a r  ~omponents, as shown in Fig. (12.8.1). Such sections are found largely in 
engineering practice, e.g., as with wide~~ange  beams, channels, angles, etc. 

Consider now a torque applied to a section, as shown in Fig. (12.8, l), consisting 
of yt component parts. Since, as we have seen, all sections other than circular cross- 
sections, warp due to torsion, we na~ra l ly  expect the open-section to warp. ~e 
recall that the de Saint ~ e n a n t  solution for torsion is derived under the assumptio~ ~ i ~ ~ r e  12. 
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that any warping can take placefreelv. Therefore, in the development below, we 
must assume too that the entire section is free to warp with no restraint. 

We continue with the basic assumption that all sections rotate with respect to one 
another without changing shape; i.e., all components of the entire cross-section, 
undergo the same rotation given by the unit angle of twist 0. 

Now, we have shown that for any cross-section subjected to a torque, the relation 
between the unit angle of twist and the existing torque is given by T = GCO, or 
0 = &, where GC is the torsional rigidity. 

Let us denote the resisting torque of the ith component part of a section by T, . 
The total resisting torque (which is equal to the applied torque T )  is then the sum 
of the resisting torques T,  , that is 

T=CT,. 
, = I  

(12.8.1) 

Note, too, from Eqs. (12.7.5), that the rotation of the ith component is given by 

where the torsional rigidity of the ith component is 

bi ti" c, = 3 

(1 2.8.2a) 

(1 2.8.2b) 

and where bi and ti are the height and thickness of the ith component, respectively. 

(12.8.3) 

Then, if the rotation of each component is the same, i.e., if 

= @ 2 = . . . = : @ i = . . . -  - 0, = 0 ,  

from Eq. (12.8.2a), 

(12.8.4a) 

In the above, 0 is the unit angle of twist of the entire section. Thus, from this 

T, = GCiO. (12.8.4b) 

last relation, we find that the resisting torque of the ith component is 

Substituting in Eq. (12+8.1), 
n 

T = GO Z C ,  = GCO, 
1=l 

where C,  the torsional rigidity of the entire cross-section, is 

(12.8.5) 

c = c c , .  ( 1 2.8.6a) 

Hence 

T , = ( $ ) T .  (1 2.8.6b) 

i.e., each component carries a part ofthe total torque proportional to its own torsional 
rigidity. 
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Once the quantities T, have been established, the largest shear stress in the ith 
component can be obtained from Eq. (12.7.8b); that is 

and hence 
T * ti 

[rx~li  = - (12.8.7) 

From Eq. (12.8.7) we observe that the maximum shear stress will occur in the 
thickest component. 

We emphasise here that the expressions derived above are approximate. The ap- 
proximations are due to (a) the approximations inherent in the results of 
Section 12.7, (b) neglecting the effects at points where the ends are joined and 
(c) the basic assumption that the shape of the cross-section is not altered during 
rotation. 

Specifically, we recall that the stresses, as given by Eq. (12.7.8b) or (12.8.7), 
are not valid near the ends of a narrow rectangular cross-section. Moreover, it is 
clear that for a cross-section consisting of several such components, the shear stress 
distribution existing at the junctures of the components is very complex. In the 
following section we obtain an approximate expression for the shear stresses in the 
region of the junctures. 

Finally, as was mentioned at the beginning of this section, the above analysis is 
valid under the assumption that there is no restraint against warping. If permitted to 
warp freely (‘free warping’), it is found that thin-wall open sections (e.g., I-sections, 
open tubular sections, etc.) can undergo considerable warping. In practice, however, 
actual supports for such members usually provide restraints against warping thereby 
inducing longitudinal stresses rnX. The analysis for torsion that takes into account 
such restraints is much more complex and is beyond the scope of our present study. 

c -  

Example 12.1: A structural steel angle, L76x76x6.4, is subjected to a torque 
T=200 N-m acting at the end of a cantilever beam of length L=1.2 m, as 
shown in Fig. (12.8.2). Determine the angle of twist a of the free end and the 
maximum shear stress. (Note: G=76 GPa.) 

Figure 12.8.2 

Sokction: From tables of structural sections, the length and thickness of the legs of 
the angle are 76 mm and 6.4 mm respectively. The true cross-section of the angle is 
shown in Fig. (12.8.3a). We note that at the juncture of the two legs, there exists a 
rounded ‘fillet’. (These fillets are a result ofthe rolling process used in the manufacture 
of structural sections. As we shall see in the following section, these fillets are useful 
in eliminating high stresses at the juncture.) However, to obtain the torsional rigidity 
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and shear stress in the section, one neglects the fillets and models the section as shown 
in Fig. (12.8.3b). 

Using Eqs. (12.8.2b) and (12.8.6a), 

Therefore (noting that G = 76 CPa = 76 x 103 N/mm2), 

(200 x 103)( 1200) 
- = 0.249ra~ = 14.3” a=-:OL,=-- T L  

GC (76 x 103)(1.27 x 104) 

and from Eq. (12.8.7), 

T * t (200 x lO”(6.4) 
t,R = - - - = 101 N/IIXII~ = 101 MPa. 

C 1.27 x 104 
Note that since the thickness of the angle is constant, the same shear stress will occur 

in both legs. The shear stress distribution is shown in Fig. (12.8.3~). We emphasise 
again that these calculated values are valid only in the region su~ciently far away 
from the ends and far from the juncture. 

ar 

We obtain here a solution for the shear stress in the region of the juncture of two 
(narrow rectan~ular) components of an open section. Let us, in partic~lar, consider 
a two-component section that forms a right angle. 

We consider a section of constant thickness t ,  containing a fillet, as described 
in Example 12.1 above. Such a fillet is described by a portion of a circle with 
centre 0 and radius a, as shown in Fig. (12.9.1). Since the thic~ness is constant, 
the shear stresses in both rectangular elements away from both the ends and the 
juncture is, by Eq. (12.8.7), 

T t  
c ’  t==- ( 1 2.9.1 a) 



12.9 Shear stress 

Noting that 0 = &, we observe the relationship 

t 

t 
G O =  -. (12.9.lb) 

For future referenc~, we define points 0 1  and 0 2  as shown in the figure, and 
further define point 0 3  such that the distance 0 1 - 0 3  = t /2 .  ~e denote the shear 
stress at points in the neighbourhood of the line 0 1 - 0 2  in the region of the juncture 

Our analysis below is a based on the me~brane  analogy. Now, it is clear that 
the deflected membrane, h is analogous to the stress function (p and which is 
governed by Eq. (12.6.1), V2w = - -p /F ,  has the form of a cylin~ical surface, as 
shown in Fig. (12.9.2). In the region of the corner, it is clearly more appro~riate to 
use a cylindrical coordinate system (r, 6), where 6 is an angle as shown in the figure. 
~e now make a reasonable and simplifying, but im~ortant, assum~tion: we assume 
that the deflected ~embrane  surface in the region of the line 0 1 - 0 3  is inde~endent 

f 6; that is, w = w(r ). The ~ a ~ l a c i a n  operator V2 in this coordinate system is then 
iven by 

by t*. 

(12.9.2) 
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and hence the governing equation of the membrane becomes 

d2w 1 dw p -++-=--  
d r 2  r dr F '  

From the membrane analogy, we then write 

d2q5 1 dq5 
d r 2  r dr 
- + - - =-I -2GC3. 

Substituting Eq. (12.9.lb), 

d2q5 1 dq5 2 t  -++-=--  
dr2 r dr t 

(1 2.9.3) 

(12.9.4a) 

( 12.9.4b) 

Now, we recall that the slope of the stress function q5 represents the shear stress; 
more specifically, the slope of 4 in the r-direction represents the shear stress in 
a direction perpendicular to r, i.e. in the circumferential direction. Hence for the 
desired shear stress, which we denote here as z*(r) [see Fig. (12,9.1)], we have 

t*(r)  = -- 
d r *  

Using this relation, Eq. (12.9.4b) becomes 

dt* t* 2 t  -+-=---.  
d r r t  

(1 2.9.5) 

(12.9.6) 

Now Eq. (12.9.6) can be solved as a first-order inhomogeneous differential equa- 
tion with variable coefficients, However, noting the identity 

d(. * .) 1 1 d [r (* * a)] 

-+;(***)=; d3" dr , 

we may write Eq. (12.9.6) in a more simple form as 
1 d(rt*) 2 t  
r d r  t 
--- - - .  

Integrating, we find 
zr B 
t r  

t* ( r )  = - + -, 

(12.9.7) 

(12.9.8a) 

(12.9.8b) 

where B is a constant of integration. Now, from the membrane analogy, it is clear 
that t* = 0 at some point along the line 01-02 .  Let us assume that t* = 0 at 
03; i.e., z*(r = a + t/2) = 0. Using this condition, we obtain B = --:(a + t/2)2. 
Hence 

( 12.9.9) 

We note that this last equation yields the shear stress along the line 0 1 - 0 2  in 
terms of the approximate shear stress t as calculated by Eq. (12.9.la). Specifically, 
at point 0 1 ,  r = a ,  

It*(a)l = t(1 + t/4a). ( 1 2.9.1 0) 

From this last expression we observe that as a -+ 0, t* -+ 00; that is, the shear 
stress tends to infinity if no fillet exists. It is therefore evident that by introducing 
a fillet in an open section, the shear stress at the juncture is significantly reduced. 
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The variation of the ratio t*/t at r = a is plotted in Fig. (12.9.3) as a function of 
a l t .  

Figure 12.9.3 

Finally, it should be mentioned that although these results prove to be very useful, 
the above analysis is only approximate. (Recall that two basic simplifjring assump- 
tions were made: (i) that Cp is independent o f  the angle 6 and (ii) that t" = 0 at 
the point 03.) A comparison with the more exact solution, shown by the broken 
lines in Fig. (12.9.3), reveals that the error of the approximation is insignificant for 
relatively small values o f  a / t .  

12.10 Torsion of closed-section members: thin-wall sections 

The analysis of members having closed thin-walled sections (i.e., multiply con- 
nected areas) is also simplified considerably by use o f  the membrane analogy. In 
particular, consider the case of a tubular section (doubly connected) containing a 
single interior boundary [Fig. (12.10.la)l. We denote the (tangential) parameter 
along the centreline of the wall by s (positive in a counter-clockwise direction) and 
assume that the variable thickness of the wall t (s)  is much smaller than R (s), which 
is measured from the centre of twist [Fig. (12.lO.lb)l. 

Figure 12.10.1 
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Now, for a doubly connected section, from Eq. (12.3.26a), 

T = 2 fs Cp dA - 2koAo + 2k1 A I ,  (1 2.10.1 a) 
A 

where ko , k1 are constant values of Cp on CO, C1, respectively. 
Using the membrane analogy, we recall that we may interpret the stress function 

9 as the deflection of a membrane. Therefore, if t << R, the membrane deflection 
may readily be assumed to have the approximate shape, as shown inFig. (12.10.1~); 
i.e., we assume a linear variation of Cp through the wall thickness. Then, without 
loss of generality we may set ko = 0 and, letting kl = q, a constant, we have 

T = 2 / / + d A + 2 q A , .  (1 2.10.1 b) 

Again, letting s represent the parameter (tangential to the centreline) along a contour 
describing a constant value of Cp, the shear stress txs is given by Eq. (12.3.18b), 
namely 

A 

(12.10.2) 

However, since s is measured along the contour line, n is always the outward 
directed normal to the centreline. Therefore, assuming a linear variation of 4, at all 
points 

ad, - = -q/t 
an 

and hence 

(12.10.3a) 

(12.10.3b) 

Note that as a result of the assumption that Cp varies linearly (and consequently 
that the slope of Cp is constant) through the thickness t at any fixed value of s, the 
shear stress t does not vary through the thickness. 

The quantity 

4 = zx,t (12.10.3~) 

is usually called the shear flow. We thus see that the shear flow is constant throughout 
the section. 

Now, recall that the torque T ,  as given by Eq. (12,10.1b), may be interpreted as 
being represented by twice the volume under the deflected membrane. From Fig. 
(12.10.1), it is evident that the volume may be approximated by A q ,  where A is 
now the cross-sectional area within the centre1ine.i Thus 

T = 2Aq. (12.10.4) 

Substituting from Eq. (12.10.3~) 
T 

txs(s) = 2At(s) (1 2.10.5) 

t The volume of the rectangle represented by the broken lines is clearly the same as that represented by 
the trapezoid. 
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From Eq. (12.10.5), we observe that the shear stress is maximum at thosepoints 
where the wall thickness is smallest. The shear flow is shown in Fig. (12.10.2). 
Note, as mentioned above, that across any line segment (e.g., BB of the figure), 
the shear stress is constant; i.e., it does not vary across the thickness of the wall. 
Essentially, we have computed the average value across BB, a result that is inherent 
to the assumption of a linear variation of Q, throughout the wall thickness. 

= 0. Thus the resultant 
shear stress is Figure 12.10.2 

In passing, we notice that the shear stress txn = 0, since 

'p 
1 

(1 2.10.6) 

and is always directed, at all points, tangentially to the centreline, as shown in 
Fig, (12.10.2). 

Figure 12.10.3 

It is appropriate to point out that, alternatively, the above relations can be easily 
derived directly, as follows, without invoking the membrane analogy. To this end, 
consider a small element of the thin-wall section subjected to the torque T ,  as shown 
in Fig. (12.10.3). Then, from the equilibrium condition CF' = 0, we find 

- [tsn(s) * t(s)] dx + [T& + ds) - t(s + ds)] dx = 0. (12.10.7a) 

Noting that 

d 
ds Ts,(S + ds) * t(s + ds) = t , x ( s )  * t(S) + - [tsx(s) t(s)l ds, 

we obtain 
d 
- [tsn(s) ' t(s>l = 0, ds (12.10.7b) 

that is, the bracketed term does not vary with s. Therefore 

tsn(s)t(s) = q (constant) (1 2.10.7~) 

or 

which agrees with Eq. (12.10.3b). 
Consider now the resulting torque due to the stresses txs, which act in the tan- 

gential direction s of the wall. Let r = R(s)g, (where 191 = 1) denote the vector 
from the centre of twist to point P [Fig. (12.10.4)l. The torque about the x-axis due 
to the stresses acting on a small element t ds is then given by the vector product 

(12.10.8) dT = r x [ T , , ~  t dsl s = [tx,t ds] r x s, 
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Figure 12.10.4 

where s is a unit vector (Is1 = 1) acting tangentially at all points of the centreline. 
We note that 

(12.10.9a) IY x S I  = Rlgllslsin(g,s) = Rlgllslsin@. 

But Igl = (sI = 1 and sin@ = cosa, as shown inFig. (12.10.4). Hence 

Ir x s( = Rcosa = h ,  (12.10.9b) 

whereh istheperpendiculardistancefrompoint Otos. SubstitutinginEq. (12.10.8), 

( I  2.10.1 Oa) 

where dA = h &/2  is the incremental triangular shaded area of Fig. (12.10.4). 
Using Eq. (12.10.3b), we obtain 

dT = ldTl = t,,t(s)h ds = 2rX.,,t(s)dA, 

T = 2q // dA = 2qA (12.10.10b) 
A 

T or q = &, from which we again recover the relation r,. = 2~t(s) . 
To obtain an expression relating the unit angle of twist 0 to the applied torque T , 

we again invoke the membrane analogy. From Fig. (12.10.1~) we obtain, using the 
equilibrium condition I; F,, = 0 (w, denoting here the direction of the analogous 
membrane displacement), 

p A  - 4 F sina ds = 0, 

where we recall from Section 12.6 that p represents the pressure under the mem- 
brane, and F is the tensile force (N/m) acting tangentially to the membrane at an 
angle a(s) << 1 along the contour CO. (Here $CO indicates integration around the 
closed contour Co.) Since F = const., we have 

= A f s i n a h .  (12.10.11b) 

(12.lO.lla) 

CO 

F A  
CO 
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Now, according to the membrane analogy, all membrane displacements are as- 
sumed to be small and consequently a << 1. Therefore sin a - tan a = y / t (s) [see 
Fig. (12.10.1 c)t]. Then, recalling the analogy, 

p / F  2GO, y q ,  (12.10.13) 

we have 

or 

(12.10.14) 
CO 

This relation, known as Bredt b formula, relates the unit angle of twist to the 
shear stress existing in a thin-wall closed-section member [see Fig. (12.10.5)]. It is 
emphasised here that this relation is valid in general; that is, for any rxs existing in 
the section (irrespective ofthe cause), the angle oftwist is given by Eq. (12.10.14).$ 

Figure 12.103 

If the shear stress is due to an applied torque, we obtain, after substituting 
Eq. (12.10.6), 

where, as before, A is the area within the centreline of the thin wall. 
For a constant wall thickness t, Eq. (12.10.15a) becomes 

T S  O = -  
4A2Gt’ 

(12.10.15a) 

( 12.1 0. I 5 b) 

where S is the perimeter along the centreline. 

Example 12.2 A torque T = 9,000 N-m is applied to an aluminium member 
(G = 26 GPa) having a cross-section as shown in Fig. (12.10.6). Determine (a) 
the shear stress distribution in the cross-section and (b) the unit angle of 
twist. 

Solution: 

A = 50 x 100 = 5 x 103 m2. 
q = = = 900N/mm. 9x106 

t Note that for pictonal clarity, the height of the deflected membrane y has been shown exaggerated. 
The validity of this statement will be more clearly apparent following the rederivation, in Chapter 14, 
of Bredt’s formula, using the principle of complementary virtual work. 
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Figure 12.10.6 

Using the relation, t , ~  = 

From A to B: t , ~  = 
From B to C: tXR = 7 = 150 MPa; 
From C to D: t , ~  = 90 MPa; 
From D to A: t , ~  = 9 = 100 MPa. 

we obtain: 

= 90 N/mm2 = 90 MPa; 

Figure 12.10.7 

The stress distribution IS as shown in Fig. (12.10.7). From Eqs. (12.10.15), 

i.e. 
9 x 106 

4(5 x 103)2(26 x 103) 
@ =  

= 1.173 x 10-4ra&mm = 6.72"/m. 

Example 12.3: It is decided to  strengthen the section of Example 12.1 by 
welding a steel plate, 6.4-mm thick, to  the ends of the legs of the L76x76x6.4 
structural steel angle so as to form a closed section over the entire length 
L = 1.2 m of the cantilevered member [Fig. (12.10.8)l. Determine (a) the total 
angle of twist a of the free end and (b) the maximum shear stress in the 
member due to the applied torque T = 200 Nm. 

SoZution: The total angle of twist, from Eq. (12.10.15b), for this closed section, is 

Figure 12.10.8 

T S L  a = @ L = -  
4A2Gt 

(1 2.10.16) 

Recalling that A and S relate to the centre lines of the thin wall, we have A = 
72.8 x 72.8/2 = 2650 mm2 and S = 2(72.8) + 103 = 249 mm. 
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Therefore, substituting in Eq. (12.10.16), with G = 76 GPa, 

= 4.37 x 10-3 rad = 0.25" (200 x 103)(249)(1200) 
4(2650)2(76 x 103)(6.4) 

a =  

200x 103 The maximum shear stress is t = & = (2)(2650)(6.4) = 5.90 N/mm2 = 5.90 MPa. 
0 

In comparing the rotation of the strengthened (closed) section with the calcula- 
tions of the open section of Example 12.1, we observe that the rotation has been 
reduced from a = 14.3" to a = 0.25", while the maximum shear stress has been 
reduced from 101 to 5.90 MPa. Thus we note that a closed thin-wall section is much 
more efficient and very much stiffer than a corresponding open section. This point 
will be discussed further in the context of the membrane analogy. 

12.1 1 Torsion of multi-cell closed thin-wall sections 

The membrane analogy lends itself very well to analysing the problem of a member 
having a cross-section consisting of more than one 'hole' (but for which all walls 
are relatively thin). Specifically, we shall consider a section that is triply connected, 
i.e., one having two 'holes'. The section is conventionally referred to as having two 
'cells' [Fig. (12.1 l.la)]. 

Figure 12.11.1 

Without loss of generality, let Q, on the external boundary CO be zero, and further 
let Q, have (unknown) constant values q1 and q2 on the interior boundary C1 and C2, 
respectively [see Fig. (12.1 l.lb)]. Again, we assume a linear variation of Q, across 
the wall thicknesses. 

From the membrane analogy, the resisting torque of the left and right cells is 
given, respectively, by 

Ti = 2qi-41, T2 = 2q2A2, (12.1 1 . l)  
where A1 and A2 are the areas of the respective cells within the centerline of the 
walls. 

The total torque is then given by 

T=Tl+T2=2(qiAi+q2A2).  (12.1 1.2) 



488 Torsion of elastic members of arbitrary cross-section: de Saint Venant torsion 

As in the case of open sections, we assume that the entire section rotates without 
changing its shape; it then follows that O1 = O2 = 0, where Oi is the unit angle 
of rotation of the ith cell. 

Hence, by Eq. (12.10.14), 

(12.1 1.3) 

where the parameter s is always taken in a counter-clockwise direction and where 
( r x ~ ) i  is the resultant shear stress along the closed path C, ( i  = 1, ABCA; i = 
2, ACDA) . 

Now, using Eq. (12.10.3b), along the path ABC 
(TxR)I  = qd t .  (12.1 1.4a) 

Similarly, along the path CDA, 
(rxR)2 = q 2 / t -  (12.11.4b) 

However, since the contour integrals of Eq. (12.1 1.3) are for closed paths, we 
must also obtain the shear stress along AC. We note, however, from Fig. (12.1 1. lb) 
that the shear flow in this segment is given by 

(12.11.5) 4 = 41 - q2. 

Hence, the shear stress in A to C is given by 

( t x R ) 1  or2 = (41 - q2)/t. (12.1 1.6) 

Substituting Eqs. (12.1 1.4) and (12.1 1.6) in Eq. (12.1 1.3) yields an equation in 
the unknowns q1 and q2. Equations (12.1 1.2) and (12.1 1.3) may then be regarded 
as two equations from which we may solve for these unknowns. 

The solution is best illustrated by means of an example. 

Example 12.4 A member whose cross-section consists of two cells having 
walls of constant thickness t, as shown in Fig. (12.11.2), is subjected to a 
torque T. Determine (a) the shear stresses and (b) the unit angle of twist. 

Figure 12.11.2 

Solution: From Eq. (12.1 1.2), 

2(qI . ac + q 2  * bc) = T.  (12.11.7a) 

From Eq. (12.1 1.3), 
1 1  1 1  

--[q1(u+c+a)+(q1 -q2)cl= G;[42(b+c+b)- (q l  -q2)c1 
ac t 



12.12 Closure 489 

or 

[2b(a + c) + acIq1 - [2a(b + c) + bclqz = 0. 

Solving Eqs. (12.1 1.7) for the two unknowns, we obtain 

T r  be + 2a(b + c) 1 

(12.1 1.7b) 

q2 = 4, Laqb + c) + @(a + c) 3. abc 

Then, along ABC, T,R = q t / t ;  along ADC, T,R = q 2 / t  and along AC, T,R = 
(41 - 42) / t .  

Using Bredt’s formula, the unit angle of twist is given, for example, by 

If the two cells are the same (a = b), 

T 
q1 = 42 = -. 

4ac 
(12.11.10) 

Thus, in this case, the shear Bow vanishes in the centre wall; hence the section acts 
as though the centre wall did not exist. The unit angle of twist, Eq. (12.1 1.9), is then 
given by 

T.  (12.11 * 11) 

The analysis of multi-connected cells having a larger number of cells proceeds 
similarly as above. 

12.12 Closure 
The analysis of prismatic members subjected to torsion was based entirely, as we 
have seen, upon the general de Saint Venant torsion solution. Indeed, the solution for 
the torsion of members of arbitrary cross-section is much more complex than that 
for members having a circular cross-section. The distinct difference in the solutions 
is based upon the fact that, in general, warping in the longitudinal direction takes 
place for cross-sections other than circles. At this point, it may be worthwhile to 
re-emphasise a basic assumption in the de Saint Venant solution, namely, that there 
is no restraint against such warping. 

We have noticed, too, that it is only possible to obtain exact solutions from the 
general solution for a small number of relatively simple geometric shapes. If this 
were the only use of the de Saint Venant solution, it would be of limited value. How- 
ever, we have seen that the general solution, together with the membrane analogy, 
permits us to obtain approximate solutions for members having many particular 
shapes. Using this analogy, we can often ‘guess’ intuitively at the general shape of 
the stress function and thus obtain approximate solutions. From the consideration of 
the analogy, we can deduce the general shear stress distribution and the relative tor- 
sional rigidity. For example, recalling that the torque is proportional to the volume 
under the deflected membrane, and hence under the surface of the stress function 
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Figure 12P3 

4, we may immediately deduce qualitatively that the torque T required to produce a 
given unit angle of twist 0 in a closed section is much greater than that required for 
the corresponding open section [compare Figs. (12.10.1~) and (12.7.4c)l. Hence the 
torsional rigidity of a closed section is always greater than that of the corresponding 
open section. 

A second use of the analogy, which was not considered here, is its application in 
analysing members of great geometric complexity by experimental means. Indeed 
for particularly complex cross-sectional shapes, even approximate solutions are 
not possible. Experimental measurements of the displacement of thin membranes 
subject to pressures, then permit us to determine the stress distribution and torsional 
rigidities to a desired degree of accuracy. 

Sections 3 and 4 

12.1: Using the representation for the shear stresses txy and txz expressed in terms 
of the stress function $(y, z) [Eqs. (12.3.811, show that the resulting shear forces Vy=O 
and V,=O on any arbitrary cross-section. 

12.2: A torsional moment is applied to  two different bars of the same material. 
One is  a bar of circular cross-section and the other of elliptical cross-section, both of 
which have the same cross-sectional area. The torsional rigidity constants of the two 
cross-sections are CO and C, respectively. The ratio of the semi-major axis a to  the semi- 
minor axis b of the elliptic cross-section is  defined as k (k > 1). Show that the ratio of 
the torsional rigidities of the two sections is  & = 3; i.e., prove that the ratio of the 
torsional rigidities of the two bars is inversely proportional to the ratio of their polar 
moments of cross-sectional area. 

12.3:* A prismatic member, having an equilateral triangular cross-section whose sides 
are of length a as shown in Fig. (12P.3), is subjected to a torsional moment T. 

(a) Analogous to  the torsion solution for an elliptic section, construct a stress func- 
tion 4(y, z) = K . J(y, z) such that 4 = 0 identically along the outer edges of the 
sect ion. 

(b) Derive the expression for the torsional rigidity, namely GC = G g .  
(c) (i) Assuming that the maximum shear stress occurs along the edge of the cross- 

section, show (analytically) that along the edge BE it occurs a t  point D. 
(ii) Indicate (by means of a figure) other points in the cross-section where the 
maximum shear stress occurs. What conclusion can be drawn? (iii) Determine 
the maximum shear stress. 

12.4* Using the general de Saint Venant torsion solution, derive directly, by inte- 
grating the equation V24=-2G0, the Coulomb solution for a member having a solid 
circular cross-section of radius R; that is, determine the shear stress t x o  and the torsional 
stiffness. 

Note: Using polar coordinates ( r a ,  the Laplacian for the axisymmetric case is  given by 

12.5:* Show that the resultant shear stresses t x ~  due to  a torsional moment acting on 
a member of elliptic cross-section, as shown in Fig. (12.4.2), always lie along elliptic 
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curves concentric with the ellipse defining the cross-section. (Hint: Show that the slope 
of t,~ at any point P(y, z) is that of a concentric ellipse.) 

Section 5 

12.6: An engineer naively calculates (wrongly) the maximum shear stress due t o  tor- 
sion of a member having a rectangular cross-section a x b (where b=2a) by using the 
expression t = TR/ J (where I i s  the polar moment of area of the section and R is the 
largest distance from the centre of twist) and assumes that GI represents the tor- 
sional rigidity. Making use of the results given in the table of p. 468, determine the 
percentage error in the calculations. 

12.7: A steel rod (G=76GPa) of rectangular cross-section 6 mm x 18mm and 2 m  in 
length i s  subjected t o  a torsional moment. The two ends rotate with respect t o  each 
other by 4.5". Determine the maximum shear stress in the member. 

Sections 6 and 7 
12.8: The shear stresses due to  a torsional moment T acting on a member having a 
narrow rectangular cross-section b x t (t << b) are given by Eqs. (12.6.6) and (12.6.7). 
(a) By integrating appropriately the stresses over the area, determine the torsional 
moment that is produced by these stresses and (b) explain the discrepancy with the 
applied torque T. 

12.9* (a) In deriving the equation, V2Q,(y, z)=-2GO, which the stress function @(y, z) 
must satisfy, the origin 0 of the (5 z) coordinates was taken t o  coincide with the centre 
of twist. Show that all equations remain valid irrespective of the location of the origin 
0. (b)The torsional stress function r p  of a rod, having a narrow rectangular cross-section 
b x t (t << b), i s  given by Eq. (12.6.4), namelyQ,=GO(r'/4 - 9). Invoking the membrane 
analogy solution, construct analogously a stress function Q, for a member whose cross- 
section is a narrow triangular shape, as shown in Fig. (12P.9), where 6 << b. Express Q, 
in terms of a (y, z) coordinate system (whose origin, 0 is  as shown in the figure), and 
determine an approximate expression for the resulting torsional rigidity GC. 

12.10: Achannel member of length L, whosecross-section isasshown in Fig. (12P.10) 
(where t << c, t << h), i s  fixed at one end and subjected to  a torsional moment T at 
the free end. (a) Determine the horizontal component of displacement A, of point 
A at the free end in terms of c, h, t L, G and T. (b) From the given data, it i s  not 
possible (from the development in this chapter) t o  determine the vertical component 
of displacement A, of A? Explain. (c) Determine A, and A, at A for the limiting case 
c --f 0. Why is  it possible t o  determine A, for this limiting case? 

Section 8 

12.11: A thin-wall closed equilateral triangular cross-section (t << a), as shown in 
Fig. (12P.111, is subjected to  a torsional moment T. Determine (a) the shear stress and 
(b) the torsional rigidity constant C of the section, in terms of a and t. 

12.12: The shear stress existing at points on the centreline of a closed thin-wall cir- 
cular tube subjected t o  a torque T is given by the exact expression tex= y, where J 
is the polar moment of area and R is the radius of the centreline. The average stress 
in the tube, as calculated from the membrane analogy solution, is tma = At= $&, 
where t << R is the thickness of the tube. Show that the relative error is 

where q=t/R. 



492 Torsion of elastic members of arbitrary cross-section: de Saint Venant torsion 

12.13: Thecross-section of a member, asshown in Fig. (12P.I3),consists of a thin plate 
of width b and thickness t (t << b) and two thin-wall hollow cylinders of thickness t 
and mean radius R. The torsional stiffness of the cross-section is given as 10 times the 
torsional stiffness of the plate alone. Determine the ratio b/R. 

12.14 Two shafts, consisting of thin tubular sections, one seamless and the other 
with a s l i t  [Figs. (12P.14a and b), respectively], are each subjected to  the same torque 
7. From membrane analogy considerations and from the derived expressions, (a) eval- 
uate the ratio of shear stresses developed in each shaft. Indicate carefully the shear 
flow in a figure for each case. (b) Determine the ratio of the unit angle of twist of the 
two sections when subjected to  the same torque. 

Figure 12P.13 

Figure 12P.14 

Figure 12P.16 

Review and comprehensive problems 

12.15 Consider two solid sections, a circular cylinder of radius R and an equilateral 
triangle with sides a whose torsional rigidity constant C is given as C =fia4/80. The 
two sections have the same cross-sectional area A. Show, for these two cross-sections, 
that the one with the greater polar moment of area (about the centre of twist) has a 
smaller torsional rigidity than the other. 

12.16: A member having a cross-section ‘A’, which consists of two steel (E =200GPa) 
plates as shown in Fig. (12P,16a), i s  subjected to  a torque T. In Fig. (12P.16b) a steel 
plate AC has been welded, as shown, ‘B.’ (a) What is the torsional rigidity of each 
section? Express answers in terms of G and the dimensions of the section. (b) What i s  
the ratio of the torsional rigidities of section B to section A if a=80mm and t=4mm. 
(c) Determine the maximum shear stress and the unit angle of twist of each section if 
T=150,000 N-mm. 

12.17: A wide plate made of a material whose shear modulus is G, having dimen- 
sions t x t x L, i s  cut into 12 plates each t x a, where t << a (a=t/l2), as shown in Fig. 
(12P.17). The 12 plates can then be welded to form members (of length L )  whose 
cross-sections are as shown in Fig. (12P.I7b, c or d). For each case, determine (a) the 
torsional stiffness CG and (b) the maximum shear stress if the member is subjected to 
a torque T. (c) If the original plate is, instead, cut into nstrips of width e/n, which are 
welded to form a closed polygonal section, what is the limiting value of C as n -+ oo? 

12.18* A hollow member, having an elliptic cross-section with outer semi-axes a and 
band inner semi-axes aa and ab, as shown in Fig. (12P.18), is subjected to a torsional 
moment T. Determine (a) the torsional rigidity CG of the cross-section, (b) the shear 
stresses a t  points A, B, D and E in terms of a, 4 a and T and (c) determine ItImax. 

12.19 Two members, whose cross-sections are as shown in Figs. (12P.19a and b), are 
subjected to  the same torsional moment T. The cross-section of Fig (12P.19a) consists 
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Figure 12P.17 

of a T-section whose horizontal and vertical legs have thickness t and Zt, respectively, 
where t << a. The cross-section of Fig. (12P.19b) consists of two angles (each leg having 
thickness t), which are welded together over the length of the members at two points 
c and d. In each case, the cross-sections are assumed to  rotate without changing shape 
when subjected t o  the torques. Draw a sketch of the shear flow in each cross-section. 
Discuss qualitatively the differences in the shear flow. Are the torsional rigidities of 
the two sections the same or different? 

12.20: A thin-wall member of length L is constructed by means of n plates a x t x L 
(t << a), which are welded together t o  form a closed section whose shape is an n-sided 
regular polygon, as shown in Fig. (12P.20). (a) Derive an expression for the torsion 

Figure 12p.18 

Figure 12P.19 
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rigidity constant C=T/GO in terms of a, t and n. (b) What i s  C for (i) a triangular 
section, (ii) a squaresection and (iii) a hexagonal section. (c) If the sections are subjected 
to  a torsional moment T ,  determine a general expression for the shear stress in an 
n-sided regular polygon. (d) Repeat (b) for the stress txs. (e) Show that the general 
expressions derived in (a) and (c) above lead to  C and txs of a circle when n ---f 00, a -+ 0 
such that in the limit, the product na -+ 2 r  R,  where R is the mean radius of the circle. 

12.21: Determine the torsional stiffness CC for a member whose thin-wall two-cell 
cross-section is as shown in Fig. (12P.21). What i s  the maximum shear stress and indicate 
where it occurs by means of a figure? 

Figure 12P.20 

Figure 12P.21 

12.22: Determine the torsional stiffness CG for a member whose thin-wall three-cell 
cross-section is as shown in Fig. (12P.22). What i s  the maximum shear stress and indicate 
where it occurs by means of a figure. 

Figure 12P.22 

Figure 12P.23 

The following problem is designed t o  require the use of a computer 

12.23: A torsional moment T is applied to two members each having a rectangu- 
lar cross-section but the same cross-sectional area A. The first member has a square 
cross-section (as x as) as shown in Fig. (12P.23a). The second member has a general rect- 
angular cross-section shape (a, x b), where b/a,=a (a > o), as shown in Fig. (12P.23b). 

Let the torsional stiffness of the rectangular and square cross-sections be C, and 
Cs, respectively, and let the maximum shear stress in the two cross-sections be t, and 
tr, respectively. (a) Using the results obtained for the solution of a general rectangu- 
lar cross-section, (i) write a computer program t o  evaluate the relevant coefficients p 
[Eq. (12.7.3Ob)] (using the first five terms of the series), (ii) determine the ratio of the 
torsional stiffnesses, C,/C,, as a function of a and (iii) present the results in tabular 
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form and, using a plotting routine, plot this ratio as a function of a. [Note: Alterna- 
tively, determine the ratio C,/C,, as a function of a using values of p given in the table 
on p. 468 and evaluate this ratio for values of a=I.O, 1.2, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0 
and 10.0. Present the results in tabular form and using a plotting routine, plot this 
ratio as a function of a. (b) Repeat (a) above (using the coefficient y )  for the ratio 
z r / t s  and plot as a function of a. (c) What conclusions can be drawn from the above 
calculations ?] 



13.1. Introduction 

The study of the bending of elastic beams aims at the determination of the internal 
stresses and deflections of beams due to flexure. In our previous treatment, expres- 
sions for these quantities were developed for a limited class of beams, namely for 
beams whose cross-sections possess an axis of symmetry (which was taken as the 
y-axis). It was seen that if, in addition, the beam is subjected only to lateral loads 
lying in the plane of symmetry [Fig. (13.1.1)] (such that moments about the y-axis, 
My = 0), it is possible to conclude that (a) the cross-sections do not rotate about 
the longitudinal x-axis, (b) the neutral axis coincides with the z-axis (which was 
shown to be a centroidal axis) and (c) the beam deflects in the plane of symmetry, 
i.e. in the y-direction. 

Figure 13.1.1 

Based on these conclusions, an expression for the flexural stress at any point 
of the beam was derived for slender beams in a state of pure bending: namely 
Eq. (8.6.9b), 

(13.1.1) 

where y is the perpendicular distance from the neutral axis and I,, is the second 
moment of the cross-section about the z-axis. 

It is important to re-emphasise that according to the derivation, the second mo- 
ment of area is, in fact, about the neutral axis and it is only because the neutral axis 
coincides with the z-axis that we write IZz. 

In this chapter, we extend our study to the bending of beams having arbitrary 
cross-sections. Moreover, loads and couples are assumed to be applied in arbitrary 
planes. As lack of symmetry precludes prior knowledge of the location of the neutral 
axis, the direction of deflection of such beams is not known a priori; moreover, 

496 
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the beam may undergo rotations about the x-axis. In considering the flexure of 
such beams in this chapter, our development will follow the same reasoning as in 
Chapter 8, with the exception that no symmetry is assumed. 

13.2. Moment-curvature relation for elastic beams in flexure 

Consider a beam having an arbitrary cross-section of area A ,  which is initially 
straight with a longitudinal axis lying along the x-axis [Fig. (13.2.la)l. Note that 
at this stage of the analysis the x-axis is not necessarily a centroidal axis. Let 
the beam be subjected to end couples. As a result, the beam will be in a state 
of pure bending (since the moments do not vary with x) and thus the beam will 
bend with constant curvature, as shown in Fig. (13.2.lb). Because of the arbitrary 
nature of the cross-section and the arbitrary plane of the end couples, we cannot 
conclude that the beam deflects in the x-y plane but must assume that the beam 
deflects in some unknown direction. The deflected position is therefore as shown in 
Fig. (13.2.lb). 

Figure 13.2.1 

Let Ax represent an element of the beam in its undeformed state [Fig. (13.2.2a)l. 
Since the beam is in a state of pure bending after deformation, plane cross-sections 
necessariZy remain plane; i.e., cross-sections rotate about some unknown axis N 
that lies in the y-z plane. It is important to observe that the deflection o f  the beam 
is in a direction perpendicular to the line N. 

We denote by A0 the subtended angle between the two end cross-sections of the 
element after deformation. Clearly, in the deformed state, some fibres (bb’) will 
elongate and others (tt’) will shorten [Figs. (13.2.2a and b)]. Therefore, there must 
exist some fibres, originally lying in some plane P of the undeformed element, 
that neither shorten nor elongate. (The x-axis is taken to lie along this plane.) Let 
N denote the intersection of the plane P with the cross-section and let nn’ denote 
fibres in this plane. After deformation, the plane P becomes a curved surface P’, 
with typical fibres lying along the arc &I’ of Fig. (13.2.2b); for these fibres, the 
extensional strain is clearly E ,  = 0. 

Let R denote the radius of curvature to the deformed nn’ fibres. Because of the 
arbitrary nature of the cross-section and loading, the line N in the undeformed 
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Figure 13.2.2 

element, which represents points of E ,  = 0, is in general, inclined as shown in 
Fig. (13.2.2~). 

From geometry, the arc length 6d = RAQ.  But since E ,  = 0 for the nnf fibres, 
RA0 = Ax. Consider now the fibres mmf located at some distance q of the unde- 
formed element, measuredperpendicularlyfrom the line N [Figs. (13.2.2a and c)]. 
After deformation, the arc length d = ( R  + q)AG. But since all fibres in the 
element were initially of length Ax , the strain E ,  in the mm' fibres is given by 

,-. 
mf - AX ( R  + q)AQ - RAG 

1 (1 3.2.1 a) _. _. 

RAQ 
E ,  = 

Ax 

i.e., 
17 

E --. 
" - R  

(13.2.1 b) 

As in Chapter 8, we assume that for a slender beam, 0." = a, = 0 throughout the 
body. It follows that the stress-strain relation is simply 0, = EE,. Hence 

Er] 
'- R 

CT --. (13.2.2) 

Thus along the line N representing the nn' fibres ( q  = 0), the stress a, = 0. This 
line is called the neutral axis. From Eqs. (13.2.1) and (13.2.2), we note that the 
strain and stress vary linearly with the perpendicular distance from the neutral 
axis. 

The moment about the neutral axis, denoted by M,, is given by 

Ad,, = \\ qo, dA. 
A 

(1 3.2.3a) 
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Substituting Eq. (13.2.2), 

Mn = // q (%) dA I= // q2dA. (13.2.3b) 
A A 

Clearly, by definition, In = JJA q2 dA is the second moment of the cross-sectional 
area about the neutral axis. Hence we obtain the moment-curvature relation 

EIn 
R 

M --. n -  (13.2.4) 

Note that the same relation was obtained for beams of symmetric cross-section 
in Chapter 8 [Eq. (8.6.6a) or (8.6.9a)], but because of the symmetry of the case 
considered, the discrepancy between the neutral axis and the z-axis was masked in 
the final expression. Here, however, we observe clearly that the relation refers to 
the neutral axis. 

Consider now the resultant force F, acting normal to the cross-section in the 
x-direction, which is given by 

F,= //a; dA. 
A 

Substituting for a,, 

(13.2.5a) 

(13.2.5b) 
A A 

Since for pure bending, the resultant normal force on the cross-section must vanish, 
i.e. F, = 0, it follows that [SA q dA = 0. Thus the neutral axis must always pass 
through the centroid ofthe cross-section. 

Combining the moment-curvature relation, Eq. (13.2.4), and Eq. (13.2.2), the 
expression for the flexure stress becomes 

Hence, if one knows the moment about the neutral axis, M,, and the second moment 
I,, one can always obtain the stress a, at any point q measured perpendicularly from 
the neutral axis. 

In the case o f  symmetric bending, with all loads applied, for example, in the 
x-y plane of  symmetry, we know, a priori, that the neutral axis coincides with the 
z-axis. However, if the cross-section is arbitrary, then for any loading system, the 
orientation of the neutral axis is not known. Therefore, although Eq. (13.2.6) is 
conceptually correct, it proves not to be very useful in practice. 

We therefore seek to develop a useful expression for the flexural stress a, which is 
valid for all arbitrary cross-sections and for loads acting in an arbitrary plane. Since 
loads are applied arbitrarily, we must, contrary to Chapter 8, consider moments 
about both the y -  and z-axes, as well as applied forces and shear forces in the y -  
and z-coordinate directions. 
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13.3. Sign convention and beam equations for bending 
about two axes 

Consider a beam of arbitrary cross-section, located in the x, y ,  z coordinate system, 
as shown in Fig. (13.3.1). Because of the asymmetry, it is necessary to establish 
a sign convention that takes into account forces in both the y-  and z-directions as 
well as moments about these axes. 

Figure 13.3.1 

(a) Sign convention 
We first recall the standard sign convention that defines the faces of the cross- 
section: a positive (negative) face is one for which the outward normal is acting in 
the positive (negative) x-direction. 

The sign convention for the shear forces is as follows: 

(negative) y -  and z-directions, respectively [Fig. (13.3.2a)l. 
Positive shear forces V,, and V, act on a positive (negative) face in the positive 

Figure 13.3.2 
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Consequently, negative V, and V, forces act, respectively, on a positive (negative) 
face in the negative (positive) y- and z-directions. 

Denoting the moments acting about the z- and y-axes as M, and M,,, respectively, 
the following sign convention is adopted: 

A moment M, is said to be positive (negative) if it tends to cause tension in the 

A moment M,, is said to be positive (negative) if it tends to cause tension in the 
fibres having positive (negative) y-coordinates [Fig. (13.3.2b)l. 

fibres having positive (negative) z-coordinates [Fig. (1 3.3.2c)l. 

The vector representation of the positive moments acting on a positive face is, 
according to the right-hand rule, shown in Fig. (13.3.3). Note that, while the vector 
representing positive Mv (on a positive x-face) points in the positive y-direction, 
the vector representing positive M, points in the negative z-direction. 

The following sign convention is adopted for applied loads: 

Positive forces q,,(x) and q,(x) act in the positive y- andz-directions, respectively 

Figure 13.3.3 
[Fig. (13.3.4)]. 

Figure 13.3.4 

(b) Differential beam equations 
The differential beam equations relating V,,, M, and q,,, derived previously in 
Chapter 8, are 

so that 

( 1 3.3.1 a) 

(1 3.3. lb) 

(13.3.2) 

Similarly, using the above sign convention, the analogous relations between V,, 
M,v and qz, obtained from the equilibrium equations, F, = 0 and My = 0, are 

(13.3.3a) 

(13.3.3b) 
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so that 

( 1 3.3.4) 

Having established the basic equations of equilibrium for the beam, we are now 
in a position to derive the general expressions for the flexural stress. 

13.4. General expression for stresses due to flexure 

(a) Derivation: stresses in beams under pure bending 
Consider a prismatic beam made of a homogeneous, isotropic linear elastic material 
in an x, y ,  z coordinate system as shown, such that the longitudinal x-axis passes 
through the centroids 0 of the cross-sections. The beam is assumed to have an 
arbitrary cross-sectional area A .  Let the beam be subjected to end couples such 
that the beam is in a state of pure bending [Fig. (13.4.la)l. We therefore assume 
that known positive internal resultant moments M,, and Mz are acting on the cross- 
section. These moments are shown according to' their vectorial representation in 
Fig. (13.3.3). 

Figure 13.4.1 

Now, internal stress resultants F,, M ,  and M, are given by 

A 

= / / z o x  dA, 
A 

(1 3.4.1 a) 

(13.4. Ib) 

(13.4.1~) 
A 

As was seen in Chapter 8, since the beam is in pure bending, the cross-sections 
must necessarily remain plane; i.e., no warping of the cross-section takes place 
during bending. Therefore, the displacement in the x-direction, u(x, y ,  z), o f  any 
point of the cross-section is given by [Fig. (13.4.lb)l 

u(x,"v,z)=c~(x)+c2(x).v+c3(x)z, (13.4.2a) 
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where, in the case of pure bending, C,(x) are all linear functions of x. Note that 
Eq. (13.4.2a) represents the equation of a plane. 

The strains at any point, E, = E, are therefore given by 

E , ( X *  y. z )  = c; + c ; y  + c;z, (13.4.2b) 

where Cz! are constants. Hence the stress, a;, = EE,, becomest 

0, = a + by + cz. (13.4.3) 

where a = EC;,  b 
bending). 

EC; and c ZE EC; are constants (for this case of pure 

Substituting in Eq. { 13.4. la), 

F, = / / ( a  +by + cz) dA = a  // dA + b // y dA + c // z dA. 
A A A A 

( 1 3.4.4) 

Since they- andz-axes are centroidal axes, it follows that isA y dA = isA z dA = 0. 
Now, for a beam in simple flexure, the normal force resultant F acting on the cross- 
section vanishes; therefore a = 0. 

Substituting now in Eqs. (13.4.lb) and (13.4.1~)~ and noting that b and c are 
constants with respect to the integral, 

//(by + cz)z dA = b // yz dA + c // z2 dA = M y ,  (13.4.5a) 
A A A 

A A A 

But 

I,, .. = // z'dA. (13.4.6a) 
A 

(13.4.6b) 

(13.4.6~) 

are the moments of the area about the y- and z-centroidal axes of the cross-section. 
Hence Eqs. (13.4.5) become 

I,& + ["ye = yp (13.4.7a) 

I,,b + I& = M,. (13.4.727) 

which we recognise as two simultaneous equations in the two unknown constants 

Note that, as in the denvation for symmetnc bending of long beams (see Chapter 8), we ignore ay and 
a, with respect to a, 
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b and c, whose solutions are 

(13.4.8a) 

(13.4.8b) 

Finally, substituting in Eq. (13.4.3), we obtain the general expression for the flexure 
stress: 

Since o,(’y = 0, z = 0) = 0, we conclude that the neutral axis always passes 
through the centroid of the cross-section. Note that this same result was previ- 
ously observed from Eq. (13.2.5b). 

(b) Extension of expression for flexural stress in beams due 
to applied /a teral loads 
The above expression for the flexural stress, derived for beams that were assumed 
to be in a state of pure bending (My = const., M, = const.), is an ‘exact’ expres- 
sion for slender linear elastic beams. Following the explanation given in Section 
9 of Chapter 8, this expression is also correct if the moments are linear functions 
of x. For moments My = My(x),  Mz = M,(x) that are general functions of x, the 
stresses, calculated according to Eq. (13.4.9), are not ‘exact’. However, recalling 
our discussion in Chapter 8 (Section 7), we may, on the basis of Navier’s hypothe- 
sis, use Eq. (13.4.9) to calculate a, for all loading conditions irrespective of the 
resulting moment variation with the x-coordinate. Such calculations yield excellent 
approximations particularly for very long beams. 

(c) Some particular cases 

Case (i): 31- and z-axes, as principal axes 
If the y -  and z-axes are principal axes, then I,”, == 0 and Eq. (13.4.9) reduces 
to 

(1 3.4.10) 

which coincides with Eq. (8.12, 1), as obtained by linear superposition in Chapter 8, 
for beams having cross-sections for which both the y -  and the z-axes were assumed 
to be axes of symmetry. 

Case (ii): My = 0 
Suppose that the beam of arbitrary cross-section is subjected only to loads acting 
in the x-y plane so that My = 0. It follows that 
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or 

(13.4.12) 

Under this loading condition, the stress at the z-centroidal axis, i.e. the y = 0 
axis, is 

(13.4.13) 

We observe that if all loads are acting in the y-direction, ox = 0 at the z-axis only if 
I,, = 0. Thus, under such loads, the neutral axis will lie on the z-axis i f ;  and only $ 
the z-axis is a principal axis. (Recall that if either the y- or the z-axes are axes of 
symmetry, they are, in fact, also principal axes.)+ Hence in our previous treatment 
of beams in Chapter 8, the limitation to beams with cross-sections that possessed 
an axis of symmetry was unduly restrictive: it would have been only necessary to 
require that the axes be principal axes. From the present discussion, we know this 
only a posteriori. 

Now, having established that under this loading condition, the neutral axis does 
not, in general, coincide with the z-axis, we wish to determine its orientation. Since 
the neutral axis is defined by the condition a, = 0, it follows from Eq. (13.4.12) 
that, for this Mv = 0 case, the equation representing the neutral axis is 

IyyY - I.zz = 0, (1 3.4.14) 

which we note is the equation of a straight line passing through the centroid [Fig. 
( 1 3.4.2)]. 

We denote the slope of the neutral axis by j3 (where j3 is measured in the posi- 
tive clock-wise direction with respect to the z-axis). Note then that j3 is given by 
j3 = tan-'(y/z).Hence,fromEq. (13.4.14)forthisMy = Ocase,wehaveestablisbed 
the orientation of the neutral axis, namely [Fig. (13,4.2)] 

(13.4.15) 

Figure 13.4.2 
We observe here that /3 = 0 if, and only if, I,, =0, i.e. if the y- and z-axes are 

principal axes. This corroborates the statement made in the previous paragraphs. 

Example 13.1: A 2-m long cantilever beam is subjected to a load P = 300 
N acting in the y-direction a t  the free end. The cross-section of the beam 
is a Z-section with dimensions as shown in Fig. (13.4.3). Determine (a) the 
stress U, existing a t  the fixed support (x=O) a t  points A and B of the section, 
(b) the orientation of the neutral axis and (c) the direction of the deflection 
S of point 0 at the free end. 

Solution: The properties of this section are I,, = 26.3 cm4, Iyy = 23.9 cm', Iyz = 
-19.6 cm4. The moments at the fixed end are Mv =0, M, =(-2 x 300)= 
-600 N-m = -60,000 N-cm. 

Note that if the y-axis is an axis of symmetry, it is also a pnncipal axis. However, as seen in Appendix 
A. 1, it IS clear that not all pnncipal axes are necessarily axes of symmetry. 
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Figure 13.4.3 

Figure 13.4.4 

(a) Using Eq. (13.4.12), the stresses a, are 

= -4820 N/cm2 = -48.2 MPa (compression) 
(23.9)(-2.5) - (-19.6)(-0.25) 

(23.9)(26.3) - (19.6)' 
(-60,000) tT,B = 

= 15,900 N/cm2 = 159 MPa (tension) 

(b) The slope j3 of the neutral axis is given, according to Eq. (13.4.15), by 
#? = tan-'(-19.6/23.9) = tan-'(-0.820) ++ j3 = -39.36". 

(c) Since the deflection is always perpendicular to the neutral axis, the deflection 6 
will be in a direction inclined at an angle o f  50.64' with respect to the z-axis. 

The resulting stress distribution on the flange AB of the section as well as the 
orientation of the neutral axis and direction of the deflection are shown in Fig. 
(1 3.4.4). 

(d) General case 
We now consider the general case of  a beam loaded by a set of inclined lateral loads 
such that both moments M ,  and M, are acting on a cross-section of  the beam. In 
this case, according to Eq. (13.4.9), the equation of the neutral axis, defined by 
ax = 0, is 

(~.lyMz - [vzn/rl,)y + U Z Z M ,  - I;zMz)z = 0. (1 3.4.16) 

Assume now that all applied loads act at a given angle 0 to the y-axis [see 
Fig. (13.4.5)]. Note that the moments MZ are then due to the components of loads 
fP cos 0 and that M ,  moments are due to T P  sin0 (according to the adopted sign 
convention). (Note also that 0 is measured clockwise positive with respect to the 
y-axis.) Then 

(1 3.4.17a) 

(1 3.4.17b) 
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where I MI EZ M, the magnitude of the moment resultant due to the load, is perpen- 
dicular to P [Fig. (13.4.5)]. Substituting in Eq. (13.4.16), 

[(~, ,~,cos@)M+(1, ,s in8)M]y+ [(-Iz,sin@)M - ([,,cos8)M]z=O. 

Hence the orientation of the neutral axis is given by 

sin 6 + I?/, cos 6 
tanj3 = 

I,,, .. cos 8 + I,, sin 8 ' 

13.4.18) 

13.4.19) 

where again j3 is measured clockwise from the z-axis. Note that if y and z are 
principal axes, then 

tan@= - tan@. (3 (13.4.20) 

We illustrate these results by means of the following example. 

Example 13.2: A set o f  given forces is applied to a beam o f  rectangular cross- 
section o f  width band depth d. If all the forces are applied a t  an angle of I", 
as shown in Fig. (13.4.6), determine the location of the neutral axis. 

Solution: Since the cross-section is rectangular, the y -  and z-axes, being axes of 
symmetry, are also principal axes, i.e. IVz = 0 and therefore Eq. (13.4.20) is valid here. 
Then with Izz = bd3/K!, I,, .. =db3/12, 

Hence, by Eq. (13.4.20), 

(13.4.21) 

We note here that 8 = -l"andtan(-1")= -0.01746. We consider three separate 
cases: 

(a) b =d:  then, from Eq. (13.4.21), j3 =E@, i.e. the neutral axis lies in a direction 
perpendicular to the applied loads. The beam will therefore deflect in the same 
direction as the applied loads. 

(b) d = 2b: then tan j3 = 4  tan(-I") = -0.0698 -++ j3 = -4.0". 
(c) d=5b: thentanj3=25(-0.01746)=-0.4365 --+-A j3=-23.6". 

The location of the neutral axis for this loading, in the above three cases, is 
shown in Figs. (13.4.7a-c). Recalling that the deflection S of the beam is always 
perpendicular to the neutral axis, we observe that the deviation of the direction 
of the deflection with respect to the direction of the applied load becomes very 
sensitive (even for a slightly inclined load), as the ratio d / b  of the beam in- 
creases. 
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Figure 13.4.7 

13.5. Shear stresses due to bending of beams 
(a) Derivation 
If the moments M, and M, are functions of x, i.e. not constants, then according to 
Eqs. (13.3.lb) and (13.3.3b), the shear forces at a cross-section V, and V, will not 
vanish. Due to these non-zero shear forces, shear stresses txy and txc will exist at the 
cross-section. Consider now an element Ax of the beam, as shown in Fig. (1 3.5. la), 
and let the left and right cross-sections be located at x and x + Ax, respectively. 
Furthermore, My(x + Ax) =I My(x) + AM, and M,(x + Ax) = Mz(x) + AM,. As 
a result, according to Eq. (13.4.9), the flexural stresses a, are also functions of x. 
Let CT,(X) and ax(x + Ax) = a, + Ao, denote the flexural stresses on the two faces 
of the element, respectively [Fig. (13.5.la)l. Clearly, the entire element Ax is in 
equilibrium in the x-direction. 

As in Chapter 8, we consider an arbitrary portion of the element. We therefore 
‘cut’ the element along some arbitrarily inclinedplane H that is parallel to the x-axis 
(i.e., one whose normal n is perpendicular to the x-axis). Note that the intersection 
of this plane with the cross-section is a line K whose length we denote by b [Fig. 
(13.5.1b)l. Let us now isolate a portion of the element, for example, the bottom 
portion. 

We now consider this portion of the element [Fig. (13.5. Ic)] as a free body and 
examine it for equilibrium. Let us denote the area of this portion of the cross- 
section by 2. Now, the flexural stresses acting in the x-direction on the areas 2 of 
the left and right faces are, as before, az and 0;. + ha,, respectively. Clearly, since 
a,(x) f. a,(x + Ax), these stresses alone cannot maintain this free body in equilib- 
rium in the x-direction. Therefore, shear stresses that act in the x-direction must 
necessarily exist on the plane H. Note that the area A’ of this plane is A’ = b x Ax. 
Let us denote the average shear stress that acts on the plane H by t zz r,,, [Fig. 
(13.5.lc)J Note also that we have taken z to be positive when acting to the leji on 
the plane H of this isolated free body. 
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Figure 13.5.1 

For equilibrium in the x-direction, F, = 0, we have 

or 

t(bAx) = /I AD, dA . (1 3.5.1 b) 
- 
A 

Dividing through by b Ax, we have 

and taking the limit as Ax + 0, we arrive att 

( 1 3.5.1 c) 

( 13.5.2) 

t As in the denvation of shear stresses for symmetrical cross-sections given in Chapter 8, we note that 
upon taking the limit as Ax + 0, the plane H is reduced to the line K. Consequently, the average shear 
stress T = Itnx/ acting on H becomes, in fact. the average shear stress acting at points along the length 
h of this line. 
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Now, the flexural stress ox is given by Eq. (13.4.9). Hence, upon taking its deriva- 
tive, 

But, according to Eqs. (13.3.1b) and (13.3.3b), 

Hence 

Substituting in Eq. (13.5.2), and noting that b, and V, are not functions of dA, we 
obtain 

(1 3.5.4) 

As in Chapter 8, we observe that s l y  dA integrated over the area 2 [shown shaded 
in Fig. (13.5.2)] represents the mosdent of this area with respect to the z-centroidal 
axis, which we denote by Q3; thus 

(13.5.5a) 

A 

where 7 represents the distance from the z-centroidal axis to the centroid C of 2. 
Similarly, let 

- 
Q, = // z dA =FA 

- 
( 13.5.5b) 

A 

be the moment of A with respect to the y-centroidal axis, where Z is the distance 
from the y-axis to the centroid of 2. 

Figure 13.5.2 
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Thus we may finally write 

If y and z are principal axes, then Eq. ( 13.5.6) becomes 

(13.5.7) 

Furthermore, if no applied forces are acting in the z-direction (so that Vz = 0), 
we recover the simple expression for t tnn as derived in Chapter 8, namely 

(13.5.8) 

Finally, recalling the equality of the conjugate shear stresses, tnx = t,,, we note 
that Eqs. (13.5.6)-(13.5.8) represent the average of the shear stresses acting in the 
cross-section along the line K. 

(b) Comments on the expressions 
We observe that the derivation of the above expressions for t follows closely that 
given in Chapter 8 [Eqs. (8.8.1)-(8.8.4)], the difference being that, here, the more 
general expression for the flexural stress a, [Eq. (13.4.9)] enters in the deriva- 
tion. Thus the comments and conclusions stated in Chapter 8 remain valid. It is 
worthwhile to recall these features, namely 

(i) The final expression for t represents an average value of the shear stress acting 
in the cross-section at points along the cut of length b. 

(ii) Positive values of t, as calculated from Eqs. (13.5.4)-(13.5.8), signify that 
t acting on a cross-section having a positive face, is pointing inward into 
the surface area 2; a negative t indicates a stress pointing out of the area 2 
[Figs. (13.5.2a and b) respectively]. 

(iii) Since the calculated values are average values over a cut of length b, these 
average values are better approximations to the true value of the shear stress 
at points along a cut whose length b is relatively small. 

Thus, finally, it should again be clear that the values for t given by the expressions 
derived in this section are approximate and not exact values. 

Example 13.3: A horizontal load P is applied to  a beam whose cross-section is 
a structural angle (L102 x 102 x 9.5), as shown in Fig. (13.5.3a). The resulting 

Figure 13.5.3 
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shear forces at a cross-section of the beam are given by V,= 100,000 N, V, = 0. 
Determine the average shear stresses t along the lines a-a and c-c. 

Solution: From Eq. (13.5.6), t is given by 

I,,, IZz and z, (defining the location of the centroid 0 [Fig. (13.5.3a)l) are found in 
standard tables of structural sections: 

~y,=IzZ=l.81 x 106mm4, t=9.5mm, zC=29.0mm. 

To calculate the ‘mixed second moment’ (loosely referred to as the ‘product of 
inertia’)$ of this thin-wall section (which does not appear in the standard tables), 
we consider the component parts to be thin rectangles, thus ignoring the fillets 
[Fig. ( 1 3.5.3 b)] . 

Hence, using this representation, I,, is found as follows:$ 

lyZ = (102 x 9.5)(24.25)(22) + (92.5 x 9.5)(-24.25)(-26.75) 

= 1.09 x 106 mm4 

With these values, the above expression for t becomes 

100,000 [1.81 x 106 Q, - 1.09 x 106 Q Z ]  
t=--------- 

9.5 [(1.81 x 106)’ - (1.09 x 106)2] 

= 5.04 x 10-9 (1.81 x 106 Q, - 1.09 x 106QZ)MPa. 

To determine Q, and Q2 for this thin-wall sections, we again make use of the repre- 
sentation of Fig. (13.5.3b). Thus, for the stress along a-a, we calculate the moments 
of the area 2 about the y -  and z-axes, located above the line a-a as follows: 

Q, = (50 x 9.5) x (-24.25)= -11.52 x 103 mm3, 

QZ = (50 x 9.5) x (-48) = -22.8 x 103 mm3. 

Substituting in the last expression, 

t = 20.2 MPa along a-a 

Similarly, to obtain the stress along c-c, the moments of the area 2, calculated for 
an area to the right of line c-c, are 

Qy = (92.5 x 9.5)(55.75 - 29)=23.51 m3, 

Qz = (92.5 x 9.5)(24.25)=21.3 x 103 mm3. 

Substituting in the final expression above, we find 

t = 93.7 MPa along c-c. 

t Analogously to the second moment of an area, whtch IS loosely called moment ofinertia. the mixed 
second moment is sometimes called the product ofinertia (see footnote p. 688). 
Alternatively, from the table of Appendix E, the area of the angle section is given as A = 1845 mm2, 
anditsminimumradiusofgyrationisr = 20mm;henceI,,, = 0.738 x 106mm4 UsingEq.(A.1.14)of 
Appendix A and nohng that 1 2  I,,,, we obtain Iuz = 1.07 x 106 mm4. The descrepancy is due 
to the fillets and slight taper of the angle legs. 
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The resulting shear stresses t acting on a positive face are shown in Fig. (13.5.3~). 
Note that the shear stresses change direction in the vertical leg of the angle. 

13.6. Distribution of shear stresses in a thin-wall section: 
shear centres 

As we have seen in Chapter 8, expressions for the shear stress t can be used to 
determine the shear stress distribution throughout a cross-section. We now examine 
the shear stress distribution for a channel section. In doing so, we will find that this 
leads to a new property of a section, the ‘shear centre’. It is convenient to develop 
our ideas via a specific case. 

We examine a cantilever beam of length L having a channel cross-section [Fig. 
(1 3.6. la)]. Such a section is called a thin-wall section if t / c  << 1 and t’/ h << 1, as 
shown in Fig. (1 3.6.1 b). (Using the thin-wall property, we may consider dimensions 
c and h to be between the centres of the flange and web, as shown in the figure.) 
The beam is subjected to a load P acting in the y-direction at the free end. Note 
that the point of application of the force P within the cross-section at the free 
end is not specified. However, irrespective of the y-line of action of P ,  the shear 
force at any cross-section is V, = P > 0 (with V, = 0). We first determine the shear 
stress distribution throughout any cross-section at any arbitrary location along the 
longitudinal x-axis. Observing that the z-axis is an axis of symmetry and therefore 
a principal axis, we make use of Eq. (13.5.8), 

(13.6.1) 

Figure 13.6.1 

(a) Shear stress distribution 
To determine the shear stress in the flange AB of the channel, we might make 
a horizontal cut somewhere between the top and bottom faces of the flange. We 
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note that if we do so, the length b here is equal to the dimension ‘c’, as given in 
Fig. (13.6.lb). The resulting shear stresses t would then be acting in the vertical 
direction. On the other hand, we may also make a vertical cut at some variable 
distance U from A .  Then the b appearing in the expression is equal to the thickness 
t of the flange. Noting that t / c  << 1, and that the b term appears in the denominator 
of the expression, it is clear that the horizontal component o f t  is much greater than 
the vertical component. (In fact, we know that at the top and bottom free faces of 
the flange, vertical components o f t  must vanish.) Thus if t / c  << 1, we may then 
neglect the vertical component and calculate t in the flange by making a vertical 
cut at some variable distance U from point A [Fig. (13.6.lc)l. For 0 5 U 5 c, 

Qz =A * Y = ( t u ) .  (-h/2). ( 1  3.6.2) 

SubstitutinginEq. (13.6.1) andnotingthatwithb E t ,  t ( u ) =  -V7n4/21z2. We ob- 
serve that t varies linearly with U in the flange AB and that it is negative for v, > 0; 
thus, according to comments (ii) of Section 13.5b, z is acting to the left on a positive 
face.Notealso thatinthecoordinatesystemofFig. (13.6.lc), txz = t = - Vyhu/2IZz 
in the flange AB. At point B (U = c), t = - V,hc/21ZZ (is maximum in absolute 
value). 

The shear stress in the flange CD is calculated similarly upon defining U as 
the distance from point D: we obtain the same result but with opposite sign; i.e., 
.(U) = t,, = V,,h~/21~, .  Therefore, for V,, > 0, t is acting to the right in this flange. 

Consider now the web BC. Here, it is clear that the major stress component will 
be acting in the y-direction. Defining the ‘cut’ by means of the variable U (measured 
from the intersection of the centrelines), the moment QZ of the area ’;i above the 
cut [Fig. (13.6.ld)l is, byEq. (13.5.5a), 

tch UP(h - U )  tch QZ=A.F= - - + ( ~ t ’ ) .  [ - ( h / 2  - v/2)] = - - - 2 2 2 
(13.6.3) 

Substituting in the above expression, and noting that here b = t’, 

(13.6.4a) 

We observe that t has a parabolic distribution in the web and is maximum when 
U = h/2 ,  i.e. at the z-axis. Note also that for V, > 0, t ( u )  < 0. Hence according to 
the previous comment (ii) of Section 1 3Sb, t acts downward on the positive x-face. 
In the established coordinate system, txy = -t, i.e. 

v, 
21zzt‘ 

t ( ~ )  = - -[cth + ~ t ’ ( h  - U ) ] .  

(13.6.4b) 

The physical shear stresses and their distribution on the positive x-face are shown 
in Fig. (13.6.2a). 

(b) The shear centre 
Let us now calculate the resultant forces acting in the flanges, RH, and in the web, 
Rv, due to the t above. Upon observing that the z distribution in the flange AB is 
linear, we obtain 

R H = -  1 ( - V v ~ ) ( ~ t ) = - V , - 3  htc2 
2 41zz 

(1  3.6.5) 
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Figure 13.6.2 

Note again that the minus sign here indicates that RH is acting to the left in the 
flange AB. In the flange CD, we will clearly obtain the same RH with the opposite 
sign; thus RH acts to the right on the positive face of the flange CD. 

The vertical resultant force Rv in the web BC, calculated from z of Eq. (13.6.4b), 
is 

h 
Rv = 1 zxxy(Vt)t’ dv = V,- t’ l h ( c t h  + t’hv - t’v2) dv (13.6.6) 

. 2I&‘ 
or 

Therefore 

(13.6.6a) 

V, cth2 t‘h3 
R - .  -+- . 

v - - (  I,, 2 1 2 )  

To calculate I,,, we note that we have assumed t / c  << 

( 13.6.6b) 

1 and t’/ h << 1. We there- 
fore neglect these quantities when they appear as third-order intinitesimals in the 
calculation [i.e., we set ( t / ~ ) ~  = 0, etc.]. The second moment I,,, calculated on this 
basis, becomes 

cth2 t‘h3 
2 12 I,, = - +-, (1 3.6.7) 

from which we find Rv = 6,. [The resultant forces RN and Rv acting on the positive 
x-face are showninFig. (13.6.2b).] Thus, we observe that the internal stress resultant 
of the average shear stresses zxy satisfies the given vertical shear force condition 
on this positive face of the cross-section. 

Consider now a segment xo - L of arbitrary length of the beam where we have 
made a cut at some section x =XO [Fig. (13.6.3a)l. We note that three forces exist 
on the negative face of the cross-section at XO: namely, an upward force in the web, 
Rv = Y,, and the two forces in the flanges: a force RH acting to the right in flange 
AB, and to the left in flange CD. We observe that the forces RH constitute, in effect, 

Now, we recall that one can always replace any force system in terms of an 
‘equivalent force system’ consisting of a single resultant (or a couple). We thus 
wish to replace the three-force system by a single resultant. Since the two flange 
forces are equivalent to a clockwise couple, it is clear that the resultant is a vertical 

a Couple RHh. 
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Figure 13.63 

force Vy = P that acts in the upward y-direction. To determine the location of this 
resultant such that it represents an equivalent force system, the moment M, about 
any axis due to this resultant must be identical with that due to the original existing 
force system. (Here, it is convenient to take moments about an axis EJ of Fig. 
(13.6.3b), parallel to the centroidal x-axis of the section.) Since the flange forces 
represent a clockwise couple, we therefore require that 

RHh = Vye, (13.6.8a) 
that is, 

Substituting Eq. (13.6.5), 

c2h2t 
4 L  

e = - .  

(1 3.6.8b) 

(13.6.9) 

Thus, the segment of the member, xo - L ,  can be considered to be subjected 
at the section xo to a force system consisting of a single upward force Y y  = P 
whose line of action is located at a distance e from the web, as shown in 
Fig. (13.6.3b). 

Treating the segment xo - L as a free body, we observe that it is, in effect, 
subjected to two forces: the upward force V, = P at xo and the applied downward 
load P at x = L. By inspection, the equilibrium conditions C Fy = 0, F, = 0 
are seen to be satisfied. Examining the moment condition, (E M x ) ~ ~  = 0, we find 
that this condition is satisfied only if the applied vertical load P acts along a line 
of action at the same distance e from the web [see Fig. (13.6.3b)l. 

Thus we conclude that if the beam is to bend without twisting when loaded 
by a force acting in the y-direction, it is necessary that its line of action (in the 
y-direction) be at a distance e as measured from the centre of the web. 

If P does not lie along the line of action given by e above, the beam will rotate 
(i.e., twist) due to an external torque T = Pe.  

If we consider now a force acting in the horizontal z-direction on the channel 
beam, it is clear from arguments of symmetry, that the beam will bend about the 
y-axis without twisting only if the line of action of the applied horizontal force 
coincides with the z-axis. 

The intersection of these two lines of action, point S, is called the shear centre 
of the channel [Fig. (13.6.3c)l. We therefore define the shear centre as follows: 

The shear centre of a cross-section is that point through which all external loads 
must be applied such that the beam bend without twisting. 
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It is instructive to consider the location of the shear centre for the channel section 
investigated above for the case where the thickness of the wall is constant, i.e. t’ = t .  
From Eq. (13.6.7), the second moment I,, becomes 

th2 
12 

I,, = - ( 6 ~  + h).  

Substituting in Eq. (13.6.9), 

3Y C 

* c ,  y = h ’  e=------- 
1 + 6 y  

( 13.6.1 Oa) 

(1 3.6. lob) 

The position of the shear centre is seen to depend on the ratio c / h  and falls in 
the range 0 5 e 5 0 5 .  Thus, if this ratio is relatively large, the shear centre for this 
section will lie at a distance e 2: 0 . 5 ~  from the web. Note also that if y = 0, i.e. 
if the section consists of a thin rectangle, the shear centre lies along its y-axis of 
symmetry. 

(c) Some remarks and comments 
(i) The shear centre S of a cross-section is a geometric property of the section 

alone, and is not a property of the loading. All cross-sections possess a shear 
centre. 

(ii) If a load is applied through any other point of the cross-section other than the 
shear centre, the beam will twist due to a resulting torque. 

(iii) It will later be shown (in Chapter 14) that the shear centre of a linear elastic 
beam coincides with the ‘centre of twist’ of a member when subjected to a 
torsional moment T .  

(iv) From standard arguments of symmetry, we may conclude that the shear centre 
will always lie on the axis of symmetry if a cross-section possesses an axis of 
symmetry. Thus, for example, the shear centre S of a rectangular cross-section, 
etc. or of an I-section will be as located as shown in Figs. (13.6.4a and b). 

(v) Let us consider cross-sections composed of thin rectangular components, as 
shown in Figs. (13.6.4~ and d). Clearly, irrespective of the applied loads, the 
resulting shear stresses must be parallel to the ‘long’ dimension ofthese rectan- 
gular components. Thus, for the sections shown, for example, in Figs. (1 3.6.4~ 
and d), the resultant forces of these shear stresses must pass through the point S 
and consequently produce no moments about this point. Therefore, the external 
forces themselves must be such that they too contribute no moments about this 
point. Hence point S, as shown in the figure, must represent the location of the 
shear centre. 

(vi) Finally, we should address the following question: if the shear centre lies outside 
the physical section (as, e.g., in the case of the channel) how then can one load 

Figure 13.6.4 
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Figure 13.6.5 

the beam through S? In engineering practice, this is achieved by adding a 
bracket to the beam, as shown in Fig. (13.6.5). However, the importance of 
establishing the location of the shear centre lies mainly in determining the 
rotation (twist) of a beam when loads do not pass through this point. This 
problem is considered in the section below. 

13.7. Deflections and rotations of a beam under applied loads 

We have seen in our previous study, that (a) the deflection of a beam is always 
perpendicular to the neutral axis and (b) applied forces that do not act through the 
shear centre of a cross-section will cause the beam to rotate. 

Let us return to the problem of the channel cross-section. Assume that a vertical 
force P is acting, for example, through the centroid 0 of the section, as shown in 
Fig. (13.7. la). Using the principle of superposition, one may consider this loading 
case as a superposition of loads given by Figs. (13.7.lb and c), where S is the shear 
centre of the cross-section. For the load of Fig. (13.7.lb), we note that P passes 
through S and acts in the direction of a principal axis. Hence from Eq. (13.4.15), 
the neutral axis coincides with the z-axis and therefore the deflection S in this case 
will be in the direction of P. 

Figure 13.7.1 

Examining the loading case of Fig. (13.7.lc), we recognise that this loading 
system consists of a couple producing a torque T M, = Pd.  Hence this force 
system will cause a rotation about the centre of twist which, according to comment 
(iii) of Section 13.6 above, coincides with the shear centre S. Thus, due to this 
loading case, the beam may be treated as a member subjected to a torsional moment 
T .  The rotation 8 and the additional shear stresses t in the beam due to the torque 
may be found from the expressions of Chapter 12. 

Combining the two effects, we observe that the cross-section of the beam will 
both deflect and rotate, as shown in Fig. (13.7.la), if P is applied through the 
centroid. 

Let us now examine another case, namely a beam whose cross-section is an angle 
(whose legs have equal length) situated in the y-z system, as shown in Fig. (13.7.2a). 
We observe that here the z-axis is a principal axis. Assume now that a vertical load 
is applied as shown. Note that the shear centre S is located at the intersection of 
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the two legs [as was observed in remark (v) of Section 13.6bI. Then clearly, the 
cross-section will deflect in the vertical y-direction and will not rotate, since, as we 
have seen, the load passes through the shear centre. 

If the beam is subjected to a force acting parallel to the principal axis but not 
through the shear centre, then the shear centre S will deflect in the direction of the 
load but some rotation will take place [Fig. (13.7.2b)j. 

Figure 13.7.2 

On the other hand, assume that the angle is situated as in Fig. (13.7.2~) and that 
a vertical load is applied. Here, the z-axis is not a principal axis. Since P is not 
acting parallel to aprincipal axis, the cross-sections will not deflect in the direction 
o f  P.  Rut, again, because P is acting through the shear centre S ,  no rotation will 
take place; the beam will therefore assume the position shown in Fig. (13.7.2~). 

Assume now that the beam is situated as in Fig. (13.7.2d) and that a force P is 
acting through a point other than S. Then, as in the previous case, the beam will 
deflect in a direction not parallel to l? Moreover, since the force is not acting through 
the shear centre S, the beam will also rotate, as shown in the figure. 

We summarise our results by means of the following table [where (a) to (d) refer 
to Fig. (13.7.2)]. 

Finally, it is important to note that the expressions for t derived in Section 13.5 
are due to bending and do not take into account twisting of the beam. These ex- 
pressions are therefore valid only for the case when the applied loads pass through 
the shear centre of the section. The effect of torsional moments, which occur when 
the applied loads do not pass through the shear centre, must then be analysed ac- 
cording to the expressions developed in Chapter 12. Since all the derived relations 
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are linear, the total effect, due to bending and torsion, is then obtained by simple 
superposition. 

13.8. Shear stresses in closed thin-wall sections 
Thin-wall sections appear in many engineering structures, in particular, in aircraft 
structures. While the determination of the flexural stresses a, in such cross-sections 
does not require any special treatment, it is necessary to develop expressions for 
the shear stresses. 

We examine a beam with a thin-wall cross-section of arbitrary shape and varying 
thickness t ,  as shown in Fig. (13.8.la). For simplicity, we consider the case where 
the y -  and z-axes are principal centroidal axes, The beam is subjected to a known 
shear force V, acting through a given point J as shown. We wish to determine the 
shear stresses existing throughout the section. As we have seen from our previous 
discussions, shear stresses existing in a thin wall must always act tangentially to the 
lateral surfaces; it is these shear stresses that we wish to obtain. 

Figure 13.8.1 

We first define a parameter s as the variable tangential distance along the centre- 
line of the wall measured from some arbitrary point A in the section [Fig. (1 3.8. l)]. 
Then, from the derived expressions of Section 13.5, one would expect t at any point 
D, at a distances from A, to be given by Eq. (13.5.8), namely 

We recall, however, that QZ appearing in this expression represents the moment 
about the z-axis of the area 3 of an isolated portion of the cross-section. Now, in 
order to isolate such a portion and consider it as a free body, we note that here it 
is necessary to introduce two ‘cuts’, say at A and D. On each one of these cuts, 
unknown shear stresses must be assumed to be acting. Thus clearly, it is not possible 
to calculate the shear stresses at D since the shear stresses at A are not known. Indeed, 
in deriving Eqs. (13.5.4)-(13.5.8), it was clearly implied that only a single cut had 
to be made. If, however, t were known to be zero, for example at A, then the above 
expression could readily be used to calculate t at D by isolating the segment AD. 
We therefore make the assumption that at A, the stress t = 0 and, on this basis, 
calculate QZ for the area 3 of the segment AD [Fig. ( I  3.8.1 b)] . As a result, in using 
the above expression, we do not obtain the true average physical stress t, but rather 
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a fictitious stress zf; i.e., 

(13.8.1) 

which must later be corrected in the analysis. Note that the resultant of these internal 
stresses will always be equal to V,. 

Having calculated zf from Eq. (13.8.1), it is then possible to determine the tor- 
sional moment M’ about the x-axis (passing through point 0), which is caused by 
these stresses. Setting this moment equal to Vya, we find a = M’/ v,,, the distance 
from 0 to the point C ,  as shown in Fig (13.8.2). Thus, the stresses zf are the stresses 
which would exist if the resultant shear force V, were to pass through point C. 
However, V, has been specified to pass through point J. 

Figure 13.8.2 

Now, we know that a force system consisting of a single force passing through 
a given point can always be replaced by an equivalent force system consisting of 
a force (having the same resultant) and a moment. Thus, here, the force system 
V, acting through point J [Fig. (13.8.3a)l can be replaced by the force V, acting 
through point C and a couple M =  Vyd acting about the x-axis, where d is the 
distance between J and C [Figs. (13.8.3b and c)]. 

Figure 13.8.3 

Let t denote the actual stresses due to the given shear force appearing in Fig. 
(13.8.3a). Since all the stress-force relations are linear, we may use the principle of 
superposition; thus 

t = Tf + t c ,  (13.8.2a) 

where zf are the fictitious stresses due to the shear force acting through point C 
[Fig. (13.8.3b)l and given by Eq. (13.8.1). The stresses z,, produced by the couple 
T = yvvd [Fig. (13.8.3c)l may be considered as corrective stresses [which essen- 
tially are corrections to our initial assumption that TA t ( ~  = 0) = 01. From the 
expressions derived in Chapter 12, these stresses, due to a torsional moment acting 
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on a closed thin-wall section, are given by [see Eq. (12.10.6)] 

T Vvd 
2At(s) 2At(s) ’ 

t J S )  = - = - (I  3.8.2b) 

where A represents the area within the centre-line of the thin wall. Combining these 
expressions, we arrive at an explicit expression for the true average stress, 

(1 3 A.3) 

Example 13.4: A rectangular thin-wall section, as shown in Fig. (13.8.4), is  
subjected to a shear force Vv= 100,000 N whose line of action passes through 
the point J, 50 mm from the y-axis. (a) Determine the average shear stresses t 
at  points along the lines a-a and b-b and along an arbitrary line c-c located a t  
a distance v, as shown in the figure. [Note that here v is measured differently 
than in Fig. (13.6.ld).] (b) Draw the distribution of the shear stresses t in the 
section. (c) Determine the unit angle of rotation 0 due to  the given applied 
load if the cross-section is made of steel (G = 79 GPa). 

Figure 13.8.4 

Solution: 

(a) Following the development above, we assume that the stress z = 0 at point A. 
The resulting stresses tf are then calculated according to Eq. ( 13.8.1). For the section, 

IzZ=(21Ox 1053)/12-(190x953)/12=668.33 x 104mm4. 

At a-a: QZ =(95 x 5.0)(-50.0) = -23.75 x 103 mm3 
At b-b: Q2 = (105 x 5.0)(-50.0) = -26.25 x 103 mm3 
At c--c (defined by the variable U ) :  Qz = -26.25 x 103 - 475v f 5v2 

Note: Along the segment B-E (or C-D) Qz has a linear variation. Along the segment 
B-C, Qz is a quadratic function of v; the shear stresses tf therefore vary parabolically 
along this segment and will have a maximum value at point H where QZ(v = 47.5) = 
-37.53 x 103 m3. 



13.8. Shear stresses in closed thin-wall sections 523 

Substituting in Eq. (13.8.1): 

100.000(-23.75 x 10') = -71.1 ~p~ 
100.000(-26.25 x 103) = -39.3 ~p~ 

At a-a: 'f= 

At b-b: 'f = 

At H: 'f= 

668.33 x 104 x 5.0 

668.33 x 104 x 10.0 
100,000(-37.53 x 10') 

668.33~10~ x 10.0 = -56.15 MPa 

Note: 

(i) Clearly, QZ at d-d must be the same as Qz at b-b and Qz at e-e must be the same 
as QZ at a-a. Hence tf at d-d and e-e are equal to tf at b-b and a-a, respectively. 

(ii) Upon examining the expressions for QZ, we immediately deduce, by inspection, 
that the fictitious shear stresses tf are symmetric with respect to the y-axis. 

The tf stress distribution as well as the directions of the stresses are shown in Fig. 
(13.8.5a). 

Figure 13.8.5 

From this stress distribution, it is evident that the resulting moment about the x-axis 
passing through point 0 vanishes. Therefore, we may conclude that the calculated 
stresses tf are those that would be due to a shear force V, that acts along the y-axis. 
(Thus, i f  V, had been specified as passing through point A,  the above stresses would 
then indeed be the true average shear stresses t and no correction would be necessary,) 

However, since Y,, has been stated to pass through the point J, there exist correc- 
tive stresses rc due to a torque T = 50 x 100,000 = 5.0 x 106 N-mm. Hence from 
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Eq. (13.8.2b), 

125.0 
MPa. - - T 5 x 106 

t --= ‘- 2At 2(100 x 200)t t 

Along the top and bottom segments (B-E and C-D), t = 5.0 mm and therefore 
tc = 25.0 MPa. 
Along the vertical segments (B-C and D-E), t = 10.0 mm and therefore tc = 12.50 
MPa. 

The shear distribution of the corrective stresses tc is shown in Fig. (13.8.5b). 
Finally, the actual stresses, obtained by superposition, t = tf + tc, can be immedi- 

ately calculated. 

(b) The distribution of shear stresses t is shown in Fig. (13.8.5~). Note that there 
exist two points in the section where t = 0. Since the shear flow is always continuous, 
and since, in order to satisfy the equilibrium conditions F, = 0 in the cross- 
section, it must ‘change directions’? it follows that the shear flow must necessarily 
vanish (at least) at two points within a closed section. 

(c) To obtain the rotation of the section due to the applied loads, we use Bredt’s 
formula as derived in Chapter 12 [Eq. (12.10.14)]: 

Fy = 

Substituting from Eq. (13.8.2a), 

(1 3.8.4a) 

(13.8.413) 

where $ is over the closed path of the centre lines. Due to the symmetry of the 
cross-section and of q7 it is evident, for this case, that the integral of tf over the 
closed path vanishes. Recalling that tc is given by Eq. (13.8.2b), the above equation 
reduces to 

T T 

where ti and Si are the thickness and length of each component segment, respec- 
tively. Hence we obtain (upon using the symmetric properties)? for G = 79 GPa = 
79 x 103 N/mm2, 

@=. 
5 x 106 

14 x (2.00 x 10412 x (79 x 1091 

= 0.00396 radm = 0.227”/m. 

Thus for a member 10 m long, the ends will rotate 2.1” with respect to each other. 

It should be noted that the above example was considerably simplified due to 
the symmetry of the cross-section. In addition, by assuming A to be the point of 
zero t in the solution, we obtained a symmetric distribution of the stresses ‘L-f with 
respect to the y-axis. The analysis of sections of arbitrary shape requires the use of 
Eq. (13.5.6) to calculate tf in lieu of Eq. (13.5.8) used here. Although this leads to 
some more complex calculations, the basic ideas remain the same and the analysis 
proceeds as in the given example. 
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Sections 2-4 

13.1: (a) Derive the parallel axis theorem for the product of inertia of an area. Is the 
product of inertia about the centroidal axes necessarily a minimum? Why? (b) Let (y, z) 
be centroidal axes of a cross-section and let (y', z) be another set of axes, as shown 
in Fig. (13P.l). What statement can be made concerning the relation between I ,  
and lyz? 

13.2: A vertical force P =2000 N acting in the y-direction is applied at the centre 
of a simply supported steel beam of length L = 5 m whose cross-section is an angle 
with unequal legs, L89 x 76 x 12.7, as shown in Fig. (13P.2). Determine the maximum 
flexural stress at the mid-span at points A, B and C of the cross-section. (Note: I ,  
can be calculated from the properties of the cross-section, I ,  I, and the principal 
moment of inertia I , , ,  = Ar2 (and i ts  principal direction), which are given in the tables 
of Appendix E.) 

13.3:* Given a beam of arbitrary cross-section, subjected t o  bending moments about 
any two orthogonal axes. Starting from the general expression for the flexural stress, 
Eq. (13.4.9), show that this leads to  Eq. (13.2.6), a, = y, where I ,  is about the neutral 
axis and q is the perpendicular distance to  any point of the cross-section from the 
neutral axis. 

13.4: Theflexural and shear stresses in a beam are given by Eqs. (13.4.9) and (13.5.6)' 
respectively. Clearly, for finite stresses, the denominator, / , I ,  - I,?z # 0. Prove that 
I y y I , -  l,?z>O for any arbitrary cross-sectional area A. (Hint: JJA(y- hz)*dA > 0 for 
any real A.) 

13.5: A rectangular beam 15 cm wide and 20 cm deep is simply supported on a span 
of 5 m. Two loads of P = 3500N each are applied to  the beam, each load being 1.25 m 
from the support. The loads are located in a plane that makes an angle of 30" with 
the y-axis, as shown in Fig. (13P.5). 

Figure 13P.5 
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Figure 13P.6 

Figure 13P.7 

Figure 13P.8 

Determine the angle of inclination of the neutral axis with respect t o  thez-axis, 
namely B = 45.75". 
Using the general expression for the bending stresses, determine the stresses at 
points A, B, C, D and G that exist at the centre of the span. 
Show the stress distribution for points along the face A-B by means of a figure. 
Evaluate g, the point of zero bending stress. Show that this point lies on the 
neutral axis as found from (a). 
Knowing the orientation of the neutral axis for the given loads obtained in (a) 

above,verifythat oneobtainsthesamevalueforthestressat point G [asin part 
(b) above] from the expression oX=Mnq/In, where q i s  the perpendicular 
distance from the neutral axis to point G and Mn is the moment of the loads 
about the neutral axis. 

For the 2-section shown in Fig. (13P.6), determine (a) the centroidal moments 
of area I, and I, and the mixed product of area I,, (b) the directions of the principal 
centroidal axes (indicate their orientation by means of a figure) and (c) the principal 
moments of area. 

13.7: A cantilever beam fixed a t  one end i s  subjected to  a moment Mz and a force P 
a t  the free end, as shown in Fig. (13P.7a). The moments and product of area of the 
cross-section are given as I,=410, I ,=  210 and I ,  = -/o. In addition, it is known that 
a t  a cross-section A located a distance 2a from the free end, the flexural stress at point 
D (y= -24 z= b) of the cross-section [see Fig. (13P.7b)l i s  ox =GO. Determine (a) Mz 
and (b) the location of the neutral axis with respect t o  the z-axis at cross-section B, 
located a distance a from the free end. Show the location of the neutral axis by means 
of a figure. 

Sections 5 and 6 

13.8: A steel (G = 77 GPa) channel, Cl02 x 11, used as a cantilever 2 m long, i s  sub- 
jected to  a load P =4 kN at the free end passing through the centroid, as shown in 
Fig. (13P.8). (a) Determine the distance e from the web to  the shear centre 5. (b) De- 
termine the angle of twist at the free end of the beam. (c) Find the maximum shear 
stress at the fixed end, including the effects of both torsion and flexure. 

13.9 Determine e, the location of the shear centre S with respect t o  point F of 
the thin-wall cross-section having thickness t ( t  << a, t << h), as shown in Fig. (13P.9). 
Indicate i ts location by mean of a figure. 

13.10: (a) Calculate the shear stress distribution acting on the Z-section, shown in 
Fig. (13P.6), when subjected to  a vertical shear force V'that passes through the shear 
centre. (b) Plot the variation of the shear stress r /  V, along the flanges and the web. 
Indicate the shear flow by means of a figure. (c) What i s  the location of the shear centre 
of this section? Explain the reasoning that justifies your answer. (Given: /zz= 19.2 cm4, 
/,=9.1 cm4, /,=-10.1 cm4J 
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13.11: (a) Determine the distance efrom point 0 to  the shear centre S of the thin- 
wall (t << d, t << b) symmetrical section shown in Fig. (1 3P.11). Express the answer as the 
ratio e/d. 

13.12: A shear force V, > 0 is  applied at the free end of a cantilever beam whose 
open thin-wall (t << R )  cross-section is as shown in Fig. (13P.12). (a) Determine theshear 
stress distribution in segments AB and CD of the cross-section and sketch the shear 
stresses in the cross-section. (b) Determine the distance e from point G t o  the shear 
centre. Show the location of the shear centre by means of a figure. 

13.13: (a) Determine the shear stress distribution 5 =r@) for a semi-circular cross- 
section of radius R and thickness t ( t / R  << 1) [Fig. (13P.13a)l that is subjected t o  a 
vertical shear force V,. (b) Show that the location of the shear centre of this section 
is given by e = 4R/n. (c) Determine the distance e from point 0 to  the shear centre 
for the section shown in Fig. (13P.13b). Show the location by means of a figure. (Note: 
The results of part (b) may be used to  obtain the solution to  part (c).) 

Figure 13P.13 

13.14: Two plates are welded along the entire length of a channel section to  form 
a monolithic cross-section as shown in Fig. (13P.14). Determine the value of cx if the 
shear centre lies at point 0. 

13.15: For the given symmetric section with constant wall thickness t, as shown in 
Fig. (13P.15), where t << by, h2: and d, determine the location of the shear centre, 
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namely e measured from point 0 in terms of hl, hz and d and show the location 
by means of a figure. 

13.16: Determine the location of the shear centre S with respect t o  point 0 for the 
thin-wall cross-section t << R shown in Fig. (13P.16). Indicate the location of S by means 
of a figure. 

13.17? A vertical force P acts at point D a t  the free end of a cantilever beam, as 
shown in Fig. (13P.17). Determine the value of a if the beam does not twist. 

Figure 13P.16 

Figure 13P.17 

13.18* The cross-section of a beam is described as a crescent-shaped section whose 
width t(O)=%sin@ varies, as shown in Fig. (13P.18). Determine the distance e to  the 
shear centre with respect t o  point 0. 

Section 7 

13.19:* Given an elastic beam loaded by a single force P acting at an angle O with 
respect t o  the y-axis such that the displacement of the shear centre, A, i s  in the same 
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direction as the force P. Prove that the load is acting in a direction parallel t o  the 
principal axis of the cross-section. 

13.20: A load P acts at an angle 6 with respect t o  the y-axis on a beam having a 
thin-wall (t << a) Z-section, as shown in Fig. (13P.20). If d = 5a, determine the possible 
values of 6 if the shear centre deflects in a direction parallel t o  the load P. 

13.21: A thin-wall cross-section consists of three plates (a x L )  welded together t o  
form a beam of length L having an equilateral triangular cross-section, as shown in 
Fig. (13P.21). At  point B, the weld fails along the entire length of the beam. Determine 
the location of the shear centre S with respect t o  point D. 

13.22: A prismatic beam of rectangular cross-section is subjected t o  a load acting 
along one of i t s  diagonal planes, as shown in Fig. (13P.22). Prove that the neutral axis 
coincides with the second diagonal of the cross-section. 

13.23:" The cross-section of a beam consists of two solid square elements (2a x 2a) 
welded together with an overlap 2e, as shown in Fig. (13P.23). (a) Determine the ratio 
e/a if point 0 deflects in a direction 30" with respect t o  the y-axis when the beam is 
subjected only to  vertical loads. (b) What is the largest possible value of the angle of 
inclination of the displacement with respect t o  the y-axis under this loading; for what 
value of e (0 5 e 5  a) does this occur? Figure 13P.22 

Figure 13P.23 
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Figure 13P.26 

Figure 13P.27 

13.24 A cantilever beam of length 1, fixed a t  one end and having a thin-wall cross- 
section of thickness t (t  << a), as shown in Fig. (13P.24), is subjected to  a load P at  
the free end. The load is  inclined a t  an angle 0 with respect to  the y-axis and passes 
through the centroid C. (a) Determine the angle B if the resultant displacement of 
point B a t  the free end is in the z-direction. (b) For B found in (a) above, determine 
A,, the component of the displacement of the centroid in the y-direction. Express Ay 
in terms of a, t, L, P and G, the shear modulus. 

13.25:* Given an elastic beam of arbitrary cross-section [see Fig. (13P.25)] loaded by 
a single force P acting a t  some angle B with respect to  the y-axis. Prove that the 
displacement of the shear centre, A, can never be perpendicular to the direction of 
the applied force. (Hint: Note the property of Problem 13.4.) 

Section 8 

13.26: A shear force Vy = 200,000 N acts on a thin-wall equilateral triangular cross- 
section of a beam having constant thickness of 1 cm, as shown in Fig. (1313.26). (a) 
Determine the resulting shear stress distribution in the section. (b) Draw the shear 
flow in the section indicating values a t  points A to  F. (Suggestion: Assume initially that 
t = 0 along the line d-d of the cross-section.) 

13.27: A weight W is suspended a t  point B of a thin-wall pipe (t R) ,  as shown in 
Fig. (13P.27). (a) Determine the shear stress in the pipe a t  points A, B, C and D. (b) 
Sketch the shear flow within the pipe and determine the points of zero shear stress 
and indicate their location by means of a figure. (Hint: The shear flow due to  a vertical 
force acting along the y-axis is symmetric with respect to this axis.) 

13.28: Determine the distance efrom point E to the shear centre for the closed thin- 
wall cross-section, shown in Fig. (1 3P.28), and indicate i ts location by means of a figure. 
(Suggestion: Assume initially that t = 0 along the line a-a of the cross-section.) 
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Figure 13P.28 

Review and comprehensive problems 

13.29: (a) Determine the location of the shear centre S with respect t o  point C of the 
thin-wall open cross-section, shown in Fig. (13P.29a), and show i t s  location by means 
of a figure. (b) The following statement is made: 'If a force P is applied to  the section 
in any arbitrary direction 01, as shown in Fig. (13P.29b), the deflection of the shear 
centre will always be parallel t o  P.' Is this statement true? Give precise reasons for the 
answer. 

Figure 13P.29 

13.30: A structural steel angle L203 x 203 x 19.1 is used as a 2.5-m long cantilever 
beam, and is subjected to  a vertical concentrated load of 1400 N acting at the free end 
through the shear centre of the cross-section. (a) Calculate the flexural stress ox at the 
points A, B and C at the fixed end of the beam, as well as the average shear stress z 
acting along the line d-d of this cross-section [see Fig. (13P.30)l. (b) Find the position 
of the neutral axis and the direction of the deflection and indicate on a sketch of the 
cross-section with respect t o  the centroidal axes. (Note: I, and 1, are given in the 
tables of Appendix E. I, must be calculated.) 

13.31: A load P is applied at the free end of a cantilever beam at an angle (Y with 
respect t o  the y-axis. The thin-wall cross-section (t << a) of the beam is as shown in 
Fig. (13P.31b). (a) Determine the angle 01 if the resultant displacement of the shear 

Figure 13P.30 
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centre is in the y-direction. (b) For 01, as found in (a) above, determine the component 
of displacement in the z-direction of point B of the cross-section of the free end in 
terms of P ,  the geometry of the problem and G, the shear modulus of the beam 
material. 

Figure 13P.31 

13.32:' A channel member of length L whose cross-section of constant wall thickness 
t (t << c, t << h) i s  as shown in Fig. (13P.32), is fixed at one end and subjected to  a 
vertical load P, passing through the web of the channel at the free end. (a) Determine 
the horizontal and vertical components of displacement, A, and A=, of point A at the 
free end in terms of c, h, 6 L, P and the moduli of the beam material, E and G. (b) 
Determine A, and A, at A for the limiting case c -+ 0. 

Figure 13P.32 

Figure 13P.33 

13.33? Determine the value of 01 such that the shear centre of the thin-wall cross- 
section shown in Fig. (13P.33) coincides with point 0. 

13.34 A beam whose cross-section is a thin wall (t << a), as shown in Fig. (13P.34b), 
i s  subjected t o  two vertical loads, as shown in Fig. (13P.34a). Determine the vertical 
component of displacement of point 0 at the free end in terms of P, L, a, t and the 
moduli of the beam material, E and G. 

13.35 (a) Determine the ratio b/a if the shear centre S of the thin-wall symmetric 
cross-section, shown in Fig. (13P.35a), is t o  coincide with point D. (b) Determine the 
horizontal and vertical displacement components of point B at the free end of the 
beam, shown in Fig. (13P.35b), if a torsional moment T is applied. Express the answer 
in terms of a, t, L, T and G, the shear modulus of the beam material. 
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13.36: The cross-section of a beam consists of two solid rectangular elements (a x b) 
welded together along i t s  entire length a t  point 0, as shown in Fig. (13P.36). The 
beam is subjected to a load acting in the y-direction. If the displacement is a t  an angle 
01 = 45" with respect to  the y-axis, determine the ratio b/a. 

Figure 13P.36 

13.37: (a) Determine the location of the shear centre S with respect to  point 0 of 
the thin-wall open section shown in Fig. (13P.37a). (b) Determine the displacement of 
point D a t  the free end if a cantilever beam of length L is subjected to  a torsional 
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moment a t  the free end, as shown in Fig. (13P.37b). Express the answer in terms of the 
given geometry and G, the shear modulus of the beam material. 

Figure 13P.37 

13.38:* Show that the distance efrom point 0 to  the shear centre S of a cross-section 
consisting of an arc of a circle having thickness tw i th  mean radius R (t<< R) [see Fig. 
(13P.38)], is given by 

sinu-u cosu 
20( - sin 2u . e= 4R 

Figure 13P.38 

Figure 13P.39 

The following problems are designed to require the use of a computer. 

13.39: (a) Determine the distance e from point 0 t o  the shear centre S of the sym- 
metric thin-wall cross-section shown in Fig. (13P.39). Express the answer as the ratio 
e/d as a function of 8 and (b) using a plotting routine, plot e/d as an function of 8 for 
05e590" .  

13.40: A load P acts a t  any arbitrary angle 8 with respect t o  the y-axis on a beam 
having a thin-wall (t<<a) Z-section, as shown in Fig. (13P.20). (a) Derive the equation 
for the ratio d/a as a function of 8 if the shear centre i s  t o  deflect in a direction parallel 
t o  the load P .  (b) Using a plotting routine, plot 6 vs. u E d/a for 0 5 u i 00. 
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14.1 introduction 

In the study of mechanics, there exist two approaches that complement each other: 
(a) a vectorial approach in which the laws of mechanics are written in vectorial 
(or tensor) form and (b) an energy approach, expressed in scalar form. Although 
each approach has its respective merits, it is sometimes preferable to use one or 
the other in analysing any specific problem. As will be seen, the energy and virtual 
work principles often lead to very simple and elegant solutions to many problems, 
which, if approached vectorially, would prove to be quite complicated. Moreover, as 
we shall show in this and the next chapter, these principles can provide a means of 
obtaining approximate solutions to problems for which no exact analmcal solution 
exists. 

Such practical reasons should be sufficient motivation for the study of energy 
methods. However, aside from practical considerations, energy principles, together 
with the principles of virtual work, prove to be of great importance on the theoret- 
ical level: namely they afford a different viewpoint in mechanics and deepen our 
conceptual understanding of the behaviour of mechanical systems. 

14.2 Elastic strain energy 

From our previous discussion, we recall that when an elastic body undergoes de- 
formation, internal energy in the form of strain energy is stored in the body. This 
concept was developed in Chapter 4 and a basic principle, the Principle of Conser- 
vation of Energy, was derived for the one-dimensional case, i.e. the uniaxial case. 
This principle states essentially that when an elastic body is subjected to an external 
force system, the work done by this force system is equal to the resulting internal 
strain energy. 

We first review some of the basic results and expressions as developed in 
Chapter 4. 

537 
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(a) Review of  results for the uniaxial state of stress+ 
We first recall that an elastic material has been defined as one for which the stress 
state T at any given point is a function of the state of strain E at the point, and that 
a unique one-to-one inverse relation exists; thus 

7 f ( E ) ,  E f-l(T) (14.2.1) 

where f-' is the symbolic representation of the inverse function. 
If a slender elastic rod of length L and cross-sectional area A ( x )  is subjected 

to a statically applied uniaxial load P passing through the centroid, as shown 
in Fig. (14.2.1), the axial stress is txx = P / A ( x )  for any value of P ;  all other 
stress components are taken as zero. For this uniaxial state of stress, the material 
properties of the elastic rod may be represented by the stress-strain curve shown in 
Fig. (14.2.2); i.e., under the given loading, txx = t,,(~,,). The resulting strain 
energy density is then given by [Eq. (4.4.23)] 

Figure 14.2.1 

(14.2.2a) 
0 

where E-:~ represents the final strain state. 
The total strain energy stored in the body, U ,  is therefore [Eq. (4.4.24)] 

Y 

where dS2 is a volume element; that is, 

(14.2.2b) 

From the known geometric representation of the integral of Eq. (14.2.2a), we recall 
that the strain energy density U. may be represented by the area under the stress- 
strain curve, as in Fig. (14.2.3a). 

For the special case of the linear isotropic elastic material, z,, = EE,, ; the strain 
energy density U, is then 

(1 4.2.4) 

t A detailed development of the denved expresslons of this sub-sechon IS given in Chapter 4, Section 4b. 
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Using again the stress-strain relation, we may write 

( 14.2.5) 

We observe that the strain energy density for a linear elastic material is represented 
by the triangular area in Fig. (14.2.3b). 

For convenience we drop the superscript ‘f’ and, using the simplified notation, 
we write Eq. (14.2.2a) for the general uniaxial case as 

Similarly, we rewrite Eq. (14.2.5) as 

(14.2.6) 

(14.2.7) 

In the above it is to be understood that the quantities represent thefinal actual 
values of the stress and strain components. 

Recalling that E > 0, from the first or third terms o f  Eq. (14.2.7), we observe 
that U0 is never negative; i.e., U0 2 0. The strain energy density is then said to be 
a positive definite quantity.t 

(b) General stress state 
We now generalise our results to bodies in a three-dimensional state of stress. 
Consider first the simple case for linear isotropic elastic materials. From the second 
term of Eq. (14.2.7), we observe that the strain energy density is given by half the 
product of the stress times the corresponding strain component; i.e., U0 = y. 
This represents the work done on an element of unit area and unit length by the 
stress zxx [see Fig. (14.2.4)]. Since the material is isotropic, the same behaviour 
must exist in the y -  and z-directions. Thus, the contribution to U0 due to z,, ,. and 
zzz will be i[zl.y E,] and i [ z z z  € 4 ,  respectively. Consider now the work done by 
the shear stress tyx on a unit element [Fig. (14.2.5)]. Recalling that the strain E , ~  
represents half the angle change, the work done by zY. is $[2eyx T ~ , ~ ] .  Similar terms 
appear for the contribution due to t,,= and zzx . We therefore conclude that the linear 
elastic strain energy density for a general state of stress is 

(14.2.8b) 

+ While this result is correct, it IS based on a practical engineenng approach. We menhon here that the 
strain energy density U0 can be shown to be positive definite using basic thermodynamic considerations. 
It then follows that E z 0. Moreover, based on similar considerations, the strain energy density U0 for 
any elashc material is shown to be positive definite. Such an approach is beyond the scope of our study. 
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For a two-dimensional case (tzz = z,, = tzy = 0), we have 

Alternative forms for Uo, expressed only in terms of stress or strain, can be obtained 
by substituting the appropriate stress-strain relations. Again, it is emphasised that 
U0 will always be a positive definite quantity. 

We consider here the general case of a nonlinear elastic material (not necessarily 
isotropic) under a three-dimensional state of stress and strain, i.e. a generalisation 
of the relation given by Eq. (14.2.6). In this last equation, we note that U0 was 
obtained by integrating txx over the corresponding strain component (as it was for 
the linear case). If, however, a general state of stress and strain exists, then z,, will 
be a function not only of exx but also of all the strain components. Let us denote 
this symbolically as z,,(E). Contributions to the strain energy density due to other 
stress components will then be represented by T,,(E) dc.vy, z,,(~) de,,, ~ , J E )  dt;,,, 
etc. 

= t;, , etc., the total strain energy density is, therefore, 
given by 

Noting that zxy = zyx,  

t ; x  tYY E ,  

Uo = / t,,(~) dc,, + / tyv(~:) dt-, + / tZZ(.) dcZz 
0 0 0 

From this last expression, we may deduce an interesting result. Since the strain 
energy here is a function of strain only, for a material under an existing state of 
strain E ,  the increment of strain energy density due to changes in the various strain 
components is 

duo = L ( E )  dcxx + ~ y y ( ~ )  dcyy + r z z ( ~ )  dczz + 
+ 2[txy(~) d ~ , . ~  + q,,(~) d€.,,, + L ( E )  dc,,I. (14.2.10a) 

We note that the strains E appearing in Eq. (14.2.10a) denote theJinaZ strain compo- 
nents of a body in its deformed state. Furthermore, recalling that an elastic material 
is, by definition, one for which its final state is independent of the 'deformation 
history' or 'loading path' (i.e., from its initial to its h a 1  deformed state) (see 
Chapter 4, Section 4), it follows that duo, given by+ 

is a perfect differential. Hence, comparing Eqs. (14.2.10a) and (14.2.10b), we find 

t Note that here we treat mathematically eXv. 6yx ,  etc. as independent variables of a function. 
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Thus, if the strain energy is expressed in terms of strain only, each stress compo- 
nent is then given by the partial derivative of U, with respect to the corresponding 
strain component.+ 

(c) Examples of strain energy for linear elastic bodies 
We derive below expressions for the linear elastic strain energy for two specific 
cases that are often encountered in engineering analysis: the case of an axially 
loaded prismatic bar and the case of a member subjected to flexwe. 

(i) Linear elastic prismatic rod subjected to a uniform axial load P. Consider a 
prismatic bar of cross-sectional area A and length L subjected to a load P 
passing through the centroid of each section, as shown in Fig. (14.2.6). The 
resulting stress z,, = PIA. Substituting in Eq. (14.2.7), U, = P2/2A2E and 
hence by Eq. (14.2.2b), the total elastic strain energy in the bar is 

(ii) Flexural strain energy in a linear elastic beam. Consider a beam of varying 
cross-section with A = A@) ,  I = I(x) and length L [Fig. (14.2.7a)l.t Assume 
that the moment about the z-axis, M = M(x) ,  is known [Fig. (14.2.7b)l. The 
flexural stress is then [Eq. (8.7.lb)l 

Substituting in Eq. (14.2.7) 

M”x)y2 
U, = 

2E12(x) 
(1 4.2.13) 

Figure 14.2.7 

We mention here that, contrary to the more physical definition of an elastic material as given by 
Eq. (14.2.1), an elastic matenal may alternatively be defined more abstractly as a material that pos- 
sesses a potential U0 such that the stresses are given by the denvatives with respect to the corresponding 
strain component. 
The second moment of the area, I ,  is taken about the z-axis. which is also assumed to be a pnncipal 
axis. 
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Note that here the strain energy density varies throughout the beam in contrast to 
the previous case. The total strain energy is then given by 

Substituting U, from Eq. (14.2.13), 

But /SA y2 dA = I by definition. Hence we obtain 

For the case where I ( x )  = I ,  a constant, 

(14.2.15) 

(14.2.16a) 

( 14.2.16b) 

14.3 The principle of conservation of energy 
for linear elastic bodies 

(a) Derivation of the principle 
We now derive a basic and important principle relating to strain energy, viz. 
the principle of conservation of energy. This principle, which was developed in 
Chapter 4 under a uniaxial state of stress, states that if an elastic body is subjected 
to applied forces, then the external work done by the applied forces is equal to the 
elastic strain energy stored in the body. 

For mathematical simplicity, we first prove this principle for the two-dimensional 
state of stress and strain only and then generalise the results to the three-dimensional 
case. We further restrict our proof to the case of linear elastic bodies subject to small 
strains and sinall relative rotations. 

Consider a linear elastic body in an x, y,  z coordinate system, having a volume Y 
enclosed by a surface S. Furthermore, let the outward normal to S at any point be a 
unit vector n, as shown in Fig. (14.3.1), which is given here for the two-dimensional 
case: 

n = C,i + t , j ,  (14.3.1) 

where t, and ty are the direction cosines with respect to the x- and y-axes, respec- 
tively. Let the body be in a state of equilibrium under a set of external tractions T ,  
acting on S (see Section 8 of Chapter 2) and body forces B acting within V ,  as 
shown in the figure. 

We denote the two-dimensional displacements at any point due to deformation 
of the body by 

u(x. v )  = u i  + vj. (14.3.2) 
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Figure 14.3.1 

Due to the externally applied forces, stresses will exist at points in the body and 
consequently for the two-dimensional case considered, the elastic strain energy is, 
by Eq. (14.2.8c), 

where dS2 again represents a volume element. 
Assuming that strains and rigid-body rotations are infinitesimal, fromEq. (3.7.20), 

Substituting in Eq. (14.3.3), 

Now note that 

a u  a a TX" 

ax ax ax a? a? a? - -((z,,,u) - U-, (etc.) rXv- - au a 
tXx- =I -(T.~,U) - U - ,  

Using this relation and the corresponding relation for other components, we have, 
upon rearranging the terms, 

From the stress equations of equilibrium, Eqs. (2.4.4) 

where B, and B ,  are the components of the body forces in the x- and y-directions, 
respectively. 
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Applying now the divergence theorem [see Eq. (B.3.4) of Appendix B.31 to the 
first integral of Eq. (14.3.5)’ we obtain 

( 14.3.6) 

where l ,  and & are the components of the unit normal vector n, as defined by 
Eq. (14.3.1). Rearranging the terms, 

+.!///(&U 2 + B,v)dS2. 
V 

(14.3.7) 

From Eqs. (2.8.8)’ we observe that 

where, according to Eq. (2.8.2b)’ X,, and Y, are the components of traction T ,  on 
the surface S. Thus, 

S V 

Upon noting that the above integrands are the scalar products of the tractions and 
body forces B, respectively, with the displacement vector U of Eq. (14.3.2)’ the 
above may be written concisely in vector notation as 

U = 1 // T ,  - U ds + 1 /// B u dS2, 
2 2 

S V 

(14.3.10) 

where again T, and B are the applied surface tractions acting on S and the applied 
body forces within V ,  respectively. Now, the scalar product of forces with displace- 
ments is the basic definition of work. Hence, the right-hand side of Eq. (14.3.10) 
clearly represents the work W done by the statically applied external forces. (An 
explanation of the 1 /2 factor will be given below.) Thus we write 

W = 1 // T,, .u& + A// /  B SudQ (14.3.11) 
2 2 

S V 

and hence we have the relation 

U =  w. (14.3.12) 

This last relation leads to the statement of the theorem: 

If a linear elastic body is subjected to external forces producing a state of equilib- 
rium, the external work done by the applied forces is equal to the internal strain 
energy. 

This theorem is generally known as Clapeyron’s theorem. 
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(b) Application of the principle 
Consider a linear elastic cantilever beam of length L and flexural rigidity EI, to 
which a load P is applied statically at the free end [Fig. (14.3.2a)l. Determine the 
deflection A under the load due to flexural deformation. 

Figure 14.3.2 

Noting that the load is applied statically, the external work done by P is given by 
W = :A.+ The internal strain energy, by Eq. (14.2.16b), is 

L 
1 

2 E I  
0 

Noting that M ( x )  = -Px  [Fig. (14.3.2b)], 

(14.3.13) 

Equating U = W ,  we have 

PL3 A = : -  
3 E I ’  

(1 4.3.14) 

which is the same result obtained by integration of the differential equation of the 
beam [Eq. (9.4.7b)l. 

The principle of conservation of energy for elastic bodies may be considered as a 
first extension ofthe general energy conservation principles encountered in the study 
of rigid bodies and in mechanics, in general. Thus, this principle is an important one 

t For problems (such as considered in this section) where the relations are linear, the 1 / 2  term can be 
proven directly as follows: If we assume that the deflection is linearly proportional to P. then P = K A, 
where K i s  a constant of proportionality. It follows that the work done by the load is 

K(Af)* PfAf 
AdA=-=- 

2 2 .  
0 0 

Upon dropping the superscnpt ‘f ’* we have W = 9, where A now represents the actual final displace- 
ment. Another, heunstic, proof i s  as follows. If a load is applied statically to a linear body, then the 
‘average’ force applied is equal to the sum of one-half the initial (zero) force and the final force P. The 
work done is then the product of the ‘average’ force and the displacement through which it acts. 
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conceptually as it re-emphasises that no dissipation of energy occurs in an elastic 
body. Yet, despite its importance, this theorem has only limited use in the practical 
solution of problems in solid and structural mechanics. This limitation becomes 
evident when one attempts to determine displacements for bodies subjected to 
several concentrated loads or to distributed applied forces. However, the principle is 
of great importance as it provides a basis for the development of powerful theorems 
and relations that may be used in practice. 

14.4 Betti’s law and Maxwell’s reciprocal relation: 
flexibility coefficients 

Both Betti’s law and Maxwell’s reciprocal relation are applicable to a class of elastic 
bodies that are called linear elastic bodies. 

We define a linear body or linear structure here as one for which the displace- 
ments of any point of the body are linearly proportional to the applied 1oads.t If a 
body satisfies this condition, then it follows that the principle of linear superposition 
is valid. 

Consider now a ‘linear body’ supported in such a way that no rigid-body mo- 
tion occurs. Without loss of generality, consider the static application of two ap- 
plied independent forces PI and P2 applied, say, at points 1 and 2, respectively 
[Fig. (14.4. la)]. 

Figure 14.4.1 

Further, assume that the body is in a state of equilibrium. As a result of the linear- 
ity, superposition is valid; we therefore consider the effect of each load separately 
[Fig. (14.4.1b and c)]. Let 

D, 1 be the component of displacement of point 1 in the direction of PI due to PI 
D12 be the component of displacement of point 1 in the direction of PI due to P2 

DZl be the component of displacement of point 2 in the direction of P2 due to PI 
Dz2 be the component of displacement of point 2 in the direction of P2 due to P2 

To study the effect of each load separately, we consider that the loads are applied 
in turn rather than simultaneously. Thus, assume that PI is first applied statically. 
Then, the external work done by PI is (see footnote, p. 545) 

( 1 4.4.1 a) 

t It is emphasised here that the matenal properties of a linear elastic body must necessanly be linear 
elastic. However. thts IS not sufficlent forrt does not necessarily follow that a body made of such matenal 
will have a linear load-displacement relation. For example, if a linear elastic beam-column is subjected 
to a lateral load F and an axial thrust P. the lateral displacement 1s not linearly proportional to P [see, 
e.g.,Eq.(ll.ll.l)]. 
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Now apply P2 statically, remembering that PI is already acting on the body. The 
work done by the load P2 will then be i P2 D2,. However, since PI is already acting 
on the body, it too will do work since it displaces when P2 is applied. The work 
done by PI due to the application of P2 is then PI DI2.  Thus, the total work done on 
the system is 

(14.4. 1b) 

Now we imagine that we reverse the order in which the loads are applied. Thus, 

1 1 E” - -PlD11 + -P2D22 + PlD12. 
‘ - 2  2 

assume that P2 is first applied. The resulting external work is then 

(14.4.2a) 
I w, = - PZD22. 
2 

Keeping PZ on the body, we now apply Pl statically. The additional work done is 
then 4 Pl D I  1 + P2 D21, and hence the total work done on the system is 

(14.4.2b) 
1 1 

W; = 5P~D22 + -P1D11 + PzD21. 
2 

Because the final loading condition in both cases is identical, the strains and 
therefore the internal strain energy in both cases must also be identical. Furthermore, 
since the internal strain energy is equal to the work done by the external forces, 
then necessarily tV; = JV;, from which it follows that 

PiD12 = P2D21. (14.4.3) 

This relation is known as Betti’s law and is valid for all linear structures. We may 
state this law more generally as follows: 

Let two separate systems of loads act on a linear body, such that in each case 
the body is in equilibrium. Then the work done by the forces of the first system 
in going through the displacements caused by the second system is equal to the 
work of the second system in going through the displacements caused by the first 
system. 

At this point, it is convenient to define a new quantity: the displacement at a point 
due to a unit load. We denote this quantity by J;, and define it as the displacement 
of point i in a specified direction due to a unit load, PJ = 1, applied at point j (in a 
specified direction). In structural mechanics, the quantities jiJ are called$exibiliF 
coejicients. For example, in the above, . f iz  represents the displacement of point 1 
in the direction of PI due to a unit force P2 = 1. (This definition also holds true 
if the point j at which PJ is applied coincides with point i at which P, is applied. 
However, the direction of the ‘ j-force’, PJ , need not be the same as the direction of 
the ‘i-force’, P,. Thus, for example, for the same given point, LJ might represent 
the displacement in the y-direction due to a unit force in the x-direction at the same 
point.) 

Since, for a linear body, displacements are proportional to the loads, 

or, in general, 

D,J = p J f ; j ’  (14.4.4a) 

Thus we note that, consistent with the definition of the flexibility coefficient, for a 
given force P, acting at point i, the displacement of this force, using the linearity 
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property, is given by 

Dji = P,.fi j .  (14.4.4b) 

SubstitutingEq. (14.4.4a) inEq. (14.4.3), PI P2 f12 = P2Plfil andthuswe establish 
that 

f i 2  = f21. (14.4.5a) 

In general, if we have two points i and j on a body, and if P, and PJ are applied at 
these two points, then we may write 

J;J = f j i .  i $ j .  (14.4.51-3) 

This result is known as Maxwell’s reciprocal relation+ and may be stated formally 
as follows: 

In a linear body, the displacement of point i (in the direction of a force at 
point i) due to a unit force applied at point j is equal to the displacement of 
point j (in the direction of a force at point j )  due to a unit force applied at point i. 

We observe that Maxwell’s reciprocal relation is a direct consequence of Betti’s 
Law, which was derived from a basic work-energy concept. Since work is also the 
product of moment and rotation, the above relations may be generalised immediately 
if for ‘force’ we substitute ‘moment’ and for ‘displacement’ we substitute ‘rotation’. 

An illustration of Maxwell’s reciprocal relation is shown in Fig. (14.4.2) for a 
cantilever beam ABC subjected to three separate unit ‘forces’ as shown. We de- 
fine the lateral displacement of the end A of the beam by f i J ,  the displacement 
of the centre B of the beam by hJ and the rotation of the end A by hJ. (Note 
that, as previously mentioned, for a given point, we may define more than one 
‘direction’. For example, here, we have defined directions ‘1’ and ‘3’ as the verti- 
cal displacement and rotation at point A, respectively.) The corresponding forces 
are shown in Figs. (14.4.2a-c), respectively. The resulting deformations are also 
shown in the figure where the equal quantities are connected by means of dashed 
lines. 

Figure 14.4.2 

At this point, we re-emphasise that the property of linearity was required in the 
derivations and definitions given above, and that therefore the principles are only 
applicable to linear structures. 

To conclude, we observe that as a result of the validity of the principle of 
superposition for linear bodies or structures, the displacement at any point in a 
body due to a combination of applied forces can be expressed simply in terms of 
the flexibility coefficients J J .  

t It follows from Maxwell‘s relations that influence functions (viz. Green’s functions) for displacemefits 
o f  a linear elastic system, G,, as developed in Chapter 9, are symmetnc; that IS, G&, {) = Go({, x). 
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Consider a body subjected to n forces, Ply P2, . . . , P,, PJ,  . . . , Pn, applied at 
points 1’2, . . . , i ,  j ,  . . . , n, as shown in Fig. (14.4.3). Using the linearity property, 
the displacement of point i, A,, may then be expressed as 

A, = &J;I + + * * * + PjJ;j + . . . + P n J n  
or 

(14.4.6) 

Again, in Eq. (14.4.6), the loads P can be considered either as concentrated forces 
or moments in the generalised sense, provided the corresponding flexibility coeffi- 
cients A,, are considered as displacement or rotations. 

Figure 14.4.3 

Example 14.1: In our study of general bending of elastic beams in Chapter 13, 
the location of the shear centre was established for a variety of cross-sections. 
Moreover, in the development of the theory of torsion of an element in 
Chapter 12, it was postulated that there exists an axis about which all cross- 
sections must rotate; the cross-sections were said to  rotate about the ‘centre 
of twist‘. Prove that the centre of t w i s t  coincides with the shear centre for 
any arbitrary cross-section. 

Solution: Let the elastic prismatic beam be subjected to a torsional moment T and 
a lateral force P passing through the shear centre, point S [Fig. (14.4.4)]. The two 
‘forces’ are therefore T and P ,  respectively. Let 6 p  denote the rotation ofthe section 
due to P and let AT denote the displacement of point S due to the torsional moment 

Figure 14.4.4 
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T .  Now, by Betti 's law, 

P A T  = T o p .  

Since point S is the shear centre, the load P causes no rotation, that is, t)p = 0. It 
follows, since P $: 0, that AT = 0, i.e., point S does not displace due to the torsional 
moment. Now the only point that does not displace due to a torque is the centre of 
twist; it follows that point S must, in fact, be the centre of twist. 

Hence, the shear centre and centre of twist coincide for any cross-section of a linear 
elastic beam. 

14.5 Castigliano's second theorem 

Castigliano's second theorem,i which we develop below, is an important theorem 
that permits us to find displacements for a linear structure subjected to a set of 
concentrated loads. 

Consider a linear body subjected to n statically applied independent loads P I ,  
Pz,  . . . , Pn such that equilibrium is maintained [Fig. (14.4.3)]. Let the components 
of displacement at the points of application in the direction of the applied loads be 
given by A , ,  A2, . . . , A , .  . . . , An. 

Then$ 
n 

(14.5.1) 

and the external work is 
1 1 1 1 

W = -PI A 1 + -PzAz + , . . + 5 P, A, + . . . + - P, A ,  2 2 2 
(14.5.2) 

or 

1 "  
W =  - E P , A , , .  

J = 1  

By the principle of conservation of energy [Eq. (14.3.12)], the external work is 
equal to the internal strain energy; thus 

U = 5 E P J A , .  I "  

J=I 

Substituting A,  from Eq. (14.5. I), 

(14.5.3) 

(14.5.4) 

t Castigliano, tn a thesis, presented several unportant theorems governing the behaviour of elastic bodies. 
The theorem given here was presented by Castigliaiio as his second theorem. For histonc reasons, it is 
therefore currently referred to as Castigliuno :s second theorem. 
Note that the index k ,  appeanng as subscripts, IS immatenal since we sum up on the k here. Such a 
subscnpt i s  called a 'dummy subscript', In the same sense as a 'dumm?, vnnuble' appearing in an integral 
expression. Thus, whenever a subscnpt IS  summed, we may change its 'name' without affecting the 
results. 
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From this last equation, we observe that the strain energy can be expressed as a 
function of the applied loads, i.e., U = ( P I ,  P2, . . . , Pn), and that for linear bodies 
it is a quadratic function of the n loads. 

Now let us take the partial derivative of U with respect to any particular force, 
say P,. From Eq. (14.5.4), we have 

Since the applied loads P are independent of each other, 

( 14.5.6) 

and therefore terms appearing in the summations ofEq. (14.5.5) vanish except when 
the subscripts in the partial derivatives are identical. 

Thus, we obtain 

and hence+ 

(14.5.7a) 

(14.5.7b) 

But by Maxwell’s reciprocal relation [Eq. (14.4.5b)], J;:k = fi,, and therefore 

Comparing with Eq. (14.5.1), we establish the final result: 

au a, = -. 
a p ,  

(14.5.8) 

The above relation is known as Castigliano’s second theorem and may be stated 
as follows: 

If a linear body is subjected to n independent loads PI , P2, . . . , P, such that equi- 
librium is maintained, then the first partial derivative of the elastic strain energy 
with respect to any particular load is equal to the component of displacement of 
the point under the load (in the direction of the load). 

Again we emphasise that the terms ‘load’ and ‘displacements’ are used in the 
generalised sense and signifL force or moment and displacement or rotation, re- 
spectively. 

Application of Castigliano’s second theorem to problems in structural mechanics 
is illustrated by means of several examples. 

Example 14.2: Consider a linear elastic prismatic bar of cross-sectional area A 
and length L ,  subjected to an applied longitudinal load (passing through the 

t See the previous footnote. 
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A -P 

Figure 14.5.1 

centroid of each section) as shown in Fig. (14.5.1). Determine the horizontal 
displacement A at  the end B. 

Solution: From Eq. (14.2.12), 

P2L U = -  
2AE’ 

Applying Castigliano’s (second) theorem, 

(1 4.5.9) 

(14.5.10) 

In the following example we illustrate a technique that simplifies the calculation in 
the applications of Castigliano’s theorem. 

Example 14.3: An elastic cantilever beam AD of flexural rigidity Nand length 
L is subjected to a uniform load w, a concentrated load P at  the end and a 
couple C, as shown in Fig. (14.5.2). Determine (a) thevertical displacement AA 
of point A due to flexure and (b) the rotation @A of the beam a t  point A due to 
flexure. 

Figure 14.5.2 

Solution: From Eq. (14.2.16b), 

where 

M = M ( P ,  c, w;x 

From Castigliano’s (second) theorem, 

au 

(14.5.1 1) 

=r. -Px + c - wx2/2. (14.5.12) 

(14.5.13) 

We might proceed by substituting Eq. (14.5.12) in (14.5.13), first integrating and 
then performing the required differentiation on the integral. Simplification generally 
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follows if we reverse the order of integration and differentiation; thus+ 

From Eq. (14.5.12), we have 

Hence 

0 

or 
I 

AA = -[PL3/3 - CL2/2 + wL4/8]. 
E1 

Similarly, 

or 

(14.5.15a) 

(14.5.15b) 

0 

It is worth noting, from Eq. (14.5.15a), that 

while, on the other hand, from Eq. (14.5.15b), 

These last quantities are flexibility coefficients as defined previously. We observe that 
$A],=, = A&=, as we should expect according to Maxwell’s reciprocal relation. 
Note that negative signs appearing above indicate displacements or rotations in a 
sense opposite to the assumed sense of the applied loads. 

In the following example, we introduce a ‘trick‘ in the use of Castigliano’s theorem. 

Example14.4 For the structure and loads of the previous example 
[Fig. (14.5.2)], determine the vertical displacement of the mid-point B. 

Solution: To find the displacement of a point in a body using Castigliano’s theorem, 
we must take the derivative with respect to a load acting at that point. However, no 

t If M as well as its derivative aM/a P exist and are piece-wise contmuous within the range of integration 
of x, then the partial derivative can be taken inside the integral. 
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applied load at B has been specified here. We overcome this problem by the following 
technique. 

Let us assume that there is a load, say F ,  applied to point B, as shown 
[Fig. (14.5.3)]. Then, after performing the required differentiation, we will merely 
set F = 0. For F + 0, 

MI(X) = -Px + c - wx2/2, 0 5 x 5 L / 2  
(1 4.5.16) 

M~(x) = - P x  + C - W X ’ / ~  - F(x  - L/2), L/2 5 x 5 L ‘ 

Figure 14.5.3 

Applying Castigliano’s (second) theorem, we have 

Note that it is necessary to split the integration into two regions since different 
expressions for M(x)  exist to the left and right of point B. 

From Eqs. (14.5.16), 
aM2 -- - - ( x  - L / 2 ) .  
aF 

-- - 0, a M~ 
aF 

(14.5.18) 

At this point in the problem, we may set F = 0 (since it has ‘performedits function’), 
thus obtaining 

1 
E I  . 

AB = - f [ - P x  + C - wx2/2 ] [ - (x  - L / 2 ) ] d x .  (14.5.19a) 
L j 2  

Simple integration gives finally 

A B = -  1 [5PL3 CL’ 17wL4 
E I  48 8 

( 1 4.5.1 9b) 

U 

The application of Castigliano’s theorem to a more complex structure is shown 
below. 

Example 14.5: Compute the horizontal component of deflection a t  point E 
of the pin-connected elastic truss due to the applied load P, as shown in 
Fig. (14.5.4). (The cross-sectional area of each member is given in parenthesis.) 
Let the modulus of elasticity of al l  members be E .  
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Figure 14.5.4 

Solution: To determine the horizontal deflection at E (following the technique of 
Example 14.4), we assume a force Q acts as shown. Since the truss i s  pin-connected, 
it follows that the internal forces must be colinear with the members. The resulting 
axial forces F, (in the ith member) are shown in Fig. (14.5.5) where ‘I-’ indicates 
tension and ‘-’ indicates compression. 

Figure 14.55 

By Castigliano’s (second) theorem, 

au 
AE = -. 

a Q  
Now the strain energy for the ith member is, by Eq. (14.2.12), 

(14.5.20) 

(14.5.21a) 

where A,  and L ,  are respectively the cross-sectional area and length of the ith 
member. Hence the total strain energy in the entire truss is 

Using Eq. (14.5.20), we find 

( 14.5.2 1 b) 

(14.5.22) 
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The calculations are illustrated in the following table. 

Thus 

Figure 14.6.1 

Figure 14.6.2 

P L  
AE = 0.5626- 

AoE * 
(14.5.23) 

14.6 Geometric representation (complementary strain energy 
and Castigliano's first theorem) 

By considering the case of the simple uniaxial stress state, it is possible to interpret 
some of the previously developed relations from a geometric point of view. 

To this end, consider an elastic rod (not necessarily linear) subjected to a load 
P ,  which is statically applied from its initial value P = 0 to its final value P f  
[Fig. (14.6.1)l. For each value of P ,  we may then measure and plot the resulting 
displacement A. Let us assume that the load-displacement curve is as given in 
Fig. (14.6.2) where the coordinates of point A are A' and P f .  For an elastic body, 
the curve can be represented by the unique relation P = P ( A )  or by its unique 
inverse A = A(P).  

The work done by the force P is given by 

W = P ( A )  dA. (14.6.1) 

Since the rod is elastic, the principle of conservation of energy, Eq. (14.3.12), is 
valid, i.e. U = W ,  and thus 

i 0 

i 0 

i 0 

U = P ( A )  dA. (14.6.2) 

Clearly then, the total elastic strain energy in the rod is represented by the area 
OAB. 

Consider now the complementary area OAC. Although this area does not 
represent strain energy, its dimensions have units of energy. Hence we define the 
area as representing 'complementary strain energy' and denote it by U*. Thus 
we write 

U* = A ( P ) d P .  (14.6.3) 

Now, assume that the applied force is increased by a small amount d P  such that we 
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arrive at point A’ on the curve. Then we observe that 

d U =  P - d A  (14.6.4a) 

and hence 

( 1 4.6.4b) 

We may, therefore, state the following: 

Let an elastic body be in equilibrium under a load P ,  and let the strain energy U 
be expressed in terms of the displacement A of the load. Then the first derivative 
of U with respect to the displacement of P is equal to the applied load. 

This theorem is referred to as Castigliano’s first theorem. Note that it is valid 

When proceeding from A to A’ on the curve, we observe also that 
for general elastic behavioul; not necessarily linear. 

d U * = A * d P  (14.6.5a) 

or 
dU*(P) A=------- 

d P  ’ 
(14.6.5b) 

Thus, for an elastic body, linear or nonlinear, the derivative of the complementary 
energy with respect to a load is equal to the displacement of the point under the 
load (in the direction of the load). 

In general, U* f: U.  However, for a linear elastic body, U = U* [Fig. (14.6.3 j]. 
It follows that for a linear elastic body, 

(14.6.6) 

which is Castigliano’s secondtheorem as previously given by Eq. (14.5.8). Thus, we 
have again demonstrated that this theorem is valid only if a linear load-displacernent 
relation exists. 

It is worth noting that if we consider, for any elastic body, the quantity 

d(PA)= P d A + A d P ,  (14.6.7a) 

we have, from Eqs. (14.6.4a) and (14.6.5a), 

d(PA) = dU + dU* 

and hence 

P A =  dU$ d U * = U + U * .  s s  
Figure 14.6.3 

(14.6.7b) 

(14.6.7~) 

We therefore observe that the two areas represented by U and U* together yield the 
rectangular area PA, as in Fig. (14.6.2). 

Finally, since 

and 

(14.6.8a) 

(14.6.8b) 
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upon noting that for a linear elastic body U =  U* and therefore dU = dU*, it 
follows that 

Hence 
dU(A) dU(P) dP =-.-  

dA d P  dA’ 

(14.6.9a) 

(14.6.9b) 

14.7 The principle of virtual work 

(a) Introduction 
The principle of virtual work, which i s  derived in this section, is perhaps the most 
general principle encountered in mechanics since it may be applied to any body, 
be it elastic or dissipative, plastic, viscoelastic, etc. As we shall see, the principle 
of virtual work, as applied to rigid bodies, is but a degenerate case of the principle 
derived for deformable bodies. The versatility and generality of the principle of 
virtual work thus make it one of the most powerful tools in the study of mechanics. 
The principle is the basis for a wide class of methods, both analytic and numerical, 
known as variational methods. 

In the following section, Section 14.8, we will derive a related principle, the 
principle of complementary virtual work. As will be seen, the two principles are 
parallel, each being a counterpart of the other. Moreover, the two principles provide 
the basis for effective methods in the solution of problems in mechanics. 

(b) Definitions of external and internal virtual work: 
virtual displacements 
(i) Virtual displacements 
Consider a body in an x, y ,  z coordinate system, occupying a space V enclosed by 
a surface S and supported at points A and B [Fig. (l4.7.la)l. Let the body be sub- 
jected to a set of forces that may, as we have seen, be of two kinds: (a) surface forces 
acting on the surface S and (b) body forces acting within V .  If the surface forces are 
distributed over an area, then their intensities are specified in terms of the traction 
T ,  on the surface. In addition, concentrated forces P and couples C may also act 
on the surface as shown in the figure.’ The body forces that act on elements witbin 
the body (e.g., gravity) are denoted by B.  It is necessary to emphasise here that, 
since S denotes the entire surface, in stating ‘the body is subjected to a set of forces 
acting on the surface S’, we include as the surface tractions T ,  both the known 
applied tractions as well as the unknown reactive tractions [Fig. (14.7.lb)l. 

In general, the idea of work implies the product of force and displacements. To 
define virtual work, we must first define the term ‘virtual displacements’. 

t We recall from Chapter 1 that concentrated forces are, in fact, idealisations represented by the limiting 
case of a distribution of load of infinite intensity acting over an infinitesimal area as the area tends to 
zero. Using now the terminology developed in solid mechanics, we consider a concentrated force P as 
an idealisation representing infinite tractions acting over an infinitesimal area As; the force is therefore 
defined as 

P =  AS-tO ~ i m  /IT.& 
lTnl+cQ as 

[cf. Eq. (1.2.1)]. Thus concentrated forces and couples can exist on[v $we include flzepossibiliF of 
discontinuous tractions on the surface S. 
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Figure 14.7.1 

Now, if a deformable body is subjected to a set of external forces, points in 
the body undergo displacements u(x . y ,  z )  and the body assumes a new deformed 
configuration in its equilibrium state [Fig. (14.7.1c)l. The displacement u(P) of a 
typical point P(x, y ,  z) describing P + P* is as shown in the figure. Clearly, under 
static conditions, the body will no longer move once it has reached the equilibrium 
position. Let us imagine however that, from this equilibrium position, points in 
the body were to undergo some additional (imaginary) displacements P* -+ P**, 
which we denote by Su [Fig. (14.7.1d)l. We thus say that we ‘give all points in 
the body some displacements’; we refer to such imaginary displacements as vir- 
tual displacements. However, we impose a restriction on these displacements: the 
virtual displacements must be geometricaZZy possible. By this we shall mean that 
the virtual displacements within the body must, in general, be continuous except, 
perhaps, at a finite number of points. Using a more mathematical terminology, we 
define virtual displacements of a body to be any piece-wise continuous displace- 
mentJieZd and denote these virtual displacements by & U @ ,  y ,  2) .  The ‘&’ is used to 
remind us that these displacements are not real but are imaginary displacements 
that points of the body undergo. (For example, if the body is rigid, the imaginary 
displacements must be such that the body or separate parts of the body remain rigid.) 
Thus, with U representing the real (actual) displacement of a point to its deformed 
position, we may regard the ‘6’ of Su as denoting an (imaginary) variation and 
therefore also refer to &U as the variation ofthe displacement about its equilibrium 
position. 
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If, in addition, the virtual displacement field also satisfies all the geometric bound- 
ary conditions, then the field is said to be kinematically admissible. Thus, we may 
consider kinematically admissible virtual displacements as a subset of Su. Note the 
following: 

I We do not limit our virtual displacements to small quantities (i.e., the ‘6’ does 
not signify ‘small’). In fact, at this stage of our study, the virtual displacements 
8u may, according to our definition, be as large as we wish. 
According to our definition, the virtual displacements need not be kinematically 
admissible. However, although the virtual displacements do not necessarily have 
to satisfy the geometric boundary conditions, one may, of course, choose a set 
of virtual displacements that satisfy some or all the geometric boundary con- 
ditions of the body. For example, if a body is ‘pinned’ to supports A and B in 
Fig. (14.7.la), we may imagine the body to displace in such a manner that the 
constraint is violated at B but not at A, as shown in Fig. (14.7.1d). Thus, we 
may imagine the virtual displacements to be any possible displacements. In cer- 
tain problems, we find it convenient to adhere to the constraints; in other cases, 
we purposely violate the constraint. Since, by definition, the virtual displace- 
ments are arbitrary, our choice of virtual displacements will depend upon our 
purpose. 

(ii) External virtual work 
Having defined virtual displacements, we now define ‘external virtual work’, which 
we denote by 6 W,,, as follows: the external virtual work is the ‘work’ done by a set 
of actual existing external forces (already acting on the body) in ‘riding’ through 
the virtual displacements. Thus, as real external work is defined as the (scalar) 
product of the external forces (traction T,, body forces B, concentrated forces P 
and couples C )  with the displacements [see Eq. (14.3.11)], we define ‘external 
virtual work’ in a similar way; namely 

(14.7.1) 

where Su, and 88k, respectively, are the virtual displacement and rotation at the 
points at which PJ and Ck act. 

Note that here, in contradistinction to Eq. (14.3.1 l), we also have included ex- 
plicitly n concentrated forces and m concentrated couples that may be acting on 
the body. We also observe that, in contradistinction to F,q. (14.3.1 l), no 1 /2 factor 
appears in the expression for the external virtual work. This is because, according 
to our definition, the virtual work represents the work of an existing system of ex- 
ternal forces in ‘riding’ through the virtual disp1acements.t Hence, the prefix ‘8’ 
appearing in 6 Wext is used to denote that the work is ‘virtual’ (and not ‘real’). 

(iii) internal virtual work 
We now turn our attention to internal virtual work. For mathematical simplicity, 
we shall confine our discussion and proof below assuming a two-dimensional state 

t Note that the existing set of external forces is considered to be constant both in magnitude and direction. 
In particular, we emphasise that the directions of the forces do not change as they ‘nde’ through the 
vlrtual displacements. 
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of stress exists everywhere. The results may then be generalised to bodies where 
three-dimensional states exist. 

Consider a deformable body in astute of equilibrium subjected to a set of external 
forces suchthat atwo-dimensional state of stress (z,,, z,,,,, z,,,) exists [Fig. (14.7.2)]. 
Due to the existing stresses, elements in the body undergo displacements U and v 
in the x- and y-directions, respectively. (For simplicity, we shall also assume here 
that all displacements take place in the x-y plane.) Let the strains measuring the 
deformation be E,,, E,,,,, E,,,. Note that since the body is not necessarily elastic, 
the strains are not, in general, uniquely determined by the stress. (However, this is 
irrelevant, for here we are not at all concerned with these real strains and, moreover, 
we shall never calculate them.) The only fact that is of interest to us is the statement 
that the element is in equilibrium. 

Figure 14.7.2 

Now, as before, we imagine that while under the existing constant state of stress,+ 
points in the body undergo virtual displacements from their equilibrium position, i.e. 
u -+ u + Su, v -+ + Sv. Then, due to the virtual displacements Su, corresponding 
‘virtual strains’ will occur; we denote these by kxn, BE,,,,, SE,.. It is important to 
note, too, that the virtual strains are independent of, and completely unrelated to, 
the actual state of stress existing in the body. Furthermore, we observe that, up 
to now, no restrictions have been imposed on the virtual displacements or strains 
other than the statement that they must be geometrically possible, i.e. be piece-wise 
continuous with respect to x and y. 

We now wish to calculate the work done by the original stress state (which is in 
equilibrium) in going through the virtual strains. 

For simplicity, consider an element, as shown in Fig. (14.7.3), where only the 
stress zxx is acting. Due to z,,, the original length of the element, dx, first un- 
dergoes a (real) elongation ex, dx. If we imagine that the element now undergoes 
a virtual strain SE,,, the work done by zxx (which is already acting) on the ele- 
ment is (z,, dy dz)&,, dx, where dy dz is the area over which t,. acts. We call this 
work, which is done by (actual) stresses ‘riding’ through the virtual strains, internal 

Figure 14.7.3 virtual work. 
Similarly, if other stresses act through the virtual strains, the total internal virtual 

By a ‘constant state of stress’, we mean stresses that do not change, for example, with time. However, 
they may vary in space, i.e. with x and y .  
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so that the total internal virtual work done on the entire body becomes’ 

V 

where dS;! = dx dy dz denotes the elementary volume. 

the ‘work’ done by (real) stresses when ‘riding’ through the virtual strains. 
This last equation is taken as the definition of internal virtual work. It represents 

For the three-dimensional case, it is clear that 

(14.7.2~) 

(c) Proof of the principle of virtual work: comments on the principle 
(i) Derivation of the principle 
Consider a deformable body in a state of equilibrium under a set of forces, and let the 
resulting stresses at each point be t,., T,.~, tX.,. Since each element is in equilibrium, 
it follows that, for the two-dimensional case considered, the stress components 
must, at each point in the body, satisfy the stress equations of equilibriuin [see 
Eqs. (2.4.4)] 

( I  4.7.3aj 

(14.7.3b) 

Now, let us first multiply the above two equations by arbitrary scalar quantities 
Su(x, y )  and 6v(x. y ) ,  respectively, and then add these equations. Clearly, we then 
have 

a T.VY + + B,) 6~ + (2 + - + B,  SV = 0 . ( 14.7.4) 
ay ay ‘ 

The arbitrary character of Su and 6v should be quite clear, for we could have called 
these variables, say, Sfi (x, y)  and 6f2(x,  y) and Eq. (14.7.4) would be equally valid. 
If we integrate this last equation over the volume V of the body, then 

(14.7.5) 

Considering a typical term, we can write 

(14.7.6) 

t It IS worthwhile companng q. (14.7.2b) with Eq. (14.2.8~). In the former, the stress components are 
constant (Le., ‘fixed’) at any point whereas in the latter they are functions of the strain. 
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Operating similarly on the remaining tenns, we obtain 

+ ~ / /  (B,Su + B,Su) dS2 = 0. (14.7.7a) 
V 

Rearranging the tenns leads to 

Note that in the integral appearing on the right side of the last equation, terms of 
the form &(6u) appear. How are these to be interpreted? It is at this stage, and only 
now, that we interpret Su and Su as virtual displacements. Moreover, we restrict our 
discussion to small, infinitesimal values of these virtual displacements such that the 
resulting virtual strains and relative rotations are small. We recall too that, under 
this restriction, strains are given by the expressions [see Eq. (3.7.20)] 

(14.7.8a) 

(14.7.8b) 

( 14.7.8~) 

Consider, for example, a variation SE,, of the strain E,, [Fig. (14.7.4)]. Since, for 
small strains, the extensional strain is the change of length of an element divided 
by its original length, we can write 

{ [ U  + dx + Su + - dx] + dx - ( U  + Su)} - dx 
dx E,, + k , x  = 

Figure 14.7.4 
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or 
au a(su) 
ax ax 

E,, + a€,, = - + - . 
Using Eq. (14.7.8a), it follows that 

Therefore 

8 (g) ao. 
ax 

(14.7.9a) 

(14.7.9b) 

( 1 4.7.9~) 

In general, for any function f ( x ,  y), which is continuous and has continuous partial 
derivatives, 

Using the relation of Eq. (14.7.9d), we now return to Eq. (14.7.7b) and write 

Application of the divergence theorem (Appendix B.3) to the first integral appearing 
above yields? 

(14.7.11) 

where t, and l ,  are the components (in the n- and y-directions, respectively) of the 
unit normal vector n to the surface S enclosing the volume V [see Eq. (2.8.7)J 

Rearranging the terms, the surface integral above becomes 

/$extxx + t,tx,)6u + (txtxy + e , ~ y y ) s v l  ds, 

//(X,S U + Y , S V ) d s ,  

S 

which by Eqs. (2.8.8) is equal to 

S 

t For mathematical simplicity, we assume here that a11 functions are continuous. Hence, in using the 
divergence theorem, concentrated forces and couples, which can be represented only by discontinuous 
functions, will not appear. 
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where again X ,  and Y, denote, respectively, the x- and y-components of the traction 
T, acting on S .  Hence we recognise the integrand of this last expression as the 
scalar product T, . Su. Similarly, the integrand Bx6u + B,Sv = B 1  Su. Thus the 
right-hand integrals of Eq. (14.7.1 1) are 

S V 

respectively, and Eq. (14.7.1 1) can finally be written as 

= / / ( T n  a SU) ds + / / / ( B  - Su) dQ . (1 4.7.1 2) 

S V 

Now we recognize the left-hand side of Eq. (14.7.12) as being the internal virtual 
work S FV,nt. Similarly, the first integral on the right side is seen to be the external 
virtual work of the applied tractions on the surface of the body, while the second 
integral of Eq. (14.7.12) represents the external virtual work of the body forces. We 
conclude that the right side of Eq. (1 4.7.12) represents the total virtual work S Wext 
of all external forces acting on the body.+ Hence, Eq. (14.7.12) is a statement that 

6 w,, = S we,,. (14.7.13) 

Equation (14.7.13) expresses the principle ofvirtual work for deformable bodies 

Let a body under a set of forces produce an equilibrium state of stress at all 
points. Then, the internal virtual work of the stresses (acting through the virtual 
strains) is equal to the external virtual work of the applied forces (acting through 
the virtual displacements). 

Writing the stresses and strains symbolically as the tensors r and E ,  we may 

and may be stated as follows: 

rewrite Eq. (14.7.12) as 

c I /// SedQ = // T ,  Suds + /// B .  SudQ, 
k A 4 

where, as indicated by the corresponding arrows, we note that the (actual) equilib- 
rium stress state r at each point is due to the external tractions and body forces and 
the virtual strains St: are compatible with the virtual displacements. (Note that here 
we have for convenience again omitted, in Eq. (14.7.14), the concentrated forces 
and couples.) 

(ii) Some comments 
The following remarks are now in order: 

(1) The principle of virtual work was derived without reference to any energy 
expression. Consequently, at this stage, the principle should be considered as 
separate from energy considerations. 

Incompanngthedefinjt~onofSW~~~givenmEq. (14.7.1)wththenghtsideofEq.(I4.7.12), wenotethat 
the summations due to concentrated forces and couples do not appear in the latter equation. If traction 
discontinuities had also been taken into account, the two equations would be identical. (See previous 
footnotes on pages 558 and 564.) 
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(2) The on& condition imposed on the external forces and on the internal stress 
state is that they must be in equilibrium. 

(3) In the derivation of the principle, we imposed only two conditions on the vir- 
tual displacements: namely (a) the virtual displacements within the body must 
be piece-wise continuous and (b) all their partial derivatives, F,  F, 9, y, must be small. Hence, theprinciple, as derived, is limited to bodies under- 
going small virtual strains and relative rotations [see Eq. (3.5.16)]. Conversely, 
the principle remains valid if the body undergoes finite virtual translations. 
Aside from this, no other conditions have been imposed on the virtual displace- 
ments. For emphasis, we reiterate that nowhere have we stated or required that 
the virtual displacements Su, Sv satisfy constraints at the boundary. Indeed, 
if we wish, we may actually violate the constraints. And, in fact, we often do 
violate the constraints in order, for example, to evaluate reactions. 

(4) It is of interest to compare the principle of conservation of energy (Section 14.3) 
with the principle of virtual work. A comparison of the principles is presented 
in the following table. 

( 5 )  If we give a body virtual displacements Su describing rigid-body motion (such 
that the virtual strains are zero), it follows from Eq. (14.7.12) that if the body 
is in equilibrium, then 

or 

s w e x t  = 0, (1 4.7.1 Sb) 

which is the principle of virtual work for rigid bodies. We note that the principle 
of virtual work for rigid bodies is but a special case of the general principle 
developed here for deformable bodies. 

(6) In the above derivation, we started from the equations of equilibrium 
[Eqs. (14.7.3)] and arrived at the principle [Eq. (14.7.13)]. Thus we state that 
if a body is in equilibrium, then it must satisfy the principle of virtual work. 
Now, if we were to start from Eq. (14.7.12) or (14.7.13) and work backwards, 
we would arrive at Eqs. (14.7.3). Hence, we may state that if a body satisfies the 
principle of virtual work when given a virtual displacement, then it must be in 
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equilibrium. Thus, the equilibrium conditions are both necessary and sufficient. 
We therefore make the following statement: 

A body subjected to a set of external forces satisfies the principle of virtual 
work if, and only if, it is in a state of equilibrium. 

(7) Although, as has been pointed out, the internal virtual work S W,, of a body 
is not equal to the internal strain energy U of the body, for a given existing 
constant state of stress within the body, the change of strain energy 6 U = S W,, 
due to any variation of strains (virtual strains) SE. (We show this explicitly in 
Section 14.9 below.) 

In the above development of the principle, it was possible, at each stage of the 
derivation, to clearly define the required terms and to state the specific limitations 
and conditions under which the principle is valid. Thus the principle, as stated 
above, is quite general and may be applied to any given problem. 

Now, in structural mechanics, we ofZen encounter specific structural components 
such as rods, beams, bars, etc. (Such components, as we previously observed, are 
often referred to as one-dimensional elements since their cross-sections are defined 
by means of a single coordinate, say x .) In such cases, it is more useful to express 
the internal virtual work for these structural elements in terms of internal stress 
resultants and deformation patterns (which describe globally the deformation of 
the cross-sections) rather than in terms of stresses and strains. In the following 
section, we therefore derive the principle specifically for beams undergoing flexwe 
in the x-y plane. As we shall observe, the derivation follows closely the more 
general development given above. 

(d) The principle of virtual work for flexure of beams 
We derive the principle of virtual work explicitly for a beam, starting from the basic 
governing equilibrium equation, namely Eq. (8.3.3), 

(14.7.16) 

where A4 = Mz and the external loads q(x) lie in the x-y plane [Fig. (14.7.5a)l.t 
We note too that this equation is the analogue to Eqs. (14.7.3); as we shall see, the 

Figure 14.7.5 

Note that in the derivation of this equation, both equilibnum conditions, C Fv = 0 and 
satisfied. 

M = 0, were 
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present derivation will follow analogously the general derivation in the preceding 
section. 

We now assume that we give the beam a virtual lateral displacement 6v(x). Then 
clearly, 

+ q ( x )  sv = 0 [* 1 
and hence 

or 
L L 

svdx  = - q(x)6v&. sY s 
0 0 

Integrating the left-hand side by parts, 

0 

Now, by Eq. (8.3.2), = V ( x ) .  Hence 

(14.7.17a) 

(14.7.17b) 

(14.7.17~) 

(14.7.18a) 

(14.7.18b) 
0 I "  0 

Integrating the last integral of Eq. (14.7.18b) again by parts, we havet 

( 14.7.1 8c) 

= a($) = 6v'(x), etc. We recall too 
that for small rotations (slopes), v"(x) represents the curvature K 4 K~ of the beam 
in the x-y plane [see Eq. (9.2.3)]; i.e., v"(x) = - K ( x ) .  Equation (14.7.18~) then 
becomes 

We now note from Eq. (14.7.9d) that 

t For mathematical simplicity, we assume no discontmuities in M ( x )  or V ( x )  within 0 <: x c L . As a 
result, concentrated forces and couples within the beam will not appear in the integrated expressions 
(seep. 564). 
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Finally, substituting Eq. (14.7.18d) in Eq. (14.7.17c), we have 

M ( x ) ~ K ( x ) ~ x  = q(x)Svdx + V(x)Sv S 0 0 

that is, 

The left side of the above equation represents the internal virtual work of the 
moments due to the variation of curvature, while the right-hand side represents the 
external virtual work of external forces. 

Equations (14.7.19) thus express the principle of virtual work for beams under- 
going flexure. It is important to note that since the right-hand side of Eq. (14.7.19b) 
represents the virtual work of external forces acting on the beam, it specifically 
also includes the virtual work done by shear forces and moments acting at the ends 
x = 0 and x = L [Fig. (14.7.5a)l.i Thus the right-hand side of Eq. (14.7.19b) can 
be written formally as 

L 

6 We,, = 1 q(x)Sv dx + P6v 
0 

where 68 6v’ denotes the slope, positive P here denotes downward shear forces 
and positive C denotes clock-wise moments acting at the two ends [Fig. (14.7.5b)l. 

In the above, q ( x )  has been implicitly assumed to be a continuous function 
of x. However, if we assume that concentrated transverse loads and applied 
moments (couples) are also acting at x,, and Xk, respectively, within the span 
0 < x < L [Fig. (14.7.6)], the function q(x) will contain discontinuities at 
these points [see Section l l b  of Chapter 91. Hence, in place of the simple 

Figure 14.7.6 

t The appearance of the minus signs in Eq. (14.7.19b) is a result of our adopted sign convention: positive 
V ( L )  acts downward. positive V(0)  acts upward at the left end x = 0 and positive M ( L )  acts counter- 
clock-wise at the nght end, x = L .  
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integral q(x)6v dx, we have 

0 

In this case, the expression for the external virtual work becomes 

J k= 1 0 

(14.7.20b) 

The principle of virtual work for beams under the combined forces [Fig. (14.7.7)] 
can therefore be written as 

It is clear that this specific derivation for a beam in flexure follows in parallel 
steps the derivation of the general proof. [While Eq. (14.7.21) is the analogue of 
Eqs. (14.7.12), integration by parts - in this one-dimensional case - is analogous 
to the use of the divergence theorem in the more general derivation.] 

Figure 14.7.7 

Finally, it is worthwhile to mention here again that material constants do not enter 
into the derivation; thus the expressions of Eqs. (14.7.19)-(14.7.21) are valid for 
beams of any arbitrary material. 

(e) Application of the principle of virtual work to evaluate reactions 
and internal stress resultants: the 'method of virtual displacements' 
The principle of virtual work has many applications. In particular, the principle can 
be used directly to evaluate reactions and internal stress resultants (i.e., axial forces, 
moments and shear forces) in a body. However, in calculating the virtual work (both 
internal or external), we must conform to the limitations imposed in the derivation 
of the principle: namely the virtual displacements must be piece-wise continuous 
[see Section 14.7b (i)] and the body must undergo a virtual motion consistent with 
small strains and small rotations. 

In the use of the principle to evaluate reactions or internal force resultants, we 
shall essentially release all (or some) of the constraints. The virtual work of the 
unknown external forces corresponding to the releases (when acting through an 
appropriate virtual displacement of the 'released structure') is then calculated. By 
satisfying the principle of virtual work, we require the unknown forces to be, in 
fact, equilibrium forces. Thus it will be noticed, in the applications which follow, 
that we shall actually choose virtual displacements which violate the constraints, 
i.e. the geometric boundary conditions. 

The following example illustrates explicitly the arbitrag, nature of the virtuaE 
displacements. 
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Example 14.6: A cantilever beam AB of length L (having arbitrary mate- 
rial properties) is subjected to  a uniformly distributed load q(x)  = w 
[Fig. (14.7.8a)J. Determine the reactions acting on the beam. 

Figure 14.7.8 

Solution: For this simple problem, the moment is M ( x )  = -wx2/2 and it is clear 
that the reactions at x == L consist of an upward force RB = W L  and a clock-wise 
moment Ms = wL2/2  [Fig. (14.7.8b)l. We verify here that the principle of virtual 
work leads to this same resultfor any arbitrary variation Sv(x) [Fig. (14.7.8a)l. 

Although the material of the beam has not been specified, it is evident that the 
beam will undergo some real lateral deflection v(x) and reach an equilibrium state 
under the given loading. We are not concerned with this actual (true) displacement. 
Irrespective of what v(x) may be, let us assume that this displacement v(x) is varied 
from its equilibrium position by Sv(x), which we prescribe to be of the form 

Sv(x) = 6A [ ( ;)R 4- 11 , n 1 0 .  (14.7.22a) 

where SA (assumed positive) is a coefficient and n L 0 IS arbitrary. 
It IS worthwhile to sketch the virtual displacements Sv for several values ofn, n 2 0; 

these are shown in Figs. (14.7.9a and b). Note that these virtual displacement patterns 
are quite arbitrary due to the arbitrary nature of n and do not bear any resemblance 
to the possible real deflection of the beam. We also observe that the chosen Sv(x) 
violates the boundary conditions at  x = L for all n 0. 

Figure 14.7.9 
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From Eq. (14.7.22a), 

(14.7.22b) 

Recalling that K(X) = -v”(x) for Iv’l<< 1, substitution in the left-hand side of 
Eq. (14.7.19) representing the internal virtual work, yields 

L L 
WL n(n - 1) . (14.7.23a) 
2 n + l  

x” dx = 6A--  
6A U) 

M(x)G~(x)dx = --n (n - 1) J L” 2 
0 0 

Consider now the right-hand side of Eq. (14.7.19b). For the problem at hand, taking 
into account our adopted sign convention, 

EZ Y(0) = 0; VB E v(L) = -Rs; SE M(0) = 0; M ( L )  -MB. 

Moreover, from our assumed variation 6v(x), Eqs. (14.7.22), 

Sv’(L) = a- 1: 0, 
6 A  
L 

6v(L)  = 2SA; 

Therefore, the right-hand side of Eq. (14.7.19b), representing the external virtual 
work, becomes 

I. 1 q(x)6v dx + V(L)Sv(L) - V(O)Sv(O) - M(L)GV’(L) + M(0)6v’(O) 
0 

(14.7.23b) 

Applyingtheprinciple ofvirtual work, i.e. equating Eq. (14.7.23a) to Eq. (14.7.23b), 
and noting that this is true for any arbitrary 6 A, we obtain 

(14.7.24a) 

For n = 0, RB = wL. Substituting this value back in Eq. (14.7.24a) leads to 

(14.7.24b) 

0 

We observe from this example that one may obtain reactions and solve for un- 
known forces using any appropriate set of arbitraw virtual displacements [see, e.g., 
Fig. (14.7.10a)l. Indeed, one could obtain the same results as above by choosing, 
for example, a virtual displacement of the form 

nnx 
6v(x) = 6 A  sin - 

2L ’ 

wL2 
MB E M(L) - foralln 0. 

2 

(14.7.25) n > 0. 
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Figure 14.7.10 

Since the principle of virtual work is indeed valid for any arbitrary virtual 
displacement, in applying the principle of virtual work to obtain relations be- 
tween internal stress resultants and reactions, we find it useful to prescribe vir- 
tual displacements which describe rigid-body motion so that 6 Wlnt = 0 identically. 
Hence, when prescribing such rigid-body virtual displacements, the principle will be 
satisfied by Eq. (14.7.15b), namely 6 Wext = 0. As we shall now show, by prescrib- 
ing virtual rigid-body motions, we simplify considerably the required calculations 
since we need not calculate 6 W,nt! 

For the givenproblem, instead ofthe virtual displacement given by Eq. (14.7.22a), 
let us now assume a virtual displacement representing rigid-body motion defined 
bY 

S V ( X )  = SA + 68 . X, (14.7.26) 

where 6 A  and 68 are shown in Fig. (14.7.10b). 
Using Eq. (14.7.20), the external virtual work is given by 

L 

6 Wext = - R B ( ~ A  + L68)  + MB - 68 -t w [ (AA + 68 * x)&. (14.7.27) 
J 
0 

Integrating and setting 6 Wext = 0, 

( -RB + w L )  * 6 A  + 68 = 0. (14.7.28a) 2 

Since 6 A and 68 are arbitrary, each of the coefficients of 6 A  and 68 must vanish: 
thus setting the coefficient of 6 A to zero, we have RB = wL; setting the coefficient 
of 68 to zero and replacing with the calculated value of RB , we find 

wL2 
R s t = W L ,  MB=- (14.7.28b) 

2 ’  

which agrees with our previous results. We observe that by prescribing virtual dis- 
placements representing rigid-body motion, the required calculations have become 
much simpler. 
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(i) Applications of the principle of virtual work 
to statically determinate structures 
Some further applications of the principle of virtual work to statically determinate 
structures are given in the following illustrative examples. 

Example 14.7: Determine the reactions R h  and RB,, of a simply supported 
beam of length L ,  subjected to a uniform load wand a concentrated force 
P,  as shown in Fig. (14.7.1 la). 

Figure 14.7.11 

Solution: First we assume that the beam is in equilibrium under the set of forces 
given in Fig. (14.7.1 lb). According to the discussion above, we may choose to give 
the beam virtual displacements that represent rigid-body motion. 

To find R A ~ ,  we let the virtual displacement be 6u in the x-direction. Then the 
virtual work done is [Fig. (14.7.1 lc)] 

&We, =: R h 6 u  = 0. (14.7.29a) 

Since Eq. (14.7.29a) must be valid for any 6u, it follows that R h  = 0 must be 
true. To find RB", we let the virtual displacement be a rotation 60 about point A 
[Fig. (14.7.11d)tl. Then 

SW,, = Rsv(LS8) - P(a60) - WL ( - 'iO) = 0. (14.7.29b) 

t It IS important to note that ail forces in t h~s  figure remain vertical. See footnote p. 560. 
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Hence, since this must be valid for all 66, 
Pa W L  
L 2  

Rg?, = - + -. 
U 

We again note that in obtaining the above solutions, we released the constraints 
and chose virtual displacements that, in each case, violated the boundary conditions. 
Moreover, we observe that to obtain the solution for any desired unknown, we have 
chosen an appropriate virtual displacements in such a way that onily the single 
unknown appears in the expression for the external virtual work. As we shall see 
in the following examples, we can apply this simple procedure for any statically 
determinate structure. 

Clearly, in the simple problem considered above, the results could have been ob- 
tained just as well from the equations of equilibrium. Indeed, the principle of virtual 
work as applied here does not yield any results that could not be obtained from equi- 
librium equations. However, the principle provides us with a different method of 
solution, and in certain problems, use of the virtual work method proves to be much 
simpler and efficient than solving a set of equilibrium equations. This is demon- 
strated in the following example, where we determine internal force resultants. 

Example 14.8 A simply supported beam of length L is subjected to a force 
P acting a t  a variable point x = {, as shown in Fig. (14.7.12a). Determine’ 
(a) the moment M a t  section B(x = b) and (b) the shear force V a t  section 
B(x = b). 

Solution: Since we are now interested in determining stress resultants within the 
structure, we choose to give the structure appropriate virtual displacements such that 
these unknowns appear in the expressions for the virtual work. Now, the unknowns A4 
and V can appear as terms in the virtual work expressions only if we choose virtual 
displacements containing discontinuities within the structure. It is to he recalled 
that since virtual displacements can be piece-wise continuous, discontinuities are 
permitted in the virtual displacementfield (see p. 559). The discontinuities can be 
either in the displacements themselves or in the rotations. 

(a) Moment at B 
In choosing a virtual displacement, we seek to have the moment appear as the 
only unknown in the virtual work expression [see Fig. (14.7.12b)l. We therefore 
choose as the virtual displacement, rotations 6O1, 862 such that the bar remains rigid 
except for a discontinuity in the slope at point B, i.e., we introduce a ‘kink’ at B but 
permit no separation at B, as shown in Fig. (14.7.12c).$ In doing so, we effectively 
decompose the beam into two rigid segments, 0 < x < h and h < x < L ,  In effect, 
we have transformed the beam into a ‘mechanism’. 

The moment M at the cross-section B is then considered as an external moment 
acting on each segment of the beam. However, we must consider two separate cases: 
( 5 b and ( 2 b, i.e., when the load is applied to the left and to the right of the 
cross-section at B. 

In this example, and all subsequent examples in this section. posihve moments and shear forces follow 
the adopted sign convention as shown in Fig. (8.2.8). 
Note that in prescribing virtual displacements such that no separation exists at B, the virtual work of the 
downward shear force VB acting on the nght face of segment AB cancels with the upward shear force 
VB acting on the left face of segment BC. 

Having made the above comments, we proceed with the solution. 
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Figure 14.7.12 

Case (i): ( 5 b [Fig. (14.7.12d)l 

The external virtual work done is 

6 wmt = -p(ysel) + M ( s ~ +  + se,). (14.7.30) 

Noting that the virtual displacements define a rigid-body motion (hence, 6 W,, = 0), 
it follows that 6 Wext = 0, and therefore 

(14.7.3 1) M(ae, + se,) = p(c6e,). 
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Now, if no ‘virtual separation’ exists between the two segments, for 1011 << 1, 102 I << 
1, we require that 

(14.7.32) 681b =: ( L  - b)682. 

Substituting the above Eq. (14.7.3 l), 

Since this must be true for all arbitrary 881, 

(1 4.7.3 3 a) 

(14.7.33b) 

Case (ii): b 5 q [Fig. (14.7.10e)l 

Proceeding as above, we find, instead of Eq. (14.7.30), 

SWext = -P[(L - q)Se21 + M(SB1 + 869. (1 4.7.34a) 

Hence, since again 6 We,, = 0, 

M(8e1 + m2) = P[(L - q)se21. (14.7.34b) 

Using Eq. (14.7.32), we obtain 

Since this must be valid for all 882, 

( 1 4.7.34~) 

(14.7.34d) 

(b) Shear Force Vat B 
Here, we choose an appropriate virtual displacement such that only the unknown 
V appears in the virtual work expression. To this end, we introduce a discontinuity 
in the virtual displacement Sv at point B while at the same time we permit no 
discontinuity in the slope SOB. (By not permitting a discontinuity in 88, the total 
virtual work of the moment Mat B will be zero since the counter-clock-wise moment 
h 4 ~  acting on the segment AB then cancels out with the clock-wise moment MB 
acting on BC.) Hence, the virtual displacement is, as shown in Fig. (14.7.12f or g), 
where 681 = SO2 = SO. 

In doing so, as in the previous case for the moment, we effectively have decom- 
posed the beam into two rigid segments, 0 < x < b and b < x < L,  thus again 
creating a ‘mechanism’. The shear force V at the cross-section B is then considered 
as an external force acting on each segment of the beam. 

Case (i): { < b [Fig. (14.7.1201 

The external work is 

Again, we consider two separate cases 

s wext = Pqse + V[bSe + ( L  - b)Se] = Pqse + n s e .  (14.7.35a) 
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Applying the principle, 6 We, = 0, 

V = -  -" O < < < b .  
L '  

Case (ii): b < 5 < L [Fig. (14.7.12g)l 

Here 

Again, applying the principle, S We, = 0, 

(14.7.3Sb) 

(1 4.7.352) 

(1 4.7.3 Sd) 

cl 
Example 14.9: The statically determinate structure of Fig. (14.7.13) is sub- 
jected to  a load P, which acts a t  a variable position x = {. Determine (a) the 
reaction a t  A, (b) the reaction a t  C, (c) the moment at  C, (d) the moment a t  E 
as a function of the variable load position {, 0 5 { 5 4L. 

Figure 14.7.13 

In each of the solutions, we choose an appropriate virtual displacement 
consistent with small rotations. 

Solution: 

(a) Reaction at A 
We choose a virtual displacement 6 A as shown by the mechanism in Fig. (14.7.14a). 
Then, for < I L ,  

P (?)?A. ( 14.7.36a) 

Note that a hinge exists at B. Therefore with this imposed virtual displacement, the 
moment MB does not contribute to the virtual work since = 0. Then, setting 
Awe,, = 0, 

RA = (T) L - 5  P. (14.7.36b) 

For L 5 5 5 4L, it is clear that RA = 0. The resulting reaction RA is plotted as a 
function of the position 5 of the applied load in Fig. (14.7.1Sa). 

(b) Reaction at C 
We choose a virtual displacement 6 A as shown by the mechanism in Fig. (14.7.14b). 
Then, for { 5 L ,  

Awe,, Rc8A-2-86. p5 (14.7.37a) 
L 
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Figure 14.7.14 

Again, since 6 Wext = 0, 

For L 5 { 5 3L, 

( 1 4.7.3 7b) 

from which 

P 
(14.7.37d) L 

For 3L 5 { 5 4L, it is clear that Rc = 0. The resulting reaction Rc is plotted as a 
function of the position 5 of the applied load in Fig. (14.7.15b). 

Rc = -(3L - <), L 5 { 5 3L. 

(c) Moment at C 
We choose a virtual displacement as in Fig. (14.7.14~) such that a discontinuity 
66 occurs in the slope at C. By choosing this as the virtual displacement, the only 
unknown appearing in the virtual work expressions is the unknown moment Mc. Note 
that 6% = 66. Hence, for { 5 L, 6 Wext = Mc66 + PC60 and therefore, following the 



or~ms,  ~ r i n c j ~ i ~ s  of virtual work and their a ~ p l i ~ ~ t i o n s  

previous reasoning, 

Mc = - -E){ .  (14.7.3~a) 

Similarly, for L 5 { 5 215, S Wext = McSO + P(2L - { ) S O ,  from which 

Me = -P(2L - 0. (14.7.3g~). 

For 2L 5 { 5 4L, 6 Wext = 0 identically, from which it follows that 

Mc = 0. ( 14.7.3 8c) 

In Fig. (14.7.15c), the resulting moment Me is plotted as a function o f  the position { 
o f  the applied load. 
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(d) Moment at E 
In order to have only ME appear as the unknown, we choose a virtual displacement S O ,  
as shown in Fig. (14.7.14d). Note that the virtual rigid-body displacement requires 
that Sa = Sg = 6y = 60. 

The final results, obtained by setting 6 Wext = 0 are as follows: 

The resulting moment ME is plotted as a function of the position < of the applied load 
inFig. (14.7.15d). 

We observe that each of the graphs of Figs. (14.7.15a-d) has the same shape as 
the virtually displaced structure, namely (corresponding to this statically determi- 
nate structure) the mechanisms of Figs. (14.7.14a-d), respectively. [In the section on 
Injluence Lines, we shall find that this interesting feature has useful and important 

In examining each of the cases in the above solutions, it is worthwhile to recall 
a general comment: when solving for a given unknown force in a statically deter- 
minate structure by the principle of virtual work, it is always possible to choose a 
virtual displacement describing a mechanism such that only the desired unknown 
appears in the virtual work expression. In principle, this comment is valid for any 
structure, no matter how complex, provided the structure is statically determinate. 
Indeed, the principle of virtual work is used extensively in the field of structural me- 
chanics where it has a wide variety of applications not only for beams but also in the 
analysis of more elaborate structures, for example, frames and trusses. We illustrate 
the application of the principle to more complex structures by means of the following 
examples. 

applications.] 0 

Example 14.10: The statically determinate frame structure shown in 
Fig. (14.7.16) consists of elements rigidly connected a t  points C, F and G and 
connected by means of hinges at points A, B, D, E and H. The structure is 
subjected to a horizontal force P .  

Using the principle of virtual work, determine (a) the horizontal compo- 
nent R,A of the reaction at A, (b) the horizontal Component R x ~  of the reac- 
tion at HI (c) the moment a t  point C, (d) the shear force V in member BC a t  
point B and (e) the axial force N in member BC a t  point B. 

Solution: As in the case of beams of the preceding examples, we solve for the 
unknowns by specifylng virtual displacements such that the component parts of the 
structure move as rigid bodies; i.e., the structure becomes a ‘mechanism’. Hence 
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Figure 14.7.1 6 

the principle reduces to 6 W,, = 0. (Since the given .Frame is a statically determi- 
nate structure, as has been previously mentioned, we shall always find it possible to 
prescribe an appropriate mechanism such that only a single unknown appears in the 
virtual work expression.) 

(a) Reaction at A 
We give the structure a virtual displacement 6 , ~ ,  as shown in Fig. (14.7.17a).t 

SW,,, = - R x ~ S x ~  = 0 

and hence R,A = O.t 

(b) Reaction at H 
We give the structure a virtual displacement 6,jx~, as shown in Fig. (14.7.17b). Then 

6 Wext = P6,c - R,FIS,FI = 0. 

and since 6 , ~  = 6 , ~ ,  we have ( P  - R,H)~,c = 0 from which R,H = P.  Thus the total 
horizontal resisting force of the structure to the applied load P is due to RH. 

(c) Moment at C 
We give the structure a virtual displacement 60, as shown in Fig. (14.7.17~). Then, 
since 6 , ~  = h2 60,s 

6 Wext = -McS0 + Ph260 =E 0, 

from which MC = Ph2 . 
(d) Shear Vat B 
We imagine that we ‘cut’ member BC at B so as to give the structure a virtual 
displacement 6 , ~ ,  as shown in Fig. (14.7.17d). Then 

6 = P6xB - V6xB = 0, 

from which V = P .  Observe that since the moments MD = ME = 0, no work is done 
by these moments due to the angle changes at D and E. 

t In Figs. (14.7.1 7.19a and 21 b), the onginal structure and the virtually displaced structure are represented 
by broken and solid lines, respectively. 

1: We might have anticipated this result by noting that, for the load P specified as acting on the structoiv, 
member AB is a ‘two-force member’; it can therefore only carry an axial load and hence can have no 
shear component. It follows necessarily that R,A = 0. 

9 We emphasise here that since the rotation 1801 << 1 is an infinitesimal, the resulting displacement (in 
this case point C) is perpendicular to the (onginal) radial line from the centre of rotation (here, point B). 
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Figure 14.7.17 

(e) Normal Force N at B 
We give the structure a virtual displacement a,,, as shown in Fig. (14.7.17e) (noting 
that element CD rotates with respect to DE, and DE with respect to EF. This is 
permissible since hinges exist at D and E.) We denote the rotation of element BC 
by 68. However, since the connection at C is rigid, we require that the angle BCD 
remain a right angle. It follows that CD also rotates by 88 as shown. From geometry, 
68 = ( ~ , B ) / L z .  Hence the virtual displacement 6 , ~  = hz 68 = h2(S,~)/a.  Therefore 

from which N = % P .  0 

The principle of virtual work can also be applied to the analysis of trusses. In 
general, the axial forces existing in a (statically determinate) hinged truss subjected 
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to specified loads can be obtained from the equilibrium equations using, for example, 
equations of equilibrium at each joint or the 'method of sections'. We note that 
when using either method, one must usually solve simultaneous equations for two 
or more unknowns. However, since, as we have seen, it is always possible to write 
external virtual work expressions for statically determinate structures in which only 
one unknown appears, the principle of virtual work permits finding the axial force 
in any particular member of such a truss, thus eliminating the need to calculate the 
forces in other members. That is, we need not make an analysis of the entire truss if 
it is necessary to determinate the force only in a specified member. We demonstrate 
this feature below for the statically determinate truss structure of Example 14.5. 

Example 14.11: The truss shown in Fig. (14.7.18) is subjected to a downward 
force P at point b and a horizontal force Q at point E. Determine the axial 
force existing in member aB. 

Figure 14.7.18 

Solution: We imagine that we 'cut' members aB and ab (just to the left of element 
bB). The truss may then be considered to consist of two rigid segments: one to the 
left of bB and the other to the right (and including bB). We now give the right-hand 
truss segment a rigid-body rotation SO about c, as shown in Fig. (14.7.19a). Due to 
this virtual rotation, the horizontal virtual displacement of point E is SxE = 2LS8 so 
that the virtual work of the force Q is 2L Q 66. SimilarIy, since the vertical virtual 
displacement component of b is given by = (3L/2) - SO, the virtual work of the 
force P is ( -3PL/2) .  SO. 

We now consider the virtual work of the force F a .  We first note that L B ~  = 2.5L. 
Furthermore, let /3 be the angle of inclination of aB with respect to the x-axis, and let 
y be the angle of inclination of Bc with respect to the y-axis. Note that 

f i  = cos-'(0.6) = sin-'(0.8), y = cos-'(0.8) = sin-'(O.6). 

Due to the virtual rotation SO, the virtual displacement S ( B * )  = L ~ , 6 8  = 2.5L . 
SO where we note that S ( B * )  is perpendicular to the line L B ~ .  To obtain the virtual 
work of the force F a ,  we require the component of the virtual displacement, Sa, 
in the (original) direction of member aB [BG as shown in Fig. (14.7.19b)l.t From 
geometry, 

S a ~  = (2.5LSO) [COS(@ - y ) ]  = (2.5LS8) [cos /3 cos y + sin /3 sin y ]  

and using the values given above, 

SaB = (2.5L) [2(0.6)(0.8)] = 2.5L .0.9660 =Z 2.4L68 , 

Note that the direction of the force F a  is considered to be constant; i.e., it acts in the orzginal direction 
of member aE3 (see footnote, p. 560). 
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Figure 14.7.19 

the virtual work of the force is 6 W = F a  . Sa = -2.4Fa~ L66. Setting the external 
virtual work of all forces acting on the truss segment to zero, 

1 3L 
2 

- 2 . 4 ~  . F~~ - - . P + 2~ . Q 6e = 0, 

we obtain 
1.5 2.0 
2.4 2.4 

Fa = --P + -Q = -0.625P + 0.8338. 

which agrees with the results as shown in Fig. (14.5.5). 0 

We observe that in using the principle of virtual work, it is necessary to first 
obtain the geometric relations for the given virtual displacement and rotations. The 
complexity of the problem thus depends on its geometry. Indeed, the major effort in 
using the principle for this class of problems consists of obtaining these geometric 
relationships. 

(ii) Applications of the principle of virtual work 
to statically indeterminate structures 
In the application of the principle of virtual work for statically determinate struc- 
tures, it was emphasised that the choice of an appropriate virtual displacement led 
to a mechanism where only a single desired unknown appeared in the virtual work 
expression; consequently, it was possible to immediately determine the unknown 
force. In treating statically indeterminate structures, it is again possible to transform 
the structure into a ‘mechanism’. However, for such structures, more than a single 
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unknown force will always appear in the virtual work expression. As a result, one 
can never solve for the unknowns explicitly. Instead, as we shall see in the follow- 
ing examples, we are only able to obtain relations between the various unknown 
quantities existing in the structure. 

Example 14.12: For the statically indeterminate structure shown [Fig. 
(14.7.20a)], obtain (a) a relation between MA and Rc, (b) a relation between 
MA, Ms and V,. 

Figure 14.7.20 

Solution: We let the unknown forces and moments be as shown in Fig. (14.7.20b). 

(a) Choose a virtual displacement 60 as shown in Fig. (14.7.20~). Then 

6 W,, = RcL60 - MA60 - Pa60. 

Applying the principle, M ~ 6 0  = RcLS0 - Pa60, and hence 

MA = R c L  - P a .  (14.7.40a) 

(b) Choose a virtual displacement 6 A  as shown in Fig. (14.7.20d). Then 

6wext = V A ~ A  + MA(6A/a) - n/l , (aA/a) .  

Hence, since 6 W,,, = 0, 

= MA + VAa. (14.7.40b) 
Cl 
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We observe that both of Eqs. (14.7.40) could easily be obtained from an appropriate 
free-body diagram and the equations of equilibrium (E M)A = 0 and (E M)B = 0, 
respectively. We note too that, in this present example, in choosing rigid-body vir- 
tual dsplacements more than a single unknown always appears in the virtual work 
expression. This corroborates with the feature, indeed the definition, of a statically in- 
determinate structure; namely there exist more unknowns than independent equations 
of equilibrium. 

Example 14.13: The statically indeterminate frame structure shown in 
Fig. (14.7.21a) is subjected t o  a horizontal load P .  Determine a relation be- 
tween MA at A, the axial force N and the shear force V in member BC at 
point D. 

Figure 14.7.21 

Solution: We apply a virtual rotation SO as shown in Fig. (1 4.7.2 Ib). Let L represent 
the length of line AD, and let the angles of inclination of lines BC and AD (with respect 
to the x-axis) be a and y ,  respectively. 

Hence for the given virtual rotation, the virtual displacement S(DD*) = LS8. Note 
that since lSOl << 1, S(DD*) is perpendicular to the line L.t From simple geometry, 
applying the principle of virtual work, 

SW,, = -MASO - Phi66 - “La8 + sin(y - a)]  - V[LS6 . cos(y - a)] = 0 

or 

We note that, as in Example 14.12, it is notpossible to solve explicitly for unknown 
forces in a statically indeterminate structure; here again, the principle ofvirtual work 
can provide us only with relations between the unknowns. However, this in itself can 

See footnote. p. 582. 
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prove to be quite useful. Indeed, we should not expect the principle to yield explicit 
solutions for a statically indeterminate structure since the principle is merely an 
alternative means of stating equilibrium conditions. 

(f) Influence lines for reactions, shears and moments 
in beams by the principle of virtual work 
(i) Influence lines for statically indeterminate structures 
We recall from Chapter 9 (Section 10) that the expression for the moment M (or 
shear V )  at any arbitrary point x in a beam due to a unit load P = 1 acting at a 
variable point x = { is called the fundamental solution for the moment (or shear) 
in the beam. As was seen in Chapter 9, these quantities are expressed by means of 
Green’s functions (or, alternatively called influence functions), which we denote by 
G&, {) and G V ( X  , c),  respectively. Having determined the appropriate Green’s 
function, we showed, using linear superposition, that the resulting moment and 
shear for any given distributed load q(<) acting on the beam over, say, a length 
0 < x < L isgivenby[seeEqs. (9.11.18)and(9.11.20a)] 

(14.7.41a) 
0 

and 

In particular, if we wish to know these quantities at a specific point x = XO, we have 

and 

(14.7.42b) 

Similarly, using the principle of superposition, the reaction R existing at a given 
point xo is 

0 

Note that, using the standard notation given in Chapter 9, the function G(xo,<) 
represents the required quantity (e.g., M ,  V or R )  at x = xo due to the unit load 
P = 1 acting at the variable point x = ( [Fig. (14.7.22)]. 

In Chapter 9, influence functions were determined for statically determinate 
beams by means of the equations of equilibrium. While, for a simply supported 
beam or one with cantilever supports, such calculations are rather simple, these 
calculations can become rather cumbersome for a beam having more complex 
supports. As we shall now show, the principle of virtual work simplifies considerably 
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Figure 14.7.22 
the calculation for these functions. In fact, the principle permits us to obtain directly 
aplot of G as a function of the position of the unit load acting at {. Such a plot is 
called an influence line. Thus the influence line for G of any given quantity (say, 
M ,  Y or R )  at a specified point is a graph that shows the variation of the solution 
as a function of the position 5 of an applied unit load. 

To illustrate the application of the principle, let us reconsider the structure dis- 
cussed in Example 14.9 and shown again in Fig. (14.7.23a). Assume that we wish 
to find the influence function Gnn(2L1 <) for the moment Mc, that is, M at x = 2L 
due to a load P =I. 1 acting at some variable point x =E: {. As discussed in the 
example, for a given load P applied at x = {, we chose virtual displacements 
that cause a discontinuity 68 at point C and thus obtained a mechanism as shown 
in Fig. (14.7.14~) and repeated here as Fig. (14.7.23b). The resulting moment 
M(x = 2L) was found to be [see Eqs. (14.7.38)] 

M(2L, r> = -PY, 5 5 L, (14.7.43a) 

M(2L, <) = -P(2L - <), (14.7.43b) 

MGL, 5)  = 0, 2L 5 <, (14.7.43~) 

whose plot, given in Fig. (14.7.1 5c), is repeated in Fig. (14.7.23~). We note that this 
figure has the identical shape as the chosen mechanism of Fig. (14.7.23b), i.e., the 

L 5 { 5 2L. 

Figure 14.7.23 
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plot of M(2L, <) is the same shape as that of the mechanism. Moreover, we note 
that if we set P = 1 and artijicially define 68 to be 68 = 1.t the ordinates of the 
virtually deformed structure (i.e. the mechanism) are given by 

M(2L,  5 )  = - 5 ,  r ( . L ,  (14.7.44a) 

M(2L,{)=-(2L-{), L 5 < 5 2 L ,  (14.7.44b) 

M(2L, {) = 0, 2L 5 { (14.7.44~) 

Now, by definition, this is precisely the required Green’s function G M ( ~ L ,  <).t We 
therefore observe that by choosing a virtual displacement (which corresponds to 
the desired force quantity [here, M(2L)I) equal to unity, the shape of the virtually 
deformed structure yields the influence line directly. That is, if the structure is 
given a virtual displacement such that the virtual displacement of the desired force 
quantity is unity, the influence line of the desired quantity coincides identically 
with the virtually deformed structure. Hence, letting 68 = 1, the influence line for 
GM(2L. {)is as showninFig. (14.7.24a). Thus the principle ofvirtual workprovides 
us with a powerful means of immediately drawing the influence line without having 
to derive an analytic expression for the influence function. We summarise here the 
practical results as follows: 

The influence line for a specific desired reactive force quantity (reaction, shear 
force or moment) of a statically determinate structure is obtained by first vio- 
lating the associated geometric constraint such that the ‘released structure’ is 
transformed into a mechanism. Upon giving the desired force quantity a virtual 
displacement of unity, the influence line corresponds identically to the displaced 
mechanism.q 

The influence lines for other quantities of the structure of Example 14.9, 
viz. RA, Rc, ME, drawn immediately using this procedure, are presented in 
Figs. (14.7.24b-d). [Note that these graphs are the same as those ofFigs. (14.7.15a, 
b and d), respectively, when P = 11. 

To further illustrate the application of the principle, we draw directly the influence 
line for the shear Y existing immediately to the right of point C (which we denote 
as V z )  of the same beam, as shown in Fig. (14.7.23a). Here we require that V: 
be the only internal resultant that does virtual work. We therefore choose a virtual 
deformation containing a virtual discontinuity 6v at x = 2L+ while, at the same 
time, the virtual displacement of the structure must be such that no discontinuity 
appears in the slope at point C (since we wish Mc to do no virtual work). The 
resulting mechanism is as shown in Fig. (14.7.25a). Upon setting 6v = 1,  we obtain 
the influence line for GV(2L+,  <) of Fig. (14.7.25b), where we show all critical 
ordinates. 

In the following example, we obtain the influence line for a reaction and demon- 
strate a particularly useful application to structural mechanics. 

t We recall that the pnnciple of virtual work, as developed, is valid only for small rotations. Here, we 
merely assign a value 60 = 1.  

1 Note that this Green’s function was found in Chapter 9, using the equations of equilibnum for thls 
structure [see Eq. (9.11.24)]. 

4 It ts worthwhile to also point out that the influence lines for reactlons, moments and shear forces existing 
in stutical& determinate structures always consist of straight lines. For statically indeterminate structures, 
this IS not the case. 
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Example 14.14 
(a) Draw the influence line for the upward vertical reaction R at  point H 

(b) A piece of machinery, represented by a uniform load w(N/m) of length 
(XO = 7 L )  of the structure shown in Fig. (14.7.26a). 

2 L  is to  be placed on this structure. 
(i) Determine R if the load is placed between C and E. 
(ii) Where must the load be placed for the reaction IR( to have a minimum 

value? What will this value be? 
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Figure 14.7.26 

(iii) Where mustthe load be placed forthe reaction IR( to have a maximum 
value? What will this value be? 

Solution: (a) We give the structure a virtual displacement Sv = 1 at H and obtain 
the mechanism, and hence the influence line for R as shown in Fig. (14.7.26b). [Note 
that since hinges exist at points B, D and G, i.e., MB = MD = MG = 0 (as opposed 
to the previous example), slope discontinuities at these points are permissible since 
no virtual work is done by the zero internal moments.] 

(b) (i) Using Eq. (14.7.42c), with q ( { )  = w, R is given by 

E 

R = w / G R ( ~ L ,  ()d{. 

Noting that the above integral represents the area under GR between points C and E, 
we find 

(14.7.45a) 
C 

= -0.5wL (down), (14.7.4510) 

(ii) To determine the placement of the uniform load (acting over a span 2L) required 
to yield a minimum value of IRI, we first note that the reaction is given by the integral 
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expression 
h 

(14.7.46) 

where the upper and lower limits must be such that b - a = 2L. We now observe that 
the total area under the influence line for GR between points B and D (or between D 
and F) cancel out algebraically; hence we conclude that if the load is placed either 
between B and D (or between D and F), I R I will have a minimum value, R = 0 [see 
Figs. (14.7.26~ and d)]. 

(iii) To determine the placement of the uniform load (acting over a span 2L) required 
to yield amaximum value of I R 1’ we again note that the reaction is given by the integral 
expression of Eq. (14.7.46). By inspection, we observe that the greatest area under 
the influence line (over a span 215) lies between F and H and that this area has a value 
1.75L. Therefore, R = 1.75wL is the greatest possible reaction for the loading and 
will occur if the load is placed between F and H, as shown in Fig. (14.7.26e). 0 

We point out that for q ( ( )  not constant, the required quantities R(xo), M(x0) and 
V(x0) at any point xo are found from Eq. (14.7.42). The analytic expressions for 
the Green’s fbnctions can then be readily obtained from the analytic equations of 
the influence lines. 

(ii) Influence lines for statically indeterminate linearly elastic 
structures: the Muller-Bresiau principle 
The principle of virtual work can also be applied to obtain influence lines for 
reactions, shear forces and moments of statically indeterminate structures. However, 
application of the principle is not as direct as for the case of deteminate structures. 
We develop the method by means of the following example. 

Consider a beam AB fixed at point A, which is simply supported at B, as shown in 
Fig. (14.7.27a). We wish to obtain the Green’s function GR(L, {) and more specifi- 
cally, the influence line for the reaction R at B due to a unit downward force P = 1 
acting at x = ( . Hence we remove the constraint against the y-displacement of point 
B and give the released beam (here, a cantilever beam) a virtual displacement such 
that R and P do external virtual work; specifically, we choose virtual displacements 

Figure 14.7.27 



594 Basic energy theorems, principles of virtual work and their applications 

that correspond (and, in fact, are identical) to the elastic curve of the released beam 
due to a unit upward force, R = 1, at the free end [Fig. (14.7.27b)], namely G&, L).  
Thus, the virtual displacement Sv at any point < is $ U ( < )  = Go(<, L) .  The external 
virtual work is therefore 

awe,, = R Gu(L, L )  - P Gu(<, L ) ,  (14.7.47) 
where, from Eq. (9.7.15~) (upon noting that here we have assumed displacements 
to be upward, i.e. in the negative y-direction), 

in particular, 
L3 

3EI‘  
G,(L, L )  = -- 

(14.7.48a) 

(14.7.48b) 

Considering the linear elastic beam to be subjected to two forces P and R ,  from 
Castigliano’s second theorem, the displacement at point B is given by 

(1 4.7.49). 

Since AB = 0 is the required compatibility condition for the given beam of 
Fig. (14.7.27a), = 0 and therefore 

(14.7.50) 

Now, for an elastic body, 6 W,,, = 6U, where 6U is the variation of strain energy. 
(See remark 7 of Subsection c(ii) of this section, p. 567). It follows that 6 W,, = 0.t 
Applying the principle of virtual work, we then have 6 We,, = 0. 

Upon setting Eq. (14.7.47) equal to zero, from the basic definition of the Green’s 
function for the reaction R ,  GR(L ~ <) = R ( P = I ,  we obtain for P = 1$ 

au 
6U = -6R 0. 

dR 

(14.7.5 1) 

t We note that 6U appearing in Eq. (14.7.50) represents the change in strain energy due to a variation 
of a force while SW,, is the internal virtual work due to a vanation of displacements (i.e., virtual dis- 
placements). However, from Sechon 14.6 [see Eq. (14.6.9b)], we recall that for a linear elasDc body, 

dU(A) - dU(R)  d R  -_-. -  
dA dR d A ’  

where A denotes the displacement. Therefore, if = 0 and hence 
6U = (g)  . 8A = 0. This last expression represents the change in strain energy due to a variation 
of displacement (i.e., due to a virtual displacement). Thus. since SU = 0, Eq. (14.7.50) leads, for this 
linear case, to 8 W,,, = 0. 
An alternative derivation for the Green’s function GR(L.  C) is as follows: For the given beam of Fig. 
(14.7.27a), we have, using the principle of superposition, 

(a) 

= 0, it follows that 

AB = PG,(L. C) - RG,(L, L ) .  
But, from the condition of geometric compatibility, AB = 0. Hence 

However, hy Maxwell’s reciprocal theorem, 

where G,,({. L )  is the upward deflection at any point < of the beam due to an upwardunit force acting at 
pomtB. SuhstltutingEq. (c)inEq. (b)andusingthedefinitionoftheCreen’sfunction G&L. C) = R/P=I ,  
we recover Eq. (14.7.51). 

Gv(L. C) = Gv(5, L ) ,  (c )  
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or, using Eqs. (14.7.48), we have explicitly 

(14.7.52) 

A plot of GR(L ,  {) is shown in Fig. (14.7.28). We observe from the figure as well 
as from Eq. (14.7.52a) that GR(L ,  L )  = 1; i.e., the value of G R  at the point of 
application of R ,  { = L ,  is equal to unity. 

Figure 14.7.28 

In the above development, G,(L, {)  = G&, L )  were known functions as 
they were originally found in Chapter 9; consequently, the explicit expression for 
G R ( L ,  {), Eq. (14.7.52), was readily determined. Let us instead assume momentar- 
ily that G,({, L )  and G,,(L, L )  are unknown. We now show that application of the 
principle of virtual work nevertheless provides us with an immediate quaEitutive 
description of the shape of the desired function G R ( L ,  {). Noting that G,(L, L )  is 
a constant, it follows from Eq. (14.7.51) that GR(L ,  {) and Gu({ ,  L )  have the same 
functional relation in <. Hence, the influence line for G R ( L ,  {) must have the same 
shape as the structure deformed by application of a force at B. This provides us with 
a means to estimate qualitative& the shape of the influence line since, most often, 
the deformed shape of a structure to a unit concentrated force is intuitively known. 
[For example, for the problem at hand, it required but little experience to assume 
that the structure when subjected to a force at B deforms as in Fig. (14.7.27b).] 
Thus, for the case considered here, we observe that the influence line for GR(L ,  {) 
[Fig. (14.7.28)] has indeed the same scaled shape as the deflected beam shown in 
Fig. (14.7.27b). 

As a further example, assume we wish to determine qualitatively the influence 
line represented by GM(O, {), for the moment at A (x = 0) of the given beam, 
[Fig. (14.7.27)], due to a downwardunit load acting at any point, x = {. We therefore 
release the constraint against rotation at A and choose for virtual displacements 671, 
the elastic curve due to an applied moment MA = 1 [Fig. (14.7.29)l;t Le., at all 
points {, we let & U ( { )  = G,({, 0 )  represent the displacement due to a unit applied 
moment at A. Furthermore, letting 66 = Go({. 0) represent the (virtual) slope at < 
due to MA = 1 such that at A 86, = Ge(O, 0), the external virtual work is 

awe,, = MAGo(O, 0) + PG&, 0). ( 14.7.53) 

Figure 14.7.29 

From geometric compatibility, we require that OA = 0 for the unreleased beam and 
hence by Castigliano’s second theorem, we have E = 0. As in the previous case 

t Note that by releasing the constraint against rotation at A, the fixed-end condition becomes a simple 
support, i.e.. the ‘released structure’ is a simply supported beam. 



596 Basic energy theorems, principles of virtual work and their applications 

for G R ( L ,  0, this leads to SU = 6 W,nt = 0. Then, by the principle of virtual work, 
6 We,, = 0 and we obtain directly, for the case P = l , t  

( 14.7.54) 

Since here Ga(O,O) is a constant, it is clear that the shape of the resulting influence 
line is again the same as that given by G&, 0), as shown in Fig. (14.7.29). In 
other words, we may immediately sketch the shape of the influence line for G M ~  as 
the deformed structure due to the applied moment MA. However, for this problem, 
we are again able not only to sketch the influence line but also to evaluate it at all 
points, 5 ,  since G&, 0) and Ge(O.0) were determined effectively from the solution 
of Example 9.4 [see Eqs. (9.4.13~) and (9.4.14)] : 

1 
6EIL 

L 
3EI .  

G,({, 0) =F ----[C3 - 3LC2 + 2L2{] (14.7.55a) 

(14.7.55b) Ge(O.0) T= - 
Hence, from Eq. (14.7.54), 

Note that since GL({, 0) E GO({, 0), from Eq. (14.7.54) [or more directly from 
Eq. (14.7.56a)], we find GL(0,O) = -1; i.e., the absolute value of the slope, 
IdGM(0, {)/d< 1, of GM at the point of application of MA, < = 0, is equal to unity. 
(Note that both the virtual rotation at A and the applied moment MA are clock-wise.) 
Moreover, from Eq. (14.7.56a), we find 

(1 4.7.56b) &L 
IGM(O? C)lmm ~ 9 .  

A plot of G M ~  GM(O, C )  is shown in Fig. (14.7.30). Note that GM(O, C) has 
precisely of the same shape as that appearing in Fig. (9.4.6~) for the deformed 
beam of Example 9.4 when subjected to an end moment at A. 

Figure 14.7.30 

From the above cases, we may summarize the practical results as follows: 

Alternatively, as in the case for GR(L,  0, by superposition, 

where Ge(0, < )represents the slope at A due to aunit force acting at 5.  However, by Maxwell’s reciprocal 
theorem, 

6A = MA Ge(O.0) C P Ge(O,<), (8) 

Gu(C. 0) = C). (b) 

(c) 
Therefore 

0A = MA GO(O, 0) C P GuG, 0). 
Since 6.4 = 0 for the given beam, we obtain, upon semng P = 1, G M ~  as given by Eq. (14.7.54). 
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The influence line for a specific reactive force quantity (reaction, shear force or 
moment) of an elastic indeterminate structure is obtained by first violating the 
associated geometric constraint. The structure is then given virtual displacements 
(corresponding to the elastic curve ofthe ‘released structure’) such that the virtual 
displacement associated with the desired force quantity is unity. The resulting 
shape of the influence line then corresponds identically to the scaled shape of the 
deformed released structure due to the reactive force quantity.t 

The above is often referred to as the Muller-Breslau principle for statically inde- 
terminate structures. 

As illustrated in the previous example, we remark that violation of a constraint 
in a statically indeterminate structure does not lead to a ‘mechanism’ as in the 
case of statically determinate structures. Thus, influence lines for reactions, shears 
forces and moments of a statically indeterminate structures are not straight lines 
but instead are always curves. 

Finally, it is worthwhile to mention that the method, as developed above, can be 
used to obtain the shape of influence functions for statically indeterminate structures 
having higher degrees of indeterminacy, i.e., for structures having more than one 
redundant, namely more than one ‘extra reaction’. 

We illustrate the method fmher by means of the following examples. 

Example 14.15: Sketch the shape of the influence line for the Green‘s func- 
tion of the structure shown in Fig. (14.7.31a) for RC and ME due to a unit 
load P = 1 acting a t  any point {. 

Figure 14.731 

Considering moments as ‘generulisedforces’, for influence lines for a given moment, the terms ‘force’ 
and ‘displacement’ must be replaced by ‘moment’ and ‘slope’, respectively. 
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Solution: We follow the procedure given above: for G R ~ ,  upon releasing the con- 
straint against translation at C ,  we apply a unit virtual displacement at A; for G M ~  , we 
release the continuous slope constraint at B (which evidently results in a ‘kink’) and 
apply unit virtual rotations at this point. The resulting influence lines represented by 
the deformation of the released structure due to applied forces Rc and MB are shown 
in Figs. (14.7.3 lb  and c), respectively. 

Note that although G R ~ ( <  = a + b)  = 1 and the slopes of GMB at B, Qi = a / 3 E  I ,  
6: = b/3EI  are known [see Eq. (14.7.55b)], the values of the influence lines at all 
points, {, have not been determined; i.e. only the general shapes are known. To 
obtain values of G R ~ ( { )  and G M ~ ( { ) ,  an analysis of the statically indeterminate 
beam is required. 

Example 14.16: Sketch the shape of the influence lines for RA and Mc of 
the statically indeterminate beam of Fig. (14.7.32a). Note that this beam is 
statically indeterminate to  the second degree. 

Figure 14.7.32 

Solution: Following the above procedure, the shape of the influence lines, shown in 
Figs. (14.7.32b and c) respectively, are immediately obtained. 

Example 14.17: Sketch the shape of the influence lines for RA, MG RG ME, 
V;, V #  and RE forthestatically indeterminate structure shown in Fig. (14.7.33). 
Note that this is the same structure as that of Fig. (14.7.23a), with the excep- 
t ion that no hinge exists at B; the present structure is therefore indeterminate 
to  degree one. 

Figure 14.7.33 
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Solution: We apply the procedure as developed above. (For V< and V ( ,  the shear 
immediately to the left and right of point C ,  we release the constraint against relative 
displacement in the vertical direction of the structure at { = 2L- and { = 2L+, 
respectively.) The resulting influence lines are shown in Figs. (14.7.34a-g).+ 

Figure 14.7.34 

+ Note that here the actual plots show values that were calculated using expressions of the form of Eqs. 
(14.7.5 1) and (14.7.54) together with an analysis of the beam as an indeterminate structure. Nevertheless, 
it should he quite evident that if only the shapes are required, they conform with the shape of the 
appropnately released deformed structure. 
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It is instructive to compare Fig. (14.7.34) with the influence lines ofFigs. (14.7.24) 
and (14.7.25) as found for the corresponding statically determinate structure. 

14.8 The principle of complementary virtual work 
(a) introduction 
In this section, we develop the principle of complementary virtual work, which is 
the counterpart of the previously derived principle of virtual work. As we shall see, 
although the basic idea is quite different, the derivation follows essentially the same 
operative steps. Application of the principle of complementary virtual work leads 
to a simple but effective method for determining displacements of specific points 
in a body. 

(b) Development and derivation of the principle 
(i) Some preliminaries 
Before proceeding with the derivation of the principle, we review some ideas and 
define some necessary terms, Let us therefore consider again a deformable body 
(not necessarily elastic) occupying a space V enclosed by a surface S that is in 
equilibrium. As we have seen, if external forces are acting on the body, these consist, 
in general, of (a) tractions T,, acting on the surface S of the body and (b) body forces 
B acting at points within the body V [Fig. (14.8.la)l.t As a result, since the body 
is deformable, a state of strain will exist throughout the body. However, here we 
shall consider the case where deformations may also be due to causes other than 
external forces, for example, temperature changes. For mathematical simplicity, we 
consider a two-dimensional plane case. 

Thus, irrespective of the cause of the deformation, we may assume that since 
the body is deformable, all points undergo displacements; we denote these, for 
the two-dimensional case under consideration, as u(x, y )  = ui + vj and assume 
that u(x, y )  and its partial derivatives are continuous throughout V .  Clearly, at 

Figure 14.8.35 

supports (i.e., at particular points or areas of the surface S, the displacements are 

As in Section 14.7, in referring to the tractions Tn acting on the surface S, we include not only the 
applied known tractions but also the resisting tractions; that is, we do not differentiate between applied 
and reactive tractions on S. In anthropomorphlc terms, ‘the body knows only that it IS acted upon by 
forces on its surface’; it does not distlnguish between applied and reactwe forces. These reactive forces 
are labelled with a subscnpt R in Fig. (14.8.1b). 
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subject to constraints, i.e. geometric boundary conditions. (For example, at point 
A of Fig. (14.8.la), the displacement components are U = v = 0.) Thus the real 
displacements are represented by a kinematically admissible displacement field, as 
defined previously under in Section 14.7b. We also mention here that the external 
force system, consisting of the applied as well as reactive forces (which are required 
to prevent violation of the constraints), is said to represent a statically admissible 
force system.? 

We limit our discussion here to displacements such that all strains and rota- 
tions are small. It is clear that corresponding to any displacement field u(x,  y ) ,  
a strain field (E,,, eYy, E,~) exists, which is related to the displacements through 
Eqs. (14.7.8). As with the real displacements, the corresponding strain field is kine- 
matically admissible throughout the body. We denote these strains symbolically by 
E = E ( X ,  y ) .  Moreover, due to the external force system, or whatever the cause of 
the displacements, real (actual) stresses (r,, , rYy , z,~) exist at each point. Since the 
body is assumed to be in equilibrium, the stress components (for a two-dimensional 
case) must satisfy the stress equations of equilibrium [Eqs. (14.7.3)]. However, 
while the actual strain field is of concern to us, we shall not be interested in these 
stresses, per se; in fact, they will be considered irrelevant in the development below 
since we shall never use them explicitly.$ 

(ii) Derivation of the principle 
Having established the above ideas, we proceed with the derivation as follows: Let 
us imagine that instead of actual external forces that may be acting on the body (i.e., 
the applied tractions, the reactive tractions T,  and the body forces B), we apply 
a set of imaginary equilibrium forces denoted by 6T,  and 6B and referred to as 
virtual external forces [Fig. (14.8.2)]. (Here, the symbol 6 is used to indicate that 
these are not actual forces and that they are simply forces which we ‘imagine’ to be 
acting on the body.) We emphasise here that the external virtual forces must satisfy 
equilibrium conditions; otherwise they are completely arbitrary. 

Now, due to the application of the virtual external force system, it is clear that 
stresses will be induced at all points in the body. We refer to these stresses by 
virtual stresses and denote them by 6rx,, 6 r Y ,  6rXY. These stresses, which we 
denote symbolically by ST(X ,  y ) ,  are then referred to as defining a virtual stress 
field in equilibrium. We note that since we have imposed no other conditions, aside 
from equilibrium conditions on the virtual external force system, the same is true of 
the resulting virtual stress field 6 7 .  Thus the stress field 6 7  is completely arbitrary 
and need satisfy only the equilibrium equations; namely 

(14.8.1 a) 

(1 4.8.1 b) 

The important feature of Eqs. (14.8.1) is that they represent, at all points in the body, 

t In our study of mechanics of deformed bodies as discussed previously throughout this book, all external 
force systems in equilibrium have, in fact, been statically admissible since they satis@ both the equilib- 
nun equations and the support conditions. Hence it has not been necessary to use the term ‘statically 
admissible’ explicitly. We do so here because we shall have need to discuss systems that are not statically 
admissible. 
Note that, while real stresses were considered in the development of the principle of virtual work, the 
real strain field was considered to be totally irrelevant (seep. 561). 
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Figure 14.8.1 

equations for any arbitrary equilibrium stress state St(x ,  y) ,  which is compatible 
with the 6 T,-SB external force system. 

Now let us multiply Eqs. (14.8.la) and (14.8.lb), respectively, by the actual 
displacements U and v, which occur in the body, and add the resulting expressions; 
we then obtain 

The analogy with Eq. (14.7.4) is immediately observed. However, there is a signif- 
icant difference, for U and v here are actual displacements while in Eq. (14.7.4) the 
displacements Su and Sv were arbitrary. It is emphasised again that when referring 
to the 'actual displacements', they may be due to any cause; for example, an external 
force system T,-B or temperature changes, etc. In this sense, whatever the cause 
of the actual displacements, Eq. (14.8.2) remains valid provided the virtual stress 
field 87 is in equilibrium. 

Although the expressions (14.7.4) and (14.8.2) are formally similar, they clearly 
are not identical; the difference is that the 6 now appears with the stress terms (i.e., the 
Sr stress components are associated with the S Tn-SB external force system), while 
in Eq. (14.7.4), the S was associated with an arbitrary variation of the displacements. 

Now, having assumed that U and v satisfy the conditions that all partial derivatives 
are small such that the strains are expressed by means of Eqs. (14.74, then, upon 
performing the same subsequent operations as in Eq. (14.7.6), Eqs. (14.7.7) and 
Eqs. (14.7.10)-(14.7.12) (namely expressing strains in terms of displacements and 
using the divergence theorem), we are lead to 

(14.8.3a) 

Finally, we note that in obtaining the right-hand side of Eq. (14.8.3a), the divergence 
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theorem is usedunder the assumption that all variations ofthe traction are continuous 
on S. If discontinuous traction variations, such as n concentrated forces 6 P, or rn 
couples 6 c k  exist on the surface, then these terms must be added and we rewrite 
Eq. (14.8.3a) as 

where U] and @k,  respectively, are the actual displacement and rotation at the points 
at which 6P, and ~ C I ,  act. 

Analogous with the definition of virtual work, the left-hand side of Eqs. (14.8.3 j, 
denoted by 6 WGt, is called the internal complementary virtual work: 

Similarly, the right-hand side of the equations represents external complementary 
virtual work, 6 JV& Thus we have arrived at the principle of complementary virtual 
work, namely 

sw;, = 6JVZt. (14.8.5) 

The principle of complementar?, virtual work may therefore be stated as follows: 

Let a body subjected to arbitrary virtual external forces produce an equilibrium 
state of virtual stress at all points. Then, the internal complementary virtual 
work of the stresses (acting through the real strains in the body) is equal to 
the complementary external virtual work of the arbitrary external forces (acting 
through the actual displacements). 

Writing the arbitrary stresses and real strains, symbolically, as the tensors 6r and 
E ,  we may rewrite Eq. (14.8.3a) as 

where, as indicated by the corresponding arrows, the (arbitrary) equilibrium stress 
state 67- at each point is due to the virtual external tractions and body forces and 
the actual strains E are compatible with the actual displacements. [Note that here 
we have, for convenience, again omitted the concentrated forces and couples in 
Eq. (14.8.6).] 

(iii) Comments on mechanical boundary conditions, 
static admissibility and inadmissibility 
In applying the principle of complementary virtual work, it is important to under- 
stand the meaning of static admissibility and inadmissibility of an external force 
system and the corresponding internal stress fields within a body. We therefore 
dwell upon this concept here. 
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As we have previously noted, an external force system acting upon a body con- 
sists, in general, of known applied forces (or tractions), as well as the reactive forces 
(or tractions), which are necessary to prevent violation of the support conditions (or 
using a more general terminology, the geometric boundary conditions). If a body is 
in equilibrium, the external force system must necessarily satisfy the equations of 
equilibrium. If the reactive components ofthe force system are such that they prevent 
violation of the geometric boundary conditions, then the force system is said to sat- 
isfy the required ‘mechanical boundary conditions’. Thus, an external force system 
that satisfies both the equilibrium conditions and the mechanical boundary condi- 
tions is said to be statically admissible. However, if there exists an external force 
system that is in equilibrium but whose forces do not prevent violation ofthe existing 
geometric boundary conditions, then we say that the force system does not satisfy 
the mechanical boundary conditions and therefore it is statically inadmissible. 

Now, corresponding to any external force system in equilibrium there exists an 
equilibrium stress field that satisfies the stress equations of equilibrium at all points 
within the body. (We assume here that it is always possible to obtain such a field.) 
If the external force system is statically admissible or inadmissible, then the same 
will be true of the stress field. 

In developing the principle of complementary virtual work, we have emphasised 
that both the virtual external forces system S T,-SB and the corresponding virtual 
stress field Sr within a body are completely arbitrary and need only satisfy the 
equations of equilibrium.’ Using the above terminology, we therefore observe that 
the principle of complementary virtual work is valid for both statically admissible 
as well as statically inadmissible systems. 

It is instructive to illustrate the above ideas by means of the following example 
and counter-example: we consider a cantilever beam subjected to a given (not 
virtual) load P ,  as shown in Fig. (14.8.3a). For simplicity, we assume a rectangular 
cross-section, having a cross-section area A ,  as shown. 

Figure 14.8.2 

t Note that in deriving the pnnciple, we required only the equilibnum equations [Eqs. (14.8.1)]; no 
reference was made to mechanwal boundary conditions. Thus static admissibility was not a necessary 
assumption. 
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For equilibrium to exist, we require a reactive force Rc = P and a clock-wise 
moment, Mc = P L  at C [Fig. (14.8.3b)l. The force Rc and moment Mc are thus 
those reactions that are required to satisfy the geometric boundary conditions at 
C; namely h = 0, 8 = 0. If, for example, the beam is linearly elastic, using the 
expressions of Chapter 8, the actual stress field existing throughout the body will 
be such that at the boundary C [see Eqs. (8.6.8) and (8.8.6b), respectively], 

M y  PLY ” _. (1 - 5) (14.8.7a) zxy = - z,, = - = -- 
2 A  I I ’  

whose distributions over the cross-section are shown in Fig. (14.8.3~). 
Since the resultant of the (real) stress field satisfies the mechanical boundary 

conditions at C, it is said to be statically admissible. Thus, by definition, a real 
stress field is uZwuys statically admissible. 

Now, let us consider that we apply a virtual force 6 P at A. Clearly, the reactions 
S Rc and SM& as shown in Fig. (14.8.3d), satis@ equilibrium conditions. Moreover, 
due to this external virtual force system (SP, SRc, SM) the geometric boundary 
conditions at C (A =I: 0 , 8  = 0) are again satisfied. Thus, using the same reasoning 
as above, the virtual stress field due to this virtual external load system is also 
statically admissible . 

Having shown an example of a statically admissible virtual stress field, we now 
illustrate the case of a virtual stress field that is not statically admissible. 

To this end, let us again consider that a virtual force 6 P is acting on the body 
ABC, as shown in Fig. (14.8.3e), together with an upward force SRB = 26P at 
B, a downward force SRc = SP acting at C (and with 6Mc = 0). We recognize 
immediately that this virtual external force system (SP, SRB, SRc) is, in fact, in 
equilibrium. However, the external virtual force system is not statically admissible 
since it does not satisfy the mechanical boundary conditions of the given structure. 
Note that the equilibrium virtual stress field due to this system is such that at the 
cross-section C, the stresses Sz,, and 6zxy are 

Sz,, = 0 ,  Szxy = - = -- 36p (1 - 5). (14.8.7b) 
I b  2 A  

Therefore, their resultants over the cross-section at C are not those required to satisfy 
the geometric boundary conditions; for example, they do not prevent rotation at C. 
Thus we have here a virtual stress field that does not satisfy the mechanical boundary 
conditions and hence is not statically admissible. 

As we shall see later, virtual force systems that are not statically admissible will 
prove to be very useful in SimplifLing the application of the principle of comple- 
mentary virtual work to structural problems. 

(c) Comparison and analogues between the two principles 
The two principles, the principle of virtual work and the principle of complementary 
virtual work, may now be compared. In both principles, there exists a common 
requirement: the body must be in equilibrium under a set of externally applied 
forces. 
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For convenience we repeat here the two principles; namely the statement of the 
principle of virtual work: 

and the statement of the principle of complementary virtual work 

In the principle of virtual work, the stress field is the actual equilibrium state due to 
an actual external force system; hence this actual stress state must satisfy the me- 
chanical boundary conditions; i.e., the stress field is statically admissible. However, 
the virtual displacements are arbitrary; namely they must merely be geometrically 
possible (i.e. must be piece-wise continuous); they are arbitrary and need not nec- 
essarily satisfji the geometric constraints at the boundary. The principle of virtual 
work then states that the total internal work done by the stresses in ‘riding’ through 
these virtual strains is equal to the work done by the external forces in ‘riding’ 
through the corresponding virtual displacements if (and only if) the body is in 
equilibrium. 

In the principle of complementary virtual work, we require any arbitrary stress 
state that is in equilibrium with arbitrary external forces. In analogy to the prin- 
ciple of virtual work, we may give a physical interpretation to the principle of 
complementary virtual work: if a body is in a state of equilibrium, the total inter- 
nal complementary virtual work done by arbitrary equilibrium stresses in ‘riding’ 
through the actual strains is equal to the external complementary virtual work done 
by the arbitrary external forces in ‘riding’ through the actual displacements of the 
body. 

Finally, using the terminology defined above, we restate the two principles con- 
cisely, side by side, and thus observe that they are, in fact, exact counterparts. 

It should, of course, always be remembered that although we have repeatedly 
used the terms arbitrary, the real or varied stresses must always be associated with 
the real or varied external force system respectively, and the real or virtual strains 
must be compatible with the real or virtual displacements of the body, respectively. 
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(d) Expressions for internal complementary virtual work in terms of 
internal stress resultants: generalised forces and displacements 
(i) General expressions 
In deriving the principle of complementary virtual work for deformable bodies, the 
internal complementary virtual work was defined in terms of virtual stresses and 
(real) strains as the integral [Eq. (14.8.4)] 

We have previously observed that one often encounters structural components. 
such as rods, beams, bars, etc., which undergo specific types of deformations. 
(These components are often referred to as one-dimensional elements since the 
properties existing at their cross-sections are defined by means of a single coor- 
dinate, say x.) Although one can, in principle, always use Eq. (14.8.4), it is more 
convenient to express the internal complementary virtual work for these structural 
elements in terms of internal stress resultants and deformation patterns (which de- 
scribe globally the deformation of the cross-sections) rather than in terms of stresses 
and strains. In this section, we derive such expressions by means of a physical 
approach. 

Without loss of generality, we consider a typical structural element of a coplanar 
structure, whose longitudinal axis lies along the centroidal x-axis and which is 
subjected to axial and lateral loads as shown in Fig. (14.8.4). 

Figure 14.8.3 

To establish the expression for complementary internal virtual work in terms of 
virtual stress resultants, let us first consider the various typical types of deformation 
that occur in one-dimensional structural elements due to such external loads. These 
include the following: 

n Simple axial extension where all points in the cross-section undergo the same 
displacement in the x-direction, i.e. E,, = E,,(x) [Fig. (14.8.5a)I. 
Bending of a member under the assumption that plane sections remain plane. The 
strain at any point in the cross-section is then given by E , ~ ( x ,  y )  = ylc(x). where 
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Figure 14.8.4 

K = 1/R is the curvature of the deformed longitudinal axis [Fig. (14.8.5b)l. Note 
K EE K,, i.e. the curvature is in the x-y plane.+ 
Shear deformation of a beam. Assuming that a uniform shear deformation yxy 
exists, the member will undergo distortions as shown in Fig. (14.8.5~). We note 
that yxy represents the change of angle of a fibre lying on the x-axis and is 
given by 2exy, where eXy is the shear strain component [see Eq. (3.7.19) of 
Chapter 31. 

Now, for a coplanar system, the real internal force resultants at any cross-section 
are: an axial force F ,  a moment and a shear force, given respectively by Eqs. (2.5.4a), 
(8.6.5a) and (2.5.4b):t 

A 

M = // txx y dA, 

( 1 4.8.8a) 

(14.8.8b) 
A 

V E= // txv dA. ( 1 4.8.8~) 
A 

t Recall that this relation is purely geometnc and does not depend on the material of the beam. Since the 

i The moment M is about the z-axis. i.e. M 
x-axis lies on the neutral surface, R dB = dx or K = 1/R = d$/dx. 

Mz,  and the shear force V is in the y-direction, V Y y .  
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Similarly, if an external virtual force system is applied, stresses Sz,, and Sz,, will 
exist throughout the element; the corresponding virtual stress resultants are then 

SF = // Sz,, dA, ( 1 4.8.8d) 
A 

A 

6V = // St,, dA, 

(14.8.8e) 

(1 4.8.89 
A 

respectively. 

conforming to the above deformation patterns. 

(i) Axial Extension: E,, = E,,(x). From the basic definition 

We now consider the complementary internal virtual work due to displacements 

Using Eq. (14.8.8d), we obtain 

sw;, = 6F€,,(X)dx. (14.8.9a) 1 0 

(ii) Bending Deformation: E,,(x, y )  = Y K ( X ) .  Then 

and by Eq. (14.8.8e), 

6 wit = K ( X )  6M(X) dx. i 0 

(iii) Shear Deformation: Fxy(x, y )  = ;Txy.t Then 

(14.8.9b) 

t The shear strain E..,,, which vanes throughout the cross-section of the beam, necessarily vanishes at 
the traction-free lateral surfaces. Hence, F,..(x, y )  = iyx,, is used here to express this ‘average’ shear 
stram. For a linear elastic heam, a ‘weighted average’ of the shear stram i s  expressed as yxy = ar V / A G ,  
where a is a ‘shape factor’, which depends on the shape of the cross-section (recall footnote on p. 265 
of Chapter 8). For example, for a rectangular cross-section a = 1.2, while for a structural I-section, 
ar = A / A w  N_ I ,  where A ,  is the area of the ‘web’. 
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and by Eq. (14.8.80, 

( 14.8.9~) 
o 

We observe that each of the expressions for the complementary internal virtual work 
given by Eqs. (14.8.9) is the product of a (virtual) internal stress resultant and a 
corresponding global deformation that represents the deformation that of the entire 
cross-section. It is often customary to refer to the internal (virtual) stress resultants 
as (virtual) generalised forces and to the deformation as generalised displacements. 

There exists another type of deformation that is also of importance in structural 
mechanics, namely that of twisting due to a torsional moment (torque) T M,. 
Analogously to the above development, we may consider the torque T ( x )  as a 
‘generalised force’ acting at a cross-section and 0, the unit angle of twist, as the 
generalised displacement. Then, as above, the internal virtual work becomes 

6 Wl.,, = 6 T ( x )  0 dx. 1 ( 14.8.9d) 
0 

The total internal complementary virtual work is then given by+ 

6Wi t= :  [ ~ F . E , ,  + ~ M . K + ~ V . ~ , . , , + S T . O ] ~ ~ .  (14.8.10) i o 

It is again emphasised that the ‘generalised displacements’ (E,, ,  K .  ‘j7;.,,, 0) here 
are real quantities and are in no way related to the virtual internal stress resul- 
tants 6F.  SM, 6 V. 6 T appearing above. Equation (14.8. lO), for aone-dimensional 
structural element, is the analogue ofthe more general equation [Eq. (14.8.4)]. Both 
expressions are valid for any material. 

In analogy to the physical interpretation given for the internal virtual work 6 E‘,,, 
in Section 14.7b, we may interpret 6 Wl.,, as the product of virtual generalised internal 
forces ‘riding’ through the corresponding generalised displacements. 

Example 14.18 Consider a prismatic rod of uniform cross-sectional area A 
and length L [Fig. (14.8.6a)j and made of some material for which only the 
coefficient of thermal expansion, a, is known. The rod is heated in such a way 
that the increase in temperature AT a t  any point x is given by [Fig. (14.8.6b)l 

AT(x)  = (1 + C X / L )  To, (1 4.8.1 1 a) 

where TO and c are constants. Determine the elongation Ax of the bar. 

Solution: Let E,, denote the strain due to the increase in temperature. Then 

E,&) = a A T ( x )  = a(l + C X / L )  To. (14.8.1 lb) 

To determine the elongation of the bar, we apply a virtual axial force 6F acting 
through the centroid, as shown in Fig. (14.8.7). Then, as we have seen in Chapter 6,  

t In a three-dimensional structure. where, in addition, a shear force Y, and a moment A l v  can exist, 
additional terms, 6 V,jT,, and SM,,K~ respectlvely, will appear in the integral. 
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the resulting stresses 6tx,  will be in equilibrium with the external virtual force 6 F if 
6t,, = 6 F / A .  (Although a trivial observation, we note that we have thus established 
a virtual stress state that i s  in equilibrium with the applied virtual force 6F.) 

Furthermore, the internal complementary virtual work is, from Eq. (14.8.9a), 

6 w:, = 6F = a6F To (1 + dx i 0 0 

or 

6W;,=a6F T"*(l  fc/2)L. (14.8.12a) 

Moreover, the external complementary virtual work is 

= &FAx. (14.8.12b) 

Now, since the given virtual force and stress systems are in equilibrium, we apply the 
principle of complementary virtual work, 

6 W,T, = 8 YEt, 
and obtain 

A, = To(1 + c/2)L. (14.8.13) 

Note that in this problem, no elastic constant appears. The solution is therefore valid 
0 

The principle of complementary virtual work also proves to be useful in deriving 
general expressions in mechanics. For example, in Chapter 12, we derived Bredt's 
formula [see Eq. (12.10.14)l: 

for a rod of any material having a coefficient of thermal expansion, a. 

c 
for the unit angle of twist, 0, of an elastic member having a thin-wall closed cross- 
section, as shown in Fig. (14.8.8). Although it was emphasised that this formula is 
valid irrespective ofthe cause of txs existing in the section, this statement was not 
justified at that stage. By rederiving the formula via the principle of Complementary 
virtual work, it will become clear why this statement is true. 

Figure 14.8.7 

For the case of the thin-wall member under consideration, the only shear stress 
and shear strain components are txxs and eAS; hence, the internal complementary 
virtual work is given by [see Eq. (14.8.4)] 
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Noting that dC2 = [t(st) . ds]L,  we may therefore write 

6 WZnt = 2L 6 t , , E , , t ( S ) d s .  (14.8.14a) 4 c 

G L4 C 

and, using Hooke’s law, E,, = t,,/2G, we have 

6 w;*, = - 6z,,txst(s)ds. (14.8.14b) 

Let us now apply a virtual torsional moment 6 T to the member. The external com- 
plementary virtual work is then 6 W& = 6 T . 0 L . Furthermore, from Eq. ( 12.10.5), 
the virtual stresses, in equilibrium with 6 T ,  are 

6T 
6t -- 

xs - 2At(s) ’ 

Substituting in the above, 

(1 4.8.14~). 

(1 4.8.14d) 

Equating the external work to the internal work, we again obtain Bredt’s formula, 
namely 

We note that in this rederivation of Bredt’s formula, the cause of the existing txs 

(or E,,)  has not been specified. Bredt’s formula is therefore seen to be valid for any 
t,, existing in a thin-wall closed section irrespective of its cause. 

(ii) Expressions for elastic elements 
For the case of linear elastic members, the (real) generalised displacements 
(E, , ,  K ,  yXy,  0) can, according to previously derived expressions, be expressed in 
terms of (real) internal stress resultants F ,  M ,  V and T existing at any section [see 
Eqs. (6.2.10), (8.6.6b), (13.4.10) and footnote, p. 6091: 

F 
AE’  

E,, = - 

M 
E I  

K =: -, 

(1 4.8.15a) 

(14.8.1513) 

( 1 4.8.1 5c) 

@E-  T (14.8.15d) 
CG’ 

where A E ,  E I ,  AG,  CG are the axial, flexural, shear and torsional rigidities, re- 
spectively. The coefficient a is called the shape factor and depends on the geometry 
of the given cross-section of the member. 
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Thus, for a linear elastic member, upon substituting in the general expression for 
the internal complementary virtual work, Eq. (14.8.10), we obtain 

F - 6 F  M * 6 M  ‘ * + ”1 dx. (14.8.16) 
CG + a -  +- AG E I  

0 

(e) Internal complementary virtual work in linear elastic rods 
and beams: explicit expressions (some generalisations) 
The expression for the internal complementary virtual work for linear elastic one- 
dimensional elements, given by Eq. (14.8.16), is generally applicable to an element 
subjected to (real) external forces from which the (real) internal stress resultants 
(F ,  V ,  M and T )  can be obtained. However, it is desirable to obtain an expres- 
sion that includes also deformation due to causes other than applied loads. In the 
previous development, using a physical approach for the derivation, it is not im- 
mediately evident that such other causes have been included. We therefore rederive 
the expression for internal complementary virtual work due to axial and flexural 
deformation directly from its basic definition [Eq. (14.8.4)], using a more direct 
and formal approach. As we shall see, the final expression will include the relevant 
terms appearing in Eq. (14.8.16). 

We consider an elastic bar of cross-sectional area A ( x )  and length L ,  which is 
subjected to an axial load F passing through the centroid and lateral loads q(x) 
such that moments M(x) exist at any cross-section [Fig. (14.8.4)l.t We wish to cal- 
culate the internal complementary virtual work due to the axial and flexural effects. 
(Therefore we neglect here any deformation due to shear strains E,.”.) The strain E,, 

due to F and to the flexure of the element is given by [Eqs. (6.2.10) and (8.6.9c)l 

F Wx)y 
E,, = - + - 

EA(x) E q x ) ’  
where the x-axis denotes the centroidal longitudinal axis. 

to some other cause (e.g., temperature increases). Then 
Let us assume, too, that the element undergoes additional real strains E,,o(x) due 

( 14.8.17) 

We note that the strains E,, , being due to real forces acting on the actual element, 
are kinematically admissible. 

In general, we might wish to calculate (a) the displacement A,, which the bar 
undergoes in the x-direction or (b) the lateral displacement Ay of the bar at some 
particular point xp or perhaps (c) the slope 8 of the bar at some point x, in the 
deformed state. 

Let us, therefore, imagine that there exists an arbitrary system of virtual forces 
consisting of an axial load 6 F as well as some arbitrary lateral load 6 P at xp andor 
couples at xc, which cause moments 6M(x) in the beam [see Fig. (14.8.9)]. Then, 
it is clear that the virtual stresses, given by 

( 14.8.18) 

The moment IS assumed to be acting about a principal centroidal axis of the cross-section having a 
second moment of the area, I. 
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Figure 14.8.8 

are in an equilibrium state with the applied virtual forces and, according to 
Eq. (14.8.4), the internal complementary virtual work due to axial and bending 
effects then is 

Substituting Eqs. (14.8.17) and (14.8.18) in Eq. (14.8.19a), 

or 

(1 4.8.15) 

But 

Hence 

We note that the last two terms appearing in the above integral, which are due to 
axial and flexural deformation respectively, coincide with the corresponding terms 
of Eq. (14.8.16). 
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(f) Application of the principle of complementary virtual work 
to evaluate displacements of linear elastic bodies: 
the method of ’virtual forces’ 
We now apply the principle of complementary virtual work to elastic bars, and 
will show its application in the determination of displacements by means of several 
illustrative examples. Since, as we have seen, the principle is applicable for any 
arbitraiy stress state, not necessarily statically admissible, we shall choose to apply, 
at our convenience, appropriate arbitrary external forces that are in equilibrium with 
a stress state. Because these forces do not, in fact, actually act on the body (i.e., 
since the forces are only imagined to exist), the method is sometimes called the 
virtual force method. 

Example 14.19 Determine the elongation of the rod A, of Example 14.15 
due t o  an applied axial force F [Fig. (14.8.10a)l if the material is linearly 
elastic with modulus of elasticity E. 

Figure 14.8.9 

Solution: Due to F ,  the strain is r,, = F / A E  at all points of the rod. We imagine 
again that a separate axial force 6F acts at the ends. as shown in Fig. (14.8.10b). 
The resulting virtual equilibrium stresses are 6t,, = SF/A.  Then 6 W:xt = 6 FA,  
and using Eq. (14.8.21), 

Applying the principle of virtual work, 6 W& = 6 W&, we have 

GFSFL 
6FA,  ~ 

A E  
or 

F L  
- A E  

A --. 

(14.8.22a) 

(14.8.22b) 

U 

Example 14.20 A linear elastic prismatic beam AC of flexural rigidity E I 
and length L i s  subjected to  a uniformly distributed load w, as shown in 
Fig. (14.8.1 la). Determine the vertical displacement AA a t  the free end A due 
to  flexure. 

Solution: Let the moment due to w be given by M(x) .  Then 

M(x) = -wx2/2, 0 5 x 5 L .  (14.8.23a) 

The moment diagram M ( x )  is shown in Fig. (14.8.1 lb). Now since we wish to cal- 
culate the displacement at point A, let us apply a virtual force 6 P at A, as shown in 
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Figure 14.8.10 

Fig. (14.8.1 lc). The resulting moments in the beam are then [Fig. (14.8.1 Id)] 

6 M ( x )  = - 6 P x ,  0 ( _ x  5 L .  (14.8.23b) 

From Eq. (14.8.16) or (14.8.21), the internal complementary virtual work is 

0 

and the external complementary virtual work is 

6 Wlxt = SPAA, 

so that, applying the principle of complementary virtual work, 

(1 4.8.24a) 
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Substituting the expressions for M(x)  and 6M(x),  we have 

(14.8.24b) 

or 
wL4 

AA = - 
8 E I '  

(14.8.25) 

which coincides with Eq. (9.7.22b). 
Note that in the above the force 6P cancels out. One may therefore apply a unit 

load, i.e. 6P = 1, and obtain the same result. It is for this reason that the method is 
also often referred to as the unit dummy load method. 

Example 14.21: Determine the slope ee a t  point B(x = L / 2 )  of the beam of 
Example 14.20 due to  the given applied load w. 

Figure 14.8.11 

Solution: Since we are interested in calculating the slope at B, we apply a (virtual) 
couple 6C at B, as shown in Fig. (14.8.12a). The resulting external complementary 
virtual work is then 

s W& = 6C QB. ( 1 4.8.26) 

The moments produced by 6C are [Fig. (14.8.12b)l 

6M(x)  = 0, 0 5 x 5 L/2 

6M(x)  = sc, L/2 5 x 5 L .  
(14.8.27) 

Hence the internal complementary virtual work is, by Eq. (14.8.16) or (14.8.21), 

76CwL3 
(-wx2/2)dx = -- (14.8.28a) 

EI E I  48EI . 

Equating 6 W& = 6 WGt, we obtain 

7wL3 e, = -- 
48EI * (14.8.28b) 

We note here that the negative sign appearing in Eq. (S4.8.28b) indicates that the slope 
is opposite to the assumed sense of 6C.  

In the following example, we determine the deflection of an indeterminate beam. 
The problem will be solved in two ways to expose the advantage of introducing 
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a statically inadmissible system when applying the principle of complementary 
virtual work to such structures. 

Example 14.22: A linear elastic prismatic beam AB, of flexural rigidity E I and 
length L, is fixed at both ends. A uniformly distributed load wis applied as 
shown in Fig. (14.8.13a). Determine the lateral displacement of point C due 
to flexural deformation. 

Figure 14.8.12 

First Solution: We first observe that since the given beam IS statically indetermi- 
nate, a static analysis must first be performed to find the moment (e.g., using the 
force method as discussed in Chapter 9). For the example at hand, the end reactions 
RA and RB and end moments M A  and MR are given in Appendix F and are shown in 
Fig. (14.8.13b).t Knowing these, we then have 

wL2 WLX wx? M ( x )  =: -- + - - - 
12 2 2 ‘  

(14.8.29) 

whose moment diagram is shown in Fig. (14.8.13~). 
Now, to determine the displacement of point C, we apply a virtual load 6 P as shown 

in Fig. (14.8.14.a). For this case, the end moments and reactions are again given in 
Appendix F and are shown in Fig. (14.8.14bj.t (Note that, here, it is required to know 
the reactions and moments for two loading cases). 

The resulting moment 6 M ( x )  is 
6 P L  6P 

8 2 
6M =: -- + -x, 0 5 x 5 L / 2  

SPL 6P 
8 2 

SM = -- + -(L - x), L/2 5 x 5 L .  

(14.8.30a) 

(14.8.30b) 

End reactions and moments for a large number of ‘standard’ indeterminate beams can be found in tables 
and texts of the engineenng literature. For example, see R.J. Roark, Formulas for Stress andStrnin. 
In passing, we note that for this linear analysis we neglect the homontal reactions at A and B since these 
are second-order effects (see Section 5 of Chapter 9) 
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Figure 14.8.13 

The internal complementary virtual work is then [Eq. (14.8.16) or Eq. (14.8.21)], 

E I  
0 

Substituting Eqs. (14.8.29) and (14.8.30) and performing the simple integrations. we 
obtain 

6PwL4 
6w;t =I - 

384EI ’ 
(14.8.31) 

Now, since the external complementary virtual work is 6 W& = SPA,, applying the 
principle yields 

wL4 
A -- 

- 384EI’ 
(14.8.32) 

It is emphasised here that the moments resulting from the virtual loading system 
of Fig. (14.8.14a) produce a (virtual) stress field that is staticaltv admissible; that 
is, the reactions 6RA = = 6 P/2, 6 i V ~  = 6Ms = -6PL/8 are those required to 
maintain zero displacement and rotation of the given elastic beam at A and B. 

We recall, however, that the principle of complementary virtual work does not 
require that the virtual stress field be statically admissible; the stress field need only 
be one that is in equilibrium with the external virtual loading system. We shall see 
that this leads to the much simplified alternative solution given below. 

Alternative Solution: Since the principle of complementary virtual work is valid 
for an?, equilibrium state imposed on the body, we shall choose the following as 
our external virtual force system: a virtual force 6 P acting at C, a reacting force at 
B and a reacting moment at B. In addition, we set the reacting force and moment 
at A equaE to zero [Fig. (14.8.15a)l. Note that this external virtual force system 
is then the same as one that acts on an equivalent ‘released’ structure shown in 
Fig. (14.8.15b).t The system will be in equilibrium provided the upward force 
6 RB = 6 P and 6Mg = -6 P L  12. Note that the moment throughout the beam, 

is then in equilibrium with the virtual external force system. We observe that the 
&force system acts on the released structure, which is statically determinate. Thus, in 

We observe from the figure that the constraints against displacement and rotation at point A of the given 
original structure have been ‘released’ 
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Figure 14.8.14 

this alternative solution, we require to know only one statically indeterminate solution, 
namely that due to the real applied loading. 

Since equilibrium is the only criterion that is required, we may apply this statically 
inadmissible virtual system in the principle of complementary virtual work. 

Substituting Eqs. (14.8.29) and (14.8.33) in Eq. (14.8.16) or (14.8.21), the internal 
complementary virtual work becomes 

L2 Lx 
E I  

0 L 12 

which, upon performing the necessary integration, yields 

(14.8.34a) 

Now the boundary conditions at x = L for the actual displacements at B(x = L )  are 
v(L) = 0 and v’(L) E 8 ( L )  = 0. Hence for this loading system, the only contribution 
to the external complementary virtual work is that of the force 6 P ;  therefore 

6 W& = 6PA,. (14.8.34b) 

Application of the principle yields 

wL4 
A , = - .  

384EI ’ 
(14.8.35) 

that is, we obtain the same displacement as before. cl 

In the solution of the above problem, we have seen that it is possible to obtain more 
than one equilibrium state for the statically indeterminate element AB. (In fact, we 
could have chosen other equilibrium states in order to satisfy the conditions required 
for the principle of complementary virtual work.) It is therefore worthwhile here to 
make a more general comment on the use of statically admissible and inadmissible 
force systems. 

We first recall that a statically indeterminate structure is, by definition, one for 
which the equations of statics are not sufficient to provide a unique solution for the 
unknown reactions. Indeed there exist an infinite number of possible equilibrium 
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states.t (However, only one of these states will be statically admissible.) In physical 
terms, there exist more reactions than are necessary to give stability to the structure 
and hence the structure is said to be overly constrained, i.e. to have ‘redundant 
constraints’. Therefore, it is always possible to ‘release’ some of the constraints 
and thereby obtain an equivalent released (statically determinate) structure corre- 
sponding to the given statically indeterminate stable structure.$ Since the remaining 
constraints are sufficient to maintain a stable structure, it is not necessary to intro- 
duce new constraints to ensue stability of the corresponding equivalent structure. 
Now, in releasing the redundant constraints, we effectively set the (virtual) reactive 
forces to zero and thus obtain a resulting virtual external force system, which is, 
by definition, statically inadmissible (since the geometric constraints of the original 
structure are violated). 

Since one may usually designate any of the rz - m reactions as ‘redundant re- 
actions’, one has the choice of deciding which constraint is to be released. The 
resulting statically inadmissible external force system will therefore depend on 
the choice of the redundant(s).? Note, however, that one must make a judicious 
choice to avoid a contribution in the external work expression due to virtual forces 
‘riding’ through unknown (real) displacements. Since there exists a choice of sev- 
eral possible statically inadmissible systems, we therefore usually choose a virtual 
force system that leads to the simplest calculations. 

However, in the case of a statically determinate structure, the number of con- 
straints (i.e. reactions) is just sufficient to maintain the structure in equilibrium: 
there exist no ‘redundant reactions’. Thus, if we were to choose a statically inad- 
missible virtual external force system {thereby releasing a constraint), it would be 
necessary to introduce a new constraint to maintain a stable structure. This new 
constraint would then appear in the expression for the complementary virtual work 
as a product with an additional unknown, namely a (real) displacement. 

Consequently, it follows from the above remarks that it is advantageous to apply 
a statically inadmissible external force system (as in the alternate solution above), 
only if the original structure is statically indeterminate. 

As a practical comment, we observe that in the first solution given above, one 
theoretically must solve for the reactions of an indeterminate structure under two 
different loading systems: the real and the virtual loading systems. In the alternative 
solution, it is only necessary to solve a single indeterminate problem; namely for the 
reactions due to the actual (real) loading system. It follows that choosing a statically 
inadmissible virtual loading system leading to an equivalent statically determinate 
structure (as was done in the alternative solution) will always considerably simplify 
the analysis. 

In mathematical terms, there exist more unknown reactions than independent equations of equilibrium 
in a statically indeterminate structure. Consequently, there are an rnfinite number of solutions to the 
equahons of equilibnum. If there exist n unknowns and only rn (rn <: n )  independent equations of 
equilibnum, the ‘degree of indeterminacy’ of the structure is said to be n - M. According to the laws 
of linear algebra, n - rn unknowns may then be assigned arbitrary values. * The mathematical equivalence of ‘releasing’ the redundant constraints is to set the n - rn reactions to 
zero. 

5 For example, in the structure of the preceding problem. there exist four reachve components: RA, RB, 
MA and MB. In the alternative solution, we released the constraints against verhcal displacement and 
rotation at A, that is, we designated RA and MA to be redundants. The inadmissible virtual external force 
system (SP, SRB,  SMB) acting on the resulting equivalent structure was as shown in Fig. (14.8.15a). We 
might instead have chosen to release the constraints against rotation at the two ends (i.e., chosen MA 
and MB to be the redundants forces) therefore leading to a different inadmissible virtual force system, 
consisting only of SP, &RA and 8 RB. The resulting equivalent released structure would then be a simply 
supported beam. 
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Example 14.23: (a) Compute the horizontal component of deflection AE of 
point E of the pin-connected elastic truss shown in Fig. (14.5.4) if member Bc is 
lengthened by an amount ‘er. (For example, this might occur if the member 
suddenly undergoes an expansion due to heat. However, the cause of the 
expansion is irrelevant here.) 

(b) Compute the horizontal component of deflection of point E, AE, of the 
truss dueto an applied load P acting asshown [Fig. (14.8.16b)l. [Note that the 
cross-sectional area of each member is given in parentheses in Fig. (14.5.4).] 

Figure 14.8.15 

[We recall that part (b) of this example was solved previously in Example 
14.5 by means of Castigliano‘s (second) theorem.] 

Solution: 

(a) To calculate the horizontal displacement component AE due to a lengthening ‘e’ 
of member Bc, we apply a virtual force 6 Q  at E, as shown in Fig. (14.8.16a). (The 
resulting internal axial forces 6 F ,  in the i th member, previously calculated in Example 
14.5, are given in the figure.) The external work is then 6W& = SQAE, while the 
internal complementary virtual work is, using the first term of Eq. (14.8.21), 

6yz, = ~ F B ~  E x x O ( X ) d X  = ~ F B ,  E,,0(X)dX = 6FBce, (14.8.36a) i 0 i 0 

since, by Eq. (3.3.6), the total elongation e = s,” E , ~ o ( x ) ~ ~ .  Therefore, since 
~ F B ,  = -0.83369, we have 

6 W:t = SFB, e = -0.833 6Qe.  (14.8.36b) 
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Hence, applying the principle of complementary virtual work, 

AE = -0.833e. (14.8.37) 

Note that the minus sign indicates that point E moves in the opposite direction to the 
assumed direction of 6 Q; i.e., it moves to the leff. Note too that modulus of elasticity 
E and the cross-sectional areas of the bars are irrelevant here. 

(b) InExample 14.5, the forces F;: in the members ofthe truss due to P were calculated; 
these are shown again in Fig. (14.8.16b). 

We again apply a horizontal virtual force 6 Q  at point E [Fig. (14.8.16a)l. From 
Eq. (14.8.21), the internal virtual work in the ith member is Fi6Fi L ,  / A ,  E. Therefore, 
the internal virtual work of the entire truss is 

(14.8.38) 

where n is the number of truss members. Noting that the external complementary 
virtual work is 6 W& = 6 QA,, application of the principle yields 

The calculations are best shown by means of the following table: 

Hence 

AE = 0.5626PId/AoE, 

which is identical with the solution of Example 14.5. 

(14.8.39) 

(14.8.40) 

14.9 The principle of stationary potential energy 

(a) Derivation of the principle and some applications 
We consider an elastic body (not necessarily linear) subjected to a set of external 
forces [see, e.g., Fig. (14.7.la)l such that a state of stress (txx. tyy, txy, . . .) as well 
as a corresponding state of strain ( E , ~ ,  eyy,  cxy, . . .) exists at all p0ints.t It is then 
possible to compute the total strain energy, e.g., by Eq. (14.2.9). 

We now pose the following question: Suppose the actual strains in the body were 
changed arbitrarily by a small amount, how would the strain energy change? Or, in 
other words, if we vary the strain components, how would the strain energy vary? 
We again denote, e.g., the variation of E,, by BE,,.  Thus, we consider a variation of 

+ At this stage. the body need not necessarily be in equilibnum. 
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the strains such that 

ex, + E,, + k,. eVV -+ +  BE^,^, eXy -+ E.,, + Sexy, (etc.). 

From Eq. (14.2.10a), we have, with U + U + 6U, 

V 
(14.9.1) 

Note that Eq. (14.9.1) represents the change in the strain energy due to a variation 
of strains under an existing constant stress state.t The expression is thus valid for 
any given stress field ‘moving’ through any arbitrary virtual strain field. Note, too, 
that although the elastic strain energy is positive definite, i.e. U 2 0, 6U can be 
either positive or negative. 

Now, comparing this last expression with the internal virtual work expression 
given by Eq. (14.7.2c), we observe that the two expressions are identical; i.e., 

6U = 6 WIQt. (14.9.2) 

This last equation may be interpreted as follows: Given an elastic body in which 
there exists, at all points, a stress state corresponding to a state of strain. Then, 
if the strain components are varied, the internal virtual work is equal to the change 
in the strain energy. 

At this stage, we impose the condition of equilibrium. If the state of stress is one 
for which the body is in equilibrium, then from the principle of virtual work, 

6 Knt = 6 Wext. 

It therefore follows that 

6U = 6 Wext. (14.9.3) 

We now turn our attention to the external forces acting upon the system. We shall 
exclude from our consideration all non-conservative forces and consider only the 
application of conservative forces, i.e. those forces F that, by definition, can be 
expressed by a relation$ 

F = -VV, (14.9.4a) 

where 
a a  a 

V E -i + - j  + -k, 
ax ay az 

(14.9.4b) 

i.e., where V is the gradient operator and V = V(x, y ,  z) is a scalar function called 
a potential function. 

The virtual work 6 Wext done by a force F located at apoint defined by the position 
vector r in going through a displacement 6u is then [Fig. (14.9. l)] 

(14.9.5a) 6 Wext F . SU, 

where 8~c 8r = Sxi + 6 y j  + 6zk. Substituting Eq. (14.9.4a), 
S W e X t = - V V . 6 u ~ - - V V . 6 r  =-SV. (14.9.5b) 

t Note that the stress components can be functions of n and y .  By ‘constant’, we mean that at any gven 

$ The minus sign, though arbitrary, IS universally adopted. 
point they do not change m magnitude or direction. 
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Figure 14.9.1 

In mechanics, the function V is said to represent the potential energy of the force. 
Thus, from Eq. (14.9.5b), we see that work done by a conservative force is equal to 
the negative change of its potential energy, i.e. the loss of potential energy.+ 

Now, we wish here to examine the change in strain energy of the bodyfrom its 
equilibrium position. Furthermore, in considering the change in potential energy 
of the external forces, we wish to consider only the change in potential energy of 
the applied forces and not of the reactive forces. From Eqs. (14.9.5), it is clear 
that 6V of the reactive forces can be made to vanish identically only if all the 
virtual displacements 6u are identically zero at points on the surface S where there 
exist non-zero (reactive) constraints [see Section 14.7bl. We therefore impose an 
additional restriction on these variations: namely the variations 6u must be such 
that they satisfi the geometric boundary conditions of the body Thus the variations 
must now be kinematically admissible. 

Substituting Eq. (14.9.5b) in Eq. (14.9.3), 

su = -6V 

or 

6(U + V )  = 0. (14.9.6) 

We now define the total potential energy of the system, n, by 

r I = U + V  (1 4.9.7) 

and therefore finally write 

6l-I = 0. (14.9.8) 

Thus, the variation of the total potential vanishes, i.e. no change occurs in Il when 
the system is displaced from its equilibriumposition. Equation (14.9.8) is a mathe- 
matical statement of the principle of stationary potential energy and may be stated 
as follows: 

An elastic body in equilibrium under a set of externally applied forces will deform 
in such a way so as to render the total potential of the system stationary. 

Note that the force here IS a given constant force and hence the work done by F in going through any 
arbitrary displacement Su is the same as the virtual work. 
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Alternatively, we may state 

Of all possible ways that an elastic body deforms in reaching its equilibrium 
position, it will ‘choose’ that deformation which causes IS to have a stationary 
va1ue.i 

The principle of stationary potential energy has many usehl applications in the 
analysis of elastic bodies. In particular, it is often used in the study of elastic stability 
of structural members. This subject will be studied in the following chapter. 

The following examples will serve to illustrate the application of the principle. 

Example 14.24 A number n of linearly elastic rods, each of cross-sectional 
area A and arranged symmetrically about the y-axis, are hinged at one end, 
point B, where a vertical force P acts, as shown in Fig. (14.9.2a). The angle 
of inclination of the i t h  rod with respect t o  the y-axis is given as a; and the 
length of each rod is denoted by L ,. Determine the displacement of point B 
and the axial force in each rod. 

Figure 14.9.2 

By stationary we mean that n takes on an extreme value, i.e., maximum or minimum. If the body is 
in stable equilibnum, then it can be shown that il has a minimurn value. It is for this reason that the 
pnnciple is sometinies called the Principle of minimum potential energy. 
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Solution: Because of the symmetry of the problem, point B will displace only in 
the y-direction. Denote this displacement by U .  Let the axial force, stress and strain 
in the ith rod be denoted by F, , tl , E , ,  respectively. The strain energy U, existing in 
the ith rod is, by Eqs. (14.2.7) and (14.2.2b), 

(14.9.9) 

where A, = E ,  L ,  denotes the extension of the ith bar. From geometry [Fig. (14.9.2b)], 
we obtain 

A, = U COS(CL, - dal). 

where doll represents the change of angle of inclination. Since we are limited to small 
rotations [Idol, I << I], cos(a, - da, ) 2 cos a, and therefore we have 

A, = v  COS^,. (14.9.10) 

Substituting in Eq. (14.9.9) 

U, = -cos ai v . [~~ , I 2  
Hence the strain energy in the entire system is 

E A  

r=l 

(14.9.11a) 

(14.9.1 1 b) 

Since the potential energy of the externally applied force IS simply V = -Pv, it 
follows that the total potential of the system l7 is given by 

We now apply the principle of stationary potential energy, 6l7 = 0, noting that 
l7 = n(v).t Hence 

( 14.9.13a) 
dv 

Since this must be true for any arbitrary 6 v  about the equilibrium position, we con- 
clude that 

-- - 0. dWv) 
dv 

Upon carrying out the above differentiation, we obtain 

from which 

(14.9.13b) 

(14.9.14a) 

t In general, ll can be a function of  several displacement quantities. In this problem, it IS a function of 
only one variable, U. 
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Figure 14.9.3 

Using Eq. (14.9.10), the strain in member i is then 

and thus, since f i  = E A E ~ ,  

(14.9.14b) 

( 14.9.14~) 

The following example illustrates the application of the principle to a problem where 
a geometric nonlinearity occurs. 

Example 14.25: Consider a structure consisting of two linearly elastic mem- 
bers (each having cross-sectional area A) hinged at the three points A, B, 
C. A load P is applied at B, as shown [Fig. (14.9.3a)l. Determine the load- 
displacement relation. 

Solution: By symmetry, point B will displace in the y-direction only. We denote 
this displacement by A. We need to first find ll as a function of A. 

For any A, the strain E in each of the elastic bars is given by 

E =  J L I + . " ' - L = J  L 1 +  (;)2 - -1 ,  

which by the binomial theorem becomes 
r 

For small rotations, IA/LI 

(1 4.9.15a) 

(< 1 and hence, if we drop all higher order terms, 

E =; (+)'. (14.9.15b) 

Since the state of stress is uniaxial, the strain energy is, by Eqs. (14.2.213) and (14.2.7), 

U = E / / / ~ ~ d n  = -( E A 4  ) .2AL = - E A  * A 4 . (14.9.16) 
2 S E  4L3 

V 

Noting that the potential energy of the applied force P is V = - P A, the total potential 
l7 is 

l l = U + V = - A  A E  4 - P A .  (1 4.9.17) 

Now, if A denotes the displacement of point B in the equilibrium state then, by the 
principle of stationary potential energy, Sll(A) = 0; therefore 

4L3 

(14.9.18a) 

Again, since SA, the variation of the displacement from the equilibrium state, is 
arbitrary, it follows that 

(14.9.18b) 



From Eq. (14.9.17b), 

and therefore 

A E  3 -A - P = O  
L3 

A =  ($)‘j3 . L .  
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(1 4.9.19a) 

(1 4.9.19b) 

0 

Note that although the material behaviour of the elastic bars is linear, the force- 
displacement relation of the system is nonlinear. Such a nonlinearity is called a 
geometric nonlinearity, since it arises due to the particular geometry of the problem. 

o(b) Approximate solutions - the Rayleigh-Ritz method 
The principle of stationary potential energy lends itself to obtaining approximate 
solutions to problems consisting of bodies for which there is no dissipation of 
energy, namely for elastic bodies. 

We introduce the ideas by means of an example. Let us consider a simply 
supported beam subjected to a uniformly distributed lateral load w, as shown in 
Fig. (14.9.4). We recall from Chapter 9, that integration of the differential equation, 

EIv”(x) = -M(x) ,  (14.9.20a) 
satisfying the geometric boundary conditions, 

yielded the deflection [see Eq. (9.4.2b)l 
v(0) = v(L) = 0, (14.9.20b) 

Figure 14.9.4 

W 
v ( x )  = -(x4 - 2 ~ ~ 3  + ~ 3 ~ )  (14.9.21a) 

24EI 
and, specifically at the centre, 

5wL4 wL4 
E I  

- 0.0103021-. (1 4.9.2 1 b) 

Let us assume that this solution is not known to us and that we wish to ob- 
tain the deflection v(x)  using the principle of stationary potential energy. From 
Eq. (14.2.16), the flexural energy is given by U = & s,” M2(x)  dx. Upon substi- 
tuting Eq. (14.9.20a), we may write the strain energy as 

(14.9.22) 

The potential energy of the applied external load q ( x )  with respect to the undeflected 
position is, in general, 

L 

v = - / q(x)v(x)  dx (14.9.23a) 
0 

and for the specific case, q ( x )  = w, 

v = -w v(x)dx. .i 0 
(14.9.23b) 
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The Rayleigh-Ritz method consists essentially of assuming a form for the deflec- 
tion u(x) of the beam, which satisfies all geometric boundary conditions. (Such 
functions are called admissible functions.) For the problem at hand, let us assume, 
for example, that 

v(x) = A x( L - x). ( 1 4.9.24) 

whose derivatives are u’(x) = A(L - 21) and v”(x) = -2A. Substituting in 
Eqs. (14.9.22) and ( 14.9.23b) respectively, we obtain after simple integration, 

U = 2A2EIL and V = -wAL3/6. (14.9.25) 

The total potential I7 = U + V is then 

I7 = 2A2EIL - wAL3/6. (14.9.26) 

We observe that is a function of the unknown parameter A .  According to the 
principle of stationary potential energy, for equilibrium we require that 6I7 = 0 and 
hence E = 0. Taking the derivative, we obtain 

wL3 
4AEIL- -=O 

6 
or 

wL2 
24E I * 

A = - - -  (14.9.27) 

Substituting back in Eq. (14.9.24), yields an approximate expression for the 
deflection 

wL2 
v(x) = - 24EIX(L - x). 

The deflection at the mid-point x = L/2 is 

(14.9.28a) 

(14.9.28b) 

Upon comparing the approximate deflection uapp(x) with the exact deflection v,(x) 
given by Eq. (14.9.21b) (i.e., ‘exact’ in the framework of linear beam theory), we 
find that the assumed deflection yields, at the mid-point, a percentage error of 25%, 
which is relatively large.+ 

We also observe that the approximate deflection is smaller that the ‘exact’ deflec- 
tion given by Eq. (14.9.21b). We may explain this feature physically by considering 
physically the beam in an anthropomorphic sense. 

When subjected to a given load, a beam ‘chooses’ to deflect into a ‘natural’ shape- 
here, that described by the function, Eq. (14.9.21a) - for which the total potential 
of the system is stationary (and in fact, for a stable system, a minimum). However, 
in specifying an arbitrary function such as Eq. (14.9.24), the beam is essentially 
forced to deflect in an unnatural shape, i.e., an additional unnatural constraint is 
imposed on the beam. This constraint thus tends to stiffen the beam and hence the 

t A more global measure of the error that takes into account the differences. vex - uapp, o f  the deflections 
of the two solutrons over the entire beam is given by the root-mean-square expression 

Substituting Eqs. (14.9.218,) and (14.9.28a) for vex and uapp, respectively, and integrating yields a per- 
centage error of  18%. 
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resulting deflections are generally smaller than the 'true' deflections. This can be 
proven rigorously for the deflection under a concentrated load. 

With this in mind, we note that the deflection given by Eq. (14.9.24) is dependent 
on a single parameter, namely A. Now, it is clear that if one assumes a function that 
depends on several parameters, say a, (n 2 1 j, then one introduces some flexibility 
into the system since several degrees of freedom can be adjusted to render the 
potential n of the system a minimum. 

Considering again the simply supported beam, we note that the function v(x) = 
a, sin ( n n x / L  j satisfies the geometric boundary conditions, Eq. (14.9.20b); that is, 
it is an admissible function for all n 2 1. Let us therefore assume a deflection for 
the beam in the form 

00 

v ( x ) = x a , s i n ( ? ) ,  n= l  (14.9.29a) 

which we observe, in passing, is a Fourier sine series with Fourier coefficients a,. 
Taking derivatives, we have 

(14.9.29b) 

and upon substituting in Eq. (14.9.22), 

mnx 2 Z L  

U =  Txxan(y) ET CC 33 aw,(y) 1 sin(?) sin(?)& 
0 n=l m = l  

L 
E l  n 4 o c  O0 rnnx 

= - ( ) E anamn2m' 1 sin ( y) sin ( T) d ~ .  
0 2 L  n = l  m=l 

(14.9.30) 

Now, we recall again the orthogonality condition 
L 

rnnx L/2, n = m  
n + m .  1 sin (7) sin (T) dx = { 0, 

0 

Hence, the strain energy becomes 

E I L  n 33 

U = +) x a : n 4  
n=l 4 

(14.9.31) 

(14.9.32) 

Similarly, the potential energy of the applied external load [Eq. (14.9.23bjl is 
L V = - w x a , S  33 sin(?)&. 

0 n=l 

which, upon integrating, yields 
L L nnx 33 

T/ = - w x a n  [--cos(r>l  
n=l  0 

L 

nn 
= w xa,---[cosnx - I]. 

n=l 
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Noting that [cos(nx) - 11 vanishes for even values of n, we have 

y=-- 
n=1.3.5, ... 

The total potential n = U + V therefore is 

(24.9.33) n=-(z) EIL  rc O0 x a i n 4 - -  2wL 5 an -. 
n n=l n=1,3,5, ... 4 

We observe that Il = Il(an). Now, for equilibrium, &I7 = 0; hence, for all n 2 1, 
we require that 

an - = 0. a an (1 4.9.34) 

Upon taking the derivative with respect to any ai (noting that the coefficients are 
independent of each other; i.e. % = 1 if n = i and zero if n # i), we have 

or 
4wL4 

an = - n odd. 
n5n5EI’  

Substituting in Eq. (14.9.29a), we then obtain 

v(x) = - 4wL4 5 n sin(?). 
n5Er n=1.3.5. ... 

( 14.9.35) 

(14.9.36) 

At x = L/2, the deflection becomes 

Note that the first term yields v(L/2) = 0.013071 $ with apercentage error, when 
compared to Eq. (14.9.21b) of 0.386%. However, upon taking the first three terms, 
i.e., 

wL4 1 
v(L/2) =E: 0.013071- E l  

we obtain v(L/2) = 0.013021$ with an error of only 0.0047%.t Having found 
the deflection, we can immediately obtain internal stress resultants in the beam. For 

t Note that the convergent series, 

I - + + $ + +  . . = *  1536‘ 

Therefore, if an infinite number of terms were taken into account, one would obtain identically the 
deflection given by Eq. (14.9.21b). 
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example, using the relation M ( x )  = -Elv”(x),  and Eqs. (14.9.2910) and (14.9.35), 
the moment at the centre x = L/2 is found to be 

1 1 1  

(14.9.37) 

Taking only the first term yields M(L/2) = 0.12901wL2 while, using the first 
three terms we obtain M(L/2) = 0. 12526wL2, with relatively small percent errors 
of 3.2 and 0.21%, respectively, compared to the exact result, M(L/2) = wL2/8.t It 
is interesting to observe that the series for the deflection, Eq. (14.9.36), converges 
as $ while that for the moment, Eq. (14.9.37), converges only as 3. Although 
both series yield excellent results, it is a characteristic of the method that conver- 
gence is always more rapid for deflections in a body than for internal forces or 
stresses. 

The Rayleigh-Ritz method can be applied to both statically determinate and in- 
determinate structures and is particularly useful in obtaining approximate solutions 
in the latter case. For example, if one assumes for a beam clamped at both ends 
and subjected to a uniform load w [Fig. (14.9.5)], an admissible function of the 
form 

v ( x ) =  an 
n=2,4,6, ... 

(14.9.38) 

and applies the same method as above, one finds the following for the deflection at 
x=L/2andthemomenta tx=Oandx=L:  

FiguR 14.9.5 

) (14.9.39a) 
1 1 1  

and 

The infinite series in brackets, 

1 1 1  x 2  I +  -+-+-+. . .=I-  

22 32 42 6 ’  
(14.9.40) 

Thus, upon taking the infinite terms into account, we obtain M(0)  = M(L) = 
-wL2/12. mote that this value was used in Eq. (14.8.29).] 

Finally, it is worthwhile to mention that the Rayleigh-Ritz method as presented 
here in the context of the principle of stationary potential energy forms a fundamen- 
tal basis for numerical methods of solution such as the finite element method. This 
method yields approximate solutions to important practical problems in engineer- 
ing that are not amenable to a tractable analytic treatment. However, a treatment of 
this method is beyond the scope of our discussion. 

t Note that the convergent series 

I -$+: - :+  . . .  = $. 
3 5 1  

Therefore, if an infinite number of terms were taken into account, one would obtain identically the exact 
value for the moment, M ( L / 2 )  = wL2/8. 
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14.10 Summary and conclusions 

In this chapter, the fundamental principles of energy and virtual work have been 
established. These have a wide application in the field of solid and structural me- 
chanics. As we have seen, they lead to various methods, either to determine equilib- 
rium conditions or to find deflections of deformable bodies under applied loading 
systems. 

We conclude with a summary of the above-mentioned principles according to 
their validity of application. 

General (elastic and dissipative) 

Principle of virtual work 
Principle of complementary virtual work 

Elastic: linear or nonlinear 

Conservation of energy 
Theorem of stationary potential energy 

Elastic: linear 

Castigliano’s first theorem 

rn Betti’s law and Maxwell’s reciprocal theorem 
Castigliano’s second theorem 

PROBLEMS 

Sections 2-3 

14.1: For a linear elastic material, with ty, = tzx = 0, the strain energy density U0 due 
t o  shear is given by 

2 

U0 = txyt‘xy = (1) 2G ’ 

Consider a linear elastic prismatic beam of length L having a rectangular cross-sectional 
area A, which is subjected t o  lateral loads in the y-direction such that the shear 
V(x) = V,(x), V, = 0. Starting from the expression for U0 above, show that 

where (Y = 1.2. (Note: The coefficient 01 is called a shape factor since it depends on the 
shape of the cross-section.) 

14.2: An elastic prismatic cantilever beam of rectangular cross-section is subjected t o  
a force P at the free end, as shown in Fig. (14P.2). 

Figure 14P.2 
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Using Eq. (2) of Problem 14.1 above, apply the principle of conservation of en- 
ergy t o  determine the vertical deflection A, of point B due to  shear deformation. 
Determine the ratio 2 of point B in terms of d, L, E and G, where Af, the 
displacement due t o  flexural deformation, is Af = P L3/3EI. 
Based on the results of (b) above, what conclusion may be established concern- 
ing the displacements due t o  shear deformation of long slender beams. 

The strain energy density of an elastic material under a three-dimensional 
state of stress and deformation is given by the quadratic expression 

where A E cxx + cyy + cn is the dilatation and where h and p. are material constants 
(known as the Lame constants). 

(a) Using the relations rxx = 2, rxy = 2, etc., express z,,, tW, r,, rxy in terms of 
the strain components. 

(b) Is the material linearly elastic? If U0 were expressed in terms of strains t o  the 
fourth power instead of quadratics, what could be said about the stress-strain 
relations? 

(c) Can U. be expressed in terms of third powers of the strain components for all 
values of strain? Explain why/why not. 

(d) From the results of part (a), solve for the extensional strain components in terms 
of the normal stress components txx, ryy, ru. Write the shear stress components 
in terms of the relevant strain components. 

*Y 

(e) What combination of h and p. lead to  Hooke's law in the form 

r x ~  (etc.), 
1 

cxx = r t rxx  - 4tyy + tzZ)l, Exy = - 2G' 
where E and v are the modulus of elasticity and Poisson ratio of the material, 
respectively, and G is the shear modulus. 

Sections 4-6 

14.4 Consider a linear body subjected t o  two forces P1 and Pz applied statically t o  
i t s  surface 5, as shown in Fig. (14P.4). Let A, denote the component of displacement of 
the point of application of the force Pi (i = 1,2) in the direction of the force Pi. The 
external work done by the two forces is then 

Assume now that the forces PI and P2 are applied sequentially; namely PI is first 
applied and then P2. The work done IS then 

1 1 
W =  5PlD11 +PlD12+-P2D22, 2 (2) Figure 34P.4 

where Dij is the component of displacement of Pi (in the direction of Pi) due to  
the force P,. (a) Prove that the two expressions for the work of the external forces, 
Eqs. (1) and (2), are equivalent. (b) Show that if the order of applications is reversed 
(i.e., if 4 is applied first and then Pl), the external work is the same. 

Note: In Problems 14.5-14.13, determine the deflections and rotations due to flexural 
deformation unless otherwise specified. 

14.5: Given the linear elastic beam shown in Fig. (14P.5). By means of Castigliano's 
second theorem, determine (a) the vertical displacement of point 6, (b) the vertical 
displacement of point A and (c) the rotation of point A. 
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Figure 14P.5 

14.6 An elastic structural member ABCD, simply supported at C and D, i s  subjected to  
an applied moment & at A and a horizontal force P, as shown in Fig. (14P.6). (a) Using 
Castigliano’s second theorem, determine the horizontal component of displacement 
of point A in terms of M, P, E, I, L and h. (b) From the answer t o  part (a) above, 
determine the angle that member AB makes with the vertical at point A due to  a 
horizontal force P = 1 applied at A. 

Figure 14P.6 

14.7: Beam A-D of flexural rigidity E l ,  simply supported at A, B and D and contain- 
ing a hinge at point C, is subjected t o  a uniformly distributed load w, as shown in 
Fig. (14P.7). (a) Using Castigliano’s second theorem, determine the deflection of point 
G and (b) sketch the deflected shape of the beam. 

Figure 14P.7 

14.8: By means of Castigliano’s second theorem, determine (a) the rotation of 
point A and (b) the vertical displacement of point A of the structure shown in 
Fig. (14P.8). 

14.9: Beam A-E of flexural rigidity E l ,  simply supported at A,C and E and contain- 
ing a hinge at D, is subjected to  a linearly varying distributed load and a moment 
& = q L * ,  applied at A, as shown in Fig. (14P.9). Using Castigliano’s second theorem, 
(a) determine the deflection of point B, (b) sketch the elastic curve and (c) plot the 
moment diagram. 

Figure 14P.8 

Figure 14P.9 
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14.10 The simply supported beam ABC of flexural rigidity E l ,  as shown in 
Fig. (14P.10), is subjected to a uniformly distributed load w within span BC. What 
moment must be applied a t  C in order to  cause the slope a t  A, BA, to  be zero? 

14.1 1: (a) Using Castigliano's second theorem, determine the vertical displacement 
v(x), 0 5 x 5 2L, of the beam of flexural rigidity E I ,  containing a hinge a t  B, when 
loaded as shown in Fig. (14P.l la). Sketch the deflection v(x). (b) What is the deflec- 
tion VB of point B if the load is applied at any point x = a (0 5 a 5 2L), as shown in 
Fig. (14P.11 b)? Write the expression for VB and sketch the resulting deflection of the 
beam. 

Figure 14p.10 

Figure 14P.11 

14.12 For a curved beam whose lateral dimensions are small with respect to the 
radius of curvature, the flexural and normal strain energy may be expressed as 

1 N2 
ds + 1 AE ds, U 5 1 € 1  

where Aand I are the area and moment of inertia of the cross-section and NI = NI(@), 
N = N(0) are the moments and axial forces at a cross-section. (Note that the integrals 
represent the elastic strain energy due to flexural and axial deformation, respectively.) 

(a) Using Castigliano's second theorem, determine the horizontal component of 
deflection of point B of Fig. (14P.12) due to  a vertical load. Consider both axial 
and flexural deformation. 

Figure 14P.12 

(b) Let A~,ax,al and Agflex represent the displacement due to  axial and flexural de- 
formation, respectively. If the cross-section of the beam is rectangular (b x d), 
d << R, show that 

(c) What conclusion can be stated regarding the importance of the two kinds of 
deformation? 

14.13: Using Castigliano'ssecond theorem, determine the deflection in they-direction 
of the free end of the elastic cantilever beam whose cross-section varies as shown in 
Fig. (14P.13). 

14.14 Forthe pin-connected truss loaded asshown in Fig. (14P.14) (with axial rigidity 
A€ the same for all members), determine, by means of Castigliano's second theorem, 
(a) the vertical displacement of point B, (b) the horizontal displacement of point C and 
(c) the vertical displacement of point C. 

~i~~~~ 14p.13 
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14.15:* A solid cylindrical rod of length L, consisting of a linear isotropic elastic 
material (with modulus of elasticity E and Poisson ratio v), is subjected, at some ar- 
bitrary cross-section, t o  two equal and opposite colinear radial forces P,  as shown in 
Fig. (14P.15). Determine the change in length of the cylinder, AL, in terms of P ,  the 
material constants E and U and the geometry. 

Figure 14P.14 

Figure 14P.15 

Section 7 

14.16: Given the cantilever beam of arbitrary material behaviour, subjected to  a 
force at A, as shown in Fig. (14P.16). Show that an arbitrary kinematically inadmissible 
virtual displacement (i.e., one which violates the boundary conditions) of the form of 
Eq. (14.7.25), namely 

Figure 14P.16 
R n X  

2L 
6v = 6A sin -, n > 0 ,  

leads to  the correct reactions a t  B. 

14.17: Beam A-E,containing hingesatB and D, issubjectedtoa uniformlydistributed 
load wover the span CDE and a couple IV& = wL2 a t  point E, as shown in Fig. (14P.17). 
Using the principle of virtual work, determine (a) the moment MA, (b) the reaction at 
C and (c) the moment Mc. 

Figure 14P.17 

Figure 14P.18 

14.18: Using the principle of virtual work, determine the forces 
statically determinate pin-connected truss shown in Fig. (14P.18). 

14.19:" The statically determinate structure shown in Fig. (14P.19) consists of ele- 
ments rigidly connected at B and F and connected by hinges at A, C, D, E and G. Loads 
P, and 9 are applied at D. (a) Using the principle of virtual work, determine (i) the 
reactions R k  and RA,,, (ii) the moment A% in member AB at point B and (iii) the shear 
force VF in member FG at point F. [Note: For each case show, by means of a sketch, the 
virtually displaced structure (with respect t o  the original structure) which is used such 
that only the desired unknown appears in the virtual work expression.] (b) Check the 
answers using the equations of equilibrium. 

and f B C  of the 
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Figure 14P.19 

Note: In Problems 14.20-14.22, use the principle of virtual work to draw the influence 
lines (due to  applied downward loads) for the structure without first determining 
analytical expressions for the relevant influence functions. Use the adopted sign con- 
vention for moments and shear and indicate all critical ordinates of the influence 
lines. 

14.20: The statically determinate structure A-E shown in Fig. (14P.20) contains hinges 
at points B and D. Draw the influence lines due to  a downward force for (a) the upward 
reaction Rc, (b) the moment ME at point E, (c) the shear force VD at D, (d) the shear 
force V: immediately to  the right of point C and (e) the shear force V; immediately 
to  the left of point C. 

Figure 14P.20 

14.21: The statically determinate structure A-l shown in Fig. (14P.21), containing 
hinges at C, E and H, is simply supported at A, B and F and is fixed at I .  

Figure 14P.21 

(a) Sketch directly the influence lines due to  a downward force for the following 
quantities: (i) the upward reaction at 6, (ii) shear VG a t  point G, (iii) the moment 
MG at G, (iv) the upward reaction at I and (v) the shear V: immediately to  the 
right of point B. 

(b) Given a downward uniformly distributed load w acting over a span of 2 L .  
(i) Between which points [nL and (n+Z)L, (n is  an integer)] should the load- 
ing be applied to  cause lM~l t o  be a minimum? What is the resulting minimum 
value of IMG~? (ii) Repeat (i) for maximum IMGI. 

(c) Repeat (b)(i) and (ii) above for (RI\.  

14.22: The statically determinate structure A-H shown in Fig. (14P.22), containing 
hinges at E and G, is simply supported at A and C and fixed at H. 
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Figure 14P.22 

(a) Sketch directly the influence lines for the following quantities: (i) the upward 
reaction at A, (ii) the moment M D  at point D, (iii) the upward reaction RH at 
H, (iv) the shear V; immediately to  the left of point C and (v) the shear V: 
immediately t o  the right of point C. 

(b) Given a downward uniformly distributed load w acting over a span of L. 
(i) Between which points [nL and (n+ 1)L, (nan integer)] will the loading cause 
l M ~ l  t o  be maximum? What is the resulting value of lM~ l , , ,~~?  (ii) Repeat (i) for 
maximum V;. 

(c)* Repeat (b) if the given downward load w can be placed between any two 
points CO and CO + L . 

14.23: Based on the Muller-Breslau principle, sketch qualitatively the general shape 
of the influence lines of the indeterminate structure A-E, containing a hinge at B, as 
shown in Fig. (14P.23), for the following quantities: (a) RA, (b) i&, (c) A&, (d) VB, (e) R D  
and (9 V;. 

Figure 14P.23 

Section 8 

14.24 Solve Problem 14.5 using the principleof complementary virtual work (method 
of virtual forces). 

14.25 Repeat Problem 14.11 using the principle of complementary virtual work 
(method of virtual forces). 

14.26: The linear elastic structure shown in Fig. (14P.26) consists of a beam ABCD 
supported by members AE and CE. The properties of the members are shown in the 
figure. 

(a) Using the principle of complementary virtual work, determine the vertical dis- 
placement AB of point B taking into account both axial and flexural deforma- 
tion. 

Figure 14P.26 

(b) The following values are given for the properties and the load : A0 = 10 cm2, 
b= 2 m, I = 50 x 102 cm4, P = 2000 N, €1 = €2 = 200 GPa (steel). (i) Evaluate 
the displacement AB numerically. (ii) What is the displacement due to  axial 
deformation and flexural deformation? What percentage of the total displace- 
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ment does each deformation contribute? (iii) If bars AE and CE are rigid (i.e., 
El -+ IXI), what i s  the displacement AB? 

(c) What conclusion can be reached concerning the relative importance of the 
axial deformation in the various members, based on the results of part (b) 
above? 

14.27: Repeat Problem 14.9 using the principle of complementary virtual work. 

14.28:* A pin-connected truss consists of five elastic members whose axial rigidity 
is as indicated in Fig. (14P.28). Member AC undergoes a temperature change AT > 0 
and member CD undergoes a temperature change 2AT > 0. (The remaining members 
undergo no temperature change.) The coefficient of thermal expansion of all mem- 
bers is given as a! (“C-l). Determine the component of displacement of point C in the 
y-direction by means of the principle of complementary virtual Work. 

14.29: Solve Problem 14.13 using the principle of complementary virtual work. 

14.30 Repeat Problem 14.7 using the principle of complementary virtual work. 

14.31: The statically indeterminate beam A-E of  flexural rigidity E l  [Fig. (14P.31a)l 
is subjected t o  a uniformly distributed load w over i ts  entire length. (a) By means of 
the principle of complementary virtual work (method of virtual forces), determine the 
deflection of points B and D due t o  flexure using the statically admissible virtual force 
system. (Note: Statically admissible reactions for the indeterminate structure are given 
in Appendix F.) (b) Obtain the solution using the (statically inadmissible) symmetric vir- 
tual force system shown in Fig. (14P.31 b). 

Figure 14P.328 

Figure 14P.31 

14.32:” A statically indeterminate beam of uniform cross-section is subjected t o  a 
uniform load, as shown in Fig. (14P.32a). (The statically admissible reactions are given 
in Appendix F.) 

(a) Using the principle of complementary virtual work, determine the vertical dis- 
placement of point F. For the internal complementary virtual work of the en- 
tire beam, use the statically admissible virtual force system as shown in Fig. 
(14P.32b). (External reactions due to  a load P acting at F are given in Appendix F.) 
(Note: Take advantage of symmetry.) 

(b) Using the principle of complementary virtual work, determine the vertical dis- 
placement of point F if the equilibrium state of stress is axx = 0 between A and B 
and between C and D, i.e., if the state of virtual equilibrium stresses is statically 
inadmissible, namelythat of a simply supported beam, asshown in Fig. (14P.32~). 

(c) Explain precisely in terms of the principle of complementary virtual work, the 
reason the scheme of Fig. (14P.32~) will give the correct solution. Explain further 
why using a scheme, as shown in Fig. (14P.32d) (with known end reactions and 
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Figure 14P.32 

moments) one nevertheless requires additional information. What i s  this infor- 
mation? 

14.33: A cantilever beam having a cross-section with uniform depth d, originally at a 
reference temperature TO, i s  subjected to  a linear temperature variation AT,  as shown 
in Fig. (14P.331, causing the beam t o  bend. The beam material i s  linear elastic with a 
stress-strain relation given byuxx = Eexx. Using the principle of complementary virtual 
work for deformable bodies and assuming that the only resulting stresses are flexural 
stresses and that plane cross-sections remain plane, show that the vertical deflection 
of point B is given by 

A = (a!ATL2)/d, 

where a! is the coefficient of thermal expansion. 

Figure 14P.33 

Section 9 

14.34 The structure shown in Fig. (14P.34) consists of two rigid rods connected by a 
hinge at B. Using the principle of stationary potential energy, determine the equilib- 
rium position of the structure. 

Figure 14P.34 
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14.35:" A rigid rod ARC of length 2L is  simply supported at A and by wires having 
axial rigidity AE, as shown in Fig. (14P.35). The rod is subjected to  a force P a t  C. Us- 
ing the principle of stationary potential energy, determine (a) the vertical component 
of displacement of point C and (b) the forces in the wires. Assume that the system 
undergoes small rotations. 

14.36:* Two rigid rods AB and BC each of length L are connected by a hinge at B. The 
two degree-of-freedom system is simply supported at A and by wires each having axial 
rigidity A€, as shown in Fig. (14P.36). The rods are loaded over their entire length by a 
uniformly distributed load w(N/m). Using the principle of stationary potential energy, 
determine (a) the vertical component of displacement of points B and C and (b) the 
forces in the wires. (Note: Assume all displacements to  be small with respect t o  L .) 

14.37: (a) Using the Rayleigh-Ritz method and assuming a kinematically admissible 
function of the form 

n=1,3,5, ... 

obtain an approximate solution for the deflection v(x), moments and shear forces in a 
cantilever beam of length L subjected to  a uniformly distributed load w, as shown in 
Fig. (14P.37). Consider only flexural deformation. (b) Evaluate v(L) and M(0) using sev- 
eral terms of the series and compare with the exact linear solution, v(L) = wL4/8EI, 
M(0) = -wL2/2. 

14.38: By means of the Rayleigh-Ritz method, determine the displacement and mo- 
ment at the mid-point of the statically indeterminate beam shown in Fig. (14P.38), 
using the admissible function v(x) given by Eq. (14.9.38). Evaluate these quantities 
using the first four terms of the series and calculate the percent error when compared 
with the exact values given in Appendix F. 

Review and comprehensive problems 

14.39: Given an arbitrary elastic body, suitably supported, t o  which a single concen- 
trated load P is applied. Can the the point of application of P displace in a direction 
perpendicular t o  the load? Explain the reasoning. 

14.40:* The strain energy due to  shear deformation of an elastic beam is given by 
U = 5 fi dx, wherea is the shape factor (see Problem 14.1). Determine the shape 
factor for a beam having a circular cross-section of radius R. 

14.41: The statically determinate structure A-I of Fig. (14P.21) contains hinges at C, 
E and H. Using the principle of virtual work, sketch directly the influence lines due to  
a downward concentrated force for the following quantities: (i) the upward reaction 
at A, (ii) the upward reaction at F (iii) the moment at I, (iv) the shear force V; (i.e., 
immediately to  the left of point F) and (v) the shear force V:. (See note immediately 
preceding Problem 14.20.) 

14.42: The statically determinate structure, A-J of Fig. (14P.42) contains hinges at C, F 
and I. 

Figure 14P.42 
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(a) Using the principle of virtual work, sketch directly the influence lines due t o  
a downward concentrated force for the following quantities: (i) MA, (ii) VH+, 
(iii) 6, (iv) the upward reaction at H and (v) ME. (See note immediately preced- 
ing Problem 14.20.) 

(b) The structure is t o  be designed t o  supported a piece of machinery modelled 
as a uniformly distributed load w (Nlm) over a span 2L .  (i) Between which two 
points, nL and (n+ 2)L, (n i s  an integer), will the load cause the absolute value 
of the moment \ M A ~  t o  be a maximum? What i s  the resulting value of IMAI,,,~~. 
(ii) Between which two points, 50 and co + 2 L  (CO not necessarily an integer), 
will the load cause the absolute value of the moment IMAI t o  be a maximum? 
What is the resulting Value Of IMAlmax? 

(c) Repeat (b) for  RH)^^^. 

14.43: The statically determinate structure A-E shown in Fig. (14P.43a) containing 
hinges at B and D, is fixed at A and E. (a) Using the principle of virtual work, sketch 
directly the influence lines for the following quantities: (i) the upward reaction at A, 
(ii) the moment MA and (iii) the the shear VC at C. Show values of all critical ordinates. 
(b) Given a downward linearly varying distributed load q(x) acting over the span BD, 
as shown in Fig. (14P.43b). Based on (a), determine (i) RA, (ii) MA and (iii) VC due to  the 
given loading. 

Figure 14P.43 

14.44:* Two identical members AB and BC having axial and flexural rigidities A€ 
and € I ,  respectively, are rigidly connected at B, as shown in Fig. (14P.44). Determine 
the change of distance A l ~ c l  due to  the load P. Consider both flexural and axial 
deformation. 

Figure 14P.44 

14.45:* From the results of Problem 14.33, it is  observed that the displacement of 
point B is dependent only on the coefficient of thermal expansion, 01, and not on the 
material constant E .  Repeat Problem 14.33 using the following conditions: (a) The 
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beam is made of some arbitrary material whose only known property is a. (b) Do not 
assume that plane sections remain plane. 

14.46: Based on the Muller-Breslau principle, sketch qualitatively the shape of the 
indeterminate structure ABCD of Fig. (14P.46) for the following quantities: (i) n/lc, 
(ii) V;, (iii) V: and (iv) VC. 

14.47:" A thin elastic member ABC in the shape of a quarter circle of radius R lies in 
the x-y plane; as shown in Fig. (14P.47). The member is subjected t o  a force P acting in 
the z-direction. The flexural and torsional rigidities of the member are given as E I and 
GC, respectively. Determine the component of deflection in the z-direction of point 
C due t o  flexural and torsional deformation. 

14.48:* Given a three-dimensional linear isotropic elastic body (with modulus of elas- 
ticity E and Poisson ratio U) having an arbitrary shape and subjected to  two colinear 
forces P acting at the surface 5 of the body, as shown in Fig. (14P.48). Derive an ex- 
pression for the change in volume, AV, of the body in terms of P, €, v and b, the 
distance between the two forces. 

14.49: A force P acts at point A of an elastic frame ABC a t  an angle a with respect 
t o  the x-axis, as shown in Fig. (14P.49). (a) Determine the value(s) of a if the resultant 
displacement of point A due to  flexural deformation is in the direction of the force P. 
(b) (i) Show, for the given geometry of the frame, that the resultant displacement of 
point A due t o  axial deformation is always parallel t o  P. (ii) If AB and BC were not of 
the same length, would this be true? 

14.50* (a) Show, by means of Castigliano's second theorem, that the resultant dis- 
placement of point A of the linear elastic frame of Fig. (14P.49) due t o  flexural defor- 
mation can never be perpendicular t o  P. (b) Show that this statement i s  valid also for 
the case of axial deformation. 

14.51: Using the Rayleigh-Ritz method and the admissible function given in Problem 
14.37, obtain an approximate solution for the deformation, moment and shear in a 
cantilever beam of length L subjected t o  a concentrated force P at the free end, as 
shown in Fig. (14P.51). Evaluate the quantities using the first four terms of the series 
and determine the percentage error with the known solution. 



Figure 15.2.1 

15.1 Introduction 

In the previous chapter, we have found that a system is in equilibrium if, and only 
if, the total potential of the system, l7 = U + V ,  is stationary; that is, if the value of 
Il is an ‘extremum’. Moreover, we recall (from Chapter 11) that there cxist several 
types of equilibrium: stable, unstable and neutral equilibrium. As we shall see, the 
character of the equilibrium state is intimately related to the type of extremum of the 
total potential energy of the system. Indeed, it will become evident that the nature 
of the equilibrium state can be clearly and rigorously established only by energy 
considerations. 

Although we shall mainly investigate the stability of simple members subjected 
to axial forces, the ideas that will be developed are quite general. However, in 
addition to their theoretical importance, energy considerations are also of great 
practical value as they lead to approximate methods for determining critical 
forces of systems. Such approximate solutions are of importance particularly in 
complex structural systems where, very often, exact analytic solutions cannot be 
obtained. 

15.2 Classification of equilibrium states 
according to energy criteria 

We first recall (from Chapter 1 I)  that a system is in a stable equilibrium position if, 
when given a small perturbation, it returns to the original position. Conversely, if 
the system does not return to the original position when given a small perturbation 
(but moves instead to a new equilibrium state), the position is said to be in unstable 
equilibrium. Finally, if the system neither returns to the original equilibrium position 
nor moves further away, it is said to be in neutral equilibrium. 

We now wish to relate the type of equilibrium state to the energy of the system. 
We first approach this study by considering the same intuitive case as used in 
Chapter 1 1, namely, a model consisting of a rigid sphere of mass M ,  which, under 
the effect of a gravitation force, can roll on a track in the x-y plane, defined by a 
prescribed function y =I f ( x )  [see Fig. (15.2.1)]. From our previous study, stable, 
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unstable and neutral equilibrium positions are lmown to exist at points B, C and D 
respectively. 

Now, the forces acting on the sphere are gravity g and the reactive force of the 
track. In using the principle of stationary potential energy, the perturbation of the 
system is given in terms of virtual displacements. However, we recall that in deriving 
this principle, the virtual displacements are limited to those that are kinematicallv 
admissible; that is, they must satisfy the constraints of the system. For the given 
system here, the sphere is constrained to roll along the track; therefore, virtual 
displacements must be taken as displacements along the track. Consequently, there 
can be no contribution of the normal force (which the track exerts on the sphere) 
to the potential energy of the system. The potential energy is therefore only that 
of the gravity force which (if measured arbitrarily from the x-axis, y = 0 )  is given 
by Y = Mg . y(x). Furthennore, since the sphere is rigid, no strains exist, and 
therefore the strain energy U = 0. Hence, for this special case, rI = V = Mg + y .  
Note that rI == lT[y(x)],  that is, rI is a function only of the single variable, x through 
y = y b ) .  

We note that for all points to the left of E, except at points B and C, 

6rI = (2) 6y = M g ( $ )  sx # 0. (15.2.1) 

Thus the principle of stationary potential energy leads us to the obvious but trivial 
conclusion that equilibrium can exist only at points B, C and at all points to the 
right of point E, where 2 = 0. 

We note that at B, a point of stable equilibrium, 17 is a relative minimum; any 
change in rI from its original equilibrium position is positive, i.e. A n  > 0. 

Conversely, at C ,  apoint of unstable equilibrium, ll is a maximum and any change 
in Il Erom its original equilibrium position is negative, i.e. A n  < 0. 

Consider now the sphere at some point D along the horizontal track, which we 
recall is a neutral equilibrium state. It is clear that here 17 is neither a relative 
maximum or minimum, for there is no change in the potential due to a small 
perturbation, that is ArI = 0. In fact, we note here that according to our model, 
neutral equilibrium implies that all derivatives 

-- - 0 ,  n L 1 .  d" rI 
d.x" 

Thus, we may summarise the results as follows: 

A17 > 0 corresponds to a stable equilibrium state, 
A 17 < 0 corresponds to an unstable equilibrium state, 
ArI = 0 corresponds to a neutral equilibrium state. 

(1 5.2.2) 

We emphasise here that A n  is the difference in the potential energy from an 
equilibrium position. Using this simple model, we have established a direct relation 
between the stability and instability of a system in terms of its total potential n. 
In determining the critical loads for stability of various systems, we shall find, 
as in Chapter 11, that the concept of neutral (and what will later be defined as 
pseudo-neutral) equilibrium plays an important role. 
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Figure 15.3.1 

Figure 15.3.2 

15.3 Stability of a rigid rod subjected to a compressive axial force 

Using the definition of stabilityhstability in terms of energy, let us reconsider the 
same system as was studied in Section 3 of Chapter 11 : namely, a rigid rod AB 
of length L supported at point A by a linear torsional spring having a stiffness ,t? 
[Fig. (15.3.la)l. The rod is subjected to a vertical axial force P (which always acts 
in the downward y-direction). We recall that if the rod is given a rotation 0 from its 
original vertical position, as in Fig. (15.3.lb), the spring exerts a moment M = /3Q 
that tends to bring the rod back to its original position. 

Since the position of this system is described by a single variable 0, the system is 
said to have a single degree-of-freedom (1d.o.f). In mechanics, the variable 0, which 
may vary arbitrarily, is called a generalised coordinate of the system. Furthermore, 
it is important to note that here we consider the spring to be part of the mechanical 
system. 

We seek (a) to establish the magnitude of P that is required to maintain the rod in 
equilibrium positions 181 > 0, and (b) to determine for which forces P the original 
position 8 =I: 0 is a stable or unstable equilibrium position. 

For any position 0, the strain energy U of the spring is 

1 B U = --MA0 = -02, 
2 2 

while the potential energy of the force P is 

v = -PL(1 - cos0). 

(1 5.3.1 a) 

(1 5.3.1 b) 

Hence 

(1 5.3.2) Be2 n ( P ,  0) = U + v = - - PL(1 - cos0). 
2 

According to the principle of stationary potential energy, for equilibrium we require 
that 

(15.3.3a) 

and since this must be true for any variation 60, the equilibrium condition becomes 

(15.3.3b) 

that is, 

/30 - P L  sin0 = 0. (1 5.3.4) 

First note that for 0 = 0, all finite values of P satis@ this equilibrium condition; 
i.e., the rod is in equilibrium in its original vertical position for all forces P. 

For 0 # 0, the equilibrium force is 

(1 5.3.5) 

This solution represents the force P required to maintain the rod in equilibrium for 
any position 0. From the P - Q  relation, shown by the heavy line in Fig. (15.3.2), we 
note that as 0 + 0, P --+ B/L.  Solutions of Eq. (15.3.4) are given by points lying 
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along the branches OB, BC and BD, where we recall that point B is referred to as 
a bifurcation point.? Note that these same results were obtained in Chapter 1 1. 

For a given applied force P < /?/L, the only possible equilibrium position is 
6 = 0. Thus, for such loads, if the rod is given a rotation 6, it will always return to 
the 6 = 0 position since no other equilibrium position exists for these values of P. 
Hence 6 = 0 necessarily represents a stable equilibrium position for any P < j3/ L .I 
Consider now that P is slowly increased from P = 0 such that it reaches P = /?/L 
[point €3 in Fig. (15.3.2)]. If we increase P further, say to P', then we note that 6 may 
assume two different values: 6 = 0 or 6 = 6' for the given P'. Thus two different 
equilibrium branches emanate from the bifurcation point B: path BC and pathBD. To 
investigate the nature of the equilibrium positions represented by points on the var- 
ious equilibrium paths, using the energy criteria established in Section 15.2, we ex- 
amine the change A l l  of the total potential due to a given virtual displacement 66. To 
this end, let us first expand ll in a power series about any equilibrium position, Oeq.! 

( 1 5.3.6a) 

Therefore 

Since Q = eq represents anequilibriumposition, by Eq. (15.3.3b), the first derivative 
vanishes, and therefore 

(1 5.3.7) 

Now if we take 66 as a small variation from the equilibrium position Qeq, it is evident 
that the sign of A n is given by the sign of the lowest non-vanishing derivative of 
even order. This then is the explicit criterion to determine the stability or instability 
of any mechanical system. For the problem at hand, from Eq. (15.3.2), 

d2 l7 - = /? - PLCOSO. 
do2 ( 15.3.8) 

t The heavy line of the figure may be considered as a 'loading path' starting from point 0 ( P  = 0) to 

1: Ths conclusion, denved by a simple logical argument, will be shown to be ngorously correct using the 

5 We assume that ll is an ana[vticul function, whch can be expanded in a Taylor senes. By this we mean 

point B and then proceeding along either branch with increasing P. 

energy criteria of the preceding section. 

here that l'l is continuous and possesses all denvatives at 0 = &. 
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We first examine the derivative along OB and BD (with 0 = Oeq = 0): 

I1 5.3.9) 

If P < B / L ,  3 > 0, and therefore A l l  > 0. It follows that along OB, the equi- 
librium is stable (which confirms our previous conclusion). If P > B / L ,  A l l  < 0 
and hence, for such values of P ,  the position 8 = 0 represents unstable equilibrium 
positions. (Note that the second derivative i s  multiplied by and therefore the 
sign of A l l  is necessarily the same as d2 n / d 0 2  .) 

It is of interest to establish the stable/unstable character of equilibrium at point 
B (0 = O ) ,  i.e. where P = B/L.  From Eq. (15.3.Q d2n/d02 = 0 and hence pro- 
vides no information on the sign of A n .  We must therefore examine higher order 
derivatives. To this end, note that 

d3 n - = P L  sin0, 
d03 

(1 5.3.1 Oa) 

which also vanishes at 0 = 0; we therefore must examine the next derivative, 

-- - P L  COS0. 
d4 ll 
d04 

At 8 = 0, 

(1 5.3. 10b) 

(1 5.3.1 Oc) 

Hence, since this derivative is multiplied by we conclude that when P = B/L, 
AI7 > 0. Thus, the 8 = 0 position is stable under this load, 

In summary, the vertical position is in stable equilibrium for all P I B / L  and is 
unstable for P > @ / L ;  i.e., if the rod is subjected to a force P 5 P / L  and is given 
a small displacement from 0 = 0, it will return to its original position.? 

We now examine the equilibrium position along the branch BC. Noting that the 
required equilibrium force P along this branch is given by Eq. (15.3.5), upon 
substituting this value for P in Eq (15.3.8), 

(15.3.1 I) 

Now, using the Taylor expansion for the tan fhction, 
tan0 1 

0 0  
-- __ - (0 + 0 3 / 3  + 205/15 + 1707/515 + * *  .) 

Therefore, we observe that along BC, d2n/de2 > 0 and hence A n  > 0. Thus, 
the branch BC represents stable equilibrium positions since along this path ll is a 
minimum. 

We have observed that point B, where P = B / L ,  represents the greatest force for 
which 8 = 0 is a stable equilibrium position. We therefore define 

Pcr = B / L  (1 5.3.13) 

We recall that in exaininmg this system in Chapter 11, we found that stable equilibrium exists only if 
P < B / L .  The discrepancy w t h  the present results is explained m Section 15.4. 
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as the critical load P of the system: for all forces P 5 P,, the system is stable for 
8 = 0 and for all P > P,, the original position 8 = 0 becomes unstable. 

Further insight into this problem can be gained by examining the total energy 
l7 of the system for various values of 181 < n. Let us assume that a given force 
P = a Pcr (where a L 0 is a constant) is acting upon the system. Then, substituting 
in Eq. (15.3.2), 

n = j3e2/2 - a,q 1 - COS 8).  (1 5.3.14) 

In Fig. (15.3.3), n/j3 is plotted as a function of 0 for typical values a < 1, a = 1, 
a > 1. We observe again that if P > P,, (e.g., a = 2). 8 == 0 represents a position 
of unstable equilibrium since for any 18 1 > 0 in the neighbourhood of 8 = 0, the 
total energy I7 is less than n(@ = 0) of the original vertical position. Hence the 
system will jump to a position of lower energy as represented by the path BC of 
Fig. (15.3.2). We thus note that the system ‘seeks aposition of stable equilibrium’.t 

Figure 15.3.3 

Onthe otherhand, for P 5 P,, (e.g., a = 0.5 or l), the@ = Opositionrepresents 
one for which the energy is a relative minimum. Hence, under such loads, the rod 
will always return to its original position, 8 == 0, which represents a stable position. 

t We note, for example, that for the curve 01 = 2(P = 2 B f L )  the energy has a minimum value at 
8 = 108.604”: hence the rod is in stable equilibnum at this position when P = 2P,,. Note that this 
value of P is in agreement with the P-8 relation of Eq. (15.3.5) [see Fig. (15.3.2)]. 
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(It is worthwhile to note that for P = P,,, the l7 curve in the neighbourhood of 
0 = 0 is considerably flatter than for P < Per.) 

Finally, we mention that since the branch BC represents displaced stable equi- 
librium positions in the vicinity of point B, we refer to this point as a stable bi- 
furcation point. Now, critical loads may also occur in systems for which there 
exists an unstable bifurcation point. We recall that in Example 1 1.1 of Chapter 1 1, 
it was asserted (without proof) that the critical load for that system occurs at 
an unstable bifurcation point. We now reconsider this problem using the energy 
criterion as developed above and will show that the bifurcation point is indeed 
unstable. 

Example 15.1: Consider the system consisting of a rigid rod of length L and 
supported by a linear elastic spring with constant k, as shown in Fig. (1 5.3.4a). 
The spring is attached to the wall in such a way that it always remains hori- 
zontal. Determine the critical load and the stable and unstable character of 
the equilibrium positions. 

Figure 15.3.4 

Solution: We examine the rod in a displaced position, defined by a rotation 0, as 
shown in Fig. (15.3.4b). (Note again that this is a l-d.0.f. system since its position is 
defined by one generalised coordinate). 

Since the shortening of the spring As = a sin0, the internal strain energy of the 
system is 

(15.3.15a) 
k 
2 

U = -a2 sin2@. 

The potential energy of the force P, measured from the vertical position, is 

v = -PL(l - COS0) ( 15.3.1 5b) 

and hence 

n(0) = U + V = -a k 2 . 2  sin 0 - PL(1 - cos0). (1 5.3.15~) 
2 

The first derivative is then 

- d W )  = (ka2 cos0 - PL)sin0. (1 5.3.16) 
d0 
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As before, the required condition for equilibrium is = 0. Clearly, for 0 = 0 and 
= 0 yields 0 = n, all values of P satisfl this condition. If 0 # 0,0 # n, 

(15.3.17) 

These equilibrium values of P are shown in Fig. (15.3.5). If we now imagine that 
the force P ,  applied to the vertical rod, is increased slowly from zero along the load- 
ing path OB, we first reach the bifurcation point B from which two branches 
emanate: BD and BCE. To determine the character of these branches, we examine 
the sign of the second derivative: 

ka2 
P = -cos0, 0 # 0,n. 

L 

d2 n - = ka2(cos2 0 - sin2 0) - PL cos0. 
de2 

At 8 = 0, 

Hence, according to the criterion, we conclude that 

II! 0 = 0 is a stable equilibrium position if P < q, 
B = 0 is an unstable equilibrium position if P > 9. 

We therefore conclude that the critical load is P,, = ka2/L 

(1 5.3.18) 

( 1 5.3.19) 

Figure 15.3.5 
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At 0 = n, 

( 1 5.3.20) 

Hence, 

H 0 = n represents stable equilibrium positions for all values P > -ka2/L. For 

Thus, we have established that the paths OB and EF represent stable equilibrium while 
BD and EG represent unstable equilibrium. 

We now examine the branch BCE for any equilibrium position 0 c 0 = Beq < n. 
Substituting the required equilibrium force, Eq. (15.3.17), in Eq. (15.3.18), 

P < -ka'/L, equilibrium will be unstable at 0 = n. 

1 = -ka2 sin2 Oeq. 
do' Heq 

(15.3.21) 

Therefore A n  < 0 and hence BCE represents unstable equilibrium. 
We observe that the stable or unstable character of equilibrium at the bifurca- 

tion point B (when approaching this point along the branch BCE) cannot be estab- 
lished from the second derivative since d2 ll/d0' l e 4 *  = 0 as P --f ka2/L. According 
to the above discussion, we must therefore examine higher order derivatives. From 
Eq. (15.3.18) 

(15.3.22a) 
d'll - = -2ka2 sin20 + PL sin0. 
d0 

Note that this derivative also vanishes identically as 0 -+ 0; therefore differentiating 
once more, 

(15.3.22b) 
d4 n 
- = -4ka2 cos20 + PL  COS^, 
d04 

that is, 

(1 5.3.22~) 

Substituting P = ka2/L, wefindthatatpointB,d411/d041B = -3ku' < 0,andhence 
A l l  < 0. Therefore we conclude that point B is an unstable bifurcation point.$ 

Several comments and remarks related to Fig. (15.3.5) are now in order: 

H Since more than one equilibrium position exists for values P < ka'/L, it is not 
possible to immediately conclude from Fig. (15.3.5) [as was concluded from 
Fig. (15.3.2) for the case of the system considered in Fig. (15.3.1)] that under 
such loads the vertical position 0 = 0 is in a state of stable equilibrium. 
For loads P > ka2/ L, two possible equilibriumpositions exist: the unstable vertical 
position 0 = 0 and the stable 0 = n position. Thus if the rod, subjected to such 
loads, is given a small perturbation from 0 = 0, it will 'jump' to the position 0 = n. 
This is indicated by the horizontal arrow in Fig. (15.3.5). 

T Negative values, P .cy 0. clearly represent an upward force acting on the rod. We note that to maintain 
the rod in a position 0 = n. a downward force P > ka'/L or an upward force having magnitude 
/PI .i ka2/L 1s required. 
An unstable bifurcation point, such as B in this problem, is often referred to as a Izmitpoznt in the stability 
analysis of structures. 
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R If the rod is in an unstable position represented by the branch BCE, it will jump 
to the 0 = n position if it is given a small perturbation 8 -+ 8 + r ;  if given a 
perturbation 0 -+ 0 - E ,  it will jump to the 0 = 0 position. Thus, we again observe 

U 

In investigating the above problems, it was possible to determine the critical force 
P,, and establish the stable or unstable character of the equilibrium positions for all 
possible values of 0 5 8 5 n. However, we often are interested merely in determining 
the critical load, for in engineering problems this is often the only quantity that is 
required. If indeed this is our sole concern, we need only consider the system in the 
neighbourhood of the original position; that is, the system may be investigated using 
a small (infinitesimal) displacement analysis in the neighbourhood of the original 
position. Such an analysis is mathematically much simpler. As we shall see, it will 
leadus to define an equilibrium state that we shall callpseudo-neutral. In fact, pseudo- 
neutral equilibrium will become our principal criterion for determining critical loads. 
In the following section, we determine the critical load to the previous problems, 
using this procedure. 

that a system always ‘seeks’ a stable equilibrium position. 

15.4 Determination of critical loads using a small deflection 
analysis - pseudo-neutral equilibrium 

We again consider the rod shown in Fig. (15.3.1). For this system, it was found that 
[Eq. (1 5.3.2)] 

Be2 n = - - PL(1 - COS0). 
2 

Let us now consider that the system undergoes only small displacements 
0 < 101 << 1. Then from the Taylor series expansion 

o4 
2! 4! 

cos8 = 1 - - + -..., (15.4.1) 

Eq. (15.3.2) becomes, upon neglecting terms of order higher than @, 

n(s) = (/3 - PL)02/2. (15.4.2) 

Note that following the small displacement assumption, n is now a quadratic func- 
tion of 8 and since all higher order terms have been dropped, for all n > 2, the 
derivatives = 0, identical&.$ 

For eqtiilibrium 

d n  
- 68 = (p  - P L ) 8  60 = 0. (15.4.3) 
d0 

For any arbitrary 60, the equilibrium condition is satisfied under the following 
conditions: 

R If 0 = 0, all values of P satisfy the condition, 

We first examine the equilibrium states for the solution, by examining $$(60)2 at 
8 = 0. 

I f0  $I 0, P = BIL.  

’ Clearly, having examined the general case in which higher non-zero denvatrves were obtained [see 
Eqs. (15.3.22)], we note that the result here is due to truncation ofthe power series of Eq. (15.3.6a). 
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From Eq. (15.4.2), 

(15.4.4) 

Hence, since the first derivative vanishes at 8 = 0, we note, from Eq. (15.3.6b), 
that 

A n  > 0 i f P  < B / L ,  (15.4.5a) 

A n  = 0 i f P  = B / L ,  (15.4.5b) 

A n  < 0 i f P  > @ / L .  (1 5.4.5~) 

Therefore we again conclude that for 8 = 0, the rod is in stable equilibrium if 
P < B/L ,  while if P > p / L ,  the rod is in unstable equilibrium. When P = @ / L ,  
according to the criterion of Section 15.2, the rod appears to be in neutral equilib- 
rium. However, from the analysis of the previous section, we have established that 
for a value P = B/L ,  the 8 = 0 position is actually a stable equilibrium position. 
The discrepancy in the results is due to the assumption ofsmall displacements in 
which we neglected terms of order higher than that of the quadratic. Hence, since 
the system under this load is not truly in neutral equilibrium, we refer to the rod as 
being in pseudo-neutral equilibrium with the clear understanding that this is merely 
a result obtained by the dropping of the higher order terms.+ 

However, in practical terms the difference between neutral and pseudo-neutral 
equilibrium states is immaterial if our goal is only to determine the critical load, 
for, in physical terms, we have established that for any load P > B / L  the rod is 
in unstable equilibrium. It follows that, using the small displacement analysis, we 
associate the critical load 

Pcr = BIL (15.4.6) 

with apseudo-neutral equilibrium state (i.e., when d2n/d02 = 0). In other words, 
according to the small displacement analysis, when P < B/L the original position 
is in stable equilibrium; as P increases and reaches P = B / L  the rod assumes a 
pseudo-neutral equilibrium state for 8 = 0; as P increases further, the equilibrium 
position 8 = 0 becomes unstable. 

From the finite analysis of the preceding section, we conclude that a rod in the 
0 = 0 position, under a force Pcr, will return to its original state when given any 
disturbance; however, according to the small displacement analysis, A n  = 0 when 
P = Pc,. Upon recalling the definition of neutral equilibrium as given in Chapter 1 1 
(Section 2), this latter analysis lead to the conclusion that if the rod is given a small 
displacement from 8 = 0 with P = Pcr, it will neither return to 8 = 0 nor will the 
displacement increase. Thus, when using a small displacement analysis, P = Pcr 
is said to be the smallest force, which can maintain the rod in a slightly deflected 
position. 

It is necessary, however, to emphasise here an important limitation of the small 
displacement analysis: namely, while the small displacement approximation with 
l7 expressed as a quadratic in the displacements (or rotations) can be used for a 
large variety of problems, such an approximation clearly cannot yield solutions if 

t Pseudo-neutral equilihnum is clearly aresult of an imposed mathematical restriction and hence does not 
have a distinct physical meaning. Therefore, many authors do not make a distinction between pseudo- 
neutral and neutral equilibrium states and refer to both of these states as ‘neutral’ equilibrium. For clanty, 
we shall continue to use the term ‘pseudo-neutral’ where appropriate. 
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all derivatives up to the second order vanish identically for all P when evaluated 
at the original equilibrium position. In such cases, we must expand beyond the 
quadratic term, i.e. use the large displacement analysis. Furthermore, we observe 
that, as opposed to the finite displacement analysis, the small displacement analysis 
does not permit us to study equilibrium states on branches representing displaced 
configurations of a system. 

Example 15.2: Determine the critical axial load P for a force acting on a rigid 
rod AB of length L ,  hinged at point A and restrained by a nonlinear elastic 
spring as shown in Fig. (15.4.la). The spring i s  governed by the relation 

F = c(1 - e-yA), 0 < y, 0 < c, (1 5.4.7) 

where F is the force in the spring, A is the change in length of the spring 
and c and y are constants. [We observe that y and c have units of (length)-' 
and Newtons respectively.] 

Figure 15.4.1 

Solution: The force-displacement curve represented by Eq. (15.4.7) is shown in 
Fig. (15.4.1~). We note that the derivative % = yce-y'; at A = 0, = yc. (Thus 
the slope ofthe force-displacement curve increases with y , and as y -+ 00, the spring 
becomes infinitely stiff at A = 0.) 

The strain energy in the spring is given byt 

U == F(A)dA = c (1 - e-yA) dA I 0 I 0 

Assuming small rotations, 10 I << 1, I A I << 1 [Fig. (1 5.4.1 b)] and using the represen- 
tation for the exponential function 

x2 x3 

2! 3! 
ex = 1 f x  + - + - + ... , (15.4.9) 

t The superscnpt fis droppedin the last expression of%. (15.4.8), with theunderstandingthat A represents 
the final displacement. 
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upon dropping all terms higher than the quadratic, 

U =  cya2 ( 1 5.4.10) 

If 8 is taken as the generalised coordinate, then from simple geometry of the displaced 
system [Fig. (15.4.1b)], 

2 .  

A = L ,  - (L’+ h2 - 2bL sin8f” = L, [ 1 - (1 - zsin8)“’], 2bL (15.4.11) 

where L ,  = is the original spring length. 
Using the Taylor expansion 

(1 5.4.12a) 

and the binomial theorem 
x x’ 
2 8  (1 fx ) ’ l ’  1 f - - - + ... (15.4.12b) 

and again dropping all terms higher than the quadratic, we have 

or 
bLf3 
Ls 

A=---. 

The strain energy in the spring is therefore 

5.4.1 

(1 5.4.14) 

Noting that the potential energy of P ,  taken with respect to the original 8 = 0 
position, is V = -PL( 1 - cos @); upon using the Taylor expansion, Eq. (1 5.4. I), we 
have V = -PL02/2.  Therefore 

P L82 
Q2 - - cyb2L’ n=---.--- 

2Lt  2 
or 

n=-(--- 2 L,2 
ych2L2 p L )  82. 

From the derivative 

(15.4.15) 

(15.4.1 6) 

we note that according to the condition dn/dBI,=, = 0, the onginal position is sat- 
isfied for all values of P.  

Setting the second derivative to zero (such that A l7 = 0), we then find the critical 
load corresponding to pseudo-neutral equilibrium: 

(15.4.17) 
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Several special cases are of interest: 

If b = 0, P,, = 0. This corresponds to a physical situation where, if the system is 
given a small disturbance, the spnng is unable to exert a restoring moment about 
point A in order to bring the rod back to its original 6 = 0 position. 

II If b -+ 00, Pcr -+ ycL.  This limiting case corresponds to a system with a horizontal 
spring. The term y c  corresponds to a linear spring constant k.t (See Example 11.1 
with a = L.) 
As y -+ 00, Pcr -+ 00. As mentioned previously, this corresponds to a spring that 
is initially infinitely stiff and therefore does not permit any motion of the rod. 0 

In anticipation of the discussion in the next section, we observe the following fea- 
ture in the small displacement analysis (which will prove to have a practical value 
in a stability analysis): the critical load P,,, which was obtained from the stabil- 
ity criterion, Eq. (15.4.17), could also be obtained from the equilibrium criterion, 
Eq. (15.4.16), if8 # 0. Indeed, we obtain the same value of P,, ifwe set n(6) = 0 in 
Eq. (15.4.15) for all 6 # 0 (181 << 1). 

To explain this, we examine the expressions for the total potential in greater gen- 
erality, using small displacements in the following section. From the conclusions, we 
will arrive at a simple procedure for determining critical loads. 

15.5 The total potential for small displacements: 
reconsideration of the stability criterion 

In Section 15.3, using a finite displacement analysis, the total potential was repre- 
sented by an infinite series [Eq. (15.3.6a)l. If we wish only to obtain the critical 
load, we have seen that it is often possible to consider small displacements and drop 
all terms higher than the quadratic term. Moreover, we are usually interested in the 
variation from the initial position where the coordinate defining the position is taken 
as zero. Let us therefore expand the total potential about this point. We consider 
here a I-d.0.f. system and let q denote the generalised coordinate (as defined in 
Section 15.3) that specifies the position of the system. Then, using Eq. (15.3.6a), 
and dropping higher order terms, the total potential expanded about q = qeq = 0 
becomes 

or 

If q = 0 is an equilibrium position, then 

? I q z o  = 0 

and hence 

(1 5.5.2) 

(15.5.3) 

Note that if cy  
a linear elastic spring. 

k .  the stram energy U, given by Eq. (15.4.10). becomes U = kA2/2 as in the case of 
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Thus we observe that, when measured from an equilibrium position, AII contains 
only quadratic terms. We note further that n(q = 0) may always be taken as zero 
since it depends on an arbitrary datum [i.e., the datum may always be chosen in 
such a way as to render II(q = 0) = 01. Hence if II(q = 0) = 0, 

AWSq)  = n(Q) ( 1 5.5.4) 

and Eq. (15.5.3) may be written as 

Letting 

(1 5 S . 5 )  

( 1 5.5.6) 

we have 

n(Sq) = a(Sq)2. (1 5.5.7) 

This indeed was the case in the two previous examples considered in Section 15.4, 

W q )  = aq2, (15.5.8) 

that is, purely quadratic. In the first problem, that of the rod supported by a torsion 
spring, a = l((B - P L )  [see Eq. (15.4.2)] while in the second problem we had 

We recall now that using the small displacement analysis, the critical load was 
found to be associated with pseudo-neutral equilibrium. In effect this means that 
for P = Pcu the original q = Oposition, as well as neighbouringpositions 0 < )q I 
<< 1, is an equilibrium position. Therefore, we set 

d"/ = 2 4  = o  ( 15 S.9) 

and, hence, we require that a = 0. For pseudo-neutral equilibrium, we require that 
the second derivative vanish: 

where (with q = 0 and Sq = q - qeq = q - 0 = q )  17 was of the form 

a = z(- 1 ycb2LZ2 - P L )  [see Eq. (15.4.15)]. 
L i  

dq qzo q#O 

d2 II - = 2a = 0. 
dq2 

(15.5.10) 

Thus we ObservethatfromeitherofEqs. (15.5.9)or(15.5.10), weobtainthesame 
result, viz., a = 0 (which, e.g., in the two previous examples cited, led to critical 
loads P,,). We note too that for l-d.0.f. systems, as examined here, we can obtain 
the same critical loads by setting n(q # 0) = 0 in Eq. (15.5.8). However, as we 
shall see, this last procedure cannot be used so simply for n-d.0.f. systems. 

The above discussion may be summarised as follows: 
To obtain the critical loads, which cause instability of a system in its original 

configuration, we may consider only small displacements, and expand II in a power 
series, dropping higher order terms; as a result the total potential n is represented 
by a pure quadratic expression. 

The critical load is then taken as that force which causes the system to be in 
pseudo-neutral equilibrium, i.e., the system is assumed to be in equilibrium in a 
position adjacent to its originalposition (as well as in its original position). The 
critical load is thus determined by setting the first derivative of I7 equal to zero 
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for non-zero displacements. The second derivative will then automatically vanish, 
confirming the state of pseudo-neutral equilibrium. 

As was mentioned in Section 15.4, such a procedure is permissible only if neither 
the first nor the second derivative of rl[ vanish identically for all values of P when 
the generalised coordinate is different than zero. 

15.6 Systems having several degrees-of-freedom - 
small displacement analysis 

In our previous study, we have considered only 1 -d.o.f. systems, i.e. systems whose 
configurations are completely defined by a single generalised coordinate, q . We 
now consider systems having several degrees of freedom. For example, the system 
given in Fig. (15.6. la) has 2 d.0.f. since two coordinates 41, q 2  are required to define 
its position, while the system shown in Fig. ( I  5.6. lb) has 3 d.0.f. with generalised 
coordinates 41, q 2 ,  q 3 .  

Figure 15.6.1 

In general, a system may have n d.0.f. with generalised coordinates 41, q 2 ,  . . . , qn. 
The important feature of the generalised coordinates is that they are independent 
coordinates; i.e., they can be varied independently. Note that the generalised co- 
ordinates may be displacements or angles [or even combinations of those as in 
Fig. (1 5.6. lb)]. 

Two-degree-of-freedom system 
For mathematical simplicity, we first consider a 2-d.0.f. system; we will generalise 
the results at a later stage. We follow essentially the discussion given in the previous 
section, and consider generalised coordinates q1 and q 2 ,  Iqil<< 1. If we neglect 
higher order terms, the expansion of the total potential n about q1 and q 2  becomes 

(15.6.1) 
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As in the previous section, we expand about ql  = q2 = 0. Then 

(15.6.2) 

If q1 = 9 2  = 0 represents an equilibrium position, the variation of I3 is 

and since this must be true for any arbitrary variation, 6qi ,  about the equilibrium 
position? we require that 

(15.6.3b) 

For convenience, we use the following notation: 

(15.6.4) 

where the a’s are constants. Note that these constants are dependent upon the force 
P.t Using Eqs. (15.6.3) and (15.6.4), we then may rewrite Eq. (15.6.2) as 

AI-I(Sqi, Jq2) = a i i ( Q ~ ) ~  + 2ai2(6qi)(Q2) + a22(6q2Y. (15.6.5) 

Furthermore, since the total potential can always be referred to any arbitrary datum, 
it is always possible to set n(0,O) = 0. It follows that 

n(Sql3 642) = ArWq1,6q2). (1 5.6.6) 

and since 6q, = qr - 0 = qr we have 

n(41.42) = allq? + 2al24142 + a22422, (1 5.6.7) 

which is observed to be a pure quadratic. 
We now apply our criterion for pseudo-neutral equilibrium, which states that in 

addition to the equilibrium state q, = 0, equilibrium exists at neighbouring 
positions, 0 < lqr I << 1 when P = P,,. Hence, the stationary conditioii 

(1 5.6.8) 

must be satisfied. From Eq. (15.6.7), we have 

For a non-trivial solution of Eqs. (1 5.6.91, the determinant 

D I zi: zii 1 = 0 

t In general, the coefficients a1 1 and a22 will be positive for small values of P 

(1 5.6.1 Oa) 
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or 

( 15.6.1 Ob) 

Equation (15.6.10b) is thus the required condition for equilibrium. Let us now 
verify from the basic definition of pseudo-neutral equilibrium (namely, A n  = 0) 
that Eq. (15.6.10b) corresponds to such an equilibrium state. 

To this end, we digress here to recall a mathematical property of quadratic func- 
tions. Let 

f(x, y )  = AX2 3.2Bxy + cy2 (15.6.11) 

be a continuous quadratic function of the two independent variables x and y .  Then, 
if and only if 

A > O  (1 5.6.12a) 

and 

AC - B2 > 0. (15.6.12b) 

it follows that f ( x ,  y )  > 0 for all x # 0, y f 0. The function f i x ,  y )  is then said 
to be positive definite.+ Thus f ( x ,  y ) ,  given by Eq. (15.6.1 1) and satiseing the 
conditions of Eqs. (1 5.6.12), has a relative minimum at x = .v = 0. 

Now, we observe that n appearing in Eq. (15.6.7) is precisely of the same form 
as f ( x ,  y )  of Eq. (15.6.11). Therefore, since A n  = n, A n  > 0 for all Sqi E qi ,  
provided that 

all > 0 (15.6.13a) 

and that the determinant 

(15.6.13b) 

We recall that for all P P,, the system will be in a state of stable equilibrium, 
i.e., A n  > 0 if the system is given a displacement when subjected to F PO. 
Therefore, for stable equilibrium, we require that D > 0. When D ceases to be pos- 
itive, it is possible to give the system displacements S q l  , 6 q 2  that will cause A n  
to vanish, i.e., the state q1 = 0, q 2  = 0 ceases to be in stable equilibrium and be- 
comes instead one of pseudo-neutral equilibrium. Now we observe that the vanish- 
ing ofthe determinant ofEq. (15.6.13b) i s  exactly the same as that obtainedfrom the 
equilibrium conditions, Eq. (1 5.6. lOa). In practice we need therefore write only the 
equilibrium conditions in the displaced configuration and these will automaticalE?, 
correspond to a pseudo-neutral equilibrium state, thus leading to the determination 
of the critical load. (This is the same conclusion as was reached in the previous 
section for systems having 1 d.0.f.). 

Example 15.3: Determine the critical buckling load P for the system shown 
in Fig. (15.6.la), where AB and BC are rigid bars. The linear torsional springs 
a t  A and B, each have a constant B (N-mlrad). 

Solution: The given system has 2 d.0.f. We choose as general coordinates q1 0, 
q 2  = $r, and consider the system in its displaced configuration [Fig. (15.6.la)l. 

From Chapter 14, we recall that elastic strain energy possesses this same property. 
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For any given displacement, the strain energy U of the springs and the potential 
energy of P are given by 

(1 5.6.14a) B U = -[62 + (+ - 6)2] 
2 

and 

v = -PL(2 - cos6 -cos+) ( 1 5.6.1 4b) 

respectively; hence, 

n = -(2Q2 B - 26+ + +2) - PL(2 - cos6 - cos+). (15.6.15a) 2 
Assuming small displacements, 

PL n(6, = p/2(2e2 - 20+ + +2) - + @2). (15.6.m) 

For equilibrium, we require that 

- (28 - PL)6 - B* = 0, (1 5.6.16a) 

(15.6.16b) 

an 
a0 
- = - g e + ( p - ~ ~ ) + = o .  an 
a* 

- -  

Non-trivial solutions for 6 and + exist provided 

(1 5.6.17a) 

or 

(28 - PL)(@ - PL) - 8 2  = 0, (15.6.17b) 

that is, 

(PL)2 - 3B(PL) + 8 2  = 0. (15.6.17~) 

Solving for P, 

(1 5.6.1 8a) B 
2L 

Note that two values have been obtained: 
B 

2L 
B 

2L 
Corresponding to PI , we substitute in either of the Eqs. (1 5.6.16) and find that 

P = -(3 f &). 

Pi = -(3 - &), 

P2 = -(3 + A). 

(15.6.18b) 

(15.6.18~) 

1 
2 

+ = -(&+ 1)6 = 1.6186 

while for P2, 

(1 5.6.19a) 

(15.6.19b) 

Equations (1 5.6.19) define two modes ofbuckhg and are shown in Fig. (1 5.6.2). 
Thus, e.g., we observe that if PI acts on the system, it will buckle in the shape shown 
in Fig. (15.6.2a). 

1 
2 

+ = -(1 - &)6 = -0.6186. 



15.6 Systems having several degrees-of-freedom 665 

Figure 15.6.2 

Both of these configurations represent pseudo-neutral equilibrium positions. 
However, since we are interested in the lowest buckling load, we define the critical 
load as 

(15.6.20) B B 
Pcr = PI =: -(3 - &) = 0.3820 - L'  2L 

We observe that while the general shape of the buckled configuration has been 
established, the amplitudes of the displacements remain unknown. This confirms our 
initial comments that by assuming small displacements, we lose the ability to establish 
exact equilibrium positions. 

It is worthwhile to mention that if we substitute Eqs. (15.6.19a) and (15.6.20) 
in Eq. (15.6.15b), we find that ll(0, +) = 0 identically. This confirms the state of 
pseudo-neutral equilibrium since A l l  SE n(6, +) - IT(0,O) = 0. 

Finally, we observe that mathematically this problem is an eigenvalue problem, 
where the discrete forces P I ,  P2 are the eigenvalues and the buckling modes {q1q2IT 
are the eigenvectors corresponding to these eigenvalues. 

on- Degree-of- freedom systems 
The basic ideas developed for the 2-d.0.f system carry over to the n-d.0.f system, 
where the total potential is given by 

n = n(q1, q2r q 3 .  . . - I q n ) .  (1 5.6.21) 

Specifically, an n-d.0.f system has the quadratic function 

n = (allq: + a12q1q2 + a13q1q3 + * ' * + a1nq1qn) 

that is, 
n n  

(1 5.6.22a) 
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where a,, are coefficients. In matrix form 

I-I = {qlTIA1{q1. (15.6.22b) 

where {q 1 represents the vector having components qr , {q}T is its transpose and [ A ]  
is the matrix of the coefficients, 

all a12 a13 ’ * * 

A =  

ani an2 an3 . * * 

The necessary and sufficient conditions for I-I to be positive definite are that all the 
principal minors, 

(15.6.23) 

As with the 2-d.0.f system, a pseudo-neutral equilibrium state will exist if it is 
possible to give the system a set of variations Sql ,6q2, . . . , S q ,  such that A n  = 0. 
Hence (since the determinant D involves all the variables q z )  the corresponding 
condition for pseudo-neutral equilibrium is obtained by setting D = 0. 

Having investigated the stability of systems consisting of rigid elements sup- 
ported by elastic springs, we now study the stability of elastic elements. We shall 
see that the ideas and concepts developed in the preceding sections also apply to 
elastic bodies. 

15.7 Stability of an elastic rod: the Rayleigh quotient 

We consider the stability of a linear elastic rod AI3 of length L, having flexural 
rigidity E I .  The rod is subjected to a compressive axial force P and is assumed to 
be simply supported at the two ends, as shown in Fig. (15.7.la). 

In Chapter 1 1, the critical load was found to be 

IGEI 
P,, = - 

L2 
(15.7.1) 

which is known as the Euler buckling load. When P = P,, the rod assumes a buckled 
configuration as shown in Fig. (15.7.1b). We now investigate the stability of the rod 
from energy considerations. 

Let us assume that the axial force is applied statically starting from a zero value. 
Clearly, for low values of P ,  P < P,,, the rod will remain straight, although it will 
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Figure 15.7.1” 

undergo axial strains. Point B will undergo a small axial displacement A, to say B* 
and the resulting strain energy, given by Eq. (14.2.1 a), is 

P < P,,. 
P2L 

U, = - 
2AE ’ 

(15.7.2) 

Upon reaching P = P,, the rod can assume a buckled configuration. We are there- 
fore interested in investigating the diference in the total potential energy of the 
system in the buckled configuration with that which exists immediately prior to 
buckling. Thus, we are concerned only with the energy that exists due to the bending 
of the r0d.i This strain energy, given by Eq. (14.2.16a), is 

(15.7.3) 

Now, we shall be interested here only in finding the critical buckling load, i.e., 
the load above which the original straight-line configuration ceases to be stable. 
Following our previous discussion, we therefore use a small displacement analysis. 
We recall, from Chapter 9, that using the assumption of small displacements and 
rotations, the Euler-Bernoulli relation for flexural deformation is [Eq. (9.2.4)] 

EZv”(x) = -M(x) ,  (15.7.4) 

t Effectively, we set the arbitrary datum of I’I equal to zero. immediately pnor to buckling, i.e. when the 
right end of the rod IS at point B* 
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where v(x) is the displacement in the positive y-direction. Substituting in 
Eq. (15.7.3), 

L 

U = !. 1 EI(v“)2 dx. 
2 

0 

(1 5.7.5) 

Now in addition to the displacement v(x) in the y-direction, points also displace 
in the x-direction due to the change from the straight-line position to the buckled 
configuration. In particular B* 4 B** [Fig. (1 5.7. lb)]; we denote this distance by A. 
The potential energy of the force P is then 

v = -Ph, ( 1 5.7.6) 

where V = 0, immediatelyprior to buckling. 
The calculation of h is merely a problem of geometry.+ 
To this end, let u(x) represent the displacement to the left of any point of the lon- 

gitudinal axis; i.e., we take here positive u(x) in the negative x-direction. Consider 
now a typical element of length dx, as shown in Fig. (15.7.1~). In the buckled state, 
the length is given by 

2 
ds2 = [ (1 - $) dx] + dv2, 

that is 

( 1 5.7.7a) 

(15.7.7b) 

We now recall that flexural deformation is inextensional; that is, there is no change 
in the length of the element lying on the longitudinal centroidal axis [see Section 6b 
of Chapter 81. Therefore setting ds2 = dx2, 

2 

(l-;)2+(;) = l .  

Solving for duldx, 

( 1 5.7.8a) 

dx 

Now, by the binomial theorem [Eq. (15.4.12b)], 

( 1 5.7.8b) 

( 1 5.7.9a) 

Consistent with the small displacement analysis, recalling that 1x1’1 << 1 we neglect 
all terms higher than the quadratic:$ 

(15.7.9b) 
1 
2 

[1 - (xI’)2]1’2 N 1 - -(v’)2, 

t An expression for h was derived in Section 5 of Chapter 9, where the notation A, was used, i.e., A, E A. 

* This approximation is analogous to the small displacement approximations used in Section 15.4. 
We repeat it here for contmuity and convenience. 
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and therefore, from Eq. (15.7.8b), 
du 
dx 

Integrating, 

0 

Since u(0) = 0, we finally obtain for h 

1 
2 

u(L), 
L 

a = - / ( v l ) 2  dx. 
0 

Substituting in Eq. (15.7.6), the potential energy V of the force P is 

V = -- (v’)2dx, 
p ?  2 .  

0 

and therefore upon combining with Eq. (1 5.7.5), we obtain 
L 

P 
2 

E I ( U ” ) ~  dx - - / ( v ’ ) ~  dx. 
0 0 

Alternatively, using Eq. (15.7.3) for the strain energy, we have 

(1 5.7.10) 

(15.7.11) 

( 1 5.7.1 2) 

(1 5.7.1 3) 

( 15.7.14) 

( 1  5.7.15) 
0 0 

We observe that the potential I7, given by Eq. (15.7.141, is expressed in terms of 
pure quadratic terms, as was the case in Section 15.5 for the rigid rods, using a 
small displacement analysis. We note too that the total potential 

I7= n ( P ,  E I ,  L )  (1 5.7.16) 

here is actually a set of numbers defined by the three given parameters. However, 
I1 also depends on the form of v(x), which in fact is unknown. Such a quantity is 
called a functional. 

Proceeding as in the previous sections, we investigate possible equilibrium posi- 
tions when v (x )  $: 0, and thus seek stationary values of I1. We therefore require that 

SI7 = S [ 1 2 / EI(v”>2 dx - [(v’)‘ dx] = 0. (15.7.17) 

Finding extreme values of l7, given by an expression such as that appearing in Eq. 
(1 5.7.171, requires the use of the calculus of variations and falls beyond the scope o f  
our treatment. [However, we state that by use of this calculus, a differential equation 
for v = v(x)  is obtained together with appropriate boundary conditions at x = 0 and 
x = L.  The solution o f  the resulting boundary value problem then yields the shape 
of the function v ( x )  for which I7 as well as the critical force P,, will be stationary.] 

L L 

0 



670 Stability of mechanical systems by energy considerations 

Having precluded the use of the calculus of variations in our treatment, we seek a 
different approach that, while not yielding, in general, an exact value of the critical 
load, will provide us with approximate solutions to the instability problem. 

First, we recall that if we assume infinitesimal displacements, the critical load 
corresponds to the force that causes the system to be in a neutral (or more precisely 
a pseudo-neutral) equilibrium state.? This occurs when the system (described by a 
potential that is quadratic in the displacements) undergoes displacements for which 
the change A n  = 0. 

de- 
pends on the quadratic terms v’ and U”.  We first observe that in the original position 
v(x) E 0, n = 0. Moreover, it is important to note that the v = 0 position is an equi- 
librium position. Hence ll as given by Eq. (1 5.7.14) is also, in fact, the change A ll 
in the total potential, which occurs due to buckling.$ Using the neutral equilibrium 
condition, A l l  = 0, and substituting Eq. (15.7.14), we may therefore write 

Now, let us consider n as given by Eq. (1 5.7.14), where we have noted that 

L I 1 E I ( X ) ( V ” ) 2 d x  - P (v‘)2 dx = 0. 
0 s 0 

(15.7.18) 

Hence P is given by the quotient 

called Rayleigh k quotient (named after Lord Rayleigh); the calculated value of P 
is referred to as the Rayleigh buckling load and is denoted by PR, i.e., 

(1 5.7.19) 

Now, clearly, the value of PR depends on the function v = v(x),  which, as men- 
tioned previously, is generally unknown. Thus PR will assume various numerical 
values depending on the function v(x).  The question here, then, is what is the re- 
lation between PR and the critical load p,,. To answer this question, we must recall 
that the critical load is the smallest possible load that can maintain the system in 
a deflected position, v(x) f 0, since if P < P,, the rod will return to its original 
position v(x) = 0. Hence, we conclude that the critical load is the smallest value 
of PR that can be obtained from the Rayleigh quotient; that is, 

( 1 5.7.20) 

Indeed, there is aunique function v = v(x) that will cause PR to be aminimum. (This 
is the function that we would have obtained, had we proceeded with the calculus of 
variations previously mentioned!). 

In the next sections we shall develop a method that gives approximate values of 
P,, and shall also give a mathematical proof that P,, 5 PR. Since PR is never less 
than P,, (and, in fact, it is generally larger), PR is said to be an upper bound to Per. 

However, before concluding, we note that the numerator appearing in Eq. (1 5.7.20) 
represents the strain energy. Consequently if U is given by Eq. (1 5.7.3) instead of 

t At this stage, we will use the conventional term ‘neutral’ equilibrium with the understanding that we are 

t Note that a similar case existed for the previous systems considered. [See, e.g., Eq. (15.5.4).] 
refernng to ‘pseudo-neutral’ equilibrium. 
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Eq. (15.7.5), the Rayleigh load may be expressed as 

(15.7.21) 

At times we shall find it advantageous to use this form in obtaining critical loads. 
Note, however, that in practice, Eq. (15.7.21) proves to be useful only if M(x)  can 
be written explicitly, i.e. only for statically determinate systems. 

15.8 The Rayleigh method for critical loads 

(a) Development of the method 
In the previous section, the Rayleigh load was defined as 

s,” EI(X)(V”)2 dx 

s,”(v’)2 dx 
P R  = 

and it was observed that the value of PR depends on the form IJ = v(x) ,  which, in 
general, is unknown. 

We develop here the Rayleigh method to obtain approximate values of Per. 
Essentially, recalling the development of Section 9 of Chapter 14, we assume a 
form v = f ( x )  that satisfies all the geometric boundary conditions of the problem. 
Thus, as defined in Chapter 14, these are admissiblefunctions. (Note that there 
exist many admissible functions - actually an infinite number of such functions - 
which satisfy the geometric boundary conditions of a given problem.) Therefore, in 
general, we choose the simplest forms of the admissible functions and substitute in 
Eq. (15.7.19). Upon performing the integration, a value of PR is obtained, which 
will always be greater than Pcr. However, we may repeat the procedure any number 
of times, each time using a different admissible function and thus obtain a different 
PR. Since PR L PC, the smallest value of PR will be the best approximation to Per. 
We illustrate the method in the following example. 

Example 15.4 Determine the Rayleigh buckling load for the simply suppott- 
ed elastic rod shown in Fig. (15.7.1)‘ assuming as an admissible function, the 
parabola 

v(x) = Ax(L - x). (15.8.1) 

Sofution: Taking derivatives, 

v’(x) = A(L - 2 ~ ) ,  (15.8.2a) 

v” (x )  = -2A, (15.8.2b) 

the numerator of Rayleigh’s Quotient is 

E l  ( v ’ ~ ) ~  dx = 4A2EI dx = 4A2EIL i 0 i 0 
while the denominator is 

L L 
A2L3 

/ (v‘ )~  dx = A2 / ( L  - 2 ~ ) ~  dx = - 
3 ‘  

( 15.8.3a) 

(15.8.3b) 
0 0 
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Hence, substituting in Eq. (1 5.7.19), 

4A2EIL 12EI pR=--- - 
A2L3/3 L2 . (1 5.8.4) 

If we compare with the exact value of P,, = 9 = 9.86969 given by Eq. (15.7.1), 
we note that the percentage error is 

(1 5.8.5) 

which is, in fact, a large error. 
We may explain this large relative error by noting, from Eq. (15.8.2b), that for 

our assumed buckled configuration, U” = -2A $ 0 .  Now we know that the moment 
M = 0 at x = 0, x = L. Hence since M = -EIu”(x), the non-vanishing second 
derivative is a clear contradiction with the actual conditions that exist at the two ends 
A and B. In other words, our assumed admissible function, Eq. (15.8.1), yields a 
second derivative which clearly does not approximate that which occurs for the actual 
elastic curve in the true buckled position. 

However, let us solve the problem again, with the same admissible function, 
Eq. (15.8.1), using instead the form for the Rayleigh load given by Eq. (15.7.21). 
Then 

M ( x )  = Pv(x)  = PAx(L - x). (15.8.6) 

The denominator of Eq. (15.7.21) remains the same as before, while the numerator is 

(1 5.8.7) 
0 0 

Therefore 
PiA2L5/30EI 

A2L3/3 
P R  = 

from which 

( 15.8.8) 

The resulting percentage error is 

which is a relatively small error. U 

The question may well be raised as to why, if the same admissible function is 
assumed, do we get such a poor approximation in the first case, while in the second 
case the approximation is very good. 

We observe that in the second case, the approximation for the second derivative 
does not appear explicitly in the expression for the strain energy. Thus, while it is 
often possible to choose an admissible function that approximates the true buckled 
shape, choosing a function whose second derivative approximates that of the true 
buckled curve proves to be much more difficult. This, in fact, was the case for the 
admissible function given by Eq. (15.8.1). 
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We thus conclude that in general, the Rayleigh load will approximate the true 
critical load, depending on how well the chosen admissible function approximates 
the true shape of the buckled curve.t The latter is referred to as the buckling mode, 
as we have seen in Section 15.6. It follows that if by chance, we choose a curve 
corresponding to the natural buckling mode, then we shall find that PR = Per. For 
the problem at hand we know that the true buckling mode corresponding to Pc, 
(with n = 1) is given by [Eq. (1 1.4.13)] 

?lX 
v(x)  = A sin - (1 5.8.9) 

L 
for which 

An nx 
L L 

v’(x) = - cos -, 

v”(x) = - A (  F)2 sin 7. 
(1 5.8.1 Oa) 

(1 5 .S. 1 Ob) 

Note that here 

v(0) = v(L)  = v”(0) = v”(L) = 0,  (15.8.1 1) 

i.e., aEZ boundary condition, both geometric and mechanical, are satisfied. 
Substituting in the numerator and denominator of Eq. (15.7.19), 

, (15.8.12a) 
2L3 

[ ~ ” ( x ) ] ~  dx = E I A 2  
L 

0 0 

from which 

(1 5.8.13) 

Example 15.5: A simply supported rod of rectangular cross-section, with con- 
stant width band varying depth d(x), is subjected to an axial load P, as shown 
in Fig. (15.8.1). The second moment of the cross-sectional area, / ( x ) ,  is given 
as 

/ ( X I  = /0(1+ ysin -), 
where /O = / ( x  = 0, L) ,  6 = d(x = 0, L )  and y is a constant. Determine an 
upper bound PR for the critical load, using Rayleigh’s method. 

Z X  

L 

Figure 15.8.1 

We amve at this conclusion by a qualitative reasoning. In Example 15.6, we shall verify this conclusion 
by companng quantitatwely the results for a series of assumed functions. 
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Solution: Using the Rayleigh method, let us assume that the buckling mode of this 
rod is the same as that of a rod of constant I = 10; i.e., we assume an admissible 
function 

XX 
v(x) = A sin - 

L ‘  
The numerator of the Rayleigh quotient is then 

(1 5.8.14) 

(15.8.15) 

The denominator of the Rayleigh quotient, not being dependent on I(x), is the 
by simple integration. 

same as for the prismatic rod [Eq. (15.8.12b)l. Therefore 

A2EZoL(n/L)4(1/2 + 4 ~ / 3 ~ )  n2EIo p R =  A2n /2 L - - T(l + E). (15.8.16) 

We observe, by means of this very simple calculation, that we have easily obtained 
an approximation to the critical load. On the other hand, an exact value for the critical 
load of this non-prismatic beam can be found only from a solution of the equation 
El(x)v”(x) + Pv(x) = 0 [cf. Eq. (11.4.4b)], i.e., 

El0 1 + y sin - v”(x) -t Pv(x) = 0, ( ?3 
where v(x) satisfies the boundary conditions v(0) = v(L) = 0. We observe here that 
this is a second-order differential equation with variable coefficients which does not 
readily possess a simple analytic solution. 

If, for example, y is given as y = (dc/dO)j - 1 [see Fig. (1 5.8. l)], the effect of the 
varying depth d(x) is shown in the plot of 2 vs. 2 in Fig. (15.8.2), where PE is the 
Euler buckling load, PE = q. 

In the example below, we show a first means to obtain an improvement on the 
approximation for the Rayleigh load. 

Example 15.6 Determine an approximation for the critical load PCr acting on 
a cantilever beam, as shown in Fig. (15.8.3a), using Rayleigh’s method. 

Solution: We assume an admissible function having the form [Fig. (15.8.3b)l 

V ( X )  = Axr, J > 312, (1 5.8.17a) 

where A is a constant and J is a parameter. Then 

v’(x) = JAx? 

u”(x) = J (J  - 1)Axr-2 

( 15.8.17~) 

( 1 5.8.1 7d) 

Substituting in the denominator of the Rayleigh quotient, and integrating, we obtain 
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Similarly, the integral of the numerator becomes 

Note that the condition c > 312 is required in order that the preceding integral be 
bounded and positive. 

The Rayleigh load is then 

( 1  5.8.19) 

If, for example, { = 2 then PR = 9. Similarly for ( = 3, PR = = 6.667%. 
Theexactcriticalloadforthisrodisknown[seeEq. ( 1  1.9.9)],viz. P,, = n2EI/4L8= 
2.467EI/L2. Therefore the percentage errors for the cases c = 2 and 3 are 21.5 
and 170%, respectively. We thus observe that, depending on the chosen admissible 
function v(x ) ,  one may obtain a very poor approximation to P,,. Clearly, we may 
suspect that the error increases sharply for an assumed function that differs greatly 
with the true buckling mode. 
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Now we note that the load PR obtained in Eq. (1 5.8.19) is a function ofthe parameter 
{,i.e., PR = PR({). Since PR isanupperboundto Pc,, for v(x)givenbyEq. (15.8.17a), 
the value of < which will yield the best approximation to P,, is that for which PR 
is a minimum. To this end we set 2 = 0. Upon differentiating, after some simple 
manipulations, we obtain 

4{2 - lO{ + 5 = 0 (1 5.8.20a) 

whose roots are 

(15.8.20b) 

Since the lower root is less than unity, the only relevant root is { = i(5 + f i) = 
1.8090. Substituting this value in Eq. (1 5.8.19), we find 

1 
4 

{ = -(5 f h). 

E I  E I  
PR = -(11 + 5&) = 2.773- 

8L2 L2 ’ 
(15.8.21a) 

which corresponds to an error of 12.4% with PO. Note that the assumed function is 
then 

v ( x )  = AX1.*09. (1 5.8.2 1 b) 

Thus, of all functions having the form given by Eq. (15.8.17a), that represented by 
U Eq. (15.8.21b) yields the closest approximation to the true buckling mode. 

Having obtained results for various values of < in this example, we are now in a 
position to relate the various shapes given by v(x)  to the calculated Rayleigh load. 
The shapes of the assumed buckling mode, Eq. (1 5.8.17a), are shown as dashed lines 
inFig. (15.8.4)forthreevalues of{ (< = 2.0,3.0 and 1.809) asahnctionofx/L.t 

Figure 15.8.4 

t All displacements are shown for values A = I. We recall that using the small displacement analysis, it 
IS not possible to evaluate the displacement amplitude. However, the amplitude is totally irrelevant since 
we are only concerned with the relahve shapes. (Note too that the amplitudes cancel out in the Rayleigli 
quotient.) 
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The exact buckling mode given in Chapter 11 [Eq. (1 1.5.1 la)], 

v(x) = A (  1 - cos g), (1 5.8.22) 

i s  shown as a solid curve in the figure. We note that for < = 3, the assumed shape 
differs greatly from the true mode. This explains the relatively large error when 
using this admissible function. For < = 2, we note that the approximated shape 
is much closer to the true buckling mode, but still yields an error of 21.5% in 
the calculation for the critical load. For the value < = 1.809 as obtained above, 
the assumed shape is indeed a very close approximation to the true mode and, as 
mentioned, is the best possible approximation for functions of the form given by 
Eq. (15.8.17a). The small deviation from the true buckling mode is reflected by the 
relatively small error of 12.4% for the buckling load. 

From these results, we may conclude, as suggested previously in this section, 
that the closer the assumed shape v ( x )  is to the true buckling mode, the closer the 
approximation of the Rayleigh load will be to the true critical load. 

Finally, we note that the calculated Rayleigh load is often quite sensitive to the 
form of v(x) and thus the method must be used with great care. 

While this example illustrates a means to improve the first approximation, we 
observe that we started with a prescribed form of v(x). By prescribing this general 
form, we are effectively imposing an unnatural constraint on the system. In finding 
the value of < = 1.809, it was possible to reduce this imposed constraint. A more 
significant improvement of Rayleigh's method for stability analyses in which we 
further introduce a greater degree of flexibility for prescribed admissible functions, 
is developed in Section 9 of this chapter. 

(b) Proof of the upper boundedness of the Rayleigh load 
(restricted proof) 
In the discussion of the Rayleigh quotient, we concluded from the basic definition 
of the critical load that Pn L Per. We now prove this property mathematically for 
the case of the simply supported rod considered previously. 

For a simply supported rod we require that the admissible function v(x) satisfy 
the geometric boundary conditions v(0) = v(L) = 0. Now, any such admissible 
function can always be expanded in the region 0 5 x 5 L as a Fourier sine series 

J t X  2nx 3nx 
L L L 

v(x) = a1 sin - + a2 sin - + u3 sin ~ + . . . 

nnx  
= x a n s i n -  

L *  

oc 

n=l 
(15.8.23) 

We observe that the given geometric boundary conditions are automatically satis- 
fied. The derivatives, expressed as a Fourier series, can be obtained by differentiating 
term by term; thus, 

(1 5.8.24a) 

(1 5.8.24b) 
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Then 

nnx m n x  
L L 

= F a n a m  (y) (7) cos - cos - (1 5.8.24~) 
n=l m = l  

and a similar expression exists for (d2v/dx2y. Substituting in Eq. (15.7.19) and 
interchanging the summation and integration processes, 

Recall now the orthogonality properties of trigonometric functions: 

(15.8.26a) 
nnx  m n x  1 sin a sin - 

p12 Z n ,  a 
0 

L 

(15.8.26b) L/2, m = n  
A m Z n .  

nnx  m n x  I cos - cos - dx = 1 
J a a I "f 
0 

Hence, contributions to the sums appearing in Eq. (15.8.25), will occur only if 
n = m, while for n $. m,  the terms will vanish. Therefore, we have 

or 

(15.8.27) 

Since all a, are real, it is evident that if a, f 0 for n 2 2, the term within parentheses 
will be greater than unity, and thus PR > Per. The condition PR = P,, will be true 
only if a, = 0, n 2 2, i.e. if 

( 1 5.8.28) v ( x )  = al sin - 
L '  

which is the true buckling mode (eigenfunction). Hence PR is an upper bound to 
P,, and is equal to the critical load only if v ( x )  is the actual buckling mode. 

Having proved mathematically that PR is always an upper bound to P,,, it is 
worthwhile to interpret this result in physical terms in order to gain some physical 
insight into this class of problems. 

We first remark that a member such as that shown in Fig. (1 5.7.1) has an infinite 
number of degrees ofFeedom since it may buckle freely into any shape v(x) .  
Describing the system anthropomorphically, we may say that the rod is free to 
'choose' any buckling shape. The rod, in fact, thus chooses to buckle into a shape, 
called the buckling mode, which can be maintained by the smallest of all possible 
axial forces. 

Now, when an admissible function v ( x )  is chosen in Rayleigh's method, e.g. 
v (x )  = Ax(L - x )  asinEq. (15.8.1), the shapeisartificiallyprescribedandtheonly 
remaining free variable that defines the displacement is the single constant A .  
Thus, in this example, the oo-d.0.f. system is effectively transformed into l-d.0.f. 

nX 
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system, with a generalised coordinate A. That is, as a result of the imposed con- 
straint, the rod loses a degree of flexibility upon being ‘forced’ to assume a pre- 
scribed buckled shape. As a result, the load PR, which is required to maintain the 
rod in this prescribed ‘unnatural’ shape, is greater than Per. 

15.9 The Rayleigh-Ritz method for critical loads 

We have observed that by choosing an admissible fbnction such as that given by 
Eq. (15.8.S) for a simply supported rod, the oo-d.0.f. system was transformed into a 
1 -d.o.f. system with a single generalised coordinate. The resulting system, having 
been made artificially less flexible, then requires a force P greater than P,, to remain 
in a deflected state. 

A modification of the Rayleigh method, which, in effect, increases the degrees-of- 
freedom of the system and thus reduces the calculated values of PR, was proposed 
by Ritz. This improved method is known as the Rayleigh-Ritz method. 

The improvement consists essentially of introducing additional free constants 
that are adjusted in such a way as to cause PR to be the minimum for the type of 
admissible function prescribed. Thus, e.g., referring to the problem of the previous 
section, instead of choosing the parabola v(x)  = Ax(L  - x), we let 

V ( X )  = (U + bx + cx2), (S5.9.S) 

where a ,  b and c are arbitrary unknown constants. The only requirement on these 
constants is that the resulting function v ( x )  must be admissible. When v(x)  and 
its derivatives are substituted into the Rayleigh quotient, the calculated Rayleigh 
load is a function of the constants, i.e., PR = &(a, b, c). Since we seek a minimum 
value for PR, we take 

(1 5.9.2) 

thus obtaining a relation between the constants. It is to be emphasised, however, 
that the value of PR will still be greater than P, since the resulting function v(x) is 
not the true buckling mode. 

To generalise our discussion, we assume an admissible function v(x)  to be of the 
form 

n 

v(x)  = a i m ) ,  (1 5.9.3) 

where ai are unknown constants. The functions J;(x) are called coordinate func- 
tions. For example, for v(x) given in Eq. (15.9.1), 

z=o 

y1 = 2; a0 = a,  f o ( x )  = I;  a2 = b, f i ( x )  = x; a2 = c ,  .A(x) = x2. 

Then 
n 

v’(x> = U i f ; t ( X > ,  (15.9.4a) 
I =O 

(S5.9.4b) 
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Substituting in Eq. (15.7.19), 

or 
N(a1,  a27 ‘ * .  ,a,> 

D(ai , a2, . . . , an)  ’ 
P R  = 

where N and D denote the numerator and denominator respectively. 
To obtain the minimum, we take 

a P R  - = O ,  aai i = O , l , 2  ,..., n .  

Hence 

ap, D ~ - N $  
aai 0 2  

=0 ,  i = O , 1 , 2  ,..., n. -= 

Since D is finite, Eq. (15.9.6b) implies 

and using Eq. (15.9.5b), 
aD aN 

aai aai 
P R - = O ,  i = O , 1 , 2  ,..., n. -- 

(15.9.5a) 

(15.9.5b) 

( 15.9.6a) 

(1 5.9.6b) 

( 1 5.9.7a) 

(1 5.9.7b) 

Equation (1 5.9.7b) represents a set of homogeneous linear algebraic equations 

(1 5.9.7~) 

Since N = N(ai),  D = D(ai) [ i  = 0, 1,2,3,  . , . , n ]  we have a set of (n + 1) equa- 
tions in the (n + l) unknowns ao, al ,  a2, . . . , a,. For non-trivial solutions to exist, 
the determinant of the system of equations must vanish, i.e., 

A = 0. (1 5.9.8) 

This last equation yields the discrete values for PR from which the ratios existing 
among the constants ai can be found. 

The method is illustrated by means of the following example. 

Example 15.7: For the cantilever rod shown in Fig. (1 5.8.3a), determine the 
Rayleigh load, assuming a buckled configuration of the form 

(1 5.9.9a) 

Solution: First, we note that the geometric boundary conditions v(0) = v’(0) = 0 
are satisfied. Therefore v(x)  is an appropriate admissible fimction. 

v(x) = C,(X/L)2(X/L -3)+cz(x/f)2. 
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For mathematical simplicity, letting = x/L, Eq. (15.9.9a) becomes 

(1 5.9.9b) V O )  = t 2 [ 4  - 3) + c21 f 

Then 

dv(t) (1 5.9.9~) __. = t[3Ci(t - 2) + ~CZ] ,  
d6 

Substituting in the Rayleigh quotient, noting that 

and performing the integrations, from Eq. (15.9.5a) we obtain 

4EZ 3 4  - 3C1C2 + C; 
P R  = - 

L2 24C:/5 - 5C1C2 f 
. 

(15.9.9d) 

(1 5.9.10) 

Equation (15.9.10) is observed to be of the form of Eq. (15.9.5b). Upon taking 
derivatives with respect to c1 and c2, substitution in Eqs. (15.9.7b) yields 

(24EZ/L2 - 48P~/5)C1 + (-12EZ/L2 + 5p~)Cz = 0, 

(-12EI/L2 + 5PR)Cl 4- (8EZ/L2 - 8Pr/3)c2 = 0. 
(15.9.1 1) 

By setting the determinant of this system of equations to zero, we obtain the equation 
for the unknown PR: 

2 
3P i  - 104( $) f i  + 240( g) = 0, (1 5.9.12) 

whose roots are 
1 E I  

PR L= -(104 f 89.084)- 
6 L2 * 

( 15.9.13a) 

Since we are interested in the lowest buckling load, the relevant root is 

EI  
L 

PR = 2.48596T. ( 15.9.13b) 

The ratio C ~ / C I  is obtained by substituting PR back in either of Eqs. (15.9.11). The 
assumed buckling mode, corresponding to this value of pR, is then 

U($) = At2($ - 3.31355). ( 15.9.14) 

We observe that the value of PR, given by Eq. (15.9.13b), is the lowest possible value 
which can be obtained for an assumed admissible function of the general form given 
by Eq. (15.9.9b). Furthermore, for functions of this general form, the specific shape 
~(6) given by Eq. (15.9.14) is the best approximation to the natural buckling mode. 
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It i s  noted that the Rayleigh load PR obtained i s  s t i l l  an upper bound for PGr to the 
exact value P,, = $$ = 2.4674% [see Eq. (1 1.9.9)]. The relative error is 

(1 5.9.15) 

which i s  very small. 

PROBLEMS 

Sections 3-5 

15.1: A cylinder of weight Wis attached to a hemisphere of radius R and weight W, 
as shown in Fig. (1 5P.1). The entire system, made of a rigid material, rests on a smooth 
surface. Determine the values of hlR for which the system is stable in the vertical 
position. 

15.2: A top, made of a homogeneous rigid material with density p (N/m3), consist of 
two components: a lower component, which is in the shape of a hemisphere, and an 
upper component, which is in the shape of a cone, as shown in fig. (15P.2). The top is 
made to spin about i ts  vertical y-axis. Determine the ratio h/R for which the top will 
be in a vertical position when it ceases to spin. 

15.3: Determine the value of the critical load for the rigid rod shown in Fig. (15P.3). 

15.4 for what values of P is the system shown in Fig. (15P.4a) stable in the vertical 
configuration if the torsional spring at point A is governed by the nonlinear relation 
M,t, = CO3, where C > 0 is a constant [see fig. (15P.4b)l. Explain this result in physical 
terms. 

15.5: Two rigid rods, each of length L, connected by a hinge and a torsional spring 
with constant ,9 (N-mlrad) a t  B, are supported a t  A and C, as shown in Fig. (1 5P.5). The 
rods are subjected to two axial forces P acting a t  B and C. Determine the value of the 
critical force Per. 

Figure 15P.3 Figure 15P.4 Figure 15P.5 

Section 6 

15.6: Given a system consisting of a rigid rod supported by linear springs with con- 
stants k1 and kz and by a torsional spring with constant p, as shown in Fig. (15P.6). 
Determine (a) the critical load f,, in terms of kt, kz, ,9 and L and (b) the value of L 
that leads to a minimum value of Pcr. What is (Pcr)min? 

15.7:* A system, consisting of two rigid rods, each of length L, i s  supported by a tor- 
sional spring having constant f?1 (N-mlrad) a t  A and a torsional spring with constant 
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j32 at  the hinge B, as shown in Fig. (15P.7a). (a) Determine the critical axial force P 
that causes instability. (b) Based on the answer to  (a), and letting y = p2/j31, show 
analytically that the critical force P of the system of Fig. (15P.7b) is greater than that 
of Fig. (11P.7af for any finite value of j32. 

15.8? The system shown in Fig. (15P.8) consists of two rigid rods AC and CB, each 
of length L, which are hinged a t  C and which are supported by a linear spring with 
constant k at B and a torsional spring with constant B at  C. (a) Determine the critical 
loads Pcr under which the vertical configuration becomes unstable. (b) If the values 
for the constants are given as k = 5 N/cm and j3 = 500 N-cm/rad, determine the critical 
load when (i) L = 12 cm and (ii) L = 8 cm. (c) Given the values kand j3 in (b). For what 
length L will the system can carry the greatest load P before instability occurs? What 
i s  this load? 

15.9: A system, whose total length is  L, consisting of three rods AB,BC and CD, 
is supported by springs with constant k (Nlm) a t  the hinges B and C, as shown in 
Fig. (15P.9). An axial load P acts at A. (a) Determine the critical load Per. (b) What 
should be the ratio of b/a in order to  maximise P,,? What is (P,r),,x? 

Figure 15P.7 Figure 1JP.8 Figure 15P.9 

Sections 7-9 

15.10: (a) Determine the Rayleigh load PR for the linear elastic column shown in 
Fig. (15P.10), using the expression forthe internal strain energy U given by Eq. (15.7.3) 
together with the admissible function v(x) = A(x/Ll2(1 + x/L). (b) Determine the per- 
centage error with the true critical load. 

15.11: (a) Using Rayleigh's method determine PR, the approximation to the critical 
buckling load for a rod fixed a t  x = 0 and simplysupported a t  x = L, which is subjected 
to  an axial compressive load as shown in Fig. (15P.11). Use an admissible function of 
the form 

Figure 15P.10 

V(X) = A [ ( 1)3 - ( !?2] 

(b) Does this function satisfy a// conditions, both geometric and natural (mechanical) 
conditions? (c) What i s  the percentage error with the known value of PO? 

15.12: Repeat Problem 15.11, assuming the deflection is  given by 

2 x 4  5 x 3  4-4 = A[z ( r )  - 3 ( r )  + (t)2]. 
Figure 15P.11 

15.13:" (a) Determine the Rayleigh buckling load for the elastic column shown in 
Fig. (1 5P.13), using as an assumed buckling mode v = A(l - cos 9). (b) For what values 
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of a! or y does PR = P,,? Why is this expression then 'exact'? (Note: See computer- 
related Problem 15.24.) 

15.14* A linear elastic column of constant cross-sectional area A and length L is 
fixed as shown in Fig. (15P.14). The material density of the column is given as p 
(N/m3). (a) Using Rayleigh's method, and assuming an admissible function of the form 
v(x) = a(l - cos %I, determine an approximation for the critical weight Wthat causes 
instability of the column. (b) The exact critical weight (obtained from the solution of a 
Bessel equation) is W =  7.837EI/L2.  Determine the percentage error obtained using 
the above admissible function. 

15.15: A rod of length L and flexural rigidity E l  i s  simply supported at A and B. A 
compressive axial load is applied at the end of a rigid strut BC having length a = y L ,  
which is rigidly connected t o  AB a$ shown in Fig. (15P.15). Determine an approximate 
value for the critical load using Rayleigh's method, assuming that the buckling mode 
of the segment AB is v(x) = A sin y .  (Note: See computer-related Problem 15.25.) 

15.16:' A rod AB of variable flexural stiffness El(x), in the form of a truncated cone, 
is fixed a t  one end and subjected to  an axial load P ,  as shown in Fig. (15P.16). The 
moment of inertia /(XI is given as / ( X I  = lo(1 - f-)4. (a) Assuming an admissible func- 
tion in the shape of a parabola v(x) = Ax2, determine the Rayleigh buckling load PR. 
(b) The exact solution, obtained from the solution of a Bessel equation, for the case 
L = L 0 / 2  is Pcr = 1.026Elo/L2. Determine the percentage error of PR. 

Review and comprehensive problems 

15.17: Acylinder is attached t o  a hemisphere of radius R,  as shown in Fig. (1 5P.I).The 
entire system, made of a rigid material whose density is p (N/m3), rests on a smooth sur- 
face. Determine the values of hlR for which the system i s  stable in the vertical position. 

15.18: Given a rigid rod as shown in Fig. (15P.41, supported by a nonlinear torsional 
spring at A, which exerts a resisting moment on the rod according to  the relation 
MA = C tanhe, C > 0. (a) Express the strain energy U of the system as a function of 8. 
(b) Determine the force P required t o  maintain equilibrium at any finite inclination 6 of 
the rod with respect t o  the vertical position. (c) Determine the critical load that causes 
the vertical position t o  become unstable. (Note: See computer-related Problem 15.26.) 

15.19:' Given a system consisting of four rigid rods of length L ,  connected by means 
of hinges and containing a spring, as shown in Fig. (1 5P.19). In the undeflected posi- 
tion, 6 = 60. (a) Determine the range of 6 for which the system is stable. (b) Determine 
the critical force Pcr at which the system becomes unstable. (c) Express the total po- 
tential of the system, n, as a function of e for any given 60. (Note: Here the force P 
can act either upwards or downwards. See computer-related Problem 15.27.) 

15.20: A rigid rod is supported at A by a torsional spring p (N-m/rad) and by a linear 
spring having constant k (N/m), as shown in Fig. (1 5P.20). (a) Determine the vertical 
force P required to  maintain the rod at any finite angle 0 with respect t o  the verti- 
cal position. (b) What is the critical load Per for e = O? For which values of the ratio 
a! = p /kL2  is the bifurcation point stable or unstable? (Note: See computer-related 
Problem 15.28.) 

15.21: Repeat Problem 15.14, using Eq. (15.9.9a) for the admissible function. 

15.22:* A rigid rod AB, of length L ,  is attached to  a linear elastic spring BC having 
constant k, as shown in Fig. (15P.22a). A vertical force P is applied at B. (a) Show that 
the rod is unstable in the position 0 = 0 under any downward load P > 0. Does the 
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same hold true if an upward load P is applied? Justify the answer. (b) Show that if 
0 < 0 < x as in Fig. (15P.22b), the rod is in a stable equilibrium position for all values 
of the equilibrium force 

P = k L ( l + y ) ( l  - [y2+2y+2-2(1 +y)cosel-'/2j. 

(c) For what values of f can the rod be held in a position e = IT? Express the answer 
in terms of  k, L and y.  (Note: See computer-related Problem 15.29.) 

Figure 15P.19 

Figure 1SP.20 Figure 1SP.22 

15.23: Two rigid bars AB and BC, each of length L ,  are connected by a hinge at B and 
supported at A and C, as shown in Fig. (15P.23a). The rods are initially inclined (when 
P = 0) at an angle 00 as shown in the figure. A vertical load P applied at B causes the 
system t o  displace t o  a position defined by e (0 < eo), as shown in Fig. (1 5P.23b). (a) 
Determine the relation between P and 0 for finite values of 6 .  (b) For what values of  P 
will the system be in stable equilibrium? Evaluate the limiting value of P for stability 
if eo = 30". (c) If 00 << 1, show that f,, = Y k L e ; .  

Figure 15P.23 

The following problems require the use of a computer. 

15.24: Referring t o  Problem 15.13, 
(a) choose one or both of the following options: (i) Evaluate the Rayleigh load PR for 

values0 5 y 5 1 for several discrete values of  a (0 5 a 5 I), and, using a plotting 
routine, plot the resulting family of curves & / P E  vs. y .  (ii) Evaluate the Rayleigh 
load, PR for values 0 5 01 5 1 for several discrete values of y, (0 5 y 5 1) and, 
using a plotting routine, plot the resulting family of  curves pR/fE vs. a. 
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(i) Using a computer, evaluate numerically the roots of the transcendental equa- 
tion (see Problem l l .39), 

tan(yhL) = cot [ (1 -y], c = &, 

which lead t o  the exact values of Pcr = E /A2. (ii) Using a plotting routine plot 

Determine the percentage error for several values of a and y. 
Pcr/& VS. Y. 

15.25: Referring t o  Problem 15.1 5, 
evaluate the Rayleigh load PR for values 0 5 y 5 10, and, using a plotting rou- 
tine, plot PR/ PE vs. y. 
(i) Using a computer, evaluate numerically the roots of the transcendental equa- 
tion (see Problem l l .20) 

which lead to  the exact values of Pcr = E /h2. (ii) Using a plotting routine, plot 

Determine the percentage error of the ratio & / P E  for values in the range 
PcrlPE vs. Y .  

05y5lO. 

15.26 Referring t o  Problem 15.18 
(a) using a plotting routine, plot the ratio 8 as a function of 6.  

(b) For 0 < 6, express the derivative 9 at equilibrium as a function of 6 only 
and evaluate numerically, by means of a computer, the value of e where 

(c) For what range of 0 < 6 5 180" is the branch stablelunstable? Indicate these on 
the figure of (a) above. 

(d) Assume that the rod is inclined under an equilibrium load at an angle of 20" 
with respect t o  the vertical. Based on the plot of (b) above, determine t o  what 
position the rod will 'jump' if given a perturbation 6 = 20" + E ,  (e > 0). 

15.27: Referring t o  Problem 15.19, (a) using a plotting routine, plot a family of 
curves of the equilibrium force P as a function of e for several discrete values of 
60 : 60 = 109 30", 45", 60". (b) Repeat (a) for the total potential l7 = l7(6;6o). 

15.28: Referring t o  Problem 15.20, (a) using a plotting routine, plot the relation 
P ( 6 )  as a function of 6 ,  using two values of a: a = 2 and a = 4. (b) For what range of 
0 < 6 5 180" is the branch stable/unstable when (i) a = 2 and (ii) Q! = 4. 

15.29 Referring t o  Problem 15.22, (a) for the case y = 1, evaluate numerically the 
required equilibrium force to  maintain the rod in any finite position 6 .  (b) Using a 
plotting routine, plot the equilibrium force P as a function of 6 for 0 5 6 I( n and 
indicate the stable and unstable branches. 

lequil. 0. 



Appendix A 

A.l General properties: centroids, first and second 
moments of areas 

The definitions and properties given below relate to a general area A lying in the 
y-z plane o f  an (x, y ,  z )  coordinate system, as shown in Fig. (A. 1.1). 

Figure A.l.1 

(a) Definitions 
(il Centroid of an area 
The coordinates, y ,  z ,  of the centroid, G, of the area A are defined by 

(A.l.1a) 

(A. 1. lb) 

687 
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Axes passing through the centroid are referred to as centroidal axes. If the origin 
of a y-z coordinate system coincides with the centroid G, then, by definition, 

//ydA = 0. (A. 1.2a) 
A 

//zdA = 0. 
A 

(A. 1.2b) 

(ii) Second moments and mixed second moments of an area? 

The second moments of the area A about the y -  and z-axes, Iyy and Izz respectively, 
are defined as 

A 

I;, = //y2dA. 

(A. 1.3a) 

(A. 1.3b) 
A 

Note that second moments of an area are inherently positive. The mixed second 
moment (‘product of inertia’) of A about the y- and z-axes is defined as 

Iyz = yzdA. (A. 1.3~)  

Note that, following its definition, the mixed second moment about an axis of sym- 
metry is always zero. 

A 

(iii) Polar moment of an area 

Thepolar moment of an area A (loosely called thepolar moment of inertia) about 
an axis perpendicular to the y-z plane and passing through 0, is defined as 

I,, = // r2  dA, 
A 

Noting that r2 = y2 + z2, it follows that 

I,, = // y2 dA + // z2 dA = I,, + Iyy. 

(A. 1.3d) 

(A. 1.4) 
A A 

(b) Properties of I ,  I, and I, 
(i) Parallel axis theorem 

Consider two sets of orthogonal axes (y, z) and (y’,z’) that are parallel to each other, 
as shown in Fig. (A. 1.2), such that 

y’ = y - a,  (A. 1.5a) 

z ’ = z - ~ .  (A.1.5b) 

t Second moments and mixed second moments of an area are often loosely referred to as moments of 
znerfia andpmducts ofinertia. This terminology is taken from the Dyanmics of Rigid Bodies where the 
mass of the body is considered. 
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Figure A.1.2 

The second moment of A about the %’-axis is then, by definition, 

I,t,! = //(y‘)’ dA. (A. 1.6) 
A 

Substituting y’ from Eq. (A. 1.5a), we have 

A A 

or 

Iztzf = //y2dA - 2a //yd. + a2 // dA. (A. 1.7a) 
A A A 

From the definition given by Eq. (A. 1.3b), we have 

I,,,, = I,, - 2a y dA + a2 A .  (A. 1.7b) // A 

If the y- and z-axes are centroidal axes, then, by definition, !SA y dA = 0, and 
therefore 

Iz!~ = I,, + a2 A. (A.1.8a) 

Similarly, for the moment of second moment about the y’-axis, we obtain 

Iyryt =: [vy + b2 A .  (A. 1.8b) 

Equations (A. 1.8) are known as the parallel axis theorem for second moments of an 
area. We observe, according to this theorem, that of all sets of axes that are parallel 
to each other, the second moment of an area about the centroidal axes will be a 
minimum. Similarly, using Eqs. (A. 1 .5), the parallel axis theorem for the mixed 
second moment is given by 

Iyrz: = Iyz + ab A ,  (A. 1 . 8 ~ )  

where the y -  and z-axes are centroidal axes. 
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(ii) Transformation laws for second moments and mixed second 

Given an orthogonal coordinate system (y, z) with origin at 0, as shown in Fig. 
(A. 1.3). The second moments Iyy, I,, and mixed second moment Iyz are assumed 
known about these axes. A second orthogonal system (y‘, z’) is constructed such 
that the (y’, 2’) system is rotated with respect to the (y, z) system by an angle # 
measured counter-clockwise from the y-axis, as shown. 

moments of an area 

Figure A.1.3 

The second moments I y ~ y ~ ,  IZtzt  and mixed second moment IY,,t can be determined 
in terms of the corresponding quantities about the original (y, z)  system. From 
geometry, 

y’ = ycosqj+zsin#, (A. 1.9.a) 

z‘ = -ysin# +zcos#. (A. 1.9.b) 

Therefore, 

A A 

= cos2 # / I  z2 dA - 2 cos# sin@ / I  yz dA + sin2 # y2 dA 
A A A 

or 

~ ~ l ~ i  = cos2 Q, I~ , ,  -t sin2 ~p I,, - 2 cos ~p sin rp I~ , .  (A. 1 .lOa) 

Similarly, 

IZY = //(y‘)’ dA = //(y cos# + z sinqj)2 dA 
A A 

from which we obtain 

I z v  = cos2 6 I,, + sin’ qj + 2 cos ~p sin 4 I ~ , .  (A. 1. lob) 
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Following the same procedure, we obtain 

I,,, = (cos’ 4 - sin2 4) Iy2 + sin4 cos 4 ( Iyv  - L). (A. 1.10~) 

Equations (A.l.10) are transformation laws that relate the second moments and 
mixed second moments about axes that are rotated by an angle 4 with respect to 
each other.+ Adding Eqs. (A. 1.1Oa) and (A. 1. lob), we find 

ly‘y’ + 12’2’ = ly.v + 122; (A. 1.11) 

that is, the sum of the second moments of an area about any two orthogonal axes 
passing through a given point is constant. We refer to this property as an invariant 
property. 

(iii) Stationary values of second moments of an area: principal axess 

For given values of Ivy, I,, and 1,,, we wish to find the stationary values of 
12tz~. Noting that lyly~ is a function of@, we set 

and 

Performing this operation, we find 

2 sin @ cos 4 - - 2(c0s2 4 - sin2 4) = o 
from which 

(A.1.12) 

(A.1.13) 

Equation (A. 1.13) has two relevant roots @1 and 42 = 41 + n/2, which define the 
orientation of two orthogonal axes about which the second moments of an area will 
be maximum and minimum. These axes are referred to as the principaE axes of the 
area A passing through 0. The two stationary values of the second moments of the 
area about these axes are called the principal values of the second moments and are 
denoted by 1 1  and 1 2 ,  respectively, where by definition, 1 1  > 12. Using the proper 
trigonometric substitutions, 1 1  and 12 are given, respectively, by the expressions 

(A. 1.14) 
2 

From Eqs. (A. 1.14), we have, at any given point, 

11 + 12 = IYy + = constant, (A.1.15) 

t We observe the similarity of the transformation law for second moments and mixed second moments 
and that for the stress components, namely Eqs. (2.6.6a) and (2.6.8a). (Note that here the transformation 
law is in the y-z plane; the transformation law for plane stress is given in the x-y plane. Therefore, 
in order to compare properly, the present y -+ x and z -+ y.) However, they are not identical: e.g., 
Eq. (2.6.6a) contains aplus (+) sign while a minus (-) sign appears in Eq. (A.1 .IOa). Thus the quantities 

are not components of a second-rank synunetnc tensor since they do not conform with the definition of 
the transformation law for a two-dimensional second-rank tensor as given by Eqs. (2.6.6a) and (2.6.8a). 
However, if, instead of Eq. (A.I.3c), the mixed second moment is defined as ZX.” = - ssyz  dA, then the 
resulting array is a tensor. Nevertheless, with the present definition of I,,, the invanant property of the 
second moments of and area, Eq. (A.l.1 I), is the same as for the stress tensor. 
The development is only outlined here since it follows closely the analogous development given in 
Chapter 2 for a two-dimensional stress state. 
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which conforms with the invariant property of Eq. (A. 1.1 1). Note that the constant 
depends on the given point 0. We observe from Eq. (A.l.13) that if Iyz = 0, then 
(bl = 0 (and 4 2  = n/2). Since Iyz = 0 about an axis of symmetry, it follows that 
if a given area A has an axis of symmetry, this axis is always a principal axis (and 
therefore an axis perpendicular to the axis of symmetry is also a principal axis). 
However, it should be remembered that the converse is not necessarily true; i.e., a 
principal axis need not be an axis of symmetry. 

A.2 Properties of selected areas 

bh3 
12, = 12 

bh3 I z y  = - 
3 

A = bh 

bh3 
Izz = - 

36 

bh3 I,y = - 
12 
1 

A = -bh 
2 

nR4 
122 = 4 

A = nR2 

nR4 
I z y  = - nR4 8R4 I,, = - - - 

8 9n 8 
nR4 

IYY = 8 1 2  A = -xR 
2 

nR4 4R4 
Izz = - - - 

16 9n 

nR4 
16 

Izy =E - 

1 2  A = -nR 
4 
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2 R sin6 
z, =: -- 

3 6  

1 
I,, = (6 - 5 sin26) 4 

1 
Iyy = 4 (0 f sin26) A = 6R2 

nab3 
I,, = - 

4 
na3b 

lyy = - 
4 

A = nab 



Appendix B 

B.l  Curvature of a line y = y(x) 

Consider two points P and Q located on a curve y = y(x) .  Let these two points be 
defined by arc coordinates s and s + As, where s is measured from a fixed point A 
[Fig. (B.1.1)]. 

Figure BA1 

Let 6 and 6 + A6 be the angles of inclination with respect to the x-axis of the 

Constructing the normals at P and Q, we note that they intersect at some point 
tangents to y (x )  at the point P and Q, respectively. 

denoted by C. Furthermore, the angle LPCQ = A6, Therefore 

lim p A 6  = A s  
As+O 
A8+O 

and thus 
1 . A0 d0 
- =  Ilm -=-. 

(B.1.1) 

(B. 1.2) 
p A s - 4  AS ds’ 

A8+0 

where p is the radius of curvature. Now, tan 6 = 2 and therefore 0 = tan-’( 2) 
tan-’ [@’(x)], where y’(x) E $. Hence 

d6 d0 dy’ d dY’ -=--- - -[tan-’(~+)] 6 - . 
dx dy’ dx dy’ dx  

(B.1.3) 
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Furthermore, we recall that for any variable, say z ,  

Therefore, substituting in Eq. (B.1.3), we have 

dB Y” z = [l + W)2] 
or 

(B.1.4) 

(B. 1.5) 

Now 

ds = JZFGf? = J [ ( ~ x ) ~  + ( d ~ / d x ) ~ d x ~ ]  = dx Jm. (B.1.6) 

Substituting Eqs. (B. 1.5) and (B. 1.6) in Eq. (B. 1 .2), we obtained 

Y - 1 _ -  
P [ I  + 0 9 2 1 3 / 2  * 

If ly’l << 1, then = y”(x). Since the curvature K is defined as K = l / p ,  

Y” 
[I + (y)213/2’ 

K =  

(B. 1.7) 

(B. 1.8) 

8.2 Green’s theorem 

Let A be a simply connected domain lying in the y-z plane and bounded by a contour 
CO [Fig. (B.2. la)] and let P(y ,  z )  and Qe, z )  be functions that are continuous and 
have continuous partial derivatives in A .  Then 

where the integral along the closed contour CO is taken in the counter-clock-wise 
direction. (Note that the domain A then lies always to the left as the integration 
along CO proceeds counter-clockwise.) 

Figure B2.1 
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For a multi-connected domain (i.e., one that contains n number of 'holes'), each 
defined by interior contours C,, i = 1,2, . . . , n [Fig. (B.2.lb)], Green's theorem 
becomes 

n r  

where the integrals along the contours C, are taken in the clock-wise direction. For 
this case, the domain A is the area bounded by the contours CO and C, . (Note also 
that the domain A always lies to the left as integration proceeds along CO or any 
c, .I 

Alternatively, if we choose to integrate along the interior contours C, (i 2 1) in 
the counter-clock-wise direction, we have 

B.3 The divergence theorem (Gauss' theorem) 

Given a domain V in an (x, y, z )  coordinate system, which is bounded by a surface 
S. We denote the unit (outward) normal to S at all points by n [(Fig. (B.3. 1)] 

n = &i + e,, j + t Z k ,  (B.3.1) 

where ex, lY and 8, are its direction cosines. Furthermore, let 

G(x, y, z )  = G,i + G,j  + G,k (B.3.2) 

be a vector function that is continuous and has continuous first partial derivatives 
in V .  Then, 

(B.3.3) 

where d5t represents a volume element and &rr represents a surface element on the 
surface S enclosing the volume V .  

Figure B.3.1 
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In scalar components, the divergence theorem is written explicitly as 

In the two-dimensional case, i.e. where G(x,  y )  = G,i + G, j and II = C,i 4- 
C,j, Eq. (B.3.4a) reduces to 

I// (2 + "> d a  = //(&Gx +t,G,)ds. ay 
(B.3.4b) 

S V 
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Consider a thin membrane of arbitrary area A, lying initially in the y-z plane. The 
membrane is subject to a uniform initial tensile force of intensity F per unit length 
along its perimeter and a constant uniform pressure p [Fig. (C.  l)]. Assume that due 
to the pressure, the membrane undergoes small (infinitesimal) deflections 20 in the 
x -direction. 

Figure C.1 

We shall assume that the initial tensile force F is suficiently large such that 
the increase in the tensile force due to the deflections is infinitesimal. Hence the 
tensile force can be assumed to remain constant. Furthermore, since the membrane 
is thin, no components of the internal force can exist at any point in a direction 
perpendicular to the deflected membrane and thus, at all points, F is tangential to 
the membrane surface.+ 

Consider now a small element dA = dy dz of the deflected membrane as a free 
body [Fig. (C.Z)]. Then, taking F, = 0, 

( F  dz) [sin(6 + do)] - ( F  dz) sin6 + ( F  dy) [sin(+ + dqlr)] 

- ( F  dy) sin+ + p dydz = 0, (C.1) 
t From Chapter 8, the relation between the curvature and moment, for the one-dimensional case, is given 

by EZK = M .  For a very thin membrane, the second moment of the cross-sectional area I -+ 0. Since 
K is finite, it follows that the moment M + 0. Therefore, the shear force V (being the derivative of 
the moment M) will also tend to zero, i.e. V +. 0. Since V represents the force tangenQal to the 
deflected cross-section, it follows that the resultant F acting on the cross-section acts always tangential 
to the deflected membrane, as shown in Fig. (C.2). Consequently, the intensity of force at any point 
in the membrane has magnitude F ( N h )  and acts, at all points, in a plane tangential to the deflected 
membrane. 
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Figure C.2 

where 6 ,6  + do, @ and @ + d@ are shown in Fig. (C.3) 

sufficiently small such that the slopes 6 and @ are infinitesimal, i.e. 

PI << 1, 

Now, we restrict the analysis to membranes for which the displacements are 

1 @ 1  << 1. 

Therefore 

a w  a w  
ay az 

sin6 2: 6 2: tan6 = -; sin@ 2 @ 2: tan@ = -. (C.2a) 

Then 

aw 

ay 
sin(@ + d6) 2: (6 + d6) 2: - + d (5) , (C.2b) 

Figure C.3 

Substituting in (Cl ) ,  we have 

or 
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NOW 
a a w  a2w 

a a w  a2w 
a Z  a Z  

d (:;) - _ -  - ay (a,) dy = ayzdy, alongz = const. 

d (E) = - (-) dz = a22 dz, along y = const. 
(C.4) 

Hence 
a2w a2w 

ay2 

a2w a2w 

(Fdz) - dy + (Fdy) 3 dz + pdydz =I 0, 

or 

dydz+pdydz=O. 

Therefore 
a2w a2w p -+-..-=-.- 
ay2 a 2 2  F’ 

which is the equation of equilibrium of a thin membrane, subjected to an initial 
tensile force F and lateral pressure p. 

Recalling that the Laplacian operator V2 in Cartesian coordinates is given by 

(C.5) 

a2 a2 
ay2 a 9  ’ 

2 P v W O .  2) = --. 
F 

Q 2 = - + -  (C.6) 

we may rewrite Eq. (C.5) in the more concise notation 

(C.7) 



(Continued) 
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(Continued) 

a Elastic strength may be represented by proportional limit, yield point or yield strength at a specified offset (usually 0.2% for ductile metals). 
For ductile metals (those with an appreciable ultimate elongation), it is customary to assume the properties in compression have the same values as those in tension. 
Rotating beam. 
Elongation in 200 mm. 
All timber properties are parallel t o  the grain. 
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* Copynght @ Amencan Institute of Steel Construction. Repnnted with permission. 
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* W means wide-flange beam, followed by t h e  nominal depth in mm, then the  mass in kglm of length. 



Table of structural aroDerties 705 

* S means standard beam, followed by the nominal depth in mm, then the mass in kg/m of length. 
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* C means channel, followed by the nominal depth in mm, then the mass in kglm of length. 



Table of structural properties 707 

* L means equal leg angles, followed by the nominal depth in mm, then the mass in kglm of 
length. 
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* L means unequal leg angles, followed by the nominal depth in mm, then the mass in kglm of length. 
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* WT means structural T-section (cut from a W-section), followed by the nominal dept in mm, then the mass in kgim of length. 
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Chapter 1 

1.1: 
1.2: 
1.3: P = 120kN 
1.4: 
1.5: 
1.6: (b) j3 = 54.7" 
1.8: 

(a) P = 10 kN (compression), (b) P = 6 kN (tension) 
(a) P = 22,620 N. (b) i?; = 72 MPa 

(a) D = 5.04 cm, (b) L = 7 m 
aAB = 0, UAC = 141.5 MPa 

(a) E ( X )  = (2.34 x 10-4).x, (c) AL = 0.468 mm 

Chapter 2 

2.1: 
2.3: 

2.5: 

2.7: 

2.8: 

2.9: 

2.1 1: 

(a) F = 450N, V = 600N, M = 1200N-m 
(a) At A: F = 600N. V = 0, M = 4200N-m; 

At C: F = 0, V = 600N, M = 1200N-m 
V = - - , M = - -  qoL 

n n 
npR2 

h2 
F = -(h3 - y 3 )  

AcL 
(b) F(x) = a {In [cx'/~x/L + (1 + C X X ~ / L ~ ) ' / ~ ] }  

(a) V = -4Ox. M = -20x2 (0 < x < 6) 
(c) V = - 5 ~ ~ 1 3 .  M = -x3/9 
(0 V = 1 0 ~ '  - 1 2 0 ~  + 448, 

M = 10x3/3 - 60x2 + 448x, (0 5 x < 6); 
V 
V = 200, M = -200(14 - x), (10 < x 5 14) 

-512, M = - 5 1 2 ~  + 4320, (6 < x < 10); 

(h) V = 25x2/3 - 1 0 0 ~  + 700, 
M = 25x3/9 - 50x2 + 7 0 0 ~  - 4600, 
(0 5 x 5: 6); 

(i) V = 120, M = 120x - 720, (0 5: x 5: 6); 
V = 400, M = 4 0 0 ( ~  - lO), (6 5 x 5: 10) 

Y = - 6 0 ~  + 480, 
M = - 3 0 ~ ~  + 4 8 0 ~  - 1800, (6 5 x 5: 10) 

v = -wL/2. M = -wLx/2, (0 5 x < L); 

v = w(L - x), M = -(-XZ + 4Lx - LZ), 
(L < x 5 2L); 

W 

2 

V = M = O ,  (2L 5 : x  <3L) ;Y=-P .  
M = -P(x - 3L), (3L < x 5: 4L) 

2.12: (a) F = 1200, V = -400, M = -4OOx (0 < x < 6); 
F = 1200, V = 0, M = -2400 N-m. 
( 6 ~ ~ ~ 1 0 )  

(0 5 x < 5); 

(5 < x 5 10) 

(0 5 x < 8); 

(c) F = 600, V = 40N. M = 4 0 ~  - 520N-m, 

F = 0, V = 40N, M = 40x - 400N-m, 

(e) F = -1200N. V = 400N, M = 400xN-m. 

2.13: 

2.15: 

2.17: 
2.21: 

2.23: 

2.24: 

2.28: 
2.29: 

2.30: 

2.31: 
2.32: 

F = 0. V = 5400N, M = 5400(x - 20)N-m. 
(8 < x 5: 20) 

= 20 (100 - x )  N-cm, M, = 0 
vv = 0, V- = 20N, T 3 M, = 600N-cm, 

(a) F = P, cos@ + Py sin@. 
V = -P,sin@+P,cos@, 
M = R[P, sin@ - P,(1 - cos@)] 

F = a3A/4 + &a4B/96, 

M = 3&Aa4/64 + Ba5/80. 

b/L = J2/2 

F = Vy = V, = 0, T M, = 100nR2 

(b) M = ---(3h2 boo - 4c2) 
12 

a; = 240, tnt I,,,- = 720 MPa 
(a) a, = 250 + 200&, 

(c) a, = 150, a, = -150, tnt = 0 MPa 
(e) 0; = -87.5 - 50&,ay = -62.5 + 50&, 

(g) a, = 400, txjt = - 1 0 0 4 .  a, = 500 MPa 

= 350 - 200&. 
tnnt = 200 + 50& MPa 

txu = 150 - 6.25& MPa 

(b) @ = -16.85", (C) 6 = 22.5" 
-1783 < oy < 716.7 kPa 

71 5 
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2.35: (a) 01.2 = -20,80; z,, = 50MPa, 81.2 = 16.85". 

(c) 01.2 = 947.2.52.8; zmax = 447.5MPa. 

(e) ul,? = 56.2,-356; tmax = 206MPa, 81,2 = 52". 

(g) ( ~ 1 , ~  = 42.5,-122.5; tmax = 82.5MPa. 

(i) 01.2 = 303.4.-403.4; z,,,, = 359.4kPa, 

(a) 01.2 = 100. OMPa, 81.2 = 26.6'. -63.4' 
(c) u ~ , ~  = 220.90MPa. 81,2 = 56.3", -33.7' 
(e)  ul,z = 110. 10MPa. 01 2 = -61.8". 28.2" 
(a) 01.2 = 101.2. 18.77I~Pa.8~.2 = -7.0". 83.0" 
(b) 01.2 = 117, -23.7 MPa, = -11.7'. 78.3" 

106.85" 

81,~ = 13.3". 103.3" 

-38" 

81.2 = -83", 7" 

81,2 = 57.6", -32.4" 
2.36: 

2.37: 

2.39: (a) (i) u2 = -260MPa. 81.2 = 32.7". -57.3" 
(ii) a2 = -260MPa, 81.2 = -32.7", 57.3" 

(c) u2 = 17.5 MPa, 81.2 = -36.9", 53.1" 
(a) C2/Cl = 113, C3/Cl = -1 2.41: 
(b) AB: Xn = Yn = 0; 

BC: X, = -Cla2y. Y,, = -Clay2; 
CD: X, = -CIb'x. Y, = Cib3/3 

c 
DA: X,, = --'(&xZy +x,v2), 

2 c 
2 

Yn = -'(&xy2 + y3/3) 
2.46: 8 = 54.462" 

Chapter 3 

3.1: 

3.2: 

3.5: 

3.7: 
3.9: 

3.10: 

3.13: 
3.14: 
3.16: 

3.17: 

(a) 7 = 5 x 10-3, (b) E,,,= = 10-2, 

(a) F = l/a[2L'(1 - cos8) + a2 + 2 a ~  sin8]'/2 - 
(6) 6 = 0.5 x 10-', (d) U(X) = 0.25 x 10-4 .x2  

ynt = 2 ( ~ ,  - cx) sin 8 cos 0 
(a) E, = a, E?, = c, yxs = 2b; (c)  E ,  = a + b. 
E , ,  = 0. yXv = bx - 2a 

6 . X  

L2 
-- S . y  

I.' Ex = - t E ,  = 0, y,,, - 

3.23: 

3.25: 
3.26: 

3.27: 

3.28: 
3.29: 

3.30: 

3.33: 
3.34: 
3.36: 

(a) E ,  = (250 + 20Oa)p .  ct = (350 - 2 0 0 8 ) p ,  
E,,~ = (200 + 50&)p 

(c) f n  = 150/.~, ~1 = -150/.~, ~ , t  = 0 
(e) E ,  = (-87.5 - 5Ofi)w. E? = (-62.5 + 

50&)p, E, = (150 - 6.25&)p 
(g) E~ = 40Op, E... = - 1 O O f i p .  E( = 500p 
(a) 8 = 18.43", (b) 8 = -16.85*, (c) 8 = 22.5" 
(a) t 1 . 2  = -90.8. -30 .8~;  = 49.7", -40.3" 

(e) 

(a) 

(e) €1.2 = 56.2. -356~;81,2 = 52". -38" 

(i) €1.2 = 0.303. -0.403 x lOW3; 

(a) €1.2 = 101.2, 18 .77~ .  
(b) (i) €2 = -260p, 81.2 = 49.8", -40.2' 

(ii) c2 = - 2 0 ~ .  

(C) €1.2 = 57.1. -77.1!-LL;81,2 31.7". -58.3" 
= 77.1. -57.1p;8,+2 = 58.3". -31.7" 

= -20. 8 0 ~ ; 8 , , ~  = 16.85". 106.85' 
(8) €1.2 = 30.8. -90.8~;81.2 = 40.3'. -49.7' 

(c) 61.2 947.2,52.8~;81,2 13.3". 103.3" 

(g) 61.2 = 42.5. -122.5p;81,2 -83.7", 7" 

81.2 = 57.6". -32.4" 
= -7.0". 83.0" 

= -49.8", 40.2" 

(a) E,? = -501.~ = 2 7 5 ~ ;  (b) E." = -8OOp, 

(e) 6. = Op, E,." = 2 0 0 8 f i ;  (f) E. = -5OOp, 

(c) E: = 1 7 . 5 ~ .  81.2 = -36.9", 53.1" 

E,, = - 5 0 0 ~ ;  

E.. = -5OOfi/3p 
jEnr( 5 10-3 
SA = ka2b2/9 
SA 2 a ~ b ( 6 T ~  f ~ T , / J C )  

3.37: yre(P)  = - 
r(a - b) 

3.41: 

3.43: (a) AAC = &k/2, 

(c) arc = -0.5. b/c = -0.5, 
(e) A A  = 2aL21,+1 = 2a 1 

+ 18& - ln(2 + &) , 1 
(c) ZAc  = 0.5 k/L. CAEC = 0.4918k/L 

3.45: 

3.46: 

(b) F = 3e/2, (c) E,(D) = 1 le/SL, 
(d) LC*D"B* = 88.57" 
(c), (d) AoB = 3fie/2. (e) (i) lul = m e / 6 ,  

(ii) luo~(oB) = 17fie/32 
3.50: 6 = 54.462" 

3.19: u(x, y r =  (ax + e)(y/L), U ( X ,  y )  = (by - e ) ( x / L )  3.51: 8 = 19.548" 
3.52: e = 42.2130 1 

2 
3.21: Ex = 4 3  f I r j )  x 1 0 - ~  
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Chapter 4 

4.1: €1.2 = 0.289, -0 .324~ 
4.6: (d) (i) A = 0.256255 x 10-4, (ii) Sa, = 0.028669", 

4.10: 
4.12: 

(b) E = 44 GPa, oi, = 176 MPa 
(a) (i) (E& = 150 GPa, (ii) Et = 82.5 GPa, 

E, = 141.7GPa (b) U0 = 111 x 103 N-din3 

Chapter 6 

6.1: d = 13.8mm 
6.2: AABIABc = 8EBC/EAB 

1 
6.6: AL = 4.2mm 
6.9: a = 3.20d 
6.11: % = 10.42mm 
6.12: UB = 4.57n~1-1, ~ l g  = 16.51 mm 

2PL 
R 2 ( ~ E i  + 4E2) 

R,(b) A L  = 

1 a2EI -c2E2 
2 aE1 +cE2 

6.14: e = - ( 
6.16: (a) e = 2(2E1 - 3E2) 

3(nEi + 4Ez) 
6.19: (a) j? = 62.2", (b) P = 94.4 kN 

P 

6.25: 

6.27: 

(a) U, = 55.5 MPa, cra = 222.2 MPa, 

o,, = 4.65 MPa, U< = 9.3 MPa 
AL = 0.173mm 

6.28: (a)  FA^ = FcD = -AEaAT 

cos2 j?) cos j? 
1 + 2cos2p 

FBD = 2AEaAT 

6.30: 

6.31: 

(a) Py = 5~016,  (b) AF = 4aoh/3E, (c) PUlt = UOA, 
(4 A ~ l ~ i t  4aohIE 
(a) P,, = 3qA/2, S,I, = aoL/3E; PuIt = 2ooA, 

(d) LA*B*D* = n/2 + -(1 + v)(e - &I; 
Scluit = 2a0L13E 

J s a c  
4E 

Ca2 uCab (e) UB = -(2 + e - 2 4 3 ,  z)B = -- 2E (e - &I 
2E 
P 

(a) S = - ln(D/d), (b) S = 1.12cm, 
4nGL 

6.33: 

6.38: 

(c) AL = - 2pL , (d) AL = 0.06mm 
nd2 E, 

6.40: (a) af/U,,, = Ef/E,,,, (e) E,f = 61.9GPa, 
- 
U = 15 MPa, AL = 0.97 mm, of = 72.3 MPa, 
a,,, = 580kPa 

Chapter 7 

7.2: t = 7.94mm 
7.3: D = 1.427d 

49 T 
7.4: 0 = - 

8n2c2R7 
7.7: d = 11.58 cm 
7.10: d = 5.65 cm 

7TL 
7.11: a - ___ ' - 12nGr; 
7.13: t = 95MPa 
7.15: N = 5699rpm 
7.16: 01.2 = 150.3, -208 
7.19: 
7.21: 

7.23: 

7.24: 

7.25: 

7.29: 

7.29: 

7.31: 

7.33: 

7.34: 

7.35: 

7.37: 

7.39: 
7.42: 

7.45: 

MPa, 01,2 = 6 9", 150.9' 
(b) t ~ e  = 53.92 MPa, t c ~  = 60.68 MPa 
(a) TA = 7toLl12, Tc = 3toL/4, 

TE = 14,577N-m, (b) b = 29.9mm, 
(c) 0 = 3.66"/m 

(b) d.B = 3toL2/xGd4 

~ T E R o  (d) 6 = 
nRiG (R: - RP) 

(a) T,, = 11,714 N-m, (b) 4 = 4.653 
(c) T = 13,619N-m, (d) Tp = 14,891 N-m 
(e) 0 = 9.05"/m 

2T 
Q - [(Ga - Gb)R: + GbRi1-I 

It 

(a) @A = 5T/2nGoR4, QB = 10T/nGoR4 

2&E, (d) U = - 
Ga 
T 

CO) 'c = 8nGR4 (a + I ~ c ) ,  (C) TE/Tb = 118, 

(d) b = 0.737R 
(a) T = 289.6 N-m, (b) b = 6.79 rmn 
(a) T,, = 11,800N-m, (b) Q = 2.69"/m, 
(c) Tp = 14,860N-m 
(a) Dld  = [ l  - (1 - 2/k)4]-i/3 

7.46: (a) D ld  = 2'1' = 1.1892, (b) D ld  = 1.2207441 
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Chapter 8 

8.2: 
8.3: 

8.4: 

8.6: 

8.12: 

8.13: 

8.14: 

8.15: 

e = a + c  

(b) V = -240, M = -240(~ - 3), 
(6 5 x 5 12) 

(c) v = -5x2/3, M = -x3/9; 
(d) V = 1200 - 3 0 0 ~ .  M = 1 2 0 0 ~  - 150~’ 
( f )  V = 1 0 ~ ’  - 1 2 0 ~  + 448, 

M 10x3/3 - 60x2 + 4 4 8 ~ ,  (0 5 x < 6); 
V = -512, M = -512x $4320, (6 < x < 10); 
V 200, M = -200(14 - x), (10 < x 5 14) 

(g) v = 5x2 - 200, M = 5x313 - 200x 
(h) V = 25x2/3 - 1 0 0 ~  + 700. 

M = 25x3/9 - 50x2 + 7 0 0 ~  - 4600, 
(0 5 x 5 6 )  
V = 400. M = 4 0 0 ( ~  - lO), (6 5 x 5 10) 

Cj) V = - 8 0 ~ + 1 6 0 , M - 4 0 ~ ~ + 1 6 0 ~ ,  ( 0 5 x 5 4 ) ;  
V = -160, M = -160~  + 640, (4 5 x < 8); 
V = 260. M = 2 6 0 ~  - 2720, (8 < x < 10); 
V = 60. M = 6 0 ~  - 720. (10 < x 5 12) 

v = PI + 2P’(1 - az/L), 
M = -P,(x - a , )  + P2[2(1 - az/L)x - (L - a2)1, 

(0 5 x < a, ) ;  v = -2P2(Uz/L - 1/2), 
M = 2P2 (az/L - 1/2)(L - x). (a2 < x 5 L) 
(a) F = 1200, V = -400, M = -4OOx. (0 < x < 6); 

8.17: 

8.19: 

8.24: 

8.25: 

8.27: 
8.29: 

8.31: 

8.33: 

8.35: 

8.37: 

8.39: 

8.41: 
8.42: 

8.43: 

(a) d/b = a, (b) d /b  = &! 
M = 2.462 kN-m 
- 1 Ebdt - Ead: y = -  

2 E b d b  + E,d, 

where I = bd3/12 

ME = 130o~d~/30  
(a) cr, = 27.5MPa,(b) LT, = -36.8MPa, 
(c) t = 965kPa, (d) t = 3.09MPa 
(a) lcrxl = 167.8MPa, (b) tc-c = 4.74MPa, 
(c) (i) t = 21.1 MPa, (d) R = 181.4m 

2 P  (b3 - a3)sin6 
Cb) t x s  = - 

(a) k = 9/8 
3~ (b4 - a4)(b - U )  

(a) a/L = (& - &)/2 = 0.5176, 
(c) Itxy\- = 2 ~ L ( 3  - &/b2 
t = 83.97MPa 
(a) h(x) = hod-, (b) 0 < n/L < 0.855 

(a) ho = 4 %,(b) h(x) = ho 
E bao J 
2b~0 
3n2 (c) qo 5 - tan 53 (d) qo = 517N/m, F = 1200, V = 0, M = -2400 N-m, (6 < x < 10) 

(b) F = -400, V = -330N, M = -300xN-m, 
(0 5 x < 4); F = -400, V = 1000 - 4 0 ~  N. 
M = -20X2 + looox - 5000N-m, (4 < X 5 10) 

ho = 16.7cm 
8.46: 
8-48: 
8.53: 

(a) s = 28.3 cm, (b) s = 7.7 cm 
(a) L = 3.75m, (b) W356 x 45 
(a) LTA~ = OB = 90MPa, (b) O A ~  = 46.15, 
LTB = 103.8 MPa 
(a) M = 83.06 kN-m, (b) R = 130 m 

(d) F = 0, V = -40xN. M = -200x2N-m, 
(0 5 x < 8); F = 0, V = 3200N, 
M = -3200x + 8000N-m, (8 < x 5 16) 8.55: 

qoL2 8.58: 

8.61: 

8.65: B-C: LT - - - - 8 [tension], 

crC = -7.06 MPa, (b) a, = 120.5 MPa 

tmax = -+L2 + e2)’/’ ’ 

(b) V(X) = - .-hZ( b ) 

qoL , MB = - 
2P  

E R  
(n + l)(n + 2) 

(c) RB = - 
n + 1  

(a) RA = 2qoL(n - 2)/n2, RB = 4q0L/n2; 
P 60L 

9 P  P 60L 
Ox = -g (b + 8) [compression], t = -; b2 

(a) (RA) ,  = 0.1321qoL, (b) V(x) = 72 PI, 
b3 

C-D: LT, = &- , t = o  
- 40 [ (1 + a2/2 - e-‘ - ue-ax/L ) L -a2x],  
a2 8.66: At €3: LT = -69.1, t = 19.9MPa; At C :  a = 72.7, 
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8.71: (a) = 3.75 cm, (b) M = -244.4800 9.5: 
au3u0 

,Mp=- 8.73: ME = - f i u 3 a 0  

6 12 

8.74: 
8.75: 

8.78: 

8.80: 
8.82: 

8.83: 
8.85: 

8.86: 

1 
3 

Mp = -(18 - 5f i )ad2a0 

1 12 
R Ebd3 

(a) M, = a(a + I ) b d 2 q ,  

(b) K E - = -(M-M,) 9.6: 

(b) K = =[I E h 2 n  - c . s ( ~ ) ]  

U = L / 4 , b  = (3PL/80~11,)'/~ 
(a) h(x)  = h ~ ( x / L ) ~ / ~ ,  ho = 20 cm, 0.1) x 5 0.764L, 
(c)  L = 3.43m 
h(x)  = hO(x/LI2, ho = 7.5 cm 

9.1 1 : (a) O A ~  = 36.4MPa, OS = 121.3MPa, 

(b) R=57.7m 9.14: 
Md 

(b) (&lax = -&I + rn) 9.15: 

9.8: 

4 
3 

8.89: (c) R = -Ro 

8.92: (c)  M/Mp 4(e/d)3 - 4(e/d)' + 1 9.17: 

8.97: 
9.19: 

8.98: (a) M = *[(5 - 2 e 2 / a 2 ) d m  9.21: 

+ 3 ( ~ / e )  sin-'(e/a)] 9.23: 

Chapter 9 9.25 

9.1: (b) (i) (0.4975L, -4.992L), (ii) (OSL,  -4.950L) 

(a) [(I - n cos9)sin2 9 + 11 tan9 = 9 ,  
(b) j ,  = 0.48823R, k = 1.4248 

6 

9.27: 
9.29: 

wx2 wL4 
(a) u(x) = -(x2 - 4Lx + 6L2),  U,,, = - 24EI 

W wL4 
24E I 8EI 

40 
120EIL 

9.3: 

(c) v(x)  = -(x4 - 4L3x + 3L4), 21, 

(x5  - 5L4x + 4L5), (e)  u(x)  = ____ 

- 
9.31: 

40L4 
U,, = - 

30EI 
40 

360EIL 
[ 3 ( ~  - x ) ~  - I O L ~ ( L  - xj3 - (g) 4 x 1  = ____ 

3 40L4 7L4x + 7 L 5 ] ,  U,, = 6.522 x 10- - 
E I  

at 5 = 1 - ( 1  - m)'12 = 0.48067 
L 

( i )  v (x )  = - (2x2 - 3Lx + L2). 
6 E I L  

MoL2 - 0.01604- at 
f i M 0  L2 

E I  
Iulmax = - - 108EI 

9.33: 

(x5  - 3Lx4 + 5L3x2 - 3L5). qox (a) v ( x )  = -- 
90EIL2 

23q0L4 
U,, = ~ 

1920EI 
40L4 n x  4 0 . ~ ~  
n 4 ~ 1  L n 4 ~  I 

(c )  v (x )  = - sin -, umm = - 

40L4 
(a)  V ( X )  = - { [-3(1 + a)(ax/L)'+ 6a4 E I 

( ~ x I L ) ~  + 6]e-ax/L + 6 ( a x / L )  - 6 )  

(a) u(x)  = - 

3@L4 
8 r 2 E I o  

PL3 
( a )  U ( X )  =: -[-(x/L)3 6EI  + ~ ( x / L ) ~  + 6 y ( x / L ) ]  

A x / L  = 1.19 x 10-9 

I + u  
4PL3 163wL4 
8 1 E I 1944E I 

(b) v(L)  = - + ____ 

Pa 
(b) v(L/2)  = z ( 3 L 2  - 4a2) 

(b) - = -(a-- 1) 

v(L/2)  = ~ 

a 1  
L 6  

205wL4 
3 1.104E I 

(a) RA = qoL/24, RE = 7qoL/24, MB = -qoL2/24 
(a) RA = 7wL/32?, RB = 5wL/16?, 

Rc = wL/32$ 
(a) RA = RE = wL/2?, MA = MB = -wL'/12, 

wL4 
384EI 

(c )  U,,, = v(L/2)  = - 

7q0L4 (c) U,, = v(L/2)  = ____ 
3840EI 

2wL(5 + 3a)  2wL2(2 + 3a)  9.35: (a) RA = , M A = -  
8 + 3a 8 + 3 a  ' 

(b) U@) = ~ 24EI [(x4 - 8Lx3 + 24L2x2) 

1 Lx2(x - 6 L )  
8 + 3 a  

9.37: P = 2wL/3 
9.39: MO = wL2/3 
9-41: RA = 7wL/32?, RE = 5wL/16?, Rc =: wL/32$ 
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9.43: 

9.45: 

9.48: 

9.49: 

9.53: 

5wL a 1 
9.79: ( a )  u(x)  = -- 8 l + a  2 5760EI 4oL4 [4o(x/L)3 - 3 ( q X / L )  - 1 ) s  RC = -(-),RA = RB = - (wL - Rc), 

0 = kL3/48EI 17qoL4 
RA = RB = P / 2 f ,  MA = MB = -PL/8  

uc = - 

Z)B - 2q0L4 1 6n4 
1 17wL4 

5 q 0 ~ 4  4*L4 384EI (a) uc = - 

11,520EI 
- 37(x/L)] ,  u(L/2)  = 

3 q0L4 
E I  

1 1 ~ ~ 3  5PL3 = 1.476 x 10- - 
96EI 48EI 

9.81: (a) u(x) = sin(2nxlL) 

9.82: 

9.83: R / L  = 2/5/30 

3n4EI(n3  - 24) 
(b) UD = - , (c) k = 12EI/7L3 

768EI’ (b) VC = - 
n4 

9.84: U(.) = - q0L4 {cos(2nx/L) + n z [ x 2 ( x / L ) 4  
9.56: (a) Gv, = - { / L ,  G M ~  = ( L  - x ) { / L ,  

(0 5 5 5 xc); 
Gvc = ( L  - t ) / L ,  G M ~  = ( L  - <)x/L,  
(xc 5 c 5 L) ,  

(c)  Mc = wL2/128, (d) Mc = 5wLZ/128, 

24x4 E I 
- 2 1 r ~ ( x / L ) ~  + ~ ( x / L ) ~  + (n2 - 6 ) x / L ]  - 3 )  

5P 
16(1+ 3 E I / k L 3 )  

9.86: R = 

9.88: 
9.90: 

( a )  RA = 7 P J ,  RB = 8 P f ,  MA = 6 P L  
( a )  (i) k = 192EI/L3, (ii) k = 672EI/L3 

(e) MC = 21wL2/512whenplacedinregion3L/16 5 
{ 5 7L/16 

1 9.58: (c) ~ M A I , ~  = 384.9N-m, - -(3 - &)L 
cr - 3 

MO LZ 

(2x2 - 3Lx + LZ), Mox 
6 E I L  

9.61: u(x)= - 

at 
A M 0  L2 I U I ~ ~  = - = 0.01604- 

108EI E I  

2(n3 - 24)qoL4 
3n4EI  

Pa 
24EI 

9.65: 

5PL3 wL4 5PL3 37wL4 
9.67: US = - +- 

U,,, = u ( L / ~ )  = -(3L2 - 4u2) 

384EI 96EI’ VD = 768Bl 6144EI 

(a) v(x)  = -(-4x3 + 3Lx2 + 8(x - L/2)3) ,  
P 

48EI 
9.69: 

PL3 
(b) u ( L / ~ )  = - 

(d) RA = RB = P / 2 ,  MA = MB = -PL/8  
0, = wL3/6EI ,  U B  = wL4/8EI 

(a) 6, = -(2MA f MB), $B = -- 

192EI’ 

9.71 

9.73: 
L L 

6 E I  6 E I  
L2 

16EI ( ~ M B  4- MA), (b) u(L/2)  = ----(MA 4- MB) 

Mod 
9.75: (a) v(a) = --(1 - a / L )  [-2 + 4(a/L)  - 

4 E I  
( U / L ) ~ ] ,  (d) down: 0 < u / L  < 2 - 

Pa2b2(aa + b) 
9.77: (a) uc = 

3aEIL2 

Mox2 
9.91 (a) v(x) = -(x/L - l ) ,  (b) RA = 3M0/2LT, 4 E I  

MA = -&/2 
wL2 6+#3L/EI 
12 0 4+/3L/EI  ’ 

9.93: ( a )  MA = -- 

RA=-( W L  5+#3L/EI ) 
2 4+#3L/EI 

(b) (ii) MA = MB = -wL2/12, 
RA = RB = w L / 2  

9.95: RB = RD = ( 12AEz ) ( a A T  - 6 / L )  
AL2 + 241 

9.97: (b) RA = (&), RD = i7; P (w), 48+27a 

h!fD = --( P L  -), 24+ l l a  Uc = - 5PL3 (-) a 
16 3 + 2 a  48EI 3 + 201 

7wL4 
9.98: 6 = - 

1152EI 
9.99: (b) y < 3 E I / L 3  stable, otherwise unstable 

WLZ P L  
60 10 

9.101: (b) MB = -wb3/8L, (c) MB = - - -, 
M c = - - -  P L  wL2 

40 15 
wL4 (b) U,, = U ( X  = 0.236219L) = 5.7191 x lOP4- 
E I  

9.105: 

Chapter 10 

10.1: p = 4.8 MPa 

10.3: 

10.5: h = 22.66m 
10.6: (a) = -(%)in = ES/2R 

2 t E A  
(b) pCr = 14.7MPa (a) Pcr = RL(l  - 2”)’ 
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7, - 1  4aot 
= R(3 + cos 2a)  ’ 00 governs 10.8: 

1 pR(1 - 2 ~ )  
10.9: A T  = f. [ + 

a L  2Et 

(1 - cos$) 10.19: (a) cr@ = - 
3t sin2 0 
7 pR2 
18 t 

(b) U+ = -- 

Chapter 11 

11.1: (a) P, = 200N 
B 

cr - 2L 
11.3: P - -(3 -&) 

11.7: 
11.9: 

(b) (i) P = 83.3 N, (ii) P = SON, (c)  Pcr = lOON 
(a) P,, = 32.9N, (b) Pcr = 82.4N 

11.11: P, = 0.4601Ea3t/L2 
11.13: (b) PCr = n2EI /4L2  
11.17: tan(hL) = hL(1 + y),  h = m 
11.19: (a) tan(hL) = -yhL,  h = m 
11.25: (b) v(x)  = sin(h) + cos(hL). - hx],  

A. = m, a = kL3 /EI  
1 - coshL 11.27: (a) v(x)  = - - [ i 2  [ ( sinhL ) sin’’ 

+ coshn - 1 - Lx /2  + x2/2). h = 1 
11.31: (a) Pcr = - + (b) (Pm)min = 4B/L CL 

1 + cos(hL) 11.34: v(x) = e c o s ( h )  - { [ sin(hL) ]sin(’’) 

4- (2x /L  - 1 ) )  

11.42: (a) k =  Pcr ( L - - n: ,/;:) - , (b) k = 564 Nlcm 

27n2EI 
16L3 

11.44: k,, = - 
11.45: (b) C#J = tm-’(Co?a), 

L2 sin’ 2a 1 (4 (PCr)max = 

11.46: k > 16n2EI/L3 

Chapter 12 

12.3: 
12.7: z,, = 17.63MPa 

(c)  (iii) zmax = 20 T/a3  

bt; 
12.9 G C =  Gy-= 

1L 
3TL 

2GP( l + 2c/ h )  
12.10: (a) A.,, = - 
12.13: b/a = 4 

12.14: (a) 

12.17: (a) 

12.18: (b) 

(c)  

12.20: (a) 

r a  @a - = t /3R,  (b) - = t2/3R2 
Th @h 

Hexagon: C = 41.784a3t, (b) Hexagon: 
t = 0.04466T/a2t, (c) C = 43.77a3t 

r S y l ~  = - k / b ,  txVl~ = -2Ka/b, 
t x z l ~  = -2K/a, = -2Ka/b, 

T 

where K = 
1 

nab(1 - a4) 
2T 

nab2(1 - a4) 
Zmax 

na3t 2T 
4 na2t 

c = - cot2(n/n), (c> t = - tan(n/n) 

Chapter 13 

13.5: (b) 0 ; ~  = -6.71 MPa, a,~ = 0.872 MPa 
2Pab + 0010 

Pab + 4fJ010 
13.7: (b) /? = -tan-’ 

a3a+2h  13.9: e = -- 
2 3a+h  

13.11: e /d  = 213 

13.13: (c) e = 2R - (2:) 
13.15: e = (7) h: d 

: + h i  
1 

18 
13.17: 

13.18: e = 3n R/8  
13.21: e = a a / 6  

a = -(m - 7) 

3n2EI  
L2 

11.41: E’= - 
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4 4 3  13.23: (a) e / a  = 1 - - = 0.2302 
0 
' w  3 w  13.27: (a) T A  = t c  = SD = - 2nRt 9 TB = - 

2 n  Rt 
13.29: (a) e = &a/4 

1 
13.33: (Y = 2'" + d m )  
13.35: b/a  = (2/2/3)'12 
13.36: bla = 314 

' 3TL 
13.37: (b) AD = - 

2 n t 3 ~  
1 13.39: (a) e/d = _____ 

I + sin2 0 

Chapter 14 

14.5: (a) AB = 4PL3/S lEI$ , (b)  AA = 17PL3/162EI$. 
(C) @A = PL2/6EI  

7wL4 
14.7: Ac = ------$ 

48EI 
14.8: (a) 0, = 33PL3/2EI 
14.10: MO = 7wL2/64 clock-wise 

14.11: (a) v ( x )  = -(3Lx2 - x3), (0 I: x i L )  
P 

6EI 
6PL3 

14.13: A A  = - 
Ebod3 
4v P 
l tDE 

14.15: A L  = - 
WL 
2a 

14.17: (a) M A  = 2wL3/a,  (b) Rc = -(5a + 4L), 

14.21: (b) (ii) Between D and F, IMGI,,,,, = 5wL2/8; 
(c) (ii) between G and I, ( R I ) ~ ~  = 7 w L / 4  

14.22: (b) (i) Between E and F, / M D ~ ~ ~  = 3wL2/4, 
(ii) betweenDandE, IV;lmax = 5wL/4; 

(c) (i) 4.667L 5 { 5 5.667L5, lMDlmax = 5wL2/6,  
(ii) 4.4L 5 { 5 5.4L, [VJmax = 27wL/20 

(c) Mc = -2wL2 

6PL3 
14.29: AA = - 

Ebod' 
wL4 

AB = AD = - 
192EI 

14.31: 

14.34: 6' = 7.125' 
32&6 - E. @) FBF = FCE = 

33 AE' 14.35: (a) AC = 

4&6 - A) 
33 

X 14.37: (a) v(x) = - 

(1 - cos g) 
14.38: V ( X )  - 
14.40: a! = 1019 
14.42: (b) (i) L 5 < I 3 L ,  IMAI,, = 19wL2/6, 

(c) (i) 7 L  I: { 5 9L,  (RH) ,  = 2.5wL; 
(ii) 1.2L 5 { I: 3.2L, l M ~ l ~ ~  = 16wL2/5; 

(ii) 2OL/3 5 { I: 26L/3, (RH),,,, = 8wL/3  
14.43: (b)  RA = qoL/6, MA = -q0L2/6, Vc = qoL/24 

n P R 3  ( 3 ~  - 8)PR3 
+ 4GC 

14.47: Ac = - 
4 E I  

14.49: (a) a! = 22.5". 112.5" 
32PL3 

14.51: V ( X )  = - 

M ( x )  = - 
n odd 

Chapter 15 

15.1: h / R  I: 314 
15.3: P,, = 5kL/2 

48  15.5: Pcr = - 
3L 

1 
15.7: 

15.8: 

15.9: (a) P - - 
- b + 2a 

15.11: (a) P, = 30EI /L2  

15.12 (a) P, = 21.0EI/L2 

(a) Pcr = -i7; [ / ? I  + 282 - (8: + 48i)"2] 

(b) (i) P = 83.3 N, (ii) P = 80 N, (c) P,, = IOON 
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Admissible fields, 601 
displacement field, 601 
stress field, 605,606 

Allowable load, 269-271 
Allowable stress, 9 
American standard beams [S-shapes] (table), 

705 
Angle of twist, 193 
Angle sections [L-shapes], (tables) 

equal legs, 707 
unequal legs, 708 

Anisotropy, 12 1 
Areas 

second moments of, 688 
mixed second moments of, 688 
polar moments of, 688 
properties of selected areas (table), 692 

extensional strain, 14, 82-85 
normal stress, 9 
shear stress, 9,39,271 

Axial behaviour 
elastic, 155 
elastic-plastic, 174 
deformation, 155 
loading, 155 
rigidity, 160 
strain, 157 
stress, 157 

due to axial loadings, 158 
due to flexure, 252,324,668 

Average 

Axial displacements 

Beam deflections 
due to flexure 

by integration, 315,318-323,330-339 
by moment-area, 365 
by complementary virtual work, 

by superposition, 339,342 
for non-prismatic beams, 3 19 

615-621 

due to shear, 326 

axial displacements, 324,668 
bending moments in, 226 
bending moment diagrams, 227 
built-up sections, 270 
cantilever, 8 
composite sections, 272 
curvature of, 3 14 
definition, 225 
deflections 

Beams 

by integration, 315,318-323,33&339 
by Castigliano’s second theorem, 

by complementary virtual work, 
550-556 

615-620 
differential relatrons, 230,501 
elashc curves, 314,501 
Euler-Bernoulli relation, 244,499 
flexural rigidity, 247 
flexural strain, 246 
flexural stress, 247,248,504 
integral relations, 237 
lineansed theory, 3 14 

accuracy of, 3 16 
neutral axis, 244 

location of, 496,505,507 
neutral surface, 244 
reinforced concrete, 298-299 
section modulus, 249 
shear diagrams, 227 
shear stresses 

symmetric bending, 259 
unsymmecric bending, 508 

simply supported, 3 
statically indeterminate, 337, 342 
transformed sections, 274 

Beam-columns, 428 
Bending moments, 23,39 

Betti’s law, 546 
sign convention, 229,50 1 

723 



724 Index 

Bifurcation point, 407,649 
stable bifurcation point, 41 1 
unstable bifurcation point, 41 1,654 

Body force, 5 
Boundary conditions 

forbeams, 315, 358,415 
for columns, 4 12 

Boundary value problem, 412 
Bredt’s formula, 484,611 
Brittle material, 139 
Buckling 

mode, 413,664 
stress, 41 5 

Bulk Modulus, 129 

Cantilever beams, 8 
Cartesian components of traction, 

29,61 
Castigliano’s first theorem, 556 
Castigliano’s second theorem 

derivation, 550 
applications, 55 1-556 

Centre of curvature of a beam, 244, 

Centre of twist, 450,458,517,549 
Channel sections [C-shapes] (table), 706 
Characteristic equations, 413 
Circular shafts 

314,375 

deformation, 190 
normal stresses in, 207 
shear stresses, 195 
statically indetermmate, 207 

Clapeyron’s theorem, 544 
Coefficient of thermal expansion, 15, 

170,610 
of selected materials (table), 701 

axial loading (concentric), 41 1,420 
critical loads, 413,420 
critical stress, 415 
eccentric axial loads, 420 
Euler buckling load, 414 
secant formula, 422 
slenderness ratio, 4 15 

Combined loadings 
in beams, 276 
in cylindrical shafts, 206 

Columns 

Complementary strain energy, 556 
Complementary virtual work, 600 

derivation of principle, 600 
in terms of stress resultants, 607 

Components of strain, 93,99 
Components of stress, 28-30 
Composite sections 

under axial loading, 180-1 82 
under flexure, 272 

mathematical representation of, 360 
Concentrated force, definition, 6,558 

Conjugate shear stresses, 3 1 

Conservation of energy 

Constitutive equations, 16, 119 
Constraints, 7 
Contact forces, 5 
Continuous beams, 389 
Contraflexure, point of, 339 
Coulomb torsion, 190 
Couples 

Critical buckling loads, 413 
Critical buckling stress, 415 
Curvature of a line, 694 
Curved beam, 306-307 
Cylindrical pressure vessels, 392 

Deflection of beams 
due to flexure 

principle of, 133 (1-D), 542 (general) 

mathematical representation of, 361 

by Castigliano’s second theorem, 

by complementary virtual work, 

by integration, 315,318-323 
by superposition, 339 
error due to linearization, 3 17 

551-554 

61 5-621 

due to shear, 326 
De fornabon 

axial, 155 
extensional, 75 
flexural, 242 
shear, 78 
torsional, 190 
volumetric, 107 

Degrees-of-freedom, 648,678 
de SaintVenant 

principle of, 151, 163 
general torsion solution, 449 

2”d order equation, 3 15 
4Ih order equation, 357 

under combined lateral and axial 

Differential equation of the elastic curve 

Differential relations for beams, 230, 501 

loads, 424 
Dilatation, 107 
Dirac-delta function, 329,360 
Divergence theorem, 456,696 
Domain of validity of differential equation, 

Doublet, 361 
Ductile matenal, 134 
Ductility, 134 
Dummy (unit) load method, 617 

Eigehction, eigenvalue, 72,414 
Elastic constants, 125 
Elastic curve, differential equation of, 

315,357 
Elastic limit, 124, 135 
Elastic material, definition, 121, 123 

318,364 
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Elastic-plastic behaviour, 141 
for axial loadings, 174 
of beams, 278 
of cylindrical rods under torsion, 210 

Elastic strain energy, 130,538 (1-D), 539 
(general) 

Elastic strain energy density, 131, 538 (1-D), 
539 (general) 

Elasticity, modulus of, 124 

Elastoplastic material, 141 
Elongation, 16, 134 
Energy 

of selected materials (table), 701 

principle of conservation of, 133 (1-D), 
542 (general) 

Engineering strain, 14 
Equation of geometric compatibility 

axially loaded rods, 165 
in beams, 339,343 
in torsion, 209 

Equations of equilibrium, 35 
Equilibrium states 

neutral, stable, unstable, 406 
pseudo-neutral, 655 

Euler-Bernoulli relation for beams, 

Euler buckling load, 414 
Extensional strain, 75 

Factor of safety, 9 
Finite element method, 633 
Fixed-end moments, 618 
Flexibility coefficients, 547 
Flexural rigidity, 247 
Flexural strain, 246 
Flexural stress, 247,248,504 
Force method 

for axial behaviour, 170 
for flexural behaviour, 342 

body force, 5 
concentrated force, definition, 6 
contact force, 5 
distributed force, 6 

Founer senes, 465,677 
Fourth-order beam equation, 357 
Fully plastic moment, 278 
Functional, 669 
Fundamental solutions, 349 

244 

Forces 

Gauge length, 16,139 
Gauss’ theorem, 456,696 
Generalised 

coordinates, 661 
displacements, 548 
forces, 548 

Generalised Hooke’s Law, 124 
Geometric compatibility, 165,172,209, 

339,343 

Green’s functions, 349-356 
for beam deflections, 350 
for stress resultants, 352 

Green’s theorem in a plane, 456,695 

Heaviside function, 329 
Homogeneity, 120 
Hooke’s Law, 124-128 

for anisotropic materials, 125 
for isotropic materials, 126, 128 
generalised law, 125 

Hydrostatic state of stress, 61 

Ideal elastic-plastic material, 14 1 
ldealizations 

constraints, 7 
loads, 6 
reactions, 7 

displacement fields, 559 
stress fields, 603,619 

axial loading, 174 
flexural loading, 278 
torsional loading, 2 10 

Inextensional behaviour, 25 1 
Influence functions, 349-356 

Influence lines 

Inadmissible fields, 

Inelastic behaviour 

(see also Green’s functions) 

definition of, 352,353 
by equilibrium, 354 
by virtual work 

for determinate structures, 588-593 
for indeterminate structures, 593-600 

Inhomogeneity, 120 

Instability 
micro- and macro-scales, 119 

of a mechanical system 
definition, 405 
according to energy criteria, 647 

Integral relations for beams, 237 
Internal force resultants, 38 
Invariants 

of second rank tensor, 46 
of strain, 100 
of stress, 46 
of vectors, 47 

micro- and macro-scales, 121 
Isotropic materials, 121 

Kernel of superposition integral, 350 
Kinematically admissible displacemenfs, 560 

Lame constants, 143,635 
Laplace equation, 454,463 
Linear superposition, 147 
Linearized beam equation, 3 15 

Loading path, 124,177 
error due to linearization, 3 17 



726 index 

Loads 
allowable, 269 
axial, 155 
combmed, 206,276 
distributed, 6 
lateral, 225 
line, 6 
torsional, 190 
transverse, 225 

Localised effects, 161 

Macaulay brackets, 329 
Macro- and micro-scales, 119 
Material constants, 125 
Maxwell’s reciprocal relations, 546 
Mechanical properties, 134 

of selected materials (table), 701 
Membrane analogy, 468 
Membrane equation, 469,698 
Method 

of virtual displacements, 570 
of virtual forces, 615 

Mixed second moments of area, 688 
Modulus 

of elasticity 
defined, 124 
of selected materials (table), 701 

of resilience, 137 
of rigidity, 125 
of toughness, 137 

for strain, 100 
for stress, 53 

Mohr circle 

Moment-area theorems, 365 
Moment-curvature relations 

for elastic behaviour, 244 
for inelastic behaviour, 282 

Moment diagram, 227 
Moment of inertia, 688 
Moments 

bending, 23,226 
torsional, 22.40 

Moments of area, 688 
mixed second moments, 688 
polar moments, 688 

Muller-Breslau principle, 593400 
Multiply-connected domains, 449,487 

Navier’s hypothesis, 255, 3 13 
Necking, 136 
Neutral axis, 244 

Neutral equilibrium, 406 
Neutral surface, 244 
Nominal 

location of, 496, 505,507 

strain, 134 
stress, 134 
stress-strain curve, 134 

Nominal ultimate tensile stress, 135 
Nonlinear elastic behaviour, 123 

Nonlinear structural behaviour, 433,629 
Normal force, 22 

Parallel axis theorem 
for mixed second moments, 689 
for second moments of area, 688 

definition, 9 
Giga-Pascal, 9 
kilo-Pascal, 9 
Mega-Pascal, 9 

Permanent set, 179 
Perturbations, 406 
Plane strain 

definition, 8 1 
Hooke’s law for, 142 
transformation laws, 93 

definition, 35 
Hooke’s law for, 142 
transformation laws, 42 

Pascal 

Plane stress 

Plastic behaviour, 141 
Plastic 

deformation, 177 
hinge, 285 

Plastic material models, 141 
Plastic zone 

in bending, 283 
in torsion, 210 

Poisson equation, 453,462 
Poisson raho, 126 
Polar moments of areas, 688 
Positive definite 

definition, 663 
property of elastic energy, 133,539 

Potential energy of a force, 624 
Power transmission, 206 
Pressure vessels, 392 

hoop stress, 394 
longitudinal stress, 395 

directions of strain, 101 
planes, 48,49 
strain, 100 
stress, 48 

Principle of 
complementary virtual work, 600 
conservation of energy, 133,542 
de Saint Venant, 150, 163,269 
stationary potential energy, 623 
superposition, 147,339 
virtual work, 558 

derivation of, 562 
applications, 574-599 

Proof stress, 138 
Proportional limit, 17, 134 
Pseudo-neutral equilibnum, 655 
Pure 

Principal 

bending, 235 
shear, 60 
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Radius 
of curvature, 244,3 14 
of gyration, 33,415 

Ramberg-Osgood equation, 139 
Rayleigh method for critical loads, 671 
Rayleigh quotient, 666,670 

proof of upper boundedness, 677 
Rayleigh-htz method 

for critical buckling loads, 679 
for deflections of beams, 629 

Reactions, 7 
Redundant reactions, 342,62 1 
Re-entrant corner, 478 
Reinforced concrete beams, 298, 299 
Released structure, 342,621 
Residual stresses, 179,218,303 
Resilience, modulus of, 137 
Resultant shear stress, 454,470 
hg id  body rotation, 83,90 
Rigid-plastic material, 141 
Rigid rods 

stability and instability 
by energy, 648666 
by equilibrium, 406-41 1 

Rigidity, modulus of, 125 

Rods 
of selected materials (table), 701 

instability of rods 
see also ‘Columns’ 

under axial loads, 155 
under combined loads, 206 
under eccentric loads, 420 

Rosette, 105 
Rotation of cylindrical shafts, 193 

Safety factor, 9 
de Saint Venant pnnciple, 150 
de Saint Venant torsion solution, 449 
Secant formula, 422 
Secant modulus of elasticity, 140 
Section modulus, 249 
Semi-inverse method, 448 
Shape factor, 265,609,612 
Shear center, 514 
Shear deflection of beams, 326 
Shear deformation, 78 
Shear diagram, 227 
Shear flow, 264,482 
Shear force, 22 
Shear modulus, 125 
Shear strain, 78 

in beams, 265 
Shear stress, 10,28 

in beams, 259,508 
limitations, 264 

in closed thin-wall beams, 520 
in open thin-wall beams, 5 13 

for curvature, 3 14 
for moments, 229, 501 

Sign convention 

for shear, 229,500 
for stresses, 30 
for transverse loads, 229,500 

Simply-connected domains, 449 
Simply supported beams, 3 
Singularity functions, 329 
Sinh law, 139, 180 
Slenderness ratio, 415 
Source point, 35 I 
Spherical pressure vessels, 397 
Stable equilibrium 

Standard channels [C-shapes] (table), 706 
Statically admissible stress field, 603 
Statically indeterminate 

axial rods, 164, 170 
beams, 337 
shafts under torsion, 207 

definition, 406,647 

Stationary potential energy, pnnciple 
of, 623 

stationary values of shear stress, 5 1 
Step function 

Strain 
(see Heaviside function) 

extensional, 75 
plane, 8 1,93 
principal, 100 
shear, 78 
state of, 92 
‘true’, 136 

Strain-displacement relations, 8 1,85 
Strain energy, 130 (1-D), 539 (general) 

density, 131 (I-D), 539 (general) 
due to axial loading, 54 1 
due to flexure, 541 
due to shear, 539,634 

Strain hardening, 17, 135 
Strain invariants, 100 
Strain rosette, 105 
Strain tensor, 99 
Strain transformation laws, (2-D) 93 
Stress 

allowable, 9 
average normal, 9 
average shear, 9 
axial, 157 
buckling stress, 41 5 
circumferential, 194 
compressive, 30 
flexural, 247,248 
hoop, 394 
plane, 35 
principal, 48 
shear, 10,28 
sign convention for, 30 
stationary shear, 5 1 
tensile, 30 
thermal, 170 
two-dimensional stress, 35 

Stress concentrations, 164 
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Stress equations of equilibrium and motion, 

Stress function, 452 
Stress invariants, 46 
Stress-stram curve, 16, 134 
Stress-strain relations 

general elastic, 123 
linear elastic, 124 

Stress resultants, 11 
Stress tensor, 30 
Stress transformation laws, (2-D) 42 
Superposition, principle of, 147 

integral formulation, 339 
Superposition method 

for beam-columns, 433 
for beam deflections, 339 
for combined loadings, 148,207 

Superposition of strains, 147 
Symmetric bending of beams, 242 

Tables 

35 

isotropic, 126, 128 

properties of selected areas, 692 
properties of selected materials, 701 
properties of rolled steel sections, 703 
reactions, deflections and slopes of beams, 

710 
Tangent modulus, 139 
Tapered 

beams, 267 
rods, 162 
shafts, 201 

Temperature problems, 170 
Tension test, 134 
Thermal 

strains, 170 
stresses, 170 

of selected materials (table), 701 

closed sections, 200,481 
open sections, 475 

Thm-wall pressure vessels, 392 
cylindrical, 392 
spherical, 397 

Thermal expansion, coefficient of, 170,610 

Thin-wall members 

Three-moment equation for beams, 390 
Tie-rods, 433 
Torque (see Torsional moment) 
Torsion 

Coulomb torsion, 190 
of cylindrical rods, 190 

de Saint Venant torsion, 447 
general solution, 449 
of elliptic cross-sections, 458 
of rectangular cross-sections, 462 

thin-wall closed sections, 481 
thin-wall open sections, 475 

Torsional constant, 473 
Torsional moment, 22,40 
Torsional rigidity, 196 

Torsional stiffness, 196,448 
Toughness, modulus of, 137,448 
Traction 

definition, 21 
Cartesian component of, 29,61 
normal and shear stress components, 28 

for two-dimensional (plane) strain, 93 
for two-dimensional (plane) stress, 42 

Transformation laws 

Transformed sections, 274 
‘True’ strain, 136 
‘True’ stress, 136 
Truss 

deflections 
by Castigliano’s second theorem, 554 
by complementary virtual work, 622 

Twist 
unit angle of, 195 

Ultimate plastic torque, 212 
Unit angle of twist, 195 
Unit dummy load method, 617 
Units 

of power, 206 
of stress, 9 

Unloading path, 124, 177 
Unstable equilibrium, 406 
Unsymmetric bending of beams, 496 

Vector 
as a tensor, 47 
invariant of, 48 

Virtual displacements 
definition, 558 

Virtual forces, 601,603 
Virtual stresses, 601 
Virtual work 

comparison with strain energy, 566 
derivation of the principle, 562 
general expressions 

external virtual work, 565 
internal virtual work, 562 

for structural elements, 567 
Viscoelastic material, definition, 122 
Viscous material, definition, 122 
Volumetric strain, 107 

Warping of cross-sections 
due to flexure, 265 
due to torsion, 19 1,45 1 

Watt (unit of power), 206 
Wide-flange sections [W-shapes] 

(table), 704 
Work, 206,545,546-548 

Yield point, 13 5 
Yield strain, 176 
Yield strength, 138 
Yield stress, 135 
Young’s modulus, 17 




