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INTRODUCTION

1.1 STRUCTURAL HEALTH MONITORING
PRINCIPLES AND CONCEPTS

Structural health monitoring (SHM) is an area of growing interest and worthy of new
and innovative approaches. The United States spends more than $200 billion each year on
the maintenance of plant, equipment, and facilities. Maintenance and repairs represents
about a quarter of commercial aircraft operating costs. Out of approximately 576 600
bridges in the US national inventory, about a third are either ‘structurally deficient” and in
need of repairs, or ‘functionally obsolete’ and in need of replacement. The mounting costs
associated with the aging infrastructure have become an on-going concern. Structural
health monitoring systems installed on the aging infrastructure could ensure increased
safety and reliability.

Structural health monitoring is an area of great technical and scientific interests.
The increasing age of our existing infrastructure makes the cost of maintenance and
repairs a growing concern. Structural health monitoring may alleviate this by replacing
scheduled maintenance with as-needed maintenance, thus saving the cost of unnecessary
maintenance, on one hand, and preventing unscheduled maintenance, on the other hand.
For new structures, the inclusion of structural health monitoring sensors and systems from
the design stage is likely to greatly reduce the life-cycle cost.

Structural health monitoring is an emerging research area with multiple applications.
Structural health monitoring assesses the state of structural health and, through appropriate
data processing and interpretation, may predict the remaining life of the structure. Many
aerospace and civil infrastructure systems are at or beyond their design life; however,
it is envisioned that they will remain in service for an extended period. SHM is one
of the enabling technologies that will make this possible. It addresses the problem of
aging structures, which is a major concern of the engineering community. SHM allows
condition-based maintenance (CBM) inspection instead of schedule-driven inspections.
Another potential SHM application is in new systems; that is, by embedding SHM
sensors and associate sensory systems into a new structure, the design paradigm can be
changed and considerable savings in weight, size, and cost can be achieved. A schematic
representation of a generic SHM system is shown in Fig. 1.1.

Structural health monitoring can be performed in two main ways: (a) passive SHM; and
(b) active SHM. Passive SHM is mainly concerned with measuring various operational
parameters and then inferring the state of structural health from these parameters. For
example, one could monitor the flight parameters of an aircraft (air speed, air turbulence,
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FIGURE 1.1 Schematic representation of a generic SHM systems consisting of active sensors, data
concentrators, wireless communication, and SHM central unit.

g-factors, vibration levels, stresses in critical locations, etc.) and then use the aircraft
design algorithms to infer how much of the aircraft useful life has been used up and
how much is expected to remain. Passive SHM is useful, but it does not directly address
the crux of the problem, i.e., it does not directly examine if the structure has been
damaged or not. In contrast, active SHM is concerned with directly assessing the state
of structural health by trying to detect the presence and extent of structural damage. In
this respect, active SHM approach is similar with the approach taken by nondestructive
evaluation (NDE) methodologies, only that active SHM takes it one-step further: active
SHM attempts to develop damage detection sensors that can be permanently installed
on the structure and monitoring methods that can provide on demand a structural health
bulletin. Recently, damage detection through guided-wave NDE has gained extensive
attraction. Guided waves (e.g., Lamb waves in plates) are elastic perturbations that
can propagate for long distances in thin-wall structures with very little amplitude loss.
In Lamb-wave NDE, the number of sensors required to monitor a structure can be
significantly reduced. The potential also exist of using phased array techniques that use
Lamb waves to scan large areas of the structure from a single location. However, one of
the major limitations in the path of transitioning Lamb-wave NDE techniques into SHM
methodologies has been the size and cost of the conventional NDE transducers, which are
rather bulky and expensive. The permanent installation of conventional NDE transducers
onto a structure is not feasible, especially when weight and cost are at a premium such as in
the aerospace applications. Recently emerged piezoelectric wafer active sensors (PWAS)
have the potential to improve significantly structural health monitoring, damage detection,
and nondestructive evaluation. PWAS are small, lightweight, inexpensive, and can be
produced in different geometries. PWAS can be bonded onto the structural surface, can
be mounted inside built-up structures, and can be even embedded between the structural
and nonstructural layers of a complete construction. Studies are also being performed to
embed PWAS between the structural layers of composite materials, though the associated
issues of durability and damage tolerance has still to be overcome.

Structural damage detection with PWAS can be performed using several methods:
(a) wave propagation, (b) frequency response transfer function, or (c) electromechanical
(E/M) impedance. Other methods of using PWAS for SHM are still emerging. However,
the modeling and characterization of Lamb-wave generation and sensing using surface-
bonded or embedded PWAS for SHM has still a long way to go. Also insufficiently
advanced are reliable damage metrics that can assess the state of structural health with
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confidence and trust. The Lamb-wave-based damage detection techniques using struc-
turally integrated PWAS for SHM is still in its formative years. When SHM systems are
being developed, it is often found that little mathematical basis is provided for the choice
of the various testing parameters involved such as transducer geometry, dimensions,
location and materials, excitation frequency, bandwidth, etc.

Admittedly, the field of structural health monitoring is very vast. A variety of sensors,
methods, and data reduction techniques can be used to achieve the common goal of
asking the structure ‘how it feels’ and determining the state of its ‘health’, i.e., structural
integrity, damage presence (if any), and remaining life. Attempting to give an encyclopedic
coverage of all such sensors, methods, and techniques is not what this book intends to do.
Rather, this book intends to present an integrated approach to SHM using as a case study
the PWAS and then taking the reader through a step-by-step presentation of how these
sensors can be used to detect and quantify the presence of damage in a given structure.
In this process, the book goes from simple to complex, from the modeling and testing
of simple laboratory specimens to evaluation of large, realistic structures. The book can
be used as a textbook in the classroom, as a self-teaching text for technical specialists
interested in entering this new field, or a reference monograph for practicing experts
using active SHM methods.

1.2 STRUCTURAL FRACTURE AND FAILURE

1.2.1 REVIEW OF LINEAR ELASTIC FRACTURE MECHANICS PRINCIPLES

The stress intensity factor at a crack tip has the general expression
K(o,a) = Co/ma (1)

where o is the applied stress, a is the crack length, and C is a constant depending on
the specimen geometry and loading distribution. It is remarkable that the stress intensity
factor increases not only with the applied stress, o, but also with the crack length, a. As
the crack grows, the stress intensity factor also grows. If the crack grows too much, a
critical state is achieved when the crack growth becomes rapid and uncontrollable. The
value of K associated with rapid crack extension is called the critical stress intensity
factor K. For a given material, the onset of rapid crack extension always occurs at the
same stress intensity value, K.. For different specimens, having different initial crack
lengths and geometries, the stress level, o, at which rapid crack extension occurs, may
be different. However, the K. value will always be the same. Therefore, K, is a property
of the material. Thus, the condition for fracture to occur is that the local stress intensity
factor K(o, a) exceeds the value K, i.e.,

K(o,a) > K, (2)

We see that K, provides a single-parameter fracture criterion that allows the prediction
of fracture. Although the detailed calculation of K(o, @) and determination of K, may be
difficult in some cases, the general concept of using K, to predict brittle fracture remains
nonetheless applicable. The K, concept can also be extended to materials that posses
some limited ductility, such as high-strength metals. In this case, the K (o, a) expression
(1) is modified to account for a crack-tip plastic zone, ry, such that

K(o,a) = Coy/m(a+ry) 3)
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where the maximum value of r, can be estimated as

1 /K

Mo = 5 7C (plane stress) 4
1 /K.

— (plane strain) (5)

rYaza Y

In studying the material behavior, one finds that the plane strain conditions give the
lowest value of K., whereas the plane stress conditions can give K, values that may
range from two to ten times higher. This effect is connected with the degree of constraint
imposed upon the material. Materials with higher constraint effects have a lower K,
value. The plane strain condition is the condition with most constraint. The plane strain
K, is also called the fracture toughness K,. of the material. Standard test methods exist
for determining the material fracture-toughness value. When used in design, fracture-
toughness criteria gives a larger margin of safety than elastic—plastic fracture mechanics
methods such as (a) crack opening displacement (COD) methods; (b) R-curve methods;
(c) J-integral methods. However, the fracture toughness approach is more conservative:
it is safer, but heavier. For a complete design analysis, the designer should consider, in
most cases, both conditions: (a) the possibility of failure by brittle fracture; and (b) the
possibility of failure by ductile yielding.

1.2.2 FRACTURE MECHANICS APPROACH TO CRACK PROPAGATION

The concepts of linear fracture mechanics can be employed to analyze a given structure
and predict the crack size that will propagate spontaneously to failure under the specified
loading. This critical crack size can be determined from the critical stress intensity
factor as defined in Eq. (3). A fatigue crack that has been initiated by cyclic loading,
or other damage mechanism, may be expected to grow under sustained cyclic loading
until it reaches a critical size beyond which will propagate rapidly to catastrophic failure.
Typically, the time taken by a given crack damage to grow to a critical size represents a
significant portion of the operational life of the structure. In assessing the useful life of a
structure, several things are needed such as:

e understanding of the crack-initiation mechanism

e definition of the critical crack size, beyond which the crack propagates catastrophically

e understanding the crack-growth mechanism that makes a subcritical crack propagate
and expand to the critical crack size.

Experiments of crack length growth with number of cycles for various cyclic-load
values have indicated that a high value of the cyclic load induces a much more rapid
crack growth than a lower value (Collins, 1993). It has been found that crack growth
phenomenon has several distinct regions (Fig. 1.2):

(i) An initial region in which the crack growth is very slow
(i1) A linear region in which the crack growth is proportional with the number of cycles
(iii) A nonlinear region in which the log of the crack growth rate is proportional with the
log of the number of cycles.
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FIGURE 1.2 Schematic representation of fatigue crack growth in metallic materials.

In analyzing fatigue crack growth, Paris and Erdogan (1963) determined that the
fatigue crack-growth rate depends on the alternating stress and crack length:

da
— = f(Ao,a, C 6
= f(A0.a,0) ©)
where Ao is the peak-to-peak range of the cyclic stress, a is the crack length, and C is a
parameter that depends on mean load, material properties, and other secondary variables.
In view of Eq. (1), it seems appropriate to assume that the crack-growth rate will
depend on the cyclic stress intensity factor, AK, i.e.,

da

oy = S(AK) ™)
where AK is the peak-to-peak range of the cyclic stress intensity factor. Experiments
have shown that, for various stress levels and various crack lengths, the data points
seem to follow a common law when plotted as crack-growth rate versus stress intensity
factor (Collins, 1993). This remarkable behavior came to be known as ‘Paris law’; its
representation corresponds to the middle portion of the curve shown in Fig. 1.2. Fatigue-
crack growth-rate laws have been reported for a wide variety of engineering materials.
As middle portion of the curve in Fig. 1.2 is linear on log-log scale, the corresponding
Eq. (7) can be written as:

da R
dN = Cep(AK) ®)
where n is the slope of the log-log line, and Cgp is an empirical parameter that depends
upon material properties, test frequency, mean load, and some secondary variables. If the
parameter Cpp and 7 are known, then one can predict how much a crack has grown after
N cycles, i.e.,

aM =a,+ [ Cop(aKyaN ©)

where a, is the initial crack length.
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Paris law represents well the middle portion of the curve in Fig. 1.2. However, the
complete crack-growth behavior has three separate phases:

(1) Crack nucleation
(2) Steady-state regime of linear crack growth on the log-log scale
(3) Transition to the unstable regime of rapid crack extension and fracture.

Such a situation is depicted in Fig. 1.2, where Region I corresponds to the crack
nucleation phase, Region II to linear growth, and Region III to transition to the unstable
regime. Threshold values for AK that delineate one region from the other seem to exist.
As shown in Fig. 1.2, the locations of these regions in terms of stress intensity factor
vary significantly from one material to another.

Paris law is widely used in engineering practice. Further studies have revealed several
factors that also need to be considered when applying Paris law to engineering problems.
Some of these factors are

e Influence of cyclic stress ratio on the threshold value of AK

e Difference between constant-amplitude tests and spectrum loading
e Effect of maximum stress on spectrum loading

e Retardation and acceleration effects due to overloads.

The influence of the stress ratio and threshold have been incorporated in the modified
Paris law (Hartman and Schijve, 1970)

da  Cys(AK — AKpy)"
dN ~ (1-R)K,—AK

(10)

where R is the stress ratio o,,,/0,,,, K, is the fracture toughness for unstable crack
growth under monotonic loading, AKy is the threshold cyclic stress intensity factor for
fatigue propagation, and Cyg is an empirical parameter.

The difference between constant-amplitude loading and spectrum loading has been
shown to depend on the maximum stress value. If the maximum stress is held at the
same values in both constant-amplitude and spectrum loading, then the crack growth
rates seem to follow the same law. However, if the maximum stress is allowed to vary,
the spectrum loading results seem to depend strongly on the sequence in which the
loading cycles are applied, with the overall crack growth being significantly higher for
spectrum loading than for constant-amplitude loading (McMillan and Pelloux, 1967).
The retardation effects due to overloads have been reported by several investigators as
evidence of the interaction effect whereby fatigue damage and crack extension depend on
preceding cyclic-load history. An interaction of considerable interest is the retardation
of crack growth due to the application of occasional cycles of crack-opening overload.
Retardation is characterized by a period of reduced crack-growth rate following the
application of a peak load higher than the subsequent peak. The retardation has been
explained by the inference that the overload will induce yield at the crack tip and will
produce a zone of local plastic deformation in the crack-tip vicinity. When the overload
is removed, the surrounding material forces the yielded zone into a state of residual
compression that tends to inhibit the crack growth under the subsequent loads of lower
value. The crack-growth rate will remain smaller until the growing crack has traversed
the overload yield zone, when it returns to the normal value. Crack-growth acceleration,
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FIGURE 1.3 Plate (Iength = 2h, width = 2b), containing a central crack length of 2a. Tensile stress
o acts in the longitudinal direction.

on the other hand, may occur after crack-closing overloads. In this case, the overload
yield zone will produce residual tension stresses, which add to the subsequent loading
and result in crack-growth acceleration.

For simple geometries, the stress intensity factor can be predicted analytically. Such
predictions have been confirmed by extensive experimental testing; look-up tables
and graphs have been made available for design usage. For example, a rectangular
specimen with a crack in the middle has stress intensity factor for mode I cracking
given by

K, =Bo/ma (11)

where o is the applied tensile stress, a is half of the crack length, and 8 = K, /K. The
term K|, represents the ideal stress intensity factor corresponding to an infinite plate with
a single crack in the center. The parameter 8 represents the effect of having a plate of
finite dimensions, i.e., the changes in the elastic field due to the plate boundaries not
being infinitely far from the crack (Fig. 1.3). The value of the parameter B for a large
variety of specimen geometries can be found in the literature.

1.3 IMPROVED DIAGNOSIS AND PROGNOSIS
THROUGH STRUCTURAL HEALTH MONITORING

1.3.1 FRACTURE CONTROL THROUGH NDI/NDE

In-service inspection procedures play a major role in the fail-safe concept. Structural
regions and elements are classified with respect to required nondestructive inspection
(NDI) and NDE sensitivity. Inspection intervals are established on the basis of crack
growth information assuming a specified initial flaw size and a ‘detectable’ crack size,
aq4e> the latter depending on the level of available NDI/NDE procedure and equipment.
Cracks larger than a4, are presumed to be discovered and repaired. The inspection
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intervals must be such that an undetected flaw will not grow to critical size before the
next inspection. The assumptions used in the establishment of inspection intervals are

e All critical points are checked at every inspection

® Cracks larger than a,, are all found during the inspection
e Inspections are performed on schedule

e Inspection techniques are truly nondamaging.

In practice, these assumptions are sometimes violated during infield operations, or are
impossible to fulfill. For example, many inspections that require extensive disassembly
for access may result in flaw nucleation induced by the disassembly/reassembly process.
Some large aircraft can have as many as 22 000 critical fastener holes in the lower wing
alone (Rich and Cartwright, 1977). Complete inspection of such a large number of sites
is not only tedious and time consuming, but also subject to error born of the boredom of
inspecting 20 000 holes with no serious problems, only to miss one hole with a serious
crack (sometimes called the ‘rogue’ crack). Nonetheless, the use of NDI/NDE techniques
and the establishment of appropriate inspection intervals have progressed considerably.
Recent developments include automated scanning systems and pattern-recognition method
that relive the operator of the attention consuming tedious decision making in routine
situations and allow the human attention to be concentrated on truly difficult cases.
Nevertheless, the current practice of scheduled NDI/NDE inspections leaves much to be
desired.

1.3.2 DAMAGE TOLERANCE, FRACTURE CONTROL
AND LIFE-CYCLE PROGNOSIS

A damage tolerant structure has a design configuration that minimizes the loss of
aircraft due to the propagation of undetected flaws, cracks, and other damage. To produce
a damage-tolerant structure, two design objectives must be met:

(1) Controlled safe flaw growth, or safe life with cracks
(2) Positive damage containment, i.e., a safe remaining (residual) strength.

These two objectives must be simultaneously met in a judicious combination that
ensures effective fracture control. Damage-tolerant design and fracture control includes
the following:

(i) Use of fracture-resistant materials and manufacturing processes
(i1) Design for inspectability
(iii) Use of damage-tolerant structural configurations such as multiple load paths or crack
stoppers (Fig. 1.4).

In the application of fracture control principles, the basic assumption is that flaws do
exist even in new structures and that they may go undetected. Hence, any member in the
structure must have a safe life even when cracks are present. In addition, flight-critical
components must be fail-safe. The concept of safe life implies the evaluation of the
expected lifetime through margin-of-safety design and full-scale fatigue tests. The margin
of safety is used to account for uncertainties and scatter. The concept of fail-safe assumes
that flight-critical components cannot be allowed to fail, hence alternative load paths are
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FIGURE 1.4 Structural types based on load path.

supplied through redundant components. These alternative load paths are assumed to be
able to carry the load until the failure of the primary component is detected and a repair
is made.

1.3.3 LIFE-CYCLE PROGNOSIS BASED ON FATIGUE TESTS

The estimated design life of an aircraft is based on full-scale fatigue testing of complete
test articles under simulated fatigue loading. The benefits of full-scale fatigue testing
include:

e Discover fatigue critical elements and design deficiencies
e Determine time intervals to detectable cracking

e Collect data on crack propagation

e Determine remaining safe life with cracks

e Determine residual strength

e Establish proper inspection intervals

e Develop repair methods.

The structural life proved through simulation test should be longer by a factor from two
to four than the design life. Full-scale fatigue testing should be continued over the long
term such that fatigue failures in the test article will stay ahead of the fleet experience by
enough time to permit the redesign and installation of whatever modifications are required
to prevent catastrophic fleet failures. However, full-scale fatigue testing of an article such
as a newly designed aircraft is extremely expensive. In addition, the current aircraft in
our fleets have exceeded the design fatigue life, and hence are no longer covered by the
full-scale fatigue testing done several decades ago.
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1.3.4 PERCEIVED SHM CONTRIBUTIONS THE STRUCTURAL
DIAGNOSIS AND PROGNOSIS

Structural health monitoring could have a major contribution to the structural diagnosis
and prognosis. Although NDE methods and practices have advanced remarkably in recent
years, some of their inherent limitations still persist. NDI/NDE inspection sensitivity and
reliability are driven by some very practical issues when dealing with actual airframes.
Field inspection conditions may be quite different when compared with laboratory test
standards.

Perhaps the major limitation of current NDI/NDE practices is the fact that NDI/NDE,
as we know it, cannot provide a continuous assessment of the structural material state. This
limitation is rooted in the way NDI/NDE inspections are performed: the aircraft has to be
taken off line, stripped down to a certain extent, and scanned with NDI/NDE transducers.
This process is time-consuming and expensive. This situation could be significantly
improved through the implementation of a SHM system. Having the SHM transducers
permanently attached to the structure (even inside closed compartments), would allow
for structural interrogation (scanning) to be performed on demand, as often as needed.
In addition, a consistent historical record can be accumulated because these on-demand
interrogations are done always with the same transducers that are placed in exactly the
same locations and interrogated in the same way.

Structural health monitoring could provide an advanced utilization of the existing
sensing technologies to add progressive state-change information to a system reasoning
process from which we can infer component capability and predict its future safe-use
capacity (Cruse, 2004). Through monitoring the state of structural health, we can achieve
a historical database and acquire change information to assist in the system reasoning
process. Advanced signal processing methods can be used to detect characteristic changes
in the material state and make that state-change information available to the prognosis
reasoning system. The concept of change detection can be used to characterize the
material state by identifying critical features that show changes with respect to a reference
state that is stored in the information database and updated periodically. When this is per-
formed in coordination with existing NDI/NDE practices, the structural health monitoring
information performed in between current inspection intervals will provide supplementary
data that would have a densifying effect on the historical information database.

Another advantage of implementing SHM systems is related to the nonlinear aspects
of structural crack propagation. Most of the current life prognosis techniques are based
on linear assumptions rooted in laboratory tests performed under well-defined conditions.
However, actual operational conditions are far from ideal, and incorporate a number of
unknown factors such as constraint effects, load spectrum variation, and overloads. These
effects are in the realm of nonlinear fracture mechanics and make the prediction very
difficult. However, the dense data that can be collected by an SHM system could be used
as feedback information on, say, the crack-growth rate, and could allow the adjustment
of the basic assumptions to improve the crack-growth prediction laws.

1.4 ABOUT THIS BOOK

The book is organized in 12 chapters. Chapter 1 presents an introduction to SHM, its
motivation, and main approaches. Focus is brought on PWAS and their possible uses in
the SHM process. Chapter 2 is dedicated to the description of active materials, which
perform bidirectional transduction of electric or magnetic energy into mechanical vibration
and wave energy. Active materials (piezoelectrics, electrostrictive, magnetostrictive, etc.)
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are the essential ingredient in the construction of active sensors for SHM applications.
Chapters 3 through 6 cover in some details the essential vibration and wave propagation
theory needed to understand the active SHM approach. The presentation is done in a
unified approach, with common notations spanning across these chapters. In writing
these chapters, the author has insisted on presenting the fact that vibration and wave
propagation phenomena have a common root, and thus deserve an unified treatment,
which is not usually achieved in conventional textbooks. Chapters 7 through 11 address
the various techniques that are employed to achieve structural health monitoring with
PWAS. Thus, Chapter 7 describes the PWAS construction and their operation principles.
Chapter 8 treats the methods used to achieve tuning between PWAS and the guided
waves traveling in the structure such that single-mode excitation of multi-mode waves
is achieved. Chapter 9 discusses standing-wave techniques in which PWAS are used as
high-frequency modal sensors. In this method, the damage in the structure is detected
from the changes observed in the high-frequency vibration spectrum measured with the
E/M impedance method. Chapter 10 presents the wave propagation techniques in which
PWAS are used as transmitters and receivers of guided waves and damage is detected
through reflections, scatter, and modification of the wave signal. Chapter 11 presents the
use of PWAS in phased arrays, which permits the creation of wave beams that are steered
electronically such that a large structural area can be monitored from a single location.
Chapter 12 presents the signal processing methods needed in performing structural health
monitoring. A number of mathematical and elasticity prerequisites that are needed in
understanding the book, but may be already known to some of the readers, are presented
in the appendices.

This book is thought out as a textbook. This textbook can be used for both teaching and
research. It not only provides students, engineers and other interested technical specialists
with the foundational knowledge and necessary tools for understanding SHM transducers
and systems, but also shows them how to employ this knowledge in actual-engineering
situations. This textbook offers comprehensive teaching tools (workout examples, exper-
iments, homework problems, and exercises). An extensive on-line instructor manual
containing lecture plans and homework solutions that can be used at various instructional
levels (undergraduate, Master and PhD) is posted on the publisher’s website. The reader is
encouraged to download the instructor’s manual and use it for teaching, research, and/or
self instruction.
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ELECTROACTIVE AND
MAGNETOACTIVE MATERIALS

2.1 INTRODUCTION

Electroactive and magnetoactive materials are materials that modify their shape in
response to electric or magnetic stimuli. Such materials permit induced-strain actuation
and strain sensing which are of considerable importance in SHM. Induced-strain actuation
allows us to create motion at the micro scale without pistons, gears, or other mechanisms.
Induced-strain actuation relies on the direct conversion of electric or magnetic energy into
mechanical energy. It is a solid-state actuation, has much fewer parts than conventional
actuation, and is much more reliable. It offers the opportunity for creating SHM systems
that are miniaturized, effective, and efficient. On the other hand, strain sensing with
electroactive and magnetoactive materials creates direct conversion of mechanical energy
into electric and magnetic energy. With piezoelectric strain sensors, strong and clear
voltage signals are obtained directly from the sensor without the need for intermediate
gage bridges, signal conditioners, and signal amplifiers. These direct sensing properties are
especially significant in dynamics, vibration, and audio applications in which alternating
effects occur in rapid succession thus preventing charge leaking. Other applications of
active materials are in sonic and ultrasonic transduction, in which the transducer acts as
both sensor and actuator, first transmitting a sonic or ultrasonic pulse, and then detecting
the echoes received from the defect or target.

In this chapter, we will discuss several types of active materials: piezoelectric ceram-
ics, electrostrictive ceramics, piezoelectric polymers, and magnetostrictive compounds.
Various formulations of these materials are currently available commercially. The names
PZT (a piezoelectric ceramic), PMN (an electrostrictive ceramic), Terfenol-D (a magne-
tostrictive compound), and PVDF (a piezoelectric polymer) have become widely used. In
this chapter, we will attempt a review of the principal active material types. We will treat
each material type separately, will present their salient features, and introduce the mod-
eling equations. In our discussion, we will start with a general perspective on the overall
subject of piezoelectricity and ferroelectric ceramics, explaining some of the physical
behavior underpinning their salient features, especially in relation to perovskite crystalline
structures. We will continue by considering separately the piezoceramics and electrostric-
tive ceramics commonly used in current applications and commercially available to the

13
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interested user. The focus of the discussion is then switched toward piezoelectric poly-
mers, such as PVDF, with their interesting properties, such as flexibility, resilience, and
durability, which make them preferable to ferroelectric ceramics in certain applications.
The discussion of magnetostrictive materials, such as Terfenol-D, concludes our review
of the active materials spectrum. Thus, we will pave the way toward the next chapters,
in which the use of active materials in the construction of induced-strain actuators and
active sensors for SHM applications will be discussed.

2.2 PIEZOELECTRICITY

Piezoelectricity describes the phenomenon of generating an electric field when the
material is subjected to a mechanical stress (direct effect), or, conversely, generating a
mechanical strain in response to an applied electric field. The direct piezoelectric effect
predicts how much electric field is generated by a given mechanical stress. This sensing
effect is utilized in the development of piezoelectric sensors. The converse piezoelectric
effect predicts how much mechanical strain is generated by a given electric field. This
actuation effect is utilized in the development of piezoelectric induced-strain actuators.
Piezoelectric properties occur naturally in some crystalline materials, e.g., quartz crystals
(Si0,) and Rochelle salt. The latter is a natural ferroelectric material, possessing an
orientable domain structure that aligns under an external electric field and thus enhances
its piezoelectric response. Piezoelectric response can also be induced by electrical poling
certain polycrystalline materials, such as piezoceramics.

2.2.1 ACTUATION EQUATIONS

For linear piezoelectric materials, the interaction between the electrical and mechan-
ical variables can be described by linear relations (ANSI/IEEE Standard 176-1987).
A constitutive relation is established between mechanical and electrical variables in the
tensorial form

Sy = 8t T+ dy Ey + 8,076 W
D;=dy T+ e E,+ D0 @

where S;; and T;; are the strain and stress, £y and D, are the electric field and electric
displacement, and 6 is the temperature. The stress and strain variables are second-order
tensors, whereas the electric field and the electric displacement are first-order tensors. The
coefficient s;;, is the compliance, which signifies the strain per unit stress. The coefficients
dy, and dy;; signify the coupling between the electrical and the mechanical variables,
i.e., the charge per unit stress and the strain per unit electric field. The coefficient ¢,
is the coefficient of thermal expansion. The coefficient D, is the electric displacement
temperature coefficient. Because thermal effects influence only the diagonal terms, the
respective coefficients, «; and D;, have single subscripts. The term &, ; is the Kroneker
delta (§;; = 1 if i = j; zero otherwise). The Einstein summation convention for repeated
tensor indices (Knowles, 1997) is employed throughout. The superscripts 7', D, E shown
in these and other equations signify that the quantities are measured at zero stress (7 = 0),
zero electric displacement (D = 0), or zero electric field (E = 0), respectively. In practice,
the zero electric displacement condition corresponds to open circuit (zero current across
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the electrodes), whereas the zero electric field corresponds to closed circuit (zero voltage
across the electrodes). The strain is defined as

1
Sij = E(ui,j + Mj,i) (3)

where u; is the displacement, and the comma followed by an index signifies partial
differentiation with respect to the space coordinate associated with that index.

Equation (1) is the actuation equation. It is used to predict how much strain will be
created at a given stress, electric field, and temperature. The terms proportional with
stress and temperature are common with the formulations of classical thermoelasticity.
The term proportional with the electric field is specific to piezoelectricity and represents
the induced-strain actuation (ISA), i.e.,

S}J‘SA = dkijEk (4)

For this reason, the coefficient dy;; can be interpreted as the piezoelectric strain coefficient.

Equation (2) is used to predict how much electric displacement, i.e., charge per unit
area, is required to accommodate the simultaneous state of stress, electric field, and
temperature. In particular, the term d;;, T}, indicates how much charge is being produced
by the application of the mechanical stress 7,. For this reason, the coefficient d;,; can
be interpreted as the piezoelectric charge coefficient. Note that d,;; and d;, represent
the same third-order tensor only that the indices have been named appropriately to the
respective equations in which they are used.

2.2.2 SENSING EQUATIONS

So far, the piezoelectric equations have expressed the strain and electric displacement
in terms of applied stress, electric field, and temperature using the constitutive tenso-
rial Egs. (1) and (2), and their matrix correspondents. However, these equations can be
replaced by an equivalent set of equations that highlight the sensing effect, i.e., predict
how much electric field will be generated by a given state of stress, electric displace-
ment, and temperature. (As the electric voltage is directly related to the electric field,
this arrangement is preferred for sensing applications.) Thus, Egs. (1) and (2) can be
expressed as

Siy = i T+ 8Dy + 8,00 (5)
E = guTy+BiD,+E?® 6)

Equation (6) predicts how much electric field, i.e., voltage per unit thickness, is generated
by ‘squeezing’ the piezoelectric material, i.e., represents the direct piezoelectric effect.
This formulation is useful in piezoelectric sensor design. Equation (6) is called the sensor
equation. The coefficient g, is the piezoelectric voltage coefficient and represents how
much electric field is induced per unit stress. The coefficient Ei is the pyroelectric voltage
coefficient and represents how much electric field is induced per unit temperature change.

2.2.3 STRESS EQUATIONS

The piezoelectric constitutive equations can also be expressed in such a way as to reveal
stress and electric displacement in terms of strain and electric field. This formulation is
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especially useful for defining the piezoelectric constitutive equations in stress and strength
analyses. The stress formulation of the piezoelectric constitutive equations are

_E E E
T, = CijkISkl —eE — Cijklaklake (7)

Di :eilekl+8l?;cEk+bi0 (8)

where cfjkl is the stiffness tensor, and e;; is the piezoelectric stress constant. The
term cgkl'ék,afe represents the stress induced in a piezoelectric material by temperature
changes when the strain is forced to be zero. For example, the material being fully
constraint against deformation. Such stresses, which are induced by temperature effects,
are also known as residual thermal stresses. They are very important in calculating
the strength of piezoelectric materials, especially when they are processed at elevated
temperatures.

2.24 ACTUATOR EQUATIONS IN TERMS OF POLARIZATION

In practical piezoelectric sensor and actuator design, the use of electric field, E;, and
electric displacement, D;, is more convenient, as these variables relate directly to the
voltage and current that can be experimentally measured. However, theoretical expla-
nations of the observed phenomena using solid-state physics are more direct when the
polarization P; is used instead of the electric displacement D,. The polarization, electric
displacement, and electric field are related by

D, =¢)E, + P, )

where g, is the free-space dielectric permittivity. On the other hand, the electric field and
electric displacement are related by

D; =&, E, (10)

Here g, is the effective dielectric permittivity of the material. Thus, the polarization can
be related to the electric field in the form

P; = (&4 — 6,80)Ey = Ky Ey (11)

In terms of polarization P; and coefficient «; = €; — 6,.&;, Eqs. (1) and (2) can be
expressed in the form

Sij = ST+ dii; B+ 8;50,0 (12)

i

P, = dilekl+KiTkEk+Pi9 (13)

where P, is the coefficient of pyroelectric polarization. One notes that, in Eq. (13), the
coefficient d,, signifies the induced polarization per unit stress, hence it can be viewed
as polarization coefficient.

2.2.5 COMPRESSED MATRIX NOTATIONS

To write the elastic and piezoelectric tensors in matrix form, a compressed matrix
notation is introduced to replace the tensor notation (Voigt notations). This compressed
matrix notation consists of replacing ij or kI by p or g, where i, j, k,l=1,2,3 and
p,q=1,2,3,4,5,6 according to Table 2.1.
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TABLE 2.1 Conversion from tensor to
matrix indices for the Voigt notations

ij or ki porgq
11 1
22 2
33 3
23 or 32 4
3lorl3 5
12 or 21 6

Thus, the 3 x 3 stress and strain tensors, 7;; and §;;, are replaced by 6—element long
column matrices of elements 7, and §,. The 3 x 3 x 3 x 3 fourth order stiffness and
compliance tensors ¢/, and s, are replaced by 6 x 6 stiffness and compliance matrices of
elements ¢/, and s, . Similarly, ¢, and s}, are replaced by ¢/’ and s . The 3 x 3 x 3
piezoelectric tensors, d,;;, €, 8> and hy,;, are replaced by 3 x 6 piezoelectric matrices
of elements d,,, ¢;,, 8, h;,- The following rules apply

T,=T,; p=1,2,3,4,5,6 whereas i, j=1,2,3 (Stress) (14)
S =85, =], =1,2,3 .
pe . J P whereas i, j=1,2,3 (Strain) (15)
S, =28, i#j, p=4,5,06
The factor of two in the strain equation is related to a factor of two in the definition of
shear strains in the tensor and matrix formulation.

cho=clhy, ch=ch, p=12,3,4,56 (Stiffness coefficients) (16)

rq rq

sho=Shy, i=jandk=1, p,g=123

P4

sh,=2sh,, i=jandk#l, p=1,2,3 ¢g=4,56 (Compliance coefficients) (17)

sh,=4sh,, i#jandk#1, p,g=4,5,6

Similar expressions can be derived for s[?q. The factors of 2 and 4 are associated with the
factor of 2 from the strain equations.

e, =¢ey, hy,=hy (Piezoelectric stress constants) (18)

dig=dys k=1, ¢=12,3 . . .
(Piezoelectric strain constants) (19)

dy=2dy, k#I, q=456

w0 =8 k=1, =1,2,3
{g ¢ = Biw 1 (Piezoelectric voltage constants) (20)

giq:‘?’gikl’ k#l’ q:475’6

The compressed matrix notations have the advantage of brevity. They are commonly used
in engineering applications. The values of the elastic and piezoelectric constants given by
the active material manufacturers in their product specifications are given in compressed
matrix notations.
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2.2.6 PIEZOELECTRIC EQUATIONS IN COMPRESSED MATRIX NOTATIONS

In engineering practice, the tensor Egs. (1) and (2) can be rearranged in matrix form
using the compressed matrix notations (Voigt notations), in which the stress and strain
tensors are arranged as 6-component vectors, with the first three components representing
direct stress and strain, whereas the last three components representing shear stress and
strain. Thus,

Sii S Ty T,
Sy S, T, T,
S33 A T T;

? > R > 21
S Sy Ty T, @D
S31 ?‘5 Ts, T
St 356 Ty, Ts

Hence, the constitutive Egs. (1) and (2) take the matrix form

S SiSip 53 000 T, dy dy dy @
S, Sp Sp sz 00 0 T, dy dy dy E )
S; _ | %31 S32 533 0 0 0 T; + dy dy; dy El +1% 1y
Sy 0 0 0 sy O O T, dyy dyy dsyy E2 0
Ss 0 0 0 0 s55 O T dis dys dss 3 0
Se 0 0 0 0 0 s T, dig dye dsg 0
(22)
T
T, ~
D, dy dy diz dy dis dig T €1 €12 &3 E, Pl
Dy ¢ =| dy dy dy dyy dys dy T3 t| & & &3 Ey ¢+ D, ¢ 0
D; dy) dy diz dyy dss dyg T: €31 €3 833 Ey D;
T
(23)

Please note that the piezoelectric matrix in Eq. (22) is the transpose of the piezoelectric
matrix in Eq. (23). When written in compact form, Egs. (22) and (23) become

S,=sbT,+d,E, 45,050,  pg=1,...,6 k=123 (24)
D,=d,T,+&LE,+D,5b, g=1,...,6; ik=1,2,3 (25)

Equations (22) and (23) can also be written in matrix format, i.e.,

{S} =[s]{T} +[d]' {E} +{a} 0 (26)
{D} = [d]{T}+[&] {E} + {D} 6 (27)

Compressed matrix (Voigt) expressions similar to Eqgs. (22) through (27) can be derived
for the other constitutive equations such as Egs. (5)—(8), (12)—(13), etc.

The values of the piezoelectric coupling coefficients differ from material to material.
Most piezoelectric materials of interest are crystalline solids. These can be single crystals
(either natural or synthetic) or polycrystalline materials like ferroelectric ceramics. In
certain crystalline piezoelectric materials, the piezoelectric coefficient, d i (i=1,...,6;
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j=1,2,3) may be enhanced or diminished through preferred crystal-cut orientation. The
piezoceramics are polycrystalline materials, with randomly polarized microscopic proper-
ties. As fabricated, piezoceramics do not display macroscopic piezoelectricity due to the
random microscopic polarization. This situation is overcome through poling. The poling
process, which consists of applying a strong electric field at elevated temperatures, con-
fers polycrystalline piezoceramic materials macroscopic piezoelectric properties similar
to those observed in piezoelectric single crystals.

In practical applications, many of the piezoelectric coefficients, d;, have negligi-
ble values as the piezoelectric materials respond preferentially along certain directions
depending on their intrinsic (spontaneous) polarization. For example, consider the situa-
tion of piezoelectric wafer as depicted in Fig. 2.1. To illustrate the ds; and dj, effects,
assume that the applied electric field, E;, is parallel to the spontaneous polarization, P,
(Fig. 2.1a). If the spontaneous polarization, P, is aligned with the x; axis, then such a
situation can be achieved by creating a vertical electric field, E;, through the application
of a voltage V between the bottom and top electrodes depicted by the grey shading in
Fig. 2.1a. The application of such an electric field that is parallel to the direction of spon-
taneous polarization (E;||P,) results in a vertical (thickness-wise) expansion &; = d; E;
and a lateral (in plane) contractions &, = d5 E; and &, = d,E; (the lateral strains are
contracted as the coefficient d;, and d5, have opposite sign to d5;). So far, the strains
experienced by the piezoelectric wafer have been direct strains. Such an arrangement can
be used to produce thickness-wise and in-plane vibrations of the wafer.

However, if the electric field is applied perpendicular to the direction of spontaneous
polarization, then the resulting strain will be shear. This can be obtained by electroding
the lateral faces of the piezoelectric wafer. The application of a voltage to the lateral
electrodes shown in Fig. 2.1b results in an in-plane electric field, E, that is perpendicular
to the spontaneous polarization, (E,LP,). This produces an induced shear strain &5 =
dsE,. Similarly, if the electrodes were applied to the front and back faces, the resulting
electric field would be E, and the resulting strain would be &, = d,,E,. The shear—strain
arrangements discussed here can be used to induce shear vibrations in the piezoelectric

X3 Xo
X3 X
_i t+At —
Vv t
+ n N /E ¥
E P 1 P,
L= e In 4
X X
I-Al /
L 5 V o—
(a) M 2
(b)
X,
XS /2
Vv
— P. +
EsT e t
+

FIGURE 2.1 Basic induced-strain responses of piezoelectric materials: (a) direct strains &5 = dy; E;
(thickness), &, = dy, E;, €, = d5, E5 (in plane); (b) shear strain &5 = d|5E,; (c) shear strain &5 = dy5E;
(Note: grey shading depicts the electrodes).
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wafer. The use of lateral electrodes may not be feasible in the case of a thin wafer. In
this case, top and bottom electrodes can be used again, but the spontaneous polarization
of the wafer must be aligned with an in-plane direction. This latter situation is depicted
in Fig. 2.1c, where the spontaneous polarization is shown in the x, direction, whereas the
electric field is applied in the x; direction. The shear strain induced by this arrangement
would be g5 = ds5E;.

For piezoelectric materials with transverse isotropy, ds, = d3,, doy = d 5, €3, = €.
Hence, for piezoelectric materials with transverse isotropy, such as common piezoceram-
ics, the constitutive piezoelectric equations become

S, Sy S 83 00 0 T, 0 0 dy o,
S, S Sy S 0 0 0 T, 0 0 dy, E o,
Syl _| %383 8 0 00 T, n 0 0 dy El Llaly
S, 0 0 0ws, 00 T, 0 ds 0 b 0
S; 0 00 0 s5 0 T, ds 0 0 3 0
S, 0 0 0 0 0 s4 T, 0 0 0 0
(28)
T,
D, 0 0 0 0 dsO ? g, 0 0 E, D,
Dyp=| 0 0 0 ds 0037+ 0 & 0 E, t+1 D, {6
D, dy dy dyy 00 0 || 0 0 & || E D,
5
T6

(29)

Compressed matrix (Voigt) expressions similar to Eqs. (28) and (29) can be derived for
the other constitutive equations such as Eqgs. (5)—(8), (12)—(13), etc.

2.2.7 RELATIONS BETWEEN THE CONSTANTS

The constants that appear in the equations described in the previous sections can be
related to each other. For example, the stiffness tensor, ¢;;,, is the inverse of the strain
tensor, s;;,. Similar relations can be established for the other constants and coefficients. In
writing these relations, we use the compressed matrix notation with i, j, k, /=1, 2, 3 and
p.q,r=1,2,3,4,5,6. We also use the 3 x 3 unitmatrix 51’,’ and the 6 x 6 unitmatrix Spq.
As before, Einstein convention of implied summation over the repeated indices applies.

E E D D . . .

CprSyr = O0pgs €8, =8, (Stiffness—compliance relations) (30)

&5 Bfk =0, ITksJTk =90,; (Permittivity—impermittivity relations) (31)

P =ct te h sP=sF —d (Close circuit—open circuit (32)
rq rq kp™kq>  “pq Pq 1p8kq p

effects on elastic constants)

el =¢}+dye,. Bl=B)—gy4h;, (Stress—strain effects on dielectric (33)
constants)
E T
Cip = dichp’ di.i = &y 8kp . . .
(Relations between piezoelectric constants) (34)

_nT _ D
8ip= ﬁikqu’ hiﬁ = 8ig®qp
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2.2.8 ELECTROMECHANICAL COUPLING COEFFICIENT

Electromechanical coupling coefficient is defined as the square root of the ratio between
the mechanical energy stored and the electrical energy applied to a piezoelectric material

Mechanical energy stored (35)
| Electrical energy applied
. . _ dy : _ _ldyl
For direct actuation, we havde kyy = Nt for transverse actuation, k; = ot and
for shear actuation, k5 = \/% For uniform inplane actuation, we obtain the planar

coupling coefficient, k, = k3 12: where v is the Poisson ratio.

2.2.9 HIGHER ORDER MODELS OF THE ELECTROACTIVE RESPONSE

Higher order models of the electroactive ceramics contain both linear and quadratic
terms. The linear terms are associated with the conventional piezoelectric response. The
quadratic terms are associated with the electrostrictive response, whereas the application
of electric field in one direction induces constriction (squeezing) of the material. The
electrostrictive effect is not limited to piezoelectric materials, and is present in all materi-
als, though with different amplitudes. The electrostrictive response is quadratic in electric
field. Hence, the direction of the electrostriction does not switch as the polarity of the
electric field is switched. The constitutive equations that incorporate both piezoelectric
and electrostrictive response have the form

Si; = St T+ dii; By + My ELE) (36)

Note that the first two terms are the same as for piezoelectric materials. The third term is
due to electrostriction. The coefficients M,,;; are the electrostrictive coefficients.

2.3 PIEZOELECTRIC PHENOMENA

Polarization is a phenomenon observed in dielectrics and it consists in the separation
of positive and negative electric charges at different ends of the dielectric material on
the application of an external electric field. A typical example is the polarization of the
dielectric material inside a capacitor on the application of an electric voltage across the
capacitor plates. Polarization is the explanation for the fact that the dielectric capacitor
can hold much more charge than the vacuum capacitor, since

D=g,E+P (37)

where D, the electric displacement, represents charge per unit area; E, the electric field,
represents voltage divided by the distance between the capacitor plates; and g, is the
electric permittivity of the vacuum. It is apparent from Eq. (37) that the polarization
P represents the additional charge stored in a dielectric capacitor as compared with a
vacuum capacitor.

Spontaneous polarization is the phenomenon by which polarization appears without
the application of an external electric field. Spontaneous polarization has been observed
in certain crystals in which the centers of positive and negative charges do not coincide.
Crystals are classified into 32-point groups according to their crystallographic symmetry
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(international and Schonflies crystallographic symbols). These 32-point groups can be
divided into two large classes, one containing point groups that have a center of symmetry,
the other containing point groups that do not have a center of symmetry, and hence display
some spontaneous polarization. Of the 21-point groups that do not display a center of
symmetry, 20 contain crystals that may display spontaneous polarization. Spontaneous
polarization can occur more easily in perovskite crystal structures.

Permanent polarization is the phenomenon by which the polarization is retained
even in the absence of an external electric field. The process through which permanent
polarization is induced in a material is known as poling.

Paraelectric materials do not display permanent polarization, i.e., they have zero
polarization in the absence of an external electric field. When an external field is applied,
their polarization is roughly proportional with the applied electric field. It increases when
the electric field is increased, and decreases back to zero when the field is reduced.
If the field is reversed, the polarization also reverses (Fig. 2.2a). Paraelectric behavior
represents the behavior of common dielectrics.

Ferroelectric materials have permanent polarization that can be altered by the appli-
cation of an external electric field. The term ‘ferroelectric materials’ was derived by
analogy with the term ‘ferromagnetic materials,” in which the permanent magnetization is
altered by the application of an external magnetic field. Figure 2.2b describes graphically
the ferroelectric behavior during the cyclic application of an electric field. As the electric
field is increased beyond the critical value, called coercive field, E., the polarization
suddenly increases to a high value. This value is roughly maintained when the electric
field is decreased, such that at zero electric field the ferroelectric material retains a per-
manent spontaneous polarization P,. When the electric field is further reduced beyond
the negative value —E_, the polarization suddenly switches to a large negative value,
which is roughly maintained as the electric field is decreased. At zero electric field, the
permanent spontaneous polarization is now —P,. As the electric field is again increased
into the positive range, the polarization is again switched to a positive value, as the field
increased beyond E,. Characteristic of this behavior is the high hysteresis of the loop
traveled during a cycle. The ferroelectric behavior can be explained through the existence
of aligned internal dipoles that have their direction switched when the electric field is
sufficiently strong. The slight horizontal slopes observed in Fig. 2.2b are attributable to
the paraelectric component of the total polarization.

(a) (b)

FIGURE 2.2 Polarization vs. applied electric field for three types of materials: (a) paraelectric
behavior; (b) ferroelectric behavior.
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Piezoelectricity' is the property of a material to display electric charge on its surface
under the application of an external mechanical stress. In other words, a piezoelectric
material changes its polarization under stress. Piezoelectricity is related to permanent
polarization, and can be attributed to the permanent polarization being changed when
the material undergoes mechanical deformation due to the applied stress. Conversely, the
change in permanent polarization produces a mechanical deformation, i.e., strain.

Pyroelectricity is the property of a material to display electric charge on its surface due
to changes in temperature. In other words, a pyroelectric material changes its polarization
when the temperature changes. Pyroelectricity is related to spontaneous polarization, and
can be attributed to spontaneous polarization being changed when the material undergoes
geometric changes due to changes in temperature. If the material is also piezoelectric,
and if its boundaries are constraint, change in temperature produces thermal stresses that
result in high polarization through the piezoelectric effect.

Rochelle salt was one of the first observed ferroelectric materials. Most ferroelectric
materials are piezoelectric and pyroelectric. Remarkable about the Rochelle salt was that
its piezoelectric coefficient was much larger than that of quartz. However, quartz is much
more stable and rugged.

2.4 PEROVSKITE CERAMICS

Perovskites are a large family of crystalline oxides with the metal to oxygen ratio 2:3.
Perovskites derive their name from a specific mineral known as perovskite. The simplest
perovskite lattice has the expression, X, Y,, in which the X atoms are rectangular close
packed and the Y atoms occupy the octahedral interstices. The rectangular close packed
X atoms may be a combination of various species, X', X2, X3, etc. For example, in the
barium titanate perovskite, BaTiO,, we have X! = Ba** and X? = Ti*", whereas Y = 0>~
(Fig. 2.3). In the lattice structure, the Ba®* divalent metallic cations are at the corners,
the Ti*" tetravalent metallic cation is in the center, whereas the O%> anions are on the
faces. The Ba®" cations are larger, whereas the Ti** cations are smaller. The size of the
Ba" cation affects the overall size of the lattice structure. Perovskite arrangements like
in BaTiO; are generically designated ABO;. Their main commonality is that they have

FIGURE 2.3 Crystal structure of a typical perovskite, BaTiO;: the Ba>* cations are at the cube
corners, the Ti** cation is in the cube center, and the O?~ anions on the cube faces.

! The prefixes ‘piezo’ and ‘pyro’ are derived from the Greek words for ‘force’ and ‘fire’, respectively.
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a small, tetravalent metal ion, e.g., titanium or zirconium, in a lattice of larger, divalent
metal ions, e.g., lead or barium, and oxygen ions (Fig. 2.3). Under conditions that confer
tetragonal or rhombohedral symmetry, each crystal has a dipole moment.

2.4.1 POLARIZATION OF THE PEROVSKITE STRUCTURE

At elevated temperatures, the primitive perovskite arrangement is symmetric faced-
centered cubic (FCC) and does not display electric polarity (Fig. 2.4a). This symmetric
lattice arrangement forms the paraelectric phase of the perovskite, which exist at elevated
temperatures. As the temperature decreases, the lattice shrinks and the symmetric arrange-
ment is no longer stable. For example, in barium titanate, the Ti*" cation snaps from the
cube center to other minimum-energy locations situated off center. This is accompanied
by corresponding motion of the O~ anions. Shifting of the Ti** and 0>~ ions causes the
structure to be altered, creating strain and electric dipoles. The crystal lattice becomes
distorted, i.e., slightly elongated in one direction, i.e., tetragonal (Fig. 2.4b). In barium
titanate, the distortion ratio is ¢/a = 1.01, corresponding to 1% strain in the c-direction
with respect to the a-direction. This change in dimensions along the c-axis is called spon-
taneous strain, S,. The orthorhombic tetragonal structure has polarity because the centers
of the positive and negative charges no longer coincide, yielding a net electric dipole. This
polar lattice arrangement forms the ferroelectric phase of the perovskite, which exists
at lower temperatures. The transition from one phase into the other takes place at the
phase transition temperature, commonly called the Curie temperature. In barium titanate,
BaTiO;, the phase transition temperature is around 130°C. As the perovskite is cooled
below the transition temperature, 7,, the paraelectric phase changes into the ferroelectric
phase, and the material displays spontaneous strain, S, and spontaneous polarization,
P,. Alternatively, when the perovskite is heated above the transition temperature, the
ferroelectric phase changes into the paraelectric phase, and the spontaneous strain and
spontaneous polarization are no longer present.

2.4.1.1 Temperature Dependence of Spontaneous Polarization,
Spontaneous Strain, and Dielectric Permittivity

In the ferroelectric phase, the perovskite displays spontaneous polarization, which
decreases with temperature. In the same time, the dielectric permittivity increases with
temperature. At the transition temperature, i.e., at the Curie point, 7, the polarization

(b)

FIGURE 2.4 Spontaneous strain and polarization in a perovskite structure: (a) above the Curie point,
the crystal has cubic lattice, displaying a symmetric arrangement of positive and negative charges and
no polarization (paraelectric phase); (b) below the Curie point, the crystal has tetragonal lattice, with
asymmetrically placed central atom, thus displaying polarization (ferroelectric phase).
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vanishes, and the permittivity suddenly jumps to a very large value. These phenomena are
associated with the transition from the ferroelectric phases into the paraelectric phase, i.e.,
from the distorted orthotropic lattice to the symmetric FCC lattice. As the temperature
further increases, the permittivity decreases drastically with temperature following a 1/T
rule. The spontaneous strain, S;, which only exists in the ferroelectric phase, decreases with
temperature. As the Curie temperature, 7, is crossed, transition from ferroelectric phase
into paraelectric phase takes place, and the spontaneous strain vanishes. The piezoelectric
strain coefficient, d, increases with temperature up to 7, and then vanishes.

2.4.1.2 Induced Strain and Induced Polarization

When the perovskite is in the ferroelectric phase, strain and polarization can be
also induced by the application of an electric field. When applied in the direction of
spontaneous polarization, the electric field increases the net polarization, and increases
the lattice distortion. The additional strain and polarization are called induced strain
and induced polarization. At first, the induced strain and induced polarization increase
linearly with the applied electric field. However, as the field increases to higher values,
saturation-induced nonlinear effects set in. The maximum displacement allowed by the
crystal structure is termed the “polarization saturation”.

When the applied electric field is contrary to the direction of spontaneous polariza-
tion (i.e., reverse field), the induced strain and induced polarization add algebraically
to the spontaneous strain and spontaneous polarization already existing in the ferroelec-
tric perovskite, and the net strain and polarization decrease. At high reverse fields, the
polarization and strain may suddenly increase in the direction of the applied reverse
field. This spontaneous switching of polarization and strain occurs as the central atom
suddenly jumps into an opposite off-center location, more appropriate to the direction of
the externally applied electric field. The sudden jump reverses the relative positions of
the asymmetric ions in the crystal lattice and aligns the spontaneous polarization with the
applied electric field. This phenomenon, called polarization reversal, is the main char-
acteristics of ferroelectric materials. The value of the electric field at which polarization
reversal takes place is called coercive field. Polarization reversal is also accompanied by
large strains. However, it results in a large hysteresis loop. Due to its drastic character,
repeated application of polarization reversal subjects the crystal lattice to considerable
internal stresses, increases the lattice fatigue, and shortens the life of the ferroelectric
materials.

When the perovskite is in the paraelectric phase, linear piezoelectricity is absent.
However, strain can be still induced through the electrostrictive effect, which is quadratic
in the applied field.

2.4.2 POLING OF PEROVSKITE CERAMICS

During fabrication, perovskite ceramics undergo phase transformation from paraelec-
tric state to ferroelectric state. This transformation takes place as the material cools
below the Curie temperature, T,. The resulting ferroelectric ceramic has a polycrystalline
structure (grains) with randomly oriented ferroelectric domains (Fig. 2.5a). If the grains
are large, ferroelectric domains can exist even inside each grain. Due to the random
orientation of the electric domains, individual polarizations cancel each other, and the net
polarization of the virgin ferroelectric ceramic is zero.

This random orientation can be transformed into a preferred orientation through poling.
Poling aligns the dipole domains and gives the piezoceramic material a net polarization.
A poled ferroelectric ceramics behaves more or less like a single crystal. Poling of
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FIGURE 2.5 Piezoelectric effect in polycrystalline perovskite ceramics: (a) in the absence of stress
and electric field, the electric domains are randomly oriented; (b) application of stress produces orientation
of the electric domains perpendicular to the loading direction. The oriented electric domains yield a net
polarization; (c) application of an electric field orients the electric domains along the field lines and
produces induced strain.

piezoceramics is attained at elevated temperatures in the presence of a high electric field.
The application of a high electric field at elevated temperatures results in the alignment
of the crystalline domains. This alignment is locked in place when the piezoceramic
is cooled (permanent polarization). During poling, the orientation of the piezoelectric
domains also produces a mechanical deformation. When the piezoceramic is cooled, this
deformation is locked in place (permanent strain). Poling is performed in silicon oil bath
at elevated temperature under a d.c. electric field of 1-3 kV/mm.

A poled ferroelectric ceramic responds to the application of an applied electric field
or mechanical stress with typical piezoelectric behavior. The subsequent application
of an electric field or a mechanical strain affects this state and changes the interplay
between mechanical deformation and polarization. When a mechanical strain is applied,
the polarization is changed and the direct piezoelectric effect is obtained. When an electric
field is applied, the mechanical strain is changed, and the converse piezoelectric effect,
i.e., the induced-strain actuation, results.

In a poled ferroelectric ceramic, electric domains exist mainly in two varieties:

(1) Electric domains that became more or less aligned with the direction of the electric
field during the poling operation, and are now more or less parallel to the direction
of spontaneous polarization

(2) 90° electric domains that did not orient themselves during poling and are left perpen-
dicular to the direction of spontaneous polarization.

If an external electric field is applied in the direction of spontaneous polarization,
the induced-strain actuation process takes place in three major steps. First, through the
intrinsic effect, the strain of the piezoelectric domains increases under the influence of
the applied electric field (curves a and b in Fig. 2.6). This effect is rather linear, and
related to conventional piezoelectricity. The induced strain adds to the already existing
spontaneous strain, which was created during the poling process (approximately 0.275%
in Fig. 2.6).

During the intrinsic response, the electric domains that are better aligned with the
electric field deform more, whereas those that are less aligned deform less, since the field
strength is projected through the individual orientation angle of each domain. In addition,
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FIGURE 2.6 Induced-strain curves in PLZT 7/62/38 for various levels of electric field.

the resulting strain in each domain has to be projected back onto the main strain direction,
which in tetragonal lattices coincides with the electric field direction. Thus, the overall
effect is strongly affected by the percentage orientation of the electric domains with
respect to the direction of overall polarization. Not surprisingly, the overall piezoelectric
strain coefficient of a ferroelectric ceramic is less than that of an equivalent single crystal
of the same formulation.

Further increase of the electric field triggers the extrinsic effect during which the
domains undergo rotation (Fig. 2.7). Ferroelectric domains, which initially were not
oriented with the applied field, now tend to orient themselves with the applied field.
The most dramatic reorientation that can take place is that of the 90° domains. During
this process, high strains can be produced as the rotation of the 90° domains adds the
full strength of the lattice spontaneous strain existing in the 90° domains. (For example,
BaTiO; perovskite has a spontaneous strain of 1%. The rotation of a 90° domain in this
compound will produce a local strain of 1%.) Of course, the local strains will have to
combine through elastic interactions with the strains of the adjacent domains, but the
total effect can be quite significant. The extrinsic effect is shown in curves ¢, d, and e
of Fig. 2.6. This extrinsic effect produces very spectacular results during the upswing of
the induced-strain actuation process, and induced strains of up to 0.15% are shown in
Fig. 2.6. However, during the downswing, as the electric field is reduced, considerable
permanent strain remains, as the ex-90° domains do not rotate back. The extrinsic effect
is believed to be the cause of nonlinearity and hysteresis losses in piezoceramics.

Thirdly, the material undergoes electrostriction. This is a volumetric effect, which
is proportional to the square of the electric field. In conventional piezoceramics, the

m

(a)

FIGURE 2.7 (a) Depolarization under coercive field E.; (b) 180° domain switch for E < E;
(c) 90° domain switch for stresses higher than the coercive stress.
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electrostrictive effect is negligible. However, it becomes quite significant in electrostric-
tive ceramics, as discussed in Section 2.4.5 of this chapter.

If, after being decreased to zero, the electric field is increased in the opposite direc-
tion, the strain decreases at first, until all the polarization-induced spontaneous strain
is cancelled, and the overall strain is zero. Further increase of the reverse electric field
beyond this point produces the phenomenon of domain switching, whereby the crystal
lattice snaps into a new position, which is now aligned with the applied reversed field.
At this point, the reverse coercive field, —E, was attained. If the reverse field is further
increased, small additional strains may still be obtained through the intrinsic effect and
through electrostriction, but these are diminishing returns. If now the electric field is
brought back to zero, the strain decreases, but significant permanent strain still remains.
Increasing the field in the positive direction will, at first, induce further reduction of
the strain because the electric domains are almost all of reverse polarity. As the field
is further increased, domain switching will again occur as the value of forward-coercive
field, +E, is attained. The result is the “butterfly curve” (curve e in Fig. 2.6).

The high-field nonlinear behavior is frequency dependent. The typical butterfly curve
(curve e of Fig. 2.6) can only be attained under quasi-static application of the electric field,
in which case sufficient time is given to the electric domain switching to propagate through
the full body of the piezoceramic. If the frequency is increased, the domain reorientation
and domain switching cannot fully develop before the electric field is reversed. As a
result, as the frequency increases, the maximum attainable strains under maximum field
tend to diminish. However, hysteresis also decreases.

The linear piezoelectric equation can only describe a fraction of the full operating
range of the materials. Outside the linear range, advanced theories considering the mate-
rial micromechanics must be employed. Within the linear range, piezoelectric ceramics
produce strains that are more or less proportional to the applied electric field or voltage.
Induced strains around 0.1% (1000 pstrain) are encountered.

Due to nonlinear behavior, the dielectric permittivity, piezoelectric coefficient, loss
factor and coupling coefficients vary with the applied electric field and mechanical stress.
For example, the fact that the dielectric permittivity is strongly dependent on stress
and electric field is correlated with the observation that the capacitance of PZT wafers
driven at different frequencies and electric fields display an almost proportional increase
with voltage. This capacitance variation further affects the power requirements of a
piezoelectric actuator.

2.4.3 COMMON PEROVSKITE CERAMICS

Perovskite arrangements such as in BaTiO, are generically designated A*"B**O%". In
BaTiO, the sites A%+ are occupied by Ba*" cations, whereas the sites B+ are occupied by
Ti*" cations. However, the A%t and B*" sites can be also taken by other similar cations,
of similar sizes. For example the A>* site can be occupied by other large-size divalent
metallic cations such as A>* = Ba®*, Sr**, Pb*", Sn’*, etc. The B** site can be occupied
by other small-size tetravalent metallic cations like B4 = Ti4+, Zr*, ete. Through such
replacements, other perovskite compounds are obtained.

Besides the basic replacement of the cations in the formulation, A**B*TO3", it is
also possible to have mixtures of similar cations forming solid solution alloys of various
proportions. For example, the solid solution alloying of the B site can yield combination
of the form A** (ijXB;H)O%‘. In solid solutions, the distribution of the B and B’ cations
can be ordered or disordered. Solid solution perovskites may have several ferroelectric
phases. The alloying proportions of the B and B’ components influence the type of
phases present in the solid solution. Commercial piezoelectric ceramics are typically made
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of simple perovskites and solid solution perovskite alloys. Typical examples of simple
perovskites are

e Barium titanate (BT) with chemical formula BaTiO,
e Lead titanate (PT) with chemical formula PbTiO;.

Typical examples of solid-solution perovskite alloys are

e [ ead zirconate titanate (PZT) with chemical formula Pb(Zr, Ti)O;
e Lead lanthanum zirconate titanate (PLZT) with chemical formula (Pb, La)(Zr, Ti)O,
e Ternary ceramics, e.g., BaO-TiO,-R,0;, where R is a rare earth.

24.4 PIEZOELECTRIC CERAMICS

Piezoelectric ceramics are perovskite varieties in which the linear piezoelectric
response dominates. At low electric fields, piezoelectric ceramics are well described
by the linear piezoelectric equations. When piezoceramics are classified according to
their coercive field during field-induced strain actuation, two main categories emerge. If
the coercive field is large, say greater than 1kV/mm, then the piezoceramic is ‘hard’.
A hard piezoceramic shows an extensive linear drive region, but a relatively small strain
magnitude. If the coercive field is moderate, say between 0.1 and 1kV/mm, then the
piezoceramic is classified as ‘soft’. A soft piezoceramic shows a large field induced
strain, but relatively large hysteresis. The stress-induced 90° domains switching for hard
PZT compositions (acceptor doped) occurs at higher stresses than in the case of soft PZT
compositions (donor doped). The ‘hard’ and ‘soft’ behavior is also related to the Curie
temperature. Hard piezoceramics tend to have a higher Curie point, 250° C < T, whereas
soft piezoceramics have a moderate Curie point, 150°C < T, < 250° C. The DOD-STD-
1376A(SH) standard defines six piezoelectric ceramic types also known as Navy Type
I-VL This standard is used by piezoelectric ceramics manufacturers and suppliers as a
minimum quality requirement for their products.

A solid solution ferroelectric perovskite with wide applications is the lead zirconate
titanate, Pb(Zr,_, Ti,)O5, commonly known as PZT. In the PZT perovskite unit cell, lead,
Pb*", occupies the corners, oxygen, O?, the faces, and titanium/zirconium, Zr**/Ti*",
the octahedral voids. To date, many PZT formulations exist, the main differentiation
being between ‘soft’ (e.g., PZT 5-H) and ‘hard’ (e.g., PZT 8). PZT attains the highest
piezoelectric coupling and the maximum electric permittivity near the morphotropic
phase boundary (MPB). This corresponds to the change in the crystal structure from
the tetragonal phase to the rhombohedral phase, which occurs when the Zr/Ti ratio is
approximately 53/47. The explanation for this phenomenon is as follows. Above the Curie
temperature, PZT has a cubic lattice and is paraelectric. The Curie temperature varies
with the alloying proportion, from ~250° C for pure PbZrO; to ~500° C for pure PbTiO;.
Below the Curie temperature, PZT is ferroelectric; but its lattice can be either tetragonal
or rhombohedral, according to the alloying proportion. On the phase diagram, the line
separating the two phases is called the MPB. The tetragonal lattice has six distortion
variants, i.e., the central cation can be displaced in any one of the six possible positions
parallel to the three lattice axes. The rhombohedral lattice has eight distortion variants,
i.e., the central cation can be displaced in any one of the eight possible positions parallel
to the four diagonals. On the line separating the two phases in the phase diagram, i.e.,
on the MPB, both the tetragonal phase and the rhombohedral phase may exist. Hence,
the total number of distortion variants on MPB is 14, which is the cumulative effect
of both phases. Having more distortion variants increases the material responsiveness,
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TABLE 2.2 Properties of APC piezoelectric ceramic (www.americanpiezo.com)

ELECTROACTIVE AND MAGNETOACTIVE MATERIALS

APC APC APC APC APC APC
Property 840 841 850 855 856 880
p(kg/m?) 7600 7600 7700 7500 7500 7600
dy; (1072 m/V) 290 275 400 580 620 215
d5 (10712 m/V) —125 109 —175 270 260 —95
dy5(1072m/V) 4380 450 590 720 710 330
213(1073 Vm/N) 26.5 25.5 26 19.5 18.5 25
25,(1073 Vm/N) —11 10.5 —12.4 8.8 8.1 —-10
215(1073 Vm/N) 38 35 36 27 25 28
s £(1072 m?/N) 11.8 11.7 15.3 14.8 15.0 10.8
5313E(10712m?/N) 17.4 17.3 17.3 16.7 17.0 15.0
83T3/80 1250 1350 1750 3250 4100 1000
ky 0.59 0.60 0.63 0.65 0.65 0.50
ks 0.72 0.68 0.72 0.74 0.73 0.62
ks 0.35 0.33 0.36 0.38 0.36 0.30
kis 0.70 0.67 0.68 0.66 0.65 0.55
Poisson ratio, o 0.30 0.40 0.35 0.32 0.39 0.28
Young modulus ¥}, (GPa) 80 76 63 61 58 90
Young modulus Y33 (GPa) 68 63 54 48 45 72
Curie temperature (°C) 325 320 360 195 150 310
Dissipation factor, tand (%) 0.4 0.35 1.4 2 2.7 0.35
Mechanical Qy 500 1400 80 75 72 1000
Note: &, =8.85 x 107'2 Farad/m. Poisson ratio is calculated from the formula, k2 = =43,

as the material has more options to deform under the action of external factors, e.g.,
electric field or mechanical pressure. At room temperature, the MPB is placed around the
47/53 alloying ration. Several PZT formulations are commercially available. For example,
Table 2.2 gives the properties of piezoelectric ceramic wafers available from American
Piezo Ceramics, Inc.

2.4.5 ELECTROSTRICTIVE CERAMICS

Electrostrictive ceramics are perovskite materials in which the electrostrictive response
is dominant. If the coercive field is less than 0.1 kV/mm, the material is rather an
electrostrictor, which displays an approximately quadratic dependence of strain on electric
field. The perovskites that display a large electrostrictive response are the disordered
complex perovskites, which have high electrostrictive coefficient with respect to electric
field and a diffuse transition temperature (diffuse Curie point).

2.4.5.1 Relaxor Ferroelectrics

Electrostrictive ceramics are also called relaxor ferroelectric because they display large
dielectric relaxation, i.e., frequency dependence of the dielectric permittivity. In a relaxor
ferroelectric, the permittivity decreases as the test frequency increases. In addition, the
value of temperature at which the permittivity peaks shifts upward. This behavior is in
contrast with that of conventional ferroelectrics, for which the temperature at which the
permittivity peaks hardly changes with frequency. The dielectric relaxation phenomenon
can be attributed to the presence of microdomains in the crystal structure. Mulvihill et al.
(1995) subjected a < 111> single crystal of lead zirconate niobate, Pb(Zr, ;Nb, ;)Os,
to dielectric constant measurements in two states: (1) unpoled; (2) poled. The unpoled
state, which has only microdomains, exhibited the dielectric relaxation phenomenon.
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The poled state, which has macrodomains induced by the applied electric field, did not
exhibit dielectric relaxation; it behaved more like a conventional dielectric material. In
relaxor materials, the transition between piezoelectric behavior and loss of piezoelectric
capability does not occur at a specific temperature (Curie point), but instead occurs over
a temperature range (Curie range), that can be formulated to be lower than the room
temperature. Thus, electrostrictive ceramics have a rather diffused phase transition that
spans a temperature range around the transition temperature. Hence, the temperature
dependence of electrostrictive ceramics around the transition temperature is markedly less
than that of normal perovskite solid solutions.

Lead magnesium niobate, lead magnesium niobate/lanthanum formulations, and lead
nickel niobate are currently among the most studied relaxor materials. The electrostrictive
ferroelectrics have very high dielectric permittivity and polarization. Due to their very
large dielectric permittivity, the electrostrictive ferroelectrics have found wide applica-
tions in the construction of compact-chip capacitors. The coercive field of electrostrictive
ceramics is much smaller than that of piezoelectric ceramics. A common electrostric-
tive ceramics is lead magnesium niobate, Pb(Mg,;Nb,;)O;, also known as PMN.
Another commonly used electrostrictive ceramic is lead titanate, PbTiO;, also known
as PT. Combination of these two formulations are also common, under the designation
PMN-PT (Fig. 2.8). Another electrostrictive ceramic is lead larthanium zirconium titarate
(Pb, La)(Zr, Ti)O;, also known as PLZT. Other ferroelectric ceramic systems that have
been formulated to display strong electrostrictive behavior include lead barium zirconate
titanate, (Pb, Ba)(Zr, Ti)O;, ak.a., PBZT and barium stannate titanate, Ba(Sn, Ti)O;,
a.k.a., BST. To obtain large (apparent) electrostriction, it is essential that ferroelectric
microdomains in the ceramic structure are generated. Various methods, such as the doping
with ions of a different valence or ionic radius, or the creation of vacancies, which
introduce spatial microscopic inhomogeneity, are used.

2.4.5.2 Constitutive Equations of Electrostrictive Ceramics

The strain-field curves of electrostrictive ceramics display a typical quadratic behavior.
On such curves, a positive mechanical strain is obtained for both positive and negative elec-
tric fields. However, the strain field curve is strongly nonlinear, as appropriate to quadratic
behavior. What is remarkable about electrostrictive ceramics is their very low hysteresis.
The constitutive equations of electrostrictive ceramics are similar to those for piezoelectric
ceramics, only that it also incorporates significant second-order terms are included, e.g.,

S = St T+ di B, + my ELE, (38)
E,T, +¢! E, (39)

mnij~n*ij

Dm = dmlekl + 2m
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FIGURE 2.8 Field-induced strain in 90-10 PMN-PT electrostrictive ceramic.
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In this equation, the first two terms are the same as those used to describe the piezoelec-
tric constitutive law, i.e., Hooke’s law and the converse piezoelectric effect. The third
term represents the electrostriction effect. The components of m,;; are the electrostrictive
coefficients. Equation (38) indicates that electrostriction appears as quadratic addition to
the linear piezoelectric effect. In fact, the two effects are separable because the piezoelec-
tric effect is possible only in noncentrosymmetric materials, whereas the electrostrictive
effects are not limited by symmetry and are present in all materials. In addition to the
direct electrostrictive effect, the converse electrostrictive effect also exists.

Commercially available PMN formulations are internally biased and optimized to
give quasi-linear behavior. In this situation, they display much less nonlinearity than
the conventional quadratic electrostriction, and resemble more the conventional linear
piezoelectricity. The linearized electrostrictive ceramics retain the very low hysteresis
of quadratic electrostrictive ceramics. Thus, from this standpoint, they are superior to
conventional piezoelectric ceramics. However, linearized electrostrictive ceramics do not
accept field reversal. After linearization, the constitutive equations of electrostrictive
ceramics resemble those of conventional piezoceramics, i.e.,

S = Sglekl + aijkEk (40)
Dm = amlekl + srTr;nEn (41)

The symbol ~ indicates that the piezoelectric constants, Zlijk, of Egs. (40) and (41) are
different from the corresponding constants d;; in the original Eqs. (38) and (39). This
is due to the linearization process. In Eqgs. (38) and (39), the d;; constants were quite
small, because the main effect was due to the quadratic effects represented by the m,;
constants. In Egs. (40) and (41), the Ziijk constants are quite significant, as they represent
the effect of the linearization of Egs. (38) and (39).

2.5 PIEZOPOLYMERS

Piezoelectric polymers are polymers that display piezoelectric properties similar to
those of quartz and piezo ceramics. Piezoelectric polymers are supplied in the form of thin
films. It is flexible and shows large compliance. Piezoelectric polymers are cheaper and
easier to fabricate than piezoceramics. The flexibility of piezoelectric polymers overcomes
some of the drawbacks associated with the piezoelectric ceramics brittleness. A typical
piezoelectric polymer is the polyvinylidene fluoride, abbreviated PVDF or PVF,. This
polymer has strong piezoelectric and pyroelectric properties. Its chemical formulation
is (-CH,—CF,-),. This polymer displays a crystallinity of 40-50%. The PVDF crystal
is dimorphic, the two types being designated I (or ) and II (or ). In the B phase
(i.e., type 1), PVDF is polar and piezoelectric. When in the a phase, PVDF is not polar
and is commonly used as electrical insulator, among other applications. To impart the
piezoelectric properties, the o phase is converted to the (3 phase and then polarized.
Stretching a-phase material produces the 3 phase.

2.5.1 PIEZOPOLYMER PROPERTIES AND CONSTITUTIVE EQUATIONS

The piezoelectric properties of piezopolymers are comparable to those of piezoceram-
ics (Table 2.3). However, its modulus of elasticity is much lower. Remarkable about
piezopolymers is their large pyroelectric constant, which makes them good candidates for
infrared sensor applications. Another beneficial property is that, unlike piezoceramics,
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TABLE 2.3 Comparison of PVDF properties with those of piezoelectric ceramics

Property Units PVDF film PZT (PbZrTiO5) BaTiO4
Density kg/m?3 1780 7500 5700
Relative permittivity g/e, 12 1200 1700
dy, 10712C/N 23 110 78
831 1073 Vm/N 216 10 5

k3 at 1 kHz 0.12 0.30 0.21
Young modulus GPa ~3 ~60 ~110
Acoustic impedance 10%kg/m?-s 2.7 30 30

they can be operated at high strain levels. The use at strain of up to 0.2% has been
reported. The constitutive relations for PVDF can be described as

S;= sglekl +d;Ec+ a6 “2)

D;=dyT,+eyE+D,0
where §;; is the mechanical strain, 7;; is the mechanical stress, E; is the electrical
field, D; is the electrical displacement (charge per unit area). The coefficient 55k1 is
the mechanical compliance of the material measured at zero electric field (E = 0). The
coefficient sfk is the dielectric constant measured at zero mechanical stress (7 = 0). The
coefficient d, is the piezoelectric strain constant (also known as the piezoelectric charge
constant), which couples the electrical and mechanical variables and expresses how much
strain is obtained per unit applied electric field, 6 is the absolute temperature, af is
the coefficient of thermal expansion under constant electric field; D; is the temperature
coefficient of the electric displacement.

2.5.2 TYPICAL PIEZOPOLYMER APPLICATIONS

The PVDF material is flexible, and not brittle like piezoelectric ceramics. This property
is especially important for applications involving complicated shapes and/or significant
structural strains. Its easy formability, along with this property, makes it superior to
ceramics as a sensor. As a sensor, PVDF provides higher voltage/electric field in response
to mechanical stress than piezoceramics. The piezoelectric g-constant (i.e., the voltage
generated per unit mechanical stress) is typically 10 to 20 times larger than for piezo-
ceramics. PVDF film also produces an electric voltage in response to infrared light due to
its strong pyroelectric coefficient. Hence, they have found wide applications as sensors.

Piezopolymers are often used for sensing. PVDF can be formed in thin films and
bonded to many surfaces. Uniaxial films, which are electrically poled in one direction, can
measure stresses along one axis, whereas biaxial films can measure stresses in a plane.
A PVDF sensor can be used like a strain gage; however, it does not require a conditioning
power supply. The output signal is also comparable to that of an amplified strain gage
signal. This high sensitivity is due to the low thickness of the typical PVDF film (25 jum).
Because of its good sensor properties (i.e., the high g constant), light weight, flexibility;
toughness, PVDF is used in numerous sensor applications. When used as an actuator,
PVDF gives a much lower force than piezoceramics, due to is much lower modulus
(Table 2.3). Hence, it is best use in the actuation of compliant microstructures, with
a low inherent stiffness. It is inappropriate for structural control applications involving
conventional structural materials.
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2.6 MAGNETOSTRICTIVE MATERIALS

In simple terms, magnetostriction is the material property that causes certain materials
to change shape when an external magnetic field is applied. Magnetostrictive materials
expand in the presence of a magnetic field, as their magnetic domains align with the field
lines. Magnetostriction was initially observed in nickel, cobalt, iron, and their alloys but
the values were small (<50 pstrain). Large strains (~ 10000 pstrain) were observed in
the rare-earth elements terbium (Tb) and dysprosium (Dy) at cryogenic temperatures (i.e.,
below 180°K). Very large magnetostriction exists at room temperature in the terbium-
iron alloy TbFe,. The binary alloy Terfenol-D (Tb,,Dy,,Fe,,), developed at Ames
Laboratory and the Naval Ordnance Laboratory (now Naval Surface Weapons Center),
displays magnetostriction of up to 2000 pstrain at room temperature and up to 80° C and
higher. Current Terfenol-D binary alloy formulations are of the form Tb,_, Dy Fe, o,
where x is the relative proportion of dysprosium, whereas the proportion of iron can vary
between 1.9 and 2. In the foregoing discussion, we will use the generic value 2, while
understanding that the actual value may be between 1.9 and 2, according to the detail
formulation of the particular Terfenol-D alloy.

The magnetostrictive constitutive equations contain both linear and quadratic terms

Sij = Si T+ dygj Hy 4 myg; H H, “3)

B, =d, Ty + whH, (44)

where, in addition to the already defined variables, H, is the magnetic field intensity, B; is
the magnetic flux density, and l*,rk is the magnetic permeability under constant stress.
The coefficients d,;; and m,,;; are defined in terms of magnetic units. The magnetic field
intensity, H, in a rod surrounded by a coil with n turns per unit length is related to the
current, /, through the relation

H=nl (45)

2.6.1 LINEARIZED EQUATIONS OF PIEZOMAGNETISM

Magnetostrictive material response is basically quadratic in magnetic field, i.e., the
magnetostrictive response does not change sign when the magnetic field is reversed.
However, the nonlinear magnetostrictive behavior can be linearized about an operating
point through the application of a bias magnetic field. In this case, piezomagnetic behavior,
in which response reversal accompanies field reversal, can be obtained. The equations of
linear piezomagnetism in compact matrix (Voigt) notations are

Sp=sZ1Tq+dkak, pog=1,...,6;, k=1,2,3 (46)
B,-:d,-qTq—i—,uiTka, g=1,...,6; i ,k=1,2,3 (47)

where, S, is the mechanical strain, Tq is the mechanical stress, H, is the magnetic field
intensity, B; is the magnetic flux density, and u! is the magnetic permeability. The
coefficient s;{] is the mechanical compliance of the material measured at zero magnetic
field (M =0). The coefficient u}, is the magnetic permeability measured at zero mechan-
ical stress (T = 0). The coefficient d;, is the piezomagnetic constant, which couples
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the magnetic and mechanical variables and expresses how much strain is obtained per
unit magnetic field. For common magnetoactive materials, Eqgs. (46) and (47) take the
long-hand form

S5 53 000
S s osi3 000
Si3 5;3 83 0.0 0
0 0 0 sy O O
0 0 0 0 s;5 O
0 0 0 0 0 s

0 0 0 0 dso0
0 0 0 ds 00
dy dy dyz 0 0 0

T, 0 0 dy
T, 0 0 dy

T, 0 0 dy
7, (Y| 0 4y 0

T ds 0 0

T, 0 0 O

T,

T

T2 /"L{l 0 0
T, 0 0 w3y
Ty

(48)

The magnetomechanical coupling coefficient, k, is defined as the ratio of the magnetoe-
lastic energy to the geometric mean of the elastic and magnetic energies, i.e.,

U,

me

k= —=
VUUn

where U, is the elastic energy, U, is the magnetic energy, and U, is the magnetoelastic
energy in the material.
Typical physical properties of Terfenol-D material are given in Table 2.4.

TABLE 2.4 Physical properties of Terfenol-D

(http://etrema-usa.com/terfenol)

(50)

Nominal composition

Tby 3Dy, 7Fe; o

Mechanical properties
Young modulus
Sound speed
Tensile strength
Compressive strength
Thermal properties
Coefficient of thermal expansion
Specific heat
Thermal conductivity
Electrical properties
Resistivity
Curie temperature
Magnetostrictive properties
Strain (estimated linear)
Energy density
Magnetomechanical properties
Relative permeability
Coupling factor

25-35GPA
1640-1940 m/s
28 MPa

700 MPa

12ppm/°C
0.35kJ/kg-K
13.5 W/m-k

58 x 1078 O-m
380°C

800-1200 ppm
14-25kJ/m?

3-10
0.75
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2.7 SUMMARY AND CONCLUSIONS

This chapter has reviewed and briefly discussed the basic types of electroactive and
magnetoactive materials. Electroactive and magnetoactive materials are materials that
modify their shape in response to electric or magnetic stimuli. Such materials permit
induced-strain actuation and strain sensing which are of considerable importance in mini
mechatronics.

On one hand, induced-strain actuators are based on active materials that display
dimensional changes when energized by electric, magnetic, or thermal fields. Piezoelec-
tric, electrostrictive, and magnetostrictive materials have been presented and analyzed.
Of these, piezoelectric (PZT), electrostrictive (PMN), and magnetostrictive (Terfenol-D)
materials are commonly used. On the other hand, strain sensing with electroactive and
magnetoactive materials creates direct conversion of mechanical energy into electric and
magnetic energy. With piezoelectric strain sensors, strong and clear voltage signals are
obtained directly from the sensor without the need for intermediate gage bridges, signal
conditioners, and signal amplifiers.

Figure 2.9 compares induced-strain response of some commercially available piezo-
electric, electrostrictive, and magnetostrictive actuation materials. It can be seen that the
electrostrictive materials have less hysteresis, but more nonlinearity. The little hysteresis
of electrostrictive ceramics can be an important plus in certain applications, especially
at high frequencies. However, one should be aware that this low hysteresis is strongly
temperature dependent. As the temperature decreases, the hysteresis of electrostrictive
ceramics increases, such that, below a certain temperature, the hysteresis of electrostric-
tive ceramics may exceed that of piezoelectric ceramics. In general, because the beneficial
behavior of the electrostrictive ceramics is related to the diffuse phase transition in the
relaxor range, their properties degrade as the operation temperature gets outside the
relaxor phase-transition range.

In summary, one can conclude that the potential of active materials for sensing
and actuation applications has been demonstrated in several successful applications.
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FIGURE 2.9 Strain vs. electric field behavior of currently available induced-strain materials.
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However, this field is still in its infancy and further research and development is being
undertaken to establish active materials as reliable, durable, and cost-effective options for
large-scale engineering applications.

2.8 PROBLEMS AND EXERCISES

1. Explain the difference between tensor notations and Voigt matrix notations in the
writing of the compliance and stiffness matrices

2. Explain the following difference in subscripts usage: the (1, 3) term in the compliance
matrix is denoted s,5, whereas the (1, 3) term in the piezoelectric coefficient matrix is
denoted dj,

3. Calculate the spontaneous strain, S, and the spontaneous polarization, P,, for the
barium titanate lattice shown in Fig. 2.10.

@) E 0.61nm

©
o
£ T |
© 1.20nm
N e
20 O—
<Il|‘
Q

Q__ o~ O Ba
O

a=39.92nm

FIGURE 2.10 TIonic shifts inducing spontaneous strain and spontaneous polarization in barium
titanate.
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VIBRATION OF SOLIDS
AND STRUCTURES

3.1 INTRODUCTION

This chapter offers a brief introduction to vibration theory. This introduction is nec-
essary because many of the SHM methods to be discussed in later chapters will utilize
concepts and formulae from vibration theory.

The chapter starts with the theory of vibration of a single degree of freedom (1-dof)
system, the particle vibration. This simple system will be used as a springboard for the
analysis of more complicated system later in the chapter. The 1-dof particle vibration
will be used to introduce fundamental basic concepts such as the differential equation
of motion, harmonic solutions, free vs. forced vibrations, and damped vs. undamped
vibrations. Energy methods approach to vibration analysis will also be discussed.

The second part of the chapter covers the vibration of continuous systems. Partial dif-
ferential equations (PDE) in space and time will govern this type of vibrations. Assuming
harmonic behavior in time, the equation of motion is reduced to an ordinary differential
equation (ODE) in the space domain. This is a boundary value problem, which yields
eigenvalues and eigenmodes, and the associate natural frequencies and mode shapes. The
axial vibration of bars, flexural vibration of beams, and torsional vibration of shafts will
be considered. In each case, the study of free vibrations is followed by the study of forced
vibrations.

The chapter ends with a set of problems and exercises that will assist the student
in consolidating the understanding of the basic concepts and in applying the theory to
practical situations.

3.2 SINGLE DEGREE OF FREEDOM
VIBRATION ANALYSIS

Consider a 1-dof vibration system consisting of a particle of mass m supported by
an elastic spring of stiffness k. Initially, the particle is at equilibrium (Fig. 3.1a). In its

39
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FIGURE 3.1 Particle during free vibration: (a) physical mechanism; (b) free-body diagram.
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equilibrium state, the weight of the particle, W, is balanced by a force in the spring, k9,
where & is the static displacement of the spring under the weight, W = mg, i.e.,
m

8=t ()
If the particle is displaced from this equilibrium state and then let free, it will oscillate up
and down about the equilibrium position, i.e., it will experience a state of free vibration
with time-dependent displacement u(z) (Fig. 3.1b). Due to friction, the vibration will
decrease in amplitude and die out after some time. This is the case of damped free
vibration, in which the initial energy of vibration is being gradually dissipated through
friction or another damping mechanics. In the ideal case when friction is absent, the
vibration will continue indefinitely with constant amplitude. This is the case of undamped
free vibration. Undamped free vibrations are easier to analyze, but do not usually happen
in practice.

Damped vibrations involve a more complicated analysis, but the results are more of
practical application. When the vibration is not developing freely, but due to the excitation
of an external oscillatory force, it is called forced vibration. Depending on the presence
or absence of energy dissipation mechanisms, we may have damped forced vibration or
undamped forced vibration. Again, the undamped forced vibration is easier to analyze,
but the damped forced vibration is more representative of actual phenomena.

3.2.1 FREE VIBRATION OF A PARTICLE
3.2.1.1 Oscillatory Motion

An oscillatory motion can be defined by the formula
u(t) = Ccos(wt + ) (2)

where C is the amplitude measured in length units, w is the angular frequency measured
in radians per second (rad/s), and i is the initial phase, measured in radians.

The frequency, f, which is measured in cycles per second (c/s) or Hz, is related to the
angular frequency by the formula

f=5mw (3)
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u(t) T=2m/w

ot

o(t) =wt+1) is the time-dependent phase
1 is the initial phase at t=0

FIGURE 3.2 Schematic representation of an oscillatory motion of amplitude C, angular frequency

w, and initial phase .

The period, T, measured in seconds is related to the frequency, f, by the formula

T=7 4)

Phasor representation of oscillatory motion

In phasor notation, the vibrational motion is represented by the phasor CZis, where C
is the magnitude and ¢ is the phase angle.

Complex representation of oscillatory motion
Recall Euler identity (Kreyszig, 1999)
¢* =cosa+isina, aeR (5)

Using Euler identity given by Eq. (5), we can view the cosine function as the real part of
the complex exponential function, i.e.,

cosa = Ree™ (6)

Hence, the vibrational motion described by Eq. (2) can be viewed as the real part of a
complex exponential representation, i.e.,

u(t) = Ccos(wt + i) = CRe & +? @)

Therefore, we can simply deal with a complex function () remembering the convention
that the actual physical motion is only its real part, i.e., u(f) = Reu(r). Hence

() = Ce?e' = Ce (8)
where
C=Cé" )

is the complex amplitude. The constants C and i are the magnitude and phase of the
complex amplitude, i.e.,

C=|€“ and ¢ =argC (10)
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3.2.1.2 Undamped Free Vibration

Consider the particle displaced from the equilibrium position by a time-dependent
displacement u(t). The additional spring force due to this displacement is ku(t), whereas
the acceleration is ii(z), as shown in Fig. 3.3. Newton law of motion and Eq. (1) gives

mii(t) = —ku(t) (11)

Equation (11) can be rearranged in the form of a homogenous linear differential equation
of the form

mii(t) + ku(r) =0 (12)

The solution of a homogenous linear ODE (Kreyszig, 1999) is sought in the form .
Substitution in Eq. (12) yields the characteristic equation

mA>+k=0 (13)

| k
A, =i/ — (14)
m

The square root of the ratio between stiffness and mass is usually denoted by w,, where
the subscript n stands for natural, and the quantity o, is called the natural angular
frequency of vibration

which has the complex solutions

w,=,/—, o w,=— (15)

Note that division of Eq. (16) by the mass m and utilization of the natural angular
frequency w, defined by Eq. (15) yields the normalized form of Eq. (12), i.e.,

ii(t) + @2u(t) =0 (16)

General solution of undamped free vibration

The general solution of Eq. (12) is expressed in the form of complex exponentials, i.e.,

u(t) = Cy e’ + Cye ™' (17)
7
m At rest
-
u(t)
—

%\MMA/WWL Displaced by u({)
ku(t) 4— Free-body diagram

_—>
u(t)

FIGURE 3.3 Free-body diagram of a particle during free horizontal vibration.
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Using Euler identity given by Eq. (5), we can conveniently express Eq. (17) in the
trigonometric form

u(t) = Acosw,t+ Bsinw,? (18)

where the constants A, B and C,, C, are directly related to each other through simple
trigonometry. Equation (18) can be rewritten in the form

u(t) = Ccos(w,r+ ) (19)
where
A=Ccosty, B=-—Csiny (20)

and

C=VA2+ B, §=tan" (%) 1)
In complex notations, the undamped free vibration solution is given by
i(t) = CeVe'™' = Ce'n! (22)
where

C=Ce" (23)

is the complex amplitude. The constants C and iy are the magnitude and phase of the
complex amplitude, i.e.,

C=|€’| and ¢ =argC (24)

Expansion of Eq. (23) through the Euler identity given by Eq. (5) and comparison with
Eq. (20) yields

A=ReC, B=-ImC (25)

General solution for given initial displacement and initial velocity

Assume that the initial displacement, u,, and the initial velocity, i, are known. Using
Eq. (18), we write

uy=u(0) = Acosw,t+ Bsinw,t|,_, = A

(26)
ity =u(0) = —w,Asinw,t+w, Bcosw,t|,_, = w,B
Solving Eq. (26) for A and B yields
A=u,
it (27)
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Substitution of Eq. (27) into Eq. (18) gives the general solution of undamped free
vibrations with initial displacement, u,, and initial velocity, i, in the form

u(t) = uycos w,t + ] sinw,t (28)
1)

n

3.2.1.3 Damped Free Vibration

Consider the 1-dof damped system consisting of a spring, k, mass, m, and dashpot
damper, c, as presented in Fig. 3.4a. The equation of motion for damped free vibration
is given by the linear ODE

mii(t) + ci(t) + ku(t) =0 (29)
It is convenient to study the normalized form of Eq. (29), i.e.,
ii(t) + 2w, i(t) + @2u(t) =0 (30)

where w, is the natural angular frequency already defined by Eq. (15), whereas { is the
damping ratio, defined by

{=c/c,, Cou=2w,m=2~mk (31)
For reasons that will become apparent shortly, the value c,, is called critical damping.
The solution of a linear ODE (Kreyszig, 1999) is sought in the form e". Substitution

into Eq. (29) yields the characteristic equation

N +2lo A+ w=0 (32)

u(t)

] S (=05

/\/\

(b) L

FIGURE 3.4 Damped vibration response for various damping ratios: (a) system schematic and
free-body diagram; (b) underdamped ({ < 1); (c) critically damped ({ = 1), overdamped ({ > 1).
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which has the complex solutions

Ay = —lo, tio,/1- (33)
Equation (33) can be expressed as
A, =0xiw, (34)
where o is the real exponent given by
(35)

oc=—{w

n

whereas w, is the damped natural frequency given by

Iy (36)

General solution of damped free vibration

Using Eqgs. (33) and (35), the general solution of Eq. (29) is expressed in the form of
complex exponentials, i.e.,

u(r) = Cle(*lwnJriwn«/lf{Z)r+Cze(7§a)“7im“ /l,gz'), -

Using the damped natural frequency, w,, given by Eq. (36), we can rewrite Eq. (37) in
the form

u(r) = Cyel~entiont 4 ) ol=ten—ion)t (38)

Using Euler identity (Kreyszig, 1999) and trigonometric manipulations, Eq. (37) can be
rewritten in the form

u(t) = Ce % cos(wyt + ) (39)

The constants C and ¢, just as C; and C,, depend on the initial conditions. In complex
notations, the damped free vibration solution can be expressed as

i(r) = Ce 4 el (40)
where
C=Ce". (41)
is the complex amplitude.

Effect of damping on vibration response

Depending on the value of the damping ratio, {, the vibration response can be catego-
rized as follows:

e underdamped response, { < 1, i.e., ¢ < ¢,
e critically damped response, { =1, i.e., c =c,,
e overdamped response, { > 1, i.e., ¢ > ¢,
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The underdamped response consists of a decreasing—amplitude oscillation (Fig. 3.4b).
The amplitude decrease is due to the exponential decay factor in Eq. (40). For structural
applications, the damping ratio is relatively small ({ < 5%). For such lightly damped
structures, the damped natural frequency, wy, = w,+/1 — {? is not much different from the
undamped natural frequency, w,. Hence, the damped response is similar to the undamped
response, only that the amplitude displays the exponential decay.

As the damping increases, the difference between the damped natural frequency and
the undamped natural frequency increases, and the damped response depart more and
more from the undamped response. When damping exceeds the critical damping (over-
damped case, { > 1), the damped response is no longer oscillatory (Fig. 3.4¢, { = 3). In
fact, analysis of Eqgs. (36) and (37) indicates that for the overdamped case ({ > 1), the
overdamped response is composed of two decaying exponentials

u(t) = C e Va0 (/e )or @2)

When damping equals the critical damping ({ = 1), the two roots of the characteristic
Eq. (32) coalesce, A, = A, = —{w,, and the solution takes the form

u(t) = (C,+ Cyp)e (43)

The plot of Eq. (43) is shown in Fig. 3.4c for { = 1, which somehow resembles the
overdamped plot for { = 3, only that the mathematical relation that generated this curve
contains only one decaying exponential instead of two. It is apparent from Fig. 3.4c that
the overdamped response ({ = 3) decays more rapidly at first, but then it takes longer
to settle down. The critically damped response ({ = 1) decays a little slower at first, but
then it settles down more rapidly.

Logarithmic decrement, 6

It is frequently desirable to determine the damping through experimental methods.
Several methods exist. For example, the determination of damping through the logarithmic
decrement method consists of measuring two consecutive peaks on the free oscillatory
response and then using a formula to determine the damping ratio {. The logarithmic
decrement, 8, is defined as the logarithm of the ratio between two consecutive peaks in
the oscillatory free-decay response, i.e.,

s=In (Z—;) (44)

To illustrate how the logarithmic decrement works, assume (Fig. 3.5) that we measure
two consecutive oscillatory peaks, u; and u,, occurring at times f; and t, = t, + 7,
respectively, where 7, is the damped period,

21
Ty = w— (45)
d

Using Eq. (40), we write the ratio of the two amplitudes as

—{w,t
u e n
L= =t (46)

U, - e~ {on(t+7)
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FIGURE 3.5 Determination of the logarithmic decrement.

where the oscillatory part cancelled out in view of Eq. (45). Substitution of Eq. (46) into
Eq. (44) yields

2T

i 47
Tt @)

o0={w,Ty =

Upon solution,

(=—2 (43)

J@m)+ 82

For lightly damped system, { << 1 and Eq. (47) simplifies to
o0=2m{ for (<<1 (49)

Hence, for lightly damped systems, the relation between the damping ratio and logarithmic
decrement simplifies to the widely used formula

0
(=— for (<1 (50)
2w
These concepts can be easily extended to the case when more than one period of oscillation
is taken into account between ¢, and t,, as would be the need for very lightly damped
systems.

3.2.2 FORCED VIBRATION OF A PARTICLE

In this section, we will analyze the response of a 1-dof system to external excitation.
In particular, we will start with considering an external excitation force, F(t). To simplify
the analysis, we will assume the excitation to be harmonic, i.e.,

F(1) = F cos(wr) (51)

where o is the excitation frequency, sometimes referred to as the driving frequency.
If the need arises, the analysis of the response to harmonic single-frequency excitation
can always be extended to more complicated time-dependant excitations through Fourier
Analysis (Kreyszig, 1999). We will start with the analysis of a simple undamped 1-dof
system and then proceed to damped 1-dof systems.
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3.2.2.1 Undamped Forced Vibration

Consider the differential equation for undamped forced vibration under harmonic
excitation

mii(f) + ku(r) = F cos(wr) (52)

Upon normalization by mass m, we get

ii() + 0*u(t) = f cos(wr) (53)
where
F=2 (54)
and
() = f cos(w1) (55)

is the forcing function.

Equation (53) is an inhomogeneous linear ODE. The solution of this type of equations
(Kreyszig, 1999) consists of the superposition of the complementary solution that satisfies
the homogeneous ODE and a particular solution that satisfies to inhomogeneous (right
hand side) part of Eq. (52). The complimentary solution is in fact the solution already
discussed in previous section as given by Eq. (17) or (19). The particular solution is
sought of the same form as the forcing function and is found to be

u,(t) = fcos(wt) (56)

Superposing the complementary solution given by Eq. (19) with the particular solution
given by Eq. (56) yields the complete solution for undamped forced vibration

u(t) = Ccos(w,t+ ) + — fcos(wt) (57)

where the constants C and ¢ are to be determined from the imposition of the initial
conditions.

Dynamic amplification factor

When a load is suddenly applied to a vibrating system, the stresses and strains in
the system are larger than in the case of a gradually applied load. In other words, the
dynamic loading is more severe than the static loading of same overall value. This is
known as the dynamic amplification factor. In the case of a simple vibrating system, the
dynamic amplification factor has value of 2, i.e., the dynamic loading is twice as severe
as the static loading. For more complicated vibrating systems, the value of the dynamic
amplification factor may differ. A simple analysis of the dynamic amplification factor for
a simple vibrating system is shown next.
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FIGURE 3.6 Dynamic amplification factor: (a) simple vibrating system; (b) suddenly applied load;
(c) time response of the system.

Consider the simple undamped vibrating system of Fig. 3.6a. At t = 0, the system is at
rest (u, =0, it, = 0). A force Fj is suddenly applied at t = 0. Free-body diagram yields,
for ¢ > 0, the differential equation

mii(t) +ku(t)=F,, t>0 (58)

The general solution of Eq. (58) consists of a complementary solution, u,(7), as well as
a particular solution, u ,,(t), ie.,

u(t) = u (1) +u,(t) (59)

The complementary solution has the form of Eq. (18). The simplest form of the particular
solution is

F,
u,(t) = 70 >0 (60)

It can be easily verified that the particular solution of Eq. (60) verifies the differential
equation (58). Substituting Egs. (18) and (60) into Eq. (59) yields the general solution

F,
u(t):Acoswnt—i—Bsinwnt—l—f, >0 (61)

Applying the ‘at rest’ initial conditions, we write

. F, F,
u(0) = Acosw,t+Bsinw t+—| =A+—=0
kim0 k 62)
1(0) = —w,Asinw, t+w,Bcosw,t|,_,=w,B=0

Upon solution of Eq. (62), we get

A=--2 B=0 (63)
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Hence, the general solution (61) becomes
Fy
u(t) = ?(l—cosa)nt), t>0 (64)

A plot of Eq. (64) is shown in Fig. 3.6¢. It is apparent that the displacement starts from
zero, and then climbs to a maximum value, then returns to zero, and continues as an
oscillatory motion. It is also apparent that the maximum displacement is

) 0
=2— 65
Umax k ( )

The maximum displacement is obtained for values of ¢ at which the cosine function takes
the value —1. Equation (65) illustrates the assertion that the dynamic displacement is
twice the static displacement, as the static displacement under load F, would simply be
uy, = F,/k. In the case of an undamped vibrating system as considered here, the dynamic
amplification factor is equal to 2. If damping were applied to the system, the dynamic
amplification factor will take a lower value, as some vibration decay will take place
before the point of maximum amplitude is reached.

3.2.2.2 Damped Forced Vibration

Consider the 1-dof system of Fig. 3.7 consisting of a mass, m, a spring, k, and a
damper, c. When excited by force F(7), the system satisfies the differential equation

mii(t) + ciu(t) + ku(r) = F(t) (66)

If the exciting force is harmonic, F(f) = Fe’’, we obtain the differential equation for
damped forced vibration under harmonic excitation in the form

mii(1) + cit(r) + ku(r) = F cos(wt) (67)

However, the case of damped forced vibration is treated more conveniently in complex
notations. Apply the convention cos(w?) = Re ¢’ and write Eq. (67) in the form

mii (1) + ci(r) + ku(r) = Fe' (68)
Upon normalization by m, we get

(1) 4+ 24w, (1) + @ u(r) = fe (69)

il

u(t)

cu(t)
—>

i)

FIGURE 3.7 Damped 1-dof system under force excitation.
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where f = F/m as defined by Eq. (54). The function

Fy=Ffe” (70)
is the complex forcing function. Equation (69) is a homogenous linear ODE with solution
consisting of the superposition of (a) the complementary solution given by Egs. (40) and
(41) and (b) a particular solution. We seek the particular solution in the same form as
the forcing function, i.e.,

up(t) = itpe’™ (71)

The first and second derivatives of Eq. (71) are

ip(t) = ipiwe™ = iwup(t)

. ~ (102 ot 2 (72)
iip(t) = ip(iw) e = —w up(t)
Substitution of Egs. (71) and (72) into Eq. (69) yields
1 T ot
u,(t) = e a e fe (73)

Superposing the complementary solution given by Eq. (40) with the particular solution
given by Eq. (73) yields the complete solution for damped forced vibration

. 1 A
N =C =t i(wgt+i) 4 it 74
u(t) = Ce e TRt T (74)

where the constants C and ¢ are to be determined from the initial conditions.
Equation (74) can be extended to the case of a generic excitation function, f(¢), using
the Fourier expansion:

“+o0
f(@O)=2_fre™ (75)
We can write Eq. (69) in the generic way

(1) + 2L w,11(1) + wu(t) = f(1) (76)

Then use the Fourier expansion (75) to reduce it to the form of Eq. (69). Subsequently, one
would calculate the response for each harmonic excitation of frequency w, and amplitude
[i» and then reassemble the total response through Fourier summation.

Steady-state damped forced vibration solution

Examination of Eq. (74) reveals that complementary solution Ce ¢/ “s'*¥) is only
of interest at the beginning of the forced vibration, as it soon dies out due to damping.
For this reason, the complementary solution is known as the transient solution. After
some time, the damped forced vibration will settle into a steady-state motion that only
contains the particular solution. Most forced vibration studies are only interested in the
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steady-state solution, and not in the transient solution. Hence, we will henceforth only
analyze the steady-state solution

1

= T ot 77
)= e ¢ (77)

which has the compact representation
u(t) = ie™” (78)
where i(w) is the frequency-dependent displacement amplitude given by

1 A

i(w) = -0’ +i2{w,0+ w?

(79)

It should be noted that the amplitude #(w) given by Eq. (79) is a frequency-dependent
complex function that could be expressed using the magnitude-phase representation

i(w) = |i(w)] e (80)

The phase angle, ¢(w) = arg it(w), represents the phase difference between the response
and the forcing function.

Dynamic stiffness and mechanical impedance

Substitution of Egs. (15) and (54) into Eq. (79) and summary manipulation yields the
steady-state damped forced vibration amplitude in the form

~

F

() = —w*m+icw+k

(81)

Equation (81) can be viewed as the ratio between the force, F, and a frequency-dependent
dynamic stiffness, kg, (@), i.e.,

F
(w) = (82)
kdyn(w)
where
kggn(@) = —w'm+icw+k (83)

is the frequency-dependent dynamic stiffness of the 1-dof system.

Similarly, we can develop an expression for the mechanical impedance that is defined
as ratio between the excitation force and velocity response. Differentiation of Eq. (78)
yields the velocity

iu(f) = iou(r) (84)

The amplitude of Eq. (84) is it = iwi. Hence, Eq. (81) can be rearranged in the form

~ A~

A, F F

U=io—s; - = - T
—w*m+tico+k iom+c+

(85)
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Equation (85) can be rewritten in the form

53
. F
() = —— 86
i) = 7o (56)
where Z(w) is the mechanical impedance of the 1-dof system given by

: k
Z(w) =iom+c+ —
i

(87)
Frequency response function
Equation (81) can be rearranged in the form

. F
I/l((x)) = z

w 2 w
() e
w w
or

X 1
i(p) = u

—pr+i2ip+1

(88)
where

(89)

Uy =

|

(90)
is the static deflection, i.e., the deflection that the spring would display if the force
amplitude F were statically applied, whereas

w
wl’l
is the normalized frequency. The frequency-dependent part of Eq. (89) is called the
frequency response function (FRF) of the 1-dof system and is given by
1
H(p) =

—p*+i20p+1

(92)
Plots of the frequency response function vs. the normalized frequency for a range of
damping values are shown in Fig. 3.8. Substitution of Eq. (92) into Eq. (89) yields

i(p) = uyH(p)
M, given by

(93)

The magnitude of the frequency response function is also known as magnification factor,

M(p) = |H(p)| = :

(94)
V(A =p?)’ +4p
Figure 3.8a presents a plot of the magnitude vs. normalized frequency. The plot indicates
two distinct regions, one to the left, and the other to the right of the line p=1. The p=1



54 VIBRATION OF SOLIDS AND STRUCTURES

Re H(p)
¢=0.2

0.83

-0.33

(d) 0’ 1 2 o “3

FIGURE 3.8 Frequency response function for a 1-dof system: (a) magnitude; (b) phase; (c) real part;
(d) imaginary part.

point, where w = w,, corresponds approximately to a peak in the response amplitude.
This situation of maximum response is commonly referred to as mechanical resonance.
Figure 3.8a indicates that the amplitude at resonance increases as the damping decreases.
In the theoretical case of zero damping (undamped forced vibrations), examination of
Eq. (56) indicates that at resonance the denominator goes through zero, i.e., the response
at resonance becomes infinite. However, practical systems always have some damping,
hence an “infinite” response is not usually found in practice. However, the resonance
response of lightly damped systems can be very large and can endanger the safe operation
of a dynamic system if not properly controlled.

Regarding the exact location of the resonance point, examination of Fig. 3.8a and
Eq. (92) reveals that point of maximum response is at p = 1 location only for the case
of zero damping. For nonzero damping, the point of maximum response differs from the
p = 1 location; the exact location of the resonance frequency is given by

pe=v1-20 (95)

In physical terms, Eq. (95) can be expressed as

w,=w,y1-2 (96)

Note that the damped resonance frequency given by Eq. (96) is different from the damped
natural frequency given by Eq. (36). At low damping ratios, the damped resonance
frequency, w,, and the damped natural frequency, w,, are only marginally different from
the undamped natural frequency, w,. However, as the damping increases, these three
frequencies start to differ considerably.

The phase of the frequency response function of Eq. (92) can be calculated as

1
¢(p) = arg H(p) = arg <m) (97)
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The phase angle ¢(p) represents the phase difference between response and excitation.
The plot of phase vs. frequency (Fig. 3.8b) indicates that the phase angle is always
negative, i.e., the response lags behind excitation. Figure 3.8b also indicates that the phase
angle increases with frequency, i.e., the lag between excitation and response increases
with frequency, which is consistent with common experience. As the excitation frequency
sweeps the entire range from O to oo, the phase angle goes through a 180° (7 radians)
change. It is also apparent from Fig. 3.8b that the phase angle equals —90° (— /2 radians)
at the p =1 point. This indicates that when the excitation frequency, w, matches the
undamped natural frequency, w,, the response is in quadrature with the excitation (i.e.,
it lags by 90° behind the excitation). This is quite apparent from a cursory evaluation of
Eq. (92) as, for p = 1, the frequency response function becomes purely imaginary, i.e.,

1 1
W= =T 02l (%8)

which corresponds to a phase angle of —90°. The magnitude of the response at p =1
point is easily obtained by taking the magnitude of Eq. (98), i.e., it takes the simple form

1
|H(1)| =M,, = z

where My, signifies the value of the magnification factor at the quadrature point, which
also corresponds to the point when the excitation frequency, w, equals the natural
undamped frequency, ,, i.e., at the p = 1 point. Using Eq. (99) in conjunction with
Eqgs. (15), (31), (90), (91), (93) yields the response amplitude at the quadrature point as

(99)

F

(100)
cw

|itgo| =
As already pointed out, the difference between the undamped resonance p = 1 and the
actual resonance p, is only slight for lightly damped systems. In this case, the frequency
at which the phase is —90° could acceptably approximate the location of the actual
resonance. This fact is especially useful in experimental work on lightly damped systems,
because it permits the estimation of the resonance frequency from a plot of the phase
response vs. frequency. However, for higher damped systems, this approach does no
longer apply.

Estimation of system damping from the frequency response function

When measured experimentally, the magnification plot vs. frequency can be used to
estimate the systems damping. Several methods can be used; among the more common
ones, we cite: (a) the quadrature (90° phase) method; (b) the resonance peak method;
(c) the quality factor method.

Quadrature phase method for damping estimation

The quadrature phase method relies on measuring the response magnitude at the
frequency for which the response is in quadrature with the excitation (—90° phase).
Recalling Eq. (99), we write

1
My, = 37 (101)
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Solution of Eq. (101) yields the damping ratio

1
2M,,

{ (102)

Resonance peak method for damping estimation

The resonance peak method utilizes the fact that, at resonance, the resonance peak has
the expression

M, =M(p,) = : - (103)

Ja-py+aep| o V1€
pr=1-

For lightly damped systems ({ << 1), Eq. (103) simplifies to

1
2M,

1%

{ (104)

Equation (104) is similar to Eq. (102) used in the quadrature method. However, as
damping increases, the simplified expression of Eq. (104) does no longer apply, and the
exact solution of the nonlinear Eq. (103) must be used. In addition, the resonance peak
becomes flatter and flatter, as illustrated by the { > 0.5 curve in Fig. 3.8a. For these
reasons, the resonance peak method for damping estimation is most useful for lightly
damped systems only.

Quality factor method for damping estimation

Examination of the magnification plot in Fig. 3.8a indicates that the width of the
resonance peak varies with damping values. (The smaller the damping, the taller and
slimmer the resonance peak is!) It seems appropriate to try to use a measure of the
resonance peak width in order to determine the system damping. Such a measure is
offered by the quality factor, Q. Quality factor, Q, is a term originating in electrical
engineering where it is usually used as a figure of merit for evaluating narrow-band pass
filters, such as used in tuning a radio receiver. A good highly-selective band-pass filter
must have a strong response at the tuning frequency, and a fast decrease of the response
to the left and the right of the tuning frequency.

The simplest band-pass filters are second-order resonant circuits with the frequency
response very similar to that of the damped vibration systems analyzed here. Hence, the
electrical engineering terminology used in describing the quality of second-order band-
pass filters has been found useful in the analysis of lightly damped vibration systems.
The narrowness of the band-pass filter frequency response around the tuning frequency
is characterized by the frequency bandwidth defined as

Aw=0wy—w, (105)

where w(; and w, are the upper and lower half-power frequencies (3 dB points) located to
the right and the left of the circuit resonance frequency. Because the power is proportional
to amplitude squared, the half-power points correspond to points where the amplitude has
decreased by a factor +/2, i.e., by 3 dB. For lightly damped systems, the bandwidth takes
the simple expression

wy— o, =2w, (106)
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In electrical engineering textbooks (e.g., Johnson et al., 1995), the quality factor of a
band-pass filter is defined as the ratio of the resonance frequency, w,, to the frequency
bandwidth, Aw, i.e.,

w w

= =) 107
Aw  wy—ow (107)

T

0

For lightly damped systems, the resonance frequency is well approximated by the
undamped frequency, i.e., w, >~ w,. On substitution, in Eq. (107), the quality factor
becomes

0= - (108)
2w, 2
Equation (108) can be used to estimate the system damping, i.e.,
1
(== @ (109)
2wy — g,

Another important feature of the quality factor, which can be useful in applications, is
that the quality factor is 27 times the ratio between the maximum energy stored during
a cycle and the total energy dissipated per cycle (Lindner, 1999), i.e.,

maximum energy stored during a cycle
0 = o XY gy ameacy (110)

total energy dissipated per cycle

Mechanical-electrical equivalents

An important analogy exists between electrical circuits and mechanical spring-mass-
damper systems. Figure 3.9 shows a series circuit consisting of an a.c. voltage source, v(7),
of angular frequency, w, and the typical circuit elements such as an electrical resistance,
R, an inductance, L, and a capacitance, C. The electrical current flowing through the
circuit is i(¢), and the electrical charge accumulated in the circuit is ¢(¢) = [ i(¢)dr. Basic
electrical engineering analysis (Fitzgerald et al., 1967) gives the following differential
equation between the time-dependent charge, ¢(t), the applied voltage v(¢), and the circuit
elements R, L, C,

Li(0) + R0 + 5a(0) = (1) an
| |
|
C
L R
()
o/
E

FIGURE 3.9 Typical a.c. electric circuit containing resistance, R, inductance, L, capacitance, C, and
voltage source, E.
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TABLE 3.1 Mechanical-electrical equivalents

Mechanical Electrical
Name Symbol Units Name Symbol Units
Displacement u m (meter) Charge q C (coulomb)
Velocity it m/s (meter/second) Current i A (ampere)
Force F N (newton) Voltage v V (volts)
Mass m kg (kilogram) Inductance L H (Henry)
Stiffness k N/m (newton/meter) 1/Capacitance 1/C F (Farad)
Damping c Ns/m (newton-second/meter) Resistance R Q (ohm)

This equation has the same form as Eq. (68), the forced damped vibration equation for
the 1-dof mechanical system. Thus, by a simple interchange of symbols (Table 3.1),
knowledge about the behavior of the electrical circuit can be used to infer knowledge
about the behavior of the mechanical system. This fact allows us to analyze the behavior
of mechanical system by using analytical models and software predictors developed for
electrical system. It also allows us to experimentally simulate the behavior of mechanical
system using electrical circuits built using the mechanical—electrical equivalents. Such
circuits form the basis of analog computers.

If the applied voltage is harmonic, v(f) = Vei®', then the response is also harmonic,
g(1) = Qe™', and Eq. (111) becomes

2 . I\~
—w L—HwR—i—E o=V (112)
Recall that the current, i, is the time derivative of electric charge, i.e.,

i(1) = 4(1) = iwi(1) (113)

Then, Eq. (112) becomes

1 \»
(iwL+R+,—>I=V (114)
inC

Equation (114) can be written in the usual form
Z(w) =V (115)

where Z(w) is the electrical impedance given by

1
Z(w):iwL+R+,— (116)
ioC

Comparison of Eq. (116) and (87) reveals the correspondence between the electrical
impedance and the mechanical impedance.

3.2.3 ENERGY METHODS IN 1-DOF VIBRATION ANALYSIS

In Sections 3.2.1 and 3.2.2, we derived the equation of motion of the vibrating particle
by applying Newton second law to the particle isolated in a free-body diagram. In this
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approach, we figured out the action of all forces acting on the particle and equated it with
the product between mass and acceleration. An alternate way of deriving the equation of
motion is by energy methods. We will illustrate the energy methods approach with a few
simple examples based on the 1-dof motion of the particle. However, the true advantage of
the energy methods’ approach becomes apparent when applied to complicated mechanical
systems which, even if essentially 1-dof, are difficult to analyze in detail.

3.23.1 Undamped 1-dof Vibration Analysis by Energy Methods

Consider the undamped 1-dof horizontal vibration of a particle attached to a spring,
as illustrated in Fig. 3.10a. The particle undergoes horizontal displacement, u(r), around
the equilibrium position. The kinetic energy, T, of the particle is given by

(1) = %mif(t) (117)

whereas the elastic energy, V, consisting of the energy stored in the displaced spring, is
given by

V(1) = %kuz(t) (118)

[ \
’ \
I(Sst I/ \\ u=0, V=0
N [ L
|l 0= T=Tras

N ‘ U=Umaxs V= Vinax
u=0,T=0

FIGURE 3.10 Energy analysis of the undamped vibration of a particle: (a) horizontal motion;
(b) vertical motion.
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The total energy of the system is
1, 1,
E=T()+V(t)= Zmi (1) + Eku (1) (119)
Substituting u(t) = it cos wt, we write
| YCR oo
E=T()+ V(1) = oM i sin ot + Eku cos” wt (120)
Recalling Eq. (15), i.e., k = w>m, we can write Eq. (120) as
1
E=T()+ V(1) = zmﬁz (w? sin” ot 4 w? cos’ wr) (121)

Derivation of the equation of motion by energy methods
The principle of energy conservation stipulates that the energy is conserved (i.e., it is
stationary), which gives:

E = E, = const (122)

Hence, the derivative of energy with respect to time should be zero. Taking the time
derivative of Eq. (119) and equating it to zero gives

% [T(t) + V(1) = % [%mi{z(t) + %kuz(t)] =0 (123)
Upon performing the differentiation, we get
mit(t)i(t) + ki(Hu(t) =0 (124)
Simplification by i(¢) yields the equation of motion
mii(t) + ku(t) =0 (125)
Equation (125) is identical with Eq. (12) derived from Newton law of motion.

Estimation of the natural frequency by energy methods

Energy methods can be expediently used to estimate the natural frequency of the
vibrating system. As we analyze the oscillatory motion, we noticed that there are two
salient points: (1) the extreme position and (2) the equilibrium position. Assume the
1-dof system oscillates freely, i.e., at its natural frequency. Recall the expression of the
oscillatory motion, u(t) = Ccos w,t, and hence i(f) = —w,C sin w,7. When the particle
passes through the extreme position, the displacement amplitude reaches the maximum,
Un.x» While the velocity vanishes, because the sine function vanishes when the cosine
function reaches an extreme (%1). Hence the kinetic energy at the extreme position
reaches the maximum, whereas the elastic energy is zero. The law of energy conservation
(121) gives

1 1
E|u=0 = Vmax = Ekurznax = zkitz = EO (126)
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When the particle passes through the equilibrium position (i.e., through the center), its
displacement is zero, hence the spring is undeformed and stores no energy. This means
that the elastic energy is zero at the equilibrium position. At the same time, the particle
passing through the equilibrium position has maximum velocity, because the sine function
reaches an extreme (+1) when the cosine vanishes. Hence the kinetic energy reaches
a maximum as the particle passes through the equilibrium position. The law of energy
conservation gives

1 1
Elico= T = Emﬁﬁm = Emwgiﬂ =E, (127)

Comparison of Egs. (126) and (127) yields

V,

1 1
ax = T, ie., —moli’ = Ekitz (128)

max* 2

Upon simplification, Eq. (128) yields

k [k
wl=— o w,=.,— (129)
m m

Equation (129) has established a relationship between the natural frequency and the
maximum values of the potential and kinetic energies. This concept leads to the Rayleigh
quotient and the Rayleigh—Ritz method used in the estimation of the fundamental frequency
of more complicated vibration systems (Meirovitch, 1986).

Effect of gravitational field on energy methods formulation of vibration analysis

So far, we considered the case of horizontal vibration in which the gravitational field
does not intervene. Now, we consider the case of vertical vibration, which takes place in
the same direction as the gravitational field (Fig. 3.10b). We assume, that the vibrational
motion takes place about a static equilibrium position d . With this datum, the potential
energy associated with the vibrational motion takes the form

V() = SK3. +u()F — Sk~ mgu(r) (130

where the potential energy stored in the spring under static conditions, %ké‘ft(t), was

subtracted from the potential energy of the spring deformed during the vibrational motion,
%k [8,+u(r)]’. The quantity —mgu(r) is the gravitational potential. Upon expansion,
Eq. (130) becomes

1 1 1 1
V(t) = k&2 + =2kS u(t) + =ku(f)* — k82 — mgu(r) (131)
2 2 2 2
Recalling the equilibrium condition k8, = mg, Eq. (130) simplifies to the form
1,
V(t) = Eku (1) (132)

which is identical with Eq. (118) derived for horizontal motion. Thus, it is apparent that
the gravitational field can be eliminated from the energy methods formulation of the
vibration analysis by taking the vibration datum at the static equilibrium position.
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3.2.3.2 Damped 1-dof Vibration Analysis by Energy Methods

Energy methods can also be used for the analysis of damped systems. In this case,
the total energy of the system is not conserved, as energy is dissipated by the damping
forces. Two cases will be analyzed here: (1) the derivation of the damped 1-dof equation
of motion via energy methods, and (2) the energy and power associated with the damped
1-dof response to forced excitation.

Derivation of the damped 1-dof equation by energy methods

We use the first law of thermodynamics to express the fact that the incremental change
in total energy equals the incremental work performed by the external forces acting on
the system, i.e.,

SE = oW (133)

The incremental change in the total energy is expressed by the incremental change in the
kinetic and potential energies. Recalling Eq. (119), we get

SE = ST(1) + V(1) = mit(ii8t) + ku(itSt) (134)

The incremental work 6 W is estimated by the product between the dissipation forces and
the incremental displacement, i.e.,

OW = (—cit)ou = (—cit)idt (135)
Combination of Egs. (133) through (135) yields
mit(ii8t) + ku(itdr) = (—cit)idt (136)

Upon simplification and rearrangement, Eq. (136) yields Eq. (29) of damped free vibra-
tion, i.e.,

mii(f) + cit(r) + ku(r) = 0 (137)

Power and energy associated with damped 1-dof response
to harmonic excitation

Recall Eq. (77) describing the steady-state vibration response and Eq. (84) expressing
the particle velocity in terms of particle motion and excitation frequency, i.e.,

u(t) = i(w)e,  i(t) = iou(r) (138)

Recalling the convention associated with the use of complex notation, we retain only the
real parts and rewrite Eq. (138) as

u() = |i(w)| cos(wt+ 1),  i(r) = —o |i(w)| sin(wt + ) (139)
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The instantaneous power input is defined as the product between force and velocity,
ie.,

P(1) = F(1)it(t) = F cos(w?) [~ |i(w)] sin(wf + )] (140)
Upon simplification,
P(1) = —oF |ii(w)| cos(wr) sin(wr + ) (141)

Applying trigonometric formulae, we can express Eq. (141) as
1 .
P(1) = —EwF|ﬁ(w)| [sin¢ +sin(Qwt + )] (142)

The energy input to the system per cycle of oscillation is obtained by integrating the
power over a period of oscillation 7 =27/ w, i.e.,

27/ w n 27/ w ~
AE,, = / P(H)dt = —wF |i(w)] / cos(wt) sin(wt + P)dt = —7F |ii(w)| sin
0 0
(143)
Substituting Eq. (81) into Eq. (143) yields, upon manipulation,

AE,(0) = mcw|i(w)]’ (144)

Equation (144) indicates that the required energy input per cycle (i.e., the energy dissipated
by the damped system) increases linearly with frequency and quadratic with response
amplitude. The average power is obtained by dividing the energy per cycle by the cycle
duration, 7 =27/ w, i.e.,

Py (@) = 3e0? ()] (143)

It is noted that power is proportional to the square of the vibration amplitude. It is also
proportional to the system damping and the frequency squared. The response amplitude
reaches the maximum at resonance. Hence, the power intake to the system also reaches
a local maximum at resonance, i.e.,

1 .
Pmax = Ecwf |ur|2 (146)
For lightly damped systems, the resonance point can be sufficiently well approximated
by the quadrature point, i.e., ®, = wgy = @,, i, = iy, and

1
= > o} ity (147)

Pmax
2

where the response amplitude at quadrature, iy, is given by Eq. (100). Upon substitution

into Eq. (145), the power at resonance is found to be
1R
max 2 c

(148)

At resonance, where the response amplitude reaches a maximum, the energy per cycle
reaches a maximum too.
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3.3 VIBRATION OF CONTINUOUS SYSTEMS

3.3.1 AXIAL VIBRATION OF A BAR

Consider a uniform bar of length /, axial stiffness EA, and mass per unit length m, as
shown in Fig. 3.11a. Assume motion in the longitudinal direction, u(#). For compactness,
use the notations

0 , ad .
—0=0 ad =()=0) (149)

3.3.1.1 Free Axial Vibration of a Bar

Free-body analysis of the infinitesimal element dx shown in Fig. 3.11b yields
N(x, 1)+ N'(x, t)dx — N(x, ) = mii(x, t) (150)
where N(x, 1) is the axial stress resultant. Upon simplification, we get
N'(x, t)dx = mii(x, 1) (151)

The N stress resultant is evaluated by integration across the cross-sectional area of the
direct stress shown in Fig. 3.11c, i.e.,

Nx, 1) = f o(x, 7, )dA (152)
A
Recall the strain-displacement relation
e=u (153)

and the stress—strain constitutive relation

o=Fkg (154)
u(x, t)
@ [ ImEA > x
u(x, t)
BTN
N(x, t) N(x, t)+ N’(x, t)dx
D —_—
(b) dx
a(x 1) o(x, t)+0’(x, t)dx
< ; /]\ —

(© dx

FIGURE 3.1 1 Uniform bar undergoing axial vibration: (a) general schematic; (b) infinitesimal axial
element; (c) thickness-wise stress distribution.
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where E is Young modulus of elasticity. Substitution of Egs. (153) and (154) into
Eq. (152) yields

ML»:/EﬂLWM=EAMLQ (155)

where EA is the axial stiffness. Differentiation of Eq. (155) w.r.t. x and substitution into
Eq. (151) yields the equation of motion for axial vibration, i.c.,

EAu" = mii (156)

Upon division by m, we get the equation of motion for axial vibration of a bar in the
form of the wave equation, i.e.,

Au' =i (157)

where the constant ¢? is given by

EA EA
d=— or c=,— (158)
m m

As the bar is uniform, the mass per unit length is the product between density and
cross-sectional area, m = pA, and Eq. (158) takes the alternate form

E
ct= or ¢c=_|— (159)
p

Natural frequencies and mode shapes for fixed-fixed boundary conditions

Equation (357) is a PDE in space, x, and time, 7. One way of seeking the solution of
Eq. (357) is through the method of the separation of variables, i.e., assuming

u(x, ) = ii(x)e™ (160)

where ii(x) depends only on x, whereas ¢’ depends only on ¢. This assumption implies
synchronous motion within the elastic body, i.e., the general vibration shape of the body
deformation is preserved during a vibration cycle, only that the amplitude of motion
varies cyclically. Stating it differently, all the points in the body execute the same cycling
motion in time, passing through the equilibrium position and then through the maxima
and minima simultaneously. This condition seems intuitive, at least for non-dissipative
systems. Upon substitution of Eq. (160) into Eq. (357), we obtain a second-order ODE
in the form

A+t =0 (161)
Introducing the notation
(162)
we write Eq. (161) in the form

i +yn=0 (163)
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Equation (163) admits the general solution
u(x) = C,sinyx+ C,cosyx (164)

We notice that the vibration shape given by Eq. (164) is harmonic, i.e., it depends on sine
and cosine functions in the space variable x. The shape of such deformation is wave-like
(Fig. 3.12); hence, the constant vy is called the wavenumber. An associate constant is the
wavelength A.

The constants C; and C, are to be determined from the boundary conditions. For
illustration, assume the fixed-fixed boundary conditions, i.e.,

u(0,1)=0

u(l,t)=0 (165)

Since conditions of Eq. (165) must be satisfied at any time ¢, then they are to be satisfied
by the space-dependent amplitude u(x), i.e.,

u(0)=0
N (166)
u(l)y=0
Substitution of Eq. (164) into Eq. (165) yields
C,sinyx+ C,cosyx|,_,=0 G =0 (167)
C,sinyx+ C,cosyx| _, =0 C,sinyl+C,cosyl =0
Since the first condition yields C, = 0, the second condition yields
C,sinyl=0 (168)

Equation (168) has a nontrivial solution C, # 0 only if sin y/ = 0. Under these conditions,
the general solution (164) takes the form

i(x) = C, sinyx (169)

The conditions under which Eq. (168) accepts nontrivial solutions are obtained by finding
solutions of the equation

sinyl=0 (170)

| A |

wavelength

DA

A |

FIGURE 3.12 Typical vibration shape illustrating the relation between wavelength and wavenumber.



VIBRATION OF CONTINUOUS SYSTEMS 67

Equation (170), called the characteristic equation, defines the values of y for which
nontrivial solutions of Eq. (168) exist. These are the characteristic values or eigenvalues
of the system. Solution of Eq. (170) yields

T
_5

o J=123. (171)

yl=m2m3m7... or y;=]j

Combining Eq. (171) with Egs. (158) and (162) yields the natural angular frequencies

EA
‘”j:];\'?» J=123,... (172)

Since w = 27f, the corresponding circular frequencies, f;, are given by the formula

f—'11/EA i=1,2,3 (173)
PTIN T ST

We can express Eq. (173) in a more compact form using Eq. (158). Hence, we write

c
fj=]_

o =123 (174)

We note that Eqs. (171) and (172) predict a denumerable infinite set of eigenvalues
and natural frequencies, which is typical of the vibration of continuous system. The
first frequency, w,, is called the fundamental frequency, whereas the other frequencies
(wj, Jj=2,3,...) are called overtones. The overtones are integral multiples of the fun-
damental frequency. The fundamental frequency is also referred to as the fundamental
harmonic, whereas the overtones are also referred to as higher harmonics.

Mode shapes

For each eigenvalue and natural frequency, Eq. (169) defines an eigen function or
natural mode of vibration (mode shape), i.e.,

Uj(x) = Cjsinyl,  j=1,2,3,... (175)

It should be noted that all the mode shapes U;(x) satisfy the differential Eq. (163) and the
boundary conditions (166). As mentioned earlier, the constants C; cannot be determined
from the differential equation and the boundary conditions. This is quite alright, as it can
be easily verified that if U,;(x) is a mode shape that satisfies the differential equation
and the boundary condition, then any scaled version of it, aU, (x), @ € R, also satisfies
them. Hence, the value of the constants C; can be arbitrarily chosen. For example, one
can chose C; =1, which might have some advantage in mode-shape plotting.

Orthogonality of mode shapes

Mode shapes orthogonality is an important property that allows one to verify if some
independently derived functions qualify to be considered as mode shapes. Recall that the
mode shapes (175) satisfy Eq. (161), which can be conveniently expressed explicitly in
m, EA, and w;, ie.,

" 2 .
EAU/+o;mU; =0, j=1,2,3,... (176)
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Consider two separate mode shapes, U,(x) and U, (x). They satisty Eq. (176), i.e.,

EAU" = —w*mU
e 0
EAU! = —omU,

To analyze orthogonality with respect to mass, consider the mass-weighted integral

/ lmUp(x)Uq(x)dx (178)

Substitution of Eq. (175) into Eq. (178) yields
I
f m (Cp sin ypx) (Cq sin ‘yqx) dx (179)
0

Using standard trigonometric formulae, we write
L . 1! l
/0 (sin y,x) (siny,x) dx = 5 /0 [cos(yp —¥,)x —cos(y,+ yq)x] dx = 58"" (180)

Equation (171) was used to evaluate v,,y,. The symbol §,, is the Kronecker delta
(6,,=1for p= 4, and 6,, = 0 for p # g). Using Eqs. (179) and (180). and assuming
p # q, Eq. (178) yields the orthogonality condition with respect to mass in the form

/lmUp(x)Uq(x)dx:O, P#q (181)
0

It should be noted that the mass orthogonality condition expressed by Eq. (181) is
not restricted to the simple mode shapes expressed by Eq. (175). To prove this, recall
Eq. (177), multiply the first line by U, and the second line by U, and integrate each line
over the length of the bar to obtain

/ 'EA U/ (x)U, (x)dx = —w? / ] mU (x)U, (x)

l l (182)
/0 EAU/(x)U,(x)dx = —w /0 mU,(x)U, (x)
Integration by parts yields
! ! / " l !
_/0 EAU,(x)U,(x)dx+ EAU. (x)U,(x)|, = —wifo mU,(x)U, (x) .
183

- /01 EAU(x)U(x)dx+ EAU! (1)U, (x)|. = —? /01 mU,(x)U, (x)

The left hand side of Eq. (183) contains two parts: (a) an integral term containing the
first derivative of the mode shapes, U,, U,, and (b) a boundary-evaluated term expressed
in terms of the mode shapes, v, U, and their second derivate, U[’,’, U (;/. Recalling that
the mode shapes, U,, U, satisfy the boundary conditions (166), it becomes apparent that,
in our case, the boundary-evaluated terms in Eq. (190) vanish. Hence, Eq. (190) takes

the simpler form

/ 'EA U,(x) U (x)dx = & / : mU, (x)U, (x)
0 0 (184)

/ 'EA U (0 U (x)dx = / l mU,(x)U, (x)
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Subtraction of the second line of Eq. (184) from the first line yields
2 2 !
(wp—wq)/o mU,(x)U,(x)dx =0 (185)

For distinct mode numbers, p # ¢, the frequencies are also distinct, wf, #+ wé, and hence
Eq. (185) implies

/lmUp(x)Uq(x)dxzo, P#q (186)
0

which is exactly the mass orthogonalization condition derived earlier as Eq. (181). Notice
that the above derivation is quite general, if the boundary conditions are such that the
boundary-evaluated terms in Eq. (183) vanish.

To analyze orthogonality with respect to stiffness, consider the integral

: EAU(x)| U, (x)dx (187)
[ TEaylo,

Recalling Eq. (182), we write Eq. (187) as

/ EAU/()] U, (x)dx = — / Mo U,(x)U, (x)dx (188)
0 0

Using Eq. (181), Eq. (188) becomes

fl [EAU(0]U,(x)dx =0, p#q (189)
0

Equation (189) is the orthogonality condition with respect to stiffness. Integration by parts
of Eq. (189) yields an alternate expression of the orthogonality condition with respect to
stiffness, i.e.,

f 'EA U (0 U, (0)dx — [EAU! () U,(x) ], =0, p#q (190)

Equation (190) contains two parts: (a) an integral term containing the first derivative
of the mode shapes, U,, U;, and (b) a boundary-evaluated term expressed in terms of one
of the mode shapes, U,, and the second derivate of the other mode shape, U;. Recalling
that the mode shapes U, satisfy the boundary conditions (165), it becomes apparent that
the second term in Eq. (190) vanishes. Hence, the orthogonality expression with respect
to stiffness can be alternately expressed as

1
/OEAU,;(x)U;(x)dxzo, p#£q (191)

if the boundary conditions are such that the second term in Eq. (190) is automatically
zero. In practical applications, where independently derived mode shape candidates are
tested for stiffness orthogonality, the formulation (190) may be preferred to formulation
(189) since first derivatives are easier to evaluate with reasonable accuracy than second
derivatives.
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Normalization of mode shapes: normal modes

Recalling the mode shapes orthogonality analysis, we notice that, for p = g = j,
Eq. (179) can be resolved using Eq. (180) to yield

Ci=— (192)

Substitution of Eq. (192) into Eq. (175) yields

[2 . .
U;(x) = wsm‘yjl, j=1,2,3,... (193)

The mode shapes of Eq. (193) are mass normalized, i.e., they satisfy the mass-weighted
integral condition

1
/Omsz(x)dle, j=1,2,3,... (194)

Mode shapes, such as those given by Eq. (193), that satisfy Eq. (194) are called normalized
mode shapes or normal modes. Plots of the mode shapes and the corresponding natural
frequencies for a fixed-fixed elastic bar are given in Table 3.2.

TABLE 3.2 Mode shapes of a fixed-fixed elastic bar

Resonant Wavelength

Mode # Eigenvalue frequency Mode shape multiplicity
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©
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c | . X A
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To analyze normalization with respect to stiffness, we recall Eq. (184) and impose
p=q=jto get

. j=1,2.3,... (195)

P=q=j

! 1
fOEAU;(x)U(;(x)dxzwi/O mU,(x)U,(x)
or
! 2 2 ! 2
/OEAU’j(x)dx=wj/0 mUXx), j=1,2,3,... (196)

Using Eq. (194), we simplify Eq. (196) to express the normalization condition with
respect to stiffness in the form

1
/2 _ 2 .
fo EAUZ(dx =), j=1,2,3,... (197)
It is also useful to note that imposing p = ¢ = j in Eq. (182) yields, via Eq. (194),
l
/0 EAU/(x)U,(x)dx = -’ (198)

Orthonormal modes

We have established so far the conditions for mode shape orthogonality and mode
shapes normalization. Mode shapes that are simultaneously normal and orthogonal are
called orthonormal modes; they satisfy the orthonormality condition:

! 1 forp=g¢q
mU (x)U (x)dx=6,, =
/0 H(®)Uy (%) Pa {0 otherwise
(199)
! w?> forp=gq
EAU (x)U/(x)dx=w?8,, =1 7
/0 AR pora {0 otherwise
It is also useful to note that
f/EA U (U ()dx = —a?s, = | % Torr=a (200)
0 r 4 IR )] otherwise

Modal mass and stiffness: modal coefficients

If the mode shapes are normalized according to Eq. (192), then their weighted integral
with respect to mass evaluates to unity, as indicated by Eq. (194). However, mode shapes
may not necessarily be normalized in accordance with Eq. (192); in fact, we have already
shown that the mode shape amplitudes, which are the solution of a homogenous system,
have one degree of indeterminacy and hence can be generally scaled by any arbitrary
factor. Hence, for a generic mode shape U;(x), Eq. (194) would be

i=12,3,... (201)

Jj

1
2 —

/(; mU; (x)dx = m;,

where m; is the modal mass. By a similar argument, Eq. (197) would become

=123, ... (202)

Jj’

1
/0 EA U'?(x)dx =k
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where k; is the modal stiffness. Using Eq. (196), we write

ki=w’m, j=1,2,3,... (203)

J Jn

The modal mass, m;, and the modal stiffness, kj, are the modal coefficients. If damping
were present, then an additional modal parameter, the modal damping, c;, would be
similarly derived. For mass-normalized mode shapes, the modal coefficients would be
the modal frequency, w;, and the modal damping ratio, {;.

It is also useful to note that, in virtue of Eq. (182),

/ "EA U/ () U, (x)dx = =K (204)
A _

Rayleigh quotient

Equation (203) can be used to express the frequency of the jth natural mode of
vibration in terms of the modal stiffness and modal mass, i.e.,

2 k/‘ .
w;=—, j=1,2,3,... (205)
m;

Using Egs. (201) and (202), we rewrite Eq. (206) in the form

! 2
EAU (x)dx

w§=f°l—-’(), i=1,2,3,... (206)
IN mUjZ(x)dx

Equation (206) can be used to calculate estimates of the natural frequencies using tests
functions, X(x), that are not necessarily actual mode shapes but resemble (approximate)
the mode shapes. In this case, formula (206) becomes the Rayleigh quotient given by

! 2
EA X' (x)dx
0l fol—f() X,(0=U(x), j=1,23... (207)
: Jo mX;(x)dx

where X;(x) approximates the jth mode shape, U;(x). The most common use of the
Rayleigh quotient is the approximation of the first (fundamental) natural frequency, w,.
3.3.1.2 Other Boundary Conditions
Free-free bar

Consider the free-free boundary conditions in the form

N@©,t)=0

N(L, 1) =0 (208)

Substitution of Eq. (155) into Eq. (208) yields the free-free boundary conditions in terms
of displacements, i.e.,

w(0)=0

R (209)
w(l)=0
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Recall the general solution (164), i.e.,

u(x) = C, sinyx+ C,cosyx (210)
Differentiation and substitution of Eq. (210) into Eq. (209) yields

C,ycosyx — Cyysinyx| _,=0 C, =0

211
C,ycosyx—Cyysinyx|,_, =0 C,cosyl—C,sinyl=0 @1
Since the first condition yields C; = 0, the second condition yields
C,sinyl =0 (212)

Equation (212) has a nontrivial solution C, # 0 only if siny/ = 0. This condition yields
the same eigenvalues and natural frequencies as previously found for the fixed-fixed

case, i.e.,
EA
V=it wp=jo = =123, (213)
’ l : [V m

Under these conditions, the general solution (210) yields the mode shapes
Uj(x) =C;cosy;x, j=1,2,3,... (214)

Mode shape normalization yields, as before, Cj = /2/ml, and hence

| 2 .
U,(x) = ﬁcos yix, J=1,2,3,... (215)

Plots of the mode shapes and the corresponding natural frequencies for a free-free elastic
bar are given in Table 3.3. We note that the displacements reach a maximum at the
ends. The odd modes, corresponding to j=1,3,..., are antisymmetric, i.e., the end
displacements are in opposite directions, whereas the middle displacement is zero. The
even modes, corresponding to j =2,4, ..., are symmetric, i.e., the end displacements are
in the same directions, whereas the middle displacement is nonzero.
Fixed-free bar
Consider the fixed-free boundary conditions in the form
u(0,1)=0

N(l,1)=0 (216)

Substitution of Egs. (155) and (153) into Eq. (216) yields the fixed-free boundary condi-

tions in the form
u(0)=0
- (217)
w(l)=0

Recall the general solution (164), i.e.,

i(x) = C, sinyx + C, cos yx (218)
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TABLE 3.3 Mode shapes of a free-free elastic bar

Resonant Wavelength
Mode # Eigenvalue frequency Mode shape multiplicity

X
1 yl=m fl = Z 0 02 04 M U, =cos 777 ll =

. c X A
2 yl=2m fzzza 0 0.2W0.8 1 U2=COSZ777 12225

c X A

3 yl=3m f3= 2 0 Wo.e 0.8\1 U3=COS3777 =35
4 I—4 f=4s ] U, =cosdm 1, =4l
yl=4m Ja=45; o 0.4 o. 1 4 = cos L 4=47

5 yl=5m fs=5

] X A
3 o v 0.4 W 08 \ 1 U5=cos57'r? 15:5E

A A
6 yl=6m f6:6% lo v o..s v 1 U6:cos67'r§ lg= 7

Substitution of Eq. (218) into Eq. (217) yields

2 )s/l:ozxyjc_f 26'020; s?llz |;;co|:,0= 0 - { g? c=()sO yl—C,sinyl=0 (219)
Since the first condition yields C, = 0, the second condition yields
Ciycosyl=0 (220)
Equation (220) has a nontrivial solution C, # 0 only if
cosyl=0 (221)

This condition yields the eigenvalues and natural frequencies, i.e.,

T 71 |EA
=02j—1)— =2j-1)=— ] —, j=1,2,3,... 222
Y, = (2] )21, w; = (2] )21 et ,2,3, (222)

We notice that the eigenvalues and natural frequencies of the fixed-free case correspond
to odd multiples of 77/2, whereas those of the fixed-fixed and free-free cases corresponded
to even multiples of 7r/2. Under these conditions, the general solution (210) yields the
mode shapes

Uj(x) =C;sinyx, j=1,2,3,... (223)



VIBRATION OF CONTINUOUS SYSTEMS 75

TABLE 3.4 Mode shapes of a fixed-free elastic bar

Resonant Wavelength

Mode # Eigenvalue frequency Mode shape multiplicity
T c . TX A
1 vi=> h=g 0 02 04 06 08 1 Uy =sin == h=y

T T x
2 vi=37 h=35 0o 02 04 o.e\w U, =sin3=~ L=37

T T x
3 Yl=5§ f3=547 0 02 oWs 1 U3=Sm557 l3=51

T c T X A
4 l=7— =T7— X ) X . U,=sin7—— ly=7—
bl 2 fa 1 f 02 We 08\1 o =sin7> i=73

77' L TX
5 yl:9§ f5:9@ o o. 0.61 U5:sm9zj l5—9Z
P /A WA VA N
vi=1s Jo= 1 o 0.4 0.8 1 o =sinll=~ o=117

with 7y, given by Eq. (222). Mode shape normalization yields, as before, C; = v/2/ml,
and hence

[2 . .
U(x) = %smij, j=1,2,3,... (224)

Plots of the mode shapes and the corresponding natural frequencies for a fixed-free elastic
bar are given in Table 3.4.

3.3.1.3 Forced Axial Vibration of a Bar

Assume an uniform bar undergoing axial vibration under the excitation of an externally
applied time-dependent axial force per unit length, f(x, ) as shown in Fig. 3.13. Con-
sidering the combined effect of internal stress resultant, N(x, f), and external excitation,
f(x, 1), we perform the free-body analysis of an infinitesimal bar element dx to get

N'(x, t)dx+ f(x, 1) = mii(x, ) (225)
f(x,1)
— —— — ————»
Ao A(o+0’dx)
» —_—
dx

FIGURE 3.13 Infinitesimal element for the analysis of forced axial vibrations.
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Relating, as before, the stress resultant N(x,7) to the displacement u(x,r) yields the
equation of motion for forced axial vibration

mii(x,t) —EA xu”"(x,t) = f(x, 1) (220)
Without loss of generality, we assume the external excitation to be harmonic in the form
fx.0) = Fx)e (227)

Then, we obtain

mii(x, 1) — EAx u'(x, 1) = f(x)e' (228)

Modal expansion theorem

Assume the modal expansion
u(x, 1) =3y C;U(x)e" (229)
j=1

where U;(x) are natural modes satisfying the free-vibration equation of motion (176)
and the orthogonality conditions (186) and (189), whereas C; are the modal participation
factors. Equation (229) is harmonic in the excitation frequency, which implies that we are
only concerned with the steady-state response. Substitution of Eq. (229) into Eq. (228)
and division by ¢’ yields

—me? i C,U,(x)— EA i C,U (x)+ = f(x) (230)

p=1 p=1

where the index p was used instead of j for convenience. Multiplication of Eq. (230) by
U,(x) and integration over the length of the beam yields

_YC, / " U,(x)U,(0)dx—3.C, [ "EA U/ (x)U, (x)dx
=t 0 =t 0 (231)

= /lf(x)Uq(x)dx, g=1,2,3,...
0

Using the orthogonality conditions given by Eqs. (186) and (189), and the definition of
modal mass and stiffness given by Eqgs. (201) and (204), we recast Eq. (231) in the form
of a set of decoupled linear algebraic equations, i.e.,

C (—®m+k)=f, j=1,2,3,... (232)

where f; is the modal excitation given by

[A
fj:/Of(x)Uj(x)dx, j=1,23,... (233)

If the modes are orthonormal, then substituting the orthonormality conditions (199) and
(200) into Eq. (231) yields the simpler form

Ci(~*+wd)=f. j=12.3,... (234)
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Response by modal analysis

Solution of Eq. (235) yields the modal participation factors in the form

fi

C=—21
-0’ + 03

; , Jj=1,2,3,... (235)
Equation (235) corresponds to the amplitude the expression in Eq. (56) derived for 1-dof
systems. Substitution of Eq. (235) into Eq. (229) yields

u(x, )=y %Uj(x)e"w[, (236)

J=1 J

So far, the vibration has been considered undamped. However, real phenomena are always
associated with some damping {;. The modal participation factors for a damped system
are given by

i

C. = , j=1,2,3,... 237
T —0? F2i{ w0+ o] / 237)

The modal response defined by Eq. (237) resemble the response of the 1-dof vibrating
system, Eq. (79). In fact, as the excitation frequency passes through a natural frequency,
w;, the continuous system will resonate and will vibrate in the natural mode U;(x).
Around a natural frequency, the continuous system behaves more or less like a 1-dof
system vibrating in the corresponding natural mode. If the excitation frequency covers
a large frequency span, several resonances can be encountered corresponding to several
natural frequencies and normal modes.

Substitution of Eq. (237) into Eq. (229) yields the frequency response of the damped
axial vibration system in the form

, 1) =
uinn=2 0 +2i{ ;0,0 + o]

j=1

Uj(x)e™ (238)

Equation (238) represents a superposition of a number of terms, each term correspond-
ing to a natural frequency and normal mode of vibration. Equation (238) allows us to
determine the response of the continuous structure to harmonic excitation of variable
frequency. This leads to the frequency response function (FRF) concept. The FRF could
be calculated by letting the excitation function take the form of unit excitation. Several
unit excitation functions could be envisages, depending on the choice of spatial variation.
As the excitation frequency sweeps through natural frequency values, w;, the corre-
sponding term in the series becomes very large, the structure passes through a structural
resonance, and the response displays a resonance peak. Over a frequency interval, the
response can display several peaks, corresponding to several resonances, as illustrated
in Fig. 3.14.

Generalized coordinates and modal equations

The modal expansion method is not limited to the case of harmonic excitation illustrated
in previous section. In fact, we can assume modal expansion in the general form

w5 = X000, (239)
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FIGURE 3.14 Multi-peak frequency response plot for a continuous system.

where the generic functions 7;() are time-dependent modal (normal) coordinates. Sub-
stitution of modal expansion (239) into the equation of motion (226) yields

EAY 00U} () m Y- 3, (1)U, (x) = — fCx. (240)

As before, multiply Eq. (240) by each of the mode shapes in turn, use the orthonormality
conditions (199), (200) and get, upon rearrangement, a set of decoupled equations in the
form

m (o + k() = fF,(0), j=1,2,3,... (241)

where f;(t) is the time-dependent modal excitation given by

£(0) = /Zf(x, DU (x)dx, j=1,2,3,... (242)
0

Introducing the modal damping ratio, {;, to account for the inherent dissipative losses
encountered in practice, we obtain the modal equations for damped vibrations of a
continuous system in the form

0,(0) +2Lw;0;() + (N0} = f;(1), j=1,2,3,... (243)

Each of the modal equations (243) resembles the 1-dof Eq. (76). Since the modal equations
are uncoupled, each of them can be solved independently, and then reassembled through
modal summation to obtain the total response.

3.3.1.4 Axial Vibration Energy in a Vibrating Bar

We have seen in the study of the 1-dof vibration of a particle that the vibration energy,
E, contains a kinetic energy, T, and an elastic energy (potential energy), V, i.e.,

E=T({)+ V()= %miﬂ(t) + %kuz(t) (244)



VIBRATION OF CONTINUOUS SYSTEMS 79

To investigate these principles in the context of an elastic bar we will consider the kinetic
and elastic energies stored in the bar, i.e.,

1 N
I(1) = / zpitz(x, HdQ = / zmiﬂ(x, f)dx
o 0 (axial vibration of a bar) (245)

1 N ”
V(1) = /“ za'(x, He(x, 1)dQ = /0 EEA u”(x, t)dx

where () is the total volume of the bar. Using the modal expansion of Eq. (229), we write

o — /Oz %m [i C,U,(x) (—wsin wt):|
p=I (kinetic energy) (246)

[i C,U,(x) (—wsin wt)] dx

11 d
V(t):/ —EA| Y C,U(x) coswt
0 2 ot p=p
(elastic energy) (247)

|:§ C,U,(x) cos wti| dx
p=1

Processing of Egs. (246) and (247) through the use of the orthogonality conditions (186),
(191) and of the modal mass and stiffness definitions (201), (202) yields

21
T(r) = o sin” wt 2:1 ECJZm ; (kinetic energy) (248)
—
V(t) = cos’ wt Zl ki C} =cos’ ot Zl Emjwicf (elastic energy) (249)
p= p=

Hence, the total energy is given by
E=T()+ V()

1 ~ 1
2 2 2 2 2
= w”sin th —C%m; +cos th —C%k.
2 2 (250)

o0
1
N 2( 22 2 2
_szjCj (w”sin Wt + w7 cos wt)
p=1

If the system oscillates at one of the resonant frequencies, say w = w;, then the kinetic
and elastic energies are concentrated into just one mode of vibration, and resemble 1-dof
behavior, i.e.,

1
T,(1) = sin® wizm j0;C? (modal kinetic energy) (251)

1 1
Vi(t) = cos® wtzijf = cos’ wtzmjwaf (modal elastic energy) (252)
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The total energy of the system vibrating in the jth natural mode is given by the modal
vibration energy:

1 1
E, =T,(t)+V,(t) = =m0’ C?sin* 0t + —m 0> C? cos> ot
I J 2 T o2 (modal vibration energy)
= Emj“’?c?
(253)

During the vibration cycle, the total vibration energy, E s is constant, but the contributions
of the kinetic and elastic parts vary. At the point of maximum displacement the elastic
energy reaches a maximum while the kinetic energy is zero, whereas at the point of zero
displacement (but maximum velocity) the elastic energy is zero while the kinetic energy
reaches a maximum. Recall that the assumption of natural modes of vibrations is that the
complete body undergoes the vibration in phase, i.e., all the points in the body reach the
maximum amplitude and then the zero amplitude, etc., in the same time.

3.3.2 FLEXURAL VIBRATION OF A BEAM
3.3.2.1 Free Flexural Vibration of a Beam

Consider a uniform beam of length /, mass per unit length m, bending stiffness EI,
undergoing flexural vibration of displacement w(x, ¢) as shown in Fig. 3.15a. Centroidal
axes are assumed. An infinitesimal beam element of length dx is subjected to the action
of bending moments, M(x, 1), M(x, t)+ M’(x, t)dx, axial forces, N(x, 1)+ N'(x, t)dx, and
shear forces V(x, ), V(x, t) + V'(x, t)dx (Fig. 3.15b).

We will briefly review the Euler—Bernoulli theory of bending. (Shear deformation
and rotary inertia effects are ignored.) Free-body analysis of the infinitesimal element of
Fig. 3.15b yields

N'(x,1)=0 (254)
V'(x, 1) = mid(x, 1) (255)
M (x, 1)+ V(x,1) =0 (256)

The N and M stress resultants are evaluated by integration of the direct stress across the
cross-sectional area shown in Fig. 3.15c¢, i.e.,

N(x, 1) = / o(x, 7, f)dA (257)

M(x, 1) = — f o(x, 7, 1)zdA (258)

Using the stress—strain constitutive relation of Eq. (154), the axial force and moment
stress resultants (257) and (258) can be expressed as

N, 1) =E f e(x, 7, 1)dA (259)

M(x,1) = —E / e(x, 2, 1)zdA (260)
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z . -
___________________ = Nwix
kil 1 — x
I, m, El
(a)
w(x, t)T
Y V(x, )+ V'(x, t)dx
M, 1) M(x, )+ M'(x, t)dx
«—— e
N(x, 1) ( > N(x, 1) + N'(x, H)dx
dx
(b) V(x, f)
o(x, z, t) o(x, z, )+ 0'(x, z, )ydx
@
z
dx
(c)

(d)

FIGURE 3.15 Beam undergoing flexural vibration: (a) general layout; (b) free-body diagram of
induced by flexure.

an infinitesimal beam element; (c) stress distribution across the thickness; (d) horizontal displacement
Kinematic analysis (Fig. 3.15) yields the direct strain &(x, z, ) in terms of the flexural
motion w(x, t) and the thickness-wise location z, i.e.,

u(x, z, 1) = —zw'(x, 1)

e(x,z,t)=u'(x,z,1) = —zw"(x, 1)

(261)
Substitution of Eq. (261) into Eq. (260) and integration over the area yields

N(x, 1) = —Ew'(x, 1) [ 2dA =0
A

(262)
M(x, 1) = Ew'(x, 1) / Z2dA

(263)
Note that Eq. (262) indicates that the axial stress resultant is zero, i.e., N(x, r) = 0, since
centroidal axes were assumed. On the other hand, Eq. (263) yields

M(x,t)=EI w'(x,1)

(264)
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Substitution of Eq. (264) into Eq. (256) yields
V(x,t) = —EI w"(x,1) (265)

Differentiation of Eq. (265) with respect to x, and substitution into Eq. (256) yields the
equation of motion for free flexural vibration of a beam, i.e.,

EI w"(x,t)+m i(x,1) =0 (266)

Upon division by m and rearrangement, we get

a'w” +i=0 (267)
where the constant a* is given by
EI EN"*
at=— or a= (—) (268)
m m

Natural frequencies and mode shapes for pin-pin boundary conditions

The discussion of natural frequencies and mode shapes for flexural vibration follows
the general pattern developed for the axial vibration. Eq. (267) is a PDE in time, ¢, and
space, x. As before, assume separation of variables and write

w(x, 1) = W(x)e™ (269)
Upon substitution of Eq. (269) into Eq. (266), we obtain a fourth-order ODE in the form
A2

a*i ww=0 (270)

Upon division by a*, Eq. (270) becomes

w” =y =0 (271)
where
2 1/4
4 W m o, (M
Ve o v=(z) Ve @72)

Equation (271) admits solutions of the form

iL(x) = Ce™ (273)
Substitution of Eq. (273) into Eq. (271) yields the characteristic equation

AM—yt=0 (274)
which has the roots

A=y, M=—iy, A=y, AM=-Yy (275)
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Correspondingly, we have the general solution
W(x) = A" +Aye ™ + A + Ae " (276)
Equation (276) can be written in the alternate form
w(x) = C, sin yx + C, cos yx + Cy sinh yx + C, cosh yx (277)

The constants C;, C,, Cs, C, are to be found from the boundary conditions. For illustration,
assume the pin-pin boundary conditions, i.e.,

w(0,1)=0 M(0,7)=0

(278)
w(l,t)=0 M(,1)=0
The use of Egs. (264) and (269) transforms Eq. (278) into
w0)=0 2"(0)=0
A A (279)
wl)=0 @"(1)=0
Substitution of Eq. (277) into Eq. (279) yields
C, sin yx+ C, cos yx + C; sinh yx 4+ C, cosh yx|,_, =0
¥*[—C, sin yx — C, cos yx + C; sinh yx + C, cosh yx] |x_0 =0 (280)
- 280
C, sin yx+ C, cos yx+ Cssinh yx + C,coshyx| _, =0
¥*[—C, sin yx — C, cos yx + Cj sinh yx + C, cosh yx] |x:l =0
Upon simplification, we get
G+C, =0
-CG,+C,=0
2 (281)
C, sinyl+ C,cos yl+ Cssinh yl4 C,coshyl =0
—C, sinyl — C,cos yl+ C;sinh yl+ C,coshyl =0
Further simplification yields
C2 == C4 == O
C,sinyl+ Cysinhyl =0 (282)
—C,sinyl+ C;sinhyl =0
or
C,=C=C,=0
2 3 4 (283)

C,sinyl=0
since sinh yl # 0 for yl # 0. We note that a nontrivial solution is only attained if

sinyl =0 (284)
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Equation (284) is the characteristic equation that defines the eigenvalues vy for which
nontrivial solutions exist. Solution of Eq. (284) yields

v
7

o J=123. (285)

yl=m2m7,3m, ... or Y, =J

Combining Eq. (285) with Eq. (272) yields the natural frequencies

EI 2 [EI EI
w, =y = or w:(jf) S =G =, j=1.2.3.... (286)
J Nm J l m ml4

Mode shapes

For each eigenvalue and natural frequency, we have an eigenfunction or natural mode
of vibration (mode shape), i.e.,

Wj(x) =C; sin yjl, j=1,2,3,... (287)

It should be noted that all the mode shapes W;(x) satisfy Eq. (271) and the boundary
conditions (279). As mentioned earlier, the constants C; cannot be determined from the
differential equation and the boundary conditions. This is quite alright, since it can be
easily verified that if W;(x) is a mode shape that satisfies the differential equation and the
boundary conditions, then any scaled version of it, @W;(x), a € R, also satisfies them.
Hence, the value of the constants Cj can be arbitrarily chosen. For example, one can
chose C; =1, which might have some advantage in mode-shape plotting.

Orthogonality of mode shapes

Recall that the mode shapes W;(x) satisfy Eq. (271), which can be conveniently
expressed explicitly in m, EI, and i 1.e.,

EIWJ{///_wimWizo’ ,]= 1,2,3,... (288)

Consider two separate mode shapes, W,(x) and W,(x). They satisfy the differential
Eq. (288), i.e.,

EIW" =&*mW
1/)/// Z p (289)
EA Wq = w,m Wq

To analyze orthogonality with respect to mass, consider the mass-weighted integral
1
/0 mW, (x)W, (x)dx (290)

Substitution of Eq. (287) into Eq. (290) yields
I
| m(C,siny, ) (C, siny,¥)dx (291)
0
Using standard trigonometric formulae, we write
1

. . 1! [
/0 (sin y,x) (siny,x) dx = 3 /O [cos(y, — ¥,)x —cos(y, +v,)x]dx = 561,4 (292)
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Equation (285) was used to evaluate v, v, As before, d,, is the Kronecker delta (5, = 1
for p=¢q, and §,, = 0 for p # q). Using Eqgs. (291), (292) and assuming p # g, Eq. (290)
yields the orthogonality condition with respect to mass in the form

/01 mW,(x)W,(x)dx=0, p#gq (293)

The mass orthogonality condition expressed by Eq. (293) is not restricted to the simple
mode shapes expressed by Eq. (287). To prove this, recall Eq. (289), multiply the first
line by W, and the second line by W, and integrate each line over the length of the bar
to obtain

/ EI W (X)W, (x)dx = o / l mW, (x)W, (x)

. . (294)
/ EIW)" (x)W,(x)dx = wj/ mW,(x)W,(x)
0 0
Integration by parts yields
! " " " ! " ! !
/0 EIW! ()W, (x)dx+ EIW! (x)W,(x)|. — ETW/(x)W,(x)]}
I
= wf,/o mW,(x)W,(x)
(295)

l 1 " " [ 1 ! l
/0 EIW! ()W (x)dx+ EI W, ()W, (x)|, — ETW! ()W,(x)]!

= wf{/lme(x)Wq(x)
0

The left hand side of Eq. (295) contains two parts: (a) an integral containing the second
derivative of the mode shapes, and (b) two boundary-evaluated terms expressed in terms
of the mode shapes, and their first, second, and third derivates. Recalling that the mode
shapes satisfy the boundary conditions (279), it becomes apparent that, in our case, the
boundary-evaluated terms in Eq. (295) vanish. Hence, Eq. (295) takes the simpler form

/ 'E1 W (O W, (x)dx = o f - W, (X)W, (x)
0 0

] l (296)
fo EITW/ ()W) (x)dx = /0 mW,(x)W, (x)
Subtraction of the second line of Eq. (296) from the first line yields
> o [
(wp — wq) /0 mW,(x)W,(x)dx =0 (297)

For distinct mode numbers, p # ¢, the frequencies are also distinct, wf, #* wé, and hence
Eq. (297) implies

/1 mW, (x)W,(x)dx =0, p#q (298)
0

which is exactly the mass orthogonalization condition derived earlier as Eq. (293). Notice
that the above derivation is quite general, if the boundary conditions are such that the
boundary-evaluated terms in Eq. (295) vanish.
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To analyze orthogonality with respect to stiffness, consider the integral

/0 : [E1W)" ()] W,(x)dx, p#q (299)

Recalling Eq. (294), we write Eq. (299) as
1 1
/ EIW!" (x)W,(x)dx = o / mW, (x)W,(x) (300)
0 0

Recalling Eq. (298), Eq. (300) becomes

/l [EI W;”/(x)] W, (x)dx=0, p#gq (301)
0

Equation (301) is the orthogonality condition with respect to stiffness. Integration by parts
of Eq. (301) yields an alternate expression of the orthogonality condition with respect to
stiffness, i.e.,

! 1" 1" ua ! " ! !
/O EIW, ()W, (x) dx+ EIW, (x)W,(x)|,— EIW,()W,(x)|, =0, p#q (302)

Recalling that the mode shapes satisfy the boundary conditions (279), it becomes apparent
that the second term in Eq. (302) vanishes. Hence, the orthogonality expression with
respect to stiffness can be alternately expressed as

/ Bl W/ )W/ (x)dx=0, p+#q (303)
0

if the boundary conditions are such that boundary-evaluated terms in Eq. (302) is auto-
matically zero. In practical applications, where independently derived mode shape can-
didates are tested for stiffness orthogonality, the formulation (303) may be preferred
since second derivatives are easier to evaluate with reasonable accuracy than fourth
derivatives.

Normalization of mode shapes: normal modes

Recalling the mode shapes orthogonality analysis, we notice that, for p = g = j,
Eq. (291) can be resolved using Eq. (292) to yield

Ci=1— (304)

Substitution of Eq. (304) into Eq. (287) yields the mass-normalized mode shapes (normal
modes)

[2 . .
Wj(x)z %smyjl, j=1,2,3,... (305)

The mass-normalized mode shapes satisfy the normalization condition with respect to
mass, i.e.,

1
/ mW (x)dx=1, j=1,2,3,... (306)
0
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The corresponding normalization condition with respect to stiffness is

1
fo EIW (x)dx =), j=1,2,3,... (307)

j’

and also
!
fo EIW!" (x)W;(x)dx = w?, P#£q (308)

Orthonormal modes

Mode shapes that are simultaneously normal and orthogonal are called orthonormal
modes; they satisfy the orthonormality condition:

! 1 forp=gq
mW ()W (x)dx=6,, =
/o pOW, () Pa {0 otherwise
(309)
/IEIW//( )WH( )d er Q)f) fOI'p:q
X x)dx = =
0 P q pord 0  otherwise
and also
/ZEIW”“( Wy = 025, = 1@ forp=a (310)
X X)dx = w =
0 ? q popa 0  otherwise

Modal mass and stiffness: modal coefficients

If the mode shapes are mass normalized in accordance with Eq. (304), then their
weighted integral with respect to mass evaluates to unity. However, mode shapes may not
necessarily be normalized in accordance with Eq. (304); in fact, we have already shown
that the mode shape amplitudes, which are the solution of a homogenous system, have
one degree of indeterminacy and hence can be generally scaled by any arbitrary factor.
Hence, for a generic mode shape W;(x), Eq. (306) would be

j=1,2,3,... 311)

Jj?

!
2

/0 mW; (x)dx =m

where m; is the modal mass. By a similar argument, Eq. (307) would become

I
/0 EIW?2(x)dx =K, j=1,2,3,... (312)
where k i is the modal stiffness, and

ki=wm, j=1203,... (313)

J J

The modal mass, m;, and the modal stiffness, k;, are the modal coefficients. If damping
were present, then an additional modal parameter, the modal damping, c;, would be
similarly derived. For mass-normalized mode shapes, the modal coefficients would be
the modal frequency, ;, and the modal damping ratio, {;.

It is also useful to note that, in virtue of Eq. (294),

1
/O EI W, W,(x)dx = K (314)
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3.3.2.2 Other Boundary Conditions
Free-free beam

Consider the free-free boundary conditions in the form

M@O,1)=0 V(0,1 =0

(315)
M(L,Hy=0 V({,1)=0

Using Egs. (264), (265), and (269) into Eq. (315) yields the boundary conditions in terms
of displacement and its derivatives, i.e.,

@'(0)=0 w"(0)=0

R (316)
W'(D=0 W"(1)=0

Substitution of the general solution (277) into the boundary conditions (316) yields

2

v~ [—C, sin yx — C, cos yx + C; sinh yx + C, cosh yx] ‘X:O =0
¥’ [~ C cos yx+ C, sinyx+ C;cosh yx+ C, sinh yx]| _ =0 (
= 317)
¥*[—C, sin yx — C, cos yx + C, sinh yx + C, cosh yx] |X:l =0
v} [~C, cos yx + C, sin yx + C; cosh yx + C, sinh yx] |x=l =0
Upon simplification, we get
—C,4+C, =0
—C,+C;=0
(318)
—C,sinyl — C,cosyl+ Cysinhyl+ C,coshyl =0
—C, cos yl+ C,sinyl+ Cscosh yl 4 C,sinhyl =0
Further simplification yields
C4 = Cz
G =C,
(319)

C, (—sinyl+sinh yl) + C, (—cos yl + cosh yl) =0
C, (—cos yl+cosh yl) + C, (sin yl + sinh yl) =0

The last two lines in Eq. (319) form a homogenous linear algebraic system in C, and C,

(—sin yl+sinh yl) C; + (—cos yl+coshyl) C, =0
{ : ’ (320)

(—cosyl+coshyl) C, + (sinyl+sinhyl) C, =0

The homogenous algebraic system (320) accepts nontrivial solutions only if its determi-
nant has value zero, i.e.,

=0 (321)

—sinyl+sinhyl —cosyl+coshvyl
—cos yl+coshyl sinvyl+ sinhy/
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Expansion and simplification of Eq. (321) yields the characteristic equation
cosylcoshyl—1=0 (322)

Equation (322) is a transcendental equation that yields the eigenvalues 7/ corresponding
to the free flexural vibration of a free-free beam. Numerical values of the first five eigen-
values +y/ are as shown in Table 3.5. As yl becomes large, the numerical values approach
a rational sequence. From the sixth eigenvalue onwards, they can be approximated to
reasonable accuracy by

(vl)j=(2j+1)g, j=6,7,8,... (323)

Recalling Eq. (272), we calculate the corresponding natural frequencies as

w; = (y]); fi= (y) 14 j=1,2,3,... (324)

mit’
where the values (y/), are given in Table 3.5. Also given in Table 3.5 are the correspond-
ing values for w; and f;.

Solution of the algebraic system (320) and substitution into the general solution (277)
yields the mode shapes for flexural vibration of a free-free beam, i.e.,

W,(x) = A, [(coshy,x +cosy,x) — B; (sinh yx+sinyx)|, j=1,2,3,... (325

where B, is a modal parameter given by the solution of either the first or the second of
Eq. (320), i.e.,

C coshy,l—cosvy;l sinhy.l+sinvy;l
,Bj: < 1) y} yj _ 71 y/ (326)

G). sinhy;l —siny;l N coshy;l —cosy,l

TABLE 3.5 Eigenvalues, y/, natural frequencies, w, and the modal parameter, 3, for the flexural vibration
of a free-free beam

J (')’l)_,' w; fj B/
EI EI
1 4.73004074 22.373287 s 3.5608190 pwr3 0.982502215
m V n
EI
2 7.85320462 61.673823 9.8155346,/ — 1.000777312
ml* ml4
EI EI
3 10.9956078 120.903391 19.2423723, | — 0.999966450
mi* mil*
EI EI
4 14.1371655 199.859448 19.2421376,/ — 1.000001450
mi* ml4
EI
5 17.2787597 298.55554 31.808619 0.999999937
mit ml4
T w12 | EI ,m | EI
6,78, ... 2j+1) — 2j+1) — — 2j+ D] — 1.00000000
@j+1) 3 [ei+n 3] |- [@j+DF 5/




90 VIBRATION OF SOLIDS AND STRUCTURES

The scale factor A; in Eq. (325) is to be determined from the normalization condition.
For free-free boundary conditions, a closed-form solution for the normalization factor is
not readily available, unlike the previous situation of pin-pin boundary conditions where
a closed-form solution was readily obtained. For free-free boundary conditions, the scale
factor should be determined by imposing the normalization condition with A; factored
out, and then solving the resulting equation to determine the actual value of A;. For
example, if normalization with respect to mass is sought, Eq. (300) yields

1
Y — (327)

\/ fol mW/2 (x)dx
Cantilever beam

A cantilever beam is fixed at one end and free at the other end; it has fixed-free
boundary conditions described as

w(0,1)=0 w'(0,1)=0

(328)
M, H)=0 V(I,t)=0

Using Egs. (264), (265), and (269) into Eq. (328) yields the boundary conditions in terms
of displacement and its derivatives, i.e.,

»(0)=0 @ (0)=0

(329)
w'()=0 @"()=0
Substitution of the general solution (277) into the boundary conditions (329) yields

C, sinyx + C, cos yx + Cs sinh yx+ C,cosh yx| _, =0
Y[C, cos yx — C, sin yx+ C; cosh yx+ C, sinh yx]| _, =0

330
¥*[—C, sin yx — C, cos yx + C; sinh yx + C, cosh yx] |x=l =0 (330)
¥? [—=C, cos yx + C, sin yx + C; cosh yx + C, sinh yx] |x:l =0
Upon simplification, we get
C2 + C4 = 0
C,+C=0
(331)
—C,sinyl — C,cosyl+ Cysinhyl 4+ C,coshyl =0
—C, cos yl+ C, sinyl+ Cycosh yl 4+ C,sinhy/ =0
Further simplification yields
C4 == _C2
G =-C,
(332)

C, (sin yl 4 sinh yl) + C,(cos yl 4+ cosh yl) =0
C,(cos yl + cosh yl) + C,(—sinyl +sinh yl) =0
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The last two lines in Eq. (332) form a homogenous linear algebraic system in C; and C,

(sin yl+ sinh yl)C, + (cos yl+cosh yI)C, =0 (333
333
(cos yl+cosh yI)C, + (—sinyl +sinh y[)C, = 0

The homogenous algebraic system (333) accepts nontrivial solutions only if its determi-
nant has value zero, i.e.,

sin yl +sinh yl cos yl+ cosh y/

cosyl+coshy —sinyl+sinhyl =0 (334)

Expansion and simplification of Eq. (334) yields the characteristic equation
cosylcoshyl+1=0 (335)
Equation (335) is a transcendental equation that yields the eigenvalues y/ corresponding
to the free flexural vibration of a cantilever beam. Numerical values of the first five eigen-
values 7yl are shown in Table 3.6. As yl becomes large, the numerical values approach

a rational sequence. From the sixth eigenvalue onwards, they can be approximated to
reasonable accuracy by

. ™ .
M);=@j=1) 5, j=06T78.... (336)
Recalling Eq. (272), we calculate the corresponding natural frequencies as

2 El .
w; = (y); — —(7) 14 i=1,23,... (337)

where the values (y/) ; are given in Table 3.6. Also given in Table 3.6 are the correspond-

ing values for w; and f;.

TABLE 3.6 Eigenvalues, y/, natural frequencies, w, and the modal parameter, 3, for the flexural vibration
of a cantilever beam

j vD); w;, rad/s fj» Hz B;
EI EI
1 1.87510407 3.51601527 P 0.55959121,/ P 0.73409551
m
EI EI
2 4.6940911 22.0344916 3.5068983 1.01846732
ml* mi*
EI EI
3 7.8547574 61.697214 9.8194166 0.99922450
mi* mi*
EI EI
4 10.9955407 120.901916 19.2421376 1.00003355
ml* ml*
EI EI
5 14.1371684 199.859530 31.808632 0.99999855
ml* mi*
T w12 | EI m | EI
6,78, ... 2j -2 [2‘—17] = 2 - NPZ [ =2 1.00000000
@j-13 e Y N (CYR1) e
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Solution of the algebraic system (333) and substitution into the general solution (277)
yields the mode shapes for flexural vibration of a cantilever beam, i.e.,

Wi(x) = A; [(cosh Y, X — cos ij) — B; (sinh yx —sin yx)] , Jj=1,2,3,... (338

where 3; is a modal parameter given by the solution of either the first or the second line
in Eq. (333), i.e.,

8 C, coshy;l+cosy;l  sinhy;l—siny,;l
77 \G,);  sinhyl+siny;l ~ coshy,l+cosy,l

(339)

3.3.2.3 Forced Flexural Vibration of a Beam

Assume and uniform beam undergoing flexural vibration under the excitation of a time-
dependant distributed excitation f(x, t), as shown in Fig. 3.16. The units of f(x, ) are
force per length. Free-body analysis of an infinitesimal element similar to that presented
in Fig. 3.15b reveals that, due to the distributed excitation f(x, ), Eq. (255) becomes

V'(x, 1)+ f(x, 1) = mib(x, 1) (340)

Pursuing the argument outlined in Egs. (257) through (265) yields the equation of motion
for forced flexural vibration of a beam, i.e.,

miv(x, 1)+ EI w"(x, 1) = f(x, 1) (341)
Without loss of generality, we assume the external excitation to be harmonic in the form
Sx.0) = F(x)e” (342)

and obtain
miv(x, 1)+ EI w" (x, 1) = f(x)e (343)

Modal expansion theorem

Assume the modal expansion

w(x, 1) = i C;W; (x)e™, (344)

j=1

Mt

__________________ - 'w(x, t)
F ! F— x

FIGURE 3.16 Uniform beam undergoing flexural vibrations under time-dependant distributed exci-
tation f(x, 7).
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where W;(x) are natural modes satisfying the free-vibration equation of motion (288) and
the orthonormality conditions (298) and (301), whereas C; are the modal participation
factors. Equation (344) is harmonic in the excitation frequency, which implies that we are
only concerned with the steady-state response. Substitution of Eq. (344) into Eq. (343)
and division by ¢/’ yields

—mw® Yy C,W,(x)+EIY. C,W" (x) = F(x) (345)
p=1 p=1

where the index p was used instead of j for convenience. Multiplication of Eq. (345) by
W, (x) and integration over the length of the beam yields

00 0 00 !
—e?YC, / mW, (X)W, (x)dx+ 3 C, / EITW!" (x)W,(x)dx
=t 0 =t 0 (346)
l A
=/0 FEOW,(xdx, ¢=1,2,3,...

Using the orthogonality conditions (298), (301), and the definition of modal mass and
stiffness given by Egs. (311), (314), we can recast Eq. (346) in the form of a set of
decoupled linear algebraic equations, i.e.,

Ci(—mw*+k))=f;, j=12,3,... (347)

where f; is the modal excitation given by

l/\
fj:/Of(x)Wj(x)dx, j=1.23.... (348)

If the modes are orthonormal, then substituting the orthonormality conditions (309) and
(310) into Eq. (346) yields the simpler form

Ci(—o’+w) =f; j=123.... (349)

Response by modal analysis
Solution of Eq. (349) yields the modal participation factors in the form

fi
2

— 0’ + o]

C. =

y Jj=1,2,3,... (350)
Equation (350) corresponds to the amplitude of Eq. (56) derived for the 1-dof systems.
Substitution of Eq. (350) into Eq. (344) yields

w(x, )= —w%i—wzwj(x) e (351)

J=1 J

So far, the vibration has been considered undamped. However, real phenomena are
always associated with some damping ;. In that case, the modal participation factors
take the form

Ji

C = , j=1,2,3,... 352
T - 20,0+ 0] / (352)
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The modal response defined by Eq. (352) resembles the response of the 1-dof vibrating
system, Eq. (79). In fact, as the excitation frequency passes through a natural frequency,
w;, the continuous structure will resonate and will vibrate in the natural mode W;(x).
Around a natural frequency, the continuous system behaves more or less like a 1-dof
system vibrating in the corresponding natural mode. If the excitation frequency covers
a large frequency span, several resonances can be encountered corresponding to several
natural frequencies and normal modes.

Substitution of Eq. (237) into Eq. (229) yields the frequency response of the damped
flexural vibration system in the form

o0 fj

w(x, 1) = -
; —w2—|—21§jwja)+w§

W,(x) e (353)

Equation (238) represents a superposition of a number of terms, each term correspond-
ing to a natural frequency and normal mode of vibration. Equation (238) allows us to
determine the response of the continuous structure to harmonic excitation of variable
frequency. This leads to the frequency response function (FRF) concept. The FRF could
be calculated by letting the excitation function take the form of unit excitation. Several
unit excitation functions could be envisages, depending on the choice of spatial variation.
As the excitation frequency sweeps through natural frequency values, w;, the correspond-
ing term in the series becomes very large. As the structure passes through a structural
resonance, w;, the response displays a resonance peak. Over a frequency interval, the
response can display several peaks, corresponding to several resonances (Fig. 3.14).

3.3.3 TORSIONAL VIBRATION OF A SHAFT
3.3.3.1 Free Torsional Vibration of a Shaft

Consider a uniform shaft of length /, mass torsional inertia per unit length pl,,
torsional stiffness GJ, undergoing torsional vibration of displacement ¢(x, ) as shown
in Fig. 3.17a. An infinitesimal shaft element of length dx is subjected to the action of
torsional moments (twisting moments a.k.a. torques), T(x, t) and T(x, t) + T'(x, t)dx as
shown in Fig. 3.17b. Free-body analysis of the infinitesimal element yields

T'(x,1) = pl,d(x, 1) (354)
‘: x
v
G, Ip. 1 $(x)
(a)
S)..

T(x, f) .

T(x, 1)+ T'(x, t)dx
(b)

FIGURE 3.17 Uniform shaft undergoing torsional vibration: (a) general layout; (b) free-body dia-
gram of an infinitesimal shaft element.
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Simple torsion analysis relates the torsional stiffness to the twist, which is the space-
derivative of the torsional displacement, i.e.,

T(x, ) = GJ§'(x, 1) (355)

Substitution of Eq. (355) into Eq. (354) yields the equation of motion for torsional
vibration, i.e.,

GJd"(x,1) = pl,(x, 1) (356)
Upon division by pl,, we get
Y= (357)
where the constant ¢? is given by
62=ﬂ or c¢= G’ (358)
pl, pl,

Note that Eq. (357) is the same as the Eq. (157) derived for analysis of axial vibration.
Hence, we will be able to simply map the axial vibration results into torsional vibration
results through simple substitution of the appropriate terms, thus avoiding repetitious
derivations.

Natural frequencies and mode shapes modes for fixed-fixed boundary conditions

Following the axial vibration analysis, we assume

$(x.1) = d(x) ! (359)
and hence
(%(x) = C, sinyx + C, cos yx (360)
where
y="2 (361)
c

For fixed-fixed boundary conditions of the form

¢(0,71)=0
(362)
d(l,1)=0
we obtain the eigenvalues and natural frequencies
T T |GJ
=j—, =j——, j=12,3,... 363
L R TR (363)

and the orthonormal mode shapes

[ 2 . .
®;(x) = prlsm'yjl, j=1,2,3,... (364)

The mode shapes of Eq. (364) are orthonormal with respect to mass torsional inertia.
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Other boundary conditions
Consider free-free boundary conditions of the form
7(0,6) =0
(365)
7(l,t) =0

Substitution of Eq. (355) into Eq. (365) yields the free-free boundary conditions in terms
of displacements, i.e.,

¢'(0) =0
d(1)=0

For these boundary conditions, the eigenvalues and natural frequencies are given by

(366)

T m [GJ .
Yi=j— 0;=j— |—, j=12,3,... (367)

l L'y pl,

The corresponding mode shapes are given by

[ 2 .
D (x) = [Tplcosyjl, j=1,2,3,... (368)

Plots of the mode shapes and the corresponding natural frequencies for the vibration of a
free-free elastic shaft are the same as those given for the axial vibration of an elastic bar
in Table 3.3.

Consider fixed-free boundary conditions of the form

¢(0,7)=0

(1, 1) =0 (369)

Substitution of Eq. (355) into Eq. (369) yields the fixed-free boundary conditions in terms
of displacements, i.e.,

$(0)=0
. (370)
¢()=0
For these boundary conditions, the eigenvalues and natural frequencies are given by
T a1l [GJ
=02j-1)=—, =Q2j-)== |—, j=1,2,3,... 371
v=Qi-Dg. 0;=Q2) )Zl‘/plp J (371)

The corresponding mode shapes are given by

[ 2 .
D;(x) = lTplsmyjl, j=1,2,3,... (372)

Plots of the mode shapes and the corresponding natural frequencies for a fixed-free elastic
shaft are the same as those given for the axial vibration of an elastic bar in Table 3.4.
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3.3.3.2 Forced Torsional Vibration of a Shaft

Assume an uniform shaft under externally applied time-dependent torsional moment
per unit length f(x, 7). Considering the combined effect of internal stress resultant, 7(x, ),
and external excitation, f(x,f), we perform the free-body analysis of an infinitesimal
shaft element dx to get

T'(x, )dx + f(x, 1) = pL,(x, 1) (373)

Relating, as before, the stress resultant 7(x, 7) to the displacement ¢(x, ) and assuming,
without loss of generality, the external excitation to be harmonic in the form

flx, 1) = F(x)e™ (374)

we obtain
pLd(x, 1) = GI" (x, 1) = [ (x)e"" (375)

Modal expansion theorem

Assume modal expansion
¢ (x,1)=) C;®;(x)e', (376)
j=1

where @;(x) are natural mode and C; are the modal participation factors. Similar to the
analysis of axial vibrations, substitution of Eq. (376) into Eq. (375) and application of
the orthogonality conditions yields the modal equations

Ci(=mwi+k;)=f;, j=1.2.3,... (377)

where f; is the modal excitation given by

f= f]]f(x)cb,.(x)dx, j=1,2.3,... (378)
| .

If the modes are normalized with respect to mass moment of inertia, then Eq. (377) takes
the simpler form

C(-w’+w))=f. j=12.3,... (379)

Response by modal analysis

Solution of Eq. (379) yields the modal participation factors in the form

fi

C.=——
-0+ w;

J

. j=1,2.3,... (380)

Substitution of Eq. (380) into Eq. (376) gives

u(x, t):i /i

j=1

ﬂoz—ﬁ—a)?q)'j(x)elm (381)
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For damped vibrations, we add modal damping ; to get

o0 fj

u(x,t)= .
(. 1) le—w2+21§jij+w?

P;(x) (382)

The general discussion of frequency sweeps and structural resonances performed for
forced axial vibration also applies here for torsional vibration and will not be repeated.

3.4 SUMMARY AND CONCLUSIONS

This chapter has offered a brief introduction to vibration theory. This introduction is
necessary because many of the SHM methods to be discussed in later chapters will utilize
concepts and formulae from vibration theory.

The chapter started with the vibration analysis of a 1-dof system of a particle. This
simple system was used as a springboard for the analysis of more complicated system
later in the chapter. The 1-dof particle vibration was used to introduce fundamental basic
concepts such as the differential equation of motion, harmonic solutions, free vs. forced
vibrations and damped vs. undamped vibrations. Energy methods approach to vibration
analysis were also discussed.

The second part of the chapter has covered the vibration of continuous systems. PDE
in space and time govern this type of vibrations. Assuming harmonic behavior in time,
the equation of motion was reduced to an ODE in the space domain. This boundary value
problem was solved to yield the eigenvalues and eigenmodes, and the associate natural
frequencies and mode shapes. The axial vibration of bars, flexural vibration of beams,
and torsional vibration of shafts was considered. In each case, the study of free vibrations
was followed by the study of forced vibrations.

3.5 PROBLEMS AND EXERCISES

1. Prove that u(f) = A cos w,f+ Bsin w,t can be also expressed as u(t) = C cos(w,+¥),
and find the relationship between A, B, C, and

2. Prove that mii(t) + cit(t) + ku(t) = 0 can be also expressed as ii(f) + 2{w, i(t) +
w?u(t) = 0 and derive the relations between the constants in the two equations

3. Prove that u(f) = Ce=é@n+iodt 4 C,e(~6en~i®dt can be rewritten as u(f) =
Ce™% cos(wyt+ 1) and derive the relations between the constants in the two equations

4. Prove that when damping equals critical damping ({ = 1), the solution of ii(f) +
2w, (1) + 0?u(t) =0 is u(r) = (C, + Cyt)e'

5. Prove that the particular solution of ii(f) + w?u(r) = j‘cos(wt) is u,(r) =
_w++w7;‘ cos(wt)

6. Prove that using Eq. (99) in conjunction with Egs. (15), (31), (90), (91), and (93)
yields the response amplitude at the quadrature point as |iig| = F/co,

7. Prove that, for lightly damped systems, the bandwidth of the frequency response
function H(p) = m takes the simple expression w, —w, = 2{w,,.

8. Prove thqt2 the power at resonance of a lightly-damped 1-dof system is given by
Pmax = lFT

9. Find thé first, second, and third natural frequencies of in-plane axial vibration of a
steel beam of thickness 7, = 2.6 mm, width b, = 8 mm, length / = 100 mm, modulus
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10.

1.

12.

E =200GPa, and density p =7.750 g¢/cm?. The beam is in free-free boundary condi-
tions. Then consider double the thickness (7, = 5.2 mm), wider width (b, = 19.6 mm),
and then both. Recalculate the three frequencies for these other combinations of
thickness and width. Discuss your results.

Find all the natural frequencies in the interval 1kHz to 30kHz of in-plane axial
vibration of a steel beam of thickness 7, = 2.6 mm, width b, = 8mm, length / =
100 mm, modulus E = 200 GPa, and density p = 7.750 g/cm?. The beam is in free-
free boundary conditions. Then consider double the thickness (4, = 5.2 mm), wider
width (b, = 19.6mm), and then both. Recalculate the frequencies for these other
combinations of thickness and width. Discuss your results

Find the first, second, and third natural frequencies of out-of-plane flexural vibration
of a steel beam of thickness #; = 2.6 mm, width b, = 8 mm, length / = 100 mm,
modulus E =200 GPa, and density p =7.750 g/cm?>. The beam is in free-free bound-
ary conditions. Then consider double the thickness (%, = 5.2mm), wider width
(b, = 19.6mm), and then both. Recalculate the three frequencies for these other
combinations of thickness and width. Discuss your results.

Find all the natural frequencies in the interval 1kHz to 30kHz of out-of-plane
flexural vibration of a steel beam of thickness /2, = 2.6 mm, width b, = § mm, length
I = 100mm, modulus E = 200 GPa, and density p = 7.750 g/cm®. The beam is in
free-free boundary conditions. Then consider double the thickness (4, = 5.2mm),
wider width (b, = 19.6mm), and then both. Recalculate the three frequencies for
these other combinations of thickness and width. Discuss your results.
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VIBRATION OF PLATES

4.1 ELASTICITY EQUATIONS FOR PLATE VIBRATION

In this chapter, we will analyze plate vibration. After reviewing the general plate
equations, we will consider two situations separately: (a) axial vibration of plates; and
(b) flexural vibration of plates.

Because the plate surface is free, the z-direction stress is assumed to be zero (o, = 0).
Also zero are assumed to be the surface shear stresses o,. =0 and o,, = 0. Hence, the
3-D elasticity relations given in Appendix B reduce to

Exx = E xx + fa-yy
—v 1 1
syy = Foxx + Eo-yy and gx)' = Eaxy (1)
v —v
€= FUM + ?q\'y
In our analysis, we are only interested in the strains €, €,,, &,,. Solution of Eq. (1)
yields
O = 1-2 (Sxx + Vs,v.v)
- o, =2Ge,, (2)
Oy = 1—2 (Vgxx + 8)’Y)

4.2 AXIAL VIBRATION OF RECTANGULAR PLATES

Axial vibrations are related to extension/compression motion in the plate, i.e., the
motion is in-plane polarized.

4.2.1 GENERAL EQUATIONS FOR AXIAL VIBRATION
OF RECTANGULAR PLATES

Assume in-plane displacements u(x, y, ) and v(x, y, t) which are uniform across the
plate thickness. The strains of interest are

ou av 1 /0u v
Ex=7- &€w=o7 &x=35\| oo +— (3)
ox 7 0y 2 \dy ox

101
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The strains are constant across the plate thickness. Substitution of Eq. (3) into Eq. (2)

yields
E ou n av
o, = —+v—
1=z \ox 0y G ou n oy @)
Ty = dy  ox

E ou n av
o, = V—+ —
ool —v2 \Uax  dy

Note that the stresses are also constant across the plate thickness. Integration of stresses
across the plate thickness gives the stress resultants (forces per unit width) N,, N,, and
N,, shown in Fig. 4.1, i.e.,

/h/ 2 Eh (Qu n v
hy2 T o Vay
hy2 Eh ou v
/ p )
1/2 1w Uox dy
hy2 0 0
N, =N, f o dz=Gh( —+—
y 8 ax
Newton second law applied to the infinitesimal element of Fig. 4.1 yields
ON_ ON,, .
A Y = phii
0x dy
(6)
N, N IN,, e
ay x0TV

Equation (6) corresponds to forces in the x and y directions. The moment equation is
not needed as in-plane rotation inertia is ignored. Substitution of Eq. (5) into Eq. (6)
yields a system of coupled second-order PDE in u and v depending on the space and time
variables. This system has a general solution representing plate vibration simultaneously
in the x and y directions. The solution of this coupled system of differential equations is
not immediate; this case will not be treated here.

When certain conditions are imposed on the vibration pattern, the system (6) simplifies
and yields simple uncoupled solutions, which we will discuss next.

oN,
N, +—dy oN
y oy ny+—xydy
— oN, y
Ny, +——dx
N,
| |dy — N +——dx
Ny X
dx
Ny, <t——
"
lo) X

FIGURE 4.1 Infinitesimal plate element in Cartesian coordinates for the analysis of in-plane
vibration.
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4.2.2 STRAIGHT-CRESTED AXIAL VIBRATION OF RECTANGULAR PLATES

Let’s consider a simplified case in which the particle motion is self-similar along any
line parallel to the y-axis. If we view plate vibration as a system of standing waves in
the plate, then this case can be considered as a system of standing straight-crested axial
waves with the wave crest along the y-axis (Fig. 4.2). The problem is y-invariant and
depends only on x, i.e.,

u(x, y, 1) = u(x, 1) : , oo
(straight-crested axial plate vibration) (7
v(x,y,)=0
The particle motion in Eq. (7) was assumed parallel to the x-axis (longitudinally polar-
ized). Because the problem is y-invariant, derivatives with respect to y are zero. Substi-
tution of Eq. (7) into Eq. (5) and imposition of y-invariant conditions yields

Eh Ou
N, = —
1—v?ox
Eh ou
N, = — 8
T2 e ®
N,=N,, =0
Substitution of Eq. (8) into the equation of motion (6) gives
ON, N, Eh 9*u
e T L g — = phii 9
8x+ oy —vzax P ©)
Denote with ¢ is longitudinal wave speed in the plate given by
1 E 1 E
2 _ -
CL_]—VZE’ L= l—vzz (10)
Hence, Eq. (9) yields the wave equation
0%u
2 e
CL@ =u (1 1)

From here onward, the analysis duplicates the analysis of axial vibrations in a bar, with
the only difference of using ¢, as defined by Eq. (10), instead of ¢ = /E/p.

u(x t)
o H b X

FIGURE 4.2 Straight-crested axial vibration in a plate.
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4.3 AXIAL VIBRATION OF CIRCULAR PLATES

This section will consider the axial vibration of circular plates. To analyze them,
we change from Cartesian coordinates (x, y) to polar coordinates (7, ). Similarly the
displacements (u, v) are replaced by displacements (u,, u,).

4.3.1 GENERAL EQUATIONS FOR AXIAL VIBRATION
OF CIRCULAR PLATES

Recall the stress displacement relations in polar coordinates given in Appendix B, i.e.,

E ou, n u, T 1 8146
g = —- -
1=y \ or Y r r 060

E ou, u, 10u,
— rpZrp 2270 12
7 l—vz(v8r+r+r(')0> (12)
1 Ou, aug Uy
=G RN A
o (r a0 T r)

Note that stresses are constant across the plate thickness. Consider the infinitesimal plate
element in polar coordinates shown in Fig. 4.3. Integration of stresses across the thickness
gives the stress resultants N,, Ny, and N, (forces per unit width) shown in Fig. 4.3, i.e.,

N = /h/z B Eh ou, TR 1 9uy
n2 ar Y r r 00
hy2 h ou, u, 10du,
Ny=[ o R S 13
/1/209Z 1—v2<var+r+r80> (13)
N /WZ dz — Gh 1 du, du, ouy Uy
= a A —
0 —h/2 L= r 00 or r

Newton law of motion applied to the infinitesimal element of Fig. 4.3 is applied by
summing up the forces in the r and 6 directions. Let’s start with the r-direction equation
of motion. We equal the sum of forces in the r-direction with the product between mass
and acceleration in the same direction and obtain

aN,
r direction: ( f 'dr) + (T‘;”de) dr —N,drdf = (phrdrd6)ii, (14)
r

FIGURE 4.3 Infinitesimal plate element for the analysis of in-plane plate vibration in polar
coordinates.
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The terms in Eq. (14) deserve a little explanation. Let’s start with the parenthesis: the
first term in the parenthesis is due to the increase in arc length, whereas the second term
in the parenthesis is due to increase in N,. Now, let’s consider the middle term: this term
is due to the increase in N,,. Finally, the last term is due to the inclination of the N, stress
resultants which creates a projection along the r direction. Dividing through by rdrd@
and recalling Ny, = N4, Eq. (14) becomes

ON, 10N, N,—N,
or r 00 r

The #-direction calculations follow a similar process. We equal the sum of forces in the
0-direction with the product between mass and acceleration in the same direction and
obtain

N oN,
0-direction <N,9 drd@—+r dOa—redr> + <a—90d9) dr+ Ny, drdf = (phrdrd6)ii, (16)
r

The terms in Eq. (16) deserve a little explanation. Let’s start with the parenthesis: the
first term in the parenthesis is due to the increase in arc length, whereas the second term
in the parenthesis is due to increase in N,,. Now, let’s consider the middle term: this term
is due to the increase in N,. Finally, the last term is due to the inclination of the Ny, stress
resultants which creates a projection along the r-direction. Dividing through by rdrdé
and recalling Ny, = N,y, Eq. (14) becomes

oN, 10N, 2 ..
—L+ ——2+ =N,y = phii, 17)
or r 00 r

If we substitute the stress resultant expression (13) into Egs. (15) and (17), we obtain
a set of coupled second order partial differential equations in space and time involving
the independent variables r, 0, t and the dependent variables u, and u,. The solution of
this coupled system of differential equations represents plate vibration simultaneously
involving u, and u, motions. The solution of this coupled system of differential equations
is not immediate; this case will not be treated here. When certain conditions are imposed
on the vibration pattern, the system of coupled partial differential equations simplifies
and yields simple uncoupled solutions. One such case is the axisymmetric axial vibration
of circular plates, which we will discuss next.

4.3.2 AXISYMMETRIC AXIAL VIBRATION OF CIRCULAR PLATES

In this section, we will restrict our attention to the axisymmetric in-plane (axial)
vibration of circular plates. In this case, the 6 dependence vanishes. The axisymmetric
assumption implies that the motion is entirely radial, i.e., u, = 0. In virtue of axial
symmetry we also have du, /90 = 0. Egs. (12) become

_E au,+ u,
a-r_l—vz or vr

E ad
(o <V tr +&> (18)

=1—v2 or r

Ty =0
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Hence, Eq. (13) becomes

—np 1—v2\ or r
h/2 Eh 0
Ny :/ oydz=—— v_u’ + “r (19)
—h)2 1—y? or r

4.3.2.1 Equation of Motion for Axisymmetric Vibration of Circular Plates

Under the axisymmetric assumption, Newton law of motion applied to the infinitesimal
element of Fig. 4.3 yields

IN. N,—N,
_+—

or r

= phii, (20)

Substitution of Egs. (19) into Eq. (20) yields, upon simplification,

E (Pu, 10u, u, .
— + - = pii, (21)
1—?

oz ror r?

Upon rearrangement, we get the wave equation in polar coordinates

Pu, 19
e <—” por ﬂ) —ii, (22)

o ror  r?
where ¢, is the longitudinal wave speed in a plate previously defined by Eq. (10), i.e.,

E
2

cL=p (1-12) (23)
Axisymmetric axial vibration of a circular plate can be understood in terms of standing
circular-crested waves that propagate in a concentric circular pattern from the center of
the plate and reflect at the plate circumference. Equation indicates that circular-crested
axial waves in a plate propagate with the same wave speed ¢ as the straight-crested axial
waves. Assume the motion to be harmonic, i.e.,

u,(r,t) = i(r)e (24)

Substitution of Eq. (24) into Eq. (22) and rearrangement yields

L

, (0%, lou, &
orr  r or  r?

) +oli, = (25)

Division by ¢, multiplication by r, and the use of the wavenumber definition y = w/c;.
gives

o, N 1oa, u, i =0 (26)
Z _ 4 o=
a2 r or r? Y
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Perform the change of variable
x=ryr (27)
Substitution of Eq. (27) into Eq. (26) yields the Bessel equation

0% ol
2 D=0 (28)

0x? ox

where x = yr. The solution of Eq. (28) is
i = AJ,(x) + BY,(x) (29)

where J,(x) is the Bessel function of the first kind and order 1, whereas Y,(x) is the
Bessel function of the second kind and order 1. The arbitrary constants A and B are to
be determined from boundary conditions. Substituting x = yr into Eq. (29) yields

u(r) = AJ,(yr) + BY, (yr) (30)

However, the Bessel function of the second kind Y, (‘yr) has infinite value at » = 0 and
has to be discarded (unless the plate has a hole around r = 0, which is not the case
considered here). Eq. (30) becomes

i, (r) = AJy(yr) (1)
Hence, the general solution for the axisymmetric vibration of circular plates is given by
u,(r, 1) = AJ, (yr)e™ (32)

The constant A, the frequency w, and the wavenumber vy are determined from the boundary
conditions.

4.3.2.2 Frequencies and Mode shapes of Free Circular Plates in
Axisymmetric Axial Vibration

Consider a free circular plate of radius a undergoing axisymmetric axial vibration
(Fig. 4.4). The boundary conditions correspond to tractions-free conditions at r = a, i.e.,

N.(a)=0 (33)

FIGURE 4.4 Coordinates’ definition for in-plane axial vibration of a free circular plate.
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Substituting Eq. (19) into Eq. (33) yields

u, u,
+y—L =0 (34)
or r ),
Substituting Eq. (31) into Eq. (34) yields
, v
Ay J;(va)+ 2 Al (ya) =0 (35)

Recall the following identity between Bessel functions
, 1
5(@) = Io(@) = <4, (2) (36)

Equation (35) becomes

A (¥t~ 2000+ 270 ) =0 @)

Equation (37) should give the value of A. However, this is a homogenous equation,
and the trivial solution A = 0 applies unless the parenthesis vanishes. Hence, the con-
dition for Eq. (37) to yield nonzero solutions for A is that the parenthesis should
vanish, i.e.,

Yh(ya) 1, (ya) + 2, (ya) =0 (8)

Equation (38) is the characteristic equation. The solutions of Eq. (38) are the eigenvalues
for the axisymmetric vibration of free circular plates. Denoting z = ya, we rewrite
Eq. (38) as

hy(z) = (1 =) /() =0 (39)
Equation (39) can be rearranged as

2Jy(2)
Ji(2)

The left hand side of Eq. (40) is also known as the modified quotient of Bessel functions
defined as

=(1-v) (40)

~ 2Jy(2)

J1(2) = —— 41
Note that Eq. (40) depends on the Poisson ratio, v. Eq. (41) indicates that nonzero values
of A are only possible at particular values of z, the eigenvalues of Eq. (39). Eq. (40)
is transcendental in z and does not accept closed-form solution. Numerical solution of
Eq. (40) for v =0.30 yields

z=(ya) =2.048652; 5.389361; 8.571860; 11.731771... (42)

It should be noted that, as these eigenvalues depend on v, the ratio between successive
eigenvalues and the fundamental eigenvalues could be used to determine the Poisson ratio
experimentally through a curve-fitting process.
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For each eigenvalue, (ya),, we can determine the corresponding resonance frequency
with the formula

1
0, = (ya), and f, = = (ya),. n=1273 (43)
a 2T a

where ¢ = ¢, given by Eq. (23). The mode shapes are calculated with Eq. (31) using the
wavenumber y corresponding to each eigenvalue. For the nth eigenvalue, (ya),, the nth
wavenumber is calculated with the formula

1
Y, == (va), (44)
a
Hence, the nth mode shape is given by
Rn(r) = An Jl (an/a) (45)
The constant A, is determined through modes normalization, and depends on the nor-

malization procedure used. A common normalization procedure, based on equal modal
energy, yields

Ay =T~ Io(@) () (46)

An alternate normalization methods is to simply take A, = 1. A graphical representation
of the mode shapes is given in Table 4.1.

TABLE 4.1 Resonance mode shapes for axial vibration of a free elastic disc of radius ¢ = 10 mm

Mode Eigenvalue Resonant frequency Mode shape
1 c
R, z; = y,a = 2.048652 fHh=—z- R, =J,(z,r/a)
27 a

01234586 7 8 910

1 c

R, 2, = y,a =5.389361 L= 27227 R, =1, (zyr/a)
™ a 123456 7{0
1

R, 23 = ysa = 8.571860 fyr= 24 / Ry = J, (z37/a)

2T T a
1234\5\6-7/4910
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4.4 FLEXURAL VIBRATION OF RECTANGULAR
PLATES

Flexural vibration appears from bending action. The Love-Kirchhoff theory of plate
bending assumes that straight normals to the mid-surface remain straight after deforma-
tion. This implies a linear distribution of axial displacement across the thickness.

44.1 GENERAL EQUATIONS FOR FLEXURAL VIBRATION
OF RECTANGULAR PLATES

For a displacement w of the plate mid surface, the displacements at any location z in
the plate thickness are given by

ow
u=—z7—
¢ ox
a
b (47)
dy
w=w
The strains of interest are
a 02 ad 0’ 1 /0 d 02
g m o wo g v twe L T g
ox oxz Y 9y 0y? Y2 \dy  ox 0x0y
Substitution of Eq. (48) into Eq. (2) yields
E 82w+ 0*w
o,=—z71—— | —+v—
o T2 e 0y? G 2w (49)
o, =— —
E Pw  Pw o “ oxay
T =T 52 e 0y?

Note that the stresses vary linearly across the plate thickness. Integration of stresses across
the thickness gives the stress resultants M,, M, and M, (moments per unit width) shown
in Fig. 4.5, i.e.,

", h/2 d D 0w 0*w
e /—h/z Tnfe= T (W +Vﬁ)
h/2 0w 0w
M =/ zdz=-D(vio+2 50
y T, T (V o2 T E)yz) (50)

na w
M=—M,=/ o )zdz=(1—v)D—2
Xy yx ap ( a-xy)z Z ( V) axay

where D is the flexural plate stiffness defined as

ER?

b= 12(1—12) S
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dx X
o

y z \LW(X! Y t)

X
/ Qy)\ Myx
z :

M
y Qx MX 4 aMx
M —
v dx G M,
Mxy _*Mxy'*' Xde
M, ox
M, +—~Ldy —
YT oy / Qx+aaxdx
Y 0x
/ Q +80yd
s M vy Y
yx+ ) dy

FIGURE 4.5 Infinitesimal plate element in Cartesian coordinates for the analysis of flexural vibration
of rectangular plates.

Newton second law applied to the infinitesimal element of Fig. 4.5 yields

d 0
vertical forces: & + 9 = phw
ox dy
oM M,
M, moments: 4+ —=-0,=0 (52)
ox ay
M, M,
M, moments: - — -0,=0
: ay ox
Simplification of Egs. (52) yields
oM, M, PM, @M,
= 2 2 = = phw (53)

axz  Axdy + axdy + 02

Substitution of Eq. (50) into Eq. (53) yields the general equation for flexural vibration of
a plate

o*w *w  tw
D| —+2——+— hiw =0 54
<8x4 * dx2dy? + oy ) oy (54)
Equation (54) can be expressed in terms of the biharmonic operator for z-invariant motion
4 4 4

Vi=ViVi= a—+2—+—
ox* ox2dy?  oy*

given in Appendix B, i.e.,
DV*w+ phib =0 (55)
Assume harmonic motion in the form

w(x, y, 1) = w(x, y) e (56)
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Equation (55) becomes

DV*w — phw*i =0 (57)
Introduce the parameter
4_Ph 4
=— 58
vV=p (58)
Hence, Eq. (57) becomes
(V'=yHw=0 (59)

It is sometimes convenient to factor Eq. (59) into the form
(V2 + 72) (V2 — yz) w=0 (60)

By the theory of differential equations, the complete solution to Eq. (60) can be obtained
by superposition of the solutions to the following system of lower-order differential
equations

{W+ﬂ@=o 1)

(V2= , =0

The plate bending and twisting moments can be related to the displacements through the
relations of Eq. (50), i.e.,

M —-D 62w+ 0’w

X_ Y 0y?

Pw 0w
M,=—D|v— +— 62
’ GW+W> ©

0*w
1‘4/\7y = —D(l _V)W

Transverse shear forces in the plate are given by

g:—uiww)

0
N (63)
2
0,=-D @ (V w)
The Kelvin—Kirchhoff edge reactions are given by
oM,
V=04 ="
’ (64)
v N oM,
=0 ox

The bending and twisting strain energy of a rectangular plate undergoing flexural vibration
is given by

1 Pw  Pw)’ Pwow [ Pw )
U=-D| {(E24+058) 21—y | 2220 dA (65
2A{Qﬁ+%ﬁ> ( ”%ﬁ@Z(&@) 65)




FLEXURAL VIBRATION OF RECTANGULAR PLATES 1 1 3

4.4.2 STRAIGHT-CRESTED FLEXURAL VIBRATION OF
RECTANGULAR PLATES

Equation (54) has a general solution representing flexural vibration taking place simul-
taneously in the x and y directions. However, when certain conditions are imposed, the
problem simplifies and yields closed-form solutions, as discussed next.

Consider straight-crested flexural plate vibrations. If we view plate vibration as system
of standing waves in the plate, then this case can be considered a system of standing
straight-crested flexural waves with the wave crest along the y-axis (Fig. 4.6). Taking the
y-axis along the wave crest yields a y-invariant problem that depends only on x, i.e.,

w(x, vy, 1) = w(x, 1) (straight-crested flexural plate wave) (66)
Equation (66) implies dw/dy = 0, etc. Substitution of Eq. (66) into Eq. (54) yields
Dw"" + phib =0 (67)

where, as before, () represents derivative with respect to the space variable x. Equa-
tion (67) has the same form as the equation for flexural vibration of beams presented in
Chapter 3 (D <> E, ph <> m); hence Eq. (67) has the same general solution

IU(X, [) — Alei(y,.-)H»wt) + Aze—i(y,;x—wt) + A3ey,.—xeimt +A4e—y,.~xeimt (68)

where vy, = w/cg, whereas cg is the flexural wave speed in plates given by

= (p%)mﬂ - (%)mﬁ (©)

Using the half-thickness d = h/2, Eq. (69) becomes

T <3p5d—2v2>)1/4 ve "

Comparing Eq. (69) to the corresponding equation for beams presented in a previous
chapter indicates that the only difference between the flexural wave speed in beams and
plates is the presence of the correction term (1 —v?), which accounts for the additional
constraint (plain strain state) imposed by the plate geometry.

Straight-crested flexural vibrations of a plate are easy to derive mathematically, but
they are not as easy to excite experimentally. For rectangular plates of finite aspect ratio,

M

z

FIGURE 4.6 Straight-crested flexural vibration of a plate.



1 1 4 VIBRATION OF PLATES

a special excitation system should be devised that imposes a plan-parallel motion across
the width such that the standing wave motion propagates only along the length. However,
certain boundary conditions and plate aspect ratio are conductive of being analyzed under
the straight-crested assumption discussed here. If the aspect ratio has an extreme value
that clearly favors one of the dimension (e.g., a length to width ratio of 10 or greater),
then the straight-crested analysis would predict acceptable results, at least for the lower
modes, which will manifest a beam-like behavior. For example, a free strip of plate
material would have the lower frequencies and mode shapes quite acceptably predicted
by an appropriately modified beam theory.

4.4.3 GENERAL FLEXURAL VIBRATION OF RECTANGULAR PLATES

The general flexural vibration of a rectangular plate (Fig. 4.7) is obtained from the
general solution of Eq. (59) subject to specific boundary conditions. Here, we will consider
two specific boundary conditions:

(a) simply supported rectangular plate
(b) free rectangular plate.

4.4.3.1 Flexural Vibration of Simply Supported Rectangular Plates

The problem of flexural vibration of a rectangular plate with all sides simply supported
is quite easy to resolve. The simply supported boundary conditions are

w=0,M,=0 for x=0and x=a

(71)
w=0,M,=0 for y=0andy=»>
Expressing these boundary conditions with the use of Egs. (62) yields
02 02
—w+v—w=0 for x=0and x=a
0x? 0y?
(72)
Pw Tw_o i Oandy=b
Ve—+— = or y=0andy=
ax2  0y? Y Y

Assuming time-harmonic vibrations allows us to separate the space and time dependencies
and express the displacement in the form

w(x, y, ) = W(x, y)e'™ (73)
y y
b 5 %
a
O X

FIGURE 4.7 Coordinates definition for flexural vibration analysis of a free rectangular plate.
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m=1,n=1 m=2,n=1 m=1,n=2 m=2,n=2

N - // \\ //

AN / \\/ NN

N \ \ 4 \

N 0N N N0

AN >< / N

AN ~—~ A NPAN

N 7/

W =Waq W14 =Wyq W15 =Ws1
Ar2=Az Arg=—As Ais=—As1

(b)

FIGURE 4.8 Nodal lines of flexural vibration mode shapes for simply supported rectangular plates:
(a) arbitrary rectangular plate with a > b showing well-separated mode shapes; (b) coincidental frequencies
and associated mode shapes appearing in square plates.

The remaining problem is to find the mode shape w(x, y). Examination of Egs. (71) and
(72) indicates that both would be satisfied by all harmonic functions that have nodes at
the boundaries. Hence, the general solution for flexural vibration of simply supported
plates takes the form

Y sin 2 (74)
a b

w, =A sin

mn mn

where A,,, is the mode shape amplitude. Substitution of the general solution (74) into
Eq. (57) yields
p[(2T) 2 (2) (22) 4 () o prorimo 09)
a a b b P B
Hence, we can write the frequency equation
D [ /mm\2 n\ 2
O =10 [(7) +(5) ] (76)

For each natural frequency, w,,,, one can use Eq. (74) to write the corresponding mode
shape, where the amplitude A,,, would be determined through a normalization process.
Schematics of a few flexural mode shapes of a rectangular plate are given in Fig. 4.8a.
In the case of square plate vibration, for which the dimensions in x and y directions
are identical, certain frequencies will coincide, resulting in combination mode shapes
(Fig. 4.8b).

4.4.3.2 Flexural Vibration of Free Rectangular Plates

The problem of flexural vibration of a free rectangular plate is more difficult to resolve
and does not yield closed-form solutions. The problem has received attention over the
years, and has stirred the interest of Rayleigh (1873) and Ritz (1909). Here, we will
present the solution due to Iguchi (1953) as cited by Leissa (1969).
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Consider again the rectangular plate of Fig. 4.7. The free boundary conditions are
expressed as

1
M,=0,V,=0 for Y::I:Ea

1
M,=0,V,=0 for y=5b 77)

M,, =0 (at corners)

Expressing these boundary conditions with the use of Egs. (62) and (64) yields

P?w  w _ 1
— tv—==0 for X==%+za
ox ay 2
P?w  Pw 1
V—+—=O fOl‘ _=Zl':—b 78
xt 0y ) 7
’w
—— =0 (at corners)
0x0y
o [0*w *w -1
ﬁ[ﬁ‘i‘(Z—V)ﬁ:I:O for X=:|:§d
0 ?w  w 1 7
—|2—v)—+—|=0 for y==4=-b
& [( = ayz] T2

Assuming time-harmonic vibrations allows us to separate the space and time dependencies
and express the displacement in the form

w(x,y, 1) = W(x,y)e (80)
Iguchi (1953) formulated the solution in the form of the series
_ > 1 i 1
W(X,y) =)_X,cosnm E—i—n + > Y, cosmm §+€ (81)
n=0 m=0

where ¢ =X/a and n=7/b. The functions X, and Y,, are expressed in terms of hyperbolic
sines and cosines, i.e.,

coshmA,, & coshmAl & coshmA,& cosh Al &

X — *okk
" " sinh A, " sinh TA%, " sinh ZA,, " sinh TA%,
(82)
cosh g, m cosh A, m cosh mAg,m cosh A, m
V=B — Bt B e — B,
sinh ZAg, sinh ZA%,, sinh 7 Ag,, sinh ZA%
where
. wa® [ph a
)\an,)\anzw/azl’lz:l:/.l,, M=/, o= —
m \V D b
(83)
wb? [ph b
Ao Ao = BmiEupr, pf=—,—, B=-
Bm Bm B m 12 1 77_2 D B a

Further details of the method can be found in Iguchi (1953) or Leissa (1969). The
application of the method yields an infinite characteristic determinant that can be truncated
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Mode shape wa2./ p/D n a, A, A

nodal pattern

/’\\

. N 0 8.51935 - -
// \\ 2 1.00000 2.54147 1.24133
\ | 24.2702 4 0.04225 4.29641 3.67990

N // 6 0.01173 6.20154 5.79145

N 8 0.00494 8.15225 7.84480

\N_/
| T
L 0 -0.11966 - -
L= T~ 2 1.00000 3.23309 1.56615i
! | 63.6870 4 0.03422 4.73844 3.08985
—— 6 0.01065 6.51558 5.43573
! | 8 0.00473 8.39362 7.58598
| |

N s
/ e \\ 0 -8.81714 - -
LN 2 1.00000 4.05046 2.89935/

N P 122.4449 4 -1.19356 5.32975 1.89572
N SN 6 -0.08213 6.95746 4.85734

NN 8 -0.02402 8.74107 7.18288

\_7 N/

_/ -~ ‘o
p \\ 0 -0.07482 - -

TN 2 1.00000 4.59037 3.61545/
o P 168.4888 4 0.44885 5.75078 1.03513/

N 6 0.03590 7.28502 4.35069
i \\ // i 8 0.01347 9.00397 6.85044
\ - /

POIVA NN 0 -8.90424 - -
‘s /N NI .
N 2 1.00000 5.86426 5.18707i
U e 299.9325 4 -0.59521 6.81099 3.79335i
(\’\\ NN 6 -1.39192 8.14998 2.36864
N \\/\’\\/’/ 8 -0.13703 9.71543 5.79745

NS

FIGURE 4.9 Mode shapes and frequencies of free rectangular plates for the case symmetric about
coordinate axes and symmetric about diagonals (Iguchi, 1953).

to a finite order of terms. The eigenvalues of the truncated determinant were found
to converge rapidly with the increasing order of the determinant. Frequencies, modal
patterns, and numerical constants for the mode shapes are presented in Figs. 4.9-4.11.

4.5 FLEXURAL VIBRATION OF CIRCULAR PLATES

To analyze the flexural vibration of circular plates, we change from Cartesian coor-
dinates (x, y, z) to cylindrical coordinates (r, 6, z), as shown in Fig. 4.12. Consider the
circular plate element shown in Fig. 4.13. In cylindrical coordinates, the volume of the
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FIGURE 4.10 Mode shapes and frequencies of free square plates for the case symmetric about
coordinate axes and antisymmetric about diagonals (Iguchi, 1953).

differential element is dV = hy,.r dr d6. The equation of motion is obtained by using the
forces and moments relative to the chosen axis.

4.5.1 FORCE SUMMATION

Newton law of motion in the vertical z direction neglecting second-order terms and
division by rdrd#6, yields the equation relating the transverse forces with the flexural
acceleration ), i.e.,

00, 00,
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FIGURE 4.11

(Iguchi, 1953).

Mode shapes and frequencies of free square plates: (a) antisymmetric about coor-
dinate axes and symmetric about diagonals; (b) antisymmetric about coordinate axes and diagonals
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FIGURE 4.12 Definition of coordinates for flexural vibration analysis of a free circular plate.

FIGURE 4.13 Infinitesimal element of a circular plate undergoing flexural vibrations.

4.5.2 MOMENT SUMMATION
Summating the moments, neglecting second- and third-order terms, and dividing by
rdrd@ gives the moment equation for bending of circular plates
oM, 1M, n M,—M,
or r 06 r

-0,=0 (85)

Classical plate theory (e.g., Ugural, 1999, p. 107) relates the bending and twisting
moments, M,, My, M,,, to the flexural displacement, w, in the form

" b *w N 1 dw N 1 w
= — _— vV —— -
r or? ror r?o6?

[1 ow 10w 62wi|
—-D

M, = (86)

ror 2 00? var2
1 Pw 1 ow
M,=—(1—v)D|-————=—
ro ( V) |: 7'2 aei|

where D =Eh3/12 (1 - v2) is the flexural plate stiffness, as defined by Eq. (51). Similarly,
the shear forces Q,, Q, are related to the flexural displacement, w, in the form

0. = D (Vw)
Vs &)
— _nNn__ 2
Q= Dr a6 (V w)
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where the Laplace operator has the form appropriate to polar coordinates as given in the
Appendix B, i.e.,

2 19 1
PPy (Laplace operator) (88)

The Kelvin—Kirchhoff edge reactions are given by

10M,,
Vr = Qr + - 90
! (89)
aMrG
Vo=0p+ 3
-

The bending and twisting strain energy of a circular plate undergoing flexural vibration
is given by

vty 62w+18w+182w ’
2 | or2  ror r?oe?

Pw (Tow 10w 3 (1ow\)
20-W|—=(~—+=—= )= (-= dA
( V)|:8r2 (r ar—i_r2 802> (8r<r89)):“
where dA = rdrd6. Substitution of Egs. (87) into Eq. (84) yields the equation of motion
(55) in the general form

DV*w+ phib =0 91)

where the biharmonic operator has the form appropriate to polar coordinates, as given in
the Appendix B, i.e.,

V4 — V2 VZ

82+1a+182 82+18+162 (bih ) or)  (92)
=l—=+-——+=-==])|l—=+-—+== iharmonic operator
a2 ror  rra62) \or2  ror r?of? P

Assuming time-harmonic vibration, we separate the space and time dependencies and
express the displacement in the form

w(r, 6, 1) =W(r, §) ' (93)

The remaining problem is to find the space-dependant solution w(r, 0) such that it satisfies
the differential equation (91) and the boundary conditions.
Equation (91) becomes

DV*w — phw*i =0 (94)
Introduce the parameter
4_ Ph
_ 95
V=5 (95)

Hence, Eq. (94) becomes

(V=¥ =0 (96)
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It is convenient to factor Eq. (96) into the form
(V+¥) (VP =y) =0 (97)

By the theory of differential equations, the complete solution to Eq. (97) can be obtained
by superposition of the solutions of the following system of two lower-order differential
equations

(V2+9y)w, =0
(o= %)
We seek the solution of Eq. (91) in the general form
w(r,0)=>_ W,(r)cosnf+ ) W}(r)sinnf (99)
n=0 n=0
Substitution of Eq. (99) into Eq. (98) yields
d2Wl 1 dW, n? )
no = (2 W =0
dr? +r dr (,,2 y) b
(100)
d2 qu 1 szn I’lz > W 0
a2 i \=TY) s

and two other similar equations for W. Egs. (100) are recognized as forms of the Bessel
equation (McLachlan, 1948) having solutions

Wl,, = An‘]n(’yr) + Bn Yn(yr)

(101)
W,, = C,L,(yr)+D,K,(yr)

where J, and Y, are the Bessel functions of the first and second kinds, respectively,
and where I, and K, are the modified Bessel functions of the first and second kinds,
respectively. The coefficients A,, B,, C,, D, are found by the imposition of the boundary
and initial conditions. Similar argument applies for W*. Thus, the general solution of
Eq. (96) is

oo

&)(I’, 0) = Z [An ]11(7r) +Bn Kl(yr)+cl1 111(7r) +Dn Kn(yr)] cosnf
n=0

. (102)
+2_[A, 7. (yr) + B, (yr) + C; 1,(yr) + D, K, (yr)] sin n6
n=0

However, the Bessel functions Y, (yr) and K, (yr) have infinite values at r = 0 and are
discarded (unless the plate has a hole around » = 0, which is not the case considered
here). For solid plates without a central hole, the terms of Eq. (102) involving Y, (yr)
and K, (yr) are discarded because they become unbounded at r = 0. In addition, if the
boundary conditions have some symmetry with respect to at least one diameter, then
the terms in sinn6 are not needed. When these assumptions are employed, Eq. (102)
simplifies, and a typical mode shape has the expression:

w,=1[A,J,(yr)+C,I,(yr)]cosnb (103)

where n =0, 1, ... represents the number of nodal diameters.
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4.5.3 FLEXURAL VIBRATION OF FREE CIRCULAR PLATES

The study of the flexural vibration of free circular plates has a rich history. Poisson
(1829) presented the first study on the vibration of circular plates and calculated the ratio of
the radii of the nodal circles to the radius of the plate when the vibrating plate had no nodal
diameter and only one or two nodal circles. Three boundary conditions were considered:
(a) fixed; (b) simply supported; (c) free. Kirchhoff (1850) extended Poisson’s work for
the vibration of free circular plates and calculated six ratios of the radii when the plate
vibrates with one, two, or three nodal diameters. Airy (1911) presented a comprehensive
treatment of the problem and its relation to the Bessel functions. An extensive treatment
of the natural frequencies and mode shapes was done by Colwell and Hardy (1937).

The boundary conditions for a free circular plate of outer radius a are
M, (a)=0
(104)
V.(a)=0

Substitution of boundary conditions (104) into Eqs. (86) and (89) with the use of Eqgs. (87)
yields the characteristic equation (Airy, 1911)
ML)+ (1= [P0 =, N)] BT )+ =ne? M) = ()]
NLA) + (A=) [NL,(A) = 2L, ()] ML A) + (1= v)n? [A'(A) = 1,(V)]

(105)

where A = ya. Itao and Crandall (1979) performed a comprehensive numerical solution of
eigenvalue roots of the characteristic equation (105) and of the associated mode shapes.
The eigenvalues of Eq. (105) were presented in the form A; ,, where p=0,1,... is the
number of nodal diameters and j = 1,2,... is the number of nodal circles. (The case
j =0 yields a triple root at A = 0 that corresponds to three rigid-body motion modes of
a free plate.) The mode shapes were presented in the form

W, (r.0)=A,,[J],(A; r/a)+C, 1 ,(A; r/a)] cos pb (106)

A sample of values for the eigenvalue A; ,, the mode shape parameter C; ,, and ampli-
tude A;, are given in Table 4.2. Further numerical values can be found in Itao and
Crandall (1979).

TABLE 4.2 Eigenvalue A; ,, the mode shape parameter C; ,, and amplitude A; , for calculating the
flexural vibration of a free circular plate (Itao and Crandall, 1979)

j=0 j=1

4 /\O,p CO.p AO,p /\l.p Cl,p A],p
0 - - - 3.01146 —0.83810E — 01 0.21979E 401
1 - - - 4.52914 —0.19007E — 01 0.38359E + 01
2 2.29391 0.22191E 400 0.36597E +01 5.93654 —0.55654E — 02 0.44282E 4-01
3 3.49913 0.96357E — 01 0.45349E +01 7.27468 —0.18637E — 02 0.49565E +01
4 4.63974 0.45825E — 01 0.53282E +01 8.56611 —0.67890E — 03 0.54458E +01
5 5.74994 0.22796E — 01 0.60587E +01 9.82382 —0.26225E - 03 0.58981E +01
6 6.84169 0.11661E — 01 0.67422E +01 11.05592 —0.10584E — 03 0.63291E 401
7 7.92082 0.60806E — 02 0.73889E +01 12.26783 —0.44198E — 04 0.67401E +01
8 8.99069 0.32162E — 02 0.80058E +01 13.46335 —0.18972E — 04 0.71345E 401
9 10.05343 0.17200E — 02 0.85981E +01 14.64527 —0.83316E — 05 0.75145E +01
10 11.11048 0.92790E — 03 0.91694E +01 15.81570 —0.37296E — 05 0.78820E + 01
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The natural frequencies associated with each eigenvalue and mode shape are calculated
with the formula

D \2 ,
w;,= (pha4) /\jqp (107)
The mode shape amplitudes, A p» Were mass-normalized with the formula
2w a
/ / ph W2 (r, 0)rdrdd = pma®h =m (108)
0 0 ’

where m is the total mass of the plate.
The mode shapes described by Eq. (106) are orthogonal in the sense that

21 a
/ / ph W, W, rdrdo=ms, 5 (109)
0 0

L] P4

where 9, ; is the Kronecker delta (§;; =1 for i = j; and §, ; = 0 otherwise). Explicit
expressions for A; —are obtained by substituting Eq. (106) into Eq. (108). Itao and

Jp

Crandall (1979) give
2 [ []0()‘;,0) + Cj,O 10()\,‘,0)]2 + []6()‘1,0)]2 - [Cj,() [6(/\j,0)]2] for p=0

[Jj (/\j,p) +C} 12(/\1‘,/7)]

pz
E e for p#£0
— [N )] = [ 1))

An alternative form of Eq. (110) could be

-2 _ 2
Aj,p - ) [Jp(/\j,p) +Cip IP(ALI’)] -

(110)

2 —1/2
2 p
1 [Jp (/\j,p) + Cj,p Ip (/\j,p)] - )\T [‘]1% (/\j,p) + CIZI’ IJ%()‘JBP)]

A =— jsp (111)
o V2 2 2
- [‘]1,7()‘121))] - [Cj,p I;?(Aj,p)]

4.54 AXISYMMETRIC FLEXURAL VIBRATION OF CIRCULAR PLATES

Axisymmetric flexural vibration of a circular plate can be understood in terms of
standing circular-crested waves that propagate in a concentric circular pattern from the
center of the plate and reflect at the plate circumference. The problem is #-invariant and
the biharmonic operator simplifies to the form

V- 722 — 82+18 62+16
o S \ar2 ror arz  ror

A 1 9 19

A R T

(biharmonic operator for axial symmetry)

(112)
Hence, Eq. (91) takes the form

D Pw 28w 1 Pw 10w
or*  rord  rror:  r3or

+i— = +——>+phib=0 (113)
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Assume harmonic motion with frequency o, i.e.,
w(r, 1) = w(r)e' (114)

Substitution of Eq. (114) into Eq. (91) yields

DV* — w’*phiv =0 (115)
Define the constant
S %wz or y= (%’)lmﬁ (116)
Substitution of Eq. (116) into Eq. (115) gives
(V=¥ =0 (117)
This can be also expressed as
(V=7) (V+¥) =0 (118)

As the order in which the differentiation is done does not matter, Eq. (118) will be
satisfied when either of the following expression is satisfied:

either (V’4+9?)=0 or (V’'—9*)2=0 (119)

ie.,

Define the substitution

f 2
x= {.W oy (121)
iyr for —y

Upon substitution of Eq. (121) into Eq. (120) and observing that the partial derivatives

are actually simple derivatives as w is function only of the space variable, we get the
Bessel equation of order zero, i.e.,

,d*w dw

X' —+x—

=0 122
dx? dx T (122)

The general solution of Eq. (122) is obtained in terms of Bessel functions, i.e.,
= DJy(x) + EY,(x) + FI,(x) + GK,(x) (123)

where J,(x) and Y,(x) are Bessel functions of first and second kind and order zero,
whereas I,(yr) and K,(yr) are the modified Bessel functions of first and second kind and
order zero. The constants D, E, F, G are to be determined from the initial and boundary
conditions. Substituting x = yr in Eq. (123) yields

w (r) = DJy(yr) + EYy(yr) + Fl,(yr) + GKy(yr) (124)
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However, the Bessel functions Y, (yr) and K,(yr) have infinite values at » = 0 and have

to be discarded (unless the plate has a hole around r = 0, which is not the case considered
here). Hence, Eq. (124) becomes

w (r) = DJy(yr) + FI,(yr) (125)

Using Eq. (125) into Eq. (114) yields the general solution for axisymmetric flexural
vibration of circular plates in the form

w (r, 1) = [Ddy(yr) + Flp(yn] ' (126)
The boundary conditions for a free circular plate of outer radius a are given by

M. (a)=0

V@ -0 (127)

For axisymmetric vibration, Eqs. (86), (87), (89) loose their 6 dependence and simply
become

0’w 1 0w
M =-D|— +v-—

" or? ror
low 0w (128)
My=-D|-—+v—r0
0 |:r or v or? i|
Mré’ =0
0, = D (Vw)
' or (129)
0,=0

where the Laplace operator in polar coordinates for axisymmetric motion has the form

62
V= 52 + P (axisymmetric Laplace operator) (130)

For axisymmetric vibration, the Kelvin—Kirchhoff edge reactions are simply given by

_o—_pl(w
V,=0,= Dar(V w) 131)

V0=Q9=0

Substitution of boundary conditions (127) into Eqgs. (128), (130) and use of Egs. (125),
(126) yields a homogenous algebraic system for calculating the constants D and F.
Nontrivial solutions of the homogenous algebraic system exist if the determinant is zero.
Hence, one gets the characteristic equation

NI (V) + (1 =AJ) AT
NI, (N + (=)L) AL

(132)
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where A = ya. Eq. (132) is a transcendental equation that can be solved numerically.
Upon numerical solution, one finds

A =3.01146, 6.20540, 9.37084, ... (133)

The natural frequencies associated with each eigenvalue and mode shape are calculated

with the formula
D\
w; = (pha“) )\f (134)

For each eigenvalue, A, one finds the corresponding mode shape by calculating the
constants D and F in Eq. (125). However, only the ratio of the constants D and F are
determined through this process; their exact value is determined through a normalization
process. Hence, we write the general expression of the mode shape using an amplitude
A; and a mode shape parameter C;, i.e.,

Wi(r)=A; [JO()\]«r/a) +C; IO()\jr/a)] (135)
The mode shape amplitudes A; are obtained through a mass-normalization process, i.e.,
27 pa
/ / ph sz(r) rdrdf = pma’h =m (136)
o Jo

where m is the total mass of the plate.
The mode shapes described by Eq. (135) are orthogonal in the sense that

2T pa
/0 /0 ph W,W,rdrdf =ms, (137)

where 0, ; is the Kronecker delta (3;; =1 for i = j; and §, ; = O otherwise). Explicit
expressions for A; are obtained by substituting Eq. (135) into Eq. (136), i.e.,

. , / 5 / )] -1/2
Ajzﬁ{[Jo(/\j)‘f'leo(/\j)] —[HN] =6 1)] } (138)

Values of the eigenvalue A;, mode shape parameter C;, and mode shape amplitude A;
are given in Table 4.3. Representative plots of the mode shapes are given in Fig. 4.14.

TABLE 4.3 Eigenvalue A;, the mode shape parameter C;, and amplitude A;
for calculating the axisymmetric flexural vibration of a free circular plate

J A 9 A;

1 3.01146 —0.83810E — 01 2.1979
2 6.20540 0.31191E — 02 3.1389
3 9.37084 —0.12770E — 03 3.8468
4 12.52518 0.53684E — 05 4.4425
5 15.67466 —0.22815E — 06 4.9671
6 18.82161 0.97495¢ — 08 5.4413
7 21.96708 —0.41794E — 09 5.8778
8 25.11160 0.17952E — 10 6.2831
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(@) j=1 (b) j=4 (¢)j=7

FIGURE 4.14 Flexural mode shapes of free circular plate undergoing axisymmetric vibration.

4.6 PROBLEMS AND EXERCISES

1. Find the first, second, and third natural frequencies of in-plane axial vibration of a
circular aluminum plate of thickness 0.8 mm, diameter 100 mm, modulus E = 70 GPa,
Poisson ratio v = 0.33 and density p = 2.7 g/cm®.

2. Find all the natural frequencies in the interval 10kHz to 40kHz of in-plane axial
vibration of a circular aluminum plate of thickness 0.8 mm, diameter 100 mm, modulus
E = 70 GPa, Poisson ratio v = 0.33, and density p = 2.7 g/cm>.

3. Find the first, second, and third natural frequencies of out-of-plane flexural vibration of
a circular plate aluminum of thickness 0.8 mm, diameter 100 mm, modulus E =70 GPa,
Poisson ratio v = 0.33, and density p = 2.7 g/cm>.

4. Find all the natural frequencies in the interval 10 kHz to 40 kHz of out-of-plane flexural
vibration of a circular aluminum plate of thickness 0.8 mm, diameter 100 mm, modulus
E = 70 GPa, Poisson ratio v = 0.33, and density p = 2.7 g/cm>.
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ELASTIC WAVES IN SOLIDS
AND STRUCTURES

5.1 INTRODUCTION

5.1.1 CHAPTER OVERVIEW

This chapter presents a review of elastic wave propagation in elastic media. SHM
methods based on elastic waves propagation are very diverse, and a number of approaches
exist. However, a good understanding of SHM wave propagation methods cannot be
achieved before a fundamental grasp of the basic principles that lay at the foundation of
wave generation and propagation in solid media.

The chapter adopts an incremental step-by-step approach to the description and pre-
sentation of the wave propagation problem, which can become quite complicated in some
cases. The chapter starts with the discussion of the simplest case of wave propagation —
the study of the axial waves propagating in a straight bar. This simple physical example
is used to develop fundamental principles of wave propagation, such as wave equation
and wave speed; d’Alembert (generic) solution and separation of variables (harmonic)
solution; the contrast between wave speed and particle velocity; acoustic impedance of the
medium, and the wave propagation at material interfaces. The concept of standing waves
is introduced, and the correspondence between standing waves and structural vibration is
established. The power and energy associated with wave propagation in a simple bar are
introduced and discussed.

After studying the propagation of simple axial waves in bars, the more complicated
problem of flexural wave propagation in beams is introduced and discussed. The equation
of motion for flexural waves is derived and discussed. The general solution in terms of
propagating and evanescent waves is derived. The dispersive nature of flexural waves is
identified and studied. In this context, the concept of group velocity as different from the
wave speed (a.k.a., phase velocity) is introduced, and its implications on wave propagation
are studied. Power and energy of flexural waves and the energy velocity of dispersive
waves are discussed.

The discussion of wave propagation is next extended to plate waves. Two types are
considered: (1) axial waves in plates and (2) flexural waves in plates. Each case is
discussed separately. The general equations of wave motion are derived. Solutions are
derived for certain selected cases such as straight-crested axial waves; straight-crested
shear waves; circular-crested axial waves; straight-crested flexural waves; circular-crested

129
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flexural waves, etc. The dispersive nature of flexural waves in plates and its connection
to the dispersive nature of flexural waves in beams are identified and discussed.

The last part of this chapter is allotted to the discussion of 3-D waves that appear
in unbounded solids. The general equations of 3-D wave propagation in unbounded
solid media are developed from first principles. The eigenvalues and eigenvectors of the
wave equation are identified. The two corresponding basic wave types, pressure waves
(ak.a., longitudinal waves) and shear waves (a.k.a., transverse waves), are discussed.
Dilatational, rotational, irrotational, and equivolume waves are identified and discussed.
The case of z-invariant wave propagation (plane strain) is presented.

5.1.2 OVERVIEW OF WAVE PROPAGATION THEORY

Waves are disturbances that travel, or propagate, from one region of space to another.
Different types of waves must be studied under the underlying phenomenon. Our objective
is to mode the wave propagation for different types of ultrasonic waves. Table 5.1 shows
some of the waves types possible in elastic solid media.

TABLE 5.1 Waves in elastic solids

Wave type Particle motion, main assumptions

Pressure (a.k.a. longitudinal; compressional;
dilatational; P-waves, axial waves)

Parallel to the direction of wave propagation

Shear (a.k.a., transverse waves; distortional waves;
S-waves)

Perpendicular to the direction of wave propagation

Flexural (a.k.a., bending waves)
Rayleigh (a.k.a., surface acoustic waves, SAW)

Lamb (ak.a., guided plate waves)

Elliptical, plane sections remain plane
Elliptical, amplitude decays quickly with depth

Elliptical, free-surface conditions satisfied at the

upper and lower plate surface

To achieve better understanding of these waves, visualization of the waveforms was
done. Putting the wave equations into mathematics software, the particle displacement as
function of space and time was calculated. The resultant displacement can be shown in
an array of vectors, which is like a snapshot of the particles at that moment. By showing
the snapshots at different times, the propagation of the wave can be animated. The wave
figures in the following sections are part of the result of this effort. Animations of waves
were posted on the Internet at http://www.me.sc.edu/research/lamss/default.htm under the
research section.

5.2 AXIAL WAVES IN BARS

Axial waves in bars are the simplest conceptualization of elastic wave motion. Assume
a uniform bar of axial stiffness FA and mass per unit length m = pA, where p is the
mass density and A is the cross-sectional area (Fig. 5.1a). The length of the bar and
the boundary conditions are, so far, unspecified. However, the bar is considered to be
long and slender. The bar undergoes time-varying axial displacement u(x, 7). Consider
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u(x, t)
--->
(@) E,m —»X
u(x, t)
-
N(x, t) N(x, t) + N'(x, t)dx
— AN
(b) dx
o(x, t) o(x, t)+0'(x, )dx
<+ 'y —
V4
©) dx

FIGURE 5.1 Uniform bar undergoing axial vibration: (a) general schematic; (b) infinitesimal axial
element; (c) thickness-wise stress distribution.

an infinitesimal element, dx, cut out of the bar as shown in Fig. 5.1b. Assume that the
stresses are uniformly distributed across the cross-section A.

5.2.1 WAVE EQUATION

Free body analysis of the infinitesimal element dx shown in Fig. 5.1b yields
N(x, t) + N'(x, t)dx — N(x, 1) = mii(x, t) (1)
where N(x, 1) is the axial load. Upon simplification, we get
N'(x, t)dx = mii(x, 1) ()

The N stress resultant is evaluated by integration across the cross-sectional area of the
direct stress shown in Fig. 5.1c, i.e.,

Nx, 1) = /A o(x, z, )dA 3)
Recall the strain—displacement relation
e=u 4)
and the stress—strain constitutive equation

o=Es (5)
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where E is Young modulus of elasticity. Substitution of Egs. (4) and (5) into Eq. (3)
yields

NCx, 1) = /A Eu (x, 1)dA = EAu'(x, 1) (6)

where EA is the axial stiffness. Differentiation of Eq. (6) with respect to x and substitution
into Eq. (2) yields the equation of motion for axial waves in a bar, i.e.,

EAu" = mii (7
Upon division by m, we get the wave equation, i.e.,
Au' =i (8)

where c¢ is the wave speed in the bar given by

EA EA
c=,— or ¢=-— )
m m

For a uniform bar, we have m = pA. Hence, Eq. (9) simplifies to

E E
C = —_ or C2 = — (10)
P P

Typical values of the wave speed ¢ in various materials are given in Table 5.2.

5.2.2 D’ALEMBERT SOLUTION TO THE WAVE EQUATION

The propagation aspects of the wave motion are highlighted by the d’ Alembert solution.
Recall Eq. (8) in the explicit differentiation format

Pu  u
2 _
e (11)

TABLE 5.2 Wave speed in a bar for several materials

Material 103 m/s 10~*in./s
Aluminum 5.23 20.6
Brass 3.43 13.5
Cadmium 2.39 9.4
Copper 3.58 14.1
Gold 2.03 8.0
Iron 5.18 20.4
Lead 1.14 4.5
Magnesium 4.90 19.3
Nickel 4.75 18.7
Silver 2.64 10.4
Steel 5.06 19.9
Tin 2.72 10.7
Tungsten 4.29 16.9

Zinc 3.81 15.0
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Assume that change of independent variables

E=x—ct n=x+ct (12)
Upon differentiation,
ad d
€ _, m_,
0x ox
(13)
¢ an
— = —C —_— = C
ot ot

Using chain differentiation and the results of Eq. (13), we write

du oudf Oudn Oou  du

ox  ofox  omox & om
(14)
du oudf dudn  u ou

% akw amor . CaE ! Cam
Further differentiation yields, upon simplification,

Pu  u Pu  u

o2 92 T agon o

(15)
0%u u ) 0%u 2(')2u

2
o2t o it
oz~ a2 T agem T o

Substitution of Eq. (15) into Eq. (11) yields, upon simplification,
62
" _o
¢

Equation (16) is integrated with respect to 17 and then with respect to . Integration with
respect to 7 yields

(16)

ou
— =F 17
2= an
where F(£) is a function of £ only. Then, integration of Eq. (17) with respect to ¢ yields
u= [F€)dé+g(n) (18)
Denoting f(¢) = [F(£€)d¢, Eq. (18) is recast in the form

u(§,m) = f(§) +g(n) (19)
Using Eq. (12) to change back to the original variables (x, ¢) gives Eq. (19) the form
u(x, t) = g(x+ct)+ f(x —ct) (20)

The functions f(x — ct) and g(x + ct) in Eq. (20) are single-argument functions of two
variables, x and ¢. To facilitate understanding, the single-argument character of these
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Forward wave

f(x)
( ) (o] t=0
L X
0
f(x—cty) c t=t,
—
| | X
0 X1=¢ch
f(x—cty) c t=t,
—
! ! X
0 Xp=Cly

FIGURE 5.2 Propagation of a forward wave pulse f(x — cr).

functions can be highlighted using a generic arbitrary argument z, and then examine
the functions f(z) and g(z) to understand their shape and form. The actual two-variable
dependence of these functions is recovered by replacing the generic z with the appropriate
expressions of x and ¢, i.e., x — ct to get f(x — ct) or x+ ct to get g(x+ ct).

Equation (20) highlights the propagating-wave character of the solution to the wave
equation. The function f(x — ct) represents a forward propagating wave, whereas the
function g(x + cr) represents a backward propagating wave. This can be easily verified.
Consider, for example, a wave pulse f(x — ct) propagating forward as depicted in Fig. 5.2.
Consider three time instances, 0 < t; < t,, and examine the function f(x — ct) at these
three instances. At t = 0, the function sits at the origin. This is the initial wave. At t =t,,
the peak of the initial wave has moved to the position x; = ct; because for this value,
the argument of the function f(z) is zero, i.e., z; = x; — c¢t, = 0. For t = t,, the wave has
moved even further to the right to position x, = ct,, and so on. This proves that f(x — cr)
propagates in the positive x direction with speed c. For the backward wave g(x + ct), the
same argument applies, only that the wave motion occurs backwards, i.e., to the left.

5.2.3 THE INITIAL VALUE PROBLEM FOR WAVE PROPAGATION

The initial value problem (Cauchy problem) for wave propagation consists in finding
the solution of the wave equation given in Eq. (8) subject to the initial conditions

u(x,0) = uy(x), initial deformed shape of the bar

20

i(x,0) =vy(x), initial velocity of the points along the bar

The general solution (20) will be substituted into the initial conditions (21). Before doing
so, we first notice that

ad
u(x, t) = % [f(x—ct)+g(x—ct)] = —cf'(x—ct) — cg'(x — ct) (22)
Then, substitution of Egs. (20) and (22) into Eq. (21) yields

u(x, 0) = f(x) +8(x) = uy(x) (23)
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and

i(x, 0) = —cf'(x) + cg'(x) = vy (x) (24)

Integration of Eq. (24) with respect to x gives, upon rearrangement,

1) =80 === [ v )ax’ (29)

where b is an arbitrary auxiliary constant and x* is an auxiliary integration variable.
Combining Eqgs. (23) with (25) and changing from x to z yields the expressions of the
single-variable functions f(z) and g(z), i.e.,

1 1 rz
f(2) = zuy(z) — =— | vo(z")dz"
270 2c /b 0 (26)

80 = 3@ + 5 [ v

where z* is an auxiliary integration variable. Substitution of Eq. (26) into Eq. (20) yields

u(x, t) = % [tg(x — ct) +uy(x+ct) ]+ Zic /i+w vo(z¥)dz* (27)

x—ct

In arriving at Eq. (27), we used the integration rule

x—ct x+ct b x+ct x+tct
TR B AR | @)
b b x—ct b x—ct

5.2.4 STRAIN WAVES AND STRESS WAVES

So far, we have discussed the wave phenomenon in terms of u(x, r), which has the
physical meaning of a displacement disturbance propagating along the medium. However,
associated with the same wave phenomenon are strain and stress disturbances. Therefore,
it is beneficial to consider a description of the wave phenomenon in terms of strain e(x, ¢)
and stress o(x, 7).

Recall Eq. (8), i.e.,

Au' =i (29)
Differentiation with respect to x yields
2.0 s
cu" =i (30)

Recall Eq. (4) defining the strain & = u; upon substitution into Eq. (30), we get the strain
wave equation

e =% (31)
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Multiplication of Eq. (31) by E on both sides yields
*Ee’ = E§ (32)
Recalling the strain—strain relation (5), we obtain the stress wave equation
o' =i (33)

We note that both the strain wave equation (31) and the stress wave equation (33)
have exactly the same form as the displacement wave equation (8). The results obtained
for the displacement wave formulation can be directly transferred to the strain wave
formulation and the stress wave formulation. For example, it is apparent from Egs. (8),
(31), and (33) that displacement waves, strain waves, and stress waves travel at exactly
the same speed, c. However, this should not be of any surprise as all three waves are
just different facets of the same physical phenomenon, i.e., a disturbance traveling as an
elastic wave through the medium.

5.2.5 PARTICLE VELOCITY VS. WAVE VELOCITY

We have seen in Table 5.2 that the speed with which the wave disturbance can
propagate through the elastic media is quite large, of the order of several kilometers or
miles per second. However, the question arises about the speed with which the actual
medium moves; the answer to this question is provided by the study of the particle velocity.
Recall that, in the displacement-wave formulation, the displacement u(x, 7) signifies the
physical motion of the particles inside the medium. Then, the speed with which these

particles move, or the particle velocity, is given by i(x, t) = a—tu(x, t). Assume, for the
sake of argument, a generic forward wave of the form

u(x, t) = f(x —ct) (34)
Differentiation with respect to ¢ yields the particle velocity
u(x, t) = —cf'(x —ct) (35)

where f is the derivative of the single-argument function f. On the other hand, the stress
produced by this wave is given by

o(x, 1) =Eu'(x,1) = E%f(x —ct) =Ef'(x—ct) (36)

Combining Egs. (35) and (36) yields the particle velocity in terms of the stress in the
wave, 1.€.,

u(x, 1) = —%O'(X, t) (forward wave) (37)

Equation (37) indicates that the particle velocity for a forward wave has sign opposite to
the wave stress, i.e., a compression wave would impart a forward particle velocity, which
is to be expected. For a backward wave of the form u(x, r) = g(x 4 ct), a similar analysis
yields an expression resembling Eq. (37) but with an opposite sign, i.e.,

u(x, t) = %O'(X, ) (backward wave) (38)
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Example

Given: Consider a steel medium with £ = 207 GPa and wave speed ¢ = 5.1km/s.

Find: Calculate the particle velocity amplitude for a compression wave of amplitude
Opax = —100MPa.

Answer: Use Eq. (37) and write

) c 5.1 x10° p
Upax = = O0max = == 100 x 10° =2.5m/s
E 207 x 10°

It is apparent from this result that although the wave disturbance travels with a mighty
5100 m/s, the velocity of each particle involved in the wave phenomenon does not exceed
a mere 2.5m/s! This numerical example highlights the difference between the wave
speed (representing the speed with which wave information and wave energy propagate)
and the particle velocity (representing the actual motion of the particles involved in the
wave phenomenon). The two physical quantities can be different by orders of magnitude.
Waves can travel at high speeds, while particles in the medium move rather slowly.

5.2.6 ACOUSTIC IMPEDANCE OF THE MEDIUM

The relation between wave stress o(x, ¢) and particle velocity #(x, #) can be described
in terms of the acoustic impedance. Consider again a forward wave u(x, t) = f(x — ct)
and recall Eq. (37), which indicates that the particle velocity amplitude depends not only
on the stress amplitude but also on the ratio ¢/E. Recalling the definition of the wave
speed given by Eq. (10), we write

E 2
¢ ¢
Hence, Eqgs. (37) and (38) can be written as
o(x,t) = —pc-i(x,t) (forward wave)
(40)

o(x,t) =pc-u(x,t) (backward wave)

In terms of the relation between the stress and particle velocity amplitudes, both forms
of Eq. (40) give

O=pc-u (41)

The quantity pc is a characteristic property of the medium called the acoustic impedance.
It signifies how much stress is needed to impart a prescribed velocity to the medium
particles. An often used notation for the acoustic impedance is Z. Alternative forms of
the acoustic impedance that might be encountered are

E
Z=pc=/pE= = (acoustic impedance of the medium) (42)

Hence, the relation between stress and particle velocity amplitudes can be written as

& =7k (43)
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5.2.7 WAVE PROPAGATION AT INTERFACES

If the medium is not infinite, but bounded by interfaces with other media, the problem
arises of how the wave phenomenon interacts with the interface. For exemplification,
consider a wave pulse propagating forward in a bar consisting of two different materials,
(E,, p,) and (E,, p,), interfaced at x = 0, as shown in Fig. 5.3a.

Consideration of the situation at the interface leads as to assume 