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v

The clinical trial is “the most definitive tool for evaluation of the applicability of 
clinical research.” It represents “a key research activity with the potential to 
improve the quality of health care and control costs through careful comparison of 
alternative treatments” [1]. It has been called on many occasions, “the gold stan-
dard” against which all other clinical research is measured.

Although many clinical trials are of high quality, a careful reader of the medical 
literature will notice that a large number have deficiencies in design, conduct, 
analysis, presentation, and/or interpretation of results. Improvements have occurred 
over the past few decades, but too many trials are still conducted without adequate 
attention to its fundamental principles. Certainly, numerous studies could have been 
upgraded if the authors had had a better understanding of the fundamentals.

Since the publication of the first edition of this book, a large number of other 
texts on clinical trials have appeared, most of which are indicated here [2–21]. 
Several of them, however, discuss only specific issues involved in clinical trials. 
Additionally, many are no longer current. The purpose of this fourth edition is 
to update areas in which major progress has been made since the publication of 
the third edition. We have revised most chapters considerably and added one on 
ethical issues.

In this book, we hope to assist investigators in improving the quality of clinical 
trials by discussing fundamental concepts with examples from our experience and 
the literature. The book is intended both for investigators with some clinical trial 
experience and for those who plan to conduct a trial for the first time. It is also 
intended to be used in the teaching of clinical trial methodology and to assist mem-
bers of the scientific and medical community who wish to evaluate and interpret 
published reports of trials. Although not a technically oriented book, it may be used 
as a reference for graduate courses in clinical trials. Those readers who wish to 
consult more technical books and articles are provided with the relevant literature.

Because of the considerable differences in background and objectives of the 
intended readership, we have not attempted to provide exercises at the end of 
each chapter. We have, however, found two exercises to be quite useful and that 
apply most of the fundamental principles of this text. First, ask students to cri-
tique a clinical trial article from the current literature. Second, require students to 
develop a protocol on a medically relevant research question that is of interest to 
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the student. These draft protocols often can be turned into protocols that are 
implemented. This book is also not meant to serve as guide to regulatory require-
ments. Those differ among countries and frequently change. Rather, as the title 
indicates, we hope to provide the fundamentals of clinical trials design, conduct, 
analysis, and reporting.

The first chapter describes the rationale and phases of clinical trials. Chapter 2 
is an addition and it covers selected ethical issues. Chapter 3 describes the questions 
that clinical trials seek to answer and Chap. 4 discusses the populations from which 
the study samples are derived. The strengths and weaknesses of various kinds of 
study designs, including noninferiority trials, are reviewed in Chap. 5. The process 
of randomization is covered in Chap. 6. In Chap. 7, we discuss the importance of 
and difficulties in maintaining blindness. How the sample size is estimated is cov-
ered in Chap. 8. Chapter 9 describes what constitutes the baseline measures. 
Chapter 10 reviews recruitment techniques and may be of special interest to inves-
tigators not having ready access to trial participants. Methods for collecting high 
quality data and some common problems in data collection are included in Chap. 11. 
Chapters 12 and 13 focus on the important areas of assessment of adverse events 
and quality of life. Measures to enhance and monitor participant adherence are 
presented in Chap. 14. Chapter 15 reviews techniques of survival analysis. Chapter 
16 covers data and safety monitoring. Which data should be analyzed? The authors 
develop this question in Chap. 17 by discussing reasons for not withdrawing partici-
pants from analysis. Topics such as subgroup analysis and meta-analysis are also 
addressed. Chapter 18 deals with phasing out clinical trials, and Chap. 19 with 
reporting and interpretation of results. Finally, in Chap. 20 we present information 
about multicenter, including multinational, studies, which have features requiring 
special attention. Several points covered in the final chapter may also be of value 
to investigators conducting single center studies.

This book is a collaborative effort and is based on knowledge gained over almost 
4 decades in developing, conducting, overseeing, and analyzing data from a number 
of clinical trials. This experience is chiefly, but not exclusively, in trials of heart and 
lung diseases, AIDS, and cancer. As a consequence, many of the examples cited are 
based on work done in these fields. However, the principles are applicable to clini-
cal trials in general. The reader will note that although the book contains examples 
that are relatively recent, others are quite old. The fundamentals of clinical trials 
were developed in those older studies, and we cite them because, despite important 
advances, many of the basic features remain unchanged.

In the first edition, the authors had read or were familiar with much of the rele-
vant literature on the design, conduct, and analysis of clinical trials. Today, that task 
would be nearly impossible as the literature over the past 3 decades has expanded 
enormously. The references used in this text are not meant to be exhaustive but 
rather to include the older literature that established the fundamentals and newer 
publications that support those fundamentals.

The views expressed in this book are those of the authors and do not necessarily 
represent the views of the institutions with which the authors have been or are 
affiliated.
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The evolution of the modern clinical trial dates back to the eighteenth century [1, 2]. 
Lind, in his classical study on board the Salisbury, evaluated six treatments for 
scurvy in 12 patients. One of the two who was given oranges and lemons recovered 
quickly and was fit for duty after 6 days. The second was the best recovered of the 
others and was assigned the role of nurse to the remaining ten patients. Several 
other comparative studies were also conducted in the eighteenth and nineteenth 
centuries. The comparison groups comprised literature controls, other historical 
controls, and concurrent controls [2].

The concept of randomization was introduced by Fisher and applied in agricul-
tural research in 1926 [3]. The first clinical trial that used a form of random assign-
ment of participants to study groups was reported in 1931 by Amberson et al. [4]. 
After careful matching of 24 patients with pulmonary tuberculosis into comparable 
groups of 12 each, a flip of a coin determined which group received sanocrysin, 
a gold compound commonly used at that time. The British Medical Research 
Council trial of streptomycin in patients with tuberculosis, reported in 1948, was 
the first to use random numbers in the allocation of individual participants to 
experimental and control groups [5, 6].

The principle of blindness was also introduced in the trial by Amberson et al. 
[4]. The participants were not aware of whether they received intravenous injec-
tions of sanocrysin or distilled water. In a trial of cold vaccines in 1938, Diehl and 
coworkers [7] referred to the saline solution given to the subjects in the control 
group as a placebo.

One of the early trials from the National Cancer Institute of the National Institutes 
of Health in 1960 randomly assigned patients with leukemia to either 6-azauracil or 
placebo. No treatment benefit was observed in this double-blind trial [8].

It is only in the past several decades that the clinical trial has emerged as the 
preferred method in the evaluation of medical interventions. Techniques of imple-
mentation and special methods of analysis have been developed during this period. 
Many of the principles have their origins in work by Hill [9–12]. For a brief history 
of key development in clinical trials, see Chalmers [13].

The authors of this book have spent their careers at the U.S. National Institutes 
of Health and/or academia. Therefore, many of the examples reflect this experience. 

Chapter 1
Introduction to Clinical Trials



2 1 Introduction to Clinical Trials

We also cite papers which review the history of clinical trials development at the 
NIH [14–18].

The purpose of this chapter is to define clinical trials, review the need for them, 
and discuss timing and phasing of clinical trials.

Fundamental Point

A properly planned and executed clinical trial is a powerful experimental technique 
for assessing the effectiveness of an intervention.

What Is a Clinical Trial?

We define a clinical trial as a prospective study comparing the effect and value of 
intervention(s) against a control in human beings. Note that a clinical trial is pro-
spective, rather than retrospective. Study participants must be followed forward in 
time. They need not all be followed from an identical calendar date. In fact, this will 
occur only rarely. Each participant however, must be followed from a well-defined 
point in time, which becomes time zero or baseline for the study. This contrasts 
with a case-control study, a type of retrospective observational study in which par-
ticipants are selected on the basis of presence or absence of an event or condition 
of interest. By definition, such a study is not a clinical trial. People can also be 
identified from hospital records or other data sources, and subsequent records can 
be assessed for evidence of new events. This is not considered to be a clinical trial 
since the participants are not directly observed from the moment of initiation of the 
study and at least some of the follow-up data are retrospective.

A clinical trial must employ one or more intervention techniques. These may be 
single or combinations of diagnostic, preventive, or therapeutic drugs, biologics, 
devices, regimens, or procedures. Intervention techniques should be applied to 
participants in a standard fashion in an effort to change some aspect. Follow-up of 
people over a period of time without active intervention may measure the natural 
history of a disease process, but it does not constitute a clinical trial. Without active 
intervention the study is observational because no experiment is being performed.

Early phase studies may be controlled or uncontrolled. Although common termi-
nology refers to phase I and phase II trials, because they are sometimes uncontrolled, 
we will refer to them as clinical studies. A trial, using our definition, contains a con-
trol group against which the intervention group is compared. At baseline, the control 
group must be sufficiently similar in relevant respects to the intervention group in 
order that differences in outcome may reasonably be attributed to the action of the 
intervention. Methods for obtaining an appropriate control group are discussed in a 
later chapter. Most often a new intervention is compared with, or used along with, 
best current standard therapy. Only if no such standard exists or, for several reasons 
discussed in Chap. 2, is not available, is it appropriate for the participants in the intervention 
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group to be compared to participants who are on no active treatment. “No active 
treatment” means that the participant may receive either a placebo or no treatment 
at all. Obviously, participants in all groups may be on a variety of additional thera-
pies and regimens, so-called concomitant treatments, which may be either self-
administered or prescribed by others (e.g., personal physicians).

For purposes of this book, only studies on human beings will be considered as 
clinical trials. Certainly, animals (or plants) may be studied using similar techniques. 
However, this book focuses on trials in people, and each clinical trial must therefore 
incorporate participant safety considerations into its basic design. Equally important 
is the need for, and responsibility of, the investigator to fully inform potential partici-
pants about the trial, including information about potential benefits, harms, and 
treatment alternatives [19–22]. See Chap. 2 for further discussion of ethical issues.

Unlike animal studies, in clinical trials the investigator cannot dictate what an 
individual should do. He can only strongly encourage participants to avoid certain 
medications or procedures which might interfere with the trial. Since it may be 
impossible to have “pure” intervention and control groups, an investigator may not 
be able to compare interventions, but only intervention strategies. Strategies refer 
to attempts at getting all participants to adhere, to the best of their ability, to their 
originally assigned intervention. When planning a trial, the investigator should 
recognize the difficulties inherent in studies with human subjects and attempt to 
estimate the magnitude of participants’ failure to adhere strictly to the protocol. The 
implications of less than perfect adherence are considered in Chap. 8.

As discussed in Chaps. 6 and 7, the ideal clinical trial is one that is randomized 
and double-blind. Deviation from this standard has potential drawbacks, which will 
be discussed in the relevant chapters. In some clinical trials, compromise is 
unavoidable, but often deficiencies can be prevented by adhering to fundamental 
features of design, conduct, and analysis.

A number of people distinguish between demonstrating “efficacy” of an interven-
tion and “effectiveness” of an intervention. They also refer to “explanatory” trials, 
as opposed to “pragmatic” or “practical” trials. Efficacy or explanatory trials refer to 
what the intervention accomplishes in an ideal setting. The term is sometimes used 
to justify not using an “intention-to-treat” analysis. As discussed in Chaps. 8 and 17, 
that is insufficient justification. Effectiveness or pragmatic trials refer to what the 
intervention accomplishes in actual practice, taking into account incomplete adher-
ence to the protocol. We do not consider this distinction between trials as important 
as the proper design, conduct, and analysis of all trials in order to answer important 
clinical or public health questions, regardless of the setting in which they are done.

Clinical Trial Phases

While we focus on the design and analysis of randomized trials comparing the effec-
tiveness of two or more interventions, several steps or phases of clinical research must 
occur before this comparison can be implemented. Classically, trials of pharmaceutical 
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agents have been divided into phases I–IV. Studies with other kinds of interventions, 
particularly those involving behavior or lifestyle change or surgical approaches, will 
often not fit neatly into those phases. In addition, even trials of drugs may not fit 
into a single phase. For example, some may blend from phase I to phase II or from 
phase II to phase III. Therefore, it may be easier to think of early phase studies and 
late phase studies. Nevertheless, because they are still in common use, and because 
early phase studies, even if uncontrolled, may provide information essential for the 
conduct of late phase trials, the phases are defined below.

An excellent summary of phases of clinical trials and the kinds of questions 
addressed at each phase was prepared by the International Conference on 
Harmonisation [23]. Figure 1.1, taken from that document, illustrates that research 
goals can overlap with more than one study phase.

Thus, although human pharmacology studies, which examine drug tolerance, 
metabolism, and interactions, and describe pharmacokinetics and pharmacodynam-
ics, are generally done as phase I, some pharmacology studies may be done in other 
trial phases. Therapeutic exploratory studies, which look at the effects of various 
doses and typically use biomarkers as the outcome, are generally thought of as 
phase II. However, sometimes, they may be incorporated into other phases. The 
usual phase III trial consists of therapeutic confirmatory studies, which demonstrate 
clinical use and establish the safety profile. But such studies may also be done in 
phase II or phase IV trials. Therapeutic use studies, which examine the drug in 
broad or special populations and seek to identify uncommon adverse events, are 
almost always phase IV trials.

Phase I Studies

Although useful preclinical information may be obtained from in vitro studies or 
animal models, early data must be obtained in humans. People who participate in 
phase I studies generally are healthy volunteers but may also be patients who have 
typically already tried and failed to improve on the existing standard therapies. 

Therapeutic

TYPE OF STUDY

Therapeutic

Therapeutic
Exploratory

Human
Pharmacology

TIME

I II III IV PHASES OF DEVELOPMENT

INDIVIDUAL
STUDY

objectives

design

conduct
analysis

report

Confirmatory

Use

Fig. 1.1 Correlation between development phases and types of study [23]
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Phase I studies attempt to estimate tolerability and characterize pharmacokinetics 
and pharmacodynamics. They focus on questions such as bioavailability and body 
compartment distribution. They also provide preliminary assessment of drug activ-
ity [23]. Buoen et al. reviewed 105 phase I dose-escalation studies in several medi-
cal disciplines that used healthy volunteers [24]. Despite the development of new 
designs, primarily in the field of cancer research, most of the studies in the survey 
employed simple dose-escalation approaches.

Often, one of the first steps in evaluating drugs is to estimate how large a dose 
can be given before unacceptable toxicity is experienced by participants [25–30]. 
This dose is usually referred to as the maximally tolerated dose. Much of the early 
literature has discussed how to extrapolate animal model data to the starting dose 
in humans [31] or how to step up the dose levels to achieve the maximally tolerated 
dose.

In estimating the maximally tolerated dose, the investigator usually starts with a 
very low dose and escalates the dose until a prespecified level of toxicity is 
obtained. Typically, a small number of participants, usually three, are entered 
sequentially at a particular dose. If no specified level of toxicity is observed, the 
next predefined higher dose level is used. If unacceptable toxicity is observed in 
any of the three participants, an additional number of participants, usually three, are 
treated at the same dose. If no further toxicity is seen, the dose is escalated to the 
next higher dose. If an additional unacceptable toxicity is observed, then the dose 
escalation is terminated and that dose, or perhaps the previous dose, is declared to 
be the maximally tolerated dose. This particular design assumes that the maximally 
tolerated dose occurs when approximately one-third of the participants experience 
unacceptable toxicity. Variations of this design exist, but most are similar.

Some [29, 32–34] have proposed more sophisticated designs in cancer research 
that specify a sampling scheme for dose escalation and a statistical model for the 
estimate of the maximally tolerated dose and its standard error. The sampling 
scheme must be conservative in dose escalation so as not to overshoot the maxi-
mally tolerated dose by very much, but at the same time be efficient in the number 
of participants studied. Many of the proposed schemes utilize a step-up/step-down 
approach; the simplest being an extension of the previously mentioned design to 
allow step-downs instead of termination after unacceptable toxicity, with the pos-
sibly of subsequent step-ups. Further increase or decrease in the dose level depends 
on whether or not toxicity is observed at a given dose. Dose escalation stops when 
the process seems to have converged around a particular dose level. Once the data 
are generated, a dose response model is fit to the data and estimates of the maxi-
mally tolerated dose can be obtained as a function of the specified probability of a 
toxic response [29].

Bayesian approaches have also been developed [35, 36]. These involve methods 
employing continual reassessment [32, 37] and escalation with overdose control 
[38]. Bayesian methods involve the specification of the investigators’ prior opinion 
about the agent’s dose-toxicity profile, which is then used to select starting doses 
and escalation rules. The most common Bayesian phase I design is called the con-
tinual reassessment method, [32] in which the starting dose is set to the prior estimate 
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of the maximally tolerated dose. After the first cohort of participants (typically of 
size 1, 2, or 3, though other numbers are possible), the estimate is updated and the 
next participant(s) assigned to that estimate. The process is repeated until a pre-
specified number of participants have been assigned. The dose at which a hypo-
thetical additional participant would be assigned constitutes the final estimate of the 
maximally tolerated dose. Bayesian methods that constrain the number of total 
toxicities have also been developed (escalation with overdose control) as have 
designs that allow for two or more treatments [39] and as have methods that allow 
for incomplete follow-up of long-term toxicities (time-to-event continual reassess-
ment method) (40). Many variations have been proposed. An advantage of Bayesian 
phase I designs is that they are very flexible, allowing risk factors and other sources 
of information to be incorporated into escalation decisions. A disadvantage is their 
complexity, leading to unintuitive dose assignment rules.

A detailed description of the design and conduct of dose escalating trials for 
treatments of cancer is found in Chaps. 1–5 of a book edited by Crowley and 
Ankerst [41]. A book edited by Ting contains a more general discussion of dose-
selection approaches [42].

Phase II Studies

Once a dose or range of doses is determined, the next goal is to evaluate whether 
the drug has any biological activity or effect. The comparison may consist of a 
concurrent control group, historical controls, or pretreatment status versus post-
treatment status. Because of uncertainty with regard to dose–response, phase II 
studies may also employ several doses, with perhaps four or five intervention 
arms. They will look, for example, at the relationship between blood level and 
activity. Genetic testing is common, particularly when there is evidence of variation 
in metabolic rate. Participants in phase II studies are usually carefully selected, with 
narrow inclusion criteria [23].

The phase II design depends on the quality and adequacy of the phase I study. 
The results of the phase II study will, in turn, be used to design the comparative 
phase III trial. The statistical literature for phase II studies, which had been rather 
limited [43–49] has expanded [50, 51] and, as with phase I studies, includes 
Bayesian methods [52, 53].

One of the traditional phase II designs in cancer is based on the work of Gehan, 
[43] which is a version of a two stage design. In the first stage, the investigator 
attempts to rule out drugs which have no or little biologic activity. For example, he 
may specify that a drug must have some minimal level of activity, say, in 20% of 
participants. If the estimated activity level is less than 20%, he chooses not to con-
sider this drug further, at least not at that maximally tolerated dose. If the estimated 
activity level exceeds 20%, he will add more participants to get a better estimate of 
the response rate. A typical study for ruling out a 20% or lower response rate enters 
14 participants. If no response is observed in the first 14 participants, the drug is 
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considered not likely to have a 20% or higher activity level. The number of additional 
participants added depends on the degree of precision desired, but ranges from 10 to 
20. Thus, a typical cancer phase II study might include fewer than 30 people to esti-
mate the response rate. As is discussed in Chap. 8, the precision of the estimated 
response rate is important in the design of the controlled trial. In general, phase II 
studies are smaller than they ought to be.

Some [29, 44, 54] have proposed designs which have more stages or a sequential 
aspect. Others [47, 55] have considered hybrids of phase II and phase III designs in 
order to enhance efficiency. While these designs have desirable statistical proper-
ties, the most vulnerable aspect of phase II, as well as phase I studies, is the type of 
person enrolled. Usually, phase II studies have more exclusion criteria than phase 
III comparative trials. Furthermore, the outcome in the phase II study (e.g., tumor 
response) may be different than that used in the definitive comparative trial (e.g., 
survival). Refinements may include time to failure [51] and unequal numbers of 
participants in the various stages of the phase II study [56]. Bayesian designs for 
phase II trials require prior estimates, as was the case for phase I studies, but differ 
in that they are priors of efficacy measures for the dose or doses to be investigated 
rather than of toxicity rates. Priors are useful for incorporating historical data into 
the design and analysis of phase II trials. Methods are available for continuous [57], 
bivariate [57], and survival outcomes [58]. These methods can account not only for 
random variations in participant responses within institutions but also for system-
atic differences in outcomes between institutions in multicenter trials or when 
several control groups are combined. They also acknowledge the fact that historical 
efficacy measures of the control are estimated with error. This induces larger sam-
ple sizes than in trials which assume efficacy of the control to be known, but with 
correspondingly greater resistance to false positive and false negative errors. 
Bayesian methods can also be used in a decision-theoretic fashion to minimize a 
prespecified combination of these errors for a given sample size [59, 60].

Phase III/IV Trials

The phase III trial is the clinical trial defined earlier in the chapter. It is generally 
designed to assess the effectiveness of the new intervention and thereby, its value 
in clinical practice. The focus of most of this book is on phase III and other late 
phase trials. However, many design assumptions depend on information obtained 
from phase I and phase II studies, or some combination of early phase studies.

Phase III trials of chronic conditions or diseases often have a short follow-up 
period for evaluation, relative to the period of time the intervention might be used 
in practice. In addition, they focus on effectiveness, but knowledge of safety is also 
necessary to evaluate fully the proper role of an intervention. A procedure or device 
may fail after a few years and have adverse sequelae for the patient. Thus, long-
term surveillance of an intervention believed to be effective in phase III trials is 
necessary. Such long-term studies or studies conducted after regulatory agency approval 
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of the drug or device, are referred to as phase IV trials. Drugs may be approved on 
the basis of intermediate outcomes or biomarkers, such as blood pressure or cho-
lesterol lowering. They may also be approved after relatively short-term studies 
(weeks or months), even though in practice, in the case of chronic conditions, they 
may be taken for years or even decades. Even late phase clinical trials are limited 
in size to several hundreds or thousands (at most, a few tens of thousands) of partici-
pants. Yet the approved drugs or devices will possibly be used by millions of people. 
This combination of incomplete information about clinical outcomes, relatively 
short duration, and limited size means that sometimes the balance between benefit 
and harm becomes clear only when larger phase IV studies are done, or when there 
is greater clinical experience. One example is some of the cyclooxygenase 2 (COX 
2) inhibitors, which had been approved for arthritis pain, but only disclosed cardio-
vascular problems after larger trials were done. These larger trials were examining 
the effects of the COX 2 inhibitors on prevention of colon cancer in those with 
polyps [61, 62]. Similarly, only after they had been on the market were thiazolidin-
ediones, a class of drugs used for diabetes, found to be associated with an increase 
in heart failure [63].

Regulatory agency approval of drugs, devices, and biologics may differ because, 
at least in the United States, the regulations for these different kinds of interven-
tions are based on different laws. For example, FDA approval of drugs depends 
greatly on at least one well-designed clinical trial plus supporting evidence (often, 
another clinical trial). Approval of devices relies less on clinical trial data and more 
on engineering characteristics of the device, including similarity with previously 
approved devices. Devices, however, are often implanted, and unless explanted, 
may be present for the life of the participant. Therefore, there are urgent needs for 
truly long-term data on performance of devices in vivo. Assessment of devices also 
depends, more so than drugs, on the skill of the person performing the implantation. 
As a result, the results obtained in a clinical trial, which typically uses only well-
trained investigators, may not provide an accurate balance of harm and benefit in 
actual practice.

The same caution applies to clinical trials of procedures of other sorts, whether 
surgical or lifestyle intervention, where only highly skilled practitioners are inves-
tigators. But unlike devices, procedures may have little or no regulatory oversight 
although those paying for care often consider the evidence.

Why Are Clinical Trials Needed?

A clinical trial is the most definitive method of determining whether an intervention 
has the postulated effect. Only seldom is a disease or condition so completely char-
acterized that people fully understand its natural history and can say, from knowl-
edge of pertinent variables, what the subsequent course of a group of patients will 
be. Even more rarely can a clinician predict with certainty the outcome in individ-
ual patients. By outcome is meant not simply that an individual will die, but when, 
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and under what circumstances; not simply that he will recover from a disease, but 
what complications of that disease he will suffer; not simply that some biological 
variable has changed, but to what extent the change has occurred. Given the uncer-
tain knowledge about disease course and the usual large variations in biological 
measures, it is often difficult to say on the basis of uncontrolled clinical observation 
whether a new treatment has made a difference to outcome and, if it has, what the 
magnitude is. A clinical trial offers the possibility of such judgment because there 
exists a control group – which, ideally, is comparable to the intervention group in 
every way except for the intervention being studied.

The consequences of not conducting appropriate clinical trials at the proper time 
can be serious or costly. An example was the uncertainty as to the efficacy and 
safety of digitalis in congestive heart failure. Only in the 1990s, after the drug had 
been used for over 200 years, was a large clinical trial evaluating the effect of digi-
talis on mortality mounted [64]. Intermittent positive pressure breathing became an 
established therapy for chronic obstructive pulmonary disease without good evi-
dence of benefits. One trial suggested no major benefit from this very expensive 
procedure [65]. Similarly, high concentration of oxygen was used for therapy in 
premature infants until a clinical trial demonstrated its harm [66]. A clinical trial 
can determine the incidence of adverse effects or complications of the intervention. 
Few interventions, if any, are entirely free of undesirable effects. However, drug 
toxicity might go unnoticed without the systematic follow-up measurements 
obtained in a clinical trial of sufficient size. The Cardiac Arrhythmia Suppression 
Trial documented that commonly used antiarrhythmic drugs were harmful in 
patients who had a history of myocardial infarction, and raised questions about 
routine use of an entire class of antiarrhythmic agents [67]. Corticosteroids had 
been commonly used to treat people with traumatic brain injury. Small clinical trials 
were inconclusive, and a meta-analysis of 16 trials showed no difference in mor-
tality between corticosteroids and control [68]. Because of the uncertainty as to 
benefit, a large clinical trial was conducted. This trial, with far more participants 
than the others combined, demonstrated a significant 18% relative increase in mor-
tality at 14 days [69] and a 15% increase at 6 months [70]. As a result, an update 
of the meta-analysis recommended against the routine use of corticosteroids in 
people with head injury [71].

In the final evaluation, an investigator must compare the benefit of an interven-
tion with its other, possibly unwanted effects in order to decide whether, and under 
what circumstances, its use should be recommended. The cost implications of an 
intervention, particularly if there is limited benefit, must also be considered. Several 
studies have indicated that drug eluting stents have somewhat less restenosis than 
bare metal stents in percutaneous coronary intervention [72, 73]. The cost differ-
ence, however, can be considerable, especially since more than one stent is typi-
cally inserted. Are the added benefits, which may be defined and measured in 
different ways, of the most expensive interventions worth the extra cost? Such 
assessments are not statistical in nature. They must rely on the judgment of the 
investigator and the medical practitioner as well as on those who pay for medical 
care. Clinical trials rarely fully assess costs of the interventions and associated 
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patient care, which change over time, and cannot make these decisions; they can 
only provide data so that decisions are evidence-based.

Those suffering from or treating life-threatening diseases for which there are no 
known effective therapies often argue that controlled clinical trials are not needed 
and that they have a right to experimental interventions. Because there may be little 
hope of cure or even improvement, patients and their physicians want to have 
access to new interventions, even if those interventions have not been shown to be 
safe and effective by means of the usual clinical trial. They want to be in studies of 
these interventions, with the expectation that they will receive the new treatment, 
rather than the control (if there is a control group). Those with the acquired immu-
nodeficiency syndrome (AIDS) used to make the case forcefully that traditional 
clinical trials are not the sole legitimate way of determining whether interventions 
are useful [74–77]. This is undeniably true, and clinical trial researchers need to be 
willing to modify, when necessary, aspects of study design or management. Many 
have been vocal in their demands that once a drug or biologic has undergone some 
minimal investigation, it should be available to those with life-threatening condi-
tions, should they desire it, even without late phase clinical trial evidence [78]. If 
the patient community is unwilling to participate in clinical trials conducted along 
traditional lines, or in ways that are scientifically “pure,” trials are not feasible and 
no information will be forthcoming. Investigators need to involve the relevant commu-
nities or populations at risk, even though this could lead to some compromises in design 
and scientific purity. Investigators need to decide when such compromises so invalidate 
the results that the study is not worth conducting. It should be noted that the rapidity 
with which trial results are demanded, the extent of community involvement, and 
the consequent effect on study design, can change as knowledge of the disease 
increases, as at least partially effective therapy becomes available, and as under-
standing of the need for valid research designs, including clinical trials, develops. 
This happened to a great extent with AIDS trials.

Although investigators should design clinical trials using the fundamentals dis-
cussed in this book, they must consider the context in which the trial is being con-
ducted. The nature of the disease or condition being studied and the population and 
setting in which it is being done will influence the outcomes that are assessed, the 
kind of control, the size, the duration, and many other factors.

Clinical trials are conducted because it is expected that they will influence prac-
tice. The literature on this is limited [79–85], and it is unclear how much of the 
reduction in mortality or morbidity due to better preventive and treatment approaches 
can be directly attributed to the results of clinical trials [86]. For example, the 
decline in stroke mortality in the U.S. and elsewhere began before there was effec-
tive or widespread treatment of hypertension and well before clinical trials demon-
strated the benefits of antihypertensive agents [87]. It is undoubtedly true that 
multiple reasons exist, and it is not possible to clearly define the societal impor-
tance of clinical trials. Further, the influence of trials depends on direction of the 
findings, means of dissemination of the results, existence of evidence from other 
relevant research, and probably other factors. However, well-designed clinical trials 
can certainly have pronounced effects on clinical practice [80].
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There is no such thing as a perfect study. However, a well thought-out, well-designed, 
appropriately conducted and analyzed clinical trial is an effective tool. While even 
well-designed clinical trials are not infallible, they can provide a sounder rationale 
for intervention than is obtainable by other research methods. On the other hand, 
poorly designed and conducted trials can be misleading. Also, without supporting 
evidence, no single study ought to be definitive. When interpreting the results of a 
trial, consistency with data from laboratory, animal, epidemiological, and other 
clinical research must be considered.

Some have claimed that observational studies provide the “correct” answer more 
often than not and that therefore clinical trials are often superfluous [88, 89]. Others 
have pointed out that sometimes, results of observational studies and clinical trials 
are inconsistent. Observational studies, many of them large, suggested that use of 
antioxidants would reduce the risk of cancer and heart disease. They began to be 
widely used as a result. Later, large randomized controlled trials evaluating many of 
the antioxidants demonstrated no benefit or even harm [90]. Similarly, because of the 
results from observational studies, hormone therapy was advocated for postmeno-
pausal women as a way to prevent or reduce heart disease. Results of large clinical 
trials [91–93] cast considerable doubt on the findings from the observational 
studies. Whether the differences are due to the inherent limitations of observa-
tional studies (see Chap. 5), to limitations in the designs of the clinical trials, or some 
combination has been debated. Regardless, anyone considering taking (or admin-
istering) antioxidants for the purpose of heart disease or cancer prevention, or 
hormone replacement therapy to prevent heart disease, must carefully evaluate the 
results of the trials.

We believe that pitting one kind of clinical research against another is inappro-
priate. Both observational epidemiology studies and clinical trials have their strengths 
and weaknesses; both have their place [94]. Proper understanding of the strengths and 
weaknesses of clinical trials, and how the results of well-designed and conducted 
trials can be used in conjunction with other research methodologies, is by far the 
best way of improving public health and scientific understanding.

Problems in the Timing of a Trial

Once drugs and procedures of unproved clinical benefit have become part of general 
medical practice, performing an adequate clinical trial becomes difficult ethically 
and logistically. Some people advocated instituting clinical trials as early as possi-
ble in the evaluation of new therapies [95, 96]. The trials, however, must be feasi-
ble. Assessing feasibility takes into account several factors. Before conducting a 
trial, an investigator needs to have the necessary knowledge and tools. He must 
know something about the safety of the intervention and what outcomes to assess 
and have the techniques to do so. Well-run clinical trials of adequate magnitude are 
costly and should be done only when preliminary evidence of the efficacy of an 
intervention looks promising enough to warrant the effort and expense involved.
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Another aspect of timing is consideration of the relative stability of the intervention. 
If active research will be likely to make the intended intervention outmoded in a 
short time, studying such an intervention may be inappropriate. This is particularly 
true in long-term clinical trials, or studies that take many months to develop. One 
of the criticisms of trials of surgical interventions has been that surgical methods 
are constantly being improved. Evaluating an operative technique of several years 
past, when a study was initiated, may not reflect the current status of surgery 
[97–99].

These issues were raised in connection with the Veterans Administration study 
of coronary artery bypass surgery [100]. The trial showed that surgery was benefi-
cial in subgroups of patients with left main coronary artery disease and three vessel 
disease, but not overall [100–102]. Critics of the trial argued that when the trial was 
started, the surgical techniques were still evolving. Therefore, surgical mortality in 
the study did not reflect what occurred in actual practice at the end of the long-term 
trial. In addition, there were wide differences in surgical mortality between the 
cooperating clinics [103] that may have been related to the experience of the sur-
geons. Defenders of the study maintained that the surgical mortality in the Veterans 
Administration hospitals was not very different from the national experience at the 
time (104). In the Coronary Artery Surgery Study [105], surgical mortality was 
lower than in the Veterans Administration trial, reflecting better technique. The 
control group mortality, however, was also lower.

Review articles show that surgical trials have been successfully undertaken [106, 
107] and, despite challenges, can and should be conducted [108, 109]. While the 
best approach might be to postpone a trial until a procedure has reached a plateau 
and is unlikely to change greatly, such a postponement will probably mean waiting 
until the procedure has been widely accepted as efficacious for some indication, 
thus making it difficult, if not impossible to conduct the trial. However, as noted by 
Chalmers and Sacks, [110] allowing for improvements in operative techniques in a 
clinical trial is possible. As in all aspects of conducting a clinical trial, judgment 
must be used in determining the proper time to evaluate an intervention.

Study Protocol

Every well-designed clinical trial requires a protocol. The study protocol can be 
viewed as a written agreement between the investigator, the participant, and the 
scientific community. The contents provide the background, specify the objectives, 
and describe the design and organization of the trial. Every detail explaining how 
the trial is carried out does not need to be included, provided that a comprehensive 
manual of procedures contains such information. The protocol serves as a docu-
ment to assist communication among those working in the trial. It should also be 
made available to others upon request.

The protocol should be developed before the beginning of participant enroll-
ment and should remain essentially unchanged except perhaps for minor updates. 
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Careful thought and justification should go into any changes. Major revisions 
which alter the direction of the trial should be rare. If they occur, the rationale 
behind such changes needs to be clearly described. An example is the Cardiac 
Arrhythmia Suppression Trial, which, on the basis of important study findings, 
changed intervention, participant eligibility criteria, and sample size [111].

Registration of all late phase trials and many early phase studies is now advo-
cated, and indeed required by many journals and sponsors. Journals will not publish 
results of trials or study design papers unless the study has been registered at one of 
many sites, such as ClinicalTrials.gov [112] and the WHO International Clinical 
Trials Registry Platform (ICTRP) [113]. The U.S. National Institutes of Health 
requires that trials it funds be registered [114], as does the Food and Drug 
Administration for trials it oversees [115]. The registry sites have, at a minimum, 
information about the study population, intervention and control, response variables, 
and other key elements of the study design. See Chap. 18 for a further discussion of 
trial registration. We applaud the practice of registration, and encourage all investi-
gators to go further by including links to their protocols at the registry sites.

Topic headings of a typical protocol, which also serve as an outline of the sub-
sequent chapters in this book, are given below:

 A. Background of the study
 B. Objectives

1. Primary question and response variable
2. Secondary questions and response variables
3. Subgroup hypotheses
4. Adverse effects

 C. Design of the study
1. Study population
 a. Inclusion criteria
 b. Exclusion criteria
2. Sample size assumptions and estimates
3. Enrollment of participants
 a. Informed consent
 b. Assessment of eligibility
 c. Baseline examination
 d. Intervention allocation (e.g., randomization method)
4. Intervention(s)
 a. Description and schedule
 b. Measures of compliance
5. Follow-up visit description and schedule
6. Ascertainment of response variables
 a. Training
 b. Data collection
 c. Quality control
7. Safety Assessment
 a. Type and frequency
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 b. Instruments
 c. Reporting
8. Data analysis
 a. Interim monitoring
 b. Final analysis
9. Termination policy

 D. Organization
1. Participating investigators
 a. Statistical unit or data coordinating center
 b. Laboratories and other special units
 c. Clinical center(s)
2. Study administration
 a. Steering committees and subcommittees
 b. Data monitoring committee
 c. Funding organization

Appendices
Definitions of eligibility criteria
Definitions of response variables
Informed Consent Form
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People have debated the ethics of clinical trials for as long as trials have been  conducted. 
The arguments have changed over the years and perhaps become more sophisticated, 
but many of them involve issues such as the physician’s obligations to the individual 
patient versus societal good, clinical equipoise, study design  considerations such as 
randomization and the choice of control group, including use of placebo, informed 
consent, conduct of trials in underdeveloped areas,  conflict of interest, participant 
 confidentiality and sharing of data and specimens, and publication bias.

A well-designed trial should answer important public health questions without 
impairing the welfare of individuals. There may, at times, be conflicts between a 
physician’s perception of what is good for his or her patient and the design and 
conduct of the trial. In such instances, the needs of the patient must predominate.

Ethical issues apply in all stages of a clinical trial. In this chapter, we summarize 
some of the major factors involving ethics in design, conduct, and reporting of 
clinical  trials. As will be noted, several of the issues are unsettled and have no easy 
solution. We expect, however, that investigators will at least consider these issues in 
the planning stages of trials so that high ethical standards can be applied to all trials.

Emanuel et al. [1] listed seven criteria that they considered essential to the  ethical 
conduct of clinical research. These criteria are value, scientific validity, fair selection 
of participants, favorable benefit/risk balance, independent review, informed con-
sent, and respect for participants. Independent review is  generally  conducted by 
ethics review committees specifically constituted for oversight of research with 
human subjects. In the United States, such committees are termed Institutional 
Review Boards (IRBs). Other names used outside the US are Research Ethics 
Committees, Ethics Committees, or Ethics Review Committees. Although the role 
of ethics review committees is discussed later in this chapter under Informed 
Consent, it must be emphasized that independent review by these committees and 
others, such as data and safety monitoring boards, applies to all aspects of a trial.

We encourage the reader to seek out any of the many books and journals devoted 
to ethical aspects of clinical research. Those go into the issues, including ones we 
do not address, in considerable depth. A particularly relevant book is the Oxford 
Textbook of Clinical Research Ethics, many chapters of which relate directly to 
clinical trials [2]. The reader is also referred to several key documents [3–6].

Chapter 2
Ethical Issues
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Fundamental Point

Investigators and sponsors of clinical trials have ethical obligations to trial 
 participants and to science and medicine.

Planning and Design

Does the Question Require a Clinical Trial?

An early decision relates to whether a clinical trial is even necessary. Not all  questions 
need to be answered, and not all of those that should be answered require clinical 
trials. Sometimes, other kinds of clinical studies may be able to address the question 
at least as well as, or even better than, a clinical trial. Even if the answer may not be 
quite as good, the added benefits from the trial may not be worth the added risk.

Because clinical trials involve administering something (drug, device, biologic, 
or procedure) to someone, or attempting to change someone’s behavior, there may 
be adverse as well as the hoped-for positive results. Although some of the potential 
adverse consequences may be known before the trial is started, and therefore 
 prevented or minimized, others may arise unexpectedly during the trial or be more 
serious than anticipated. The question being addressed by the clinical trial, there-
fore, must be important enough to justify the possible adverse events. The question 
must have relevant clinical, public health, and/or other scientific value. A trivial 
question should not expose study participants to risk of harm, either physical or 
emotional. Harm can be either a direct result of the intervention or indirect, from 
withholding something beneficial. The study investigator, sponsor or funder, and 
institutions where the study will be performed must all ensure that the question is 
sufficiently important and the trial is appropriately conducted to justify those risks. 
Otherwise, the adage “Above all, do no harm,” applies.

Though the question may be important, the clinical trial may be infeasible or 
unethical. An obvious example is cigarette smoking. Performing clinical trials in 
nonsmokers, providing half of them with cigarettes, to prove that smoking is harmful  
is clearly unethical. Observational studies have given us sufficient  evidence to answer 
that question. The Cardiac Arrhythmia Suppression Trial (CAST) [7] was designed to 
determine if suppression of ventricular arrhythmias with antiarrhythmic  agents in 
people with heart disease would lead to a reduction in sudden cardiac death. After two 
of the three antiarrhythmic drugs were seen to be harmful and stopped, some asked 
whether the study might be continued, but reconfigured to demonstrate that quinidine, 
a long-used drug with some properties similar to the two discontinued agents, would 
also be harmful. The CAST investigators quickly decided that designing a trial 
 specifically to prove harm, especially serious harm, would be unethical. Although the 
outcome of a trial is uncertain, the primary response variable should always be one 
where either benefit or noninferiority is potentially achievable.
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Two kinds of trials raise ethical issues because of concerns about the balance 
between potential benefits to society (and perhaps to participants) and the risks of harm 
and discomfort to participants. In both, the likelihood of immediate benefit to the study 
participants exists, but is remote. One involves “me too” or “marketing” (also termed 
“seeding”) trials. Such clinical trials are conducted to show that a new drug or new 
version of an old drug is at least as good as (noninferior to) a drug already proven to 
be beneficial. Other than enhancing the financial status of the industry sponsor, there 
may be little benefit to the new drug. Yet trial participants are being put at risk from a 
drug with unknown adverse effects, some of which might be serious. If the new drug 
has some potential improvement over the existing one, the trial might be justified. 
Perhaps the new drug is easier to take (e.g., once a day rather than twice a day admin-
istration), is better tolerated, or causes fewer adverse events. One could also argue that 
having more than one drug with similar benefits is good for the economy, fostering 
lower medical care costs. But in the end, those conducting such trials should show how 
the question is important and how there will be meaningful benefits for patients.

A second kind of trial, the ethics of which have been debated, is the early phase 
study. If these studies are performed in healthy volunteers, there is a nontrivial 
chance that they will be harmed, but have no opportunity to benefit, other than from 
whatever payment they receive as a result of their participation. Some people 
 regularly enroll in such studies for the payment [8]. It has been argued that with 
proper attention to study design and safety monitoring, appropriate evaluation by 
ethics review committees, and true informed consent, these studies are ethical [9]. 
As always, risk must be kept to a minimum and the payment must not be so great 
as to encourage participants to do something that would place them at serious risk. 
The pros and cons of various payment models for research participants are 
 discussed by Dickert and Grady [10]. As with other clinical research, early phase 
studies are only ethical if investigators and sponsors do whatever is necessary to 
minimize risk. Unfortunately, instances when investigators may not have taken 
proper care have occurred and received widespread attention [11–13].

Some early phase studies are conducted with participants who have a disease or 
condition. Patients with cancer that has not responded to other therapies may 
 volunteer for such trials, hoping that the experimental intervention will prove 
 beneficial. Given the small size of these studies and the unfortunate fact that most 
interventions early in their development do not prove beneficial, some have even 
questioned the ethics of these trials. But even if there is only a slight possibility of 
improvement, as long as there is adequate informed consent and the expectation of 
benefit to society from the knowledge to be gained, most would agree that these 
trials can be conducted in an ethical manner [14, 15].

Randomization

In the typical “superiority trial” described in Chap. 5, randomization is usually done on 
top of standard or usual therapy, which all participants should receive. (The special 
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issues related to noninferiority trials are discussed in Chap. 5.) Randomization has often 
been a problem for physicians and other clinicians who believe they must be able to 
convey to their patients a treatment course of action. The researcher, however, must 
accept uncertainty. Therefore, an objection to random assignment should only apply if 
the investigator believes that a superior therapy exists. If that is the case, she should not 
participate in a trial that involves the preferred therapy. On the other hand, if she truly 
cannot say that one treatment is better than another, there should be no ethical problem 
with randomization. Such judgments regarding efficacy obviously vary among investi-
gators. Because it is unreasonable to expect that an individual investigator has no prefer-
ence, not only at the start of a trial but also during its conduct, the concept of “clinical 
equipoise” was proposed [16]. In this concept, the presence of uncertainty as to the 
benefits or harm from an intervention among the expert medical community, rather than 
in the individual investigator, is a justification for a clinical trial. Some have maintained 
that until an intervention has been proven beneficial, randomization is the most ethical 
approach and one that will provide the correct answer soonest [17–20].

Control Group

Choice of the control group is a major design issue in all clinical trials. If there is a 
known best therapy, one would generally expect the new intervention to be  compared 
with that therapy, or added to it. But the optimal therapy may not be widely used for 
various reasons. These could include cost, unavailability of the therapy or lack of 
sufficient clinicians competent to administer it, lack of acceptance by the practicing 
clinical community, socioeconomic and cultural differences, or other factors. 
Depending on these circumstances, some trials may not use the best known therapy 
or standard of care as the control. They may rely on what the practicing communities 
typically do, or usual therapy [21]. Investigators and ethics review committees need 
to judge whether the usual therapy deprives participants of a proven better treatment 
that they would otherwise receive. If so, serious ethical concerns arise. A major area 
of disagreement has been the degree of responsibility of investigators to ensure that 
all participants receive the best proven therapy as a control or background care, even 
if usual care in the community in which the trial is being conducted is not up to that 
standard [22]. (See also the section below, Trials in Developing Countries.)

Considerable confusion has arisen when people talk about placebo-controlled 
trials, as they may refer to different kinds of designs. Often, a new intervention is 
added to usual care or standard care, and compared against that care plus placebo. 
Sometimes, a new intervention is seen as a possible replacement for an existing 
therapy, yet for various reasons, it is not thought appropriate to compare the new 
intervention against the existing therapy. The commonly used therapy, for example, 
may not have been proven to be beneficial, or it may be poorly tolerated. Therefore, 
a placebo comparator is used instead of the existing therapy.

Even if a proven therapy exists, whether short-term discontinuation of that 
therapy  for the purpose of conducting a placebo-controlled trial is harmful depends 
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on the condition being studied. Exposing participants to serious harm by withholding  
beneficial treatment is unethical even in the short term. For conditions causing only 
mild to moderate discomfort, it may be acceptable. For example, investigators 
evaluating new analgesic agents might choose to use a placebo control, as long as 
any pain or discomfort is treated promptly. As always, there will be borderline cases 
that require discussion and review by ethics review committees [23].

Freedman et al. [24, 25] acknowledged that many factors enter into a decision 
regarding the use of a placebo control. They argued that if an accepted treatment 
exists, much of the time a placebo control is unethical and, indeed, unnecessary. 
Rothman and Michels [26, 27] also maintained that in many cases, a placebo has 
been used inappropriately because a proven therapy existed. This debate occurred 
with the Enhanced Suppression of the Platelet IIb/IIIa Receptor with Integrilin Trial 
(ESPRIT) [28–30]. The decision to use a placebo control, rather than another 
proven IIb/IIIa receptor inhibitor, was only allowed after it was shown that many 
cardiologists were not persuaded by the prior evidence. We think that this is a valid 
argument only if all investigators (including referring clinicians) have been 
informed about the current evidence and make the decision to conduct another 
placebo-controlled trial because they question the applicability of that evidence. 
Ethics review committees must have full knowledge, and informed consent must 
contain the relevant information.

Whenever an investigator considers using a placebo control, she must assess 
whether it will provide the most meaningful answer to the question being addressed, 
and will not cause serious harm. Importantly, all participants must be told that there 
is a specified probability, e.g., 50%, of their receiving placebo. The World Medical 
Association Declaration of Helsinki [5], the Council for International Organizations 
of Medical Sciences (CIOMS) [6], regulatory bodies [31], and others have guide-
lines for the use of placebo. Miller summarizes the issues that must be considered 
by investigators [32].

Protection from Conflict of Interest

A widely expressed concern in much clinical research is the potential for conflict of 
interest on the part of the investigators. In the context of ethical issues, conflict of  interest 
can lead to bias in design, conduct, analysis, interpretation, and  communication of 
findings. Conflict of interest is generally considered in the financial context, but 
intellectual or other conflicts may also occur [33]. Ideally, no investigator would 
have any interests other than the well-being of the study participants and the generation 
of new knowledge that will improve clinical care and public health. That is unrealistic, 
however, given that most investigators receive research funding from government, 
industry, or others with considerable interest in the outcome of the study. Many 
 investigators have also spent a career attempting to advance the science and could 
be disappointed if their favorite theory turns out to be incorrect. Therefore, most clinical 
trials find it easier to manage conflict of interest  than to avoid it completely.
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The role of disclosure of financial relationships to participants and others has been 
reviewed and recommendations proposed [34]. Among these recommendations, it 
was noted that because many participants may not fully appreciate the impact that 
financial relationships might have on research design, conduct, and analysis, in addi-
tion to requiring disclosure, IRBs and others should “play a significant role in deter-
mining the acceptability of these relationships” [34]. We think that disclosure and 
IRB or other oversight may be sufficient for early phase studies. It may not be suffi-
cient, however, for late phase trials: those that are designed to have major implica-
tions for clinical practice. Most clinical trials are sponsored by industry , and although 
the investigators enrolling and following participants may not stand to gain finan-
cially from the results of the trial, the sponsors clearly do. Therefore, all data collec-
tion and analysis should be conducted by groups independent of the industry sponsor. 
Ideally, this should also occur in trials sponsored by others. Any investigators who 
have economic interests in the outcome either should not participate or should not 
have opportunities to affect and publish the trial  outcome. This may mean that the 
lead investigator in multi-investigator studies or the investigator in single investigator 
studies should have no conflicts if the study is one likely to change practice. Other 
key investigators with major  conflicts should also be barred from such trials. If the 
investigators have limited roles or only small financial investments, it may be accept-
able for them to participate. We recognize that the situation is more complicated when 
those designing and overseeing, and perhaps coauthoring publications, are employees 
of the company sponsoring the trial. Nevertheless,  complete openness and data analy-
sis by an independent group remain important. The use of external independent 
oversight bodies and clear lines of authority may mitigate conflict of interest. In the 
end, however, clinical trial results must be believed and accepted by the clinical com-
munities. To the extent that conflict of interest (real or perceived) lessens that accep-
tance, the study is impaired. Therefore, all appropriate  ways of minimizing and 
managing conflicts should be used.

Informed Consent

Proper informed consent is essential. Partly as a result of terrible things done in 
the name of clinical research, various bodies developed guidelines such as the 
Nuremberg Code [4], the Declaration of Helsinki [5], the Belmont Report [3], and 
the International Ethical Guidelines for Biomedical Research Involving Human 
Subjects [6]. These guidelines lay out standards for informed consent that are 
 commonly followed internationally. In the USA, in parallel to the Belmont Report, 
the United States Congress passed laws that require adherence to informed  consent 
regulations by those receiving government support – the so-called Common Rule, 
or 45 CFR 46 [35] – and those evaluating agents under the auspices of the Food 
and Drug Administration [36]. These regulations require that clinical research 
studies be reviewed by IRBs and establish the membership and procedures that 
IRBs must follow.
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One of the primary roles of the IRB is to ensure that there is true, voluntary 
informed consent. The Common Rule requires consent forms to contain basic 
 elements. Table 2.1 lists these, as well as other elements that may be added as appro-
priate. Simply adhering to legal requirements does not ensure informed  consent 
[37–39]. Informed consent is a process that can take considerable time and effort; it 
is not simply a matter of getting a form signed. In many, perhaps most, clinical trial 
settings, true informed consent can be obtained. Potential participants have the 
capacity  to understand what is being requested of them, they have  adequate time to 
consider the implications of joining a trial, to ask questions, and to take information 

Table 2.1 Informed consent checklist – basic and additional elements [35]

A statement that the study involves research
An explanation of the purposes of the research
The expected duration of the subject’s participation
A description of the procedures to be followed
Identification of any procedures which are experimental
A description of any reasonably foreseeable risks or discomforts to the subject
A description of any benefits to the subject or to others which may reasonably be expected from 

the research
A disclosure of appropriate alternative procedures or courses of treatment, if any, that might be 

advantageous to the subject
A statement describing the extent, if any, to which confidentiality of records identifying the 

subject will be maintained
For research involving more than minimal risk, an explanation as to whether any compensation, 

and an explanation as to whether any medical treatments are available, if injury occurs and, if 
so, what they consist of, or where further information may be obtained

An explanation of whom to contact for answers to pertinent questions about the research and 
research subjects’ rights, and whom to contact in the event of a research-related injury to the 
subject

A statement that participation is voluntary, refusal to participate will involve no penalty or 
loss of benefits to which the subject is otherwise entitled, and the subject may discontinue 
participation at any time without penalty or loss of benefits, to which the subject is otherwise 
entitled

Additional elements, as appropriate
A statement that the particular treatment or procedure may involve risks to the subject (or 

to the embryo or fetus, if the subject is or may become pregnant), which are currently 
unforeseeable

Anticipated circumstances under which the subject’s participation may be terminated by the 
investigator without regard to the subject’s consent

Any additional costs to the subject that may result from participation in the research
The consequences of a subject’s decision to withdraw from the research and procedures for 

orderly termination of participation by the subject
A statement that significant new findings developed during the course of the research, which 

may relate to the subject’s willingness to continue participation, will be provided to the 
subject

The approximate number of subjects involved in the study
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home to review and discuss with their families and personal physicians, and they are 
familiar with the concepts of research and voluntary consent. As discussed in the 
Privacy and Confidentiality section below, investigators may share data and biospeci-
mens with other researchers. If such sharing is planned or required by the sponsor, the 
informed consent must make it clear that sharing will occur and that the data may be 
used for purposes other that those of the trial for which the person is volunteering.

Sometimes, people who are ill may not understand that a clinical trial is a 
research endeavor. They may believe that they are receiving therapy for their 
 condition. This may happen in early phase trials of new drugs that are being devel-
oped for serious, untreatable diseases, or in any clinical trial testing, a promising 
intervention for a serious or chronic condition. Patients may view the trial as the last 
or best possibility for cure. Sometimes, clinicians are also researchers, and may seek 
to enroll their own patients into clinical trials. These situations can lead to what has 
been termed “therapeutic misconception” [40]. The distinction between research, in 
essence an experiment, and clinical care may blur. We do not advocate preventing 
clinicians from enrolling their own patients into clinical trials. However, extra effort 
must be made to provide the patients with the information needed to judge the merits 
of volunteering to enter the research, separate from their clinical care.

The situations where participant enrollment must be done immediately, in coma-
tose patients, or in highly stressful circumstances and where the prospective partici-
pants are minors or not fully competent to understand the study are more 
complicated and may not have optimal solutions. In the U.S., FDA [41] and the 
Department of Health and Human Services [42] guidelines allow for research in 
emergency situations, when informed consent is not possible. Under these regula-
tions, IRBs may approve the study as long as a series of special conditions has been 
met, including that there has been community consultation and a safety committee 
is formed to monitor accumulating data. Similar research is also allowed in Canada 
[43] and under the European Medicines Agency (EMA) Guidelines for Good 
Clinical Practice [44]. A trial of thrombolytics versus placebo in the context of 
resuscitation for cardiac arrest was successfully conducted under the EMA guide-
lines [45]. In this trial, local ethics committees agreed that the trial could be done 
without informed consent prior to enrollment. Instead, consent was later given by 
surviving participants or their family members or others.

Some have questioned all research in emergency settings because of the lack of 
prior informed consent, and several such clinical trials have been quite  controversial. 
An example is a trial of a product intended to be used as a blood substitute in 
trauma patients [46]. Because patients were unconscious at the time of administra-
tion of the blood substitute, consent could not be obtained. Therefore, community 
consultation was obtained before local IRBs approved the study. However, there 
were allegations that safety problems noted in earlier trials of the agent were not 
published or otherwise disclosed to those bodies. We do not take a position on the merits 
of this particular trial, and we support the concept of being able to conduct impor-
tant research in settings where full informed consent before enrollment is not possible. 
The sponsors and investigators, though, must be completely open about all data 
relevant to the conduct of such studies and must follow all local regulations [47]. 
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Failure to do so harms not only the unwitting participants but also the entire field 
of research in emergency settings.

Also contentious is the role of consent from participant surrogates when the 
study participant is unable to provide fully informed consent. This typically 
 happens with research in minors, when parents or other guardians make the deci-
sions. Special review is required for pediatric research; requirements vary 
depending  on the expected risks from the study [35]. Other situations, such as 
research in emotionally or mentally impaired individuals also have generated 
 discussion and guidelines regarding use of surrogate consent [48, 49]. Less clear is 
the use of surrogate consent for potential study participants who are temporality 
unable to understand the nature of the study and give consent. This issue arose in 
research in people with the acute respiratory distress syndrome [50]. Suggestions 
for accommodating research in such situations include risk assessment, determina-
tion of patient capacity, and reconsent [51]. As in all such situations, judgment on 
the part of investigators, sponsors, IRBs, and others will be required and second-
guessing will inevitably occur.

Conduct

Trials in Developing Countries

Many clinical trials are international. The ability to enroll and follow participants in 
more than one country assists in enrollment and may assist in generalizing the results 
of the trial to different populations and settings. However, trials that are conducted in 
developing areas raise ethical issues. Are they conducted in those regions because the 
disease of interest is prevalent there, and the results relevant to the region? Or are the 
countries or regions selected primarily for convenience, low cost, or fewer adminis-
trative and regulatory burdens? The control group may be receiving less than optimal 
care, and thus may have a higher event rate, permitting a smaller, shorter, and less 
expensive trial. If the trial is conducted for those reasons, it is unethical. Some have 
said that the investigators are obligated to ensure that all  participants receive care that 
is optimal without regard to usual practice in the country  where the trial is being 
conducted. Others have maintained that it is sufficient if the participants receive care 
at least as good as what they would receive had they not been in the trial. This was 
the argument of the investigators in the Vietnam Tamoxifen Trial of adjuvant 
oophorectomy and tamoxifen in treatment of breast cancer. State of the art treatment 
by US standards (including radiation) was not available and not likely to be available. 
What was being tested was whether a simple and affordable treatment like tamoxifen 
would be better than what was available [52].

Extrapolation of study results from less developed regions to highly developed 
countries with very different health care systems and standards of care, and vice 
versa, has also been questioned. Some studies suggest that the outcomes may 
indeed be different [53, 54].
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After the trial ends, what is the obligation of the investigators to provide an 
intervention shown to be beneficial, both to the study participants and to the broader 
population? This and other issues have no easy answers. We believe, however, that 
trials should only be conducted in places and with participants likely to benefit 
from the results and with informed consents that clearly describe what will be done 
at the end of the trial. The results from the trial must be able to be applied to clinical 
practice in the population from which the participants came [55].

Recruitment

Recruitment of trial participants is often one of the more challenging aspects of 
conducting a clinical trial (see Chap. 10). Unless an adequate number of participants 
is entered, the trial will not be able to answer the questions about benefit and risk. 
Therefore, there is great pressure to recruit an adequate number of participants and 
to do so as quickly as possible. The use of some financial incentives, such as “finder’s 
fees,” i.e., payment to physicians for referring participants to a clinical trial investi-
gator, is inappropriate, in that it might lead to undue pressure on a  prospective par-
ticipant [56]. This differs from the common and accepted practice of paying 
investigators a certain amount for the cost and effort of recruiting each enrolled 
participant. Even this practice becomes questionable if the amount of the payment 
is so great as to induce the investigator to enroll inappropriate participants [10].

Study participants may be paid for their involvement in clinical trials. Typically, 
payment is meant to compensate them for the time, effort, and expense of attending 
clinic visits. Studies that enroll healthy volunteers (usually phase I trials) will often 
provide payment beyond reimbursement for expenses. The amount generally 
depends on the time required and the amount of pain and risk involved in any 
 procedures. As with paying investigators, when the amount is such that people, 
whether they are healthy volunteers or patients, might make unwise or dangerous 
decisions, it becomes excessive. Participants should never be paid more for taking 
on more risk. Ethics review committees often have guidelines as to appropriate 
amounts for various kinds of studies and procedures and must ensure that the 
amount provided does not create an undue influence.

As discussed in Chap. 9, many potentially eligible trial participants may be on 
medication. This treatment may be for the condition that will be studied or some other 
reason. In order to assess the participant’s condition at baseline, the investigator  may 
be tempted to withdraw medication, at least temporarily. For example, one might be 
interested in enrolling people at high risk of cardiovascular disease, and thus try to 
accrue those with hypertension. But an accurate baseline blood pressure might not be 
obtainable in those already on treatment. It might not even be clear that the participant 
already on antihypertensive drugs would have met the eligibility criteria if not on 
medication. Should one withdraw the drug or simply accept that those on treatment 
probably truly had hypertension, especially if on treatment they still have high normal 
blood pressures? Usually, the latter is the  better course of action.
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Safety and Efficacy Monitoring

Occasionally, during a trial, important information relevant to informed consent 
derives either from other studies or from the trial being conducted. In such cases, 
the investigator is obligated to update the consent form and notify current partici-
pants in an appropriate manner. A trial of antioxidants in Finnish male smokers (the 
Alpha-Tocopherol Beta Carotene Prevention Study) indicated that beta carotene 
and vitamin E may have been harmful with respect to cancer or cardiovascular 
diseases, rather than beneficial [57]. Because of those findings, investigators of the 
ongoing Carotene and Retinol Efficacy Trial (CARET) informed the participants of 
the results and the possible risks [58]. CARET was subsequently stopped earlier 
than planned because of adverse events similar to those seen in the Finnish trial. 
The investigator of a third trial of antioxidants, the Age-Related Eye Disease Study 
(AREDS) then notified their participants of the findings from both the Finnish 
study and CARET [59, 60].

Five trials of warfarin in patients with atrial fibrillation were being conducted at 
approximately the same time [61]. After the first three ended, showing clear benefit 
from warfarin in the reduction of strokes, the remaining two found it difficult 
 ethically to continue. Interim results from the Heart and Estrogen/Progestin 
Replacement Study (HERS) [62] and the Women’s Health Initiative (WHI) [63] 
evaluation of estrogen suggested that thromboembolic adverse events that had not 
been clearly presented in the informed consent were occurring. In both studies, the 
data and safety monitoring boards debated whether the studies should stop or 
 continue with additional actions taken. The trials continued, but participants in 
those trials and medical communities were notified of these interim findings [64, 65]. 
Not only is such a practice an ethical stance, but a well-informed participant is usu-
ally a better trial participant. How much data should be provided to study 
 participants and when, and the role of independent safety monitoring groups in this 
decision, are still areas of debate [66].

The issue of how to handle accumulating data from an ongoing trial is a difficult 
one, and is further discussed in Chap. 16. With advance understanding by both 
participants and investigators that they will not be told interim results unless they 
show clear benefit or harm, and that there is a responsible safety monitoring group, 
ethical concerns should be lessened, if not totally alleviated.

Early Termination for Other than Scientific or Safety Reasons

Clinical trials are only ethical if there are adequate resources to conduct them and 
see them to completion. Trials may (and should) be stopped early if there are safety 
concerns or if there are scientific reasons to do so (see Chap. 15). It is inappropriate, 
however, to stop a trial early because the sponsor changes its mind about marketing 
priorities or failed to adequately plan for sufficient resources. In such cases, 
 participants who had enrolled did so with the understanding that they would be 
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helping to advance medical knowledge. In the process, they put themselves at 
 possibly considerable risk. To fail to complete the study is a serious breach of 
 ethics. An example when this happened is the Controlled Onset Verapamil 
Investigation of Cardiovascular End Points (CONVINCE) trial [67]. Partway 
through follow-up, the sponsor ended the study for other than scientific or safety 
reasons. As noted in an editorial by Psaty and Rennie [68], “the responsible conduct 
of medical research involves a social duty and a moral responsibility that  transcends 
quarterly business plans…”

In another situation, an investigator with inadequate funds to complete his trial 
solicited money from participants in the trial so that he could continue purchasing 
the experimental drug [69]. Because the trial was being conducted in patients with 
a fatal condition, amyotrophic lateral sclerosis, the study participants viewed the trial 
as a last hope and were therefore under considerable pressure to donate. We view 
such actions as completely unethical. Plans for conducting the trial, including 
obtaining experimental agents, must be in place before the trial begins. 

With all trials, investigators need to plan in advance how they will handle end 
of study issues such as whether participants will have continued access to the inter-
vention and transition to appropriate medical care.

Privacy and Confidentiality

The issues of privacy and confidentiality have received considerable attention. The 
widespread uses of electronic media have made many people concerned about 
the privacy of their medical records, including research records. Electronic medical 
records have simplified the tasks of finding potentially eligible participants for  trials, 
conducting international multicenter studies, following up on participants during and 
after the studies, and sharing data with other researchers. They have also led to laws 
restricting what kinds of medical records can be shared and with whom, in the 
absence of clear permission from the patients. In the U.S., the Health Insurance 
Portability and Accountability Act (HIPAA) primarily addresses privacy issues in 
clinical practice. However, there are clinical research provisions that affect how 
investigators identify, contact, and obtain informed consent from prospective partici-
pants, and how study data are maintained and provided to others [70] (see also 
Chap. 10). These laws, in turn, have generated articles pointing out the increased 
difficulty in conducting clinical research. Policies encouraging or  mandating sharing 
of data and biospecimens from research studies [71–73] may conflict with the objec-
tives of maintaining confidentiality. If data are shared with other researchers for 
unspecified purposes, might participants who volunteered for a trial object to their 
data being used for goals of which they might not approve? If the original informed 
consent does not allow for use of the biospecimens by others or for purposes 
 different from the stated ones, either the biospecimens cannot be shared or new 
informed consents must be obtained. The increasing availability and use of genetic 
material adds to this conflict. Fear of employment or health insurance discrimination 
based on genetic information may make some people unwilling to participate in trials  
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if complete confidentiality cannot be ensured. It is probably not possible to share 
data and specimens that are useful to the recipient investigator while also maintaining  
perfect deidentifiability. Some compromises are inevitable. At the  current time, there 
are no clear solutions to these issues, but trial participants must have a right to make 
informed choices. Clinical trial investigators need to be aware of the concerns, and 
to the extent possible, plan to address them before the study starts.

Data Falsification

There has been concern about falsification of data and entry of ineligible, or even 
phantom participants in clinical trials (see Chap. 10). A case of possible falsification  
that gained considerable attention was a trial of bone morphogenetic protein-2 in the 
management of fractures due to combat injuries [74]. An editorial in the journal 
that published the article, which had purported to show benefit from treatment, said that 
“much of the paper was essentially false” and announced the article’s  withdrawal [75]. 
A trial of lumpectomy and radiation therapy for breast cancer was severely harmed 
because of falsified data on a small number of participants at one of many enrolling 
sites. The overall results were unchanged when the participants with the falsified 
data were not included [76, 77]. Nevertheless, the harm done to the study and to 
clinical trials in general was considerable. We condemn all data fabrication. It is 
important to emphasize that confidence in the integrity of the trial and its results 
is essential to every trial. If, through intentional or inadvertent actions, that confidence  
is impaired, not only have the participants and potentially others in the  community 
been harmed, the trial loses its rationale, which is to influence  science and medical 
practice. Chapter 11 reviews issues of ensuring data quality.

Reporting

Publication Bias, Suppression, and Delays

All investigators have the obligation to report trial results fully and in a timely 
fashion. As discussed in Chap. 19, it is well known that publication bias exists. 
Positive or exciting findings are more likely to be published than null results. In one 
survey of 74 trials of antidepressant agents, 38 were considered to have results 
favorable to the intervention. All but one of these were published. Of the 36 studies 
considered not to have favorable results, 22 were not published. Eleven others were 
published in ways that obscured the lack of favorable results [78]. Heres and 
 colleagues  examined trials of head-to-head comparisons of second generation 
antipsychotic agents [79]. Ninety percent of the trials sponsored by industry were 
reported in favor of the sponsor’s drug. Interestingly, this occurred even with trials 
that compared the same drugs – but the outcome changed when the sponsor was a 
different company.
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It is more probable that large, late phase trials will be published regardless of the 
results than will small, early stage trials. There are exceptions, however. As  discussed 
in Chap. 5, the results of the second Prospective Randomized Amlodipine Survival 
Evaluation trial (PRAISE-2), although presented, were not published. The same is 
undoubtedly true of other trials with disappointing outcomes.

An important advance in ensuring publication is the requirement by many jour-
nals [80], sponsors such as the US National Institutes of Health [81], and the US 
Food and Drug Administration [82] that trials be registered at initiation in one of the 
accepted registration sites. Although it is not a complete solution to the problem of 
failure to make public the results of all trials, registration allows for easier tracking  
of trials that are initiated, but perhaps never completed or never published.

We take the position that the results of all clinical trials should be published 
regardless of the findings. It is important that the totality of the information, pro and 
con, be available so that those designing other studies and clinicians can make 
informed decisions. If the study results are not published, it is also unfair to the 
participants who volunteered for a trial with the understanding that they would be 
helping medical research. The so-called “gag clauses” in industry-sponsored trials 
[83] are both antithetical to academic freedom and contrary to ethical practice.

Conflicts of Interest and Publication

All researchers have biases of some sort. It is understandable that an investigator’s 
perspective will enter into a publication, even though best efforts are made to be 
objective in reporting and interpretation of study results. For this reason, many 
journals, and most high-profile ones, require that authors disclose their potential 
conflicts of interest [80, 84]. In addition, many multi-investigator studies 
have  publication policies that exclude from authorship those with major conflicts 
of interest.

More extreme is “ghost authorship,” where the papers are written by employees 
of the sponsors, who are not listed as authors, and the academic-based investigators, 
who may have had little or no role in drafting the manuscript, are given authorship 
credit. We deplore this practice. We also deplore the practice of listing as authors 
any who did not truly contribute to the research. In response to these concerns about 
“guest authorship,” many journals now ask for the contribution of each listed author 
when the manuscript is submitted for publication. (See Chap. 19 for further discus-
sion of these issues.)
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The planning of a clinical trial depends on the question that the investigator is 
addressing. The general objective is usually obvious, but the specific question to be 
answered by the trial is often not stated well. Stating the question clearly and in 
advance encourages proper design. It also enhances the credibility of the findings. 
One would like answers to a number of questions, but the study should be designed 
with only one major question in mind. This chapter discusses the selection of this 
primary question and appropriate ways of answering it. In addition, types of sec-
ondary and subsidiary questions are reviewed.

The first generation of clinical trials typically compared new interventions to 
placebo or no treatment on top of best current medical care. They addressed the 
straight-forward question of whether the new treatment was beneficial, neutral, or 
harmful compared to placebo or nothing. Since that time, the best medical care has 
improved dramatically, largely due to the contribution of randomized clinical trials.

Because of this success, new design challenges emerged. Due to the lower event 
rate in patients receiving best care, the margins for improvement with newer inter-
ventions became smaller. This statistical power issue has been addressed in three 
ways: first, sample sizes have been increased (see Chap. 8); second, there has been 
an increased reliance on composite outcomes; and third, there is an increased use 
of surrogate outcomes.

Another consequence was the emergence of trials designed to answer a different 
type of question. Do alternative treatments that may be equal to, or at least no worse 
than, existing treatments with regard to the primary outcome convey important 
benefits in terms of safety, adherence, patient convenience, or cost? These trials are 
often referred to as noninferiority trials. These trials are discussed later in this chap-
ter and in more detail in Chaps. 5, 8, and 17.

Fundamental Point

Each clinical trial must have a primary question. The primary question, as well as 
any secondary or subsidiary questions, should be carefully selected, clearly 
defined, and stated in advance.

Chapter 3
What Is the Question?

L.M. Friedman et al., Fundamentals of Clinical Trials, 
DOI 10.1007/978-1-4419-1586-3_3, © Springer Science+Business Media, LLC 2010
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Selection of the Questions

Primary Question

The primary question should be the one the investigators are most interested in 
answering and that is capable of being adequately answered. It is the question upon 
which the sample size of the study is based, and which must be emphasized in the 
reporting of the trial results. The primary question may be framed in the form of 
testing a hypothesis because most of the time an intervention is postulated to have 
a particular outcome which, on the average, will be different from the outcome in 
a control group [1]. The outcome may be a beneficial clinical event such as improving 
survival, ameliorating an illness or disease complications, reducing symptoms, or 
improving quality of life; modifying an intermediate or surrogate characteristic 
such as blood pressure; or changing a biomarker such as a laboratory value.

Secondary Questions

There may also be a variety of subsidiary or secondary questions that are usually related 
to the primary question. The study may be designed to help address these, or else data 
collected for the purpose of answering the primary question may also elucidate the 
secondary questions. They can be of two types. In the first, the response variable is dif-
ferent than that in the primary question. For example, the primary question might ask 
whether mortality from any cause is altered by the intervention. Secondary questions 
might relate to incidence of cause-specific death (such as cancer mortality), sex or age-
specific mortality, incidence of nonfatal renal failure, or incidence of stroke.

The second type of secondary question relates to subgroup hypotheses. For 
example, in a study of cancer therapy, the investigator may want to look specifically 
at people by stage of disease at entry into the trial. Such subsets of people in the 
intervention group can be compared with similar people in the control group. 
Subgroup hypotheses should be (a) specified before data collection begins, (b) 
based on reasonable expectations, and (c) limited in number. In any event, the number 
of participants in any subgroups is usually too small to prove or disprove a sub-
group hypothesis. One should not expect significant differences in subgroups unless 
the trial was specifically designed to detect them. Failure to find significant differ-
ences should not be interpreted to mean that they do not exist. Investigators should 
exercise caution in accepting subgroup results, especially when the overall trial 
results are not significant. A survey of clinical trialists indicated that inappropriate 
subgroup analyses were considered as one of the two major sources of distortion of 
trial findings [2]. Generally, the most useful reason for considering subgroups is to 
examine consistency of results across predefined subgroups.

There has been recognition that certain subgroups of people have not been adequa-
tely represented in clinical research, including clinical trials [3]. In the United States,  
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this has led to requirements that women and minority populations be included in 
appropriate numbers in trials [4]. The issue is whether the numbers of participants 
of each sex and racial/ethnic group must be adequate to answer the key questions 
that the trial addresses, or whether there must merely be adequate diversity of people. 
As has been noted, [5, 6] the design of the trial should be driven by reasonable 
expectations that the intervention will or will not operate materially differently 
among the various subsets of participants. If so, then it is appropriate to design the 
trial to detect those differences. If not, adequate diversity with the opportunity to 
examine subgroup responses at the end of the trial is more appropriate.

Both types of secondary questions raise several methodological issues; for 
example, if enough statistical tests are done, a few will be significant by chance 
alone when there is no true intervention effect. An example was provided by the 
Second International Study of Infarct Survival (ISIS-2), a factorial design trial of 
aspirin and streptokinase in patients with acute myocardial infarction [7]. 
Participants born under the Gemini or Libra astrological birth signs had a somewhat 
greater incidence of vascular and total mortality on aspirin than on no aspirin, 
whereas for all other signs, and overall, there was an impressive and highly signifi-
cant benefit from aspirin. Therefore, when a number of tests are carried out, results 
should be interpreted cautiously. Shedding light or raising new hypotheses is a 
more proper outcome of these analyses than conclusive answers. See Chap. 17 for 
further discussion of subgroup analysis.

Both primary and secondary questions should be important and relevant scien-
tifically, medically, or for public health purposes. Participant safety and well-being 
must always be considered in evaluating importance. Potential benefit and risk of 
harm should be looked at by the investigator, as well as by local ethical review 
committees, and often, independent monitoring committees.

Adverse Events

Important questions that can be answered by clinical trials concern adverse events or 
side effects of therapy (Chap. 12). Here, unlike the primary or secondary questions, 
it is not always possible to specify in advance the question to be answered. What 
adverse reactions might occur, and their severity, may be unpredictable. Furthermore, 
rigorous, convincing demonstration of serious toxicity is usually not achieved 
because it is generally thought unethical to continue a study to the point at which a 
drug has been conclusively shown to be more harmful than beneficial [8–10]. 
Investigators traditionally monitor a variety of laboratory and clinical measurements, 
look for possible adverse effects, and compare these in the intervention and control 
groups. Statistical significance and the previously mentioned problem of multiple 
response variables become secondary to clinical judgment and participant safety. 
While this will lead to the conclusion that some purely chance findings are labeled 
as adverse effects, moral responsibility to the participants requires a conservative 
attitude toward safety monitoring, particularly if an alternative therapy is available.



40 3 What Is the Question?

Ancillary Questions, Substudies

Often a clinical trial can be used to answer questions which do not bear directly on the 
intervention being tested, but which are nevertheless of interest. The structure of the 
trial and the ready access to participants may make it the ideal vehicle for such inves-
tigations. Weinblatt, Ruberman, and colleagues reported that a low level of education 
among survivors of a myocardial infarction was a marker of poor risk of survival [11]. 
The authors subsequently evaluated whether the educational level was an indicator of 
psychosocial stress [12]. To further investigate these findings, they performed a study 
ancillary to the Beta-Blocker Heart Attack Trial (BHAT), [13] a trial which evaluated 
whether the regular administration of propranolol could reduce 3-year mortality in 
people with acute myocardial infarctions. Interviews assessing factors such as social 
interaction, attitudes, and personality were conducted in over 2,300 men in the ancil-
lary study [14]. Inability to cope with high life stress and social isolation were found to 
be significantly and independently associated with mortality. Effects of low education 
were accounted for by these two factors. By enabling the investigators to perform this 
study, the BHAT provided an opportunity to examine an important issue in a large 
sample, even though it was peripheral to the main question.

In the Studies of Left Ventricular Dysfunction (SOLVD), [15] the investigators 
evaluated whether an angiotensin converting enzyme inhibitor would reduce mortal-
ity in symptomatic and asymptomatic subjects with impaired cardiac function. In 
selected participants, special studies were done with the objective of getting a better 
understanding of the disease process and of the mechanisms of action of the interven-
tion. These substudies did not require the large sample size of the main studies (over 
6,000 participants). Therefore, most participants in the main trial had a relatively 
simple and short evaluation and did not undergo the expensive and time-consuming 
procedures or interviews demanded by the substudies. This combination of a rather 
limited assessment in many participants, designed to address an easily monitored 
response variable, and detailed measurements in subsets, can be extremely effective.

Natural History

Though it is not intervention-related, a sometimes valuable use of the collected 
data, especially in long-term trials, is a natural history study in the control group, if 
it consists of placebo or no treatment. This was done in some early cardiovascular 
clinical trials [16]. Early AIDS trials yielded considerable information about natural 
history of the disease at a time when there was considerable uncertainty. If the 
control group is either on placebo or no systematic treatment, various baseline factors 
may be studied for their relation to specific outcomes. Assessment of the prognostic 
importance of these factors can lead to better understanding of the disease under 
study and development of new hypotheses. Of course, generally only predictive 
association – and not necessarily causation – may properly be inferred from such 
data. The study participants may be a highly selected group of people who, although 
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they may be on placebo, are receiving various concomitant therapies for their condition. 
In addition, in some fields such as cardiology and oncology, large, well-characterized 
observational cohorts exist, lessening the need for clinical trial control groups to 
provide natural history data. In selected conditions or circumstances, however, 
these kinds of control group analyses may be important, as long as the findings are 
interpreted in the context of selection of the study sample.

Since they are not trial hypotheses, specific natural history questions need not be 
specified in advance. However, properly designed baseline forms require some 
advance consideration of which factors might be related to outcome. After the study 
has started, going back to ascertain missing baseline information in order to answer 
natural history questions is generally a fruitless pursuit. At the same time, collecting 
large amounts of baseline data on the slight chance that they might provide useful 
information costs money, consumes valuable time, and may lead to less careful 
collection of important data. It is better to restrict data collection to those baseline 
factors that are known, or seriously thought, to have an impact on prognosis.

Large, Simple Clinical Trials

As discussed in more detail in Chap. 5, the concept of “large, simple clinical trials” has 
become popular [17]. The general idea is that for common conditions and important 
outcomes such as total mortality, even modest benefits of intervention, particularly 
interventions that are easily implemented in a large population are important. Because 
an intervention is likely to have similar effects in different sorts of participants, careful 
characterization of people at entry may be unnecessary. The study must have unbiased 
allocation of participants to intervention or control and unbiased assessment of out-
come. Sufficiently large numbers of participants are more important in providing the 
power necessary to answer the question than careful attention to quality of data. This 
model depends upon a relatively easily administered intervention, brief forms, and an 
easily ascertained outcome, such as a fatal or nonfatal event.

Superiority vs. Noninferiority Trials

As mentioned in the introduction to this chapter, traditionally, most trials were designed 
to establish whether a new intervention on top of usual or standard care was superior to 
that care alone (or that care plus placebo). If there were no effective treatments, the 
new intervention was compared to just placebo. As discussed in Chap. 8, these trials 
are generally two-sided. That is, the trial is designed to see whether the new inter-
vention is better or worse than the control.

Once effective therapies were developed, more trials were designed to demon-
strate that a new intervention is not worse than the control by some prespecified 
amount. As noted earlier, the motivation for such a question is that the new intervention 
might not be better than standard treatment on the primary or important secondary 
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outcomes, but may be less toxic, more convenient, less invasive, or have some other 
attractive feature. The challenge is to define what is meant by “not worse than.” 
This will be referred to as the “margin of indifference,” or d, meaning that if the 
new intervention is not less effective than this margin, its use might be of interest 
given the other features. In the analysis of this design, the 95% upper confidence 
limit would need to be less than this margin in order to claim noninferiority. 
Defining d is challenging and will be discussed in Chap. 5.

The question in a noninferiority trial is different than in a superiority trial and 
affects both the design and conduct of the trial. For example, in the superiority trial, 
poor adherence will lead to a decreased ability, or power, to detect a meaningful dif-
ference. For a noninferiority trial, poor adherence will diminish important differences 
and bias the results toward a noninferiority claim. Thus, great care must be taken in 
defining the question, the sensitivity of the outcome measures to the intervention being 
evaluated, and the adherence to the intervention during the conduct of the trial.

Intervention

When the question is conceived, investigators, at the very least have in mind a class 
or type of intervention. More commonly, they know the precise drug, procedure, or 
lifestyle modification they wish to study. In reaching such a decision, they need to 
consider several aspects. First, the potential benefit of the intervention must be 
maximized while possible toxicity is kept to a minimum. Thus, dose of drug or 
intensity of rehabilitation and frequency and route of administration are key factors 
that need to be determined. Can the intervention be standardized, and remain rea-
sonably stable over the duration of the trial? Investigators must also decide whether 
to use a single drug, biologic, or device, fixed or adjustable doses of drugs, sequen-
tial drugs, or drug or device combinations. Devices in particular undergo frequent 
modifications and updates. Investigators need to be satisfied that newer versions 
that appear during the course of the trial function sufficiently similarly in important 
ways to the older versions so that combining data from the versions is appropriate. 
Of course, an investigator can use only the older version (if it is still available), but 
the trial will then be criticized for employing the outdated version. In gene transfer 
studies, the nature of the vector, as well as the actual gene, may materially affect 
the outcome, particularly when it comes to adverse effects.

Not only the nature of the intervention, but what constitutes the control group 
regimen must also be considered for ethical reasons, as discussed in Chap. 2, and 
study design reasons, as discussed in Chap. 5.

Second, the availability of the drug or device for testing needs to be determined. 
If it is not yet licensed, special approval from the regulatory agency and cooperation 
or support by the manufacturer are required.

Third, investigators must take into account design aspects, such as time of initiation and 
duration of the intervention, need for special tests or laboratory facilities, and the logis-
tics of blinding in the case of drug studies. Certain kinds of interventions, such as surgical 
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procedures, device implantation, vaccines, and gene transfer may have long-term or 
even life-long effects. Therefore, investigators might need to incorporate plans for long-
term assessment. There had been reports that drug-eluting stents, used in percutaneous 
coronary intervention, perhaps had a greater likelihood of restenosis than bare-metal 
stents [18, 19]. Follow-up studies seemed to assuage these concerns [20]. Nevertheless, 
investigators must consider incorporating plans for long-term assessment.

Response Variables

Response variables are outcomes measured during the course of the trial, and they define 
and answer the questions. A response variable may be total mortality, death from a spe-
cific cause, incidence of a disease, a complication or specific adverse effect of a disease, 
symptomatic relief, a clinical finding, a laboratory measurement, or the cost and ease of 
administering the intervention. If the primary question concerns total mortality, the 
occurrence of deaths in the trial clearly answers the question. If the primary question 
involves severity of arthritis, on the other hand, extent of mobility or a measure of freedom 
from pain may be reasonably good indicators. In other circumstances, a specific response 
variable may only partially reflect the overall question. As seen from the above examples, 
the response variable may show a change from one discrete state (living) to another 
(dead), from one discrete state to any of several other states (changing from one stage of 
disease to another) or from one level of a continuous variable to another. If the question 
can be appropriately defined using a continuous variable, the required sample size may 
be reduced (Chap. 8). However, the investigator needs to be careful that this variable and 
any observed differences are clinically meaningful and relevant and that the use of a 
continuous variable is not simply a device to reduce sample size.

In general, a single response variable should be identified to answer the primary 
question. If more than one are used, the probability of getting a nominally significant 
result by chance alone is increased (Chap. 17). In addition, if several response vari-
ables give inconsistent results, interpretation becomes difficult. The investigator 
would then need to consider which outcome is most important, and explain why the 
others gave conflicting results. Unless she has made the determination of relative 
importance prior to data collection, her explanations are likely to be unconvincing.

Although the practice is not advocated, there may be circumstances when more 
than one “primary” response variable needs to be looked at. This may be the case 
when an investigator truly cannot state which of several response variables relates 
most closely to the primary question. Ideally, the trial would be postponed until this 
decision can be made. However, overriding concerns, such as increasing use of the 
intervention in general medical practice, may compel her to conduct the study earlier. 
In these circumstances, rather than arbitrarily selecting one response variable which 
may, in retrospect, turn out to be inappropriate, investigators prefer to list several 
“primary” outcomes. For instance, in the Urokinase Pulmonary Embolism Trial [21] 
lung scan, arteriogram and hemodynamic measures were given as the “primary” 
response variables in assessing the effectiveness of the agents urokinase and streptokinase. 
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Chapter 8 discusses the calculation of sample size when a study with several primary 
response variables is designed.

Combining events to make up a response variable might be useful if any one 
event occurs too infrequently for the investigator reasonably to expect a significant 
difference without using a large number of participants. In answering a question 
where the response variable involves a combination of events, only one event per 
participant should be counted. That is, the analysis is by participant, not by event.

One kind of combination response variable involves two kinds of events. This has 
been termed a composite outcome. It must be emphasized, however, that the combined 
events should be capable of meaningful interpretation such as being related through a 
common underlying condition or responding to the same presumed mechanism of 
action of the agent. In a study of heart disease, combined events might be death from 
coronary heart disease plus nonfatal myocardial infarction. This is clinically meaningful 
since death from coronary heart disease and nonfatal myocardial infarction might 
together represent a measure of serious coronary heart disease. Difficulties in interpreta-
tion can arise if the results of each of the components in such a response variable are 
inconsistent. In the Physicians’ Health Study report of aspirin to prevent cardiovascular 
disease, there was no difference in mortality, a large reduction in myocardial infarction, 
and an increase in stroke, primarily hemorrhagic [22]. In this case, cardiovascular mor-
tality was the primary response variable, rather than a combination. If it had been a 
combination, the interpretation of the results would have been even more difficult than 
it was [23]. Even more troublesome is the situation where one of the components in the 
combination response variable is far less serious than the others. For example, if occur-
rence of angina pectoris or a revascularization procedure is added, as is commonly 
done, interpretation can be problematic. Not only are these less serious than cardiovas-
cular death or myocardial infarction, they often occur more frequently. Thus, if overall 
differences between groups are seen, are these results driven primarily by the less seri-
ous components? What if the results for the more serious components (e.g., death) trend 
in the opposite directions? This is not just theoretical. For example, the largest differ-
ence between intervention and control in the Myocardial Ischemia Reduction with 
Aggressive Cholesterol Lowering (MIRACL) trial was seen in the least serious of the 
four components; the one that occurred most often in the control group [24]. A survey 
of published trials in cardiovascular disease that used composite response variables 
showed that half had major differences in both importance and effect sizes of the indi-
vidual components [25]. Those components considered to be most important had, on 
average, smaller benefits than the more minor ones. See Chap. 17 for a discussion of 
analytic and interpretation issues if the components of the composite outcome go in 
different directions or have other considerable differences in the effect size.

When this kind of combination response variable is used, the rules for interpreting 
the results and for possibly making regulatory claims about individual components 
should be established in advance. This is particularly important if there are major 
differences in seriousness. A survey of the cardiovascular literature found that the 
use of composite outcomes (often with three or four components) was common, 
and the components varied in importance [26]. One possible approach is to require 
that the most serious individual components show the same trend as the overall result. 
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Some have suggested giving each component weights, depending on the seriousness 
[27, 28]. Although it has sample size implications, it is probably preferable to 
include in the combined primary response variable only those components that are 
truly serious and to assess the other components as secondary outcomes.

Another kind of combination response variable involves multiple events of the 
same sort. Rather than simply asking whether an event has occurred, the investigator 
can look at the frequency with which it occurs. This may be a more meaningful way 
of looking at the question than seeking a yes–no outcome. For example, frequency of 
recurrent transient ischemic attacks or epileptic seizures within a specific follow-up 
period might comprise the primary response variable of interest. Simply adding up 
the number of recurrent episodes and dividing by the number of participants in each 
group in order to arrive at an average is improper. Multiple events in an individual are 
not independent, and averaging gives undue weight to those with more than one epi-
sode. One approach is to compare the number of participants with none, one, two, or 
more episodes; that is, the distribution, by individual, of the number of episodes.

Sometimes, study participants enter a trial with a condition that is exhibited fre-
quently. For example, they may have had several episodes of atrial fibrillation in the 
previous weeks or may drink alcohol to excess several days a month. Trial eligibility 
criteria may even require a minimum number of such episodes. A trial of a new 
treatment for alcohol abuse may require participants to have at least six alcoholic 
drinks a day for at least 7 days over the previous month. The investigator needs to 
decide what constitutes a beneficial response. Is it complete cessation of drinking? 
Reducing the number of drinks to some fixed level (e.g., no more than two on any 
given day)? Reducing alcohol intake by some percent, and if so, what percent? Does 
this fixed level or percent differ depending on the intake at the start of the trial? 
Decisions must be made based on knowledge of the disease or condition, the kind 
of intervention, and the expectations of how the intervention will work. The clinical 
importance of improvement versus “cure” must also be considered.

Specifying the Question

Regardless of whether an investigator is measuring a primary or secondary response 
variable, certain rules apply. First, she should define and write the questions in advance, 
being as specific as possible. She should not simply ask, “Is A better than B?” Rather, 
she should ask, “In population W is drug A at daily dose X more efficacious in improving 
Z by Q amount over a period of time T than drug B at daily dose Y?” Implicit here is 
the magnitude of the difference that the investigator is interested in detecting. Stating 
the questions and response variables in advance is essential for planning of study 
design and calculation of sample size. As shown in Chap. 8, sample size calculation 
requires specification of the response variables as well as estimates of the effect of inter-
vention. In addition, the investigator is forced to consider what she means by a successful 
intervention. For example, does the intervention need to reduce mortality by 10% or 
25% before a recommendation for its general use is made? Since such recommendations 
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also depend on the frequency and severity of adverse effects, a successful result cannot 
be completely defined beforehand. However, if a 10% reduction in mortality is clini-
cally important, that should be stated, since it has sample size implications. Specifying 
response variables and anticipated benefit in advance also eliminates the possibility of 
the legitimate criticism that can be made if the investigator looked at the data until she 
found a statistically significant result and then decided that that response variable was 
what she really had in mind all the time. Investigators have changed the primary 
response variable partway through a trial because of concerns about adequate power 
to answer the original question [29, 30]. On occasion, however, the reported primary 
response variable was changed without clear rationale and after the data had been 
examined [31, 32].

Second, the primary response variable must be capable of being assessed in all 
participants. Selecting one response variable to answer the primary question in 
some participants, and another response variable to answer the same primary question 
in other participants is not a legitimate practice. It implies that each response variable 
answers the question of interest with the same precision and accuracy; i.e., that 
each measures exactly the same thing. Such agreement is unlikely. Similarly, 
response variables should be measured in the same way for all participants. 
Measuring a given variable by different instruments or techniques implies that the 
instruments or techniques yield precisely the same information. This rarely, if ever, 
occurs. If response variables can be measured only one way in some participants 
and another way in other participants, two separate studies are actually being per-
formed, each of which is likely to be too small.

Third, unless there is a combination primary response variable in which the par-
ticipant remains at risk of having additional events, participation generally ends 
when the primary response variable occurs. “Generally” is used here because, unless 
death is the primary response variable, the investigator may well be interested in 
certain events, including adverse events, subsequent to the occurrence of the primary 
response variable. These events will not change the analysis of the primary response 
variable but may affect the interpretation of results. For example, deaths taking place 
after a nonfatal primary response variable has already occurred, but before the offi-
cial end of the trial as a whole, may be of interest. On the other hand, if a secondary 
response variable occurs, the participant should remain in the study (unless, of 
course, it is a fatal secondary response variable). He must continue to be followed 
because he is still at risk of developing the primary response variable. A study of 
heart disease may have, as its primary question, death from coronary heart disease 
and, as a secondary question, incidence of nonfatal myocardial infarction. If a participant 
suffers a nonfatal myocardial infarction, this counts toward the secondary response variable. 
However, he ought to remain in the study for analytic purposes and be at risk of 
dying (the primary response variable) and of having other adverse events. This is 
true whether or not he is continued on the intervention regimen. If he does not 
remain in the study for purposes of analysis of the primary response variable, bias 
may result. (See Chap. 17 for further discussion of participant withdrawal.)

Fourth, response variables should be capable of unbiased assessment. Truly 
double-blind studies have a distinct advantage over other studies in this regard. 
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If a trial is not double-blind (Chap. 7), then, whenever possible, response variable 
assessment should be done by people who are not involved in participant follow-up 
and who are blinded to the identity of the study group of each participant. 
Independent reviewers are often helpful. Of course, the use of blinded or indepen-
dent reviewers does not solve the problem of bias. Unblinded investigators some-
times fill out forms and the participants may be influenced by the investigators. This 
may be the case during an exercise performance test, where the impact of the person 
administering the test on the results may be considerable. Some studies arrange to 
have the intervention administered by one investigator and response variables evalu-
ated by another. Unless the participant is blinded to his group assignment (or other-
wise unable to communicate), this procedure is also vulnerable to bias. One solution 
to this dilemma is to use only “hard,” or objective, response variables (which are 
unambiguous and not open to interpretation, such as total mortality or various imag-
ing or laboratory measures). This assumes complete and honest ascertainment of 
outcome. Double-blind studies have the advantage of allowing the use of softer 
response variables, since the risk of assessment bias is minimized.

Fifth, it is important to have response variables that can be ascertained as com-
pletely as possible. A hazard of long-term studies is that participants may fail to 
return for follow-up appointments. If the response variable is one that depends on 
an interview or an examination, and participants fail to return for follow-up 
appointments information will be lost. Not only will it be lost, but it may be dif-
ferentially lost in the intervention and control groups. Death or hospitalizations are 
useful response variables because the investigator can usually ascertain vital status 
or occurrence of a hospital admission, even if the participant is no longer active in 
a study. However, only in a minority of clinical trials are they appropriate.

Sometimes, participants withdraw their consent to be in the trial after the trial 
has begun. In such cases, the investigator should ascertain whether the participant 
is simply refusing to return for follow-up visits but is willing to have his data used, 
including data that might be obtained from public records; is willing to have only 
data collected up to the time of withdrawal used in analyses; or is asking that all of 
his data be deleted from the study records.

All clinical trials are compromises between the ideal and the practical. This is true 
in the selection of primary response variables. The most objective or those most 
easily measured may occur too infrequently, may fail to define adequately the primary 
question, or may be too costly. To select a response variable which can be reason-
ably and reliably assessed and yet which can provide an answer to the primary 
question requires judgment. If such a response variable cannot be found, the wisdom 
of conducting the trial should be re-evaluated.

Biomarkers and Surrogate Response Variables

A common criticism of clinical trials is that they are expensive and of long duration. 
This is particularly true for trials which use the occurrence of clinical events as the 
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primary response variable. It has been suggested that response variables which are 
continuous in nature might substitute for the clinical outcomes. Thus, instead of moni-
toring cardiovascular mortality or myocardial infarction, an investigator could examine 
progress of atherosclerosis by means of angiography or ultrasound imaging, or change 
in cardiac arrhythmia by means of ambulatory electrocardiograms or programmed 
electrical stimulation. In the cancer field, change in tumor size might replace mortality. 
In AIDS trials, change in CD-4 lymphocyte level has been used as a response to treatment 
instead of incidence of AIDS in HIV positive patients or mortality. Improved bone 
mineral density has been used as a surrogate for reduction in fractures.

An argument for use of these “surrogate response variables” is that since the 
variables are continuous, the sample size can be smaller and the study less expensive 
than otherwise. Also, changes in the variables are likely to occur before the clinical 
event, shortening the time required for the trial. Wittes et al. [33] discuss examples 
of savings in sample size by the use of surrogate response variables.

It has been argued that in the case of truly life-threatening diseases (e.g., AIDS 
in its early days, certain cancers), clinical trials should not be necessary to license 
a drug or other intervention. Given the severity of the condition, lesser standards of 
proof should be required. If clinical trials are done, surrogate response variables 
ought to be acceptable, as speed in determining possible benefit is crucial. Potential 
errors in declaring an intervention useful may therefore not be as important as early 
discovery of a truly effective treatment.

Even in such instances, however, one should not uncritically use surrogate end-
points [34, 35]. It was known for years that the presence of ventricular arrhythmias 
correlated with increased likelihood of sudden death and total mortality in people 
with heart disease, [36] as it was presumably one mechanism for the increased 
mortality. Therefore, it was common practice to administer antiarrhythmic drugs 
with the aim of reducing the incidence of sudden cardiac death [37, 38]. The 
Cardiac Arrhythmia Suppression Trial recently demonstrated, however, that drugs 
which effectively treated ventricular arrhythmias were not only ineffective in reduc-
ing sudden cardiac death, but actually caused increased mortality [39, 40].

A second example concerns the use of inotropic agents in people with heart 
failure. These drugs had been shown to improve exercise tolerance and other symp-
tomatic manifestations of heart failure [41]. It was expected that mortality would 
also be reduced. Unfortunately, clinical trials subsequently showed that mortality 
was worsened [42, 43].

Another example from the cardiovascular field is the Investigation of Lipid Level 
Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial. In 
this trial, the combination of torcetrapib and atorvastatin was compared with atorvastatin 
alone in people with cardiovascular disease or diabetes. Despite the expected impressive 
and highly statistically significant increase in HDL-cholesterol and decrease in 
LDL-cholesterol in the combination group, there was an increase in all-cause mortality 
and major cardiovascular events [44]. Thus, even though it is well known that lowering 
LDL-cholesterol (and possibly increasing HDL-cholesterol) can lead to a reduction in 
coronary heart disease events, some interventions might have unforeseen adverse 
consequences.
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It was noted that the level of CD-4 lymphocytes in the blood is associated with 
severity of AIDS. Therefore, despite some concerns [45], a number of clinical trials 
used change in CD-4 lymphocyte concentration as an indicator of disease status. If 
the level rose, the drug was considered to be beneficial. Lin et al., however, argued 
that CD-4 lymphocyte count accounts for only part of the relationship between 
treatment with zidovudine and outcome [46]. Choi et al. came to similar conclu-
sions [47]. In a trial comparing zidovudine with zalcitabine, zalcitabine was found 
to lead to a slower decline in CD-4 lymphocytes but had no effect on the death rate 
[48]. Also troubling were the results of a large trial which, although showing an 
early rise in CD-4 lymphocytes, did not demonstrate any long-term benefit from 
zidovudine [49]. Whether zidovudine or another treatment was, or was not, truly 
beneficial is not the issue here. The main point is that the effect of a drug on a sur-
rogate endpoint (CD-4 lymphocytes) is not always a good indicator of clinical 
outcome. This is summarized by Fleming, who notes that the CD-4 lymphocyte 
count showed positive results in seven out of eight trials where clinical outcomes 
were also positive. However, the CD-4 count was also positive in six out of eight 
trials in which the clinical outcomes were negative [35].

Similar seemingly contradictory results have been seen with cancer clinical trials. 
In trials of 5-fluorouracil plus leucovorin compared with 5-fluorouracil alone, the 
combination led to significantly better tumor response, but no difference in survival 
[50]. Fleming cites other cancer examples as well [35]. Sodium fluoride, because 
of its stimulation of bone formation, was widely used in the treatment of osteoporosis. 
Despite this, it was found in a trial in women with postmenopausal osteoporosis to 
increase skeletal fragility [51].

These examples do not mean that surrogate response variables should never be 
used in clinical trials. Nevertheless, they do point out that they should only be used 
after considering the advantages and disadvantages, recognizing that erroneous 
conclusions about interventions might occasionally be reached.

Prentice has summarized two key criteria that must be met if a surrogate 
response variable is to be useful [52]. First, the surrogate must correlate with the 
true clinical outcome, which most proposed surrogates would likely do. Second, for 
a surrogate to be valid, it must capture the full effect of the intervention. For 
example, a drug might lower blood pressure or serum LDL-cholesterol, but as in 
the ILLUMINATE trial example, have some other deleterious effect that would 
negate any benefit or even prove harmful.

Another factor is whether the surrogate variable can be assessed accurately and 
reliably. Is there so much measurement error that, in fact, the sample size require-
ment increases or the results are questioned? Additionally, will the evaluation be so 
unacceptable to the participant that the study will become infeasible? If it requires 
invasive techniques, participants may refuse to join the trial, or worse, discontinue 
participation before the end. Measurement can require expensive equipment and 
highly trained staff, which may, in the end, make the trial more costly than if clinical 
events are monitored. The small sample size of surrogate response variable trials 
may mean that important data on safety are not obtained [53]. Finally, will the con-
clusions of the trial be accepted by the scientific and medical communities? If there 



50 3 What Is the Question?

is insufficient acceptance that the surrogate variable reflects clinical outcome, in 
spite of the investigator’s conviction, there is little point in using such variables.

Many drugs have been approved by regulatory agencies on the basis of surrogate 
response variables. We think that, except in rare instances, whenever interventions 
are approved by regulatory bodies on the basis of surrogate response variables, 
further clinical studies should be conducted afterward. In all decisions regarding 
approval, the issues of biologic plausibility, risk, benefits, and history of success 
must be considered.

When are surrogate response variables useful? The situation of extremely serious 
conditions has been mentioned. Other than that, surrogate response variables are 
useful in early phase development studies, as an aid in deciding on proper dosage 
and whether the anticipated biologic effects are being achieved. They can help in 
deciding whether, and how best, to conduct the late phase trials which almost 
always should employ clinical response variables.

General Comments

Although this text attempts to provide straightforward concepts concerning the 
selection of study response variables, things are rarely as simple as one would like 
them to be. Investigators often encounter problems related to design, data monitor-
ing and ethical issues, and interpretation of study results.

In long-term studies of participants at high-risk, where total mortality is not the 
primary response variable, many may nevertheless die. They are, therefore, removed 
from the population at risk of developing the response variable of interest. Even in 
relatively short studies, if the participants are seriously ill, death may occur. In design-
ing studies, therefore, if the primary response variable is a continuous measurement, 
a nonfatal event, or cause-specific mortality, the investigator needs to consider the 
impact of total mortality for two reasons. First, it will reduce the effective sample size. 
One would like to allow for this reduction by estimating the overall mortality and 
increasing sample size accordingly. However, a methodology for estimating mortality 
and increasing sample size is not yet well defined. Second, if mortality is related to 
the intervention, either favorably or unfavorably, excluding from study analysis those 
who die may bias results for the primary response variable.

One solution, whenever the risk of mortality is high, is to choose total mortality 
as the primary response variable. Alternatively, the investigator can combine total 
mortality with a pertinent nonfatal event as a combined primary response variable. 
Neither of these solutions may be appropriate and, in that case, the investigator 
should monitor total mortality as well as the primary response variable. Evaluation 
of the primary response variable will then need to consider those who died during 
the study, or else the censoring may bias the comparison.

Investigators need to monitor total mortality-as well as any other adverse occur-
rence-during a study, regardless of whether or not it is the primary response variable 
(see Chap. 16). The ethics of continuing a study which, despite a favorable trend for 
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the primary response variable, shows equivocal or even negative results for secondary 
response variables, or the presence of major adverse effects, are questionable. 
Deciding what to do is difficult if an intervention is giving promising results with 
regard to death from a specific cause (which may be the primary response variable), 
yet total mortality is unchanged or increased. An independent monitoring committee 
has proved extremely valuable in such circumstances (Chap. 16).

Finally, conclusions from data are not always clear-cut. Issues such as alterations in 
quality of life or annoying long-term side effects may cloud results that are clear with 
regard to primary response variables such as increased survival. In such circumstances, 
the investigator must offer her best assessment of the results but should report sufficient 
detail about the study to permit others to reach their own conclusions (Chap. 19).
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Defining the study population is an integral part of posing the primary question. It is 
not enough to claim that an intervention is or is not effective without describing the 
type of participant on which the intervention was tested. The description requires 
specification of criteria for eligibility. This chapter focuses on how to define the 
study population. In addition, it considers two questions. First, to what extent will 
the results of the trial be generalizable to a broader population? Second, what 
impact does selection of eligibility criteria have on participant recruitment, or, more 
generally, study feasibility? This issue is also discussed in Chap. 10.

Fundamental Point

The study population should be defined in advance, stating unambiguous inclusion 
(eligibility) criteria. The impact that these criteria will have on study design, ability 
to generalize, and participant recruitment must be taken into account.

Definition of Study Population

The study population is the subset of the population with the condition or charac-
teristics of interest defined by the eligibility criteria. The group of participants 
actually studied in the trial is selected from the study population. See Fig. 4.1.

Rationale

In reporting the study, the investigator needs to say what people were studied and 
how they were selected. The reasons for this are several. First, if an intervention is 
shown to be successful or unsuccessful, the medical and scientific communities 
must know to what kinds of people the findings apply.

Chapter 4
Study Population
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Second, knowledge of the study population helps other investigators assess the 
study’s merit and appropriateness. For example, an antianginal drug may be found 
to be ineffective. Close examination of the description of the study population, 
however, could reveal that the participants represented a variety of ill-defined 
 conditions characterized by chest pain. Thus, the study may not have been properly 
designed to evaluate the antianginal effects of the agent. Unfortunately, despite 
guidelines for reporting trial results [1], many publications contain inadequate 
characterization of the study participants [2]. Therefore, readers may be unable to 
assess fully the merit or applicability of the studies.

Third, for other investigators to be able to replicate the study, they need data 
descriptive of those enrolled. A similar issue is sometimes found in laboratory 
research. Because of incomplete discussion of details of the methods, procedures 
and preparation of materials, other investigators find it difficult to replicate an 
experiment. Before most research findings are widely accepted, they need to be 

Fig. 4.1 Relationship of study sample to study population and general population (those with and 
those without the condition under study)
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confirmed by independent scientists. Only small trials are likely to be repeated, but 
these are the ones, in general, that most need confirmation.

Considerations in Defining the Study Population

Inclusion criteria and reasons for their selection should be stated in advance. Ideally, 
all eligibility criteria should be precisely specified, but this is often impractical. 
Therefore, those criteria central to the study should be the most carefully defined. 
For example, in a study of survivors of a myocardial infarction, the investigator may 
be interested in excluding people with severe hypertension. He will require an explicit 
definition of myocardial infarction, but with regard to hypertension, it may be suffi-
cient to state that people with a systolic or diastolic blood pressure above a specified 
level will be excluded. Note that even here, the definition of severe hypertension, 
though arbitrary, is fairly specific. In a study of antihypertensive agents, however, the 
above definition of severe hypertension is inadequate. If the investigator wants to 
include only people with diastolic blood pressure over 90 mmHg, he should specify 
how often it is to be determined, over how many  visits, when, with what instrument, 
by whom, and in what circumstances. It may also be important to know which, if any, 
antihypertensive agents participants were on before entering the trial. For any study 
of antihypertensive agents, the criterion of hypertension is central; a detailed defini-
tion of myocardial infarction, on the other hand, may be less important.

If age is a restriction, the investigator should ideally specify not only that a 
 participant must be over age 21, for example, but when he must be over 21. If a 
 subject is 20 at the time of a prebaseline screening examination, but 21 at baseline, 
is he eligible? This should be clearly indicated. If diabetes is an exclusion criterion, 
is this only insulin-dependent diabetes or all diabetes? Does glucose intolerance 
 warrant exclusion? How is diabetes defined? Often there are no “correct” ways of 
defining inclusion and exclusion criteria and arbitrary decisions must be made. 
Regardless, they need to be as clear as possible, and, when appropriate, with 
 complete specifications of the technique and laboratory methods.

As discussed in Chap. 5, many clinical trials are of the “large, simple” model. 
In such trials, not only are the interventions relatively easy to implement, and the 
baseline and outcome variables limited, so too are the eligibility criteria. Definitions 
of eligibility criteria may not require repeated visits or special procedures. They may 
rely on previously measured variables that are part of a diagnostic evaluation, or on 
variables that are measured using any of several techniques, or on investigator 
judgment. For example, a detailed definition of myocardial infarction or hyperten-
sion may be replaced with, “Does the investigator believe a myocardial infarction 
has occurred?” or “Is hypertension present?” The advantage of this kind of criterion 
is its simplicity. The disadvantage is the possible difficulty that a clinician reading 
the results of the trial will have in deciding if the results are applicable to specific 
patients under her care. It should be noted, however, that even with the large simple 
trial model, the criteria are selected and specified in advance.
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In general, eligibility criteria relate to participant safety and anticipated effect of the 
intervention. The following categories outline the framework upon which to 
develop individual criteria:

1. Participants who have the potential to benefit from the intervention are obviously 
candidates for enrollment into the study. The investigator selects participants on 
the basis of his scientific knowledge and the expectation that the intervention will 
work in a specific way on a certain kind of participant. For example, participants 
with a urinary infection are appropriate to enroll in a study of a new antibiotic 
agent known to be effective in vitro against the identified microorganism and 
thought to penetrate to the site of the infection in sufficient concentration. It 
should be evident from this example that selection of the participant depends on 
knowledge of the presumed mechanism of action of the intervention. Knowing at 
least something about the mechanism of action may enable the investigator to 
identify a well-defined group of participants likely to respond to the intervention. 
Thus, people with similar characteristics with respect to the relevant variable, that 
is, a homogeneous population, can be studied. In the above example, participants 
are homogeneous with regard to the type and strain of bacteria, and to site of 
infection. If age or renal or liver function is also critical, these too might be con-
sidered, creating an even more highly selected group.

Even if the mechanism of action of the intervention is known, however, it may 
not be feasible to identify a homogeneous population because the technology to 
do so may not be available. For instance, the causes of headache are numerous 
and, with few exceptions, not easily or objectively determined. If a potential 
therapy were developed for one kind of headache, it would be difficult to identify 
precisely the people who might benefit.

If the mechanism of action of the intervention is unclear, or if there is uncer-
tainty at which stage of a disease a treatment might be most beneficial, a specific 
group of participants likely to respond cannot easily be selected. The Diabetic 
Retinopathy Study [3] evaluated the effects of photocoagulation on progression 
of retinopathy. In this trial, each person had one eye treated while the other eye 
served as the control. Participants were subgrouped on the basis of existence, 
location, and severity of vessel proliferation. Before the trial was scheduled to 
end, it became apparent that treatment was dramatically effective in the four most 
severe of the ten subgroups. To have initially selected for study only those four 
subgroups who  benefited was not possible given existing knowledge.

Some interventions may have more than one potentially beneficial mecha-
nism of action. For example, if exercise reduces mortality or morbidity, is it 
because of its effect on cardiac performance, its weight-reducing effect, its effect 
on the  person’s sense of well-being, some combination of these effects, or some 
as yet unknown effect? The investigator could select study participants who have 
poor cardiac performance, or who are obese or who, in general, do not feel well. 
If he chooses incorrectly, his study would not yield a positive result. If he chose 
participants with all three characteristics and then showed benefit from exercise, 
he would never know which of the three aspects was important.
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 One could, of course, choose a study population, the members of which 
differ in one or more identifiable aspects of the condition being evaluated, i.e., a 
heterogeneous group. These differences could include stage or severity of a dis-
ease, etiology , or demographic factors. In the above exercise example, studying 
a heterogeneous population may be preferable. By comparing outcome with 
presence or absence of initial obesity or sense of well-being, the investigator 
may discover the relevant characteristics and gain insight into the mechanism of 
action. Also, when the study group is too restricted, there is no opportunity to 
discover whether an intervention is effective in a subgroup not initially consid-
ered. The broadness of the Diabetic Retinopathy Study was responsible for 
showing, after longer follow-up, that the remaining six subgroups also benefited 
from therapy [4]. If knowledge had been more advanced, only the four sub-
groups with the most dramatic improvement might have been studied. Obviously, 
after publication of the results of these four subgroups, another trial might have 
been initiated. However, valuable time would have been wasted. Extrapolation 
of conclusions to milder retinopathy might even have made a second study dif-
ficult. Of course, the effect of the intervention on a heterogeneous group may be 
diluted and the ability to detect a benefit may be reduced. That is the price to be 
paid for incomplete knowledge about mechanism of action.

Large, simple trials are, by nature, more heterogeneous in their study popula-
tions, than other sorts of trials. There is a greater chance that the participants will 
more closely resemble the mix of patients in many clinical practices. It is 
assumed, in the design, that the intervention affects a diverse group, and that 
despite such diversity, the effect of the intervention is more similar among the 
various kinds of participants than not.

Homogeneity and heterogeneity are matters of degree and knowledge. As 
scientific knowledge advances, ability to classify is improved. Today’s homoge-
neous group may be considered heterogeneous tomorrow. The discovery of 
Legionnaires’ disease [5], as a separate entity, caused by a specific organism 
improved possibilities for categorizing respiratory disease. Presumably, until 
that discovery, people with Legionnaires’ disease were simply lumped together 
with people having other respiratory ailments.

2. In selecting participants to be studied, not only does the investigator require 
people in whom the intervention might work but he also wants to choose people 
in whom there is a high likelihood that he can detect the hypothesized results of 
the intervention. Careful choice will enable investigators to detect results in a 
reasonable period of time, given a reasonable number of participants and a finite 
amount of money.

For example, in a trial of an antianginal agent, an investigator would not wish 
to enroll a person who, in the past 2 years, has had only one brief angina pectoris 
episode (assuming such a person could be identified). The likelihood of finding 
an effect of the drug on this person is limited, since his likelihood of having 
many angina  episodes during the expected duration of the trial is small. Persons 
with frequent episodes would be more appropriate. Similarly, many people 
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accept the hypothesis that, at least until it reaches a quite low level, LDL-
cholesterol is a  continuous variable in its impact on the risk of developing cardio-
vascular disease. Theoretically, an investigator could take almost any population 
with moderate or even relatively low LDL-cholesterol, attempt to lower it, and see 
if occurrence of cardiovascular disease is reduced. However, this would require 
studying an impossibly large number of people, since the calculation of sample 
size (Chap. 8) takes into account expected frequency of the primary response vari-
ables. When the expected frequency in the control group is low, as it would likely 
be in people who do not have elevated serum cholesterol, the number of people 
studied must be correspondingly high. From a sample size point of view it is, 
therefore, desirable to begin studying people with greater levels of risk factors and 
a consequent high expected event rate. If results from a first trial are positive, the 
investigator can then go to groups with lower levels. The initial Veterans 
Administration study of the treatment of hypertension [6] involved people with 
 diastolic blood pressure from 115 to 129 mmHg. After therapy was shown to be 
 beneficial in that group, a second trial was undertaken using people with diastolic 
blood pressures from 90 to 114 mmHg [7]. The latter study suggested that treat-
ment should be instituted for people with diastolic blood pressure over 104 mmHg. 
Results were less clear for people with lower blood pressure. Subsequently, the 
Hypertension Detection and Follow-up Program [8] demonstrated benefit from 
treatment for people with diastolic blood pressure of 90 mmHg or above.

Sometimes, it may be feasible to enroll people with low levels of a risk factor 
if other characteristics elevate the absolute risk. For example, the Justification for 
the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin 
(JUPITER) [9] used C-reactive protein to select those with LDL-cholesterol levels 
under 130 mg/dl (3.4 mmol/l) but who were likely to be at higher risk of develop-
ing coronary heart disease. The cholesterol-lowering agent rosuvastatin was shown 
to significantly lower the incidence of CHD.

Generally, if the primary response is continuous (e.g., blood pressure, blood 
sugar, body weight), change is easier to detect when the initial level is extreme. In a 
study to see whether a new drug is antihypertensive, there might be a more pro-
nounced drop of blood pressure in a participant with diastolic pressure of 100 mmHg 
or greater than in one with diastolic pressure of 90 mmHg or less. There are excep-
tions to this rule, especially if a condition has multiple causes. The relative fre-
quency of each cause might be different across the spectrum of values. For example, 
genetic disorders might be heavily represented among people with extremely high 
LDL-cholesterol. These lipid disorders may require alternative therapies or may 
even be resistant to usual methods of reducing LDL-cholesterol. In addition, use of 
participants with lower levels of a variable such as cholesterol might be less costly 
[10]. This is because of lower screening costs. Therefore, while in general, use of 
higher risk participants is preferable, other considerations can modify this.

3. Most interventions are likely to have adverse events. The investigator needs to 
weigh these against possible benefit when he evaluates the feasibility of doing 
the study. However, any person for whom the intervention is known to be harmful 
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should not, except in unusual circumstances, be admitted to the trial. Pregnant 
women are often excluded from drug trials (unless, of course, the primary 
 question concerns pregnancy). The amount of additional data obtained may not 
justify the risk of possible teratogenicity. Similarly, investigators would probably  
exclude from a study of almost any of the anti-inflammatory drugs people with 
a recent history of gastric bleeding. Gastric bleeding is a fairly straightforward 
and absolute contraindication for enrollment. Yet, an exclusion criterion such as 
“history of major gastric bleed,” leaves much to the judgment of the investigator. 
The word “major” implies that gastric hemorrhaging is not an absolute contrain-
dication, but a relative one that depends upon clinical judgment. The phrase also 
recognizes the question of anticipated risk vs. benefit, because it does not clearly 
prohibit people with a mild bleeding episode in the distant past from being placed 
on an anti-inflammatory drug. It may very well be that such people take aspirin 
or similar agents – possibly for a good reason – and studying such people may 
prove more beneficial than hazardous.

Note that these exclusions apply only before enrollment into the trial. During 
a trial participants may develop symptoms or conditions which would have 
excluded them had any of these conditions been present earlier. In these circum-
stances, the participant may be removed from the intervention regimen if it is 
contraindicated, but she should be kept in the trial for purposes of analysis. As 
described in Chap. 17, being off the intervention does not mean that a participant is 
out of the trial.

4. The issue of competing risk is generally of greater interest in long-term studies. 
Participants at high risk of developing conditions, which preclude the ascertain-
ment of the event of interest, should be excluded from enrollment. The interven-
tion may or may not be efficacious in such participants, but the necessity for 
excluding them from enrollment relates to design considerations. In many studies  
of people with heart disease, those who have cancer or severe kidney or liver 
disorders are excluded because these diseases might cause the participant to die 
or withdraw from the study before the primary response variable can be observed. 
However, even in short-term studies, the competing risk issue needs to be 
 considered. For example, an investigator may be studying a new intervention for 
a specific congenital heart defect in infants. Such infants are also likely to have 
other life-threatening defects. The investigator would not want to enroll infants 
if one of these other conditions were likely to lead to the death of the infant 
before he had an opportunity to evaluate the effect of the intervention. This  matter 
is similar to the one raised in Chap. 3, which presented the problem of the impact 
of high expected total mortality on a study in which the primary response vari-
able is morbidity or cause-specific mortality. When there is competing risk, the 
ability to assess the true impact of the intervention is, at best, lessened. At worst, if 
the intervention somehow has either a beneficial or harmful effect on the 
coexisting  condition, biased results for the primary question can be obtained.

5. Investigators prefer, ordinarily, to enroll only participants who are likely to 
adhere to the study protocol. Participants are expected to take their assigned 
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intervention (usually a drug) and return for scheduled follow-up appointments 
regardless of the intervention assignment. In unblinded studies, participants 
are asked to accept the random assignment, even after knowing its identity, 
and abide by the protocol. Moreover, participants should not receive the 
study intervention from sources outside the trial during the course of the study. 
Participants should also refrain from using other interventions that may compete 
with the study intervention. Nonadherence by participants reduces the opportu-
nity to observe the true effect of intervention. Unfortunately, there are no failsafe 
ways of selecting perfect participants. Traditional guidelines have led to disap-
pointing results. For a further discussion of adherence, see Chap. 14.

An exception to this effort to exclude those less likely to take their medication or 
otherwise comply with the protocol is what some have termed “pragmatic” clini-
cal trials [11]. These trials are meant to mimic real-world practice, with inclu-
sion of participants who may fail to adhere consistently to the intervention. To 
compensate for the lower expected difference between the intervention and con-
trol groups, these trials need to be quite big, and have other characteristics of 
large, simple trials.

It should be noted that cultural or political issues, in addition to scientific, 
public health, or study design considerations, may affect selection of the study 
populations. Some have argued that too many clinical trials excluded, for example, 
women, the elderly, or minority groups, or that even if not excluded, insufficient 
attention was paid to enrolling them in adequate numbers [12–14]. Policies from 
the U.S. National Institutes of Health now require clinical trials to include 
certain groups in enough numbers to allow for “valid analysis” [15]. The effect 
of these kinds of policies on eligibility criteria, sample size, and analysis must be 
considered when designing a trial.

Generalization

Study samples or participants are usually nonrandomly chosen from the study popu-
lation, which in turn is defined by the eligibility criteria (Fig. 4.1). As long as 
selection  of participants into a trial occurs, and as long as enrollment is voluntary, 
participants must be regarded as special and not truly representative of the study 
population. Therefore, investigators have the problem of generalizing from par-
ticipants actually in the trial to the study population and then to the population 
with the condition. Some have termed using trial results to draw conclusions about 
the broader population as “external validity.” Defined medical conditions and quan-
tifiable or discrete variables, such as age, sex, or elevated blood sugar, can be clearly 
stated and measured. For these characteristics, specifying in what way the study 
participants and study population are different from the population with the condi-
tion is relatively easy. Judgments about the appropriateness of generalizing study 
results can, therefore, be made. Other factors of the study participants are less easily 
characterized. Obviously, an investigator studies only those participants available to him. 
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If he lives in Florida, he will not be studying people living in Maine. Even within a 
geographical area, many investigators are based at hospitals or universities. 
Furthermore, many hospitals are referral centers. Only certain types of participants 
come to the attention of investigators at these institutions. It may be impossible to 
decide whether these factors are relevant when generalizing to other geographical 
areas or patient care settings. Multicenter trials typically enhance the ability to gen-
eralize. The growth of international trials, however, raises the issue of relevance of 
results from geographical areas with very different clinical care systems.

Many trials now involve participants from community or practice-based settings. 
Results from these “practical” or “pragmatic” trials may more readily be translated 
to the broader population. Even here, however, those who choose to become inves-
tigators likely differ from other practitioners in the kinds of patients they see.

It is often forgotten that participants must agree to enroll in a study. What sort 
of person volunteers for a study? Why do some agree to participate while others do 
not? The requirement that study participants sign informed consent or return for 
periodic examinations is sufficient to make certain people unwilling to participate. 
Sometimes the reasons are not obvious. What is known, however, is that volunteers 
can be different from non-volunteers [16–18]. They are usually in better health and 
are more likely to comply with the study protocol. However, the reverse could also 
be true. A person might be more motivated if she has disease symptoms. In the 
absence of knowing what motivates the particular study participants, appropriate 
compensatory adjustments cannot be made in the analysis. Because specifying how 
volunteers differ from others is difficult, an investigator cannot confidently identify 
those segments of the study population or the general population that these study 
participants supposedly represent. (See Chap. 10 for a discussion of factors that 
people cite for enrolling or not enrolling in trials.)

One approach to addressing the question of representativeness is to maintain 
a log or registry, which lists prospective participants identified, but not enrolled, 
and the reasons for excluding them. This log can provide an estimate of the 
 proportion of all potentially eligible people who meet study entrance require-
ments and can also indicate how many otherwise eligible people refused 
 enrollment. In an effort to further assess the issue of representativeness, response 
variables in those excluded have also been monitored. In the Norwegian Multicenter 
Study of timolol [19], people excluded because of contraindication to the study 
drug or competing risks had a mortality rate twice that of those who enrolled. The 
Coronary Artery Surgery Study included a randomized trial that compared coro-
nary artery bypass surgery against medical therapy and a registry of people eli-
gible for the trial but who refused to participate [20]. The enrolled and not enrolled 
groups were alike in most identifiable respects. Survival in the participants ran-
domly assigned to medical  care was the same as those receiving medical care but 
not in the trial. The findings for those undergoing surgery were similar. Therefore, 
in this particular case, the trial participants appeared to be representative of the 
study population.

With more attention being paid to privacy issues, however, it may not be 
possible to assess outcomes in those not agreeing to enter a trial. Some people may 
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consent to allow follow-up, even if they do not enroll, but many will not. 
Thus, comparison of trial results with results in those refusing to enter a trial, in an 
effort to show that the trial can be generalized, may prove difficult.

Since the investigator can describe only to a limited extent the kinds of  participants 
in whom an intervention was evaluated, a leap of faith is always required when 
applying any study findings to the population with the condition. In taking this 
jump, one must always strike a balance between making unjustifiably broad gener-
alizations and being too conservative in one’s claims. Some extrapolations are 
reasonable and justifiable from a clinical point of view, especially in the light of 
subsequent information.

Many trials of aspirin and other anti-platelet agents in those who have had a 
heart attack have shown that these agents reduce recurrent myocardial infarction 
and death in both men and women [21]. The Physicians’ Health Study, conducted 
in the 1980s, concluded that aspirin reduced myocardial infarction in men over age 
50 without previously documented heart disease [22]. Although it was reasonable 
to expect that a similar reduction would occur in women, it was unproven. 
Importantly, aspirin was shown in the Physicians’ Health Study and elsewhere [23] 
to increase hemorrhagic stroke. Given the lower risk of heart disease in premeno-
pausal women, whether the trade-off between adverse effects and benefit was favor-
able was far from certain. The U.S. Food and Drug Administration approved aspirin 
for primary prevention in men, but not women. The Women’s Health Study was 
conducted in the 1990s and early 2000s [24]. Using a lower dose of aspirin than was 
used in the Physicians’ Health Study, it found evidence of benefit on heart disease 
only in women at least 65 years old. Based on that, generalization of the Physicians’ 
Health Study results to primary prevention in all women would not have been 
 prudent. A subsequent meta-analysis, however, suggested that the benefits of 
aspirin  for primary prevention were similar in women and men. We must always be 
open to consider new information in our interpretation of study results [25].

Recruitment

The impact of eligibility criteria on recruitment of participants should be consid-
ered when deciding on these criteria. Using excessive restrictions in an effort to 
obtain a pure (or homogeneous) sample can lead to extreme difficulty in obtaining 
sufficient participants and may raise questions regarding generalization of the trial 
results. Age and sex are two criteria that have obvious bearing on the ease of 
enrolling  subjects. The Coronary Primary Prevention Trial undertaken by the Lipid 
Research Clinics was a collaborative trial evaluating a lipid-lowering drug in men 
between the ages of 35 and 59 with severe hypercholesterolemia. One of the Lipid 
Research Clinics [26] noted that approximately 35,000 people were screened and 
only 257 participants enrolled. Exclusion criteria, all of which were perfectly 
 reasonable and scientifically sound, coupled with the number of people who 
refused to enter the study, brought the overall trial yield down to less than 1%. As 
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discussed in Chap. 10, this example of greater than expected numbers being 
screened, as well as unanticipated problems in reaching potential participants, is 
common to most clinical trials.

If entrance criteria are properly determined in the beginning of a study, there 
should be no need to change them unless interim results suggest harm in a specific 
subgroup (see Chap. 16). As discussed earlier in this chapter, eligibility criteria are 
appropriate if they exclude those who might be harmed by the intervention, those 
who are not likely to be benefited by the intervention, or those who are not likely 
to comply with the study protocol. The reasons for each criterion should be care-
fully examined during the planning phase of the study. If they do not fall into one 
of the above categories, they should be reassessed. Whenever an investigator con-
siders changing criteria, he needs to look at the effect of changes on participant 
safety and study design. It may be that, in opening the gates to accommodate more 
participants, he increases the required sample size, because the participants admit-
ted may have lower probability of developing the primary response variable. He 
can thus lose the benefits of added recruitment. In summary, capacity to recruit 
participants and to carry out the trial effectively could greatly depend on the eligi-
bility criteria that are set. As a consequence, careful thought should go into estab-
lishing them.
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The foundations for the design of controlled experiments were established for 
 agricultural application. They are described in several classical statistics textbooks 
[1–4]. From these sources evolved the basic design of controlled clinical trials.

Although the history of clinical experimentation contains several instances in 
which the need for control groups has been recognized [5, 6], this need was not 
widely accepted until the 1950s [7]. In the past, when a new intervention was first 
investigated, it was likely to be given to only a small number of people, and the 
outcome compared, if at all, to that in people with the same condition previously 
treated in a different manner. The comparison was informal and frequently based 
on memory alone. Sometimes, in one kind of what is sometimes called a “quasi-
experimental” study, people were evaluated initially and then reexamined after an 
intervention had been introduced. In such studies, the changes from the initial state 
were used as the measure of success or failure of the new intervention. What could 
not be known was whether the person would have responded in the same manner if 
there had been no intervention at all. However, then – and sometimes even today 
– this kind of observation has formed the basis for the use of new interventions.

Of course, some results are so highly dramatic that no comparison group is 
needed. Successful results of this magnitude, however, are rare. One example is the 
effectiveness of penicillin in pneumococcal pneumonia. Another example origi-
nated with Pasteur who, in 1884, was able to demonstrate that a series of vaccine 
injections protected dogs from rabies [8]. He suggested that due to the long incubation 
time, prompt vaccination of a human being after infection might prevent the fatal 
disease. The first patient was a 9-year-old boy who had been bitten 3 days earlier 
by a rabid dog. The treatment was completely effective. Confirmation came from 
another boy who was treated within 6 days of having been bitten. During the next 
few years, hundreds of patients were given the anti-rabies vaccine. If given within 
certain time-limits, it was almost always effective.

Gocke reported on a similar, uncontrolled study of patients with acute fulminant 
viral hepatitis [9]. Nine consecutive cases had been observed, all of whom had a 
fatal outcome. The next diagnosed case, a young staff nurse in hepatic coma, was 
given immunotherapy in addition to standard treatment. The patient survived as did 
four others among eight given the antiserum. The author initially thought that this 
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uncontrolled study was conclusive. However, in considering other explanations for 
the encouraging findings, he could not eliminate the possibility that a tendency to 
treat patients earlier in the course and more intensive care might be responsible for 
the observed outcome. Thus, he joined a double-blind, randomized trial comparing 
hyperimmune anti-Australia globulin to normal human serum globulin in patients 
with severe acute hepatitis. Nineteen of 28 patients (67.9%) randomized to control 
treatment died, compared to 16 of 25 patients (64%) randomized to treatment with 
exogenous antibody, a statistically nonsignificant difference [10].

A number of medical conditions are either of short duration or episodic in nature. 
Evaluation of therapy in these cases can be difficult in the absence of controlled 
studies. Snow and Kimmelman reviewed various uncontrolled studies of surgical 
procedures for Meniere’s disease [11]. They found that about 75% of patients 
improved, but noted that this is similar to the 70% remission rate occurring without 
treatment.

Given the wide spectrum of the natural history of almost any disease and the vari-
ability of an individual’s response to an intervention, most investigators recognize 
the need for a defined control or comparison group.

Fundamental Point

Sound scientific clinical investigation almost always demands that a control group 
be used against which the new intervention can be compared. Randomization is the 
preferred way of assigning participants to control and intervention groups.

Statistics and epidemiology textbooks and papers [12–31] cover various study 
designs in some detail. Green and Byar also present a “hierarchy of strength of 
evidence concerning efficacy of treatment” [32]. In their scheme, anecdotal case 
reports are weakest and confirmed randomized clinical trials are strongest, with 
various observational and retrospective designs in between. This chapter discusses 
several major clinical trial designs.

Most trials use the so-called parallel design. That is, the intervention and con-
trol groups are followed simultaneously from the time of allocation to one or the 
other. Exceptions to the simultaneous follow-up are historical control studies. 
These compare a group of participants on a new intervention with a previous group 
of participants on standard or control therapy. A modification of the parallel 
design is the cross-over trial, which uses each participant at least twice, at least 
once as a member of the control group and at least once as a member of one or 
more intervention groups. Another modification is a withdrawal study, which 
starts with all participants on the active intervention and then, usually randomly, 
assigns a portion to be followed on the active intervention and the remainder to be 
followed off the intervention. Factorial design trials, as described later in this 
chapter, employ two or more independent assignments to intervention or control.

Regardless of whether the trial is a typical parallel design or some variant, one 
must select the kind of control group and the way participants are allocated to 
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 intervention or control. Controls may be on placebo, no treatment, usual or standard 
care, or a specified treatment. Randomized control and nonrandomized concurrent 
control studies both assign participants to either the intervention or the control 
group, but only the former makes the assignment by using a random procedure. 
Hybrid designs may use a combination of randomized and nonrandomized controls. 
Large, simple trials or pragmatic trials generally have broader and simpler eligibility 
criteria than other kinds of trials, but as with other studies, can use any of the indi-
cated controls. Allocation to intervention or control may also be done differently, 
even if randomized. Randomization may be by individual participant or by groups 
of participants (group or cluster assignment). Adaptive designs may adjust inter-
vention or control assignment or sample size on the basis of participant characteristics 
or outcomes.

Finally, there are superiority trials and equivalence or noninferiority trials. A supe-
riority trial, which for many years was the typical kind of trial, assesses whether the 
new intervention is better or worse than the control. An equivalence trial would 
assess if the new intervention is more or less equal to the control. A noninferiority 
trial evaluates whether the new intervention is no worse than the control by some 
margin, delta (d). In both of these latter cases, the control group would be on a treat-
ment that had previously been shown to be effective, i.e., have an active control.

Questions have been raised concerning the method of selection of the control 
group, but the major controversy in the past revolved around the use of historical 
vs. randomized control [33–35]. With regard to drug evaluation, this controversy is 
less intense than in the past. It is still being hotly contested, however, in the evaluation 
of new devices or procedures [36, 37]. No study design is perfect or can answer all 
questions. Each of the designs has advantages and disadvantages, but a randomized 
control design is the standard by which other studies should be judged. A discussion 
of sequential designs is postponed until Chap. 16 because the basic feature involves 
interim analyses.

For each of the designs, it is assumed, for simplicity of discussion, that a single 
control group and a single intervention group are being considered. These designs can 
be extended to more than one intervention group and more than one control group.

Randomized Control Trials

Randomized control trials are comparative studies with an intervention group and 
a control group; the assignment of the subject to a group is determined by the formal 
procedure of randomization. Randomization, in the simplest case, is a process by 
which all participants are equally likely to be assigned to either the intervention 
group or the control group. The features of this technique are discussed in Chap. 6. 
There are three advantages of the randomized design over other methods for selecting 
controls [35].

First, randomization removes the potential of bias in the allocation of participants 
to the intervention group or to the control group. Such allocation bias could easily 
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occur, and cannot be necessarily prevented, in the nonrandomized concurrent or 
historical control study because the investigator or the participant may influence the 
choice of intervention. This influence can be conscious or subconscious and can be 
due to numerous factors, including the prognosis of the participant. The direction of 
the allocation bias may go either way and can easily invalidate the comparison.

The second advantage, somewhat related to the first, is that randomization tends 
to produce comparable groups; that is, measured as well as unknown or unmeasured 
prognostic factors and other characteristics of the participants at the time of random-
ization will be, on the average, evenly balanced between the intervention and control 
groups. This does not mean that in any single experiment all such characteristics, 
sometimes called baseline variables or covariates, will be perfectly balanced between 
the two groups. However, it does mean that for independent covariates, whatever the 
detected or undetected differences that exist between the groups, the overall magni-
tude and direction of the differences will tend to be equally divided between the two 
groups. Of course, many covariates are strongly associated; thus, any imbalance in 
one would tend to produce imbalances in the others. As discussed in Chaps. 6 and 17, 
stratified randomization and stratified analysis are methods commonly used to guard 
against and adjust for imbalanced randomizations.

The third advantage of randomization is that the validity of statistical tests of 
significance is guaranteed. As has been stated [35], “although groups compared 
are never perfectly balanced for important covariates in any single experiment, the 
process of randomization makes it possible to ascribe a probability distribution to 
the difference in outcome between treatment groups receiving equally effective 
treatments and thus to assign significance levels to observed differences.” The 
validity of the statistical tests of significance is not dependent on the balance of 
the prognostic factors between the two groups. The chi-square test for two-by-two 
tables and Student’s t-test for comparing two means can be justified on the basis 
of randomization alone without making further assumptions concerning the distri-
bution of baseline variables. If randomization is not used, further assumptions 
concerning the comparability of the groups and the appropriateness of the statistical 
models must be made before the comparisons will be valid. Establishing the validity 
of these assumptions may be difficult.

Randomized and nonrandomized trials of the use of anticoagulant therapy in 
patients with acute myocardial infarctions were reviewed by Chalmers et al. and the 
conclusions compared [38]. Of 32 studies, 18 used historical controls and involved a 
total of 900 patients, eight used nonrandomized concurrent controls and involved over 
3,000 patients, and six were randomized trials with a total of over 3,800 patients. The 
authors reported that 15 of the 18 historical control trials and five of the eight nonran-
domized concurrent control trials showed statistically significant results favoring the 
anticoagulation therapy. Only one of the six randomized control trials showed significant 
results in support of this therapy. Pooling the results of these six randomized trials 
yielded a statistically significant 20% reduction in total mortality, confirming the 
findings of the nonrandomized studies. Pooling the results of the nonrandomized 
control studies showed a reduction of about 50% in total mortality in the intervention 
groups, more than twice the decrease seen in the randomized trials. Peto [39] has 
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assumed that this difference in reduction is due to bias. He suggests that since the 
presumed bias in the nonrandomized trials was of the same order of magnitude as 
the presumed true effect, the nonrandomized trials could have yielded positive 
answers even if the therapy had been of no benefit. Of course, pooling results of 
several studies can be hazardous. As pointed out by Goldman and Feinstein [40], not 
all randomized trials of anticoagulants study the same kind of participants, use 
precisely the same intervention or measure the same response variables. And, of 
course, not all randomized trials are done equally well. The principles of pooled 
analysis, or meta-analysis, are covered in Chap. 17.

In the 1960s, Grace, Muench and Chalmers [41] reviewed studies involving 
portacaval shunt operations for patients with portal hypertension from cirrhosis. In 
their review, 34 of 47 nonrandomized studies strongly supported the shunt proce-
dure, while only one of the four randomized control trials indicated support for the 
operation. The authors concluded that the operation should not be endorsed.

Sacks and coworkers expanded the work by Chalmers et al. referenced above, 
to five other interventions [42]. They concluded that selection biases led historical 
control studies to favor inappropriately the new interventions. It was also noted 
that many randomized control trials were of inadequate size, and therefore may 
have failed to find benefits that truly existed [43]. Chalmers and his colleagues 
also examined 145 reports of studies of treatment after myocardial infarction [44]. 
Of the 57 studies that used a randomization process with concealment of the inter-
vention allocation, 14% had at least one significant (p < 0.05) maldistribution of 
baseline variables with 3.4% of all of the variables significantly different between 
treatment groups. Of these 57 studies, 9% found significant outcome differences 
between groups. This contrasted with 58% having baseline variable differences among 
the 43 reports where the control groups were selected by means of a nonrandom 
process, with 34% of all of the variables being significantly different between 
groups. The outcomes between groups were significantly different 58% of the 
time. For the 45 studies that used a randomized, but unblinded process to select 
the control groups, the results were in between; 28% had baseline imbalances, 7% 
of the baseline variables were significantly different, and 24% showed significant 
outcome differences. See Chap. 9 regarding testing for baseline differences.

The most frequent objections to the use of the randomized control clinical trial 
were stated by Ingelfinger [45], to be “emotional and ethical.” Many clinicians feel 
that they must not deprive a participant from receiving a new therapy or intervention 
which they, or someone else, believe to be beneficial, regardless of the validity of 
the evidence for that claim. The argument aimed at randomization is that in the 
typical trial it deprives about one-half the participants from receiving the new and 
presumed better intervention. There is a large literature on the ethical aspects of 
randomization. See Chap. 2 for a discussion of this issue.

Not all clinical studies can use randomized controls. Occasionally, the prevalence 
of the disease is so rare that a large enough population cannot be readily obtained. 
In such an instance, only case–control studies might be possible. Such studies, which 
are not clinical trials according to the definition in this book, are discussed in standard 
epidemiology textbooks [15, 16, 22, 28].
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Zelen proposed a modification of the standard randomized control study [46]. 
He argued that investigators are often reluctant to recruit prospective trial participants 
not knowing to which group the participant will be assigned. Expressing ignorance 
of optimal therapy compromises the traditional doctor–patient relationship. Zelen, 
therefore, suggested randomizing eligible participants before informing them about 
the trial. Only those assigned to active intervention would be asked if they wish to 
participate. The control participants would simply be followed and their outcome 
monitored. Obviously, such a design could not be blinded. Another major criticism 
of this controversial design centers around the ethical concern of not informing 
participants that they are enrolled in a trial. The efficiency of the design has also 
been evaluated [47]. It depends on the proportion of participants consenting to 
comply with the assigned intervention. To compensate for this possible inefficiency, 
one needs to increase the sample size (Chap. 8). The Zelen approach has been tried 
with varying degrees of success [48, 49]. Despite having been proposed in 1979, it 
does not appear to have been widely used.

Nonrandomized Concurrent Control Studies

Controls in this type of study are participants treated without the new intervention 
at approximately the same time as the intervention group is treated. Participants are 
allocated to one of the two groups, but by definition this is not a random process. 
An example of a nonrandomized concurrent control study would be a comparison 
of survival results of patients treated at two institutions, one institution using a new 
surgical procedure and the other using more traditional medical care.

To some investigators, the nonrandomized concurrent control design has advantages 
over the randomized control design. Those who object to the idea of ceding to chance 
the responsibility for selecting a person’s treatment may favor this design. It is also dif-
ficult for some investigators to convince potential participants of the need for random-
ization. They find it easier to select a group of people to receive the intervention and 
would prefer to select the control group by means of matching key characteristics.

The major weakness of the nonrandomized concurrent control study is the potential 
that the intervention group and control group are not strictly comparable. It is difficult 
to prove comparability because the investigator must assume that she has information 
on all the important prognostic factors. Selecting a control group by matching on 
more than a few factors is impractical, and the comparability of a variety of other 
characteristics would still need to be evaluated. In small studies, an investigator is 
unlikely to find real differences, which may exist between groups before the initiation 
of intervention since there is poor sensitivity to detect such differences. Even for large 
studies that could detect most differences of real clinical importance, the uncertainty 
about the unknown or unmeasured factors is still of concern.

Is there, for example, some unknown and unmeasurable process that results in 
one type of participant’s being recruited more often into one group and not into the 
other? If all participants come from one institution, physicians may select 
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 participants into one group based on subtle and intangible factors. In addition, there 
exists the possibility for subconscious bias in the allocation of participants to either 
the intervention or control group. One group might come from a different socioeco-
nomic class than the other group. All of these uncertainties will decrease the cred-
ibility of the concurrent but nonrandomized control study. For any particular 
question, the advantages of reduced cost, relative simplicity, and investigator and 
participant acceptance must be carefully weighed against the potential biases 
before a decision is made to use a nonrandomized concurrent control study. We 
believe this will occur very rarely.

Historical Controls and Databases

In historical control studies, a new intervention is used in a series of participants, 
and the results are compared to the outcome in a previous series of comparable 
participants. Historical controls are thus, by this definition, nonrandomized and 
nonconcurrent.

Strengths of Historical Control Studies

The argument for using a historical control design is that all new participants can 
receive the new intervention. As argued by Gehan and Freireich [33] many clinicians 
believe that no participant should be deprived of the possibility of receiving a new 
therapy or intervention. Some require less supportive evidence than others to accept 
a new intervention as being beneficial. If an investigator is already of the opinion that 
the new intervention is beneficial, then she would most likely consider any restriction 
on its use unethical. Therefore, she would favor a historical control study. In addi-
tion, participants may be more willing to enroll in a study if they can be assured of 
receiving a particular therapy or intervention. Finally, since all new participants will 
be on the new intervention, the time required to complete recruitment of participants 
for the trial will be cut approximately in half. This allows investigators to obtain 
results faster or do more studies with given resources. Alternatively, the sample size 
for the intervention group can be larger, with increased power.

Gehan emphasized the ethical advantages of historical control studies and 
pointed out that they have contributed to medical knowledge [50]. Lasagna argued 
that medical practitioners traditionally relied on historical controls when making 
therapeutic judgments. He maintained that, while sometimes faulty, these  judgments 
are often correct and useful [51].

Typically, historical control data can be obtained from two sources. First, control 
group data may be available in the literature. These data are often undesirable 
because it is difficult, and perhaps impossible, to establish whether the control and 
intervention groups are comparable in key characteristics at the onset. Even if such 
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characteristics were measured in the same way, the information may not be pub-
lished and for all practical purposes it will be lost. Second, data may not have been 
published but may be available on computer files or in medical charts. Such data 
on control participants, for example, might be found in a large center, which has 
several ongoing clinical investigations. When one study is finished, the participants 
in that study may be used as a control group for some future study. Centers that do 
successive studies, as in cancer research, will usually have a system for storing and 
retrieving the data from past studies for use at some future time. The advent of 
electronic medical records may also facilitate access to data from multiple sources 
although it does not solve the problem of nonstandard and variable assessment or 
missing information.

Limitations of Historical Control Studies

Despite the time and cost benefits, as well as the ethical considerations, historical 
control studies have potential limitations, which should be kept in mind. They are 
particularly vulnerable to bias. Moertel [52] cited a number of examples of treat-
ments for cancer, which have been claimed, on the basis of historical control studies, 
to be beneficial. Many treatments in the past were declared breakthroughs on the 
basis of control data as old as 30 years. Pocock [53] identified 19 instances of the 
same intervention having been used in two consecutive trials employing similar 
participants at the same institution. Theoretically, the mortality in the two groups 
using the same treatment should be similar. Pocock noted that the difference in mortal-
ity rates between such groups ranged from −46% to +24%. Four of the 19 compari-
sons of the same intervention showed differences significant at the 5% level.

An improvement in outcome for a given disease may be attributed to a new 
intervention when, in fact, the improvement may stem from a change in the patient 
population or patient management. Shifts in patient population can be subtle and 
perhaps undetectable. In a Veterans Administration Urological Research Group 
study of prostate cancer [54], 2,313 people were randomized to placebo or estrogen 
treatment groups over a 7-year period. For those enrolled during the last 2–3 years, 
no differences were found between the placebo and estrogen groups. However, 
those assigned to placebo entering in the first 2–3 years had a shorter survival time 
than those assigned to estrogen entering in the last 2–3 years of the study. The 
reason for the early apparent difference is probably that the people randomized 
earlier were older than the later group and thus were at higher risk of death during 
the period of observation [35]. The results would have been misleading had this 
been a historical control study and had a concurrent randomized comparison group 
not been available.

A more recent example involves two trials evaluating the potential benefit of 
amlodipine, a calcium channel blocker, in patients with heart failure. The first trial, 
the Prospective Randomized Amlodipine Survival Evaluation, referred to as 
PRAISE-I [55], randomized participants to amlodipine or placebo, stratifying by 
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ischemic or nonischemic etiology of the heart failure. The primary outcome, death 
plus hospitalization for cardiovascular reasons, was not significantly different 
between groups (p = 0.31), but the reduction in mortality almost reached significance 
(p = 0.07). An interaction with etiology was noted, with all of the benefit from amlo-
dipine in both the primary outcome and mortality seen in those with nonischemic 
etiology. A second trial, PRAISE-2 [56], was conducted in only those with nonisch-
emic causes of heart failure. The impressive subgroup finding noted in PRAISE-1 
were not replicated. Of relevance here is that the event rates in the placebo group 
in PRAISE-2 were significantly lower than in the nonischemic placebo participants 
from the first trial (see Fig. 5.1).

Even though the same investigators conducted both trials using the same protocol, the 
kinds of people who were enrolled into the second trial were markedly different from 
the first trial. Covariate analyses were unable to account for the difference in outcome.

Fig. 5.1 PRAISE 1 and 2 placebo arms
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On a broader scale, for both known and unknown reasons, in many countries 
trends in prevalence of various diseases occur [57]. Therefore, any clinical trial in 
those conditions, involving long-term therapy using historical controls, would need 
to separate the treatment effect from the time trends, an almost impossible task. 
Examples are seen in Figs. 5.2 and 5.3.

Figure 5.2 illustrates the changes over time, in rates of the leading causes of 
death in the U.S. [58]. A few of the causes exhibit quite large changes. Figure 5.3 

Fig. 5.2 Trends in causes of death in the U.S.

Fig. 5.3 Changes in incidence of hepatitis, by type, in the U.S.
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shows incidence of hepatitis in the U.S. [58]. The big changes make interpretation 
of historical control trials difficult.

The method by which participants are selected for a particular study can have 
a large impact on their comparability with earlier participant groups or general 
population statistics. In the Coronary Drug Project [59], a trial of survivors of 
myocardial infarction initiated in the 1960s, an annual total mortality rate of 6% 
was anticipated in the control group based on rates from a fairly unselected group 
of myocardial infarction patients. In fact, a control group mortality rate of about 
4% was observed, and no significant differences were seen between the intervention 
groups and the control group. Using the historical control approach, a 33% reduc-
tion in mortality might have been claimed for the treatments. One explanation for 
the discrepancy between anticipated and observed mortality is that entry criteria 
excluded those most seriously ill.

Shifts in diagnostic criteria for a given disease due to improved technology can 
cause major changes in the recorded frequency of the disease and in the perceived 
prognosis of the subjects with the disease. The use of elevated serum troponin, 
sometimes to the exclusion of the need for other features of a myocardial infarction 
such as symptoms or electrocardiographic changes, has clearly led to the ability to 
diagnose more infarctions. Conversely, the ability to abort an evolving infarction by 
means of percutaneous coronary intervention or thrombolytic therapy can reduce 
the number of clearly diagnosed infarctions.

In 1993, the Centers for Disease Control and Prevention (CDC) in the USA 
implemented a revised classification system for HIV infection and an expanded 
surveillance case definition of AIDS. This affected the number of cases reported 
[60, 61]. See Fig. 5.4.

Fig. 5.4 AIDS cases, by quarter year of report – United States, 1984–1993 [61]
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International coding systems and names of diseases change periodically and, 
unless one is aware of the modifications, prevalence of certain conditions can 
appear to change abruptly. For example, when the Eighth Revision of the 
International Classification of Diseases came out in 1968, almost 15% more deaths 
were assigned to ischemic heart disease than had been assigned in the Seventh 
Revision [62]. When the Ninth Revision appeared in 1979, there was a correction 
downward of a similar magnitude [63].

A common concern about historical control designs is the accuracy and 
 completeness with which control group data are collected. With the possible excep-
tion of special centers, which have many ongoing studies, data are generally 
 collected in a nonuniform manner by numerous people with diverse interests in the 
information. Lack of uniform collection methods can easily lead to incomplete and 
erroneous records. Data on some important prognostic factors may not have been 
collected at all. Because of the limitations of data collected historically from 
 medical charts, records from a center that conducts several studies and has a 
computerized data management system, may provide the most reliable historical 
control data.

Role of Historical Controls

Despite the limitations of the historical control study, it does have a place in 
 scientific investigation. As a rapid, relatively inexpensive method of obtaining ini-
tial impressions regarding a new therapy, such studies can be important. This is 
particularly so if investigators understand the potential biases and are willing to 
miss effective new therapies if bias works in the wrong direction. Bailar et al. [64] 
identified several features, which can strengthen the conclusions to be drawn from 
historical control studies. These include an a priori identification of a reasonable 
hypothesis and advance planning for analysis.

In some special cases where the diagnosis of a disease is clearly established 
and the prognosis is well known or the disease highly fatal, a historical control 
study may be the only reasonable design. The results of penicillin in treatment of 
pneumococcal pneumonia were so dramatic in contrast to previous experience 
that no further evidence was really required. Similarly, the benefits of treatment 
of malignant hypertension became readily apparent from comparisons with previ-
ous, untreated populations [65–67].

The use of prospective registries to characterize patients and evaluate effects of 
therapy has been advocated [68–70]. Supporters say that a systematic approach to 
data collection and follow-up can provide information about the local patient popu-
lation, and can aid in clinical decision making. They argue that clinical trial populations 
may not be representative of the patients actually seen by a physician. Moon et al. 
described the use of databases derived from clinical trials to evaluate therapy [71]. 
They stress that the high quality data obtained through these sources can reduce the 
problems of the typical historical control study. The use of databases has expanded 
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in recent years. Outcomes research has burgeoned because of the relative ease of 
accessing huge computerized medical databases [72]. The primary reasons have 
been the speed and lesser cost of such analyses, compared with clinical trials. 
Databases can also be used to identify adverse events. Examples are comparisons 
of different antihypertensive agents and risk of stroke [73] and cyclooxygenase 2 
(COX 2) inhibitors and risk of coronary heart disease [74]. In addition, databases 
likely represent a much broader population than the typical clinical trial and can 
therefore complement clinical trial findings. This information can be useful as long 
as it is kept in mind that users and nonusers of a medication likely have different 
characteristics.

Others [32, 75–77] have emphasized limitations of registry studies such as 
potential bias in treatment assignment, multiple comparisons, lack of  standardization 
in collecting and reporting data, and missing data. Another weakness of prospective 
database registries is that they rely heavily on the validity of the model employed 
to analyze the data [78].

There is no doubt that analyses of large databases can provide important infor-
mation about disease occurrence and outcome, as well as suggestions that certain 
therapies are preferable. As noted above, they can help to show that the results of 
clinical trials conducted in selected populations appear to apply in broader groups. 
At the present time, however, it is no substitute for a randomized clinical trial in 
evaluating whether one intervention is truly better than another.

Cross-Over Designs

The cross-over design is a special case of a randomized control trial and has some 
appeal to medical researchers. The cross-over design allows each participant to 
serve as his own control. In the simplest case, namely the two period cross-over 
design, each participant will receive either intervention or control (A or B) in the 
first period and the alternative in the succeeding period. The order in which A and 
B are given to each participant is randomized. Thus, approximately half of the 
participants receive the intervention in the sequence AB and the other half in the 
sequence BA. This is so that any trend from first period to second period can be 
eliminated in the estimate of group differences in response. Depending on the dura-
tion of expected action of the intervention (for example, drug half-life), a wash-out 
period may be used between the periods.

James et al. described 59 cross-over studies of analgesic agents. They concluded 
that if the studies had been designed using parallel or noncross-over designs, 2.4 
times as many participants would have been needed [79]. Carriere showed that a 
three-period cross-over design is even more efficient than a two-period cross-over 
design [80]. A cross-over study need not have only two groups. A cross-over design 
for two active interventions and one control has been described [81].

The advantages and disadvantages of the two-period cross-over design have 
been described [19, 21, 81–84]. The appeal of the cross-over design to investigators 
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is that it allows assessment of how each participant does on both A and B. Since 
each participant is used twice, variability is reduced because the measured effect of 
the intervention is the difference in an individual participant’s response to intervention 
and control. This reduction in variability enables investigators to use smaller sample 
sizes to detect a specific difference in response.

To use the cross-over design, however, a fairly strict assumption must be made; 
the effects of the intervention during the first period must not carry over into the 
second period. This assumption should be independent of which intervention was 
assigned during the first period and of the participant response. In many clinical 
trials, such an assumption is clearly inappropriate, even if a wash-out is  incorporated. 
If, for example, the intervention during the first period cures the disease, then the 
participant obviously cannot return to the initial state. In other clinical trials, the 
cross-over design appears more reasonable. If a drug’s effect is to lower blood pres-
sure or heart rate, then a drug-versus-placebo cross-over design might be consid-
ered if the drug has no carryover effect once the participant is taken off medication. 
Obviously, a fatal event cannot serve as the primary response variable in a cross-
over trial.

As indicated in the International Conference on Harmonisation document E9, 
Statistical Principles for Clinical Trials [85], cross-over trials should be limited 
to those situations with few losses of study participants. A typical and acceptable 
cross-over trial, for example, might compare two formulations of the same drug 
to assess bioequivalence in healthy participants. Similarly, different doses may be 
used to assess pharmacologic properties. In studies involving participants who 
are ill or otherwise have conditions likely to change, however, cross-over trials 
have the limitations noted above.

Although the statistical method for checking the assumption of no period–
treatment interaction was described by Grizzle [86], the test is not as powerful as 
one would like. What decreases the power of the test is that the mean response of 
the AB group is compared to the mean response of the BA group. However, partici-
pant variability is introduced in this comparison, which inflates the error term in the 
statistical test. Thus, the ability to test the assumption of no period–intervention 
interaction is not sensitive enough to detect important violations of the assumption 
unless many participants are used. The basic appeal of the cross-over design is to 
avoid between-participant variation in estimating the intervention effect, thereby 
requiring a smaller sample size. Yet, the ability to justify the use of the design still 
depends on a test for carryover that includes between-participant variability. This 
weakens the main rationale for the cross-over design. Because of this insensitivity, 
the cross-over design is not as attractive as it at first appears. Fleiss et al. noted that 
even adjusting for baseline variables may not be adequate if inadequate time has 
been allowed to return to baseline at the start of the second period [87]. Brown [19, 
21] and Hills and Armitage [88] discourage the use of the cross-over design in 
general. Only if there is substantial evidence that the therapy has no carryover 
effects, and the scientific community is convinced by that evidence, should a cross-
over design be considered.
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Withdrawal Studies

A number of studies have been conducted in which the participants on a particular 
treatment for a chronic disease are taken off therapy or have the dosage reduced. 
The objective is to assess response to discontinuation or reduction. This design 
may be validly used to evaluate the duration of benefit of an intervention already 
known to be useful. For example, subsequent to the Hypertension Detection and 
Follow-up Program [89], which demonstrated the benefits of treating mild and 
moderate hypertension, several investigators withdrew a sample of participants 
with  controlled blood pressure from antihypertensive therapy [90]. Participants 
were randomly assigned to continue medication, stop medication yet initiate 
nutritional changes, or stop medication without nutritional changes. After 4 
years, only 5% of those taken off medication without nutritional changes 
remained normotensive and did not need the re-instatement of medication. This 
compared with 39% who were taken off medication yet instituted weight loss and 
salt intake reductions.

Withdrawal studies have also been used to assess the efficacy of an interven-
tion that had not conclusively been shown to be beneficial in the long term. An 
example is the Sixty Plus Reinfarction Study [91]. Participants doing well on oral 
anticoagulant therapy since their myocardial infarction, an average of 6 years 
earlier, were randomly assigned to continue on anticoagulants or assigned to 
placebo. Those who stayed on the intervention had lower mortality (not statisti-
cally significant) and a clear reduction in nonfatal reinfarction. A meta-analysis 
of prednisone and cyclosporine withdrawal trials (including some trials compar-
ing withdrawal of the two drugs) in renal transplant patients has been conducted 
with graft failure or rejection as the response variables [92]. This meta-analysis 
found that withdrawal of prednisone was associated with increased risks of acute 
rejection and graft failure. Cyclosporine withdrawal led to an increase in acute 
rejection but not graft failure. The Fracture Intervention Trial Long-term 
Extension (FLEX) assessed the benefits of continuing treatment with alendronate 
after 5 years of therapy [93]. The group that was randomized to discontinue alen-
dronate had a modest increase in vertebral fractures but no increase in nonverte-
bral fractures.

One serious limitation of this type of study is that a highly selected sample is 
evaluated. Only those participants who physicians thought were benefiting from the 
intervention were likely to have been on it for several months or years. Anyone who 
had major adverse effects from the drug would have been taken off and, therefore, 
not been eligible for the withdrawal study. Thus, this design can overestimate 
 benefit and underestimate toxicity. Another drawback is that both participants and 
disease states change over time.

If withdrawal studies are conducted, the same standards should be adhered to 
that are used with other designs. Randomization, blinding where feasible, unbi-
ased assessment, and proper data analysis are as important here as in other 
settings.
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Factorial Design

In the simple case, the factorial design attempts to evaluate two interventions compared 
to control in a single experiment [2–4, 94]. See Table 5.1.

Given the cost and effort in recruiting participants and conducting clinical trials, 
getting two experiments done at once is appealing. Examples of factorial designs are 
the Canadian transient ischemic attack study where aspirin and sulfinpyrazone were 
compared with placebo [95], the Third International Study of Infarct Survival (ISIS-3) 
[96], the Physicians’ Health Study [97], and the Women’s Health Initiative (WHI) trial 
of hormone replacement, diet, and vitamin D plus calcium [98]. A review of analysis 
and reporting of factorial design trials [99] contains a list of 29 trials involving myo-
cardial infarction and 15 other trials. Some factorial design studies are more complex 
than the 2 by 2 design, employing a third, or even a fourth level. It is also possible to 
leave some of the cells empty, that is, use an incomplete factorial design [100]. This 
was done in the Action to Control Cardiovascular Risk in Diabetes (ACCORD), which 
looked at intensive vs. less intensive glucose control plus either intensive blood pres-
sure or lipid control [101]. This kind of design would be implemented if it is inappro-
priate, infeasible, or unethical to address every possible treatment combination. It is 
also possible to use a factorial design in a cross-over study [102].

The appeal of the factorial design might suggest that there really is a “free 
lunch.” However, every design has strengths and weaknesses. A concern with the 
factorial design is the possibility of the existence of interaction and its impact on 
the sample size. Interaction means that the effect of intervention X differs depending 
upon the presence or absence of intervention Y, or vice versa. It is more likely to 
occur when the two drugs are expected to have related mechanisms of action.

If one could safely assume there were no interactions, one can show that with 
a modest increase in sample size, two experiments can be conducted in one; one 
which is considerably smaller than the sum of two independent trials under the 
same design specifications. However, if one cannot reasonably rule out interac-
tion, one should statistically test for its presence. As is true for the cross-over 
design, the power for testing for interaction is less than the power for testing for 

Table 5.1 Two-by-two factorial design

Intervention X Control Marginals

Intervention Y a b a + b
Control c d c + d
Marginals a + c b + d

a     X Y              

b     Y control    

c    X control   

d    control control

Cell Intervention

+
+
+

+

Effect of intervention X: a + c vs. b + d
Effect of intervention Y: a + b vs. c + d
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the main effects of interventions (cells a + c vs. b + d or cells a + b vs. c + d). Thus, 
to obtain satisfactory power to detect interaction, the total sample size must be 
increased. The extent of the increase depends on the degree of interaction, which 
may not be known until the end of the trial. The larger the interaction, the smaller 
the increase in sample size needed to detect it. If an interaction is detected, or 
perhaps only suggested, the comparison of intervention X would have to be done 
individually for intervention Y and its control (cell a vs. b and cell c vs. d). The 
power for these comparisons is obviously less than for the a + c vs. b + d comparison.

As noted, in studies where the various interventions either act on the same 
response variable or possibly through the same mechanism of action, as with the 
presumed effect on platelets of both drugs in the Canadian transient ischemic attack 
study [95], interaction can be more of a concern. Furthermore, there may be a lim-
ited amount of reduction in the response variable that can be reasonably expected, 
restricting the joint effect of the interventions.

In trials such as the Physicians’ Health Study [97], the two interventions, aspirin 
and beta carotene, were expected to act on two separate outcomes, cardiovascular 
disease and cancer. Thus, interaction was much less likely. But beta carotene is an 
antioxidant, and therefore might have affected both cancer and heart disease. It 
turned out to have no effect on either. Similarly, in the WHI [98], dietary and hor-
monal interventions may affect more than one disease process. There, diet had little 
effect on cancer and heart disease, but hormonal therapy had effects on heart disease, 
stroke, and cancer, among other conditions [103, 104].

In circumstances where there are two separate outcomes, e.g., heart disease and 
cancer, but one of the interventions may have an effect on both, data monitoring 
may become complicated. If, during the course of monitoring response variables it 
is determined that an intervention has a significant or important effect on one of the 
outcomes in a factorial design study, it may be difficult, or even impossible, to 
continue the trial to assess fully the effect on the other outcome. Chapter 16 reviews 
data monitoring in more detail.

The factorial design has some distinct advantages. If the interaction of two inter-
ventions is important to determine, or if there is little chance of interaction, then such 
a design with appropriate sample size can be very informative and efficient. However, 
the added complexity, impact on recruitment and adherence, and potential adverse 
effects of “polypharmacy” must be considered. Brittain and Wittes [105] discuss a 
number of settings in which factorial designs might be useful or not, and raise several 
cautions. In addition to the issue of interaction, they note that less than full adherence 
to the intervention can exacerbate problems in a factorial design trial.

Group Allocation Designs

In group or cluster allocation designs, a group of individuals, a clinic or a community 
are randomized to a particular intervention or control [106–110]. The rationale is 
that the intervention is most appropriately or more feasibly administered to an entire 
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group (for example, if the intervention consists of a broad media campaign). 
This design may also be better if there is concern about contamination. That is, when 
what one individual does might readily influence what other participants do. In the 
Child and Adolescent Trial for Cardiovascular Health, schools were randomized to 
different interventions [111]. A trial of vitamin A vs. placebo on morbidity and 
mortality in children in India randomized villages [112]. The Rapid Early Action for 
Coronary Treatment (REACT) trial involved ten matched pairs of cities. Within each 
pair, one city was randomly allocated to community education efforts aimed at 
reducing the time between symptoms of myocardial infarction and arrival at hospital 
[113]. Despite 18 months of community education, delay time was not different 
from that in the control cities. Communities have been compared in other trials 
[114, 115]. These designs have been used in cancer trials where a clinic or physician 
may have difficulty approaching people about the idea of randomization. The use of 
such designs in infectious disease control in areas with high prevalence of conditions 
such as tuberculosis and AIDS has become more common [116]. It should be noted 
that this example is both a group allocation design and a factorial design. In the 
group allocation design, the basic sampling units and the units of analysis are 
groups, not individual participants. This means that the effective sample is less than 
the total number of participants. Chapters 8 and 17 contain further discussions of the 
sample size determination and analysis of this design.

Hybrid Designs

Pocock [117] has argued that if a substantial amount of data is available from 
 historical controls, then a hybrid, or combination design could be considered. 
Rather than a 50/50 allocation of participants, a smaller proportion could be 
 randomized to control, permitting most to be assigned to the new intervention. 
A number of criteria must be met in order to combine the historical and randomized 
controls. These include the same entry criteria and evaluation factors and partici-
pant recruitment by the same clinic or investigator. The data from the historical 
control participants must also be fairly recent. This approach, if feasible, requires 
fewer participants to be entered into a trial. Machin, however, cautions that if biases 
introduced from the nonrandomized participants (historical controls) are substantial, 
more participants might have to be randomized to compensate than would be the 
case in a corresponding fully randomized trial [118].

Large, Simple and Pragmatic Clinical Trials

Advocates of large, simple trials maintain that for common pathological conditions, 
it is important to uncover even modest benefits of intervention, particularly short-
term interventions that are easily implemented in a large population. They also 
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argue that an intervention is unlikely to have very different effects in different sorts 
of participants. Therefore, careful characterization of people at entry, or of interim 
response variables, is unnecessary. The important criteria for a valid study are unbi-
ased (i.e., randomized) allocation of participants to intervention or control and 
unbiased assessment of outcome. Sufficiently large number of participants are more 
important than modest improvements in quality of data. The simplification of the 
study design and management allows for sufficiently large trials at reasonable cost. 
Examples of successful large, simple trials are ISIS [96], Gruppo Italiano per lo 
Studio della Streptochinasi nell’Infarto Miocardico (GISSI) [119], Global Utilization 
of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries 
(GUSTO) [120], a study of digitalis [121], and the MICHELANGELO Organization 
to Assess Strategies in Acute Ischemic Syndromes (OASIS)-5 [122]. It should be noted 
that with the exception of the digitalis trial, these studies were relatively short term.

The questions addressed by these trials may be not only of the sort, “What treat-
ment works better?” but also “What is the best way of providing the treatment?” 
Can something shown to work in an academic setting be translated to a typical 
community medical care setting? Several have advocated conducting pragmatic or 
practical clinical trials. These kinds of trials, as noted in Chap. 3, are conducted in 
clinical practices, often far from academic centers. They address questions per-
ceived as relevant to those practices [123–125]. Because of the broad involvement 
of many practitioners, the results of the trial may be more widely applied than the 
results of a trial done in just major medical settings.

As indicated, these models depend upon a relatively easily administered interven-
tion and an easily ascertained outcome. If the intervention is complex, requiring either 
special expertise or effort, particularly where adherence to protocol must be main-
tained over a long time, these kinds of studies are less likely to be successful. Similarly, 
if the response variable is a measure of morbidity that requires careful measurement 
by highly trained investigators, large simple or pragmatic trials are not feasible.

It has also been pointed out that baseline characteristics may be useful, not only 
for natural history studies but also for subgroup analysis. The issue of subgroup 
analysis is discussed more fully in Chap. 17. Although in general, it is likely that 
the effect of an intervention is qualitatively the same across subgroups, exceptions 
may exist. In addition, important quantitative differences may occur. When there is 
reasonable expectation of such differences, appropriate baseline variables need to 
be measured. Variables, such as age, gender, past history of a particular condition, 
or type of medication currently being taken, can be assessed in a simple trial. On 
the other hand, if an invasive laboratory test or a measurement that requires special 
training is necessary at baseline, such characterization may make a simple or prag-
matic trial infeasible.

The investigator also needs to consider that the results of the trial must be 
 persuasive to others. If other researchers or clinicians seriously question the validity 
of the trial because of inadequate information about participants or inadequate 
documentation of quality control, then the study has not achieved its purpose.

There is no doubt that many clinical trials are too expensive and too cumbersome, 
especially multicenter ones. The advent of the large, simple trial or the pragmatic trial 
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is an important step in enabling many meaningful medical questions to be addressed 
in an efficient manner. In other instances, however, the use of large  number of partici-
pants may not compensate for reduced data collection and quality control. As always, 
the primary question being asked dictates the optimal design of the trial.

Studies of Equivalency and Noninferiority

Many clinical trials are designed to demonstrate that a new intervention is better than 
or superior to the control. However, not all trials have this goal. New interventions 
may have little or no superiority to existing therapies, but, as long as they are not 
materially worse, may be of interest because they are less toxic, less invasive, less 
costly, require fewer doses, improve quality of life, or have some other value to 
patients. In this setting, the goal of the trial would be to demonstrate that the new 
intervention is not worse, in terms of the primary response variable, than the stan-
dard by some predefined margin.

In studies of equivalency, the objective is to test whether a new intervention is 
equivalent to an established one. Noninferiority trials test whether the new inter-
vention is no worse than, or at least as good as, some established intervention. 
Sample size issues for these kinds of trials are discussed in Chap. 8. In equivalency 
and noninferiority trials, several design aspects need to be considered [126–130]. 
The control or standard treatment must have been shown conclusively to be effec-
tive; that is, truly better than placebo or no therapy. The circumstances under 
which the active control was found to be useful ought to be reasonably close to 
those of the planned trial. Similarity of populations, concomitant therapy, and dos-
age are important. These requirements also mean that the trials that demonstrated 
efficacy of the standard should be recent and properly designed, conducted, ana-
lyzed, and reported. Table 5.2 shows the key assumptions for these trials.

First, the active control that is selected must be one that is an established standard 
for the indication being studied and not a therapy that is inferior to other known 
ones. It must be used with the dose and formulation proven effective. Second, the 
studies that demonstrated benefit of the control against either placebo or no treat-
ment must be sufficiently recent such that no important medical advances or other 
changes have occurred, and in populations similar to those planned for the new trial. 
Third, the evidence that demonstrated the benefits of the control must be available 
so that a control group event rate can be estimated. Fourth, the response variable 
used in the new trial must be sensitive to the postulated effects of the control and 
intervention. The proposed trial must be able to demonstrate “assay sensitivity,” or 

Table 5.2 Noninferiority design assumptions

Proper control arm
Constancy over time and among participants
Availability of data from prior studies of the control
Assay sensitivity to demonstrate a true difference
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the ability to show a difference if one truly exists. As emphasized in Chap. 8, the 
investigator must specify what she means by equivalence.

It cannot be shown statistically that two therapies are identical, as an infinite 
sample size would be required. Therefore, if the intervention falls sufficiently close 
to the standard, as defined by reasonable boundaries, the intervention is claimed to 
be “the same” as the control (in an equivalence trial) or no worse than the control 
(in a noninferiority trial). Selecting the margin of indifference or noninferiority, d, is 
a challenge. Ideally, the relative risk of the new intervention compared to the control 
should be as close to 1 as possible. For practical reasons, the relative risk is often set 
in the range of 1.2–1.4. This means that in the worst case, the new intervention may 
be 20–40% inferior to standard treatment and yet be considered equivalent or non-
inferior. Some have even suggested that any new intervention could be approved by 
regulatory agencies as being noninferior to a standard control intervention if it 
retains as least 50% of the control vs. placebo effect. Further, there are options as to 
what 50% (or 40% or 20%) means. For example, one could choose either the point 
estimate from the control vs. placebo comparison, or the lower confidence interval 
estimate of that comparison. Also, the choice of the metric or scale must be selected, 
such as a relative risk, or hazard ratio, or perhaps an absolute difference. Of course, 
if an absolute difference that might seem reasonable with a high control group event 
rate is chosen, it might not seem so reasonable if the control group event rate turns 
out to be much lower than expected. This happened with a trial comparing warfarin 
against a new anticoagulant agent, where the observed control group event rate was 
less than that originally expected. Thus, with a predetermined absolute difference for 
noninferiority, the relative margin of noninferiority was larger than had been antici-
pated when the trial was designed [131].

It should be emphasized that new interventions are often hailed as successes if 
they are shown to be 20 or 25% better than placebo or a standard therapy. To turn 
around and claim that anything within a margin of 40 or 50% is equivalent to or 
noninferior to a standard therapy would seem illogical. But the impact on sample 
size of seeking to demonstrate that a new intervention is at most 20% worse than a 
standard therapy, rather than 40%, is considerable. As is discussed in Chap. 8, it 
would not be just a twofold increase in sample size, but a fourfold increase if the 
other parameters remained the same. Therefore, all design considerations and 
implications must be carefully considered.

Perhaps even more than in superiority trials, the quality, the size, and power of the 
new trial, and how well the trial is conducted, including how well participants comply 
with the assigned therapy, are crucial. A small sample size or poor compliance with 
the protocol, leading to low power, and therefore lack of significant difference, does 
not imply “equivalence.”

To illustrate the concepts around noninferiority designs, consider the series of 
trials represented in Fig. 5.5, which depicts estimates with 95% confidence intervals 
for the intervention effect.

The heavy vertical line (labeled Delta) indicates the amount of worse effect of 
the intervention compared to the control that was chosen as tolerable. The thin 
vertical line indicates zero difference (a relative risk of 1). Trial A shows a new 



88 5 Basic Study Design

intervention that is superior to control (i.e., the upper confidence interval excludes 
zero difference). Trial B has an estimate of the intervention effect that is favorable 
but the upper limit of the confidence interval does not exclude zero. It is less than 
the margin of indifference, however, and thus meets the criterion of being noninfe-
rior. Trial C is also noninferior, but the point estimate of the effect is slightly in 
favor of the control. Trial D does not conclusively show superiority or noninferiority, 
probably because it is too small or there were other factors that led to low power. 
Trial E indicates inferiority for the new intervention.

As discussed above, the investigator must consider several issues when designing 
an equivalence or noninferiority trial. First, the constancy assumption that the con-
trol vs. placebo effect has not changed over time is often not correct. This can be 
seen, for example, in two trials of the same design conducted back to back with 
essentially the same protocol and investigators, the PRAISE-1 and PRAISE-2 trials 
discussed in the section on Historical Controls and Databases [55, 56]. In PRAISE-1, 
the trial was stratified according to etiology, ischemic and nonischemic heart failure. 
Most of the favorable effect of the drug on mortality was seen in the nonischemic 
stratum, contrary to expectation. To validate that subgroup result, PRAISE-2 was 
conducted, using the same design, in nonischemic heart failure patients. In this second 
trial, no benefit of amlodipine was observed. The comparison of the placebo arms 
from PRAISE-1 and PRAISE-2 (Fig. 5.1) indicates that the two populations of 
nonischemic heart failure patients were at substantially different risk, despite being 
enrolled close in time, with the same entry criteria and same investigators. No cova-
riate analysis could explain this difference in risk. Thus, the enrolled population 
itself is not constant, challenging the constancy assumption.

In addition, as background therapy changes, the effect of the control or placebo 
may also change. With more therapeutic options, the effect of one drug or intervention 
alone may no longer be as large as it was when placebo was the total  background. 
Practice and referral patterns change.

Even if the data from prior trials of the selected control are available, the  estimates 
of active control vs. placebo may not be completely accurate. As with all trials, effect 
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Fig. 5.5 Possible results of noninferiority trials; modified from [132]
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of treatment depends at least partly on the sample of participants who were identified 
and volunteered for the study. The observed effect is not likely to reflect the effect 
exactly in some other population. It is also possible that the quality of the trials used 
to obtain the effect of the control may not have been very good.

Many of the assumptions about the active control group event rates that go into 
the design of a noninferiority or equivalence trial are unlikely to be valid. At the 
end of the trial, investigators obtain seemingly more precise estimates of the margin 
and imputed “efficacy,” when in fact they are based on a model that has considerable 
uncertainty and great care must be used in interpreting the results.

If I is the new intervention, C is the control or standard treatment, and P is 
 placebo or no treatment, for the usual superiority trial, the goal is to show that the 
new intervention is better than placebo or no treatment, or that new intervention 
plus control is better than control alone.

I P>

I C>

+ >I C C

For noninferiority trials, the margin of indifference, d, is specified, where I − C < d. 
Efficacy imputation requires an estimate of the relative risk (RR) of the new inter-
vention to control, RR(I/C) and of the control to placebo or no treatment, RR(C/P). 
Therefore, the estimated relative risk of the new intervention compared with  
placebo is

RR( / ) RR( / ) RR( / ).I P I C C P= ×

Rather than focus on the above assumption-filled model, an alternative approach 
might be considered. The first goal is to select the best control. This might be the 
one that, based on prior trials, was most effective. It might also be the one that 
the academic community considers as the standard of care, the one recommended 
in treatment guidelines, or the treatment that is most commonly used in practice. 
The selection will depend on the nature of the question being posed in the new trial. 
There might also be a choice of best controls, all considered to be similar, as, for 
example, one of several beta blockers or statins. The choice might be influenced by 
regulatory  agencies. The margin of noninferiority should use the data from the prior 
trials of the active control to get some estimate for initiating discussion but should 
not use it as a precise value. Once that estimate has been obtained, investigators, 
with input from others, including, as appropriate, those from regulatory agencies, 
should use their experience and clinical judgment to make a final determination as 
to what margin of noninferiority would support using a new intervention. These 
decisions depend on factors such as the severity of the condition being studied, 
the known risks of the standard or control intervention, the trade-offs that might be 
achieved with the new intervention, whether it is 50 or 20%, or some other relative 
risk, or an absolute difference, and the practicality of obtaining the estimated 
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sample size. Having set the margin, effort must be on conducting the best trial, with 
as high participant adherence and complete follow-up as feasible. When the nonin-
feriority trial has been completed, attention should be given to the interpretation of 
trial results, keeping in mind the entirety of the research using the new intervention 
and the active control and the relevance of the findings to the specific clinical practice 
setting (see Chaps. 17 and 19).

Adaptive Designs

There is a great deal of interest in designs, which are termed adaptive, but there are 
different designs that are adaptive and different meanings of the term. Clinical trials 
have used forms of adaptive designs for many years. As discussed in Chap. 1, early 
phase studies have designs that allow for modifications as the data accrue. Many 
late phase trials are adaptive in the sense that the protocol allows for modification 
of the intervention to achieve a certain goal, typically using an interim variable. For 
example, trials of antihypertensive agents, with the primary response variable of 
stroke or heart disease, will allow, and even encourage, changes in dose of the 
agent, or addition or substitution of agent to reach a specified blood pressure reduc-
tion or level. A trial in people with depression changed antidepression drugs based 
on interim success or lack of success as judged by depression questionnaires [133]. 
Some have proposed re-randomizing either all participants or those failing to 
respond adequately to the first drug to other agents [134, 135].

Some trials, by design, will adjust the sample size to retain a desired power if 
the overall event rate is lower than expected, the variability is higher than planned, 
or adherence is worse than expected. In such cases, the sample size can be recal-
culated using the updated information (see Chap. 8). An event-driven adaptive 
design continues until the number of events thought necessary to reach statistical 
significance, given the hypothesized intervention effect, accumulates. In trials 
where time to event is the outcome of interest, the length of follow-up or the number 
of study participants, or both, may be increased to obtain the predetermined num-
ber of outcome events. In other adaptive designs, the randomization ratio may be 
modified to keep the overall balance between intervention and control arms level 
on some risk score (see Chap. 6).

Various designs are called response adaptive. Traditionally, if the effect of the 
intervention was less than expected, or other factors led to a less than desirable con-
ditional power, the study either continued to the end without providing a clear answer 
or was stopped early for futility (see Chap. 16). Some studies, particularly where the 
outcome occurred relatively quickly, allowed for modification of the randomization 
ratio between intervention and control arm, depending on the response of the most 
recent participant or responses of all accumulated participants.

Because of concerns about inefficiencies in study design, several trend adaptive 
approaches have been developed. At the beginning of the trial, the investigator may 
have inadequate information about the rate at which the outcome variable will occur 
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and be unable to make a realistic estimate of the effect of the intervention. Rather 
than continue to conduct an inappropriately powered trial or terminate early an 
otherwise well-designed study, the investigator may wish to modify the sample size. 
After a trial is underway and better estimates become available, these trend adaptive 
approaches adjust sample size based on the observed trend in the primary out-
come, in order to maintain the desired power. Trend adaptive designs require some 
adjustment of the analysis to assess properly the significance of the test statistic. 
A criticism of these designs is that they can introduce bias during the implementation 
of the adjustment. They may also provide sufficient information to allow people not 
privy to the accumulating data to make reasonable guesses as to the trend.

Group sequential designs, in common use for many years, are also considered to 
be response adaptive in that they facilitate early termination of the trial when there is 
convincing evidence of benefit or harm. Response adaptive and trend adaptive 
designs will be considered further in Chaps. 16 and 17.
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The randomized controlled clinical trial is the standard by which all trials are 
judged since other designs have certain undesirable features. In the simplest case, 
randomization is a process by which each participant has the same chance of being 
assigned to either intervention or control. An example would be the toss of a coin, 
in which heads indicates intervention group and tails indicates control group. Even 
in the more complex randomization strategies, the element of chance underlies the 
allocation process. Of course, neither trial participant nor investigator should know 
what the assignment will be before the participant’s decision to enter the study. 
Otherwise, the benefits of randomization can be lost. The role that randomization 
plays in clinical trials has been discussed in Chap. 5 as well as by numerous authors 
[1–12]. While not all accept that randomization is essential [11, 12], most agree it 
is the best method for achieving comparability between study groups and is the 
basis for statistical inference [2, 3].

Fundamental Point

Randomization tends to produce study groups comparable with respect to known 
as well as unknown risk factors, removes investigator bias in the allocation of 
participants, and guarantees that statistical tests will have valid false positive 
error rates.

Several methods for randomly allocating participants are used [4, 5, 10, 13, 14]. 
This chapter presents the most common of these methods and considers the advan-
tages and disadvantages of each. Unless stated otherwise, it can be assumed that the 
randomization strategy will allocate participants into two groups, an intervention 
group and a control group. However, many of the methods described here can easily 
be generalized for use with more than two groups.

Two forms of experimental bias are of concern. The first, selection bias, occurs 
if the allocation process is predictable [9, 15–18]. In this case, the decision to enter 
a participant into a trial may be influenced by the anticipated treatment assignment. 
If any bias exists as to what treatment particular types of participants should 
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receive, then a selection bias might occur. All of the randomization procedures 
described avoid selection bias by not being predictable. A second bias, accidental 
bias, can arise if the randomization procedure does not achieve balance on risk fac-
tors or prognostic covariates. Some of the allocation procedures described are more 
vulnerable to accidental bias, especially for small studies. For large studies, how-
ever, the chance of accidental bias is negligible [9].

Whatever randomization process is used, the report of the trial should contain a 
brief, but clear description of that method. In the 1980s, Altman and Doré [17] 
reported a survey of four medical journals where 30% of published randomized 
trials gave no evidence that randomization had in fact been used. As many as 10% 
of these “randomized” trials in fact used nonrandom allocation procedures. Sixty 
percent did not report the type of randomization that was used. In one review in the 
1990s, only 20–30% of trials provided fair or adequate descriptions, depending on 
the size of the trial or whether the trial was single center or multicenter [18]. More 
recently, a review of 253 trials published in five major medical journals after the 
release of the Consolidated Standards for Reporting Trials (CONSORT) [19] rec-
ommendations found little improvement in reports of how randomization was 
accomplished [20]. Descriptions need not be lengthy to inform the reader, publica-
tions should clearly indicate the type of randomization method and how the ran-
domization was implemented.

Fixed Allocation Randomization

Fixed allocation procedures assign the interventions to participants with a prespeci-
fied probability, usually equal, and that allocation probability is not altered as the 
study progresses. A number of methods exist by which fixed allocation is achieved 
[4, 5, 10, 14, 21–25], and we review three of these – simple, blocked, and 
stratified.

Our view is that allocation to intervention and control groups should be equal 
unless there are compelling reasons to do otherwise. Peto [6], among others, has 
suggested an unequal allocation ratio, such as 2:1, of intervention to control. The 
rationale for such an allocation is that the study may slightly lose sensitivity but 
may gain more information about participant responses to the new intervention, 
such as toxicity and side effects. In some instances, less information may be needed 
about the control group and, therefore, fewer control participants are required. If the 
intervention turns out to be beneficial, more study participants would benefit than 
under an equal allocation scheme. However, new interventions may also turn out to 
be harmful, in which case more participants would receive them under the unequal 
allocation strategy. Although the loss of sensitivity or power may be less than 5% 
for allocation ratios approximately between 1/2 and 2/3 [7, 21], equal allocation is 
the most powerful design and therefore generally recommended. We also believe 
that equal allocation is more consistent with the view of indifference or equipoise 
toward which of the two groups a participant is assigned. Unequal allocation may 
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indicate to the participants and to their personal physicians that one intervention is 
preferred over the other. In a few circumstances, the cost of one treatment may be 
extreme so that an unequal allocation of 2:1 or 3:1 may help to contain costs while 
not causing a serious loss of power. Thus, there are trade-offs that must be consid-
ered. In general, equal allocation will be presumed throughout the following discus-
sion unless otherwise indicated.

Simple Randomization

The most elementary form of randomization, referred to as simple or complete 
randomization, is best illustrated by a few examples [4, 5]. One simple method is 
to toss an unbiased coin each time a participant is eligible to be randomized. For 
example, if the coin turns up heads, the participant is assigned to group A; if tails, 
to group B. Using this procedure, approximately one half of the participants will be 
in group A and one half in group B. In practice, for small studies, instead of tossing 
a coin to generate a randomization schedule, a random digit table on which the 
equally likely digits 0–9 are arranged by rows and columns is usually used to 
accomplish simple randomization. By randomly selecting a certain row (column) 
and observing the sequence of digits in that row (column) A could be assigned, for 
example, to those participants for whom the next digit was even and B to those for 
whom the next digit was odd. This process produces a sequence of assignments, 
which is random in order, and each participant has an equal chance of being 
assigned to A or B.

For large studies, a more convenient method for producing a randomization 
schedule is to use a random number producing algorithm, available on most com-
puter systems. A simple randomization procedure might assign participants to 
group A with probability p and participants to group B with probability 1−p. One 
computerized process for simple randomization is to use a uniform random number 
algorithm to produce random numbers in the interval from 0.0 to 1.0. Using a uniform 
random number generator, a random number can be produced for each participant. 
If the random number is between 0 and p, the participant would be assigned to 
group A; otherwise to group B. For equal allocation, the probability cut point, p, is 
one-half (i.e., p = 0.50). If equal allocation between A and B is not desired (p ¹1/2), 
then p can be set to the desired proportion in the algorithm and the study will have, 
on the average, a proportion p of the participants in group A.

This procedure can be adapted easily to more than two groups. Suppose, for 
example, the trial has three groups, A, B, and C, and participants are to be random-
ized such that a participant has a 1/4 chance of being in group A, a 1/4 chance of 
being in group B, and a 1/2 chance of being in group C. By dividing the interval 
0–1 into three pieces of length 1/4, 1/4, and 1/2, random numbers generated will 
have probabilities of 1/4, 1/4, and 1/2, respectively, of falling into each subinterval. 
Specifically, the intervals would be 0–0.249, 0.25–0.499, and 0.50–1.0. Then, any 
participant whose random number falls between 0 and 0.249 is assigned A, any 
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participant whose random number falls between 0.25 and 0.499 is assigned B, and 
the others, C. For equal allocation, the interval would be divided into thirds and 
assignments made accordingly.

The advantage of this simple randomization procedure is that it is easy to imple-
ment. The major disadvantage is that, although in the long run the number of par-
ticipants in each group will be in the proportion anticipated, at any point in the 
randomization, including the end, there could be a substantial imbalance [22]. This 
is true particularly if the sample size is small. For example, if 20 participants are 
randomized with equal probability to two treatment groups, the chance of a 12:8 
split (i.e., 60% A, 40% B) or worse is approximately 50%. For 100 participants, the 
chance of the same ratio (60:40 split) or worse is only 5%. While such imbalances 
do not cause the statistical tests to be invalid, they do reduce ability to detect true 
differences between the two groups. In addition, such imbalances appear awkward 
and may lead to some loss of credibility for the trial, especially for the person not 
oriented to statistics. For this reason primarily, simple randomization is not often 
used, even for large studies. In addition, interim analysis of accumulating data 
might be difficult to interpret with major imbalances in number of participants per 
arm, especially for smaller trials.

Some investigators incorrectly believe that an alternating assignment of partici-
pants to the intervention and the control groups (e.g., ABABAB…) is a form of 
randomization. However, no random component exists in this type of allocation 
except perhaps for the first participant. A major criticism of this method is that, in 
a single-blind or unblinded study, the investigators know the next assignment, 
which could lead to a bias in the selection of participants. Even in a double-blind 
study, if the blind is broken on one participant as sometimes happens, the entire 
sequence of assignments is known. Therefore, this type of allocation method should 
be avoided.

Blocked Randomization

Blocked randomization, sometimes called permuted block randomization, was 
described by Hill [1] in 1951. It is used in order to avoid serious imbalance in the 
number of participants assigned to each group – an imbalance that could occur in 
the simple randomization procedure. Blocked randomization guarantees that at no 
time during randomization will the imbalance be large and that at certain points the 
number of participants in each group will be equal [4, 5, 26].

If participants are randomly assigned with equal probability to groups A or B, 
then for each block of even size (e.g., 4, 6, or 8), one half of the participants will 
be assigned to A and the other half to B. The order in which the interventions are 
assigned in each block is randomized, and this process is repeated for consecutive 
blocks of participants until all participants are randomized. For example, the inves-
tigators may want to ensure that after every fourth randomized participant, the 
number of participants in each intervention group is equal. Then, a block of size 4 
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would be used, and the process would randomize the order in which two As and two 
Bs are assigned for every consecutive group of four participants entering the trial. 
One may write down all the ways of arranging the groups and then randomize the 
order in which these combinations are selected. In the case of block size 4, there 
are six possible combinations of group assignments: AABB, ABAB, BAAB, BABA, 
BBAA, and ABBA. One of these arrangements is selected at random and the four 
participants are assigned accordingly. This process is repeated as many times as 
needed.

Another method of blocked randomization may also be used. In this method for 
randomizing the order of assignments within a block of size b, a random number 
between 0 and 1 for each of the b assignments (half of which are A and the other 
half B) is obtained. The example below illustrates the procedure for a block of size 
four (two As and two Bs). Four random numbers are drawn between 0 and 1 in the 
order shown.

Assignment Random number Rank

A 0.069 1
A 0.734 3
B 0.867 4
B 0.312 2

The assignments then are ranked according to the size of the random numbers. 
This leads to the assignment order of ABAB. This process is repeated for another 
set of four participants until all have been randomized.

The advantage of blocking is that balance between the number of participants in 
each group is guaranteed during the course of randomization. The number in each 
group will never differ by more than b/2 when b is the length of the block. This can 
be important for at least two reasons. First, if the type of participant recruited for 
the study changes during the entry period, blocking will produce more comparable 
groups. For example, an investigator may use different sources of potential partici-
pants sequentially. Participants from these sources may vary in severity of illness 
or other crucial respects. One source, with the more seriously ill participants, may 
be used early during enrollment and another source, with healthier participants, late 
in enrollment [3]. If the randomization were not blocked, more of the seriously ill 
participants might be randomized to one group. Because the later participants are 
not as sick, this early imbalance would not be corrected. A second advantage of 
blocking is that if the trial should be terminated before enrollment is completed, 
balance will exist in terms of number of participants randomized to each group.

A potential, but solvable problem with basic blocked randomization is that if the 
blocking factor b is known by the study staff and the study is not double-blind, the 
assignment for the last person entered in each block is known before entry of that 
person. For example, if the blocking factor is 4 and the first three assignments are 
ABB, then the next assignment must be A. This could, of course, permit a bias in 
the selection of every fourth participant to be entered. Clearly, there is no reason to 
make the blocking factor known. However, in a study that is not double-blind, with 
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a little ingenuity the staff can soon discover the blocking factor. For this reason, 
repeated blocks of size 2 should not be used. On a few occasions, perhaps as an 
intellectual challenge, investigators or their clinic staff have attempted to break the 
randomization scheme. This curiosity is natural but nevertheless can cause prob-
lems in the integrity of the randomization process. To avoid this problem in the trial 
that is not double-blind, the blocking factor can be varied as the recruitment con-
tinues. In fact, after each block has been completed, the size of the next block could 
be determined in a random fashion from a few possibilities such as 2, 4, 6, and 8. 
The probabilities of selecting a block size can be set at whatever values one wishes 
with the constraint that their sum equals 1.0. For example, the probabilities of 
selecting block sizes 2, 4, 6, and 8 can be 1/6, 1/6, 1/3, and 1/3, respectively. 
Randomly selecting the block size makes it very difficult to determine where blocks 
start and stop and thus determine the next assignment.

A disadvantage of blocked randomization is that, from a strictly theoretical point 
of view, analysis of the data is more complicated than if simple randomization were used. 
The data analysis performed at the end of the study should reflect the randomization 
process actually performed [26–31]. This requirement would complicate the analysis 
because many analytical methods assume a simple randomization. In their analysis of 
the data most investigators ignore the fact that the randomization was blocked. 
Matts and McHugh [31] studied this problem and concluded that the measurement 
of variability used in the statistical analysis is not exactly correct if the blocking is 
ignored. Since blocking guarantees balance between the two groups and, therefore, 
increases the power of a study, blocked randomization with the appropriate analysis 
is more powerful than not blocking at all or blocking and then ignoring it in the 
analysis. Statisticians recognize the problem and feel that, at worst, they are being 
conservative by ignoring the fact that the randomization was blocked [14]. That is, 
the study will have probably slightly less power than it could have with the correct 
analysis, and the “true” significance level is more extreme than that computed.

Stratified Randomization

One of the objectives in allocating participants is to achieve between group compa-
rability of certain characteristics known as prognostic or risk factors [4, 32–45]. 
Measured at baseline, these are factors that correlate with subsequent participant 
response or outcome. Investigators may become concerned when prognostic factors 
are not evenly distributed between intervention and control groups. As indicated 
previously, randomization tends to produce groups which are, on the average, simi-
lar in their entry characteristics, both known and unknown. This is a concept likely 
to be true for large studies or for many small studies when averaged. For any single 
study, especially a small study, there is no guarantee that all baseline characteristics 
will be similar in the two groups. In the multicenter Aspirin Myocardial Infarction 
Study [46], which had 4,524 participants, the top 20 cardiovascular prognostic fac-
tors for total mortality identified in the Coronary Drug Project [33] were compared 
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in the intervention and control groups, and no major differences were found 
(Furberg CD, unpublished data). However, individual clinics, with an average of 
150 participants, showed considerable imbalance for many variables between the 
groups. Imbalances in prognostic factors can be dealt with either after the fact by 
using stratification in the analysis (Chap. 17) or can be prevented by using stratifi-
cation in the randomization. Stratified randomization is a method that helps achieve 
comparability between the study groups for those factors considered.

Stratified randomization requires that the prognostic factors be measured either 
before or at the time of randomization. If a single factor is used, it is divided into 
two or more subgroups or strata (e.g., age 30–34 years, 35–39 years, 40–44 years). 
If several factors are used, a stratum is formed by selecting one subgroup from each 
of them. The total number of strata is the product of the number of subgroups in 
each factor. The stratified randomization process involves measuring the level of 
the selected factors for a participant, determining to which stratum she belongs and 
performing the randomization within that stratum.

Within each stratum, the randomization process itself could be simple random-
ization, but in practice most clinical trials use some blocked randomization strategy. 
Under a simple randomization process, imbalances in the number in each group 
within the stratum could easily happen and thus defeat the purpose of the stratifica-
tion. Blocked randomization is, as described previously, a special kind of stratifica-
tion. However, this text will restrict use of the term blocked randomization to 
stratifying over time, and use stratified randomization to refer to stratifying on fac-
tors other than time. Some confusion may arise here because early texts on design 
used the term blocking as this book uses the term stratifying. However, the defini-
tion herein is consistent with current usage in clinical trials.

As an example of stratified randomization with a block size of 4, suppose an 
investigator wants to stratify on age, sex, and smoking history. One possible classi-
fication of the factors would be three 10-year age levels and three smoking levels.

Age (years) Sex Smoking history

1. 40–49 1. Male 1. Current smoker
2. 50–59 2. Female 2. Ex-smoker
3. 60–69 3. Never smoked

Thus, the design has 3 × 2 × 3 = 18 strata. The randomization for this example 
appears in Table 6.1.

Participants who were between 40 and 49 years old, male and current smokers, 
that is, in stratum 1, would be assigned to groups A or B in the sequences ABBA 
BABA… Similarly, random sequences would appear in the other strata.

Small studies are the ones most likely to require stratified randomization, because 
in large studies, the magnitude of the numbers increases the chance of comparability 
of the groups. In the example shown above, with three levels of the first factor (age), 
two levels of the second factor (sex), and three levels of the third factor (smoking 
history), 18 strata have been created. As factors are added and the levels within factors 
are refined, the number of strata increases rapidly. If the example with 18 strata had 
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100 participants to be randomized, then only five to six participants would be 
expected per stratum if the study population were evenly distributed among the 
 levels. Since the population is most likely not evenly distributed over the strata, 
some strata would actually get fewer than five to six participants. If the number of 
strata were increased, the number of participants in each stratum would be even 
fewer. Pocock and Simon [34] showed that increased  stratification in small studies 
can be self-defeating because of the sparseness of data within each stratum. Thus, 
only important variables should be chosen and the  number of strata kept to a 
minimum.

In addition to making the two study groups appear comparable with regard to speci-
fied factors, the power of the study can be increased by taking the stratification into 
account in the analysis. Stratified randomization, in a sense, breaks the trial down into 
smaller trials. Participants in each of the “smaller trials” belong to the same stratum. This 
reduces variability in group comparisons if the stratification is used in the analysis. 
Reduction in variability allows a study of a given size to detect smaller group differences 
in response variables or to detect a specified difference with fewer participants [25, 26].

Sometimes the variables initially thought to be most prognostic and, therefore 
used in the stratified randomization, turn out to be unimportant. Other factors may 
be identified later which, for the particular study, are of more importance. If ran-
domization is done without stratification, then analysis can take into account those 
factors of interest and will not be complicated by factors thought to be important at 
the time of randomization. It has been argued that there usually does not exist a 
need to stratify at randomization because stratification at the time of analysis will 
achieve nearly the same expected power [6]. This issue of stratifying pre vs. post-
randomization has been widely discussed [37–40, 43]. It appears for a large study 
that stratification after randomization provides nearly equal efficiency to stratifica-
tion before randomization [44, 45]. However, for studies of 100 participants or 
fewer, stratifying the randomization using two or three prognostic factors may 
achieve greater power although the increase may not be large.

Table 6.1 Stratified randomization with block size of four

Strata Age Sex Smoking Group assignment

 1 40–49 M Current ABBA BABA…
 2 40–49 M Ex BABA BBAA…
 3 40–49 M Never etc.
 4 40–49 F Current
 5 40–49 F Ex
 6 40–49 F Never
 7 50–59 M Current
 8 50–59 M Ex
 9 50–59 M Never
10 50–59 F Current
11 50–59 F Ex
12 50–59 F Never

(etc.)
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Stratified randomization is not the complete solution to all potential problems of 
baseline imbalance. Another strategy for small studies with many prognostic 
 factors is considered below in the section on adaptive randomization.

In multicenter trials, centers vary with respect to the type of participants 
 randomized as well as the quality and type of care given to participants during 
follow-up. Thus, the center may be an important factor related to participant out-
come, and the randomization process should be stratified accordingly [41]. Each 
center then represents, in a sense, a replication of the trial, though the number of 
participants within a center is not adequate to answer the primary question. 
Nevertheless, results at individual centers can be compared to see if trends are con-
sistent with overall results. Another reason for stratification by center is that if a 
center should have to leave the study, the balance in prognostic factors in other 
centers would not be affected.

One further point might need consideration. If in the stratified randomization, a 
specific proportion or quota is intended for each stratum, the recruitment of eligible 
participants might not be at the same rate. That is, one stratum might meet the target 
before the others. If a target proportion is intended, then plans need to be in place 
to close down recruitment for that stratum, allowing the others to be completed.

Adaptive Randomization Procedures

The randomization procedures described in the sections on fixed allocation above 
are nonadaptive strategies. In contrast, adaptive procedures change the allocation 
probabilities as the study progresses. Two types of adaptive procedures will be 
considered here. First, we will discuss methods which adjust or adapt the allocation 
probabilities according to imbalances in numbers of participants or in baseline 
characteristics between the two groups. Second, we will briefly review adaptive 
procedures that adjust allocation probabilities according to the responses of partici-
pants to the assigned intervention.

Baseline Adaptive Randomization Procedures

The Biased Coin Randomization procedure, originally discussed by Efron [47], 
attempts to balance the number of participants in each treatment group based on the 
previous assignments but does not take participant responses into consideration. 
Several variations to this approach have been discussed [48–64]. The purpose of the 
algorithm is basically to randomize the allocation of participants to groups A and B 
with equal probability as long as the number of participants in each group is equal 
or nearly equal. If an imbalance occurs and the difference in the number of partici-
pants is greater than some prespecified value, the allocation probability (p) is 
adjusted so that the probability is higher for the group with fewer participants. 



106 6 The Randomization Process

The investigator can determine the value of the allocation probability he wishes to 
use. The larger the value of p, the faster the imbalance will be corrected, while the 
nearer p is to 0.5, the slower the correction. Efron suggests an allocation probability 
of p = 2/3 when a correction is indicated. Since much of the time p is greater than 1/2, 
the process has been named the “biased coin” method. As a simple example, suppose 
n

A
 and n

B
 represent the number of participants in groups A and B, respectively. If n

A
 

is less than n
B
 and the difference exceeds a predetermined value, D, then we allocate 

the next participant to group A with probability p = 2/3. If n
A
 is greater than n

B
 by an 

amount of D, we allocate to group B with probability p = 2/3. Otherwise, p is set at 
0.50. This procedure can be modified to include consideration of the number of con-
secutive assignments to the same group and the length of such a run.

This approach, from a strictly theoretical point of view, demands a cumbersome 
data analysis process. The correct analysis requires that the significance level for 
the test statistic be determined by considering all possible sequences of assign-
ments, which could have been made in repeated experiments using the same 
biased coin allocation rule where no group differences are assumed to exist. 
Although this is feasible to do with digital computers, the analysis is not easy. 
As with the blocked randomization scheme, the analysis often ignores this require-
ment. Efron [47] argues that it is probably not necessary to take the biased coin 
randomization into account in the analysis, especially for larger studies. However, 
a test statistic, which ignores the biased coin randomization will not provide the 
correct variance term. Most often, the variance will be larger than it would be with 
proper calculation, thus giving a conservative test in the sense that the probability 
of rejecting the null hypothesis is less than it would be if the proper analysis were 
used. One possible advantage of the biased coin approach over the blocked ran-
domization scheme is that the investigator cannot determine the next assignment 
by discovering the blocking factor. However, the biased coin method does not 
appear to be as widely used as the blocked randomization scheme because of its 
complexity.

Another similar adaptive randomization method is referred to as the Urn Design, 
based on the work of Wei and colleagues [65–68]. This method also attempts to 
keep the number of participants randomized to each group reasonably balanced as 
the trial progresses. The name Urn Design refers to the conceptual process of ran-
domization. Imagine an urn filled with m red balls and m black balls. If a red ball 
is drawn at random, assign the participant to group A, return the red ball, and add 
a black ball to the urn. If a black ball is drawn, assign the participant to group B, 
return that ball, and add a red ball to the urn. This process will keep the number of 
participants in each group reasonably close because it adjusts the allocation prob-
ability. From a theoretical point of view, this method, like the biased coin design, 
would require the analyses to account for the randomization [65]. While this is pos-
sible, these analyses are not straightforward. It seems likely, as for the biased coin 
design, that if this randomization method is used, but ignored in the analyses, the 
p-value will be slightly conservative, that is, slightly larger than if the strictly cor-
rect analysis were done. The urn model was used successfully in the multicenter 
Diabetes Control and Complication Trial [69].
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Other stratification methods are adaptive in the sense that intervention assignment 
probabilities for a participant are a function of the distribution of the prognostic 
factors for participants already randomized. This concept was suggested by Efron 
[47] as an extension of the biased coin method and also has been discussed in depth 
by Pocock and Simon [34] and others [48–53, 70–72]. In a simple example, if age 
is a prognostic factor and one study group has more older participants than the 
other, the allocation scheme is such that the next several older participants would 
most likely be randomized to the group which currently has fewer older participants. 
Various methods can be used as the measure of imbalance in prognostic factors. 
In general, adaptive stratification methods incorporate several prognostic factors in 
making an “overall assessment” of the group balance or lack of balance. Participants 
are then assigned to a group in a manner, which will tend to correct an existing 
imbalance or cause the least imbalance in prognostic factors. This method is some-
times called minimization because imbalances in the distribution of prognostic 
factors are minimized. However, as indicated in the Appendix, the term minimiza-
tion is also used to refer to a very specific form of adaptive stratification [51, 73]. 
Generalization of this strategy exists for more than two study groups. Development 
of these methods was motivated in part by the previously described problems with 
nonadaptive stratified randomization for small studies. Adaptive methods do not 
have empty or near empty strata because randomization does not take place within 
a stratum although prognostic factors are used. Minimization gives unbiased esti-
mates of treatment effect and slightly increased power relative to stratified random-
ization [73]. These methods are being used, especially in clinical trials of cancer 
where several prognostic factors need to be balanced, and the sample size is typi-
cally 100–200 participants.

The major advantage of this procedure is that it protects against a severe baseline 
imbalance for important prognostic factors. Overall marginal balance is maintained 
in the intervention groups with respect to a large number of prognostic factors. One 
disadvantage is that adaptive stratification is operationally more difficult to carry 
out, especially if a large number of factors are considered. Although White and 
Freedman [52] initially developed a simplified version of the adaptive stratification 
method by using a set of specially arranged index cards, today any small program-
mable computer can easily carry out the calculations. In addition, the population 
recruited needs to be stable over time, just as for other adaptive methods. For 
example, if treatment guidelines change during a long recruitment period, neces-
sitating a change in the inclusion or exclusion criteria, the adaptive procedure may 
not be able to correct imbalances that developed beforehand. This happened in the 
Stop Atherosclerosis in Native Diabetics Study (SANDS), a trial comparing inten-
sive intervention for cholesterol and blood pressure with less intensive intervention 
in people with diabetes [74, 75]. Randomization was done using the urn design, but 
partway through the trial, new and more aggressive guidelines regarding lipid low-
ering treatment in people who had known coronary heart disease came out. The 
participants in SANDS who met those guidelines could no longer be treated with 
the less intensive regimen and no new participants who had had prior cardiovascu-
lar events could be enrolled. Not only was there a possibility of imbalance between 
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study groups, but the sample size also needed to be reconsidered because of the 
lower average risk level of the participants. Another disadvantage of adaptive ran-
domization is that the data analysis is complicated, from a strict viewpoint, by the 
randomization process. The appropriate analysis involves simulating on a computer 
the assignment of participants to groups by the actual adaptive strategy used. 
Replication of the simulation, assuming that no group differences exist, generates 
the significance level of the statistical test to be used.

Biostatisticians are not likely to go through the simulation experiments but 
would rather use the conventional statistical test and standard critical values to 
determine significance levels. As with other nonsimple randomization procedures, 
this strategy is probably somewhat conservative. The impact of one minimization 
approach on the significance level has been studied [53]. For this case, the authors 
concluded that if minimization adaptive stratification is used, an analysis of covari-
ance should be employed. To obtain the proper significance level, the analysis 
should incorporate the same prognostic factors used in the randomization. 
Minimization and stratification on the same prognostic factors produce similar 
levels of power, but minimization may add slightly more power if stratification does 
not include all of the covariates.

Response Adaptive Randomization

Response adaptive randomization uses information on participant response to inter-
vention during the course of the trial to determine the allocation of the next partici-
pant. Examples of response adaptive randomization models are the Play the Winner 
[76] and the two-armed bandits [77] models. These models assume that the inves-
tigator is randomizing participants to one of two interventions and that the primary 
response variable can be determined quickly relative to the total length of the study. 
Bailar [78] and Simon [79] reviewed the uses of these stratification methods. 
Additional modifications or methods were developed [80–84].

The Play the Winner procedure may assign the first participant by the toss of a 
coin. The next participant is assigned to the same group as the first participant if the 
response to the intervention was a success; otherwise, the participant is assigned to 
the other group. That is, the process calls for staying with the winner until a failure 
occurs and then switching. The following example illustrates a possible randomization 
scheme where S indicates intervention success and F indicates failure:

Assignment Participant

1 2 3 4 5 6 7 8 …
Group A S F S F
Group B S S F S

Another response adaptive randomization procedure is the two-armed bandit 
method, which continually updates the probability of success as soon as the outcome 
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for each participant is known. That information is used to adjust the probabilities 
of being assigned to either group in such a way that a higher proportion of future 
participants would receive the currently “better” or more successful intervention.

Both of these response adaptive randomization methods have the intended 
 purpose of maximizing the number of participants on the “superior” intervention. 
They were developed in response to ethical concerns expressed by some clinical 
investigators about the randomization process. Although these methods do maxi-
mize the number of participants on the “superior” intervention, the possible imbal-
ance will almost certainly result in some loss of power and require more participants 
to be enrolled into the study than would a fixed allocation with equal assignment 
probability [85]. A major limitation is that many clinical trials do not have an 
immediately occurring response variable. They also may have several response 
variables of interest with no single outcome easily identified as being the one upon 
which randomization should be based. Furthermore, these methods assume that the 
population from which the participants are drawn is stable over time. If the nature 
of the study population should change and this is not accounted for in the analysis, 
the reported significance levels could be biased, perhaps severely [86]. Here, as 
before, the data analysis should ideally take into account the randomization process 
employed. For response adaptive methods, that analysis will be more complicated 
than it would be with simple randomization. Because of these disadvantages, 
response adaptive procedures are not commonly used.

One application of response adaptive allocation can be found in a trial evaluating 
extracorporeal membrane oxygenator (ECMO) in a neonatal population suffering 
from respiratory insufficiency [83, 84, 87–89]. This device oxygenates the blood to 
compensate for the inability or inefficiency of the lungs to achieve this task. In this 
trial, the first infant was allocated randomly to control therapy. The result was a 
failure. The next infant received ECMO, which was successful. The next ten infants 
were also allocated to ECMO and all outcomes were successful. The trial was then 
stopped. However, the first infant was much sicker than the ECMO-treated infants. 
Controversy ensued and the benefits of ECMO remain unclear. This experience 
does not offer encouragement to use this adaptive randomization methodology.

Mechanics of Randomization

The manner in which the chosen randomization method is actually implemented is 
very important [90]. If this aspect of randomization does not receive careful atten-
tion, the entire randomization process can easily be compromised, thus voiding any 
of the advantages for using it. To accomplish a valid randomization, it is recom-
mended that an independent central unit be responsible for developing the random-
ization process and making the assignments of participants to the appropriate group. 
For a single center trial, this central unit might be a biostatistician or clinician not 
involved with the care of the participants. In the case of a multicenter trial, the 
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randomization process is usually handled by the data coordinating center. Ultimately, 
however, the integrity of the randomization process will rest with the investigator.

Chalmers and colleagues [91] reviewed the randomization process in 102  clinical 
trials, 57 where the randomization was unknown to the investigator and 45 where it 
was known. The authors reported that in 14% of the 57 studies, at least one  baseline 
variable was not balanced between the two groups. For the studies with known ran-
domization schedules, twice as many, or 26.7%, had at least one prognostic variable 
maldistributed. For 43 nonrandomized studies, such imbalances occurred four times 
as often or in 58%. The authors emphasized that those recruiting and entering par-
ticipants into a trial should not be aware of the next intervention assignment.

In many cases when a fixed proportion randomization process is used, the ran-
domization schedules are made before the study begins [92–96]. The investigators 
may call a central location, and the person at that location looks up the assignment 
for the next participant [92]. Another possibility, used historically and still some-
times in trials involving acutely ill participants, is to have a scheme making avail-
able sequenced and sealed envelopes containing the assignments [93]. As a 
participant enters the trial, she receives the next envelope in the sequence, which 
gives her the assignment. Envelope systems, however, are more prone to errors and 
tampering than the former method. In one study, personnel in a clinic opened the 
envelopes and arranged the assignments to fit their own preferences, accommodat-
ing friends and relatives entering the trial. In another case, an envelope fell to the 
bottom of the box containing the envelopes, thus changing the sequence in which 
they were opened. Many studies prefer the telephone system to protect against this 
problem. In an alternative procedure that has been used in several double-blind drug 
studies, medication bottles are numbered with a small perforated tab [96]. The 
bottles are distributed to participant in sequence. The tab, which is coded to identify 
the contents, is torn off and sent to the central unit. This system is also subject to 
abuse unless an independent person is responsible for dispensing the bottles. Many 
clinical trials using a fixed proportion randomization schedule require that the 
investigator call the central location to verify that a participant is eligible to be in 
the trial before any assignment is made. This increases the likelihood that only 
eligible participants will be randomized.

For many trials, especially multicenter and multinational trials, logistics require a 
central randomization operations process. This may be achieved by logging in to a 
central computer via the internet. In some cases, the clinic may register a participant 
by dialing into a central computer and entering data via touchtone, with a voice 
response. These systems, referred to as Interactive Voice Response Systems or IVRS, 
or Interactive Web Response Systems, IWRS, are effective and can be used to not 
only assign intervention but can also capture basic eligibility data. Before intervention 
is assigned, baseline data can be checked to determine eligibility. This concept has 
been used in a pediatric cancer cooperative clinical trial network [97] and in major 
multicenter trials [98, 99]. The web-based IWRS systems are becoming common.

Whatever system is chosen to communicate the intervention assignment to the 
investigator or the clinic, the intervention assignment should be given as closely as 
possible to the moment when both investigator and participant are ready to begin 
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the intervention. If the randomization takes place when the participant is first 
identified and the participant withdraws or dies before the intervention actually 
begins, a number of participants will be randomized before being actively involved 
in the study. An example of this occurred in a nonblinded trial of alprenolol in 
survivors of an acute myocardial infarction [100]. In that trial, 393 participants with 
a suspected myocardial infarction were randomized into the trial at the time of their 
admission to the coronary care unit. The alprenolol or placebo was not initiated 
until 2 weeks later. Afterwards, 231 of the randomized participants were excluded 
because a myocardial infarction could not be documented, death had occurred before 
therapy was begun, or various contraindications to therapy were noted. Of the 162 
participants who remained, 69 were in the alprenolol group and 93 were in the 
placebo group. This imbalance raised concerns over the comparability of the two 
groups and possible bias in reasons for participant exclusion. By delaying the ran-
domization until initiation of therapy, the problem of these withdrawals could have 
been avoided.

Recommendations

For large studies involving more than several hundred participants, the randomization 
should be blocked. If a large multicenter trial is being conducted, randomization should 
be stratified by center. Randomization stratified on the basis of other factors in large 
studies is usually not necessary, because randomization tends to make the study 
groups quite comparable for all risk factors. The participants can still, of course, be 
stratified once the data have been collected and the study can be analyzed 
accordingly.

For small studies, the randomization should also be blocked and stratified by 
center if more than one center is involved. Since the sample size is small, a few 
strata for important risk factors may be defined to assure that balance will be 
achieved for at least those factors. For a larger number of prognostic factors, the 
adaptive stratification techniques should be considered and the appropriate analyses 
performed. As in large studies, stratified analysis can be performed even if stratified 
randomization was not done. For many situations, this will be satisfactory.

Appendix

Adaptive Randomization Algorithm

Adaptive randomization can be used for more than two intervention groups, but for 
the sake of simplicity only two will be used here. To describe this procedure in 
more detail, a minimum amount of notation needs to be defined. First, let
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The value of B(t) is determined for each intervention (t = 1 and t = 2). The inter-
vention with the smaller B(t) is preferred, because allocation of the participant to 
that intervention will cause the least imbalance. The participant is assigned, with 
probability p > 1/2, to the intervention with the smaller score, B(1) or B(2). The 
participant is assigned, with probability (1−p), to the intervention with the larger 
score. These probabilities introduce the random component into the allocation 
scheme. Note that if p = 1 and, therefore, 1−p = 0, the allocation procedure is deter-
ministic (no chance or random aspect) and has been referred to by the term “mini-
mization” [51, 53].

As a simple example of the adaptive stratification method, suppose there are two 
groups and two prognostic factors to control. The first factor has two levels and the 
second factor has three levels. Assume that 50 participants have already been 
randomized and the following table summarizes the results (Table 6.2).

Table 6.2 Fifty randomized participants by group and level of factor (xiks)a

Factor 1 2

Level 1 2 1 2 3

Group Total
1 16 10 13  9  4 26
2 14 10 12  6  6 24

30 20 25 15 10 50
aAfter Pocock and Simon [34]
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In addition, the function B(t) as defined above will be used with the range of the x1
ik
 s 

as the measure of imbalance, where w
1
 = 3 and w

2
 = 2; that is, the first factor is 1.5 times 

as important as the second as a prognostic factor. Finally, suppose p = 2/3 and 1−p = 1/3.
If the next participant to be randomized has the first level of the first factor and the 

third level of the second factor, then this corresponds to the first and fifth columns in 
the table. The task is to determine B(1) and B(2) for this participant as shown below.

(a) Determine B(1)
 Factor 1, Level 1

K x
1k

1
1kx Range ( 1 1

11 12,x x )

Group 1 16 17 |17–14| = 3
2 14 14

 Factor 2, Level 3

K x
2k

x1
2k

Range ( 1 1
21 22,x x )

Group 1 4 5 |5–6| = 1
2 6 6

Using the formula given, B(1) is computed as 3 × 3 + 2 × 1 = 11.

(b)  Determine B(2)
 Factor 1, Level 1

K x
1k

2
1kx Range ( 2 2

11 12,x x )

Group 1 16 16 |16–15| = 1
2 14 15

 Factor 2, Level 3

K x
2k

2
1kx Range ( 2 2

21 22,x x )

Group 1 4 4 |4–7| = 3
2 6 7

Then B(2) is computed as 3 × 1 + 2 × 3 = 9.

(c)   Now rank B(1) and B(2) from smaller to larger and assign with probability p 
the group with the smaller B(t).

t B(t) Probability of assigning t

2 B(2) = 9 p = 2/3
1 B(1) = 11 1−p = 1/3

Thus, this participant is randomized to Group 2 with probability 2/3 and to 
Group 1 with probability 1/3. Note that if minimization were used (p = 1), the 
assignment would be Group 2.
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In any clinical trial, bias is one of the main concerns. Bias may be defined as systematic 
error, or “difference between the true value and that actually obtained due to all 
causes other than sampling variability” [1]. It can be caused by conscious factors, 
subconscious factors, or both. Bias can occur at a number of places in a clinical 
trial, from the initial design through data analysis and interpretation. One general 
solution to the problem of bias is to keep the participant and the investigator 
blinded, or masked, to the identity of the assigned intervention. One can also blind 
several other aspects of a trial including the assessment, classification, and evaluation 
of the response variables. Large sample size does not reduce bias although it generally 
improves precision and thus power.

The blinding terminology is not well understood. A survey of 91 internal medicine 
physicians in Canada [2] showed that 75% knew the definition of single-blind. 
Approximately 40% understood the proper definition of double-blind and less than 
20% could define triple-blind. The use of the terms single-blind and double-blind 
is particularly inconsistent in trials of non-pharmaceutical interventions [3].

Fundamental Point

A clinical trial should, ideally, have a double-blind design in order to avoid poten-
tial problems of bias during data collection and assessment. In studies where such 
a design is impossible, other measures to reduce potential bias are advocated.

Types of Trials

Unblinded

In an unblinded or open trial, both the participant and the investigator know to 
which intervention the participant has been assigned. Some kinds of trials can be 
conducted only in this manner and include those involving most surgical procedures, 
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comparisons of devices and medical treatment, changes in lifestyle (e.g., eating habits, 
exercise, cigarette smoking), or learning techniques.

An unblinded study is appealing for two reasons. First, all other things being equal, 
it is simpler to execute than other studies. The usual drug trial may be easier to design 
and carry out, and consequently less expensive if blinding is not an issue. Also, it has 
been argued that it more accurately reflects clinical practice [4]. However, an unblinded 
trial need not be simple – for example, trials that simultaneously attempt to induce 
lifestyle changes and test drug interventions, such as the Women’s Health Initiative 
(WHI) [5], one of the three interventions of which was an unblinded dietary interven-
tion. It involved three distinct interventions: a low-fat eating pattern, hormone replace-
ment therapy, and calcium and vitamin D supplementation. Second, investigators are 
likely to be more comfortable making decisions, such as whether or not to continue a 
participant on his assigned study medication if they know its identity.

The main disadvantage of an unblinded trial is the possibility of bias. Participant 
reporting of symptoms and side effects and prescription of concomitant or compen-
satory treatment are all susceptible to bias. Other problems of biased data collection 
and assessment by the investigator are addressed in Chap. 11. Since participants 
when joining a trial have sincere hopes and expectations about beneficial effects, 
they may become dissatisfied and drop-out of the trial in disproportionately large 
numbers if not on the new or experimental intervention.

A trial of the possible benefits of ascorbic acid (vitamin C) in the common cold 
was designed as a double-blind study [6, 7]. However, it soon became apparent that 
many of the participants, most of whom were medical staff, discovered mainly by 
tasting whether they were on ascorbic acid or placebo. As more participants became 
aware of their medication’s identity, the dropout rate in the placebo group increased. 
Since evaluation of severity and duration of colds depended on the participant’s 
reporting of his or her symptoms, this unblinding was important. Among those par-
ticipants who claimed not to know the identity of the treatment, ascorbic acid showed 
no benefit over placebo. In contrast, among participants who knew or guessed what 
they were on, ascorbic acid did better than placebo. Therefore, preconceived notions 
about the benefit of a treatment, coupled with a subjective response variable, may 
have yielded biased reporting. The investigators’ willingness to share this experience 
provided us with a nice illustration of the importance of maintaining blindness.

In a trial of coronary artery bypass surgery versus medical treatment [8], the num-
ber of participants who smoked was equal in the two study groups at baseline. During 
the early part of follow-up, there were significantly fewer smokers in the surgical 
group than in the medical group. The effect of this group difference on the outcome 
of the trial is difficult, if not impossible, to assess.

Single-Blind

In a single-blind study, only the investigator is aware of which intervention each par-
ticipant is receiving. The advantages of this design are similar to those of an unblinded 
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study – it is usually simpler to carry out than a double-blind design, and knowledge 
of the intervention may help the investigator exercise her best judgment when caring 
for the participants. Indeed, certain investigators are reluctant to participate in studies 
in which they do not know the study group assignment. They may recognize that bias 
is partially reduced by keeping the participant blinded but feel that the participant’s 
health and safety are best served if they themselves are not blinded.

The disadvantages of a single-blind design are similar to, though not so pro-
nounced as, those of an unblinded design. The investigator avoids the problems 
of biased participant reporting, but she herself can affect the administration of non-
study therapy, data collection, and data assessment. For example, a single-blind study 
reported benefits from zinc administration in a group of people with taste disor-
ders [9]. Because of the possibility of bias in a study using a response variable as 
subjective and hard to measure as taste, the study was repeated, using a type of 
crossover, double-blind design [10]. This second study showed that zinc, when 
compared with placebo, did not relieve the taste disorders of the study group. The 
extent of the blinding of the participants did not change; therefore, presumably, 
knowledge of drug identity by the investigator was important. The results of treat-
ment cross-over were equally revealing. In the single-blind study, participants who 
did not improve when given placebo as the first treatment, “improved” when placed 
on zinc. However, in all four double-blind, cross-over procedures (placebo to zinc, 
placebo to placebo, zinc to zinc, zinc to placebo), the participants who had previ-
ously shown no improvement on the first treatment did show benefit when given the 
second medication. Thus, the expectation that the participants who failed to respond 
to the first drug were now being given an active drug may have been sufficient to 
produce a positive response.

A more recent example comes from two noninferiority trials comparing ximela-
gatran, a novel oral direct thrombin inhibitor, to warfarin for the prevention of 
thromboembolic events in people with nonvalvular atrial fibrillation [11]. The first trial, 
SPORTIF III, was single-blind with blinded events assessment, while the second 
trial, SPORTIF V, was double-blind. The primary response variable was all strokes 
and systemic embolic events. The observed risk ratio in the single-blind SPORTIF 
III was 0.71 (95% CI, 0.48–1.07) while the result trended in the opposite direction 
in the double-blind SPORTIF V with a risk ratio of 1.38 (95% CI, 0.91–2.10). 
One cannot be sure how much bias may have played a role, but, in general, more 
confidence ought to be placed on trials with a double-blind design.

Both unblinded and single-blind trials are vulnerable to another source of poten-
tial bias introduced by the investigators. This relates to group differences in com-
pensatory and concomitant treatment. Investigators may feel that the control group 
is not being given the same opportunity as the intervention group and, as a result, 
may prescribe additional treatment as “compensation.” This may be in the form of 
advice or therapy. For example, several studies have attempted blood pressure low-
ering as either the sole intervention or part of a broader effort. In general, the investigators 
would make an intensive effort to persuade participants in the intervention group to 
take their study medication. To persuade successfully, the investigators themselves 
had to be convinced that blood pressure reduction was likely beneficial. When they 
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were seeing participants who had been assigned to the control group, this conviction 
was difficult to suppress. Therefore, participants in the control group were likely to 
have been instructed about non-pharmacological ways by which to lower their 
blood pressure. The result of compensatory treatment is a diminution of the differ-
ence between the intervention group and the “untreated,” or control group.

Working against this is the fact that investigators prefer to be associated with a 
study that gives positive findings. Favorable results published in a reputable journal 
are likely to lead to more invitations to present the findings at scientific meetings 
and grand rounds and can also support academic promotions. Investigators may, 
therefore, subconsciously favor the intervention group when they deal with partici-
pants, collect data, and assess results.

Concomitant treatment means any non-study therapy administered to partici-
pants during a trial. If such treatment is likely to influence the response variable, 
this needs to be considered when determining sample size. Of more concern is the 
bias that can be introduced if concomitant treatment is applied unequally in the two 
groups. In order to bias the outcome of a trial, concomitant treatment must be effective, 
and it must be used in a high proportion of the participants. When this is the case, 
bias is a possibility and may occur in either direction, depending on whether the 
concomitant treatment is preferentially used in the control, or in the intervention 
group. It is usually impossible to determine the direction and magnitude of such 
bias in advance or its impact after it has occurred.

Double-Blind

In a double-blind study, neither the participants nor the investigators responsible for 
following the participants, collecting data, and assessing outcomes should know the 
identity of the intervention assignment. Such designs are usually restricted to trials 
of drug or biologics. It is theoretically possible to design a study comparing two 
surgical procedures or implantation of two devices in which the surgeon performing 
the operation knows the type of surgery or device, but neither the study investigator 
nor the participant knows. Similarly, one might be able to design a study comparing 
two diets in which the food looks identical. However, such trials are uncommon.

The main advantage of a truly double-blind study is that the risk of bias is 
reduced. Preconceived ideas of the investigator will be less important because he or 
she will not know which intervention a particular participant receives. Any effect 
of her actions, therefore, would theoretically occur equally in the intervention and 
control groups. As discussed later, the possibility of bias may never be completely 
eliminated. However, a well designed and properly run double-blind study can 
minimize bias. As in the example of the trial of zinc and taste impairment, double-
blind studies have at times led to results that differ from unblinded or single blind 
studies. Such cases illustrate the role of bias as a factor in clinical trials.

The double-blind design is no protection against imbalances in use of concomi-
tant medications. A placebo-controlled trial of a long-acting inhaled anticholinergic 
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medication in participants with chronic obstructive pulmonary disease allowed the 
use of any other available drug treatment for this condition as well as a short-acting 
inhaled anticholinergic agent for acute exacerbations [12]. The extent of this co-
intervention is likely to differ between the actively treated and the placebo groups, 
but the findings by study group were not presented. Moreover, it may influence 
symptomology as well as risks of disease events and make it very difficult to deter-
mine the true effects of the long-acting anticholinergic inhaler. Reporting the pro-
portion of participants given a co-intervention at any time over the 4 years of the 
trial by treatment group would help the interpretation of results, but this does not 
take into account the frequency and intensity of its use.

In a double-blind trial, certain functions, which in open or single-blind studies 
could be accomplished by the investigators, must be taken over by others in order 
to maintain the blindness. Thus, an outside body needs to monitor the data for toxicity 
and benefit, especially in long-term trials. Chapter 16 discusses data monitoring in 
greater detail. A person other than the investigator who sees the participants needs 
to be responsible for assigning the interventions to the participants and monitoring 
them for safety. Treatments that require continuous dose adjustment, such as war-
farin, are difficult to blind, but it can be accomplished. In one trial [13], an 
unblinded pharmacist or physician adjusted not only the warfarin doses according 
to an algorithm for maintaining the International Normalized Ratio (INR), a measure 
of anticoagulation, within a pre-specified range, but also the placebo doses ran-
domly. The authors concluded that “placebo warfarin dose adjustment schedules 
can protect blinding adequately” for participants and investigators and recom-
mended their use for future trials of warfarin. A similar approach was employed in 
the Coumadin Aspirin Reinfarction Study [14]. An INR control center adjusted the 
doses in the three treatment arms to keep the INR values below the prespecified 
safety limits and to maintain the double-blind.

In many single- and double-blind drug trials, the control group is placed on a 
matched placebo. Much debate has centered on the ethics of using a placebo. See 
Chap. 2 for a further discussion of this issue.

Triple-Blind

A triple-blind study is an extension of the double-blind design; the committee moni-
toring response variables is not told the identity of the groups. The committee is 
simply given data for groups A and B. A triple-blind study has the theoretical advan-
tage of allowing the monitoring committee to evaluate the response variable results 
more objectively. This assumes that appraisal of efficacy and harm, as well as 
requests for special analyses, may be biased if group identity is known. However, in 
a trial where the monitoring committee has an ethical responsibility to ensure par-
ticipant safety, such a design may be counterproductive. When hampered in the 
safety-monitoring role, the committee cannot carry out its responsibility to minimize 
harm to the participants, since monitoring is often guided by the constellation of 
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trends and their directions. In addition, even if the committee could discharge its 
duties adequately while being kept blinded, many investigators would be uneasy 
participating in such a study. Though in most cases the monitoring committee looks 
only at group data and can rarely make informed judgments about individuals, the 
investigator still relies on the committee to safeguard her study participants. This 
may not be a completely rational approach because, by the time many monitoring 
committees receive data, often any emergency situation has long passed. Nevertheless, 
the discomfort many investigators feel about participating in double-blind studies 
would be magnified should the data monitoring committee also be kept blinded.

Finally, people tend not to accept beneficial outcomes unless a statistically signifi-
cant difference has been achieved. Rarely, though, will investigators want to 
continue a study in order to achieve a clearly significant difference in an adverse 
direction; that is, until the intervention is statistically significantly worse or more 
harmful than the control. Therefore, many monitoring committees demand to know 
which study groups are on which intervention. We agree with the arguments against 
triple-blind summarized by Meinert [15].

A triple-blind study can be conducted ethically if the monitoring committee asks 
itself at each meeting whether the direction of observed trends matters. If it does not 
matter, then the triple-blind can be maintained, at least for the time being. This implies 
that the monitoring committee can ask to be unblinded at any time it chooses. In the 
Randomized Aldactone Evaluation Study (RALES), the Data and Safety Monitoring 
Board was split and several members argued against being blinded [16]. However, 
triple-blind was employed initially. For most variables, the treatment groups were 
labeled A and B. Since increased rates of gynecomastia and hyperkalemia would 
unmask the A and B assignments, these adverse events were labeled X and Y.

Protecting the Double-Blind Design

Double-blind studies are usually more complex and therefore more difficult to carry 
out than other trials. One must ensure that investigators remain blinded and that any 
data which conceivably might endanger blindness be kept from them during the 
study. An effective data monitoring scheme must be set up, and emergency unblinding 
procedures must be established. These requirements pose their own problems and 
can increase the cost of a study. In the Aspirin-Myocardial Infarction Study [17], 
a double-blind trial of aspirin in people with coronary heart disease, the investiga-
tors wished to monitor the action of aspirin on platelets. A postulated beneficial 
effect of aspirin relates to its ability to reduce the aggregation of platelets. Therefore, 
measuring platelet aggregation provided both an estimate of whether the aspirin 
treated group was getting a sufficient dose and a basis for measurement of partici-
pant adherence. However, tests of platelet aggregation need to be performed shortly 
after the blood sample is drawn. The usual method is to have a laboratory technician 
insert the specimen in an aggregometer, add a material such as epinephrine (which, 
in the absence of aspirin, causes platelets to aggregate), and analyze a curve that is 
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printed on a paper strip. In order to maintain the blind, the study needed to find a 
way to keep the technician from seeing the curve. Therefore, a cassette tape-
recorder was substituted for the usual paper strip recorder and the indicator needle 
was covered. These changes required a modification of the aggregometer. All of the 
30 clinics required this equipment, so the adjustment was expensive. However, it 
helped ensure the maintenance of the blind.

Naturally, participants want to be on the “better” intervention. In a drug trial, the 
“better” intervention usually is presumed to be the new one; in the case of a placebo-
control trial, it is presumed to be the active medication. Investigators may also be 
curious about a drug’s identity. For these reasons, consciously or unconsciously, 
both participants and investigators may try to unblind the medication. Unblinding 
can be done deliberately by going so far as to have the drug analyzed, or in a less 
purposeful manner by “accidentally” breaking open capsules, holding pills up to 
the light, carefully testing them, or by taking any of numerous other actions. In the 
first case, which may have occurred in the vitamin C study discussed earlier, little 
can be done to ensure blinding absolutely. Curious participants and investigators 
can discover many ways to unblind the trial, whatever precautions are taken. 
Probably, however, the less purposeful unblinding is more common.

Drug studies, in particular, lend themselves to double-blind designs. One of the 
surest ways to unblind a drug study is to have dissimilar appearing medications. 
When the treatment identity of one participant becomes known to the investigator, 
the whole trial is unblinded. Thus, matching of drugs is essential.

Matching of Drugs

Proper matching has received little attention in the literature. A notable exception is 
the vitamin C study [6, 7] in which of the double-blind was not maintained through-
out the trial. One possible reason given by the investigators was that, in the rush to 
begin the study, the contents of the capsules were not carefully prepared. The lactose 
placebo could easily be distinguished from ascorbic acid by taste, as the study par-
ticipants quickly discovered. An early report is equally disturbing [18]. The authors 
noted that, of 22 studies surveyed, only five had excellent matching between the 
drugs being tested. A number of features of matching must be considered. A 
review of 191 randomized placebo-controlled trials from leading general medicine 
and psychiatry journals showed that 81 (42%) trials reported on the matching of drug 
characteristics [19]. Only 19 (10%) commented on more than one of the matching 
features and appearance was, by far, the most commonly reported characteristic. 
Thus, most reports of drug studies do not indicate how closely tablets or capsules 
resembled one another, or how great a problem was caused by imperfect matching.

Cross-over studies, where each subject sees both medications, require the most 
care in matching. Visual discrepancies can occur in size, shape, color, and texture. 
Ensuring that these characteristics are identical may not be simple. In the case of 
tablets, dyes or coatings may adhere differently to the active ingredient than to the 
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placebo, causing slight differences in color or sheen. Agents can also differ in odor. 
The taste and the local action on the tongue of the active medication are likely to 
be different than those of the placebo. For example, propranolol is a topical anes-
thetic which causes lingular numbness if held in the mouth. Farr and Gwaltney 
reported on problems in matching zinc lozenges against placebo [20]. Because zinc 
lozenges are difficult to blind, the authors questioned whether studies using zinc for 
common cold prevention were truly valid. They conducted trials illustrating that if 
a placebo is inadequately matched, the “unpleasant side effects of zinc” may reduce 
the perception of cold symptoms.

Drug preparations should be pretested if it is possible. One method is to have a 
panel of observers unconnected with the study compare samples of the medica-
tions. Perfect matches are almost impossible to obtain and some differences are to 
be expected. However, beyond detecting differences, it is important to assess 
whether the observers can actually identify the agents. If not, slightly imperfect 
matches may be tolerated. The investigator must remember that, except in cross-
over studies, the participant has only one drug and is therefore not able to make a 
comparison. On the other hand, participants may meet and talk in waiting rooms, 
or in some other way compare notes or pills. Of course, staff always have the oppor-
tunity to compare different preparations and undermine the integrity of a study.

Differences may become evident only after some time due to degradation of the 
active ingredient. Freshly prepared aspirin is relatively odor free, but after a while, 
tell-tale acetic acid accumulates. Ginkgo biloba has a distinct odor and a bitter taste. 
In one trial of Ginkgo, the investigators used coated tablets to mask both odor and 
taste [21]. The tablets were placed in blister packs to reduce the risk of odor. 
Quinine was added to the placebo tablets to make them as bitter as the active drug. 
This approach prevented any known blind-breaking.

The use of substances to mask characteristic taste, color, or odor, as was done in the 
ginkgo biloba trial mentioned above, is often advocated. Adding vanilla to the outside 
of tablets may mask an odor; adding dyes will mask dissimilar colors. A substance such 
as quinine or quassin will impart a bitter taste to the preparations. Not only will these 
chemical substances mask differences in taste, but they will also effectively discourage 
participants from biting into a preparation more than once. However, the possibility that 
they may have toxic effects after long-term use or even cause allergic reactions in a 
small percent of the participants must be considered. It is usually prudent to avoid using 
extra substances unless absolutely essential to prevent unblinding of the study.

Less obviously, the weight or specific gravity of the tablets may differ. Matching 
the agents on all of these characteristics may be impossible. However, if a great deal 
of effort and money are being spent on the trial, a real attempt to ensure matching 
makes sense. The investigator also needs to make sure that the containers are identi-
cal. Bottles and vials need to be free of any marks other than codes which are 
indecipherable except with the key.

Sometimes, two or more active drugs are being compared. The ideal method of 
blinding is to have the active agents look alike, either by formulating them appropriately 
or possibly by enclosing them in identical capsules. The former may not be possible, 
and the latter may be expensive or require capsules too large to be practical. 
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In addition, enclosing tablets in capsules may change the rate of absorption and the 
time to treatment response. In a comparative acute migraine trial, one manufacturer 
benefitted from encapsulating a competitor’s FDA-approved tablet in a gelatin cap-
sule [22]. A better, simpler, and more common option is to implement a “double-
dummy.” Each active agent has a placebo identical to it. Each study participant 
would then take two medications. A pharmaceutical sponsor may sometimes have 
problems finding a matching placebo for a competitor’s product.

If two or more active agents are being compared against placebo, it may not be 
feasible to make all drugs appear identical. As long as each active agent is not being 
compared against another, but only against placebo, one option is to create a placebo 
for each active drug or a so-called “double-dummy.” Another option is to limit the 
number of placebos. For example, assume the trial consists of active drugs A, B, and C 
and placebo groups. If each group is of the same size, one-third of placebo groups will 
take a placebo designed to look like active drug A, one-third will take a placebo 
designed to look like drug B, and one-third, like active drug C. This design was 
successfully implemented in at least one reported study [23].

Coding of Drugs

By drug coding is meant the labeling of individual drug bottles or vials so that the 
identity of the drug is not disclosed. Coding is usually done by means of assigning 
a random set of numbers to the active drug and a different set to the control. As many 
different drug codes as are logistically feasible should be used. At least in smaller 
studies, each participant should have a unique drug code which remains with him for 
the duration of the trial. If only one code were used for each study group, unblinding 
a single participant would result in unblinding everybody. Furthermore, many drugs 
have specific side effects. One side effect in one participant may not be attributable 
to the drug, but a constellation of several side effects in several participants with the 
same drug code may easily unblind the whole study.

Unfortunately, in large studies, it becomes cumbersome logistically to make up 
and stock drugs under hundreds or thousands of unique codes. In multicenter trials, 
all participants at each clinic ought to have a unique code, if possible. Bar coding of 
the bottles with study medication is getting more common. This type of coding has 
no operational limits on the number of unique codes; it simplifies keeping an accurate 
and current inventory of all study medications and helps assure that each participant 
is dispensed his assigned study medication.

Official Unblinding

A procedure should be developed to break the blind quickly for any individual 
participant at any time should it be in his best interest. Such systems include having 
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labels on file in the hospital pharmacy or other accessible locations, or having an 
“on call” 24 hour-a-day process so that the assignment can be decoded. In order to 
avoid needless breaking of the code, someone other than the investigator could hold 
a list that reveals the identity of each drug code. Alternatively, each study medica-
tion bottle label might have a sealed tear-off portion that would be filed in the 
pharmacy or with the participant’s records. In an emergency, the seal could be 
opened and the drug identity revealed. Care should be taken to ensure that the 
sealed portion is of appropriate color and thickness to prevent reading through it. 
In one study, the sealed labels attached to the medication bottles were transparent 
when held up to strong light.

Official breaking of the blind may be necessary. There are bound to be situations 
that require disclosures, especially in long-term studies. Perhaps the study drug 
requires tapering the dosage. In an emergency, knowledge that a participant is or is 
not on the active drug would indicate whether tapering is necessary. Children may 
get hold of study pills and swallow them. Usually, most emergencies can be handled 
by withdrawing the medication without breaking the blind. When the treating physi-
cian is different from the study investigator, a third party can obtain the blinded 
information from the pharmacy or central data repository and relate the information 
to the treating physician. In this way, the participant and the study investigator need 
not be unblinded. Knowledge of the kind of intervention seldom influences emer-
gency care of the participant, and such reviews have helped reduce the frequency of 
further unblinding. When unblinding does occur, the investigator should review and 
report the circumstances which led to it in the results paper.

In summary, double-blind trials require careful planning and constant monitoring 
to ensure that the blind is maintained and that participant safety is not jeopardized.

Inadvertent Unblinding

The phrase “truly double-blind study” was used earlier. While many studies are 
designed as double- or single-blind, it is unclear how many, in fact, are truly and 
completely blind. Intended physiologic effects of a drug may be readily observable. 
Moreover, drugs have side effects, some of which are fairly characteristic. Known 
pharmaceutical effects of the study medication may lead to unblinding. Inhalation 
of short-acting beta-agonists causes tremor and tachycardia within minutes in most 
users. Even the salt of the active agent can cause side effects that lead to unblinding. 
For example, the blinded design was broken in a clinical trial comparing the com-
monly used ranitidine hydrochloride to a new formulation of ranitidine bismuth 
citrate. The bismuth-containing compound colored the tongue of its users black. 
Rifampin, a standard treatment for tuberculosis, causes the urine to change color. 
Existence or absence of such side effects does not necessarily unblind drug assign-
ment since all people on drugs do not develop reactions and some people on placebo 
develop events which can be mistaken for drug side effects. It is well known that 
aspirin is associated with gastrointestinal problems. In the Women’s Health Study 
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[24], 2.7% of the participants in the low-aspirin group developed peptic ulcer. On 
the other hand, 2.1% of the placebo participants had the same condition. This dif-
ference is highly significant (p < 0.001), but having an ulcer, in itself, would not 
unblind.

Occasionally, accidental unblinding occurs. In some studies, a special center 
labels and distributes drugs to the clinic where participants are seen. Obviously, 
each carton of drugs sent from the pharmaceutical company to this distribution 
center must contain a packing slip identifying the drug. The distribution center puts 
coded labels on each bottle and removes the packing slip before sending the drugs 
to the investigator. In one instance, one carton contained two packing slips by mis-
take. The distribution center, not realizing this, shipped the carton to the investigator 
with the second packing slip enclosed. Thus, it is advisable to empty cartons com-
pletely before re-using them.

Laboratory errors have also occurred. These are particularly likely when, to 
prevent unblinding, only some laboratory results are given to the investigators. 
Occasionally, investigators have received the complete set of laboratory results. 
This usually happens at the beginning of a study before “bugs” have been worked 
out, or when the laboratory hires new personnel who are unfamiliar with the proce-
dures. If a commercial laboratory performs the study determinations, the tests 
should be done in a special area of the laboratory, with safeguards to prevent study 
results from getting intermingled with routine work. Routine laboratory panels 
obtained during regular clinical care of patients may include laboratory results that 
could lead to unblinding. In a large, long-term trial of a lipid-lowering drug, the 
investigators were discouraged from getting serum cholesterol determination on 
their coronary patients. It is difficult to know how many complied.

In addition, monitoring the use of study medication prescribed outside the study 
is essential. Any group differences might be evidence of a deficiency in the blind. 
Another way of estimating the success of a double-blind design is to monitor spe-
cific intermediate effects of the study medication. The use of platelet aggregation 
in the Aspirin Myocardial Infarction Study is an example. An unusually large num-
ber of participants with non-aggregating platelets in the placebo group would raise 
the suspicion that the blind had been broken.

Assessment and Reporting of Blindness

The importance of blindness in avoiding bias is well established in clinical trials. 
However, the assessment and reporting of blindness do not always receive proper 
attention. Readers of trial reports are often given incomplete information about the 
type of blinding and its success during the trial. This is a potential concern since 
randomized trials with inadequate blinding, on average, show larger treatment 
effects than properly blinded trials [25].

In their systematic review of 819 articles of blinded randomized trials assessing 
pharmacologic treatment, Boutron et al. [26] considered three blinding methods – (1) 
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the initial blinding of participants and investigators, (2) the maintenance of this 
blinding, and (3) the blinding of those assessing trial outcomes. Overall, only 472 
of the blinded reports (58%) described the method of blinding, while 13% gave 
some information, and 29% none at all. The methods to establish blinding were 
presented in 41% of the reports. These included different types of matching, the use of 
a “double-dummy” procedure, sham interventions, and masking of the specific 
taste of the active treatments. The methods to maintain blinding during the trial, 
reported in only 3% of the articles, included a blinded centralized system for dos-
age adjustments in all study groups and centralized assessment of intermediate 
treatment effects (i.e., lipid determinations in statin trial). The methods for blinded 
assessment were described in 14% of the reports. They are especially useful in trials 
when blinding of intervention cannot be established. The main method was a cen-
tralized assessment of the primary outcome by blinded classification committees.

In assessing the success of blindness, decisions have to be made when to con-
duct the assessment and what questions to ask. There are different views as to when 
to assess blindness – early after randomization, throughout the trial or at the end 
[27]. Early assessment in a double-blind trial would be a measure of the initial suc-
cess of blinding. Repeated questioning may trigger the curiosity of the study par-
ticipants. Assessment at the end “confounds failures in blinding with successes in 
pre-trial hunches about efficacy” [28]. If study participants do well, there is a ten-
dency for them to predict that they received active treatment; if they have suffered 
events or perceived no improvement, their prediction is more likely to be placebo. 
Similarly, investigators’ hunches about efficacy can also be influenced by their 
preconceived expectations as illustrated by Sackett [29]. He concluded that “We 
neither can nor need to test for blindness during and after trial,…” It is more important 
to look for the consequences that may result from its loss. These include controls 
getting the active study medication, compensatory co-intervention, and/or evidence 
that the participants on the “better” treatment downplayed symptoms and denied 
mild events. Even investigators may downplay “soft” outcomes to fit their hopes or 
expectations.

A review of trials assessing blinding and reporting the methods used, concluded 
that there are diverse views regarding what questions to ask [27]. Some investigators 
allowed the subjects to express uncertainty while others forced them to guess. In 
some studies, the participants were asked to express their certainty of the guess or 
to explain the reason(s) for their guesses. It has been pointed out that the different 
ways of asking the questions “will lead to different results that may not be directly 
comparable” [30].

In a survey of 191 placebo-controlled double-blind trials published in 1998–2001, 
the authors evaluated how often the success of blindness was reported [19]. Only 
15 (8%) reported evidence of success, and of these 15 trials, blinding was imperfect 
in nine. A similar survey of 1,599 blinded randomized trials from 2001 reported that 
only 2% of the trials reported tests for the success of blinding [31]. Interestingly, 
many investigators had conducted, but not published such tests.

In 2010, the Consolidated Standards for Reporting of Trials (CONSORT) Group 
published a revised statement. Item 11 of the recommendations asks two questions 
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about blinding: “If done, who was blinded after assignment of interventions (for 
example, participants, care providers, those assessing outcomes) and how? If relevant, 
description of the similarity of interventions” [32]. We believe that monitoring and 
reporting of the success of blindness are important for two reasons. First, knowing 
that the level of this success is one of the measures of trial quality may keep the 
investigators’ attention on blindness during trial conduct. Second, it helps readers of 
the trial report determine how much confidence they can place on the trial results.
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The size of the study should be considered early in the planning phase. In some 
instances, no formal sample size is ever calculated. Instead, the number of partici-
pants available to the investigators during some period of time determines the size of 
the study. Many clinical trials that do not carefully consider the sample size require-
ments turn out to lack the statistical power or ability to detect intervention effects 
of a magnitude that has clinical importance. In 1978, Freiman and colleagues [1] 
reviewed the power of 71 published randomized controlled clinical trials, which 
failed to find significant differences between groups. “Sixty-seven of the trials had a 
greater than 10% risk of missing a true 25% therapeutic improvement, and with the 
same risk, 50 of the trials could have missed a 50% improvement.” In other instances, 
the sample size estimation may assume an unrealistically large intervention effect. 
Thus, the power for more realistic intervention effects will be low or less than 
desired. The danger in studies with low statistical power is that interventions that 
could be beneficial are discarded without adequate testing and may never be consid-
ered again. Certainly, many studies do contain appropriate sample size estimates, 
but many are still too small.

This chapter presents an overview of sample size estimation with some details. 
Several general discussions of sample size can be found elsewhere [2–11]. For example , 
Lachin [2] and Donner [7] have each written a more technical discussion of this 
topic. For most of the chapters, the focus is on sample size where the study is random-
izing individuals. In some sections, the concept of sample size for randomizing 
clusters of individuals or organs within individuals is presented.

Fundamental Point

Clinical trials should have sufficient statistical power to detect differences between 
groups considered to be of clinical importance. Therefore, calculation of sample 
size with provision for adequate levels of significance and power is an essential 
part of planning.

Before a discussion of sample size and power calculations, it must be emphasized 
that, for several reasons, a sample size calculation provides only an estimate of the 
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needed size of a trial [3]. First, parameters used in the calculation are estimates, and 
as such, have an element of uncertainty. Often these estimates are based on small 
studies. Second, the estimate of the relative effectiveness of the intervention over 
the control may be based on a population different from that intended to be studied. 
Third, the effectiveness is often overestimated since published pilot studies may be 
highly selected and researchers are often too optimistic. Fourth, during the final 
planning stage of a trial, revisions of inclusion and exclusion criteria may influence 
the types of participants entering the trial and thus alter earlier assumptions used 
in the sample size calculation. Assessing the impact of such changes in criteria and 
the screening effect is usually quite difficult. Trial experience indicates that partici-
pants enrolled into control groups usually do better than the population from which 
the participants were drawn. The reasons are not entirely clear. One factor could 
be that participants with the highest risk of developing the outcome of interest are 
excluded in the screening process. In trials involving chronic diseases, because of 
the research protocol, participants might receive more care and attention than they 
would normally be given, thus improving their prognosis. Participants assigned to 
the control group may, therefore, be better off than if they had not been in the trial 
at all. Finally, sample size calculations are based on mathematical models that may 
only approximate the true, but unknown, distribution of the response variables.

Due to the approximate nature of sample size calculations, the investigator should 
be as conservative as can be justified while still being realistic in estimating the 
parameters used in the calculation. If a sample size is drastically overestimated, 
the trial may be judged as unfeasible. If the sample size is underestimated, there is a 
good chance the trial will fall short of demonstrating any differences between study 
groups. In general, as long as the calculated sample size is realistically obtainable, it 
is better to overestimate the size and possibly terminate the trial earlier (Chap. 16) 
than to underestimate, and need to justify an increase in sample size or an extension 
in follow-up, or worse, to arrive at incorrect conclusions.

Statistical Concepts

An understanding of the basic statistical concepts of hypothesis testing, significance 
level, and power is essential for a discussion of sample size estimation. A brief 
review of these concepts follows. Further discussion can be found in many basic 
medical statistics textbooks [12–19] as well as selected review papers [4, 5, 7]. 
Those with no prior exposure to these basic statistical concepts might find these 
resources helpful.

Except where indicated, trials of one intervention group and one control group 
will be discussed. With some adjustments, sample size calculations can be made for 
studies with more than two groups. For example, in the Coronary Drug Study 
(CDP), five active intervention arms were each compared against one control arm 
[20]. Using the method of Dunnett [21], where the control group has the number of 
participants equal to the square root of the number assigned to the combined number 
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in the active intervention groups, the optimal size of the control arm in the CDP was 
determined to be 2.24 times the size of each individual active intervention arm [20]. 
In fact, the CDP used a factor of 2.5 in order to minimize variance. Other approaches 
are to use the Bonferroni adjustment to the alpha level [22]; that is, divide the overall 
alpha level by the number of comparisons, and use that revised alpha level in the 
sample size comparison.

Before computing sample size, the primary response variable used to judge the 
effectiveness of intervention must be identified (see Chap. 3). This chapter will 
consider sample size estimation for three basic kinds of outcomes: [1] dichotomous 
response variables, such as success and failure, [2] continuous response variables, 
such as blood pressure level or a change in blood pressure, and [3] time to failure 
(or occurrence of a clinical event).

For the dichotomous response variables, the event rates in the intervention group 
(p

I
) and the control group (p

C
) are compared. For continuous response variables, 

the true, but unknown, mean level in the intervention group (m
I
) is compared with the 

mean level in the control group (m
C
). For survival data, a hazard rate, l, is often 

compared for the two study groups or at least is used for sample size estimation. 
Sample size estimates for response variables which do not exactly fall into any of 
the three categories can usually be approximated by one of them.

In terms of the primary response variable, p
I
 will be compared with p

C
 or m

I
 will 

be compared with m
C
. This discussion will use only the event rates, p

I
, and p

C
, 

although the same concepts will hold if response levels m
I
 and m

C
 are substituted 

appropriately. Of course, the investigator does not know the true values of the event 
rates. The clinical trial will give him only estimates of the event rates, p

I
 and p

C
. 

Typically, an investigator tests whether or not a true difference exists between the 
event rates of participants in the two groups. The traditional way of indicating this 
is in terms of a null hypothesis, denoted H

0
, which states that no difference 

between the true event rates exists (H
0
: p

C
 − p

I
 = 0). The goal is to test H

0
 and decide 

whether or not to reject it. That is, the null hypothesis is assumed to be true until 
proven otherwise.

Because only estimates of the true event rates are obtained, it is possible that, even 
if the null hypothesis is true (p

C
 − p

I
 = 0), the observed event rates might by 

chance be different. If the observed differences in event rates are large enough by chance 
alone, the investigator might reject the null hypothesis incorrectly. This false positive 
finding, or Type I error, should be made as few times as possible. The probability 
of this Type I error is called the significance level and is denoted by a. The prob-
ability of observing differences as large as, or larger than the difference actually 
observed given that H

0
 is true is called the “p value,” denoted as p. The decision 

will be to reject H
0
 if p £ a. While the chosen level of a is somewhat arbitrary, the 

ones used and accepted traditionally are 0.01, 0.025, or 0.05. As will be shown 
later, as a is set smaller, the required sample size estimate increases.

If the null hypothesis is not in fact true, then another hypothesis, called the alterna-
tive hypothesis, denoted by H

A
, must be true. That is, the true difference between the 

event rates p
I
 and p

C
 is some value d where d ¹ 0. The observed difference, C Iˆ ˆp p− , 

can be quite small by chance alone even if the alternative hypothesis is true. 
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Therefore, the investigator could, on the basis of small observed differences, fail to 
reject H

0
 when he should. This is called a Type II error, or a false negative result. 

The probability of a Type II error is denoted by b. The value of b is dependent on 
the specific value of d, the true but unknown difference in event rates between the 
two groups, as well as on the sample size and a. The probability of correctly reject-
ing H

0
 is denoted by 1 − b and is called the power of the study. Power quantifies the 

ability of the study to find true differences of various values d. Since b is a function 
of a, the sample size and d, 1 − b is also a function of these parameters. The plot of 
1 − b versus d for a given sample size is called the power curve and is depicted in 
Fig. 8.1. On the horizontal axis, values of d are plotted from 0 to an upper value, d

A
 

(0.25 in this figure). On the vertical axis, the probability or power of detecting a 
true difference d is shown for a given significance level and sample size. In con-
structing this specific power curve, a sample size of 100 in each group, a one-sided 
significance level of 0.05 and a control group event rate of 0.5 (50%) were assumed. 
Note that as d increases, the power to detect d also increases. For example, if 
d = 0.10, the power is approximately 0.40. When d = 0.20, the power increases to 
about 0.90. Typically, investigators like to have a power (1 − b) of at least 0.80, but 
often around 0.90 or 0.95 when planning a study; that is to have an 80, 90, or 95% 
chance of finding a statistically significant difference between the event rates, given 
that a difference, d, actually exists.

Since the significance level a should be small, say 0.05 or 0.01, and the power 
(1 − b) should be large, say 0.90 or 0.95, the only quantities which are left to vary 
are d, the size of the difference being tested for, and the total sample size. In plan-
ning a clinical trial, the investigator hopes to detect a difference of specified 

Fig. 8.1 A power curve for increasing differences (d) between the control group rate of 0.5 and the 
intervention group rate with a one-sided significance level of 0.05 and a total sample size (2N) of 200
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magnitude d or larger. One factor that enters into the selection of d is the minimum 
difference between groups that is judged to be clinically important. In addition, 
previous research may provide estimates of d. This is part of the question being 
tested as  discussed in Chap. 3. The exact nature of the calculation of the sample 
size, given a, 1 − b, and d is considered here. It can be assumed that the randomiza-
tion strategy will allocate an equal number (N) of participants to each group, since 
the variability in the responses for the two groups is approximately the same, equal 
allocation provides a slightly more powerful design than does unequal allocation. 
For unequal allocation to yield an appreciable increase in power, the variability 
needs to be substantially different  in the groups [23]. Since equal allocation is usu-
ally easier to implement, it is the more frequently used strategy and will be assumed 
here for simplicity.

Before a sample size can be calculated, classical statistical theory says that the 
investigator must decide whether he is interested in differences in one direction 
only (one-sided test) – say improvements in intervention over control – or in differ-
ences in either direction (two-sided test). This latter case would represent testing 
the hypothesis that the new intervention is either better or worse than the control. 
In general, two-sided tests should be used unless there is a very strong justification 
for expecting a difference in only one direction. An investigator should always keep 
in mind that any new intervention could be harmful as well as helpful. However, as 
discussed in Chap. 16, some investigators may not be willing to prove the intervention 
harmful and would terminate a study if the results are suggestive of harm. A classic 
example of this issue was provided by the Cardiac Arrhythmia Suppression Trial or 
CAST [24]. This trial was initially designed as a one-sided, 0.025 significance level 
hypothesis test that anti-arrhythmic drug therapy would reduce the incidence of 
sudden cardiac death. Since the drugs were already marketed, harmful effects were 
not expected. Despite the one-sided hypothesis in the design, the monitoring pro-
cess used a two-sided, 0.05 significance level approach. In this respect, the level of 
evidence for benefit was the same for either the one-sided 0.025 or two-sided 0.05 
significance level design. As it turned out, the trial was terminated early due to 
increased mortality in the intervention group (see Chap. 16).

If a one-sided test of hypothesis is chosen, in most circumstances, the signifi-
cance level ought to be half what the investigator would use for a two-sided test. 
For example, if 0.05 is the two-sided significance level typically used, 0.025 
would be used for the one-sided test. As done in the CAST trial, this requires 
the same degree of evidence or scientific documentation to declare a treatment 
effective, regardless of the one-sided versus two-sided question. In this circum-
stance, a test for negative or harmful effects might also be done at the 0.025 level. 
This in effect, provides two one-sided 0.025 hypothesis tests for an overall 0.05 
significance level.

As mentioned above, the total sample size 2N (N per arm) is a function of the 
significance level (a), the power (1 − b), and the size of the difference in response 
(d), which is to be detected. Changing either a, 1 − b, or d will result in a change in 
2N. As the magnitude of the difference d decreases, the larger the sample size must 
be to guarantee a high probability of finding that difference. If the calculated 
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 sample size is larger than can be realistically obtained, then one or more of the 
parameters in the design may need to be reconsidered. Since the significance level 
is usually fixed at 0.05, 0.025, or 0.01, the investigator should generally reconsider 
the value selected for d and increase it, or keep d the same and settle for a less 
powerful study. If neither of these alternatives is satisfactory, serious consideration 
should be given to abandoning the trial.

Rothman [25] argued that journals should encourage using confidence intervals 
to report clinical trial results instead of significance levels. Several researchers 
[14, 25, 26] discuss sample size formulas from this approach. Confidence intervals 
are constructed by computing the observed difference in event rates and then adding 
and subtracting a constant times the standard error of the difference. This provides 
an interval surrounding the observed estimated difference obtained from the trial. 
The constant is determined so as to give the confidence interval the correct prob-
ability of including the true, but unknown difference. This constant is related 
directly to the critical value used to evaluate test statistics. Trials often use a two-
sided a level test (e.g., a = 0.05) and a corresponding (1 − a) confidence interval 
(e.g., 95%). If the 1 − a confidence interval excludes zero or no difference, we would 
conclude that the intervention has an effect. If the interval contains zero difference, 
no intervention effect would be claimed. However, differences of importance could 
exist, but might not be detected or not be statistically significant because the 
sample size was too small. For testing the null hypothesis of no treatment effect, 
hypothesis testing and confidence intervals give the same conclusions. However, 
confidence intervals provide more information on the range of the likely difference 
that might exist. For sample size calculations, the desired confidence interval width 
must be specified. This may be determined, for example, by the smallest difference 
between two event rates that would be clinically meaningful and important. Under 
the null hypothesis of no treatment effect, half the desired interval width is equal 
to the difference specified in the alternative hypothesis. The sample size calculation 
methods presented here do not preclude the presentation of results as confidence 
intervals and, in fact, investigators ought to do so. However, unless there is an 
awareness of the relationship between the two approaches, as McHugh and Le [26] 
have pointed out, the confidence interval method might yield a power of only 50% 
to detect a specified difference. This can be seen later, when sample size calcula-
tions for comparing proportions are presented. Thus, some care needs to be taken 
in using this method.

So far, it has been assumed that the data will be analyzed only once at the end 
of the trial. However, as discussed in Chap. 16, the response variable data may be 
reviewed periodically during the course of a study. Thus, the probability of finding 
significant differences by chance alone is increased [27]. This means that the signifi-
cance level a may need to be adjusted to compensate for the increase in the prob-
ability of a Type I error. For purposes of this discussion, we assume that a carries 
the usual values of 0.05, 0.025, or 0.01. The sample size calculation should also 
employ the statistic which will be used in data analysis. Thus, there are many 
sample size formulations. Methods that have proven useful will be discussed in the 
rest of this chapter.
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Dichotomous Response Variables

We shall consider two cases for response variables which are dichotomous, that is, 
yes or no, success or failure, presence or absence. The first case assumes two inde-
pendent groups or samples [28–40]. The second case is for dichotomous responses 
within an individual, or paired responses [41–45].

Two Independent Samples

Suppose the primary response variable is the occurrence of an event over some 
fixed period of time. The sample size calculation should be based on the specific 
test statistic that will be employed to compare the outcomes. The null hypothesis 
H

0
 (p

C
 − p

I
 = 0) is compared to an alternative hypothesis H

A
 (p

C
 − p

I
 ¹ 0). The 

 estimates of p
I
 and p

C
 are Ip̂ and Cp̂ where I I Iˆ /p r N= and C C Cˆ /p r N= with r

I
 and 

r
C
 being the number of events in the intervention and control groups and N

I
 and N

C
 

being the number of participants in each group. The usual test statistic for comparing 
such dichotomous or binomial responses is

 
C I C Iˆ ˆ( ) (1 )(1/ 1/ )/Z p p p p N N= − − +  

where I C I C( ) / ( )p r r N N= + + . The square of the Z statistic is algebraically equiv-
alent to the chi-square statistic, which is often employed as well. For large values 
of N

I
 and N

C
, the statistic Z has approximately a normal distribution with mean 0 

and variance 1. If the test statistic Z is larger in absolute value than a constant Za, 
the investigator will reject H

0
 in the two-sided test.

The constant Za is often referred to as the critical value. The probability of a 
standard normal random variable being larger in absolute value than Za is a. For a 
one-sided hypothesis, the constant Za is chosen such that the probability that Z is 
greater (or less) than Za is a. For a given a, Za is larger for a two-sided test than for 
a one-sided test (Table 8.1). Za for a two-sided test with a = 0.10 has the same value 
as Za for a one-sided test with a = 0.05. While a smaller sample size can be achieved 
with a one-sided test compared to a two-sided test at the same a level, we in general 
do not recommend this approach as discussed earlier.

The sample size required for the design to have a significance level a and a 
power of 1 − b to detect true differences of at least d between the event rates p

I
 and 

p
C
 can be expressed by the formula [2]:

{ }2
2

C C I I C I2 2 2 (1 ) (1 ) (1 ) ( )N Z p p Z p p p p p pα β= − + − + − −

where 2N = total sample size (N participants/group) with C I( ) / 2p p p= + ; Za is 
the critical value which corresponds to the significance level a; and Zb is the value 
of the standard normal value not exceeded with probability b. Zb corresponds to the 
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power 1 − b (e.g., if 1 − b = 0.90, Zb = 1.282). Values of Za and Zb are given in 
Tables 8.1 and 8.2 for several values of a and 1 − b. More complete tables may be 
found in most introductory texts [12–19]. Note that the definition of p given earlier 
is equivalent to the definition of p given here when N

I
 = N

C
; that is, when the two 

study groups are of equal size. An alternative to the above formula is given by

 2 2
C I2 4( ) (1 ) / ( )N Z Z p p p pα β= + − −  

These two formulas give approximately the same answer and either may be used 
for the typical clinical trial.

Example: Suppose the annual event rate in the control group is anticipated to be 
20%. The investigator hopes that the intervention will reduce the rate to 15%. The study 
is planned so that each participant will be followed for 2 years. Therefore, if the 
assumptions are accurate, approximately 40% of the participants in the control group 
and 30% of the participants in the intervention group will develop an event. Thus, the 
investigator sets p

C
 = 0.40, p

I
 = 0.30, and therefore (0.4 0.3) / 2 0.35= + =p . The study 

is designed as two-sided with a 5% significance level and 90% power. From Tables 8.1 
and 8.2, the two-sided 0.05 critical value is 1.96 for Zb and 1.282 for Zb. Substituting 
these values into the right-hand side of the first sample size formula yields 2N to be

 { }2
22 1.96 2(0.35)(0.65) 1.282 0.4(0.6) 0.3(0.7) (0.4 0.3)+ + −  

Evaluating this expression, 2N equals 952.3. Using the second formula, 2N is 
4(1.96 + 1.202)2 (0.35)(0.65)/(0.4 − 0.3)2 or 2N = 956. Therefore, after rounding up 
to the nearest 10, the calculated total sample size by either formula is 960, or 
480 in each group.

Sample size estimates using the first formula are given in Table 8.3 for a variety 
of values of p

I
 and p

C
, for two-sided tests, and for a = 0.01, 0.025, and 0.05 and 

1 − b = 0.80 or 0.90. For the example just considered with a = 0.05 (two-sided), 
1 − b = 0.90, p

C
 = 0.4, and p

I
 = 0.3, the total sample size using Table 8.3 is 960. This 

table shows that, as the difference in rates between groups increases, the sample 
size decreases.

The event rate in the intervention group can be written as p
I
 = (1 − k)p

C
 where 

k represents the proportion that the control group event rate is expected to be 
reduced by the intervention. Figure 8.2 shows the total sample size 2N versus k for 

Table 8.1 Za for sample size formulas for various 
values of a

a

Za

One-sided test Two-sided test

0.10 1.282 1.645
0.05 1.645 1.960
0.025 1.960 2.240
0.01 2.326 2.576
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several values of p
C
 using a two-sided test with a = 0.05 and 1 − b = 0.90. In the 

example where p
C
 = 0.4 and p

I
 = 0.3, the intervention is expected to reduce the con-

trol rate by 25% or k = 0.25. In Fig. 8.2, locate k = 0.25 on the horizontal axis and 
move up vertically until the curve labeled p

C
 = 0.4 is located. The point on this curve 

corresponds to a 2N of approximately 960. Notice that as the control group event 
rate p

C
 decreases, the sample size required to detect the same proportional reduction 

increases. Trials with small event rates (e.g., p
C
 = 0.1) require large sample sizes 

unless the interventions have a dramatic effect.
In order to make use of the sample size formula or table, it is necessary to know 

something about p
C
 and k. The estimate for p

C
 is usually obtained from previous 

Table 8.2 Zb for sample size formulas 
for various values of power (1 − b)

1 − b Zb

0.50 0.00
0.60 0.25
0.70 0.53
0.80 0.84
0.85 1.036
0.90 1.282
0.95 1.645
0.975 1.960
0.99 2.326

Table 8.3 Sample size

2a (Two-sided)

Alpha/power 0.01 0.025 0.05

p
C

p
I

0.90 0.80 0.90 0.80 0.90 0.80

0.6 0.5 1,470 1,160 1,230 940 1,040 780
0.4 370 290 310 240 260 200
0.3 160 130 140 110 120 90
0.20 90 70 80 60 60 50

0.5 0.40 1,470 1,160 1,230 940 1,040 780
0.30 360 280 300 230 250 190
0.25 220 180 190 140 160 120
0.20 150 120 130 100 110 80

0.4 0.30 1,360 1,060 1,130 870 960 720
0.25 580 460 490 370 410 310
0.20 310 250 260 200 220 170

0.3 0.20 1,120 880 930 710 790 590
0.15 460 360 390 300 330 250
0.10 240 190 200 150 170 130

0.20 0.15 3,440 2,700 2,870 2,200 2,430 1,810
0.10 760 600 630 490 540 400
0.05 290 230 240 190 200 150

0.10 0.05 1,650 1,300 1,380 1,060 1,170 870
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studies of similar people. In addition, the investigator must choose k based on 
preliminary evidence of the potential effectiveness of the intervention or be willing 
to specify some minimum difference or reduction that he wants to detect. Obtaining 
this information is difficult in many cases. Frequently, estimates may be based on 
a small amount of data. In such cases, several sample size calculations based on a 
range of estimates help to assess how sensitive the sample size is to the uncertain 
estimates of p

C
, k, or both. The investigator may want to be conservative and take 

the largest, or nearly largest, estimate of sample size to be sure his study has suf-
ficient power. The power (1 − b) for various values of d can be compared for a given 
sample size 2N, significance level a, and control rate p

C
. By examining a power 

curve such as in Fig. 8.1, it can be seen what power the trial has for detecting vari-
ous differences in rates, d. If the power is high, say 0.80 or larger, for the range of 
values d that are of interest, the sample size is probably adequate. The power curve 
can be especially helpful if the number of available participants is relatively fixed 
and the investigator wants to assess the probability that the trial can detect any of a 
variety of reductions in event rates.

Investigators often overestimate the number of eligible participants who can be 
enrolled in a trial. The actual number enrolled may fall short of goal. To examine 

Fig. 8.2 Relationship between total sample size (2N) and reduction (k) in event rate for several 
control group event rates (p

C
), with a two-sided significance level of 0.05 and power of 0.90
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the effects of smaller sample sizes on the power of the trial, the investigator may 
find it useful to graph power as a function of various sample sizes. If the power falls 
far below 0.8 for a sample size that is very likely to be obtained, he can expand the 
recruitment effort, hope for a larger intervention effect than was originally assumed, 
accept the reduced power and its consequences or abandon the trial.

To determine the power, the second sample size equation in this section is solved 
for Zb.

I

Z 2 (1 ) ( )
Z

(1 ) (1 )
C I

C C I

p p N p p

p p p p

− − + −
=

− + −
a

b

where p  as before is (p
C
 + p

I
)/2. The term Zb can be translated into a power of 1 − b 

by use of Table 8.2. For example, let p
C
 = 0.4 and p

I
 = 0.3. For a significance level 

of 0.05 in a two-sided test of hypothesis, Za is 1.96. In a previous example, it was 
shown that a total sample of approximately 960 participants or 480 per group is 
necessary to achieve a power of 0.90. Substituting Za = 1.96, N = 480, p

C
 = 0.4, and 

p
I
 = 0.3, a value for Zb = 1.295 is obtained. The closest value of Zb in Table 8.2 is 

1.282 which corresponds to a power of 0.90. (If the exact value of N = 476 were 
used, the value of Zb would be 1.282.) Suppose an investigator thought he could get 
only 350 participants per group instead of the estimated 480. Then, Zb = 0.818, 
which means that the power is somewhat less than 0.80. If the value of Zb is nega-
tive, the power is less than 0.50. For more details of power calculations, a standard 
text in biostatistics [12–19] should be consulted.

For a given 2N, a, 1 − b, and p
C
, the reduction in event rate that can be detected 

can also be calculated. This function is nonlinear, and therefore the details will not 
be presented here. Approximate results can be obtained by scanning Table 8.3, by 
using the calculations for several p

I
 until the sample size approaches the planned 

number, or by using a figure where sample sizes have been plotted. In Fig. 8.2, a 
is 0.05 and 1 − b is 0.90. If the sample size is selected as 1,000, with p

C
 = 0.4, k is 

determined to be about 0.25. This means that the expected p
I
 would be 0.3. As can 

be seen in Table 8.3, the actual sample size for these assumptions is 960.
The above approach yields an estimate which is more accurate as the sample size 

increases. Modifications [28–35, 37] have been developed which give some 
improvement in accuracy to the approximate formula presented for small studies. 
However, given that sample size estimation is somewhat imprecise due to assump-
tions of intervention effects and event rates, the formulation presented is probably 
adequate for most clinical trials.

Designing a trial comparing proportions using the confidence interval approach, 
we would need to make a series of assumptions as well [3, 23, 37]. A 100(1 − a)% 
confidence interval for a treatment comparison q would be of the general form 

( )aq q±
 

Z SE , where q


 is the estimate for q and ( )q


SE is the standard error of q


. 
In this case, the specific form would be:

 ˆ ˆ (1 )(1/ 1/ )( )I C I Cp p Z p p N N− ± − +a  
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If we want the width of the confidence interval (CI) not to exceed W
CI

, where W
CI

 
is the difference between the upper confidence limit and the lower confidence limit, 
then if N = N

I
 = N

C
, the width W

CI
 can be expressed simply as:

 2 (1 )(2 / )CIW Z p p N= −a  

or after solving this equation for N,

 
2

2

8 (1 )

( )
a

CI

Z p p
N

W

−
=  

Thus, if a is 0.05 for a 95% confidence interval, p
C
 = 0.4 and p

I
 = 0.3 or 0.35, 

N = 8(1.96)2(0.35)(0.65)/(W
CI

)2. If we desire the upper limit of the confidence inter-
val to be not more than 0.10 from the estimate or the width to be twice that, then 
W

CI
 = 0.20 and N = 175 or 2N = 350. Notice that even though we are essentially look-

ing for differences in p
C
 − p

I
 to be the same as our previous calculation, the sample 

size is smaller. If we let p
C
 − p

I
 = W

CI
/2 and substitute this into the previous sample 

size formula, we obtain

 
{ }
{ }

2 2

2 2

2 2 (1 ) / ( / 2)

8 (1 ) / ( )

CI

CI

N Z Z p p W

Z Z p p W

= + −

= + −

a b

a b

 

This formula is very close to the confidence interval formula for two proportions. If 
we select 50% power, b is 0.50 and Zb is 0 which would yield the confidence interval 
formula. Thus, a confidence interval approach gives 50% power to detect differences 
of W

CI
/2. This may not be adequate, depending on the situation. In general, we prefer 

to specify greater power (e.g., 80–90%) and use the previous approach.
Analogous sample size estimation using the confidence interval approach may 

be used for comparing means, hazard rates, or regression slopes. We do not present 
details of these since we prefer to use designs which yield power greater than that 
obtained from a confidence interval approach.

Paired Dichotomous Response

For designing a trial where the paired outcomes are binary, the sample size estimate 
is based on McNemar’s test [41–45]. We want to compare the frequency of success 
within an individual on intervention with the frequency of success on control 
(i.e., p

I
 − p

C
). McNemar’s test compares difference in discordant responses within 

an individual p
I
 − p

C
, between intervention and control.

In this case, the number of paired observations, N
p
, may be estimated by:

 
2

2 2
pN Z f Z f d d = + − a b
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where d = difference in the proportion of successes (d = p
I
 − p

C
) and f is the propor-

tion of participants whose response is discordant. An alternative approximate for-
mula for N

p
 is

 

2

2

[ ]
p

Z Z f
N

d

+
= a b

 

Example: Consider an eye study where one eye is treated for loss in visual acuity 
by a new laser procedure and the other eye is treated by standard therapy. The fail-
ure rate on the control P

C
 is estimated to be 0.40, and the new procedure is projected 

to reduce the failure rate to 0.20. The discordant rate f is assumed to be 0.50. Using 
the latter sample size formula for a two-sided 5% significance level and 90% 
power, the number of pairs N

p
 is estimated as 132. If the discordant rate is 0.8, then 

210 pairs of eyes will be needed.

Adjusting Sample Size to Compensate for Nonadherence

During the course of a clinical trial, participants will not always adhere to their 
prescribed intervention schedule. The reason is often that the participant cannot 
tolerate the dosage of the drug or the degree of intervention prescribed in the pro-
tocol. The investigator or the participant may then decide to follow the protocol 
with less intensity. At all times during the conduct of a trial, the participant’s wel-
fare must come first and meeting those needs may not allow some aspects of the 
protocol to be followed. Planners of clinical trials must recognize this possibility 
and attempt to account for it in their design. Examples of adjusting for nonadher-
ence with dichotomous outcomes can be found in several clinical trials [46–53].

In the intervention group, a participant who does not adhere to the intervention 
schedule is often referred to as a “drop-out.” Participants who stop the intervention 
regimen lose whatever potential benefit the intervention might offer. Similarly, a 
participant on the control regimen may at some time begin to use the intervention 
that is being evaluated. This participant is referred to as a “drop-in.” In the case of 
a drop-in, a physician may decide, for example, that surgery is required for a par-
ticipant assigned to medical treatment in a clinical trial of surgery versus medical 
care [50]. Drop-in participants from the control group who start the intervention 
regimen will receive whatever potential benefit or harm that the intervention might 
offer. Therefore, both the drop-out and drop-in participants must be acknowledged 
because they tend to dilute any difference between the two groups which might be 
produced by the intervention. This simple model does not take into account the situ-
ation in which one level of an intervention is compared to another level of the 
intervention. More complicated models for nonadherence adjustment can be devel-
oped. Regardless of the model, it must be emphasized that the assumed event rates 
in the control and intervention groups are modified by participants who do not 
adhere to the study protocol.
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People who do not adhere should remain in the assigned study groups and be 
included in the analysis. The rationale for this is discussed in Chap. 17. The basic 
point to be made here is that eliminating participants from analysis or transferring 
participants to the other group could easily bias the results of the study. However, 
the observed d is likely to be less than projected because of nonadherence and thus 
have an impact on the power of the clinical trial. A reduced d, of course, means that 
either the sample size must be increased or the study will have smaller power than 
intended. Lachin [2] has proposed a simple formula to adjust crudely the sample 
size for a drop-out rate of proportion R

O
. This can be generalized to adjust for drop-

in rates, R
I
, as well. The unadjusted sample size N should be multiplied by the 

factor {1/(1 − R
O
 − R

I
)}2 to get the adjusted sample size per arm, N*. Thus, if 

R
O
 = 0.20 and R

I
 = 0.05, the originally calculated sample should be multiplied by  

1/(0.75)2 or 16/9, and increased by 78%. This formula gives some quantitative idea 
of the effect of drop-out on the sample size.

 = − − 2
O I* / (1 )N N R R  

However, more refined models to adjust sample sizes for drop-outs from the inter-
vention to the control [54–60] and for drop-ins from the control to the intervention 
regimen [56] have been developed. They adjust for the resulting changes in p

I
 and 

p
C
, the adjusted rates being denoted *

Ip  and *
Cp . These models also allow for 

another important factor, which is the time required for the intervention to achieve 
maximum effectiveness. For example, an anti-platelet drug may have an immediate 
effect; conversely, even though a cholesterol-lowering drug reduces serum levels 
quickly, it may require years to produce a maximum effect on coronary mortality.

Example: A drug trial [48] in post myocardial infarction participants illustrates 
the effect of drop-outs and drop-ins on sample size. In this trial, total mortality over 
a 3-year follow-up period was the primary response variable. The mortality rate in 
the control group was estimated to be 18% (p

C
 = 0.18) and the intervention was 

believed to have the potential for reducing p
C
 by 28% (k = 0.28) yielding p

I
 = 0.1296. 

These estimates of p
C
 and k were derived from previous studies. Those studies also 

indicated that the drop-out rate might be as high as 26% over the 3 years; 12% in 
the first year, an additional 8% in the second year, and an additional 6% in the third 
year. For the control group, the drop-in rate was estimated to be 7% each year for 
a total drop-in rate of 21%.

Using these models for adjustment, *
C 0.1746p =  and *

I 0.1375p = . Therefore, 
instead of d being 0.0504 (0.18 − 0.1296), the adjusted d* is 0.0371 
(0.1746 − 0.1375). For a two-sided test with a = 0.05 and 1 − b = 0.90, the adjusted 
sample size was 4,020 participants compared to an unadjusted sample size of 
2,160 participants. The adjusted sample size almost doubled in this example due 
to the expected drop-out and drop-in experiences and the recommended policy of 
keeping participants in the originally assigned study groups. The remarkable 
increases in sample size because of drop-outs and drop-ins strongly argue for 
major efforts to keep nonadherence to a minimum during trials.
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Sample Size Calculations for Continuous Response Variables

Similar to dichotomous outcomes, we consider two sample size cases for response 
variables which are continuous [2, 7, 61]. The first case is for two independent 
samples. The other case is for paired data.

Two Independent Samples

For a clinical trial with continuous response variables, the previous discussion is 
conceptually relevant, but not directly applicable to actual calculations. “Continuous” 
variables such as length of hospitalization, blood pressure, spirometric measures, 
neuropsychological scores, and level of a serum component may be evaluated. 
Distributions of such measurements frequently can be approximated by a normal 
distribution. When this is not the case, a transformation of values, such as taking 
their logarithm, can still make the normality assumption approximately correct.

Suppose the primary response variable, denoted as x, is continuous with N
I
 and 

N
C
 participants randomized to the intervention and control groups, respectively. 

Assume that the variable x has a normal distribution with mean m and variance s2. 
The true levels of m

I
 and m

C
 for the intervention and control groups are not known, 

but it is assumed that s2 is known. (In practice, s2 is not known and must be esti-
mated from some data. If the data set used is reasonably large, the estimate of s2 
can be used in place of the true s2. If the estimate for s2 is based on a small set of 
data, it is necessary to be cautious in the interpretation of the sample size 
calculations.)

The null hypothesis is H
0
: d = m

C
 − m

I
 = 0 and the two-sided alternative hypothesis 

is H
A
: d = m

C
 − m

I
 ¹ 0. If the variance is known, the test statistic is:

c( ) / 1/ 1/i C IZ x x N Nσ= − +

This statistic for adequate sample size (e.g., 50 participants per arm) has approxi-
mately a standard normal distribution where Ix  and Cx  represent mean levels 
observed in the intervention and control groups, respectively. The hypothesis-test-
ing concepts previously discussed apply to the above statistic. If Z > Za, then an 
investigator would reject H

0
 at the a level of significance. Using the above test 

statistic, it can be determined how large a total sample 2N would be needed to 
detect a true difference d between m

I
 and m

C
 with power (1 − b) and significance 

level a by the formula:

2 2

2

4( )
2

Z Z
N α β σ

δ
+

=

Example: Suppose an investigator wishes to estimate the sample size necessary 
to detect a 10 mg/dl difference in cholesterol level in a diet intervention group 
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 compared to the control group. The variance from other data is estimated to be 
(50 mg/dl)2. For a two-sided 5% significance level, Za = 1.96 and for 90% power, 
Zb = 1.282. Substituting these values into the above formula, 2N = 4(1.96 + 1.282)2(50)2/102 
or approximately 1,050 participants. As d decreases, the value of 2N increases, and as 
s2 increases the value of 2N increases. This means that the smaller the difference in 
intervention effect an investigator is interested in detecting and the larger the variance, 
the larger the study must be. As with the dichotomous case, setting a smaller a and 
larger 1 − b also increases the sample size. Figure 8.3 shows total sample size 2N as 
a function of d/s. As in the example, if d = 10 and s = 50, then d/s = 0.2 and the 
sample size 2N for 1 − b = 0.9 is approximately 1,050.

Paired Data

In some clinical trials, paired outcome data may increase power for detecting dif-
ferences because individual or within participant variation is reduced. Trial partici-
pants may be assessed at baseline and at the end of follow-up. For example, instead 
of looking at the difference between mean levels in the groups, an investigator 
interested in mean levels of change might want to test whether diet intervention 
lowers serum cholesterol from baseline levels when compared to a control. This is 
essentially the same question that was asked before in the two independent sample 
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Fig. 8.3 Total sample size (2N) required to detect the difference (d) between control group mean 
and intervention group mean as a function of the standardized difference (d/s) where s is the 
common standard deviation, with two-sided significance level of 0.05 and power (1 − b) of 0.80 
and 0.90
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case, but each participant’s initial cholesterol level is taken into account. Because 
of the likelihood of reduced variability, this type of design can lead to a smaller 
sample size if the question is correctly posed. Assume that D

C
 and D

I
, represent the 

true, but unknown levels of change from baseline to some later point in the trial for 
the control and intervention groups, respectively. Estimates of D

C
 and D

I
 would be 

1 2C C Cd x x= −  and 
1 2I I Id x x= − . These represent the differences in mean levels of 

the response variable at two points for each group. The investigator tests H
0
: 

D
C
 − D

I
 = 0 versus H

A
: D

C
 − D

I
 = d ¹ 0. The variance 2σ ∆  in this case reflects the vari-

ability of the change, from baseline to follow-up, and is assumed here to be the 
same in the control and intervention arms. This variance is likely to be smaller than 
the variability at a single measurement. This is the case if the correlation between 
the first and second measurements is greater than 0.5. Using d and 2σ ∆ , as defined 
in this manner, the previous sample size formula for two independent samples and 
graph are applicable. That is, the total sample size 2N can be estimated as

2 2

2

4( )
2

Z Z
N ∆+

= a b s
d

Another way to represent this is

2 2

2

8( ) (1 )
2

Z Z
N

ρ+ −
= a b s

d

where 2 22 (1 )σ σ ρ∆ = −  and s2 = the variance of a measurement at a single point in 
time, the variability is assumed to be the same at either time point (i.e., at baseline 
and at follow-up), and r is the correlation coefficient between the first and second 
measurement. As indicated, if the correlation coefficient is greater than 0.5, com-
paring the paired differences will result in a smaller sample size than just compar-
ing the mean values at the time of follow-up.

Example: Assume that an investigator is still interested in detecting a 10 mg/dl 
difference in cholesterol between the two groups, but that the variance of the 
change is now (20 mg/dl) [2]. The question being asked in terms of d is approxi-
mately the same because randomization should produce in each group baseline 
mean levels that are almost equal. The comparison of differences in change is 
essentially a comparison of the difference in mean levels of cholesterol at the 
 second measurement. Using Fig. 8.3, where d/sD = 10/20 = 0.5, the sample size is 
170. This impressive reduction in sample size from 1,050 is due to a reduction in 
the variance from (50 mg/dl)2to (20 mg/dl)2.

Another type of pairing occurs in diseases that affect paired organs such as 
lungs, kidneys, and eyes. In ophthalmology, for example, trials have been con-
ducted where one eye is randomized to receive treatment and the other to receive 
control therapy [42–45]. Both the analysis and the sample size estimation need to 
take account of this special kind of stratification. For continuous outcomes, a mean 
difference in outcome between a treated eye and untreated eye would measure the 
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treatment effect and could be compared using a paired t-test [2, 7], d/ 1/Z d S N= , 
where d  is the average difference in response and S

d
 is the standard deviation of 

the differences. The mean difference m
d
 is equal to the mean response of the treated 

or intervention eye, for example, minus the mean response of the control eye, that 
is m

d
 = m

I
 − m

C
. Under the null hypothesis, m

d
 equals d

d
. An estimate of d

d
, d , can be 

obtained by taking an estimate of the average differences or by calculating I Cx x− . 
The variance of the paired differences 2

dσ  is estimated by 2
dS . Thus, the formula 

for paired continuous outcomes within an individual is a slight modification of the 
formula for comparison of means in two independent samples. To compute sample 
size, N

d
, for number of pairs, we compute:

 
2 2

d
d 2

d

( )Z Z
N

+
= a b s

d
 

As discussed previously, participants in clinical trials do not always fully adhere 
with the intervention being tested. Some fraction (R

O
) of participants on interven-

tion drop-out of the intervention and some other fraction (R
I
) drop-in and start fol-

lowing the intervention. If we assume that these participants who drop-out respond 
as if they had been on control and those who drop-in respond as if they had been 
on intervention, then the sample size adjustment is the same as for the case of pro-
portions. That is, the adjusted sample size N* is a function of the drop-out rate, the 
drop-in rate, and the sample size N for a study with fully compliant participants.

* 2
O I/ (1 )N N R R= − −

Therefore, if the drop-out rate were 0.20 and the drop-in 0.05, then the original 
sample size N must be increased by 16/9 or 1.78; that is, a 78% increase in sample 
size.

Sample Size for Repeated Measures

The previous section briefly presented the sample size calculation for trials where 
only two points, say a baseline and a final visit, are used to determine the effect of 
intervention and these two points are the same for all study participants. Often, a 
continuous response variable is measured at each follow-up visit. Considering only 
the first and last values would give one estimate of change but would not take 
advantage of all the available data. Many models exist for the analysis of repeated 
measurements and methods for sample size calculation are available for several of 
these methods [62–69]. In some cases, the response variable may be categorical. 
We present one of the simpler models for continuous repeated measurements. 
While other models are beyond the scope of this book, the basic concepts presented 
are still useful in thinking about how many participants, how many measurements 
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per individual, and when they should be taken, are needed. In such a case, one 
 possible approach is to assume that the change in response variable is approxi-
mately a linear function of time so that the rate of change can be summarized by a 
slope. This model is fit to each participant’s data by the standard least squares 
method, and the estimated slope is used to summarize the participant’s experience. 
In planning such a study, the investigator must be concerned about the frequency of 
the measurement and the duration of the observation period. As discussed by 
Schlesselman [62], the observed measurement x can be expressed as x = a + bt + error, 
where a = intercept, b = slope, t = time, and error represents the deviation of the 
observed measurement from a regression line. This error may be due to measure-
ment variability, biological variability, or the nonlinearity of the true underlying 
relationship. On the average, this error is expected to be equally distributed around 
0 and have a variability denoted as 2

(error)σ . Schlesselman assumes that 2
(error)σ  is 

approximately the same for each participant.
The investigator evaluates intervention effectiveness by comparing the average 

slope in one group with the average slope in another group. Obviously, participants 
in a group will not have the same slope, but the slopes will vary around some aver-
age value which reflects the effectiveness of the intervention or control. The 
amount of variability of slopes over participants is denoted as 2

bσ . If D represents 
the total time duration for each participant and P represents the number of equally 
spaced measurements, s can be expressed as

2
2

2

12( 1)

( 1)b

P

D P P

 − = +  +  

s
s s 2 (error)

B

where 2
Bσ  is the component of participant variance in slope not due to measure-

ment error and lack of a linear fit. The sample size required to detect the difference 
d between the average rates of change in the two groups is given by

2 2
2

2 2

4( ) 12( 1)
2

( 1)

Z Z P
N

D P P

 + −
= + +  

a b
B

s
s

d
(error)

As in the previous formulas, when d decreases, 2N increases. The factor on the 
right-hand side relates D and P with the variance components 2

Bσ , and 2
(error)σ . 

Obviously as 2
Bσ  and 2

(error)σ  increase, the total sample size increases. By increas-
ing P and D, however, the investigator can decrease the contribution made by 

2
(error)σ . The exact choices of P and D will depend on how long the investigator can 

feasibly follow participants, how many times he can afford to have participants visit 
a clinic, and other factors. By manipulating P and D, an investigator can design a 
study which will be the most cost effective for his specific situation.

Example: In planning for a trial, it may be assumed that a response variable 
declines at the rate of 80 units/year in the control group. Suppose a 25% reduction 
is anticipated in the intervention group. That is, the rate of change in the interven-
tion group would be 60 units/year. Other studies provided an estimate for 2

(error)σ  of 
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150 units. Also, suppose data from a study of people followed every 3 months for 
1 year (D = 1) and (P = 5) gave a value for the standard deviation of the slopes, 
s

b
 = 200. The calculated value of s

B
 is then 63 units. Thus, for a 5% significance 

level and 90% power (Za = 1.96 and Zb = 1.282), the total sample size would be 
approximately 630 for a 3-year study with four visits per year (D = 3, P = 13). 
Increasing the follow-up time to 4 years, again with four measurements per year, 
would decrease the variability with a resulting sample size calculation of approxi-
mately 510. This reduction in sample size could be used to decide whether or not 
to plan a 4-year or a 3-year study.

Sample Size Calculations for “Time to Failure”

For many clinical trials, the primary response variable is the occurrence of an event, 
and thus the proportion of events in each group may be compared. In these cases, 
the sample size methods described earlier will be appropriate. In other trials, the 
time to the event may be of special interest. For example, if the time to death or a 
nonfatal event can be increased, the intervention may be useful even though at some 
point the proportion of events in each group are similar. Methods for analysis of this 
type of outcome are generally referred to as life table or survival analysis methods 
(see Chap. 15). In this situation, other sample size approaches are more appropriate 
than that described for dichotomous outcomes [70–91]. At the end of this section, we 
also discuss estimating the number of events required to achieve a desired power.

The basic approach is to compare the survival curves for the groups. A survival 
curve may be thought of as a graph of the probability of surviving, or not having an 
event, up to any given point of time. The methods of analysis now widely used are 
non-parametric; that is, no mathematical model about the shape of the survival 
curve is assumed. However, for the purpose of estimating sample size, some 
assumptions are often useful. A common model assumes that the survival curve, 
S(t), follows an exponential distribution, S(t) = e−lt = exp(−lt) where l is called the 
hazard rate or force of mortality. Using this model, survival curves are totally char-
acterized by l. Thus, the survival curves from a control and an intervention group 
can be compared by testing H

0
: l

C
 = l

I
. An estimate of l is obtained as the inverse 

of the mean survival time. If the median survival time, T
M

, is known, the hazard rate 
l may also be estimated by −ln (0.5)/T

M
. Sample size formulations have been con-

sidered by several investigators [70–72]. One simple formula is given by

2

2
C I

4( )
2

[ln( / )]

Z Z
N α β

λ λ
+

=

where N is the size of the sample in each group and Za and Zb are defined as 
before. As an example, suppose one assumes that the force of mortality is 0.30 in 
the control group and expects it to be 0.20 for the intervention being tested; that 
is, l

C
/l

I
 = 1.5. If a = 0.05 (two-sided) and 1 − b = 0.90, then N = 128 or 2N = 256. 
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The corresponding mortality rates for 5 years of follow-up are 0.7769 and 0.6321, 
respectively. Using the comparison of two proportions, the total sample size would 
be 412. Thus, the time to failure method may give a more efficient design, requiring 
a smaller number of participants.

The method just described assumes that all participants will be followed to the 
event. With few exceptions, clinical trials with a survival outcome are terminated at 
time T before all participants have had an event. For those still event-free, the time 
to event is said to be censored at time T. For this situation, Lachin [2] gives the 
approximate formula:
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where j (l) = l2/(1 − e−lT) and where j (l
C
) or j (l

I
) are defined by replacing l with 

l
C
 or l

I
, respectively. If a 5 year study were being planned (T = 5) with the same 

design specifications as above, then the sample size, 2N is equal to 376. Thus, the 
loss of information due to censoring must be compensated for by increasing the 
sample size. If the participants are to be recruited continually during the 5 years of 
the trial, the formula given by Lachin is identical but with j (l) = l3T/(lT − 1 + e−lT). 
Using the same design assumptions, we obtain 2N = 620, showing that not having 
all the participants at the start requires an additional increase in sample size.

More typically, participants are recruited uniformly over a period of time, T
0
, 

with the trial continuing for a total of T years (T > T
0
). In this situation, the sample 

size can be estimated as before using
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Here, the sample size (2N) of 466 is between the previous two examples suggesting 
that it is preferable to get participants recruited as rapidly as possible to get more 
follow-up or exposure time.

Further models are given by Lachin [2]. A useful series of nomograms has been 
published [73] for sample size estimates considering factors such as a, 1 − b, the 
subject recruitment time, the follow-up period, and the ratio of the hazard rates.

One of the methods used for comparing survival curves is the proportional 
 hazards model or the Cox regression model which is discussed briefly in Chap. 15. 
For this method, sample size estimates have been published [74, 75]. As it turns out, 
the formula by Schoenfeld for the Cox model [74] is identical to that given above for 
the simple exponential case, although developed from a different point of view.

All of the above methods assume that the hazard rate remains constant during 
the course of the trial. This may not be the case. The Beta-Blocker Heart Attack 
Trial [48] compared 3-year survival in two groups of participants with intervention 
starting 1–3 weeks after an acute myocardial infarction. The risk of death was high 
initially, decreased steadily, and then became relatively constant.
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For cases where the event rate is relatively small and the clinical trial will have 
considerable censoring, most of the statistical information will be in the number of 
events. Thus, the sample size estimates using simple proportions will be quite 
adequate. In the Beta-Blocker Heart Attack Trial, the 3 year control group event 
rate was assumed to be 0.18. For the intervention group, the event rate was assumed 
to be approximately 0.13. In the situation of j (l) = l2(1 − e−lT), a sample size 
2N = 2,208 is obtained, before adjustment for estimated nonadherence. In contrast, 
the unadjusted sample size using simple proportions is 2,160. Again, it should be 
emphasized that all of these methods are only approximations and the estimates 
should be viewed as such.

As the previous example indicates, the power of a survival analysis still is a 
function of the number of events. The expected number of events E(D) is a function 
of sample size, hazard rate, recruitment rate, and censoring distribution [2, 83]. 
Specifically, the expected number of events in the control group can be estimated as

 2
C C( ) / ( )E D Nl j l=  

where j(l
C
) is defined as before, depending on the recruitment and follow-up strat-

egy. If we assume a uniform recruitment over the interval (0,T
0
) and follow-up over 

the interval (0,T), then E(D) can be written using the most general form for j(l
C
):
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This estimate of the number of events can be used to predict the number of events 
at various time points during the trial including the end of follow-up. This predic-
tion can be compared to the observed number of events in the control group to 
determine if an adjustment needs to be made to the design. That is, if the number 
of events early in the trial is larger than expected, the trial may be more powerful 
than designed or may be stopped earlier than the planned T years of follow-up (see 
Chap. 16). However, more worrisome is when the observed number of events is 
smaller than what is expected and needed to maintain adequate power. Based on 
this early information, the design may be modified to attain the necessary number 
of events by increasing the sample size or expanding recruitment effort within the 
same period of time, increasing follow-up, or a combination of both.

This method can be illustrated based on a placebo-controlled trial of congestive 
heart failure [53]. Severe or advanced congestive heart failure has an expected 
1 year event rate of 40%, where the events are all-cause mortality and nonfatal 
myocardial infarction. A new drug was to be tested to reduce the event rate by 25%, 
using a two-sided 5% significance level and 90% power. If participants are recruited 
over 1.5 years (T

0
 = 1.5) during a 2 year study (T = 2) and a constant hazard rate is 

assumed, the total sample size (2N) is estimated to be 820 participants with conges-
tive heart failure. The formula E(D) can be used to calculate that approximately 190 
events (deaths plus nonfatal myocardial infarctions) must be observed in the control 
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group to attain 90% power. If the first year event rate turns out to be less than 40%, 
fewer events will be observed by 2 years than the required 190. Table 8.4 shows the 
expected number of control group events at 6 months and 1 year into the trial for 
annual event rates of 40%, 35%, 30%, and 25%. Two years is also shown to illus-
trate the projected number of events at the completion of the study. These numbers 
are obtained by calculating the number of participants enrolled by 6 months (33% 
of 400) and 1 year (66% of 400) and multiplying by the 2

C C/ ( )λ λj  term in the 
equation for E(D). If the assumed annual event rate of 40% is correct, 60 control 
group events should be observed at 1 year. However, if at 1 year only 44 events are 
observed, the annual event rate might be closer to 30% (i.e., l  = 0.357) and some 
design modification should be considered to assure achieving the desired 190 con-
trol group events. One year would be a sensible time to make this decision, based 
only on control group events since recruitment efforts are still underway. For 
example, if recruitment efforts could be expanded to 1,220 participants in 1.5 years, 
then by 2 years of follow-up the 190 events in the placebo group would be observed 
and the 90% power maintained. If recruitment efforts were to continue for another 
6 months at a uniform rate (T

0
 = 2 years), another 135 participants would be 

enrolled. In this case, E(D) is 545 × 0.285 = 155 events, which would not be suffi-
cient without some additional follow-up. If recruitment and follow-up continued for 
27 months (i.e., T

0
 = T = 2.25), then 605 control group participants would be 

recruited and E(D) would be 187, yielding the desired power.
Assumptions:

 1. Time to event exponentially distributed
 2. Uniform entry into the study over 1.5 years
 3. Total duration of 2 years

Sample Size for Testing “Equivalency” or Noninferiority  
of Interventions

In some instances, an effective intervention has already been established and is 
considered the standard. New interventions under consideration may be preferred 
because they are less expensive, have fewer side effects, or have less adverse impact 

Table 8.4 Number of expected events (in the control group) at each interim analysis given different 
event rates in control group

Yearly event rate in 
control group (%)

Number of expected events

Calendar time into study

6 months 1 year 1.5 years 2 years

(N = 138/group) (N = 275/group) (N = 412/group) (N = 412/group)

40 16 60 124 189
35 14 51 108 167
30 12 44  94 146
25 10 36  78 123
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on an individual’s general quality of life. This issue is common in the pharmaceutical 
industry where a product developed by one company may be tested against an 
established intervention manufactured by another company. Studies of this type are 
sometimes referred to as trials with positive controls or as noninferiority designs 
(see Chaps. 3 and 5).

Given that several trials have shown that certain beta-blockers are effective in 
reducing mortality in post-myocardial infarction participants [48, 92, 93], it is likely 
that any new beta-blockers developed will be tested against proven agents. The 
Nocturnal Oxygen Therapy Trial [94] tested whether the daily amount of oxygen 
administered to chronic obstructive pulmonary disease participants could be reduced 
from 24 to 12 h without impairing oxygenation. The Intermittent Positive Pressure 
Breathing [49] trial considered whether a simple and less expensive method for 
delivering a bronchodilator into the lungs would be as effective as a more expensive 
device. A breast cancer trial compared the tumor regression rates between subjects 
receiving the standard, diethylstilbestrol, or the newer agent, tamoxifen [95].

The problem in designing noninferiority trials is that there is no statistical 
method to demonstrate complete equivalence. That is, it is not possible to show 
d = 0. Failure to reject the null hypothesis is not a sufficient reason to claim two 
interventions to be equal but merely that the evidence is inadequate to say they are 
different [96]. Assuming no difference when using the previously described formu-
las results in an infinite sample size.

While demonstrating perfect equivalence is an impossible task, one possible 
approach has been discussed for noninferiority designs [97–99]. The strategy is to 
specify some value, d, such that interventions with differences which are less than 
this might be considered “equally effective” or “noninferior” (see Chap. 5 for dis-
cussion of noninferiority designs). Specification of d may be difficult, but it is a 
necessary element of the design. The null hypothesis states that p

C
 > p

I
 + d while the 

alternative specifies p
C
 < p

I
 + d. The methods developed require that if the two inter-

ventions really are equally effective or at least noninferior, the upper 100(1 − a)% 
confidence interval for the intervention difference will not exceed d with the prob-
ability of 1 − b. One can alternatively approach this from a hypothesis testing point 
of view, stating the null hypothesis that the two interventions differ by less than d.

For studies with a dichotomous response, one might assume the event rate for 
the two interventions to be equal to p (i.e., p = p

C
 = p

I
). This simplifies the previously 

shown sample size formula to

2 22 4 (1 )( ) /aN p p Z Zβ δ= − +

where N, Za,
 and Zb are defined as before. Makuch and Simon [97] recommend for 

this situation that a = 0.10 and b = 0.20. However, for many situations, b or Type II 
error needs to be 0.10 or smaller in order to be sure a new therapy is correctly 
determined to be equivalent to an older standard. We prefer an a = 0.05, but this is 
a matter of judgment and will depend on the situation. (This formula differs slightly 
from its analogue presented earlier due to the different way the hypothesis is 
stated.) The formula for continuous variables,
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is identical to the formula for determining sample size discussed earlier. Blackwelder 
and Chang [99] give graphical methods for computing sample size estimates for 
studies of equivalency.

Another proposed strategy for comparing a new to a standard drug is to show 
bioequivalence or similarity in bioavailability. Several authors have discussed this 
approach [100–103]. If two formulations are within specified limits for a profile of 
biochemical measurements and one of them has already been proven to be effec-
tive, the argument is made that further efficacy trials are not necessary. The sample 
size estimation for demonstrating bioequivalence poses the same problem as 
described above and the approach is similar.

As mentioned above and in Chap. 5, specifying d is a key part of the design and 
sample size calculations of all equivalency and noninferiority trials. Trials should 
be sufficiently large, with enough power, to address properly the questions about 
equivalence or noninferiority that are posed.

Sample Size for Cluster Randomization

So far, sample size estimates have been presented for trials where individuals are 
randomized. For some prevention trials or health care studies, it may not be  possible 
to randomize individuals. For example, a trial of smoking prevention strategy for 
teenagers may be implemented most easily by randomizing schools, some schools 
to be exposed to the new prevention strategy while other schools remain with a 
standard approach. Individual students are grouped or clustered within each school. 
As Donner et al. [104] point out, “Since one cannot regard the individuals within 
such groups as statistically independent, standard sample size formulas underesti-
mate the total number of subjects required for the trial.” Several authors [104–107] 
have suggested incorporating a single inflation factor in the usual sample size 
 calculation to account for the cluster randomization. That is, the sample size per 
intervention arm N computed by previous formulas will be adjusted to N* to account 
for the randomization of N

m
 clusters, each of size m.

A continuous response is measured for each individual within a cluster of these 
components. Differences of individuals within a cluster and differences of individu-
als between clusters contribute to the overall variability of the response. We can 
separate between - cluster variance 2

bσ  and within - cluster variance 2
wσ . Estimates 

are denoted by 2
bS  and 2

wS , respectively, and can be estimated by standard analysis 
of variance. One measure of the relationship of these components is the intra-class 
correlation coefficient. The intra-class correlation coefficient r is 2 2 2

b w b/ ( )σ σ σ+
where 0 £ r £ 1. If r = 0, all clusters respond identically so all of the variability is 
within a cluster. If r = 1, all individuals in a cluster respond alike so there is no 
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variability within a cluster. Estimates of r are given by 2 2 2
b b w/ ( )r S S S= + . Intra-class 

correlation may range from 0.1 to 0.4 in typical clinical studies. If we computed 
the sample size calculations assuming no clustering, the sample size per arm would 
be N participants per treatment arm. Now, instead of randomizing N individuals, we 
want to randomize N

m
 clusters each of size m individuals for a total of N* = N

m
 × m 

participants per treatment arm. The inflation factor [101] is [1 + (m − 1)r] so that

[ ]* 1 ( 1)= × = + −mN N m N m ρ

Note that the inflation factor is a function of both cluster size m and intra-class 
correlation. If the intra-cluster correlation (r = 0), then each individual in one cluster 
responds like any individual in another cluster, and the inflation factor is unity 
(N* = N). That is, no penalty is paid for the convenience of cluster randomization. 
At the other extreme, if all individuals in a cluster respond the same (r = 1), there 
is no added information within each cluster, so only one individual per cluster is 
needed, and the inflation factor is m. That is, our adjusted sample N* = N × m and we 
pay a severe price for this type of cluster randomization. However, it is unlikely that 
r is either 0 or 1, but as indicated, is more likely to be in the range of 0.1–0.4 in 
clinical studies.

Example: Donner et al. [104] provide an example for a trial randomizing 
households to a sodium reducing diet in order to reduce blood pressure. Previous 
studies estimated the intra-class correlation coefficient to be 0.2; that is 

2 2 2
b b w

ˆ / ( ) 0.2r S S Sρ = = + = . The average household size was estimated at 3.5 
(m = 3.5). The sample size per arm N must be adjusted by 1 + (m – 1)r = 1 + (3.5 – 1)
(0.2) = 1.5. Thus, the normal sample size must be inflated by 50% to account for 
this randomization indicating a small between cluster variability. If r = 0.1, then the 
factor is 1 + (3.5 – 1)(0.1) or 1.25. If r = 0.4, indicating a larger between cluster 
component of variability, the inflation factor is 2.0 or a doubling.

For binomial responses, a similar expression for adjusting the standard sample 
size can be developed. In this setting, a measure of the degree of within cluster 
dependency or concordancy rate in participant responses is used in place of the 
intra-class correlation. The commonly used measure is the kappa coefficient, 
denoted k, and may be thought of as an intra-class correlation coefficient for bino-
mial responses, analogous to r for continuous responses. A concordant cluster with 
k = 1 is one where all responses within a cluster are identical, all successes or fail-
ures, in which a cluster contributes no more than a single individual. A simple 
estimate for k is provided [104].

 
C C

C C

* (1 )

1 (1 )

m m

m m

p p p

p p
κ

 + − =
 − + − 

 

Here p* is the proportion of the control group with concordant clusters, and p
C
 is 

the underlying success rate in the control group. The authors then show that the 
inflation factor is [1 + (m – 1)k], or that the regular sample size per treatment arm N 
must be multiplied by this factor to attain the adjust sample size N*.
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 [ ]* 1 ( 1)= + −N N m κ  

Example: Donner et al. [104] continues the sodium diet example where couples 
(m = 2) are randomized to either a low sodium or a normal diet. The outcome is the 
hypertension rate. Other data suggest the concordancy of hypertension status 
among married couples is 0.85 (p* = 0.85). The control group hypertension rate is 
0.15 (p

C
 = 0.15). In this case, k = 0.41, so that the inflation factor is 1 + (2 – 1)

(0.41) = 1.41; that is, the regular sample size must be inflated by 41% to adjust for 
the couples being the randomization unit. If there is perfect control group concor-
dance, p* = 1 and k = 1, in which case, N* = 2N.

Cornfield proposed another adjustment procedure [107]. Consider a trial where 
m clusters will be randomized, each cluster of size c

i
 (i = 1, 2, …, m) and each hav-

ing a different success rate of p
i
 (i = 1, 2, …, m). Define the average cluster size 

/ic c m= Σ  and i i ip c p cΣ  = Σ  as the overall success rate weighted by cluster 
size. The variance of the overall success rate 2 2 2

p ( ) /i ic p p mcσ = Σ − . In this setting, 
the efficiency of simple randomization to cluster randomization is 2 2

p(1 )E p p cσ= − . 
The inflation factor (IF) for this design is 2

pIF 1/ / (1 )E c pσ= = − . Note that if the 
response rate varies across clusters, the normal sample size must be increased.

While cluster randomization may be logistically required, the process of making 
the cluster the randomization unit has serious sample size implications. It would be 
unwise to ignore this consequence in the design phase. As shown, the sample size 
adjustments can easily be factors of 1.5 or higher. For clusters which are schools or 
cities, the intra-class correlation is likely to be quite small. However, the cluster size 
is multiplied by the intra-class correlation so that the impact might still be non-
trivial. Not making this adjustment would substantially reduce the study power if 
the analyzes were done properly, taking into account the cluster effect. Ignoring the 
cluster effect in the analysis would be viewed critically in most cases and is not 
recommended.

Estimating Sample Size Parameters

As shown in the methods presented, sample size estimation is quite dependent upon 
assumptions made about variability of the response, level of response in the control 
group, and the difference anticipated or judged to be clinically relevant 
[10, 108–113]. Obtaining reliable estimates of variability or levels of response can 
be challenging since the information is often based on very small studies or studies 
not exactly relevant to the trial being designed. Sometimes, pilot or feasibility stud-
ies may be conducted to obtain these data. In such cases, the term external pilot has 
been used [113].

In some cases, the information may not exist prior to starting the trial, as was the 
case for early trials in AIDS; that is, no incidence rates were available in an evolving 
epidemic. Even in cases where data are available, other factors affect the variability 
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or level of response observed in a trial. Typically, the variability observed in the 
planned trial is larger than expected or the level of response is lower than assumed. 
Numerous examples of this experience exist [108]. One is provided by the 
Physicians’ Health Study [114]. In this trial, 22,000 US male physicians were 
randomized into a 2 × 2 factorial design. One factor was aspirin versus placebo in 
reducing cardiovascular mortality. The other factor was beta-carotene versus 
 placebo for reducing cancer incidence. The aspirin portion of the trial was termi-
nated early in part due to a substantially lower mortality rate than expected. In the 
design, the cardiovascular mortality rate was assumed to be approximately 50% of 
the US age-adjusted rate in men. However, after 5 years of follow-up, the rate was 
approximately 10% of the US rate in men. This substantial difference reduced the 
power of the trial dramatically. In order to compensate for the extremely low event 
rate, the trial would have had to be extended another 10 years to get the necessary 
number of events [114]. One can only speculate about reasons for low event rates, 
but screening of potential participants prior to the entry almost certainly played a 
part. That is, screens had to complete a run-in period and be able to tolerate aspirin. 
Those at risk for other competing events were also excluded. This type of effect is 
referred to as a screening effect. Physicians who began to develop cardiovascular 
signs may have obtained care earlier than non-physicians. In general, volunteers for 
trials tend to be healthier than the general population, a phenomenon often referred 
to as the healthy volunteer effect.

Another approach to obtaining estimates for ultimate sample size determination 
is to design so-called internal pilot studies [113]. In this approach, a small study is 
initiated based on the best available information. A general sample target for the 
full study may be proposed, but the goal of the pilot is to refine that sample size 
estimate based on screening and healthy volunteer effects. The pilot study uses a 
protocol very close if not identical to the protocol for the full study, and thus param-
eter estimates will reflect those effects. If the protocol for the pilot and the main 
study are essentially identical, then the small pilot can become an internal pilot. 
That is, the data from the internal pilot become part of the data for the overall 
study. This approach was used successfully in the Diabetes Control and 
Complications Trial [115]. If data from the internal pilot are used only to refine 
estimates of variability or control group response rates, and not changes in treat-
ment effect, then the impact of this two step approach on the significance level is 
negligible. However, the benefit is that this design will more likely have the desired 
power than if data from external pilots and other sources are relied on exclusively 
[112]. It must be emphasized that pilot studies, either external or internal, should 
not be viewed as providing reliable estimates of the intervention effect [113]. 
Because power is too small in pilot studies to be sure that no effect exists, small 
or no differences may erroneously be viewed as reason not to pursue the question. 
A positive trend may also be viewed as evidence that a large study is not necessary, 
or that clinical equipoise no longer exists.

Our experience indicates that both external and internal pilot studies are quite 
helpful. Internal pilot studies should be used if at all possible in prevention trials, 
when screening and healthy volunteer effects seem to cause major design problems. 
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Design modifications based on an internal pilot are more prudent than allowing an 
inadequate sample size to create yield misleading results.

One approach is to specify the number of events needed for a desired power 
level. Obtaining the specified number of events requires estimating the number of 
individuals to be followed for a period of time. How many participants are involved 
and for how long they are followed can be adjusted during the early part of the trial, 
or during an internal pilot study, but the target number of events remains unchanged. 
This is also discussed in more detail in Chap. 16.

Another approach is to use adaptive designs which modify the sample size based 
on an emerging trend, referred to as trend adaptive designs (see Chaps. 5 and 16). 
Here the sample size may be adjusted for an updated estimate of the treatment 
effect, d, using the methods described in this chapter. However, an adjustment must 
then be made at the analysis stage which may require a substantially larger critical 
value than the standard one in order to maintain a prespecified a level.

Multiple Response Variables

We have stressed the advantages of having a single primary question and a single 
primary response variable, but clinical trials occasionally have more than one of 
each. More than one question may be asked because investigators cannot agree 
about which outcome is most important. As an example, one clinical trial involving 
two schedules of oxygen administration to participants with chronic obstructive 
pulmonary disease had three major questions in addition to comparing the mortality 
rate [94]. Measures of pulmonary function, neuro-psychological status, and quality 
of life were evaluated. For the participants, all three were important.

Sometimes more than one primary response variable is used to assess a single 
primary question. This may reflect uncertainty as to how the investigator can 
answer the question. A clinical trial involving participants with pulmonary embo-
lism [116] employed three methods of determining a drug’s ability to resolve emboli. 
They were: lung scanning, arteriography, and hemodynamic studies. Another trial 
involved the use of drugs to limit myocardial infarct size [117]. Precordial electro-
cardiogram mapping, radionuclide studies, and enzyme levels were all used to 
evaluate the effectiveness of the drugs.

Computing a sample size for such clinical trials is not easy. One could attempt 
to define a single model for the multidimensional response and use one of the previ-
ously discussed formulas. Such a method would require several assumptions about 
the model and its parameters and might require information about correlations 
between different measurements. Such information is rarely available. A more rea-
sonable procedure would be to compute sample sizes for each individual response 
variable. If the results give about the same sample size for all variables, then the 
issue is resolved. However, more commonly, a range of sample sizes will be obtained. 
The most conservative strategy would be to use the largest sample size computed. The 
other response variables would then have even greater power to detect the  hoped-for 
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reductions or differences (since they required smaller sample sizes). Unfortunately, 
this approach is the most expensive and difficult to undertake. Of course, one could 
also choose the smallest sample size of those computed. That would probably not 
be desirable because the other response variables would have less power than usu-
ally required, or only larger differences than expected would be detectable. It is 
possible to select a middle range sample size, but there is no assurance that this will 
be appropriate. An alternative approach is to look at the difference between the 
 largest and smallest sample sizes. If this difference is very large, the assumptions 
that went into the calculations should be re-examined and an effort should be made 
to resolve the difference.

As discussed in Chap. 17, when multiple comparisons are made, the chance of 
finding a significant difference in one of the comparisons (when, in fact, no real 
differences exist between the groups) is greater than the stated significance level. 
In order to maintain an appropriate significance level a for the entire study, the 
 significance level required for each test to reject H

0
 should be adjusted [22]. The 

significance level required for rejection (a¢) in a single test can be approximated by 
a/k where k is the number of multiple response variables. For several response 
variables, this can make a¢ fairly small (e.g., k = 5 implies a¢ = 0.01 for each of k 
response variables with an overall a = 0.05). If the correlation between response 
variables is known, then the adjustment can be made more precisely [118]. In all 
cases, the sample size would be much larger than if the use of multiple response 
variables were ignored, so most studies have not strictly adhered to this solution of 
modifying the significance level. Some investigators, however, have attempted to 
be conservative in the analysis of results [119]. There is a reasonable limit as to how 
much a¢ can be decreased in order to give protection against false rejection of the 
null hypothesis. Some investigators have chosen a¢ = 0.01 regardless of the number 
of tests. In the end, there are no easy solutions. A somewhat conservative value of 
a¢ needs to be set, and the investigators need to be aware of the multiple testing 
problem during the analysis.
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In clinical trials, baseline refers to the status of a participant before the start of 
intervention. Baseline data may be measured by interview, questionnaire, physical 
examination, laboratory tests, and procedures. Measurement need not be only 
numerical in nature. It can also mean classification of study participants into cate-
gories based on factors such as absence or presence of some trait or condition.

As discussed in Chap. 4, baseline data describe the people studied, enabling the 
scientific community to compare the trial results with those of other studies. 
Different results from different studies may be attributed to seemingly minor differ-
ences in the study participants. These differences, in turn, can lead to the creation 
of new hypotheses, which may be tested.

Valid inferences about benefits and harmful effects of therapy depend on the 
kinds of people enrolled, as well as on study design. Complete reporting of baseline 
data allows clinicians to evaluate a new therapy’s chance of success or failure in 
their patients. On the other hand, judgment should be used in determining the fac-
tors to be measured at baseline. Evaluating factors that are unlikely to be pertinent 
to the trial not only wastes money and time but may also reduce participant coop-
eration. This chapter is concerned with the uses of baseline data, what constitutes a 
true baseline measurement, and assessment of baseline comparability.

Fundamental Point

Relevant baseline data should be measured in all study participants before the start 
of intervention.

Uses of Baseline Data

Although baseline data may be used to determine the eligibility of participants, it 
is assumed that any participants who are found unable to meet entrance criteria have 
been excluded from the study before assignment to either intervention or control. 

Chapter 9
Baseline Assessment
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The characteristics of people not enrolled are of interest when attempting to 
generalize the trial results (Chap. 4). For the discussion in this chapter, however, 
only data from enrolled participants are considered.

The amount of data collected at baseline depends on the nature of the trial and 
the purpose for which the data will be used. As mentioned elsewhere, some trials 
have simple protocols and collect limited amounts of data. If such trials are large, 
it is reasonable to expect that good balance between groups will be achieved. 
Because the goals of these trials are restricted to answering the primary question 
and one or two secondary questions, the other uses for baseline data are unneces-
sary. The investigators do not intend to perform stratification and special subgroup 
analyses or to conduct natural history studies. The simple design of such studies 
means that detailed documentation of baseline variables is omitted and only a few 
key demographic and medical variables are ascertained.

Baseline Comparability

Baseline data allow people to evaluate whether the study groups were comparable 
before intervention was started. The assessment of comparability typically includes 
pertinent demographic and socioeconomic characteristics, risk or prognostic fac-
tors, medications, and medical history. This assessment is necessary in both ran-
domized and nonrandomized trials. In assessment of comparability in any trial, the 
investigator can only look at factors about which she is aware. Obviously, those 
which are unknown cannot be compared. The baseline characteristics of each group 
should be presented in the main results paper of every randomized trial. Special 
attention should be given to factors that may influence any benefit of the study 
intervention and those that may predict adverse events. Full attention to baseline 
comparability is not always given. In a review of 206 surgical trials, only 73% 
reported baseline data [1]. Moreover, more than one-quarter of those trials reported 
fewer than five baseline factors. Altman and Doré, in a review of 80 published 
randomized trials, noted considerable variation in the quality of the reporting of 
baseline characteristics [2]. Half of those reporting continuous covariates did not 
use appropriate measures of variability.

While randomization on the average produces balance between comparison 
groups, it does not guarantee balance in any specific trial or for any specific baseline 
measure. However, Lachin [3] argues that the likelihood of baseline imbalance is 
small if the total sample size is 200 or more. Clearly, imbalances are more common 
in smaller trials, but they only matter if they modify the trial outcome. A placebo-
controlled, double-blind trial in 39 participants with mucopolysaccharidosis type 
IV reported that the intervention significantly improved endurance [4]. However, 
the 12-min walk test showed the distance walked at baseline to be 227 m in the 
intervention group and 381 m in the placebo group. A double-blind placebo-controlled 
trial in 341 participants with Alzheimer’s disease evaluated three active treatments – 
vitamin E, a selective monoamine oxidase inhibitor and their combination [5]. 
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The Mini-Mental State Examination (MMSE) score, a variable highly predictive of 
the primary outcome, was significantly higher in the placebo group at baseline than 
in the other groups. In unadjusted analyses, there were no differences among the 
groups. After adjustment for the baseline difference in MMSE, all actively treated 
groups did better than placebo by slowing the progression of disease. Imbalances 
may even be true in large studies. In the Aspirin Myocardial Infarction Study [6], 
which had over 4,500 participants, the aspirin group was at slightly higher risk than 
the placebo group when baseline characteristics were examined.

Stratification

If there is concern that one or two key prognostic factors may not “balance out” during 
randomization, thus yielding imbalanced groups at baseline, the investigator may 
stratify on the basis of these factors. Stratification can be done at the time of random-
ization or during analysis. Chapters 5 and 17 review the advantages and disadvan-
tages of stratified randomization and stratified analysis. The point here is that, in 
order to stratify at either time, the relevant characteristics of the participants at base-
line must be known. For nonrandomized trials, these factors must also be measured 
in order to select properly the control group and analyze results by strata.

Subgrouping

Often, investigators are interested not only in the response to intervention in the 
total study group, but also in the response in one or more subgroups. Particularly, 
in studies in which an overall intervention effect is present, analysis of results by 
appropriate subgroup may help to identify the specific population most likely to 
benefit from, or be harmed by, the intervention. Subgrouping may also help to elu-
cidate the mechanism of action of the intervention. Definition of such subgroups 
should rely only on baseline data, not data measured after initiation of intervention 
(except for factors such as age or sex which cannot be altered by the intervention). 
An example of establishing subgroups is the Canadian Cooperative Study Group 
trial of aspirin and sulfinpyrazone in people with cerebral or retinal ischemic 
attacks [7]. After noting an overall benefit from aspirin in reducing continued isch-
emic attacks or stroke, the authors observed that the benefit was restricted to men. 
Any conclusions drawn from subgroup hypotheses not explicitly stated in the pro-
tocol, however, should be given much less credibility than those from hypotheses 
stated a priori. Retrospective subgroup analyses should serve primarily to generate 
new hypotheses for subsequent testing (Chap. 17). In approving aspirin for the 
indication of transient ischemic attacks in men, the U.S. Food and Drug 
Administration relied on the Canadian Cooperative Study Group. A subsequent 
meta-analysis of platelet active drug trials in the secondary prevention of cardiovascular 
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disease concluded that the effect is similar in men and women [8]. However, a later 
placebo-controlled primary prevention trial of low-dose aspirin (100 mg on alternate days) 
in women reported a favorable aspirin effect on the risk of stroke, but no reduction in 
risks of myocardial infarction and cardiovascular death [9].

One of the large active-control trials of rosiglitazone in people with type 2 dia-
betes reported a surprising increase in the risk of fractures compared to metformin 
or glibenclamide, a risk that was limited to women [10]. This posthoc observation 
was replicated in a subsequent trial of pioglitazone, which showed a similar gender-
specific increase compared to placebo [11]. A meta-analysis confirmed that this 
class of hypoglycemic agents doubles the risk of fractures in women without any 
increase in men [12].

In their review of 50 clinical trial reports from four major medical journals, 
Assmann et al. [13] noted deficiencies in the presentation of subgroup findings. 
The median number of subgroup analyses was four; the largest number was 24. 
More than half of the subgroup reports failed to use statistical tests for interaction. 
Such tests are critical, since they directly determine whether an observed treatment 
difference in an outcome depends on the participant’s subgroup. Reliance on 
p-values for treatment difference in each separate subgroup is not appropriate. 
Many articles placed too much emphasis on subgroup findings and typically lacked 
statistical power. Additionally, it was often difficult to determine whether the sub-
group analyses were prespecified or posthoc.

Pharmacogenetics

A rapidly emerging field in medicine is that of pharmacogenetics, which holds 
promise for better identification of patient groups who may benefit more from a 
treatment or who are more likely to develop serious adverse events [14]. Until quite 
recently the focus was on a limited number of candidate genes due to the high cost 
of genotyping, but as technologies have improved attention has shifted to genome-
wide association (GWA) studies of hundreds of thousands or millions of single-
nucleotide polymorphisms (SNPs) [15]. This approach and cost-effective 
whole-genome sequencing technologies allow examination of the whole genome 
unconstrained by prior hypotheses on genomic structure or function influencing a 
given trait [16]. Collection of biologic samples at baseline in large, long-term trials 
has emerged as a rich source for such pharmacogenetic studies. In participants with 
or without specific genotypes, one would in subgroup analysis compare treatment 
responses such as serious adverse events.

Genetic determinants of beneficial responses to a treatment are increasingly 
investigated, especially in cancer. Three cancer drugs, imatinib mesylate, trastu-
zumab, and gefitinib have documented efficacy in subsets of patients with specific 
genetic variants, while two others, irinotecan and 6-mercaptopurine, can be toxic in 
standard doses in other genetically defined subsets of patients [15]. These develop-
ments allow treatment to be cost-effective and more efficacious by limiting recommended 
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use to those likely to benefit. The strength by which common variants can influence 
the risk determination ranges from a several-fold increased risk compared to those 
without the variant to a 1,000-fold increase [17].

The identification of new genetic variants associated with serious adverse events 
is also a critical area of investigation. The goal is to identify through genetic testing 
those high-risk patients prior to initiation of treatment. A GWA study identified a 
SNP within the SLC01B1 gene on chromosome 12 linked to dose-dependent, statin-
induced myopathy [18]. Over 60% of all diagnosed myopathy cases could be linked 
to the C allele of the SNP rs4149056, which is present in 15% of the population. 
Identification of C allele carriers prior to initiating therapy could reduce myopathy 
while retaining treatment benefits by targeting this group for lower doses or more 
frequent monitoring of muscle-related enzymes.

The large sample size requirements, the analytic problem of multiplicity 
(a genome-wide panel may have over 2.5 million SNPs after imputation), and the 
need for replications are discussed in Chap. 17.

Changes of Baseline Measurement

Making use of baseline data will usually add sensitivity to a study. For example, an 
investigator may want to evaluate a new hypoglycemic agent. She can either com-
pare the mean change in Hb

A1C
 from baseline to some subsequent time in the inter-

vention group against the mean change in the control group, or simply compare the 
mean Hb

A1C
 of the two groups at the end of the study. The former method usually 

is a more powerful statistical technique because it can reduce the variability of the 
response variables. As a consequence, it may permit either fewer participants to be 
studied or a smaller difference between groups to be detected.

Evaluation of possible unwanted reactions requires knowledge – or at least tentative 
ideas – about what effects might occur. The investigator should record at baseline those 
clinical or laboratory features which are likely to be adversely affected by the interven-
tion. Unexpected adverse reactions might be missed, but the hope is that animal studies 
or earlier clinical work will have identified the important factors to be measured.

Natural History Analyses

Baseline measurements enable investigators to perform natural history analyses in 
a control group which is on either placebo or no uniformly administered interven-
tion. The prognostic importance of suspected risk factors for a variety of fatal and 
nonfatal events can be evaluated, particularly in large, long-term trials. This evaluation 
can include verification of previously ascertained risk factors as well as identifica-
tion of others not earlier considered. Such analyses, although peripheral to the main 
objectives of a clinical trial, may be important for future research efforts. Their 
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potential importance is especially true if variables which are subject to intervention 
can be identified [19]. Even if they are not variables which can be studied in future 
trials, they can be used in future stratification or subgroup analyses. It should be 
recognized that trial participants are a selected group defined by the inclusion and 
exclusion criteria and their willingness to volunteer. Therefore, any natural history 
analysis from a clinical trial may not be fully generalizable, and is unlikely to sub-
stitute for well-designed observational studies.

What Constitutes a True Baseline Measurement?

Screening for Participants

In order to describe accurately the study participants, baseline data should ideally 
reflect the true condition of the participants. Certain information can be obtained 
accurately by means of one measurement or evaluation at a baseline interview and 
examination. However, for many variables, accurately determining the participant’s 
true state is difficult, since the mere fact of impending enrollment in a trial, random 
fluctuation or the baseline examination itself may alter a measurement. For exam-
ple, is true blood pressure reflected by a single measurement taken at baseline? 
If more than one measurement is made, which one should be used as the baseline 
value? Is the average of repeated measurements recorded over some extended 
period of time more appropriate? Does the participant need to be taken off all medi-
cations or be free of other factors which might affect the determination of a true 
baseline level? When resolving these questions, the screening required to identify 
eligible potential participants, the time and cost entailed in this identification, and 
the specific uses for the baseline information must be taken into account.

In almost every clinical trial, some sort of screening of potential participants is 
necessary. This may take place over more than one visit. Screening eliminates par-
ticipants who, based on the entrance criteria, are ineligible for the study. A prereq-
uisite for inclusion is the participant’s willingness to comply with a possibly long 
and arduous study protocol. The participant’s commitment, coupled with the need 
for additional measurements of eligibility criteria, means that intervention alloca-
tion usually occurs later than the time of the investigator’s first contact with the 
participant. An added problem may result from the fact that discussing a study with 
someone or inviting him to participate in a clinical trial may alter his state of health. 
For instance, people asked to join a study of lipid-lowering agents because they had 
an elevated serum LDL cholesterol at a screening examination might change their 
diet on their own initiative just because of the fact they were invited to join the 
study. Therefore, their serum LDL cholesterol as determined at baseline, perhaps a 
month after the initial screen, may be somewhat lower than usual. Improvement 
could happen in many potential candidates for the trial and could affect the validity 
of the assumptions used to calculate sample size. If the study calls for a special 
dietary regimen, this might not be so effective at the new, lowered LDL cholesterol level. 
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As a result of the modification in participant behavior, there may be less room for 
response to the intervention. Obviously, these changes occur not just in the group 
randomized to the active intervention, but also in the control group.

Although it may be impossible to avoid altering the behavior of potential partici-
pants, in the study design it is often possible to adjust for such anticipated changes. 
Special care can be taken when discussing studies with people to avoid sensitizing 
them. Time between invitation to join a study and baseline evaluation can be kept 
to a minimum. People who have greatly changed their eating habits between the 
initial screen and baseline, as determined by a questionnaire at baseline, can be 
declared ineligible to join. Alternatively, they can be enrolled and the required 
sample size increased. Whatever is done, these are expensive ways to compensate 
for the reduced expected response to the intervention.

Regression Toward the Mean

Sometimes a person’s eligibility for a study is determined by measuring continuous 
variables, such as blood pressure or cholesterol level. If the entrance criterion is a 
high or low value, a phenomenon referred to as “regression toward the mean” is 
encountered [20]. Regression toward the mean occurs because measurable charac-
teristics of an individual do not have constant values but vary. Thus, individuals 
have days when the measurements are on the high side and other days when they 
are on the low side within their ranges of variability. Because of this variability, 
although the population mean for a characteristic may be relatively constant over 
time, the locations of individuals within the population change. If two sets of mea-
surements are made on individuals within the population, the correlation between 
the first and second series of measurements will not be perfect. That is, depending 
on the variability, the correlation will be something less than 1. In addition, it is 
often the case that the more distant a measured characteristic is from the population 
mean of that characteristic, the more variable the measurement tends to be.

Therefore, whenever participants are selected from a population on the basis of 
the cutoff of some measured characteristic, the mean of a subsequent measurement 
will be closer to the population mean than is the first measurement mean. 
Furthermore, the more extreme the initial selection criterion (that is, the further 
from the population mean), the greater will be the regression toward the mean at 
the time of the next measurement. The “floor-and-ceiling effect” used as an illustra-
tion by Schor [21] is helpful in understanding this concept. If all the flies in a closed 
room are near the ceiling in the morning, than at any subsequent time during the 
day more flies will be below where they started than above. Similarly, if the flies 
start close to the floor, the more probable it is for them to be higher, rather than 
lower, at any subsequent time.

Cutter [22] gives some nonbiological examples of regression toward the mean. 
He presents the case of a series of three successive tosses of two dice. The average 
of the first two tosses is compared with the average of the second and third tosses. 
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If no selection or cut-off criterion is used, the average of the first two tosses would, 
in the long run, be close to the average of the second and third tosses. However, if 
a cut-off point is selected, which restricts the third toss to only those instances 
where the average of the first and second tosses is nine or greater, regression toward 
the mean will occur. The average of the second and third tosses for this selected 
group will be less than the average of the first two tosses for this group.

As with the example of the participant changing his diet between screening and 
baseline, this phenomenon of regression toward the mean can complicate the assessment 
of intervention. In another case, an investigator may wish to evaluate the effects of 
an antihypertensive agent. She measures blood pressure once at the baseline exami-
nation and enters into the study only those people with systolic pressures over 
140 mmHg. She then gives a drug and finds on rechecking that most people have 
responded with lowered blood pressures. However, when she re-examines the con-
trol group, she finds that most of those people also have lower pressures. Regression 
to the mean is the major explanation for the frequently seen marked mean blood 
pressure reduction observed early in the control group. The importance of a control 
group is obvious in such situations. An investigator cannot simply compare prein-
tervention and postintervention values in the intervention group. She must compare 
postintervention values in the intervention group with values obtained at similar 
times in the control group.

This regression toward the mean phenomenon can also lead to a problem dis-
cussed previously. Because of regression, the values at baseline are less extreme 
than the investigator had planned on, and there is less room for improvement from 
the intervention. In the blood pressure example, after randomization, many of the 
participants may have systolic blood pressures in the low 130s or even below 130 
rather than above 140 mmHg. There may be a reluctance to use antihypertensive 
agents in people with such pressures, and certainly, the opportunity to demonstrate 
full effectiveness of the agent may be lost.

Two approaches to reducing the impact of regression toward the mean have been 
used by trials relying on measurements with large variability, such as blood pressure 
and some chemical determinations. One approach is to use a more extreme value than 
the entrance criterion when people are initially screened. Secondly, mean values of 
multiple measurements at the same visit or from more than one screening visit have 
been used to achieve more stable measurements. In hypertensive trials with a cutoff 
of systolic blood pressure of 140 mmHg, only those whose second and third measure 
averaged 150 mmHg or greater would be invited at the first screening visit to the 
clinic for further evaluation. The average of two recordings at the second visit would 
constitute the baseline value for comparison with subsequent determinations.

Interim Events

When baseline data are measured too far in advance of intervention assignment, a 
study event may occur in the interim. The participants having events in the interval 
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between allocation and the actual initiation of intervention would dilute the results 
and decrease the chances of finding a significant difference. In the European 
Coronary Surgery Study, coronary artery bypass surgery should have taken place 
within 3 months of intervention allocation [23]. However, the mean time until surgery 
was 3.9 months. Consequently, of the 21 deaths in the surgical group in the first 2 
years, six occurred before surgery could be performed. If the response, such as 
death, is nonrecurring and this occurs between baseline and the start of interven-
tion, the number of participants at risk of having the event later is reduced. 
Therefore, the investigator needs to be alert to any event occurring after baseline 
but before intervention is instituted. When such an event occurs before randomiza-
tion, i.e., allocation to intervention or control, she can exclude the participant from 
the study. When the event occurs after allocation, but before start of intervention, 
participants should nevertheless be kept in the study and the event counted in the 
analysis. Removal of such participants from the study may bias the outcome. For 
this reason, the European Coronary Surgery Study Group kept such participants in 
the trial for purposes of analysis. The appropriateness of withdrawing participants 
from data analysis is discussed more fully in Chap. 17.

Uncertainty About Qualifying Diagnosis

A growing problem in many disease areas such as arthritis, diabetes, and hypertension 
is finding potential participants who are not receiving treatment for their condition. 
So-called washout phases are often relied on in order to determine “true” baseline 
values.

Particularly difficult are those studies where baseline factors cannot be com-
pletely ascertained until after intervention has begun. For optimal benefit of throm-
bolytic therapy in patients with a suspected acute myocardial infarction, treatment 
has to be given within hours. This means that there is no time to wait for confirma-
tion of the diagnosis with development of Q-wave abnormalities on the ECG and 
marked increases in serum levels of cardiac enzymes. In the Global Utilization of 
Streptokinase and Tissue Plasminogen Activator of Occluded Coronary Arteries 
(GUSTO), trial treatment had to be given within 6 h [24]. To confirm the diagnosis, 
the investigators had to settle for two less definitive criteria; chest pain lasting at 
least 20 min and ST-segment elevations on the ECG.

The challenge in the National Institute of Neurological Disorders and Stroke 
t-PA stroke trial was to obtain a brain imaging study and to initiate treatment within 
180 min of stroke onset. This time was difficult to meet and participant enrollment 
lagged. As a result of a comprehensive process improvement program at the partici-
pating hospitals, the time between hospital admission and treatment was substan-
tially reduced with increased recruitment yield. Almost half of eligible patients 
admitted within 125 min of stroke onset were enrolled [25].

Even if an investigator can get baseline information just before initiating inter-
vention, she may need to compromise. For instance, being an important prognostic 
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factor, serum cholesterol level is obtained in most studies of heart disease. Serum 
cholesterol levels, however, are temporarily lowered during the acute phase of a myocardial 
infarction. Therefore, in any trial using people who have just had a myocardial infarc-
tion, baseline serum cholesterol data relate poorly to their usual levels. Only if the 
investigator has data on participants from a time before the myocardial infarction 
would usual cholesterol levels be known. Cholesterol levels obtained at the time 
of the infarction might not allow her to evaluate the natural history or make rea-
sonable observations about changes in cholesterol that occurred because of the 
intervention. On the other hand, because she has no reason to expect that one 
group would have greater lowering of cholesterol at baseline than the other group, 
such levels can certainly tell her whether the study groups are initially 
comparable.

Contamination of the Intervention

For many trials of chronic conditions, it can be difficult to find and enroll newly 
diagnosed patients. To meet enrollment goals, investigators often take advantage of 
available pools of treated patients. In order to qualify such patients, they often have 
to be withdrawn from their treatment. The advantage of treatment withdrawal is 
that a true baseline can be obtained. However, there are ethical issues involved with 
withdrawing active treatments (Chap. 2).

An alternative may be to lower the eligibility criteria for this group of treated 
patients. In the Antihypertensive and Lipid Lowering Treatment to Prevent Heart 
Attack Trial (ALLHAT), treated hypertensive patients were enrolled even if their 
initial blood pressures were below the study/goal blood pressures [26]. It was 
assumed that these individuals were truly hypertensive and, thus, had elevated 
blood pressures prior to being given antihypertensive medications. The disadvan-
tage of this approach is that the true untreated values for blood pressure were 
unknown at baseline.

Medications that participants are taking may also complicate the interpretation 
of the baseline data and restrict the uses to which an investigator can put baseline 
data. Determining the proportion of diabetic participants in a clinical trial based on 
the number with elevated fasting blood sugar or Hb

A1C
 levels at a baseline examina-

tion will underestimate the true prevalence. People treated with oral hypoglycemic 
agents or insulin may have their laboratory values controlled. Thus, the true preva-
lence of diabetics would be untreated participants with elevated blood sugar or 
Hb

A1C
 and those being treated for their diabetes regardless of their laboratory values. 

Similarly, a more accurate estimate of the prevalence of hypertension would be 
based on the number of untreated hypertensive subjects at baseline plus those 
receiving antihypertensive treatment.

Withdrawing treatment prior to enrollment could introduce other potential problems. 
Study participants with a supply of the discontinued medications left in their medi-
cine cabinet may use them during the trial and thus, contaminate the findings. 
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Similarly, if they have used other medications prescribed for the condition under 
study, they may also resort to these, whether or not their use is allowed according 
to the study protocol. The result may be discordant use in the study groups. 
Assessing and adjusting for the concomitant drug use during a trial can be complex. 
The use and frequency of use need to be considered. All of these potential problems 
are much smaller in trials of newly diagnosed patients.

Appreciating that, for many measurements, baseline data may not reflect the 
participant’s true condition at the time of baseline, investigators perform the exami-
nation as close to the time of intervention allocation as possible. Baseline assess-
ment may, in fact, occur shortly after allocation but prior to the actual start of 
intervention. The advantage of such timing is that the investigator does not spend 
extra time and money performing baseline tests on participants who may turn out 
to be ineligible. The baseline examination then occurs immediately after random-
ization and is performed not to exclude participants, but solely as a baseline refer-
ence point. Since allocation has already occurred, all participants remain in the trial 
regardless of the findings at baseline. This reversal of the usual order is not recom-
mended in single-blind or unblinded studies because it raises the possibility of bias 
during the examination. If the investigator knows to which group the participant 
belongs, she may subconsciously measure characteristics differently, depending on 
the group assignment. Furthermore, the order reversal may unnecessarily prolong 
the interval between intervention allocation and its actual start.

Assessment of Baseline Comparability

Assessment of baseline comparability is important in all trials, and particularly so 
in nonrandomized studies. The investigator needs to look at baseline variables in 
several ways. The simplest is to compare each variable to make sure that it has 
reasonably similar distribution in each study group. Means, medians, and ranges 
are all convenient measures. The investigator can also combine the variables, giving 
each one an appropriate weight or coefficient, but doing this presupposes knowl-
edge of the relative prognostic importance of the variables. This kind of knowledge 
can come only from another study with a very similar population or by looking at 
the control group after the present study is completed. The weighting technique has 
the advantage that it can take into account numerous small differences between 
groups. If imbalances between most of the variables are in the same direction, the 
overall imbalance can turn out to be large, even though differences in individual 
variables are small.

In the 30-center Aspirin Myocardial Infarction Study which involved over 4,500 
subjects, each center can be thought of as a small study with about 150 subjects [6]. 
When the baseline comparability within each center was reviewed, substantial dif-
ferences in almost half the centers were found, some favoring intervention and 
some control (Furberg, CD, unpublished data). The difference between intervention 
and control groups in predicted 3-year mortality, using the Coronary Drug Project 
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model exceeded 20% in five of the 30 clinics. Therefore, all factors which are 
known or suspected to be important in the subsequent course of the condition under 
study should be looked at when interpreting results.

Identified imbalances do not invalidate a randomized trial, but they may make 
interpretation of results more complicated. In the North American Silver-Coated 
Endotracheal Tube trial, a higher number of patients with chronic obstructive pul-
monary disease were randomized to the uncoated tube group [27]. The accompanying 
editorial [28] points to this imbalance as one factor behind the lack of robustness of 
the results, which indicated a reduction in the incidence of ventilator-associated 
pneumonia. Chronic obstructive pulmonary disease is a recognized risk factor for 
ventilator-associated pneumonia.

Item 15 of the CONSORT statement recommends that the investigators report 
“baseline demographics and clinical characteristics of each group” (Chap. 19). 
This is typically done in the first table of a results paper. The statement does not 
comment on the need for statistical testing of baseline balances (see below).

Testing for Baseline Imbalance

There is a debate over whether one should do formal statistical testing of baseline 
imbalances [29–32]. Several authors have gone so far to suggest that such testing 
be avoided [29, 32]. When comparing baseline factors, remember that groups can 
never be shown to be identical. Only absence of “significant” differences can be 
demonstrated. A review of 80 trials published in four leading journals, showed that 
hypothesis tests of baseline comparability were conducted in 46 of these trials. Of 
a total of 600 such tests, only 24 (4%) were significant at the 5% level [2], consis-
tent with what would be expected by chance.

Testing baseline factors for imbalance is recommended. Specifically, it is impor-
tant to know which baseline factors may influence the trial outcomes and to deter-
mine whether they were imbalanced and whether observed trends of imbalance 
favored one group or the other. The critical baseline factors to consider ought to be 
prespecified in the protocol. Reliance on significance testing as a measure of base-
line equivalence is common [1]. Due to the often large number of statistical tests, 
the challenge is to understand the meaning and importance of observed differences. 
A nonsignificant baseline group difference in the history of hemorrhagic stroke 
could still affect the treatment outcome in thrombolytic trials [32].

We recommend that the investigators present in the Results section relevant 
baseline data with p-values, or an asterisk indicating which comparisons are signifi-
cant at a nominal p-value (e.g., 0.05 or 0.01) or z-scores (standardized differences) 
from which a p-value can be calculated. They should highlight any clinically 
important differences that may influence the reported findings even if they don’t 
reach nominal statistical significance. In the Discussion, they ought to comment on 
the effect of such baseline imbalances on the internal validity, as well as how the 
study population compares with patients seen in clinical practice.
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Often the most difficult task in a clinical trial involves obtaining sufficient study 
participants within a reasonable time. Time is a critical factor for both scientific and 
logistical reasons. From a scientific viewpoint, there is an optimal window of time 
within which a clinical trial can and should be completed. Changes in medical 
practice, including introduction of new treatment options, may make the trial outdated 
before it is completed. Other investigators may answer the questions sooner. In terms 
of logistics, the longer recruitment extends beyond the initially allotted recruitment 
periods , the greater the pressure becomes to meet the goal. Lagging recruitment  will 
also reduce the statistical power of the trial. Costs increase, frustration, and discour-
agement often follow. The primary reasons for recruitment failure include overop-
timistic expectations, failure to start on time, inadequate planning, and insufficient 
effort.

Approaches to recruitment of participants will vary depending on the type 
and size of the trial, the length of time available, the setting (hospital, physi-
cian’s office, community), whether the trial is single- or multicenter, and many 
other factors. Because of the broad spectrum of possibilities, this chapter sum-
marizes concepts and general methods rather than elaborating on specific tech-
niques. Emphasis is placed on anticipating and preventing problems. This 
chapter addresses plans for the recruitment effort, common recruitment 
problems, major recruitment strategies and sources, actual conduct, and moni-
toring of recruitment.

Fundamental Point

Successful recruitment depends on developing a careful plan with multiple 
strategies, maintaining flexibility, establishing interim goals, preparing to 
devote the necessary effort and obtaining the sample size in a timely 
fashion.

Chapter 10
Recruitment of Study Participants

L.M. Friedman et al., Fundamentals of Clinical Trials, 
DOI 10.1007/978-1-4419-1586-3_10, © Springer Science+Business Media, LLC 2010
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Considerations Before Participant Enrollment

Selection of Study Sample

In Chap. 4, we define the study population as “the subset of the population with the 
condition or characteristics of interest defined by the eligibility criteria.” The group 
of participants actually recruited into the trial, i.e., the study sample, is a selection 
from this study population. Those enrolled into a trial do not represent a random 
sample of those eligible for enrollment. Eligible individuals who volunteer to par-
ticipate in a randomized trial may be different from eligible nonparticipants (see 
below). The impact of this potential selection bias on the results of a trial is not well 
understood. A better understanding of the factors that influence either willingness 
or unwillingness to participate in a research project can be very helpful in the plan-
ning of recruitment efforts.

A thorough literature review through 2001 identified 14 studies that had 
addressed the question – What reasons do people give for participating and not 
participating in clinical trials? [1] The answers came from 2,189 participants and 
6,498 who declined. The variability was large, but trial participants gave as their 
major reason for participating potential health benefit (45%), physician influence 
(27%), and potential benefit to others (18%). Less commonly mentioned reasons 
given by participants in other studies included a desire to learn more about their 
condition, get free and better care, encouragement by family members and friends, 
favorable impression of and trust in clinical staff and even to help promote the 
investigators’ careers [2–5].

Several reasons for declining participation in research projects have also been 
reported. In the ECRI survey, the major general reasons for not participating were 
inconvenience (25%), concern over experimentation (20%), potential lack of health 
benefit (19%), and physician influence (14%). Many patients also lacked interest 
and preferred to stay with their own physicians. In another survey, fear was given 
as a major reason by half of those declining participation and the use of a placebo 
by almost one quarter [5].

Logistical issues are sometimes given – demands on time, conflicts with other 
commitments, problems with travel/transportation and parking. Barriers to participa-
tion in cancer trials include concerns with the trial setting, a dislike of randomiza-
tion, presence of a placebo or no-treatment group, and potential adverse events [6].

Common Recruitment Problems

The published experience from recruitment of participants into clinical trials 
through 1995 is nicely summarized in a literature review and annotated bibliography 
[7]. Over 4,000 titles were identified and 91 articles considered useful for formula-
tion of recruitment strategies in clinical trials are annotated. The literature review 
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focuses on experiences recruiting diverse populations such as ethnic minorities, 
women, and the elderly. Also discussed are successful recruitment approaches, 
which include use of registries, occupational sites, direct mailing, and use of media. 
The article highlights the value of pilot studies, projecting and monitoring recruit-
ment, and the use of data tracking systems. Many of these issues are covered in 
more detail later in this chapter.

A review from the UK of 114 clinical trials that recruited participants between 
1994 and 2002 explored the factors related to good and poor recruitment [8]. 
Approximately one-third of all trials met their original recruitment goal within the 
proposed time frame while approximately half had to be extended. Among those 
failing to make the original target, one half revised the goals. About 40% of all tri-
als did not initiate recruitment as planned, mostly due to staffing and logistical 
issues. Almost two-thirds of the trials acknowledged early recruitment problems. 
More than half of the reviewed trials, a remarkably high number, had a formal pilot 
study that led to changes in the recruitment approach for the main trial. The written 
trial materials were revised, the trial design altered, the recruitment target changed, 
the number of sites increased, and/or the inclusion criteria broadened. A systematic 
review of recruitment methods identified 14 trials describing 20 different interven-
tions [9]. Strategies that increased recruitment rates were: using an “open” rather 
than placebo control design, making trial material culturally sensitive, and using 
telephone reminders and monetary incentives. The authors called for more trials 
testing interventions to improve trial recruitment.

Even when carefully planned and perfectly executed, recruitment may still pro-
ceed slowly. Investigators should always expect problems to occur despite their best 
efforts. Most of the problems are predictable but a few may be completely unfore-
seen. In one multicenter study, there were reports of murders of inpatients at the 
hospital adjacent to the study clinic. It is hardly surprising that attendance at the 
clinic fell sharply.

Overestimation of eligible participants is a common reason for recruitment dif-
ficulties. A group of Finnish investigators [10] conducted a retrospective chart 
review. The typical eligibility criteria for clinical trials of patients with gastric ulcer 
were applied to 400 patients hospitalized with that diagnosis. Only 29% met the 
eligibility criteria but almost all deaths and serious complications such as gastric 
bleeding, perforation and stenosis during the first 5–7 years occurred among those 
who would have been ineligible. Clearly, the testing of H

2
 blockers or other com-

pounds for the prevention of long-term complication of gastric ulcer in low-risk 
participants should not be generalized to the entire ulcer population. Troubling in 
this report is the evidence that the eligibility criteria can have such a dramatic effect 
of the event rates in those qualifying for participation.

Reliance on physician referrals is common and often problematic. Usually this 
technique results in very few eligible participants. A survey of 7,000 physicians in 
2005 reported that only 31% of them had ever referred a patient to a clinical trial 
[5]. In one multicenter trial, an investigator invited internists and cardiologists from 
a large metropolitan area to a meeting. He described the study, its importance and 
his need to recruit men who had had a myocardial infarction. Each of the physicians 
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stood up and promised to contribute one or more participants. One hundred fifty 
participants were pledged; only five were ultimately referred. Despite this, such 
pleas may be worthwhile because they make the professional community aware of 
a study and its purpose. Investigators who stay in close contact with physicians in 
a community and form a referral network have more success in obtaining coopera-
tion and support.

When recruitment becomes difficult, one possible outcome is that an investigator 
will begin to interpret loosely entry criteria or will deliberately change data to enroll 
otherwise ineligible participants or even “enroll” fictitious subjects. Unfortunately, this 
issue is not merely theoretical. Such practices have occurred, to a limited extent, in 
more than one trial [11–13]. The best way to avoid the problem is to make it clear 
that this type of infraction harms both the study and the participants, and that nei-
ther science nor the investigators are served well by such practices. An announced 
program of random record audits by an independent person or group during the trial 
may serve as a deterrent.

Planning

In the planning stage of a trial, an investigator needs to evaluate the likelihood of 
obtaining sufficient study participants within the allotted time. This planning effort 
entails obtaining realistic estimates of the number of available potential participants 
meeting the study entry criteria. However, in the USA, access to available patient 
data from paper and electronic medical records requires compliance with the Health 
Insurance Portability and Accountability Act (HIPAA) and similar regulations apply 
in many other countries. Access can be granted but many community practices do 
not have such a mechanism in place and tend to be reluctant to release patient 
information. Even if those restrictions are overcome, census tract data or hospital 
and physician records may be out of date, incomplete, or incorrect. People may 
have moved or died since the records were last updated. Information about current 
use of drugs or frequency of surgical procedures may not reflect what will occur in 
the future, when the trial is actually conducted. Records may not give sufficient – or 
even accurate – details about potential participants to determine the impact of all 
exclusion criteria. Clearly, available data certainly do not reflect the willingness of 
people to enroll in the trial or comply with the intervention.

After initial record review, an investigator may find it necessary to expand the 
population base by increasing the geographical catchment area, canvassing addi-
tional hospitals, relaxing one or more of the study entrance criteria, increasing the 
planned recruitment time, or by combining some of these factors. The preliminary 
survey of participant sources should be as thorough as possible, since these deter-
minations are better made before, rather than after, a study begins.

Investigator commitment is key to success. A concern is that investigators keep 
adding new trials to those they already have committed to. Trials with higher pay-
ments seem to get more attention. The investigator also needs strong support from 
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his institution and colleagues. Other investigators in the same institution or at 
nearby institutions may compete for similar participants. Since participants should 
generally not be in more than one trial at a time, competing studies may decrease 
the likelihood that the investigator will meet his recruitment goal. Competition for 
participants may necessitate reappraising the feasibility of conducting the study at 
a particular site.

Announcements of the trial should precede initiation of recruitment. The cour-
tesy of informing area health professionals about the trial in advance can facilitate 
cooperation, reduce opposition, and avoid local physicians’ surprise at first hearing 
about the study from their patients rather than from the investigator. Talks to local 
professional groups are critical, but these and any notices regarding a trial should 
indicate whether the investigator is simply notifying physicians about the study or 
is actively seeking their assistance in recruiting participants.

Planning also involves setting up a clinic structure for recruitment with inter-
ested and involved coinvestigators, an experienced and organized coordinator in 
charge of recruitment and other staff required for and dedicated to the operations. 
A close working relationship between the clinic staff and the investigators with 
regular clinic meetings is crucial from the very beginning to enrollment of the last 
participant. Careful planning and clear delineation of staff responsibilities are 
essential features of well-performing recruitment units.

Although recruitment is often expected to be curvilinear, the calculation of a 
sample size estimate typically assumes a constant rate of enrollment. A slow start 
can reduce the statistical power of the trial by reducing the average participant 
follow-up time. Thus, recruitment should begin no later than the first day of the 
designated recruitment period. As important as the best planning is, commitment 
and willingness by everyone to spend a considerable amount of time in the recruit-
ment effort are equally important. Just as investigators usually overestimate the 
number of participants available, they often underestimate the time and effort 
needed to recruit. Investigators must accommodate themselves to the schedules of 
potential participants, many of whom work. Thus, recruitment is often done on 
weekends and evenings, as well as during usual working hours.

The need for multiple recruitment strategies has been well documented [14, 15]. 
The first randomization should take place on the first day of the identified recruit-
ment period. Therefore, if there is a lengthy prerandomization screening period, 
adjustments in the timing of the first randomization should be made. Because it is 
difficult to know which strategies will be productive, it is important to monitor 
effort and yield of the various strategies. A successful strategy in one setting does 
not guarantee success in another. The value of multiple approaches is illustrated by 
one large study in which the investigator identified possible participants and wrote 
letters to them, inviting them to participate. He received a poor response until his 
study was featured on local radio and television news. The media coverage had 
apparently “legitimized” the study as well as primed the community for acceptance 
of the trial.

Contingency plans must be available in case recruitment lags. Experience has shown 
that recruitment yields, in general, are much lower than anticipated. Thus, the identified  
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sources needed to be much larger than the recruitment goals. Hence, additional sources 
of potential study participants should be kept in reserve. Approval from hospital 
staff, large group practices, managed care organizations, corporation directors or 
others controlling large numbers of potential participants often takes considerable 
time. Waiting until recruitment problems appear before initiating such approval can 
lead to weeks or months of inaction and delay. Therefore, it is advisable to make 
plans to use other sources before the study actually gets underway. If they are not 
needed, little is lost except for additional time used in planning. Most of the time, 
these reserves will prove useful.

If data concerning recruitment of potential participants to a particular type of 
trial are scanty, a pilot or feasibility study may be worthwhile. Pilot studies can 
provide valuable information on optimal participant sources, recruitment tech-
niques, and estimates of yield. In a trial of elderly people, the question arose 
whether those in their 70s or 80s would volunteer and actively participate in a long-
term, placebo-controlled trial. Before implementing a costly full-scale trial, a pilot 
study was conducted to answer these and other questions [16]. The study not only 
showed that the elderly were willing participants but also provided information on 
recruitment techniques. The success of the pilot led to a full-scale trial.

Recruitment Sources

The sources for recruitment depend on the features of the study population; sick 
people vs. well, hospitalized vs. not, or acute vs. chronic illness. For example, 
enrollment of acutely ill hospitalized patients can only be conducted in an acute 
care setting, whereas enrollment of healthy asymptomatic individuals with certain 
characteristics or risk factors requires a community-based screening program. 
Following the introduction of the HIPAA and other privacy regulations, readily 
available sources for recruitment have changed. Identification of potential partici-
pation through review of hospital charts is no longer an effective alternative, except 
through the active involvement of those patients’ own physicians. Thus, focus has 
shifted to direct participant appeal.

Direct invitation to study participants is an appealing approach, since it avoids 
many confidentiality issues. Solicitation may be done through mass media, wide dis-
semination of leaflets advertising the trial, or participation by the investigator in health 
fairs or similar vehicles. None of these methods is foolproof. The yield is often unpre-
dictable and seems to depend predominantly on the skill with which the approach is 
made and the size and kind of audience it reaches. One success story featured a distin-
guished investigator in a large city who managed to appear on a local television station’s 
early evening news show. Thousands of people volunteered for the screening program 
following this single 5-min appeal. Experience, however, has shown that most indi-
viduals who respond to a media campaign are not eligible for the trial.

The recruitment into the Systolic Hypertension in the Elderly Program (SHEP) 
was a major undertaking [17]. A total of almost 450,000 screenees were contacted 
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to enroll 4,736 (1.1%) participants. One of the major recruitment approaches in 
SHEP was mass mailings. A total of 3.4 million letters were sent by 14 of the SHEP 
clinics and the overall response rate was 4.3%. Names were obtained from 
Departments of Motor Vehicles, voter registration lists, health maintenance organi-
zations, health insurance companies, the AARP, and others. Endorsement was 
obtained from these organizations and groups. Many of them issued the invitations 
on their own letterheads. Each mailing included a letter of invitation, a standard 
brochure describing SHEP and a self-addressed stamped return postcard. Experience 
showed that the response rates varied by mailing list source. It was also clear that 
clinics with experienced recruitment staff did better than the others.

A US survey of 620 previous trial participants asked where they first learned 
about the trials [5]. Media, the most common answer, was given by 30%, but 26% 
said the Internet. Web-based strategies seem to grow in importance although the 
yield appears to vary by type of trial. Only 14% in the survey first learned of the 
trial via physician referral.

Participants may also be approached through a third party. Patient organizations 
such as local chapters of diseases such as autism and multiple sclerosis may be 
willing to refer members. For example, an investigator may bring the attention of 
physicians to his study by means of letters, telephone calls, presentations at profes-
sional society meetings, notices in professional journals or exhibits at scientific 
conferences. The hope is that these physicians will identify a potential participant 
and either notify the investigator or ask the person to call him. As noted earlier, this 
usually yields few participants. To overcome the problem with physician referral, 
sponsors are offering financial incentives. The value of this practice has not been 
properly evaluated but it has raised ethical issues concerning conflict of interest, 
disclosure to potential participants, and implications for the informed consent pro-
cess [18].

The recruitment targets have to be adjusted if special subgroups of the population 
are being recruited. In response to a relative paucity of clinical trial data on women 
and minorities, the US Congress in 1995 directed the National Institutes of Health 
to establish guidelines for inclusion of these groups in clinical research. The charge 
to the Director of NIH to “ensure that the trial is designed and carried out in a manner 
sufficient to provide valid analysis of whether the variables being studied in the trial 
affect women and members of minority groups, as the case may be, differently than 
other subjects in the trial” has major implications depending on the interpretation 
of the term “valid analysis” [19].

To document a similar effect, beneficial or harmful, separately for both men and 
women, and separately for various racial/ethic groups could increase the sample 
size by a factor ranging from 4 to 16. The sample size will grow considerably more 
if the investigator seeks to detect differences in response among the subgroups. We 
support adequate representation of women and minorities in clinical trials, but sug-
gest that the primary scientific question being posed be the primary determinant of 
the composition of the study population and the sample size. When the effort is 
made, successful enrollment of women and minorities can be accomplished. An 
example is the Selenium and Vitamin E Cancer Prevention Trial [20].
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An increasingly common approach to meeting the need for large sample sizes in 
multicenter trials with mortality and major event response variables has been to 
establish clinical centers internationally. This experience has been positive and the 
number of participants enrolled by such centers often exceeds those in the country 
of the study’s origin. The success in recruitment may, however, come at a cost. The 
trial findings at international sites, especially those in developing countries may 
differ from those in the originating country, which is often in the developed world. 
Possible reasons include differences in the baseline characteristics of the study 
population, in the practice of medicine as a reflection of the quality of care, research 
traditions and socioeconomic and other factors [21, 22]. O’Shea and Califf ana-
lyzed the international differences in cardiovascular trials and reported important 
differences in participant characteristics, concurrent therapies, coronary revascular-
izations, length of hospital stay and clinical outcomes in the U.S. and elsewhere [23]. 
Importantly, they pointed out that, in general, the differing event rates would not be 
expected to affect the relative effects of a treatment. This is in contrast to a review of 
657 abstracts from trials of acupuncture and other interventions [24]. The authors 
of that review concluded that some countries published unusually high proportions of 
positive results. Possible explanations include publication biases, level of care, and 
differences in study populations.

The issue is – Can findings from developing countries be extrapolated to devel-
oped countries and regions and vice versa? It is important that the results papers 
from large international studies address this question by presenting findings by 
participating country or broad region and continent.

Conduct

Successful recruitment of participants depends not only on proper planning but also 
on the successful implementation of the plan. Systems must be in place to identify 
all potential participants from the identified recruitment pool and to screen these 
people for eligibility. For hospital-based studies, logging all admissions to special 
units, wards, or clinics is invaluable. However, keeping such logs complete can be 
difficult, especially during evenings or weekends. During such hours, those most 
dedicated to the study are often not available to ensure accuracy and completeness. 
Vacation times and illness may also present difficulties in keeping the log up to 
date. Therefore, frequent quality checks should be made. Participant privacy is also 
important. At what point do the investigators obtain consent? For those who refuse 
to participate, what happens to the data that had been collected and used to identify 
them? The answers to this will vary from institution to institution and depend on 
who is keeping the log and for what reason. Information recorded by code numbers 
can facilitate privacy. The use of data warehouses can be utilized. Electronic medi-
cal records permit software algorithms to search for patient profiles that match a 
particular protocol and automatically identify for the health care team those eligible 
for a specific trial.
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For community-based studies, screening large numbers of people is typically a 
major undertaking especially if the yield is low. Prescreening potential participants 
by telephone to identify those with major exclusion criteria (e.g., using demographics, 
medical history) has been employed in many projects. In the Lung Health Study, 
investigators used prescreening to reduce the number of screening visits to approxi-
mately half of those projected [25, 26]. Investigators need to identify the best times 
to reach the maximum number of potential participants. If they intend to make 
home visits or hope to contact people by telephone, they should count on working 
evenings or weekends. Unless potential participants are retired, or investigators 
plan on contacting people at their jobs (which, depending on the nature of the job, 
may be difficult), normal working hours may not be productive times. Vacation 
periods and summers are additional slow periods for recruitment.

The logistics of recruitment may become more difficult when follow-up of 
enrolled participants occurs while investigators are still recruiting. In long-term 
studies, the most difficult time is usually toward the end of the recruitment phase 
when the same staff, space, and equipment may be used simultaneously for partici-
pants seen for screening, baseline, and follow-up examinations. Resources can be 
stretched to the limit and beyond if appropriate planning has not occurred.

The actual mechanics of recruiting participants needs to be established in advance. 
A smooth clinic operation is beneficial to all parties. Investigators must be certain that 
necessary staff, facilities, and equipment are available at appropriate times in the proper 
places. Keeping potential participants waiting is a poor way to earn their confidence.

Investigators and staff need to keep abreast of recruitment efforts. Conducting 
regular staff meetings and generating regular reports may serve as forums for dis-
cussion of yields from various strategies, percent of recruitment goal attained as 
well as brainstorming and morale-boosting. These meetings, useful for both single- 
and multicenter trials, also provide the opportunity to remind everyone about the 
importance of following the study protocol including paying careful attention to 
collection of valid data.

Record keeping of recruitment activities is essential to allow analyses of recruit-
ment yields and costs from the various recruitment strategies. Recruiting large 
number of potential participants requires the creation of timetables, flowcharts, and 
databases to ensure that screening and recruitment proceed smoothly. Such charts 
should include the number of people to be seen at each step in the process at a given 
time, the number and type of personnel and amount of time required to process each 
participant at each step, and the amount of equipment needed (with an allowance 
for “down” time). A planned pilot phase is helpful in making these assessments. 
One positive aspect of slow early recruitment is that the “bugs” in the start-up pro-
cess can be worked out and necessary modifications made.

Several additional points regarding the conduct of recruitment are worth 
emphasizing:

First, the success of a technique is unpredictable. What works in one city at one time 
may not work at the same place at another time – or in another city. Therefore, 
the investigator needs to be flexible and to leave room for modifications.



192 10 Recruitment of Study Participants

Second, investigators working especially with sick participants must maintain good 
relationships with participants’ personal physicians. Physicians disapproving of 
the study or of the way it is conducted are more likely to urge their patients not 
to participate.

Third, investigators must respect the families of potential participants. Most partici-
pants like to discuss research participation with their family and friends. 
Investigators should be prepared to spend time reviewing the study with them. If the 
study requires long-term cooperation from the participant, we encourage such 
discussions. Anything that increases family support is likely to lead to better 
recruitment and protocol adherence.

Fourth, recruiting should not be overly aggressive. While encouragement is neces-
sary, excessive efforts to convince, or “arm twist” people to participate could 
prove harmful in the long run, in addition to raising ethical concerns. One might 
argue that excessive salesmanship is unethical. Those reluctant to join may be 
more likely to abandon the study later or be poor adherers to study interventions 
after randomization. Effective work on adherence begins during the recruitment 
phase.

Fifth, the recruitment success is closely associated with the investigator’s level of 
commitment.

Monitoring

Successful trial recruitment often depends on establishing short-term and long-term 
recruitment goals. The investigator should record these goals and make every effort 
to achieve them. Since lagging recruitment commonly results from a slow start, 
timely establishment of initial goals is crucial. The investigator should be ready to 
randomize participants on the first official day of study opening.

The use of weekly and/or monthly interim goals in a long-term study orients the 
investigator and staff to the short-term recruitment needs of the study. These goals 
can serve as indicators for lagging recruitment and may help avoid a grossly uneven 
recruitment pace. Inasmuch as participant follow-up is usually done at regular 
intervals, uneven recruitment results in periods of peak and slack during the follow-
up phase. This threatens effective use of staff time and equipment. Of course, 
establishing a goal in itself does not guarantee timely participant recruitment. The 
goals need to be realistic and the investigator must make the commitment to meet 
each interim goal.

The reasons for falling behind the recruitment goal(s) should be determined. In 
a multicenter clinical trial, valuable insight can be obtained by comparing results 
and experiences from different centers. Those clinical sites with the best recruit-
ment performance can serve as “role models” for other sites, which should be 
encouraged to incorporate other successful techniques into their recruitment 
schemes. Multicenter studies require a central office to oversee recruitment, to 
compare enrollment results, to facilitate communication among sites, and to lend 
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support and encouragement. Frequent feedback to the centers by means of tables 
and graphs, which show the actual recruitment compared with originally projected 
goals, are useful tools. Examples are shown in the following figures and table. 
Figure 10.1 shows the progress of an investigator who started participant recruit-
ment on schedule and maintained a good pace during the recruitment period. The 
investigator and clinic staff accurately assessed participant sources and demon-
strated a commitment to enrolling participants in a relatively even fashion. 
Figure 10.2 shows the record of an investigator who started slowly but later 

Fig. 10.1 Participant recruitment in a clinic that consistently performed at goal rate

Fig. 10.2 Participant recruitment in a clinic that started slowly and then performed at greater than 
goal rate
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improved. However, considerable effort was required to compensate for the poor start. 
Clinic efforts included expanding the base from which participants were recruited 
and increasing the time spent in enrollment. Even if the clinic eventually catches 
up, the person-years of exposure to the intervention has been reduced which may 
affect event rates and trial power. In contrast, as seen in Fig. 10.3, the investigator 
started slowly and never was able to improve his performance. This center was 
dropped from a multicenter study because it could not contribute enough partici-
pants to the study to make its continued participation efficient.

Table 10.1 shows goals, actual recruitment, and projected final totals (assuming 
no change in enrollment pattern) for three other centers of a multicenter trial. Such 
tables are useful to gauge recruitment efforts short term as well as to project final 
numbers of participants. The tables and figures should be updated as often as 
necessary.

In single-center trials, the investigator should also monitor recruitment status at 
regular and frequent intervals. Review of these data with staff keeps everyone aware 
of recruitment progress. If recruitment lags, the delay can be noted early, the rea-
sons identified and appropriate action taken.

Approaches to Lagging Recruitment

We have identified five possible approaches to deal with lagging recruitment.
The first is to accept a smaller number of participants than originally planned. 

Doing this is far from ideal, inasmuch as the power of the study will be reduced. In 
accepting a smaller number of participants than estimated, the investigator must 
either alter design features such as the primary response variable, or change 

Fig. 10.3 Participant recruitment in a clinic that performed poorly
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Table 10.1 Weekly recruitment status report by center

Center

(1)  
Contracted  

goal

(2)  
Enrollment  
this week

(3)  
Actual 

enrollment  
to date

(4)  
Goal 

enrollment  
to date

(5)  
Actual  
minus  
goal

(6)  
Success  

rate  
(3)/(4)

(7)  
Final 

projected  
intake

(8) Final  
deficit  

or excess  
(7) − (1)

A 150 1 50 53.4  −3.4 0.94 140 −10
B 135 1 37 48.0 −11.0 0.77 104 −31
C 150 2 56 53.4  2.6 1.06 157   7

Table used in the Beta-Blocker Heart Attack Trial: Coordinating Center, University of Texas, 
Houston

assumptions about intervention effectiveness and participant adherence. As indicated 
elsewhere, such changes midway in a trial may be liable to legitimate criticism. 
Only if the investigator is lucky and discovers that some of the assumptions used in 
estimating sample size were too pessimistic would this “solution” provide compa-
rable power. There are rare examples of this happening. In a trial of aspirin in 
people with transient ischemic attacks, aspirin produced a greater effect than initially 
postulated [27]. Therefore, the less-than-hoped-for number of participants turned 
out to be adequate. Alternatively, extra effort might be made to achieve better-than-
projected participant adherence to the study protocol, and thereby reduce the number 
of required participants.

A second approach is to relax the inclusion criteria. This should be done only if 
little expectation exists that the study design will suffer. The design can be marred 
when, as a result of the new type of participants, the control group event rate is 
altered to such an extent that the estimated sample size is no longer appropriate. 
Also, the expected response to intervention in the new participants may not be as 
great as in the original participants. Furthermore, the intervention might have a dif-
ferent effect or have a greater likelihood of being harmful in the new participants 
than in those originally recruited. The difference in additional participants would 
not matter if the proportion of participants randomized to each group stayed the 
same throughout recruitment. However, as indicated in Chap. 6, certain randomiza-
tion schemes alter that proportion, depending on baseline criteria or study results. 
Under these circumstances, changing entrance criteria may create imbalances 
among study arms.

The Coronary Drug Project provides a classic example [28]. Only people with 
documented Q-wave myocardial infarctions were originally eligible. With enroll-
ment falling behind, the investigators decided to admit participants with non-Q-wave 
infarctions. Since there was no reason to expect that the action of lipid-lowering 
agents that were being studied would be any different in the new group than in the 
original group and since the lipid-lowering agents were not contraindicated in the new 
participants, the modification seemed reasonable. However, there was some con-
cern that overall mortality rate would be changed because mortality in people with 
non-Q-wave infarctions may be less than mortality in people with Q-wave infarc-
tions. Nevertheless, the pressure of recruitment overrode that concern. Possible 
baseline imbalances did not turn out to be a problem. In this particular study, where 
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the total number of participants was so large (8,341), there was every expectation 
that randomization would yield comparable groups. If there had been uncertainty 
regarding this, stratified randomization could have been employed (Chap. 6). 
Including people with non-Q-wave infarctions may have reduced the power of the 
study because this group had a lower mortality rate than those with Q-wave infarc-
tions in each of the treatment groups, including the placebo group. However, the 
treatments were equally ineffective when people with Q-wave infarctions were 
analysed separately from people with non-Q-wave infarctions [29].

The third and probably most common approach to recruitment problems is to 
extend the time for recruitment or, in the case of multicenter studies, to add recruit-
ing centers. Both are the preferred solutions, requiring neither modification of 
admission criteria nor diminution of power. However, they are also the most costly. 
Whether the solution of additional time or additional centers is adopted depends on 
cost, on the logistics of finding and training other high quality centers, and on the 
need to obtain study results quickly.

A fourth approach to lagging recruitment is “recycling” of potential participants. 
When a prospective participant just misses meeting the eligibility criteria, the temp-
tation is natural to try to enroll him by repeating a measurement, perhaps under 
slightly different conditions. Due to variability in a screening test, many investiga-
tors argue that it is reasonable to allow one repeat test and give a person interested 
in the trial a “second chance.” In general, this recycling should be discouraged. A 
study is harmed by enrolling persons for whom the intervention might be ineffec-
tive or inappropriate. However, in some progressive diseases, waiting a year to 
recycle a potential participant may prove to be useful.

Instances exist where, in order to enter a drug study, the participant needs to be off 
all other medication with similar actions. At baseline, he may be asked whether he has 
adhered with this requirement. If he has not, the investigator may repeat the instruc-
tions and have the participant return in a week for repeat baseline measurements. 
The entrance criterion checks on a participant’s ability to adhere with a protocol and 
his understanding of instructions. This “second chance” is different from recycling 
and it is legitimate from a design point of view. However, the second-chance 
participant, even if he passes the repeat baseline measurement, may not be as good a 
candidate for the study as someone who adhered on the first occasion [30].

The fifth approach – broadening or changing the prespecified primary response 
variable is very common. Broadening the prespecified response variable during the 
conduct of a trial when the observed number of response outcomes, or events, is 
markedly below what was required ought to be avoided. If done to compensate for 
low statistical power, the change should be clearly acknowledged in all results papers. 
The credibility and acceptance of the trial findings are likely to suffer. Changing the 
primary outcome may have some hazards. The placebo-controlled Carvedilol Post-
Infarct Survival Control in Left Ventricular Dysfunction (CAPRICORN) study expe-
rienced slow recruitment and a lower than expected event rate. The prespecified 
primary endpoint was all-cause mortality. The blinded Steering Committee discussed 
the possibility of adding a second primary endpoint, all-cause mortality or cardiovas-
cular hospitalization. Other solutions were considered but the option of adding a 
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second primary outcome was recommended. It was decided to allocate a p-value of 
0.045 to the new endpoint and a p-value of 0.005 to the original one in order to main-
tain an overall type 1 error of 0.05 [31]. At the conclusion of the trial, all-cause mor-
tality had a hazard ratio of 0.77 (95% CI 0.60–0.98) for a p = 0.031. The hazard ratio 
for the new endpoint was 0.92 (95% CI 0.80–1.07) for a p = 0.296. Thus, CAPRICORN 
would have shown a significant benefit if the primary outcome had not been changed 
or if the allocation of the p-value had emphasized all-cause mortality more. Due to 
the very favorable outcome of other trials of carvedilol, the results of CAPRICORN 
were ultimately accepted as positive. However, we strongly discourage changing the 
primary outcome after a trial is underway.
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No study is better than the quality of its data. Data in clinical trials are collected 
from several sources – interviews, questionnaires, participant examinations, or 
laboratory determinations. Also, data that have been collected and evaluated by 
someone outside the study may be used in a trial; for example, diagnoses obtained 
from death certificates or hospital records.

Avoiding problems in the data collection represents a challenge. There are many 
reasons for poor quality data and avoiding them all is difficult, so the goal is to limit 
their amount and, thus, their impact on the trial findings. Many steps can be taken 
during the planning phase to optimize collection of high quality data. The problems 
encompass missing data, erroneous (including falsified and fabricated) data, large 
variability and long delays in data submission. Even with the best planning, data 
quality needs to be monitored throughout the trial and corrective actions taken to 
deal with unacceptable problems. This chapter has sections addressing the prob-
lems in data collection, how to minimize collection of poor quality data, and the 
need for quality monitoring, which includes audits.

Concerted efforts to improve data quality in clinical trials have increased mark-
edly over the past decade or so. The International Conference of Harmonisation 
(ICH) Good Clinical Practices (GCP) guidelines defined the international ethical 
and scientific standards for clinical trials in 1996 [1]. They cover the spectrum of 
phases from design, conduct, recording to reporting. This roadmap of responsibili-
ties has been updated and the latest revision issued in 2007 [2]. Other organizations 
followed in the ICH’s footsteps and have issued their own versions of quality assur-
ance guidelines. The Society for Clinical Trials issued, in 1998, guidelines for 
multicenter trials [3]. The industry perspective has been reviewed by Williams [4]. 
The oncology community has guidelines issued by the American Society of 
Clinical Oncology [5] and special standards for pediatric oncology [6]. There is 
also a report that resulted from a 2007 Conference on Sensible Guidelines [7]. An 
article by Acosta et al. [8] discusses the implementation of GCP guidelines in 
developing countries. Finally, the texts by McFadden [9] and Meinert [10] contain 
detailed descriptions of data collection.

Chapter 11
Data Collection and Quality Control

L.M. Friedman et al., Fundamentals of Clinical Trials, 
DOI 10.1007/978-1-4419-1586-3_11, © Springer Science+Business Media, LLC 2010
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Fundamental Point

During all phases of a study, sufficient effort should be spent to ensure that all data 
critical to the interpretation of the trial, i.e., those relevant to the main questions 
posed in the protocol, are of high quality.

The definition of key data depends on trial type and objectives. Baseline charac-
teristics of the enrolled participants, particularly those related to major eligibility 
measures are clearly key as are primary and secondary outcome measures. The 
effort expended on assuring freedom from error for key data will be considerable. 
It is essential that conclusions or interferences from the trial be based on accurate 
and valid data. Fastidious attention to all data is not possible, nor is it necessary. 
One approach is to decide in advance the degree of error one is willing to tolerate 
for each type of data. The key data, as well as certain process information such as 
informed consent, should be as close to error free as possible. One may be willing 
to tolerate a greater error rate for other data. The confirmation, duplicate testing, 
and auditing that is done on data of secondary importance need not be as 
extensive.

Perhaps only a sampling of audits is necessary.
The data collected should focus on the answers to the questions posed in the 

protocol. Essential data include the following:

Baseline information –
Measures of adherence to the study intervention –
Concomitant interventions –
Primary response variable(s) –
Secondary response variables –
Other prespecified response variables –
Adverse events with emphasis on serious events –

Data are collected to answer questions about benefit, risk, and ability to adhere to 
the intervention being tested. Trials must collect data on baseline covariates or risk 
factors for at least three purposes: (1) to verify eligibility and describe the popula-
tion studied; (2) to verify that randomization did balance the important known risk 
factors; and (3) to allow for limited subgroup analyses. Obviously, data must be 
collected on the primary and secondary response variables specified in the protocol 
and, in some cases, tertiary level variables. Some measures of adherence to the 
interventions specified in the protocol are necessary as well as important concomi-
tant medications used during the trial. That is, to test validly of the intervention, the 
trial must describe how much of the intervention the participant was exposed to, 
and what other interventions were used. Collection of adverse events is challenging 
for many reasons (see Chap. 12).

Each data element considered should be examined as to its importance in 
answering the questions. Trialists cannot include every outcome that might be 
“nice to know.” Each data element requires collection, processing, and quality 
control, as discussed below, and adds to the cost and the overall burden of the trial. 
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We think that far too much data are generally collected. Only a small portion are 
actually used in trial monitoring and publications. Excessive data collection is not 
only costly but can also indirectly affect the quality of the more critical data 
elements.

Problems in Data Collection

Major Types

Problems in data collection can be of several sorts and can apply to the initial 
 acquisition of data such as physical examination as well as to the recording of the 
data on a form or data entry into a remote computer terminal or microcomputer. 
There are four major types of data problems that are discussed here: (1) missing 
data, (2) incorrect data, (3) excess variability, and (4) delayed submission.

First, incomplete and irretrievably missing data can arise, for example, from the 
inability of participants to provide necessary information, from inadequate physical 
examinations, from laboratory mishaps, from carelessness in completion of study 
forms or data entry or from inadequate quality control within electronic data man-
agement systems. The percent of missing data in a study is considered as one indi-
cator of the quality of the data and therefore, the quality of the trial.

Second, erroneous data may not be recognized and therefore can be even 
more troublesome than incomplete data. For study purposes, a specified condi-
tion may be defined in a particular manner. A clinic staff member may unwit-
tingly use a clinically acceptable definition, but one that is different from the 
study definition. Specimens may be mislabeled. In one clinical trial, the inves-
tigators appropriately suspected mislabeling errors when, in a glucose tolerance 
test, the fasting glucose levels were higher than the 1 h glucose levels in some 
participants. Badly calibrated equipment can be a source of error. In addition, 
the incorrect data may be entered on a form. A blood pressure of 84/142 mmHg, 
rather than 142/84 mmHg, is easy to identify as wrong. However, while 
124/84 mmHg may be incorrect, it is perfectly reasonable, and the error would 
not necessarily be recognized. The most troublesome types of erroneous data 
are those that are falsified or entirely fabricated. The pressure to recruit partici-
pants may result in alterations of laboratory values, blood pressure measure-
ments, and critical dates in order to qualify otherwise ineligible participants for 
enrollment [11, 12].

The third problem is variability in the observed characteristics. Variability 
reduces the opportunity to detect real changes. The variability between repeated 
assessments can be unsystematic (or random), systematic, or a combination of 
both. Variability can be intrinsic to the characteristic being measured, the instrument 
used for the measurement, or the observer responsible for obtaining the data. 
People can show substantial day-to-day variations in a variety of physiologic measures. 
Learning effects associated with many performance tests also contribute to  variability. 
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The problem of variability, recognized many decades ago, is not unique to any 
specific field of investigation [13, 14]. Reports of studies of repeat chemical deter-
minations, determinations of blood pressure, physical examinations, and interpreta-
tions of X-rays, electrocardiograms and histological slides, etc. indicate the 
difficulty in obtaining highly reproducible data. People perform tasks differently 
and may vary in knowledge and experience. These factors can lead to inter-
observer variability. In addition, inconsistent behavior of the same observer 
between repeated measurements may also be much greater than expected, though 
intra-observer inconsistency is generally less than inter-observer variability.

Reports from studies of laboratory determinations illustrate that the problem of 
variability has persisted for at least six decades. In 1947, Belk and Sunderman [15] 
reviewed the performance of 59 hospital laboratories on several common chemical 
determinations. Using prepared samples, they found that unsatisfactory results 
 outnumbered the satisfactory. Regular evaluation of method performance, often 
referred to as proficiency testing, is now routinely conducted and required by labo-
ratories in many countries [16, 17]. All laboratories performing measurements for 
clinical trials should be Clinical Laboratory Improvement Amendments (CLIA) or 
similarly approved (http://www.cms.hhs.gov/CLIA/09_CLIA_Regulations_and_
Federal_Register_Documents.asp).

Diagnostic procedures that rely on subjective interpretations are not surprisingly 
more susceptible to variability. One example is radiologists’ interpretation of 
screening mammograms [18]. Nine radiologists read cases with verified cancers, 
benign, and negative findings in the clinic. Approximately 92% of the mammo-
grams of verified cases were, on an average, read as positive. The reading of the 
negative mammograms showed a substantial inter-reader variability.

The intra- and interreader variability in QT interval measurement on electro-
cardiograms was estimated by two different methods [19]. Eight readers analyzed 
the same set of 100 electrocardiograms twice 4 weeks apart. Five consecutive 
complexes were measured. For the more commonly used threshold method, the 
intra-reader standard deviation was 7.5 ms and the inter-reader standard deviation 
11.9 ms. Due to the association between QT prolongation and malignant arrhyth-
mias, the U.S. Food and Drug Administration (FDA) is concerned about drugs 
that prolong the QT interval by a mean of about 5 ms. Thus, the usual variability 
in measurement is greater than what is considered a clinically important 
difference.

Another type of variability is the use of nonstandardized terms. As a result, 
the ability to exchange, share, analyze, and integrate clinical trial data is limited 
by this lack of coordination in terms of semantics. Increased attention has been 
devoted to so-called harmonized semantics [20, 21]. A new strategy for inter-
national classification and coding of prescription and over-the-counter medi-
cations, traditional herbal medicines, and dietary supplements has been 
proposed [22].

The fourth problem, delayed submission of participant data from the clinical site 
in multicenter trials, used to be a major issue. However, it has decreased markedly 
with the onset of web-based data entry (see below).

http://www.cms.hhs.gov/CLIA/09_CLIA_Regulations_and_Federal_Register_Documents.asp
http://www.cms.hhs.gov/CLIA/09_CLIA_Regulations_and_Federal_Register_Documents.asp
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Minimizing Poor Quality Data

General approaches for minimizing potential problems in data collection are 
 summarized below. Most of these should be considered during the planning phase of 
the trial. Examples in the cardiovascular field are provided by Luepker et al. [23]. In 
this section, we discuss design of protocol and manual, development of forms, 
training  and certification, pretesting, techniques to reduce variability, and data entry.

Design of Protocol and Manual

The same question can be interpreted in many ways. Clear definitions of entry and 
diagnostic criteria and methodology are therefore essential. These should be included 
in the protocol and written so that all investigators and staff can apply them in a con-
sistent manner throughout the trial. Accessibility of these definitions is also important. 
Even the same investigator may forget how he previously interpreted a question unless 
he can readily refer to instructions and definitions. A manual of procedures (MOP) 
should be prepared in every clinical trial. Although it may contain information about 
study background, design, and organization, the MOP is not simply an expanded 
protocol. In addition to listing eligibility criteria and response variable definitions, it 
should indicate how the criteria and variables are determined. The MOP provides 
detailed answers to all conceivable “how to” questions. Most important, it needs to 
describe the participant visits – their scheduling and content – in detail. Instructions 
for filling out forms, performing tasks such as laboratory determinations, drug order-
ing, storing and dispensing, and compliance monitoring must be clear and complete. 
Finally, recruitment techniques, informed consent, participant safety, emergency 
unblinding, the use of concomitant therapy, and other issues need to be addressed. 
Updates and clarifications usually occur during the course of a study. These revisions 
should be made available to every staff person involved in data collection.

Descriptions of laboratory methods or imaging techniques and the ways the 
results are to be reported also need to be stated in advance. In one study, plasma 
levels of the drug propranolol were determined by using standardized methods. Only 
after the study ended was it discovered that two laboratories routinely were measur-
ing free propranolol, and two other laboratories were measuring propranolol hydro-
chloride. A conversion factor allowed investigators to make simple adjustments and 
arrive at legitimate comparisons. Such adjustments are not always possible.

Development of Forms

Ideally, the study forms should contain all necessary information [10]. If that is not 
possible, the forms should outline the key information and refer the investigator to 
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the appropriate page in the MOP. Well-designed forms will minimize errors and 
variability. Forms should be as short and as well organized as possible, with a 
 logical sequence to the questions. Forms should be clear, with few “write-in” 
answers. As little as possible should he left to the imagination of the person 
 completing the form. This means, in general, no essay questions. The questions 
should elicit the necessary information and little else. Questions that are tacked on 
because the answers would be “nice to know” are rarely analyzed and may distract 
attention from pertinent questions. In several studies where death is the primary 
response variable, investigators may have an interest in learning about the circum-
stances surrounding the death. In particular, the occurrence of symptoms before 
death, the time lapse from the occurrence of such symptoms until death, and the 
activity and location of the participant at the time of death have been considered 
important and may help in classifying the cause of death. While this may be true, 
focusing on these details has led to the creation of extraordinarily complex forms, 
which take considerable time to complete. Moreover, questions arise concerning 
the accuracy of the information because much of it is obtained from proxy sources 
who may not have been with the participant when she died. Unless investigators 
clearly understand how these data will be used, simpler forms are preferable.

A comprehensive review of the multitude of issues in the design of study forms 
is presented by Cook and DeMets [24]. They describe the categories of data 
 typically collected in randomized clinical trials: participant identification and treat-
ment assignment; screening and baseline information; follow-up visits, tests, and 
procedures; adherence to study treatment; adverse experiences; concomitant 
 medication and interventions; clinical outcomes and participant treatment, follow-
up and survival status. Also discussed are mechanisms for data collection and 
design and review of case report forms.

Training and Certification

It has long been recognized that training sessions for investigators and staff to 
promote standardization of procedures are crucial to the success of any large study. 
Whenever more than one person is filling out forms or examining participants, 
training sessions help to minimize errors. There may be more than one correct way 
of doing something in clinical practice, but for study purposes, there is only one 
way. Similarly, the questions on a form should always be asked in the same way. 
The answer to, “Have you had any stomach pain in the last 3 months?” may be dif-
ferent from the answer to, “You haven’t had any stomach pain in the last 3 months, 
have you?” Even differences in tone or the emphasis placed on various parts of a 
question can alter or affect the response. Kahn et al. [25] reviewed the favorable 
impact of training procedures instituted in the Framingham Eye Study. The 2 days 
of formal training included duplicate examinations, discussions about differences, 
and the use of a reference set of fundus photographs. Neaton et al. [26] concluded 
that initial training is useful and should cover the areas of clinic operation, technical 
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measurements, and delivery of intervention. Centralized interim training of new 
staff is less efficient and can be substituted by regional training, teleconferencing, 
or internet-based approaches.

Mechanisms to verify that all clinic staff do things the same way should be 
developed. These include instituting certification procedures for specified types of 
data collection. If blood pressure, electrocardiograms, pulmonary function tests, or 
laboratory tests are important, the people performing these determinations should 
not only be trained, but also be tested and certified as competent. Periodic retraining 
and certification are especially useful in long-term studies since people tend to 
forget, and personnel turnover is common. For situations where staff must conduct 
clinical interviews, special training procedures to standardize the approach have 
been used. In a study of B-mode ultrasonography of the carotid arteries, marked 
differences in intimal-medial thickness measurements were found between the 
13 readers at the reading center [27]. During the 5-year study, the relative biases 
of readers over time varied, in some cases changing from low to high and vice 
versa. A sharp increase in average intimal-medial thickness measurements observed 
toward the end of the study was explained by readers reading relatively high having 
an increased workload, the hire of a new reader also reading high, and a reader 
changing from reading low to high.

Pretesting

Pretesting of forms and procedures is almost always essential. Several people 
 similar to the intended participants may participate in simulated interviews and 
examinations to make sure that procedures are properly performed and questions 
on the forms flow well and provide the desired information. Furthermore, by 
 pretesting, the investigator and staff grow familiar and comfortable with the form. 
Fictional case histories can be used to check form design and the care with which 
forms are completed. When developing forms, most investigators cannot even 
begin to imagine the numerous ways questions can be misinterpreted until several 
people have been given the same information and asked to fill out the same form. 
Part of the reason for different answers is undoubtedly due to carelessness by the 
person completing the form. The use of “de-briefing” in the pilot test may bring to 
light misinterpretations that would not be detected when real participants fill out the 
forms. Inadequacies in form structure and logic can also be uncovered by the use 
of pretesting. Thus, pretesting reveals areas where forms might be improved and 
where additional training might be worthwhile.

De-briefing is an essential part of the training process. This helps people 
 completing the forms to understand how the forms are meant to be completed and 
what interpretations are wanted. Discussion also alerts them to carelessness. When 
done before the start of the study, this sort of discussion allows the investigator to 
modify inadequate items on forms. These case history exercises might be profitably 
repeated several times during the course of a long-term study to indicate when 
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education and retraining are needed. Ideally, forms should not be changed after the 
study has started. Inevitably, though, modifications are made. Pretesting can help to 
minimize them.

Techniques to Reduce Variability

Both variability and bias in the assessment of response variables should be 
 minimized through repeat assessment, blinded assessment, or (ideally) both. At the 
time of the examination of a participant, for example, an investigator may determine 
blood pressure two or more times and record the average. Performing the measure-
ment without knowing the group assignment helps to minimize bias. In unblinded 
or single-blinded studies, the examination might be performed by someone other 
than the investigator, someone blind to the assignment. In assessing slides, X-rays, 
images, or electrocardiograms, two individuals can make independent, blinded 
evaluations, and the results can be averaged or adjudicated in cases of disagree-
ment. Independent evaluations are particularly important when the assessment 
requires an element of judgment.

Centralized classification of major health outcomes by blinded reviewers is 
common in large clinical trials. The objective is to eliminate events that do not meet 
the protocol definitions. The process is thought to reduce the variability induced by 
having a large number of local investigators classifying fatal and major nonfatal 
events. The experience has been that a modest number of events are re-classified. 
A critical factor is how well the diagnostic criteria in a trial are specified and com-
municated to local investigators responsible for the initial classification. A recent 
review [28] based on the classification experience in 10 trials with over 9,000 car-
diovascular events failed to detect any meaningful differences between initial 
classi fication and adjudication. It is unclear whether this observation also applies to 
other disease areas. The review raises questions about the validity of posthoc 
reclassi fications of events that have reported major reversal of initial findings.

Data Entry

The introduction of computers into clinical trials has markedly improved data 
 quality. Multicenter trials make increasing use of web-based functions. Systems 
have been developed for data entry but they have also been extended to include 
validation of forms and data, document management, tracking of shipments and 
specimens, queries and their resolution, scheduling, and adjudication processes 
[29]. Litchfield and coworkers [30] compared the efficiency and ease of use of 
internet data capture with the conventional paper-based data collection system. 
They reported substantial reductions with the internet-driven approach in terms of 
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time from visit to data entry, time to database release after the last participant visit, 
and time from a visit to a query being resolved. Seventy-one percent of the sites 
preferred the web-based approach. Different web-based systems have been 
 developed. Examples include the Validation Studies Information Management 
System (VSIMS) [31], one developed for the Childhood Asthma Research (CARE) 
Network [32], and the Query and Notification System [33].

An issue under debate is whether paper forms can be totally eliminated. Often, 
a paper form is completed and the data transferred to a computer. Thus, a paper 
record trail is available for data verification and audit. The same record trail is 
essential for data entered directly into a computer. Programs have been developed 
which ensure that both original and revised data are saved, allowing an investigator 
to dispense with paper forms.

Quality Monitoring

Even though every effort is made to obtain high quality data, a monitoring or 
 surveillance system is crucial. When errors are found, a monitoring system enables 
the investigator to take corrective action. Monitoring is most effective when it is 
current. Additionally, monitoring allows an assessment of data quality when inter-
preting study results. Numerous forms and procedures, including drug handling, 
can be monitored, but monitoring all of them is usually not feasible. Rather, moni-
toring those areas most important to the trial is recommended.

Monitoring of data quality proves most valuable when there is feedback to the 
clinic staff and technicians. Once weaknesses and errors have been identified, 
 performance can be improved. Chapter 20 contains several tables illustrating  quality 
control reports. With careful planning, reports can be provided and improvement can 
be accomplished without unblinding the staff. All quality control  measures take time 
and money; it is thus difficult to be compulsive about the quality of every piece of 
data and every procedure. Investigators need to focus their efforts on those proce-
dures which yield key data; those on which the conclusions of the study critically 
depend.

For clinical trials that will form the basis for regulatory decisions, the volume of 
data is very high and the data monitoring is very elaborate. Eisenstein and co-
workers [34, 35] looked into ways of reducing the cost of large phase III trials. The 
major contributors to the expense are the number of case report form pages, the 
number of monitoring visits (for comparison of data in source records to the data 
on trial forms), and the administrative workload. Verification of critical information 
is important. Limiting the data verification of noncritical data may increase the 
error rate, but experience has shown that the overall rate is low and the effect on 
data quality limited. The cost of “queries” to resolve discrepancies can be very 
costly with estimates of more than $100 each. In sensitivity analyses, the authors 
showed that the total trial cost could be cut by more than 40% by reducing  excessive 
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data collection and verification. Regular site visits to confirm that all case report 
forms are consistent with patient records seem excessive. As discussed below, 
 sampling or selective site monitoring would be more appropriate in most situations.

Monitoring of Forms

During the study, key forms can be centrally checked electronically for completeness, 
internal consistency and consistency with other forms. When the forms disagree, 
the person or group responsible for ensuring consistent and accurate forms should 
question the person filling out the forms. Consistency within a given form can also 
be easily evaluated. Dates and times are particularly prone to error.

It may be important to examine consistency of data over time. A participant with 
a missing leg on one examination was reported to have palpable pedal pulses on a 
subsequent examination. Cataracts which did not allow for a valid eye examination 
at one visit were not present at the next visit, without an interval surgery having 
been performed. The data forms may indicate extreme changes in body weight 
from one visit to the next. In such a case, changing the data after the fact is likely 
to be inappropriate because the correct weights may be unknown. The observed 
differences in measurements may be less dramatic and not obvious. A quality con-
trol program based on randomly selected duplicate assessments has been advocated 
by Lachin [36]. However, the investigator can take corrective action for future visits 
by more carefully training his staff. Sometimes, mistakes can be corrected. In one 
trial, comparison of successive electrocardiographic readings disclosed gross dis-
crepancies in the coding of abnormalities. The investigator discovered that one of 
the technicians responsible for coding the electrocardiograms was fabricating his 
readings. In this instance, correcting the data was possible.

Someone needs constantly to monitor completed forms to find evidence of 
missing participant visits or visits that are off schedule in order to correct any prob-
lems. Frequency of missing or late visits may be associated with the intervention. 
Differences between groups in missed visits may bias the study results. To improve 
data quality, it may be necessary to observe actual clinic procedures. Observing 
clinic procedures is particularly important in multicenter trials.

Monitoring of Procedures

Extreme laboratory values should be checked. Values incompatible with life such as, 
potassium of 10 mEq/l are obviously incorrect. Other, less extreme values (i.e., total 
cholesterol of 125 mg/dl in male adults in the United States who are not taking lipid-
lowering agents) should be questioned. They may be correct, but it is unlikely. 
Finally, values should be compared with previous ones from the same participant. 
Certain levels of variability are expected, but when these levels are exceeded, the 
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value should be flagged as a potential outlier. For example, unless the study involves 
administering a lipid-lowering therapy, any determination which shows a change in 
serum cholesterol of perhaps 20% or more from one visit to the next should be 
repeated. Repetition would require saving samples of serum until the analysis has 
been checked. In addition to checking results, a helpful procedure is to monitor sub-
mission of laboratory specimens to ensure that missing data are kept to a minimum.

Investigators doing special procedures (laboratory work, electrocardiogram 
 reading) need to have an internal quality control system. Such a system should 
include re-analysis of duplicate specimens or materials at different times in a blinded 
fashion. A system of resubmitting specimens from outside the laboratory or reading 
center might also be instituted. These specimens need to be indistinguishable from 
actual study specimens. An external laboratory quality control program established 
in the planning phase of a trial, can pick up errors at many stages (specimen collec-
tion, preparation, transportation, and reporting of results), not just at the analysis 
stage. Thus, it provides an overall estimate of quality. Unfortunately, the system 
most often cannot indicate at which step in the process errors may have occurred.

All recording equipment should be checked periodically. Even though initially 
calibrated, machines can break down or require adjustment. Scales can be checked 
by means of standard weights. Factors such as linearity, frequency response, paper 
speed, and time constant should be checked on electrocardiographic machines. In one 
long-term trial, the prevalence of specific electrocardiographic abnormalities was 
monitored. The sudden appearance of a threefold increase in one abnormality, with-
out any obvious medical cause, led the investigator correctly to suspect electrocar-
diographic machine malfunction.

Monitoring of Drug Handling

In a drug study, the quality of the drug preparations should be monitored  throughout 
the trial. Monitoring includes periodically examining containers for possible misla-
beling and for proper contents (both quality and quantity). It has been reported that 
in one trial, “half of the study group received the wrong medication” due to errors 
at the pharmacy. Investigators should carefully look for discoloration and breaking 
or crumbling of capsules or tablets. When the agents are being prepared in several 
batches, samples from each batch should be examined and analyzed. Occasionally, 
monitoring the number of pills or capsules per bottle is useful. The actual bottle 
content of pills should not vary by more than 1 or 2%. The number of pills in a 
bottle is important to know because pill count may be used to measure adherence 
by participants.

Another aspect to consider is the storage shelf life of the preparations and 
whether they deteriorate over time. Even if they retain their potency, do changes in 
odor (as with aspirin) or color occur? If shelf life is long, preparing all agents at one 
time will minimize variability. Of course, in the event that the study ends prema-
turely, there may be a large supply of unusable drugs. Products having a short shelf 
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life require frequent production of small batches. Complete records should be 
maintained for all drugs prepared, examined, and used. Ideally, a sample from each 
batch should be saved. After the study is over, questions about drug identity or 
purity may arise and samples will be useful.

The dispensing of medication should also be monitored. Checking has two 
aspects. First, were the proper drugs sent from the pharmacy or pharmaceutical 
company to the clinic? If the study is double-blind, the clinic staff will be unable to 
check on this. They must assume that the medication has been properly coded. 
However, in unblinded studies, staff should check to assure that the proper drugs 
and dosage strengths have been received. In one case, the wrong strength of potas-
sium chloride was sent to the clinic. The clinic personnel failed to notice the error. 
An alert participant to whom the drug was issued brought the mistake to the attention 
of the investigator. Had the participant been less alert, serious consequences could 
have arisen. An investigator has the obligation to be as careful about dispensing 
drugs as is a licensed pharmacist. Close reading of labels is essential, as well as 
documentation of all drugs that are handed out to participants.

Second, when the study is blinded, the clinic personnel need to be absolutely 
sure that the code number on the container is the proper one. Labels and drugs 
should be identical except for the code; therefore, extra care is essential. If bottles 
of coded medication are lined up on a shelf, it is relatively easy to pick up the wrong 
bottle accidentally. Unless the participant notices the different code, such errors 
may not be recognized. Even if she is observant, she may assume that she was 
meant to receive a different code number. The clinic staff should be asked to note 
on a study form the code number of the bottle dispensed and the code number of 
bottles that are returned by the participant. Theoretically, that should enable inves-
tigators to spot errors. In the end, however, investigators must rely on the care and 
diligence of the staff person dispensing the drugs.

It may be worthwhile periodically to send study drug samples to a laboratory for 
analysis. Although the center responsible for packaging and labeling drugs should 
have a foolproof scheme, independent laboratory analysis serves as an additional 
check on the labeling process.

The drug manufacturer assigns lot, or batch, numbers to each batch of drugs that 
are prepared. If contamination or problems in preparation are detected, then only 
those drugs from the problem batch need to be recalled. The use of batch numbers 
is especially important in clinical trials since the recall of all drugs can severely 
delay, or even ruin, the study. When only some drugs are recalled, the study can 
usually manage to continue. Therefore, the lot number of the drug as well as the 
name or code number should be listed in the participant’s study record.

Audits

There are three general types of audits – routine audits of a random sample of 
records, structured audits, and audits for cause. Site visits are commonly conducted 
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in long-term multicenter trials. In many non-industry-sponsored trials, a 5–10% 
random sample of study forms may be audited for the purpose of verifying accurate 
transfer of data from hospital records. More complete audits are usually performed 
in industry-sponsored trials. Study monitors visit the sites in order to verify that the 
entered data are correct.

Some investigators have objections to random external data audits, especially in 
the absence of evidence of scientific misconduct. However, the magnitude of the 
problems detected when audits occur makes it difficult to take a position against 
them. Of interest, the FDA does not perform audits of trials sponsored by the 
National Cancer Institute (NCI) according to a long-standing agreement. It relies 
on a NCI-sponsored audit program that has been in place since 1982. A review of 
four cycles of internal audits conducted over a 11-year period by the investigators 
of the Cancer and Leukemia Group B (CLGB) showed similarities with FDA 
audits [37]. The deficiency rate (among main institutions) of 28% in the first cycle 
dropped to 13% in the fourth cycle. Only two cases of major scientific impropriety 
were uncovered during these on-site peer reviews. Compliance with institutional 
review board requirements improved over time, as did compliance with having 
proper consent forms. The consent form deficiencies dropped from 18.5% in the 
first cycle to 4% in the fourth. Although compliance with eligibility improved from 
90 to 94%, no changes were noted for disagreement with auditors for treatment 
responses (5%) and deviations from the treatment protocol (11%). The authors 
concluded that the audit program had been successful in “pressuring group mem-
bers to improve adherence to administrative requirements, protocol compliance, 
and data submission. It has also served to weed out poorly performing 
institutions.”

Each of the 11 NCI cooperative groups has clearly established procedures for 
quality assurance. A detailed description of the CLGB system has been published 
[38]. NCI guidelines for monitoring are available online (http://ctep.cancer.gov/
branches/ctmb/clinicalTrials/monitoring_coop_ccop_ctsu.htm). Another coopera-
tive group, the National Surgical Adjuvant Breast and Bowel Project, conducted a 
review of almost 6,000 participant records [39]. The objective was to confirm par-
ticipant eligibility, disease, and vital status. No additional treatment failures or 
deaths and only seven cases of ineligible participants were found. The audit was 
time-consuming and costly and since few discrepancies were found, the authors 
concluded that routine use of cooperative chart reviews cannot be supported. 
A similar conclusion was reached in the GUSTO trial [35]. Following an audit of 
all CRFs, the auditors reported only a small percentage of errors and that these 
errors did not change the trial conclusions.

The third type of audit is for cause, i.e., to respond to allegations of possible 
scientific misconduct. This could be expanded to include any unusual performance 
pattern such as enrolling participants well in excess of the number contracted for or 
anticipated. The Office of Research Integrity in the U.S. Department of Health and 
Human Services promotes integrity in biomedical and behavioral research  sponsored 
by the U.S. Public Health Service at about 4,000 institutions worldwide. It monitors 
institutional investigations of research misconduct which includes  fabrication, 

http://ctep.cancer.gov/branches/ctmb/clinicalTrials/monitoring_coop_ccop_ctsu.htm
http://ctep.cancer.gov/branches/ctmb/clinicalTrials/monitoring_coop_ccop_ctsu.htm


212 11 Data Collection and Quality Control

 falsification or plagiarism in proposing, performing, or reviewing research or in 
reporting research findings. In a review of 136 investigations resulting in scientific 
misconduct between 1992 and 2002, only 17 involved clinical  trials. The most 
severe penalty, debarment from U.S. Government funding, was applied in six of the 
cases. Junior employees were often cited and the applied  sanction was often a 
requirement for a plan of supervision to be implemented [40, 41].

The FDA conducts periodic audits as well as investigations into allegations of 
violations of the Federal Food, Drug, and Cosmetic Act through its Office of 
Criminal Investigations. These may include clinical investigator fraud such as 
 falsifying documentation and enrolling ineligible patients. There were 2,866 FDA 
site inspections between 2000 and 2008. Most did not justify regulatory action and 
any corrective action was left to the investigator. Objectionable conditions were 
found and FDA sanctions indicated in 91 cases [42].

The quality of any trial is determined by the quality of its data. Experience has 
shown that too much data are being collected, much of which are never used for 
publication or review. As emphasized above, the data collection should be closely 
linked to the trial objectives and the questions posed in the protocol. Overcollection 
adds to the cost and effort of conducting the trial. Overemphasis on detailed audits 
of case report forms has similar effects. Moreover, the error rates are often so low 
that the value of most audits has been questioned. Rather, we should focus our 
 quality control and auditing efforts on key variables. For other variables, samples 
should be audited with more reliance on statistical quality control procedures. Data 
collection in clinical trials should be streamlined whenever possible.
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There is no perfectly safe intervention. All treatments result in some adverse events. 
Their severity ranges from mild symptoms to life-threatening events. Collection of 
adverse event data in randomized clinical trials is a regulatory requirement and 
additionally, clinically and scientifically important. The challenge is to know what 
and how to collect these data, the frequency of collection, and how to deal with 
small numbers of serious events. There are also potential legal issues to consider, 
which tend to lead to an over-collection of safety data. On the other hand, there is 
a marked underreporting of safety information in the published literature. A review 
of 192 large clinical trials from seven therapeutic areas revealed that the safety 
reporting was considered adequate in only 39% of the articles [1].

The assessment of adverse events encompasses the whole spectrum of research 
from laboratory work during drug and device development, animal studies, and 
early work in small numbers of human beings, to case reports, clinical trials, and 
postmarketing surveillance. Carcinogenic or teratogenic consequences of drugs, 
such as noted with diethylstilbestrol [2–4] and thalidomide [5], thromboembolic 
events with COX-2 inhibitors [6–9], and suicides with antidepressants [10] or failures 
of devices such as cardiac pacemakers or silicone breast implants, received considerable 
publicity, but other sorts of findings are undoubtedly more common.

The literature related to assessing and reporting adverse events of devices is very 
limited. We see no reason to believe that the scientific challenges for devices are 
fewer or smaller than those encountered in drug development. The discussion in 
this chapter focuses on adverse events in clinical trials of drugs beyond the initial 
stages of development and testing. That is, even though the drugs may not yet have 
regulatory approval or be marketed, they have undergone early evaluation in human 
beings and are ready for larger scale evaluation. For the purposes of this book, 
adverse events are defined as any clinical event, sign, symptom, or laboratory or 
other finding that goes in an unwanted direction regardless of whether it is considered 
treatment-related.

Chapter 12
Assessing and Reporting Adverse Events

L.M. Friedman et al., Fundamentals of Clinical Trials, 
DOI 10.1007/978-1-4419-1586-3_12, © Springer Science+Business Media, LLC 2010
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Fundamental Point

Adequate attention needs to be paid to the assessment, analysis, and reporting of 
adverse events to permit valid assessment of potential risks of interventions.

Clinical Trials in the Assessment of Adverse Events

Although the dual goals of a randomized clinical trial are to determine the efficacy 
and safety of an intervention, the assessment is generally asymmetric. Much more 
emphasis is placed on finding out whether and to what extent an intervention is 
beneficial. The primary, and most secondary, endpoints are with very few excep-
tions measures of efficacy. There are limitations, mostly ethical, on conducting a 
trial with safety as a primary outcome. Thus, the scope of a trial is determined by 
the sample size needed to find or refute a prespecified benefit. Similar consider-
ation is rarely given to the power needed to confirm or dismiss a potentially serious 
adverse event (SAE), if not already part of the primary outcomes, such as mortality. 
The safety outcomes in a clinical trial protocol are often not very specific or pre-
specified. In spite of those limitations, clinical trials are an important source of 
safety information both from a regulatory and a clinical perspective.

There are three general categories of adverse events: (1) SAEs, (2) general 
adverse events (AEs), and (3) AEs of special interest. SAEs are defined as those 
events that are (a) life threatening, (b) result in hospitalization, (c) are irreversible, 
persistent, or significant disability/incapacity, or (d) are a congenital anomaly/birth 
defect. The SAEs are required to be reported to regulatory agencies within a fixed 
time period (e.g., 7 days) of their occurrence. General AEs are those which patients 
or trial participants have complained about or physicians have observed. These may 
range from very mild and not of much consequence to severe. In general, there is a 
great deal of variation in AE reporting. Due to this, some trials have designated 
certain AEs to be of special interest since they may seriously affect the interpreta-
tion and applicability of any new intervention. For example, these include liver 
function test abnormalities or changes in QT interval on an electrocardiogram.

Strengths

There are three distinct advantages to adverse event assessment in clinical trials. 
First, the safety determination can be obtained prospectively, which allows proper 
hypothesis testing and adds substantial credibility. Posthoc observations, common 
in the safety area, are often difficult to interpret in terms of causation and therefore, 
often lead to controversy.

Second, clinical trials by definition have a proper and balanced control group, 
which allows fair comparisons between the study groups. Other study designs have 
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a dilemma when comparing users of a particular treatment to nonusers. There is no 
guarantee that the user and nonuser groups are comparable. There are reasons why 
some patients get a particular intervention while others do not. Observed group 
differences can be treatment-induced, due to differences in the composition and 
characteristics of the groups, or a combination thereof. Statistical adjustments can 
help but will never be able to fully control the differences between users and 
nonusers.

Third, most drug trials allow for blinding, which reduces potential biases in the 
collection and reporting of safety data (Chap. 7).

Limitations in Identification of SAEs

There are four potential limitations in relying on clinical trials for safety evaluation. 
First, the trial participants are a selected sample of people with a given condition. 
The selectiveness is defined by the scope of the trial inclusion and exclusion criteria 
and the effect of being a volunteer. In general, trial participants are healthier than 
nonparticipants with the same disease. In addition, certain population groups may 
be excluded, for example, women who are pregnant or breastfeeding. Trials con-
ducted prior to regulatory agency approval of the drug are typically designed to give 
clear findings of benefit and therefore often exclude from participation those 
who are old, have other medical conditions, and/or are taking other medications. 
The absence of SAEs observed in low-risk participants in preapproval trials is no 
assurance that a drug is safe when it reaches the marketplace. An early survey showed 
that most FDA-approved drugs have a SAE detected after approval when there is 
more exposure to higher-risk patients and longer treatment exposure [11]. More 
recent high-profile cases are the COX-2 inhibitors [6–9] and rosiglitazone [12–15].

A second limitation relates to the statistical power of finding a safety problem if 
it exists. Contributors to the limited power issue due to low SAE rates are small 
sample sizes and short trial durations as well as the focus on low-risk populations. 
Drug manufacturers may conduct a large number of small, short-term trials rather 
than fewer but larger trials of longer duration. Due to limited statistical power, clini-
cal trials are unreliable for the detection of rare SAEs. Approximately 3,000 par-
ticipants are required to detect a single case with 95% probability if the true 
incidence is one in 1,000; a total of 6,500 participants are needed to detect three 
cases [16]. When a new drug is approved for marketing, approximately 1,000–5,000 
participants have typically been exposed to it. More commonly, the rare SAEs are 
initially discovered through case reports, other observational studies or reports of 
adverse events filed with regulatory agencies after approval [17, 18]. Vandenbroucke 
and Psaty [19] concluded that “the benefit side rests on data from randomized trials 
and the harms side on a mixture of randomized trials and observational evidence, 
often mainly the latter.”

Third, detection of late SAEs is another potential limitation of clinical trials. 
When a new compound or device is introduced, sometimes only several hundred 
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participants have been treated for 1 year or longer. This is obviously inadequate for 
evaluation of drugs intended for chronic or long-term use. Proper postmarketing 
studies are not always conducted to pursue safety signals noted in preapproval studies. 
A long lag-time to harm must be considered for drugs that may be carcinogenic or 
have adverse metabolic effects. The lag time for carcinogens to cause an increased 
incidence of cancer is generally longer than most long-term trials. We support the 
view that formal safety evaluation should continue the entire time a drug intended 
for chronic use is on the market [20].

Fourth, trials have a limited value for detecting unexpected SAEs. Data collection 
is typically decided prior to enrollment of the first trial participant. What is unex-
pected is by definition, not prespecified and is not included in data collection forms. 
The only way to collect information on unexpected SAEs is to have open-ended 
safety questions and alert investigators.

The optimal collection of safety information is to take advantage of the strengths 
of clinical trials and to supplement them with properly designed and conducted 
observational studies, especially if safety issues or signals emerge. Establishment 
of such long-term safety registries is becoming more common [21].

Determinants of Adverse Events

Definitions

The rationale for defining adverse events is similar to that for defining any response 
variable; it enables investigators to record something in a consistent manner. 
Further, it allows someone reviewing a trial to assess it better, and possibly to com-
pare the results with those of other trials of similar interventions.

Because adverse events are typically viewed as secondary or tertiary response 
variables, they are not often seriously thought about ahead of time with the same 
degree of attention. Generally, an investigator will prepare a list of potential 
adverse events on a study form. They usually are not defined, except by the way 
investigators define them in their daily practice. Study protocols seldom contain 
written definitions of adverse events, except for those that are recognized clinical 
conditions. In multicenter trials, the situation may often be even worse. In those 
cases, an adverse event may be simply what each investigator declares it to be. Thus, 
intrastudy consistency may be as poor as interstudy consistency.

However, given the large number of possible adverse events, it is not feasible 
to define all of them in advance and many do not lend themselves to good defi-
nition. Some adverse events cannot be defined because they are not listed in 
advance, but are spontaneously mentioned by the participants. Though it is not 
always easy, important adverse events which are associated with individual 
signs or laboratory findings, or a constellation of related signs, symptoms, and 
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laboratory results can and should be well-defined. These include ones known to 
be associated with the intervention and which are clinically important, i.e., AEs 
of special interest. Other adverse events that are purely based on a participant’s 
report of symptoms may be important but are more difficult to define. These 
may include nausea, fatigue, or headache. Changes in the degree of severity of 
any symptom would also meet the definition of an adverse event. The fact that 
an adverse event is not well-defined or not prespecified should be stated in any 
trial publication.

Classification of Adverse Events

A major step toward the development of common international medical terminology 
for adverse events was taken in 1994 by the International Conference on Harmonisation 
(ICH). This stemmed from a need from the biopharmaceutical establishment to 
standardize regulatory communication across countries or regulatory jurisdic-
tions. Version 2 of the Medical Directory for Regulatory Activities (MedDRA) 
Terminology was introduced in 1997 as one such system [22]. Included are catego-
ries of terms for signs, symptoms, diseases, diagnoses, procedures, and others. The 
terms are structured hierarchically. Lowest Level Terms (LLTs) include synonyms 
and provides maximum specificity. Preferred Terms (PTs) constitute single medi-
cal concepts. The latest edition included more than 66,000 LLTs and more than 
18,000 PTs. The highest level of the hierarchy is the System Organ Class (SOC), 
of which there are 26. A challenge is that the LLT terms are so granular that it is 
difficult to identify a real signal. As a result, individual items are not frequent 
enough to detect statistically different event rates. On the other hand, the higher 
order terms contain important adverse events, but these are mixed with less impor-
tant ones and noise.

MedDRA is an internationally accepted system for classification of adverse 
events. It is a commercial system only available by subscription and, as a result, it 
may perhaps not be affordable to all potential users. New editions are released 
semiannually [22]. This updating introduces its own problems in clinical trials of a 
duration more than a few months. Recoding of early trial data may be required in 
trials of longer duration. The strength of MedDRA is the ease of use for data entry, 
retrieval, analysis, and display.

The National Cancer Institute (NCI) Common Terminology Criteria for Adverse 
Events v3.0 is another advanced system for reporting adverse events (http://ctep.
cancer.gov). It is structured with a broad classification of adverse events based on 
anatomy and pathophysiology. There are 28 categories of adverse events and within 
each are a large number of specific events. Another strength is the five-step severity 
scale for each adverse event ranging from mild (grade 1) to any fatal adverse event 
(grade 5). It is free of charge.

http://ctep.cancer.gov
http://ctep.cancer.gov
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Ascertainment

The issue of whether one should elicit adverse events by means of a checklist or rely 
on the participant to volunteer complaints often arises. Eliciting adverse events has the 
advantage of allowing a standard way of obtaining information on a preselected list of 
symptoms. Thus, both within and between trials, the same series of events can be 
ascertained in the same way, with assurance that a “yes” or “no” answer will be present 
for each. This presupposes, of course, adequate training in the administration of the 
questions. Volunteered responses to a question such as “Have you had any health prob-
lems since your last visit?” have the possible advantage of tending to yield only the 
more serious episodes, while others are likely to be ignored or forgotten. In addition, 
only volunteered responses will give information on truly unexpected adverse events.

In the Aspirin Myocardial Infarction Study [23], information on several adverse 
events was both volunteered by the participants and elicited. After a general ques-
tion about adverse events, the investigators asked about specific complaints. The 
results for three adverse events are presented in Table 12.1. Two points might be 
noted. First, for each adverse event, eliciting gave a higher percent of participants 
with complaints than did asking for volunteered problems. Second, the same aspirin–
placebo differences were noted, regardless of the method. Thus, the investigators 
could arrive at the same conclusions with each technique. In this study, little addi-
tional information was gained by the double ascertainment. Perhaps the range 
between the volunteered and the solicited numbers within the individual study groups 
provides bounds on the true incidence of the adverse event.

Downing et al. reported on a comparison of elicited versus volunteered adverse 
events in a trial of tranquilizers and antidepressants [24]. Thirty-three participants 
on active drug volunteered complaints, as opposed to 12 on placebo. This con-
trasts with 53 elicited complaints from the active drug group and 12 elicited from 
the placebo group. The authors concluded that eliciting adverse events preferen-
tially increases the number in the active drug group, rather than the placebo 
group. This is contrary to the findings in the Aspirin Myocardial Infarction Study 
[23]. Of 29 drug-treated participants who had complaints ascertained by both 
eliciting and volunteering, 26 were classified as more severe. Of 24 participants 
whose complaints were ascertained only by eliciting, half were called more severe. 
Therefore, the requirement that an adverse event be volunteered by a participant 

Table 12.1 Percent of participants ever reporting (volunteered and solicited) selected adverse 
events, by study group, in the Aspirin Myocardial Infarction Study

Hematemesis Tarry stools Bloody stools

Volunteered
Aspirin 0.27 1.34a 1.29b

Placebo 0.09 0.67 0.45
Elicited

Aspirin 0.62 2.81a 4.86a

Placebo 0.27 1.74 2.99
aAspirin–placebo difference > 2 S.E
bAspirin–placebo difference > 3 S.E
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led to a preponderance of severe ones. Because of these and other inconsistent 
findings, many researchers have continued to use both methods.

It has been suggested that subjective adverse events are influenced by the 
amount of information provided to participants during the informed consent pro-
cess. Romanowski and colleagues compared responses of 25 people given general 
information about possible adverse events in a consent form with responses from 
the 29 provided with a detailed listing of possible adverse events [25]. In this 
study, there was no important difference in frequency of reported subjective 
adverse events (4 vs. 6). The investigators therefore concluded that “previous 
priming of the patient” did not affect reporting of adverse events. Obviously, the 
numbers are small, and a larger study would be necessary to confirm this.

Dimensions

The simplest way of recording an adverse event is with a yes/no answer. This infor-
mation is likely to be adequate if the adverse event is a serious clinical event such as a 
stroke, a hospitalization, or a significant laboratory abnormality. However, symptoms 
have other important dimensions such as severity and frequency of occurrence.

The severity of subjective symptoms is typically rated as mild, moderate, or severe. 
However, the clinical relevance of this rating is unclear. Participants have different 
thresholds for perceiving and reporting their reactions. In addition, staff’s recorded 
rating of the reported symptom may also vary. One way of dealing with this dilemma 
is to consider the number of participants who were taken off the study medication due 
to the adverse event, the number who had their dose of the study medication reduced, 
and those who continued treatment according to protocol in spite of a reported adverse 
symptoms. This classification of severity makes clinical sense and is generally 
accepted. A challenge may be to decide how to deal with participants who temporarily 
are withdrawn from study medication or have their doses reduced.

The frequency with which a particular adverse event occurs in a participant can 
be viewed as another measure of severity. For example, episodes of nausea occurring 
daily rather than monthly, are obviously more troublesome to the participant. 
Presenting such data in a clear fashion is complicated.

Presence versus absence of an adverse event, severity, and frequency are dimensions 
of drug safety that need to be considered in the planning of a trial.

Length of Follow-Up

Obviously, the duration of a trial has a substantial impact on adverse event assess-
ment. The longer the trial, the more opportunity one has to discover adverse events, 
especially those with low frequency. Also, the cumulative number of participants in 
the intervention group complaining will increase, giving a better estimate of the 
adverse event incidence. Of course, eventually, most participants will report some 
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general complaint, such as headache or fatigue. However, this will occur in the 
control group as well. Therefore, if a trial lasts for several years, and an adverse event 
is analyzed simply on the basis of cumulative number of participants suffering from 
it, the results may not be very informative.

Duration of follow-up is also important in that exposure time may be critical. 
Some drugs may not cause certain adverse events until a person has been taking them 
for a minimum period. An example is the lupus syndrome with procainamide. Given 
enough time, a large proportion of participants will develop this syndrome, but very 
few will do so if followed for only several weeks. Other sorts of time patterns may be 
important as well. Many adverse events even occur at low drug doses shortly after 
initiation of treatment. In such circumstance, it is useful, and indeed prudent, to moni-
tor carefully participants for the first few hours or days. If no reactions occur, the par-
ticipant may be presumed to be at a low risk of developing these events subsequently.

In the Diabetes Control and Complications Trial (DCCT) [26], cotton exudates 
were noted in the eyes of the participants receiving tight control of glucose early 
after onset of the intervention. Subsequently, the progression of retinopathy in the 
regular control group surpassed that in the tight control group, and tight control was 
shown to reduce retinal complications in insulin dependent diabetes. Focus on only 
this short-term adverse event might have led to early trial termination. Fortunately, 
DCCT continued and reported a favorable long-term risk-benefit balance.

Figure  12.1 illustrates the occurrence of ulcer symptoms and complaints of 
stomach pain, over time, in the Aspirin Myocardial Infarction Study. Ulcer symptoms 

Fig. 12.1 Percent of participants reporting selected adverse events, over time, by study group, in 
the Aspirin Myocardial Infarction Study



223Analyzing Adverse Events

rose fairly steadily in the placebo group, peaking at 36 months. In contrast, com-
plaints of stomach pain were maximal early in the aspirin group, and then they 
decreased. Participants on placebo had a constant, low level of stomach pain com-
plaints. If a researcher tried to compare adverse events in two studies of aspirin, one 
lasting weeks and the other months, his findings would be different. To add to the 
complexity, the aspirin data in the study of longer duration may be confounded by 
changes in aspirin dosage and concomitant therapy.

An intervention may cause continued discomfort throughout a trial, and its per-
sistence may be an important feature. Yet, unless the discomfort is considerable, 
such that the intervention is stopped, the participant may eventually stop complain-
ing about it. Unless the investigator is alert to this possibility, the proportion of 
participants with symptoms at the final assessment in a long-term trial may be 
misleadingly low.

Analyzing Adverse Events

Types of Analysis

Analyzing the presence versus absence of an adverse event and the proportion of 
participants withdrawn from treatment due to adverse events or having their dose 
reduced versus continuing the study intervention is straightforward. The challenge 
is how to characterize participants who have their treatment temporarily stopped or 
reduced. These occurrences should be noted. One approach is to present these 
data by visit.
The fact that the number of adverse event types can be substantial raises the issue 
of multiple testing (Chap. 17). Because of this problem, the intervention may 
appear significantly different from the control more often by chance alone than 
indicated by the p-value. Nevertheless, investigators tend to relax their statistical 
requirements for declaring adverse events to be real findings. It reflects under-
standable conservatism and the desire to avoid unnecessary harm to the partici-
pants. However, we should always keep in mind that this conclusion might be 
incorrect.

As with other response variables, adverse events can be analyzed using survival 
analysis methods (Chap. 15). An advantage of this sort of presentation is that the 
time to a particular episode, in relation to when the intervention was started, is 
examined. Further, the frequency of a particular adverse event will be directly 
related to the number of participants at risk of suffering it. This can give a higher 
rate of adverse events than other measures, but this high rate may be a realistic 
estimate. Difficulties with survival analysis techniques include the problems of not 
considering repeated episodes in any participant (i.e., only the first episode is 
counted) and severity of a particular adverse event, changes in dosing pattern or 
adherence, and changes in sensitization or tolerance to adverse events. Nevertheless, 
this technique has been underutilized in reporting adverse events.
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Analysis of Data from Nonadherent Participants

As discussed in Chap. 17, there are differing views on analyzing data from participants 
who fail to adhere to the study intervention regimen. For analysis of primary 
response variables in the typical superiority trial, the “intention-to-treat” approach, 
which includes all participants in their originally randomized groups, is more con-
servative and less open to bias than the “explanatory” approach, which omits partici-
pants who stop taking their assigned intervention. When adverse events are assessed, 
however, the issue is less clear. Participants are less likely to report adverse events if 
they are off medication (active or placebo) than if they are on it. Therefore, analyzing 
event rates by level of adherence may underestimate their true incidence. The 
explanatory approach makes it impossible to assess events which occur sometime 
after drug discontinuation, but may in fact be a real adverse event that was not rec-
ognized until later. Participants are sometimes followed for a short period of time 
(7–30 days) after discontinuation of the medication to allow it to be “washed out.” 
However, as illustrated in the APPROVe study (see Chap. 17), as excess of treat-
ment-induced major events were observed during the first year after treatment was 
stopped. In addition, withdrawing participants can void the benefits of randomiza-
tion, resulting in invalid group comparisons. While there is no easy solution to this 
dilemma, it is probably safer and more reasonable to continue to assess adverse 
events for the duration of the trial, even if a participant has stopped taking his study 
drug. The analysis and reporting might then be done both including and omitting 
nonadherent participants [27]. Certainly, it is extremely important to specify what 
was done. In conclusion, the intention-to-treat approach is the preferred one.

Reporting of Adverse Events

Scientific

The usual measures of adverse events include the following:

 (a) Reasons participants are taken off study medication or device removed.
 (b) Reasons participants are on reduced dosage of study medication or on lower 

intensity of intervention.
 (c) Type and frequency of participant complaints.
 (d) Laboratory measurements, including X-rays and imaging.
 (e) In long-term studies, possible intervention-related reasons participants are 

hospitalized.
 (f) Combinations or variations of any of the above.

All of these can rather easily indicate the number of participants with a particular 
adverse event during the course of the trial. Presenting the frequency of adverse 
events in a clear fashion is complicated. It can be done by means of frequency 
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distributions, but these consume considerable space in tables. Another method is to 
select a frequency and assume that adverse events which occur less often in a given 
time period are less important. Thus, only the number of participants with a frequency 
of specified adverse events above that are reported. As an example, of ten participants 
having nausea, three might have it at least twice a week, three at least once a week, 
but less than twice, and four less than once a week. Only those six having nausea at 
least once a week might be included in a table. These ways of reporting assume that 
adequate and complete data have been collected, and may require the use of a diary. 
Obviously, if a follow-up questionnaire asks only if nausea has occurred since the 
previous evaluation, frequency measures cannot be presented.

Severity indices can be more complicated. It may be assumed that a participant 
who was taken off study drug because of an adverse event had a more serious epi-
sode than one who merely had his dosage reduced. Someone who required dose 
reduction probably had a more serious event than one who complained but contin-
ued to take the dose required by the study protocol. Data from the Aspirin 
Myocardial Infarction Study [23], using the same adverse events as in the previous 
example, are shown in Table 12.2. In the aspirin and placebo groups, the percents 
of participants complaining about hematemesis, tarry stools, and bloody stools are 
compared with the percents having their medication dosage reduced for those 
events. As expected, numbers complaining were many times greater than the num-
bers with reduced dosage. Thus, the implication is that most of the complaints were 
for relatively minor occurrences or had been transient.

As previously mentioned, another way of reporting severity is to establish a 
hierarchy of consequences of adverse events, such as permanently off-study drug, 
which is more severe than permanently on reduced dosage, which is more severe 
than ever on reduced dosage, which is more severe than ever complaining about the 
event. Unfortunately, few clinical trial reports present such severity data.

Published Reports

Published reports of clinical trials typically emphasize the favorable results. The 
harmful effects attributed to a new intervention are often incompletely reported. 

Table 12.2 Percent of participants with drug dosage reduced or complaining of selected adverse 
events, by study group, in the Aspirin Myocardial Infarction Study

Aspirin (N = 2,267) Placebo (N = 2,257)

Hematemesis
Reasons dosage reduced 0.00 0.00
Complaints 0.27 0.09

Tarry stools
Reasons dosage reduced 0.09 0.04
Complaints 1.34 0.67

Bloody stools
Reasons dosage reduced 0.22 0.04
Complaints 1.29 0.45
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This discordance undermines an assessment of the risk-benefit balance. A review 
of randomized clinical trials published in 1997 and 1998 showed that safety reporting 
varied widely and, in general, was inadequate [1]. Several subsequent studies evalu-
ating the reporting of harm in clinical trials came to the same conclusion [28].

In an effort to improve this inadequate and troubling reporting of adverse events, 
the CONSORT statement added specific guidelines for reporting harm-related 
results of clinical trials in 2004 [29]. Included in the reporting should be descrip-
tions of adverse events with numerical data by treatment group, information related 
to the severity of adverse events, and the number of participants withdrawn from 
their study medications due to adverse events.

In the first 2 years after the publication of the CONSORT guidelines, the impact 
was negligible. Pitrou et al [30] analyzed 133 reports of randomized clinical trials 
published in six general medical journals in 2006. No adverse events were reported in 
11% of the reports. Eighteen percent did not provide numerical data by treatment 
group and 32% restricted the reporting to the most common events. The data on sever-
ity of adverse events were missing in 27% of the publications and almost half failed 
to report the proportion of participants withdrawn from study medication due to 
adverse events. It is imperative that investigators devote more attention to reporting the 
key safety data from their clinical trials in the main results article. Additional safety 
data could be included in appendices to this paper or covered in separate articles.

Regulatory

The major drug regulatory agencies in the world have a number of requirements for 
expedited reporting of adverse events [31, 32]. This requirement applies to serious, 
unexpected, and drug-related events. As described earlier, serious is defined as 
death, life-threatening experience, inpatient hospitalization or prolongation of hos-
pitalization, persistent or significant disability/incapacity, or congenital anomaly/
birth defect. The event must be reported in writing within 15 calendar days of being 
informed. For a death or life-threatening event, the report should be made by fax or 
telephone within 7 days of notification. The regulations do not specify deadlines for 
sites to report these events to the study sponsor, although sponsors typically establish 
their own deadlines.

The purpose of premarketing risk assessment is to identify adverse drug events 
prior to any regulatory approval for marketing [33–35]. This assessment is typically 
incomplete for several reasons. Very few phase 3 trials are designed to test specified 
hypotheses about safety. They are often too small to detect less common SAEs or 
AEs of special interest and additionally, the assessment of multiple adverse events 
raises questions regarding proper significance levels. Moreover, the premarketing 
trials tend to focus on low-risk patients by excluding elderly persons, those with 
other medical conditions, and those on concomitant medications, which also 
reduces the statistical power. This focus on low-risk patients leads to an underesti-
mation of safety issues in future users of the medication.



227Identification of SAEs

To address these power problems, data from multiple trials are often combined. 
A concern is that meta-analyses of heterogeneous trials can obscure meaningful differ-
ences between trials. Adverse events are more likely to occur in trials testing higher 
doses of a new drug in long-term trials and in trials enrolling more vulnerable patients, 
i.e., elderly patients with multiple medical conditions who use multiple medications.

To deal with often limited safety information, special attention is given to trends 
in the data. A safety signal [34] is defined as “a concern about an excess of adverse 
events compared to what would be expected to be associated with a product’s use.” 
These signals generally indicate a need for further investigation in order to deter-
mine whether it is drug-induced or a chance finding.

Rules for reporting adverse events to the local institutional review boards (IRBs) 
vary. Many require that investigators report all events meeting regulatory agency 
definitions. The IRB has, based on the safety report, several options. These include 
making no change, requiring changes to the informed consent and the trial protocol, 
placing the trial on hold, or terminating approval of the trial. However, the IRBs 
seldom have the expertise or infrastructure to deal with serious or adverse event 
reports from multicenter trials, or even local trials. When the trial is multicenter, 
different rules and possible actions can cause considerable complications. These 
complications can be reduced when IRBs agree to rely on safety review by a study-
wide monitoring committee.

Identification of SAEs

As pointed out earlier in this chapter, randomized clinical trials are not optimal for 
the detection of rare, late, and unexpected SAEs. Experience has shown that critical 
information on serious events comes from multiple sources.

The role of clinical trials in identifying SAEs was investigated in an early study 
by Venning [31], who reviewed the identification and report of 18 adverse events 
in a variety of drugs. Clinical trials played a key role in identifying only three of 
the 18 adverse events discussed. Of course, clinical trials may not have been 
conducted in all of the other instances. Nevertheless, it is clear that assessment of 
adverse events, historically, has not been a major contribution of clinical trials. 
As pointed out earlier in this chapter, observational studies conducted postmar-
keting contribute more to the identification of harmful drug effects than random-
ized trials [19]. A comparison of evidence of 15 harms of various interventions in 
large randomized and nonrandomized studies showed that the nonrandomized 
studies often were more conservative in the estimates of risk [36].

A clinical trial may, however, suggest that further research on adverse events would 
be worthwhile. As a result of implications from the Multiple Risk Factor Intervention 
Trial [37] that high doses of thiazide diuretics might increase the incidence of sudden 
cardiac death, Siscovick and colleagues conducted a population-based case-control 
study [38]. This study confirmed that high doses of thiazide diuretics, as opposed to 
low doses, were associated with a higher rate of cardiac arrest.
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Drugs of the same class generally are expected to have similar events on the 
primary outcome of interest. For example, different angiotensin converting enzyme 
inhibitors will reduce blood pressure and ease symptoms of heart failure. Different 
calcium channel blocking agents will treat hypertension and angina. The factors 
that make the drugs in the same class different, however, may mean that adverse 
events may differ, in degree if not in kind. One illustration is cerivastatin which was 
much more likely to cause rhabdomyolysis than the other statins [39]. Longer 
acting preparations, or preparations that are absorbed or metabolized differently, 
may be administered in different doses and have greater or lesser adverse events. 
It cannot be assumed in the absence of appropriate comparisons that the adverse 
events from similar drugs are or are not alike. As noted, however, a clinical trial 
may not be the best vehicle for detecting these differences, unless it is sufficiently 
large and of long duration.

Potential Solutions

First, one obvious solution to the problem is the conduct of larger and longer clinical 
trials in participants who better represent future users of the medication. This is 
unlikely to happen unless the regulatory requirements for drug approval are 
changed and manufacturers are required to submit better safety data on their new 
products. Another question is what ethics and medical practice will allow for drugs 
already on the market.

Second, when individual trials are inconclusive, the fall-back position is the 
combination of safety data from multiple trials in a meta-analysis or systematic 
review (see Chap. 17). A major contributor in this area is the Cochrane 
Collaboration, which established the Cochrane Adverse Effects Methods Group to 
address the many challenges in systematic reviews of adverse events (http://aemg.
cochrane.org/en/index.html). Its charge is to raise awareness of the adverse effects 
of interventions, to develop research methodologies, and to advise on how to 
improve validity and precision in systematic reviews of adverse effects. The group 
organizes seminars and workshops to train individuals on the advanced method-
ological techniques for conducting systematic reviews of adverse effects. A list of 
relevant publications from members of the group and other papers can be found at 
http://aemg.cochrane.org/en/publications.html. In one of the systematic reviews, 
Golder and Loke [40] concluded that industry funding may not be a major threat 
to biased reporting of adverse event data, but that there are concerns related to the 
interpretation and conclusions of these data.

Meta-analyses conducted by manufacturers are commonly included in New 
Drug Applications submitted to regulatory agencies. There is also an increasing 
number of meta-analyses of treatment safety published in leading medical journals. 
Singh and coworkers published three meta-analyses showing that rosiglitazone and 
pioglitazone double the risk of heart failure and fractures (in women) in type 2 
diabetes [12, 14] and that rosiglitazone, in contrast to pioglitazone, also increases 

http://aemg.cochrane.org/en/index.html
http://aemg.cochrane.org/en/index.html
http://aemg.cochrane.org/en/publications.html
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the risk of heart attacks [13]. None of these adverse effects were recognized at the 
time of regulatory approval of these drugs. It has been recommended that cumula-
tive meta-analysis be conducted to determine whether and when pooled safety data 
reveal increased risk [41]. The authors concluded that cumulative clinical trial data 
revealed increased cardiovascular risk associated with rofecoxib a couple of years 
before the drug was withdrawn from the U.S. market.

It is important to keep in mind that meta-analyses may be misleading. On one 
hand, individual trials revealing unfavorable results may never be reported or pub-
lished. Thus, publication bias can lead to an underestimation of the true rate of 
adverse effects. On the other hand, small meta-analyses do not always provide 
accurate information. Experience has shown that conclusions from meta-analyses 
of a large number of small trials at times are not confirmed in subsequent large trials. 
An illustration of how event data can fluctuate when the numbers are small can be 
seen in Fig. 3 of Chap. 16. The mortality data came close early to a 0.05 signifi-
cance level on 3–4 occasions, only to return to no difference at the trial completion 
[42]. Thus, caution is always advised when the numbers are small.

Third, the field of pharmacogenetics holds promise for better identification in 
the future of patient groups that are more likely to develop SAEs (see Chap. 9).

Fourth, observational studies will always have a role in the identification of 
SAEs. A detailed discussion of these types of studies falls outside the scope of this 
book. However, the use of very large observational studies has been successfully 
used in the past [36]. However, since observational studies rely on a comparison of 
users and nonusers of a particular treatment, their comparability is critical. Even 
extensive covariate adjustments cannot guarantee comparability between users and 
nonusers in a way that randomization does it for clinical trials.

Fifth, other potential solutions are case-control studies and databases. The former 
have similar limitations as other observational studies. The reliance on database 
studies depends on the accuracy and completeness of the recorded safety informa-
tion. For example, data on suicides and suicidal ideation may not be included in the 
typical database. An attractive way of shortening the time from marketing of a 
product to the identification of new adverse events is employed in New Zealand 
[43]. The first 5–10,000 users of a newly approved drug are registered. After a 
given time, for example, after 6 months, they are all contacted and asked about their 
experiences with the drug. This approach could detect new safety signals early. 
A limitation is the lack of a comparable control group.

In the end, given the limitations of each approach, a combination of them will 
remain the most important way to identify and assess adverse events.
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The term “quality of life” is widely used by psychologists, sociologists, economists, 
policy makers, and others. However, what is meant by quality of life varies greatly 
depending on the context. In some settings, it may include such components as 
employment status, income, housing, material possessions, environment, working 
conditions, or the availability of public services. The kinds of indices that reflect 
quality of life from a medical or health viewpoint are very different, and would 
include those aspects that might be influenced not only by conditions or diseases 
but also by medical treatment or other types of interventions. Thus, the term 
“health-related quality of life (HRQL)” is now commonly used to mean the measure-
ment of one’s life quality from a health or medical perspective.

Components incorporated under the broad rubric of HRQL have been part of 
clinical trials before this term was established. Measures of physical functioning 
and psychological functioning, such as depression and anxiety, and a variety of 
symptoms such as pain, are well-established outcome variables. Negative effects, 
typically adverse symptoms from various organ systems, are also routinely 
assessed (see Chap. 12). In addition, some components have for years been among 
the baseline factors often collected to characterize the study population. However, 
the introduction of the HRQL  concept has provided important additions and 
refinements in the way clinical trials are designed. A major advance is that more 
attention is given to the participants and their experiences and perceptions and how 
these might be affected by the study intervention. The quantification of these mea-
sures has become more sophisticated with assistance from investigators trained in 
measurement theory and psychometrics.

Over the past 20 years, there has been a rapidly growing interest in the inclusion 
of HRQL measures to assess intervention effects in trials of a variety of interven-
tions [1–6]. In response to this interest, methods to assess health status and HRQL 
have proliferated, and there are a number of valid, reliable, and sensitive instru-
ments that have been developed for use in clinical trials [2, 6–9]. In this chapter, we 
provide a definition of HRQL, examine the uses of HRQL assessment in clinical 
trials, discuss study design considerations, and consider the interpretation of data 
resulting from these research investigations. In the last section, we provide a brief 
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introduction to utility measures and preference scaling, which although distinct 
from most psychometrically based HRQL measures, are useful in some types of 
clinical intervention studies.

Fundamental Point

Assessments of the effects of interventions on participants’ health-related  
quality of life is a critical component of many clinical trials, especially ones which 
involve interventions directed to the primary or secondary prevention of chronic 
diseases.

Defining Health-Related Quality of Life

Historically, experts in the field of quality of life have held varying viewpoints on 
how to define the concept. Recent years, however, have brought greater conver-
gence of opinion with respect to definitions of HRQL [10]. Several definitions have 
been proposed and these have ranged from very broad perspectives, reminiscent of 
the early definitions of quality of life, to narrower definitions that are more specific 
to HRQL [11]. We have adopted a definition of HRQL proposed by Wenger and 
Furberg [12].

HRQL encompasses: “Those attributes valued by patients, including: their resul-
tant comfort or sense of well-being; the extent to which they were able to maintain 
reasonable physical, emotional, and intellectual function; and the degree to which 
they retain their ability to participate in valued activities within the family, in the 
workplace, and in the community.” Explicit within this definition is the multidi-
mensional aspect of HRQL, and that actual functional status and the individuals’ 
perceptions regarding “valued activities” are critical to identify. Although there has 
been some debate among experts on the definition of HRQL, there is general 
agreement  on the primary dimensions of HRQL that are essential to any HRQL 
assessment [10]. These fundamental or primary dimensions include: physical func-
tioning, psychological functioning, social functioning and role activities, and the 
individuals’ overall assessment of their life quality and perceptions of their health 
status (Table 13.1). Thus, most experts agree that in order for investigators to assert 
that they have measured HRQL in a particular clinical trial, a minimum of these 
dimensions should be included. However, there are certainly instances in which 
fewer dimensions may be applicable to a specific intervention or population. 
For example, it is unlikely that in the examination of the short-term effects of 
 hormone therapy on peri-menopausal symptoms, the general routine physical func-
tioning of the study participants (women in their mid-forties to early fifties) will be 
influenced. Thus, the inclusion of this dimension of HRQL in the trial may simply 
increase participant burden without benefit. In such instances, it is important for 
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investigators to indicate clearly the dimensions of HRQL used in the trial and 
 justify their selection of a subset of HRQL dimensions in order to avoid the 
perception  of bias, for example, deleting HRQL dimensions that might make the 
treatment under study “look bad.”

For specific interventions, other commonly assessed dimensions of HRQL may 
be important (Table 13.1). These include cognitive or neuropsychological function-
ing, personal productivity, and intimacy and sexual functioning. Measures of sleep 
disturbance, pain, and symptoms, which are associated with a condition/illness and 
the adverse effects of treatment, are also often assessed.

Primary HRQL Dimensions

Physical functioning refers to an individual’s ability to perform daily life activities. 
These types of activities are often classified as either “activities of daily living,” 
which include basic self-care activities, such as bathing and dressing, or “interme-
diate activities of daily living,” which refer to a higher level of usual activities, such 
as cooking, performing household tasks, and ambulation.

Social functioning is defined as a person’s ability to interact with family, friends, 
and the community. Instruments measuring social functioning may include such 
components as the person’s participation in activities with family, friends, and in 
the community, and the number of individuals in his or her social network. A key 
aspect of social functioning is the person’s ability to maintain social roles and obli-
gations at desired levels. An illness or intervention may be perceived by people as 
having less of a negative impact on their daily lives if they are able to maintain role 
functions that are important to them, such as caring for children or grandchildren 
or engaging in social activities with friends. In contrast, anything that reduces one’s 
ability to participate in desired social activities, even though it may improve clinical 
status, may reduce the person’s general sense of social functioning.

Primary dimensions
Physical functioning
Social functioning
Psychological functioning
Perception of overall quality of life
Perceptions of health status

Additional dimensions
Neuropsychological functioning
Personal productivity
Intimacy and sexual functioning
Sleep disturbance
Pain
Symptoms

Table 13.1 Dimensions of health-related quality of life
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Psychological functioning of a person refers to the individual’s emotional 
 well-being. It has been common to assess the negative effects of an illness or inter-
vention, such as levels of anxiety, depression, guilt, and worry. However, the positive 
emotional states of individuals should not be neglected. Interventions may produce 
improvements in a person’s emotional functioning, and, therefore, such aspects as 
joy, vigor, and hopefulness for the future are also important to assess.

Overall quality of life represents a person’s perception of his or her overall 
quality of life. For example, participants may be asked to indicate a number 
between 0 (worst possible quality of life) and 10 (best possible quality of life), 
which indicates their overall quality for a defined time period (for example, in the 
last month).

Perceptions of health status need to be distinguished from actual health. 
Individuals who are ill and perceive themselves as such, may, after a period of 
adjustment, reset their expectations and adapt to their life situation, resulting in a 
positive sense of well-being. In contrast, persons in good health may be dissatis-
fied with their life situation and rate their overall quality of life as poor. 
Participants may be asked to rate their overall health in the past month, their 
health compared to others their own age, or their health now compared to 1 year 
ago. It is interesting to note that perceived health ratings are strongly and inde-
pendently associated with an increased risk of mortality [13, 14], indicating that 
health perceptions may be important predictors of health outcomes, independent 
of clinical health status.

Additional HRQL Dimensions

Neuropsychological functioning refers to the cognitive abilities of a person, such as 
memory, recognition, spatial, and psychomotor skills. This dimension is being 
more commonly assessed for a wide range of health conditions or procedures, such 
as stroke or postcardiac surgery, as well as for studies of older cohorts.

Personal productivity is a term used to encompass the range of both paid and 
unpaid activities in which individuals engage. Measures of this dimension might 
include paid employment (for instance, date of return to work, hours worked per 
week), household tasks, and volunteer or community activities.

Intimacy and sexual functioning refer to one’s ability to form and maintain 
close personal relationships and engage in sexual activities, as desired. 
Instruments measuring sexual functioning include items regarding a person’s 
ability to perform and/or participate in sexual activities, the types of sexual 
activities in which one engages, the frequency with which such activities occur, 
and persons’ satisfaction with their sexual functioning or level of activity. This 
dimension of HRQL is particularly important in studies in which the disease’s 
or condition’s natural history, or its treatment, can influence sexual functioning 
(for example, antihypertensive therapy, prostate cancer surgery, and other forms 
of cancer therapy).
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Sleep disturbance has been related to depression and anxiety, as well as  diminished 
levels of energy and vitality. Instruments assessing sleep habits may examine such 
factors as sleep patterns (e.g., ability to fall asleep at night, number of times awak-
ened during the night, waking up too early in the morning, or difficulty in waking 
up in the morning, number of hours slept during a typical night), and the restor-
ativeness of sleep.

Pain is another commonly assessed dimension of HRQL, particularly in such 
chronic conditions as arthritis or orthopedic injuries. Assessments of pain may 
include measures of the degree of pain related to specific physical activities, such 
as bending, reaching, or walking upstairs, as well as the type of pain, such as throb-
bing, shooting, and aching. The frequency and duration of pain are also generally 
recorded.

Symptoms associated with study conditions or interventions are an integral part 
of most clinical trials but are also one aspect of HRQL. By incorporating symptoms 
into HRQL assessments more systematically, we now have more sophisticated 
accounts of the frequency of symptoms, the severity of symptoms, and the degree 
to which symptoms interfere with daily functioning. Symptom checklists are often 
tailored to the specific condition or illness being studied, and require investigators 
to have knowledge of common symptoms associated with an illness, the symptoms 
which may be produced or relieved by an intervention, and the time course in which 
these symptoms may be expected to occur during the course of the clinical trial. For 
many conditions, however, there are symptom checklists that have already been 
validated that investigators should explore prior to developing new symptom 
measures.

Although all of the above dimensions of HRQL are the most commonly assessed 
aspects of HRQL, the specific dimensions relevant for a given clinical trial will 
depend upon the intervention under investigation, the disease or condition being 
studied, and the study population, which may vary by the age of the participants, 
their ethnic identity, or cultural background [15].

Uses of Health-Related Quality of Life

For many individuals, there are really only two outcomes that are important when 
assessing the efficacy of a particular treatment: changes in their life expectancies, 
and the quality of their remaining years. HRQL provides a method of measuring 
intervention effects, as well as the effects of the untreated course of diseases, in a 
manner that makes sense to both the individual and the investigator. As countries 
where chronic rather than acute conditions dominate the health care system, the 
major goals of intervention, include: the prevention of disease onset, and when the 
disease has developed, the reduction of symptoms, maintenance or improvement in 
functional status, and the potential to prolong life. In interventions for disease pre-
vention, it is reasonable for individuals to expect that interventions, while decreas-
ing the probability that they will develop a chronic condition, will not in the process 
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significantly reduce their current functioning. In terms of chronic conditions where 
the goal is generally not a cure, it is important to determine how the person’s life is 
influenced by both the disease and its treatment, and whether the effects of treat-
ment are better or worse than the effects of the course of the underlying disease.

There are now many published studies assessing the quality of life of participants 
in clinical trials. Some use quality of life as baseline covariates and/or outcome 
measures of the effect of a trial on a person’s life quality. Others may also use 
baseline quality of life measures to predict patients’ overall survival, adherence, and 
adjustment to treatment and/or the disease itself. Several examples illustrate the 
value of including quality of life measures in clinical trials. In one early clinical 
trial, Sugarbaker and colleagues [16] examined 26 participants with soft tissue 
sarcoma and compared the effects of two treatments on quality of life. Participants 
were randomized to either amputation plus chemotherapy or limb-sparing surgery 
plus radiation therapy plus chemotherapy. After treatments had been completed and 
the participants’ physical status had stabilized, economic impact, mobility, pain, 
sexual relationships, and treatment trauma were assessed. Contrary to expectations, 
participants receiving amputation plus chemotherapy reported better mobility and 
sexual functioning than those receiving limb-sparing surgery plus radiation and 
chemotherapy.

A more recent example from the heart disease literature is the quality of life 
results from the Women’s Health Initiative (WHI) hormone therapy trials. During 
the 1980s and early 1990s, observational and case-control studies suggested that 
the use of estrogen would decrease the incidence of cardiovascular events among 
postmenopausal women. In order to determine if this observation would be repli-
cated in a large, randomized controlled trial, the WHI was initiated in 1994 [17]. 
Consenting postmenopausal participants ages 50–79 were randomized to either 
conjugated equine estrogens plus medroxyprogesterone acetate (CEE + MPA) vs. 
placebo if they had a uterus, or conjugated equine estrogens (CEE-alone) vs. placebo 
among participants who had been hysterectomized. HRQL was assessed annually 
after trial initiation. In 2002, the trial testing CEE + MPA was stopped early, due to 
higher rates of cardiovascular events and breast cancer among women in the 
CEE + MPA arm vs. the placebo group [18]. A year and a half later, the CEE-alone 
trial was also stopped due to higher rates of stroke and thromboembolic events 
among women randomized to the hormone therapy group [19]. The results of these 
two trials had a major impact on the care recommendations of postmenopausal 
women, and spurred a debate among primary care practitioners, cardiologists, and 
gynecologists about the validity of the WHI results [20]. One argument was that 
although estrogen therapy may not be indicated for cardiovascular disease protec-
tion, women still report better quality of life when taking estrogen therapy. The 
quality of life results from the WHI, however, did not support this argument [21]. 
Among women randomized to CEE + MPA vs. placebo, active treatment was 
 associated with a statistically significant, but small and not clinically meaningful 
benefit, in terms of sleep disturbance, physical functioning, and bodily pain 1 year 
after the initiation of the study. At 3 years, however, there were no significant 
 benefits in terms of any quality of life outcomes. Among women aged 50–54 with 
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moderate to severe vasomotor symptoms at baseline, active therapy improved 
 vasomotor  symptoms and sleep quality, but had no benefit on other quality of life 
outcomes. Similar results were found in the CEE-alone trial of the WHI among 
women with hysterectomy. At both 1 year and 3 years after the initiation of the trial, 
CEE had no significant effect on HRQL [22]. Thus, the potential harmful effects of 
estrogen therapy among postmenopausal women were not outweighed by gains in 
quality of life.

Other studies have illustrated the useful inclusion of quality of life measures as 
secondary outcomes in clinical trials. Kornblith et al. [23] compared azacytidine vs. 
supportive care in people with myelodysplastic syndrome (MDS). The study 
showed that participants receiving azacytidine had lower rates of transformation to 
acute myelogenous leukemia or death than those randomized to supportive care. 
The quality of life results demonstrated improvements in fatigue, dyspnea, physical 
functioning, positive affect, and psychological distress among those patients receiv-
ing azacytidine. In contrast, participants receiving only supportive care reported 
stable or declining quality of life over the course of the study. Prior to the trial, 
allogeneic bone marrow transplantation was the only effective treatment for MDS, 
but was an option for only a small proportion of patients. The results of the trial led 
to the establishment of azacytidine as a treatment option for MDS, and illustrated 
the added benefit of using quality of life and symptom assessments as outcomes.

Methodological Issues

The rationale for a well-designed and conducted randomized clinical trial to assess 
HRQL measures is the same as for other response variables. Because the data are 
primarily subjective, special precautions are necessary. A control group allows the 
investigator to determine which changes can be reasonably attributed to the study 
intervention. The double-blind design minimizes the effect of investigator bias. The 
findings will be all the more credible if hypotheses are established a priori in the 
trial protocol.

The basic principles of data collection (Chap. 11) which ensure that the data are 
of the highest quality are also applicable. The methods for assessment must be 
clearly defined. Training sessions of investigators and staff are advisable. Pretesting 
of forms and questionnaires may enhance user and patient acceptability, and ensure 
higher quality data. An ongoing monitoring or surveillance system enables prompt 
corrective action when errors and other problems are found.

Trial Design

Several protocol issues must be taken into account when using HRQL measures in 
clinical trials, including the time course of the trial, the frequency of contact with 
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the study participants, the timing of clinical assessments, the complexity of the trial 
design, the number of participants enrolled, and participant and staff burden. The 
goal of the HRQL investigation is to incorporate the HRQL measures to the trial 
protocol without compromising other aspects of the trial design. For example, in 
the case of a trial design with frequent participant contacts and multiple clinical 
measures, it may be necessary to focus the assessment of HRQL on a subset of 
critical dimensions in order to minimize participant and staff burden.

At the same time, however, if a decision to measure HRQL is made, then like 
other measures, it should be viewed as an important variable in the overall trial 
design. Reducing its measurement to very brief and potentially less reliable mea-
sures, or to only one or two dimensions, may seriously diminish the integrity of the 
overall study design and yield useless information. For some trials, HRQL will be 
the primary endpoint, and the focus with respect to staff and patient time should be 
on the HRQL battery. For instance, if comparing two antihypertensive drugs which 
have comparable efficacy with respect to blood pressure reduction, but different 
effects on HRQL, then HRQL should be the critical outcome variable, and the study 
measures, as well as staff and patient time should reflect this fact [24].

Study Population

It is critical to specify key population demographics that could influence the choice 
of instruments, the relevant dimensions of HRQL to be assessed, or the mode of 
administration. Thus, educational level, gender, age range, the language(s) spoken, 
and cultural diversity should be carefully considered prior to selecting the HRQL 
battery of measures. It could be that a cohort of patients over the age of 70 may 
have more vision problems than middle-aged persons, making self-administered 
questionnaires potentially inadvisable. Ethnically diverse groups also require mea-
sures that have been validated across different cultures and/or languages [25].

It is also important to be sensitive to how the disease will progress and affect the 
HRQL of patients in the control group, as it is to understand the effects of the study 
intervention. For example, in patients with congestive heart failure assigned to the 
placebo-control arm of the study, we can expect a worsening of symptoms such as 
shortness of breath and fatigue, both of which will influence daily functioning. The 
point is to select dimensions and measures of HRQL that are sufficiently sensitive to 
detect changes in both the treated and the control group patients. Uses of the same 
instruments for both groups will ensure an unbiased and comparable assessment.

Intervention

Three major intervention-related factors are relevant to HRQL: the positive and 
adverse effects of treatment, the time course of the effects, and the possible synergism 
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of the treatment with existing medications and conditions. It is important to understand 
how a proposed treatment could affect the various dimensions of an individual’s life 
quality in both positive and negative ways. Some oral contraceptives, for instance, 
may be very effective in preventing pregnancy, while producing aversive symp-
toms like bloating and breast tenderness.

The time course of an intervention’s effects on dimensions of HRQL is also 
important both in terms of the selection of measures and the timing of when HRQL 
measures are administered to study participants. In a trial comparing coronary 
artery bypass graft (CABG) surgery to angioplasty, an assessment of HRQL 1 week 
postintervention might lead to an interpretation that the surgical arm was more 
negative than angioplasty for HRQL since the individuals in this arm of the trial 
would still be recovering from the surgical procedure, and the effects of sore mus-
cles and surgical site discomfort could overwhelm any benefits associated with 
CABG. However, at 6 months postintervention, the benefits of CABG surgery, such 
as relief from angina, might be more profound than the benefits received from 
angioplasty. Thus, the timing of the HRQL assessment may influence how one 
interprets the benefits (or negative effects) of the interventions.

Furthermore, it is important to know the medications the study population is 
likely to be on prior to randomization to the study intervention, and how these 
medications might interact with the trial intervention (either a pharmacological or 
behavioral intervention) to influence dimensions of HRQL.

Selection of HRQL Instruments

Measures of HRQL can be classified as either generic (that is, instruments 
designed to assess HRQL in a broad range of populations) or condition/population-
specific (instruments designed for specific diseases, conditions, age groups, or 
ethnic groups) [15]. Within these two categories of measures are single ques-
tionnaire items; dimension-specific instruments, which assess a single aspect of 
HRQL; health profiles, which are single instruments measuring several different 
dimensions of HRQL; and a battery of measures, which is a group of instruments 
assessing both single and multiple dimensions of HRQL. In assessing HRQL 
outcomes, the trend has been toward the use of either profiles or batteries of 
instruments.

Some of the more commonly used generic HRQL instruments are the SF-36 [26] 
and the EQ-5D [27]. Frequently used condition-specific instruments include the 
Functional Assessment of Cancer Therapy (FACT) [28] and the European 
Organization for Research and Treatment of Cancer Quality of Life (EORTC QLQ) 
[29], both of which are multidimensional measures assessing the HRQL of indi-
viduals with cancer. Other condition specific instruments include the McGill Pain 
Questionnaire, for the measurement of pain [30]; the Centers for Epidemiological 
Studies – Depression (CES-D) [31], the Profile of Mood States (POMS) [32], and 
the Psychological General Well-Being Index (PGWB) [33], all of which assess 
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psychological distress and well-being; and the Barthel Index to measure physical 
functioning and independence [34, 35].

The type of instruments selected for inclusion in a clinical trial will depend on the 
goals of the intervention. Within a given dimension of HRQL, like physical 
 functioning, one can assess the degree to which an individual is able to perform a 
particular task, his or her satisfaction with the level of performance, the importance 
to him or her of performing the task, or the frequency with which the task is 
 performed. Thus, the aspects of HRQL measured in clinical trials vary depending on 
the specific research questions of the trial.

Many investigators have made the mistake of adopting a questionnaire  developed 
for another population only to find that the distribution of responses obtained is 
skewed. In part, this may be due to volunteers for a trial comprising a select group, 
often healthier than people in general with the same conditions. This point under-
scores the need to pretest any proposed instrument before a trial.

There are a range of techniques that have been used to construct HRQL 
 measures. It is beyond the scope of this chapter to review these techniques, but 
references regarding scaling procedures and psychometric considerations of instru-
ments (reliability, validity, and the responsiveness of instruments to change) may be 
consulted [3, 6–10, 36, 37]. It is important to note that in selecting HRQL instru-
ments, investigators should be certain of the psychometric integrity of the  measures. 
Fortunately, today there are a number of instruments available that meet the 
 standards put forward by traditional measurement theory.

Modes of Administration

HRQL data can be collected from interviews (telephone or face-to-face), or from 
self-administered instruments (in-person or by mail). Self-administered instruments 
are more cost-effective from a staffing perspective, and may yield more disclosure 
on the part of the participant, particularly with the collection of sensitive informa-
tion. However, self-administered instruments tend to yield more missing and incom-
plete data and do not allow for clarification. In the long run, and with some 
populations, self-administered instruments may actually prove to be more expensive 
than interviewer administered instruments, if more staff time is needed to follow-up 
with participants to clarify responses to particular items and/or to attempt to get 
participants to respond to questionnaire items that were left blank on the survey.

Interviewer administered instruments usually provide more complete data sets 
and allow for probes and clarification. However, there may be a reluctance on the 
part of some participants to openly discuss some HRQL issues (for example, depres-
sion, sexuality), whereas they may be willing to respond to questions about these 
same issues in a self-administered format. For populations with a relatively high 
proportion of functional illiteracy, in-person interviewer administration may be 
required. Interviewer administration may also be the best way to obtain information 
for culturally diverse populations. Finally, interviewer administered instruments are 
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subject to interviewer bias and require intensive interviewer training, certification, 
and repeat training, especially within the context of multisite clinical trials, which 
may be of a long duration. Thus, often they can be considerably more expensive than 
self-administered instruments and serious thought must be given at the planning 
phases of a trial regarding the trade-offs between these two strategies.

In practice, clinical trials that include HRQL as outcomes usually incorporate a 
combination of profiles augmented with either generic or population-specific mea-
sures of the dimensions most relevant to the study population and intervention. 
In addition, most HRQL measures are designed to be either interviewer- or self-
administered, and both modes of administration can be used within single trials.

Frequency of Assessment (Acute Vs. Chronic)

The frequency with which HRQL will need to be assessed in an intervention will 
depend on the nature of the condition being investigated (acute vs. chronic) and the 
expected effects (both positive and negative) of treatment. At a minimum, as with 
all measurements collected in a clinical trial, a baseline assessment should be com-
pleted prior to randomization and the initiation of the intervention. Follow-up 
HRQL assessments should be timed to match expected changes in functioning due 
to either the intervention or the condition itself, and study objectives.

In general, acute conditions resolve themselves in one of four ways: a rapid reso-
lution without a return of the condition or symptoms; a rapid resolution with a 
subsequent return of the conditions after some period of relief (relapse); conversion 
of the condition to a chronic problem; or death [38]. In the case of rapid resolution, 
HRQL assessments would likely focus on the participant’s symptoms in the short-
term, and allow for comparisons between the side effects of treatment that might 
assist resolution vs. the relative impact of symptoms on the participant’s daily life. 
With respect to an acute condition where there is a risk of relapse (for example, 
gastric ulcer), a longer duration of follow-up is necessary because relapses can 
occur frequently and may have a broad impact on the participant’s general function-
ing and well-being.

If the acute problem converts to a chronic condition, the evaluation of adverse 
symptoms vs. treatment side-effects remains important, but is complicated by the 
duration of time and the problem of how to balance health outcomes in making treat-
ment decisions. A cancer patient experiencing acute pain, for instance, will often be 
treated with opiods, where appropriate, despite their negative side-effects. Most 
patients will gladly accept the negative effects of the drugs (for instance, sedating 
effect) in exchange for immediate relief from pain. However, if treatment extends for 
a long period of time, the cumulative effects of sedation and other side effects must 
be weighed against the benefit of pain control. Interest in HRQL has been greater in 
the management of chronic conditions, where there is a growing relative emphasis 
on morbidity over mortality. In chronic diseases, postponement of onset and treat-
ment of associated symptoms may be the most important factors to assess.
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Symptom Expression (Episodic Vs. Constant)

Chronic conditions with episodic symptomatic flare-ups (e.g., myasthenia gravis) 
can mimic acute conditions. However, a major distinction between the two is that 
often some interventions for the chronic conditions must be administered during the 
asymptomatic periods. In addition, relief from symptoms from many chronic condi-
tions is not as complete as that for acute conditions which, by definition, resolve in 
a short time period. If the treatment carries side-effects or adds to unrelated health 
risks, HRQL assessments ought to be completed during both latent and symptom-
atic periods in order to better characterize the impact of the condition and interven-
tion on the participants.

Functional Impact (Present Vs. Absent)

For specific conditions which have little or no adverse effect upon patient function, 
treatments are best evaluated on the basis of their impact on survival. In these situ-
ations, HRQL assessments will be of secondary importance. However, when a 
disease or condition affects functional capacity, treatments for that condition ought 
to be evaluated for their influence, both positive and negative, upon the partici-
pants’ level of functioning and well-being. Again, in these situations, the type of 
HRQL instruments used and the timing of the assessments will depend on the 
nature of the condition, the treatment, and the expected time course of effects on 
the participants.

Interpretation

The dimensions composing HRQL are influenced by a broad range of factors. It is 
important to maintain a distinction between these moderating factors and HRQL. 
Moderating factors can be divided into three categories: contextual, interpersonal, 
and intrapersonal [39]. Contextual factors include such variables as the setting (for 
example, urban–rural, single dwelling building vs. high rise); the economic struc-
ture; and sociocultural variations. Interpersonal factors include such variables as the 
social support available to individuals, stress, economic pressures, and the occur-
rence of major life events, such as bereavement and the loss of a job. Intrapersonal 
factors have to do with factors associated with the individual, such as coping skills, 
personality traits, or physical health. This distinction between the dimensions that 
comprise HRQL and the factors which moderate HRQL has implications for the 
selection of HRQL measures in specific trials, as well as data analysis and 
interpretation.

In addition to these three categories of moderating factors, it is important to real-
ize that any intervention may induce changes, improvements as well as impairments, 



245Interpretation

in a participant’s well-being. Changes in the natural course of the disease or  conditions 
must be considered, especially in trials of relatively long duration. Concomitant 
interventions or the regimen of care itself may also affect HRQL. This is particularly 
likely to happen in trials where the active intervention is considerably different than 
that for the control group. It is important to consider what effects the intervention 
will have on the participants’ well-being before initiating the trial in order to be able 
to assess the impact of these factors on the HRQL of the participants.

Scoring of HRQL Measures

In most clinical trials, HRQL is assessed by several instruments measuring dimen-
sions of HRQL considered to be critical to the intervention. Scores resulting from 
these measures are usually calculated by dimensions of HRQL so that a separate 
score is calculated for physical functioning or social well-being, and so on. Some 
instruments may also produce an overall HRQL score in addition to separate scores 
for each dimension (for example, FACT) [28].

Scores resulting from HRQL instruments are used to address specific research 
questions, most notably, to assess changes in specific HRQL dimensions, through-
out the course of the trial; to describe the treatment and control groups at distinct 
points in time; and to examine the correspondence between HRQL measures and 
clinical or physiological measures. Plans for data analysis are tailored to the specific 
goals and research questions of the clinical trial, and a variety of standard statistical 
techniques are used to analyze HRQL data.

Determining the Clinical Significance of HRQL Measures

An important issue in evaluating HRQL measures is determining how to interpret 
score changes on a given scale. For example, how many points must one increase 
or decrease on a scale for that change to be considered clinically meaningful? Does 
the change in score reflect a small, moderate, or large improvement or deterioration 
in a participant’s health status? Recent years have seen an increase in research 
examining the question of the clinical significance of HRQL scores. Demonstrating 
the clinical significance of HRQL measures is also important for achieving success-
ful product claims through regulatory agencies [3].

In order to be acceptable as outcome measures in clinical trials, HRQL instru-
ments must have acceptable reliability, validity, and responsiveness to changes either 
in clinical status and/or effects of the intervention. Information on how to interpret 
changes in HRQL scores over time is based on the minimal important difference 
(MID) [40, 41]. When the change score is connected to clinical anchors, the MID is 
sometimes referred to as the minimal clinically important difference (MCID). 
Responsiveness corresponds to the instrument’s ability to measure changes, whereas 
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the MID is defined as the smallest score or change in scores that is perceived by 
patients as improving or decreasing their HRQL and which would lead a clinician to 
consider a change in treatment or patient follow-up [41–43]. The responsiveness of a 
HRQL instrument and the MID can vary based on population and contextual charac-
teristics. Thus, there will not be a single MID value for a HRQL instrument across all 
uses and patient samples. It is likely that there is a range in MID estimates that vary 
across patient populations and observational and clinical trial applications [40].

A variety of methods have been used to determine the MID in HRQL instruments. 
However, there is currently no consensus on which method is best for determining 
the MID. Therefore, the MID determination should be based on multiple approaches 
[40, 43]. More in-depth discussion of issues regarding the MID and HRQL and 
other patient-reported outcome measures can be found elsewhere [40].

Utility Measures/Preference Scaling

The types of HRQL instruments discussed in this chapter have been limited to 
measures which were derived using psychometric methods. These methods exam-
ine the reliability, validity, and responsiveness of instruments. Other approaches to 
measuring quality of life and health states are used, however, and include utility 
measures and preference scaling [44]. Utility measures are derived from economic 
and decision theory, and incorporate the preferences of individuals for particular 
treatment interventions and health outcomes. Utility scores reflect persons’ prefer-
ences and values for specific health states and allow morbidity and mortality 
changes to be combined into a single weighted measure, called “quality-adjusted 
life years (QALY)” [45, 46]. These measures provide a single summary score rep-
resenting the net change in the participant’s quality of life (the gains from the treat-
ment effect minus the burdens of the side effects of treatment). These scores can be 
used in cost-effectiveness analyses that combine quality of life and duration of life. 
Ratios of cost per QALY can be used to decide among competing interventions.

In utility approaches, one or more scaling methods are used to assign a numeri-
cal value from 0.0 (death) to 1.0 (full health) to indicate an individual’s quality of 
life. Procedures commonly used to generate utilities are lottery or standard gamble, 
most usually the risk of death one would be willing to take to improve a state of 
healthy [46]. Preferences for health states are generated from the general popula-
tion, clinicians, or patients using multiattribute scales, visual analogue rating scales, 
time trade-off (how many months or years of life one would be willing to give up 
in exchange for a better health state), or other scaling methods [44, 47, 48]. Utility 
measures are useful in decision-making regarding competing treatments and/or for 
the allocation of limited resources. They also can be used as predictors of health 
events. Clarke and colleagues examined the use of index scores based on the 
EQ-5D, a five-item generic health status measure, as an independent predictor of 
vascular events, other major complications and mortality in people with type 2 
diabetes [49]. A cohort of 7,348 participants, aged 50–75, were recruited to the 
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Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. After 
adjusting for standard risk factors, a 0.1 higher index score derived from the EQ-5D 
was associated with an additional 7% lower risk of vascular events, a 13% lower 
risk of diabetic complications, and a 14% lower rate of all-cause mortality.

In general, psychometric and utility-based methods measure different compo-
nents of health. The two approaches result in different yet related, and complemen-
tary assessments of health outcomes, and both are useful in clinical research. Issues 
regarding the use of utility methods include the methodologies used to derive the 
valuation of health states; the cognitive complexity of the measurement task, poten-
tial population, and contextual effects on utility values; and the analysis and inter-
pretation of utility data [39, 41]. For a further review of issues related to utility 
analyses/preference scaling, and the relationship between psychometric and utility-
based approaches to the measurement of life quality, additional references may be 
consulted [44–50].
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The terms compliance and adherence are often used interchangeably. Compliance 
is defined as “the extent to which a person’s behavior (in terms of taking medica-
tions, following diets, or executing lifestyle changes) coincides with medical or 
health advice” [1]. The term adherence is defined similarly, but implies active par-
ticipant involvement. This book uses the term adherence. For example, an adherer 
is a participant who meets the standards of adherence as established by the investi-
gator. In a drug trial, he may be a participant who takes at least a predetermined 
amount such as 80% of the protocol dose. There should also be a maximum dose 
that defines adherence. This dose will depend on the nature of the drug being evalu-
ated (no more than 100% for some, perhaps a bit higher for others). A review of 
192 clinical trial publications from high-impact journals reveals important variabil-
ity in the definition (and reporting) of medication adherence [2].

Medication adherence is a major problem in the practice of medicine. As many as 
one-third of all prescriptions are reportedly never filled and, among those filled, a large 
proportion is associated with incorrect administration [3]. Nonadherence has been esti-
mated to cause nearly 125,000 deaths per year and has been linked to 10% of hospital 
admissions and 23% of nursing home admissions [3]. The direct cost to the US health 
care system is estimated to be $100 billion. Although these problems apply to clinical 
practice, low adherence is also a major challenge for clinical trial investigators.

The optimal study from an adherence point of view is one in which the investigator 
has total control over the participant, the administration of the intervention regimen, 
which may be a drug, diet, exercise, or other intervention, and follow-up. That situa-
tion can only realistically be achieved in animal experiments. Any clinical trial, 
which, according to the definition in this text, must involve human beings, is likely to 
have in practice less than 100% adherence with the intervention and the study proce-
dures. There are several reasons for low adherence. Life events such as illnesses, loss 
of employment, and divorce are important factors leading to reduced adherence. In 
addition, participants may not perceive any treatment benefit, they may be unwilling 
to change their behaviors, they are forgetful, may lack family support, or ultimately 
they may change their minds regarding trial participation. Another reason for low 
adherence is adverse effects to the medication or intervention. Therefore, even studies 
of a one-time intervention such as surgery or a single medication dose can suffer from 
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nonadherence. In fact, some surgical procedures can be declined or be reversed. In 
addition, the participant’s condition may deteriorate, and thus require termination of 
the study treatment or a switch from control to intervention. In a clinical trial in stable 
coronary disease, participants were randomized to percutaneous coronary interven-
tion (PCI) plus optimal medical therapy or optimal medical therapy alone [4]. Among 
the 1,149 participants in the PCI group, 46 never underwent the procedure and 
another 27 had lesions that could not be opened. During a median follow-up of 4.6 
years, 32.6% of the 1,138 participants in the optimal medical therapy alone group had 
revascularization. The trial showed no difference for the primary outcome of all-cause 
mortality or nonfatal myocardial infarction. However, it is difficult to determine how 
much the cross-overs influenced the overall finding.

Most of the available information on adherence is obtained from the clinical 
therapeutic situation rather than from the clinical trial setting. Although the differ-
ences between patients and volunteer participants are important, tending to mini-
mize low adherence rates in trials, the basic principles apply to both practice and 
research. Obviously, the results of a trial can be affected by low adherence with the 
intervention. It leads to an underestimation of possible therapeutic as well as poten-
tial toxic effects and can undermine even a properly designed study. Data from a 
meta-analysis suggest that the difference in health benefits between high and low 
adherence is 26% [5]. Given the intention-to-treat principle of analysis (see Chap. 17), 
in order to maintain equivalent power, a 20% reduction in drug adherence may 
result in the need for a greater than 50% increase in sample size and 30% reduction 
will require doubling of the study cohort (see Chap. 8).

This chapter discusses what can be done before enrollment to reduce future 
adherence problems, how to maintain good adherence during a trial, how to monitor 
adherence, and how to deal with low adherence. In the monitoring section, we also 
discuss visit adherence. Readers interested in a more detailed discussion of various 
adherence issues are referred to an excellent text [6] and a recent review of the 
 literature [7].

Fundamental Point

Many potential adherence problems can be prevented or minimized before partici-
pant enrollment. Once a participant is enrolled, taking measures to enhance and 
monitor participant adherence is essential.

Since reduced adherence with the intervention has a major impact on the power 
of a trial, realistic estimates of cross-overs, drop-ins and drop-outs must be used in 
calculating the sample size. Underestimates are common and lead to underpowered 
trials that fail to test properly the trial hypotheses. See Chap. 8 for further discussion 
of the sample size implications of low adherence.

A cross-over is a participant who, although assigned to the control group, follows 
the intervention regimen; or a participant who, assigned to an intervention group, 
follows either the control regimen or the regimen of another intervention group 
when more than one intervention is being evaluated. A drop-in is a special kind of 
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cross-over. In particular, the drop-in is unidirectional, referring to a person who was 
assigned to the control group but begins following the intervention regimen. A drop-
out is also unidirectional and refers to a person assigned to an intervention group 
who fails to adhere to the intervention regimen. If the control group is either on 
placebo or on no standard intervention or therapy, as is the case in superiority trials, 
then the drop-out is equivalent to a cross-over. However, if the control group is 
assigned to an alternative therapy, as is the case in noninferiority trials, then a drop-
out from an intervention group does not necessarily begin following the control regi-
men. Moreover, in this circumstance, there may be a drop-out from the control 
group. Participants who are unwilling or unable to return for follow-up visits repre-
sent another type of low adherence, sometimes also referred to as drop-outs. Because 
of the possible confusion in meanings, this text will limit the term drop-out to mean 
the previously defined adherence-related behavior. Those who stop participating in 
a trial will be referred to as withdrawals.

Considerations Before Participant Enrollment

There are three major considerations affecting adherence to the study medications 
that investigators and sponsors ought to consider during the planning phase. First, 
in selecting the study population, steps should be taken to avoid, to the extent pos-
sible, enrollment of study participants who are likely to have low adherence. 
Second, efforts should be made to limit the impact of design features that may 
adversely influence the level of adherence. Third, the research setting influences 
participant adherence over the long term. It is important to have realistic estimates 
of the adherence level during a trial so that proper upward adjustments of the 
sample size can be made during the planning phase.

Design Factors

The study duration also influences adherence. The shorter the trial, the more likely 
participants are to adhere with the intervention regimen. A study started and completed 
in 1 day or during a hospital stay has great advantages over longer trials. Trials in 
which the participants are under supervision, such as hospital-based ones, tend to have 
fewer problems with low adherence [8]. It is important to be mindful of the fact that 
there is a difference between special hospital wards and clinics with trained attendants 
who are familiar with research requirements and general medical or surgical wards and 
clinics, where research experience might not be common or protocol requirements 
might not be appreciated. Regular hospital staff have many other duties which compete 
for their attention, and they perhaps have little understanding of the need for precisely 
following a study protocol and the importance of good adherence.

Whenever the study involves participants who will be living at home, the 
chances for low adherence increase. Studies of interventions that require changing 
a habit are particularly susceptible to this hazard. A challenge is dietary studies. 
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A participant may need special meals, which are different from those consumed by 
other family members. It may be difficult to adhere when having meals outside the 
home. Multiple educational sessions, including the preparation of meals may be 
necessary. Family involvement is essential, especially if the participant is not 
 preparing the meals [9, 10]. In studies, when the participants’ sources of food come 
only from the hospital kitchen or are supplied by the trial through a special 
 commissary [11], participants are more likely to adhere with the study regimen than 
when they buy and cook their own food. This may also allow for blinded design.

Simplicity of intervention is an important factor. Single daily dose drug regimens 
are preferable to multiple daily dose regimens. Despite a simple regimen, 10–40% 
of participants have imperfect dosing [7]. A review of 76 trials, in which electronic 
monitors were used, showed that adherence is inversely proportional to the frequency 
of dosing [12]. Patients on a four-times-a-day regimen achieved on-schedule aver-
age adherence rates of about 50%. Adhering to multiple study interventions simul-
taneously poses special difficulties. For example, quitting smoking, losing weight, 
and reducing the intake of saturated fat at the same time require highly motivated 
participants. Unlike on-going interventions such as drugs, diet, or exercise, surgery 
and vaccination generally have the design advantage, with few exceptions, of 
enforcing adherence with the intervention.

Where feasible, a run-in period before actual randomization may be considered 
to identify those potential participants who are likely to become low adherers and 
thereby exclude them from long-term trials. During the run-in, potential partici-
pants may be given either active medication or placebo over several weeks or 
months. An active run-in allows identification of potential participants who do not 
have a favorable response to treatment on a biomarker or who develop side effects 
prior to randomization [13]. A placebo run-in allows a determination of the poten-
tial participant’s commitment to the study. Run-in phases are common. A 2001 
literature search resulted in more than 1,100 examples of trials in which run-in 
phases were used [14]. This approach was successfully employed in a trial of aspi-
rin and beta-carotene in US physicians [15]. By excluding physicians who reported 
taking less than 50% of the study pills, the investigators were able to randomize 
excellent adherers. After 5 years of follow-up, over 90% of those allocated to aspi-
rin reported still taking the pills. An additional goal of the run-in is to stabilize the 
potential trial participants on specific treatment regimens or to wash-out the effects 
of discontinued medications. Though the number of participants eliminated by the 
run-in period is usually small (5–10%), it can be important, as even this level of low 
adherence affects study power. A potential disadvantage of a run-in is that partici-
pants may notice a change in their medication following randomization thereby 
influencing the blindness of assignment. It also delays entry of participants into a 
trial by a few weeks.

Berger et al. [14] raised the issue of external validity of the findings of trials that 
excluded potential low adherers during a run-in phase. Can the results from trials 
with run-in selection of participants reasonably be fully extrapolated to all those 
patients meeting the trial eligibility criteria? As always, whether to use a run-in 
depends on the question being posed. Does the trial have many exclusion criteria 
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(a so-called efficacy trial) or few exclusions (a pragmatic or effectiveness trial)? 
Or stated differently – What is the effect of the intervention in optimal circum-
stances? Or, what is the effect when, as is common in clinical settings, a large 
number of people fail to adhere to prescribed medication? Both are valid questions, 
but in the latter situation, as noted earlier, a larger sample size will be required. 
Lee et al. [16] compared the effect size in 43 clinical trials of selective serotonin 
uptake inhibitors in patients with depression that included a placebo run-in and 
those that did not and found no statistically significant difference in the results.

In another approach, the investigator may instruct prospective participants to 
refrain from taking the active agent and then evaluate how well his request was 
followed. In the Aspirin Myocardial Infarction Study, for instance, urinary salicy-
lates were monitored before enrollment, and very few participants were excluded 
because of a positive urine test.

Participant Factors

An important factor in preventing adherence problems before enrollment is the 
selection of appropriate participants. Ideally, only those people likely to follow 
the study protocol should be enrolled. In the ACCORD trial, the screenees’ will-
ingness to test blood sugars frequently was taken as a measure of commitment to 
participate [17]. This may, however, influence the ability to generalize the findings 
(see Chap. 3). Several articles have reported that there is convincing evidence that 
nonadherers are substantially different from adherers in ways that are quite inde-
pendent of the effects of the treatment prescribed [7, 18–20].

It is usually advisable to exclude certain types of people from participation in a 
trial. Unless the trial is aimed at people with depression or alcohol or drug addic-
tion, individuals with psychological problems, particularly depressive symptoms 
and those abusing drugs or alcohol are unlikely to be good participants. Those with 
cognitive impairment or low literacy may also have more problems with adherence. 
Similarly, those with a known history of missed appointments or adherence prob-
lems ought to be excluded. Logistic factors may also influence adherence, for 
example, persons who live too far away, or those who are likely to move before the 
scheduled termination of the trial. Traveling long distances may be an undue burden 
on disabled people. Those with concomitant disease may be less adherent because 
they have other medicines to take or are participating in other trials. Furthermore, 
there is the potential for contamination of the study results by these other medicines 
or trials. The factors discussed above should, when applied, be incorporated in the 
study exclusion criteria. They are difficult to define, so the final decision often is 
left to the discretion of the study investigator.

An informed participant appears to be a better adherer. Proper education of the 
participant is thought to be the most positive factor to high adherence. Therefore, 
for scientific as well as ethical concerns, the participant (or, in special circumstances, 
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his guardian) in any trial should be clearly instructed about the study and told what 
is expected from him. He should have proper insight into his illness and be given 
a full disclosure of the potential effects – good and bad – of the study medication. 
Sufficient time should be spent with a candidate and he should be encouraged to 
consult with his family or private physician. A brochure with information concern-
ing the study is often helpful. As an example, the pamphlet used in the NIH-
sponsored Women’s Health Initiative trial is shown in Box 14.1. One approach is 
so-called E-Health Strategies, which refers to information and health services 

Box 14.1 Women’s Health Initiative Brochure

What is the Women’s Health Initiative?

The Women’s Health Initiative (WHI) is a major research study of women and 
their health. It will help decide how diet, hormone therapy, and calcium and 
vitamin D might prevent heart disease, cancer, and bone fractures. This is the 
first such study to examine the health of a very large number of women over 
a long period of time. About 160,000 women of various racial and ethnic 
backgrounds from 45 communities across the United States will take part in 
the study.

Who can join the WHI?

You may be able to join if you are

A woman 50–79 years old•	
Past menopause or the “change of life”•	
Planning to live in the same area for at least 3 years•	

Why is this study important?

Few studies have focused on health concerns unique to women. Being a part 
of this important project will help you learn more about your own health. You 
will also help doctors develop better ways to treat all women. This study may 
help us learn how to prevent the major causes of death and poor health in 
women: heart disease, cancer, and bone fractures.

What will I be asked to do?

If you agree to join us, you will be scheduled for several study visits. These 
visits will include questions on your medical history and general health hab-
its, a brief physical exam, and some blood tests. Based on your result, you 
may be able to join at least one of the following programs.

(continued)
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Box 14.1 (continued)

•	 Dietary. In this program, you are asked to follow either your usual  eating 
pattern or a low-fat eating program.

•	 Hormone. In this program, you are asked to take either hormone pills or 
inactive pills (placebos). If you are on hormones now, you would need to 
talk with your doctor about joining this program.
•	 Calcium and Vitamin D. In this program, you are asked to take either cal-

cium and vitamin D or inactive pills. Only women in the Dietary or 
Hormone programs may join this program.
•	 Health Tracking. If you are not able to join the other programs, your medi-

cal history and health habits will be followed during the study.

How long will the study last?

You will be in the study for a total of 8–12 years, depending on what year you 
enter the study. This period of time is necessary to study the long-term effects 
of the programs.

How will I benefit?

If you join the study, your health will be followed by the staff at our center. 
Certain routine tests will be provided although these are not meant to replace 
your usual health care. Depending on which program you join, you may 
receive other health-care services, such as study pills and dietary sessions. 
You will not have to pay for any study visits, tests, or pills.

You will also have the personal satisfaction of knowing that results from 
the WHI may help improve your health and the health of women for genera-
tions to come.

 delivered or enhanced through the internet [21]. Many clinical trials develop 
 websites with educational material directed at physicians and potential 
participants.

Some investigators have advocated the “talk back” method. It is known that 
patients, on average, have forgotten half of what they are told when they leave the 
physician’s office. A study of diabetic patients with low health literacy showed that 
they remembered much better when they were asked to repeat what the physician 
said [22]. If the investigator says to the study participant that he has high blood 
pressure that needs treatment, the participant would say, “I have high blood pres-
sure that needs treatment.” When told to take one pill every morning until the next 
clinic visit, the participant would repeat, “I should take one pill every morning until 
I return for my next clinic visit.”

Family support and involvement have emerged as major determinants of adher-
ence. Thus, it is recommended that family members, significant others or friends be 
informed about the trial and its expectations. After all, a large proportion of participants 
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join trials at the support of family and friends [23]. The support they can offer in 
terms of assistance, encouragement and supervision can be very valuable. This is 
especially important in trials of lifestyle interventions. For example, cooking 
classes for spouses as well as participants have been very effective in dietary inter-
vention trials [9, 10].

A large number of factors associated with low adherence have been reported 
(Table 14.1). Most of them are, as would be expected, the reverse of factors associ-
ated with high adherence. There are also factors with no proven association with 
adherence. The consensus is that age, gender and race or ethnicity have no or a very 
weak association with adherence.

Maintaining Good Participant Adherence

The foundation for high adherence during a trial is a well-functioning setting with 
committed clinic staff. Establishing a positive research setting at the first contact with 
future participants is a worthwhile investment for the simple reason that satisfied 
participants are better adherers. A warm and friendly relationship between participants 
and staff established during the recruitment phase should be nurtured. This approach 
covers the spectrum from trusting interactions, adequate time to discuss complaints, 
demonstrating sincere concern and empathy, when appropriate, convenient clinic 
environment, short waiting times, etc. “Bonding” between the participant and clinical 
trials staff members is a recognized and powerful force in maintaining good adherence. 
The clinic visits should be pleasant, and participants should be encouraged to contact 
staff between scheduled visits if they have questions or concern. Close personal 
contact is key. Clinic staff may make frequent use of the telephone, the mail, and 
the e-mail. Sending cards on special occasions such as birthdays and holidays is a 

Table 14.1 Factors associated with low adherence  
(adapted from ref. [20])

Unsatisfying participant–investigator relationship
Complexity of drug regimen
Drug effects
 Drug–age pharmacokinetics
 Adverse effects
Lack of information and inadequate instructions
Personal and cultural beliefs
Health literacy
Functional performance changes
Visual changes
Hearing changes
Cognitive alterations
Emotional health: depression
Lack of social network and support
Limited financial resources
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helpful gesture. Visiting the participant if he is hospitalized demonstrates concern. 
It is helpful to investigators and staff to make notes of what participants tell them 
about their families, hobbies, and work so that in subsequent visits, they can show 
interest and involvement. Other valued factors are free parking and, for working 
participants, opportunities for evening or weekend visits. For participants with 
difficulties attending clinic visits, home visits by staff could be attempted. Continuity 
of care is ranked as a high priority by participants. Continued family involvement 
is especially important during the follow-up phase.

During the conduct of a trial, it is important to keep the participants informed 
about published findings from related trials. They should also be reminded, when 
applicable, that a monitoring committee is watching the trial data for safety and 
efficacy. Brief communications from this committee assuring the participants that 
no safety concern has been noted can also be helpful.

The use of various types of reminders can also reduce the risk of low adherence. 
Clinic staff should typically remind the participant of upcoming clinic visits or study 
procedures. Sending out postcards, calling, or e-mailing a few days before a scheduled 
visit can help. Paper-based reminders seem to be most effective [24]. A telephone call 
though has the obvious advantage that immediate feedback is obtained and a visit can 
be rescheduled if necessary – a process that reduces the number of participants who 
fail to keep appointments. Telephoning also helps to identify a participant who is 
ambivalent regarding his continued participation or who has suffered a study event. To 
preclude the clinic staff’s imposing on a participant, it helps to ask in advance if the 
participant objects to being called frequently. Asking a participant about the best time 
to contact him is usually appreciated. Reminders can then be adjusted to his particular 
situation. In cases where participants are reluctant to come to clinics, more than one 
staff person might contact the participant. For example, the physician investigator 
could have more influence with the participant than the staff member who usually 
schedules visits. In summary, the quantity and quality of interaction between an inves-
tigator and the participant can positively influence adherence.

For drug studies, special pill boxes help the participant keep track of when to 
take the medication. These boxes allow participants to divide, by day, all medica-
tions prescribed during a 7-day period. If the participant cannot remember whether 
he took the morning dose, he can easily find out by checking the compartment of 
the pill box for that day. Special reminders such as noticeable stickers in the bath-
room or the refrigerator door or on watches have been used. Placing the pill bottles 
on the kitchen table or nightstand are other suggestions for participants.

A large number of clinical trials designed to enhance medication adherence have 
been reported. The interventions have been either behavioral, educational, or both. 
Several meta-analyses of this type of trial have been published. Based on a review of 
61 trials, Peterson [3] concluded that behavioral and educational interventions only led 
to small improvements in the range of 4–11% in terms of medication adherence. Mail 
reminders had the largest effect. Another review of 37 trials designed to improve medi-
cation adherence in chronic medical conditions reported significant improvement in 20 
studies [25]. Most effective were interventions that decreased dosing demands and 
those involving monitoring and feedback. Few interventions affected the clinical 
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outcomes. However, a recent Cochrane review [26] concluded that for short-term 
treatments, simple interventions may increase medication adherence and improve 
participant outcomes. The methods for improving adherence to chronic conditions are 
not very effective. The authors call for more fundamental and applied research. 
A lipid-lowering trial of 13,000 participants showed that repeated telephone and postal 
reminders only had a nonsignificant improvement in medication adherence [27].

Interventions to maintain good adherence for lifestyle changes can be very 
 challenging [6]. Most people have good intentions that can wane with time unless 
there is re-enforcement. A special brochure, which contains essential information 
and reminders, may be helpful in maintaining good participant adherence 
(Box 14.2). The telephone number where the investigator or staff can be reached 
should be included in the brochure.

Box 14.2 Aspirin Myocardial Infarction Study Brochure

Text of brochure used to promote participant adherence in the Aspirin 
Myocardial Infarction Study. DHEW Publication No. (NIH) 76-1080.

 1. Your Participation in the Aspirin Myocardial Infarction Study (AMIS) is 
Appreciated! AMIS, a collaborative study supported by the National Heart 
and Lung Institute, is being undertaken at 30 clinics throughout the United 
States and involves over 4,000 volunteers. As you know, this study is try-
ing to determine whether aspirin will decrease the risk of recurrent heart 
attacks. It is hoped that you will personally benefit from your participation 
in the study and that many other people with coronary heart disease may 
also greatly benefit from your contribution.

 2. Your Full Cooperation is Very Important to the Study. We hope that you 
will follow all clinic recommendations contained in this brochure so that 
working together, we may obtain the most accurate results. If anything is 
not clear, please ask your AMIS Clinic Physician or Coordinator to clarify 
it for you. Do not hesitate to ask questions.

 3. Keep Appointments. The periodic follow-up examinations are very impor-
tant. If you are not able to keep a scheduled appointment, call the Clinic 
Coordinator as soon as possible and make a new appointment. It is also 
important that the dietary instructions you have received be followed care-
fully on the day the blood samples are drawn. At the annual visit, you must 
be fasting. At the nonannual visits, you are allowed to have a fat-free diet. 
Follow the directions on your Dietary Instruction Sheet. Don’t forget to 
take your study medication as usual on the day of your visit.

 4. Change in Residence. If you are moving within the Clinic area, please let 
the Clinic Coordinator know of your change of address and telephone 
number as soon as possible. If you are moving away from the Clinic area,

(continued)



261Maintaining Good Participant Adherence

Box 14.2 (continued)

every effort will be made to arrange for continued follow-up here or at 
another participating AMIS clinic.

 5. Long Vacations. If you are planning to leave your Clinic area for an extended 
period of time, let the Clinic Coordinator know so that you can be provided 
with sufficient study medication. Also give the Clinic Coordinator your 
address and telephone number so that you can be reached if necessary.

 6. New Drugs. During your participation in AMIS, you have agreed not to 
use nonstudy prescribed aspirin or aspirin-containing drugs. Therefore, 
please call the Clinic Coordinator before starting any new drug as it might 
interfere with study results. At least 400 drugs contain aspirin, among 
them cold and cough medicines, pain relievers, ointments and salves, as 
well as many prescribed drugs. Many of these medications may not be 
labeled as to whether or not they contain aspirin or aspirin-related compo-
nents. To be sure, give the Clinic Coordinator a call.

 7. Aspirin-Free Medication. Your Clinic will give you aspirin-free medica-
tion for headaches, other pains, and fever at no cost. The following two 
types may be provided.

(a) Acetaminophen. The effects of this drug on headaches, pain, and 
fever resemble those of aspirin. The recommended dose is 1–2 tablets 
every 6 h as needed or as recommended by your Clinic Physician.

(b) Propoxyphene hydrochloride. The drug has an aspirin-like effect on 
pain only and cannot be used for the control of fever. The recom-
mended dose is 1–2 capsules every 6 h as needed or as recommended 
by your Clinic Physician.

 8. Study Medication. You will be receiving study medication from your Clinic. 
You are to take two capsules each day unless prescribed otherwise. Should 
you forget to take your morning capsule, take it later during the day. Should 
you forget the evening dose, you can take it at bedtime with a glass of water 
or milk. The general rule is: Do not take more than two capsules a day.

 9. Under Certain Circumstances It Will Be Necessary to Stop Taking the 
Study Medication:

(a) If you are hospitalized, stop taking the medication for the period of 
time you are in the hospital. Let the Clinic Coordinator know. After 
you leave the hospital, a schedule will be established for resuming 
medication, if it is appropriate to do so.

(b) If you are scheduled for surgery, we recommend that you stop taking 
your study medication 7 days prior to the day of the operation. This is 
because aspirin may, on rare occasions, lead to increased bleeding 
during surgery. In case you learn of the plans for surgery less than 
7 days before it is scheduled, we recommend that you stop the  
study medication as soon as possible. And again, please let the Clinic

(continued)
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Adherence Monitoring

Monitoring adherence is important in a clinical trial for two reasons: first, to identify 
any problems so that steps can be taken to enhance adherence; second, to be able to 
relate the trial findings to the level of adherence. In general, analysis of trial out-
comes by level of adherence is strongly discouraged (see Chap. 17). However, in so 
far as the control group is not truly a control and the intervention group is not being 
treated as intended, group differences are diluted, and generally lead to an underes-
timate of both the therapeutic effect and the adverse effects. Differential adherence 
to two equally effective regimens can also lead to possibly erroneous conclusions 
about the effects of the intervention. The level of adherence that occurred can also 
be compared with what was expected when the trial was designed.

In some studies, measuring adherence is relatively easy. This is true for trials in 
which one group receives surgery and the other group does not, or for trials which 
require only a one-time intervention. Most of the time, however, assessment of 
adherence is more complex. No single measure of adherence gives a complete picture, 
and all are subject to possible inaccuracies and varying interpretations. Furthermore, 
there is no widely accepted definition or criterion for either high or low adherence 
[28, 29]. A review of 192 publications showed that only 36% assessed and reported 

Box 14.2 (continued)

Coordinator know. After you leave the hospital, a schedule will be 
established for resuming medication, if it is appropriate to do so.

(c) If you are prescribed nonstudy aspirin or drugs containing aspirin by 
your private physician, stop taking the study medication. Study 
medication will be resumed when these drugs are discontinued. Let 
the Clinic Coordinator know.

(d) If you are prescribed anticoagulants (blood thinners), discontinue 
study medication and let your Clinic Coordinator know.

(e) If you have any adverse side effects which you think might be due to 
the study medication, stop taking it and call the Clinic Coordinator 
immediately.

10. Study-Related Problems or Questions. Should you, your spouse, or any-
one in your family have any questions about your participation in AMIS, 
your Clinic will be happy to answer them. The clinic would like for you 
or anyone in your family to call if you have any side effects that you sus-
pect are caused by your study medication and also if there is any change 
in your medical status, for example, should you be hospitalized.

11. Your Clinic Phone Number Is on the Back of This Brochure. Please Keep 
This Brochure as a Reference Until the End of the Study.
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medication adherence [2]. The level of adherence that occurred can also be com-
pared to what was expected when the trial was designed.

In monitoring adherence for a long-term trial, the investigator may also be 
interested in changes over time. When reductions in adherence are noted,  
corrective action can possibly be taken. This monitoring could be by calendar time 
(e.g., current 6 months versus previous 6 months) or by clinic visit (e.g., follow-up 
visit number 4 vs. previous visits). In multicenter trials, adherence to the interven-
tion also ought to be examined by clinic. In all studies, it is important for clinic staff 
to receive feedback about level of adherence. In double-blind trials where data by 
study group generally should not be disclosed, the adherence data can be combined 
for the study groups. In trials that are not double-blind, all adherence tables can be 
reviewed with the clinic staff. Frequent determinations obviously have more value 
than infrequent ones. A better indication of true adherence can be obtained. 
Moreover, when the participant is aware that he is being monitored, frequent mea-
sures may encourage adherence.

There are several indirect methods of assessing adherence. In drug trials, pill 
or capsule count, is the easiest and most commonly used way of evaluating par-
ticipant adherence. Since this assumes that the participant has ingested all medi-
cation not returned to the clinic, the validity of pill count is debated. For example, 
if the participant returns the appropriate number of leftover pills at a follow-up 
visit, did he in fact take what he was supposed to, or take only some and throw 
the rest out? Pill count is possible only as long as the pills are available to be 
counted. Participants sometimes forget or neglect to bring their pills to the clinic 
to be counted. In such circumstances, the investigator may ask the participant to 
count the pills himself at home and to notify the investigator of the result by 
telephone. Obviously, these data may be less reliable. The frequency with which 
data on pill counts are missing gives an estimate of the reliability of pill count as 
an adherence measure.

In monitoring pill count, the investigators ought to anticipate questions of inter-
est to readers of the trial report when published. What was the overall adherence to 
the protocol prescription? If the overall adherence with the intervention was 
reduced, what was the main reason for the reduction? Were the participants pre-
scribed a reduced dose of the study medication, or did they not follow the investiga-
tor’s prescription? Was it because of intervening life events, specific side effects or 
was it simply forgetfulness? The answers to these questions may increase the 
understanding and interpretation of the results of the trial.

When discussing adherence assessed by pill count, the investigator has to keep 
in mind that these data may be inflated and misleading. Additionally, these data do 
not include information from participants who miss a visit. Most participants tend 
to overestimate their adherence either in an effort to please the investigator or 
because of faulty memory. Those who miss one or more visits typically have low 
adherence. Therefore, the adherence data should be viewed within the framework 
of all participants who are scheduled to be seen at a particular visit. There is general 
agreement on one point – the participant who says he did not take his study medica-
tion can be trusted.
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Electronic monitoring of adherence has been used [28]. A device electronically 
records drug package opening times and duration, thus, describes dosing histories. 
The correlation between package openings and measured drug concentrations in 
serum is very high. The obvious advantage of electronic monitoring is that the 
dose-timing can be assessed to see if it is punctual and regular. In an HIV trial, 
overall adherence was 95%, but only 81% of the doses were taken within the pre-
scribed dosing interval (±3 h) [29]. In a study of hypertensive participants, about 
10% of the scheduled doses were omitted on any day [30]. Drug holidays, defined 
as omissions of all doses during three or more days, were recorded in 43% of the 
participants. An interesting observation was that participants with dosing problems 
were more likely later to become permanent drop-outs. It is not known whether or 
to what extent low adherence to dose-timing influences the trial findings.

Indirect information on adherence can also be obtained through interviews or 
record keeping by the participant. A diet study might use a 24-hour recall or a 7-day 
food record. Exercise studies may use diaries to record frequency and kind of exer-
cise. Trials of people with angina might record frequency of attacks or pain and 
nitroglycerin consumption.

There are two major direct methods for measuring adherence. Biochemical 
analyses are sometimes made on either blood or urine in order to detect the presence 
of the active drug or metabolites. A limitation in measuring substances in urine or 
blood is the short half-life of most drugs. Therefore, laboratory determinations usually 
indicate only what has happened in the preceding day or two. A  control participant who 
takes the active drug (obtained from a source outside the trial) until the day prior to 
a clinic visit, or a participant in the intervention group who takes the active drug only 
on the day of the visit might not always be detected as being a poor adherer. Moreover, 
drug adherence in participants taking an inert placebo tablet cannot be assessed by 
any laboratory determination. Adding a  specific chemical substance such as riboflavin 
can serve as a marker in cases where the placebo, the drug or its metabolites are 
difficult to measure. However, the same drawbacks apply to markers as to masking 
substances – the risk of toxicity in long-term use may outweigh benefits.

Laboratory tests obtained on occasions not associated with clinic visits may give 
a better picture of regular or true adherence. Thus, the participant may be instructed, 
at certain intervals, to send a vial of urine to the clinic. Such a technique is of value 
only so long as the participant does not associate this request with an adherence 
monitoring procedure. In at least one study, information obtained in this manner 
contributed no additional information to laboratory results done at scheduled visits, 
except perhaps as a confirmation of such results.

Measurement of physiological response variables can be helpful in assessing 
adherence. Cholesterol reduction by drug or diet is unlikely to occur in 1 or 2 days. 
Therefore, a participant in the intervention group cannot suddenly adhere with the regimen 
the day before a clinic visit and expect to go undetected. Similarly, the cholesterol level 
of a nonadherent control participant is unlikely to rise in the 1 day before a visit if he 
skips the nonstudy lipid-lowering drug. Other physiological response variables that 
might be monitored are blood pressure in an antihypertensive study, carbon monoxide 
in a smoking study, platelet aggregation in an aspirin study, and graded exercise in an 
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exercise study. In all these cases, the indicated response variable would not be the 
primary response variable but merely an  intermediate indicator of adherence to the 
intervention regimen. Unfortunately, not every person responds in the same way to 
medication, and some measures, such as triglyceride levels, are highly variable. 
Therefore, indications of low adherence of individual participants using these mea-
sures are not easily interpreted. Group data, however, may be useful.

Another aspect of monitoring deals with participant adherence to study procedures 
such as attendance at scheduled visits or visit adherence. One of the major purposes 
of these visits is to collect response variable data. The data will be better if they are more 
complete. Thus, completeness of data in itself can be a measure of the quality of a 
clinical trial. Studies with even a moderate amount of missing data or participants 
lost to follow-up could give misleading results and should be interpreted with caution. 
By reviewing the reasons why participants missed scheduled clinic visits, the investi-
gator can identify factors that can be corrected or improved. Having the participants 
come in for study visits facilitates and encourages adherence to study medication. 
Study drugs are dispensed at these visits, and the dose is adjusted when necessary.

From a statistical viewpoint, every randomized participant should be included in 
the analysis (Chaps. 8 and 17). Consequently, the investigator must keep trying to 
get all participants back for scheduled visits until the trial is over. Even if a participant 
is taken off the study medication by an investigator or stops taking it, he should be 
encouraged to come in for regular study visits. Complete follow-up data on the 
response variables are critical so that visit adherence is important. In addition, partici-
pants do change their minds. For a long time, they may want to have nothing to do 
with the trial and later may agree to come back for visits and even resume taking their 
assigned intervention regimen. Special attention to the specific problems of each 
participant withdrawn from the trial and an emphasis on potential contribution to the 
trial can lead to successful retrieval of a large proportion of withdrawn participants. 
Inasmuch as the participant will be counted in the analysis, leaving open the option 
for the participant to return to active participation in the study is worthwhile.

Dealing with Low Adherence

A commonly asked question is whether a low adherence rate should be discussed 
directly with study participants. There is a consensus that any discussion should not 
be confrontational. The preferred approach is to open any discussion by saying that 
adherence to medications for many people can be very difficult. After being given 
examples of common reasons for low adherence, many participants seem to be 
more willing to discuss their own situations and adherence problems. Thus, sympathy 
and understanding may be helpful if followed by specific recommendations regard-
ing ways to improve adherence. A large number of interviewing techniques of 
patients in the clinical setting are discussed by Shea [31].

If low adherence is related to difficulties making appointments, it may be useful 
to offer more convenient clinic hours, such as evenings and weekends as mentioned 
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above. Home visits are another option for participants with disabilities who have 
difficulties making it to the clinic. For participants who have moved, the investigator 
might be able to arrange for follow-up in other cities.

A remarkable recovery program was developed and implemented by Probstfield 
et al. [32]. Through participant counseling, the investigators succeeded in about 
90% of the 36 drop-outs in approximately 6 months to return for clinic visits. Even 
more notable was the virtual absence of recidivism over the remaining 5 years of 
intervention. Approximately 70% of the drop-outs resumed taking their study 
medication, though typically at a lower dose than specified in the protocol.

One of the challenges in clinical trials is the complete ascertainment of response 
variables in participants who are no longer actively involved in the trial. The inter-
net provides opportunities to track participants lost to follow-up. There are both 
fee-for-service and free search engines. The basic information required for a search 
is complete name, birth date, and Social Security Number or other specific identi-
fication number. These searches are more effective if several and different search 
engines are employed.

Steps should be taken to prevent situations in which participants request that 
they never be contacted. These are sometimes referred to as complete withdrawal. 
Participants who end their active participation in a clinical trial often agree to be 
contacted at the end of the trial for ascertainment of key response variables. For 
those who are lost to follow-up, but have not withdrawn their consent, alternative 
sources of information are family members and medical providers. The goal is to 
limit the amount of missing information.

Special Populations

Although the approaches to dealing with prevention of low adherence and mainte-
nance of high adherence are applicable to people in general, there are factors that 
need consideration when dealing with special populations. Elderly people represent 
a growing number of participants in clinical trials. There is a rich literature on fac-
tors that may influence adherence and on strategies to increase adherence in the 
clinical setting among older people. Many of these are highly relevant for clinical 
trials. The motivation to adhere to an intervention can be difficult to promote in 
persons who are not fully functional. Since metabolism and physiology change 
with age, finding the proper dose of an intervention in elderly subjects represents 
another challenge. Polypharmacy and sometimes complex or inadequate instruc-
tions can lead to failure to take the study medication as prescribed. Elderly participants 
typically have more health complaints than their younger counterparts. Drug interactions 
are a concern that applies even to over-the-counter drugs. Assessment of interven-
tion-related adverse reactions is typically difficult.

In addition to the elderly, there are many other groups that require special atten-
tion, either for physical, mental, or cultural reasons, and investigators need to be 
aware of those needs, and access them as best they can [33–35].
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This chapter reviews some of the fundamental concepts and basic methods in survival 
analysis. Frequently, event rates such as mortality or occurrence of nonfatal 
 myocardial infarction are selected as primary response variables. The analysis of 
such event rates in two groups could employ the chi-square statistic or the equiva-
lent normal statistic for the comparison of two proportions. However, when the 
length of observation is different for each participant, estimating an event rate is 
more complicated. Furthermore, simple comparison of event rates between two 
groups is not necessarily the most informative type of analysis. For example, the 
5-year survival for two groups may be nearly identical, but the survival rates may 
be quite different at various times during the 5 years. This is illustrated by the sur-
vival curves in Fig. 15.1. This figure shows survival probability on the vertical axis 
and time on the horizontal axis. For Group A, the survival rate (or 1 − the mortality 
rate) declines steadily over the 5 years of observation. For Group B, however, the 
decline in the survival rate is rapid during the first year and then levels off. 
Obviously, the survival experience of the two groups is not the same although the 
mortality rate at 5 years is nearly the same. If only the 5-year survival rate is con-
sidered, Group A and Group B appear equivalent. Curves like these might reason-
ably be expected in a trial of surgical versus medical intervention, where surgery 
might carry a high initial operative mortality.

Fundamental Point

Survival analysis methods are important in trials where participants are entered 
over a period of time and have various lengths of follow-up. These methods permit 
the comparison of the entire survival experience during the follow-up and may be 
used for the analysis of time to any dichotomous response variable such as a non-
fatal event or an adverse event.

A review of the basic techniques of survival analysis can be found in elementary 
statistical textbooks [1–6] as well as in overview papers [7]. A more complete and 
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technical review is in other texts [8–11]. Many methodological advances in the field 
have occurred, and this book will not be able to cover all developments. The 
 following discussion will concern two basic aspects: first, estimation of the survival 
experience or survival curve for a group of participants in a clinical trial and 
 second, comparison of two survival curves to test whether the survival experience 
is significantly different. Although the term survival analysis is used, the methods 
are more widely applicable than to just survival. The methods can be used for any 
dichotomous response variable when the time from enrollment to the time of the 
event, not just the fact of its occurrence, is an important consideration. For ease of 
communication, we shall use the term event, unless death is specifically the event.

Estimation of the Survival Curve

The graphical presentation of the total survival experience during the period of 
observation is called the survival curve, and the tabular presentation is called the 
lifetable. In the sample size discussion (Chap. 8), we utilized a parametric model to 
represent a survival curve, denoted S(t), where t is the time of follow-up. A classic 
parametric form for S(t) is to assume an exponential distribution S(t) = e−lt = exp(−lt), 
where l is the hazard rate [9]. If we estimate l, we have an estimate for S(t). One 
possible estimate for the hazard ratio is the number of observed events divided by 
the total exposure time of the person at risk of the event. Other estimates are also 
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available and are described later. While this estimate is not difficult to obtain, the 
hazard rate may not be constant during the trial. If l is not constant, but rather a 
function of time, we can define a hazard rate l(t), but now the definition is more 

complicated. Specifically, ( ) exp ( )
t

0
S t s dsl =   ∫ , that is, the exponential of the area 

under the hazard function curve from time 0 to time t. Furthermore, we cannot 
always be guaranteed that the observed survival data will be described well by the 
exponential model, even though we often make this assumption for computing 
sample size. Thus, biostatisticians have relied on parameter-free or non-parametric 
ways to estimate the survival curve.

This chapter will cover two similar non-parametric methods, the Kaplan–Meier 
method [12] and the Cutler–Ederer method [13] for estimating the true survival 
curve or the corresponding lifetable. Before a review of these specific methods, 
however, it is necessary to explain how the survival experience is typically obtained 
in a clinical trial and to define some of the associated terminology.

The clinical trial design may, in a simple case, require that all participants be 
observed for T years. This is referred to as the follow-up or exposure time. If all 
participants are entered as a single cohort at the same time, the actual period of 
follow-up is the same for all participants. If, however, as in most clinical trials, the 
entry of participants is staggered over some recruitment period, then equal periods 
of follow-up may occur at different calendar times for each participant, as illus-
trated in Fig. 15.2.

A participant may have a study event during the course of follow-up. The event 
time is the accumulated time from entry into the study to the event. The interest is 
not in the actual calendar date when the event took place but rather the interval of 
time from entry into the trial until the event. Figures 15.3 and 15.4 illustrate the way 
the actual survival experience for staggered entry of participants is translated for the 
analysis. In Fig. 15.3, participants 2 and 4 had an event while participants 1 and 3 

Fig. 15.2 T year follow-up time for four participants with staggered entry
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did not during the follow-up time. Since, for each participant, only the time interval 
from entry to the end of the scheduled follow-up period or until an event is of inter-
est, the time of entry can be considered as time zero for each participant. Figure 15.4 
illustrates the same survival experience as Fig. 15.3, but the time of entry is consid-
ered as time zero.

Some participants may not experience an event before the end of observation. 
The follow-uptime or exposure time for these participants is said to be censored; 
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that is, the investigator does not know what happened to these participants after 
they stopped participating in the trial. Another example of censoring is when partici-
pants are entered in a staggered fashion, and the study is terminated at a common 
date before all participants have had at least their complete T years of follow-up. 
Later posttrial events from these participants are also unobserved, but the reason for 
censoring is administrative. Administrative censoring could also occur if a trial is 
terminated prior to the scheduled time because of early benefits or harmful effects 
of the intervention. In these cases, censoring is assumed to be independent of occur-
rence of events.

Figure 15.5 illustrates several of the possibilities for observations during follow-
up. Note that in this example, the investigator has planned to follow all participants 
to a common termination time, with each participant being followed for at least T 
years. The first three participants were randomized at the start of the study. The first 
participant was observed for the entire duration of the trial with no event, and her 
survival time was censored because of study termination. The second participant 
had an event before the end of follow-up. The third participant was lost to follow-up. 
The second group of three participants was randomized later during the course of 
the trial with experiences similar to the first group of three. Participants 7–11 were 
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Fig. 15.5 Follow-up experience of 11 participants for staggered entry and a common termination 
time, with observed events (asterisks) censoring (open circles). Follow-up experience beyond the 
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randomized late in the study and were not able to be followed for at least T years 
because the study was terminated early. Participant 7 was lost to follow-up and 
participant 8 had an event before T years of follow-up time had elapsed and before 
the study was terminated. Participant 9 was administratively censored but theoreti-
cally would have been lost to follow-up had the trial continued. Participant 10 was 
also censored because of early study termination, although she had an event after-
wards which would have been observed had the trial continued to its scheduled end. 
Finally, the last participant who was censored would have survived for at least T 
years had the study lasted as long as first planned. The survival experiences illus-
trated in Fig. 15.5 would all be shifted to have a common starting time equal to zero 
as in Fig. 15.4. The follow-up time, or the time elapsed from calendar time of entry 
to calendar time of an event or to censoring could then be analyzed.

In summary then, the investigator needs to record for each participant the time 
of entry and the time of an event, the time of loss to follow-up, or whether the par-
ticipant was still being followed without having had an event when the study is 
terminated. These data will allow the investigator to compute the survival curve.

Kaplan–Meier Estimate

In a clinical trial with staggered entry of participants and censored observations, 
survival data will be of varying degrees of completeness. As a very simple example, 
suppose that 100 participants were entered into a study and followed for 2 years. 
One year after the first group was started, a second group of 100 participants was 
entered and followed for the remaining year of the trial. Assuming no losses to 
follow-up, the results might be as shown in Table 15.1. For Group I, 20 participants 
died during the first year and of the 80 survivors, 20 more died during the second 
year. For Group II, which was followed for only 1 year, 25 participants died. Now 
suppose the investigator wants to estimate the 2-year survival rate. The only group 
of participants followed for 2 years was Group I. One estimate of 2-year survival, 
p(2), would be p(2) = 60/100 or 0.60. Note that the first-year survival experience of 
Group II is ignored in this estimate. If the investigator wants to estimate 1 year 

Table 15.1 Participants entered at two points in time (Group I and Group II) 
and followed to a common termination timea

Years of follow-up

Group

I II

1 Participants entered 100 100
1st year deaths 20 25
1st year survivors 80 75

2 Participants entered 80
2nd year deaths 20
2nd year survivors 60

aAfter Kaplan and Meier [12]
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survival rate, p(1), she would observe that a total of 200 participants were followed 
for at least 1 year. Of those, 155 (80 + 75) survived the first year. Thus, p(1) = 155/200 
or 0.775. If each group were evaluated separately, the survival rates would be 0.80 
and 0.75. In estimating the 1-year survival rate, all the available information was 
used, but for the 2-year survival rate, the 1-year survival experience of Group II was 
ignored.

Another procedure for estimating survival rates is to use a conditional  probability. 
For this example, the probability of 2-year survival, p(2), is equal to the probability 
of 1-year survival, p(1), times the probability of surviving the second year, given 
that the participant survived the first year, p(2|1). That is, p(2) = p(1) p(2|1). In this 
example, p(1) = 0.775. The estimate for p(2|1) is 60/80 = 0.75 since 60 of the 80 
participants who survived the first year also survived the second year. Thus, the 
estimate for p(2) = 0.775 × 0.75 or 0.58, which is slightly different from the previ-
ously calculated estimate of 0.60.

Kaplan and Meier [12] described how this conditional probability strategy could 
be used to estimate survival curves in clinical trials with censored observations. 
Their procedure is usually referred to as the Kaplan–Meier estimate, or sometimes 
the product-limit estimate, since the product of conditional probabilities leads to the 
survival estimate. This procedure assumes that the exact time of entry into the trial 
is known and that the exact time of the event or loss of follow-up is also known. 
For some applications, time to the nearest month may be sufficient, while for other 
applications the nearest day or hour may be necessary. Kaplan and Meier assumed 
that a death and loss of follow-up would not occur at the same time. If a death and 
a loss to follow-up are recorded as having occurred at the same time, this tie is 
broken on the assumption that the death occurred slightly before the loss to 
follow-up.

In this method, the follow-up period is divided into intervals of time so that no 
interval contains both deaths and losses. Let p

j
 be equal to the probability of surviv-

ing the jth interval, given that the participant has survived the previous interval. For 
the rest of this chapter, lower case p refers to the conditional probability of surviv-
ing a particular interval. Upper case P refers to the cumulative probability of 
 surviving up through a specific interval. For intervals labeled j with deaths only,the 
estimate for p

j
, which is ˆ

jP , is equal to the number of participants alive at the begin-
ning of the jth interval, n

j
, minus those who died during the interval, d

j
, with this 

difference being divided by the number alive at the beginning of the interval, 
i.e., = −ˆ ( ) /j j j jP n nd . For an interval j with only l

j
 losses, the estimate ˆ

jP  is one. 
Such conditional probabilities for an interval with only losses would not alter the 
product. This means that an interval with only losses and no deaths may be com-
bined with the previous interval.

Example: Suppose 20 participants are followed for a period of 1 year, and to the 
nearest tenth of a month, deaths were observed at the following times: 0.5, 1.5, 1.5, 
3.0, 4.8, 6.2, 10.5 months. In addition, losses to follow-up were recorded at: 0.6, 
2.0, 3.5, 4.0, 8.5, 9.0 months. It is convenient for illustrative purposes to list the 
deaths and losses together in ascending time with the losses indicated in  parentheses. 
Thus, the following sequence is obtained: 0.5, (0.6), 1.5, 1.5, (2.0), 3.0, (3.5), (4.0), 
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4.8, 6.2, (8.5), (9.0), 10.5. The remaining seven participants were all censored at 
12 months due to termination of the study.

Table 15.2 presents the survival experience for this example as a lifetable. Each 
row in the lifetable indicates the time at which a death or an event occurred. One or 
more deaths may have occurred at the same time, and they are included in the same 
row in the lifetable. In the interval between two consecutive times of death, losses 
to follow-up may have occurred. Hence, a row in the table actually represents an 
interval of time, beginning with the time of a death, up to but not including the time 
of the next death. In this case, the first interval is defined by the death at 0.5 months 
up to the time of the next death at 1.5 months. The columns labeled n

j
, d

j
, and l

j
 

correspond to the definitions given above and contain the information from the 
example. In the first interval, all 20 participants were initially at risk, and one died 
at 0.5 months; later in the interval (at 0.6 months), one participant was lost to fol-
low-up. In the second interval, from 1.5 months up to 3.0 months, 18 participants 
were still at risk initially, two deaths were recorded at 1.5 months and one partici-
pant was lost at 2.0 months. The remaining intervals are defined similarly. The 
column labeled ˆ

jP is the conditional probability of surviving the interval j and is 
computed as (n

j
 − d

j
)/n

j
 or (20 − 1)/20 = 0.95, (18 − 2)/18 = 0.89, etc. The column 

labeled (t) is the estimated survival curve and is computed as the accumulated 
product of the p

j
’s (0.85 = 0.95 × 0.89, 0.79 = 0.95 × 0.89 × 0.93, etc.).

The graphical display of the next to last column of Table 15.2, ˆ ( )P t , is given in 
Fig. 15.6. The step function appearance of the graph is because the estimate of P(t), 
ˆ ( )P t is constant during an interval and changes only at the time of a death. With 

very large sample sizes and more observed deaths, the step function has smaller 
steps and looks more like the usually visualized smooth survival curve. If no cen-
soring occurs, this method simplifies to the number of survivors divided by the total 
number of participants who entered the trial.

Table 15.2 Kaplan–Meier lifetable for 20 participants followed for 1 year

Interval Interval number Time of death n
j

d
j

l
j

ˆ
jP ˆ ( )P t

Var 
ˆ ( )P t

[0.5,1,5) 1 0.5 20 1 1 0.95 0.95 0.0024
[1.5,3.0) 2 1.5 18 2 1 0.89 0.85 0.0068
[3.0,4.8) 3 3.0 15 1 2 0.93 0.79 0.0089
[4.8,6.2) 4 4.8 12 1 0 0.92 0.72 0.0114
[6.2,10.5) 5 6.2 11 1 2 0.91 0.66 0.0133
[10.5, 6 10.5 8 1 7a 0.88 0.58 0.0161

n
j
: number of participants alive at the beginning of the jth interval

d
j
: number of participants who died during the jth interval

l
j
: number of participants who were lost or censored during the jth interval
ˆ

jP : estimate for p
j
, the probability of surviving the jth interval given that the participant has sur-

vived the previous intervals
ˆ ( )P t : estimated survival curve

ˆ[ ( )]V P t : variance of ˆ ( )P t
aCensored due to termination of study
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Because ˆ ( )P t is an estimate of P(t), the true survival curve, the estimate will 
have some variation due to the sample selected. Greenwood [14] derived a formula 
for estimating the variance of an estimated survival function which is applicable to 
the Kaplan–Meier method. The formula for the variance of (t), denoted ˆ[ ( )]V P t  is 
given by

 2

1

ˆ ˆ[ ( )] ( )
( )

j

j j j j

V P t P t
n n

k d
d=

=
−∑  

where n
j
 and d

j
 are defined as before, and K is the number of intervals. In Table 15.2, 

the last column labeled ˆ[ ( )]V P t  represents the estimated variances for the estimates 
of P(t) during the six intervals. Note that the variance increases as one moves down 
the column. When fewer participants are at risk, the ability to estimate the survival 
experience is diminished.

Other examples of this procedure, as well as a more detailed discussion of some 
of the statistical properties of this estimate, are provided by Kaplan and Meier [12]. 
Computer programs are available [15] so that survival curves can be obtained 
quickly, even for very large sets of data.

The Kaplan–Meier curve can also be used to estimate the hazard rate, l, if the 
survival curve is exponential. For example, if the median survival time is estimated 
as T

M
, then M

M M0.5 ( ) e exp( )TS T Tl l−= = = −  and thus M
ˆ ln(05) / Tl =  as an 

 estimate of l. Then the estimate for S(t) would be exp ( ˆtl− ). In comparison to the 
Kaplan–Meier, another parametric estimate for S(t) at time t

j
, described by 

Nelson [16], is
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Fig. 15.6 Kaplan–Meier estimate of a survival curve, ˆ ( )P t , from a 1-year study of 20  participants, 
with observed events (asterisks) and censoring (open circles)
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ˆ( ) exp /
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j i j
i

S t nd
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= − 
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where d
i
 is the number of events in the ith interval and n

i
 is the number at risk for 

the event. While this is a straightforward estimate, the Kaplan–Meier does not 
assume an underlying exponential distribution and thus is used more than this type 
of estimator.

Cutler–Ederer Estimate

In the Kaplan–Meier estimate, it is required that the exact time of death or loss 
be known so that the observations could be ranked, or at least grouped appropri-
ately, into intervals with deaths preceding losses. For some studies, all that is 
known is that within an interval of time from t

j−1
 to t

j
, denoted (t

j−1
 − t

j
), d

j
 deaths 

and l
j
 losses occurred among the n

j
 participants at risk. Within that interval, the 

order in which the events and losses occurred is unknown. In the Kaplan–Meier 
procedure, the intervals were chosen so that all deaths preceded all losses in any 
interval.

In the Cutler–Ederer or actuarial estimate [13], the assumption is that the deaths 
and losses are uniformly distributed over an interval. On the average, this means 
that one half the losses will occur during the first half of the interval. The estimate 
for the probability of surviving the jth interval, given that the previous intervals 
were survived, is ˆ

jP , where

 
0.5ˆ

0.5
j j j

j
j j

n
P

n

d l
l

− −
=

−  

Notice the similarity to the Kaplan–Meier definition. The modification is that the 
l

j
 losses are assumed to be at risk, on the average, one half the time and thus should 

be counted as such. These conditional probabilities, ˆ
jP , are then multiplied together 

as in the Kaplan–Meier procedure to obtain an estimate, ˆ ( )P t , of the survival func-
tion at time t. The estimated variance for ˆ ( )P t  in this case is given by

 2

1

ˆ ˆ[ ( )] ( )
( 0.5 )( 0.5 )

j

j j j j j j

V P t P t
n n

k d
l l d=

=
− − −∑  

Specific applications of this method are described by Cutler and Ederer [13]. The 
parallel to the example shown in Table 15.2 would require recomputing the ˆ

jP , ˆ ( )P t
and ˆ[ ( )]V P t .
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Comparison of Two Survival Curves

We have just discussed how to estimate the survival curve in a clinical trial for a 
single group. For two groups, the survival curve would be estimated for each group 
separately. The question is whether the two survival curves P

C
(t) and P

I
(t), for the 

control and intervention groups respectively, are different based on the estimates 

C
ˆ ( )P t  and Î ( )P t .

Point-by-Point Comparison

One possible comparison between groups is to specify a time t* for which survival 
estimates have been computed using the Kaplan–Meier [12] or Cutler–Ederer [13] 
method. At time t*, one can compare the survival estimates *

C
ˆ ( )P t  and *

Î ( )P t  using 
the statistic

* *
* C I

* * 1/2
C I

ˆ ˆ( ) ( )
( ) ˆ ˆ{ [ ( )] [ ( )]}

P t P t
Z t

V P t V P t

−
=

+

where *
C

ˆ[ ( )]V P t  and *
Î[ ( )]V P t  are the Greenwood estimates of variance [14]. The 

statistic Z(t*) has approximately a normal distribution with mean zero and variance 
one under the null hypothesis that =* *

C I
ˆ ˆ( ) ( )P t P t . The problem with this approach 

is the multiple looks issue described in Chap. 16. Another problem exists in inter-
pretation. For example, what conclusions should be drawn if two survival curves 
are judged significantly different at time t* but not at any other points? The issue 
then becomes, what point in the survival curve is most important.

For some studies with a T year follow-up, the T year mortality rates are consid-
ered important and should be tested in the manner just suggested. Annual rates 
might also be considered important and therefore, compared. One criticism of this 
suggestion is that the specific points may have been selected post hoc to yield the 
largest difference based on the observed data. One can easily visualize two survival 
curves for which significant differences are found at a few points. However, when 
survival curves are compared, the large differences indicated by these few points 
are not supported by the overall survival experience. Therefore, point-by-point 
comparisons are not recommended unless a few points can be justified prior to data 
analysis and are specified in the protocol.

Comparison of Median Survival Times

One summary measure of survival experience is the time at which 50% of the 
cohort has had the event. One common and easy way to estimate the median 
 survival time is from the Kaplan–Meier curve. (See for example, Altman [4].) 



280 15 Survival Analysis

This assumes that the cohort has been followed long enough so that over one-half 
of the individuals have had the event. Confidence intervals may be computed for 
the median survival times [17]. If this is the case, we can compare the median sur-
vival times for intervention and control M

I
 and M

C
, respectively. This is most easily 

done by estimating the ratio of the estimates M
I
/M

C
. A ratio larger than unity 

implies that the intervention group has a larger median survival and thus a better 
survival experience. A ratio less than unity would indicate the opposite.

We can estimate 95% confidence intervals for M
I
/M

C
 by

1.96 1.96
I C I C( / )e ,( / )S SM M M M e− +

where the standard deviation, S, of M
I
/M

C
 is computed as

= +/ ( )I SS 1 O O

for cases where the survival curves are approximately exponential, and O
I
 = the total 

number of events in the intervention group (i.e., åd
i
) and O

C
 = the total number of 

events in the control group.

Total Curve Comparison

Because of the limitations of comparison of point-by-point estimates, Gehan [18] 
and Mantel [19] originally proposed statistical methods to assess the overall sur-
vival experience. These two methods were important steps in the development of 
analytical methods for survival data. They both assume that the hypothesis being 
tested is whether two survival curves are equal, or whether one is consistently dif-
ferent from the other. If the two survival curves cross, these methods should be 
interpreted cautiously. Since these two original methods, an enormous literature has 
developed on comparison of survival curves and is summarized in several texts 
[8–11]. The basic methods described here provide the fundamental concepts used 
in survival analysis.

Mantel [19] proposed the use of the procedure described by Cochran [20] and 
Mantel and Haenszel [21] for combining a series of 2 × 2 tables. In this procedure, 
each time, t

j
, a death occurs in either group, a 2 × 2 table is formed as follows:

The entry a
j
 represents the observed number of deaths at time t

j
 in the intervention 

group, and c
j
 represents the observed number of deaths at time t in the control group. 

Death at time tj

Survivors at  
time tj At risk prior to time tj

Intervention aj b
j

a
j
 + b

j

Control cj dj cj + dj

aj + cj bj + dj nj
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At least a
j
 or c

j
 must be non-zero. One could create a table at other time periods 

(that is, when a
j
 and c

j
 are zero), but this table would not make any contribution to 

the statistic. Of the n
j
 participants at risk just prior to time t

j
, a

j
 + b

j
 were in the 

intervention group and c
j
 + d

j
 were in the control group. The expected number of 

deaths in the intervention group, denoted E(a
j
), can be shown to be

 = + +( ) ( )( ) /j j j j j jE a a c a b n  

and the variance of the observed number of deaths in the intervention group, 
denoted as V(a

j
) is given by

 2

( )( )( )( )
( )

( 1)
j j j j j j j j

j
j j

a c b d a b c d
V a

n n

+ + + +
=

−  

These expressions are the same as those given for combining 2 × 2 tables in the 
Appendix of Chap. 17. The Mantel–Haenszel (MH) statistic is given by

 
2

1 1

 MH ( ) ( )j j j
j j

a E a V a
k k

= =

  = − 
  
∑ ∑  

and has approximately a chi-square distribution with one degree of freedom, where 
K is the number of distinct event times in the combined intervention and control 
groups. The square root of MH, =MH MHZ , has asymptotically a standard normal 
distribution [22, 23].

Application of this procedure is straightforward. First, the times of events and 
losses in both groups are ranked in ascending order. Second, the time of each event, 
and the total number of participants in each group who were at risk just before the 
death (a

j
 + b

j
, c

j
 + d

j
) as well as the number of events in each group (a

j
, c

j
) are deter-

mined. With this information, the appropriate 2 × 2 tables can be formed.
Example: Assume that the data in the example shown in Table 15.2 represent the 

data from the control group. Among the 20 participants in the intervention group, 
two deaths occurred at 1.0 and 4.5 months with losses at 1.6, 2.4, 4.2, 5.8, 7.0, and 
11.0 months. The observations, with parentheses indicating losses, can be summa-
rized as follows:

Intervention: 1.0, (1.6), (2.4), (4.2), 4.5, (5.8), (7.0), (11.0)
Control: 0.5, (0.6), 1.5, 1.5, (2.0), 3.0, (3.5), (4.0), 4.8, 6.2, (8.5), (9.0), 10.5.

Using the data described above, with remaining observations being censored at 
12 months, Table 15.3 shows the eight distinct times of death, (t

j
), the number in 

each group at risk prior to the death, (a
j
 + b

j
, c

j
 + d

j
), the number of deaths at time 

t
j
, (a

j
, c

j
), and the number of participants lost to follow-up in the subsequent interval 

(l
j
). The entries in this table are similar to those given for the Kaplan–Meier life-

table shown in Table 15.2. Note in Table 15.3, however, that the observations 
from two groups have been combined with the net result being more intervals. 
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The entries in Table 15.3 labeled a
j
 + b

j
, c

j
 + d

j
, a

j
 + c

j
, and b

j
 + d

j
 become the entries 

in the eight 2 × 2 tables shown in Table 15.4.
The Mantel–Haenszel statistic can be computed from these eight 2 × 2 

tables (Table 15.4) or directly from Table 15.3. The term 
=

=∑ 8

1
2jj

a  since

there are only two deaths in the intervention group. Evaluation of the term 

=
= + + × + + + + +∑ 8

1
( ) 20/40 20 /38 2 19 /37 17 /32 16 / 28 15 /27 14 / 25 13 / 21jj

E a

or 
=

=∑ 8

1
( ) 4.89jj

E a . The value for 
=∑ 8

1
( )jj

V a  is computed as

 
=

= + +…∑
8

2 2
1

(1)(39)(20)(20) (1)(37)(20)(18)
( )

(40) (39) (38) (37)j
j

V a  

This term is equal to 2.21. The computed statistic is MH = (2 − 4.89)2/2.21 = 3.78. 
This is not significant at the 0.05 significance level for a chi-square statistic with 
one degree of freedom. The MH statistic can also be used when the precise time of 
death is unknown. If death is known to have occurred within an interval, 2 × 2 tables 
can be created for each interval and the method applied. For small samples, a 
 continuity correction is sometimes used. The modified numerator is

 

2

1

[ ( )] 0.5j j
j

a E a
k

=

  − − 
  
∑  

Table 15.3 Comparison of survival data for a control group and an intervention group using the 
Mantel-Haenszel procedures

Rank  Event times  Intervention  Control  Total

j  t
j

 a
j
 + b

j
a

j
 l

j
 c

j
 + d

j
c

j
 l

j
 a

j
 + c

j
b

j
 + d

j

1  0.5  20 0 0  20 1 1  1 39
2  1.0  20 1 0  18 0 0  1 37
3  1.5  19 0 2  18 2 1  2 35
4  3.0  17 0 1  15 1 2  1 31
5  4.5  16 1 0  12 0 0  1 27
6  4.8  15 0 1  12 1 0  1 26
7  6.2  14 0 1  11 1 2  1 24
8  10.5  13 0 13  8 1 7  1 20

a
j
 + b

j
 = number of participants at risk in the intervention group prior to the death at time t

j

c
j
 + d

j
  = number of participants at risk in the control group prior to the death at time t

j

a
j
  = number of participants in the intervention group who died at time t

j

c
j
 = number of participants in the control group who died at time t

j

l
j
 = number of participants who were lost or censored between time t

j
 and t

j+1

a
j
 + c

j
 = number of participants in both groups who died at time t

j

b
j
 + d

j
= number of participants in both group who are alive minus the number who died at  

time t
j
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Table 15.4 Eight 2 × 2 tables corresponding to the event 
times used in the Mantel–Haenszel statistic in survival 
comparison of intervention (I) and control (C) groups

Db Ac Rd

1. (0.5 mo)a

I 0 20 20
C 1 19 20

1 39 40

2. (1 mo)
I 1 19 20
C 0 18 18

1 37 38

3. (1.5 mo)
I 0 19 19
C 2 16 18

2 35 37
4. (3 mo)

I 0 17 17
C 1 14 15

1 31 32
5. (4.5 mo)

I 1 15 16
C 0 12 12

1 27 28
6. (4.8 mo)

I 0 15 15
C 1 11 12

1 26 27
7. (6.2 mo)

I 0 14 14
C 1 10 11

1 24 25
8. (10.5 mo)

I 0 13 13
C 1  7  8

1 20 21
aNumber in parenthesis indicates time, t

j
, of a death in 

either group
bNumber of participant who died at time t

j
cNumber of participants who are alive between time t

j
 and 

time t
j+1

dNumber of participants who were at risk before death at 
time t

j
 (R = D + A)

where the vertical bars denote the absolute value. For example, applying the continuity 
correction reduces the MH statistic from 3.76 to 2.59.

Gehan [18] developed another procedure for comparing the survival experience 
of two groups of participants by generalizing the Wilcoxon rank statistic. The Gehan 
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statistic is based on the ranks of the observed survival times. The null hypothesis, 
P

I
(t) = P

C
(t), is tested. The procedure, as originally developed, involved a compli-

cated calculation to obtain the variance of the test statistic. Mantel [24] proposed a 
simpler version of the variance calculation, which is most often used.

The N
I
 observations from the intervention group and the N

C
 observations from 

the control group must be combined into a sequence of N
C
 + N

I
 observations and 

ranked in ascending order. Each observation is compared to the remaining 
N

C
 + N

I
 − 1 observation and given a score U

i
 which is defined as follows:

U
i
 = (number of observations ranked definitely less than the ith observation) − (number 

of observations ranked definitely greater than the ith observation).

The survival outcome for the ith participant will certainly be larger than that for 
participants who died earlier. For censored participants, it cannot be determined 
whether survival time would have been less or greater than the ith observation. This 
is true whether the ith observation is a death or a loss. Thus, the first part of 
the score U

i
 assesses how many deaths definitely preceded the ith observation. The 

second part of the U
i
 score considers whether the current, ith, observation is a death 

or a loss. If it is a death, it definitely precedes all later ranked observations regard-
less of whether the observations correspond to a death or a loss. If the ith observa-
tion is a loss, it cannot be determined whether the actual survival time will be less 
than or greater than any succeeding ranked observation, since there was no oppor-
tunity to observe the ith participant completely.

Table 15.5 ranks the 40 combined observations (N
C
 = 20, N

I
 = 20) from the 

example used in the discussion of the Mantel–Haenszel statistic. The last 19 obser-
vations were all censored at 12 months of follow-up, 7 in the control group, and 12 
in the intervention group. The score U

1
 is equal to the zero observations that were 

definitely less than 0.5 months, minus the 39 observations that were definitely 
greater than 0.5 months, or U

1
 = −39. The score U

2
 is equal to the one observation 

definitely less than the loss at 0.6 months, minus none of the observations that will 
be definitely greater, since at 0.6 months the observation was a loss, or U

2
 = 1. U

3
 is 

equal to the one observation (0.5 months) definitely less than 1.0 month minus the 
37 observations definitely greater than 1.0 month giving U

3
 = 36. The last 19 obser-

vations will have scores of 9 reflecting the nine deaths which definitely precede 
censored observations at 12.0 months.
The Gehan statistic, G, involves the scores U

i
 and is defined as

= 2/ ( )G W V W

where W = SU
i
, for (U

i
’s in control group only) and

+

=

=
+ + − ∑

C I
2C I

1C I C I

( ) ( )
( )( 1)

N N

i
i

N N
V W U

N N N N

The G statistic has approximately a chi-square distribution with one degree of 
freedom [18, 24]. Therefore, the critical value is 3.84 at the 5% significance level 
and 6.63 at the 1% level. In the example, W = −87 and the variance V(W) = 2,314.35. 
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Thus, G = (–87)2/2,314.35 = (87)2/2,314.35 or 3.27 for which the p-value is equal to 
0.071. This is compared with the p value of 0.052 obtained using the Mantel–
Haenszel statistic.

The Gehan statistic assumes the censoring pattern to be equal in the two groups. 
Breslow [25] considered the case in which censoring patterns are not equal and 
used the same statistic G with a modified variance. This modified version should 
be used if the censoring patterns are radically different in the two groups. Peto and 
Peto [26] also proposed a version of a censored Wilcoxon test. The concepts are 
similar to what has been described for Gehan’s approach. However, most software 
packages now use the Breslow or Peto and Peto versions.

Generalizations

The general methodology of comparing two survival curves using this methodology 
has been further evaluated [27–32]. These two tests by Mantel–Haenzel and Gehan, 
can be viewed as a weighted sum of the difference between observed number of 

Table 15.5 Example of Gehan statistics scores Ui for intervention (I) and control (C) groups

Observation
Ranked observed  

time Group Definitely less Definitely more U
i

1 0.5 C 0 39 −39
2 (0.6)a C 1 0 1
3 1.0 I 1 37 −36
4 1.5 C 2 35 −33
5 1.5 C 2 35 −33
6 (1.6) I 4 0 4
7 (2.0) C 4 0 4
8 (2.4) I 4 0 4
9 3.0 C 4 31 −27

10 (3.5) C 5 0 5
11 (4.0) C 5 0 5
12 (4.2) I 5 0 5
13 4.5 I 5 27 −22
14 4.8 C 6 26 −20
15 (5.8) I 7 0 7
16 6.2 C 7 24 −17
17 (7.0) I 8 0 8
18 (8.5) C 8 0 8
19 (9.0) C 8 0 8
20 10.5 C 8 20 −12
21 (11.0) I 9 0 9

22–40 (12.0) 12I, 7C 9 0 9
aParentheses indicate censored observations
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events and the expected number at each unique event time [7, 27]. Consider the 
previous equation for the logrank test and rewrite the numerator as

=

= −∑
1

[ ( )]
K

j j j
j

W w a E a

where

2
2

1

( )( )( )( )
( )

( 1)

K
j j j j j j j j

j
j j j

a c b d a b c d
V W w

n n=

+ + + +
=

−∑

and w
j
 is a weighting factor. The test statistics W2/V(W) has approximately a 

chi-square distribution with one degree of freedom or equivalently ( )W V W  has 
approximately a standard normal distribution. If w

i
 = 1, we obtain the Mantel–

Haenszel or logrank test. If w
i
 = n

j
/(N+1), where N = N

C
 + N

I
 or the combined sample 

size, we obtain the Gehan version of the Wilcoxon test. Tarone and Ware [27] pointed 
out that the Mantel–Haenszel and Gehan are only two possible statistical tests. They 
suggested a general weight function w

i
 = [n

j
/(N+1)]q where 0 £ q £ 1. In particular, they 

suggested that q = 0.5. Prentice [29] suggested a weight 1 / ( )j
j i i i iw n n d== ∏ +  where 

d
i
 = (a

i
 + c

i
) which is related to the product limit estimator at t

j
 as suggested by Peto 

and Peto [26]. Harrington and Fleming [32] generalize this further by suggesting 
weights { }1 / ( )j

j i i i iw n n d
r

== ∏ +  for r ³ 0.

All of these methods give different weights to the various parts of the survival 
curve. The Mantel–Haenszel or logrank statistic is more powerful for survival dis-
tributions of the exponential form where l

I
(t) = ql

C
(t) or S

I
(t) = {S

C
(t)}q where q ¹ 1 

[24]. The Gehan type statistic [18], on the other hand, is more powerful for survival 
distributions of the logistic form S(t,q) = et+q/(1 + et+q). In actual practice, however, 
the distribution of the survival curve of the study population is not known. When 
the null hypothesis is not true, the Gehan type statistic gives more weight to the 
early survival experience, whereas the Mantel–Haenszel weights the later experi-
ence more. Tarone and Ware [27] indicate that other possible weighting schemes, 
which are intermediate to these two statistics, could be proposed [27, 32]. Thus, 
when survival analysis is done, it is certainly possible to obtain different results 
using different weighting schemes depending on where the survival curves sepa-
rate, if they indeed do so. The logrank test is the standard in many fields such as 
cancer and heart disease. The condition l

I
(t) = ql

C
(t) says that risk of the event 

being studied in the intervention is a constant multiple of the hazard l
C
(t). That is, 

the hazard rate in one arm is proportional to the other and so the logrank test is best 
for testing proportional hazards. This idea is appealing and is approximately true 
for many studies.

There has been considerable interest in asymptotic (large sample) properties of 
rank tests [28, 30] as well as comparisons of the various analytic methods [31]. 
While there exists an enormous literature on survival analysis, the basic concepts 
of rank tests can still be appreciated by the methods described above.
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Earlier, we discussed using an exponential model to summarize a survival curve 
where the hazard rate l determines the survival curve. If we can assume that the 
hazard rate is reasonably constant during the period of follow-up for the interven-
tion and the control group, then comparison of hazard rates is a comparison of 
survival curves [4]. The most commonly used comparison is the ratio of the 
 hazards, R = l

I
/l

C
. If the ratio is unity, the survival curves are identical. If R is 

greater than one, the intervention hazard is greater than control so the intervention 
survival curve falls below the standard curve. That is, the intervention is worse. On 
the other hand, if R is less than one, the control group hazard is larger, the control 
group survival curve falls below the intervention curve, and intervention is better.

We can estimate the hazard ratio by comparing the ratio of total observed events 
(O) divided by expected number of events (E) in each group; that is, the estimate 
of R can be expressed as

 = I I

C C

/ˆ
/

O E
R

O E  

That is, = ∑I iO a , = ∑C ( )iO b , = ∑I ( )iE E a , and = ∑C ( )iE E b . Confidence 
intervals for the odds ratio R are most easily determined by constructing confidence 
intervals for the log of the odds ratio ln R [33]. The 95% confidence interval for ln R 
is −1.96 / K V  to +1.96 / K V  where K = (O

I
 − E

I
)/V and V is the variance as 

defined in the logrank or Mantel–Haenszel statistics. (That is, V equals V(a
i
).) We 

then connect confidence intervals for ln R to confidence intervals for R by taking 
antilogs of the upper and lower limit. If the confidence interval excludes unity, we 
could claim superiority of either intervention or control depending on the direction. 
Hazard ratios not included in the interval can be excluded as likely outcome sum-
maries of the intervention. If the survival curves have relatively constant hazard 
rates, this method provides a nice summary and complements the Kaplan–Meier 
estimates of the survival curves.

Covariate Adjusted Analysis

Previous chapters have discussed the rationale for taking stratification into account. 
If differences in important covariates or prognostic variables exist at entry between 
the intervention and control groups, an investigator might be concerned that the 
analysis of the survival experience is influenced by that difference. In order to 
adjust for these differences in prognostic variables, she could conduct a stratified 
analysis or a covariance type of survival analysis. If these differences are not impor-
tant in the analysis, the adjusted analysis will give approximately the same results 
as the unadjusted.

Three basic techniques for stratified survival analysis are of interest. The first 
compares the survival experience between the study groups within each stratum, 
using the methods described in the previous section. By comparing the results from 
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each stratum, the investigator can get some indication of the consistency of results 
across strata and the possible interaction between strata and intervention.

The second and third methods are basically adaptations of the Mantel–Haenszel 
and Gehan statistics, respectively, and allow the results to be accumulated over the 
strata. The Mantel–Haenszel stratified analysis involves dividing the population 
into S strata and within each stratum j, forming a series of 2 × 2 tables for each K

j
 

event, where K
j
 is the number of events in stratum j. The table for the ith event in 

the jth stratum would be as follows:

Event Alive

Intervention a
ij

b
ij

a
ij
 + b

ij

Control c
ij

d
ij

c
ij
 + d

ij

a
ij
 + c

ij
b

ij
 + d

ij
n

ij

The entries a
ij
, b

ij
, c

ij
, and d

ij
 are defined as before and

 
( ) ( )( ) /ij ij ij ij ij ijE a a c a b n= + +

 

 2

( )( )( )( )
( )

( 1)
ij ij ij ij ij ij ij ij

ij
ij ij

a c b d a b c d
V a

n n

+ + + +
=

−  

Similar to the non-stratified case, the Mantel–Haenszel statistic is

 
= = = =

  = − 
  
∑∑ ∑∑

2

1 1 1 1

MH ( ) / ( )
j jK KS S

ij ij ij
j i j i

a E a V a  

which has a chi-square distribution with one degree of freedom. Analogous to the 
Mantel–Haenszel statistic for stratified analysis, one could compute a Gehan 
 statistic W

j
 and V(W

j
) within each stratum. Then an overall stratified Gehan statistic 

is computed as 

 
= =

  =  
  
∑ ∑

2

1 1

/ ( )
S S

j j
j j

G W V W  

which also has chi-square statistic with one degree of freedom.
If there are many covariates, each with several levels, the number of strata can 

quickly become large, with few participants in each. Moreover, if a covariate is 
continuous, it must be divided into intervals and each interval assigned a score or 
rank before it can be used in a stratified analysis. Cox [34] proposed a regression 
model which allows for analysis of censored survival data adjusting for continuous 
as well as discrete covariates, thus avoiding these two problems.

One way to understand the Cox regression model is to again consider a simpler 
parametric model. If one expresses the probability of survival to time t, denoted 
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S(t), as an exponential model, then S(t) = e−lt where the parameter, l, is called the 
force of mortality or the hazard rate as described earlier. The larger the value of l, 
the faster the survival curve decreases. Some models allow the hazard rate to 
change with time, that is l = l(t). Models have been proposed [35–37] which 
attempt to incorporate the hazard rate as a linear function of several baseline covari-
ates, x

1
, x

2
, …, x

p
 that is, 1 2 1 1 2 2( , , , )p p px x x b x b x b xl … = + + + . One of the cova-

riates, say x
1
, might represent the intervention and the others, for example, might 

represent age, sex, performance status, or prior medical history. The coefficient, b
1
, 

then would indicate whether intervention is a significant prognostic factor, i.e., 
remains effective after adjustment for the other factors. Cox [34] suggested that the 
hazard rate could be modeled as a function of both time and covariates, denoted l(t, 
x

1
, x

2
, …, x

p
). Moreover, this hazard rate could be represented as the product of two 

terms, the first representing an unadjusted force of mortality l
0
(t) and the second 

the adjustment for the linear combination of a particular covariate profile. More 
specifically, the Cox proportional hazard model assumes that

 1 2 0 1 1 2 2( , , , , ) ( )exp( )p p pt x x x t b x b x b xl l… = + + +
 

That is, the hazard l(t, x
1
, x

2
, …, x

n
) is proportional to an underlying hazard func-

tion l
0
(t) by the specific factor exp (b

1
x

1
 + b

2
x

2
 …). From this model, we can esti-

mate an underlying survival curve S
0
(t) as a function of l

0
(t). The survival curve for 

participants with a particular set of covariates X, S(t,x) can be obtained as 
+ += 1 1 2 2exp( )

0( , ) [ ( )] b x b xS t x S t . Other summary test statistics from this model are also 
used. The estimation of the regression coefficients b

1
,b

2
, …, b

p
 is complex, requir-

ing non-linear regression methods, and goes beyond the scope of this text. Many 
elementary texts on biostatistics [3, 4, 6] or review articles [7] present further 
details. A more advanced discussion may be found in Kalbfleish and Prentice [8] 
or Fleming and Harrington [11]. Programs exist in many statistical computing 
packages which provide these estimates and summary statistics to evaluate survival 
curve comparisons. Despite the complexity of the parameter estimation, this 
method is widely applied and has been studied extensively [38–47]. Pocock et al. 
[47] demonstrate the value of some of these methods with cancer data. For the 
special case where group assignment is the only covariate, the Cox model is essen-
tially equivalent to the Mantel–Haenszel statistic.

One issue that is sometimes raised is whether the hazard rates are proportional 
over time. Methods such as the Mantel–Haenszel logrank test or the Cox propor-
tional hazards model are the most efficient or powerful when the hazards are pro-
portional [11]. However, these methods are still valid as long as the survival curves 
for example do not cross. In that case, which intervention is better depends on what 
time point is being referenced. With that exception, these methods are valid without 
the proportional hazards assumption, although perhaps not as powerful as when the 
hazards are proportional. That is, if a significant difference is found between two 
survival curves when the hazards are not proportional, the two curves are still sig-
nificantly different. For example, time to event curves are shown in Chap. 17. 
Figure 17.2a shows three curves for comparison of two medical devices with best 
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medical or pharmacologic care. These three curves do not have proportional hazards 
but the comparisons are still valid and in fact the two devices demonstrate statisti-
cally significant superiority over the best medical care arm. The survival curves do 
not cross although are close together in the early months of follow-up.

The techniques described in this chapter as well as the extensions or generaliza-
tions referenced are powerful tools in the analysis of survival data. Perhaps none is 
exactly correct for any given set of data, but experience indicates they are fairly 
robust and quite useful.
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The investigator’s ethical responsibility to the study participants demands that 
results in terms of safety and clinical benefit be monitored during trials. If data part-
way through the trial indicate that the intervention is harmful to the participants, 
early termination of the trial should be considered. If these data demonstrate a clear 
benefit from the intervention, the trial may also be stopped early because to continue 
would be unethical to the participants in the control group. In addition, if differences 
in primary and possibly secondary response variables are so unimpressive that the 
prospect of a clear result is extremely unlikely, it may not be justifiable in terms of 
time, money, and effort to continue the trial. Also, monitoring of response variables 
can identify the need to collect additional data to clarify questions of benefit or tox-
icity that may arise during the trial. Finally, monitoring may reveal logistical prob-
lems or issues involving data quality that need to be promptly addressed. Thus, there 
are ethical, scientific, and economic reasons for interim evaluation of a trial [1–3]. 
In order to fulfill the monitoring function, the data must be collected and processed 
in a timely fashion as the trial progresses. Data monitoring would be of limited value 
if conducted only at a time when all or most of the data had been collected. The 
specific issues related to monitoring of recruitment, adherence, and quality control 
are covered in other chapters and will not be discussed here. The data monitoring 
committee process has been described in detail [4] as have case studies representing 
trials, which were terminated for benefit, harm, or futility [5]. One of the earliest 
discussions of the basic rationale for data monitoring was included in a report of a 
committee initiated at the request of the council advisory to the then National Heart 
Institute and chaired by Bernard Greenberg [1]. This report outlined a clinical trial 
model depicted in Fig. 16.1, variations of which have been implemented widely by 
institutes at the National Institutes of Health (NIH). The key components are the 
Steering Committee, the Statistical and Data Coordinating Center, the Clinics, and 
the Data Monitoring Committee. Later the pharmaceutical and device industries [6] 
adopted a modified version of this NIH model, depicted in Fig. 16.2. The main 
modification was to separate the Statistical Data Coordinating Center into a 
Statistical Data Analysis Center and a Data Coordinating Center. Many of the early 
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experiences have been described and formed the basis of current practice [7–34], 
particularly in trials of cardiovascular disease [35–37].

In 2000, the death of a young person undergoing gene transfer as part of a research 
protocol brought a great deal of attention to the process of monitoring trials and the 
reporting requirements. As a result, the U.S. Secretary of Health and Human Resources 
issued a requirement that all trials sponsored by the NIH or under the regulatory 
review of the Food and Drug Administration (FDA) have a monitoring plan [38–40]. 

Steering Committee NIH

Policy Board
Monitoring
Committee

Coordinating Center Central Units
(Labs, …)

Clinical Centers

Patients

Institutional
Review Board

Fig. 16.1 The NIH clinical trial model [6]

Steering Committee
Pharmaceutical

Sponsor

Independent 
Monitoring Committee

Statistical Analysis
Center

Central Units
(Labs, …)
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Data Coordinating
Center (Sponsor or
Contract Research

Organization)

Patients

Regulatory
Agencies

Clinical Centers

Fig. 16.2 The industry-modified clinical trial model [6]
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For some trials this entails an independent monitoring committee. The NIH developed 
policies regarding trial monitoring that required almost all Phase III trials to have a 
monitoring committee as outlined in their guidelines. The FDA guidelines finalized 
in 2006, recommend an independent monitoring committee for trials involving high 
risk patients or with novel or potentially high risk interventions.

A survey of monitoring practices conducted by the DAMOCLES group found 
that the roles of monitoring committees varied widely across trials, sponsors, and 
regions. While there was a general agreement about the types of trials that needed 
formal monitoring committees, there was not a uniform practice or policy as to their 
function [41]. The principles and fundamentals expressed in this book reflect the 
experience of the authors in monitoring numerous trials since the early 1970s.

Fundamental Point

During the trial, response variables need to be monitored for early dramatic benefits 
or potential harmful effects. Preferably, monitoring should be done by a person or 
group independent of the investigator. Although many techniques are available to 
assist in monitoring, none of them should be used as the sole basis in the decision to 
stop or continue the trial.

Monitoring Committee

Keeping in mind the scientific, ethical, and economic rationales, data and safety 
monitoring is not simply a matter of looking at tables or results of statistical analysis 
of the primary outcome. Rather, it is an active process in which additional tabula-
tions and analysis are suggested and evolve as a result of ongoing review. 
Monitoring also involves an interaction between the individuals responsible for 
collating, tabulating, and analyzing the data. For single center studies, the moni-
toring responsibility could, in principle, be assumed by the investigator. However, 
he may find himself in a difficult situation. While monitoring the data, he may 
 discover that the results trend in one direction or the other while participants are 
still being enrolled and/or treated. Presumably, he recruits participants to enter a 
trial on the basis that he favors neither intervention nor control, a state of clinical 
equipoise [42]. Knowing that a trend exists may make it difficult for him to con-
tinue enrolling participants. It is also difficult for the investigator to follow, evaluate, 
and care for the participants in an unbiased manner knowing that a trend exists. 
Furthermore, the credibility of the trial is enhanced if, instead of the investigator, 
an independent person monitors the response variable data. Because of these consi-
derations, we recommend that the individuals who monitor a clinical trial have 
no formal involvement with the participants or the investigators, although some 
disagree [26–28].
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Except for small, short-term studies, when one or two knowledgeable individuals 
may suffice, the responsibility for monitoring response variable data is usually 
placed with an independent group with expertise in various disciplines [4–6]. The 
independence protects the members of the monitoring committee from being influ-
enced in the decision-making process by investigators, participants as well as fed-
eral or industry sponsors. The committee would usually include experts in the 
relevant clinical fields or specialties, individuals with experience in the conduct of 
clinical trials, epidemiologists, biostatisticians knowledgeable in design and analysis, 
and often a bioethicist and participant advocate. While we will describe statistical 
procedures that are often helpful in evaluating interim results, the decision process 
to continue, terminate a trial early, or modify the design is invariably complex and 
no single statistical procedure is adequate to address all these complexities. 
Furthermore, no single individual is likely to have all the experiences and expertises 
to deal with these issues. Thus, as was recommended in the Greenberg Report [1], 
we suggest that the independent monitoring committee have a multidisciplinary 
membership.

The first priority of the monitoring committee must be to ensure the safety of the 
participants in the trial. The second priority is to the investigators and the 
Institutional Review Boards or ethics committees, who place an enormous trust in 
the monitoring committee both to protect their participants from harm and to ensure 
the integrity of the trials. Third, the monitoring committee has a responsibility to 
the sponsor of the trial, whether it be federal or private. Finally, the monitoring 
committee provides a service to the drug or device regulatory agency, especially for 
trials which are utilizing drugs, biologics or devices which still have investigational 
status.

Although many formats for monitoring committee meetings have been used, one 
that we recommend allows for exchange of information by all relevant parties and 
for appropriate confidential and independent review [4, 33]. The format utilizes an 
open session, a closed session, and an executive session. The open session enables 
interaction between investigator representatives such as the study principal investi-
gator or chair, the sponsor, the statistical center, the relevant industrial participants, 
and the monitoring committee. It is uncommon for a regulatory agency to participate 
in a meeting. In this session, issues of participant recruitment, data quality, general 
adherence, toxicity issues, and any other logistical matter that may affect either 
the conduct or outcome of the trial are considered. After a thorough discussion, the 
monitoring committee would go into a closed session where analyses of the confi-
dential blinded outcome data are reviewed. This review would include comparison 
by intervention groups of baseline variables, primary or secondary variables, safety 
or adverse outcome variables, adherence measures for the entire group, and exami-
nations of any relevant subgroups. Following this review, the monitoring committee 
would move into an executive session where decisions about continuation, termi-
nation or protocol modification are made. These different sessions may be formally 
or informally divided, depending on who attends the monitoring committee meet-
ings. Regardless of how formal, most monitoring committee meetings have such 
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components. This particular model, for example, has been used extensively in 
NIH-sponsored AIDS trials [33].

Before a trial begins and the first monitoring committee meeting is scheduled, it 
must be decided specifically who attends the various sessions, as outlined above. 
In general, attendance should be limited to those who are essential for proper moni-
toring. As noted, it is common for the study principal investigator and sponsor 
representatives to attend the open session. If the principal investigator does not care 
for participants in the trial, that individual will sometimes attend the closed session, 
although there is variation in that practice. If the study is sponsored by industry, 
independence and credibility of the study are best served by no industry attendance 
at the closed session. Industry sponsored trials that are also managed and analyzed 
by industry will require a biostatistician from the sponsor who  prepares the moni-
toring report to attend. The company statistician must have a “firewall” separating 
her from other colleagues at the company, something that may be difficult to 
achieve or be convincing to others. However, a common practice for industry-
sponsored pivotal Phase III trials is for a separate statistical analysis center to pro-
vide the interim analyses and report to the independent monitoring committee [6]. 
This practice reduces the possibility or perception that interim results are known 
within the industry sponsor, or the investigator group. Regulatory agency represen-
tatives usually do not attend the closed session because being involved in the moni-
toring decision may affect their regulatory role, should the product be submitted for 
subsequent approval.

An executive session should involve only the voting members of the monitor-
ing committee, although the independent statistician who provided the data report 
may also attend. There are many variations of this general outline, including a 
merger of the closed and executive session since attendance may involve the same 
individuals.

Most monitoring committees evaluate one, or perhaps two, clinical trials. When 
a trial is completed, that monitoring committee is dissolved. However, as exempli-
fied by cancer and AIDS, ongoing networks of clinical centers conduct many trials 
concurrently [12, 14, 26–28, 33]. Cancer trial cooperative groups may conduct trials 
across several cancer sites, such as breast, colon, lung or head, and neck at any 
given time, and even multiple trials for a given site depending upon the stage of the 
cancer or other risk factors. The AIDS trial networks in the United States have 
likewise conducted trials simultaneously in AIDS patients at different stages of the 
disease. In these areas, monitoring committees may follow the progress of several 
trials. In such instances, a much disciplined agenda and a standardized format of 
the data report enhance the efficiency of the review. Regardless of the model, the 
goals and procedures are similar.

Another factor that needs to be resolved before the start of a trial is how the 
intervention or treatment comparisons will be presented to the monitoring commit-
tee. In some trials, the monitoring committee knows the identity of the interven-
tions in each table or figure of the report. In other trials, the monitoring committee 
is blinded throughout the interim monitoring. In order to achieve this, data reports 



298 16 Monitoring Response Variables

have complex labeling schemes, such as A versus B for baseline tables, C versus D 
for primary outcomes, E versus F for toxicity, and G versus H for various laboratory 
results. While this degree of blinding may enhance objectivity, it may conflict with 
the monitoring committee’s primary purpose of protecting the participants in the 
trial from harm or unnecessary continuation. To assess the progress of the trial, the 
harm and benefit profile of the intervention must be well understood and the pos-
sible tradeoffs weighed. If each group of tables is labeled by a different code, the 
committee cannot easily assess the overall harm/benefit profile of the intervention, 
and thus may put participants at unnecessary risk or continue a trial beyond the 
point at which benefit outweighs risks. Such complex coding schemes also increase 
the chance for errors in labeling. A reasonable compromise is to label all tables 
consistently, such as arm A and B, or at most by two codes, with the understanding 
that the committee can become unblinded. Thus, if there are no trends in either 
benefit or harm, which is likely to be the case early in a trial, there is no overwhelm-
ing reason to know the identity of groups A and B. When trends begin to emerge 
in either direction, the monitoring committee should have full knowledge of the 
group identities [43].

No simple formula can be given for how often a monitoring committee should 
meet. The frequency may vary depending on the phase of the trial [3–5, 44]. 
Participant recruitment, follow-up, and closeout phases require different levels of 
activity. Meetings should not be so frequent that little new data are accumulated in 
the interim, given the time and expense of convening a committee. If potential 
toxicity of one of the interventions becomes an issue during the trial, special meet-
ings may be needed. In many long-term clinical trials, the monitoring committees 
have met regularly at 4- to 6-month intervals, with additional meetings or telephone 
conferences as needed. In some circumstances, an annual review may be sufficient. 
However, less frequent review is not recommended since too much time may elapse 
before a serious adverse effect is uncovered. As described later, another strategy is 
to schedule monitoring committee meetings when approximately 10, 25, 50, 75, 
and 100% of the primary outcomes have been observed, or some similar pattern. 
Thus, there might be an early analysis to check for serious immediate adverse 
effects with later analyses to evaluate evidence of intervention benefit or harm. 
Other approaches provide for additional in-between analyses if strong, but as yet 
non-significant trends emerge. Between committee meetings, the person or persons 
responsible for collating, tabulating, and analyzing the data assume the responsibil-
ity for monitoring unusual situations which may need to be brought to the attention 
of the monitoring committee.

A monitoring committee often reviews the data for the last time before the data 
file is closed, and may never see the complete data analysis except as it appears in 
the publication. There is currently no consistent practice as to whether a monitoring 
committee meets to review the final complete data set. From one perspective, the 
trial is over and there is no need for the committee to meet since early termination 
or protocol modification is no longer an option. From another perspective, the 
committee has become very familiar with the data, including issues of potential 
concern, and thus may have insight to share with the investigators and study sponsors. 
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Some trials have scheduled this final meeting to allow the monitoring committee to 
see the final results before they are presented at a scientific meeting or published. 
Based on our experience, we strongly recommend this latter approach. There is a 
great deal to be gained for the trial and the investigators at a very modest cost.

Other remaining issues still need to be resolved. For example, if a worrisome 
safety trend or a significant finding is not reported clearly or at all in the primary 
publication, what are the scientific, ethical, and legal obligations for the monitoring 
committee to comment on what is not reported? Suppose the committee differs 
substantially in the interpretation of the primary or safety outcomes? What is the 
process for resolving differences between it and the investigators or sponsor? These 
are important questions and the answers are not simple or straightforward, yet are 
relevant for science and ethics.

Repeated Testing for Significance

In the discussion on sample size (Chap. 8) the issue of testing several hypotheses 
was raised and referred to as the “multiple testing” problem. Similarly, repeated 
significance testing of accumulating data is essential to the monitoring function has 
statistical implications [45–51]. If the null hypothesis, H

0
, of no difference between 

two groups is, in fact, true, and repeated tests of that hypothesis are made at the 
same level of significance using accumulating data, the probability that, at some 
time, the test will be called significant by chance alone is larger than the signifi-
cance level selected. That is, the rate of incorrectly rejecting the null hypothesis, or 
making a false positive error, will be larger than what is normally considered 
acceptable. Trends may emerge and disappear, especially early in the trial, and cau-
tion must be used. Here, we present the issue from a classical frequentist view point 
although other statistical approaches, such as the Bayesian methods that are dis-
cussed briefly near the end of this chapter, exist.

In a clinical trial in which the participant response is known relatively soon after 
entry, the difference in rates between two groups may be compared repeatedly as 
more participants are added and the trial continues. The usual test statistic for com-
paring two proportions used is the chi-square test or the equivalent normal test 
statistic. The null hypothesis is that the true response rates or proportions are equal. 
If a significance level of 5% is selected and the null hypothesis, H

0
, is tested only 

once, the probability of rejecting H
0
 if it is true is 5% by definition. However, if H

0
 

is tested twice, first when one-half of the data are known and then when all the data 
are available, the probability of incorrectly rejecting H

0
 is increased from 5 to 8% 

[49]. If the hypothesis is tested five times, with one-fifth of the participants added 
between tests, the probability of finding a significant result if the usual statistic for 
the 5% significance level is used becomes 14%. For ten tests, this probability is 
almost 20%.

In a clinical trial in which long-term survival experience is the primary outcome, 
repeated tests might be done as more information becomes known about the enrolled 
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participants. Canner [24] performed computer simulations of such a  clinical trial in 
which both the control group and intervention group event rates were assumed to be 
30% at the end of the study. He performed 2,000 replications of this simulated 
experiment. He found that if 20 tests of significance are done within a trial, the 
chance of crossing the 5% significance level boundaries (i.e., Z = ±1.96) is, on the 
average, 35%. Thus, whether one calculates a test statistic for comparing proportions 
or for comparing time to event data, repeated testing of accumulating data without 
taking into account the number of tests increases the overall probability of incor-
rectly rejecting H

0
. If the repeated testing continues indefinitely, the null hypothesis 

is certain to be rejected eventually. Although it is unlikely that a large number of 
repeated tests will be done, even five or ten can lead to a misinterpretation of the 
results of a trial if the multiple testing issues are ignored.

A classic illustration of the repeated testing problem is provided by the Coronary 
Drug Project (CDP) for the clofibrate versus placebo mortality comparison, shown 
in Fig. 16.3 [24, 51]. This figure presents the standardized mortality comparisons 
over the follow-up or calendar time of the trial. The two horizontal lines indicate 
the conventional value of the test statistic, corresponding to a two-sided 0.05 sig-
nificance level, used to judge statistical significance for studies where the compari-
son is made just one time. It is evident that the trends in this comparison emerge 
and weaken throughout, coming close or exceeding the conventional critical values 
on five monitoring occasions. However, as shown in Fig. 16.4, the mortality curves 
at the end of the trial are nearly identical, corresponding to the very small standard-
ized statistic at the end of the Fig. 16.3. The monitoring committee for this trial took 
into consideration the repeated testing problem and did not terminate this trial early 
because the conventional values were exceeded.

For ethical, scientific, and economic reasons, all trials must be monitored so as 
not to expose participants to possible harm unnecessarily, waste precious fiscal and 

Fig. 16.3 Interim survival analyses comparing mortality in clofibrate- and placebo-treated par-
ticipants in the Coronary Drug Project. A positive Z value favors placebo [7]
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human resources, or miss opportunities to correct flaws in the design [1, 3–5]. 
However, in the process of evaluating interim results to meet these responsibilities, 
incorrect conclusions can be drawn by overreacting to emerging or non-emerging 
trends in primary, secondary or adverse effect outcomes. In general, the solution to 
multiple testing is to adjust the critical value used in each analysis so that the over-
all significance level for the trial remains at the desired level. It has been suggested 
that a trial should not be terminated early unless the difference between groups is 
very significant [3–5, 52]. More formal monitoring techniques are reviewed later in 
this chapter. They include the group sequential methods and stochastic curtailed 
sampling procedures.

Decision for Early Termination

There are five major valid reasons for terminating a trial earlier than scheduled 
[3–5, 7, 24]. First, the trial may show serious adverse effects in the entire interven-
tion group or in a dominating subgroup. Second, the trial may indicate greater than 
expected beneficial effects. Third, it may become clear that a statistically signifi-
cant difference by the end of the study is improbable. Fourth, logistical or data 
quality problem may be so severe that correction is not feasible or participant 
recruitment is far behind and not likely to achieve the target. Fifth, the question 
posed may have already been answered elsewhere or may no longer be sufficiently 
important. A few trials have been terminated because the sponsor decided the trial 

Fig. 16.4 Cumulative mortality curves comparing clofibrate- and placebo-treated participants in 
the Coronary Drug Project [7]
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was no longer a priority but this causes serious ethical dilemmas for investigators 
and leaves participants having contributed without getting an answer to the posed 
question.

For a variety of reasons, a decision to terminate a study early must be made with 
a great deal of caution and in the context of all pertinent data. A number of issues 
or factors must be considered thoroughly as part of the decision process:

 1. Possible differences in prognostic factors between the two groups at baseline.
 2. Any chance of bias in the assessment of response variables, especially if the trial 

is not double-blind.
 3. The possible impact of missing data. For example, could the conclusions be 

reversed if the experience of participants with missing data from one group 
were different from the experience of participants with missing data from the 
other group?

 4. Differential concomitant intervention and levels of participant adherence.
 5. Potential adverse events and outcomes of secondary response variables in 

 addition to the outcome of the primary response variable.
 6. Internal consistency. Are the results consistent across subgroups and the various 

primary and secondary outcome measures? In a multicenter trial, the monitoring 
committee should assess whether the results are consistent across centers. Before 
stopping, the committee should make certain that the outcome is not due to 
unusual experience in only one or two centers.

 7. In long-term trials, the experience of the study groups over time. Survival  analysis 
techniques (Chap. 15) partly address this issue.

 8. The outcomes of similar trials.
 9. The impact of early termination on the credibility of the results and acceptability 

by the clinical community.

Some trials request the chair of the monitoring committee to review frequently seri-
ous adverse events, by intervention, to protect the safety of the participants. While 
such frequent informal, or even formal, review of the data is also subject to the 
problems of repeated testing or analyses, the adjustment methods presented are 
typically not applied. Also, safety may be measured by many response variables. 
Rather than relying on a single outcome showing a worrisome trend, a profile of 
safety measures might be required. Thus, the decision to stop a trial for safety rea-
sons can be quite complex.

The early termination of a clinical trial can be difficult [3, 7, 8, 24, 52–57], not 
only because the issues involved may be complex and the study complicated but 
also because the final decision often lies with the consensus of a committee. The 
statistical methods discussed in this chapter are useful guides in this process but 
should not be viewed as absolute rules. A compilation of diverse monitoring experi-
ences is available [5]. A few examples are described here to illustrate key points.

One of the earlier clinical trials conducted in the United States illustrates how 
controversial the decision for early termination may be. The University Group 
Diabetes Program (UGDP) was a placebo-control, randomized, double-blind trial 
designed to test the effectiveness of four interventions used in the treatment of 
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 diabetes [58–61]. The primary measure of efficacy was the degree of retinal 
 damage. The four interventions were: a fixed dose of insulin, a variable dose of 
insulin, tolbutamide and phenformin. After the trial was underway, study leaders 
formed a committee to review accumulating safety data. This committee member-
ship consisted of individuals involved in the UGDP and external consultants. The 
tolbutamide group was stopped early because the monitoring committee thought 
the drug could be harmful and did not appear to have any benefit [58]. An excess 
in cardiovascular mortality was observed in the tolbutamide group as compared to 
the placebo group (12.7% vs. 4.9%) and the total mortality was in the same direc-
tion (14.7% vs. 10.2%). Analysis of the distribution of the baseline factors known 
to be associated with cardiovascular mortality revealed an imbalance, with partici-
pants in the tolbutamide group being at higher risk. This, plus questions about the 
classification of cause of death, drew considerable criticism. Later, the phenformin 
group was also stopped because of excess mortality in the control group (15.2% vs. 
9.4%) [60]. The controversy led to a review of the data by an independent group of 
statisticians. Although they basically concurred with the decisions made by the 
UGDP monitoring committee [60], the debate over the study and its conclusion 
continued [61].

The decision-making process during the course of the CDP [62] a long-term 
randomized, double-blind, multicenter study that compared the effect on total mor-
tality of several lipid-lowering drugs (high- and low-dose estrogen, dextrothyrox-
ine, clofibrate, nicotinic acid) against placebo has been reviewed [5, 7, 51, 62, 64]. 
Three of the interventions were terminated early because of potential side effects 
and no apparent benefit. One of the issues in the discontinuation of the high dose 
estrogen and dextrothyroxine interventions [62, 63] concerned subgroups of partici-
pants. In some subgroups, the interventions appeared to cause increased mortality, 
in addition to having a number of other adverse events. In others, the adverse 
events were present, but mortality was only slightly reduced or unchanged. The 
adverse events were thought to more than outweigh the minimal benefit in selected 
subgroups. Also, positive subgroup trends in the dextrothyroxine arm were not 
maintained over time. After considerable debate, both interventions were discontin-
ued. The low dose estrogen intervention [64] was discontinued because concerns 
over major toxicity. Furthermore, it was extremely improbable that a significant 
difference in a favorable direction for the primary outcome (mortality) could have 
been obtained had the study continued to its scheduled termination. Using the data 
available at the time, the number of future deaths in the control group was pro-
jected. This indicated that there had to be almost no further deaths in the interven-
tion group for a significance level of 5% to be reached.

The CDP experience also warns against the dangers of stopping too soon [7, 51]. 
In the early months of the study, clofibrate appeared to be beneficial, with the 
 significance level reaching or exceeding 5% on five monitoring occasions (Fig. 16.3). 
However, because of the repeated testing issue described earlier in this chapter, the 
decision was made to continue the study and closely monitor the results. The early 
difference was not maintained, and at the end of the trial the drug showed no benefit 
over placebo. It is notable that the mortality curves shown in Fig. 16.4 do not suggest 
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the wide swings observed in the interim analyses shown in Fig. 16.3. The fact that 
participants were entered over a period of time and thus had various lengths of fol-
low-up at any given interim analysis, explains the difference between the two types 
of analyses. (See Chap. 15 for a discussion of survival analysis.). Pocock [52] also 
warns about the dangers of terminating trials too early for benefit, reflecting on a 
systematic review of trials stopped early [55]. At an early interim analysis, the 
Candesartan in Heart failure Assessment of Reduction in Mortality and Morbidity 
(CHARM) trial [65] had a 25% mortality benefit (p < 0.001) from candesartan com-
pared to a placebo control, but for a variety of reasons the trial continued and found 
after a median of 3 years of follow-up only a 9% nonsignificant difference in mortal-
ity. Continuing the trial revealed that the early mortality benefit was probably exag-
gerated and allowed other long-term intervention effects to be discovered. In general, 
trials stopped early for benefit often do not report in sufficient detail the rationale for 
early termination and often show implausibly large intervention effects based on 
only a small number of events [56]. This phenomenon is well recognized [57]. Thus, 
while there are sound ethical reasons to terminate trials early because of benefit, 
these decisions must be cautioned by our experience with early trends not being 
reliable or sustainable. Nevertheless, there is a natural tension between getting the 
estimate of treatment benefit precise and allowing too many participants to be exposed 
to the inferior intervention [56]. Statistical methods to be described later are useful 
as guides but not adequate as rules and the best approach based on experience is to 
utilize a properly constituted monitoring committee, charged with weighing the 
benefits and risks of early termination.

The Nocturnal Oxygen Therapy Trial was a randomized, multicenter clinical 
trial comparing two levels of oxygen therapy in people with advanced chronic 
obstructive pulmonary disease [66, 67]. While mortality was not considered as the 
primary outcome in the design, a strong mortality difference emerged during the 
trial, notably in one particular subgroup. Before any decision was made, the partici-
pating clinical centers were surveyed to ensure that the mortality data were as cur-
rent as possible. A delay in reporting mortality was discovered and when all the 
deaths were considered, the trend disappeared. The earlier results were an artifact 
caused by incomplete mortality data. Although a significant mortality difference 
ultimately emerged, the results were similar across subgroups.

Early termination of a subgroup can be especially error prone if not done care-
fully. Peto and colleagues [68] have illustrated the danger of subgroup analysis by 
reporting that treatment benefit in ISIS-2 did not apply to individuals born during 
a certain astrologic sign. Nevertheless, treatment benefits may be observed in sub-
groups which may be compelling. An AIDS trial conducted by the AIDS Clinical 
Trial Research Group (ACTG), ACTG-019 [4, 5, 33] indicated that zidovudine 
(AZT) led to improved outcome in participants who had a low laboratory value (CD4 
cell counts under 500 – which is a measure of poor immune response). The results 
were not significant for participants with a higher CD4 value. Given previous expe-
rience with this drug, and given the unfavorable prognosis for untreated AIDS 
patients, the trial was stopped early for benefit in those with the low CD4 cell count 
but continued in the rest of the participants.
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A scientific and ethical issue was raised in the Diabetic Retinopathy Study, a 
 randomized trial of 1,758 participants with proliferative retinopathy [69, 70]. Each 
participant had one eye randomized to photocoagulation and the other to standard 
care. After 2 years of a planned 5 year follow-up, a highly significant difference in 
the incidence of blindness was observed (16.3% vs. 6.4%) in favor of photocoagu-
lation [71]. Since the long-term efficacy of this new therapy was not known, the 
early benefit could possibly have been negated by subsequent adverse reactions. 
After much debate, the monitoring committee decided to continue the trial, publish 
the early results, and allow any untreated eye at high risk of blindness to receive 
photocoagulation therapy [72]. In the end, the early treatment benefit was sustained 
over a longer follow-up, despite the fact that some of the eyes randomized to control 
received photocoagulation. Furthermore, no significant long-term adverse effect was 
observed.

The Beta-Blocker Heart Attack Trial provided another example of early termina-
tion [73, 74]. This randomized placebo control trial enrolled over 3,800 participants 
with a recent myocardial infarction to evaluate the effectiveness of propranolol in 
reducing mortality. After an average of a little over 2 years of a planned 3 year 
follow-up, a mortality difference was observed, as shown in Fig. 16.5. The results 

Fig. 16.5 Cumulative mortality curves comparing propranolol and placebo in the Beta-Blocker 
Heart Attack Trial [74]
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were statistically significant, allowing for repeated testing, and would, with high 
probability, not be reversed during the next year [74]. The data monitoring commit-
tee debated whether the additional year of follow-up would add valuable informa-
tion. It was argued that there would be too few events in the last year of the trial to 
provide a good estimate of the effect of propranolol treatment in the third and fourth 
year of therapy. Thus, the committee decided that prompt publication of the 
observed benefit was more important than waiting for the marginal information yet 
to be obtained. This trial was one of the early trials to implement group sequential 
monitoring boundaries discussed later in this chapter and will be used as an example 
to illustrate the method.

Another example of using sequential monitoring boundaries is found in chronic 
heart failure trials that evaluated different beta blockers. Common belief had been 
that administering a beta-blocker drug to a heart failure patient would cause harm, 
not benefit. Fortunately, early research suggested this belief may have been in error 
and ultimately four well designed trials were conducted to evaluate the risks and 
benefits. Three trials were terminated early because of beneficial intervention effect 
on mortality of 30–35% [75–77]. The fourth trial [78] did not go to completion in 
part due to the fact that the other three trials had already reported substantial ben-
efits. Details of monitoring in one of the trials, the Metoprolol CR/XL Randomized 
Trial In Chronic Heart Failure (MERIT-HF) are discussed more fully later.

Some trials of widely used intervention have also been stopped early due to 
adverse events. One classic example comes from the treatment of arrhythmias 
 following a heart attack. Epidemiological data showed an association between the 
presence of irregular ventricular heartbeats or arrhythmias and the incidence of 
 sudden death, presumably due to serious arrhythmias. Drugs were developed that 
suppressed such arrhythmias and they became widely used after approval by the 
drug regulatory agency for that indication. The Cardiac Arrhythmia Suppression 
Trial (CAST) was a multicenter randomized double blind placebo-controlled trial 
evaluating the effects of three such drugs (encainide, flecainide, moricizine) on 
total  mortality and sudden death [79]. Statistical procedures used in CAST to 
address the repeated testing problem [80, 81] are described later in the chapter. 
However, the encainide and flecainide arms of the trial were terminated after only 
15% of the expected mortality events observed because of an adverse experience 
(63 deaths in the two active arms vs. 26 deaths in the corresponding placebo arms).

At the first monitoring committee review, the mortality trend in CAST began to 
appear but the number of events was relatively small [81]. Because the monitoring 
committee decided no definitive conclusion could be reached on the basis of so few 
events, it elected to remain blinded to the treatment assignment. However, before 
the next scheduled meeting, the statistical center alerted the committee that the 
trends continued and were now nearing the CAST monitoring criteria for stopping. 
In a conference call meeting, the monitoring committee became unblinded and 
learned that the trends were in the unexpected direction, that is, toward harm from 
the active treatment. A number of confirmatory and exploratory analyses were 
requested by the monitoring committee and a meeting was held a few weeks later 
to discuss fully these unexpected results. After a thorough review, the monitoring 
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committee recommended immediate termination of the encainide and flecainide 
portions of the trial [81]. Results were consistent across outcome variables and 
participant subgroups, and no biases could be identified which would explain these 
results. The third arm (moricizine) continued since there were no convincing trends 
at that time, but it too was eventually stopped due to adverse experiences [82]. The 
CAST experience points out that monitoring committees must be prepared for the 
unexpected and that large trends may emerge quickly. Even in this dramatic result, 
the decision was not simple or straightforward. Many of the issues discussed earlier 
were covered thoroughly before a decision was reached [81].

Not all negative trends emerge as dramatically as in the CAST. Two other  examples 
are provided by trials in congestive heart failure. Yearly mortality from severe conges-
tive heart failure is approximately 40%. The Prospective RandOmized MIlrinone 
Survival Evaluation (PROMISE) [35] and the Prospective RandOmized FlosequInan 
Longevity Evaluation (PROFILE) [36] trials evaluated inotropic agents (milrinone 
and flosequinone). Both of these drugs had been approved by regulatory agencies 
for use on the basis of improved exercise tolerance, which might be considered a 
surrogate response for survival. PROMISE and PROFILE were randomized pla-
cebo controlled trials comparing mortality outcomes. Both trials were unexpect-
edly terminated early due to statistically significant harmful mortality results, even 
after adjusting for repeated testing of these data. Because severe heart failure has 
a high mortality rate and the drugs were already in use, it was a difficult decision 
how long and how much evidence was needed to decide that the intervention was 
not helpful but was in fact harmful. In both trials, the monitoring committees 
allowed results to achieve statistical significance since a negative, but nonsig-
nificant trend might have been viewed as evidence consistent with no effect on 
mortality.

The PROMISE and PROFILE experiences illustrate the most difficult of the 
monitoring scenarios, the emerging negative trend, but they are not unique [83–87]. 
Trials with persistent nonsignificant negative trends may have no real chance of 
reversing and indicating a benefit from intervention. In some circumstances, that 
observation may be sufficient to end the trial since if a result falls short of estab-
lishing benefit, the intervention would not be used. For example a new expensive 
or invasive intervention would likely need to be more effective than a standard 
intervention to be used. In other circumstances, a neutral result may be important, 
so a small negative trend, still consistent with a neutral result, would argue for 
continuation. If a treatment is already in clinical use on the basis of other indica-
tions, as in the case of the drugs used in PROMISE and PROFILE, an emerging 
negative trend may not be sufficient evidence to alter clinical practice. If a trial 
terminates early without resolving convincingly the harmful effects of an interven-
tion, that intervention may still continue to be used. This practice would put future 
patients at risk, and perhaps even participants in the trial as they return to their 
usual healthcare system. In that case, the investment of participants, investigators, 
and sponsors would not have resolved an important question. There is a serious and 
delicate balance between the responsibility to safeguard the participants in the trial 
and the responsibility for all concurrent and future patients [83].
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Trials may continue to their scheduled termination even though interim results 
are very positive and persuasive [88] or the intervention and control data are so 
similar that almost surely no significant results will emerge [89–92]. In one study 
of antihypertensive therapy, early significant results did not override the need for 
getting long-term experience with an intensive intervention strategy [88]. Another 
trial [90] implemented approaches to reduce cigarette smoking, change diet to 
lower cholesterol, and used antihypertensive medications to lower blood pressure 
in order to reduce the risk of heart disease. Although early results showed no trends, 
it was also not clear how long intervention needed to be continued before the 
applied risk factor modifications would take full effect. It was argued that late 
favorable results could still emerge. In fact, they did, though not until some years 
after the trial had ended [92]. In a trial that compared medical and surgical treat-
ment of coronary artery artherosclerosis, the medical care group had such a favor-
able survival experience that there was little room for improvement by immediate 
coronary artery bypass graft intervention [91].

The Women’s Health Initiative (WHI) was one of the largest and most complex 
trials ever conducted, certainly in women [93, 94]. This partial factorial trial evalu-
ated three interventions in postmenopausal women: (1) hormone replacement 
therapy (HRT), (2) a low fat diet, and (3) calcium and vitamin D supplementation. 
Each intervention, in principle, could affect multiple organ systems, each with 
multiple outcomes. For example, HRT was being evaluated for its affect on cardio-
vascular events such as mortality and fatal and non-fatal myocardial infarction. 
HRT can also affect bone density, the risk of fracture, and breast cancer. The HRT 
component was also stratified into those with an intact uterus, who received both 
estrogen and progestin, and those without a uterus who received estrogen alone. 
The estrogen–progestin arm was terminated early due to increases in deep vein 
thrombosis, pulmonary embolism, stroke, and breast cancer and a trend toward 
increased heart disease as shown in Fig. 16.6a although there was a benefit in bone 
fracture as expected [93]. There was no observed difference in total mortality or the 
overall global index, the composite outcome defined in the protocol, as shown in 
Fig. 16.6b. The WHI is an excellent example of the challenges of monitoring trials 
with composite outcomes where component trends are not consistent. In such cases, 
the most important or most clinically relevant component may have to dominate in 
the decision process, even if not completely specified in the protocol or the moni-
toring committee charter. Later, the WHI estrogen-alone arm was also terminated, 
primarily due to increased pulmonary embolus and stroke, though there was no 
difference in myocardial infarction or total mortality [94]. The formal monitoring 
process had to account for multiple interventions, multiple outcomes and repeated 
testing.

A heart failure trial evaluating the drug tezosentan used a stopping criterion that 
included futility [95]. That is, when there was less than a 10% chance of having a 
positive beneficial result, the monitoring committee was to alert the investigators 
and sponsors and recommend termination. In fact, at about two-thirds of the way 
into the trial, a slightly negative trend was sufficient to make any chance of a beneficial 
result unlikely and the trial was terminated.
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Fig. 16.6 (a) WHI Kaplan–Meier estimates of cumulative hazards for selected clinical outcomes 
HR = hazard ratio [93]
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In some instances, a trial may be terminated because the hypothesis being tested 
has been convincingly answered by other ongoing trials. This was the case with 
trials evaluating warfarin in the treatment of atrial fibrillation [96]. Between 1985 
and 1987, five trials were launched to evaluate warfarin to prevent strokes in par-
ticipants with atrial fibrillation. Three of the trials were terminated early by 1990, 
reporting significant reductions in embolic complications. One of the remaining 
trials was also terminated early, largely due to the ethical aspects of continuing 
trials when the clinical question being tested has already been answered. The window 
of opportunity to further evaluate the intervention had closed.

In all of these studies, the decisions were difficult and involved many analyses, 
thorough review of the literature, and an understanding of the biological processes. 
As described above, a number of questions must be answered before serious consid-
eration should be given to early termination. As noted elsewhere, the relationship 
between clinical trials and practice is very complex and this complexity is evident in 
the monitoring process [97, 98].

Decision to Extend a Trial

The issue about extending a trial beyond the original sample size or planned period 
of follow-up may arise. Suppose the mortality rate over a 2-year period in the 
control group is assumed to be 40%. (This estimate may be based on data from 
another trial involving a similar population.) Also specified is that the sample size 
should be large enough to detect a 25% reduction due to the intervention, with a 

Fig 16.6 (continued) (b) WHI Kaplan–Meier estimates of cumulative hazards for global index and 
death HR = hazard ratio [93]
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two-sided significance level of 5% and a power of 90%. The total sample size is, 
therefore, approximately 960. However, say that early in the study, the mortality 
rate in the control group appears somewhat lower than anticipated; or closer to 
30%. This difference may result from a change in the study population, selection 
factors in the trial, or new concomitant therapies. If no design changes are made, 
the intervention would have to be more effective (30% reduction rather than 25%) 
for the difference between groups to be detected with the same power. Alternatively, 
the investigators would have to be satisfied with approximately 75% power of 
detecting the originally anticipated 25% reduction in mortality. If it is unreason-
able to expect a 30% benefit and if a 75% power is unacceptable, the design needs 
modification. Given the lower control group mortality rate, approximately 1,450 
participants would be required to detect a 25% reduction in mortality, while main-
taining a power of 90%. Another option is to extend the length of follow-up, which 
would increase the overall event rate. A combination of these two approaches can 
also be tried.

The concept of adaptive designs has already been discussed in Chap. 5. Adaptive 
designs can be used in trials with overall lower event rates or increased variability, 
or when emerging trends are smaller than planned for but yet of clinical interest. 
Modifying the design once the trial is underway due to lower event rates or 
increased variability is rather straightforward. In a trial of antenatal steroid admin-
istration [99], the incidence of infant respiratory distress in the control group was 
much less than anticipated. Early in the study, the investigators decided to increase 
the sample size by extending the recruitment phase. In another trial, the protocol 
specifically called for increasing the sample size if the control group event rate was 
less than assumed [100]. As described in the sample size chapter, power is the prob-
ability of detecting a treatment effect if there truly is an effect. This probability is 
computed at the beginning of the trial during the design phase. The design goal is 
to set this probability at a range from 0.80 to 0.95 with an appropriate sample size. 
Sometimes this probability, or power, is referred to as “unconditional power” to 
distinguish it from “conditional power” to be described in more detail later in this 
chapter. Adjustments to sample size based on overall event rates or variability esti-
mates can preserve the power (or unconditional power). No account of emerging 
trends is used in this recalculation.

The issue of whether the control group event rate or the overall event rate should 
be used in this sample size reassessment must be considered. It might seem intuitive 
that the emerging control group event rate should be used since it was the estimated 
control group rate that was initially used in the sample size calculation, as described 
in Chap. 8. However, to reveal the control group rate to the investigators may 
unblind the emerging trend if they are also aware of the overall number of events. 
The use of the overall event rate would avoid this potential problem. Additionally, 
there are statistical arguments that under the null hypothesis, the overall rate is the 
more appropriate one to use because it is likely to be more stable, particularly if the 
sample size re-estimation is done early in the trial. We prefer to use the overall 
event rate, but in either case, this must be decided while the protocol and data moni-
toring procedures are being developed.
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However, modifying the design based on emerging trends is more complicated 
(see Chap. 5) and will be discussed in more technical detail later in this chapter. 
Despite the statistical literature for different approaches [101–104] and some criti-
cism [105, 106], only a few applications of this type of adaptive design have been 
utilized. One such trial is the African-American Heart Failure Trial (A-HeFT) 
[107], a trial in African Americans with advanced heart failure using a combination 
of two established drugs. The primary outcome consisted of a weighted score of 
death, hospitalization, and quality of life. Mortality was among the secondary out-
comes. The trial utilized an adaptive design [101] that required the monitoring 
committee to assess variability of this novel primary outcome and the emerging 
trend to make sample size adjustment recommendations to the trial leaders. The 
reason for the adaptive design was that little previous data were available for this 
combined outcome so estimates of variability were not adequate to compute a reli-
able sample size. Little experience with the outcome also limited the assessment of 
potential drug effect on this outcome. A group sequential boundary was established 
using a Lan–DeMets alpha spending function of the O’Brien–Fleming type, 
described later in this chapter, for monitoring benefit or harm for the composite 
outcome. This adaptive procedure was followed as planned and the sample size was 
increased from 800 to 1,100. Meanwhile, the monitoring committee was observing 
a mortality trend favoring the combination drug but there was no sequential moni-
toring plan prespecified for this outcome. The monitoring committee elected to 
utilize the same sequential boundary specified for the primary composite outcome 
to monitor mortality. Although not ideal while the trial was ongoing, it was done 
before the mortality difference became nominally significant. At the last scheduled 
meeting of the monitoring committee, the difference was nominally significant at 
the 0.05 level but had not crossed the sequential boundary. The committee decided 
to conduct an additional review of the data. At that additional review, the mortality 
difference was nominally significant (p = 0.01) and had crossed the sequential 
O’Brien–Fleming boundary. The committee recommended early termination both 
because of a significant mortality benefit and a primary outcome that was nomi-
nally significant, along with a consistency across the components of the composite 
outcome and relevant subgroups.

While the statistical methods for adaptive designs based on emerging trends to 
reset the sample size exist, the use of these methods is still evolving. A more techni-
cal discussion of specific trend adaptive designs is provided later in this chapter. 
One concern is whether the application of the prespecified algorithm, according to 
the statistical plan, may reveal information about the size and direction of the 
emerging trend to those blind to the data. We are aware that these algorithms can 
be “reverse engineered” and a reasonable estimate of the emerging trend can be 
obtained. We know of no example to date where this revelation has caused a prob-
lem but in principle this could cause bias in participant selection or recruitment 
efforts or even participant assessment. Thus, mechanisms for implementation of 
trend adaptive trials are needed that protect the integrity of the trial.

Another approach that has been used [35, 36] is to fix the target of the trial to be 
a specified number of events in the control group or for the total number. If event 
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rates are low, it may take longer follow-up per participant or more randomized 
participants, or both, to reach the required number of events. In any case, the target is 
the number of events. In the above situations, only data from the control group or the 
combined groups are used. No knowledge of what is happening in the intervention 
group is needed. However, if the intervention group results are not used in the recal-
culations, then an increase in sample size could be recommended when the observed 
difference between the intervention and control groups is actually larger than origi-
nally expected. Thus, in the hypothetical example described above, if early data 
really did show a 30% benefit from intervention, an increased sample size might not 
be needed to maintain the desired power of 90%. For this reason, one would not like 
to make a recommendation about extension without also considering the observed 
effect of intervention. Computing conditional power is one way of incorporating 
these results. Conditional power is the probability that the test statistic will be larger 
than the critical value, given that a portion of the statistic is already known from the 
observed data and described later in this chapter. As in other power calculations, the 
assumed true difference in response variables between groups must be specified. 
When the early intervention experience is better than expected, the conditional 
power will be large. When the intervention is doing worse than anticipated, the con-
ditional power will be small. The conditional power concept utilizes knowledge of 
outcome in both the intervention and control groups and is, therefore, controversial. 
Nevertheless, the concept attempts to quantify the decision to extend.

Towards the scheduled end of a trial, the investigator may find that he has nearly 
statistically significant results. He may be tempted to extend or expand the trial in 
an effort to make the test statistic significant. Such a practice is not recommended. 
A strategy of extending assumes that the observed relative differences in rates of 
response will continue. The observed differences that are projected for a larger 
sample may not hold. In addition, because of the multiple testing issue and the 
design changes, the significance level should be adjusted to a smaller value. 
However, appropriate adjustments in the significance level to account for the design 
changes may not easily be determined. Since a more extreme significance level 
should be employed, and since future responses are uncertain, extension may leave 
the investigator without the expected benefits.

Whatever adjustments are made to either sample size or the length of follow-up, 
they should be made as early in the trial as possible or as part of a planned adaptive 
design strategy. Early adjustments would diminish the criticism that the investigator or 
the monitoring committee waited until the last minute to see whether the results would 
achieve some prespecified significance level before changing the study design.

Statistical Methods Used in Monitoring

In this section, some statistical methods currently available for monitoring the accu-
mulating data in a clinical trial will be reviewed. The methods address whether the 
trial should be terminated early or continued to its planned termination. No single 
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statistical test or monitoring procedure ought to be used as a strict rule for 
decision-making, but rather as one piece of evidence to be integrated with other 
evidence [3–8]. Most methods are very specific in their applications. Therefore, it 
is difficult to make a single recommendation about which should be used. However, 
the following methods, when applied appropriately, can be useful guides in the 
decision-making process.

Classical sequential methods, a modification generally referred to as group 
sequential methods, and curtailed testing procedures are discussed below for data 
monitoring. Other approaches are also briefly considered. Classical sequential meth-
ods are given more mathematical attention in several articles and texts [108–115].

Classical Sequential Methods

The aim of the classical sequential design is to minimize the number of participants 
that must be entered into a study. The decision to continue to enroll participants 
depends on results from those already entered. Most of these sequential methods 
assume that the response variable outcome is known in a short time relative to the 
duration of the trial. Therefore, for many trials involving acute illness, these meth-
ods are applicable. For studies involving chronic diseases, classical sequential 
methods have not been as useful. Although the sequential approaches have design 
implications, we have delayed discussing any details until this chapter because they 
really focus on monitoring accumulating data. Even if, during the design of the 
trial, consideration were not given to sequential methods, they could still be used to 
assist in the data monitoring or the decision-making process. Detailed discussions 
of classical sequential methods are given, for example, by Armitage [110], 
Whitehead [113], and Wald [108].

The sequential analysis method as originally developed by Wald [108] and 
applied to the clinical trial by others such as Armitage [48, 110] involves repeated 
testing of data in a single experiment. The method assumes that the only decision 
to be made is whether the trial should continue or be terminated because one of the 
groups is responding significantly better, or worse, than the other. This classical 
sequential decision rule is called an “open plan” by Armitage [110] because there 
is no guarantee of when a decision to terminate will be reached. Strict adherence to 
the “open plan” would mean that the study could not have a fixed sample size. Very 
few clinical trials use the “open” or classical sequential design. The method also 
requires data to be paired, one observation from each group. In many instances, the 
pairing of participants is not appealing because the paired participants may be very 
different and may not be “well matched” in important prognostic variables. If strati-
fication is attempted in order to obtain better matched pairs, each stratum with an 
odd number of participants would have one unpaired participant. Furthermore, the 
requirement to monitor the data after every pair may be impossible or unnecessary 
for many clinical trials. Silverman and colleagues [116] used an “open plan” in a 
trial of the effects of humidity on survival in infants with low birth weight. At the 
end of 36 months, 181 pairs of infants had been enrolled; 52 of the pairs had a 
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discrepant outcome. Nine infants were excluded because they were un-matched and 
16 pairs were excluded because of a mismatch. The study had to be terminated 
without a clear decision because it was no longer feasible to continue the trial. This 
study illustrates the difficulties inherent in the classical sequential design.

Armitage [48] introduced the restricted or “closed” sequential design to assure 
that a maximum limit is imposed on the number of participants (2N) to be enrolled. 
As with the “open plan,” the data must be paired using one observation from each 
study group. Criteria for early termination and rejection of no treatment effect are 
determined so that the design has specified levels of significance and power (a and 
1 − b). The restricted plan was used in a comparison of two interventions in patients 
with ulcerative colitis [117]. In that trial, the criterion for no treatment effect was 
exceeded, demonstrating short-term clinical benefit of corticosteroids over sul-
phasalazine therapy. This closed design was also used in an acute leukemia trial, 
comparing 6-mercaptopurine with placebo (CALGB) [118]. This trial was termi-
nated early, with the statistic comparing remission rates crossing the sequential 
boundary for benefit after 21 pairs of patients.

Another solution to the repeated testing problem, called “repeated significance 
tests,” was proposed by McPherson and Armitage [119] and also described by 
Armitage [110]. Although different theoretical assumptions are used, this approach 
has features similar to the restricted sequential model. That is, the observed data 
must be paired, and the maximum number of pairs to be considered can be fixed. 
Other modifications to the Armitage restricted plan [120–122] have also been 
proposed.

The methods described above can in some circumstances be applied to interim 
analyses of censored survival data [122–131]. If participants simultaneously enter 
a clinical trial and there is no loss to follow-up, information on interim analyses is 
said to be “progressively censored.” Sequential methods for this situation have been 
developed using, for example, modified rank statistics. In fact, most participants are 
not entered into a trial simultaneously, but in a staggered fashion. That is, partici-
pants enter over a period of time with events of interest occurring after that, subject 
to an independent censoring process. The log-rank statistic, described in Chap. 15, 
may also be used in this situation.

The classical sequential approach has not been widely used, even in clinical tri-
als where the time to the event is known almost immediately. One major reason 
perhaps is the requirement of analysis after every pair of outcomes or events. For 
many clinical trials, this is not necessary or even feasible if the data are monitored 
by a committee which has regularly scheduled meetings. In addition, classical 
sequential boundaries require an alternative hypothesis to be specified, a feature not 
demanded by conventional statistical tests for the rejection of the null hypothesis.

Group Sequential Methods

Because of limitations with classical sequential methods, other approaches to the 
repeated testing problem have been proposed. Ad hoc rules have been suggested 
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that attempt to ensure a conservative interpretation of interim results. One such 
method is to use a critical value of 2.6 at each interim look as well as in the 
final analyses [7]. Another approach [15, 132] referred to as the Haybittle–Peto 
procedure, favors using a large critical value, such as Z

i
 = +3.0, for all interim 

tests (i < K). Then any adjustment needed for repeated testing at the final test 
(i = K) is negligible and the conventional critical value can be used. These meth-
ods are ad hoc in the sense that no precise Type I error level is guaranteed. They 
might,  however, be viewed as precursors of the more formal procedures to be 
described below.

Pocock [133–135] modified the repeated testing methods of McPherson and 
Armitage [119] and developed a group sequential method for clinical trials which 
avoids many of the limitations of classical methods. He discusses two cases of spe-
cial interest; one for comparing two proportions and another for comparing mean 
levels of response. Pocock’s method divides the participants into a series of K equal-
sized groups with 2n participants in each, n assigned to intervention and n to control. 
K is the number of times the data will be monitored during the course of the trial. 
The total expected sample size is 2nK. The test statistic used to compare control and 
intervention is computed as soon as data for the first group of 2n participants are 
available, and recomputed when data from each successive group become known. 
Under the null hypothesis, the distribution of the test statistic, Z

i
, is assumed to be 

approximately normal with zero mean and unit variance, where i indicates the num-
ber of groups (i £ K) which have complete data. This statistic Z

i
 is compared to the 

stopping boundaries, ±ZN
K
 where ZN

K
 has been determined so that for up to K 

repeated tests, the overall (two sided) significance level for the trial will be a. For 
example, if K = 5 and a = 0.05 (two-sided), ZN

K
 = 2.413. This critical value is larger 

than the critical value of 1.96 used in a single test of hypothesis with a = 0.05. If the 
statistic Z

i
 falls outside the boundaries on the “i”-th repeated test, the trial should be 

terminated, rejecting the null hypothesis. If the statistic falls inside the boundaries, 
the trial should be continued until i = K (the maximum number of tests). When i = K, 
the trial would stop and the investigator would “accept” H

0
.

O’Brien and Fleming [136] also discuss a group sequential procedure. Using the 
above notation, their stopping rule compares the statistic Z

i
 with √* ( / )Z K i where 

Z* is determined so as to achieve the desired significance level. For example, if 
K = 5 and a = 0.05, Z* = 2.04. If K £ 5, Z* may be approximated by the usual critical 
values for the normal distribution. One attractive feature is that the critical value 
used at the last test (i = K) is approximately the same as that used if a single test 
were done.

In Fig. 16.7, boundaries for the three methods described are given for K = 5 and 
a = 0.05 (two-sided). If for i < 5 the test statistic falls outside the boundaries, the 
trial is terminated and the null hypothesis rejected. Otherwise, the trial is continued 
until i = 5, at which time the null hypothesis is either rejected or “accepted”. The 
three boundaries have different early stopping properties. The O’Brien–Fleming 
model is unlikely to lead to stopping in the early stages. Later on, however, this 
procedure leads to a greater chance of stopping prior to the end of the study than 
the other two. Both the Haybittle–Peto and the O’Brien–Fleming boundaries avoid 
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the awkward situation of accepting the null hypothesis when the observed statistic 
at the end of the trial is much larger than the conventional critical value (i.e., 1.96 
for a two-sided 5% significance level). If the observed statistic in Fig. 16.7 is 2.3 
when i = 5, the result would not be significant using the Pocock boundary. The large 
critical values used at the first few analyses for the O’Brien–Fleming boundary can 
be adjusted to some less extreme values (e.g., 3.5) without noticeably changing the 
critical values used later on, including the final value.

Many monitoring committees wish to be somewhat conservative in their inter-
pretation of early results because of the uncertainties discussed earlier and because 
a few additional events can alter the results substantially. Yet, most investigators 
would like to use conventional critical values in the final analyses, not requiring any 
penalty for interim analyses. This means that the critical value used in a conven-
tional fixed sample methods would be the same for that used in a sequential plan, 
resulting in no increase in sample size. With that in mind, the O’Brien–Fleming 
model has considerable appeal, perhaps with the adjusted or modified boundary 
as described. The group sequential methods have an advantage over the classical 
methods in that the data do not have to be continuously tested and individual 
participants do not have to be “paired.” This concept suits the data review activity 
of most large clinical trials where monitoring committees meet periodically. 

Fig. 16.7 Three group sequential stopping boundaries for the standardized normal statistic (Z
i
) 

for up to five sequential groups with two-sided significance level of 0.05 [93]
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Furthermore, in many trials constant consideration of early stopping is unnecessary. 
Pocock [133–135] discusses the benefits of the group sequential approach in more 
detail and other authors describe variations [137–141].

In many trials, participants are entered over a period of time and followed for 
a relatively long period. Frequently, the primary outcome is time to some event. 
Instead of adding participants between interim analyses, new events are added. 
As discussed in Chap. 15, survival analysis methods could be used to compare the 
experience of the intervention and the control arms. Given their general appeal, 
it would be desirable to use the group sequential methods in combination with 
survival analyses. It has been established for large studies that the log-rank or 
Mantel–Haenszel statistic [142–147] can be used. Furthermore, even for small 
studies, the log-rank procedure is still quite robust. The Gehan, or modified 
Wilcoxon test [148, 149], as defined in Chap. 15 cannot be applied directly to the 
group sequential procedures. A generalization of the Wilcoxon procedure for 
survival data, though, is appropriate [150] and the survival methods of analyses 
can in general terms be applied in group sequential monitoring. Instead of look-
ing at equal-sized participant groups, the group sequential methods described 
strictly require that interim analyses should be done after an additional equal 
number of events have been observed. Since monitoring committees usually meet 
at fixed calendar times, the condition of equal number of events might not be met 
exactly. However, the methods applied under these circumstances are approxi-
mately correct [151] if the increments are not too disparate. Other authors have 
also described the application of group sequential methods to survival data 
[152–155].

Interim log-rank tests in the Beta-Blocker Heart Attack Trial [74] were evaluated 
using the O’Brien–Fleming group sequential procedure [136]. Seven meetings 
had been scheduled to review interim data. The trial was designed for a two-sided 
5% significance level. These specifications produce the group sequential boundary 
shown in Fig. 16.8. In addition, the interim results of the log-rank statistic are 
also shown for the first six meetings. From the second analysis on, the conventional 
significance value of 1.96 was exceeded. Nevertheless, the trial was continued. 
At the sixth meeting, when the O’Brien–Fleming boundary was crossed, a decision 
was made to terminate the trial with the final mortality curves as seen in Fig. 16.5. 
It should be emphasized that crossing the boundary was not the only factor in this 
decision.

Flexible Group Sequential Procedures: Alpha Spending 
Functions

While the group sequential methods described are an important advance in data 
monitoring, the Beta-blocker Heart Attack Trial (BHAT) [74] experience sug-
gested two limitations. One was the need to specify the number K of planned 
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interim analyses in advance. The second was the requirement for equal numbers 
of either participants or events between each analysis. This also means that the 
exact time of the interim analysis must be pre-specified. As indicated in the BHAT 
example, the numbers of deaths between analyses were not equal and exactly 
seven analyses of the data had been specified. If the monitoring committee had 
requested an additional analysis between the fifth and sixth scheduled meetings, 
the O’Brien–Fleming group sequential procedure would not have directly accom-
modated such a modification. Yet such a request could easily have happened. In order 
to accommodate the unequal numbers of participants or events between analyses 
and the possibility of larger or fewer numbers of interim analyses than pre-specified, 
flexible procedures that eliminated those restrictions were developed [156–163]. 
The authors proposed a so-called alpha spending function which allows investi-
gators to determine how they want to “spend” the Type I error or alpha during 
the course of the trial. This function guarantees that at the end of the trial, the 
overall Type I error will be the prespecified value of a. As will be described, 
this approach is a generalization of the previous group sequential methods so that 
the Pocock [133] and O’Brien–Fleming [136] monitoring procedures become 
special cases.

We must first distinguish between calendar time and information fraction [160, 
163]. At any particular calendar time t in the study, a certain fraction t* of the total 
information is observed. That may be approximated by the fraction of participants 
randomized at that point, n, divided by the total number expected, N, or in survival 

Fig. 16.8 Six interim log-rank statistics plotted for the time of data monitoring committee meet-
ings with a two-sided O’Brien–Fleming significance level boundary in the Beta-Blocker Heart 
Attack Trial. Dashed line represents Z = 1.96 [74]
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studies, by the number of events observed already, d, divided by the total number 
expected D. Thus, the value for t* must be between 0 and 1. The information frac-
tion is more generally defined in terms of ratio of the inverse of the variance of the 
test statistic at the particular interim analysis and the final analysis. The alpha-
spending function, a(t*), determines how the pre-specified a is allocated at each 
interim analyses as a function of the information fraction. At the beginning of a 
trial, t* = 0 and a(t*) = 0, while at the end of the trial, t* = 1 and a(t*) = a. Alpha-
spending functions that correspond to the Pocock and O’Brien–Fleming boundaries 
shown in Fig. 16.7 are indicated in Fig. 16.9 for a two-sided 0.05 a level and five 
interim analyses. These spending functions correspond to interim analyses at infor-
mation fractions at 0.2, 0.4, 0.6, 0.8, and 1.0. However, in practice the information 
fractions need not be equally spaced. We chose those information fractions to indi-
cate the connection between the earlier discussion of group sequential boundaries 
and the a spending function. The Pocock-type spending function allocates the 
alpha more rapidly than the O’Brien–Fleming type spending function. For the 
O’Brien–Fleming-type spending function at t* = 0.2, the a(0.2) is less than 0.0001 
which corresponds approximately to the very large critical value or boundary value 
4.56 in Fig. 16.7. At t* = 0.4, the amount of a which can be spent is a(0.4) − a(0.2) 
which is approximately 0.0006, corresponding to the boundary value 3.23 in 
Fig. 16.7. That is, the difference in a(t*) at two consecutive information fractions, 
t* and t** where t* is less than t**, a(t**) − a(t*), determines the boundary or critical 
value at t**. Obtaining these critical values consecutively requires numerically inte-
grating a distribution function similar to that for Pocock and is described elsewhere 
in detail [156]. Because these spending functions are only approximately equivalent 
to the Pocock or O’Brien–Fleming boundaries, the actually boundary values will be 
similar but not exactly the same. However, the practical differences are important. 
Programs are available for these calculations [164].

Fig. 16.9 Alpha-spending functions for K = 5, two-sided a = 0.05 at information fractions t* = 0.2, 
0.4, 0.6, 0.8, and 1.0 where a

1
(t*) ~ O’Brien–Fleming; a

2
(t*) ~ Pocock; a

3
(t*) ~ uniform alpha 

spending functions [211]
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Many different spending functions can be specified. The O’Brien–Fleming 
a

1
(t*) and Pocock a

2
(t*) type spending functions are specified as follows:
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The spending function a
3
(t*) spends alpha uniformly during the trial for q = 1, at a 

rate somewhat between a
1
(t*) and a

2
(t*). Other spending functions have also been 

defined [165, 166].
The advantage of the alpha-spending function is that neither the number nor the 

time of the interim analyses needs to be specified in advance. Once the particular 
spending function is selected, the information fractions * *, ,1 2t t …  determine the critical 
or boundary values exactly. In addition, the frequency of the interim analyses can be 
changed during the trial and still preserve the prespecified a level. Even if the ratio-
nale for changing the frequency is dependent on the emerging trends, the impact on 
the overall Type I error rate is almost negligible [167, 168]. These advantages give the 
spending function approach to group sequential monitoring the flexibility in analysis 
times that is often required in actual clinical trial settings [169]. It must be empha-
sized that no change of the spending function itself is permitted during the trial. Other 
authors have discussed additional aspects of this approach [44, 170, 171].

Applications of Group Sequential Boundaries

As indicated in the BHAT example [73, 74], the standardized logrank test can be 
compared to the standardized boundaries provided by the O’Brien–Fleming, 
Pocock, or a spending function approach. However, these group sequential meth-
ods are quite widely applicable for statistical tests which can be standardized with 
a normal distribution and independent increments of information between interim 
analyses. Besides logrank and other survival tests, comparisons of means, compari-
son of proportions [133, 172] and comparison of linear regression slopes [173–178] 
can be monitored using this approach. For means and proportions, the information 
fraction can be approximated by the ratio of the number of participants observed to 
the total expected. For regression slopes, the information fraction is best deter-
mined from the ratio of the inverse of the variance of the regression slope differ-
ences computed for the current and expected final estimate [174, 178]. Considerable 
work has extended the group sequential methodology to more general linear and 
nonlinear random effects models for continuous data and to repeated measure 
methods for categorical data [179]. Thus, for most of the statistical tests that would 
be applied to common primary outcome measures, the flexible group sequential 
methods can be used directly.
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If the trial continues to the scheduled termination point, a p value is often 
 computed to indicate the extremeness of the result. If the standardized statistical 
test exceeds the critical value, the p value would be less than the corresponding 
significance level. If a trial is terminated early or continues to the end with the 
standardized test exceeding or crossing the boundary value, a p value can also be 
computed [180]. These p values cannot be the nominal p value corresponding to the 
standardized test statistic. They must be adjusted to account for the repeated statis-
tical testing of the outcome measure and for the particular monitoring boundary 
employed. Calculation of the p value is relatively straight forward with existing 
software packages [164].

Statistical tests of hypotheses are but one of the methods used to evaluate the 
results of a clinical trial. Once trials are terminated, either on schedule or earlier, 
confidence intervals (CIs) are often used to give some sense of the uncertainty in 
the estimated treatment or intervention effect. For a fixed sample study, CIs are 
typically constructed as

(effect estimate) ( ) (standard error of the estimate)Z a±

In the group sequential monitoring setting, this CI will be referred to as the naive 
estimate since it does not take into account the sequential aspects. In general, con-
struction of CIs following the termination of a clinical trial is not as straightforward 
[181–194], but software exists to aid in the computations [164]. The major problem 
with naive CIs is that they may not give proper coverage of the unknown but esti-
mated treatment effect. That is, the CIs constructed in this way may not include the 
true effect the proper number of times (e.g., 95%). For example, the width of the 
CI may be too narrow. Several methods have been proposed for constructing a more 
proper CI [181–194] typically ordering the possible outcomes in different ways. 
That is, a method is needed to determine if a treatment effect at one time is either 
more or less extreme than a difference at another time. None of the methods pro-
posed appear to be universally superior but the ordering originally suggested by 
Siegmund [188] and adopted by Tsiatis et al. [181] appears to be quite adequate. In 
this ordering, any treatment comparison statistic which exceeds the group sequen-
tial boundary at one time is considered to be more extreme than any result which 
exceeds the sequential boundary at a later time. While construction of CIs using this 
ordering of possible outcomes can break down, the cases or circumstances are 
almost always quite unusual and not likely to occur in practice [189]. It is also 
interesting that for conservative monitoring boundaries such as the O’Brien–
Fleming method, the naive CI does not perform that poorly, due primarily to the 
extreme early conservatism of the boundary [187]. While more exact CIs can be 
computed for this case, the naive estimate may still prove useful as a quick estimate 
to be recalculated later using the method described [181]. Pocock and Hughes [186] 
have suggested that the point estimate of the effect of the intervention should also 
be adjusted, since trials that are terminated early tend to exaggerate the size of the 
true treatment difference. Others have also pointed out the bias in the point estimate 
[182, 184]. Kim [184] suggested that an estimate of the median is less biased.
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CIs can also be used in another manner in the sequential monitoring of interim 
data. At each interim analysis, a CI could be constructed for the parameter sum-
marizing the intervention effect, such as differences in means, proportions, or 
hazard ratios. This is referred to as repeated confidence intervals (RCIs) [192–194]. 
If the RCI excludes a null difference, or no intervention effect, then the trial might 
be stopped claiming a significant effect. It is also possible to continue the trial 
unless the CI excluded not only no difference but also minimal or clinically unim-
portant differences. On the other hand, if all values of clinically meaningful treat-
ment differences are ruled out or fall outside the CI, then that trial might be stopped 
claiming that no useful clinical effect is likely. Here, as for CIs following termina-
tion, the naive CI is not appropriate. Jennison and Turnbull [192, 193] have suggested 
one method for RCIs that basically inverts the group sequential test. That is, the CI 
has the same form as the naive estimate, but the coefficient is the standardized 
boundary value as determined by the spending function, for example. The RCI has 
the following form:

(treatment difference) ( ) (standard error of difference)Z k±

where Z(k) is the sequential boundary value at the kth interim analysis. For exam-
ple, using the O’Brien–Fleming boundaries shown in Fig. 16.7, we would have a 
coefficient of 4.56 at k = 1, =*

1 0.2t  and 3.23 at k = 2, =*
2 0.4t . Used in this manner, 

the RCI and the sequential test of the null hypothesis will yield the same 
conclusions.

One particular application of the RCI is for trials whose goal is to demonstrate that 
two interventions or treatments are essentially “equivalent,” that is, have an effect that 
is considered to be within a specified acceptable range and might be used inter-
changeably. As indicated in Chap. 5, clinicians might select the cheaper, less toxic or 
less invasive intervention if the effects were close enough. One suggestion for “close 
enough” or “equivalence” would be treatments whose effects are within 20% [195, 
196]. Thus, RCIs that are contained within a 20% range would suggest that the results 
are consistent with this working definition of equivalence. For example, if the relative 
risks were estimated along with a RCI, the working range of equivalence would be 
from 0.8 to 1.2, where large values indicate inferiority of the intervention being 
tested. The trial would continue as long as the upper limit of the RCI exceeded 1.2 
since we would not have ruled out a treatment worsening by 20% or more. Depending 
on the trial and the interventions, the trial might also continue until the lower limit of 
the RCI was larger than 0.8, indicating no improvement by 20% or greater.

As described in Chap. 5, there is a fundamental difference between an “equiva-
lence” design and a noninferiority design. The former is a two-sided test, with the 
aim of establishing a narrow range of possible differences between the new inter-
vention and the standard, or that any difference is within a narrow range. The non-
inferiority design aims to establish that the new intervention is no worse than the 
standard by some prespecified margin. It may be that the margins in the two designs 
are set to the same value. From a data monitoring point of view, both of these 
designs are best handled by sequential CIs [193]. As data emerge, the RCI takes 
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into consideration the event rate or variability, the repeated testing aspects, and the 
level of the CI. The upper and lower boundaries can address either the “equiva-
lence” point of view or the noninferiority margin of indifference.

Asymmetric Boundaries

In most trials, the main purpose is to test whether the intervention is superior to the 
control. It is not always ethical to continue a study in order to prove, at the usual levels 
of significance, that the intervention is harmful relative to a placebo or standard con-
trol. This point has been mentioned by authors [197, 198] who discuss methods for 
group sequential designs in which the hypothesis to be tested is one-sided; that is, to 
test whether the intervention is superior to the control. They proposed retaining the 
group sequential upper boundaries of methods such as Pocock, Haybittle–Peto, or 
O’Brien–Fleming for rejection of H

0
 while suggesting various forms of a lower 

boundary which would imply “acceptance” of H
0
. One simple approach is to set the 

lower boundary at an arbitrary value of Z
i
, such as −1.5 or −2.0. If the test statistic 

goes below that value, the data may be sufficiently suggestive of a harmful effect to 
justify terminating the trial. This asymmetric boundary attempts to reflect the behav-
ior or attitude of members of many monitoring committees, who recommend stop-
ping a study once the intervention shows a strong, but non-significant, trend in an 
adverse direction for major events. Emerson and Fleming [199] recommend a lower 
boundary for acceptance of the null hypothesis which allows the upper boundary to 
be changed in order to preserve the Type I error exactly. Work by Gould and Pecore 
[200] suggests ways for early acceptance of the null hypothesis while incorporating 
costs as well. For new interventions, trials might well be terminated when the chances 
of a positive or beneficial result seem remote (discussed in the next section). However, 
if the intervention arm is being compared to a standard but the intervention is already 
in widespread use, it may be important to distinguish between lack of benefit and 
harm [83]. For example, if the intervention is not useful for the primary outcome, and 
also not harmful, it may still have benefits such as on other clinical outcomes, quality 
of life, or fewer side effects, that would still make it a therapeutic option. In such 
cases, a symmetric boundary for the primary outcome might be appropriate.

An example of asymmetric group sequential boundaries is provided by the 
Cardiac Arrhythmia Suppression Trial (CAST). Two arms of the trial (encainide 
and flecainide, each vs. placebo) were terminated early using a symmetric two-
sided boundary, although the lower boundary for harm was described as advisory 
by the authors [80, 81]. The third comparison (moricizine vs. placebo) continued. 
However, due to the experience with the encainide and flecainide arms, the lower 
boundary for harm was revised to be less stringent than originally, i.e., an asym-
metric boundary was used [82].

MERIT-HF used a modified version of the Haybittle–Peto boundary for benefit, 
requiring a critical value near +3.0 and a similar but asymmetric boundary, close to a 
critical Z value of −2.5 for harm as shown in Fig. 16.10. In addition, at least 50% of 



325Statistical Methods Used in Monitoring

the designed person years of exposure should be observed before early termination 
could be recommended. The planned interim analyses to consider benefit were at 25, 
50, and 75% of the expected target number of events. Because there was a concern 
that treating heart failure with a beta blocker might be harmful, the monitoring com-
mittee was required to evaluate safety on a monthly basis using the lower sequential 
boundary as a guide. At the 25% interim analyses, the statistic for the logrank test was 
+2.8, just short of the boundary for benefit. At the 50% interim analyses, the observed 
logrank statistic was +3.8, clearly exceeding the sequential boundary for benefit. 
It also met the desired person years of exposure as plotted in Fig. 16.10. Details of 
this experience are described elsewhere [201]. A more detailed presentation of group 
sequential methods for interim analysis of clinical trials may be found in books by 
Jennison and Turnbull [202] and Proschan, Lan, and Wittes [203].

Curtailed Sampling and Conditional Power Procedures

During the course of monitoring accumulating data, one question often posed is 
whether the current trend in the data is so impressive that “acceptance” or rejection of 
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H
0
 is already determined, or at least close to being determined. If the results of the 

trial are such that the conclusions are “known for certain,” no matter what the future 
outcomes might be, then consideration of early termination is in order. A helpful 
sports analogy is a baseball team “clinching the pennant” after winning a specific 
game. At that time, it is known for certain who has won and who has not won, regard-
less of the outcome of the remaining games. Playing the remaining games is done for 
reasons (e.g., fiscal) other than deciding the winner. This idea has been developed for 
clinical trials and is often referred to as deterministic curtailed sampling. It should be 
noted that group sequential methods focus on existing data while curtailed sampling 
in addition considers the data which have not yet been observed.

Alling [204, 205] may have introduced this concept when he considered the 
early stopping question and compared the survival experience in two groups. He 
used the Wilcoxon test for two samples, a frequently used non-parametric test 
which ranks survival times and which is the basis for one of the primary survival 
analysis techniques. Alling’s method allows stopping decisions to be based on data 
available during the trial. The trial would be terminated if future data could not 
change the final conclusion about the null hypothesis. The method is applicable 
whether all participants are entered at the same time or recruitment occurs over a 
longer period of time. However, when the average time to the event is short relative 
to the time needed to enroll participants, the method is of limited value. The 
repeated testing problem is irrelevant, because any decision is based on what the 
significance test will be at the end of the study. Therefore, frequent use of this pro-
cedure causes no problem with regard to significance level and power.

Many clinical trials with survival time as a response variable have observations 
that are censored; that is, participants are followed for some length of time and then 
at some point, no further information about the participant is known or collected. 
Halperin and Ware [206] extended the method of Alling to the case of censored 
data, using the Wilcoxon rank statistic. With this method, early termination is par-
ticularly likely when the null hypothesis is true or when the expected difference 
between groups is large. The method is shown to be more effective for small sample 
sizes than for large studies. The Alling approach to early stopping has also been 
applied to another commonly used test, the Mantel–Haenszel statistic. However, the 
Wilcoxon statistic appears to have better early stopping properties than the Mantel–
Haenszel statistic.

A deterministic curtailed procedure has been developed [207], for comparing the 
means of two bounded random variables using the two sample t-test. It assumes that 
the response must be between two values, A and B (A < B). An approximate solution 
is an extreme case approach. First, all the estimated remaining responses in one group 
are given the maximum favorable outcome and all the remaining responses in the 
other take on the worst response. The statistic is then computed. Next, the responses 
are assigned in the opposite way and a second statistic is computed. If neither of these 
two extreme results alters the conclusion, no additional data are necessary for testing 
the hypothesis. While this deterministic curtailed approach provides an answer to an 
interesting question, the requirement for absolute certainty results in a very conserva-
tive test and allows little opportunity for early termination.
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In some clinical trials, the final outcome may not be absolutely certain, but almost 
so. To use the baseball analogy again, a first place team may not have clinched the 
pennant but is so many games in front of the second place team that it is highly 
unlikely that it will not, in fact, end up the winner. Another team may be so far 
behind that it cannot “realistically” catch up. In clinical trials, this idea is often 
referred to as stochastic curtailed sampling or conditional power. It is identical to the 
concept of conditional power discussed in the section on extending a trial.

One of the earliest applications of the concept of conditional power was in the 
CDP [7, 24]. In this trial, several treatment arms for evaluating cholesterol lowering 
drugs produced negative trends in the interim results. Through simulation, the prob-
ability of achieving a positive or beneficial result was calculated given the observed 
data at the time of the interim analysis. Unconditional power is the probability at 
the beginning of the trial of achieving a statistically significant result at a prespeci-
fied alpha level and with a prespecified alternative treatment effect. Ideally, trials 
should be designed with a power of 0.80–0.90 or higher. However, once data begin 
to accumulate, the probability of attaining a significant result increases or decreases 
with emerging positive or negative trends. Calculating the probability of rejecting 
the null hypothesis of no effect once some data are available is conditional power.

Lan et al. [208] considered the effect of stochastic curtailed or conditional power 
procedures on Type I and Type II error rates. If the null hypothesis, H

0
, is tested at 

time t using a statistic, S(t), then at the scheduled end of a trial at time T, the statistic 
would be S(T). Two cases are considered. First, suppose a trend in favor of rejecting 
H

0
 is observed at time t < T, with intervention doing better than control. One then 

computes the conditional probability, g
0
 of rejecting H

0
 at time T; that is, S(T) > Za, 

assuming H
0
 to be true and given the current data, S(t). If this probability is suffi-

ciently large, one might argue that the favorable trend is not going to disappear. 
Second, suppose a negative trend or data consistent with the null hypothesis of no 
difference, at some point t. Then, one computes the conditional probability, g

1
, of 

rejecting H
0
 at the end of the trial, time T, given that some alternative H

1
 is true, for 

a sample of reasonable alternatives. This essentially asks how large the true effect 
must be before the current “negative” trend is likely to be reversed. If the probability 
of a trend reversal is highly unlikely for a realistic range of alternative hypotheses, 
trial termination might be considered.

Because there is a small probability that the results will change, a slightly greater 
risk of a Type I or Type II error rate will exist than would be if the trial continued 
to the scheduled end [209]. However, it has been shown that the Type I error is 
bounded very conservatively by a/g

0
 and the Type II error by b/g

1
. For example, if 

the probability of rejecting the null hypothesis, given the existing data were 0.85, 
then the actual Type I error would be no more than 0.05/0.85 or 0.059, instead of 
0.05. The actual upper limit is considerably closer to 0.05, but that calculation 
requires computer simulation. Calculation of these probabilities is relatively straight-
forward and the details have been described by Lan and Wittes [210]. A summary 
of these methods, using the approach of DeMets [211], follows:

Let Z(t) represent the standardized statistic at information fraction t. The informa-
tion fraction may be defined, for example, as the proportion of expected participants 



328 16 Monitoring Response Variables

or events observed so far. The conditional power, CP, for some alternative intervention 
effect q, using a critical value of Za for a Type I error of alpha, can be calculated as

{ } ≥ = −Φ − − − − 
= =

P (1) ( ), 1 ( ) (1 ) / 1 )

where ( ( 1))

Z Z Z t Z Z t t t t

E Z t

a aq q
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The alternative q is defined for various outcomes as follows for:

 1. Survival outcome (D = total events)
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C
 and P

I
 are the event rates in the control arm and intervention arm 

respectively and p  is the common event rate.

 3. Continuous outcome (means) (N = total sample size)
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where m
C
 and m

I
 are the mean response levels for the control and the intervention 

arms, respectively, and s is the common standard deviation.
If we specify a particular value of the conditional power as g, then a boundary 

can also be produced which would indicate that if the test statistic fell below that, 
the chance of finding a significant result at the end of the trial is less than g [211]. 
For example, in Fig. 16.11, the lower futility boundary is based on a specified con-
ditional power g, ranging from 10 to 30% that might be used to claim futility of 
finding a positive beneficial claim at the end of the trial. For example, if the stan-
dardized statistic crosses that 20% lower boundary, the conditional power for a 
beneficial result at the end of the trial is less than 0.20 for the specified alternative.

Conditional power calculations are done for a specific alternative but in practice, 
a monitoring committee would likely consider a range of possibilities. These speci-
fied alternatives may range between the null hypothesis of no effect and the 
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prespecified design based alternative treatment effect. In some cases, a monitoring 
committee may consider even more extreme beneficial effects to determine just 
how much more effective the treatment would have to be to raise the conditional 
power to desired levels. These conditional power results can be summarized in a 
table or a graph, and then monitoring committee members can assess whether they 
believe recovery from a substantial negative trend is likely.

Conditional power calculations were utilized in the Vesnarinone in Heart Failure 
Trial (VEST) [212]. In Table 16.1, the test statistics for the logrank test are provided 
for the information fractions at a series of monitoring committee meetings. Table 16.2 
provides conditional power for VEST at three of the interim analyses. A range of 
intervention effects was used including the beneficial effect (hazard rate less than 1) 
seen in a previous vesnarinone trial to the observed negative trend (hazard rates of 1.3 
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Fig. 16.11 Conditional power boundaries: outer boundaries represent symmetric O’Brien–
Fleming type sequential boundaries (a = 0.05). Three lower boundaries represent boundaries for 
10–30% conditional power to achieve a significant (p < 0.05) result of the trial conclusion. [211]

Table 16.1 Accumulating results for the Vesnarinone in 
Heart Failure Trial (VEST) [212]

Information fraction Log-rank Z-value (high dose)

0.43 +0.99
0.19 −0.25
0.34 −0.23
0.50 −2.04
0.60 −2.32
0.67 −2.50
0.84 −2.22
0.20 −2.43
0.95 −2.71
1.0 −2.41
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and 1.5). It is clear that the conditional power for a beneficial effect was very low 
by the midpoint of this trial for a null effect or worse. In fact, the conditional power 
was not encouraging even for the original assumed effect. As described by DeMets 
et al. [83] the trial continued beyond this point due to the existence of a previous 
trial that indicated a large reduction in mortality, rather than the harmful effect 
observed in VEST.

The Beta-Blocker Heart Attack Trial [73, 74] made considerable use of this 
approach. As discussed, the interim results were impressive with 1 year of follow-
up still remaining. One question posed was whether the strong favorable trend 
(Z = 2.82) could be lost during that year. The probability of rejecting H

0
 at the 

scheduled end of the trial, given the existing trend (g
0
), was approximately 0.90. 

This meant that the false positive or Type I error was no more than a/g
0
 = 0.05/0.90 

or 0.056.

Other Approaches

Other techniques for interim analysis of accumulating data have also received 
 attention. These include binomial sampling strategies [111], decision theoretic 
models [213], and likelihood or Bayesian methods [214–223]. Bayesian methods 
require specifying a prior probability on the possible values of the unknown param-
eter. The experiment is performed and based on the data obtained, the prior prob-
ability is adjusted. If the adjustment is large enough, the investigator may change 
his opinion (i.e., his prior belief). Spiegelhalter et al. [223] and Freedman et al. 
[217] have implemented Bayesian methods that have frequentist properties very 
similar to boundaries of either the Pocock or O’Brien–Fleming type. It is somewhat 
reassuring that two methodologies, even from a different theoretical framework, 
can provide similar monitoring procedures. While the Bayesian view is critical of 
the hypothesis testing methods because of the arbitrariness involved, the Bayesian 
approach is perhaps hampered mostly by the requirement that the investigator formally 
specify a prior probability. However, if a person during the decision-making process 

Table 16.2 Conditional power for Vesnarinone 
in Heart Failure Trial (VEST) [212]

RR

Information fraction 

0.50 <0.67 0.84

0.50 0.46 <0.01 <0.01
0.70 0.03 <0.01 <0.01
1.0 <0.01 <0.01 <0.01
1.3 <0.01 <0.01 <0.01
1.5 <0.01 >0.01 <0.01

RR relative risk
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uses all of the factors and methods discussed in this chapter, a Bayesian approach 
is involved, although in a very informal way.

One Bayesian method to assess futility that has been used extensively is referred 
to as predictive power and is related to the concept of conditional power. In this case, 
the series of possible alternative intervention effects, q, are represented by a prior 
distribution for q, distributing the probability across the alternatives. The prior prob-
ability distribution can be modified by the current trend to give an updated posterior 
for q. The conditional power is calculated as before for a specific value of q. Then 
as shown below, a predictive or “average” power is calculated by integrating the 
conditional power over the posterior distribution for q. This predictive power can 
then be utilized by the monitoring committee to assess whether the trial is still 
viable.

( ) ( )0 f 0( ) | ) dfp X R x p X R p xq q q∈ = ∈∫

This predictive power was computed for the various interim analyses conducted in 
VEST [212] as shown in Table 16.3. In this case, the prior was taken from an earlier 
trial of vesnarinone where the observed reduction in mortality was over 60% (rela-
tive risk = 0.40). For these calculations, the prior was first set at the point  estimate 
of the hazard ratio equal to 0.40. Using this approach, it is clear that VEST would 
not likely have shown a benefit at the end of the trial.

We have stated that the monitoring committee should be aware of all the relevant 
information in the use of the intervention which existed before the trial started or 
which emerges during the course of a trial. Some have argued that all of this informa-
tion should be pooled or incorporated and updated sequentially in a formal  statistical 
manner [224]. This is referred to as cumulative meta-analysis issues (see Chap. 17). 
We do not generally support cumulative or sequential meta-analysis as a primary 
approach for monitoring a trial. We believe that the results of the ongoing trial should 
be first presented alone in the details described earlier. As supportive evidence for 
continuation or termination, other analysis may be used, including a pooled analysis 
of all available external data.

Table 16.3 Predictive probability for the Vesnarinone in 
Heart Failure Trial (VEST) [212]

Date

Probability

T* Hazard rate = 0.40

2/7/96 0.50 0.28
3/7/96 0.60 0.18
4/10/96 0.67 <0.0001
5/19/96 0.84 <0.0001
6/26/96 0.90 <0.0001

* T = Information Fraction
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Trend Adaptive Designs and Sample Size Adjustments

Traditionally, sample size adjustments based on comparing emerging trends in the 
intervention and control groups were discouraged, but statistical methodology has 
developed that allows trialists to adjust the sample size and maintain the Type I 
error while regaining power. These methods may be implemented by the monitor-
ing committee or some other third party that is aware of the emerging trend. In gen-
eral, we do not recommend that the monitoring committee perform this function 
because it may be aware of other factors that would mitigate any sample size 
increase but cannot share those issues with the trial investigators or sponsors. This 
can present an awkward if not an ethical dilemma. Rather, we prefer that a third 
party who only knows the emerging trend to make the sample size adjustment rec-
ommendation to the investigators. Whatever trend adaptive method is used must 
also take into account the final analyses as discussed briefly in Chap. 17, because it 
can affect the final critical value.

We will briefly describe several of these methods [101, 102, 225–228].
Using the method proposed by Cui et al. [101], suppose we measuring an out-

come variable denoted as X where X has a N(0,1) distribution and n is current 
sample size, N

0
 is initial total sample size, N is new target sample size, qa is hypoth-

esized intervention effect, and t is n/N
0.

In this case, we can have an estimate of the intervention effect and a test statistic 
based on n observations.

∧
= ∑ /

n

i
i

x nq

( ) /
n

n
i

i

z x n= ∑

Now, compute a revised sample size N based on the current trend, assuming the 
same initial Type I error and desired power. A new test statistic is defined that 
combines the already observed data and the yet to obtained data.
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In this setting, we would reject the null hypothesis H
0
 of no treatment ( )

W
nZ Za>

effect if this revised test statistic controls the Type I error at the desired level a. 
However, less weight is assigned to the new or additional observations. This dis-
counting may not be acceptable for scientific and ethical reasons. It is often very 
challenging to get the design assumptions close enough to what actually happens 
so that adjustments of this type are not necessary or useful. For example, one obser-
vation is that the event is often less than expected, and the intervention effect not as 
great as assumed. Tsiatis and Mehta [106] have argued that a properly designed 
group sequential trial is more efficient than these adaptive designs.
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A modification proposed by Chen et al. [104] requires that both the weighted 
and un weighted test statistics exceed the standard critical value.

( ) ( )
WandN NZ Z Za>

In this case, the Type I error < a and there is no loss of power.
Another approach, an adjusted p value method, proposed by Proschan and 

 colleagues [102, 228] is to require a “promising” p value before allowing an 
increase in sample size. However, this approach requires stopping if the first stage 
p value is not promising. It also requires a larger critical value at the second stage 
to control the Type I error. As an example, consider a one sided significance level 
a = 0.05. In this case the promising p value, p¢, and the final critical values are as 
follows, regardless of the sample size n2 in the second stage:

p¢: 0.10 0.15 0.20 0.25 0.50
Z¢: 1.77 1.82 1.85 1.875 1.95

This simple method will control the Type I error but in fact may make Type I 
error substantially less than 0.05. A method can be developed to obtain exact Type 
I error as a function of Z(t) and the adjusted sample size N, using a conditional 
power type calculation [210] to be described below.

Conditional power is a useful calculation to assess the likelihood of exceeding a 
critical value at the scheduled end of a trial, given the current data or value of the 
interim test statistic and making assumptions about the future intervention effect as 
described earlier in this chapter [162, 208, 210]. The computation of conditional 
power, CP, in this case is relatively simple. Let q = a function of the intervention 
affect, as described earlier, and then

{ }
= ≥

 = − − − − − 

CP( ( ), ) [ ( ) ( ), ]

1 ( ) (1 ) ( ) 1/

Z t P Z T Z Z t

Z Z t t t t

a

a

q q

F q

Applying the idea of conditional power to the trend adaptive design, we can define 
an algorithm to adjust the sample size and still control the Type I error [227]. For 
example,

Let D = observed effect
d = assumed effect

If we observe that for q(D) as a function of the observed effect D, and q(d) as a 
function of the assumed d, then if

>
<

CP( ( ), ( )) 1.2CP( ( ), ( )), decrease

CP( ( ), ( )) 0.8CP( ( ), ( )), increa  se

Z t Z t N

Z t Z t N

q D q d
q D q d

The properties of this procedure have not been well investigated but the idea is 
related to other conditional power approaches [103]. These conditional power pro-
cedures adjust the sample size if the computed conditional power for the current 
trend is marginal, with only a trivial impact on Type I error. For example, define a 
lower limit (c

l
) and an upper limit (c

u
) such that for the current trend q(D):
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if CP(Z(t), q(D)) < c
l
, then terminate for futility and accept the null (required),

if CP(Z(t), q(D)) > c
u
, then continue with no change in sample size, or

if c
l
 < CP(Z(t), q(D)) < c

u
, then increase sample size from N

0
 to N to get condi-

tional power to the desired level.

Chen et al. [104] suggested a modest alternative. If the conditional power is 50% 
or larger, then increase the sample size to get the desired power. An upper cap is 
typically placed on the size of the increase in sample size. Increase N

0
 if the interim 

result is “promising,” defined as conditional power >50% for the current trend but 
the increase in N

0
 cannot be greater than 1.75-fold. Under these conditions, Type I 

error is not increased and there is no practical loss in power. This approach is one 
that we favor since it is simple to implement, easy to understand and preserves the 
design characteristics.

A clear need exists for adaptive designs, including trend adaptive designs. We 
are fortunate that technical advances have been made through several new methods. 
Perhaps the largest challenge is how to implement the trend adaptive design without 
introducing bias or leaving the door open for bias. If one utilizes one of the 
described trend adaptive designs, anyone who knows the details of the method can 
“reverse engineer” the implementation and obtain a reasonable estimate of what the 
current trend (Z(t)) must have been to generate the adjusted sample size (N). Given 
that these trend adaptive designs have as yet not been widely used, there is not 
enough experience to recommend what can be done to best minimize bias. However, 
as suggested earlier, a third party who knows only the emerging trend and none of 
the other secondary or safety data are probably best suited to make these calcula-
tions and provide them to the investigators.
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The analysis of data obtained from a clinical trial represents the outcome of the 
planning and implementation already described. Primary and secondary questions 
addressed by the clinical trial can be tested and new hypotheses generated. Data 
analysis is sometimes viewed as simple and straightforward, requiring little time, 
effort, or expense. However, careful analysis usually requires a major investment in 
all three. It must be done with as much care and concern as any of the design or 
data-gathering aspects. Furthermore, inappropriate statistical analyses can intro-
duce bias, result in misleading conclusions, and impair the credibility of the trial.

Several introductory textbooks of statistics [1–8] provide excellent descriptions 
for many basic methods of analysis. Chapter 15 presents essentials for analysis of 
survival data, since they are frequently of interest in clinical trials and are not cov-
ered in most introductory statistics texts. This chapter focuses on some issues in the 
analysis of data, which seem to cause confusion in the medical research commu-
nity. Some of the proposed solutions are straightforward; others require judgment. 
They reflect a point of view developed by the authors and many colleagues in 
numerous collaborative efforts over three to four decades. Some [9–12] have taken 
similar positions, whereas others [13, 14] have opposing views on several issues.

The analytic approaches discussed here primarily apply to late phase (III and IV) 
trials. Various exploratory analysis approaches may be entirely reasonable in early 
phase (I and II) studies where the goal is to obtain information and insight to design 
better subsequent trials. However, some the fundamentals presented may still be of 
value in these early phase trials. We have used early examples that were instrumental 
in establishing many of the analytic principles and added new examples which 
reinforce them. However, given the multitude of clinical trials, it is not possible to 
include all examples.

Fundamental Point

Excluding randomized participants or observed outcomes from analysis and 
subgrouping on the basis of outcome or other response variables can lead to 
biased results. Those biases can be of unknown magnitude or direction.

Chapter 17
Issues in Data Analysis
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Which Participants Should Be Analyzed?

The issue of which participants are to be included in the data analysis often arises 
in clinical trials. Although a laboratory study may have carefully regulated experi-
mental conditions, even the best designed and managed clinical trial cannot be 
perfectly implemented. Response variable data may be missing, the protocol may 
not be completely adhered to, and some participants, in retrospect, will not have 
met the entrance criteria. Some investigators may, after a trial has been completed, 
prefer to remove from the analysis participants who did not fit the eligibility criteria 
or did not follow the protocol perfectly. Conversely, others believe that once a 
participant is randomized, that participant should always be followed and included 
in the analysis.

The intention-to-treat principle states that all participants randomized and all 
events, as defined in the protocol, should be accounted for in the primary analysis 
[9]. This requirement is stated in the International Conference on Harmonisation and 
FDA guidelines [15, 16]. There are often proposed “modified intention-to-treat” 
analyses, or “per protocol” or “on treatment” analyses, that suggest that only partici-
pants who received at least some of the intervention should be included. However, 
as we will discuss, any deviations from pure intention-to-treat offer the potential for 
bias and should be avoided, or at a minimum presented along with a strict intention-
to-treat analysis. Many publications claim that the analyses are intention-to-treat 
when in reality are not. Although the phrase is widely used, “per protocol” analysis 
suggests that the analysis is the one preferred in the trial’s protocol. We think that 
“on treatment” analysis more accurately reflects what is done.

The rationales for each of these positions are presented in the following pages. 
This chapter has adopted, in part, the terminology used by Peto and colleagues [9] 
to classify participants according to the nature and extent of their participation.

Exclusions refer to people who are screened as potential participants for a 
 randomized trial but who do not meet all of the entry criteria and, therefore, are not 
randomized. Reasons for exclusion might be related to age, severity of disease, 
refusal to participate, or any of numerous other determinants evaluated before 
randomization. Since these potential participants are not randomized, their exclu-
sion does not bias any intervention-control group comparison (sometimes called 
internal validity). Exclusions do, however, influence interpretation and applicabil-
ity of the results of the clinical trial (external validity). In some circumstances, 
follow-up of excluded people can be helpful in determining to what extent the 
results can be generalized. If the event rate in the control group is considerably 
lower than anticipated, an investigator may want to determine whether most high 
risk people were excluded or whether she was incorrect in her initial assumption.

Withdrawals from analysis refer to participants who have been randomized but 
are deliberately excluded from the analysis. As the fundamental point states, omitting 
participants from analyses can bias the results of the study [17]. If participants are 
withdrawn, the burden rests with the investigator to convince the scientific community 
that the analysis has not been biased. However, this can be a difficult task because 
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no one can be sure that participants were not differentially withdrawn from the 
study groups. Differential withdrawal can occur even if the number of omitted par-
ticipants is the same in each group, since the reasons for withdrawal in each group 
may be different and thus their risk of primary, secondary, and adverse events. As 
a result, the participants remaining in the trial may not be comparable, undermining 
one of the reasons for randomization.

Many reasons are given for withdrawing participants from the analysis such as 
ineligibility and nonadherence.

Ineligibility

A previously commonly cited reason for withdrawal is that some participants did 
not meet the entry criteria, a protocol violation unknown at the time of enrollment. 
Admitting unqualified participants may be the result of a simple clerical error, a 
laboratory error, a misinterpretation, or a misclassification. Clerical mistakes such 
as listing wrong sex or age may be obvious. Other errors can arise from differing 
interpretation of diagnostic studies such as electrocardiograms, X-rays, or biopsies. 
It is not difficult to find examples in earlier literature [17–26]. This reason for with-
drawal used to be common, but appears to be less frequent now, at least in papers 
published in major journals.

Withdrawals for ineligibility can involve a relatively large number of partici-
pants. In an early trial by the Canadian Cooperative Study Group [19], 64 of the 
649 enrolled participants (10%) with stroke were later found to have been ineligible. 
In this four-armed study, the numbers of ineligible participants in the study groups 
ranged from 10 to 25. The reasons for the ineligibility of these 64 participants were 
not reported, nor were their outcome experiences. Before cancer cooperative 
groups implemented phone-in or electronic eligibility checks, 10–20% of partici-
pants entered into a trial may have been ineligible after further review. By taking 
more careful care at the time of randomization, the number of ineligible partici-
pants was reduced to a very small percent [27]. Currently, web based systems or 
Interactive Voice Recording Systems are used for multicenter and multinational 
clinical trials. These interactive systems can double-check key eligibility criteria 
before randomization is assigned, cutting down on the ineligibility rate. For example, 
several trials in chronic heart failure employed these methods [28–31].

A study design may require enrollment within a defined time period following a 
qualifying event. Because of this time constraint, data concerning a participant’s 
eligibility might not be available or confirmable at the time the decision must be 
made to enroll him. For example, the Beta-Blocker Heart Attack Trial (BHAT) 
looked at 2-year mortality in people who were administered a beta-blocking drug 
during hospitalization for an acute myocardial infarction [20]. Because of known 
variability in interpretation, the protocol required that the diagnostic electrocardio-
grams be read by a central unit. However, this verification took several weeks to 
accomplish. Local institutions, therefore, interpreted the electrocardiograms and 
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decided whether the patient met the necessary criteria for inclusion. Almost 10% of 
the enrolled participants did not have their myocardial infarction confirmed according 
to a central reading, and were “incorrectly” randomized. The question then arose: 
Should the participants be kept in the trial and included in the analysis of the 
response variable data? The BHAT protocol required follow-up and analysis of all 
randomized participants. In this case, the observed benefits from the intervention 
were similar in those eligible as well as in those “ineligible.”

A more complicated situation occurs when the data needed for enrollment cannot 
be obtained until hours or days have passed, yet the study design requires initiation 
of intervention before then. For instance, in the Multicenter Investigation of the 
Limitation of Infarct Size (MILIS) [22], propranolol, hyaluronidase, or placebo was 
administered shortly after participants were admitted to the hospital with possible 
acute myocardial infarctions. In some, the diagnosis of myocardial infarction was 
not confirmed until after electrocardiographic and serum enzyme changes had been 
monitored for several days. Such participants were, therefore, randomized on the 
basis of a preliminary diagnosis of infarction. Subsequent testing may not have 
supported the initial diagnosis. Another example of this problem involves a study 
of pregnant women who were likely to deliver prematurely and therefore, would 
have children who were at a higher than usual risk of being born with respiratory 
distress syndrome [23]. Corticosteroids administered to the mother prior to delivery 
were hypothesized to protect the premature child from developing this syndrome. 
Although, at the time of the mother’s randomization to either intervention or 
control groups, the investigator could not be sure that the delivery would be premature, 
she needed to make a decision whether to enroll the mother into the study. Other 
examples include trials where thrombolytic agents are being evaluated in reducing 
mortality and morbidity during and after a myocardial infarction. In these trials, 
agents must be given rapidly before diagnosis can be confirmed [32].

To complicate matters still further, the intervention given to a participant can 
affect or change the entry diagnosis. For example, in the above mentioned study to 
limit infarct size, some participants without a myocardial infarction were random-
ized because of the need to begin intervention before the diagnosis was confirmed. 
Moreover, if the interventions succeeded in limiting infarct size, they could have 
affected the electrocardiogram and serum enzyme levels. Participants in the inter-
vention groups with a small myocardial infarction may have had the infarct size 
reduced or limited and therefore appeared not to have had an infarction. Thus, they 
would not seem to have met the entry criteria. However, this situation could not 
exist in the placebo control group. If the investigators had withdrawn participants 
in retrospect who did not meet the study criteria for a myocardial infarction, they 
would have withdrawn more participants from the intervention groups (those with 
no documented infarction plus those with small infarction) than from the control group 
(those with no infarction). This would have produced a bias in later comparisons. 
On the other hand, it could be assumed that a similar number of truly ineligible 
participants were randomized to the intervention groups and to the control group. In 
order to maintain comparability, the investigators might have decided to with-
draw the same number of participants from each group. The ineligible  participants 
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in the control group could have been readily identified. However, the participants 
in the intervention groups who were truly ineligible had to be distinguished from 
those made to appear ineligible by the effects of the interventions. This would have 
been difficult, if not impossible. In the MILIS for example, all randomized partici-
pants were retained in the analysis [22].

An example of possible bias because of withdrawal of ineligible participants is 
found in the Anturane Reinfarction Trial, which compared sulfinpyrazone with 
placebo in participants who had recently suffered a myocardial infarction [24–26]. 
As seen in Table 17.1, of 1,629 randomized participants (813 to sulfinpyrazone, 816 
to placebo), 71 were subsequently found to be ineligible. Thirty-eight had been 
assigned to sulfinpyrazone and 33 to placebo. Despite relatively clear definitions of 
eligibility and comparable numbers of participants withdrawn, mortality among 
these ineligible participants was 26.3% in the sulfinpyrazone group (10 of 38) and 
12.1% in the placebo group (4 of 33) [25]. The eligible placebo group participants 
had a mortality of 10.9%, similar to the 12.1% seen among the ineligible partici-
pants. In contrast, the eligible participants on sulfinpyrazone had a mortality of 
8.3%, less than one-third that of the ineligible participants. Including all 1,629 
participants in the analysis gave 9.1% mortality in the sulfinpyrazone group, and 
10.9% mortality in the placebo group (p = 0.20). Withdrawing the 71 ineligible 
participants (and 14 deaths, 10 vs. 4) gave an almost significant p = 0.07.

Stimulated by criticisms of the study, the investigators initiated a reevaluation 
of the Anturane Reinfarction Trial results. An independent group of reviewers 
examined all reports of deaths in the trial [26]. Instead of 14 deceased partici-
pants who were ineligible, it found 19; 12 in the sulfinpyrazone group and seven 
in the placebo group. Thus, supposedly clear criteria for ineligibility can be 
judged differently. This trial was an early example that affirmed the value of the 
intention-to-treat principle.

Three trial design policies that relate to withdrawals because of entry criteria 
violations have been discussed by Peto et al. [9]. The first policy is not to enroll 
participants until all the diagnostic tests have been confirmed and all the entry 
criteria have been carefully checked. Once enrollment takes place, no withdrawals 
are allowed. For some studies, such as the one on limiting infarct size, this policy 
cannot be applied because firm diagnoses cannot be ascertained prior to the time 
when intervention has to be initiated.

The second policy is to enroll marginal or unconfirmed cases and later withdraw 
those participants who are proven to have been misdiagnosed. This would be allowed, 
however, only if the decision to withdraw is based on data collected before enrollment. 

Table 17.1 Mortality by study group and eligibility status in the Anturane Reinfarction 
Trial

Randomized
Percent 
mortality Ineligible

Percent 
mortality Eligible

Percent 
mortality

Sulfinpyrazone 813 9.1 38 26.3 775 8.3
Placebo 816 10.9 33 12.1 783 10.9
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Any process of deciding upon withdrawal of a participant from a study group should 
be done blinded with respect to the participant’s outcome and group assignment.

A third policy is to enroll some participants with unconfirmed diagnoses and to 
allow no withdrawals. This procedure is always valid in that the investigator com-
pares two randomized groups which are comparable at baseline. However, this 
policy is conservative because each group contains some participants who might 
not benefit from the intervention. Thus, the overall trial may have less power to 
detect differences of interest.

A modification to these three policies is recommended. Every effort should be made 
to establish the eligibility of participants prior to any randomization. No withdrawals 
should be allowed, and the analyses should include all participants enrolled. 
Analyses based on only those truly eligible may be performed. If the analyses of 
data from all enrolled participants and from those eligible agree, the interpretation of 
the results is clear, at least with respect to participant eligibility. If the results differ, 
however, the investigator must be very cautious in her interpretation. In general, she 
should emphasize the analysis with all the enrolled participants because that analy-
sis is always valid.

Any policy on withdrawals should be stated in the study protocol before the start 
of the study. The actual decision to withdraw specific participants should be done 
without knowledge of the study group, ideally by someone not directly involved in the 
trial. Of special concern is withdrawal based on review of selected cases, particu-
larly if the decision rests on a subjective interpretation. Even in double-blind trials, 
blinding may not be perfect, and the investigator may supply information for the 
eligibility review differentially depending upon study group and health status. 
Therefore, withdrawal should be done early in the course of follow-up, before a 
response variable has occurred, and with a minimum of data exchange between the 
investigator and the person making the decision to withdraw the participant. This 
withdrawal approach does not preclude a later challenge by readers of the report, 
on the basis of potential bias. It should, however, remove the concern that the with-
drawal policy was dependent on the outcome of the trial. The withdrawal rules 
should not be based on knowledge of study outcomes. Even when these guidelines 
are followed, if the number of entry criteria violations is substantially different in 
the study groups, or if the event rates in the withdrawn participants are different 
between the groups, the question will certainly be raised whether bias played a role 
in the decision to withdraw participants.

Nonadherence

Nonadherence to the prescribed intervention or control regimen is another reason 
that participants are withdrawn from analysis [33–52]. One version of this is to 
define an on treatment analysis that eliminates any participant who does not adhere 
to the intervention by some specified amount, as defined in the protocol. One form of 
nonadherence may be drop-outs and drop-ins (Chap. 14). Drop-outs are participants in 
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the intervention arm who do not adhere to the regimen. Drop-ins are participants 
in the control arm who start to use the intervention. The decision not to adhere to the 
protocol intervention may be made by the participant, his primary care physi-
cian, or the trial investigator. Nonadherence may be due to adverse events in 
either the intervention or control group, loss of participant interest or perceived 
benefit, changes in the underlying condition of a participant, or a variety of 
other reasons.

Withdrawal from analysis of participants who do not adhere to the intervention 
regimens specified in the study design is often proposed. The motivation for with-
drawal of nonadherent participants is that the trial is not a “fair test” of the ideal 
intervention with these participants included. For example, there may be a few 
participants in the intervention group who took little or no therapy. If participants 
do not take their medication, they certainly cannot benefit from it. There could also 
be participants in the control group who frequently receive the study medication. 
The intervention and control groups are thus “contaminated.” Proponents of with-
drawal of nonadherent participants argue that removal of these participants keeps 
the trial closer to what was intended; that is, a comparison of optimal intervention 
versus control. The impact of nonadherence on the trial findings is that any 
observed benefit of the intervention, as compared to the control, will be reduced, 
making the trial less powerful than it is planned. Newcombe [11], for example, 
discusses the implication of adherence for the analysis as well as the design and 
sample size. We discuss this at length in Chap. 8.

A policy of withdrawal from analysis because of participant nonadherence can 
lead to bias. The overwhelming reason is that participant adherence to a protocol 
may be related to the intervention. In other words, there may be an interaction 
between adherence and intervention. Certainly, if nonadherence is greater in one 
group than another, then withdrawal of nonadherent participants could lead to bias. 
Even if the frequency of nonadherence is the same for the intervention and control 
groups, the reasons for nonadherence in each group may differ and may involve 
different types of participants. The concern would always be whether the same 
types of participants were withdrawn in the same proportion from each group or 
whether an imbalance had been created. Of course, an investigator could probably 
neither confirm nor refute the possibility of bias.

The Coronary Drug Project evaluated several lipid-lowering drugs in people 
several years after a myocardial infarction. In participants on one of the drugs, 
clofibrate, total 5-year mortality was 18.2%, as compared with 19.4% in control 
participants [21, 33]. Among the clofibrate participants, those who had at least 80% 
adherence to therapy had a mortality of 15%, whereas the poor adherers had a 
mortality of 24.6% (Table 17.2). This seeming benefit from taking clofibrate was, 
unfortunately, mirrored in the group taking placebo, 15.1% vs. 28.2%. A similar 
pattern (Table 17.3) was noted in the Aspirin Myocardial Infarction Study (AMIS) 
[35]. Overall, no difference in mortality was seen between the aspirin-treated group 
(10.9%) and the placebo-treated group (9.7%). Good adherers to aspirin had a mor-
tality of 6.1%; poor adherers had a mortality of 21.9%. In the placebo group, the 
rates were 5.1 and 22%.
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A trial of antibiotic prophylaxis in cancer patients also demonstrated a relationship 
between adherence and benefit in both the intervention and placebo groups [40]. 
Among the participants assigned to intervention, efficacy in reducing fever or 
infection was 82% in excellent adherers, 64% in good adherers, and 31% in poor 
adherers. Among the placebo participants, the corresponding figures were 68%, 
56%, and 0%.

Another pattern is noted in a three-arm trial comparing two beta-blocking drugs, 
propranolol and atenolol, with placebo [36]. Approximately equal numbers of partici-
pants in each group stopped taking their medication. In the placebo group, adherers 
and nonadherers had similar mortality: 11.2 and 12.5%, respectively. Nonadherers 
to the interventions, however, had death rates several times greater than did the 
adherers: 15.9–3.4% in those on propranolol and 17.6–2.6% in those on atenolol. 
Thus, even though the numbers of nonadherers in each arm were equal, their risk 
characteristics as reflected by their morality rates were obviously different.

Pledger [46] provides an analogous example for a schizophrenia trial. Participants 
were randomized to chlorpromazine or placebo and the 1-year relapse rates were 
measured. The overall comparison was a 27.8% relapse rate on active medication 
and 52.8% for those on placebo. The participants were categorized into low or high 
adherence subgroups. Among the active medication participants, the relapse rate 
was 61.2% for low adherence and 16.8% for high adherence. However, the relapse 
rate was 74.7 and 28.0% for the corresponding adherence groups on placebo.

Another example of placebo adherence versus nonadherence is reported by 
Oakes et al. [45]. A trial of 2,466 heart attack participants compared diltiazem with 
placebo over a period of 4 years with time to first cardiac event as the primary 
outcome. Cardiac death or all-cause mortality were additional outcome measures. 
The trial was initially analyzed according to intention-to-treat with no significant 
effect of treatment. Qualitative interaction effects were found with the presence or 
absence of pulmonary congestion which favored diltiazem for patients without 
pulmonary congestion and placebo in patients with pulmonary congestion. 
Interestingly, for participants without pulmonary congestion, the hazard ratio or 
relative risk for time to first cardiac event was 0.92 for those off placebo compared 

Table 17.3 Percent mortality by study group and degree of adherence in the 
Aspirin Myocardial Infarction Study

Overall Good adherence Poor adherence

Aspirin 10.9 6.1 21.9
Placebo 9.7 5.1 22.0

Table 17.2 Percent mortality by study group and level of adherence 
in the Coronary Drug Project

Drug adherence

Overall ³80% <80%

Clofibrate 18.2 15.0 24.6
Placebo 19.4 15.1 28.2
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to those on placebo. For participants with pulmonary congestion, the hazard ratio 
was 2.86 for participants off placebo compared to those on placebo. For time to 
cardiac death and to all-cause mortality, hazard ratios exceeded 1.68 in both pulmo-
nary congestion subgroups. This again suggests that placebo adherence is a powerful 
prognostic indicator and argues for the intention-to-treat analysis.

The definition of nonadherence can also have a major impact on the analysis. 
This is demonstrated by reanalysis of a trial in breast cancer patients by Redmond 
et al. [47]. This trial compared a complex chemotherapy regimen with placebo as 
adjuvant therapy following surgery with disease-free survival as the primary out-
come. To illustrate the challenges of trying to adjust analyses for adherence, two 
measures of adherence were created. Adherence was defined as the fraction of 
chemotherapy taken while on the study to what was defined by the protocol as a 
full course. One analysis (Method I) divided participants into good adherers 
(>85%), moderate adherers (65–84%), and poor adherers (<65%). Using this defi-
nition, placebo adherers had a superior disease-free survival than moderate adherers 
who did better than poor adherers (Fig. 17.1). This pattern of outcome in the 
placebo group is similar to the CDP clofibrate example. The authors performed a 
second analysis (Method II) changing the definition of adherence slightly. In this 
case, adherence was defined as the fraction of chemotherapy taken while on study 
to what should have been taken while still on study before being taken off treatment 
for some reason. Note that the previous definition (Method I) compared 
 chemotherapy taken to what would have been taken had the participant survived to 
the end and adhered perfectly. This subtle difference in definition changed the order 
of outcome in the placebo group. Here, the poor placebo adherers had the best disease-
free survival and the best adherers had a disease-free survival in between the moderate 

Fig. 17.1 Percentage of disease free survival related to adherence levels of placebo; methods 
I and II definition of compliance in National Surgical Adjuvant Breast Program (NSABP). Three 
levels of adherence are: filled circle – Good (>85%); filled triangle – Moderate (65–84%); open 
circle – Poor (<65%) [47]
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and poor adherers. Of special importance is that the participants in this example 
were all on placebo. Thus, adherence is itself an outcome and trying to adjust one 
outcome (the primary response variable) for another outcome (adherence) can lead 
to irrational results.

Detre and Peduzzi have argued that, although as a general rule nonadherent 
participants should be analyzed according to the study group to which they were 
assigned, there can be exceptions. They presented an example from the VA coro-
nary bypass surgery trial [37]. In that trial, a number of participants assigned to 
medical intervention crossed over to surgery. Contrary to expectation, these partici-
pants were at similar risk of having an event, after adjusting for a variety of base-
line factors, as those who did not crossover. Therefore, the authors argued that the 
nonadherers should be kept in their original groups but can be censored at the time 
of crossover. This may be true, but, as seen in the Coronary Drug Project [33], 
adjustment for known variables does not always account for the observed response. 
The differences in mortality between adherers and nonadherers remained even 
after adjustment. Thus, other unknown or unmeasured variables were of critical 
importance.

Some might think that if rules for withdrawing participants are specified in 
advance, withdrawals for nonadherence are legitimate. However, the potential for 
bias cannot be avoided simply because the investigator states, ahead of time, the 
intention to withdraw participants. This is true even if the investigator is blinded to 
the group assignment of a participant at the time of withdrawal. Participants were 
not withdrawn from the analyses in the above examples. However, had a rule allowing 
withdrawal of participants with poor adherence been specified in advance, the 
results described above would have been obtained. The type of participants with-
drawn would have been different in the intervention and control groups and would 
have resulted in the analysis of noncomparable groups of adherers. Unfortunately, 
as noted, the patterns of possible bias can vary and depend on the precise definition 
of adherence. Neither the magnitude nor direction of that bias is easily assessed or 
compensated for in analysis.

Adherence is also a response to the intervention. If participant adherence to an 
intervention is poor compared to that of participants in the control group, wide-
spread use of this therapy in clinical practice may not be reasonably expected. 
An intervention may be effective, but may be of little value if it cannot be toler-
ated by a large portion of the participants. For example, in the Coronary Drug 
Project, the niacin arm showed a favorable trend for mortality, compared with 
placebo, but niacin caused “hot flashes” and was not easily tolerated [21]. The 
development of slow release formulations that reduce pharmacologic peaks has 
lessened the occurrence of side effects.

It is therefore recommended that no participants be withdrawn from analysis in 
superiority trials for lack of adherence. The price an investigator must pay for this 
policy is possibly reduced power because some participants who are included in the 
analysis may not be on optimal intervention. For limited or moderate nonadher-
ence, one can compensate by increasing the sample size, as discussed in Chap. 8, 
although doing so is costly.
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For noninferiority trials, nonadherence will push the two interventions arms to 
look more alike and thus bias toward the claim of noninferiority. Any attempt to use 
only adherers in a noninferiority trial, though, will be biased in unknown directions, 
thus rendering the results uninterpretable. Again, the best policy is to design a trial 
to have minimum nonadherence, power the trial to overcome non-preventable non-
adherence, and then accept the results using the principle of intention-to-treat.

Missing or Poor Quality Data

In many trials, participants may have data missing for a variety of reasons. Perhaps, 
they were not able to keep their scheduled clinic visits or were unable to perform 
or undergo the particular procedures or assessments. In some cases, follow-up of 
the participant was not completed as outlined in the protocol. The challenge is how 
to deal with missing data or data of such poor quality that they are in essence missing. 
One approach is to withdraw participants who have poor data completely from the 
analysis [22, 53, 54]. However, the remaining subset may no longer be representa-
tive of the population randomized and there is no guarantee that the validity of the 
randomization has been maintained in this process.

There is a vast literature on approaches to dealing with missing data [55–65]. 
Many of these methods assume that the data are missing at random; that is, the 
reasons the data are missing are not dependent on the measurement that would have 
been observed. In some contexts, this may be a reasonable assumption. For clinical 
trials, and clinical research in general, it would be difficult to confirm this assumption. 
It is, in fact, probably not a valid assumption, as missing data might, for example, 
be associated with the health status of the participant. Thus, during trial design and 
conduct, every effort must be made to minimize missing data. If the amount of 
missing data is relatively small, then the available analytic methods will probably 
be helpful. If the amount of missing data is substantial, then few, if any, methods 
will rescue the trial. In this section, we discuss some of the issues that must be kept 
in mind when analyzing a trial with missing data.

Rubin [58] provided a definition of missing data mechanisms. If data are missing 
for reasons unrelated to the measurement that would have been observed, then the 
data are “missing completely at random.” If a measure or index allows a researcher 
to estimate the probability of having missing data, say in a participant with poor 
adherence to the protocol, then using methods proposed by Rubin and others might 
allow some adjustment to reduce bias. However, adherence, as indicated earlier, is 
often associated with a participant’s outcome and attempts to adjust for adherence 
can lead to misleading results.

If participants do not adhere to the intervention and also do not return for follow-up 
visits, the primary outcome measured may not be obtained unless the outcome is 
survival or some easily ascertained event. In this situation, an intention-to-treat 
analysis is not feasible and no analysis is fully satisfactory. Because withdrawal of 
participants from the analysis is known to be problematic, one approach is to 
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“impute” or fill in the missing data such that standard analyses can be conducted. 
This is appealing if the imputation process can be done without adding bias. There 
are many procedures for imputation. Those based on multiple imputations are probably 
more robust than single imputation.

A commonly used single imputation method is to carry the last observed value 
forward. This method, also known as an endpoint analysis, requires the very strong 
and unverifiable assumption that all future observations, if they were available, 
would remain constant [46]. Although commonly used, the last observation carried 
forward method is not generally recommended [64, 65]. Using the average value 
for all participants with available data, or using a regression model to predict the 
missing value are alternatives, but in either case, the requirement that the data 
be missing at random is necessary for proper inference.

A more complex approach is to conduct multiple imputations, typically using 
regression methods, and then perform a standard analysis for each imputation 
cycle. The final analysis should take into consideration the variability across the 
imputation cycles. As with single imputation, the inference based on multiple 
imputation depends on the assumption that the data are missing at random. Other 
technical approaches are not described here, but in the context of a clinical trial, 
none is likely to be satisfactory.

Various other methods for imputing missing values have been described [55–65]. 
Examples of some of these methods are given by Espeland et al. for a trial measuring 
carotid artery thickness at multiple anatomical sites using ultrasound [54]. In diag-
nostic procedures of this type, typically not all measurements can be made. Several 
imputation methods, based on a mixed effects linear model where regression coef-
ficient and a covariance structure (i.e., variances and correlations), were estimated. 
Once these were known, this regression equation was the basis for the imputation. 
Several imputation strategies were used based on different methods of estimating the 
parameters and whether treatment differences were assumed or not. Most of the impu-
tation strategies gave similar results when the trial data were analyzed. The results 
indicated up to a 20% increase in efficiency compared to using available data in 
cross sectional averages.

Imputation techniques such as those described are useful if the data are missing 
at random; that is, the probability of missing data is not dependent on the measure-
ment that would have been observed or on the preceding measurements. 
Unfortunately, it is unlikely that data are missing at random. The best that can be 
offered, therefore, is a series of analyses, each exploring different approaches to 
the imputation problem. If all, or most, are in general agreement qualitatively, then 
the results are more persuasive. All analyses should be presented, not just the one 
with the preferred results.

In long-term trials, participants may be lost to follow-up. In this situation, the 
status of the participant with regard to any response variable cannot be determined. 
If mortality is the primary response variable and if the participant fails to return to 
the clinic, his survival status may still be obtained. If a death has occurred, the date 
of death can be ascertained. In the Coronary Drug Project [21] where survival expe-
rience over 60 months was the primary response variable, four of 5,011 participants 
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were lost to follow-up (one in a placebo group, three in one treatment group, and 
none in another treatment group). The Lipid Research Clinics Coronary Primary 
Prevention Trial [38] followed over 3,800 participants for an average of 7.4 years 
and was able to assess vital status on all. The Physicians’ Health study of over 
20,000 US male physicians had complete follow-up for survival status [66]. Many 
other large simple trials, such as GUSTO [32], have similar nearly complete follow-up 
experience. Obtaining such low loss to follow-up rates, however, required special 
effort. In the Women’s Health Initiative (WHI), one portion evaluated the possible 
benefits of hormone replacement therapy (estrogen plus progestin) compared with 
placebo in postmenopausal women. Of the 16,025 participants, 3.5% were lost to 
follow-up and did not provide 18 month data [67].

For some conditions, e.g., trials of treatment for substance abuse, many partici-
pants fail to return for follow-up visits, and missing data can be 25–30% or even 
more. Efforts to adjust for missing data must be made, recognizing that biases may 
very well exist.

An investigator may not be able to obtain any information on some kinds of 
response variables. For example, if a participant is to have blood pressure measured 
at the last follow-up visit 12 months after randomization and the participant does 
not show up for that visit, this blood pressure can never be retrieved. Even if the 
participant is contacted later, the later measurement does not truly represent the 
12-month blood pressure. In some situations, substitutions may be permitted, but in 
general, this will not be a satisfactory solution. An investigator needs to make every 
effort to have participants come in for their scheduled visits in order to keep losses 
to follow-up at a minimum. In the Intermittent Positive Pressure Breathing (IPPB) 
trial, repeated pulmonary function measurements were required for participants 
with chronic obstructive pulmonary disease [53]. However, some participants 
who had deteriorated could not perform the required test. A similar problem existed 
for the MILIS where infarct size could not be obtained in many of the sickest 
participants [22].

Individuals with chronic obstructive pulmonary disease typically decline in their 
pulmonary function and this decline may lead to death, as happened to some partici-
pants in the IPPB trial. In this case, the missing data were not missing at random and 
censoring was said to be informative. One simple method for cases such as the IPPB 
study is to define a decreased performance level considered to be a clinical event. 
Then the analysis can be based on time to the clinical event of deterioration or death, 
incorporating both pieces of information. Survival analysis, though, assumes that 
loss of follow-up is random and independent of risk of the event. Methods relaxing 
the missing at random assumption have been proposed [68, 69], but require other 
strong assumptions, the details of which are beyond the scope of this text.

If the number of participants lost to follow-up differs in the study groups, the 
analysis of the data could be biased. For example, participants who are taking a new 
drug that has side effects may, as a consequence, miss scheduled clinic visits. Events 
may occur but be unobserved. These losses to follow-up would probably not be the 
same in the control group. In this situation, there may be a bias favoring the new drug. 
Even if the number lost to follow-up is the same in each study group, the possibility 
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of bias still exists because different reasons may be involved. The participants who 
are lost in each group may have quite different prognoses and outcomes.

An example of differential follow-up was reported by the Comparison of Medical 
Therapy, Pacing, and Defibrillation in Chronic Heart Failure (COMPANION) trial 
[70]. COMPANION compared a cardiac pacemaker or a pacemaker plus defibrilla-
tor with best pharmacologic treatment in people with chronic heart failure. Over 
1,500 participants were randomized. Two primary outcomes were assessed; death 
and death plus hospitalization. Individuals randomized to one of the device arms did 
not know to which device they had been assigned, but those on the pharmacologic 
treatment arm were aware that no device had been installed. During the course of the 
trial, the pacemaker plus defibrillator devices, made by two different manufacturers, 
were approved by a regulatory agency. As a result, participants in the pharmacologic 
treatment arm began to drop-out from the trial and some also withdrew their consent. 
Many requested one of the newly approved devices. Thus, when the trial was nearing 
completion, the withdrawal rate was 26% in the pharmacologic treatment arm and 
6–7% in the device arms. Additionally, no further follow-up information could be 
collected on those who withdrew consent. Clearly, censoring at the time of with-
drawal was not random and the possibility that it was related to disease status could 
not be ruled out, thus creating the possibility of serious bias. This situation could 
have jeopardized an otherwise well designed and conducted trial in people with a 
serious medical condition. However, the investigators initiated a complicated 
process of reconsenting the participants to allow for collection of the primary outcomes. 
After completing this process, assessment of the status for death plus hospitalization 
and vital status were 91 and 96%, respectively, in the pharmacologic treatment group. 
Outcome ascertainment for the two device arms was 99% or better. The final results 
demonstrated that both the pacemaker and the defibrillator plus pacemaker 
reduced death plus hospitalization and further that the defibrillator plus pace-
maker reduced mortality. These results were important in the treatment of chronic heart 
failure. However, not correcting for the initial differential loss to follow-up would 
have rendered the COMPANION trial data perhaps uninterpretable. In Fig. 17.2, the 
Kaplan–Meier curves for mortality for the two intervention arms are provided with 
the most complete data available.

Often, protocol designs call for follow-up to terminate at some period, for 
example 7, 14, or 30 days, after a participant has stopped adhering to his or her 
intervention, even though the intended duration of intervention would not have 
ended. The concept is that “off intervention” means “off study”; i.e., assessment for 
nonadherent participants ends when intervention ends. We do not endorse this concept. 
Although time to event analysis may be censored at the time of last follow-up, 
going off intervention or control is not likely random and may be related to partici-
pant health status. Important events, including serious adverse events, may occur 
beyond the follow-up period and might be related to the intervention. As noted 
above, though, survival analysis assumes that censoring is independent of the pri-
mary event. The practice of not counting events at the time of, or shortly after, 
intervention discontinuation is all too common, and can lead to problems in the 



359Missing or Poor Quality Data

interpretation of the final results. An instructive example is the Adenomatous Polyp 
Prevention on Vioxx (APPROVe) trial [71]. This randomized double-blind trial 
compared a cyclo-oxygenase (COX)-II inhibitors with placebo in people with a 
history of colorectal adenomas. Previous trials of COX-II inhibitors had raised 
concern regarding long-term cardiovascular risk. Thus, while the APPROVe trial 
was a cancer prevention trial, attention also focused on cardiovascular events, in 
particular thrombotic events and cardiovascular death, nonfatal myocardial infarc-
tion, and nonfatal stroke. However, participants who stopped taking their medica-
tion during the trial were not followed beyond 14 days after the time of 

Fig. 17.2 In the COMPANION trial, Kaplan–Meier estimates of (a) the time to primary end point 
of death or hospitalization for any cause (b) the time to the secondary end point of death from any 
cause [70]. Reprinted with the permission of the Massachusetts Medical Society, copyright © 
2004, all rights reserved. 
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discontinuation. The Kaplan–Meier cardiovascular risk curve is shown in Fig. 17.3. 
Note that for the first 18 months, the two curves are similar and then begin to 
diverge. Controversy arose as to whether there was an 18-month lag time in the 
occurrence of cardiovascular events for this particular COX-II inhibitor [72, 73].

Due to the controversy, the investigators and sponsor launched an effort to collect 
information on all trial participants for up to a year beyond the close of the trial. 
This extended follow-up, referred to here as APPROVe+1, was able to collect 
selected cardiovascular events of nonfatal myocardial infarction, nonfatal stroke, 
and cardiovascular death [74], as shown in Fig. 17.4. The time to event curves 
begin to separate from the beginning and continue throughout the extended follow-
up, with a hazard ratio of 1.8 (p = 0.006). There was a corresponding nonsignificant 
increase in mortality.

Censoring follow-up when participants go off their intervention is a common 
error that leads to problems like those encountered by the APPROVe trial. Going 
off intervention, and thus censoring follow-up at some number of days afterwards, 
is not likely to be independent of the disease process or how a participant is doing. 
At least, it would be difficult to demonstrate such independence. Yet, survival analysis 

Fig. 17.3 APPROVe Kaplan–Meier estimates of time to event from the AntiPlatelet Trialists’ 
Collaborative (APTC) outcomes (death from cardiovascular causes, nonfatal myocardial infarc-
tion or nonfatal stroke) with censoring 14 days after participants stopped therapy [74]. Reproduced 
with the permission of Elsevier Ltd. for Lancet
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and most other analyses assume that the censoring is independent. The principle 
lesson here is that “off intervention should not mean off study.”

An outlier is an extreme value significantly different from the remaining values. 
The concern is whether extreme values in the sample should be excluded from the 
analysis. This question may apply to a laboratory result, to the data from one of 
several areas in a hospital or from a clinic in a multicenter trial. Removing outliers 
is not recommended unless the data can be clearly shown to be erroneous. Even 
though a value may be an outlier, it could be correct, indicating that on occasions 
an extreme result is possible. This fact could be very important and should not be 
ignored. Long ago, Kruskal [75] suggested carrying out an analysis with and 
without the “wild observation.” If the conclusions vary depending on whether the 
outlier values are included or excluded, one should view any conclusion cautiously. 
Procedures for detecting extreme observations have been discussed [76–79], and 
the publications cited can be consulted for further detail.

An interesting example given by Canner et al. [78] concerns the Coronary 
Drug Project. The authors plotted the distributions of four response variables for 
each of the 53 clinics in that multicenter trial. Using total mortality as the 

Fig. 17.4 APPROVe Kaplan–Meier estimates of time to event for the AntiPlatelet Trialists’ 
Collaborative (APTC) outcome (death from cardiovascular causes, nonfatal myocardial infarction 
or nonfatal stroke) counting all events observed for an additional year of follow-up after the trial 
was initially terminated [74]. Reproduced with the permission of Elsevier Ltd. for Lancet
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response variable, no clinics were outlying. When nonfatal myocardial infarction 
was the outcome, only one clinic was an outlier. With congestive heart failure and 
angina pectoris, response variables which are probably less well defined, there 
were nine and eight outlying clinics, respectively.

Competing Events

Competing events are those that preclude the assessment of the primary response 
variable. They can reduce the power of the trial by decreasing the number of partici-
pants available for follow-up. If the intervention can affect the competing event, 
there is also the risk of bias. In some clinical trials, the primary response variable 
may be cause-specific mortality, such as death due to myocardial infarction or sudden 
death, rather than total mortality [80–83]. The reason for using cause-specific death 
as a response variable is that a therapy often has specific mechanisms of action that 
may be effective against a disease or condition. In this situation, measuring death 
from all causes, most of which are not likely to be affected by the intervention, can 
“dilute” the results. For example, a study drug may be antiarrhythmic and thus sudden 
cardiac death might be the selected response variable. Other causes of death such as 
cancer and accidents would be competing events.

Even if the response variable is not cause-specific mortality, death may be a factor 
in the analysis. This is particularly an issue in long term trials in the elderly or high 
risk populations. If a participant dies, future measurements will be missing. 
Analysis of nonfatal events in surviving participants has the potential for bias, 
especially if the mortality rates are different in the two groups.

In a study in which cause-specific mortality is the primary response variable, 
deaths from other causes are treated statistically as though the participants were lost 
to follow-up from the time of death (Chap. 15), and these deaths are not counted in 
the analysis. In this situation, the analysis, however, must go beyond merely exam-
ining the primary response variable. An intervention may or may not be effective 
in treating the condition of interest but could be harmful in other respects. 
Therefore, total mortality should be considered as well as cause-specific fatal 
events. Similar considerations need to be made when death occurs in studies using 
nonfatal primary response variables. This can be done by considering tables that 
show the number of times the individual events occur, one such event per person. 
No completely satisfactory solution exists for handling competing events. At the very 
least, the investigator should report all major outcome categories; for example, total 
mortality, as well as cause-specific mortality and morbid events.

In many cases, there may be recurring events. Many trials simply evaluate the 
time to the first event and do not count the additional events in the time to event 
analysis. Tables may show the total number of events in each intervention arm. 
Some attempts to further analyze recurrent events have been made, using for 
example the data from the COMPANION trial [70, 82]. These methods are compli-
cated, however, and will not be covered in this text.
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Composite Outcomes

In recent years, many trials have used combinations of clinical and other outcomes 
as a composite response variable [80–83]. One major motivation is to increase the 
event rate and thus reduce the sample size that might otherwise have been required 
had just one of the components been selected as the primary outcome. Another 
motivation is to combine events that have a presumed common etiology and thus 
get an overall estimate of effect. The sample size is usually not based on any single 
component.

There are challenges in using a composite outcome [84, 85]. The compo-
nents may not have equal weight or clinical importance, especially as softer 
outcomes are added. The components may go in opposite directions or at least 
not be consistent in indicating intervention effect. One component may dominate 
the composite. Results with any single component are based on a smaller num-
ber of events and thus the power for that component is greatly reduced. Rarely 
do we find significance for a component, nor should we expect it in general. 
Regardless of the composition of the composite, analyses should be conducted 
for each component, or in some cascading sequence. For example, if the com-
posite were death, myocardial infarction, stroke or heart failure hospitalization, 
the analysis sequence might be death, death plus myocardial infarction or 
stroke, and death plus hospitalization. The reason for including death is to take 
into account competing risk of death for the other components, in addition to 
its obvious clinical importance.

As pointed out in Chap. 3, it is essential that follow-up continue after the first 
event in the composite outcome occurs. Analysis will include looking at the contri-
bution of each component to the overall but should also include time to event for 
each component separately. As indicated, if follow-up does not continue, only partial 
results are available for each component and analysis of those events separately 
could be misleading.

There are several examples where the use of a composite such as death, 
myocardial infarction, and stroke has been used as a primary or leading sec-
ondary outcome [28–31]. These outcomes are all clinically relevant. In these 
trials, the outcomes all trended in the same direction. However, that is not 
always the case.

In the Pravastatin or Atorvastatin Evaluation and Infection Therapy (PROVE 
IT) trial, the 80 mg atorvastatin arm was more effective than the 40 mg pravastatin 
arm in reducing the incidence of death, myocardial infarction, stroke, required 
hospitalization due to unstable angina and revascularization [83]. Stroke results, 
one of the key components, went in the opposite direction. These results compli-
cate the interpretation. Should investigators think that the atorvastatin improves the 
composite or just those components that are in the same direction as the composite? 
As would be expected, the differences for the components were not, in themselves, 
statistically significant.
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Another interesting example is provided by the WHI, which was a large factorial 
design trial in postmenopausal women [67]. As discussed earlier and in Chap. 16, 
one part involved hormone replacement therapy which contained two strata, 
women with a uterus and those without. Women with a uterus received either estro-
gen plus progestin or matching placebo; those without a uterus received estrogen 
alone or a matching placebo. Due to the multiple actions of hormone replacement 
therapy, one response variable was a global outcome mortality, coronary heart dis-
ease, bone loss reflected by hip fracture rates, breast cancer, colorectal cancer, 
pulmonary embolism, and stroke. As seen in Fig. 16.6b, for the estrogen plus pro-
gestin stratum, there was essentially no effect on mortality and a small but nonsig-
nificant effect in the global index, when compared to placebo. However, as shown 
in Fig. 16.6a, the various components went in different directions. Hip fracture and 
colorectal cancer had a favorable response to hormone replacement therapy. 
Pulmonary embolism, stroke, and coronary heart disease went in an unfavorable 
direction. Thus, any interpretation of the global index, which is a composite, 
requires careful examination of the components. Of course, few trials would have 
been designed with adequate power for the individual components so that the inter-
pretation must be qualitative, looking for consistency and biological plausibility.

Experience suggests that composite outcome variables should be used cau-
tiously and only include those components that have relatively equal clinical impor-
tance, frequency, and anticipated response to the presumed mechanism of action 
of the intervention [84]. As softer and less relevant outcomes are added, the interpre-
tation becomes less clear, particularly if the less important component occurs more 
frequently than others, driving the overall result. Significance by any individual 
component cannot be expected, but there should be a plausible consistency across 
the components.

Covariate Adjustment

The goal in a clinical trial is to have study groups that are comparable except for 
the intervention being studied. Even if randomization is used, all of the prognostic 
factors may not be perfectly balanced, especially in smaller studies. Even if no 
prognostic factors are significantly imbalanced in the statistical sense, an investigator 
may, nevertheless, observe that one or more factors favor one of the groups. In either 
case, covariate adjustment can be used in the analysis to minimize the effect of the 
differences. However, covariate adjustment is not likely to eliminate the effect of 
these differences. Covariance analysis for clinical trials has been reviewed in 
numerous articles [86–107].

Adjustment also reduces the variance in the test statistic. If the covariates are 
highly correlated with outcome, this can produce more sensitive analyses. The specific 
adjustment procedure depends on the type of covariate being adjusted for and the 
type of response variable being analyzed. If a covariate is discrete, or if a continuous 
variable is converted into intervals and made discrete, the analysis is sometimes 
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referred to as “stratified.” A stratified analysis, in general terms, means that the 
study participants are subdivided into smaller, more homogeneous groups, or 
strata. A comparison of study groups is made within each stratum and then aver-
aged over all strata to achieve a summary result for the response variable. This 
result is adjusted for group imbalances in the discrete covariates. If a response vari-
able is discrete, such as the occurrence of an event, the stratified analysis might 
take the form of a Mantel–Haenszel statistic described briefly in the Appendix to 
this chapter.

If the response variable is continuous, the stratified analysis is referred to as 
analysis of covariance. This uses a model which, typically, is linear in the covari-
ates. A simple example for a response Y and covariate X would be 
Y = a

j
 + b(X − m) + error where b is a coefficient representing the importance of the 

covariate X and is assumed to be the same in each group, m is the mean value of X, 
and a

j
 is a parameter for the contribution of the overall response variable jth group 

(e.g., j = 1 or 2). The basic idea is to adjust the response variable Y for any differences 
in the covariate X between the two groups. Under appropriate assumptions, the advan-
tage of this method is that the continuous covariate X does not have to be divided 
into categories. Further details can be found in statistics textbooks [1–8]. If time to 
an event is the primary response variable, then survival analysis methods that allow 
for adjustments of discrete or continuous covariates may be used [100]. However, 
whenever models are employed, the investigator must be careful to evaluate the 
assumptions required and how closely they are met. Analysis of covariance can be 
attractive, but may be abused if linearity is assumed when the data are nonlinear, if 
the response curve is not parallel in each group, or if assumptions of normality are 
not met [90]. If measurement errors in covariates are substantial, the lack of preci-
sion can be increased [99]. For all of these reasons, covariate adjustment models 
may be useful in the interpretation of data, but should not be viewed as absolutely 
correct.

Regardless of the adjustment procedure, covariates should be measured at baseline. 
Except for certain factors such as age, sex, or race, any variables that are evaluated 
after initiation of intervention should be considered as response variables. Group 
comparisons of the primary response variable, adjusted for other response vari-
ables, are discouraged. Interpretation of such analyses is difficult because group 
comparability may be lost.

Surrogates as Covariates

Adjustment for various surrogate outcomes may be proposed. In a trial of clofibrate 
[105], the authors reported that those participants who had the largest reduction in 
serum cholesterol had the greatest clinical improvement. However, reduction in 
cholesterol is probably highly correlated with adherence to the intervention regi-
men. Since, as discussed earlier, adherers in one group may be different from adherers 
in another group, analyses that adjust for a surrogate for adherence can be biased. 
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This issue was addressed in the Coronary Drug Project [33]. Adjusted for baseline 
factors, the 5-year mortality was 18.8% in the clofibrate group (N = 997) and 20.2% 
in the placebo group (N = 2,535), an insignificant difference. For participants with 
baseline serum cholesterol greater than or equal to 250 mg/dl, the mortality was 
17.5 and 20.6% in the clofibrate and placebo groups, respectively. No difference in 
mortality between the groups was noted for participants with baseline cholesterol 
of less than 250 mg/dl (20.0% vs. 19.9%). Those participants with lower baseline 
cholesterol in the clofibrate group who had a reduction in cholesterol during the 
trial had 16.0% mortality, as opposed to 25.5% mortality for those with a rise in 
cholesterol (Table 17.4). This would fit the hypothesis that lowering cholesterol is 
beneficial. However, in those participants with high baseline cholesterol, the situation 
was reversed. An 18.1% mortality was seen in those who had a fall in cholesterol, 
and a 15.5% mortality was noted in those who had a rise in cholesterol. The best 
outcome, therefore, appeared to be in participants on clofibrate whose low baseline 
cholesterol dropped or whose high baseline cholesterol increased. As seen earlier, 
adherence can affect outcomes in unexpected ways, and the same is true of surro-
gates for adherence.

Modeling the impact of adherence on a risk factor and thus on the response has 
also received attention [89, 93]. Regression models have been proposed that attempt 
to adjust outcome for the amount of risk factor change that could have been attained 
with optimum adherence. One example of this was suggested by Efron and Feldman 
[89] for a lipid research study. However, Albert and DeMets [93] showed that these 
models are very sensitive to assumptions about the independence of adherence and 
health status or response. If these assumptions using these regression models are 
violated, uninterpretable results emerge, such as that for the chlofibrate and serum 
cholesterol example described above.

Clinical trials of cancer treatment commonly analyze results by comparing 
responders to nonresponders [86, 87]. That is, those who go into remission or have a 
reduction in tumor size are compared to those who do not. One early survey indicated 
that such analyses were done in at least 20% of published reports [90]. The authors 
of that survey argued that statistical problems, due to lack of random assignment, and 
methodological problems, due both to classification of response and inherent differ-
ences between responders and nonresponders, can occur. These will often yield 
misleading results, as shown by Anderson et al. [87]. They pointed out that partici-
pants “who eventually become responders must survive long enough to be evaluated 
as responders.” This factor can invalidate some statistical tests that compare responders 

Table 17.4 Percent 5-year mortality in the clofibrate group, by baseline 
cholesterol and change in cholesterol in the Coronary Drug Project

Baseline cholesterol

<250 mg/dl ³250 mg/dl

Total 20.0 17.5
Fall in cholesterol 16.0 18.1
Rise in cholesterol 25.5 15.5
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to nonresponders. Those authors present two statistical tests that avoid bias. They 
note, though, that even if the tests indicate a significant difference in survival between 
responders and nonresponders, it cannot be concluded that increased survival is due 
to tumor response. Thus, aggressive intervention, which may be associated with better 
response, cannot be assumed to be better than less intensive intervention, which may 
be associated with poorer response. Anderson and colleagues state that only a truly 
randomized comparison can say which intervention method is preferable. What is 
unsaid, and illustrated by the Coronary Drug Project examples, is that even comparison 
of good responders in the intervention group with good responders in the control can 
be misleading, because the reasons for good response may be different.

Morgan [44] provided a related example of comparing duration of response in 
cancer patients, where duration of response is the time from a favorable response 
such as tumor regression (partial or total) to remission. This is another form of 
defining a subgroup of posttreatment outcome, that is, tumor response. In a trial 
comparing two complex chemotherapy regiments (A vs. B) in small cell lung cancer, 
the tumor response rates were 64 and 85%, with median duration of 245 days and 
262 days, respectively. When only responders were analyzed, the slight imbalance 
in prognostic factors was substantially increased. Extensive disease was evident at 
baseline in 48 and 21% of the two treatment responder groups. Thus, while it may 
be theoretically possible to adjust for prognostic factors, in practice, such adjust-
ment may decrease bias, but will not eliminate it. Because not all prognostic factors 
are known, any model is only an approximation to the true relationship.

The Cox proportional hazards regression model for the analysis of survival data 
(Chap. 15) allows for covariates in the regression to vary with time [88]. This has 
been suggested as a way to adjust for factors such as adherence and level of 
response. It should be pointed out that, like simple regression models, this is vulnerable 
to the same biases described earlier in this chapter. For example, if cholesterol level 
and cholesterol reduction in the CDP example were used as time dependent covariates 
in the Cox model, the estimator of treatment effect would be biased due to the 
effects shown in Table 17.4.

Rosenbaum [92] provides a nice overview of adjustment for concomitant variables 
that have been affected by treatment in both observational and randomized studies. 
He states that “adjustments for posttreatment concomitant variables should be avoided 
when estimating treatment effects except in rather special circumstances, since adjust-
ments themselves can introduce a bias where none existed previously.”

A number of additional methodologic attempts to adjust for adherence have also 
been conducted. Newcombe [11], for example, suggested adjusting estimates of 
intervention effect on the extent of nonadherence. Robins and Tsiatis [106] proposed 
a causal inference model. Lagakos et al. [43] evaluated censoring survival time, or 
time to an event, at the point when treatment is terminated. The rationale is that 
participants are no longer able to completely benefit from the therapy. However, the 
hazard ratio estimated by this approach is not the hazard that would have been 
estimated if participants had not terminated treatment. The authors stated that it is 
not appropriate to evaluate treatment benefit by comparing the hazard rates esti-
mated by censoring for treatment termination [43].
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Baseline Variables as Covariates

The issue of stratification was first raised in the discussion of randomization 
(Chap. 6). For large studies, the recommendation was that stratified randomization 
is usually unnecessary because overall balance would nearly always be achieved 
and that stratification would be possible in the analysis. For smaller studies, base-
line adaptive methods could be considered but the analysis should include the 
covariates used in the randomization. In a strict sense, analysis should always be 
stratified if stratification was used in the randomization. In such cases, the adjusted 
analysis should include not only those covariates found to be different between the 
groups, but also those stratified during randomization. Of course, if no stratification 
is done at randomization, the final analysis is less complicated since it would 
involve only those covariates that turn out to be imbalanced or to be of special interest 
associated with the outcomes.

As stated in Chap. 6, randomization tends to produce comparable groups for 
both measured and unmeasured baseline covariates. However, not all baseline 
covariates will be closely matched. Adjusting treatment effect for these baseline dis-
parities continues to be debated. Canner [96] describes two points of view, one 
which argues that “if done at all, analyses should probably be limited to covariates 
for which there is a disparity between the treatment groups and that the unadjusted 
measure is to be preferred.” The other view is “to adjust on only a few factors that 
were known from previous experience to be predictive.” Canner [96], as well as 
Beach and Meier [94], indicate that even for moderate disparity in baseline com-
parability, or even if the covariates are moderately predictive, it is possible for 
covariate adjustment to have a nontrivial impact on the measure of treatment 
effect. However, Canner [96] also points out that it is “often possible to select 
specific covariates out of a large set in order to achieve a desired result.” In addi-
tion, he shows that this issue is true for both small and large studies. For this rea-
son, it is critical that the process for selecting covariates be specified in the 
protocol and adhered to in the primary analyses. Other adjustments may be used 
in exploratory analyses.

Another issue is testing for covariate interaction in a clinical trial [95, 97, 101, 
102, 107]. Treatment-covariate interaction is defined when the response to treatment 
varies according to the value of the covariate [95]. Peto [107] defines  treatment 
covariate interactions as quantitative or qualitative. Quantitative interactions indicate 
that the magnitude of treatment effect varies with the covariate but still favors the 
same intervention (Fig. 17.5a). Qualitative interaction involves a change in the bet-
ter intervention as the covariate changes in value (Fig. 17.5b). A quantitative inter-
action, for example, would be if the benefit of treatment for blood pressure on 
mortality varied in degree by the level of baseline blood pressure but still favoring 
the same intervention (See Fig. 17.5a). A qualitative interaction would exist if low-
ering blood pressure was beneficial for severe hypertension, but less beneficial or 
even harmful for mild hypertension. Intervention effects can vary by chance across 
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levels of the covariate, even changing direction, so a great deal of caution must be 
taken in the interpretation. One can test formally for interaction, but requiring a sig-
nificant interaction test is much more cautious than reviewing the magnitude of 
intervention effect within each subgroup. Byar [95] presents a nice illustration 
example shown in Table 17.5. Two treatments, A and B, are being compared by 
the difference in mean response, = -A BY X X , and S is the standard error of Y. 
In the upper panel, the interaction test is not significant, but examination of the 
subgroups is highly suggestive of interaction. The lower panel is more convincing 
for interaction, but we still need to examine each subgroup to understand what is 
going on.

Fig. 17.5 Two types of intervention–covariate interactions [107]
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Methods have been proposed for testing for overall interactions [101, 102]. 
However, Byar’s concluding remarks [95] are noteworthy when he says,

one should look for treatment-covariate interactions, but, because of the play of chance in 
multiple comparisons, one should look very cautiously in the spirit of exploratory data 
analysis rather than that of formal hypothesis testing. Although the newer statistical methods 
may help decide whether the data suffice to support a claim of qualitative interactions and 
permit a more precise determination of reasonable p values, it seems to me unlikely that 
these methods will ever be as reliable a guide to sensible interpretation of data as will medical 
plausibility and replication of the findings in other studies. We are often warned to specify 
the interactions we want to test in advance in order to minimize the multiple comparisons 
problem, but this is often impossible in practice and in any case would be of no help in 
evaluating unexpected new findings. The best advice remains to look for treatment-covariate 
interactions but to report them skeptically as hypotheses to be investigated in other studies.

As indicated in Chap. 6, the randomization in multicenter trials should be stratified 
by clinic. The analysis of such a study should, strictly speaking, incorporate the clinic 
as a stratification variable. Furthermore, the randomization should be blocked in order 
to achieve balance over time in the number of participants randomized to each group. 
These “blocks” are also strata and, ideally, should be included in the analysis as a covari-
ate. However, there could be a large number of strata, since there may be many clinics 
and the blocking factor within any clinic is usually anywhere from four to eight par-
ticipants. The use of these blocking covariates is probably not necessary in the analysis. 
Some efficiency will be lost for the sake of simplicity, but the sacrifice should be small.

As Fleiss [12] describes, clinics differ in their demography of participants and 
medical practice as well as adherence to all aspects of the protocol. These factors 
are likely to lead to variation in treatment response from clinic to clinic. In the 
BHAT [20], most, but not all, of the 30 clinics showed a trend for mortality benefit 
from propranolol. A few indicated a negative trend. In the AMIS [103], data from 
a few clinics suggested a mortality benefit from aspirin although most clinics indi-
cated little or no benefit. Most reported analyses probably do not stratify by clinic, 
but simply combine the results of all clinics. However, at least one of the primary 
analyses should average within-clinic differences, an analysis that is always valid, 
even in the presence of clinic-treatment interaction [101].

Table 17.5 Examples of apparent treatment-covariate interactions [95]. 
Let = -A BY X X

Statistic SE of Y P value (2 tail)

Unconvincing
Overall test Y = 2S S 0.045
Subsets Y

1
 = 3S 2S 0.034

Y
2
 = 1S 2S 0.480

Interaction Y
1
 − Y

2
 = 2S 2S 0.317

More convincing

Overall test Y = 2S S 0.045

Subsets Y
1
 = 4S 2S 0.005

Y
2
 = 0 2S 1.000

Interaction Y
1
 − Y

2
 = 4S 2S 0.045
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Subgroup Analyses

While covariance or stratified analysis adjusts the overall comparison of main 
outcomes for baseline variables, another common analytic technique is to subdivide 
or subgroup the enrolled participants [108–123]. Here, the investigator looks specifi-
cally at the intervention-control comparison within one or more particular subgroups 
rather than the overall comparison. One of the most frequently asked questions during 
the design of a trial and when the results are analyzed is, “Among which group of 
participants is the intervention most beneficial or harmful?” It is important that 
subgroups be examined. Clinical trials require considerable time and effort to 
conduct, and the resulting data deserve maximum evaluation. The hope is to refine 
the primary hypothesis and specify to whom, if anyone, the intervention should 
be recommended. Nevertheless, care must be exercised in the interpretation of 
subgroup findings. As the number of subgroups increases, the potential for chance 
findings increases due to multiple comparisons [123]. As discussed earlier in this 
chapter, categorization of participants by any outcome variable, e.g., adherence, 
can lead to biased conclusions. Only baseline factors are appropriate for use in 
defining subgroups.

Subgroups may be identified in several ways that affect the strength of their 
results. First, subgroup hypotheses may be specified in the study protocol. Because 
these are defined in advance, they have the greatest credibility. There is likely to be, 
however, low power for detecting differences in subgroups. Therefore, investigators 
should not pay as much attention to statistical significance for subgroup questions 
as they do for the primary question. Recognizing the low chance of seeing signifi-
cant differences, descriptions of subgroup effects are often qualitative. On the other 
hand, testing multiple questions can increase the chance of a Type I error. Therefore, 
if one were to perform tests of significance on a large number of subgroup analyses, 
there will be an increased  probability of false positive results unless adjustments are 
made. Even in this scenario, there are reasons to be cautious as illustrated by the 
Prospective Randomized Amlodipine Survival Evaluation Study (PRAISE), a large 
multicenter trial [115]. In this trial, participants with chronic heart failure were 
stratified by ischemic and nonischemic etiology. While the primary outcome of 
death or cardiovascular hospitalization was nonsignificant and the secondary out-
come of overall survival outcome was nearly significant (p = 0.07), almost all of the 
risk reduction was in the nonischemic subgroup. The risk reduction was 31% for 
the primary outcome (p = 0.04) and 46% for mortality (p < 0.001). However, the 
more favorable result was expected to be in the ischemic subgroup, not the nonis-
chemic subgroup. Thus, the investigators recommended that a second trial be con-
ducted in the patient population with nonischemic chronic heart failure using a 
nearly identical protocol to confirm this impressive subgroup result [115]. The 
results of the PRAISE-II trial proved disappointing with no reduction in either the 
primary or secondary outcome [116]. Thus, the previous predefined subgroup result 
could not be confirmed.

Some subgroups may be implied, but may not be explicitly stated in the protocol. 
For example, if randomization is stratified by age, sex, or stage of disease, it might 
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be reasonable to infer that subgroup hypotheses related to those factors were in fact 
considered in advance. Of course, the same problems in interpretation apply here 
as with formally prespecified subgroups.

A third type of analysis concerns subgroups identified by other, similar trials. If 
one study reports that the observed difference between intervention and control 
appears to be concentrated in a particular subgroup of participants, it is appropriate 
to see if the same findings occur in another trial, even though that subgroup was not 
prespecified. Problems here include comparability of definition. It is unusual for 
different trials to have baseline information sufficiently similar to allow for charac-
terization of identical subgroups.

On occasion, during the monitoring of a trial, particular subgroup findings may 
emerge and be of special interest. If additional participants remain to be enrolled 
into the trial, one approach is to test the new subgroup hypothesis in the later par-
ticipants. With small numbers of participants, it is unlikely that significant differences 
will be noted. If, however, the same pattern emerges in the newly created subgroup, 
the hypothesis is considerably strengthened.

The weakest type of subgroup analysis involves posthoc analysis, sometimes 
referred to as “data-dredging” or “fishing.” Such analysis is determined by the 
data themselves. Because many comparisons are theoretically possible, tests of 
significance become difficult to interpret and should be challenged. Such analy-
ses should serve primarily to generate hypotheses for evaluation in other trials. 
An example of subgrouping that was challenged comes from a study of diabetes 
in Iceland. Male children under the age of 14 and born in October were claimed 
to be at highest risk of ketosis-prone diabetes. Goudie [121] challenged whether 
the month of October emerged from poststudy analyses biased by knowledge of 
the results. The ISIS-2 trial [114] illustrated a spurious subgroup finding that sug-
gested treatment benefit of aspirin after myocardial infarction was not present in 
individuals born under Gemini or Libra astrological signs. A similar example 
[118] suggests twice as many participants with bronchial carcinoma were born in 
the month of March (p < 0.01) although this observation could not be reproduced 
[119, 120].

A number of trials of beta-blocking drugs were conducted in people who had a 
myocardial infarction. One found that the observed benefit was restricted to partici-
pants with anterior infarctions [108]. Another claimed improvement only in par-
ticipants 65 years or younger [109]. In the BHAT, it was observed that the greatest 
relative benefit of the intervention was in participants with complications during 
the infarction [110]. These subgroup findings however, were not consistently con-
firmed in other trials [113].

An interesting posthoc subgroup analyses was reported by the Metoprolol CR/
XL Randomized Intervention Trial (MERIT) [122]. This trial, which evaluated the 
effect of a beta-blocker in participants with chronic heart failure, had two primary 
outcomes. One was all-cause mortality and the other was death plus hospitalization. 
MERIT was terminated early by the monitoring committee due to a highly significant 
reduction in mortality, as shown in Fig. 17.6a, and similar reductions in death plus 
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hospitalization. The results are remarkably consistent across all of the predefined 
subgroups for mortality, mortality plus hospitalization, and mortality plus heart 
failure hospitalization as shown in Fig. 17.6b. Moreover, the results were very con-
sistent with those from two other beta-blocker trials [28, 30], as shown in Fig. 17.7a, 
b. However, post hoc analyses during review by regulatory agencies compared 
results among countries. These results are shown in Fig. 17.6c. Of note is that for 
mortality, the relative risk in the United States slightly favors placebo, in contrast 
to the mortality results for the trial as a whole. With respect to outcomes of mortal-
ity plus hospitalization, and mortality and hospitalization for heart failure, the U.S. 
data are consistent with the overall trial results. As noted by Wedel et al. [122], the 
analysis for interaction depends on how the regional subgroups are formed. 
Whether the observed regional difference is due to chance or real has been debated, 
but Wedel and colleagues argued that is not consistent with other external data, not 
internally consistent within MERIT and not biologically plausible, and thus is most 
likely due to chance. This result does, however, point out the risks of posthoc sub-
group analyses.

Regardless of how subgroups are selected, several factors can provide support-
ing evidence for the validity of the findings. As mentioned, similar results obtained 
in several studies strengthen interpretation. Internal consistency within a study is 
also a factor. If similar subgroup results are observed at most of the sites of a 
multicenter trial, they are more likely to be true. Plausible, post hoc biological 
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Fig. 17.6 (a) MERIT Kaplan–Meier estimates of cumulative percentage of total mortality after 
randomization – p value nominal and adjusted for two interim analyses (MERIT) [28]. Reproduced 
with the permission of Elsevier Ltd. for Lancet
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hospitalization [122]. Reproduced with the permission of Elsevier Ltd. for the Am. Heart J.
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explanations for the findings, while necessary, are not sufficient. Given almost any 
outcome, reasonable sounding explanations can be put forward.

Often, attention is focused on subgroups with the largest intervention-control 
differences. However, even with only a few subgroups, the likelihood of large but 
spurious differences in effects of intervention between the most extreme subgroup 
outcomes can be considerable [111–113]. Because large, random differences 
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can occur, subgroup findings may easily be over-interpreted. Peto has argued 
that observed quantitative differences in outcome between various subgroups are 
to be expected, and they do not imply that the effect of intervention is truly dis-
similar [107].

It has also been suggested that, unless the main overall comparison for the trial 
is significant, investigators should be particularly conservative in reporting signifi-
cant subgroup findings [9, 111]. Lee and colleagues conducted a simulated random-
ized trial, in which participants were randomly allocated to two groups, although 
no intervention was initiated [123]. Despite the expected lack of overall difference, 
a subgroup was found which showed a significant difference.

In summary, subgroup analyses are important. However, they must be defined 
using baseline data and interpreted cautiously.

Not Counting Some Events

In prevention trials, the temptation is not to count events that are observed in the 
immediate postrandomization follow-up period. The rational for this practice is that 
events occurring that rapidly must have existed at screening, but were not detected. 
For example, if a cancer prevention trial randomized participants into a vitamin 
versus placebo trial, any immediate postrandomization cancer events could not 
have been prevented since the cancer had to have already been present subclinically 
at entry. Because the intervention could not have prevented these cases, their inclu-
sion in the design only dilutes the results and decreases power. While such an argu-
ment has some appeal, it must be viewed with caution. Rarely are mechanisms of 
action of therapies or interventions fully understood. More importantly, negative 
impact of interventions having a more immediate effect might not be seen as easily 
or as quickly with this approach. If used at all, and this should be rarely, the data 
must be presented in both ways, i.e., with and without the excluded events.

An extreme case of dropping early events might be in a surgical or procedure 
trial. Participants assigned to the procedure might be at higher risk of a fatal or 
irreversible event. These early risks to the participant are part of the overall inter-
vention effect and should not be eliminated from the analysis.

Some trials have defined various counting rules for events once participants have 
dropped out of the study or reached some level of nonadherence. For example, the 
Anturane Reinfarction Trial [24] suggested that no events after 7 days going off 
study medication should be counted. It is not clear what length of time is appropri-
ate to eliminate events to avoid bias. For example, if a participant with an acute 
disease continues to decline and is removed from therapy, bias could be introduced 
if the therapy itself is contributing to the decline due to adverse effects and toxicity. 
In the APPROVe trial [71–74] described earlier in this chapter, the decision not to 
count events after 14 days and not to follow participants after that period of time 
led to controversy. In fact, the results and the interpretation were different once the 
almost complete follow-up was obtained [74].
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Comparison of Multiple Variables

If enough significance tests are done, some of the tests may be significant by 
chance alone. This issue of multiple comparisons includes repeated looks at the 
same response variable (Chap. 15) and comparisons of multiple variables. Many 
clinical trials have more than one response variable, and certainly several baseline 
variables are measured. Thus, a number of statistical comparisons are likely to be 
made. These would include testing for differences in baseline characteristics as well 
as subgroup analyses. For example, if an investigator has 100 independent compari-
sons, five of them, on the average, will be significantly different by chance alone if 
she uses 0.05 as the level of significance. The implication of this is that the inves-
tigator should be cautious in the interpretation of results if she is making multiple 
comparisons. The alternative is to require a more conservative significance level. 
As noted earlier, lowering the significance level will reduce the power of a trial. The 
issue of multiple comparisons has been discussed by Miller [124], who reviewed 
many proposed approaches.

One way to counter the problem is to increase the sample size so that a 
smaller significance level can be used while maintaining the power of the trial. 
However, in practice, most investigators could probably not afford to enroll the 
number of participants required to compensate for all the possible comparisons 
that might be made. As an approximation, if investigators are making k com-
parisons, each comparison should be made at the significance level a/k, a pro-
cedure known as the Bonferonni correction [124]. Thus, for k = 10 and a = 0.05, 
each test would need to be significant at the 0.005 level. Sample size calcula-
tions involving a significance level of 0.005 will dramatically increase the 
required number of participants. The Bonferonni correction is quite conserva-
tive in controlling the overall a level or false positive error rate. Therefore, it 
may be more reasonable to calculate sample size based on one primary response 
variable, limit the number of comparisons, and be cautious in claiming signifi-
cant results for other comparisons.

However, there are other procedures to control the overall a level and we 
summarize briefly two of them [125, 126]. Assume that we prespecify m hypoth-
eses to be tested, involving either multiple outcomes, multiple subgroups, or a 
combination. The goal is to control the overall a level. One implementation of 
the Holm procedure [125] is to order the p values from smallest to largest as 
p(1), p(2), …, p(m), corresponding to the m hypotheses H(1), H(2), …, H(m). 
Then the Holm procedure would reject H(1), if p(1) £ a/m. If and only if H(1) is 
rejected can we consider the next hypothesis. In that case, H(2) can be rejected 
if p(2) £ a/(m − 1). This process continues until we fail to reject and then the test-
ing must stop. The Holm procedure can also be applied if the m hypotheses can 
be ordered according to their importance. Here, the most important hypothesis 
H(1) can be rejected only if the corresponding p value is less than a/m. If 
rejected, the next most important hypothesis H(2) can be rejected if the p value 
is less than a/(m − 1).
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Hochberg’s procedure [126] also requires that the m hypotheses be specified in 
advance and orders the p-values from smallest to largest as does Holm’s. The 
Hochberg procedure allows all m hypotheses to be rejected if p(m) £ a/m. If this is not 
the case, then the remaining m − 1 hypotheses can be rejected if p(m − 1) £ a/(m − 1). 
This process is carried out for all of the m hypotheses until a rejection is obtained and 
then stops. Each of these procedures will not give exactly the same rejection pattern; 
so it is important to prespecify which one will be used.

In considering multiple outcomes or subgroups, it is important to evaluate the 
consistency of the results qualitatively, and not stretch formal statistical analysis too 
far. Most formal comparisons should be stated in advance. Beyond that, one 
engages in observational data analysis to generate ideas for subsequent testing.

Use of Cutpoints

Splitting continuous variables into two categories, for example by using an arbi-
trary “cutpoint,” is often done in data analysis. This can be misleading especially 
if the cutpoint is suggested by the data. As an example, consider the constructed 
dataset in Table 17.6. Heart rate, in beats per minute, was measured prior to inter-
vention in two groups of 25 participants each. After therapies A and B were 
administered, the heart rate was again measured. The average changes between 
groups A and B are not sufficiently different from each other (p = 0.75) using a 
standard t-test. However, if these same data are analyzed by splitting the partici-
pants into “responders” and “non-responders,” according to the magnitude of 
heart rate reduction, the results can be made to vary. Table 17.7 shows three such 
possibilities, using reductions of 7, 5, and 3 beats per minute as definitions of 
response. As indicated, the significance levels, using a chi-square test or Fisher’s 
exact test, change from not significant to significant and back to not significant. 
This created example suggests that by manipulating the cutpoint, one can 
observe a significance level less than 0.05 when there does not really seem to be 
a difference.

In an attempt to understand the mechanisms of action of an intervention, inves-
tigators frequently want to compare participants from two groups who experience 
the same event. Sometimes, this retrospective look can suggest factors or variables 
by which the participants could be subgrouped. If some subgroup is suggested, 
the investigator should create that subgroup in each study group and make the 
appropriate comparison. For example, she may find that participants in the 
intervention group who died were older than those in the control group who died. 
This retrospective observation might suggest that age is a factor in the usefulness 
of the intervention. The appropriate way to test this hypothesis would be to sub-
group all participants by age and compare intervention versus control for each 
age subgroup.
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Noninferiority Trial Analysis

As discussed in Chap. 5, noninferiority trials are challenging to design, conduct, and 
analyze. We pointed out the special challenges in setting the margin of noninferiority. 
However, once that margin of noninferiority is established prior to the start of the 

Table 17.6 Differences in pre- and post-therapy heart rate, in beats per minute (HR), for groups 
A and B, with 25 participants each

Observation  
number

A B

Pre HR Post HR Change in HR Pre HR Post HR Change in HR

1 72 72 0 72 70 2
2 74 73 1 71 68 −3
3 77 71 6 75 74 1
4 73 78 −5 74 71 3
5 70 66 4 71 73 −2
6 72 76 −4 73 78 −5
7 72 72 0 71 69 2
8 78 76 2 70 74 −4
9 72 80 −8 79 78 1

10 78 71 7 71 72 −1
11 76 70 6 78 79 −1
12 73 77 −4 72 75 −3
13 77 75 2 73 72 1
14 73 79 −6 72 69 3
15 76 76 0 77 74 3
16 74 76 −2 79 75 4
17 71 69 2 77 75 2
18 72 71 1 75 75 0
19 68 72 −4 71 70 1
20 78 75 3 78 74 4
21 76 76 0 75 80 −5
22 70 63 7 71 72 −1
23 76 70 6 77 77 0
24 78 73 5 79 76 3
25 73 73 0 79 79 0
Mean 73.96 73.20 0.76 74.40 73.96 0.44
Standard 

deviation
 2.88  3.96 4.24  3.18  3.38 2.66

Table 17.7 Comparison of change in heart rate in group A versus B by three choices of cutpoints

Beats/min <7 ³7 <5 ³5 <3 ³3

Group A 25 2 19 6 17 8
Group B 25 0 25 0 18 7

Chi-square p = 0.15 p = 0.009 p = 0.76
Fisher’s exact p = 0.49 p = 0.022 p = 0.99
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trial, there remain several issues that must be included in a rigorous analysis and 
reported because of the clinical and regulatory implications [127–144]. If we define 
I to be the new intervention, C to be the control or standard, and P to be the placebo 
or no treatment, then we obtain from the noninferiority trial an estimate of the rela-
tive risk (RR) of I to C, RR(T/C), or an absolute difference. In the design, the metric 
must be established since the sample size and the interim monitoring depend on it. 
The first analytic challenge is to establish whether the new intervention met the 
criteria for noninferiority, a part of which is demonstrating that the 95% confidence 
interval of the estimate was less than the noninferiority margin.

As shown in Fig. 17.8, from Pocock and Ware [129], if the upper limit of the 
95% confidence interval for the relative risk is less than unity, various degrees of 
evidence exist for superiority (See case A). For noninferiority trials, if the upper 
95% confidence interval is less than the margin of noninferiority (d), then there is 
evidence for noninferiority (see cases B and C). Failure to be less than this margin 
does not provide evidence for noninferiority (see case D). The design must have 
sufficient sample size and power to rule out a margin of noninferiority as discussed 
in Chap. 8. Although not expected when the study was designed, a noninferiority 
trial might also indicate harm (E).

The second desired goal of a noninferiority analysis is to demonstrate that the 
new intervention would have beaten a placebo or no treatment if it had been 
included; that is, the estimate of RR(I/P). Analytically, this can be accomplished 
by recognizing that RR(I/P) = RR(I/C) RR(C/P). However, for this imputation step 
to work requires at least two critical assumptions: (1) there is constancy of the 
control effect over time, and (2) the population where the control was tested against 
placebo is relevant to the current use where the intervention (I) is being tested. 
These assumptions are difficult, perhaps impossible, to establish (see Chap. 5). In this 
chapter, we will focus our attention on the first challenge of establishing whether 
or not the intervention versus control comparison was less than the noninferiority 
margin.

Fig. 17.8 Relative risks and 95% confidence intervals for a series of superiority and noninferiority 
trials modified from [129]
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Assuming that an appropriate active control was selected, the trial must implement 
that control in a way that is consistent with best practice and is as good or better 
than that what was done in the initial trial that showed it to be beneficial [144]. 
Otherwise, the new intervention is being compared to a control that is handicapped, 
making it easier for the new intervention to appear similar or even better than the 
control. Poor adherence and conduct work in favor of the new intervention in a 
noninferiority trial while working against the new intervention in a superiority trial 
[128]. Thus, as discussed in Chap. 14, adequate measures of adherence must be 
collected during the trial in order to make this critical assessment. Adherence in this 
case does not only mean whether the participant took all or almost all of the inter-
vention and control drugs. What else participants were taking as concomitant medi-
cation is also a consideration. If there is a substantial imbalance, interpretation of 
the results would be difficult.

Another key factor is whether the outcomes chosen are true measures of the effect 
of both the new intervention and the control. This is sometimes referred to as assay 
sensitivity [130]. Thus, whether consciously or not, an investigator might select an 
outcome that would show no change no matter what intervention was being studied 
and thus guarantee that the noninferiority margin would be achieved. Outcomes 
should be similar to those used in the initial control versus placebo trials.

There is a debate whether the intention-to-treat analysis or the “on treatment” 
analysis is most appropriate for a noninferiority designed trial. If intention-to-treat 
is used, nonadherence dilutes whatever differences may exist and thus is biased 
toward noninferiority. An “on treatment” analysis compares only those who are 
good adherers, or at least took some predefined portion of the intervention and thus 
is closer to testing the true effect. However, as we demonstrated earlier in this chapter, 
analyzing trials by adherence to an intervention can be substantially biased, the 
direction of which cannot be predicted. Thus, we do not recommend such an analysis 
because of the uncertainty of bias and its direction, and instead recommend that a 
trial be designed to minimize nonadherence. The true comparison of the new inter-
vention may be somewhere in between the intention-to-treat and the “on treatment” 
but there is no dependable way to tease that estimate out. If both analytic approaches 
confirm noninferiority, then we can be reasonably assured of our conclusions, 
assuming that the noninferiority margin is reasonable [132].

Any trial relies on an adequate sample size to have power to detect differences 
of interest, whether this is for superiority or noninferiority. For a superiority trial, 
inadequate sample size works against finding differences but for noninferiority, 
inadequate sample size favors finding noninferiority as long as the sample size is 
not too small. There is a difficult balance between having a noninferiority margin 
that is too small and thus requiring an unachievable sample size and having a 
margin that is so large that the sample size is appealing but the results would not be 
convincing.

There are many examples of noninferiority trials, but we use one to illustrate the 
challenges: the Stroke Prevention using an ORal Thrombin Inhibitor in atrial 
Fibrillation (SPORTIF)-V trial in participants with a trial fibrillation comparing a 
new intervention, ximelegatran, against a standard warfarin intervention [134], with 
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a primary outcome of stroke incidence. A number of issues were involved. First, 
there were no good warfarin versus placebo trials to set the noninferiority margin. 
Second, the trial used absolute difference as the metric, assuming the event rate 
would be around 3%, but instead observed an event rate less than half of that. Thus, 
the noninferiority margin of 2% that was prespecified was too large given the small 
event rate. If the observed event rate of 1.5% had been assumed, the prespecified 
margin would have been much less, perhaps closer to 1%. The observed stroke rates 
were 1.2% in the warfarin group and 1.6% in the ximelegatran group with a 95% CI 
of −0.13 to 1.03% which would meet the initial margin of noninferiority. However, 
this was not adequate for a margin of 1%. Therefore, even though margins may be set 
in advance, results may invalidate the assumptions and thus the margin itself.

As discussed in Chap. 19, presentation of the results of noninferiority trials are 
more complex than for superiority trials because all of the assumptions must be so 
carefully and clearly laid out [129].

Meta-Analysis of Multiple Studies

Often in an area of clinical research, several independent trials, some of which may 
be large multicenter trials, are conducted over a period of a few years. Some of the 
trials may be too small to be conclusive on their own, but may have served as a pilot 
for a larger subsequent study. Investigators from a variety of medical disciplines 
often feel compelled to review the cumulative data on similar trials using similar 
participants and similar intervention strategies and try to reach a consensus conclusion 
of the overall results [145–153]. If this overview is performed by a formal process 
and with statistical methods for combining all the data with a single analysis, the 
analysis is usually referred to as a meta-analysis or systematic review. The methods 
used were essentially described in 1954 by Cochran [154] and later by Mantel and 
Haenszel [155]. Other authors have summarized the methodologic approaches 
[156–163]. The Cochrane Collaboration has been a major contributor to systematic 
reviews of controlled trials [164], often organized around a specific health care area 
or issue, including systematic reviews of adverse effects (http://aemg.cochrane.
org). In addition, this group provides advice on how to conduct such systematic 
reviews. There are numerous examples of meta-analysis in a variety of medical 
disciplines and a few are referenced here [165–175]. A great deal has been written 
and discussed about the usefulness and challenges of meta-analyses [176–187].

Rationale and Issues

There are several reasons for conducting a systematic review or meta-analysis 
[145]. Probably the most common reason is to obtain more precise estimates of an 
intervention effect and to increase the power to observe small, but clinically important 

http://aemg.cochrane.org
http://aemg.cochrane.org
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effects. A closely related reason is to evaluate the generalizability of the results 
across trials, populations, and specific interventions. Subgroup analyses within a 
trial are often based on too few participants to be definitive or identify qualitative 
differences in effect. Many are also posthoc and thus unreliable due to both multi-
plicity of testing and data exploration. However, meta-analysis offers the opportu-
nity to examine a limited number of prespecified hypotheses identified in individual 
trials. One goal of this type of subgroup meta-analysis is to guide clinicians in their 
practice by selecting participants most suitable for the intervention. Many submis-
sions to the U.S. Food and Drug Administration include a meta-analysis as part of 
the report. If a major clinical trial is being initiated, a sensible approach is to base 
many aspects of the design on the summary of all existing data. This would 
include definitions of population and intervention, control group response rates, 
expected size of the intervention effect, and length of follow-up. Use of meta-
analysis is a systematic process that can provide this critical information. Finally, 
if a new treatment or intervention gains widespread popularity early in its use, a 
meta-analysis may provide a balanced perspective and may suggest the need for a 
single, large, properly designed clinical trial to provide a more definitive result. 
Alternatively, meta-analyses are mandated if the opportunity to conduct a new 
large study no longer exists due to a loss of equipoise, even if this loss is not well 
justified. In this case, a meta-analysis may be the only solution to try to salvage 
the most reliable consensus.

As indicated, a meta-analysis is the combination of results from similar partici-
pants evaluated by similar protocols and interventions. The ideal meta-analysis is the 
standard analysis of a large multicenter trial, stratified by clinical center. Each center 
plays the role of a small study. Protocols and treatment strategies are identical, and 
participants are more similar compared to a typical collection of trials. Meta-analysis 
should never be an excuse for conducting many small studies, loosely connected 
with the expectation that meta-analysis will rescue the definitive result.

The concept that the ideal meta-analysis is the large multicenter trial focuses on 
some of the limitations of the typical meta-analysis. While differences exist in the 
implementation of a clinical protocol across centers, these differences are less than 
for a collection of independently conducted large or small trials. Typically in meta-
analysis, nontrivial differences exist in actual treatment, study population, length of 
follow-up, measures of outcome, and quality of data [177–182]. With these and 
other potential differences, the decision as to which studies are similar enough to 
justify combining their data represents a challenge.

Many support the concept that the most valid overview and meta-analysis 
requires all studies conducted be available for inclusion or at least for consideration 
[145, 178]. Furberg [182] provides a review of seven meta-analysis of lipid lowering 
trials. Each article presents different inclusion criteria, such as the number of 
participants or the degree of cholesterol reduction. The results vary depending on 
the criteria used. As in a clinical trial protocol, the questions and the criteria should 
be stated in advance [184]. While it is already difficult to decide what similar might 
mean, a further serious complication is that all trials conducted may not be readily 
accessible in the literature due to publication bias [183, 184]. Furthermore, not all 
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trials that are started are completed or published. The problem is that trials published 
are more likely to be positive (p < 0.05) or favorable. Trials that yield neutral or 
indifferent results are less likely to be published. One example described by 
Furberg and Morgan [177] illustrates the problem. One overview [183] of the use 
of propranolol in patients following a heart attack reported 7 of 45 patients died in 
the hospital compared to a nonrandomized, placebo-control where 17 of 46 died. 
Controversy over design limitations caused the investigator to conduct two addi-
tional randomized trials, but neither were ever published. One showed no difference 
and the other a negative (harmful) trend. As a further complication, Chalmers et al. 
[185] pointed out that a MEDLINE literature search may only find 30–60% of 
published trials. This is due in part to the way results are presented and searches of 
typical key words may not uncover relevant papers. Although search engines may 
be better now, there are undoubtedly still limitations.

Another bias, referred to as investigator bias, is that what outcome variables get 
reported may depend on the investigator. If protocols were adhered to strictly, 
investigator bias may not be a problem. However, repeated testing, multiple sub-
groups, and multiple outcomes may not be easy to detect from the published report 
[176]. Early promising results may draw major attention, but if later results show 
smaller intervention effects, they may go unnoticed or be harder to find for the 
systematic review. Furthermore, authors of overviews are also to subject to inves-
tigator bias. That is, unless the goals of the meta-analysis are clearly stated a priori, 
a positive result can be found in this analysis by sifting through numerous attempts. 
In fact, data dredging for large studies is more likely to find at least one positive 
result than for a single small study. A great deal of time and persistence are 
required in order to get access to all known conducted trials and accurately extract 
the relevant data. Not all meta-analyses are conducted with the same degree of 
thoroughness.

The medical literature is filled with meta-analysis of trials covering a wide range 
of disciplines [165–175]. Chalmers and colleagues [167] reviewed six small studies 
that used anticoagulants in an effort to reduce mortality in heart attack patients. 
While only one of the six was individually significant, the combined overall results 
suggested a statistically significant 4.2% absolute reduction in mortality. The authors 
suggested no further trials were necessary. However, due to issues raised, this 
analysis drew serious criticism [176]. Several years later, Yusuf and colleagues 
[174] reviewed 33 fibrinolytic trials, focusing largely on the use of streptokinase. 
This overview included trials with many dissimilarities in dose, route and time 
of administration, and setting. Although the meta-analysis for intravenous use of 
fibrinolytic drugs was impressive, and the authors felt that results were not due to 
reporting biases, they nevertheless discussed the need for future large-scale trials 
before widespread use should be recommended. There were issues, for example, as 
to how quickly such an intervention needed to be started after onset of a heart 
attack. Thus, timing needed to be resolved. Canner [170] conducted an overview of 
six randomized clinical trials testing aspirin use in participants with a previous 
heart attack to reduce mortality. His overall meta-analysis suggested a 10% reduc-
tion although not significant (p = 0.11). However, there was an apparent heterogeneity 
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of results and the largest trial had a slightly negative mortality result. The Canner 
overview was repeated by Hennekens et al. [175] after several more trials had been 
conducted. This updated analysis demonstrated favorable results.

May et al. [168] conducted an early overview of several modes of therapy for 
secondary prevention of mortality after a heart attack. Their overview covered anti-
arrhythmic drugs, lipid-lowering drugs, anticoagulant drugs, beta-blocker drugs, 
and physical exercise. Although statistical methods were available to combine 
studies within each treatment class, they chose not to combine results, but simply 
provided relative risks and confidence interval results graphically for each study. 
A visual inspection of the trends and variation in trial results suggests a summary 
analysis. Yusuf et al. [173] later provided a more detailed overview of beta block-
ade studies. While using a similar graphical presentation, they calculated a sum-
mary odds ratio and its confidence interval. The details of the method are described 
below. Meta-analysis of cancer trials have also been conducted including the use of 
adjuvant therapy for breast cancer [172]. While using multiple chemotherapeutic 
agents indicated improved relapse-free survival after 3 and 5 years of follow-up, as 
well as for survival, the dissimilarity among the trials led the authors to call for 
more trials and better data.

Thompson [186] pointed out the need to investigate thoroughly sources of 
heterogeneity such as clinical differences across studies. These differences may be 
in populations studied, intervention strategies, outcomes measured, or other logistical 
aspects. Given such differences, incompatible results among individual studies 
might be expected. Statistical tests for heterogeneity often have low statistical 
power even in the presence of a moderate heterogeneity. Thompson [186] argued 
that we should investigate the influence of apparent clinical differences between 
studies and not rely on formal statistical tests to give us assurance of no heterogeneity. 
In the presence of apparent heterogeneity, overall summary results should be inter-
preted cautiously. Thompson described an example of a meta-analysis of 28 studies 
evaluating cholesterol lowering and the impact on risk of coronary heart disease. 
A great deal of heterogeneity was present, so a simple overall estimate of risk 
reduction may be misleading. He showed that factors such as age of the cohort, 
length of treatment, and size of study were contributing factors. Taking these factors 
into account made the heterogeneity less extreme and results more interpreta-
ble. One analysis showed that the percent reduction in risk decreased with the age 
of the participant at the time of the event, a point not seen in the overall meta-
analysis. However, he also cautioned that such analyses of heterogeneity must be 
interpreted cautiously, just as for subgroup analyses in any single trial.

Meta-analysis, as opposed to typical literature reviews, usually puts a p value on 
the conclusion. The statistical procedure may allow for calculation of a p value, but 
it implies a precision which may be inappropriate. The possibility that studies may 
be missed and the issue of study selection may make the interpretation of the p 
value tenuous. As indicated, quality of data may vary from study to study. Data 
from some trials may be incomplete, and perhaps not even recognized as such. 
Thus, only very simple and unambiguous outcome variables, such as all-cause 
mortality and major morbid events ought to be used for meta-analysis.
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Statistical Methods

Since the meta-analysis became a popular approach to summarizing a collection of 
studies, numerous statistical publications have been produced addressing several 
technical aspects [153–163]. Most of this is beyond the technical scope of this text. 
However, we will summarize one popular meta-analytic method that combines 
information on success and failure by study group across separate trials.

A standard approach as described in the overview paper by May et al. [168] is 
to summarize each study with an odds ratio, or a relative risk, along with a 95% 
confidence interval. That is, suppose each trial can be summarized by a 2 × 2 table 
where S represents success and F represents failure, and a, b, c, d are the numbers 
of individuals in each category.

Group
Result

S F TOTAL

Treatment a b a + b
Control c d c + d

TOTAL m

Each study compares the success rate in the intervention arm (P
I
) and control 

arm (P
C
). Using this table, the estimate for P

I
 = a/(a + b) and the estimate for P

C
 = c/

(c + d). The relative risk RR = P
I
/P

C
 is one summary statistic. The estimate for RR 

is a(c + d)/b(c + d). Another summary statistics, the odds ratio (OR), that approxi-
mates the RR, may also be used. An estimate of the OR is ad/bc and the 95% 
confidence interval is

 é ù± + + +ë ûexp 1.96 1 / 1 / 1 / 1 /
ad

a b c d
bc

 

Typically, the OR estimate and 95% confidence interval are plotted in a single 
graph for each trial to provide a visual summary. This may be seen in May et al. 
[168] or in Yusuf et al. [173]. Figure 17.9, from Yusuf et al. [174], summarizes the 
effects of 24 trials of fibrinolytic treatment on mortality in people with an acute 
heart attack. The hash mark represents the estimated OR, and the line represents the 
95% confidence interval. May et al. [168] went no further in their overview. Yusuf 
et al. [174], however, recommended that a single estimation of the OR be obtained, 
combining all studies.

Two technical approaches are used for this situation, both suggested by Cochran 
[154] in 1954. If all trials included in the meta-analysis are estimating the same true 
(but unknown) fixed effect of an intervention, the Mantel–Haenszel method [155] 
is used with a slight variation. This is similar to the logrank or Mantel–Haenszel 
method in the chapter on survival analysis. This method is referred to here as the 
Peto–Yusuf method. If the trials are assumed to have dissimilar or heterogeneous 
true intervention effects, the effects are described by a random effects model, a 
method suggested by DerSimonian and Laird [160].
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The Peto–Yusuf [173] method follows the Cochran–Mantel–Haenszel procedure 
[154, 155]. Let O
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Using this method, the summary pooled odds ratio and 95% confidence interval, 
shown in Fig. 17.9, can be computed for the 24 fibrinolytic studies. The overall 
estimate of the pooled studies is shown in the last line. The size of the symbol in 
these plots, sometimes referred to as “forest plots,” is an indication of the size of 
each individual studies.

The method of DerSimonian and Laird [160] compares rate differences within 
each study, and obtains a pooled estimate of the rate difference as well as the stan-
dard error. The pooled estimate of the rate difference is a weighted average of the 
individual study rate differences. The weights are the inverse of the sum of the 
between and within study variance components of intervention effect. If the studies 
are relatively similar or homogeneous in intervention effect, the two methods pro-
vide very similar results [159]. Heterogeneity tests generally are not as powerful as 
the test for main effects. However, if studies vary in intervention effect, these two 
methods can produce difference results as illustrated by Berlin et al. [159] as well 
as Pocock and Hughes [157].

In the presence of serious heterogeneity of treatment effect, the appropriate-
ness of obtaining a single point estimate must be questioned. This was part of the 
rationale for May et al. [168] not combining studies. If the heterogeneity is quali-
tative, that is, some estimates of the OR are larger than unity and others less than 
unity, then a combined single estimate is perhaps not wise. This would be espe-
cially true if these estimates indicated a time trend, which could occur if dose and 
participant selection changed as more experience with the new intervention was 
obtained.
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Whether a fixed effects or a random effects model is preferable is a matter of 
debate, but neither are exactly correct. The random effects model has an undesir-
able aspect, in that small trials may dominate the final estimate whereas with the 
fixed effect model, larger trials get greater weight. However, the meta-analysis is 
conducted on available trials, none of which are typically very representative of the 
general population to which the intervention may be applied. That is, the trials that 
are available do not contain a random sample of people from the targeted popu-
lation but rather are participants who volunteered and who in other respects may 
not be representative. Thus, the estimate of the intervention effect is not as rele-
vant as whether or not the intervention is at all effective. We prefer a fixed affects 
model but suggest that both models should be conducted to examine what, if any, 
differences exist.

Chalmers, a strong advocate of clinical trials, argued that participants should be 
randomized early in the evolution and evaluation of a new intervention [188]. Both 
as a result of that kind of advocacy and the fact that small trials are always done 
before large ones in the development of new interventions, an early meta-analysis 
is likely to consist of many small studies. Sometimes, meta-analyses of just small 
trials might yield significant results.

Thus, meta-analyses are seen by many as alternatives to the extraordinary effort 
and cost often required to conduct adequately powered individual trials. Rather 
than providing a solution, they perhaps ought to be viewed as a way of summarizing 
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existing data; a way that has strengths and weaknesses, and must be critically 
evaluated. It would clearly be preferable to combine resources prospectively and 
collaborate in a single large study. Pooled studies cannot replace individual, well-
conducted multicenter trials.

Analysis Following Trend Adaptive Designs

As discussed in Chaps. 5 and 16, the design of a trial may have an adaptive element. 
This might be a group sequential design for early termination due to overwhelming 
benefit or a strong signal for harm, or perhaps futility. Among the adaptive designs 
were those that altered the sample size. Some of these sample size changes are due 
to overall lower event rates or higher variability in the primary outcome than was 
assumed in the original sample size estimate. In these instances, the final analysis 
proceeds as normal. However, another method for sample size change relies on 
trend adaptive designs. In these designs, which depend on the emerging trend in the 
data, the final critical value or significance level will be affected and thus must be 
kept in mind for the final analysis.

For example, some trials may monitor accumulating interim data and may 
terminate the trial early for evidence of benefit or harm. If a group sequential 
design using a 0.05 two-sided significance level O’Brien-Fleming boundary were 
used five times during the trial, approximately equally spaced, the final critical 
value would not be +1.96 and −1.96 for the upper and lower bounds but a value 
closer to 2.04.

For trend adaptive sample size changes, the final critical value depends on which 
methodology was used but all will require typically a more conservative value, for 
example, than a two-sided nominal alpha level of 0.05 (a critical value of 1.96).

Other than adjusting the final critical value, the analyses for these trend adaptive 
designs may also utilize a modified test statistic. For example, if the method of Cui 
et al. [189] is used in increasing the sample size, a weighted test statistic as 
described in Chap. 16 is required. Future observations are given less weight that the 
early existing observations. The usual test statistic is not appropriate in this situa-
tion. For the other trend adaptive methods described in Chaps. 5 and 16, the final 
analysis can proceed with the standard statistics in a usual straightforward fashion, 
adjusting for the final critical value from sequential testing as appropriate.

Appendix

Mantel–Haenszel Statistic

Suppose an investigator is comparing response rates and divides the data into a number 
of strata using baseline characteristics. For each stratum i, a 2 × 2 table is constructed.
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2 × 2 Table for ith Stratum
Response

Yes No

Intervention a
i

b
i

a
i
 + b

i

Control c
i

d
i

c
i
 + d

i

Total a
i
 + c

i
b

i
 + d

i
n

i

The entries a
i
, b

i
, c

i
, and d

i
 represent the counts in the four cells and n

i
 is the number 

of participants in the ith stratum. The marginals represent totals in the various cat-
egories. The value (a

i
 + c

i
)/n

i
 represents the overall response rate for the ith stratum. 

Within the ith stratum, the rates a
i
/(a

i
 + b

i
) with c

i
/(c

i
 + d

i
) are compared. The stan-

dard chi-square test for 2 × 2 tables could be used to compare group differences in 
this stratum. However, the investigator is interested in “averaging” the comparison 
over all the strata. The method for combining several 2 × 2 tables over all tables or 
strata was described by Cochran [157] and Mantel and Haenszel [158]. The sum-
mary statistic, denoted MH, is given by:
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The MH statistic has a chi-square distribution with one degree of freedom. The 
square root of MH has a normal distribution. Tables for this distribution are available 
in standard statistical textbooks. Any value for MH greater than 3.84 is significant 
at the 0.05 level, and any value greater than 6.63 is significant at the 0.01 level. This 
method is particularly appropriate for covariates that are discrete or continuous 
covariates that have been classified into intervals.
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The closeout phase starts with the final follow-up visit of the first participant 
enrolled and lasts until all the analyses have been completed. It is evident that well 
before the scheduled end of the trial, there needs to be a fairly detailed plan for this 
phase if the study is to be completed in an orderly manner. Importantly, one must 
be prepared to implement or modify this plan prior to the scheduled termination 
since unexpected trial results, either beneficial or harmful, may require the trial to 
be stopped early.

This chapter addresses a number of topics on the closeout process. Although 
many of them relate primarily to large single-center or multicenter trials, they also 
apply to smaller studies. The topics discussed include technical procedures for the 
termination of the trial, cleanup and verification of data, dissemination of trial 
results, storage of study material, and poststudy follow-up. Obviously, the details 
of the closeout plan have to be tailored for each particular trial.

Fundamental Point

The closeout of a clinical trial is usually a fairly complex process that requires 
careful planning if it is to be accomplished in an orderly fashion.

Termination Procedures

Planning

Many details of a closeout depend on factors that only become known once the trial 
is underway or participant enrollment has been completed. Nevertheless, general 
planning for the closeout ought to start early. There are arguments for initiating this 
process on Day 1 of the trial. One major issue is that the trial may not continue 
through its scheduled termination. Greater than expected benefit or unexpected 
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harm may lead to early termination. A more subtle reason is that developing plans 
for closeout after the trial is well underway may be interpreted by the blinded inves-
tigators as a signal of imminent trial termination. Thus, another recommendation is 
to develop the general closeout plans prior to the first meeting of the independent 
monitoring committee [1].

The closeout phase needs its own written protocol or operating procedures with 
respect to termination activities, dissemination of results, and data cleanup and 
storage. Although the literature on the topic of closeout is scant, there are a few 
good descriptions of the process [2].

Scheduling of Closeout Visits

If each participant in a clinical trial is to be followed for a fixed period of time, 
the closeout phase will be of the same duration as the enrollment phase. If recruit-
ment took 2 years, the closeout phase would last 2 years. This fixed follow-up 
design may not be desirable since terminating the follow-up of some participants 
while others are still being actively followed can create problems. In some 
blinded trials, the code for each participant is broken during the last scheduled 
follow-up visit. If the unblinding occurs over a span of many months or years, 
there is the possibility of the investigator learning information that could suggest 
the identity of the drugs taken by participants still actively followed in the trial. 
This may happen even if the drug codes are unique for each participant. The inves-
tigator may start associating a certain symptom or constellation of symptoms and 
signs with particular drug codes.

An alternative and frequently used plan involves following all participants to a 
shortened closeout period to avoid the problems described above. Another advan-
tage of following this design is the added power of the trial. The follow-up period 
is extended beyond the minimum time for all but the last participant enrolled. In a trial 
with 2 years of uniform recruitment, the additional follow-up period would increase 
by an average of up to 1 year. In addition, this approach might be more cost-efficient 
when the clinic staff is supported solely by the sponsor of the trial. With all partici-
pants followed to a shortened closeout period, full support of  personnel can be justi-
fied until all the participants have been seen for the last time. In trials where the 
participants are phased out after a fixed time of follow-up, an increase in the staff/
participant ratio may be unavoidable.

Despite the problems with following all participants for a fixed length of time, 
this approach may be preferable in certain trials, particularly those with a relatively 
short follow-up phase. In such studies, there may be no realistic alternative. In addition, 
it may not be logistically feasible to conduct a large number of closeout visits in a 
short time. Depending on the extent of data collection during the last visit, the 
availability of staff, and weekly clinic hours, seeing 100–150 participants at a clinic 
may require a month or two. A decision on the type of follow-up plan should be 
based on the scientific question as well as logistics.



401Termination Procedures

Final Response Ascertainment

During trial termination, it is important in any trial to obtain, to the extent possible, 
response variable data on every enrolled participant. It is particularly so in trials 
where the main response variables are continuous ones such as laboratory data or a 
performance measure. By necessity, the response variable data must be obtained for 
each participant at the last follow-up visit because it marks the end of treatment and 
follow-up. If a participant fails to show up for the last visit, the investigator will 
have missing data. When the response variable is the occurrence of a specific event, 
such as a nonfatal stroke, the situation may be different if the information can be 
obtained without having the participant complete a visit.

If a participant suffers an event after her last follow-up visit, but before all partici-
pants have been seen for the final visit, the study must have a firm a priori rule 
whether or not that response variable should be included in the data analysis. For the 
participants who complete their participation, the simplest solution is to let the last 
follow-up visit denote each participant’s termination of the trial. For participants 
who do not show up for the last visit, the study has to decide when to make the final 
ascertainment. If death is a response variable, vital status is usually determined as of 
the last day that the participant was eligible to be seen. The counting rule must be 
clearly specified in the study protocol or in the manual of procedures.

A number of means have been used to track participants and to determine their 
vital status. These include the use of a person’s identification number (e.g., Social 
Security number in the U.S.) or contact with relatives or employers. In countries with 
national death registries, including the U.S., mortality surveillance is simpler and 
probably more complete than in countries without such registries. Agencies that 
specialize in locating people have been used in several trials. In the Digitalis 
Investigation Group trial [3], a search agency was used, but the searches were lim-
ited to records only. It utilized directory assistance, credit header reports, property 
records, obituary searches, database mailing lists for magazine subscriptions, and 
other similar means. No personal contact was allowed. These constraints prob-
ably limited the success of finding participants lost to follow-up. This process is 
very sensitive since a search may be looked upon as an intrusion into the privacy 
of the participant. The integrity of a trial and the importance of its results plus the 
participant’s initial agreement to participate in the trial have to be weighed against 
a person’s right to protect his or her privacy. Investigators may need to include in 
the informed consent form a sentence stating that the participant agrees to have his 
or her vital status determined at the end of the trial even if he or she has by then 
stopped participating actively or withdrawn his or her general  consent. It helps to 
initiate the process of obtaining information on vital status on inactive participants 
well in advance of the closeout phase.

The uncertainty of the overall results rises as the number of participants for 
whom response variable data are missing at trial termination increases. For example , 
assume that death from any cause is the primary response variable in a trial, and the 
observed mortality is 15% in one group and 10% in the other group. Depending on 
study size, this group difference might be statistically significant. However, if 10% 
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of the participants in each group were lost to follow-up, the observed outcome of 
the trial may be in question. It cannot be assumed that the mortality experience 
among those lost to follow-up is the same as for those who stayed in the trial, or 
that those lost to follow-up in one group have a mortality experience identical to 
those lost to follow-up in the other group. Equally important, there should be no 
differential assessment in the study groups. Therefore, every effort should be made 
to ensure that the final ascertainment of response variables is as complete as 
 possible. Special efforts are required by each clinic to locate participants who with-
drew or were lost to follow-up. In the Comparison of Medical Therapy, Pacing, and 
Defibrillation in Heart Failure (COMPANION) trial [4] of defibrillator versus pace-
maker versus best medical care, the withdrawal of consent was 4 times higher in 
the medical care group than in the other two groups when the trial was terminated 
and the follow-up ended. At a recommendation by the Data Monitoring Board, the 
investigators approached the participants who had withdrawn their consent and 
obtained their permission to collect data on vital status and hospitalizations retro-
spectively for the duration of the trial. This was done at a substantial extra cost and 
loss of time.

It is a mistaken concept that when a participant goes off the study medication or 
intervention, he or she is out of the study and thus no longer followed, or at least 
not followed beyond some short period of time such as 7 days and 30 days. In the 
Adenomatous Polyp Prevention on Vioxx (APPROVe) study, the participants who 
stopped their study medication due to adverse effects and other reasons were not 
followed beyond 14 days of going off the drug [5]. In the reanalysis, the problem 
with this “informative censoring” was revealed, and an extra full year of follow-up of 
all randomized participants after stopping study treatment was added. This analysis 
showed that the excess number of drug-induced major cardiovascular events 
observed during active treatment continued to increase during the first year after the 
treatment was stopped. The adjusted hazard ratio for the extra year was 1.41 
(95% CI 0.77–2.59).

Transfer of Posttrial Care

The termination of a long-term study can be difficult due to the bonding that often 
develops between the participants and the clinic staff. The final visit needs to be 
carefully planned to deal not only with this issue but also with the obligation to 
inform the participants of which medication they were on (in a blinded study), their 
individual study data, and of the overall study findings (often at a later time). 
Referral of participants to a regular source of medical care is another important 
issue (see Chap. 2).

If the closeout is extended over a long period, as it would be if each participant 
were followed for the same duration, any early recommendation to an individual 
participant would have to be based on incomplete follow-up data which may not 
reflect the final conclusions of the trial. Moreover, information could “leak out” to 
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the participants still actively treated, thus affecting the integrity of the trial. 
Although it is highly desirable to provide each participant with a recommendation 
regarding continued treatment, doing so may not be possible until the study is 
completely over, and the trial results are known. When unblinding occurs over a 
span of months or years, the investigator is in an uncomfortable position of ending 
a participant’s participation in the trial and asking him or her to wait for months 
before he or she can be informed of the study results and be advised what to do. If the 
incomplete results are clear-cut, it can be easy to arrive at such recommendations. 
However, in such an instance, the investigator would be confronted with an ethical 
dilemma. How can he recommend that a participant start, continue or discontinue 
a new intervention while keeping other participants active in the trial? For this 
reason, we prefer a shortened period of trial closeout.

Data and Other Study Material

Cleanup and Verification

Verification of data may be time-consuming, and it can conflict with the desire of the 
investigator to publish his findings as early as possible. While publication of impor-
tant information should not be delayed unnecessarily, results should not be put into 
print before key data have been verified. Despite attempts to collect complete, consis-
tent, and error free data, perfection is unlikely to be achieved. Traditional monitoring 
systems are likely to reveal missing forms, unanswered items on forms, and 
conflicting data. In isolated cases, they may also uncover falsification of individual 
data [6, 7] and, in the worst cases, fabrication of all data on fictitious participants 
[8–10]. Data cleanup and verification typically continue for months after the 
completion of closeout visits, though the use of electronic records has reduced the 
burden of cleanup and verification. It is necessary to be realistic in the cleanup 
process. This means “freezing” the files at a reasonable time after the termination 
of participant follow-up and accepting some incomplete data. Obviously, the efforts 
during cleanup should be directed toward the most critical areas required to answer 
the primary question and serious adverse events.

We strongly recommend that study forms and data be continuously monitored 
throughout a trial as pointed out in Chap. 11. Data editing should be initiated as 
soon as possible because it is difficult to get full staff cooperation after the trial and 
its funding are over. Early monitoring may reveal systematic problems that can be 
corrected. Staff feedback is also important. Approaches for Statistical Process 
Control (SPC) audits are now available, and they have been shown to reduce the 
overall database error rates significantly [11].

Any clinical trial may have its results reviewed, questioned and even audited. 
Traditionally, this review has been a scientific one. However, since regulatory and 
other special interest groups may want to look at the data, the key results should 
be properly verified, documented, and filed in an easily retrievable manner. 
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The extent of this additional documentation of important data depends on the 
design of each trial. Various models have been used for this purpose. A simple 
model requires each investigator to send a duplicate of all death or major event 
forms on an ongoing basis to an individual member of the independent monitoring 
committee. In one multicenter study, the investigators were asked at the end of the 
follow-up to send a list of all the deceased participants along with the date of death 
to an office independent of the data coordinating center. In another trial, an outside 
group of experts audited the data before the results were published. An extreme 
example employed in one large multicenter trial was the establishment of a second 
data coordinating center. Duplicates of key study forms were submitted to this 
center, which generated separate data reports. This approach is obviously costly 
and, in our view, did not turn out to be worthwhile. Common to all models is an 
attempt to maintain credibility.

Procedures for data clean-up and verification in trials conducted for regulatory 
approval add substantially to the trial cost and complexity. Many such trials collect 
a large quantity of data. Final verification of these data is both time-consuming and 
costly [12, 13]. As noted in Chap. 11, investigators should, when designing such 
trials, both limit the amount of data and decide which data are essential and require 
full final verification.

Storage

Investigators should consider storing various kinds of material after a trial has 
ended. One set of documents such as trial protocol, manual of procedures, study 
forms, and analytic material, including electronic records, should be kept by the 
investigator and sponsor. In addition, a list containing identifying information for 
all participants who enrolled in a trial ought to be stored at the institution where the 
investigation took place. Local regulations sometimes require that individual partici-
pant data such as copies of study forms, laboratory reports, electrocardiograms, and 
x-rays be filed for a defined period of time along with the participant’s medical 
records. Storage of these data electronically clearly eases the problem of inadequate 
space. The actual trial results and their interpretation are usually published and can 
be retrieved through a library search. Exceptions are obviously findings which 
never reach the scientific literature. This will hopefully change with the new 
requirements for reporting key findings of trials registered on http://www.
ClinicalTrials.gov. It may also be desirable in these cases to file draft manuscripts 
along with other documentation and analytic material.

In planning for a new trial, an investigator may want to obtain unpublished data 
from other investigators who have conducted trials in a similar population or tested 
the same intervention. Similarly, in preparation of a review article, a meta-analysis 
or a paper on the natural history of a disease, an investigator may want to obtain 
additional information from published trials. Tables and figures in printed scientific 
papers seldom include everything that may be of interest. The situation is changing with 

http://www.ClinicalTrials.gov
http://www.ClinicalTrials.gov
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the introduction of online journals, which have no space restrictions. These journals can 
publish full protocols, forms, manuals, and even raw data [14]. However, no uni-
form mechanism exists today for getting access to such study material from termi-
nated trials. Even if information is available, it may not be in a reasonable and 
easily retrievable form. Substantial cooperation is usually required from investi-
gators originally involved in data collection and analysis [15].

The storage of biological material has raised new issues as it relates to genetic 
analyses. Biospecimens from well-characterized populations followed for long 
durations in clinical trials are in demand. These can be used to determine whether 
patient subgroups with a specific genotype are more likely to benefit or to experi-
ence serious adverse events. The availability of these specimens for analysis 
depends on the wording of the informed consent (see Chap. 2). Patient privacy has 
to be considered as always.

Storage of biomaterials may be costly. Freezers must be maintained, and a system 
for retrieval of specimens or aliquots without damaging the remaining material 
must be implemented. Unlike with retrieval and distribution of data, most speci-
mens may only be used once. Therefore, investigators need to develop a system for 
deciding when and how to use or distribute biospecimens. The cost and benefits, as 
well as the duration of storage must be considered. Central specimen repositories 
have been created to which investigators may be able to send their materials.

In summary, most trials collect an excess of study material and it may not make 
sense to store everything. The investigator has to consider logistics, the length of 
the storage period and cost. He also has to keep in mind that biological material, 
for example, deteriorates with time and laboratory methods change.

Dissemination of Results

The reporting of findings from a small single-center trial is usually straightforward. 
The individual participants are often informed about the results during the last 
follow-up visit or shortly afterward, and the medical community is informed 
through scientific publications. However, there are situations that make the dissemi-
nation of findings difficult, especially the order in which the various interested 
parties are informed. Particularly in multicenter studies where the participants are 
referred by physicians not involved in the trial, the investigators have an obligation 
to tell these physicians about the conclusions, preferably before they read about 
them in the newspaper or are informed by their patients. In trials with clinics geographi-
cally scattered, investigators may have to be brought together to learn the results. 
In certain instances, the sponsoring party has a desire to make the findings known 
publicly at a press conference or through a press release. However, although an 
early press conference followed by an article in a newspaper may be politically 
important to the sponsor of the trial, it may offend the participants, the referring 
physicians, and the medical community. They may all feel that they have the right 
to be informed before the results are reported in the lay press.
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We have had good experiences from the following sequence. First, the study 
leadership informs the other investigators who, in turn, inform the participants. 
Second, the private physicians of the participants are also informed, in confidence, 
of the findings. Third, the results are then published in the scientific literature, after 
which they may be more widely disseminated in other forums. With most journals 
now being available electronically, publication can often be timed to coincide with 
the presentation of results at major scientific meetings.

However, there are sometimes unavoidable long delays between the presentation 
of trial findings at a scientific meeting and the publication of full trial reports in 
peer-reviewed journals. The medical community may be placed in a difficult posi-
tion by having to make treatment decisions if the lay press reports on elements of 
findings many months prior to the publication of trial data in full. The messages 
released by the lay press are typically very simple. To minimize this problem three 
recommendations have been made [16]: (1) “congress organizers should insist that 
published abstracts contain sufficient data to justify the conclusions of the presenta-
tion,” (2) “investigators should not present results of any study that is likely to 
influence clinical management until they are in a position to write a full paper,” and 
(3) “journal editors must be willing... to expedite the publication of such papers.” 
These recommendations are reasonable, but there may be exceptions.

In order to facilitate expedited translation of research results, the National 
Institutes of Health introduced a data sharing policy in October 2003 [17]. The 
agency’s position is that “Data should be made as widely and freely available as 
possible while safeguarding the privacy of participants and protecting confidential 
and proprietary data.” The risk of wide dissemination of databases is that other 
investigators might analyze the available data and arrive at different interpretations 
of results. However, further analysis and discussion of various interpretations of 
trial data are usually scientifically sound and ought to be encouraged.

In special situations, when a therapy of public health importance is found to be 
particularly effective or harmful in a trial sponsored by the National Institutes of 
Health, physicians and the public need to be alerted in a timely manner. The NIH 
would promptly post a release on its NIH News website (http://www.nih.gov/
news/). When the Adenoma Prevention with Celecoxib trial sponsored by the 
National Cancer Institute was terminated due to a 2.5-fold increased risk of major 
fatal and nonfatal cardiovascular events for participants taking celecoxib compared 
to those on a placebo, the release was issued the day after the decision was made to 
stop the treatment [18]. Three months later, the results were published in The New 
England Journal of Medicine.

At the NIH, individual institutes may also issue their own press releases. Such a 
release often coincides with the publication of an article in a medical journal. 
However, institutes with journal permission have issued brief press announcements 
prior to journal publication. To avoid criticism from physician groups, an institute 
may also notify the leadership of relevant medical societies before the release. The 
United States National Library of Medicine also releases timely scientific news on 
its Medline Plus website (http://www.nlm.nih.gov/medlineplus/news). These 
releases are not limited to NIH-sponsored research.

http://www.nih.gov/news/
http://www.nih.gov/news/
http://www.nlm.nih.gov/medlineplus/news
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The United States Food and Drug Administration also informs physicians and 
the public about regulatory actions and news. FDA MedWatch Safety Alerts for 
Human Medical Products are posted on the website (http://www.fda.gov/med-
watch/safety/year). Included are brief summaries of products in question and FDA 
Alerts. The latter provide recommendations and information for Healthcare 
Providers as well as information for patients to consider. The agency also issues 
Public Health Advisories (http://www.fda.gov/cder/drug/advisory), which contains 
information on particularly serious concerns or risks, for both healthcare providers 
and consumers, of a drug or a class of drugs.

If a serious adverse event has been uncovered by investigators in a trial, the FDA 
and other regulatory agencies or the trial sponsor may communicate this informa-
tion to the medical community and thereby indirectly to the lay public through a 
Dear Healthcare Provider letter.

Wide dissemination of trial findings to the public by investigators and study 
sponsors is increasingly common, even if the results are of modest scientific or 
public health importance. Press releases have become part of highly orchestrated 
marketing campaigns in both industry and government funded trials. We strongly 
support making trial results, and indeed data, widely available, with the expectation 
that broad discussion (and reanalysis as appropriate) will assist clinicians and the 
public in arriving at appropriate decisions as to the value of a trial’s intervention.

As emphasized in Chap. 1, clinical trials ought to be registered. Worldwide, 
there are a large number of registries [19]. Until the enactment of the FDA 
Amendments Act (FDAAA) in September, 2007, the registration was limited to 
design information from the trial protocols [20]. The FDAAA expanded the scope 
to include a trial results database with information on participant demographics and 
baseline characteristics, primary and secondary outcomes, and statistical analyses. 
These data should be posted within 12 months of trial completion. The database 
should also be linked to publically available information from the FDA website. 
This would include summary safety and effectiveness data, public health adviso-
ries, and action packages for drug approval. Serious and frequent adverse event data 
observed during a trial are to be added within 2 years.

Poststudy Follow-Up

There are three main reasons for poststudy follow-up. One is to find out how soon 
treatment-induced changes in laboratory values or symptoms return to pretrial level 
or status. The effect of the intervention may last long after a drug has been stopped, 
and abnormalities revealed by laboratory measurements or adverse drug effects may 
not disappear until weeks after the intervention has ended. Second, for certain drugs, 
such as beta-blockers and steroids, the intervention should not be stopped abruptly. 
A tapering of the dosage may require additional clinic visits. Third, clinical events 
may occur differentially in the study groups after the intervention has been stopped 
due to lingering drug effects. Drug effects may be seen for weeks or months after 

http://www.fda.gov/medwatch/safety/year
http://www.fda.gov/medwatch/safety/year
http://www.fda.gov/cder/drug/advisory
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treatment has been stopped or there may be unfavorable withdrawal reactions [5]. 
These activities are separate from the moral obligation of the investigator to facili-
tate, when necessary, a participant’s return to the usual medical care system, to 
ensure that study recommendations are communicated to his or her private physician 
and at times to continue the participant on a beneficial new intervention.

Long-term poststudy follow-up of participants is a rather complex process in most 
countries. The investigators and the sponsor have to decide on what should be moni-
tored. Mortality surveillance can be cumbersome globally and is worth undertaking 
only if there is a reasonable expectation of getting an almost complete record of vital 
status. Usually, the justification for long-term poststudy surveillance is based on a 
trend or an unexpected finding in the trial or from a finding from another source.

Obtaining information on nonfatal events is even more complicated and, in general, 
its value is questionable. However, a classical illustration that poststudy follow-up 
for toxicity can prove valuable is the finding of severe toxic effects attributed to 
diethylstilbestrol. The purported carcinogenic effect occurred 15–20 years after the 
drug was administered and occurred in female offspring who were exposed in utero 
[21]. Similarly, the use of unopposed estrogen has been reported to be associated 
with an increased risk of endometrial cancer 15 or more years after therapy was 
stopped [22]. One article reported an association between in utero exposure to 
valproate, an antiepileptic drug, and impaired cognitive function in offsprings at 
3 years of age [23].

In 1978, the results of a trial of clofibrate in people with elevated lipids indicated 
an excess of cases of cancer in the clofibrate group compared to the control group 
[24]. The question was raised whether the participants assigned to clofibrate in the 
Coronary Drug Project also showed an increase in the cancer incidence. This was not 
the case [25]. Only 3% of the deaths during the trial were cancer-related. Subsequently, 
the WHO study of clofibrate reported that all cause mortality was increased in the 
intervention group [26]. At the same time, the Coronary Drug Project investigators 
decided that poststudy follow-up was scientifically and ethically important, and such 
a study was undertaken. No increase in cancer incidence was noted in the clofibrate 
group [27]. A more recent example is the Women’s Health Initiative, which extended 
follow-up for 5 years after it reached its scheduled termination in 2005. The example 
brings up a question: Should investigators of large-scale clinical trials make arrange-
ments for surveillance in case, at some future time, the need for such a study were to 
arise? The implementation of any poststudy surveillance plan raises challenges. A 
key one is to find a way of keeping participants’ names and addresses in a central 
registry without infringement upon the privacy of the individuals. The investigator 
must also decide, with little  evidence, on the optimal duration of surveillance after the 
termination of a trial (e.g., 2, 5, or 20 years).

Another issue of poststudy surveillance relates to a possible beneficial effect of 
intervention. In any trial, assumptions must be made with respect to time between 
initiation of intervention and the occurrence of full beneficial effect. For many 
drugs, this so-called “lag-time” is assumed to be zero. However, if the intervention 
is smoking cessation, a lipid lowering drug, or a dietary change and the response 
variable is coronary mortality, the lag-time might be a year or longer. The problem 
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with such an intervention is that the maximum practical follow-up may not be long 
enough for a beneficial effect to appear. Extended surveillance after completion of 
active treatment may be considered in such studies. At the scheduled termination 
of the Multiple Risk Factor Intervention Trial, the results favored the Special 
Intervention group over Usual Care but did not reach statistical significance [28]. 
Almost 4 years later, a statistically significant effect emerged [29].

The poststudy surveillance in the Coronary Drug Project [27] showed unex-
pected benefit in one of the intervention groups. At the conclusion of the trial, the 
participants assigned to nicotinic acid had significantly fewer nonfatal reinfarc-
tions, but no difference in survival was detected. Total mortality, after an average 
6.5 years in the trial on drug, plus an additional 9 years after the trial, however, was 
significantly less in the group assigned to nicotinic acid than in the placebo group. 
There are several possible interpretations of the CDP finding. It may be that this 
observation is real and that the benefit of nicotinic acid simply took longer than 
expected to appear. As one plausible mechanism, the earlier reduction in nonfatal 
myocardial infarction may have finally affected prognosis. Of course, the results 
may also be due to chance. A major difficulty in interpreting the data relates to the 
lack of knowledge about what the participants in the intervention and control 
groups did with respect to lipid lowering and other regimens in the intervening 
9 years. Although there was no reason to expect that there was differential use of 
any intervention affecting mortality, such could have been the case.

The knowledge of the response variable of interest for almost every participant 
is required if long-term surveillance after completion of regular follow-up is to be 
worthwhile. The degree of completeness attainable depends on several factors, such 
as the response variable itself, the length of surveillance time, the community 
where the trial was conducted, and the aggressiveness of the investigator. Many of 
the very large trials have successfully monitored participants (or subsets thereof) 
after closeout to determine whether behavioral effects of the study intervention 
have been sustained or participants have adhered to recommendations regarding 
continued treatment.
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The final phase in any experiment is to interpret and report the results. Finding the 
answer to a challenging question is the goal of any research endeavor. Proper com-
munication of the results to clinicians also provides the basis for advances in medi-
cine [1]. To communicate appropriately, the investigators have to review their 
results critically and avoid the temptation of overinterpretation. They are in the 
privileged position of knowing the quality and limitations of the data better than 
anyone else. Therefore, they have the responsibility for presenting the results 
clearly and concisely, together with any issues that might bear on their interpreta-
tion. Investigators should devote adequate care, time, and attention to this critical 
part of the conduct of clinical trials. We believe that a policy of “conservative” 
interpretation and reporting best serves the interests of readers.

A study may be reported in a scientific journal, but publication is in no way an 
endorsement of its results or conclusions. Even if the journal uses referees to assess 
each prospective publication, there is no assurance that they have sufficient experi-
ence and knowledge of the issues of design, conduct, and analysis to fully judge the 
reported study [2]. Only the investigators are likely to recognize subtle, or even not 
so subtle, weaknesses and problems. As pointed out by a former Editor of The New 
England Journal of Medicine [3], “In choosing manuscripts for publication we make 
every effort to winnow out those that are clearly unsound, but we cannot promise that 
those we do publish are absolutely true …. Good journals try to facilitate this process 
[of medical progress] by identifying noteworthy contributions from among the great 
mass of material that now overloads our scientific communication system. Everyone 
should understand, however, that this evaluative function is not quite the same thing 
as endorsement.” This point has been illustrated by Ellenberg et al. [4]. The favorable 
results of a multicenter trial accompanied by a very positive editorial were published 
in the New England Journal of Medicine only 2 weeks before an Advisory Committee 
of the FDA voted unanimously against recommending that the intervention, a respira-
tory syncytial virus immune globulin, be licensed. In the end, it is up to the authors 
to be as objective as possible and the readers of a scientific article to assess it critically 
and to decide how to make best use of the reported findings.

In this chapter, we discuss guidelines for reporting, interpretation of findings, 
and publication bias, as well as the answers to three specific questions that should 
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be considered in preparing a report: (a) Did the trial work as planned? (b) How do 
the findings compare with those from other studies? (c) What are the clinical impli-
cations of the findings? A checklist of what should be included in a report of a 
clinical trial is provided by the Consolidated Standards of Reporting Trials 
(CONSORT) group [5–8]. Similar guidelines have been prepared for publications 
of meta-analyses [9].

Fundamental Point

The investigators have an obligation to review their study and its findings critically 
and to present sufficient information so that readers can properly evaluate the trial.

Any report of a clinical trial should include sufficient methodological informa-
tion so that the readers can assess the adequacy of the methods employed. The qual-
ity of a trial is typically judged based on the thoroughness and completeness of the 
material and methods sections of the report. Unfortunately, thorough reporting does 
not always occur. A survey of 253 randomized trials published in five general medi-
cine journals after the revised CONSORT recommendations found that several 
aspects (e.g., allocation concealment and various components of blinding) were 
inadequately discussed [10]. Others [11] have noted that eligibility criteria are 
sometimes poorly described. Wang et al. [12] conducted a survey of subgroup 
analyses reported in The New England Journal of Medicine over a 1-year period. 
Subgroup analyses were common, but highly variable in completeness of informa-
tion presented. As a result, The Journal implemented guidelines for reporting sub-
group analyses [12].

Terms often used in clinical trial reports are misused. Many authors claim that 
they performed an “intention-to-treat,” or “ITT” analysis, when in fact data from 
randomized participants have been excluded from the analysis. There may be good 
reasons why not all data are available, but such an analysis should not be called 
intention-to-treat. Readers must look carefully despite claims of an ITT analysis. 
Sometimes, “modified ITT analysis” is used, which is a contradiction. If not all 
participants and not all follow-up events are accounted for, the report of the analysis 
should not say “intention-to-treat.” Another term that is misleading is “per protocol 
analysis.” Authors use that phrase to apply to analyses that omit data from those 
who fail to adhere fully to the intervention or otherwise leave the study. We con-
sider this to be an unfortunate use of the term, as it implies that such an analysis is 
the preferred one specified in the protocol. As we have argued in this book, it is 
almost never the preferred analysis and should not be so specified in the protocol.

Traditional journals impose page limitations, forcing authors to exclude some 
important information. Online journals that do not have such page limitations are 
becoming more common. In addition, many print journals allow supplemental 
material (e.g., details of methods, extra data) to be included in their electronic versions. 
Therefore, space limitations are no longer justification for withholding pertinent 
information.
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Data sharing among investigators and public access to data and publications 
have been proposed, and even required by some clinical trials sponsors [13, 14]. 
The benefits and limitations of these policies are contentious, but all investigators 
whose trial was funded by an agency requiring data sharing must keep abreast of 
the requirements.

Guidelines for Reporting

As noted above, guidelines on how to report a clinical trial exist [5–8]. The International 
Committee of Medical Journal Editors has issued a set of uniform requirements that 
are endorsed by a large number of journals [15]. One of the guidelines is assurance 
that the trial has been listed in a formal registry [16]. In addition, journals have their 
Instructions for Authors that address issues on format as well as content.

With the enormous number of scientific articles published annually, it is impos-
sible for clinicians to keep up with the flow of information. Journals to which one 
subscribes may have online services to help keep identify articles of particular 
interest. Other online listings of publications in selected areas to which readers can 
subscribe can also help, but the clinician still has the obligation to review carefully 
clinical trial publications. More informative abstracts help clinicians who browse 
through journals on a regular basis. Valid and informative abstracts are important 
since clinical decisions are often influenced by abstracts alone [17]. For reporting 
clinical investigations, many journals have adopted the recommendation [18] for 
structured abstracts, which include information on objective, design, setting, par-
ticipants, intervention(s), measurements and main results, and conclusion(s). The 
early experience of structured abstracts was reviewed by Haynes et al., and com-
ments were “supportive and appreciative.” Those authors recommended some 
modifications of the guidelines [19]. We strongly endorse the now common use of 
the structured abstract.

Authorship

Decisions of authorship are both sensitive and important [20, 21]. It is critical that 
decisions are made at an early stage. Cases of scientific fraud have reminded us that 
being an author carries certain responsibilities and should not be used as a means 
to show gratitude. Guidelines regarding qualifications for authorship are included 
in general instructions for manuscripts [15]. The New England Journal of Medicine 
in 1991 instituted guidelines that prohibited group authorship (common to large 
multicenter studies), restricted authorship to 12 (with a possibility for waiver), and 
limited the space devoted to acknowledgement [22]. Meinert [23] came to the 
defense of group authorship and expressed concern over the possible effect of this 
policy on multicenter work. We believe that group authorship is an important part 
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of clinical trials research. Fairness and equity require proper crediting to those who 
have made major contributions to the design, conduct, and analysis, not just the few 
that served on the writing group. A compromise accepted by many journals and 
recommended by the International Committee of Medical Journal Editors is to 
allow group authorship but list those who served on the writing committee. As 
stated in the document from that group [15], some journals ask about the contribu-
tions of each person listed as an author or member of a writing group.

Ghost authorship, or the failure to properly credit those who wrote or coauthored 
a manuscript or who otherwise played a major role in the trial such that they 
deserve notice, has received considerable attention. Gøtzsche and colleagues [24] 
conducted a survey of 44 industry-initiated trials and found evidence of ghost 
authorship in three quarters of the publications. Ross et al. [25] describe publica-
tions concerning rofecoxib that were written by the industry sponsor’s employees, 
who were not acknowledged as authors.

The flip side of ghost authorship is guest authorship, where usually highly 
respected investigators who had little or no role in the writing of the manuscript are 
given visible authorship. We deplore both of these practices.

Disclosure of Conflict of Interest

Many journals have policies requiring clear statements of possible conflicts of 
interest [26]. The “Uniform Requirements for Manuscripts Submitted to Biomedical 
Journals” [15] contains guidelines regarding disclosure of potential conflicts related 
to individual authors and to the role of the sponsor of the trial. Authors must be 
forthcoming in disclosing any potential conflicts, as they can affect how readers 
interpret study findings. Unfortunately, there have been instances where important 
conflicts were not disclosed and were subsequently discovered [27, 28]. These 
cases serve both to embarrass the investigators and perhaps unfairly tarnish good 
research; a situation that could have been avoided had openness been followed in 
the beginning. We recommend that all authors disclose freely all real, potential, or 
apparent conflicts of interest.

Presentation of Data

Presentation of the data analysis is important [29–37]. There is a common misun-
derstanding of the meaning of p-values. Only about one-fifth of the respondents to 
a multiple choice question understood the proper meaning of a p-value [38]. The 
p-value tells us how likely an observed difference may have occurred by chance. It 
conveys information about the level of doubt, not the magnitude of clinical impor-
tance of this difference. A p-value of 0.05 in a very large trial may be weak evi-
dence of an effect while in a small sample it can be quite strong evidence [30]. 
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The point estimate (the observed result) with its 95% confidence interval (CI) 
 provides us with the best estimates of the size of a difference. The width of the CI 
is another measure of uncertainty. The p-value and the CI are inherently related; 
thus, if the 95% CI of the difference excludes 0, the difference is statistically sig-
nificant with p < 0.05. The CI permits the readers to use their own value for the 
smallest clinically important difference in making treatment decisions [29]. Some 
journals have taken the lead and now require more extensive use of CIs. We advo-
cate reporting of p-values, point estimates, and CIs for the major results. They all 
convey important information and help in evaluating a trial’s result.

Interpretation

Many articles have been written to help clinicians in their appraisal of a clinical 
study [39–44]. Readers should be aware that many publications have deficiencies 
and can even be misleading. Pocock [45] has given three reasons why readers need 
to be cautious: (a) some authors produce inadequate trial reports, (b) journal  editors 
and referees allow them to be published, (c) journals favor positive findings. For 
example, a review of trials of antibiotic prophylaxis found that 20% of the abstracts 
omitted important information or implied unjustified conclusions [46]. Pocock and 
coworkers [47] examined 45 trials and concluded that the reporting “appears to be 
biased toward an exaggeration of treatment differences” and that there was an over-
use of significance levels. In a 1982 report, statistical errors were uncovered in a 
large proportion of 86 controlled trials in obstetrics and pediatrics journals and only 
10% of the conclusions were considered justified [48]. In 76% of 196 trials of non-
steroidal anti-inflammatory drugs in rheumatoid arthritis, “doubtful or invalid state-
ments” were found [49]. As mentioned in Chap. 9, inadequate reporting of the 
methods of randomization and baseline comparability was found in 30–40% of 80 
randomized clinical trials in leading medical journals [50]. The criteria for tumor 
response from articles published in three major journals were incompletely reported, 
variable, and contributed to the wide variations in reported response rates [51].

Baar and Tannock [52] constructed a hypothetical trial and reported its results in 
two separate articles: one with errors of reporting and omissions similar to those 
“extracted from” leading cancer journals and the other with appropriate methods. This 
exercise illustrates how the same results can be interpreted and reported differently.

The way in which results are presented can affect treatment decisions [53–55]. 
Almost half of a group of surveyed physicians were more impressed and indicated a 
higher likelihood of treating their patients when the results of a trial were presented as 
a relative change in outcome rate compared to an absolute change (difference in the 
incidence of the outcome event) [54]. A relative treatment effect is difficult to interpret 
without knowledge of the event rate in the comparison group. The use of a “summary 
measure,” such as the number of persons who need to be treated to prevent one event, had 
the weakest impact on clinicians’ views of therapeutic effectiveness [55]. We  recommend 
that authors report both absolute and relative changes in outcome rates.
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Publication Bias

Timely preparation and submission of the trial results – whether positive, neutral, 
or negative – ought to be every investigator’s obligation. The written report is the 
public forum that all the work of a clinical trial finally faces. Regrettably, negative 
trials are more likely to remain unpublished than positive trials. The first evidence 
of this publication bias came from a survey of the psychological literature. Sterling 
[56] noted in 1959 that 97% of 294 articles involving hypothesis testing reported a 
statistically significant result. The situation was similar for medical journals 
decades later; about 85% of articles – clinical trials and observational studies – 
reported statistically significant results [57]. Simes [58] compared the results of 
published trials with those from trials from an international cancer registry. A pooled 
analysis of published therapeutic trials in advanced ovarian cancer demonstrated a 
significant advantage for a combination therapy. However, the survival ratio was 
lower and statistically nonsignificant when the pooled analysis was based on the 
findings of all registered trials. Several surveys have identified selective reporting 
and/or multiple publications of the same trial [59–63]. Even multicenter trials con-
ducted at a major academic center remained unpublished over 40% of the time. 
Those trials sponsored by government were published only modestly more often 
than those sponsored by industry [62].

Turner et al. [63] looked at 74 studies of antidepressant agents that had been 
registered with the U.S. Food and Drug Administration. Twenty three of the trials 
had not been published. In addition, those that were published claimed to show 
results more positive toward the intervention than did a subsequent FDA analysis 
of the data. Perlis et al. found that financial conflict of interest was common in 
clinical trials in psychiatry and was associated with clinical trial results that were 
highly favorable to the intervention [64]. According to Chan and colleagues [61], 
there were frequent discrepancies between the primary response variable men-
tioned in the trial protocol and that reported in the publication of results. It has been 
shown that many abstracts are never followed by full publications [65]. Dickersin 
et al. [66] found that among 178 unpublished trials with a trend specified, 14% 
favored the new therapy compared to 55% among 767 published reports (p < 0.001). 
Analysis of factors associated with this bias are, in addition to neutral and negative 
findings, small sample size and possibly pharmaceutical source of funding [66]. 
Rejection of a manuscript by a journal is an infrequent reason [67, 68]. However, 
authors are no doubt aware that it is difficult to publish neutral results and manu-
scripts may never get written only to be rejected. A survey of the reference lists of 
trials of nonsteroidal anti-inflammatory drugs revealed a bias toward references 
with positive outcomes [69].

Selective reporting is viewed as a serious issue. In a survey of clinical trialists, 
selective reporting was considered among the two most important forms of scientific 
misconduct [70]. Investigators have the primary responsibility for ensuring that they 
do not engage in this practice. Journals too have a responsibility to encourage full and 
honest reporting. They ought to select trials for publication according to the quality 
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of their conduct rather than according to whether the p-value is significant. We expect 
that the common use of clinical trial registries will encourage more complete report-
ing of trial results, as those trials begun but not reported are more easily identified.

Did the Trial Work as Planned?

Baseline Comparability

The foundation of any clinical trial is the effort to make sure that the study groups 
are initially comparable so that differences between the groups over time can be 
reasonably attributed to the effect of the intervention. Randomization is the preferred 
method used to obtain baseline comparability. The use of randomization does not 
necessarily guarantee balance at baseline in the distribution of known or unknown 
prognostic factors. Baseline imbalance is fairly common in small trials but may also 
exist in large trials (see Chap. 9). Therefore, both a detailed description of the ran-
domization process, including efforts made to prevent prior knowledge on the part 
of the investigator of the intervention assignment, and an evaluation of baseline 
comparability are essential. Should the trial be nonrandomized, the credibility of the 
findings hinges even more upon an adequate documentation of this comparability. 
For each group, baseline data should include means and standard deviations of 
known and possible prognostic factors. Note that the absence of a statistically sig-
nificant difference for any of these factors does not mean that the groups are bal-
anced. In small studies, large differences are required in order to reach statistical 
significance. In addition, small trends for individual factors can have an impact if 
they are in the same direction. A multivariate analysis to evaluate balance may be 
advantageous. Of course, the fact that major prognostic factors may be unknown will 
produce some uncertainty with regard to baseline balance. Adjustment of the find-
ings on the basis of observed baseline imbalance should be performed and any dif-
ference between unadjusted and adjusted analyses should be carefully explained.

Blindness

Double-blindness is a desirable feature of a clinical trial design because, as already 
discussed, it diminishes bias in the assessment of response variables that require 
some element of judgment. However, many studies are not truly double-blinded to 
all parties from start to finish. While an individual side-effect may be insufficient 
to unblind the investigator, a constellation of effects often reveals the group assign-
ment. A specific drug effect such as a marked fall in blood pressure in an antihy-
pertensive drug trial – or the absence of such an effect – might also indicate which 
is the treatment group. Although the success of blinding may be difficult for the 
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investigator to assess, an evaluation should be done. Readers of a publication ought 
to be informed about the degree of unblinding. An evaluation such as the one pro-
vided by Karlowski and colleagues for a trial of vitamin C [71] is commendable. In 
a completed double-blind, placebo-controlled trial of a lipid-lowering agent, the 
participants were asked at the close-out visit whether they had their lipids analyzed 
during the 3-year treatment period. Although unblinding was discouraged, over half 
of them admitted that they had done so. It is possible that information on the lipid 
values could have led to an increased cross-over rate in the placebo group.

Adherence and Concomitant Treatment

In estimating sample size, investigators often make assumptions regarding the rate 
of nonadherence. Throughout follow-up, efforts are made to maintain optimal 
adherence to the intervention under study and to monitor adherence. When inter-
preting the findings, one can then gauge whether the initial assumptions were borne 
out by what actually happened. When adherence assumptions have been too opti-
mistic, the ability of the trial to test adequately the primary question may be less 
than planned. The study results must be reported and discussed with the power of 
the trial in mind. In trials showing a beneficial effect of a specific intervention, 
nonadherence is usually a minor concern. Two interpretations of the effect of non-
adherence are possible. It may be argued that the intervention would have been even 
more beneficial had adherence been higher. On the other hand, if all participants 
(including those who for various reasons did not adhere entirely to the dosage 
schedule of a trial) had been on full dose, there could have been further adverse 
events or toxic effects in the intervention group.

Also of interest is the comparability of groups during the follow-up period with 
respect to concomitant interventions. The use of drugs other than the study inter-
vention, changes in lifestyle, and general medical care – if they affect the response 
variable – need to be measured. Of course, as mentioned in Chap. 17, adjustment 
on postrandomization variables is inappropriate. As a consequence, when imbal-
ances exist, the study results must be interpreted cautiously.

Limitations

When the results of a “superiority” trial (i.e., one in which an intervention is evaluated to 
see if it differs from a control) indicate no statistically significant difference between the 
study groups, there are several possible explanations. The dose of the studied intervention 
may have been too low or too high; the technical skills of those providing the interven-
tion (e.g., surgical procedure) may have been inadequate; the sample size may have 
been too small, giving the trial insufficient power to test the hypothesis (Chap. 8); there 
may have been major adherence problems; concomitant interventions may have 
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reduced the effect that would otherwise have been seen; or the outcome measurements 
may not have been sensitive enough or the analyses may have been inadequate. 
Finally, chance is another obvious explanation. The authors should provide the 
readers with enough information in the methods and results sections for them to judge 
for themselves why an intervention may not have worked. In the discussion section, the 
authors should also offer their best understanding of why no difference was found.

For equivalence or noninferiority trials, inadequate design or conduct, or poor 
adherence on the part of participants, can lead to what the investigators and spon-
sors consider as the “desired” outcome, that is, no discernable difference between 
intervention groups. Perhaps even more than in superiority trials, the authors must 
recognize and clearly acknowledge any study limitations that could have contrib-
uted to the lack of difference. In some cases, an “on treatment” analysis might be 
warranted, in addition to the intention-to-treat analysis.

What are limitations of the findings? One needs to know the degree of complete-
ness of data in order to evaluate a trial. A typical shortcoming, particularly in long-
term trials, is that the investigator may lose track of some participants or for other 
reasons have missing data. These participants are usually different from those who 
remain in the trial, and their event rate or outcome measurements may not be the 
same. Vigorous attempts should be made to keep the number of persons lost to 
follow-up to a minimum. The credibility of the findings may be questioned in trials 
in which the number of participants lost to follow-up is large in relation to the 
number of events. A conservative approach in this context is to assume the “worst 
case.” This approach assumes the occurrence of an event in each participant lost to 
follow-up in the group with lower incidence of the response variable, and it assumes 
no events in the comparison group. After application of the “worst case” approach, 
if the overall conclusions of the trial remain unchanged, they are strengthened. 
However, if the worst-case analysis changes the conclusions, the trial may have less 
credibility. Other approaches to handling missing outcome data are discussed in 
Chap. 17. The degree of confidence in the conclusion will depend upon the extent 
to which the outcome could be altered by the missing information.

Analysis

As addressed in Chap. 17, results may be questionable if participants randomized 
into a trial are withdrawn from the analysis. Withdrawal after randomization under-
mines the goal of conducting a valid, unbiased trial. It should be avoided. 
Investigators who support the concept of allowing withdrawals from the analysis 
should be required to report analyses both with, and without, withdrawals. If both 
analyses give approximately the same result, the findings are confirmed. However, 
if the results of the two analyses differ, believe the intention-to-treat analysis while 
exploring the reasons for the differences.

In evaluating possible benefit of an intervention, more than one response variable is 
often assessed which raises the issue of multiple comparisons (Chap. 17). In essence, the 
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chance of finding a nominally statistically significant result increases with the number of 
comparisons. This is true whether there are multiple response variables, repeated compari-
sons for the same response variable, subgroup analyses or whether various combinations 
of response variables are tested. In the survey of 45 trials in three leading medical journals, 
the median number of significance tests per trial was eight; more than 20 tests were 
reported in six trials [46]. The potential impact of this multiple testing on the findings and 
conclusion of a trial ought to be considered. A conservative approach in the interpretation 
of statistical tests is again recommended. When several comparisons have been made, a 
more extreme statistic might be required before a statistically significant difference could 
be claimed. One approach is to require a p-value <0.01 for a limited number of secondary 
outcomes in order to declare a treatment difference statistically significant. An alternative 
approach is to consider all of the subsidiary analyses exploratory and hypothesis generat-
ing [46]. Authors of a report should indicate the total number of comparisons made during 
a trial and in the analysis phase (not just those selected for reporting). Readers should 
focus attention on p-values for protocol-specified comparisons.

The main objective of any trial is to answer the primary question. Findings 
related to one of the secondary questions may be interesting, but they should be put 
in the proper perspective. Are the findings for the related primary and secondary 
response variables consistent? If not, attempts ought to be made to explain discrep-
ancies. Explaining inconsistencies was particularly important in the Cooperative 
Trial in the Primary Prevention of Ischaemic Heart Disease [72]. In that trial, the 
intervention group showed a statistically significant reduction in the incidence of 
major ischemic heart disease (primary response variable) but a significant increase 
in mortality for any cause (secondary response variable).

In all studies, evidence for possible serious adverse events from the intervention 
needs to be presented. Comparison of adverse events among those participants who 
adhered to the intervention may provide a more conservative assessment, in the 
sense that it leans toward safety. Authors might consider analyzing adverse event 
data both using intention-to-treat and on-treatment approaches. In the final conclu-
sion, the overall benefit should be weighed against the risk of harm. This assess-
ment of the balance, however, is too infrequently done (Chap. 12).

How Do the Findings Compare with Results  
from Other Studies?

The findings from a clinical trial should be placed in the context of current knowl-
edge. Are they consistent with knowledge of basic science, including presumed 
mechanism of action of the intervention? Although the precise mechanism may be 
unclear, when the outcome can be explained in terms of known biological actions, 
the conclusions are strengthened. Do the findings confirm the results of studies with 
similar interventions or different interventions in similar populations?

It is important here to keep in mind that a substantial proportion of initiated and 
even completed trials are never published. Additionally, a review of the  completeness 
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of articles cited in reference lists of clinical trial publications suggests that studies 
with neutral or negative results tend not to be cited [68]. Among published trials the 
response to a given drug or drug combination can vary markedly [52, 73, 74]. The 
reported response rates to fluorouracil therapy varies between 8 and 85% for meta-
static colorectal cancer [52]. Much of this variation may be explained by differ-
ences in participant selection, including genetic variation, treatment regimen, and 
concomitant intervention, but major differences may also reflect the way the data 
were analyzed and reported. In a review of 51 randomized clinical trials in conges-
tive heart failure, the authors attributed conflicting results to lack of uniform diag-
nostic criteria [73]. In a thoughtful editorial, Packer [74] pointed out that several 
other factors could explain discordant results. He suggested that the characteristics 
of the enrolled participants may be more important than the definition of congestive 
heart failure. Differences in design – sample size, dose, and duration of intervention 
– may affect the trial findings. Other factors might be differences in criteria of 
efficacy and publication policy. Results of positive trials tend to be published sev-
eral times, for example, both in a regular journal report and in a journal supplement 
funded by the pharmaceutical industry. Bero et al. [75] analyzed the symposium 
issues of 11 journals and concluded that the number increased steadily between 
1966 and 1989, that they often had promotional attributes, were less likely to be 
peer-reviewed, and were more likely to have misleading titles.

Generally, credibility of a particular finding increases with the proportion of 
good independent studies that come to the same conclusion. Inconsistent results are 
not uncommon in research. In such cases, the problem for both the investigators and 
the readers is to try to determine the true effect of an intervention. How and why 
results differ need to be explored. The use of confidence limits has the advantage 
of allowing the readers to compare findings and assess whether the results of dif-
ferent trials could, in fact, be consistent.

What are the Clinical Implications of the Findings?

It is appropriate, of course, to generalize the results to the study population, that is, 
those people who would have been eligible for and could have participated in the 
trial. The next step, suggesting that the trial results be applied to a more general 
population (the majority of which would not even meet the eligibility criteria of the 
trial) is more tenuous. Readers must judge for themselves whether or not such an 
extrapolation is appropriate. As seen in Fig. 4.1 in Chap. 4, there is often a consider-
able winnowing from the initial study population to the final sample. A similar 
argument applies to the intervention itself. How general are the findings? If the 
intervention involved a special procedure, such as surgery or counseling, is its 
application outside the trial setting likely to produce the same response? In a drug 
trial, the question of dose–effect relationship is often raised. Would a higher dose 
of the drug have given different results? Can the same claims be made for different 
drugs that have a similar structure or pharmacological action? Can the results of an 
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intervention be generalized even more broadly? For example, there have been many 
trials comparing different statins in the prevention of coronary disease sequelae. If 
the goal LDL-cholesterol is the same in the groups being compared, should one 
expect similar outcomes? Based on the experience with cerivastatin [76], statins are 
unlikely to be the same, at least with respect to adverse events. One problem in tri-
als of devices is that the devices are constantly being modified or improved, with 
respect to the technology or the software algorithm. Does the trial using the old 
model have any implications for the latest model or the model to come in the 
future? For a further discussion of generalization, see Chap. 4.

In 1987, a review found that the majority of therapeutic interventions had not 
been properly tested in randomized clinical trials [77]; approval may have been 
granted on the basis of surrogate endpoints or drugs may have multiple indications, 
only some of which are proven. As discussed in this book, there continue to be 
examples of drugs that had been approved but when assessed in an adequately 
designed clinical trial turn out not to be as wonderful as hoped. Skillful marketing 
has a major impact on practice patterns. The marked regional differences in drug 
sales cannot be explained on the basis of science, since regions, in principle, have 
access to the same scientific information. It is difficult to tease out the impact of 
clinical trials on medical practice from other factors such as marketing and treat-
ment guidelines. There are several examples of trials that have changed practice 
patterns [78, 79]. Similarly, there are examples where practice was predominantly 
influenced by the other factors [80].

As with all research, a clinical trial will often raise as many questions as it 
answers. Suggestions for further research should be discussed. Finally, the investi-
gator might allude to the social, economic, and medical impact of the study find-
ings. How many lives can be saved? How many working days will be gained? Can 
symptoms be alleviated? Economic implications or cost-effectiveness are impor-
tant. Any benefit has to be weighed against the cost and feasibility of use in routine 
medical practice rather than in the special setting of a clinical trial.
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A multicenter trial is a collaborative effort that involves more than one independent 
center in the tasks of enrolling and following study participants. Early contributions 
to the design of these trials were made by Hill [1], and a general discussion of 
methods was provided by Greenberg [2].

There has been a dramatic increase in the number of multicenter, indeed, multi-
national, trials in the last three decades. Of course, the sizes of these have varied, 
depending on the requirements of the study. Multicenter studies are more difficult 
and more expensive to perform than single-center studies, and they bring perhaps 
less professional reward due to the need to share credit among many investigators. 
Nevertheless, they are carried out because single sites cannot enroll enough partici-
pants [3]. Over 35 years ago, Levin and colleagues provided many examples of “the 
importance and the need for well-designed cooperative efforts to achieve clinical 
investigations of the highest quality” [4].

The reasons for conducting multicenter trials apply even more today, with much 
of medicine being global in scope. It is common for large late-phase trials spon-
sored by industry to include a wide geographical representation. Several hundred 
sites might be involved, each site entering anywhere from several to a few dozen 
participants. While such dispersion of sites presents logistical challenges for 
training  of personnel and data quality control, the benefits of rapid participant 
recruitment have generally outweighed these challenges.

Much of the ground work for the development, organization, and conduct of a 
multicenter trial, was laid in the Coronary Drug Project [5]. A detailed description 
of multicenter trials is given by Meinert [6]. This chapter discusses the reasons why 
such studies are conducted and briefly reviews some steps in their planning, design, 
and conduct.

Fundamental Point

Anyone responsible for organizing and conducting a multicenter study should have a 
full understanding of the complexity of the undertaking. Problems in conduct of the trial 
most often originate from inadequate and unclear communication between the partici-
pating investigators, all of whom must agree to follow a common study protocol.

Chapter 20
Multicenter Trials
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Reasons for Multicenter Trials

1. The main rationale for multicenter trials is to recruit adequate number of participants 
within a reasonable time. Many clinical trials have been – and still are – 
performed without a good estimate of the number of participants likely to be 
required to test adequately the main hypothesis. Yet, if the primary response vari-
able is an event that occurs relatively infrequently, or small group differences are to 
be detected, sample size requirements will be large (Chap. 8).

Studies requiring hundreds of participants usually cannot be done at one 
center. In a now old, but still instructive example, the Aspirin Myocardial 
Infarction Study [7] used 30 centers to enroll the necessary 4,200 participants with 
a history of a heart attack in 1 year and follow them for an additional 3 years. 
The largest of these centers enrolled slightly over 200 participants. Let us assume 
uniform annual rates of enrollment, uniform annual mortality, and follow-up of all 
participants to a  common termination date. If an investigator were interested only 
in the experience of the participants over the initial 3 years after enrollment, assum-
ing no further benefit from intervention after that time, then the single largest 
center would have required 21 years to recruit participants and 24 years to com-
plete the study. Even if the investigator were interested simply in an equivalent 
number of person-years of intervention, regardless of the number of years a par-
ticipant received the intervention, this one center would have taken approximately 
12 years to complete the study.

Given that medical advances are probably even more rapid today than when 
the Aspirin Myocardial Infarction Study was conducted, a 24-year study or 
even a 12-year study is impractical and may develop major problems. Changes in 
therapy and methodology during the years will make the study obsolete. Mortality 
from causes other than the one of interest may become more important in the later 
years of the study and dilute any effect of the intervention. It may not be reason-
able to expect an intervention to continue to provide the same relative benefit over 
the course of many years. In addition, participants and investigators are likely to 
lose interest in the trial and may elect not to participate further. There is also a 
good chance that they may move from the area. Finally, answers from the trial, 
which might benefit other people, will be delayed for a generation. For these 
reasons, most investigators prefer to engage in studies of shorter duration. 

2. A multicenter study may assure a more generalizable sample of the study or 
target population. Although no trial is completely representative, geography, 
race, socioeconomic status, and life style of participants may be more similar to 
the general population if participants are enrolled by many centers. These factors 
may be important in the ability to generalize the findings of the trial. Severity 
and sequelae of hypertension, for example, are seemingly race related. A study of 
hypertensive participants from either a totally black or totally white community 
are likely to yield findings that may not necessarily applicable to a more diverse 
population. Similarly, a study of pulmonary disease in an air-polluted industrial 
center might not give the same results as a study in a rural area.
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3. A multicenter study enables investigators with similar interests and skills to 
work together on a common problem. Science and medicine, like many other 
disciplines, are competitive. Nevertheless, investigators may find that there are 
times when their own interests, as well as those of science, require them to coop-
erate. Thus, many scientists collaborate in order to solve particularly vexing 
clinical and public health problems and to advance knowledge in areas of common 
interest. A multicenter trial also gives capable, clinically oriented persons, who 
might otherwise not become involved in research activities, an opportunity to 
contribute to science. In the past, multicenter clinical trials typically involved 
only major academic centers. Now, many clinical practices based in the commu-
nity successfully participate in trials.

Conduct of Multicenter Trials

One of the earlier multicenter clinical trials was the Coronary Drug Project [5]. 
This study provided an initial model for many of the techniques currently employed. 
Some techniques have been refined in subsequent trials. As in all active disciplines, 
concepts are frequently changing. Nonetheless, the following series of steps are one 
reasonable way to approach the planning and conduct of a multicenter trial. It consists 
of a distillation of experience from a number of these studies.

First, a planning committee should be established to be responsible for organizing 
and overseeing the various phases of the study (planning, participant recruitment, 
participant follow-up, phase out, data analysis, paper writing) and its various centers 
and committees. This group often consists of representatives from the sponsoring 
organization (e.g., government agencies, private research organizations, educational 
institutions, private industry), with input from appropriate consultants. Use of consul-
tants who are expert in the field of study, in biostatistics, and in the management of 
multicenter clinical trials is encouraged. The planning committee needs to have 
authority in order to operate effectively and for the study to function efficiently.

Second, to determine the feasibility of a study, the planning committee should 
make a thorough search of the literature and review of other information. Sample 
size requirements should be calculated. Reasonable estimates must be made regarding 
control group event rate, anticipated effect of intervention, and participant adher-
ence to therapy. The planning committee also has to evaluate key issues such as 
participant availability, availability of competent cooperating investigators, timeli-
ness of the study, possible competing trials, regulatory requirements, and total cost. 
After such an assessment, is the trial worth pursuing? Are there sufficient preliminary 
indications that the intervention under investigation indeed might work? On the other 
hand, is there so much suggestive (though inconclusive) evidence in favor of the 
new intervention that it might be difficult ethically to allocate participants to a control 
group? Might such suggestive evidence seriously impede participant recruitment? 
Since planning for the study may take a year or more, feasibility needs constantly 
to be re-evaluated, even up to the time of the actual start of participant recruitment. 
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New or impending evidence may at any time cause cancellation, postponement, or 
redesign of the trial. In some instances, a pilot, or feasibility study is useful in answ-
ering specific questions important for the design and conduct of a full-scale trial.

Third, multicenter studies require not only clinical centers to recruit participants 
but also one or two coordinating centers to help design and manage the trial and to 
collect and analyze data from all other centers. There may be regional sites, academic 
centers, or contract research organizations (CROs) – also called clinical research 
organizations – that conduct site visits and receive data from the clinical centers. 
Additional centers are often needed to perform specialized activities such as key 
laboratory tests, imaging, and distributing study drugs. While the specialized cen-
ters may perform multiple services, it is usually not advisable to permit a clinical 
center to perform these services. If a specialized center and a clinical center are in 
the same institution, each should have a separate staff. Otherwise, unblinding and, 
therefore, bias could result. Even if unblinding or bias is avoided, there might be 
criticism that such a bias might have occurred and thus raise unnecessary questions 
about the entire clinical trial.

As reported by Croke [8], a major consideration when selecting clinical center 
investigators is availability of appropriate participants. Although this report is now 
old, the message remains relevant. The trial has to go where the participants are. 
Clearly, experience in clinical trials and scientific expertise are desirable features 
for investigators, but they are not crucial to overall success. Well-known scientists 
who add stature to a study are not always successful in collaborative ventures. 
The chief reason for this lack of success is often their inability to devote sufficient 
time to the trial. In a comprehensive study of factors associated with enrollment of 
eligible people with documented myocardial infarction, Shea et al. [9] found posi-
tive correlations with institutions in which patients were cared for by staff other 
than private attending physicians and with the presence of a committed nurse 
coordinator.

The selection of the coordinating center is of utmost importance. This is often a 
single entity, but sometimes, the coordinating center functions are split between 
two or more units; a clinical coordinating center, a data coordinating center, and, 
often, a separate data analysis center. The responsibilities described here apply to 
any of the models, but clearly communication becomes more of an issue when there 
are multiple units.

In addition to helping design the trial, the coordinating center, or combination of 
centers, is responsible for implementing the randomization scheme, for carrying 
out day-to-day trial activities, and for collecting, monitoring, editing, and analyzing 
data. The coordinating center, or, when there are two units, the clinical coordinating 
center/data management center needs to be in constant communication with all 
other centers. Its staff has to have expertise in areas such as biostatistics, computer 
technology, epidemiology, medicine, and management to respond expeditiously to 
daily problems that arise in a trial. These might range from simple questions, such 
as how to code a particular item on a questionnaire, to monitoring clinical site conduct. 
The single coordinating center, or the separate data analysis center, has responsi-
bilities such as preparing data monitoring guidelines, conducting data analyses, and 
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developing or modifying statistical methods. The staffs at these centers must be 
experienced, capable, responsive, and dedicated to handle their workloads in a 
timely fashion. A trial can succeed despite inadequate performance of one or two 
clinical centers, but a poorly performing coordinating center or data management 
center can materially affect the success of a multicenter trial. In extreme cases, a 
coordinating center may have to be changed midway through the trial. This causes 
serious delay and logistical problems. Thus, proper selection of the coordinating 
center is extraordinarily important.

A key element in any coordinating or analysis center is not only the presence of 
integrity, but the appearance of integrity. Any suspicion of conflict of interest can 
damage the trial. It is for this reason that pharmaceutical firms who support trials 
sometimes use outside institutions or organizations as coordinating centers. 
Because the personnel in the centers control the data and the analyses, they should 
be seen to have no overriding interest in the outcome of a trial. Meinert [6] has 
described the functions of the coordinating center in detail. See also Fisher et al. for 
a description of the operations of an independent data analysis center [10]. As 
noted, certain functions in a multicenter trial are best carried out by properly 
selected special centers. The advantages of centrally performing laboratory tests, 
reading X-rays, evaluating pathology specimens, or coding electrocardiograms 
include unbiased assessment, standardization and reduced variability, ease of quality 
control, and high quality performance. The disadvantages of centralized determina-
tions include the cost and time required for shipping, as well as the risk of losing 
study material. It is also obvious that the centers selected to perform specialized 
activities need expertise in their particular fields. Equally important is the capacity 
to handle the large workloads of a multicenter trial with research-level quality. 
Even with careful selection of these centers, backlogs of work are a frequent source 
of frustration during the course of a trial.

Fourth, it is preferable for the planning committee to provide prospective inves-
tigators with a fairly detailed outline of the key elements of the study design as 
early as possible. This results in more efficient initiation of the trial and allows each 
investigator to plan better his staffing and cost requirements. Rather than presenting 
a final protocol to the investigators, we recommended that all or selected represen-
tatives be given time to discuss and, if necessary, modify the trial design. 
This process allows them to contribute their own ideas, to have an opportunity to 
participate in the design of the trial, strengthening their commitment to it, and to 
become familiar with all aspects of the study. It may also improve the design. The 
investigators need a protocol that is acceptable to them and their colleagues at their 
local institution. This “buy-in” will improve participant recruitment, data collec-
tion, and final acceptance of the trial results. Depending on the complexity of the 
trial, several planning sessions prior to the start of participant recruitment may be 
needed for this process.

If there are a great many investigators and a number of difficult protocol decisions, 
it is useful during the planning stage to have specific groups or subsets of investigators 
to address these issues. Working groups can focus on individual problems and prepare 
reports for the total body of investigators. Of course, if the initial outline has been 
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well thought out and developed, few major design modifications will be necessary. 
Any design change needs to be carefully examined to ensure that the basic objec-
tives and feasibility of the study are not threatened. This caveat applies particularly 
to modifications of participant eligibility criteria. Investigators are understandably 
concerned about their ability to enroll a sufficient number of participants. In an 
effort to make recruitment easier, they may favor less stringent eligibility criteria. 
Any such decisions need to be examined to ensure that they do not have an adverse 
impact on the objectives of the trial and on sample size requirements. The benefit 
of easier recruitment may be outweighed by the need for a larger sample size. 
Planning meetings also serve to make all investigators aware of the wide diversity 
of opinions. Inevitably, compromises consistent with good science must be reached 
on difficult issues, and some investigators may not be completely satisfied with 
all aspects of a trial. However, all are usually able to support the final design. 
All investigators in a cooperative trial must agree to follow the common study 
protocol.

Fifth, an organizational structure for the trial should be established with clear 
areas of responsibility and lines of authority. Many have been developed [11–15]. 
The one outlined below has stood the test of time.

Steering Committee. This committee provides scientific direction for the study 
at the operational level. Its membership may be made up of some or all of those 
who were on the planning committee (including sponsor representation) plus a 
subset of investigators participating in the trial. Depending on the length of the 
study, some key investigators may be permanent members of the Steering 
Committee to provide continuity. Others may be chosen or elected for shorter 
terms. Subcommittees are often established to consider on a study-wide level specific 
issues such as adherence, quality control, classification of response variables, and 
publication policies and review and then report to the Steering Committee.

It may also be important to authorize a small subgroup to make executive decisions 
between Steering Committee meetings. Most “housekeeping” tasks and day-to-day 
decisions can be more easily accomplished in this manner. A large committee, for 
example, is unable to monitor a trial on a daily basis, write memoranda, or prepare 
agendas. Since committee meetings can rarely be called at short notice, issues 
requiring rapid decisions must be addressed by an executive group. It is important, 
however, that major questions be discussed with the investigators.

Assembly of Investigators. This committee represents all of the centers partici-
pating in the trial. In small studies, this Assembly may be the same as the Steering 
Committee. In large studies, the Steering Committee would become too large to 
perform its duties effectively if it included all investigators. The purposes of 
Assembly meetings, which may be attended by other study personnel, are to allow 
for votes on major issues, to keep all investigators acquainted with the progress of 
the trial, and to provide an opportunity for staff training and education. Given the 
complexity of many trials, this last purpose is often the most important.

Subcommittees. Often, subcommittees of the Steering Committee are estab-
lished. For example, there might be an Events Classification Subcommittee. Central 
evaluation of events, with the participant’s identify and intervention group blinded, 
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helps to assure unbiased classification of reported events and to ensure consistent 
application of criteria for particular events. Other subcommittees might look for 
ways to improve participant accrual or adherence. In some trials, the subcommittee 
structure has become too complex and can lead to inefficiencies. Trials with few 
centers function best with a simple structure. If committees, subcommittees, and 
task forces multiply, the process of handling routine problems becomes difficult. 
Studies that involve multiple disciplines, especially need a carefully thought out 
organizational structure. Investigators from different fields tend to look at issues 
from various perspectives. Although this variety can be beneficial, under some 
circumstances it can obstruct the orderly conduct of a trial. Investigators may seek 
to increase their own areas of responsibility and, in the process, change the scope 
of the study. What starts out as a moderately complex trial can end up being an 
almost unmanageable undertaking.

Monitoring Committee. This scientific body, which goes by various names (see 
Chap. 16), should be independent of the investigators and any sponsor of the trial. 
It has as its primary roles the assurance, to the extent possible, of participant safety 
and study integrity. To accomplish those, it is charged with reviewing and approv-
ing the protocol, periodically monitoring baseline, toxicity, and response-variable 
data and evaluating center performance [16]. In the light of concerns about clinical-
trial integrity [17–19], the independence of this group is especially important. 
It usually reports to either the study sponsor or the chairperson of the planning or 
steering committee. The coordinating or data analysis center should present tabu-
lated and graphic data and appropriate analyses to the monitoring committee for 
review. The committee has the responsibility to recommend early termination in 
case of unanticipated toxicity, greater-than-expected benefit or high likelihood of 
indifferent results (see Chap. 16). Members of this committee should be knowledge-
able in the field under study, in clinical trials methodology, and in biostatistics. 
An ethicist and/or a participant advocate may also be part of this group. The 
responsibilities of the monitoring committee to the participants, as well as to the 
integrity of the study, should be clearly established. These responsibilities for 
participant safety are particularly important in double-blind studies, since the indi-
vidual investigators are unaware of the group assignments and which group is 
associated with various adverse events.

Sixth, despite special problems, multicenter trials should try to maintain standards 
of quality as high as those attainable in carefully conducted single-center trials. 
Therefore, strong emphasis should be placed on training and standardization. It is 
obviously extremely important that staff at all centers understand the protocol defini-
tions, and how to complete forms and perform tests. Differences in performance 
among centers, as well as between individuals in a single center, are unavoidable. 
They can, however, be minimized by proper training, certification procedures, 
retesting, and when necessary, retraining of staff. These efforts need to be imple-
mented before a trial gets underway. (See Chap. 11 for a discussion of quality control.) 
Not until the Steering Committee is satisfied that staff are capable of performing 
necessary procedures should a clinical center be allowed to begin enrolling participants. 
Meetings of the Assembly of Investigators are essential to the successful conduct of 
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the trial because they provide opportunities to discuss common problems and review 
proper ways to collect data and complete study forms.

Large simple trials [20] typically involve a large number of participating centers, 
many of which are nonacademic institutions. Education, training, and standardiza-
tion may not get the same attention as in other trial models. Clinician-investigators 
need to understand the basic concepts and intent of clinical trials and how the rules 
of research – which may sometimes seem arbitrary – differ from the way they prac-
tice medicine. The reliance on hard endpoints such as all-cause mortality, and 
limited data collection in this kind of multicenter trial tends to reduce the need for 
elaborate quality control procedures.

Seventh, there needs to be close monitoring of the performance of all centers. 
Participant recruitment, quality of data collection and processing, quality of laboratory 
procedures, and adherence of participant to protocol should be evaluated frequently. 
Exactly how often is determined by the time span for which investigators are willing 
to allow errors or nonperformance to go undetected. Of course, cost and personnel 
considerations may dictate lesser frequency than desired. Tables 20.1–20.3 are typical 
of the kinds of information that investigators have used to compare clinical center 
performance.

Table 20.1 Average processing time for follow-up visit (FV) forms

Previous 6 months Present 6 months

Clinic
No. of FV 
forms received

Days from visit 
to receipt of 
forms

No. of FV forms 
received

Days from 
visit to receipt 
of forms

A    292 25.8 290 8.7
B    157 22.9 117 29.0
C    210 16.0 198 16.2

D    174 11.6 173 10.4
E    182 8.3 185 12.7
Total 1,015 17.8 963 13.8

Table used in Aspirin Myocardial Infarction Study: Coordinating Center, University of 
Maryland

Table 20.2 Number of follow-up visit forms not 
received at coordinating center more than 1 month 
past the visit window, by clinic

Clinic January 13, 1978 July 28, 1978

A  8  0
B 21 65
C  0  1
D  1  0
E  0  0
Total 30 66

Table used in Aspirin Myocardial Infarction Study: 
Coordinating Center, University of Maryland
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Table 20.3 Percent of follow-up visit forms with one or more errors, by clinic and month of 
follow-up

Clinic Feb. Mar. Apr. May June July Total

Total 
previous 
6 months

Errors 
per 
forma

No. of 
forms 
processed

A 30.0 29.6 29.6 29.7 35.1 29.3 30.3 33.2 6.11 290
B 25.0 14.3 20.8 28.0 – 28.3 24.2 24.2 6.66 117
C 0.0 14.1 3.4 8.1 27.3 13.8 12.1 16.2 5.21 198
D 22.2 16.7 6.3 20.9 9.7 26.3 16.2 17.8 6.21 173
E 4.8 10.3 19.6 13.6 21.2 20.8 15.7 18.7 4.38 185
Total 17.0 18.5 17.0 20.4 20.9 23.8 20.6 23.1 5.68 963

Table used in Aspirin Myocardial Infarction Study: Coordinating Center, University of Maryland
aErrors per form are calculated by dividing the number of errors by the number of forms failing edit

Table 20.1 compares the average time it takes for each clinical center to complete 
and submit forms to the coordinating center. Center B in the present 6 months 
stands out as doing poorly and it has become worse when compared with previous 
performance. Table 20.2 shows that center B also has a large number of unsubmitted 
forms. As seen in Table 20.3, clinical centers A and B are submitting many forms 
with errors. It is useful to identify those centers which are performing below average. 
Often, specific problems can be identified and corrected. For example, in one study, 
evidence of left ventricular hypertrophy was identified much more often in the 
electrocardiograms from one center than from the other centers. Only after looking 
into the reasons for this was it discovered that the internal standard on that clinical 
center’s electrocardiograph machine was incorrectly calibrated.

Many industry-sponsored multicenter trials that employ CROs conduct extensive 
auditing and quality assurance. This is quite costly and how much benefit it provides 
has been questioned [21]. See Chap. 11 for further discussion of this topic.

In all clinical trials, recruitment of participants is difficult. In a cooperative clinical 
trial, however, there is an opportunity for some clinical centers to compensate for 
the inadequate performance of other centers by exceeding their predetermined 
recruitment goals. The clinical centers should understand that, while friendly 
competition keeps everybody working, the real goal is overall success, and what 
some centers cannot do, another perhaps can. Therefore, it is important to encourage 
the good centers to recruit as many participants as possible. There may be a limit, 
however, if one center, region, or country (in the case of international trials) starts 
to dominate enrollment. At some point, recruitment might need to be capped if the 
study is to be seen as truly multicenter.

Eighth, publication, presentation, and authorship policies should be agreed upon in 
advance. Authorship becomes a critical issue when there are multiple investigators, 
many of whose academic careers depend on publications. Unfortunately, there is no 
completely satisfactory way to recognize the contribution of each investigator. 
A common compromise is to put the study name immediately under the paper title 
and to acknowledge the writers of the paper, either in a footnote or under the title, 
next to the study name. All key investigators are then listed at the end of the paper. 
The policy may also vary according to the type of paper (main or subsidiary). 
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The group authorship of manuscripts from multicenter trials was challenged by some 
medical journals and defended by others [22–24]. It remains common, but typically 
with an identified writing committee to take responsibility (see Chap. 19).

Involvement of the sponsor as an author of the main manuscripts from a major trial 
can be contentious, especially if it is a commercial firm that stands to benefit from a 
favorable presentation of the trial results. Most sponsors accept a hands-off policy 
and leave it to the investigators to write the scientific papers. Typically, they are given 
1 month to preview a manuscript, particularly for patent or regulatory issues. This 
review should not unnecessarily delay the publication of the trial results. Regrettably, 
there are examples of interference that is in conflict with academic freedom.

In one four-center trial, the investigators at one of the centers reported their own 
findings before the total group had an opportunity to do so [25, 26]. Such an action 
is not compatible with a collaborative effort. It undermines the goal of a multicenter 
trial of having enough participants to answer a question and, perhaps more impor-
tantly, the trust among investigators. Academic institutions have taken a strong 
stand against this principle of collaboration and in defense of academic freedom for 
each investigator. However, we believe that those unwilling to abide by the rule for 
common authorship should not participate in collaborative studies.

Advance planning of authorship policy may eliminate subsequent misunder-
standings. However, fair recognition of junior staff will always be difficult [27]. 
Study leadership often gets credit and recognition for work done largely by people 
whose contributions may remain unknown to the scientific community. One way to 
alleviate this problem is to appoint as many capable junior staff as possible to 
 subcommittees. Such staff should also be encouraged to develop studies ancillary 
to the main trial. This approach will enable them to claim authorship for their own 
work while using the basic structure of the trial to get access to participants and 
supporting data. Such ancillary studies may be performed on only a subgroup of 
participants and may not necessarily be related to the trial as a whole. Care must be 
taken to ensure that they do not interfere with the main effort, either through 
unblinding, by harming the participants or by causing the participants to leave the 
trial. Sackett and Naylor discuss the issues for and against allowing publication of 
ancillary studies before the main trial is completed [28].

Globalization of Trials

As noted earlier, many multicenter clinical trials are international. The reasons are 
several. One, it provides a greater number of potential participants, allowing for 
quicker accrual. Two, the broader populations may allow for wider generalization 
of results. It is not simply people from one country with one medical care system 
who are enrolled. The data from the trial apply to many sorts of people with very 
different medical systems. Three, it may be easier and less expensive to screen 
people in some regions.

There are, however, limitations and concerns. As discussed in Chap. 2, the ethics of 
enrolling participants from underdeveloped countries or areas can be problematic. 
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It is unethical to enter people into a trial simply to save money, or because the 
regulatory oversight is less rigorous, when there is little likelihood that the popula-
tion will benefit from or have access to the trial intervention. Logistics of imple-
menting an international trial may be daunting. In addition to multi-language 
communication, there is the issue of translating forms. Not all forms, particularly 
those that have been validated in certain groups, may be usable in very different 
communities and cultures. Transporting drugs and other materials across borders 
may not be simple. And, of course, each country will have its own regulatory struc-
ture that must be negotiated. Study leadership and proper representation on Steering 
Committees and Monitoring Committees must be carefully worked out.

Interpretation of results may be questioned. Are the overall results relevant to all 
countries? Does the culture, social structure, or medical care system (including 
concomitant medications and other treatment) affect the outcome? Does each trial 
participant need minimal standard background care? If so, this must be specified in 
advance, in the protocol. An example of a trial that examined effect by geography 
is the Platelet IIb/IIIa in Unstable angina: Receptor Suppression Using Integrilin 
Therapy, or PURSUIT trial [29]. Relative reductions in the primary response vari-
able (a combination of death or myocardial infarction) varied among geographic 
regions. After adjustment for baseline factors, much of this difference was elimi-
nated. Another cardiovascular trial, the Metoprolol CR/XL Randomized Intervention 
Trial in Chronic Heart Failure (MERIT-HF) observed a hazard ratio of close to 1 
for mortality (not the primary response variable) among US sites, whereas the hazard 
ratio was 0.55 for the European sites. Although it is unlikely that these subgroup 
findings in a secondary (though obviously important) outcome were due to anything 
but chance [30], some asked if the European results could be applied to the USA. 
In these examples, chance and other explanations (baseline difference) were likely 
explanations. In other trials, observed differences might be harder to dismiss, and 
investigators need to consider, in advance, whether combining results from geo-
graphically and culturally different sites is appropriate. O’Shea and Califf [31] 
discuss difference in outcome of cardiovascular trials among countries. Vickers et al. 
[32] found that some countries tended to produce results more favorable to the new 
intervention than other countries, though publication bias was the likely reason.

General Comments

Even if investigators think they have identified all potential difficulties and have 
taken care to prevent them, new problems will always arise. This is particularly true 
of multinational trials because of their size, complexity and large number of investi-
gators with diverse backgrounds, interests, medical practices, and language. To forestall 
and minimize problems, the need for adequate study-wide communication must be 
stressed. If communication among the various components of the study lapses, or 
is vague, the trial can rapidly deteriorate. It is the responsibility of coordinating 
centers to keep in frequent contact (by telephone, e-mail, letter, and visit) with all 
the other centers. This contact needs to be initiated by both coordinating centers and 
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other centers. The study leaders also need to maintain contact with the various 
centers and committees, closely monitoring the conduct of the trial.

Much communication is done via the internet. With proper attention to mainte-
nance of confidentiality, this has proven to be an effective and relatively inexpensive 
way for investigators to interact, particularly when there are large time differences 
among centers (see Chap. 11).

Difficulty in getting groups of clinicians to work together using a common pro-
tocol has been reported [33]. A group of experienced Italian scientists tried to 
engage general practitioners in a drug trial of people with isolated systolic hyper-
tension. The well-established principles for organizing a collaborative study were 
followed. The practitioners were informed and trained and were also given the 
opportunity to comment on the study protocol. Unfortunately, only 88 of the 806 
general practitioners who had agreed to participate eventually started recruitment. 
Sixty-three enrolled at least one participant. Due to poor cooperation, the study was 
stopped after completion of its feasibility phase. A major problem was the practi-
tioners’ difficulties in withdrawing drug therapy from hypertensive patients. “As 
noted by the authors of the article, the change from the role of confident and reas-
suring prescriber to an attitude of uncertainty (which attracted consensus in the 
preparatory meetings) raised instinctive resistance in practice, leading to the with-
drawal of the general practitioner rather than the patient’s treatment.”

Cost is always a concern in multicenter trials. These studies are generally expen-
sive due to their complexity, size, and (sometimes) elaborate committee structure. 
Expense can be minimized by asking only pertinent questions on forms, by reducing 
the number of laboratory tests, and by performing only necessary quality monitoring; 
in essence, by simplifying data collection [34]. Accomplishing these economies 
demands constant attention, particularly during the planning phase. The investigators 
in a multicenter trial traditionally represent diverse interests. Given the opportunity, 
most of them would pursue these interests. Few would like to miss an opportunity to 
add to the main trial questions or examinations of particular importance to them. 
These additions are often important scientifically. However, it is easy for a trial to 
become overbuilt and get out of control. It is usually a good policy to restrict addi-
tions to the basic study protocol. Special caution should be taken when the argument 
for inclusion is, “it would be interesting to know.” The purpose of every procedure 
and item on the study forms should be clearly defined in advance and a test hypoth-
esis formulated, if possible. Most late-phase trials collect more data than is ever used 
for primary or even secondary publications. Certain questions can be answered by 
using less than the total number of participants. Other questions require the whole 
group. Still others cannot be answered, even if all participants are included. Therefore, 
in each instance, thought should be given to sample size and power calculations.
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