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Introduction to the Handbook of Financial
Engineering

John R. Birge
Graduate School of Business, University of Chicago, USA

Vadim Linetsky
Department of Industrial Engineering and Management Sciences, Northwestern University,
USA

Financial engineering (FE) is an interdisciplinary field focusing on applica-
tions of mathematical and statistical modeling and computational technology
to problems in the financial services industry. According to the report by the
National Academy of Engineering (2003),1 “Financial services are the foun-
dation of a modern economy. They provide mechanisms for assigning value,
exchanging payment, and determining and distributing risk, and they provide
the essential underpinnings of global economic activity. The industry provides
the wherewithal for the capital investment that drives innovation and produc-
tivity growth throughout the economy.” Important areas of FE include math-
ematical modeling of market and credit risk, pricing and hedging of derivative
securities used to manage risk, asset allocation and portfolio management.

Market risk is a risk of adverse changes in prices or rates, such as interest
rates, foreign exchange rates, stock prices, and commodity and energy prices.
Credit risk is a risk of default on a bond, loan, lease, pension or any other
type of financial obligation. Modern derivatives markets can be viewed as a
global marketplace for financial risks. The function of derivative markets is
to facilitate financial risk transfer from risk reducers (hedgers) to risk takers
(investors). Organizations wishing to reduce their risk exposure to a particu-
lar type of financial risk, such as the risk of increasing commodity and energy
prices that will make future production more expensive or the risk of increas-
ing interest rates that will make future financing more expensive, can offset
those risks by entering into financial contracts that act as insurance, protecting
the company against adverse market events. While the hedger comes to the
derivatives market to reduce its risk, the counterparty who takes the other side

1 National Academy of Engineering, The Impact of Academic Research on Industrial Performance,
National Academies Press, Washington, DC, 2003, http://www.nap.edu/books/0309089735/html.

3
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of the contract comes to the market to invest in that risk and expects to be ad-
equately compensated for taking the risk. We can thus talk about buying and
selling financial risks.

Global derivatives markets have experienced remarkable growth over the
past several decades. According to a recent survey by the Bank for Interna-
tional Settlement in Basel (2006),2 the aggregate size of the global derivatives
markets went from about $50 trillion in notional amounts in 1995 to $343 tril-
lion in notional amounts by the end of 2005 ($283 trillion in notional amounts
in over-the-counter derivatives contracts and $58 trillion in futures and options
traded on derivatives exchanges worldwide). Major segments of the global
derivatives markets include interest rate derivatives, currency derivatives, eq-
uity derivatives, commodity and energy derivatives, and credit derivatives.

A derivative is a financial contract between two parties that specifies con-
ditions, in particular, dates and the resulting values of underlying variables,
under which payments or payoffs are to be made between parties (payments
can be either in the form of cash or delivery of some specified asset). Call
and put options are basic examples of derivatives used to manage market risk.
A call option is a contract that gives its holder the right to buy some specified
quantity of an underlying asset (for example, a fixed number of shares of stock
of a particular company or a fixed amount of a commodity) at a predetermined
price (called the strike price) on or before a specified date in the future (option
expiration). A put option is a contract that gives its holder the right to sell some
specified quantity of an underlying asset at a predetermined price on or be-
fore expiration. The holder of the option contract locks in the price for future
purchase (in the case of call options) or future sale (in the case of put op-
tions), thus eliminating any price uncertainty or risk, at the cost of paying the
premium to purchase the option. The situation is analogous to insurance con-
tracts that pay pre-agreed amounts in the event of fire, flood, car accident, etc.
In financial options, the payments are based on financial market moves (and
credit events in the case of credit derivatives). Just as in the insurance industry
the key problem is to determine the insurance premium to charge for a policy
based on actuarial assessments of event probabilities, the option-pricing prob-
lem is to determine the premium or option price based on a stochastic model
of the underlying financial variables.

Portfolio optimization problems constitute another major class of impor-
tant problems in financial engineering. Portfolio optimization problems occur
throughout the financial services industry as pension funds, mutual funds, in-
surance companies, university and foundation endowments, and individual
investors all face the fundamental problem of allocating their capital across dif-
ferent securities in order to generate investment returns sufficient to achieve a
particular goal, such as meeting future pension liabilities. These problems are

2 Bank for International Settlement Quarterly Review, June 2006, pp. A103–A108, http://www.bis.org/
publ/qtrpdf/r_qa0606.pdf.
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often very complex owing to their dynamic and stochastic nature, their high
dimensionality, and the complexity of real-world constraints.

The remarkable growth of financial markets over the past decades has been
accompanied by an equally remarkable explosion in financial engineering re-
search. The goals of financial engineering research are to develop empirically
realistic stochastic models describing dynamics of financial risk variables, such
as asset prices, foreign exchange rates, and interest rates, and to develop ana-
lytical, computational and statistical methods and tools to implement the mod-
els and employ them to evaluate financial products used to manage risk and to
optimally allocate investment funds to meet financial goals. As financial mod-
els are stochastic, probability theory and stochastic processes play a central role
in financial engineering. Furthermore, in order to implement financial models,
a wide variety of analytical and computational tools are used, including Monte
Carlo simulation, numerical PDE methods, stochastic dynamic programming,
Fourier methods, spectral methods, etc.

The Handbook is organized in six parts: Introduction, Derivative Securities:
Models and Methods, Interest Rate and Credit Risk Models and Derivatives,
Incomplete Markets, Risk Management, and Portfolio Optimization. This di-
vision is somewhat artificial, as many chapters are equally relevant for several
or even all of these areas. Nevertheless, this structure provides an overview of
the main areas of the field of financial engineering.

A working knowledge of probability theory and stochastic processes is a
prerequisite to reading many of the chapters in the Handbook. Karatzas
and Shreve (1991) and Revuz and Yor (1999) are standard references on
Brownian motion and continuous martingales. Jacod and Shiryaev (2002)
and Protter (2005) are standard references on semimartingale processes with
jumps. Shreve (2004) and Klebaner (2005) provide excellent introductions
to stochastic calculus for finance at a less demanding technical level. For
the financial background at the practical level, excellent overviews of deriv-
atives markets and financial risk management can be found in Hull (2005)
and McDonald (2005). Key texts on asset pricing theory include Bjork (2004),
Duffie (2001), Jeanblanc et al. (2007), and Karatzas and Shreve (2001). These
monographs also contain extensive bibliographies.

In Chapter 1 “A Partial Introduction to Financial Asset Pricing Theory,”
Robert Jarrow and Philip Protter present a concise introduction to Mathe-
matical Finance theory. The reader is first introduced to derivative securities
and the fundamental financial concept of arbitrage in the binomial framework.
The core asset pricing theory is then developed in the general semimartingale
framework, assuming prices of risky assets follow semimartingale processes.
The general fundamental theorems of asset pricing are formulated and illus-
trated on important examples. In particular, the special case when the risky
asset price process is a Markov process is treated in detail, the celebrated
Black–Scholes–Merton model is derived, and a variety of results on pricing
European- and American-style options and more complex derivative securi-
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ties are presented. This chapter summarizes the core of Mathematical Finance
theory and is an essential reading.

Part II “Derivative Securities: Models and Methods,” contains chapters on
a range of topics in derivatives modeling and pricing. The first three chap-
ters survey several important classes of stochastic models used in derivatives
modeling. In Chapter 2 “Jump-Diffusion Models,” Steven Kou surveys recent
developments in option pricing in jump-diffusion models. The chapter dis-
cusses empirical evidence of jumps in financial variables and surveys analytical
and numerical methods for the pricing of European, American, barrier, and
lookback options in jump-diffusion models, with particular attention given to
the jump-diffusion model with a double-exponential jump size distribution due
to its analytical tractability.

In Chapter 3 “Modeling Financial Security Returns Using Levy Processes,”
Liuren Wu surveys a class of models based on time-changed Levy processes.
Applying stochastic time changes to Levy processes randomizes the clock on
which the process runs, thus generating stochastic volatility. If the character-
istic exponent of the underlying Levy process and the Laplace transform of
the time change process are known in closed form, then the pricing of op-
tions can be accomplished by inverting the Fourier transform, which can be
done efficiently using the fast Fourier transform (FFT) algorithm. The com-
bination of this analytical and computational tractability and the richness of
possible process behaviors (continuous dynamics, as well as jumps of finite ac-
tivity or infinite activity) make this class of models attractive for a wide range
of financial engineering applications. This chapter surveys both the theory and
empirical results.

In Chapter 4 “Pricing with Wishart Risk Factors,” Christian Gourieroux and
Razvan Sufana survey asset pricing based on risk factors that follow a Wishart
process. The class of Wishart models can be thought of as multi-factor exten-
sions of affine stochastic volatility models, which model a stochastic variance-
covariance matrix as a matrix-valued stochastic process. As for the standard
affine processes, the conditional Laplace transforms can be derived in closed
form for Wishart processes. This chapter surveys Wishart processes and their
applications to building a wide range of multi-variate models of asset prices
with stochastic volatilities and correlations, multi-factor interest rate models,
and credit risk models, both in discrete and in continuous time.

In Chapter 5 “Volatility,” Federico Bandi and Jeff Russell survey the state
of the literature on estimating asset price volatility. They provide a unified
framework to understand recent advances in volatility estimation by virtue of
microstructure noise contaminated asset price data and transaction cost evalu-
ation. The emphasis is on recently proposed identification procedures that rely
on asset price data sampled at high frequency. Volatility is the key factor that
determines option prices, and, as such, better understanding of volatility is of
key interest in options pricing.

In Chapter 6 “Spectral Methods in Derivatives Pricing,” Vadim Linetsky
surveys a problem of valuing a (possibly defaultable) derivative asset contin-
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gent on the underlying economic state modeled as a Markov process. To gain
analytical and computational tractability both in order to estimate the model
from empirical data and to compute the prices of derivative assets, financial
models in applications are often Markovian. In applications, it is important to
have a tool kit of analytically tractable Markov processes with known transition
semigroups that lead to closed-form expressions for prices of derivative assets.
The spectral expansion method is a powerful approach to generate analytical
solutions for Markovian problems. This chapter surveys the spectral method
in general, as well as those classes of Markov processes for which the spectral
representation can be obtained in closed form, thus generating closed form
solutions to Markovian derivative pricing problems.

When underlying financial variables follow a Markov jump-diffusion process,
the value function of a derivative security satisfies a partial integro-differential
equation (PIDE) for European-style exercise or a partial integro-differential
variational inequality (PIDVI) for American-style exercise. Unless the Markov
process has a special structure (as discussed in Chapter 6), analytical solu-
tions are generally not available, and it is necessary to solve the PIDE or the
PIDVI numerically. In Chapter 7 “Variational Methods in Derivatives Pricing,”
Liming Feng, Pavlo Kovalov, Vadim Linetsky and Michael Marcozzi survey a
computational method for the valuation of options in jump-diffusion models
based on converting the PIDE or PIDVI to a variational (weak) form, dis-
cretizing the weak formulation spatially by the Galerkin finite element method
to obtain a system of ODEs, and integrating the resulting system of ODEs in
time.

In Chapter 8 “Discrete Path-Dependent Options,” Steven Kou surveys re-
cent advances in the development of methods to price discrete path-dependent
options, such as discrete barrier and lookback options that sample the mini-
mum or maximum of the asset price process at discrete time intervals, including
discrete barrier and lookback options. A wide array of option pricing methods
are surveyed, including convolution methods, asymptotic expansion methods,
and methods based on Laplace, Hilbert and fast Gauss transforms.

Part III surveys interest rate and credit risk models and derivatives. In Chap-
ter 9 “Topics in Interest Rate Theory” Tomas Bjork surveys modern interest
rate theory. The chapter surveys both the classical material on the Heath–
Jarrow–Morton forward rate modeling framework and on the LIBOR market
models popular in market practice, as well as a range of recent advances in the
interest rate modeling literature, including the geometric interest rate theory
(issues of consistency and existence of finite-dimensional state space realiza-
tions), and potentials and positive interest models.

Chapters 10 and 11 survey the state-of-the-art in modeling portfolio credit
risk and multi-name credit derivatives. In Chapter 10 “Computational Aspects
of Credit Risk,” Paul Glasserman surveys modeling and computational issues
associated with portfolio credit risk. A particular focus is on the problem of
calculating the loss distribution of a portfolio of credit risky assets, such as cor-
porate bonds or loans. The chapter surveys models of dependence, including
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structural credit risk models, copula models, the mixed Poisson model, and as-
sociated computational techniques, including recursive convolution, transform
inversion, saddlepoint approximation, and importance sampling for Monte
Carlo simulation.

In Chapter 11 “Valuation of Basket Credit Derivatives in the Credit Migra-
tions Environment,” Tomasz Bielecki, Stephane Crepey, Monique Jeanblanc
and Marek Rutkowski present methods to value and hedge basket credit deriv-
atives (such as collateralized debt obligations (CDO) tranches and nth to de-
fault swaps) and portfolios of credit risky debt. The chapter presents methods
for modeling dependent credit migrations of obligors among credit classes and,
in particular, dependent defaults. The focus is on specific classes of Markovian
models for which computations can be carried out.

Part IV surveys incomplete markets theory and applications. In incomplete
markets, dynamic hedging and perfect replication of derivative securities break
down and derivatives are no longer redundant assets that can be manufac-
tured via dynamic trading in the underlying primary securities. In Chapter 12
“Incomplete Markets,” Jeremy Staum surveys, compares and contrasts many
proposed approaches to pricing and hedging derivative securities in incom-
plete markets, from the perspective of an over-the-counter derivatives market
maker operating in an incomplete market. The chapter discusses a wide range
of methods, including indifference pricing, good deal bounds, marginal pricing,
and minimum-distance pricing measures.

In Chapter 13 “Option Pricing: Real and Risk-Neutral Distributions,”
George Constantinides, Jens Jackwerth, and Stylianos Perrakis examine the
pricing of options in incomplete and imperfect markets in which dynamic trad-
ing breaks down either because the market is incomplete or because it is im-
perfect due to trading costs, or both. Market incompleteness renders the risk-
neutral probability measure nonunique and allows one to determine option
prices only within some lower and upper bounds. Moreover, in the presence
of trading costs, the dynamic replicating strategy does not exist. The authors
examine modifications of the theory required to accommodate incompleteness
and trading costs, survey testable implications of the theory for option prices,
and survey empirical evidence in equity options markets.

In Chapter 14 “Total Risk Minimization Using Monte Carlo Simulation,”
Thomas Coleman, Yuying Li, and Maria-Cristina Patron study options hedging
strategies in incomplete markets. While in an incomplete market it is generally
impossible to replicate an option exactly, total risk minimization chooses an
optimal self-financing strategy that best approximates the option payoff by its
terminal value. Total risk minimization is a computationally challenging dy-
namic stochastic programming problem. This chapter presents computational
approaches to tackle this problem.

In Chapter 15 “Queueing Theoretic Approaches to Financial Price Fluc-
tuations,” Erhan Bayraktar, Ulrich Horst, and Ronnie Sircar survey recent
research on agent-based market microstructure models. These models of fi-
nancial prices are based on queueing-type models of order flows and are ca-
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pable of explaining many stylized features of empirical data, such as herding
behavior, volatility clustering, and fat tailed return distributions. In particular,
the chapter examines models of investor inertia, providing a link with behav-
ioral finance.

Part V “Risk Management” contains chapters concerned with risk mea-
surement and its application to capital allocation, liquidity risk, and actuarial
risk. In Chapter 16 “Economic Credit Capital Allocation and Risk Contribu-
tions,” Helmut Mausser and Dan Rosen provide a practical overview of risk
measurement and management process, and in particular the measurement of
economic capital (EC) contributions and their application to capital allocation.
EC acts as a buffer for financial institutions to absorb large unexpected losses,
thereby protecting depositors and other claim holders. Once the amount of EC
has been determined, it must be allocated among the various components of
the portfolio (e.g., business units, obligors, individual transactions). This chap-
ter provides an overview of the process of risk measurement, its statistical and
computational challenges, and its application to the process of risk manage-
ment and capital allocation for financial institutions.

In Chapter 17 “Liquidity Risk and Option Pricing Theory,” Robert Jarrow
and Phillip Protter survey recent research advances in modeling liquidity risk
and including it into asset pricing theory. Classical asset pricing theory assumes
that investors’ trades have no impact on the prices paid or received. In real-
ity, there is a quantity impact on prices. The authors show how to extend the
classical arbitrage pricing theory and, in particular, the fundamental theorems
of asset pricing, to include liquidity risk. This is accomplished by studying an
economy where the security’s price depends on the trade size. An analysis of
the theory and applications to market data are presented.

In Chapter 18 “Financial Engineering: Applications in Insurance,” Phelim
Boyle and Mary Hardy provide an introduction to the insurance area, the old-
est branch of risk management, and survey financial engineering applications
in insurance. The authors compare the actuarial and financial engineering
approaches to risk assessment and focus on the life insurance applications
in particular. Life insurance products often include an embedded investment
component, and thus require the merging of actuarial and financial risk man-
agement tools of analysis.

Part VI is devoted to portfolio optimization. In Chapter 19 “Dynamic Port-
folio Choice and Risk Aversion,” Costis Skiadas surveys optimal consumption
and portfolio choice theory, with the emphasis on the modeling of risk aversion
given a stochastic investment opportunity set. Dynamic portfolio choice the-
ory was pioneered in Merton’s seminal work, who assumed that the investor
maximizes time-additive expected utility and approached the problem using
the Hamilton–Jacobi–Bellman equation of optimal control theory. This chap-
ter presents a modern exposition of dynamic portfolio choice theory from a
more advanced perspective of recursive utility. The mathematical tools include
backward stochastic differential equations (BSDE) and forward–backward sto-
chastic differential equations (FBSDE).
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In Chapter 20 “Optimization Methods in Dynamic Portfolio Management,”
John Birge describes optimization algorithms and approximations that apply
to dynamic discrete-time portfolio models including consumption-investment
problems, asset-liability management, and dynamic hedging policy design. The
chapter develops an overall structure to the many methods that have been
proposed by interpreting them in terms of the form of approximation used to
obtain tractable models and solutions. The chapter includes the relevant algo-
rithms associated with the approximations and the role that portfolio problem
structure plays in enabling efficient implementation.

In Chapter 21 “Simulation Methods for Optimal Portfolios,” Jerome De-
temple, Rene Garcia and Marcel Rindisbacher survey and compare Monte
Carlo simulation methods that have recently been proposed for the compu-
tation of optimal portfolio policies. Monte Carlo simulation is the approach
of choice for high-dimensional problems with large number of underlying vari-
ables. Simulation methods have recently emerged as natural candidates for
the numerical implementation of optimal portfolio rules in high-dimensional
portfolio choice models. The approaches surveyed include the Monte Carlo
Malliavin derivative method, the Monte Carlo covariation method, the Monte
Carlo regression method, and the Monte Carlo finite difference method. The
mathematical tools include Malliavin’s stochastic calculus of variations, a brief
survey of which is included in the chapter.

In Chapter 22 “Duality Theory and Approximate Dynamic Programming
for Pricing American Options and Portfolio Optimization,” Martin Haugh and
Leonid Kogan describe how duality and approximate dynamic programming
can be applied to construct approximate solutions to American option pric-
ing and portfolio optimization problems when the underlying state space is
high-dimensional. While it has long been recognized that simulation is an in-
dispensable tool in financial engineering, it is only recently that simulation has
begun to play an important role in control problems in financial engineering.
This chapter surveys recent advances in applying simulation to solve optimal
stopping and portfolio optimization problems.

In Chapter 23 “Asset Allocation with Multivariate Non-Gaussian Returns,”
Dilip Madan and Ju-Yi Yen consider a problem of optimal investment in assets
with non-Gaussian returns. They present and back test an asset allocation pro-
cedure that accounts for higher moments in investment returns. The procedure
is made computationally efficient by employing a signal processing technique
known as independent component analysis (ICA) to identify long-tailed inde-
pendent components in the vector of asset returns. The multivariate portfolio
allocation problem is then reduced to univariate problems of component in-
vestment. They further assume that the ICs follow the variance gamma (VG)
Levy processes and build a multivariate VG portfolio and analyze empirical
results of the optimal investment strategy in this setting and compare it with
the classical mean–variance Gaussian setting.

In Chapter 24 “Large Deviation Techniques and Financial Applications,”
Phelim Boyle, Shui Feng and Weidong Tian survey recent applications of large
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deviation techniques in portfolio management (establishing portfolio selection
criteria, construction of performance indexes), risk management (estimation
of large credit portfolio losses that occur in the tail of the distribution), Monte
Carlo simulation to better simulate rare events for risk management and as-
set pricing, and incomplete markets models (estimation of the distance of an
incomplete model to a benchmark complete model). A brief survey of the
mathematics of large deviations is included in the chapter.

A number of important topics that have recently been extensively surveyed
elsewhere were not included in the Handbook. Statistical estimation of sto-
chastic models in finance is an important area that has received limited at-
tention in this volume, with the exception of the focused chapter on volatility.
Recent advances in this area are surveyed in the forthcoming Handbook of
Financial Econometrics edited by Ait-Sahalia and Hansen (2007). In the cov-
erage of credit risk the Handbook is limited to surveying recent advances in
multi-name credit portfolios and derivatives in Chapters 10 and 11, leaving
out single-name credit models. The latter have recently been extensively sur-
veyed in monographs Bielecki and Rutkowski (2002), Duffie and Singleton
(2003), and Lando (2004). The coverage of Monte Carlo simulation meth-
ods is limited to applications to multi-name credit portfolios in Chapter 10,
to hedging in incomplete markets in Chapter 14, and to portfolio optimiza-
tion in Chapters 21 and 22. Monte Carlo simulation applications in derivatives
valuation have recently been surveyed by Glasserman (2004). Our coverage
of risk measurement and risk management is limited to Chapters 16, 17 and
18 on economic capital allocation, liquidity risk, and insurance risk, respec-
tively. We refer the reader to the recently published monograph McNeil et
al. (2005) for extensive treatments of Value-at-Risk and related topics. Mod-
eling energy and commodity markets and derivatives is an important area of
financial engineering not covered in the Handbook. We refer the reader to the
recent monographs by Eydeland and Wolyniec (2002) and Geman (2005) for
extensive surveys of energy and commodity markets.
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Abstract

We present an introduction to Mathematical Finance Theory, covering the basic is-
sues as well as some selected special topics.

1 Introduction

Stock markets date back to at least 1531, when one was started in Antwerp,
Belgium.1 Today there are over 150 stock exchanges (see Wall Street Journal,
2000). The mathematical modeling of such markets however, came hundreds
of years after Antwerp, and it was embroiled in controversy at its beginnings.
The first attempt known to the authors to model the stock market using prob-
ability is due to L. Bachelier in Paris about 1900. Bachelier’s model was his
thesis, and it met with disfavor in the Paris mathematics community, mostly
because the topic was not thought worthy of study. Nevertheless we now real-
ize that Bachelier essentially modeled Brownian motion five years before the
1905 paper of Einstein [albeit twenty years after T.N. Thiele of Copenhagen
(Hald, 1981)] and of course decades before Kolmogorov gave mathematical
legitimacy to the subject of probability theory. Poincaré was hostile to Bache-
lier’s thesis, remarking that his thesis topic was “somewhat remote from those
our candidates are in the habit of treating” and Bachelier ended up spending
his career in Besançon, far from the French capital. His work was then ignored
and forgotten for some time.

† Supported in part by NSF grant DMS-0202958 and NSA grant MDA-904-03-1-0092
1 For a more serious history than this thumbnail sketch, we refer the reader to the recent article (Jarrow
and Protter, 2004).
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Following work by Cowles, Kendall and Osborne, it was the renowned statis-
tician Savage who re-discovered Bachelier’s work in the 1950’s, and he alerted
Paul Samuelson (see Bernstein, 1992, pp. 22–23). Samuelson further devel-
oped Bachelier’s model to include stock prices that evolved according to a
geometric Brownian motion, and thus (for example) always remained posi-
tive. This built on the earlier observations of Cowles and others that it was the
increments of the logarithms of the prices that behaved independently.

The development of financial asset pricing theory over the 35 years since
Samuelson’s 1965 article (Samuelson, 1965) has been intertwined with the
development of the theory of stochastic integration. A key breakthrough oc-
curred in the early 1970’s when Black, Scholes, and Merton (Black and Scholes,
1973; Merton, 1973) proposed a method to price European options via an ex-
plicit formula. In doing this they made use of the Itô stochastic calculus and
the Markov property of diffusions in key ways. The work of Black, Merton,
and Scholes brought order to a rather chaotic situation, where the previous
pricing of options had been done by intuition about ill defined market forces.
Shortly after the work of Black, Merton, and Scholes, the theory of stochas-
tic integration for semimartingales (and not just Itô processes) was developed
in the 1970’s and 1980’s, mostly in France, due in large part to P.A. Meyer of
Strasbourg and his collaborators. These advances in the theory of stochastic
integration were combined with the work of Black, Scholes, and Merton to
further advance the theory, by Harrison and Kreps (1979) and Harrison and
Pliska (1981) in seminal articles published in 1979 and 1980. In particular they
established a connection between complete markets and martingale represen-
tation. Much has happened in the intervening two decades, and the subject
has attracted the interest and curiosity of a large number of researchers and
of course practitioners. The interweaving of finance and stochastic integration
continues today. This article has the hope of introducing researchers to the
subject at more or less its current state, for the special topics addressed here.
We take an abstract approach, attempting to introduce simplifying hypotheses
as needed, and we signal when we do so. In this way it is hoped that the reader
can see the underlying structure of the theory.

The subject is much larger than the topics of this article, and there are sev-
eral books that treat the subject in some detail (e.g., Duffie, 2001; Karatzas
and Shreve, 1998; Musiela and Rutkowski, 1997; Shiryaev, 1999), including the
new lovely book by Shreve (2004). Indeed, the reader is sometimes referred to
books such as (Duffie, 2001) to find more details for certain topics. Otherwise
references are provided for the relevant papers.

2 Introduction to derivatives and arbitrage

Let S = (St)0�t�T represent the (nonnegative) price process of a risky as-
set (e.g., the price of a stock, a commodity such as “pork bellies,” a currency
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exchange rate, etc.). The present is often thought of as time t = 0. One is in-
terested in the unknown price at some future time T , and thus ST constitutes
a “risk.” For example, if an American company contracts at time t = 0 to de-
liver machine parts to Germany at time T , then the unknown price of Euros at
time T (in dollars) constitutes a risk for that company. In order to reduce this
risk, one may use “derivatives”: one can purchase – at time t = 0 – the right
to buy Euros at time T at a price that is fixed at time 0, and which is called
the “strike price.” If the price of Euros is higher at time T , then one exercises
this right to buy the Euros, and the risk is removed. This is one example of a
derivative, called a call option.

A derivative is any financial security whose value is derived from the price
of another asset, financial security, or commodity. For example, the call option
just described is a derivative because its value is derived from the value of the
underlying Euro. In fact, almost all traded financial securities can be viewed
as derivatives.2 Returning to the call option with strike price K, its payoff at
time T can be represented mathematically as

C = (ST −K)+

where x+ = max(x� 0). Analogously, the payoff to a put option with strike
price K at time T is

P = (K − ST )
+

and this corresponds to the right to sell the security at price K at time T . These
are two simple examples of derivatives, called a European call option and Eu-
ropean put option, respectively. They are clearly related, and we have

ST −K = (ST −K)+ − (K − ST )
+�

This simple equality leads to a relationship between the price of a call option
and the price of a put option known as put–call parity. We return to this in
Section 3.7.

We can also use these two simple options as building blocks for more com-
plicated derivatives. For example, if

V = max(K� ST )

then

V = ST + (K − ST )
+ = K + (ST −K)+�

2 A fun exercise is to try to think of a financial security whose value does not depend on the price of
some other asset or commodity. An example is a precious metal itself, like gold, trading as a commodity.
But, gold stocks are a derivative as well as gold futures!
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More generally, if f : R+ → R+ is convex then we can use the well-known
representation

(1)f (x) = f (0)+ f ′+(0)x+
∞∫

0

(x− y)+μ(dy)�

where f ′+(x) is the right continuous version of the (mathematical) derivative
of f , and μ is a positive measure on R with μ = f ′′, where the mathematical
derivative is in the generalized function sense. In this case if

V = f (ST )

is our financial derivative, then V is effectively a portfolio consisting of a con-
tinuum of European call options, using (1) (see Brown and Ross, 1991):

V = f (0)+ f ′+(0)ST +
∞∫

0

(ST −K)+μ (dK)�

For the derivatives discussed so far, the derivative’s time T value is a random
variable of the form V = f (ST ), that is, a function of the value of S at one fixed
and prescribed time T . One can also consider derivatives of the form

V = F(S)T = F(St; 0 � t � T)

which are functionals of the paths of S. For example if S has càdlàg paths
(càdlàg is a French acronym for “right continuous with left limits”) then
F :D → R+, where D is the space of functions f : [0� T ] → R+ which are
right continuous with left limits.

If the derivative’s value depends on a decision of its holder at only the ex-
piration time T , then they are considered to be of the European type, although
their analysis for pricing and hedging is more difficult than for simple Euro-
pean call and put options. The decision in the case of a call or put option is
whether to exercise the right to buy or sell, respectively.3 Hence, such deci-
sions are often referred to as exercise decisions.

An American type derivative is one in which the holder has a decision to
make with respect to the security at any time before or at the expiration time.
For example, an American call option allows the holder to buy the security at a
striking price K not only at time T (as is the case for a European call option),
but at any time between times t = 0 and time T . (It is this type of option that
is listed, for example, in the “Listed Options Quotations” in the Wall Street
Journal.) Deciding when to exercise such an option is complicated. A strategy
for exercising an American call option can be represented mathematically by

3 This decision is explicitly represented by the maximum operator in the payoff of the call and put
options.
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a stopping rule τ. (That is, if F = (Ft)t�0 is the underlying filtration of S then
{τ � t} ∈ Ft for each t� 0 � t � T .) For a given τ, the American call’s payoff
at time τ(ω) is

C(ω) = (
Sτ(ω)(ω)−K

)+
�

We now turn to the pricing of derivatives. Let C be a random variable in FT

representing the time T payoff to a derivative. Let Vt be its value (or price) at
time t. What then is V0? From a traditional point of view based on an analysis
of fair (gambling) games, classical probability tells us that4

(2)V0 = E{C}�
One should pay the expected payoff of participating in the gamble. But, one
should also discount for the time value of money (the interest forgone or
earned) and assuming a fixed spot interest rate r, one would have

(3)V0 = E

{
C

(1 + r)T

}
instead of (2). Surprisingly, this value is not correct, because it ignores the
impact of risk aversion on the part of the purchaser. For simplicity, we will
take r = 0 and then show why the obvious price given in (2) does not work (!).

Let us consider a simple binary example. At time t = 0, 1 Euro = $1.15. We
assume at time t = T that the Euro will be worth either $0.75 or $1.45. Let the
probability that it goes up to $1.45 be p and the probability that it goes down
be 1 − p.

Consider a European call option with exercise price K = $1�15. That is,
C = (ST−$1�15)+, where S = (St)0�t�T is the price of one Euro in US dollars.
The classical rules for calculating probabilities dating back to Huygens and
Bernoulli give a fair price of C as

E{C} = (1�45 − 1�15)p = (0�30)p�

For example if p = 1/2 we get V0 = 0�15.
The Black–Scholes method5 for calculating the option’s price, however, is

quite different. We first replacepwith a new probabilityp∗ that (in the absence
of interest rates) makes the security price S = (St)t=0�T a martingale. Since
this is a two-step process, we need only to choose p∗ so that S has a constant
expectation under P∗, the probability measure implied by the choice of p∗. Since

4 This assumes, implicitly, that there are no intermediate cash flows from holding the derivative security.
5 The “Black–Scholes method” dates back to the fundamental and seminal articles (Black and Scholes,
1973) and (Merton, 1973) of 1973, where partial differential equations were used; the ideas implicit
in that (and subsequent) articles are now referred to as the Black–Scholes methods. More correctly, it
should be called the Black–Merton–Scholes method. M.S. Scholes and R. Merton received the Nobel
prize in economics for (Black and Scholes, 1973; Merton, 1973), and related work. (F. Black died and
was not able to share in the prize.)
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S0 = 1�15, we need

(4)E∗{ST } = 1�45p∗ + (1 − p∗)0�75 = 1�15�

where E∗ denotes mathematical expectation with respect to the probability
measure P∗ given by P∗(Euro = $1�45 at time T) = p∗, and P∗(Euro =
$0�75 at time T) = 1 − p∗. Solving for p∗ gives

p∗ = 4/7�

We get now

V0 = E∗{C} = (0�30)p∗ = 6
35

� 0�17�

The change from p to p∗ seems arbitrary. But, there is an economics argument
to justify it. This is where the economics concept of no arbitrage opportunities
changes the usual intuition dating back to the 16th and 17th centuries.

Suppose, for example, at time t = 0 you sell the call option, giving the buyer
of the option the right to purchase 1 Euro at time T for $1.15. He then gives
you the price v(C) of the option. Again we assume r = 0, so there is no cost to
borrow money. You can then follow a safety strategy to prepare for the option
you sold, as follows (calculations are to two decimal places):

Action at time t = 0 Result
Sell the option at price v(C) +v(C)
Borrow $ 9

28 +0�32
Buy 3

7 euros at $1.15 −0�49

The balance at time t = 0 is v(C)− 0�17.

At time T there are two possibilities:
What happens to the euro Result
The euro has risen:
Option is exercised −0�30
Sell 3

7 euros at $1.45 +0�62
Pay back loan −0�32
End balance: 0
The euro has fallen:
Option is worthless 0
Sell 3

7 euros at $0.75 +0�32
Pay back loan −0�32
End balance: 0

Since the balance at time T is zero in both cases, the balance at time 0 should
also be 0; therefore we must have v(C) = 0�17. Indeed any price other than
v(C) = 0�17 would allow either the option seller or buyer to make a sure profit
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Fig. 1. Binary schematic.

without any risk. Such a sure profit with no risk is called an arbitrage opportunity
in economics, and it is a standard assumption that such opportunities do not
exist. (Of course if they were to exist, market forces would, in theory, quickly
eliminate them.)

Thus we see that – at least in the case of this simple example – that the “no
arbitrage price” of the derivativeC is notE{C}, but rather it must beE∗{C}. We
emphasize that this is contrary to our standard intuition based on fair games,
since P is the probability measure governing the true laws of chance of the
security, while P∗ is an artificial construct.

Remark 1 (Heuristic Explanation). We offer two comments here. The first is
that the change of probability measures from P to P∗ is done with the goal of
keeping the expectation constant. (See Equation (4).) It is this property of con-
stant expectation of the price process which excludes the possibility of arbitrage
opportunities, when the price of the derivative is chosen to be the expectation
under P∗. Since one can have many different types of processes with constant
expectation, one can ask: what is the connection to martingales? The answer
is that a necessary and sufficient condition for a process M = (Mt)t�0 to be a
uniformly martingale is that E(Mτ) = E(M0) for every stopping time τ. The
key here is that it is required for every stopping time, and not just for fixed
times. In words, the price process must have constant expectation at all ran-
dom times (stopping times) under a measure P∗ in order for the expectation
of the contingent claim under P∗ to be an arbitrage free price of the claim.

The second comment refers to Figure 1 (binary schematic). Intuition tells us
that as p ↗ 1, that the price of a call or put option must change, since as it be-
comes almost certain that the price will go up, the call might be worth less (or
more) to the purchaser. And yet our no arbitrage argument tells us that it can-
not, and that p∗ is fixed for all p, 0 < p < 1. How can this be? An economics
explanation is that if one lets p increase to 1, one is implicitly perverting the



20 R.A. Jarrow and P. Protter

economy. In essence, this perversion of the economy a fortiori reflects changes
in participants’ levels of risk aversion. If the price can change to only two prices,
and it is near certain to go up, how can we keep the current price fixed at $1.15?
Certainly this change in perceived probabilities should affect the current price
too. In order to increasep towards 1 and simultaneously keep the current price
fixed at $1.15, we are forced to assume that people’s behavior has changed, and
either they are very averse to even a small potential loss (the price going down
to $0.75), or they now value much less the near certain potential price increase
to $1.45.

This simple binary example can do more than illustrate the idea of using the
lack of arbitrage to determine a price. We can also use it to approximate some
continuous time models for the evolution of an asset’s price. We let the time
interval become small (�t), and we let the binomial model already described
become a recombinant tree, which moves up or down to a neighboring node
at each time “tick” �t. For an actual time “tick” of interest of length say δ, we
can have the price go to 2n possible values for a given n, by choosing �t small
enough in relation to n and δ. Thus for example if the continuous time process
follows geometric Brownian motion:

dSt = σSt dBt + μSt dt

(as is often assumed in practice); and if the security price process S has value
St = s, then it will move up or down at the next tick �t to

s exp(μ�t + σ
√
�t ) if up; s exp(μ�t − σ

√
�t ) if down;

with p being the probability of going up or down (here take p = 1
2 ). Thus for

a time t, if n = t
�t , we get

Snt = S0 exp
(
μt + σ

√
t

(
2Xn − n√

n

))
�

where Xn counts the number of jumps up. By the central limit theorem Snt
converges, as n tends to infinity, to a log normal process S = (St)t�0; that is,
log St has a normal distribution with mean log(S0 + μt) and variance σ2t.

Next we use the absence of arbitrage to change p from 1
2 to p∗. We find p∗

by requiring that E∗{St} = E∗{S0}, and we get p∗ approximately equal to

p∗ = 1
2

(
1 −√

�t

(
μ+ 1

2σ
2

σ

))
�

Thus under P∗, Xn is still binomial, but now it has mean np∗ and variance
np∗(1 − p∗). Therefore

( 2Xn−n√
n

)
has mean −√

t(μ + 1
2σ

2)/σ and a variance
which converges to 1 asymptotically. The central limit theorem now implies
that St converges as n tends to infinity to a log normal distribution: log St has
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mean log S0 − 1
2σ

2t and variance σ2t. Thus

St = S0 exp
(
σ
√
tZ − 1

2
σ2t

)
�

where Z is N(0� 1) under P∗. This is known as the “binomial approximation.”
The binomial approximation can be further used to derive the Black–Scholes
equations, by taking limits, leading to simple formulas in the continuous case.
(We present these formulas in Section 3.10.) A simple derivation can be found
in Cox et al. (1979) or in Duffie (2001, Chapter 12B, pp. 294–299).

3 The core of the theory

3.1 Basic definitions

Throughout this section we will assume that we are given an underly-
ing probability space (Ω�F�F� P), where F = (Ft)t�0. We further assume
Fs ⊂ Ft if s < t; F0 contains all the P-null sets of F ; and also that⋂

s>tFs ≡ Ft+ = Ft by hypothesis. This last property is called the right conti-
nuity of the filtration. These hypotheses, taken together, are known as the usual
hypotheses. (When the usual hypotheses hold, one knows that every martingale
has a version which is càdlàg, one of the most important consequences of these
hypotheses.)

3.2 The price process

We let S = (St)t�0 be a semimartingale6 which will be the price process of a
risky security. For simplicity, after the initial purchase or sale, we assume that
the security has no cash flows associated with it (for example, if the security is a
common stock, we assume that there are no dividends paid). This assumption
is easily relaxed, but its relaxation unnecessarily complicates the notation and
explanation, so we leave it to outside references.

3.3 Spot interest rates

Let r be a fixed spot rate of interest. If one invests 1 dollar at rate r for
one year, at the end of the year one has 1 + r dollars. If interest is paid at n
evenly spaced times during the year and compounded, then at the end of the
year one has (1+ r

n)
n. This leads to the notion of an interest rate r compounded

6 One definition of a semimartingale is a process S that has a decomposition S = M +A, with M a local
martingale and A an adapted process with càdlàg paths of finite variation on compacts. (See Protter,
2005.)
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continuously:

lim
n→∞

(
1 + r

n

)n

= er

or, for a fraction t of the year, one has $ert after t units of time for a spot
interest rate r compounded continuously.

We define

R(t) = ert;
then R satisfies the ODE (ODE abbreviates ordinary differential equation)

(5)dR(t) = rR(t) dt; R(0) = 1�

Using the ODE (5) as a basis for interest rates, one can treat a variable interest
rate r(t) as follows: (r(t) can be random: that is r(t) = r(t�ω))7:

(6)dR(t) = r(t)R(t) dt; R(0) = 1

and solving yields R(t) = exp(
∫ t

0 r(s) ds). We think of the interest rate process
R(t) as the time t value of a money market account.

3.4 Trading strategies and portfolios

We will assume as given a risky asset with price process S and a money mar-
ket account with price process R. Let (at)t�0 and (bt)t�0 be our time t holdings
in the security and the bond, respectively.

We call our holdings of S and R our portfolio. Note that for the model to
make sense, we must have both the risky asset and the money market account
present. When we receive money through the sale of risky assets, we place
the cash in the money market account; and when we purchase risky assets, we
use the cash from the money market account to pay for the expenditure. The
money market account is allowed to have a negative balance.

Definition 1. The value at time t8 of a portfolio (a� b) is

Vt(a� b) = atSt + btRt�

7 An example is to take r(t) to be a diffusion; one can then make appropriate hypotheses on the diffu-
sion to model the behavior of the spot interest rate.
8 This concept of value is a commonly used approximation. If one were to liquidate one’s risky assets
at time t all at once to realize this “value,” one would find less money in the savings account, due to
liquidity and transaction costs. For simplicity, we are assuming there are no liquidity and transaction
costs. Such an assumption is not necessary, however, and we recommend the interested reader to Jarrow
and Protter (2007) in this volume.
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Now we have our first problem. Later we will want to change probabilities so
that V = (Vt(a� b))t�0 is a martingale. One usually takes the right continuous
versions of a martingale, so we want the right side of (4) to be at least càdlàg.
Typically this is not a real problem. Even if the process a has no regularity, one
can always choose b in such a way that Vt(a� b) is càdlàg.

Let us next define two sigma algebras on the product space R+ × Ω. We
recall that we are given an underlying probability space (Ω�F�F� P) with F =
(Ft)t�0, satisfying the “usual hypotheses.”

Definition 2. Let L denote the space of left continuous processes whose paths
have right limits (càglàd), and which are adapted: that is, Ht ∈ Ft , for t � 0.
The predictable σ-algebra P on R+ ×Ω is

P = σ{H: H ∈ L}�
That is P is the smallest σ-algebra that makes all of L measurable.

Definition 3. The optional σ-algebra O on R+ ×Ω is

O = σ{H: H is càdlàg and adapted}�
In general we have P ⊂ O. In the case where B = (Bt)t�0 is a standard Wiener
process (or “Brownian motion”), and F0

t = σ(Bs; s � t) and Ft = F0
t ∨ N

where N are the P-null sets of F , then we have O = P . In general O and P
are not equal. Indeed if they are equal, then every stopping time is predictable:
that is, there are no totally inaccessible stopping times.9 Since the jump times
of (reasonable) Markov processes are totally inaccessible, any model which
contains a Markov process with jumps (such as a Poisson Process) will have
P ⊂ O, where the inclusion is strict.

Remark on filtration issues. The predictable σ-algebra P is important be-
cause it is the natural σ-field for which stochastic integrals are defined. In the
special case of Brownian motion one can use the optional σ-algebra (since
they are the same). There is a third σ-algebra which is often used, known as

9 A totally inaccessible stopping time is a stopping time that comes with no advance warning: it is a
complete surprise. A stopping time T is totally inaccessible if whenever there exists a sequence of non-
decreasing stopping times (Sn)n�1 with Λ = ⋂∞

n=1{Sn < T }, then

P
({
w: lim

n→∞ Sn = T
}
∩Λ

)
= 0�

A stopping time T is predictable if there exists a nondecreasing sequence of stopping times (Sn)n�1 as
above with

P
({
w: lim

n→∞ Sn = T
}
∩Λ

)
= 1�

Note that the probabilities above need not be only 0 or 1; thus there are in general stopping times which
are neither predictable nor totally inaccessible.
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the progressively measurable sets, and denoted π. One has, in general, that
P ⊂ O ⊂ π; however in practice one gains very little by assuming a process
is π-measurable instead of optional, if – as is the case here – one assumes that
the filtration (Ft)t�0 is right-continuous (that is Ft+ = Ft , all t � 0). The
reason is that the primary use of π is to show that adapted, right-continuous
processes are π-measurable and in particular that ST ∈ FT for T a stopping
time and S progressive; but such processes are already optional if (Ft)t�0 is
right continuous. Thus there are essentially no “naturally occurring” examples
of progressively measurable processes that are not already optional. An ex-
ample of such a process, however, is the indicator function 1G(t), where G is
described as follows: let Z = {(t�ω): Bt(ω) = 0}. (B is standard Brownian mo-
tion.) Then Z is a perfect (and closed) set on R+ for almost all ω. For fixed ω,
the complement is an open set and hence a countable union of open intervals.
G(ω) denotes the left end-points of these open intervals. One can then show
(using the Markov property of B and P.A. Meyer’s section theorems) that G is
progressively measurable but not optional. In this case note that 1G(t) is zero
except for countably many t for eachω, hence

∫
1G(s) dBs ≡ 0. Finally we note

that if a = (as)s�0 is progressively measurable, then
∫ t

0 as dBs = ∫ t
0 ȧs dBs,

where ȧ is the predictable projection of a.10

Let us now recall a few details of stochastic integration. First, let S and X be
any two càdlàg semimartingales. The integration by parts formula can be used
to define the quadratic co-variation of X and S:

[X�S]t = XtYt −
t∫

0

Xs− dSs −
t∫

0

Ss− dXs�

However if a càdlàg, adapted process H is not a semimartingale, one can still
give the quadratic co-variation a meaning, by using a limit in probability as the
definition. This limit always exists if both H and S are semimartingales:

[H�S]t = lim
n→∞

∑
ti∈πn[0�t]

(Hti+1 −Hti)(Sti+1 − Sti)�

whereπn[0� t] be a sequence of finite partitions of [0� t] with limn→∞ mesh(πn)
= 0.

10 Let H be a bounded, measurable process. (H need not be adapted.) The predictable projection of H
is the unique predictable process Ḣ such that

ḢT = E{H | FT−} a.s. on {T < ∞}
for all predictable stopping times T . Here FT− = σ{A ∩ {t < T };A ∈ Ft } ∨ F0. For a proof of the
existence and uniqueness of Ḣ see Protter (2005, p. 119).
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Henceforth let S be a (càdlàg) semimartingale, and let H be càdlàg and
adapted, or alternatively H ∈ L. Let H− = (Hs−)s�0 denote the left-
continuous version of H. (If H ∈ L, then of course H = H−.) We have:

Theorem 1. H càdlàg, adapted or H ∈ L. Then

lim
n→∞

∑
ti∈πn[0�t]

Hti(Sti+1 − Sti) =
t∫

0

Hs− dSs�

with convergence uniform in s on [0� t] in probability.

We remark that it is crucial that we sample H at the left endpoint of the
interval [ti� ti+1]. Were we to sample at, say, the right endpoint or the midpoint,
then the sums would not converge in general (they converge for example if the
quadratic covariation process [H�S] exists); in cases where they do converge,
the limit is in general different. Thus while the above theorem gives a pleasing
“limit as Riemann sums” interpretation to a stochastic integral, it is not at all
a perfect analogy.

The basic idea of the preceding theorem can be extended to bounded pre-
dictable processes in a method analogous to the definition of the Lebesgue
integral for real-valued functions. Note that

∑
ti∈πn[0�t]

Hti(Sti+1 − Sti) =
t∫

0+
Hn
s dSs�

where Hn
t = ∑

Hti1(ti�ti+1] which is in L; thus these “simple” processes are
the building blocks, and since σ(L) = P , it is unreasonable to expect to go
beyond P when defining the stochastic integral.

There is, of course, a maximal space of integrable processes where the sto-
chastic integral is well defined and still gives rise to a semimartingale as the
integrated process; without describing it [see any book on stochastic integra-
tion such as (Protter, 2005)], we define:

Definition 4. For a semimartingale S we let L(S) denote the space of pre-
dictable processes a, where a is integrable with respect to S.

We would like to fix the underlying semimartingale (or vector of semimartin-
gales) S. The process S represents the price process of our risky asset. A way to
do that is to introduce the notion of a model. We present two versions. The first
is the more complete, as it specifies the probability space and the underlying
filtration. However it is also cumbersome, and thus we will abbreviate it with
the second:

Definition 5. A sextuple (Ω�F�F� S�L(S)� P), where F = (Ft)t�0, is called
an asset pricing model; or more simply, the triple (S�L(S)� P) is called a model,
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where the probability space and σ-algebras are implicit: that is, (Ω�F�F) is
implicit.

We are now ready for a key definition.
A trading strategy in the risky asset is a predictable process a = (at)t�0 with

a ∈ L(S); its economic interpretation is that at time t one holds an amount at
of the asset. We also remark that it is reasonable that a be predictable: a is
the trader’s holdings at time t, and this is based on information obtained at
times strictly before t, but not t itself. Often one has in concrete situations that
a is continuous or at least càdlàg or càglàd (left continuous with right limits).
(Indeed, it is difficult to imagine a practical trading strategy with pathological
path irregularities.) In the case a is adapted and càglàd, then

t∫
0

as dSs = lim
n→∞

∑
ti∈πn[0�t]

ati�iS�

where πn[0� t] is a sequence of partitions of [0� t] with mesh tending to 0 as
n → ∞; �iS = Sti+1 − Sti ; and with convergence in u.c.p. (uniform in time on
compacts and converging in probability). Thus inspired by (1) we let

Gt =
t∫

0+
as dSs

and G is called the (financial) gain process generated by a. A trading strategy
in the money market account, b = (bt)t�0, is defined in an analogous fashion
except that we only require that b is optional and b ∈ L(R). We will call the
pair (a� b), as defined above, a trading strategy.

Definition 6. A trading strategy (a� b) is called self-financing if

(7)atSt + btRt = a0S0 + b0R0 +
t∫

0

as dSs +
t∫

0

bs dRs

for all t � 0.

Note that the equality (7) above implies that atSt + btRt is càdlàg.
To justify this definition heuristically, let us assume the spot interest rate is

constant and zero: that is, r = 0 which implies that Rt = 1 for all t � 0, a.s.
We can do this by the principle of numéraire invariance; see Section 3.6, later
in this article. We then have

atSt + btRt = atSt + bt�
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Assume for the moment that a and b are semimartingales, and as such let us
denote them X and Y , respectively.11 If at time t we change our position in the
risky asset, to be self-financing we must change also the amount in our money
market account; thus we need to have the equality:

(Xt+dt −Xt)St+dt = −(Yt+dt − Yt)�

which is algebraically equivalent to

(St+dt − St)(Xt+dt −Xt)+ (Xt+dt)St = −(Yt+dt − Yt)�

which implies in continuous time:

St− dXt + d[S�X]t = −dYt�

Using integration by parts, we get

XtSt −Xt− dSt = −dYt�

and integrating yields the desired equality

(8)XtSt + Yt =
t∫

0

Xs− dSs +X0S0 + Y0�

Finally we drop the assumption that X and Y are semimartingales, and replac-
ing X− with a and Y with b, respectively, Eq. (8) becomes

atSt + btRt = a0S0 + b0 +
t∫

0

as dSs + (bt − b0)�

as we have in Eq. (7).
The next concept is of fundamental importance. An arbitrage opportunity is

the chance to make a profit without risk. The standard way of modeling this
mathematically is as follows:

Definition 7. A model is arbitrage free if there does not exist a self-financing
trading strategy (a� b) such that V0(a� b) = 0� VT (a� b) � 0, and P(VT (a� b) >
0) > 0.

11 Since X is assumed to be a semimartingale, it is right continuous, and thus is not in general pre-
dictable; hence when it is the integrand of a stochastic integral we need to replace Xs with Xs−, which
of course denotes the left continuous version of X.
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3.5 The fundamental theorem of asset pricing

In Section 2 we saw that with the “no arbitrage” assumption, at least in the
case of a very simple example, a reasonable price of a derivative was obtained
by taking expectations and changing from the “true” underlying probability
measure, P, to an equivalent one, P∗. More formally, under the assumption
that r = 0, or equivalently that Rt = 1 for all t, the price of a derivative C
was not E{C} as one might expect, but rather E∗{C}. (If the process Rt is not
constant and equal to one, then we consider the expectation of the discounted
claim E∗{C/RT }.)

The idea underlying the equivalent change of measure was to find a prob-
ability P∗ that gave the price process S a constant expectation. This simple
insight readily generalizes to more complex stochastic processes. In continuous
time, a sufficient condition for the price process S = (St)t�0 to have constant
expectation is that it be a martingale. That is, if S is a martingale then the func-
tion t → E{St} is constant. Actually this property is not far from characterizing
martingales. A classic theorem from martingale theory is the following (cf.,
e.g., Protter, 2005):

Theorem 2. Let S = (St)t�0 be càdlàg and suppose E{Sτ} = E{S0} for any
bounded stopping time τ (and of course E{|Sτ|} < ∞). Then S is a martingale.

That is, if we require constant expectation at stopping times (instead of only
at fixed times), then S is a martingale.

Based on this simple pricing example and the preceding theorem, one is lead
naturally to the following conjecture.

Conjecture. Let S be a price process on a given space (Ω�F�F� P). Then there
are no arbitrage opportunities if and only if there exists a probability P∗, equi-
valent to P , such that S is a martingale under P∗.

The origins of the preceding conjecture can be traced back to Harrison and
Kreps (1979) for the case where FT is finite, and later to Dalang et al. (1990)
for the case where FT is infinite, but time is discrete. Before stating a more rig-
orous theorem [our version is due to Delbaen and Schachermeyer (1994); see
also Delbaen and Schachermayer (1998)], let us examine a needed hypothesis.

We need to avoid problems that arise from the classical doubling strategy in
gambling. Here a player bets $1 at a fair bet. If he wins, he stops. If he loses he
next bets $2. Whenever he wins, he stops, and his profit is $1. If he continues to
lose, he continues to play, each time doubling his bet. This strategy leads to a
certain gain of $1 without risk. However, the player needs to be able to tolerate
arbitrarily large losses before he gains his certain profit. Of course, no one has
such infinite resources to play such a game. Mathematically one can eliminate
this type of problem by requiring trading strategies to give martingales that are
bounded below by a constant. Thus the player’s resources, while they can be
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huge, are nevertheless finite and bounded by a nonrandom constant. This leads
to the next definition.

Definition 8. Let α > 0, and let S be a semimartingale. A predictable trading
strategy θ is α-admissible if θ0 = 0,

∫ t
0 θs dSs � −α, all t � 0. θ is called

admissible if there exists α > 0 such that θ is α-admissible.

Before we make more definitions, let us recall the basic approach. Suppose
θ is an admissible, self-financing trading strategy with θ0S0 = 0 and θTST � 0.
In the next section we will see that without loss of generality we can neglect
the bond or “numéraire” process by a “change of numéraire,” so that the self-
financing condition reduces to

θTST = θ0S0 +
T∫

0

θs dSs�

Then if P∗ exists such that
∫
θs dSs is a martingale, we have

E∗{θTST } = 0 + E∗
{ T∫

0

θs dSs

}
�

In general, if S is continuous then
∫ t

0 θs dSs is only a local martingale.12 If S is
merely assumed to be a càdlàg semimartingale, then

∫ t
0 θs dSs need only be a

σ martingale.13 However if for some reason we do know that it is a true mar-
tingale then E∗{∫ T0 θs dSs} = 0, whence E∗{θTST } = 0, and since θTST � 0 we
deduce θTST = 0, P∗ a.s., and since P∗ is equivalent to P , we have θTST = 0
a.s. (dP) as well. This implies no arbitrage exists. The technical part of this
argument is to show

∫ t
0 θs dSs is a P∗ true martingale, and not just a local mar-

tingale (see the proof of the Fundamental Theorem that follows). The converse
is typically harder: that is, that no arbitrage implies P∗ exists. The converse is
proved using a version of the Hahn–Banach theorem.

12 A process M is a local martingale if there exists a sequence of stopping times (Tn)n�1 increasing to
∞ a.s. such that (Mt∧Tn)t�0 is a martingale for each n � 1.
13 A process X is a σ martingale if there exists an Rd valued martingale M and a predictable R+ valued
M-integrable processH such thatX is the stochastic integral ofH with respect to M . See Protter (2005,
pp. 237–239) for more about σ martingales.
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Following Delbaen and Schachermayer, we make a sequence of definitions:

K0 =
{ ∞∫

0

θs dSs

∣∣∣∣∣ θ is admissible and lim
t→∞

t∫
0

θs dSs exists a.s.

}
C0

= {all functions dominated by elements of K0}
= K0 − L0+� where L0+ are positive, finite random variables,

K = K0 ∩ L∞�
C = C0 ∩ L∞�
C = the closure of C under L∞�

Definition 9. A semimartingale price process S satisfies
(i) the no arbitrage condition if C∩L∞+ = {0} (this corresponds to no chance

of making a profit without risk);
(ii) the no free lunch with vanishing risk condition (NFLVR) if C∩L∞+ = {0},

where C is the closure of C in L∞.

Definition 10. A probability measure P∗ is called an equivalent martingale mea-
sure, or alternatively a risk neutral probability, if P∗ is equivalent to P , and if
under P∗ the price process S is a σ martingale.

Clearly condition (ii) implies condition (i). Condition (i) is slightly too re-
strictive to imply the existence of an equivalent martingale measure P∗. (One
can construct a trading strategy of Ht(ω) = 1{[0�1]\Q×Ω}(t�ω), which means
one sells before each rational time and buys back immediately after it; combin-
ing H with a specially constructed càdlàg semimartingale shows that (i) does
not imply the existence of P∗ – see Delbaen and Schachermayer, 1994, p. 511.)

Let us examine then condition (ii). If NFLVR is not satisfied then there
exists an f0 ∈ L∞+ , f0 �≡ 0, and also a sequence fn ∈ C such that limn→∞ fn =
f0 a.s., such that for each n, fn � f0 − 1

n . In particular fn � − 1
n . This is almost

the same as an arbitrage opportunity, since any element of f ∈ C is the limit
in the L∞ norm of a sequence (fn)n�1 in C. This means that if f � 0 then the
sequence of possible losses (f−

n )n�1 tends to zero uniformly as n → ∞, which
means that the risk vanishes in the limit.

Theorem 3 (Fundamental Theorem; Bounded Case). Let S be a bounded semi-
martingale. There exists an equivalent martingale measure P∗ for S if and only if
S satisfies NFLVR.

Proof. Let us assume we have NFLVR. Since S satisfies the no arbitrage prop-
erty we have C∩L∞+ = {0}. However one can use the property NFLVR to show
C is weak∗ closed in L∞ (that is, it is closed in σ(L1� L∞)), and hence there
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will exist a probability P∗ equivalent to P with E∗{f } � 0, all f in C. (This is the
Kreps–Yan separation theorem – essentially the Hahn–Banach theorem; see,
e.g., Yan, 1980). For each s < t, B ∈ Fs, α ∈ R, we deduce α(St − Ss)1B ∈ C,
since S is bounded. Therefore E∗{(St − Ss)1B} = 0, and S is a martingale un-
der P∗.

For the converse, note that NFLVR remains unchanged with an equivalent
probability, so without loss of generality we may assume S is a martingale un-
der P itself. If θ is admissible, then (

∫ t
0 θs dSs)t�0 is a local martingale, hence

it is a supermartingale. Since E{θ0S0} = 0, we have as well E{∫ ∞
0 θs dSs} �

E{θsS0} = 0. This implies that for any f ∈ C, we have E{f } � 0. There-
fore it is true as well for f ∈ C, the closure of C in L∞. Thus we conclude
C ∩ L∞+ = {0}. �

Theorem 4 (Corollary). Let S be a locally bounded semimartingale. There is an
equivalent probability measure P∗ under which S is a local martingale if and only
if S satisfies NFLVR.

The measure P∗ in the corollary is known as a local martingale measure. We
refer to Delbaen and Schachermayer (1994, p. 479) for the proof of the corol-
lary. Examples show that in general P∗ can make S only a local martingale, not
a martingale. We also note that any semimartingale with continuous paths is
locally bounded. However in the continuous case there is a considerable sim-
plification: the no arbitrage property alone, properly interpreted, implies the
existence of an equivalent local martingale measure P∗ (see Delbaen, 1995).
Indeed using the Girsanov theorem this implies that under the No Arbitrage
assumption the semimartingale must have the form

St = Mt +
t∫

0

Hs d[M�M]s�

where M is a local martingale under P , and with restrictions on the predictable
process H. Indeed, if one has

∫ ε
0 H

2
s d[M�M]s = ∞ for some ε > 0, then

S admits “immediate arbitrage,” a fascinating concept introduced by Delbaen
and Schachermayer (1995).

For the general case, we have the impressive theorem of Delbaen and
Schachermayer (1995, see for a proof), as follows:

Theorem 5 (Fundamental Theorem; General Case). Let S be a semimartingale.
There exists an equivalent probability measure P∗ such that S is a sigma martingale
under P∗ if and only if S satisfies NFLVR.14

14 See Protter (2005, Section 9 of Chapter IV, pp. 237ff), for a treatment of sigma martingales; alterna-
tively, see Jacod and Shiryaev (2002, Section 6e of Chapter III, pp. 214ff).
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Caveat. In the remainder of the paper we will abuse language by referring to the
equivalent probability measure P∗ which makes S into a sigma martingale, as an
equivalent martingale measure. For clarity let us repeat: if P∗ is an equivalent
martingale measure, then we can a priori conclude no more than that S is a
sigma martingale (or local martingale, if S has continuous paths).

3.6 Numéraire invariance

Our portfolio as described in Section 3.4 consists of

Vt(a� b) = atSt + btRt�

where (a� b) are trading strategies, S is the risky security price, and Rt =
exp(

∫ t
0 rs ds) is the price of a money market account. The process R is often

called a numéraire. One can then deflate future monetary values by multiply-
ing by 1

Rt
= exp(− ∫ t

0 rs ds). Let us write Yt = 1
Rt

and we shall refer to the
process Yt as a deflator. By multiplying S and R by Y = 1

R , we can effectively
reduce the situation to the case where the price of the money market account
is constant and equal to one. The next theorem allows us to do just that.

Theorem 6 (Numéraire Invariance). Let (a� b) be a trading strategy for (S�R).
Let Y = 1

R . Then (a� b) is self-financing for (S�R) if and only if (a� b) is self-
financing for (YS� 1).

Proof. Let Z = ∫ t
0 as dSs +

∫ t
0 bs dRs. Then using integration by parts we have

(since Y is continuous and of finite variation)

d(YtZt) = Yt dZt + Zt dYt

= Ytat dSt + Ytbt dRt +
( t∫

0

as dSs +
t∫

0

bs dRs

)
dYt

= at(Yt dSt + St dYt)+ bt(Yt dRt +Rt dYt)

= at d(YS)t + bt d(YR)t

and since YR = 1
RR = 1, this is

= at d(YS)t

since dYR = 0 because YR is constant. Therefore

atSt + btRt = a0S0 + b0 +
t∫

0

as dSs +
t∫

0

bs dRs
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if and only if

at
1
Rt
St + bt = a0S0 + b0 +

t∫
0

as d
(

1
R
S

)
s

�

�

Theorem 6 allows us to assume R ≡ 1 without loss of generality. Note that
one can easily check that there is no arbitrage for (a� b) with (S�R) if and only
if there is no arbitrage for (a� b) with ( 1

RS� 1). By renormalizing, we no longer
write ( 1

RS� 1), but simply S.
The preceding theorem is the standard version, but in many applications

(for example those arising in the modeling of stochastic interest rates), one
wants to assume that the numéraire is a strictly positive semimartingale (in-
stead of only a continuous finite variation process as in the previous theorem).
We consider here the general case, where the numéraire is a (not necessarily
continuous) semimartingale. For examples of how such a change of numéraire
theorem can be used (albeit for the case where the deflator is assumed contin-
uous), see for example (Geman et al., 1995). A reference to the literature for
a result such as the following theorem is (Huang, 1985, p. 223).

Theorem 7 (Numéraire Invariance; General Case). Let S, R be semimartingales,
and assumeR is strictly positive. Then the deflator Y = 1

R is a semimartingale and
(a� b) is self-financing for (S�R) if and only if (a� b) is self-financing for ( SR� 1).

Proof. Since f (x) = 1
x is C2 on (0�∞), we have that Y is a (strictly positive)

semimartingale by Itô’s formula. By the self-financing hypothesis we have

Vt(a� b) = atSt + btRt

= a0S0 + b0R0 +
t∫

0

as dSs +
t∫

0

bs dRs�

Let us assume S0 = 0, and R0 = 1. The integration by parts formula for
semimartingales gives

d(StYt) = d
(
St

Rt

)
= St− d

(
1
Rt

)
+ 1
Rt−

dSt + d
[
S�

1
R

]
t

and

d
(
Vt

Rt

)
= Vt− d

(
1
Rt

)
+ 1
Rt−

dVt + d
[
V �

1
R

]
t

�
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We can next use the self-financing assumption to write:

d
(
Vt

Rt

)
= atSt− d

(
1
Rt

)
+ btRt− d

(
1
Rt

)
+ 1
Rt−

at dSt + 1
Rt−

bt dRt

+ at d
[
S�

1
R

]
t

+ bt d
[
R�

1
R

]
t

= at

(
St− d

(
1
R

)
+ 1
Rt−

dS + d
[
S�

1
R

])
+ bt

(
Rt− d

(
1
R

)
+ 1
Rt−

dR+ d
[
R�

1
R

])
= at d

(
S

1
R

)
+ bt d

(
R

1
R

)
�

Of course Rt
1
Rt

= 1, and d(1) = 0; hence

d
(
Vt

Rt

)
= at d

(
St

1
Rt

)
�

In conclusion we have

Vt = atSt + btRt = b0 +
t∫

0

as dSs +
t∫

0

bs dRs�

and

at

(
St

Rt

)
+ bt = Vt

Rt
= b0 +

t∫
0

as d
(
Ss

Rs

)
�

�

3.7 Redundant derivatives

Let us assume given a security price process S, and by the results in Sec-
tion 3.6 we take Rt ≡ 1. Let F0

t = σ(Sr; r � t) and let F∼
t = F0

t ∨N where N
are the null sets of F and F = ∨

t F0
t , under P , defined on (Ω�F� P). Finally

we take Ft = ⋂
u>t F∼

u . A derivative on S is then a random variableC ∈ FT , for
some fixed time T . Note that we pay a small price here for the simplification of
taking Rt ≡ 1, since if Rt were to be a nonconstant stochastic process, it might
well change the minimal filtration we are taking, because then the processes of
interest would be (Rt� St), in place of just St/Rt .

One goal of Finance Theory is to show there exists a self financing trading
strategy (a� b) that one can use either to obtain C at time T , or to come as
close as possible – in an appropriate sense – to obtaining C. This is the issue
we discuss in this section.
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Definition 11. Let S be the price process of a risky security and let R be the
price process of a money market account (numéraire), which we setting equal
to the constant process 1.15 A derivative C ∈ FT is said to be redundant if there
exists an admissible self-financing trading strategy (a� b) such that

C = a0S0 + b0R0 +
T∫

0

as dSs +
T∫

0

bs dRs�

Let us normalize S by writing M = 1
RS; then C will still be redundant under M

and hence we have (taking Rt = 1, all t):

C = a0M0 + b0 +
T∫

0

as dMs�

Next note that if P∗ is any equivalent martingale measure making M a mar-
tingale, and if C has finite expectation under P∗, we then have

E∗{C} = E∗{a0M0 + b0} + E∗
{ T∫

0

as dMs

}

provided all expectations exist,

= E∗{a0M0 + b0} + 0�

Theorem 8. Let C be a redundant derivative such that there exists an equivalent
martingale measure P∗ with C ∈ L∗(M). (See the second definition following for
a definition of L∗(M).) Then there exists a unique no arbitrage price of C and it
is E∗{C}.
Proof. First we note that the quantity E∗{C} is the same for every equivalent
martingale measure. Indeed if Q1 and Q2 are both equivalent martingale mea-
sures, then

EQi
{C} = EQi

{a0M0 + b0} + EQi

{ T∫
0

as dMs

}
�

But EQi
{∫ T0 as dMs} = 0, and EQi

{a0M0 + b0} = a0M0 + b0, since we assume
a0,M0, and b0 are known at time 0 and thus without loss of generality are taken
to be constants.

15 Although R is taken to be constant and equal to 1, we include it initially in the definition to illustrate
the role played by being able to take it a constant process.
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Next suppose one offers a price v > E∗{C} = a0M0 + b0. Then one follows
the strategy a = (as)s�0 and (we are ignoring transaction costs) at time T one
has C to present to the purchaser of the option. One thus has a sure profit (that
is, risk free) of v − (a0M0 + b0) > 0. This is an arbitrage opportunity. On the
other hand, if one can buy the claim C at a price v < a0M0 + b0, analogously
at time T one will have achieved a risk-free profit of (a0M0 + b0)− v. �

Definition 12. If C is a derivative, and there exists an admissible self-financing
trading strategy (a� b) such that

C = a0M0 + b0 +
T∫

0

as dMs;

then the strategy a is said to replicate the derivative C.

Theorem 9 (Corollary). If C is a redundant derivative, then one can replicate C
in a self-financing manner with initial capital equal to E∗{C}, where P∗ is any
equivalent martingale measure for the normalized price process M .

At this point we return to the issue of put–call parity mentioned in the intro-
duction (Section 2). Recall that we had the trivial relation

MT −K = (MT −K)+ − (K −MT)
+�

which, by taking expectations under P∗, shows that the price of a call at time 0
equals the price of a put plus the stock price minus K. More generally at time t,
E∗{(MT −K)+ | Ft} equals the value of a put at time t plus the stock price at
time t minus K, by the P∗ martingale property of M .

It is tempting to consider markets where all derivatives are redundant. Un-
fortunately, this is too large a space of random variables; we wish to restrict
ourselves to derivatives that have good integrability properties as well.

Let us fix an equivalent martingale measure P∗, so that M is a martin-
gale (or even a local martingale) under P∗. We consider all self-financing
trading strategies (a� b) such that the process (

∫ t
0 a

2
s d[M�M]s)1/2 is locally in-

tegrable: that means that there exists a sequence of stopping times (Tn)n�1
which can be taken Tn � Tn+1, a.s., such that limn→∞ Tn � T a.s. and
E∗{(∫ Tn0 a2

s d[M�M]s)1/2} < ∞, each Tn. Let L∗(M) denote the class of such
strategies, under P∗. We remark that we are cheating a little here: we are letting
our definition of a complete market (which follows) depend on the measure P∗,
and it would be preferable to define it in terms of the objective probability P .
How to go about doing this is a nontrivial issue. In the happy case where the
price process is already a local martingale under the objective probability mea-
sure, this issue of course disappears.

Definition 13. A market model (M�L∗(M)� P∗) is complete if every derivative
C ∈ L1(FT � dP∗) is redundant for L∗(M). That is, for any C ∈ L1(FT � dP∗),
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there exists an admissible self-financing trading strategy (a� b) with a ∈ L∗(M)
such that

C = a0M0 + b0 +
T∫

0

as dMs�

and such that (
∫ t

0 as dMs)t�0 is uniformly integrable. In essence, then, a com-
plete market is one for which every derivative is redundant.

We point out that the above definition is one of many possible definitions
of a complete market. For example, one could limit attention to nonnegative
random payoffs and/or payoffs that are in L2(FT � dP∗).

We note that in probability theory a martingale M is said to have the pre-
dictable representation property if for any C ∈ L2(FT ) one has

C = E{C} +
T∫

0

as dMs

for some predictable a ∈ L(M). This is, of course, essentially the property
of market completeness. Martingales with predictable representation are well
studied and this theory can usefully be applied to Finance. For example, sup-
pose we have a model (S�R) where by a change of numéraire we take R = 1.
Suppose further there is an equivalent martingale measure P∗ such that S is
a Brownian motion under P∗. Then the model is complete for all claims C in
L1(FT � P

∗) such that C � −α, for some α � 0. (α can depend on C.) To
see this, we use martingale representation (see, e.g., Protter, 2005) to find a
predictable process a such that for 0 � t � T :

E∗{C | Ft} = E∗{C} +
t∫

0

as dSs�

Let

Vt(a� b) = a0S0 + b0 +
t∫

0

as dSs +
t∫

0

bs dRs;

we need to find b such that (a� b) is an admissible, self-financing trading strat-
egy. Since Rt = 1, we have dRt = 0, hence we need

atSt + btRt = b0 +
t∫

0

as dSs�
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and taking b0 = E∗{C}, we have

bt = b0 +
t∫

0

as dSs − atSt

provides such a strategy. It is admissible since
∫ t

0 as dSs � −α for some α which
depends on C.

Unfortunately, having the predictable representation property is rather del-
icate, and few martingales possess this property. Examples include Brownian
motion, the compensated Poisson process (but not mixtures of the two nor
even the difference of two Poisson processes) (although see Jeanblanc and
Privault, 2002 for sufficient conditions when one can mix the two and have
completeness), and the Azéma martingales. (One can consult Protter, 2005 for
background, and Dritschel and Protter, 1999 for more on the Azéma martin-
gales.) One can mimic a complete market in the case (for example) of two
independent noises, each of which is complete alone. Several authors have
done this with Brownian noise together with compensated Poisson noise, by
proposing hedging strategies for each noise separately. A recent example of
this is Kusuoka (1999) (where the Poisson intensity can depend on the Brown-
ian motion) in the context of default risk models. A more traditional example
is Jeanblanc-Piqué and Pontier (1990).

Most models are therefore not complete, and most practitioners believe the
a financial world being modeled is at best only approximately complete. We
will return again to the notion of an incomplete market later on in this section.
First, we need to characterize complete markets. In this regard, we have the
following result:

Theorem 10. Suppose there is an equivalent martingale measure P∗ such that M
is a local martingale. Then P∗ is the unique equivalent martingale measure only if
the market is complete.

This theorem is a trivial consequence of Dellacherie’s approach to martin-
gale representation: if there is a unique probability making a process M a local
martingale, then M must have the martingale representation property. The
theory has been completely resolved in the work of Jacod and Yor. [See for ex-
ample Protter (2005, Chapter IV, Section 4), for a pedagogic approach to the
theory.]

To give an example of what can happen, let M2 be the set of equivalent
probabilities making M an L2-martingale. Then M has the predictable repre-
sentation property (and hence market completeness) for every extremal ele-
ment of the convex set M2. If M2 = {P∗}, only one element, then of course
P∗ is extremal. (See Protter, 2005, Theorem 40, p. 186.) Indeed P∗ is in fact
unique in the proto-typical example of Brownian motion; since many diffusions
can be constructed as pathwise functionals of Brownian motion they inherit the
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completeness of the Brownian model. But there are examples where one has
complete markets without the uniqueness of the equivalent martingale mea-
sure (see Artzner and Heath, 1995 in this regard, as well as Jarrow et al., 1999).
Nevertheless the situation is simpler when we assume our models have contin-
uous paths.

The next theorem is a version of what is known as the second fundamental
theorem of asset pricing. We state and prove it for the case ofL2 derivatives only.
We note that this theorem has a long and illustrious history, going back to the
fundamental paper of Harrison and Kreps (1979, p. 392) for the discrete case,
and to Harrison and Pliska (1981, p. 241) for the continuous case, although in
Harrison and Pliska (1981) the theorem below is stated only for the “only if”
direction.

Theorem 11. Let M have continuous paths. There is a unique P∗ such that M is
an L2 P∗-martingale if and only if the market is complete.

Proof. The theorem follows easily from Theorems 38, 39, and 340 of Protter
(2005, pp. 185–186); we will assume those results and prove the theorem. The-
orem 39 shows that if P∗ is unique then the market model is complete. If P∗
is not unique but the model is nevertheless complete, then by Theorem 37 P∗
is nevertheless extremal in the space of probability measures making M an L2

martingale. Let Q be another such extremal probability, and let L∞ = dQ
dP∗

and Lt = EP{L∞ | Ft}, with L0 = 1. Let Tn = inf{t > 0: |Lt | � n}. L will
be continuous by Theorem 40 of Protter (2005, p. 186), hence Lnt = Lt∧Tn is
bounded. We then have, for bounded C ∈ Fs:

EQ{Mt∧TnC} = E∗{Mt∧TnLnt C
}
�

EQ{Ms∧TnC} = E∗{Ms∧TnLns C
}
�

The two left sides of the above equalities are equal and this implies that MLn

is a martingale, and thus Ln is a bounded P∗-martingale orthogonal to M . It is
hence constant by Theorem 39 of Protter (2005, p. 185). We conclude L∞ ≡ 1
and thus Q = P∗. �

Note that if C is a redundant derivative, then the no arbitrage price of C
is E∗{C}, for any equivalent martingale measure P∗. (If C is redundant then
we have seen the quantity E∗{C} is the same under every P∗.) However, if a
market model is not complete, then

• there will arise nonredundant claims, and
• there will be more than one equivalent martingale measure P∗.

We now have the conundrum: if C is nonredundant, what is the no arbi-
trage price of C? We can no longer argue that it is E∗{C}, because there
are many such values! The absence of this conundrum is a large part of the
appeal of complete markets. One resolution of this conundrum is to use an
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investor’s preferences/tastes to select among the set of possible equivalent
martingale measures a unique one, that will make them indifferent between
holding the derivative in their portfolio or not. This is an interesting area of
current research and for more on this topic see Duffie (2001) and references
cited therein.

Finally, let us note that when C is redundant there is always a replication
strategy a. However, when C is nonredundant it cannot be replicated. In the
nonredundant case the best we can do is replicate in some approximate sense
(for example expected squared error loss), and we call the strategy we follow
a hedging strategy. See for example Föllmer and Sondermann (1986) and Jacod
et al. (2000) for results about hedging strategies.

3.8 The stochastic price process

For simplicity, we will limit our discussion to one dimension. Let S = (St)t�0
denote our price process for a risky asset. Let s < t and suppose t − s is a
small but finite time interval. The randomness in the market price between
times s and t comes from the cumulative price changes due to the actions of
many traders. Let us enumerate the traders’ individual price changes over this
interval. Let the random variable θi denote the change in the price of the asset
due to the different sized purchase or sale by the ith trader between the times s
and t. No activity corresponds to θi = 0. The total effect of the traders’ actions
on the price is Θ = ∑n

i=1 θi.
If n is large (even n = 50 would suffice in most cases, and typically n is

much larger) and if the θi are independent with mean μ and finite variance σ2,
then by the Central Limit Theorem we have that L(Θ) = L(∑n

i=1 θi) ≈
N(nμ� nσ2)16, where L(Y) denotes the law, or distribution, of a random vari-
able Y . Under these assumptions, and with μ = 0, it is reasonable to describe
the random forces affecting the asset price as Gaussian. We further remark
that, as is well known, one can substantially weaken the hypotheses that the
random variables (θi)i�1 are independent, using for example martingale cen-
tral limit theorems [see, e.g., Jacod and Shiryaev (2002) for a definitive treat-
ment, or Jacod and Protter (2004) for an introductory treatment], and one can
also weaken the assumption that all variances are identical. One could then
use a stochastic differential equation to give a dynamic model of the risky asset
price, where we let B denote a Brownian motion:

(9)dSt = σ(t� St) dBt + μ(t� St) dt�

since the increments of the Brownian motion are given by Bt − Bs ∼
N(0� σ2

0 (t − s)).17 We usually take σ2
0 = 1, since otherwise we could sim-

16 As is customary,N(μ�σ2) denotes the normal distribution (also known as the Gaussian distribution)
with mean μ and variance σ2.
17 By choosing the Brownian motion, which has stationary and independent increments, we are implic-
itly assuming that the distributions of the traders’ likelihoods to trade in a time interval (s� t) depends
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ply modify the coefficient function σ(t� x). The function σ can be thought of
as the sensitivity of the price change to “market noise” when St = x. The term
given by μ(t� St) dt is called the “drift,” and it corresponds to changes in the
risky asset price which are not due to market noise, but rather due to market
fundamentals.

There are many problems with the model given by Eq. (9), but the most fun-
damental one is that price process must always take nonnegative values, and
there is no a priori reason that S be positive, even with taking S0 > 0. Let
us address this problem. Henceforth we will consider only autonomous coeffi-
cients.18 This means that if the noise process has stationary and independent
increments, then the price process will be a time homogeneous strong Markov
process.19 With dependence on time in the coefficients, one loses the time ho-
mogeneity, although the solution is still Markov.20 Suppose instead we let the
risky asset price process be Y = (Yt)t�0 with Y0 = 1 and Yt > 0 for all t,
0 � t � T for some time horizon T , a.s. Since Y > 0 always, we can take its
logarithm, and define Xt = ln(Yt), and obviously Yt = eXt .

Let us assume that X is the unique solution of (9), where appropriate hy-
potheses are made upon the coefficients σ and μ to ensure a unique nonex-
ploding solution. We can use Itô’s formula to find a dynamic expression for Y .
Indeed,

eXt = eX0 +
t∫

0

eXs dXs + 1
2

t∫
0

eXs d[X�X]s

and substituting Y for eX we get

Yt = Y0 +
t∫

0

σ
(
s� ln(Ys)

)
dBs +

∫ t

0
Ysμ

(
s� ln(Ys)

)2 ds

+ 1
2

t∫
0

Ysσ
(
s� ln(Ys)

)2 ds�

only on the length of the interval t − s and does not change with time, and are independent for disjoint
time intervals. Both of these assumptions have been questioned repeatedly. See for example Clark
(1973) for the case against the stationarity assumption.
18 That is, coefficients of the form σ(x), rather than of the form σ(t� x).
19 See Protter (2005, p. 36 or p. 299) for example, for a definition of a strong Markov process.
20 By assuming time homogeneity, however, we are depriving ourselves of a useful possibility to allow
for excess kurtosis in our models, by allowing time dependence in the diffusion coefficient; see for
example Madan and Yor (2002). Kurtosis of a random variable X with mean μ is sometimes defined
as γ = E{(X − μ)4}/(E{(X − μ)2})2, and excess kurtosis is simply γ − 3, because the kurtosis of a
Gaussian random variable is 3.
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and letting σ̂(t� y) = σ(t� ln(y)) and μ̂(t� y) = μ(t� ln(y)), we have:

(10)dYt = Ytσ̂(t� Yt) dBt + Yt

{
μ̂(t� Yt)+ 1

2
σ̂(t� Yt)

2
}

dt�

Note that we have shown, inter alia, that if there exists a unique nonexploding
solution to Equation (9), then there also exists the same for (10), even though
the function y → yσ(t� y) need not be globally Lipshitz. We further note that
if an equation of the form

(11)dYt = f (Yt)Yt dBt + g(Yt)Yt dt; Y0 > 0

has a unique, strong, nonexploding solution, then P(ω: ∃t such that Yt(ω) �
0) = 0 (see Protter, 2005, p. 351).

The absolute magnitude that Y changes, that is Yt+dt − Yt , is not by itself
as meaningful as the relative change. For example if Yt+dt − Yt = $0�12, this
can be a large change if Yt = $1�25, or it can be an insignificant change if
Yt = $105�12. Therefore we often speak of the return on the asset, which is the
change of the price divided by the original value. Since we now have that Y > 0,
we can rewrite Eq. (11) as

dYt
Yt

= f (Yt) dBt + g(Yt) dt; Y0 > 0�

and indeed this is often the way the price process is written in the literature.21

The simplest form of such a price process is when f = σ and g = μ are
constants, and then of course

Yt = exp
(
σBt +

(
μ− 1

2
σ2

)
t

)
≡ E(σBt + μt)�

where E(Z) denotes the stochastic exponential of a semimartingale Z.22 One
reason this simplest form is so popular is that if f = σ a constant, it is easy to
estimate this parameter. Indeed, a simple procedure is to sample Y at n + 1
equal spaced time steps {t1� t2� � � � � tn+1} with ti − ti−1 = δ in chronological
order and let

μ̂ = 1
nδ

n∑
i=1

ln
(
Yti+1

Yti

)

21 The coefficient μ is called the drift and it reflects the fundamentals of the asset: its position in the
industry and its expected future earnings or losses. The coefficient f is called the volatility and it repre-
sents a the standard deviation of the returns. It is the volatility that creates risk in the investment, and
it is the primary object of study.
22 For a continuous semimartingale X the stochastic exponential of X, denoted E(X), is the process Y
given by Yt = E(X)t = exp(Xt − 1

2 [X�X]t ), and Y satisfies the exponential type differential equation
dYt = Yt dXt ; Y0 = 1. See Protter (2005, p. 85) for more about the stochastic exponential, which is
also sometimes called the Doléans–Dade exponential.
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and

σ̂2 = 1
(n− 1)δ

n∑
i=1

(
ln

(
Yti+1

Yti

)
− μ̂

)2

and then σ̂2 is an unbiased and consistent estimator for σ2. (If one takes δ as
a fraction of a year, then the parameters are annualized.) Of course there are
other reasons the form is so popular; see Section 3.10.

Let us return to the heuristic derivation of the price process. Recall that θi
denotes the change in the price of the risky asset due to the size of a purchase
or sale by the ith trader between the times s and t, with the total effect of
the traders’ actions being Θ = ∑n

i=1 θi. In reality, there are many different
rubrics of traders. Some examples are (a) a small trader; (b) a trader for a
large mutual fund; (c) a trader for a pension fund; (d) corporate traders; and
(e) traders for hedge funds. These traders have different goals and different
magnitudes of equity supporting their trades. Let us divide the traders into
rubrics, and for rubric n we enumerate the traders (n� 1)� (n� 2)� � � � � (n� n)
and we let the traders’ impacts on the price between times s and t be denoted
Un�1�Un�2� � � � � Un�n. We assume that the random variables (Un�i)1�i�n are
i.i.d. for every n � 1 and independent across all the n, and moreover for each
fixed n have common law ln. Set:

Ψn =
n∑
i=1

Un�i and θn = Ψn − E(Ψn)

Vn
�

where Vn is the standard deviation of Ψn. Then

Θn =
n∑
i=1

θi =
n∑
i=1

i∑
j=1

Ui�j − E(Ui�j)

Vi

represents the normalized random effect on the market price of the traders’
actions between times s and t. We have that Θn converges in distribution to a
random variable which is infinitely divisible. If we denote this random variable
as Zt − Zs, and think of Z as a noise process with stationary and indepen-
dent increments, then Z must be a Lévy process (see for example Protter, 2005,
p. 21, for this result, and in general Protter, 2005 or Bertoin, 1996 for more
information on Lévy processes in general). Since the only Lévy process with
continuous paths is Brownian motion with drift, in order to be different from
the classical case, the paths t → Zt(ω) must have jumps.

A discontinuous price process requires a different analysis. Let us under-
stand why. We begin as before and let Z be a Lévy process (with jumps), and
then form X by

(12)dXt = σ(Xt−) dZt + μ(Xt−) dt
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and Yt = eXt > 0. Next using Itô’s formula we have

eXt = eX0 +
t∫

0

eXs− dXs + 1
2

t∫
0

eXs− d[X�X]cs

+
∑
s�t

(
eXs − eXs− − eXs−�Xs

)
and substituting Yt for eXt , and using that for a Lévy process Z one a fortiori
has that d[Z�Z]ct = γ dt for some constant γ � 0, we have

Yt = Y0 +
t∫

0

Ys−σ
(
ln(Ys−)

)
dZs +

t∫
0

Ys−μ
(
ln(Ys−)

)
ds

+ 1
2

t∫
0

Ys−σ
(
ln(Ys−)

)2
γ ds

+
∑
s�t

(
Ys − Ys− − Ys−σ

(
ln(Ys−)

)
�Zs

)

= Y0 + σ̂(Ys−) dZs +
t∫

0

Ys−
{
μ̂(Ys−)+ γ

2
σ̂(Ys−)2

}
ds

+
∑
s�t

(
Ys − Ys− − Ys−σ̂(Ys−)�Zs

)
which does not satisfy a stochastic differential equation driven by dZ and dt. If
we were simply to forget about the series term at the end, as many researchers
do, and instead were to consider the following equation as our dynamic model:

(13)dYt = Yt−f (Yt−) dZt + Yt−g(Yt−) dt� Y0 > 0�

then we could no longer ensure that Y is a positive price process! Indeed, if
we consider the simple case where f = σ and g = μ are both constants, with
Y0 = 1, we have

dYt = σYt− dZt + μYt− dt

which has a closed form solution

Yt = exp
(
σZt + μt − 1

2
σ2γt

)∏
s�t

e{−σ�Zs}(1 + σ�Zs)

and thus as soon as one has a jump �Zs � − 1
σ , we have Y becoming zero or

negative. In general, for equations of the form (13), a sufficient condition to
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have Y > 0 always is that |�Zs| < 1
‖σ‖L∞ , for all s � 0, a.s. (see Protter, 2005,

p. 352).
Should one stop here? Perhaps one should consider more general noise

processes than Lévy processes? Indeed, one could consider time changes of
Lévy processes, since there is empirical evidence of nonstationarity in the in-
crements of the noise process (see for example Clark, 1973 and more recently
Carr and Wu, 2003); or, and not exclusively, one might think there is some
historical dependence in the noise process, violating the assumptions of inde-
pendence of the increments. The advantage that the assumption of indepen-
dent increments provides is that the solution X of the SDE is a strong Markov
process (a time homogeneous strong Markov process if the increments are
also stationary and the coefficients are autonomous). Therefore, so is Y = eX ,
since the function x → ex is injective. If however one replaces the Lévy driving
process Z with a strong Markov process, call it Q, then the solution X with Z
replaced by Q, will no longer be a Markov process, although the vector process
(X�Q) will be strong Markov (see Protter, 2005, Theorem 32, p. 300 and The-
orem 73, p. 353).

But why do we care if X, and hence Y , is strong Markov? Many researchers
claim there is evidence that the price process has short term momentum, which
would violate the Markov property. The reason is that it is mathematically con-
venient to have Y be Markov, since in this case one has a hope of calculating
(or at least approximating) a hedging strategy for a financial derivative. If how-
ever one is willing to forego having a time homogeneous strong Markov price
process, then one can consider a price process of the form

(14)dYt = Yt−f (Yt−) dZt + Yt−g(Yt−) dAt� Y0 > 0�

where Z and A are taken to be semimartingales. There is a danger to this level
of generality, since not all such models lead to an absence of arbitrage, as we
shall see in Section 3.11.

3.9 Determining the replication strategy

It is rare that we can actually “explicitly” compute a replication strategy for
a derivative security. However, there are simple cases where miracles happen;
and when there are no miracles, then we can often approximate hedging strate-
gies using numerical techniques.

Let us consider a standard, and relatively simple derivative security of the
form

C = f (ST )�

where S is the price of the risky security. The two most important examples
(already discussed in Section 2) are

• The European call option: Here f (x) = (x − K)+ for a constant K, so
the contingent claim is C = (ST − K)+. K is referred to as the strike
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price and T is the expiration time. In words, the European call option
gives the holder the right to buy one unit of the security at the priceK at
time T . Thus the (random) value of the option at time T is (ST −K)+.

• The European put option: Here f (x) = (K−x)+. This option gives the
holder the right to sell one unit of the security at time T at price K.
Hence the (random) value of the option at time T is (K − ST )

+.

To illustrate the ideas involved, let us take Rt ≡ 1 by a change of numéraire,
and let us suppose that C = f (ST ) is a redundant derivative. The value of a
replicating self-financing trading strategy (a� b) for the claim, at time t, is

Vt = E∗{f (ST ) | Ft
} = a0S0 + b0 +

t∫
0

as dSs�

We now make a series of hypotheses in order to obtain a simpler analysis.

Hypothesis 1. S is a Markov process under some equivalent local martingale
measure P∗.

Under hypothesis 1 we have that

Vt = E∗{f (ST ) | Ft
} = E∗{f (ST ) | St}�

But measure theory tells us that there exists a function ϕ(t� ·), for each t, such
that

E∗{f (ST ) | St} = ϕ(t� St)�

Hypothesis 2. ϕ(t� x) is C1 in t and C2 in x.

This hypothesis enables us to use Itô’s formula:

Vt = E∗{f (ST ) | Ft
} = ϕ(t� St)

= ϕ(0� S0)+
t∫

0

ϕ′
x(s� Ss−) dSs

+
t∫

0

ϕ′
s(s� Ss−) ds + 1

2

t∫
0

ϕ′′
xx(s� Ss−) d[S� S]cs

+
∑

0<s�t

{
ϕ(s� Ss)− ϕ(s� Ss−)− ϕ′

x(s� Ss−)�Ss
}
�

Hypothesis 3. S has continuous paths.



Ch. 1. An Introduction to Financial Asset Pricing 47

With Hypothesis 3 Itô’s formula simplifies:

(15)

Vt = ϕ(t� St) = ϕ(0� S0)+
t∫

0

ϕ′
x(s� Ss) dSs

+
t∫

0

ϕ′
s(s� Ss) ds + 1

2

t∫
0

ϕ′′
xx(s� Ss) d[S� S]s�

Since V is a P∗ martingale, the right side of (15) must also be a P∗ martingale.
This is true if

(16)

t∫
0

ϕ′
s(s� Ss) ds + 1

2

∫ t

0
ϕ′′
xx(s� Ss) d[S� S]s = 0�

For Eq. (16) to hold, it is reasonable to require that [S� S] have paths which
are absolutely continuous almost surely. Indeed, we assume more than that.
We assume a specific structure for [S� S]:

Hypothesis 4. [S� S]t = ∫ t
0 h(s� Ss)

2 ds for some jointly measurable function h
mapping R+ × R to R.

We then get that (16) certainly holds if ϕ is the solution of the partial differ-
ential equation:

1
2
h(s� x)2 ∂

2ϕ

∂x2 (s� x)+
∂ϕ

∂s
(s� x) = 0

with boundary condition ϕ(T� x) = f (x). Note that if we combine Hy-
potheses 1–4 we have a continuous Markov process with quadratic variation∫ t

0 h(s� Ss)
2 ds. An obvious candidate for such a process is the solution of a

stochastic differential equation

dSs = h(s� Ss) dBs + k(s; Sr; r � s) ds�

where B is a standard Wiener process (Brownian motion) under P. S is
a continuous Markov process under P∗, with quadratic variation [S� S]t =∫ t

0 h(s� Ss)
2 ds as desired.

The quadratic variation is a path property and is unchanged by changing
to an equivalent probability measure P∗ (see Protter, 2005 for example). But
what about the Markov property? Why is S a Markov process under P∗ when
b can be path dependent? Here we digress a bit.

Let us analyze P∗ in more detail. Since P∗ is equivalent to P , we can let Z =
dP∗
dP and Z > 0 a.s. (dP). Let Zt = E{Z | Ft}, which is clearly a martingale.
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By Girsanov’s theorem (see, e.g., Protter, 2005),

(17)

t∫
0

h(s� Ss) dBs −
t∫

0

1
Zs

d

[
Z�

∫ ·

0
h(r� Sr) dBr

]
s

is a P∗ martingale.
Let us suppose thatZt = 1+∫ t

0 HsZs dBs, which is reasonable since we have
martingale representation for B and Z is a martingale. We then have that (17)
becomes

t∫
0

h(s� Ss) dBs −
t∫

0

1
Zs

ZsHsh(s� Ss) ds

=
t∫

0

h(s� Ss) dBs −
t∫

0

Hsh(s� Ss) ds�

If we choose Hs = k(s;Sr ;r�s)
h(s�Ss)

, then we have

St =
t∫

0

h(s� Ss) dBs +
t∫

0

k(s; Sr; r � s) ds

is a martingale under P∗. Moreover, we have Mt = Bt +
∫ t

0
k(s;Sr ;r�s)
h(s�Ss)

ds is
a P∗ martingale. Since [M�M]t = [B�B]t = t, by Lévy’s theorem it is a P∗-
Brownian motion (see, e.g., Protter, 2005), and we have

dSt = h(t� St) dMt

and thus S is a Markov process under P∗.
The last step in this digression is to show that it is possible to construct such a

P∗! Recall that the stochastic exponential of a semimartingale X is the solution
of the “exponential equation”

dYt = Yt dXt; Y0 = 1�

The solution is known in closed form and is given by

Yt = exp
(
Xt − 1

2
[X�X]ct

)∏
s�t

(1 + �Xs)e
−�Xs �

If X is continuous then

Yt = exp
(
Xt − 1

2
[X�X]t

)
�

and it is denoted Yt = E(X)t . Recall that we wanted dZt = HtZt dBt . Let
Nt = ∫ t

0 Hs dBs, and we have Zt = E(N)t . Then we set Ht = −k(t;Sr�r�t)
h(t�St )

as
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planned and let dP∗ = ZT dP , and we have achieved our goal. Since ZT > 0
a.s. (dP), we have that P and P∗ are equivalent.

Let us now summarize the foregoing. We assume we have a price process
given by

dSt = h(t� St) dBt + k(t; Sr� r � t) dt�

We form P∗ by dP∗ = ZT dP , whereZT = E(N)T andNt =
∫ t

0
−k(s;Sr�r�s)

h(s�Ss)
dBs.

We let ϕ be the (unique) solution of the boundary value problem.

(18)
1
2
h(t� x)2 ∂

2ϕ

∂x2 (t� x)+
∂

∂s
ϕ(t� x) = 0

and ϕ(T� x) = f (x), where ϕ is C2 in x and C1 in t. Then

Vt = ϕ(t� St) = ϕ(0� S0)+
t∫

0

∂ϕ

∂x
(s� Ss) dSs�

Thus, under these four rather restrictive hypotheses, we have found our repli-
cation strategy! It is as = ∂ϕ

∂x (s� Ss). We have also found our value process
Vt = ϕ(t� St), provided we can solve the partial differential equation (18).
However even if we cannot solve it in closed form, we can always approximate
ϕ numerically.

Remark 2. It is a convenient hypothesis to assume that the price process S of
our risky asset follows a stochastic differential equation driven by Brownian
motion.

Remark 3. Although our price process is assumed to follow the SDE

dSt = h(t� St) dBt + k(t; Sr� r � t) dt�

we see that the PDE (4) does not involve the “drift” coefficient k at all! Thus
the price and the replication strategy do not involve k either. The economic
explanation of this is two-fold: first, the drift term k is already reflected in the
market price: it is based on the “fundamentals” of the security; and second,
what is important is the risk involved as reflected in the term h.

Remark 4. Hypothesis 2 is not a benign hypothesis. Since ϕ turns out to be
the solution of a partial differential equation (given in (18)), we are asking
for regularity of the solution. This is typically true when f is smooth [which of
course the canonical example f (x) = (K − x)+ is not!]. The problem occurs
at the boundary, not the interior. Thus for reasonable f we can handle the
boundary terms. Indeed this analysis works for the cases of European calls and
puts as we describe in Section 3.10.
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3.10 The Black–Scholes model

In Section 3.9 we saw the convenience of assuming that S solves a stochastic
differential equation. Let us now assume S follows a linear SDE (= stochastic
differential equation) with constant coefficients:

(19)dSt = σSt dBt + μSt dt; S0 = 1�

Let Xt = σBt + μt and we have

dSt = St dXt; S0 = 1�

so that

St = E(X)t = eσBt+(μ−
1
2σ

2)t �

The process S of (19) is known as geometric Brownian motion and has been used
to study stock prices since at least the 1950s and the work of P. Samuelson.

In this simple case the solution of the PDE (18) of Section 3.9 can be found
explicitly, and it is given by

ϕ(x� t) = 1√
2π

∞∫
−∞

f
(
xeσu

√
T−t− 1

2σ
2(T−t))e− u2

2 du�

In the case of a European call option we have f (x) = (x−K)+ and

ϕ(x� t) = xΦ

(
1

σ
√
T − t

(
log

x

K
+ 1

2
σ2(T − t)

))
−KΦ

(
1

σ
√
T − t

(
log

x

K
− 1

2
σ2(T − t)

))
�

Here Φ(z) = 1√
2π

∫ z
−∞ e−

u2
2 du. In the case of this call option we can also

compute the replication strategy:

(20)at = Φ

(
1

σ
√
T − t

(
log

St

K
+ 1

2
σ2(T − t)

))
�

And, we can compute the price (here we assume S0 = s):

V0 = ϕ(x� 0) = xΦ

(
1

σ
√
T

(
log

x

K
+ 1

2
σ2T

))
(21)−KΦ

(
1

σ
√
T

(
log

x

K
− 1

2
σ2T

))
�

These formulas, (20) and (21) are the celebrated Black–Scholes option formu-
las (or as we prefer to call them, Black–Scholes–Merton option formulas), with
Rt ≡ 1.
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This is a good opportunity to show how things change in the presence of
interest rates. Let us now assume a constant interest rate r so that Rt = e−rt .
Then the formula (21) becomes:

V0 = ϕ(x� 0) = xΦ

(
1

σ
√
T

(
log

x

K
+

(
r + 1

2
σ2

)
T

))
− e−rTKΦ

(
1

σ
√
T

(
log

x

K
+

(
r − 1

2
σ2

)
T

))
�

These relatively simple, explicit, and easily computable formulas make
working with European call and put options easy. It is perhaps because of this
beautiful simplicity that security prices are often assumed to follow geometric
Brownian motions, even when there is significant evidence to the contrary. Fi-
nally note that – as we observed earlier – the drift coefficient μ does not enter
into the Black–Scholes formula.

3.11 Reasonable price processes

This section studies reasonable price processes, which we define to be price
processes consistent with no arbitrage. The reason, of course, is that if a price
process admits arbitrage, it would be unstable. Traders’ actions, taking ad-
vantage of the arbitrage opportunities, would change the price process into
something else (the mechanism is as discussed in Section 3.8).

Here, we consider arbitrary semimartingales as possible price processes, and
we study necessary conditions for them to have no arbitrage opportunities. Be-
cause of the Delbaen–Schachermayer theory, we know that this is equivalent to
finding an equivalent probability measure P∗ such that a semimartingale X is
a σ martingale under P∗. Note that in Section 3.9 we showed how to construct
P∗ by constructing the Radon–Nikodym derivative dP∗

dP , under the assumption
that the price process followed a stochastic differential equation of a reason-
able form, driven by a Brownian motion. This is of course in the case of a
complete market, where P∗ is unique. In the incomplete case, there are many
equivalent local martingale measures, and for these cases we will indicate in
Section 3.12 how to explicitly construct at least one of the equivalent probabil-
ity measures such that X is a σ martingale.

Definition 14. A reasonable price process X is a nonnegative semimartingale
on a filtered probability space satisfying ‘the usual hypotheses’ (Ω�F�F� P),
such that there exists at least one equivalent probability measure P∗ making X
a σ martingale under P∗.

3.11.1 The continuous case
Let Xt = X0 +Mt + At� t � 0 be a continuous semimartingale on a filtered
probability space (Ω�F�F� P) where F = (Ft)t�0. We seek necessary condi-
tions (and if possible sufficient) such that there exists an equivalent probability
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measure P∗ where X is a P∗ σ martingale. Since X is continuous, and since
all continuous sigma martingales are in fact local martingales, we need only
concern ourselves with local martingales. We give the appropriate theorem
without proof, and instead refer the interested reader to Protter and Shimbo
(2006) for a detailed proof.23

Theorem 12. LetXt = X0+Mt+At� 0 � t � T be a continuous semimartingale
on a filtered probability space (Ω�F�F� P) where F = (Ft)0�t�T . Let Ct =
[X�X]t = [M�M]t � 0 � t � T . There exists an equivalent probability measure
P∗ on FT such thatX is a P∗ sigma martingale only if the following two conditions
are satisfied:

1. dA � dC a.s.;
2. If J is such that At =

∫ t
0 Js dCs for 0 � t � T , then

∫ T
0 J2

s dCs < ∞ a.s.;
If in addition one has the condition below, then we have sufficient condi-

tions for there to exist an equivalent probability measure P∗ on FT such that
X is a P∗ sigma martingale;

3. E{E(−J · M)T } = 1, where E(U) denotes the stochastic exponential of a
semimartingale U .

Remark 5. Recall that the decomposition of a continuous semimartingale is
unique (assuming one takes the local martingale M to be continuous), so M
and A are uniquely defined. If the martingale M is Brownian motion, that is if
M = B, then since [B�B]t = t we have as a necessary condition that A must
have paths which are absolutely continuous (with respect to Lebesgue mea-
sure) almost surely. This means that a semimartingale such as Xt = 1 + |Bt |
cannot be a reasonable price process, even though it is a nonnegative semi-
martingale, since by Tanaka’s formula we have Xt = 1 + βt + Lt where β
is another Brownian motion, and L is the local time of B at level 0.24 We know
that the paths of L are singular with respect to Lebesgue measure, a.s.

Remark 6. The sufficiency is not as useful as it might seem, because of con-
dition (3) of Theorem 12. The first two conditions should be, in principle,
possible to verify, but the third condition is in general not. On the other hand,
there do exist other sufficient conditions that can be used to verify condition (3)
of Theorem 12, such as Kazamaki’s condition and the more well-known con-
dition of Novikov (see, e.g., Protter, 2005 for an expository treatment of these
conditions). However in practice, both of these conditions are typically quite
difficult or impossible to verify, and other more ad hoc methods are used when
appropriate. Typically one uses ad hoc methods to show the process in question

23 In the following, the symbol C is not the payoff to a derivative security as it has been in previous
sections.
24 It is also trivial to construct an arbitrage strategy for this price process: if we buy and hold one share at
time 0 for $1, then at time T we have XT dollars, and obviously XT � 1 a.s., and P(XT > 1) = 1 > 0.



Ch. 1. An Introduction to Financial Asset Pricing 53

is both positive and everywhere finite. Since these process often arise in prac-
tice as solutions of stochastic differential equations, this amounts to verifying
that there are no explosions. The interested reader can consult (Cheridito et
al., in press) for recent results concerning these ad hoc methods.

3.11.2 The general case
A key step in the proofs for the continuous case is the use of Girsanov’s

theorem. A problem in the general case is that the analog of the predictable
version of Girsanov’s theorem is not applicable to arbitrary semimartingales
(one needs some finiteness, or integrability conditions). Therefore, one needs
to use a version of Girsanov’s theorem due to Jacod and Mémin, that works for
random measures, and this naturally leads us to the framework of semimartin-
gale characteristics. For background on characteristics, we refer the reader to
the excellent treatment in Jacod and Shiryaev (2002).

Let X be an arbitrary semimartingale with characteristics (B�C� ν) on our
usual filtered probability space (Ω�F�F� P), where F = (Ft)t�0. The random
measure ν factors as follows: ν(ds� dx) = dAs(ω)Ks(ω� dx) in such as way that
we can takeCt =

∫ t
0 cs dAs andBt =

∫ t
0 bs dAs. We have the following theorem

which gives necessary conditions for X to have no arbitrage in the Delbaen–
Schachermayer sense of NFLVR. We give the theorem without proof; a proof
can be found in Protter and Shimbo (2006).

Theorem 13. Let P∗ be another probability measure equivalent to P . Then of
course X is a semimartingale under P∗, with characteristics (B∗� C� ν∗).25 We
then know [see Theorem 3.17 (Jacod and Shiryaev, 2002, p. 170)] that the ran-
dom measure ν∗ is absolutely continuous with respect to ν, and that there exists a
predictable process (predictable in the extended sense) Y(s� x)s�0� x∈R such that

(22)ν∗ = Y · ν�
If X is a P∗σ martingale, then we must have the following four conditions satis-
fied:

1. bt + βtct +
∫ {x(Y(t� x) − 1{|x|�1})Kt(dx) = 0; P(dω) dAs(ω) almost

everywhere;
2.

∫ T
0 β2

s dCs < ∞, a.s.;
3. �At > 0 implies that

∫
xY(s� x)K(s� dx) = 0;

4.
∫ |x2| ∧ |x|Y(t� x)Kt(dx) < ∞� P(dω) dAs(ω) almost everywhere.

Remark 7. Distinct from the continuous case, we only have necessary condi-
tions for P∗ to exist, and not sufficient conditions. The proof of the sufficiency
in the continuous case breaks down here.

25 We write C instead of C∗ because it is the same process for any equivalent probability measure.
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Often we impose the assumption of quasi left continuity26 of the underlying
filtration. This is a standard assumption in most of Markov process theory, for
example, due to Meyer’s theorem (cf. Protter, 2005, p. 105). A simple example
of a quasi-left continuous filtration is the natural (completed) filtration of a
Lévy process.

Theorem 14. Let X be a semimartingale as in Theorem 13. Suppose in addition
that F is a quasi-left continuous filtration, and that A is continuous. If X is a P∗σ
martingale, then we must have the following three conditions satisfied:

1. bt + βtct +
∫ {x(Y(t� x) − 1{|x|�1})Kt(dx) = 0; P(dω) dAs(ω) almost

everywhere;
2.

∫ T
0 β2

s dCs < ∞, a.s.;
3.

∫ |x2| ∧ |x|Y(t� x)Kt(dx) < ∞, P(dω) dAs(ω) almost everywhere.

Remark 8. Since the filtration F is quasi-left continuous, all martingales jump
at totally inaccessible times, so the assumption that A be continuous is not
a restriction on the martingale terms, but rather a condition eliminating pre-
dictable jump times in the drift. Since A is continuous, obviously we are able
to remove the condition on the jumps of A.

Remark 9 (General Remarks). Comparing Theorem 12 and Theorem 13 illus-
trates how market incompleteness corresponding to the price process X can
arise in two different ways. First, Theorem 12 shows that (in the continuous
case) the choice of the orthogonal martingale M is essentially arbitrary, and
each such choice leads to a different equivalent probability measure render-
ing X a local martingale. Second, Theorem 13 shows that in the general case
(the case where jumps are present) incompleteness can still arise for the same
reasons as in the continuous case, but also because of the jumps, through the
choice ofY . Indeed, we are free to changeY appropriately at the cost of chang-
ing b. Only if K reduces to a point mass is it then possible to have uniqueness
of P∗ (and hence market completeness), and then of course only if C = 0.
What this means is that if there are jumps in the price process, our only hope for
a complete market is for there to be only one kind of jump, and no continuous
martingale component.

We also wish to remark that through clever constructions, one can indeed
have complete markets with jumps in more interesting settings than point
processes; see for example Dritschel and Protter (1999). In addition, one can
combine (for example) a Brownian motion and a compensated Poisson process

26 See Protter (2005, p. 191) for a definition and discussion of quasi-left continuity of a filtration. The
primary implication of a filtration being quasi-left continuous is that no martingale can jump at a pre-
dictable stopping time.
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via a clever trick to get a complete market which has a continuous martingale
and a jump martingale as components of the price process. (See Jeanblanc and
Privault, 2002.)

3.12 The construction of martingale measures

In Section 3.9 we showed how, in the special continuous case, one can con-
struct (in that section the unique) martingale measure (also known as a risk
neutral measure). We can use the same idea more generally in incomplete
markets, and we illustrate this technique here. Note that we are not trying for
maximum generality, and we will make some rather strong finiteness assump-
tions in order to keep the presentation simple. Here is the primary result.

Theorem 15. Let S be a price process, and assume it is a special semimartingale27

with canonical decomposition S = M+A. Assume that the conditional quadratic
variation process 〈M�M〉 exists, and that dAt � d〈M�M〉t such that if dAt =
Kt d〈M�M〉t for some predictable process K, then E(e

∫ T
0 K2

s d〈M�M〉s ) < ∞. As-
sume further that for any stopping time τ, 0 � τ � T , we have Kτ�Mτ > −1.
Let

Zt = 1 +
t∫

0

Zs−(−Ks) dMs� 0 � t � T�

and set dP∗ = ZT dP . Then P∗ is a equivalent martingale measure for P.

Proof. Since we know by hypothesis that Kτ�Mτ > −1 for any stopping time τ
with values in [0� T ], we have that Z > 0 on [0� T ] almost surely. Thus Z is a
positive supermartingale. The hypothesis E(e

∫ T
0 K2

s d〈M�M〉s ) < ∞ allows us to
assume that Z is a true martingale, by Shimbo’s theorem (see Protter, 2005,
p. 142, or Shimbo, 2006).28 Therefore E(ZT ) = 1 and P∗ is a true probability
measure, equivalent to P. We therefore have, by the Girsanov–Meyer theorem,
that the canonical decomposition of S under P∗ is

(23)St =
{
St −

t∫
0

1
Zs−

d〈Z�M〉s
}

+
{
At +

t∫
0

1
Zs−

d〈Z�M〉s
}
�

27 A semimartingale is called special is it has a decomposition where the finite variation term can be
taken predictable. See Protter (2005, pp. 130ff) for more information on special semimartingales.
28 If S is assumed continuous, we have that the condition E(e

1
2
∫ T

0 K2
s d〈M�M〉s ) < ∞ is sufficient, by

Novikov’s criterion.
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We next note that

t∫
0

1
Zs−

d〈Z�M〉s =
t∫

0

1
Zs−

Zs−(−Ks) d〈M�M〉s

(24)= −
t∫

0

Ks d〈M�M〉s

and this equals −At by our hypothesis on K (and hence A). This implies that
P∗ renders S into a local martingale, and hence P∗ is a choice for an equivalent
martingale measure. �

Example 1. Suppose we have a price process which satisfies:

(25)
dSt = σ1(St) dBt + σ2(St) dWt + σ3(St−) dMt + μ(St) dt; S0 > 0�

where B and W are independent Brownian motions, Mt = Nt −λt, a compen-
sated standard Poisson process with arrival intensity λ. We let M denote the
sum of the three martingales. Moreover we assume that σ1� σ2� σ3 and μ all
bounded, Lipshitz functions. (We also assume of course that N is independent
from the two Brownian motions.) To find a risk neutral measure P∗, we need
only choose it in such a way as to eliminate the drift under P∗. We have four
(and as we shall see hence an infinite number of) obvious choices:

1. We can choose Z to be the unique solution of

(26)Z1�t = 1 +
t∫

0

Z1�s
(−μ(Ss)) dBs; Z1�0 = 1�

and take dP∗
1 = Z1�T dP . We then get, using Eqs. (23) and (24), that

t∫
0

1
Z1�s−

d〈Z1�M〉s =
t∫

0

1
Z1�s−

Z1�s−
(−μ(Ss)) d〈B�M〉s

(27)= −
t∫

0

μ(Ss) d〈B�B〉s = −
t∫

0

μ(Ss) ds

where, due to the independence assumption, the second to last equality
uses 〈B�W 〉 = 〈B�M〉 = 0, whence 〈B�M〉 = 〈B�B〉. Finally, we have
d〈B�B〉s = d[B�B]s = ds, since B is a Brownian motion.
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2. Instead, we can choose Z2 to satisfy the SDE

Z2�t = 1 +
t∫

0

Z2�s
(−μ(Ss)) dWs; Z2�0 = 1�

This gives us a new equivalent martingale measure dP∗
2 = Z2�T dP by the

same calculations as above. In particular, we get 〈W�M〉 = 〈W�W 〉 at
the last step.

3. For the third example, we set

Z3�t = 1 +
t∫

0

Z3�s
(−μ(Ss)) 1

λ
dMs; Z3�0 = 1�

and dP∗
3 = Z3�T dP . This time we repeat the calculation of Eq. (27) to

get:
t∫

0

1
Z1�s−

d〈Z1�M〉s =
t∫

0

1
Z1�s−

Z1�s−
(−μ(Ss)) 1

λ
d〈M�M〉s

= −
t∫

0

μ(Ss)
1
λ

d〈M�M〉s

= −
t∫

0

μ(Ss)
1
λ
λ ds�

since d〈M�M〉s = λ ds, and of course we have used once again the inde-
pendence of B�W , and M , which implies that 〈B�M〉t = 0.

4. In addition to the three equivalent martingale measures constructed
above, we can of course combine them, as follows:

Z4�t = +
t∫

0

Z4�s−
{
α
(−μ(Ss)) dBs + β

(−μ(Ss)) dWs

+ γ
(−μ(Ss)) 1

λ
dMs

}
;

Z4�0 = 1�

where α�β, and γ are all nonnegative, and α + β + γ = 1. Then dP∗
4 =

Z4�T dP.

One can imagine many more constructions, by combinations of the first
three examples via random (rather than deterministic and linear) combina-
tions.
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Finally, note that these constructions, even with random combinations of
the first three fundamental examples, need not exhaust the possibilities for
equivalent martingale measures. Depending on the underlying filtration and
probability measure, there could be martingales orthogonal29 to B�W , and M
also living on the space, which could generate orthogonal equivalent martin-
gale measures. In this case, there is little hope to explicitly construct these al-
ternative equivalent martingale measures with the given underlying processes.
This point is made clear, but in a more abstract setting, in Section 3.11.

3.13 More complex derivatives in the Brownian paradigm: a general view

In Sections 3.9 and 3.10 we studied derivatives of the form C = f (ST ),
that depend only on the final value of the price process. There we showed that
the computation of the price and also the hedging strategy can be obtained
by solving a partial differential equation, provided the price process S is as-
sumed to be Markov under P∗. But, this is a limited perspective. There are
many other derivative securities whose payoffs depend on the entire path of
the price process, and not only on the final value. In this case, the partial dif-
ferential equation approach is not applicable and other techniques from the
theory of stochastic processes must be applied. This section studies the tech-
niques necessary to handle these more complex derivative securities.

We illustrate these techniques by looking at a look-back option, a derivative
security whose payoff depends on the maximum value of the asset price S over
the entire path from 0 to T . Let us return to geometric Brownian motion:

dSt = σSt dBt + μSt dt�

Proceeding as in Section 3.9 we change to an equivalent probability measure
P∗ such that B∗

t = Bt + μ
σ t is a standard Brownian motion under P∗. Now, S is

a martingale satisfying:

dSt = σSt dB∗
t �

Let F be a functional defined on C[0� T ], the continuous functions with domain
[0� T ]. Then F(u) ∈ R, where u ∈ C[0� T ]. Let us suppose that F is Fréchet
differentiable and let DF denote its Fréchet derivative. Under some technical
conditions on F (see, e.g., Clark, 1970), if C = F(B∗), then one can show

(28)C = E∗{C} +
T∫

0

p
(
DF

(
B∗; (t� T ])) dB∗

t �

where p(X) denotes the predictable projection of X. [This is often written
“E∗{X | Ft}” in the literature. The process X = (Xt)0�t�T , E∗{Xt | Ft} is

29 See Protter (2005, Section 3 of Chapter IV) for a treatment of orthogonal martingales, and in partic-
ular Protter (2005, Corollary 1, p. 183).
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defined for each t a.s. The null set Nt depends on t. Thus E∗{Xt | Ft} does not
uniquely define a process, since if N = ⋃

0�t�T Nt , then P(Nt) = 0 for each t,
but P(N) need not be zero. The theory of predictable projections avoids this
problem.]

Using (28) we then have a formula for the hedging strategy:

at = 1
σSt

p
(
DF

(·� (t� T ]))�
For the look-back option, we have the payoff: C(ω) = sup0�t�T St(ω) =
S∗
T = F(B∗). Then, we can let τ(B∗) denote the random time where the tra-

jectory of S attains its maximum on [0� T ]. Such an operation is Fréchet differ-
entiable and

DF(B∗� ·) = σF(B∗)δτ(B∗)�

where δα denotes the Dirac measure at α.
Let

Ms�t = max
s�u�t

(
B∗
u − 1

2
σu

)
with Mt = M0�t . Then the Markov property gives

E∗{DF
(
B∗� (t� T ]) | Ft

}
(B∗) = E∗{σF(B∗)1{Mt�T>Mt} | Ft

}
(B∗)

= σStE
∗{exp(σMT−t);MT−t > Mt(B

∗)
}
�

For a given fixed value of B∗, this last expectation depends only on the dis-
tribution of the maximum of a Brownian motion with constant drift. But this
distribution is explicitly known. Thus, we obtain an explicit hedging strategy for
this look-back option (see Goldman et al., 1979):

at(ω) =
(
− log

Mt

St
(ω)+ σ2(T − t)

2
+ 2

)
×Φ

(− log Mt
Xt
(ω)+ 1

2σ
2(T − t)

σ
√
T − t

)
+ σ

√
T − tϕ

(− log Mt
St
(ω)+ 1

2σ
2(T − t)

σ
√
T − t

)
�

where Φ(x) = 1√
2π

∫ x
−∞ e−u2/2 du and ϕ(x) = Φ′(x).

The value of this look-back option is then:

V0 = E∗{C} = S0

(
σ2T

2
+ 2

)
Φ

(
1
2
σ
√
T

)
+ σ

√
TS0ϕ

(
1
2
σ
√
T

)
�

Requiring that the claim be of the form C = F(B∗) where F is Fréchet
differentiable is still restrictive. One can weaken this hypothesis substantially



60 R.A. Jarrow and P. Protter

by requiring that F be only Malliavin differentiable. If we let D denote now
the Malliavin derivative of F , then Eq. (28) is still valid. Nevertheless explicit
strategies and prices can be computed only in a few very special cases, and
usually only when the price process S is geometric Brownian motion.

4 American type derivatives

4.1 The general view

We begin with an abstract definition, when there is a unique equivalent mar-
tingale measure.

Definition 15. We are given an adapted process U and an expiration time T .
An American type derivative is a claim to the payoff Uτ at a stopping time τ �
T ; the stopping time τ is chosen by the holder of the derivative and is called
the exercise policy.

We let Vt = the price of the security at time t. One wants to find (Vt)0�t�T

and especially V0. Let Vt(τ) denote the value of the security at time t if the
holder uses exercise policy τ. Let us further assume without loss of generality
that Rt ≡ 1. Then

Vt(τ) = E∗{Uτ | Ft}
where of course E∗ denotes expectation with respect to the equivalent martin-
gale measure P∗.

Let T (t) = {all stopping times with values in [t� T ]}.
Definition 16. A rational exercise policy is a solution to the optimal stopping
problem

(29)V ∗
0 = sup

τ∈T (0)
V0(τ)�

We want to establish a price for an American type derivative. That is, how
much should one pay for the right to purchaseU in between [0� T ] at a stopping
rule of one’s choice?

Suppose first that the supremum in (29) is achieved. That is, let us assume
there exists a rule τ∗ such that V ∗

0 = V0(τ
∗) where V ∗

0 is defined in (29).

Theorem 16. V ∗
0 is a lower bound for the no arbitrage price of the American type

derivative.

Proof. Suppose it is not. Let V0 < V ∗
0 be another price. Then one should buy

the security at V0 and use the stopping rule τ∗ to purchase U at time τ∗. One
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then spends −Uτ∗ , which gives an initial payoff of V ∗
0 = E∗{Uτ∗ | F0}; one’s

initial profit is V ∗
0 − V0 > 0. This is an arbitrage opportunity. �

To prove V ∗
0 is also an upper bound for the no arbitrage price (and thus

finally equal to the price!) is more difficult.

Definition 17. A super-replicating trading strategy θ is a self-financing trading
strategy θ such that θtSt � Ut , all t, 0 � t � T , where S is the price of the
underlying risky security on which the American type derivative is based. (We
are again assuming Rt ≡ 1.)

Theorem 17. Suppose a super replicating strategy θ exists with θ0S0 = V ∗
0 . Then,

V ∗
0 is an upper bound for the no arbitrage price of the American type derivative
(U� T).

Proof. If V0 > V ∗
0 , then one can sell the American type derivative and adopt

a super-replicating trading strategy θ with θS0 = V ∗
0 . One then has an initial

profit of V0 − V ∗
0 > 0, while we are also able to cover the payment Uτ asked

by the holder of the security at his exercise time τ, since θτSτ � Uτ. Thus we
have an arbitrage opportunity. �

The existence of super-replicating trading strategies can be established us-
ing Snell Envelopes. A stochastic process Y is said to be of “class D” if the
collection H = {Yτ: τ a stopping time} is uniformly integrable.

Theorem 18. Let Y be a càdlàg, adapted process, Y > 0 a.s., and of “Class D.”
Then there exists a positive càdlàg supermartingale Z such that

(i) Z � Y , and for every other positive supermartingale Z′ with Z′ � Y , also
Z′ � Z;

(ii) Z is unique and also belongs to Class D;
(iii) For any stopping time τ

Zτ = ess sup
ν�τ

E{Yν | Fτ}

(ν is also a stopping time).

For a proof consult Dellacherie and Meyer (1978) or Karatzas and Shreve
(1998). Z is called the Snell Envelope of Y .

One then needs to make some regularity hypotheses on the American type
derivative (U� T). For example, if one assumes U is a continuous semimartin-
gale and E∗{[U�U]T } < ∞, it is more than enough. One then uses the exis-
tence of Snell envelopes to prove:

Theorem 19. Under regularity assumptions (for example E∗{[U�U]T } < ∞ suf-
fices), there exists a super-replicating trading strategy θ with θtSt � k for all t for
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some constant k and such that θ0S0 = V ∗
0 . A rational exercise policy is

τ∗ = inf{t > 0: Zt = Ut}�
where Z is the Snell Envelope of U under P∗.

4.2 The American call option

Let us here assume that for a price process (St)0�t�T and a bond process
Rt ≡ 1, there exists a unique equivalent martingale measure P∗ which means
that there is no arbitrage and the market is complete.

Definition 18. An American call option with terminal time T and strike price K
gives the holder the right to buy the security S at any time τ between 0 and T ,
at price K.

It is of course reasonable to consider the random time τ where the option is
exercised at a stopping time, and the option’s payoff is (Sτ −K)+, correspond-
ing to which rule τ that the holder uses.

First, we note that since the holder of the American call option is free to
choose the rule τ ≡ T , he or she is always in a better position than the holder
of a European call option, whose worth is (ST − K)+. Thus, the price of an
American call option should be bounded below by the price of the correspond-
ing European call option.

As in Section 4.1 we let

Vt(τ) = E∗{Uτ | Ft} = E∗{(Sτ −K)+ | Ft
}

denote the value of our American call option at time t assuming τ is the exer-
cise rule. The price is then

V ∗
0 = sup

τ;0�τ�T

E∗{(Sτ −K)+
}
�

We note however that S = (St)0�t�T is a martingale under P∗, and since
f (x) = (x − K)+ is a convex function, we have (St − K)+ is a submartingale
under P∗. Hence, from (1) we have that

V ∗
0 = E∗{(ST −K)+

}
since t → E∗{(St − K)+} is an increasing function, and the sup – even for
stopping times – of the expectation of a submartingale is achieved at the termi-
nal time (this can be easily seen as a trivial consequence of the Doob–Meyer
decomposition theorem). This leads to the following result (however the anal-
ogous result is not true for American put options, or even for American call
options if the underlying stocks pay dividends):

Theorem 20. In a complete market (with no arbitrage) the price of an American
call option with terminal time T and strike price K is the same as the price for a
European call option with the same terminal time and strike price.
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Theorem 21 (Corollary). If the price process St follows the SDE

dSt = σSt dBt + μSt dt;
then the price of an American call option with strike price K and terminal time T
is the same as that of the corresponding European call option and is given by the
formula (21) of Black, Scholes, and Merton.

Although the prices of the European and American call options are the
same, we have said nothing about the replication strategies. But, the above
theorem essentially states that the American call option is never exercised
early, and hence, is identical to the European call option. Thus, their repli-
cation strategies will be identical as well.

4.3 Backwards stochastic differential equations and the American put option

Let ξ be in L2 and suppose f : R+ × R → R is Lipschitz in space. Then a
simple backwards ordinary differential equation (ω by ω) is

Yt(ω) = ξ(ω)+
T∫
t

f
(
s� Ys(ω)

)
ds�

However if ξ ∈ L2(FT � dP) and one requires that a solution Y = (Yt)0�t�T

be adapted (that is, Yt ∈ Ft), then the equation is more complex. For example,
if Yt ∈ Ft for every t, 0 � t � T , then one has

(30)Yt = E

{
ξ +

T∫
t

f (s� Ys) ds
∣∣∣ Ft

}
�

An equation such as (30) is called a backwards stochastic differential equation.
Next, we write

Yt = E

{
ξ +

T∫
0

f (s� Ys) ds
∣∣∣ Ft

}
−

t∫
0

f (s� Ys) ds

= Mt −
t∫

0

f (s� Ys) ds

where M is the martingale E{ξ + ∫ T
0 f (s� Ys) ds | Ft}. We then have

YT − Yt = MT −Mt −
( T∫

0

f (s� Ys) ds −
t∫

0

f (s� Ys) ds

)
ξ − Yt
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= MT −Mt −
T∫
t

f (s� Ys) ds

or, the equivalent equation:

(31)Yt = ξ +
T∫
t

f (s� Ys) ds − (MT −Mt)�

Next, let us suppose that we are solving (30) on the canonical space for Brown-
ian motion. Then, we have that the martingale representation property holds,
and hence there exists a predictable Z ∈ L(B) such that

Mt = M0 +
t∫

0

Zs dBs�

where B is Brownian motion. We have that (31) becomes

(32)Yt = ξ +
T∫
t

f (s� Ys) ds −
T∫
t

Zs dBs�

Thus, to find an adapted Y that solves (30) is equivalent to find a pair (Y�Z)
with Y adapted and Z predictable that solve (32).

Given Z, one can consider a more general version of (32) of the form

(33)Yt = ξ +
T∫
t

f (s� Ys�Zs) ds −
T∫
t

Zs dBs�

We wish to consider an even more general equation than (33): backward sto-
chastic differential equations where the solution Y is forced to stay above an
obstacle. This can be formulated as follows (here we follow El Karoui et al.,
1997):

Yt = ξ +
T∫
t

f (s� Ys�Zs) ds +KT −Kt −
T∫
t

Zs dBs

where Yt � Ut (U is optional),

K is a continuous, increasing, adapted�K0 = 0�

and

T∫
0

(Yt −Ut) dKt = 0�
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The obstacle process U is given, as are the random variables ξ and the func-
tion f , and the unknowns are (Y�Z�K). Once again it is Z that makes both Y
and K adapted.

Theorem 22 (EKPPQ). Let f be Lipshitz in (y� z) and assume
E{sup0�t�T (U

+
t )

2} < ∞. Then there exists a unique solution (Y�Z�K) to
Eq. (5).

Two proofs are given in El Karoui et al. (1997): one uses the Skorohod
problem, a priori estimates and Picard iteration; the other uses a penalization
method.

Now let us return to American type derivatives. Let S be the price process
of a risky security and let us take Rt ≡ 1. For an American put option, by
definition, the payoff takes the form (K − Sτ)

+ where K is a strike price and
the exercise rule τ is a stopping time with 0 � τ � T . Thus, we should let
Ut = (K − St)

+, and if X is the Snell envelope of U , we see from Section 4.1
that a rational exercise policy is

τ∗ = inf{t > 0: Xt = Ut}
and that the price is V ∗

0 = V0(τ
∗) = E∗{Uτ∗ | F0} = E∗{(K − Sτ∗)+}. There-

fore, finding the price of an American put option is related to finding the Snell
envelope of U . Recall that the Snell envelope is a supermartingale such that

Xτ = ess sup
ν�τ

E{Uν | Fτ}

where ν is also a stopping time.
We consider the situation where Ut = (K − St)

+ and ξ = (K − ST )
+. We

then have

Theorem 23 (EKPPQ). Let (Y�K�Z) be the solution of (5). Then

Yt = ess sup
ν a stopping time; t�ν�T

E

{ ν∫
t

f (s� Ys�Zs) ds +Uν

∣∣∣ Ft

}
�

Proof. [Sketch] In this case

Yt = UT +
T∫
t

f (s� Ys�Zs) ds +KT −Kt −
T∫
t

Zs dBs�

hence

Yν − Yt = −
ν∫
t

f (s� Ys�Zs) ds + (Kt −Kν)+
ν∫
t

Zs dBs
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and since Yt ∈ Ft we have

Yt = E

{ ν∫
t

f (s� Ys�Zs) ds + Yν + (Kν −Kt)
∣∣∣ Ft

}

� E

{ ν∫
t

f (s� Ys�Zs) ds +Uν

∣∣∣ Ft

}
�

Next let γt = inf{t � u � T : Yu = Uu}, with γt = T if Yu > Uu, t � u � T .
Then

Yt = E

{ γt∫
t

f (s� Ys�Zs) ds + Yγt +Kγt −Kt

∣∣∣ Ft

}
�

However on [t� γt) we have Y > U , and thus
∫ γt
t (Ys−Us) dKs = 0 implies that

Kγt− −Kt = 0; however K is continuous by assumption, hence Kγt −Kt = 0.
Thus (using Yγt = Uγt ):

Yt = E

{ γt∫
t

f (s� Ys�Zs) ds +Uγt

∣∣∣ Ft

}

and we have the other implication. �

The next corollary shows that we can obtain the price of an American put
option via reflected backwards stochastic differential equations.

Theorem 24 (Corollary). The American put option has the price Y0, where
(Y�K�Z) solves the reflected obstacle backwards SDE with obstacle Ut = (K −
St)

+ and where f = 0.

Proof. In this case the previous theorem becomes

Y0 = ess sup
ν a stopping time 0�ν�T

E{Uν | Ft}�

and Uν = (K − Sν)
+. �

The relationship between the American put option and backwards SDEs
can be exploited to numerically price an American put option, see Ma et al.
(2002), as well as work of Bally et al. (2005), and the more recent and very
promising work of Gobet et al. (in press) and also see Lemor (2005). More
traditional methods are to use numerical methods associated with variational
partial differential equations, Monte Carlo simulation, or lattice (binomial)
type approximations.
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We note that one can generalize these results to American game options
(sometimes called Israeli options), using forward–backward reflected stochas-
tic differential equations. See, e.g., Ma and Cvitanić (2001) or the “Game
Options” introduced by Kifer (2000).
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Abstract

In this survey we shall focus on the following issues related to jump-diffusion mod-
els for asset pricing in financial engineering. (1) The controversy over tailweight of
distributions. (2) Identifying a risk-neutral pricing measure by using the rational ex-
pectations equilibrium. (3) Using Laplace transforms to pricing options, including
European call/put options, path-dependent options, such as barrier and lookback op-
tions. (4) Difficulties associated with the partial integro-differential equations related
to barrier-crossing problems. (5) Analytical approximations for finite-horizon Amer-
ican options with jump risk. (6) Multivariate jump-diffusion models.

1 Introduction

There is a large literature on jump-diffusion models in finance, including
several excellent books, e.g. the books by Cont and Tankov (2004), Kijima
(2002). So a natural question is why another survey article is needed. What we
attempt to achieve in this survey chapter is to emphasis some points that have
not been well addressed in previous surveys. More precisely we shall focus on
the following issues.

(1) The controversy over tailweight of distributions. An empirical motiva-
tion for using jump-diffusion models comes from the fact that asset
return distributions tend to have heavier tails than those of normal dis-
tribution. However, it is not clear how heavy the tail distributions are,
as some people favor power-type distributions, others exponential-type
distributions. We will stress that, quite surprisingly, it is very difficult
to distinguish power-type tails from exponential-type tails from empir-
ical data unless one has extremely large sample size perhaps in the
order of tens of thousands or even hundreds of thousands. Therefore,

73
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whether one prefers to use power-type distributions or exponential-type
distributions is a subjective issue, which cannot be easily justified empir-
ically. Furthermore, this has significant implications in terms of defining
proper risk measures, as it indicates that robust risk measures, such
as VaR, are desirable for external risk management; see Heyde et al.
(2006).

(2) Identifying a risk-neutral pricing measure by using the rational expec-
tations equilibrium. Since jump-diffusion models lead to incomplete
markets, there are many ways to choose the pricing measure; popular
methods include mean–variance hedging, local mean–variance hedging,
entropy methods, indifference pricing, etc. Here we will use the ratio-
nal expectations equilibrium, which leads to a simple transform from
the original physical probability to a risk-neutral probability so that we
can pricing many assets, including zero-coupon bonds, stocks, and deriv-
atives on stocks, simultaneously all in one framework.

(3) Using Laplace transforms to pricing options, including European call
and put options, path-dependent options, such as barrier options and
lookback options. We shall point out that even in the case of European
call and put options, Laplace transforms lead to simpler expressions
and even faster computations, as direct computations may involve some
complicated special functions which may take some time to compute
while Laplace transforms do not.

(4) Difficulties associated with the partial integro-differential equations re-
lated to barrier-crossing problems. For example: (i) Due to nonsmooth-
ness, it is difficult to apply Itô formula and Feymann–Kac formula di-
rectly. (ii) It is generally difficult to solve the partial integro-differential
equations unless the jump sizes have an exponential-type distribution.
(iii) Even renewal-type arguments may not lead to a unique solution.
However martingale arguments may be helpful in solving the problems.

(5) Two analytical approximations for finite-horizon American options,
which can be computed efficiently and with reasonable accuracy.

(6) Multivariate jump-diffusion models.

In a survey article, inevitably I will skip some important topics which are be-
yond the expertise of the author. For example, I will omit numerical solutions
for jump-diffusion models; see Cont and Tankov (2004), Cont and Voltchkova
(2005) and d’Halluin et al. (2003) on numerical methods for solving partial
integro-differential equations, and Feng and Linetsky (2005) and Feng et al.
(2004) on how to price path-dependent options numerically via variational
methods and extrapolation. Two additional topics omitted are hedging (for a
survey, see the book by Cont and Tankov, 2004) and statistical inference and
econometric analysis for jump-diffusion models (for a survey, see the book by
Singleton, 2006). Due to the page limit, I will also skip various applications of
the jump-diffusion models; see the references in Glasserman and Kou (2003)
for applications of jump-diffusion models in fixed income derivatives and term
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structure models, and Chen and Kou (2005) for applications in credit risk and
credit derivatives.

2 Empirical stylized facts

2.1 Are returns normally distributed

Consider the daily closing prices of S&P 500 index (SPX) from Jan 2, 1980
to Dec 31, 2005. We can compute the daily returns of SPX, either using the
simple returns or continuously compounded returns. The (one-period) simple
return is defined to be Rt = {S(t)− S(t − 1)}/S(t − 1) at time t, where S(t) is
the asset price. For mathematical convenience, the continuously compounded
return (also called log return) at time t, rt = ln S(t)

S(t−1) , is very often also used,
especially in theoretical modeling. The difference between simple and log re-
turns for daily data is quite small, although it could be substantial for monthly
and yearly data. The normalized daily simple returns are plotted in Fig. 1, so
that the daily simple returns will have mean zero and standard deviation one.

We see big spikes in 1987. In fact the max and min (which all occurred during
1987) are about 7.9967 and −21�1550 standard deviation. The continuously
compounded returns show similar features. Note that for a standard normal

Fig. 1. The normalized daily simple returns of S&P 500 index from Jan 2, 1980 to Dec 31, 2005. The
returns have been normalized to have mean zero and standard deviation one.
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Fig. 2. Comparison of the histogram of the normalized daily returns of S&P 500 index (from Jan 2,
1980 to Dec 31, 2005) and the density of N(0� 1). The feature of a high peak and two heavy tails (i.e.

the leptokurtic feature) is quite evident.

random variable Z, P(Z < −21�1550) ≈ 1�4 × 10−107; as a comparison, note
that the whole universe is believed to have existed for 15 billion years or 5 ×
1017 seconds.

Next we plot the histogram of the daily returns of SPX. Figure 2 displays the
histogram along with the standard normal density function, which is essentially
confined within (−3, 3).

2.1.1 Leptokurtic distributions
Clearly the histogram of SPX displays a high peak and asymmetric heavy

tails. This is not only true for SPX, but also for almost all financial asset prices,
e.g. US and world wide stock indices, individual stocks, foreign exchange rates,
interest rates. In fact it is so evident that a name “leptokurtic distribution” is
given, which means the kurtosis of the distribution is large. More precisely, the
kurtosis and skewness are defined as K = E

( (X−μ)4

σ4

)
, S = E

( (X−μ)3

σ3

)
; for the

standard normal density K = 3. If K > 3 then the distribution will be called



Ch. 2. Jump-Diffusion Models for Asset Pricing in Financial Engineering 77

leptokurtic and the distribution will have a higher peak and two heavier tails
than those of the normal distribution. Examples of leptokurtic distributions
include: (1) double exponential distribution with the density given by

f (x) = p · η1e
−xη11{x>0} + (1 − p) · η2e

xη21{x<0}�
(2) t-distribution, etc.

To estimate skewness and kurtosis, we shall use

Ŝ = 1
(n− 1)σ̂3

n∑
i=1

(Xi − X̄)3� K̂ = 1
(n− 1)σ̂4

n∑
i=1

(Xi − X̄)4

as sample skewness and sample kurtosis, where σ̂ is the sample standard devi-
ation. For the daily returns of the SPX data, the sample kurtosis is about 42.23.
The skewness is about −1�73; the negative skewness means the return has a
heavier left tail than the right tail.

The leptokurtic feature has been observed since 1950’s. However classical
finance models simply ignore this feature. For example, in the Black–Scholes
Brownian motion model, the stock price is modeling as a geometric Brownian
motion, S(t) = S(0)eμt+σW (t), where the Brownian motion W (t) has a nor-
mal distribution with mean 0 and variance t. Here μ is called the drift, which
measures the average return, and σ is called the volatility which measures the
standard deviation of the return distribution. In this model, the continuous
compounded return, ln(S(t)/S(0)), has a normal distribution, which it is not
consistent with leptokurtic feature. Many alternative models, e.g. models with
jumps and/or stochastic volatility, have been proposed to incorporate the fea-
ture, as we will discuss some of them shortly.

2.1.2 Power tails and exponential tails
It is clear that the returns of stocks have two tail distributions heavier than

those of normal distribution. However, how heavy the stock tail distributions
are is a debatable question. Two main classes proposed in the literature are
power-type tails and exponential-type tails. For example, we say that the right
tail of a random variable X has a power-type tail if P(X > x) ≈ c

xα , x > 0, as
x → ∞, and the left tail of X has a power-type tail if P(X < −x) ≈ c

xα , x > 0,
as x → ∞. Similarly, we say that X has a right exponential-type tail if P(X >
x) ≈ ce−αx, x > 0, and a left exponential-type tail if P(X < −x) ≈ ce−αx,
x < 0, as x → ∞.

As pointed out by Kou (2002, p. 1090), one problem with using power-type
right tails in modeling return distributions is that the power-type right tails can-
not be used in models with continuous compounding. More precisely, suppose
that, at time 0, the daily return distribution X has a power-type right tail. Then
in models with continuous compounding, the asset price tomorrow A(�t) is
given by A(�t) = A(0)eX . Since X has a power-type right tail, it is clear that
E(eX) = ∞. Consequently,

E
(
A(�t)

) = E
(
A(0)eX

) = A(0)E
(
eX

) = ∞�
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In other words, the asset price tomorrow has an infinite expectation! The price
of call option may also be infinite, if under the risk-neutral probability the re-
turn has a power-type right distribution. This is because

E∗[(S(T)−K
)+]

� E∗[S(T)] −K = ∞�

In particular, these paradoxes hold for any t-distribution with any degrees
of freedom which has power tails, as long as one considers financial mod-
els with continuous compounding. Therefore, the only relevant models with
t-distributed returns outside these paradoxes are models with discretely com-
pounded simple returns. However, in models with discrete compounding ana-
lytical solutions are in general impossible.

2.1.3 Difficulties in statistically distinguish power-type tails from
exponential-type tails

Another interesting fact is that, for a sample size of 5000 (corresponding to
about 20 years of daily data), it may be very difficult to distinguish empirically
the exponential-type tails from power-type tails, although it is quite easy to de-
tect the differences between them and the tails of normal density; see Heyde
and Kou (2004). A good intuition may be obtained by simply looking at the
quantile tables for both standardized Laplace and standardized t-distributions
with mean zero and variance one. Recall that a Laplace distribution has a sym-
metric density f (x) = 1

2e
−xI[x>0] + 1

2e
xI[x<0]. The right quantiles for the

Laplace and normalized t densities with degrees of freedom from 3 to 7 are
given in Table 1.

Table 1 shows that the Laplace distribution may have higher tail proba-
bilities than those of t-distributions with low degrees of freedom, even if as-
ymptotically the Laplace distribution should have lighter tails than those of
t-distributions. For example, the 99�9% percentile of the Laplace distribution
is actually bigger than that of t-distribution with d.f. 6 and 7! Thus, regardless
of the sample size, the Laplace distribution may appear to be heavier tailed
than a t-distribution with d.f. 6 or 7, up to the 99�9% percentile. In order to
distinguish the distributions it is necessary to use quantiles with very low p
values and correspondingly large samples.

If the true quantiles have to be estimated from data, then the problem is
even more serious, as confidence intervals need to be considered, resulting

Table 1.
Percentiles of Laplace and t-distributions

Prob. Laplace t7 t6 t5 t4 t3

1% 2�77 2�53 2�57 2�61 2�65 2�62
0.1% 4�39 4�04 4�25 4�57 5�07 5�90
0.01% 6�02 5�97 6�55 7�50 9�22 12�82
0.001% 7�65 8�54 9�82 12�04 16�50 27�67
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in sample sizes typically in the tens of thousands or even hundreds of thou-
sands necessary to distinguish power-type tails from exponential-type tails; see
Heyde and Kou (2004).

2.1.4 Practical implications for risk measures
The difficulties in distinguishing tail distributions also have implications in

risk management. For example, a controversy in axiomatic approaches to risk
measures is whether one use should Value-at-Risk (or VaR), which is a mea-
sure based on quantiles, or the tail conditional expectation. Unlike the tail con-
ditional expectation, VaR does not in general satisfy an axiom of subadditivity
(Artzner et al., 1999). However, VaR is more robust against model assump-
tions and misspecifications, thus making the VaR more suitable to be used for
external risk regulations, because VaR can produce more consistent results
which are essential for external law enforcement (see Heyde et al., 2006). Fur-
thermore, VaR at a higher quantile (e.g. 97.5%) can also be represented as
tail conditional median (e.g. at 95%), thus taking into consideration of the loss
beyond the threshold just as the tail conditional mean does. Indeed, VaR is
widely used in practice, e.g. in the recent Basel (II) governmental regulation.

It can be shown that VaR also satisfies a different set of axioms based on
commonotonic subadditivity (Heyde et al., 2006), which is consistent with both
prospect theory in behavior finance and robustness requirement for external
law enforcement. Furthermore, the intuition behind subadditivity (which is the
theoretical basis for “coherent risk measures” such as tail conditional expecta-
tions) that merger reduces risk is not true in general, in particular in presence
of the limited liability law. For details, see Heyde et al. (2006).

In short, although one may use various risk measures for internal risk man-
agement, robust risk measures, such as VaR, are needed for external risk
regulations. In addition, VaR, though simple, is not irrational because it also
satisfies a different set of axioms.

2.2 Are stock returns predictable: introduction to the dependent structure of
stock returns

To study the question on whether future stock returns can be predicted from
the current returns, we can formulate this question mathematically by asking
whether returns are correlated in some ways, so that the current returns will
provide some information about future returns. For a weakly stationary dis-
crete time series {rt}, where the index t ∈ (−∞�∞) can only take integer
values (i.e. we have � � � � r−2� r−1� r0� r1� r2� � � �), we can define the lag-k auto-
covariance γk = Cov(rt� rt−k) = Cov(rt� rt+k); the two covariances are equal
due to the definition of the weak stationarity. Similarly, we can define lag-k
autocorrelation ρk:
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ρk = Cor r(rt� rt−k) = Cor r(rt� rt+k) = Cov(rt� rt−k)√
Var(rt)Var(rt−k)

= γk√
γ0γ0

= γk
γ0
�

We can estimate ρk by

ρ̂k =
∑T

t=k+1(rt − r̄)(rt−k − r̄)∑T
t=1(rt − r̄)2

�

A plot of ρ̂k, for k � 1, is called autocorrelation function (or ACF) plot. An au-
tocorrelation plot of the simple daily returs of SPX, normalized to have mean 0
and variance 1, in given in Fig. 3.

Note that the two dotted lines in Fig. 3 indicate the 95% significant levels
for autocorrelation. More precisely, if rt = μ + at , where at is a sequence of
i.i.d. random variables with finite mean and variance, then as the total time
period T → ∞, it can be shown that ρ̂k is asymptotic normal with mean 0 and
variance 1/T . This is what is plotted in Fig. 3 as the two dotted lines, which are
±1�96/

√
T , as a 95% c.i. for the autocorrelation functions in the above ACF

plot.

Fig. 3. The ACF plot of the returns of S&P 500 index from Jan 2, 1980 to Dec 31, 2005.
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Graphically we can see from the plot that, although the first few autocor-
relations significantly exceed the 95% confidence interval, the magnitude of
autocorrelations is quite small, only about −0�05 to 0.05 among daily returns;
it is even smaller for weekly and monthly returns.

Because of this, many finance models simply ignore the dependent struc-
ture, and assume that the stock returns have zero autocorrelations. This is, for
example, in the case of Black–Scholes option pricing model, and in the capi-
tal asset pricing model, etc. Indeed, most of the classical models assume that
the stock prices satisfy “a random walk hypothesis” with independent asset
returns. However, starting in 1980’s, researches reveal some fascinating de-
pendent structures among asset returns.

In Figs. 4 and 5 we see the autocorrelations for the absolute values and the
squared values of the SPX daily returns are quite large. This suggests that re-
turns distributions are dependent in an interesting way that the volatility of
returns (which are related to the squared returns) are correlated, but asset re-
turns themselves have almost no autocorrelation. In the literature this is called
“volatility clustering effect.”

This in particular implies that any model for stock returns with independent
increments (such as Lévy processes) cannot incorporate the volatility cluster-
ing effect. Since jump-diffusion models are special cases of Lévy processes,

Fig. 4. The ACF plot of the absolute returns of S&P 500 index from Jan 2, 1980 to Dec 31, 2005.
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Fig. 5. The ACF plot of the squared returns of S&P 500 index from Jan 2, 1980 to Dec 31, 2005.

they cannot incorporate the volatility clustering effect directly. However, one
can combine jump-diffusion processes with other processes (e.g. stochastic
volatility) or consider time-changed Lévy processes to incorporate the volatility
clustering effect.

2.3 Implied volatility smile

Because in the Black–Scholes formula the call and put option prices are
monotone increasing functions of the volatility, we can define an inverse func-
tion that maps from a given option price to the volatility parameter, assuming
that we know the other parameters in the formula. More precisely, the im-
plied volatility σ(T�K) is a parameter associated with a particular strike K
and a particular maturity T such that if we use it as the volatility parameter in
the Black–Scholes formula for European call and put options, then we should
obtain a price that exactly matches the market price of a particular call/put op-
tion. In other words σ(T�K) is the inverse function of the market option price
in terms of volatility.

One immediate question is that whether the above definition is self-
consistent. In particular, suppose that one person computes σ(T�K) from a
call option with maturity T and strike K, and another computes σ(T�K) from
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a put option with the same maturity T and strike K, will the two people get the
same answer? The answer is yes due to the put–call parity, at least in theory.
The put–call parity says that no arbitrage implies that the stock price S(0), call
price C(S�K), the price P(S�K), and the zero coupon bond price B(T) must
satisfy

S(0) = C(S�K)− P(S�K)+K · B(T)�
The relationship is model-free; in other words, no matter what model we use
the above put–call parity must hold to prevent arbitrage.

Let CBS(S�K) and PBS(S�K) denote the call and put prices given by the
Black–Scholes formula based on the same input variable σ . Then S(0) =
CBS(S�K)−PBS(S�K)+K ·B(T). Similarly, S(0) = CM(S�K)−PM(S�K)+
K · B(T), where CM(S�K) and PM(S�K) denote the market prices of the call
and put. Taking the difference between the two equations, we get

(1)CBS(S�K)− CM(S�K) = PBS(S�K)− PM(S�K)�

Now suppose we get the implied volatility σc(T�K) from the market call
option and the implied volatility σp(T�K) from the market put option. By
the definition of implied volatility, if we use σc(T�K) then we must have
CBS(S�K)−CM(S�K) = 0, if σ = σc(T�K). By (1), we must have PBS(S�K)−
PM(S�K) = 0, if σ = σc(T�K). Since σp(T�K) is the unique volatility such
that PBS(S�K) − PM(S�K) = 0, we must have σp(T�K) = σc(T�K). This
shows that the implied volatilities from otherwise identical call and put op-
tions must be the same. Of course, in practice, we do have bid–ask spreads for
options. So the implied volatility will be different depending whether you use
a bid price, an ask price or the average of the bid–ask prices. Therefore, the
implied volatilities from otherwise identical call and put options may also be
somewhat different.

When one uses the implied volatilities from call and put options to price
other options not traded in exchanges, effectively we want to do extrapola-
tion from prices of liquidated options to get prices of less liquidated options.
Many practitioners think that implied volatilities are better than the historical
volatilities for the purpose of option pricing, as historical volatilities may not
reflect the current situation. For example, suppose an extreme event happens
to the Wall Street, e.g. a financial crisis, a terrorist attack, etc., then it is hard to
find similar events in the historical database, thus making historical volatilities
unsuitable.

We can calculate implied volatilities from the market prices of options with
different strike prices and maturities. If the geometric Brownian motion as-
sumption is correct, then the implied volatilities should be the same for all
the options on the same underlying asset. However, empirically options on the
same underlying asset but with different strike prices or maturities tend to have
different implied volatilities.

In particular, it is widely recognized that if we plot implied volatilities
against strike prices, then the implied volatility curve resembles a “smile,”
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meaning the implied volatility is a convex curve of the strike price. In ad-
dition, the “smile” curve changes for different maturities. While mispricing
exists and statistically significant, the implied volatility smile was not economi-
cally significant in early tests before the 1987 market crash (e.g. MacBeth and
Merville, 1979; Rubinstein, 1985). However, after the 1987 crash, the implied
volatility smile becomes economically significant and the performance of the
Black–Scholes model deteriorated.

It is worth mentioning that the leptokurtic features under a risk-neutral
measure lead to the “volatility smiles” in option prices; and the volatility clus-
tering effect may lead to implied volatility smile across maturities, especially
for long maturity options.

3 Motivation for jump-diffusion models

3.1 Alternative models to the Black–Scholes

Many studies have been conducted to modify the Black–Scholes model to
explain the above three empirical stylized facts, namely the leptokurtic feature,
volatility clustering effect, and implied volatility smile. Below is a list of some
of them.

(a) Chaos theory and fractal Brownian motions. In these models, one typ-
ically replaces the Brownian motion by a fractal Brownian motion which has
dependent increments (rather than independent increments); see, for exam-
ple, Mandelbrot (1963). However, as Rogers (1997) pointed out these models
may lead to arbitrage opportunities.

(b) Generalized hyperbolic models, including log t model and log hyperbolic
model, and stable processes. These models replace the normal distribution as-
sumption by some other distributions; see, for example, Barndorff-Nielsen and
Shephard (2001), Samorodnitsky and Taqqu (1994), Blattberg and Gonedes
(1974).

(c) Models based on Lévy processes; see, for example, Cont and Tankov
(2004) and reference therein.

(d) Stochastic volatility and GARCH models; see, for example, Hull and
White (1987), Engle (1995), Fouque et al. (2000), Heston (1993). These models
are mainly designed to capture the volatility clustering effect. A typical exam-
ple of these models is

dS(t)
S(t)

= μ dt + σ(t) dW1(t)�

dσ(t) = −α(σ(t)− β
)

dt + γ
√
σ(t) dW2(t)�

where W1(t) and W2(t) are two correlated Brownian motions.
(e) Constant elasticity of variance (CEV) model; see, for example, Cox and

Ross (1976) and Davydov and Linetsky (2001). In this model

dS(t) = μS(t) dt + σ(t)Sα(t) dW1(t)� 0 < α � 1�



Ch. 2. Jump-Diffusion Models for Asset Pricing in Financial Engineering 85

(f) Jump-diffusion models proposed by Merton (1976) and Kou (2002).

S(t) = S(0)e(μ−
1
2σ

2)t+σW (t)
N(t)∏
i=1

eYi�

where N(t) is a Poisson process. In Merton (1976) model, Y has a normal
distribution, and in Kou (2002) it has a double exponential distribution. The
double exponential distribution enables us to get analytical solutions for many
path-dependent options, including barrier and lookback options, and analytical
approximations for American options, as we will see later.

(g) A numerical procedure called “implied binomial trees”; see, for exam-
ple, Derman and Kani (1994) and Dupire (1994).

There are models combining several features, such as stochastic volatility,
jumps, and time changes. Below are two examples of them.

(h) Time changed Brownian motions and time changed Lévy processes. In
these models, the asset price S(t) is modeled as

S(t) = G
(
M(t)

)
�

as G is a either geometric Brownian motion or a Lévy process, and M(t) is a
nondecreasing stochastic process modeling the stochastic activity time in the
market. The activity process M(t) may link to trading volumes. See, for ex-
ample, Clark (1973), Madan and Seneta (1990), Madan et al. (1998), Heyde
(2000), Carr et al. (2003).

(i) Affine stochastic-volatility and affine jump-diffusion models; see, for ex-
ample, Duffie et al. (2000), which combines both stochastic volatilities and
jump-diffusions.

3.2 Jump-diffusion models

In jump-diffusion models under the physical probability measure P the asset
price, S(t), is modeled as

(2)
dS(t)
S(t−) = μ dt + σ dW (t)+ d

(
N(t)∑
i=1

(Vi − 1)

)
�

where W (t) is a standard Brownian motion, N(t) is a Poisson process with
rate λ, and {Vi} is a sequence of independent identically distributed (i.i.d.)
nonnegative random variables. In the model, all sources of randomness, N(t),
W (t), and Y ’s, are assumed to be independent. Solving the stochastic differ-
ential equation (2) gives the dynamics of the asset price:

(3)S(t) = S(0) exp
{(

μ− 1
2
σ2

)
t + σW (t)

}N(t)∏
i=1

Vi�
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In Merton (1976) model, Y = log(V ) has a normal distribution. In Kou
(2002) Y = log(V ) has an asymmetric double exponential distribution with
the density

fY (y) = p · η1e
−η1y1{y�0} + q · η2e

η2y1{y<0}� η1 > 1� η2 > 0�

wherep� q � 0,p+q = 1, represent the probabilities of upward and downward
jumps. The requirement η1 > 1 is needed to ensure that E(V ) < ∞ and
E(S(t)) < ∞; it essentially means that the average upward jump cannot exceed
100%, which is quite reasonable. For notational simplicity and in order to get
analytical solutions for various option pricing problems, the drift μ and the
volatility σ are assumed to be constants, and the Brownian motion and jumps
are assumed to be one-dimensional. Ramezani and Zeng (2002) independently
propose the double exponential jump-diffusion model from an econometric
viewpoint as a way of improving the empirical fit of Merton’s normal jump-
diffusion model to stock price data.

There are two interesting properties of the double exponential distribution
that are crucial for the model. First, it has the leptokurtic feature; see Johnson
et al. (1995). The leptokurtic feature of the jump size distribution is inherited
by the return distribution. Secondly, a unique feature, also inherited from the
exponential distribution, of the double exponential distribution is the memo-
ryless property. This special property explains why the closed-form solutions
(or approximations) for various option pricing problems, including barrier,
lookback, and perpetual American options, are feasible under the double ex-
ponential jump-diffusion model, while it seems difficult for many other models,
including the normal jump-diffusion model.

3.3 Why jump-diffusion models

Since essentially all models are “wrong” and rough approximations of real-
ity, instead of arguing the “correctness” of a particular model we shall evaluate
jump-diffusion models by four criteria.

(1) A model must be internally self-consistent. In the finance context, it
means that a model must be arbitrage-free and can be embedded in an
equilibrium setting. Note that some of the alternative models may have
arbitrage opportunities, and thus are not self-consistent (e.g. the arbi-
trage opportunities for fractal Brownian motions as shown by Rogers,
1997). In this regard, both the Merton’s normal jump-diffusion model
and the double exponential jump-diffusion model can be embedded in
a rational expectations equilibrium setting.

(2) A model should be able to capture some important empirical phenom-
ena. However, we should emphasize that empirical tests should not be
used as the only criterion to judge a model good or bad. Empirical
tests tend to favor models with more parameters. However, models with
many parameters tend to make calibration more difficult (the calibra-
tion may involve high-dimensional numerical optimization with many
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local optima), and tend to have less tractability. This is a part of the
reason why practitioners still like the simplicity of the Black–Scholes
model. Jump-diffusion models are able to reproduce the leptokurtic
feature of the return distribution, and the “volatility smile” observed
in option prices (see Kou, 2002). The empirical tests performed in
Ramezani and Zeng (2002) suggest that the double exponential jump-
diffusion model fits stock data better than the normal jump-diffusion
model, and both of them fit the data better than the classical geometric
Brownian motion model.

(3) A model must be simple enough to be amenable to computation. Like
the Black–Scholes model, the double exponential jump-diffusion model
not only yields closed-form solutions for standard call and put options,
but also leads to a variety of closed form solutions for path-dependent
options, such as barrier options, lookback options, perpetual American
options (see Kou and Wang, 2003, 2004; Kou et al., 2005), as well as
interest rate derivatives (see Glasserman and Kou, 2003).

(4) A model must have some (economical, physical, psychological, etc.) in-
terpretation. One motivation for the double exponential jump-diffusion
model comes from behavioral finance. It has been suggested from ex-
tensive empirical studies that markets tend to have both overreaction
and underreaction to various good news or bad news (see, for example,
Fama, 1998 and Barberis et al., 1998, and references therein). One may
interpret the jump part of the model as the market response to outside
news. More precisely, in the absence of outside news the asset price
simply follows a geometric Brownian motion. Good or bad news arrive
according to a Poisson process, and the asset price changes in response
according to the jump size distribution. Because the double exponen-
tial distribution has both a high peak and heavy tails, it can be used to
model both the overreaction (attributed to the heavy tails) and under-
reaction (attributed to the high peak) to outside news. Therefore, the
double exponential jump-diffusion model can be interpreted as an at-
tempt to build a simple model, within the traditional random walk and
efficient market framework, to incorporate investors’ sentiment. Inter-
estingly enough, the double exponential distribution has been widely
used in mathematical psychology literature, particularly in vision cogni-
tive studies; see, for example, papers by David Mumford and his authors
at the computer vision group, Brown University.

Incidentally, as a by product, the model also suggests that the fact of markets
having both overreaction and underreaction to outside news can lead to the
leptokurtic feature of asset return distribution.

There are many alternative models that can satisfy at least some of the
four criteria listed above. A main attraction of the double exponential jump-
diffusion model is its simplicity, particularly its analytical tractability for path-
dependent options and interest rate derivatives. Unlike the original Black–
Scholes model, many alternative models can only compute prices for standard
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call and put options, and analytical solutions for other equity derivatives (such
as path-dependent options) are unlikely. Even numerical methods for interest
rate derivatives and path-dependent options are not easy, as the convergence
rates of binomial trees and Monte Carlo simulation for path-dependent op-
tions are typically much slower than those for call and put options (for a survey,
see Boyle et al., 1997). This makes it harder to persuade practitioners to switch
from the Black–Scholes model to more realistic alternative models. The double
exponential jump-diffusion model attempts to improve the empirical implica-
tions of the Black–Scholes model, while still retaining its analytical tractability.

3.4 Shortcoming of jump-diffusion models

The main problem with jump-diffusion models is that they cannot capture
the volatility clustering effects, which can be captured by other models such as
stochastic volatility models. Jump-diffusion models and the stochastic volatility
model complement each other: the stochastic volatility model can incorpo-
rate dependent structures better, while the double exponential jump-diffusion
model has better analytical tractability, especially for path-dependent options
and complex interest rate derivatives. For example, one empirical phenom-
enon worth mentioning is that the daily return distribution tends to have more
kurtosis than the distribution of monthly returns. As Das and Foresi (1996)
point out, this is consistent with models with jumps, but inconsistent with sto-
chastic volatility models. More precisely, in stochastic volatility models (or
essentially any models in a pure diffusion setting) the kurtosis decreases as the
sampling frequency increases; while in jump models the instantaneous jumps
are independent of the sampling frequency. This, in particular, suggests that
jump-diffusion models may capture short-term behavior better, while stochas-
tic volatility may be more useful to model long term behavior.

More general models combine jump-diffusions with stochastic volatilities
resulting in “affine jump-diffusion models,” as in Duffie et al. (2000) which can
incorporate jumps, stochastic volatility, and jumps in volatility. Both normal
and double exponential jump diffusion models can be viewed as special cases
of their model. However, because of the special features of the exponential
distribution, the double exponential jump-diffusion model leads to analyti-
cal solutions for path-dependent options, which are difficult for other affine
jump-diffusion models (even numerical methods are not easy). Furthermore,
jump-diffusion models are simpler than general affine jump-diffusion models;
in particular jump-diffusion model have fewer parameters that makes cali-
bration easier. Therefore, jump-diffusion models attempt to strike a balance
between reality and tractability, especially for short maturity options and short
term behavior of asset pricing.

In summary, many alternative models may give some analytical formulae for
standard European call and put options, but analytical solutions for interest
rate derivatives and path-dependent options, such as perpetual American op-
tions, barrier and lookback options, are difficult, if not impossible. In the dou-
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ble exponential jump-diffusion model analytical solution for path-dependent
options are possible. However, the jump-diffusion models cannot capture the
volatility clustering effect. Therefore, jump-diffusion models are more suitable
for pricing short maturity options in which the impact of the volatility cluster-
ing effect is less pronounced. In addition jump-diffusion models can provide a
useful benchmark for more complicated models (for which one perhaps has to
resort to simulation and other numerical procedures).

4 Equilibrium for general jump-diffusion models

4.1 Basic setting of equilibrium

Consider a typical rational expectations economy (Lucas, 1978) in which a
representative investor tries to solve a utility maximization problem
maxc E[∫ ∞

0 U(c(t)� t) dt], where U(c(t)� t) is the utility function of the con-
sumption process c(t). There is an exogenous endowment process, denoted by
δ(t), available to the investor. Also given to the investor is an opportunity to
invest in a security (with a finite liquidation date T0, although T0 can be very
large) which pays no dividends. If δ(t) is Markovian, it can be shown (see, for
example, Stokey and Lucas, 1989, pp. 484–485) that, under mild conditions,
the rational expectations equilibrium price (also called the “shadow” price) of
the security, p(t), must satisfy the Euler equation

(4)p(t) = E(Uc(δ(T)� T)p(T) | Ft)

Uc(δ(t)� t)
� ∀T ∈ [t� T0]�

where Uc is the partial derivative of U with respect to c. At this price p(t), the
investor will never change his/her current holdings to invest in (either long or
short) the security, even though he/she is given the opportunity to do so. In-
stead, in equilibrium the investor find it optimal to just consume the exogenous
endowment, i.e. c(t) = δ(t) for all t � 0.

In this section we shall derive explicitly the implications of the Euler equa-
tion (4) when the endowment process δ(t) follows a general jump-diffusion
process under the physical measure P:

(5)
dδ(t)
δ(t−) = μ1 dt + σ1 dW1(t)+ d

[
N(t)∑
i=1

(Ṽi − 1)

]
�

where the Ṽi � 0 are any independent identically distributed, nonnegative
random variables. In addition, all three sources of randomness, the Poisson
process N(t), the standard Brownian motion W1(t), and the jump sizes Ṽ , are
assumed to be independent.

Although it is intuitively clear that, generally speaking, the asset price p(t)
should follow a similar jump-diffusion process as that of the dividend process
δ(t), a careful study of the connection between the two is needed. This is
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because p(t) and δ(t) may not have similar jump dynamics; see (15). Fur-
thermore, deriving explicitly the change of parameters from δ(t) to p(t) also
provides some valuable information about the risk premiums embedded in
jump diffusion models.

Naik and Lee (1990) consider the special case that Ṽi has a lognormal dis-
tribution is investigated. In addition, Naik and Lee (1990) also require that the
asset pays continuous dividends, and there is no outside endowment process;
while here the asset pays no dividends and there is an outside endowment
process. Consequently, the pricing formulae here are different even in the case
of lognormal jumps.

For simplicity, we shall only consider the utility function of the special forms
U(c� t) = e−θt cαα if α < 1, and U(c� t) = e−θt log(c) if α = 0, where θ > 0
(although most of the results below hold for more general utility functions),
where θ is the discount rate in utility functions. Under these types of utility
functions, the rational expectations equilibrium price of (4) becomes

(6)p(t) = E(e−θT (δ(T))α−1p(T) | Ft)

e−θt(δ(t))α−1 �

4.2 Choosing a risk-neutral measure

We shall assume that the discount rate θ should be large enough so that

θ > −(1 − α)μ1 + 1
2
σ2

1 (1 − α)(2 − α)+ λζ(α−1)
1 �

where the notation ζ(a)1 means

ζ(a)1 := E
[
(Ṽ )a − 1

]
�

This assumption guarantees that in equilibrium the term structure of interest
rates is positive.

Suppose ζ(α−1)
1 < ∞. The following result in Kou (2002) justifies risk-

neutral pricing by choosing a particular risk-neutral measure for option pric-
ing:

(1) Letting B(t� T) be the price of a zero coupon bond with maturity T , the
yield r := − 1

T−t log(B(t� T )) is a constant independent of T ,

(7)r = θ+ (1 − α)μ1 − 1
2
σ2

1 (1 − α)(2 − α)− λζ(α−1)
1 > 0�
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(2) Let Z(t) := ertUc(δ(t)� t) = e(r−θ)t(δ(t))α−1. Then Z(t) is a martin-
gale under P,

(8)

dZ(t)
Z(t−) = −λζ(α−1)

1 dt + σ1(α− 1) dW1(t)

+ d

[
N(t)∑
i=1

(
Ṽ α−1
i − 1

)]
�

Using Z(t), one can define a new probability measure P∗: dP∗
dP :=

Z(t)/Z(0). The Euler equation (6) holds if and only if the asset price
satisfies

(9)S(t) = e−r(T−t)E∗(S(T) | Ft
)
� ∀T ∈ [t� T0]�

Furthermore, the rational expectations equilibrium price of a (possibly
path-dependent) European option, with the payoff ψS(T) at the matu-
rity T , is given by

(10)ψS(t) = e−r(T−t)E∗(ψS(T) | Ft
)
� ∀t ∈ [0� T ]�

4.3 The dynamic under the risk-neutral measure

Given the endowment process δ(t), it must be decided what stochastic
processes are suitable for the asset price S(t) to satisfy the equilibrium re-
quirement (6) or (9). Now consider a special jump-diffusion form for S(t),

(11)

dS(t)
S(t−) = μ dt + σ

{
ρ dW1(t)+

√
1 − ρ2 dW2(t)

} + d

(
N(t)∑
i=1

(Vi − 1)

)
�

Vi = Ṽ
β
i �

where W2(t) is a Brownian motion independent of W1(t). In other words, the
same Poisson process affects both the endowment δ(t) and the asset price S(t),
and the jump sizes are related through a power function, where the power
β ∈ (−∞�∞) is an arbitrary constant. The diffusion coefficients and the
Brownian motion part of δ(t) and S(t), though, are totally different. It re-
mains to determine what constraints should be imposed on this model, so that
the jump-diffusion model can be embedded in the rational expectations equi-
librium requirement (6) or (9).

Suppose ζ(α+β−1)
1 < ∞ and ζ(α−1)

1 < ∞. It can be shown (Kou, 2002) that
the model (11) satisfies the equilibrium requirement (9) if and only if

μ = r + σ1σρ(1 − α)− λ
(
ζ
(α+β−1)
1 − ζ(α−1)

1

)
(12)= θ+ (1 − α)

{
μ1 − 1

2
σ2

1 (2 − α)+ σ1σρ

}
− λζ

(α+β−1)
1 �
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If (12) is satisfied, then under P∗

(13)

dS(t)
S(t−) = r dt − λ∗E∗(Ṽ β

i − 1
)

dt + σ dW ∗(t)+ d

[
N(t)∑
i=1

(
Ṽ
β
i − 1

)]
�

Here, under P∗, W ∗(t) is a new Brownian motion, N(t) is a new Poisson
process with jump rate λ∗ = λE(Ṽ α−1

i ) = λ(ζ(α−1)
1 +1), and {Ṽi} are indepen-

dent identically distributed random variables with a new density under P∗:

(14)f ∗
Ṽ
(x) = 1

ζ(α−1)
1 + 1

xα−1fṼ (x)�

A natural question is under what conditions all three dynamics, δ(t) and
S(t) under P and S(t) under P∗, have the same jump-diffusion form, which is
very convenient for analytical calculation. Suppose the family V of distributions
of the jump size Ṽ for the endowment process δ(t) satisfies that, for any real
number a,

(15)if Ṽ a ∈ V then const · xafṼ (x) ∈ V�

where the normalizing constant, const, is {ζ(a−1)
1 +1}−1 (provided that ζ(a−1)

1 <
∞). Then the jump sizes for the asset price S(t) under P and the jump sizes for
S(t) under the rational expectations risk-neutral measure P∗ all belong to the
same family V . The result follows immediately from (5), (11), and (14).

The condition (15) essentially requires that the jump size distribution be-
longs to the exponential family. It is satisfied if log(V ) has a normal distribution
or a double exponential distribution. However, the log power-type distribu-
tions, such as log t-distribution, do not satisfy (15).

5 Basic setting for option pricing

In the rest of the chapter, we shall focus on option pricing under jump-
diffusion models. To do this we shall fix some notations. For a jump-diffusion
process, the log-return X(t) = ln(S(t)/S(0)) will be a process such that

(16)X(t) = μ̃t + σW (t)+
Nt∑
i=1

Yi� X0 ≡ 0�

Here {Wt; t � 0} is a standard Brownian motion with W0 = 0, {Nt; t � 0} is a
Poisson process with rate λ, constants μ̃ and σ > 0 are the drift and volatility
of the diffusion part, respectively, and the jump sizes {Y1� Y2� � � �} are indepen-
dent identically distributed random variables. We also assume that the random
processes {Wt; t � 0}, {Nt; t � 0}, and random variables {Y1� Y2� � � �} are inde-
pendent representing Yi = log(Vi).
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The infinitesimal generator of the jump-diffusion process (16) is given by

(17)

Lu(x) = 1
2
σ2u′′(x)+ μ̃u′(x)+ λ

∞∫
−∞

[
u(x+ y)− u(x)

]
fY (y) dy�

for all twice continuously differentiable functions u(x). In addition, suppose
θ ∈ (−η2� η1). The moment generating function of X(t) can be obtained as

(18)E
[
eθX(t)

] = exp
{
G(θ)t

}
�

where

G(x) := xμ̃+ 1
2
x2σ2 + λ

(
E
[
exY

] − 1
)
�

In the case of Merton’s normal jump-diffusion model, Y has a normal den-
sity

fY (y) ∼ 1

σ ′√2π
exp

{
−(y − μ′)2

2σ ′

}
�

where μ′ and σ ′ are the mean and standard deviation for Y . Thus,

G(x) = xμ̃+ 1
2
x2σ2 + λ

{
μ′x+ (σ ′)2x2

2
− 1

}
�

In the case of double exponential jump-diffusion model

fY (y) ∼ p · η1e
−η1y1{y�0} + q · η2e

η2y1{y<0}� η1 > 1� η2 > 0�

and the function G(x) is

(19)G(x) = xμ̃+ 1
2
x2σ2 + λ

(
pη1

η1 − x
+ qη2

η2 + x
− 1

)
�

Kou and Wang (2003) show that for α > 0 in the case of double expo-
nential jump-diffusion model the equation G(x) = α has exactly four roots
β1�α� β2�α�−β3�α�−β4�α, where

(20)0 < β1�α < η1 < β2�α < ∞� 0 < β3�α < η2 < β4�α < ∞�

The analytical formulae for the four roots of the equation G(x) = α, which
is essentially a quartic equation, are given in Kou et al. (2005). The explicit
formulae of β’s are useful for the Euler algorithm in Laplace inversion.

Under the risk-neutral probability P∗ in (13), we have

μ̃ = r − 1
2
σ2 − λζ�

where ζ := E∗[eY ] − 1. Similarly, if the underlying asset pays continuous divi-
dend at the rate δ, then under P∗

μ̃ = r − δ− 1
2
σ2 − λζ�
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In the Merton’s model

ζ = E∗[eY ] − 1 = μ′ + (σ ′)2

2
− 1�

and in the double exponential jump-diffusion model

ζ = E∗[eY ] − 1 = pη1/(η1 − 1)+ qη2/(η2 + 1)− 1�

6 Pricing call and put option via Laplace transforms

Laplace transforms have been widely used in valuing financial derivatives.
For example, Carr and Madan (1999) propose Fourier transforms with respect
to log-strike prices; Geman and Yor (1993), Fu et al. (1999) use Laplace trans-
forms to price Asian options in the Black–Scholes setting; Laplace transforms
for double-barrier and lookback options under the CEV model are given in
Davydov and Linetsky (2001); Petrella and Kou (2004) use a recursion and
Laplace transforms to price discretely monitored barrier and lookback op-
tions. For a survey of Laplace transforms in option pricing, see Craddock et
al. (2000).

Kou et al. (2005) adapted the method in Carr and Madan (1999), which
is based on a change of the order of integration, to price European call and
put option via Laplace transforms. In principle, the Laplace transforms for the
prices of European call and European put options can also be obtained by
using standard results from Fourier transforms for general Lévy processes (see
Cont and Tankov, 2004, pp. 361–362).

To fix the notation, the price of a European call with maturity T and strikeK,
is given by

(21)

CT (k) = e−rTE∗[(S(T)−K
)+]

= e−rTE∗[(S(0)eX(T) − e−k
)+]

�

where k = − log(K), and the price of a European put is

PT (k
′) = e−rTE∗[(K − S(T)

)+] = e−rTE∗[(ek′ − S(0)eX(T)
)+]

�

where k′ = log(K). The Laplace transform with respect to k of CT (k) in (21)
is given by

(22)

f̂C(ξ) :=
∞∫

−∞
e−ξkCT (k) dk

= e−rT S(0)ξ+1

ξ(ξ + 1)
exp

(
G(ξ + 1)T

)
� ξ > 0�
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and the Laplace transform with respect to k′ for the put option PT (k′) is

(23)

f̂P(ξ) :=
∞∫

−∞
e−ξk′

PT (k
′) dk′

= e−rT S(0)
−(ξ−1)

ξ(ξ − 1)
exp

(
G

(−(ξ − 1)T
))
� ξ > 1�

in the notation of (18).
To show this, note that by (21) the Laplace transform for the call options is

f̂C(ξ) = e−rT
∞∫

−∞
e−ξkE∗[(S(0)eX(T) − e−k

)+]
dk�

Applying the Fubini theorem yields for every ξ > 0,

f̂C(ξ) = e−rTE∗
[ ∞∫
−∞

e−ξk
(
S(0)eX(T) − e−k

)+ dk

]

= e−rTE∗
[ ∞∫
−X(T)−log S(0)

e−ξk
(
S(0)eX(T) − e−k

)
dk

]

= e−rTE∗
[
S(0)eX(T)eξ(X(T)+log S(0)) 1

ξ

− e(ξ+1)(X(T)+log S(0)) 1
ξ + 1

]
= e−rT S(0)ξ+1

ξ(ξ + 1)
E∗[e(ξ+1)X(T)

]
�

from which (22) follows readily from (18). The proof of (23) is similar.
The Laplace transforms can be inverted numerically in the complex plane,

using the two-sided extension of the Euler algorithm as described and imple-
mented in Petrella (2004). To check the accuracy of the inversion, Kou et al.
(2005) compare the inversion results with the prices of call and put options un-
der the double exponential jump-diffusion model obtained by using the closed-
form formulae using Hh function as in Kou (2002). They found that the results
from the Laplace inversion method agree to the fifth decimal with the analyt-
ical solutions for European call and put options. Because of the difficulty in
precise calculation of the normal distribution function and the Hh(x) function
for very positive and negative x, it is possible that for very large values of the
return variance σ2T and for very high jump rate λ (though perhaps not within
the typical parameter ranges seen in finance applications) the closed-form for-
mulae may not give accurate results. In such cases, the inversion method still
performs remarkably well.
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It is also possible to compute the sensitivities of the option, such as Delta,
Gamma, Theta, Vega, etc., by inverting the derivatives of the option’s Laplace
transform in (22). For example, the delta is given by

�
(
CT (k)

) = ∂

∂S(0)
CT (k)

= L−1
ξ

(
e−rT S(0)

ξ

ξ
exp

(
G(ξ + 1)T

))∣∣∣∣
k=− logK

�

where L−1
ξ means the Laplace inversion with respect to ξ.

7 First passage times

To price perpetual American options, barrier options, and lookback options
for general jump-diffusion processes, it is crucial to study the first passage time
of a jump-diffusion process X(t) to a flat boundary:

τb := inf
{
t � 0; X(t) � b

}
� b > 0�

where X(τb) := lim supt→∞X(t), on the set {τb = ∞}.

7.1 The overshoot problem

Without the jump part, the processX(t) simply becomes a Brownian motion
with drift μ̃. The distributions of the first passage times can be obtained either
by a combination of a change of measure (Girsanov theorem) and the reflec-
tion principle, or by calculating the Laplace transforms via some appropriate
martingales and the optional sampling theorem. Details of both methods can
be found in many classical textbooks on stochastic analysis, e.g. Karlin and Tay-
lor (1975), Karatzas and Shreve (1991). With the jump part, however, it is very
difficult to study the first passage times for general jump-diffusion processes.
When a jump-diffusion process crosses boundary level b, sometimes it hits the
boundary exactly and sometimes it incurs an “overshoot,” X(τb)− b, over the
boundary. See Fig. 6 for an illustration.

The overshoot presents several problems for option pricing. First, one needs
to get the exact distribution of the overshoot. It is well known from stochastic
renewal theory that this is in general difficult unless the jump size Y has an
exponential-type distribution, thanks to the special memoryless property of the
exponential distribution. Second, one needs to know the dependent structure
between the overshoot and the first passage time. The two random variables
are conditionally independent, given that the overshoot is bigger than 0, if the
jump size Y has an exponential-type distribution, thanks to the memoryless
property. This conditionally independent structure seems to be very special to
the exponential-type distribution, and does not hold for other distributions,
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Fig. 6. A simulated sample path with the overshoot problem.

such as the normal distribution. Third, if one wants to use the reflection prin-
ciple to study the first passage times, the dependent structure between the
overshoot and the terminal value Xt is also needed. This is not known to the
best of our knowledge, even for the double exponential jump-diffusion process.

Consequently, we can derive closed form solutions for the Laplace trans-
forms of the first passage times for the double exponential jump-diffusion
process, yet cannot give more explicit calculations beyond that, as the corre-
lation between X(t) and X(τb)− b is not available. However, for other jump-
diffusion processes, even analytical forms of the Laplace transforms seem to
be quite difficult. See Asmussen et al. (2004), Boyarchenko and Levendorskĭı
(2002), and Kyprianou and Pistorius (2003) for some representations (though
not explicit calculations) based on the Wiener–Hopf factorization related to
the overshoot problems for general Lévy processes; and see also Avram et al.
(2004) and Rogers (2000) for first passage times with one-sided jumps.

7.2 Conditional independence

The following result shows that the memoryless property of the random walk
of exponential random variables leads to the conditional memoryless property
of the jump-diffusion process. For any x > 0,

(24)P
(
τb � t�X(τb)− b � x

) = e−η1xP
(
τb � t�X(τb)− b > 0

)
�

(25)P
(
X(τb)− b � x | X(τb)− b > 0

) = e−η1x�

Furthermore, conditional on Xτb − b > 0, the stopping time τb and the over-
shoot Xτb − b are independent; more precisely, for any x > 0,

P
(
τb � t�X(τb)− b � x | X(τb)− b > 0

)
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(26)
= P

(
τb � t | X(τb)− b > 0

)
P
(
X

(
τb

) − b � x | X(τb)− b > 0
)
�

It should be pointed out that τb and the overshoot X(τb) − b are dependent
even in the case of double exponential jump diffusion, although they are con-
ditionally independent.

7.3 Distribution of the first passage times

For any α ∈ (0�∞), let β1�α and β2�α be the only two positive roots for the
equation α = G(β), where 0 < β1�α < η1 < β2�α < ∞. Then Kou and Wang
(2003) give the following results regarding the Laplace transform of τb

E
[
e−ατb

] = η1 − β1�α

η1
· β2�α

β2�α − β1�α
e−bβ1�α + β2�α − η1

η1

· β1�α

β2�α − β1�α
e−bβ2�α�

E∗[e−ατb1{X(τb)>b}
] = (η1 − β1�α)(β2�α − η1)

η1(β2�α − β1�α)

[
e−bβ1�α − e−bβ2�α

]
�

(27)E∗[e−ατb1{X(τb)=b}
] = η1 − β1�α

β2�α − β1�α
e−bβ1�α + β2�α − η1

β2�α − β1�α
e−bβ2�α �

The results for the down-crossing barrier problem, i.e. b < 0, will involve the
other two roots, β3�α and β4�α.

For simplicity, we will focus on (27). It is easy to give a heuristic argument
for (27). Let u(x) = Ex[e−ατb], b > 0, we expect from a heuristic application
of the Feymann–Kac formula that u satisfies the integro-differential equation

(28)−αu(x)+ Lu(x) = 0� ∀x < b�

and u(x) = 1 if x � b. This equation can be explicitly solved at least heuristi-
cally. Indeed, consider a solution taking form

(29)u(x) =
{

1� x � b�
A1e

−β1(b−x) + B1e
−β2(b−x)� x < b�

where constants A1 and B1 are yet to be determined. Plug in to obtain, after
some algebra, that (−αu+ Lu)(x) for all x < b is equal to

A1e
−(b−x)β1f (β1)+ B1e

−(b−x)β2f (β2)

(30)−λpe−η1(b−x)
(

A2η1

η1 − β1
+ B2η1

η1 − β2
− e−η1y

)
�

where f (β) = G(β)− α.
To set (−αu + Lu)(x) = 0 for all x < b, we can first have f (β1) =

f (β2) = 0, which means that we shall choose β1 and β2 to be two roots of
G(β) = α, although it is not clear which two roots among the four are needed.
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Afterward it is enough to set the third term in (30) to be zero by choosing A1
and B1 so that

A1
η1

η1 − β1
+ B1

η1

η1 − β2
= e−η1y �

Furthermore, the continuity of u at x = b implies that

A1 + B1 = 1�

Solve the equations to obtain A1 and B1 (A1 = 1 − B1), which are exactly
the coefficients in (27). However, the above heuristic argument has several
difficulties.

7.4 Difficulties

7.4.1 Nonsmoothness
Because the function u(x) in (29) is continuous, but not C1 at x = b, we

cannot apply the Itô formula and the Feymann–Kac formula directly to the
process e−αtu(Xt); t � 0. Furthermore, even if we can use the Feymann–Kac
formula, it is not clear whether the solution to the integro-differential equa-
tion (28) is well defined and unique. Therefore, Kou and Wang (2003) have
to use some approximation of u(x) so that Itô formula can be used, and then
they used a martingale method to solve the integro-differential equation (28)
directly. In addition, the martingale method also helps to identify which two
roots are needed in the formulae. Note that a heuristic argument based on the
Feymann–Kac formula for double barrier options (with both upper and lower
barriers) is given in Sepp (2004) by extending (28) and (29), and ignoring the
nonsmoothness issue.

7.4.2 Explicit calculation
It should be mentioned that the special form of double exponential density

function enables us to explicitly solve the integro-differential equation (28) as-
sociated with the Laplace transforms using martingale methods, thanks to the
explicit calculation in (30). This is made possible as the exponential function
has some good properties such as the product of two exponential functions
is still an exponential function, and the integral of an exponential function is
again an exponential function. For general jump-diffusion processes, however,
such explicit solution will be very difficult to obtain.

7.4.3 Nonuniqueness in renewal integral equations
We have used martingale and differential equations to derive closed form

solutions of the Laplace transforms for the first-passage-time probabilities.
Another possible and popular approach to solving the problems is to set up
some integral equations by using renewal arguments. For simplicity, we shall
only consider the case of overall drift being nonnegative, i.e. ū � 0, in which
τb < ∞ almost surely. For any x > 0, define P(x) as the probability that
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no overshoot occurs for the first passage time τx with X(0) ≡ 0, that is
P(x) = P(X(τx) = x). It is easy to see that P(x) satisfies the following
renewal-type integral equation:

P(x+ y) = P(y)P(x)+ (
1 − P(x)

) y∫
0

P(y − z) · η1e
−η1z dz�

However, the solution to this renewal equation is not unique. Indeed, for every
ξ � 0, the function

Pξ(x) = η1

η1 + ξ
+ ξ

η1 + ξ
e−(η1+ξ)x

satisfies the integral equation with the boundary condition Pξ(0) = 1.
This shows that, in the presence of two-sided jumps, the renewal-type in-

tegral equations may not have unique solutions, mainly because of the diffi-
culty of determining enough boundary conditions based on renewal arguments
alone. It is easy to see that ξ = −P ′

ξ(0). Indeed, it is possible to use the infin-
itesimal generator and martingale methods to determine ξ. The point here is,
however, that the renewal-type integral equations cannot do the job by them-
selves.

8 Barrier and lookback options

Barrier and lookback options are among the most popular path-dependent
derivatives traded in exchanges and over-the-counter markets worldwide. The
payoffs of these options depend on the extrema of the underlying asset. For a
complete description of these and other related contracts we refer the reader
to Hull (2005). In the standard Black–Scholes setting, closed-form solutions for
barrier and lookback options have been derived by Merton (1973) and Gatto
et al. (1979).

8.1 Pricing barrier options

We will focus on the pricing of an up-and-in call option (UIC, from now on);
other types of barrier options can be priced similarly and using the symmetries
described in the Appendix of Petrella and Kou (2004) and Haug (1999). The
price of an UIC is given by

(31)UIC(k� T) = E∗[e−rT (
S(T)− e−k

)+1{τb<T }
]
�

where H > S(0) is the barrier level, k = − log(K) the transformed strike
and b = log(H/S(0)). Using a change of numéraire argument, Kou and Wang
(2004) show that under another probability, defined as P̃, X(T) still has a dou-
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ble exponential distribution with drift r − δ+ 1
2σ

2 − λζ and jump parameters

λ̃ = λ(ζ + 1)� p̃ = pη1

(ζ + 1)(η1 − 1)
�

η̃1 = η1 − 1� η̃2 = η2 + 1�

The moment generating function of X(t) under the alternative probability
measure P̃ is given by Ẽ[eθX(t)] = exp(G̃(θ)t), with

G̃(x) := x

(
r − δ+ 1

2
σ2 − λ̃ζ̃

)
+ 1

2
x2σ2 + λ̃

(
p̃η̃1

η̃1 − x
+ q̃η̃2

η̃2 + x
− 1

)
�

Kou and Wang (2004) further show that

(32)UIC(k� T) = S(0)Ψ̃UI(k� T)−Ke−rTΨUI(k� T)�

where

ΨUI(k� T) = P∗(S(T) � e−k�M0�T > H
)
�

(33)Ψ̃UI(k� T) = P̃
(
S(T) � e−k�M0�T > H

)
�

and show how to price an UIC option by inverting the one-dimensional
Laplace transforms for the joint distributions in (32) as in Kou and Wang
(2003).

Kou et al. (2005) present an alternative approach that relies on a two-
dimensional Laplace transform for both the option price in (31) and the prob-
abilities in (32). The formulae after doing two-dimensional transforms become
much simpler than the one-dimensional formulae in Kou and Wang (2003),
which involve many special functions.

In particular Kou et al. (2005) show that for ξ and α such that 0 < ξ < η1−1
and α > max(G(ξ+ 1)− r� 0) (such a choice of ξ and α is possible for all small
enough ξ as G(1)− r = −δ < 0), the Laplace transform with respect to k and
T of UIC(k� T) is given by

f̂UIC(ξ� α) =
∞∫

0

∞∫
−∞

e−ξk−αTUIC(k� T) dk dT

= Hξ+1

ξ(ξ + 1)
1

r + α−G(ξ + 1)

(34)×
(
A(r + α)

η1

η1 − (ξ + 1)
+ B(r + α)

)
�
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where

(35)

A(h) := E∗[e−hτb1{X(τb)>b}
]

= (η1 − β1�h)(β2�h − η1)

η1(β2�h − β1�h)

[
e−bβ1�h − e−bβ2�h

]
�

(36)

B(h) := E∗[e−hτb1{X(τb)=b}
]

= η1 − β1�h

β2�h − β1�h
e−bβ1�h + β2�h − η1

β2�h − β1�h
e−bβ2�h�

with b = log(H/S(0)). If 0 < ξ < η1 and α > max(G(ξ)� 0) (again this choice
of ξ and α is possible for all ξ small enough as G(0) = 0), then the Laplace
transform with respect to k and T of ΨUI(k� T) in (33) is

(37)

f̂ΨUI(ξ� α) =
∞∫

−∞

( ∞∫
0

e−ξk−αTΨUI(k� T) dT

)
dk

= Hξ

ξ

1
α−G(ξ)

(
A(α)

η1

η1 − ξ
+ B(α)

)
�

The Laplace transforms with respect to k and T of Ψ̃UI(k� T) is given similarly
with G̃ replacing G and the functions Ã and B̃ defined similarly.

Kou et al. (2005) price up-and-in calls using the two-dimensional Laplace
transform (using the two-dimensional Euler algorithm developed by Choud-
hury et al., 1994 and Petrella, 2004) and compare the results with the one-
dimensional transform in Kou and Wang (2003) (based on the Gaver–Stehfest
algorithm). The two-dimensional Laplace inversion matches to the fourth digit
the ones obtained by the one-dimensional Gaver–Stehfest algorithm, and are
all within the 95% confidence interval obtained via Monte Carlo simulation.

The two-dimensional Laplace inversion algorithms have three advantages
compared to the one-dimensional algorithm: (1) The formulae for the two-
dimensional transforms Euler are much easier to compute, simplifying the im-
plementation of the methods. (2) Although we are inverting two-dimensional
transforms, the Laplace transform methods are significantly faster, mainly be-
cause of the simplicity in the Laplace transform formulae. (3) High-precision
calculation (with about 80 digit accuracy) as required by the Gaver–Stehfest
inversion is no longer needed in the Euler inversion, which is made possible
mainly because of the simplicity of the two-dimensional inversion formulae as
no special functions are involved and all the roots of G(x) are given in analyt-
ical forms.

8.2 Pricing lookback options via Euler inversion

For simplicity, we shall focus on a standard lookback put option, while the
derivation for a standard lookback call is similar. The price of a standard look-
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back put is given by

LP(T) = E∗[e−rT{
max

{
M� max

0�t�T
S(t)

}
− S(t)

}]
= E∗[e−rT max

{
M� max

0�t�T
S(t)

}]
− S(0)�

whereM � S(0) is the prefixed maximum at time 0. For any ξ > 0, the Laplace
transform of the lookback put with respect to the time to maturity T is given
by (see Kou and Wang, 2004)

(38)

∞∫
0

e−αTLP(T) dT = S(0)Aα

Cα

(
S(0)
M

)β1�α+r−1

+ S(0)Bα
Cα

(
S(0)
M

)β2�α+r−1
+ M

α+ r
− S(0)

α
�

where

Aα = (η1 − β1�α+r)β2�α+r
β1�α+r − 1

� Bα = (β2�α+r − η1)β1�α+r
β2�α+r − 1

�

Cα = (α+ r)η1(β2�α+r − β1�α+r)�

and β1�α+r , β2�α+r are the two positive roots of the equation G(x) = α+ r, as
in (20).

The transform in (38) can be inverted in the complex domain by using the
one-dimensional Euler inversion (EUL) algorithm developed by Abate and
Whitt (1992), rather than in the real domain by the Gaver–Stehfest (GS) al-
gorithm as in Kou and Wang (2004). The main reason for this is that the EUL
inversion (which is carried out in the complex-domain) does not require the
high numerical precision of the GS algorithm: a precision of 12 digits will suf-
fice for the EUL, compared with the 80 digits accuracy required by the GS. The
EUL algorithm is made possible partly due to an explicit formula for the roots
of G(x) given. Kou et al. (2005) show that the difference between the EUL
and GS results are small. Ultimately, the EUL implementation is preferable,
since it is simple to implement, and it converges fast without requiring high
numerical precision as in the GS.

9 Analytical approximations for American options

Most of call and put options traded in the exchanges in both US and Eu-
rope are American-type options. Therefore, it is of great interest to calculate
the prices of American options accurately and quickly. The price of a finite-
horizon American option is the solution of a finite horizon free boundary
problem. Even within the classical geometric Brownian motion model, except
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in the case of the American call option with no dividend, there is no analyti-
cal solution available. To price American options under general jump-diffusion
models, one may consider numerically solving the free boundary problems via
lattice or differential equation methods; see, e.g., Amin (1993), d’Halluin et al.
(2003), Feng and Linetsky (2005), Feng et al. (2004), and the book by Cont and
Tankov (2004).

9.1 Quadratic approximation

Extending the Barone-Adesi and Whaley (1987) approximation for the clas-
sical geometric Brownian motion model, Kou and Wang (2004) considered an
alternative approach that takes into consideration of the special structure of
the double exponential jump-diffusions. One motivation for such an extension
is its simplicity, as it yields an analytic approximation that only involves the
price of a European option. The numerical results in Kou and Wang (2004)
suggest that the approximation error is typically less than 2%, which is less
than the typical bid–ask spread (about 5% to 10%) for American options in ex-
changes. Therefore, the approximation can serve as an easy way to get a quick
estimate that is perhaps accurate enough for many practical situations. The ex-
tension of Barone-Adesi and Whaley’s quadratic approximation method works
nicely for double exponential jump-diffusion models mainly because explicit
solutions are available to a class of relevant integro-differential free boundary
problems.

To simplify notation, we shall focus only on the finite horizon American put
option without dividends, as the methodology is also valid for the finite horizon
American call option with dividends. Also, we shall only consider finite-time
horizon American put options. Related American calls can be priced by ex-
ploiting the symmetric relationship in Schröder (1999).

The analytic approximation involves two quantities, EuP(v� t) which de-
notes the price of the European put option with initial stock price v and
maturity t, and Pv[S(t) � K] which is the probability that the stock price at t
is below K with initial stock price v. Both EuP(v� t) and Pv[S(t) � K] can be
computed fast by using either the closed form solutions in Kou (2002) or the
Laplace transforms in Kou et al. (2005).

We need some notations. Let z = 1 − e−rt , β3 ≡ β3� rz
, β4 ≡ β4� rz

, Cβ =
β3β4(1 + η2), Dβ = η2(1 + β3)(1 + β4), in the notation of Eq. (20). Define
v0 ≡ v0(t) ∈ (0�K) as the unique solution to the equation

CβK −Dβ
[
v0 + EuP(v0� t)

]
(39)= (Cβ −Dβ)Ke

−rt · Pv0
[
S(t) � K

]
�

Note that the left-hand side of (39) is a strictly decreasing function of v0 (be-
cause v0 + EuP(v0� t) = e−rtE∗[max(S(t)�K) | S(0) = v0]), and the right
hand side of (39) is a strictly increasing function of v0 [because Cβ − Dβ =
β3β4 − η2(1 + β3 + β4) < 0]. Therefore, v0 can be obtained easily by using,
for example, the bisection method.
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Approximation. The price of a finite horizon American put option with ma-
turity t and strike K can be approximated by ψ(S(0)� t), where the value
function ψ is given by

(40)ψ(v� t) =
{

EuP(v� t)+Av−β3 + Bv−β4� if v � v0�
K − v� if v � v0�

with v0 being the unique root of Eq. (39) and the two constants A and B given
by

(41)

A = v
β3
0

β4 − β3

{
β4K − (1 + β4)

[
v0 + EuP(v0� t)

]
+Ke−rtPv0

[
S(t) � K

]}
> 0�

(42)

B = v
β4
0

β3 − β4

{
β3K − (1 + β3)

[
v0 + EuP(v0� t)

]
+Ke−rtPv0

[
S(t) � K

]}
> 0�

In the numerical examples showed by Kou and Wang (2004) the maximum
relative error is only about 2.6%, while in most cases the relative errors are be-
low 1%. The approximation runs very fast, taking only about 0.04 s to compute
one price on a Pentium 1500 PC, irrespective to the parameter ranges; while
the lattice method in Amin (1993) works much slower, taking about over one
hour to compute one price.

9.2 Piecewise exponential approximation

A more accurate approximation can be obtained by extending the piecewise
exponential approximation in Ju (1998). Extending previous work by Carr et
al. (1992), Gukhal (2001) and Pham (1997) show that under jump-diffusion
models the value at time t of an American put option with maturity T > t on
an asset with value St at time t (PA(St� t� T ) from now on) is given by

PA(St� t� T ) = PE(St� t� T )+
T∫
t

e−r(s−t)rKE∗[1{Ss�S∗s } | St] ds

− δ

T∫
t

e−r(s−t)E∗[Ss1{Ss�S∗s } | St] ds

− λ

T∫
t

e−r(s−t)E∗[{PA(V Ss−� s� T )− (K − V Ss−)
}
(43)× 1{Ss−�S∗

s−}1{V Ss−>S∗s−} | St
]

ds�
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where PE(St� t� T ) is the value of the corresponding European put option,
log(V ) = Y with an independent double exponential distribution, and S∗

s is
the early exercise boundary at time s, such that if the stocks price Ss goes be-
low S∗

s at time s, then it is optimal to exercise immediately. Gukhal (2001)
provides an interpretation of the four terms in (43): the value of an American
put is given by the corresponding European put option value PE(X� t� T ) to
which we add the present value of interest accrued on the strike price in the
exercise region (IA, from now), subtract the present value of dividends lost in
the exercise region (DL, from now on), and subtract the last term in (43), to
be denoted by RCJ(t� T ), which represents the rebalancing costs due to jumps
from the early exercise region to the continuation region and is absent in the
case of pure-diffusion.

The term RCJ(t� T ) takes into account of the possibility of an upward jump
that will move the asset price from the early exercise to the continuation re-
gion. Consequently, this term diminishes when the upward jump rate λp is
small. Furthermore, intuitively this term should also be very small whenever
a jump from the early exercise to the continuation region only causes mini-
mal changes in the American option value, which in particular requires that
the overshoot over the exercise boundary is not too large. This happens if the
overshoot jump size has small mean, which in the double exponential case is
1/η1; in most practical cases η1 > 10. In other words, the term RCJ(t� T )
should be negligible for either small λp or large η1. Indeed, Kou et al. (2005)
show that for T > t, under the double exponential jump-diffusion model,

RCJ(t� T ) � λp
η1

η1 − 1
K ·U(t� T)�

U(t� T ) =
T∫
t

E∗
[(

S∗
s−
Ss−

)−(η1−1)

1{Ss−�S∗
s−}

∣∣∣∣St
]

ds�

Thus, we can conclude that the term RCJ(t� T )may be neglected when we have
small upside jump rate λp or when the parameter η1 is large [in which case the
integrand inside U(t� T) will be small], and we can ignore the term RCJ(t� T )
in Eq. (43) for practical usage.

Observing that at the optimal exercise boundary S∗t , PA(S∗
t � t� T ) = K− S∗

t ,
we obtain an integral equation for S∗

t

K − S∗
t = PE(S

∗
t � t� T )+

T∫
t

e−r(s−t)rKE∗[1{Ss�S∗s } | St = S∗
t ] ds

−
T∫
t

e−r(s−t)δE∗[Ss1{Ss�S∗s } | St = S∗
t ] ds�



Ch. 2. Jump-Diffusion Models for Asset Pricing in Financial Engineering 107

ignoring the term RCJ(t� T ). To solve this integral equation, we shall use a
piecewise exponential function representation for the early exercise boundary
as in Ju (1998).

More precisely, with n intervals of size �T = T/n we approximate the
optimal boundary S∗t by an n-piece exponential function S̃t = exp(s∗i + αit)
for t ∈ [(i − 1)�T� i�T) with i = 1� � � � � n. In our numerical experiments,
even n = 3 or 5 will give sufficient accuracy in most cases. To determine
the value of the constants s∗i and αi in each interval, we make use of the
“value-matching” and “smoothing-pasting” conditions (requiring the slope at
the contacting point to be −1 to make the curve smooth). Thus, starting from
i = n going backwards to i = 1 we solve recursively at ti = (i − 1)�T the
two unknowns s∗i and αi in terms of the system of two equations, i.e., the value
matching equation

(44)K − S̃i = PE(S̃i� ti� T )+
n∑
j=i

IAj(S̃i� tj)−
n∑
j=i

DLj(S̃i� tj)�

and the smoothing pasting equation

(45)−1 = ∂

∂S̃i
PE(S̃i� ti� T )+

n∑
j=i

∂

∂S̃i
IAj(S̃i� tj)−

n∑
j=i

∂

∂S̃i
DLj(S̃i� tj)�

where S̃i ≡ S̃ti = exp{s∗i + αiti},

IAj(St� u) = rK

tj+1∫
u

e−r(s−t)E∗[1{Ss�S̃s} | St] ds�

t � u� u ∈ [tj� tj+1)�

DLj(St� u) = δ

tj+1∫
u

e−r(s−t)E∗[Ss1{Ss�S̃s} | St] ds�

t � u� u ∈ [tj� tj+1)�

This system of equations can be solved numerically via an iterative procedure
to be specified shortly, if the right-hand sides of (44) and (45) can be computed.
To this end, Kou et al. (2005) derive the Laplace transforms with respect to s∗i
of IAj and DLj , and the Laplace transforms of ∂

∂St
IAj and ∂

∂St
DLj .

In summary, we have the following algorithm.

The Algorithm.

1. Compute the approximation exercise boundary S̃ by letting i going back-
wards from n to 1 while, at each time point ti one solves the system of two
equations in (44) and (45) to get s∗i and αi, with the right-hand side of (44)
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and (45) being obtained by inverting their Laplace transforms. The system
of two equations can be solved, for example, by using the multi-dimensional
secant method by Broydn (as implemented in Press et al., 1993).

2. After the boundary S̃ is obtained, at any time t ∈ [ti� ti+1), the value of the
American put option is given by

PE(St� t� T )+ IAi(St� t)+
n∑

j=i+1

IAj(St� tj)−DLi(St� t)

−
n∑

j=i+1

DLj(St� tj)�

In the numerical implementation, one can use the two-sided Euler algo-
rithm in Petrella (2004) to do inversion in Step 1. The initial values for the
secant method is obtained by setting αi = 0 and using the critical value in the
approximation given by Kou and Wang (2004) as an initial value of S∗

i .
Kou et al. (2005) report the prices using a 3- and 5-piece exponential ap-

proximation of the boundary (3EXP and 5EXP, respectively), and compare the
results with (i) the “true” values computed using the tree method as in Amin
(1993), and (ii) the prices obtained by the analytic approximation in Kou and
Wang (2004). The running time of the new algorithm is less than 2 s for 3EXP
and 4 s for 5EXP, compared to more than an hour required by the Amin’s tree
method. In most cases 3EXP provides an estimate of the option price more
accurate than the quadratic approximation in Kou and Wang (2004), and, as
we would expect, 5EXP has even better accuracy.

In summary, the quadratic approximation is easier in terms of programming
effort, as it is an analytical approximation, and is faster in terms of computation
time. However, the piecewise exponential approximation is more accurate.

10 Extension of the jump-diffusion models to multivariate cases

Many options traded in exchanges and in over-the-counter markets, such as
two-dimensional barrier options and exchange options, have payoffs depend-
ing on more than one assets. An exchange option gives the holder the right to
exchange one asset to another asset. More precisely, the payoff of an exchange
option is (S1(T) − e−kS2(T))

+, where e−k is the ratio of the shares to be ex-
changed. A two-dimensional barrier option has a regular call or put payoff
from one asset while the barrier crossing is determined by another asset. For
example, in late 1993 Bankers Trust issued a call option on a basket of Belgian
stocks which would be knocked out if the Belgian franc appreciated by more
than 30% (Zhang, 1998); in this case we have a up-and-out call option. There
are eight types of two-dimensional barrier options: up (down)-and-in (out) call
(put) options. Mathematically, the payoff of a two-dimensional up-an-in put
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barrier option is (K − S1(T))
+1{max0�t�T S2(t)�H}, where Si(t), i = 1� 2, are

prices of two assets, K > 0 is the strike price of the put option and H is the
barrier level. To price this option, it is crucial to compute the joint distribution
of the first passage time

P
(
X(1)
T � a� max

0�s�T
X(2)
s � b

)
= P

(
X(1)
T � a� τb � T

)
�

where the first passage time τb is defined to be τb ≡ τ(2)b := inf {t � 0:
X
(2)
t � b}, b > 0. Here X(i)

T = log(Si(T )/Si(0)) is the return process for the
ith asset, i = 1� 2.

Analytical solutions for these options are available under the classical
Brownian models; see, e.g., the books by Hull (2005) and Zhang (1998). How-
ever, it becomes difficult to retain analytical tractability after jumps being
introduced, partly because of the “overshoot” problem due to the possibil-
ity of jumping over the barrier. For example, it is difficult to get analytical
solutions for two-dimensional barrier options under Merton’s normal jump-
diffusion model.

Huang and Kou (2006) extends the previous one-dimensional double ex-
ponential jump-diffusion models by providing a multivariate jump-diffusion
model with both correlated common jumps and individual jumps is proposed.
The jump sizes have a multivariate asymmetric Laplace distribution (which
is related but not equal to the double exponential distribution). The model
not only provides a flexible framework to study correlated jumps but also is
amenable for computation, especially for barrier options. Analytical solutions
for the first passage time problem in two dimension are given, and analytical
solutions for barrier and exchange options and other related options are also
given. Compared to the one-dimensional case the two-dimensional problem
poses some technical challenges. First, with both common jumps and individual
jumps, the generator of the two-dimensional process becomes more involved.
Second, because the joint density of the asymmetric Laplace distribution has
no analytical expression, the calculation related to the joint density and gener-
ator becomes complicated. Third, one has to use several uniform integrability
arguments to substantiate a martingale argument, as Itô’s formula cannot be
applied directly due to discontinuity.

10.1 Asymmetric Laplace distribution

The common jumps in the multivariate jump-diffusion model to be in-
troduced next will have a multivariate asymmetric Laplace distribution. An
n-dimensional asymmetric Laplace random vector Y , denoted by Y ∼
ALn(m� J), is defined via its characteristic function

(46)ΨY(θ) = E
[
eiθ

′Y ] = 1

1 + 1
2θ

′Jθ− im′θ
�
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wherem ∈ Rn and J is an n×n positive definite symmetric matrix. The require-
ment of the matrix J being positive definite is postulated to guarantee that the
n-dimensional distribution is nondegenerate; otherwise, the dimension of the
distribution may be less than n. The vector m is the mean E[Y ] = m and the
matrix J plays a role similar to that of the variance and covariance matrix.

In the case of the univariate Laplace distribution, the characteristic function
in (46) becomes

(47)ΨY(θ) = 1

1 + 1
2v

2θ2 − im θ
�

where v2 is the equivalence of J in (46). For further information about the
asymmetric Laplace distribution, see Kotz et al. (2001).

The asymmetric Laplace distribution has many properties similar to those
of the multivariate normal distribution. This can be easily seen from the fact
that

(48)Y
d= mB + B1/2Z�

where Z ∼ Nn(0� J) is a multivariate normal distribution with mean 0 and
covariance matrix J, and B is a one-dimensional exponential random variable
with mean 1, independent of Z. For example, for the kth component of Y we

have Y(k) d= mkB + B1/2Zk with B ∼ exp(1) and Zk ∼ N(0� Jkk), which
implies that the marginal distribution of Y(k) has a univariate asymmetric
Laplace distribution. Furthermore, the difference between any two compo-
nents,

(49)Y(k) − Y(j) d= (mk −mj)B + B
1
2 (Zk − Zj)� 1 � k� j � n�

is again a univariate Laplace distribution. However, it is worth mentioning
Y + a does not have the asymmetric Laplace distribution, for a �= 0.

The univariate asymmetric Laplace distribution defined by its characteristic
function in (47) is a special case of the double exponential distribution, because
the univariate asymmetric Laplace distribution has the density function

fY (y) = p · η1e
−η1y1{y�0} + q · η2e

η2y1{y<0}�
p > 0� q > 0� p+ q = 1�

but with pη1 = qη2 and the parameters given by

η1 = 2√
m2 + 2v2 +m

� η2 = 2√
m2 + 2v2 −m

�

(50)p =
√
m2 + 2v2 +m

2
√
m2 + 2v2

�

Asymmetric Laplace distribution can also be viewed as a special case of the
generalized hyperbolic distribution introduced by Barndorff-Nielsen (1977). In
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fact, a generalized hyperbolic random variable X is defined as X d= μ+mζ +
ζ1/2Z, where Z is a multivariate normal distribution, ζ is a generalized inverse
Gaussian distribution. Since the exponential random variable belongs to gen-
eralized inverse Gaussian distribution, the asymmetric Laplace distribution is
a special case of the generalized hyperbolic distribution. For more details on
applications of the generalized hyperbolic distribution in finance, see Eberlein
and Prause (2002).

10.2 A multivariate jump-diffusion model

We propose a multivariate jump-diffusion model in which the asset prices
S(t) have two parts, a continuous part driven by a multivariate geometric
Brownian motion, and a jump part with jump events modeled by a Poisson
process. In the model, there are both common jumps and individual jumps.
More precisely, if a Poisson event corresponds to a common jump, then all the
asset prices will jump according to the multivariate asymmetric Laplace distri-
bution; otherwise, if a Poisson event corresponds to an individual jump of the
jth asset, then only the jth asset will jump. In other words, the model attempts
to capture various ways of correlated jumps in asset prices.

Mathematically, under the physical measure P the following stochastic dif-
ferential equation is proposed to model the asset prices S(t):

(51)
dS(t)
S(t−) = μ dt + σ dW (t)+ d

(
N(t)∑
i=1

(Vi − 1)

)
�

whereW (t) is an n-dimensional standard Brownian motion, σ ∈ Rn×n with the
covariance matrix Σ = σσT . The rate of the Poisson process N(t) process is
λ = λc+∑n

k=1 λk; in other words, there are two types of jumps, common jumps
for all assets with jump rate λc and individual jumps with rate λk, 1 � k � n,
only for the kth asset.

The logarithms of the common jumps have an m-dimensional asymmetric
Laplace distribution ALn(mc� Jc), where mc = (m1�c� � � � �mn�c)

′ ∈ Rn and
Jc ∈ Rn×n is positive definite. For the individual jumps of the kth asset, the
logarithms of the jump sizes follow a one-dimensional asymmetric Laplace dis-
tribution, AL1(mk� v

2
k). In summary

Y = log (V ) ∼

⎧⎪⎪⎨⎪⎪⎩
ALn(mc� Jc)� with prob. λc/λ�
(0� � � � � 0︸ ︷︷ ︸

k−1

�AL1(mk� v
2
k)� 0� � � � � 0︸ ︷︷ ︸

n−k
)′�

with prob. λk/λ� 1 � k � n�

The sources of randomness, N(t), W (t) are assumed to be independent of
the jump sizes Vis. Jumps at different times are assumed to be independent.
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Note that in the univariate case the above model degenerates to the double
exponential jump-diffusion model (Kou, 2002) but with pη1 = qη2.

Solving the stochastic differential equation in (51) gives the dynamic of the
asset prices:

(52)S(t) = S(0) exp
[(

μ− 1
2
Σdiag

)
t + σW (t)

]N(t)∏
i=1

Vi�

where Σdiag denotes the diagonal vector of Σ. Note that ∀1 � k � n,

(53)E
(
V (k)

) = E
(
eY

(k)) = λc/λ

1 −mk�c − Jc�kk/2
+ λk/λ

1 −mk − v2
k/2

�

The requirements mk�c+Jc�kk/2 < 1 and mk+v2
k/2 < 1 are needed to ensure

E(V (k)) < ∞ and E(Sk(t)) < ∞, i.e. the stock price has finite expectation.
In the special case of two-dimension, the asset prices can be written as

S1(t) = S1(0) exp

[
μ1t + σ1W1(t)+

N(t)∑
i=1

Y(1)
i

]
�

(54)

S2(t) = S2(0) exp

[
μ2t + σ2

[
ρW1(t)+

√
1 − ρ2W2(t)

] + N(t)∑
i=1

Y(2)
i

]
�

Here all the parameters are risk-neutral parameters, W1(t) and W2(t) are two
independent standard Brownian motions, and N(t) is a Poisson process with
rate λ = λc +λ1 +λ2. The distribution of the logarithm of the jump sizes Yi is
given by

(55)Yi =
(
Y(1)
i � Y (2)

i

)′ ∼
⎧⎨⎩
AL2(mc� Jc)� with prob. λc/λ�
(AL1(m1� v

2
1)� 0)′� with prob. λ1/λ�

(0�AL1(m2� v
2
2))

′� with prob. λ2/λ�

where the parameters for the common jumps are

mc =
(
m1�c
m2�c

)
� Jc =

(
v2

1�c cv1�cv2�c

cv1�cv2�c v2
2�c

)
�

Since S(t) is a Markov process, an alternative characterization of S(t) is
to use the generator of X(t) = log S(t)/S(0). The two-dimensional jump-
diffusion return process (X1(t)�X2(t)) in (54) is given by

X1(t) = μ1t + σ1W1(t)+
N(t)∑
i=1

Y(1)
i �

X2(t) = μ2t + σ2
[
ρW1(t)+

√
1 − ρ2W2(t)

] + N(t)∑
i=1

Y(2)
i �
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with the infinitesimal generator

Lu = μ1
∂u

∂x1
+ μ2

∂u

∂x2
+ 1

2
σ2

1
∂2u

∂x2
1

+ 1
2
σ2

2
∂2u

∂x2
2

+ ρσ1σ2
∂2u

∂x1∂x2

+ λc

∞∫
y2=−∞

∞∫
y1=−∞

[
u(x1 + y1� x2 + y2)− u(x1� x2)

]
× f c

(Y(1)�Y (2))
(y1� y2) dy1 dy2

+ λ1

∞∫
y1=−∞

[
u(x1 + y1� x2)− u(x1� x2)

]
fY(1)(y1) dy1

(56)+ λ2

∞∫
y2=−∞

[
u(x1� x2 + y2)− u(x1� x2)

]
fY(2)(y2) dy2�

for all continuously twice differentiable function u(x1� x2), where
f c
(Y(1)�Y (2))

(y1� y2) is the joint density of correlated common jumpsAL2(mc� Jc),
and fY(i)(yi) is the individual jump density of AL1(mi� Ji), i = 1� 2.

One difficulty in studying the generator is that the joint density of the asym-
metric Laplace distribution has no analytical expression. Therefore, the cal-
culation related to the joint density and generator becomes complicated. See
Huang and Kou (2006) for change of measures from a physical measure to a
risk-neutral measure, analytical solutions for the first passage times, and pric-
ing formulae for barrier options and exchange options.
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Abstract

Lévy processes can capture the behaviors of return innovations on a full range of fi-
nancial securities. Applying stochastic time changes to the Lévy processes randomizes
the clock on which the processes run, thus generating stochastic volatilities and sto-
chastic higher return moments. Therefore, with appropriate choices of Lévy processes
and stochastic time changes, we can capture the return dynamics of virtually all finan-
cial securities. Furthermore, in contrast to the hidden factor approach, we can readily
assign explicit economic meanings to each Lévy process component and its associ-
ated time change in the return dynamics. The economic mapping not only facilitates
the interpretation of existing models and their structural parameters, but also adds
economic intuition and direction for designing new models capturing new economic
behaviors. Finally, under this framework, the analytical tractability of a model for
derivative pricing and model estimation originates from the tractability of the Lévy
process specification and the tractability of the activity rate dynamics underlying the
time change. Thus, we can design tractable models using any combination of tractable
Lévy specifications and tractable activity rate dynamics. I elaborate through exam-
ples on the generality of the framework in capturing the return behavior of virtually
all financial securities, the explicit economic mapping that facilitates the interpreta-
tion and creation of new models, and the tractability embedded in the framework for
derivative pricing and model estimation.

Keywords: Lévy processes; Return innovations; Stochastic time changes; Sto-
chastic volatility; Characteristic functions; Exponential martingales; Measure
change; Option pricing; Fourier inversion

1 Introduction

Since Black and Scholes (1973), Brownian motion has emerged as the
benchmark process for describing asset returns in continuous time. Brownian
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motion generates normally distributed return innovations. Merton (1976) aug-
ments the Brownian motion with a compound Poisson process with normally
distributed jump sizes in the asset return. As a result, the return innovation
distribution becomes a mixture of normals weighted by Poisson probabilities.
These two innovation specifications have dominated the continuous-time fi-
nance literature for several decades, drawing criticisms that the continuous-
time framework is not as flexible as the discrete-time framework: One can
assume any arbitrary distribution for the return innovation in discrete time,
but only normals or mixtures of normals could be generated from continuous-
time specifications.

The recent introduction of Lévy processes into financial modeling exoner-
ates continuous-time finance from such criticisms. A Lévy process can generate
a much wider spectrum of distributions at a fixed time horizon. While the
Brownian motion component in a Lévy process generates a normal distribu-
tion, non-normal distributions can be generated via the appropriate specifica-
tion of the Lévy density for a Lévy jump process, which determines the arrival
rate of jumps of all possible sizes.

Financial security returns can be driven by several economic forces. The im-
pact of each force can vary stochastically over time. Accordingly, we can model
the return innovation using several Lévy processes as building blocks matching
the distributional behavior of shocks from different economic forces. Further-
more, applying stochastic time change to each Lévy component randomizes
the clock on which the process runs, thus capturing the stochastically varying
impacts from different economic forces. Statistically, applying stochastic time
changes to different Lévy components can generate both stochastic volatility
and stochastic higher return moments, both of which are well-documented
features for financial securities. Therefore, with appropriate choices of Lévy
processes and stochastic time changes, we can capture the return dynamics of
virtually all financial securities.

Generality is not the only virtue of Lévy processes. By modeling return dy-
namics using different combinations of Lévy components with time changes,
we can readily assign explicit economic meanings to each Lévy component
and its associated time change in the return dynamics. The explicit economic
mapping not only facilitates the interpretation of existing models and their
structural parameters, but also adds economic intuition and direction for de-
signing new models that are parsimonious and yet adequate in capturing the
requisite economic behaviors.

A common approach in the literature is to model returns by a set of hidden
statistical factors. Factor rotations make it inherently difficult to assign eco-
nomic meanings to the statistical factors. The absence of economic mapping
also makes the model design process opaque. One often finds that a generic
hidden-factor model cannot match the requisite target behaviors of the finan-
cial securities returns, and yet many parameters of the model are difficult to
identify empirically. The issue of being both “too little” in performance and
“too much” in model identification can only be solved by exhaustive economet-
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ric analysis. In contrast, by mapping each Lévy process to an economic force,
and using random time change to capture its intensity variation, we can readily
construct parsimonious models that generate the target behavior.

The generality of the framework does not hinders its analytical tractabil-
ity for derivative pricing and model estimation, either. When modeling return
dynamics using Lévy processes with time changes, tractability of the return dy-
namics originates from tractability of the Lévy component specification and
tractability of the activity rate dynamics underlying the time change. Thus,
we can design tractable models using any combinations of tractable Lévy
processes and tractable activity rate dynamics. In this regard, we can incor-
porate and hence encompass all tractable models in the literature as building
blocks. Examples of tractable Lévy specifications include Brownian motions,
compound Poisson jumps, and other tractable jump specifications like variance
gamma, dampened power law, normal inverse Gaussian, and so on. Examples
of tractable activity rate dynamics include the affine class of Duffie et al. (2000),
the quadratic class of Leippold and Wu (2002), and the 3/2 process of Heston
(1997) and Lewis (2001). By modeling financial securities returns with time-
changed Lévy processes, we encompass all these models into one general and
yet tractable framework.

Through examples, I elaborate the three key virtues of Lévy processes with
stochastic time changes:

(i) the generality of the framework in capturing the return behavior of
virtually all financial securities,

(ii) the explicit economic mapping that facilitates the interpretation and
creation of new models capturing specific economic behaviors, and

(iii) the tractability embedded in the framework for derivative pricing and
model estimation.

In designing models for a financial security return, the literature often starts
by specifying a very general process with a set of hidden factors and then test-
ing different restrictions on this general process. Here I take the opposite
approach. First, I look at the data and identify stylized features that a rea-
sonable model needs to capture. Second, I design different components of the
model to match different features of the data and capture the impacts from
different economic forces. The final step is to assemble all the parts together.
Using time-changed Lévy processes matches this procedure well. First, we can
choose Lévy components to match the properties of return innovations gener-
ated from different economic forces. Statistically, we ask the following set of
questions: Do we need a continuous component? Do we need a jump compo-
nent? Do the jumps arrive frequently or are they rare but large events? Do up
and down movements show different behaviors?

Once we have chosen the appropriate Lévy components, we can use time
changes to capture the intensity variation for the different components and
generate stochastic volatilities and stochastic higher return moments from dif-
ferent economic sources. We use time changes to address the following ques-
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tions: Is stochastic volatility driven by intensity variations of small movements
(Brownian motion) or large movements (jumps)? Do the intensities of differ-
ent types of movements vary synchronously or separately? Do they show any
dynamic interactions? Based on answers to these questions, we can apply dif-
ferent time changes to different Lévy components and model their intensity
dynamics in a way matching their observed dynamic interactions.

The final step involves assembling the different Lévy components with or
without time changes into the asset return dynamics. When the dynamics are
specified under the risk-neutral measure for derivative pricing, adjustments are
necessary to guarantee the martingale property.

When designing models, tractability requirement often comes from deriv-
ative pricing since we need to take expectations of future contingent payoffs
under the risk-neutral measure to obtain its present value. Thus, it is often con-
venient to start by specifying a tractable return dynamics under the risk-neutral
measure. Then the statistical dynamics can be derived based on market price
of risk specifications. The less stringent requirement for tractability for the sta-
tistical dynamics often allows us to specify very flexible market price of risk
specifications, with the only constraints coming from reasonability for investor
behaviors and parsimony for econometric identification.

In designing the different Lévy components and applying the time changes,
I quote Albert Einstein as the guiding principle: “Everything should be made
as simple as possible, but not simpler.” The explicit economic purpose for each
Lévy component and its time change allows us to abide by this guiding principle
much more easily than in a general hidden statistical factor framework.

The rest of the article is organized as follows. The next section discusses
Lévy processes and how they can be used to model return innovations. Sec-
tion 3 discusses how to use time changes to generate stochastic volatility and
stochastic higher moments from different sources. Section 4 discusses how to
assemble different pieces together, how to make appropriate adjustments to
satisfy the martingale condition under the risk-neutral measure, and how to
derive the statistical dynamics based on market price of risk specifications. Sec-
tion 5 discusses option pricing under time-changed Lévy processes. Section 6
addresses the estimation issues using time-series returns and/or option prices.
Section 7 concludes.

2 Modeling return innovation distribution using Lévy processes

A Lévy process is a continuous time stochastic process with stationary inde-
pendent increments, analogous to i.i.d. innovations in a discrete-time setting.
Until very recently, the finance literature narrowly focuses on two examples of
Lévy processes: the Brownian motion underlying the Black and Scholes (1973)
model and the compound Poisson jump process with normal jump sizes under-
lying the jump diffusion model of Merton (1976). A Brownian motion gener-
ates normal innovations. The compound Poisson process in the Merton model
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generates return non-normality through a mixture of normal distributions with
Poisson probability weightings. A general Lévy process can generate a much
wider range of distributional behaviors through different types of jump speci-
fications. The compound Poisson process used in the Merton model generates
a finite number of jumps within a finite time interval. Such a jump process is
suitable to capture rare and large events such as market crashes and corporate
defaults. Nevertheless, many observe that asset prices can also display many
small jumps on a fine time scale. A general Lévy process can not only generate
continuous movements via a Brownian motion and rare and large events via a
compound Poisson process, but it can also generate frequent jumps of different
sizes.

2.1 Lévy characteristics

We start with a one-dimensional real-valued stochastic process {Xt |t � 0}
with X0 = 0 defined on an underlying probability space (Ω�F�P) endowed
with a standard complete filtration F = {Ft |t � 0}. We assume that X is a Lévy
process with respect to the filtration F, that is, Xt is adapted to Ft , the sample
paths of X are right-continuous with left limits, and Xu−Xt is independent of
Ft and distributed as Xu−t for 0 � t < u. By the Lévy–Khintchine Theorem,
the characteristic function of Xt has the form,

(1)φXt (u) ≡ EP
[
eiuXt

] = e−tψx(u)� t � 0�

where the characteristic exponent ψx(u) is given by,

(2)ψx(u) = −iuμ+ 1
2
u2σ2 +

∫
R0

(
1 − eiux + iux1|x|<1

)
π(x) dx�

where μ ∈ R describes the constant drift, σ2 ∈ R+ describes the constant
variance of the continuous component of the Lévy process, and the Lévy density
π(x) describes the arrival rates for jumps of every possible size x. The triplet
(μ� σ2� π) fully specifies the Lévy process Xt and is referred to as the Lévy
characteristics (Bertoin, 1996).

With a fixed time horizon, any return distribution can be represented
uniquely by its characteristic function and hence its characteristic exponent.
Equation (2) illustrates that a Lévy process can generate a wide range of
characteristic exponent behaviors through a flexible specification of the Lévy
density π(x).

The Lévy density π(x) is defined on the real line excluding zero, R0. The
truncation function x1|x|<1 equals x when |x| < 1 and zero otherwise. Other
truncation functions are also used in the literature as long as they are bounded,
with compact support, and satisfy h(x) = x in a neighborhood of zero (Jacod
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and Shiryaev, 1987).1 The purpose of the truncation function is to analyze the
jump properties around the singular point of zero jump size.

The characteristic function in (1) is defined on the real line u ∈ R. In many
applications, it is convenient to extend the definition to the complex plane,
u ∈ D ⊆ C, where the characteristic exponent is well-defined. When φXt (u) is
defined on the complex plane, it is referred to as the generalized Fourier trans-
form (Titchmarsh, 1986). It is also helpful to define the cumulant exponent of
a Lévy process Xt ,

(3)

ϕx(s) ≡ 1
t

ln E
[
esXt

]
= sμ+ 1

2
s2σ2 +

∫
R0

(
esx − 1 − sx1|x|<1

)
π(x) dx� s ∈ Ds ⊆ C�

where Ds denotes the subsect of the complex plain under which the cumulant
exponent is well-defined. Our extensions on the domains of the characteristic
coefficient u and cumulant coefficient s implies that ψx(u) = −ϕx(iu) when-
ever the two are both well-defined. Option pricing and likelihood estimation
for Lévy processes often rely on the tractability of the characteristic exponent
and specifically, analytical solutions to the integral in Eq. (2) or (3).

The sample paths of a pure jump Lévy process exhibit finite activity when the
integral of the Lévy density is finite:

(4)
∫
R0

π(x) dx = λ < ∞�

where λmeasures the mean arrival rate of jumps. A finite activity jump process
generates a finite number of jumps within any finite time interval.

When the integral in (4) is infinite, the sample paths exhibit infinite activity,
and generate an infinite number of jumps within any finite interval. Neverthe-
less, the sample paths show finite variation if the following integral is finite:

(5)
∫
R0

(|x| ∧ 1
)
π(x) dx < ∞�

When the integral in (5) is infinite, the jump process exhibit infinite variation,
a property also shared by the Brownian motion. The truncation function in the
definition of characteristic exponent is needed only for infinite variation jumps.
When the integral in (5) is not finite, the sum of small jumps does not converge,
but the sum of the jumps compensated by their mean converges. This special
behavior generates the necessity for the truncation term in (2).

1 Commonly used truncation functions include h(x) = x/(1 + x2), and h(x) = 1 ∧ |x| (the minimum
of 1 and |x|).
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For all jump specifications, we require that the process exhibit finite
quadratic variation:

(6)
∫
R0

(
1 ∧ x2)π(x) dx < ∞�

a necessary condition for the jump process to be a semimartingale. Lévy
processes are within a subclass of semimartingales.

2.2 Lévy examples

Black and Scholes (1973) model the asset return by a purely continuous
Lévy process and hence with π(x) = 0 for all x. The characteristic exponent is
simply:

(7)ψ(u) = −iuμ+ 1
2
u2σ2�

The associated normal probability density function is also well known.
Merton (1976) incorporates an additional compound Poisson jump compo-

nent with mean arrival rate λ. The jump size in the log asset return is normally
distributed with mean μJ and variance vJ , conditional on one jump occurring.
The Lévy density of this jump component can be written as,

(8)π(x) = λ
1√

2πvJ
exp

(
−(x− μJ)

2

2vJ

)
�

The characteristic exponent for this compound Poisson jump is:

(9)ψ(u) = λ
(
1 − eiuμJ−

1
2u

2vJ
)
�

A key property of compound Poisson jumps is that the sample paths exhibit fi-
nite activity. Finite-activity jumps are useful in capturing large but rare events.
For example, the credit-risk literature has used Poisson process extensively to
model the random arrival of default events (Lando, 1998; Duffie and Single-
ton, 1999, 2003; and Duffie et al., 2003b). More recently, Carr and Wu (2005)
use a Poisson jump with zero recovery to model the impact of corporate de-
fault on the stock price. Upon arrival, the stock price jumps to zero. Carr and
Wu (2007b) use a Poisson jump with random recovery to model the impact of
sovereign default on its home currency price. Upon arrival, the currency price
jumps down by a random amount.

Within the compound Poisson jump type, Kou (2002) proposes a double-
exponential conditional distribution for the jump size. The Lévy density is
given by,

(10)π(x) =
{
λ exp(−β+x)� x > 0�
λ exp(−β−|x|)� x < 0� λ� β+� β− > 0�
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Under this specification, the jump arrival rate increases monotonically with
decreasing jump size. Asymmetry between up and down jumps are induced by
the different exponential coefficients β+ and β−. The characteristic exponent
for this pure jump process is,

(11)ψ(u) = −λ[(β+ − iu)−1 − β−1+ + (β− + iu)−1 − β−1−
]
�

Kou and Wang (2004) show that the double-exponential jump specification
allows tractable pricing for American and some path-dependent options.

Although it is appropriate to use compound Poisson jumps to capture rare
and large events such as market crashes and corporate defaults, many observe
that asset prices actually display many small jumps. These types of behaviors
are better captured by infinite-activity jumps, which generate infinite number
of jumps within any finite time interval. A popular example that can gener-
ate different jump types is the CGMY model of Carr et al. (2002), with the
following Lévy density,

(12)

π(x) =
{
λ exp(−β+x)x−α−1� x > 0�
λ exp(−β−|x|)|x|−α−1� x < 0�
λ� β+� β− > 0� α ∈ [−1� 2]�

In this specification, the power coefficient α controls the arrival frequency of
small jumps and hence the jump type. With the power coefficient α = −1, the
Lévy density becomes the double-exponential specification in (10), the sample
paths of which show finite activity. The model generates finite-activity jumps
as long as α < 0. When α ∈ [0� 1), the model generates jumps with infinite
activity but finite variation. The jump process exhibits infinite variation when
α ∈ [1� 2]. The condition α � 2 is necessary to guarantee finite quadratic
variation. With α < 0, the power term makes the jump arrival approaches
infinity as the jump size approaches zero. The larger the power coefficient, the
higher the frequency of small jumps. The two exponential coefficients β+ and
β− control the arrival of large jumps. The difference in the two coefficients
generates asymmetry in the tails of the distribution.

The physics literature often refers to the specification in (12) as truncated
Lévy flights. The CGMY terminology comes from the initials of the four au-
thors in Carr et al. (2002), who regard the model as an extension of the variance
gamma (VG) model of Madan and Seneta (1990) and Madan et al. (1998).
Under the VG model, α = 0. Wu (2006) labels the specification in (12) as
exponentially dampened power law (DPL), regarding it as the Lévy density of
an α-stable Lévy process with exponential dampening. Wu shows that applying
measure changes using exponential martingales to an α-stable Lévy process
generates the exponentially dampened power law. Hence, the whole class of
α-stable processes, made popular to the finance field by Mandelbrot (1963)
and Fama (1965), can be regarded as a special class of the dampened power
law.



Ch. 3. Modeling Financial Security Returns Using Lévy Processes 125

When α �= 0 and α �= 1, the characteristic exponent associated with the
dampened power law Lévy density specification takes the following form:

(13)
ψ(u) = −Γ (−α)λ[(β+ − iu)α − βα+ + (β− + iu)α − βα−

] − iuC(h)�

where Γ (a) ≡ ∫ ∞
0 xa−1e−x dx is the gamma function and the linear term C(h)

is induced by the inclusion of a truncation function h(x) for infinite-variation
jumps when α > 1. As I will make clear in later sections, in modeling return
dynamics, any linear drift term in Xt will be canceled out by the correspond-
ing term in its concavity adjustment. Hence, the exact form of the truncation
function and the resultant coefficient C(h) are immaterial for modeling and
estimation. Wu (2006) explicitly carries out the integral in (3) through an ex-
pansion method and solves the truncation-induced term C(h) under the trun-
cation function h(x) = x1|x|<1:

(14)

C(h) = λ
(
β+

(
Γ (−α)α+ Γ (1 − α�β+)

)
− β−

(
Γ (−α)α+ Γ (1 − α�β−)

))
� α > 1�

where Γ (a� b) ≡ ∫ ∞
b xa−1e−x dx is the incomplete gamma function.

The dampened power law specification has two singular points at α = 0 and
α = 1, under which the characteristic exponent takes different forms. The case
of α = 0 corresponds to the variance gamma model. Its characteristic exponent
is,

(15)

ψ(u) = λ ln(1 − iu/β+)(1 + iu/β−) = λ
(
ln(β+ − iu)− lnβ

+ ln(β− + iu)− lnβ−
)
�

Since this process exhibits finite variation, we can perform the integral in (2)
without the truncation function. When α = 1, the characteristic exponent is
(Wu, 2006),

(16)

ψ(u) = −λ((β+ − iu) ln(β+ − iu)/β+
+ λ(β− + iu) ln(β− + iu)/β−

) − iuC(h)�

where the truncation-induced term is given byC(h) = λ(Γ (0� β+)−Γ (0� β−))
under the truncation function h(x) = x1|x|<1.

Other popular pure jump Lévy processes include the normal inverse
Gaussian (NIG) process (Barndorff-Nielsen, 1998), the generalized hyperbolic
process (Eberlein et al., 1998), and the Meixner process (Schoutens, 2003).
These processes all have tractable characteristic exponents.

2.3 Empirical evidence

Merton’s (1976) compound Poisson jump specification is suitable to capture
large and rare events such as market crashes and corporate defaults. Never-
theless, recent empirical evidence suggests that infinite-activity jump specifi-
cations that generate frequent jumps of all sizes are better suited to capture
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the daily market movements of many financial securities such as stocks, stock
indexes, and exchange rates. Furthermore, in reality the distinction between
continuous and discontinuous market movements is not at all clear cut. In-
stead, we observe movements of all sizes, with small movements arriving more
frequently than large movements. This type of behavior asks for a Lévy den-
sity that is monotone in the absolute jump magnitude. The dampened power
law specification in (12) has this monotonic behavior. When the power coeffi-
cient α � 1, the arrival rate of small jumps is so frequent that the specification
generates sample paths with infinite variation, a property also shared by the
Brownian motion. Hence, a Lévy process with infinite-variation jump provides
a smooth transition from large jumps to small jumps and then to the continu-
ous movements captured by a Brownian motion.

Several studies show that infinite-activity jumps perform better than finite-
activity jumps in describing the statistical behavior of stock and stock index
returns. Likelihood estimation of the dampened power law in Carr et al. (2002)
on individual stocks and stock indexes shows that the estimates for the power
coefficient α are mostly greater than zero. Li et al. (2007) use Markov Chain
Monte Carlo method to estimate three Lévy specifications with stochastic time
changes on the stock index. They find that infinite-activity jump specifications
perform better in capturing the index behavior than finite-activity jumps do.
Their simulation analysis further shows that an infinite-activity jump process
cannot be adequately approximated by a finite-activity jump process, irrespec-
tive of the parameter choices.

Empirical studies using options show that using infinite-activity jumps also
generate better option pricing performance. Carr and Wu (2003a) test the op-
tion pricing performance on the Merton jump-diffusion model, the variance
gamma model, and their infinite-variation finite-moment log stable model. The
pricing performance of the log stable model is the best among the three jump
specifications. Huang and Wu (2004) apply various time changes on the three
jump specifications to generate stochastic volatilities. They find that under all
stochastic volatility specification, infinite-activity jumps perform significantly
better than finite-activity jumps in pricing options.

Wu (2006) estimates the dampened power law using both the time-series
returns and option prices on S&P 500 index. He obtains an estimate of the
power coefficient at about 1.5. He also finds that although the exponential co-
efficient on down jumps β− is large under the statistical measure, the estimate
on its risk-neutral counterpart is not significantly different from zero. Without
exponential dampening on down jumps, the return variance is infinite under
the risk-neutral measure, even though it is finite under the statistical measure.
As a result, the classic central limit theorem does not apply under the risk-
neutral measure although it is applicable under the statistical measure. The
difference under the two measures explains the empirical observation that the
non-normality in the time-series index returns dissipates rapidly with time ag-
gregation, but the risk-neutral return non-normality inferred from the options
data persists to long option maturities.



Ch. 3. Modeling Financial Security Returns Using Lévy Processes 127

When earlier studies use the compound Poisson jump to capture rare and
large price movements, it is imperative to add a diffusion component to fill
the gaps in between the arrival of the jumps. However, if we start with an
infinite-activity jump that can generate an infinite number of small and large
movements within any finite interval, it is not clear that we still need a diffu-
sion component to fill the gaps. Carr et al. (2002) conclude from their empirical
study that a diffusion component is no longer necessary as long as they adopt an
infinite activity pure jump process. Carr and Wu (2003a) arrive at similar con-
clusions in their infinite variation log stable model. Huang and Wu (2004) find
that a diffusion return component is useful in their time-changed Lévy process
setting in generating correlations with the diffusive activity rate process. Never-
theless, it is not clear whether the diffusion return component is still needed
if the activity rate also follows a pure jump process and correlations are con-
structed through synchronous jumps in return and the activity rate.

Carr and Wu (2003b) identify the presence of jump and diffusion compo-
nents in the underlying asset price process by investigating the short-maturity
behavior of at-the-money and out-of-the-money options written on this asset.
They prove that a jump component, if present, dominates the short-maturity
behavior of out-of-the-money options and hence can readily be identified.
A diffusion component, if present, usually dominates the short-maturity behav-
ior of at-the-money options. However, an infinite-variation jump component
can generate short-maturity behavior for at-the-money options that are simi-
lar to those generated from a diffusion process. The similar behavior makes
the identification of a diffusion component more difficult when an infinite-
variation jump component is present.2

Aït-Sahalia (2004) proves in a simple Lévy setting that when a diffusion
component is present, the diffusion variance can be effectively identified from
discretely sampled time-series data using maximum likelihood method even in
the presence of infinite-variation jumps, as long as the power coefficient of the
jump component is not too close to 2. Aït-Sahalia and Jacod (2005) further
show that the maximum likelihood method can also separately identify two
jump components as long as the power coefficients for the jump components
are sufficient apart from each other.

3 Generating stochastic volatility by applying stochastic time changes

It is well documented that asset return volatilities are stochastic (Engle,
2004). Recent evidence from the derivatives market suggests that higher re-
turn moments such as skewness also vary significantly over time (David and

2 For pure jump α-stable Lévy processes with α ∈ [1� 2), at-the-money option prices converge to zero
with declining maturity T at the rate of O(T 1/α). The convergence rate is O(T 1/2) when there is a
diffusion component. Hence, identifying the diffusion component becomes difficult when the power
coefficient of the jump component is close to 2.
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Veronesi, 1999; Johnson, 2002; and Carr and Wu, 2007a). A convenient ap-
proach to generating stochastic volatility on non-normal return innovations is
to apply stochastic time changes to a Lévy process. A tractable way of gener-
ating stochastic skewness and other higher order moments is to apply separate
time changes to multiple Lévy components with different degrees of skewness
and higher order moments. The random time change amounts to stochasti-
cally altering the clock on which the Lévy process is run. Intuitively, a time
change can be used to regulate the number of order arrivals that occur in a
given time interval. More order arrivals generate higher return volatility (Ané
and Geman, 2000). It can also be used to randomize the shocks from different
economic sources. Separate time changes on different Lévy components can
capture separate variations of different economic shocks.

3.1 Time changes and activity rates

Let Xt denote a Lévy process and let t → Zt(t � 0) be an increasing right-
continuous process with left limits that satisfy the usual technical conditions,
we can define a new process Y obtained by evaluating X at Z , i.e.,

(17)Yt ≡ XZt � t � 0�

Monroe (1978) proves that every semimartingale can be written as a time-
changed Brownian motion. Hence, equation in (17) is a very general specifi-
cation. In principle, the random time Zt can be modeled as a nondecreasing
semimartingale,

(18)Zt = Tt +
t∫

0

∞∫
0

xμ(dt� dx)�

where Tt is the locally deterministic and continuous component and μ(dt� dy)
denotes the counting measure of the possible positive jumps of the semimartin-
gale. The two components can be used to play different roles. Applying a time
change defined by the positive jump component

∫ t
0
∫ ∞

0 xμ(dt� dx) to a Brown-
ian motion generates a new discontinuous process. If we model the positive
jump component by a Lévy process, it is often referred to as a Lévy subordi-
nator. A Lévy process subordinated by a Lévy subordinator yields a new Lévy
process (Sato, 1999). Therefore, this component can be used to randomize
the original return innovation defined by X to generate a refined return in-
novation distribution. For example, Madan and Seneta (1990) generate the
variance-gamma pure jump Lévy process by applying a gamma time change to
a Brownian motion.

To generate stochastic volatility on non-normal return innovations, I start
directly with a Lévy process that already captures the non-normal return inno-
vation distribution, and then apply a locally deterministic time change Tt purely
for the purpose of generating stochastic volatilities and stochastic higher return
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moments. We can characterize the locally deterministic time change in terms
of its local intensity v(t):

Tt =
t∫

0

v(u−) du�

Carr and Wu (2004) label v(t) as the instantaneous activity rate, with v(u−) de-
noting the activity rate at time u just prior to a jump. When Xt is a standard
Brownian motion, vt becomes the instantaneous variance of the Brownian mo-
tion. When Xt is a pure jump Lévy process, such as the compound Poisson
jump process of Merton (1976), v(t) is proportional to the jump arrival rate.

Although Tt is locally deterministic and continuous, the instantaneous ac-
tivity rate process v(t) can be fully stochastic and can jump. Given any contin-
uous or discontinuous dynamics for v(t), the integration over its sample path
makes Tt locally predictable and continuous. Nevertheless, for Tt to be non-
decreasing, the activity rate needs to be nonnegative, a natural requirement
for diffusion variance and jump arrival rates.

3.2 Generating stochastic volatility from different economic sources

By applying stochastic time changes to Lévy processes, it becomes obvious
that stochastic volatility can come from multiple sources. It can come from the
instantaneous variance of a diffusion return component, or the arrival rate of
a jump component, or both. Huang and Wu (2004) design and estimate a class
of models for S&P 500 index returns based on the time-changed Lévy process
framework. They allow the return innovation to contain both a diffusion com-
ponent and a jump component. Then, they consider several cases where they
apply stochastic time changes to

(1) the diffusion component only (SV1),
(2) the jump component only (SV2),
(3) both components with one joint activity rate (SV3), and
(4) both components with separate activity rates for each component

(SV4).

They find that by allowing the diffusion variance rate and the jump arrival rate
to follow separate dynamic processes, the SV4 specification outperforms all
the other single activity rate specifications in pricing the index options.

Applying separate stochastic time changes to different Lévy components
also proves to be a tractable way of generating stochastic higher return mo-
ments such as skewness. In the SV4 specification of Huang and Wu (2004),
one activity rate controls the intensity of a diffusion and hence a normal in-
novation component and the other activity rate controls the intensity of a
negatively skewed pure jump component. The variation of the two activity rates
over time generates variation in the relative proportion of the diffusion versus
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the negatively-skewed jump return innovation component. As a result, the de-
gree of the negative skewness for the index return varies over time (David and
Veronesi, 1999).

Carr and Wu (2005) apply the time-changed Lévy process framework to
jointly price stock options and credit default swaps written on the same com-
pany. They assume that corporate default arrives via a Poisson process with
stochastic arrival rate. Upon default, the stock price jumps to zero. Prior to
default, the stock price follows a purely continuous process with stochastic
volatility. Hence, the model decomposes the stock return into two Lévy com-
ponents:

(i) the continuous component that captures the market risk, and
(ii) the jump component that captures the impact of credit risk.

Separate time changes on the two components generate stochastic volatility for
market movements and stochastic arrival for corporate default, respectively.
Carr and Wu (2007b) use a similar specification to capture the correlation
between sovereign credit default swap spreads and currency options. They as-
sume that sovereign default induces a negative but random jump in the price
of the home currency.

For stock indexes and the dollar (or euro) prices of emerging market cur-
rencies, the risk-neutral return distribution skewness is time-varying, but the
sign stays negative across most of the sample period.3 In contrast, for the
exchange rates between two relatively symmetric economies, Carr and Wu
(2007a) find that the risk-neutral currency return distribution inferred from
option prices shows skewness that not only varies significantly over time in
magnitudes, but also switches signs. To capture the stochastic skewness with
possible sign switches, they decompose the currency return into two Lévy com-
ponents that generate positive and negative skewness, respectively. Then, they
apply separate stochastic time changes to the two Lévy components so that the
relative proportion of the two components and hence the relative degree and
direction of the return skewness can vary over time. They model the positively-
skewed Lévy process with a jump component that only jumps upward and
the negatively-skewed Lévy process with a jump component that only jumps
downward. Furthermore, each process contains a diffusion component that is
correlated with their respective activity rate process. The correlation is posi-
tive for the positive-skewed Lévy process and negative for the negative-skewed
Lévy component. Thus, the up and down jumps generate short-term positive
and negative skewness for the two Lévy components, and the different corre-
lations between the two Lévy components and their respective activity rates
generate long-term skewness.

3 See the evidence in David and Veronesi (1999) and Foresi and Wu (2005) on stock index options and
Carr and Wu (2007b) on currency options.
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In contrast to modeling returns by a set of hidden factors, our modeling ap-
proach of applying stochastic time changes to different Lévy processes makes
explicit the purpose of each modeling component. Under this framework, we
use different Lévy processes as building blocks representing different eco-
nomic forces. Applying stochastic time changes on each component random-
izes the intensity of the impact from each economic force. The clear economic
mapping makes the model design more intuitive and concise. Each component
is added for a specific economic purpose. Using this approach is more likely to
create models that are parsimonious and yet capable of delivering the target
properties.

3.3 Theory and evidence on activity rate dynamics

Exploiting information in variance swap rates and various realized variance
estimators constructed from high-frequency returns, Wu (2005) empirically
studies the activity rate dynamics for the S&P 500 index returns under a gen-
eralized affine framework. He finds that the activity rate for the index return
contains an infinite-activity jump component, with its arrival rate proportional
to the activity rate level. The Markov Chain Monte Carlo estimation in Eraker
et al. (2003) on long histories of index returns also suggests the presence of a
jump component in the activity rate dynamics.

The impact of a jump component in the activity rate dynamics is usually
small on the pricing of stock (index) options (Broadie et al., 2002) and the
term structure of variance swaps (Wu, 2005). Hence, many specifications for
option pricing assume pure continuous activity rate dynamics for parsimony.
Nevertheless, jumps are an integral part of the statistical variance dynamics.
Furthermore, their pricing impacts can become more significant for derivative
contracts that are sensitive to the tails of the variance distribution, e.g., options
on variance swaps or realized variance.

When separate time changes are applied to different innovation compo-
nents, the underlying activity rates can be modeled independently or with
dynamic interactions. For example, Carr and Wu (2007a) assume that the two
activity rates that govern the positive and negative Lévy components are inde-
pendent of each other. Independent assumptions are also applied in the SV4
specification in Huang and Wu (2004). In contrast, Carr and Wu (2005) find
that stock return volatilities and corporate default arrival intensities co-move
with each other. To capture the co-movements, they model the joint dynamics
of the stock return diffusion variance rate vt and the default arrival rate λt as

dvt = (uv − κvvt) dt + σv
√
vt dW v

t �

λt = ξvt + zt�

(19)dzt = (uz − κzzt − κvzvt) dt + σz
√
zt dW z

t �

where W v
t and W z

t denote two independent Brownian motions. The interac-
tions between the diffusion variance and default arrival are captured by both
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the contemporaneous loading coefficient ξ and the dynamic predictive coeffi-
cient κvz.

When the purpose is to capture the option price behavior at a narrow range
of maturities, a one-factor activity rate specification is often adequate in gen-
erating stochastic volatilities. However, if the purpose is to capture the term
structure of at-the-money implied volatilities or variance swap rates across a
wide range of maturities, a one-factor activity rate process is often found in-
adequate. In most options markets, the persistence of the implied volatilities
increases with the option maturity. This feature calls for multi-factor activity
rate dynamics with different degrees of persistence for the different factors.
One example is to allow the activity rate to revert to a stochastic mean level:

dvt = κ(mt − κvvt) dt + σv
√
vt dW v

t �

dmt = κm(θ−mt) dt + σm
√
mt dW m

t �

where the mean-reversion speed of m, κm, is usually much smaller than the
mean-reversion speed of the activity rate itself κv. Balduzzi et al. (1998) use
a similar specification for the instantaneous interest rate dynamics and label
m as the stochastic central tendency factor. Intuitively, the activity rate v(t)
affects short-term option implied volatilities more heavily whereas the central
tendency factor mt dominates the variation of long-term options. Thus, the
persistence of the option implied volatility or variance swap rate can increase
with the option maturities. Carr and Wu (2007a) consider a similar extension
to their stochastic skew model, where the activity rates of both the positive and
the negative Lévy components are allowed to revert to a common stochastic
central tendency factor. Their estimation shows that the extension significantly
improves the option pricing performance along the maturity dimension. Carr
and Wu (2007b) also consider a similar extension on the default arrival dynam-
ics to better capture the term structure of credit default swap spreads.

Most applications in option pricing use affine specifications for the activity
rate dynamics, under which the activity rate is an affine function of a set of
state variables and both the drift and variance of the state variables are affine
in the state variables. When upward jumps are allowed in these state variables,
their arrival rate are also affine in the state variables. Carr and Wu (2004) show
that both affine and quadratic specifications can be used to model the activity
rate while retaining the analytical tractability for option pricing. Santa-Clara
and Yan (2005) estimate a model with quadratic activity rates on S&P 500 in-
dex options. In their model, the return innovation consists of both a diffusion
component and a compound Poisson jump component, and each component
is time changed separately, with the underlying activity rate being a quadratic
function of an Ornstein–Ulenbeck process. They show that they can incorpo-
rate more intricate correlation structures under their quadratic specification
than under the affine specification while maintaining tractability.
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Lewis (2000) and Heston (1997) show that option pricing is also reasonably
tractable when the activity rate is governed by the 3/2 dynamics:

(20)dvt = κvt(θ− vt) dt + σvv
3/2
t dWt�

Carr and Sun (2005) show that under a pure diffusion model for the asset re-
turn with a 3/2 variance rate dynamics, European option values can be written
as a function of the asset price level and the level of the variance swap rate
of the same maturity, with no separate dependence on calendar time or time-
to-maturity. Furthermore, the pricing function depends only on the volatility
of volatility coefficient σv, but not on the drift parameters (θ� κ). Therefore, if
we observe the underlying asset’s price and its variance swap rate quotes, we
can price options with merely one model parameter σv, without the need to
estimate the drift function of the variance rate dynamics.

Within the one-factor diffusion context, several empirical studies find that
a 3/2 specification on the variance rate dynamics performs better than the
square-root specification. Favorable evidence based on time-series returns in-
cludes Chacko and Viceira (2003), Ishida and Engle (2002), Javaheri (2005),
and Jones (2003). Jones (2003), Medvedev, Scaillet (2003), and Bakshi et al.
(2006) also find supporting evidence for the 3/2 specification from equity index
options implied volatilities.

4 Modeling financial security returns with time-changed Lévy processes

Once we have a clear understanding on the different roles played by Lévy
innovations and random time changes, we can assemble the pieces together
and write a complete model for the financial security return. The traditional
literature often starts with the specification of the return dynamics under the
statistical measure P, and derive the return dynamics under the risk-neutral
measure Q for option pricing based on market price of risk specifications.
However, since the requirement for analytical tractability mainly comes from
the expectation operation under the risk-neutral measure in pricing contingent
claims, it is often convenient to start directly with a tractable risk-neutral dy-
namics. Then, since we do not have as much concern for the tractability of the
statistical dynamics, we can accommodate very flexible market price of risk
specifications, with the only practical constraints coming from reasonability
and identification considerations.

4.1 Constructing risk-neutral return dynamics

Let St denote the time-t price of a financial security. Let {Xk
T k
t
}K=1 denote a

series of independent time-changed Lévy processes, which are specified under
a risk-neutral measure Q. We use these processes as building blocks for the re-
turn dynamics. The independence assumption between different components
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is for convenience only, although interactions can be added when necessary as
in Eq. (19). We model the risk-neutral return dynamics over the time period
[0� t] as

(21)ln St/S0 = (r − q)t +
K∑
k=1

(
bkXk

T k
t
− ϕxk

(
bk

)
T k
t

)
�

where r denotes the instantaneous interest rate, q denotes the dividend yield
for stocks or the foreign instantaneous interest rate for currencies, and bk

denotes a constant loading coefficient on the kth component. For notational
clarity, I assume both r and q constant. If we allow both to be stochastic, the
first term should be replaced by an integral

∫ t
0 (r(u)−q(u)) du. If they vary de-

terministically over time, we can also replace the integral with the continuously
compounded yields over the horizon [0� t].

Equation (21) models the risks in the asset return using K components of
time-changed Lévy processes. The cumulant exponent ϕxk(b

k) represents a
concavity adjustment so that the return dynamics satisfy the martingale condi-
tion under the risk-neutral measure:

(22)EQ

0 [St/S0] = e(r−q)t �

Since by definition

(23)EQ

0

[
eb

kXt

]
= eϕxk(b

k)t�

the following expectation is a martingale:

(24)EQ

0

[
eb

kXt−ϕxk(bk)t
]
= 1�

The martingale condition retains when we replace t with a locally predictable
and continuous time change Tt (Küchler and Sørensen, 1997):

(25)EQ

0

[
e
bkXT k

t
−ϕ

xk
(bk)T k

t
]
= 1�

Thus, we have

(26)

EQ

0 [St/S0] = EQ

0

[
e
(r−q)t+∑K

k=1(b
kXk

T k
t

−ϕ
xk
(bk)T k

t )
]

= e(r−q)t
K∏
k=1

EQ

0

[
e
bkXk

T k
t

−ϕ
xk
(bk)T k

t
]
= e(r−q)t �

The independence assumption between different Lévy components enables us
to move the expectation operation inside the product.

Each Lévy process Xk
t can have a drift component of its own, but it is irrele-

vant in our return specification (21) because any drift will be canceled out with
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a corresponding term in the concavity adjustment. Hence, for each Lévy com-
ponent, we only specify the diffusion volatility σ if the security price is allowed
to move continuously and the Lévy density π(x) if the price is allowed to jump.

The above return dynamics are defined over the horizon [0� t] with time 0
referring to today and t being some future time corresponding to the maturity
date of the contingent claim being valued. The time change Tt represents the
integral of the activity rates over the same time period [0� t]. Sometimes it is
more convenient to use t to denote the current date and T for future date, with
τ = T−t denoting the time to maturity of the contingent claim. Then, the time
change can be defined accordingly between this time period,

(27)Tt�T ≡
T∫
t

v−(u) du�

The log return between [t� T ] can be written as

(28)ln ST /St = (r − q)(T − t)+
K∑
k=1

(
bkXk

T k
t�T

− ϕxk
(
bk

)
T k
t�T

)
�

To illustrate the construction of the risk-neutral dynamics, I start with the
simplest case where the return innovation is driven by one diffusion component
without time change: X1

t = σWt�Tt = t�K = 1� b1 = 1, with Wt denoting a
standard Brownian motion. The return process becomes

(29)ln St/S0 = (r − q)t + σWt − 1
2
σ2t�

The cumulant exponent of σWt evaluated at s = 1 is ϕ(1) = 1
2σ

2. Equation
(29) is essentially the classic Black and Scholes (1973) model.

Applying random time change to the diffusion component, we have

(30)ln St/S0 = (r − q)t + σWTt −
1
2
σ2Tt �

where we simply replace t with Tt on terms related to the Lévy component.
If we model the activity rate vt underlying the time change by the square-root
process of Cox et al. (1985), we will generate the stochastic volatility model of
Heston (1993):

(31)dvt = κ(1 − vt) dt + σv
√
vt dW v

t �

The long-run mean of the activity rate is normalized to one for identification
purpose, since we already have a free volatility parameter σ in (30) that cap-
tures the mean level of volatility. In the original Heston model, σ is normalized
to one and the long-run mean of the activity rate is left as a free parameter.
To match the activity rate specification with the time change notation, we can
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rewrite the activity rate in integral forms

(32)

vt = v0 +
t∫

0

κ(1 − vt) dt +
t∫

0

σv
√
vt dW v

t

= v0 + κt − κTt + σvW
v
Tt �

Technically, the second equality in (32) holds only in distribution and the
W v in

∫ t
0
√
vt dW v

t denotes a different Brownian motion from the W v in W v
Tt .

Hence, a more technically correct way of writing the equality is:

(33)

t∫
0

√
vt dW v

t =d W̃ v
Tt �

where =d denotes “equality in distribution,” and (W v� W̃ v) denote two differ-
ent Brownian motions. To avoid notation clustering, we use W v to represent
two different Brownian motions in the two different representations. We also
use the same equality sign “=” to represent both the traditional mathematical
equality and the equality in distribution. Analogously, the equalities between∫ t

0
√
vt dWt and WTt , between

√
vt dWt and dWTt , and between

√
vt dW v

t and
dW v

Tt are all in distribution, and the two “W ”s in each pair represent two differ-
ent Brownian motions. Heston (1993) allows correlation between the activity
rate innovation and the return innovation E[dWt dW v

t ] = ρ dt, or equivalently
under the time-change notation, E[dWTt dW v

Tt ] = ρ dTt = ρvt dt.
Technicality aside, I regard the time-change notation as simply a conve-

nient way of rewriting the traditional stochastic differential equation. Using the
Heston (1993) model as an example. The traditional representation in terms
of the stochastic differential equation is:

d ln St = (r − q) dt + σ
√
vt dWt − 1

2
σ2vt dt�

(34)dvt = κ(1 − vt) dt + σv
√
vt dW v

t �

The following time-changed Lévy process generates the same return distribu-
tion:

ln St/S0 = (r − q)t + σWTt −
1
2
σ2Tt �

(35)vt = v0 + κt − κTt + σvW
v
Tt �

with the technical caveat that (34) and (35) represent different processes and
(W �W v) in the two sets of equations represent completely different Brownian
motions.

Now consider an example where the return innovation is driven by a pure
jump Lévy component without time change and the jump arrival is governed
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by the dampened power law specification in (12) with α �= 0 and α �= 1. The
return dynamics can be written as

(36)ln St/S0 = (r − q)t + Jt − ϕJ(1)t�

where Jt denotes this Lévy jump component, and the cumulant exponent is

(37)ϕJ(s) = Γ (−α)λ[(β+ − s)α − βα+ + (β− + s)α − βα−
] + sC(h)�

with C(h) given in (14). Since any linear drift terms in Jt will be canceled out
by the corresponding term in the concavity adjustment, it becomes obvious
that the exact form of the truncation function and the resultant linear coeffi-
cient C(h) are immaterial for modeling and estimation. Given the cumulant
exponent in (13), the concavity adjustment in Eq. (36) becomes

(38)ϕJ(1) = Γ (−α)λ[(β+ − 1)α − βα+ + (β− + 1)α − βα−
] + C(h)�

If we apply random time change to the pure jump Lévy component, we can
simply replace Jt with JTt and ϕJ(1)t with ϕJ(1)Tt :

(39)ln St/S0 = (r − q)t + JTt − ϕJ(1)Tt �
which is a pure jump process with stochastic volatility generated purely from
the stochastic arrival of jumps.

When we use one Lévy component in the return dynamics, it is natural to
set the loading coefficient b to unity as it can always be absorbed into the scal-
ing specification of the Lévy process. To show an example where the loading
coefficient plays a more explicit role, we consider a market model for stock
returns, where the return on each stock is decomposed into two orthogonal
components: a market risk component and an idiosyncratic risk component.
We use a Lévy process Xm

t to model the market risk and another Lévy process
X
j
t to model the idiosyncratic risk for stock j. Then, the return on stock j can

be written under the risk-neutral measure Q as

(40)ln Sjt /S
j
0 = (r − q)t + (

bjXm
t − ϕxm

(
bj

)
t
) + (

X
j
t − ϕxj (1)t

)
�

where the first component (r − q)t captures the instantaneous drift under the
risk-neutral measure, the second component (bjXm

t −ϕxm(bj)t) represents the
concavity-adjusted market risk component, with bj capturing the linear loading
of the return on the market risk factor Xm

t , and the last component (Xj
t −

ϕxj (1)t) is the concavity-adjusted idiosyncratic risk component for the stock
return.

Under the Lévy specification in (40), stock returns are i.i.d. We can apply
random time changes to the two Lévy processes to generate stochastic volatil-
ity:

(41)

ln Sjt /S
j
0 = (r − q)t + (

bjXm
T m
t

− ϕxm
(
bj

)
T m
t

) + (
X
j

T j
t

− ϕxj (1)T
j
t

)
�
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where stochastic volatility can come either from the market risk via T m
t or

from the idiosyncratic risk via T j
t . Mo and Wu (2007) propose an international

capital asset pricing model with a structure similar to Eq. (41), where Xm rep-
resents a global risk factor and Xj a country-specific risk factor. They specify
the dynamics under both the risk-neutral measure and the statistical measure,
and estimate the joint dynamics of three economies (US, UK, and Japan) using
the time-series returns and option prices on the S&P 500 index, the FTSE 100
Index, and the Nikkei-225 Stock Average.

4.2 Market price of risks and statistical dynamics

Once we have specified the return dynamics under the risk-neutral mea-
sure Q, we can derive the dynamics under the statistical measure P if we know
whether and how different sources of risks are priced. Take the generic re-
turn specification in (21) as an example. We have K sources of return risks as
captured by the K Lévy processes {Xk

t }Kk=1. We also have K sources of volatil-
ity risks corresponding to each return component. Furthermore, each Lévy
process Xk

t can have a diffusion component and a jump component. The two
components can be priced differently. Upside and downside jumps can also be
priced differently (Wu, 2006 and Bakshi and Wu, 2005). The activity rate that
underlies each time change can also have a diffusion and a jump component
that can be priced differently. Depending on the market price of risk specifi-
cation, the statistical return dynamics can look dramatically different from the
risk-neutral dynamics.

In this subsection, we consider a simple class of market price of risk speci-
fications, which in most cases generates statistical return dynamics that stay in
the same class as the risk-neutral dynamics. The pricing kernel that defines the
market price of all sources of risks can be written as

(42)

Mt = e−rt
K∏
k=1

exp
(−γkXk

T k
t
− ϕxk(−γk)− γkvX

kv
T k
t

− ϕxkv(−γkv)
) · ζ�

where Xk
T k
t

denotes the return risk as in (21), Xkv
T k
t

denotes another set of time-

changed Lévy processes that characterize the activity rate risk, and ζ denotes
an orthogonal martingale component that prices other sources of risks inde-
pendent of the security return under consideration. We maintain the constant
interest rate assumption in the pricing kernel specification. The exponential
martingale components in the pricing kernel determines the measure change
from P to Q. The simplicity of the specification comes from the constant as-
sumption on the market price coefficients γk and γkv.

Given the pricing kernel in (42) and the risk-neutral return dynamics in (21),
we can infer the statistical return dynamics. We use examples to illustrate the
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procedure, starting with the simplest case where the return is driven by one
diffusion component without time change as in (29). According to the above
exponential martingale assumption, the measure change from P to Q is defined
by

(43)
dQ

dP

∣∣∣∣
t

= exp
(
−γσWt − 1

2
γ2σ2t

)
with ϕσW (−γ) = 1

2γ
2σ2. The literature has taken different approaches in ar-

riving at the dynamics under a measure change. For measure changes defined
by exponential martingales of a Lévy processes X, it is convenient to remem-
ber that ϕP

X(s) = ϕQ

X(s + γ) − ϕQ

X(γ) and that the drift adjustment of X is
captured by η = ϕP(1)−ϕQ(1) (Küchler and Sørensen, 1997). For the simple
case in (43) with X = σW , we have ϕQ

σW (1) = 1
2σ

2, and

(44)

ϕP
σW (1) = ϕQ

σW (1 + γ)− ϕQ

σW (γ) =
1
2
(1 + γ)2σ2 − 1

2
γ2σ2

= 1
2
σ2 + γσ2�

Thus, the drift adjustment, or the instantaneous expected excess return, is η =
γσ2. The statistical (P) return dynamics becomes4

(45)ln St/S0 = (r − q)t + γσ2t + σWt − 1
2
σ2t�

For the Heston (1993) model, which has the risk-neutral dynamics specified
in (34) or equivalently (35), the associated exponential martingale that defines
the measure change from P and Q becomes

(46)
dQ

dP

∣∣∣∣
t

= exp
(
−γσWTt −

1
2
γ2σ2Tt − γvσvW

v
Tt −

1
2
γ2
vσ

2
vTt

)
�

The cumulant exponent of the return innovation σWt under measure P be-
comes ϕP

σW (s) = ϕQ

σW (s + γ + γvσvρ/σ) − ϕQ

σW (γ + γvσvρ/σ). Hence, the
drift adjustment induced by the measure change is η = γσ2 + γvσvσρ. The
first term is induced by the pricing of the return risk W and the second term is
induced by the pricing of the part of volatility risk W v that is correlated with
the return risk. Given the stochastic time change and hence stochastic activity
rate, the risk premium over the horizon [0� t] is ηTt , and the instantaneous risk

4 To be technically correct, we should also differentiate between W P
t and W

Q
t . Under our constant

market price of risk specifications, we have: σW Q
t = σW P

t + γσ2t. To maintain notational clarity, we
use the same W notation without the superscript to represent a standard Brownian motion under all
measures as no confusion shall occur.
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premium at time t is ηvt . The statistical return dynamics becomes

(47)ln St/S0 = (r − q)t + (
γσ2 + γvσvσρ

)
Tt + σWTt −

1
2
σ2Tt �

To derive the statistical dynamics for the activity rate, we note that the
cumulant exponent of the activity rate innovation σvW

v under measure P

becomes ϕP
σvW v(s) = ϕQ

σvW v(s + γv + γσρ/σv) − ϕQ

σvW v(γv + γσρ/σv).
Hence, the measure change induces an instantaneous drift change captured
by ηv = ϕP

σvW v(1) − ϕQ

σvW v(1) = γvσ
2
v + γσσvρ, where the first term is in-

duced by the pricing of the activity rate innovation W v and the second term is
induced by the pricing of the part of return risk W that is correlated with the
activity rate. Since we apply the same time change Tt to the two sources of risks
W and W v, the actual drift adjustment over calendar time [0� t] becomes ηvTt ,
and the instantaneous adjustment is ηvvt . The statistical activity rate dynamics
becomes

(48)vt = v0 + at − κTt + ηvTt + σvW
v
Tt �

or in the form of the stochastic differential equation,

(49)dvt =
(
a− (

κ− ηv
)
vt

)
dt + σv

√
vt dW v

t �

where the measure change induces a change in the mean reversion speed from
κ under Q to κP = κ− ηv = κ− γvσ

2
v − γσσvρ under P. Estimation on stock

indexes and stock index options often find that the market price of return risk
(γ) is positive and the market price of variance risk (γv) is negative. Given
the well-documented negative correlation (ρ) between the return and variance
innovations, both sources of market prices make the activity rate more persis-
tent under the risk-neutral measure than the activity rate is under the statistical
measure: κ < κP.5

For the pure jump Lévy process example as in (36), the measure change
from P to Q is defined by the exponential martingale,

(50)
dQ

dP

∣∣∣∣
t

= exp
(−γJt − ϕJ(−γ)t

)
�

The Lévy density under the two measures are linked by πP(x) = eγxπQ(x). If
the Lévy density under Q is given by Eq. (12), its corresponding Lévy density
under P becomes

(51)πP(x) =
{
λ exp(−(β+ − γ)x)x−α−1� x > 0�
λ exp(−(β− + γ)|x|)|x|−α−1� x < 0�

5 Since the constant part of drift remains the same as a, the long-run mean of the activity rate changes
from a/κ under Q to a/(κ−ηv) under P. The smaller mean reversion under Q implies a higher long-run
mean.
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Therefore, the Lévy density is still controlled by a dampened power law un-
der the statistical measure P, only with the exponential dampening coefficients
changed from (β+� β−) under Q to βP+ = β+ − γ and βP− = β− + γ un-
der P. The dampening coefficients should be nonnegative under both mea-
sures. This condition limits the range of values that the market price of
risk γ can take. Given the risk-neutral dampening coefficients (β+� β−), we
need γ ∈ [−β−� β+]. Given the statistical coefficients (βP+� βP−), we need
γ ∈ [−βP+� βP−].

Wu (2006) and Bakshi and Wu (2005) allow the downside and upside jumps
to have different market prices (γ+� γ−). In this case, we can directly specify
the dampening coefficients under the two measures (β+� β−) and (βP+� βP−) as
free parameters with positivity constraints. Then, the market prices of positive
and negative jump risks can be derived as γ+ = β+ − βP+ and γ− = βP− − β−.
By estimating this pure jump Lévy model to S&P 500 index time-series returns
and option prices, Wu finds that there is zero dampening on downside jumps
under the risk-neutral measure (β− = 0). Thus, the market price of downside
jump risk reaches its upper limit at γ− = βP−. This extremely high market price
of downside risk is needed to capture the much higher prices for out-of-the-
money put options than for the corresponding out-of-the-money call options
on the index and the corresponding implied volatility smirk at both short and
long maturities.

Given the measure change defined in (50), the cumulant exponent under
measure P is linked to the cumulant exponent under measure Q by ϕP(s) =
ϕQ(s + γ)− ϕQ(γ). The instantaneous expected excess return is given by η =
ϕP
J (1) − ϕQ

J (1) = ϕQ

J (1 + γ) − ϕQ

J (γ) − ϕQ

J (1). It is obvious that any term
in the cumulant exponent ϕQ

J (s) that is linear in s does not contribute to the
expected excess return η. Hence, the truncation-induced linear term sC(h), or
the choice of the truncation function h(x), does not affect the computation of
the expected excess return η.

Under the jump specification in (12) and when α �= 0 and α �= 1, the instan-
taneous expected excess return is:

η = Γ (−α)λ[((β+ − γ)− 1
)α − (β+ − γ)α + (

(β− + γ)+ 1
)α

(52)
− (β− + γ)α

] − Γ (−α)λ[(β+ − 1)α − βα+ + (β− + 1)α − βα−
]
�

where the first line is the cumulant exponent under measure P evaluated at
s = 1 and the second line is the cumulant exponent under measure Q evalu-
ated at s = 1, with the term C(h) in both cumulant exponents dropping out.
Nevertheless, sometimes the measure change itself can induce an additional
linear term that contributes to the expected excess return. Hence, it is safer to
always evaluate η according to the equation η = ϕQ

J (1 + γ)−ϕQ

J (γ)−ϕQ

J (1).
If we apply random time changes to the Lévy jump process and if the under-

lying activity rate risk is not correlated with the Lévy jump risk, we can simply
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replace ηt with ηTt as the excess return over time period [0� t]. If the risk-
neutral activity rate follows a square root process, the statistical dynamics for
the activity rate can be derived analogous to (49) with ρ = 0 due to the orthog-
onality between the jump innovation in return and the diffusion innovation in
the activity rate.

4.3 More flexible market price of risk specifications

Under the exponential martingale specification embedded in the pricing
kernel in (42), return and volatility risks are both captured by a vector of
time-changed Lévy processes, (Xk

T k
t
�Xkv

T k
t
)Kk=1 and the market prices on these

risks, (γk� γkv)Kk=1 are assumed to be constant. The specification is parsimo-
nious, under which the return (and activity rate) dynamics often stay within
the same class under the two measures P and Q. However, since tractability
requirement mainly comes from option pricing due to the associated expecta-
tion operation under the risk-neutral measure, a more flexible market price of
risk specification poses little problems if we start the modeling with a tractable
risk-neutral dynamics. Complex market price of risk specifications only lead to
complex statistical dynamics, which are irrelevant for option pricing. The com-
plication does affect the derivation of the likelihood functions for time-series
estimation. Yet, when the return series can be sampled frequently, an Euler
approximation of the statistical dynamics often works well for estimation and
it avoids the complication of taking expectations under the statistical measure
for the conditional density derivation. Hence, we can specify arbitrarily com-
plex market price of risks without incurring much difficulty for asset pricing.
Beside the usual technical conditions that a pricing kernel needs to satisfy, the
only practical constraints for the market price of risk specification come from
reasonability and identification considerations. Even if a specification is math-
ematically allowed, we may discard it if it does not make economic sense and
does not represent common investor behavior. Furthermore, a more flexible
specification on the market price of risk gives us more degrees of freedom,
but it can also cause difficulties in identification. Hence, it is always prudent to
start with a parsimonious assumption on the market price of risk and consider
extension only when the data ask for it.

Take the Black–Scholes model as a simple example, where the stock re-
turn under the risk-neutral measure Q is normally distributed with constant
volatility σ as described in (29). Now we consider a flexible, but not necessarily
reasonable, market price of risk specification that defines the measure change
from P to Q as

(53)

dQ

dP

∣∣∣∣
t

= exp
(
−(
γ0 + γ1Zt + γ2Z

2
t + γ3Z

3
t

)
σWt

− 1
2
(
γ0 + γ1Zt + γ2Z

2
t + γ3Z

3
t

)2
σ2t

)
�
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where the market price of risk is given by a polynomial function of Zt , γ =
γ0 + γ1Zt + γ2Z

2
t + γ3Z

3
t with Zt being some state variable whose dynamics is

left unspecified. The order of three is purely arbitrary and for illustration only.
Under this specification, the instantaneous expected excess return at time t is
ηt = (γ0 + γ1Zt + γ2Z

2
t + γ3Z

3
t )σ

2, and the P-dynamics of the security price
becomes

(54)dSt/St =
(
r − q+ (

γ0 + γ1Zt + γ2Z
2
t + γ3Z

3
t

)
σ2) dt + σ dWt�

Many empirical studies identify dividend yield, default spread, interest rate,
and lagged return as variables that can predict expected excess returns. If the
evidence is robust, we can use them as the state variable Zt , which can either
be a scalar or a vector.

Regardless of the complexity of the statistical dynamics, option pricing
still follows the Black–Scholes formula. The return distribution under the
statistical measure P depends on the dynamics of Zt . Nevertheless, with an
Euler approximation, we can still assume that the conditional return distri-
bution over a short time interval [t�+�t] is normally distributed, with mean
(r − q + ηt − 1

2σ
2)�t and variance σ2�t, and then construct the conditional

likelihood function of the return accordingly.
Consider another example where the activity rate follows a square-root dy-

namics under the risk-neutral measure,

(55)dvt = (a− κvt) dt + σv
√
vt dW v

t �

For simplicity, we assume that the return Lévy innovation is not correlated
with the Brownian motion W v

t in the activity rate process. As shown in a later
section, the affine structure of the activity rate dynamics under the risk-neutral
measure makes option pricing tractable. The previous section assumes a con-
stant market price γv on σv

√
vt dW v

t ,6 which induces a drift change of γvσ2
v vt .

Hence, it amounts to change the mean-reversion coefficient from κ to κ−γvσ2
v

under P. Now we consider a more general specification,

(56)γvt = γ0/vt + γ1 + γ2vt + · · · + γkv
k−1
t �

for any order k. The induced drift change becomes: γ0σ
2
v +γ1σ

2
v vt +γ2σ

2
v v

2
t +

· · · + γkσ
2
v v

k
t . Thus, the drift of the activity rate process is no longer affine un-

der the statistical measure, but the complication does not affect option pricing
and we can resort to Euler approximation for the likelihood construction.

Nevertheless, the specification in (56) is not completely innocuous. When
vt approaches zero, its risk (innovation) σv

√
vt dW v

t also approaches zero, yet
the risk premium does not approach zero, but approaches a non-zero con-
stant γ0σv. A riskless security cannot earn a non-zero risk premium. Hence,

6 The literature often regards dW v
t instead of σv

√
vt dW v

t as the risk. Then, our specification generates
“proportional market price of risk” γvσv

√
vt on W v

t , a language more commonly used in the literature.
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the specification violates the no-arbitrage condition if the activity rate can stay
at zero. Recently, Cheridito et al. (2003) and Pan and Singleton (2005) apply
a restricted version of (56) with γk = 0 for k � 2. Then, the risk premium is
affine in vt and the activity rate dynamics remain affine under the statistical
measure. To guarantee no-arbitrage, they add further technical conditions on
the statistical dynamics so that zero is not an absorbing barrier, but a reflecting
barrier of vt . The technical condition guarantees no arbitrage. Nevertheless,
the specification with γ0 strictly nonzero still implies that investors charge a
risk premium no smaller than γ0σ

2
v no matter how small the risk becomes.

A flexible market rice of risk specification does not hinder option pricing as
long as we start with the risk-neutral dynamics, but it remains important to ap-
ply our economic sense and the rule of parsimony and discipline in specifying
them.

In the fixed income literature, an enormous amount of studies exploit vari-
ous forms of the expectation hypothesis to predict future exchange rate move-
ments using current interest rate differentials between the two economies, and
predict short-term interest rate movements with the current term structure in-
formation. Several recent studies explore whether affine models can explain
the regression slope coefficients.7 Affine models ask that bond yields of all
maturities are affine functions of a set of state variable. This cross-sectional
relation has bearings on the risk-neutral dynamics: The risk-neutral drift and
variance of the state vector are both affine functions of the state vector. How-
ever, it has no direct bearings on the statistical dynamics, nor on the expec-
tation hypothesis. The above studies all require that the statistical drift of the
state vector be also affine. This self-imposed requirement limits the market
price of risk specification to an affine form γ(Xt) = a + bXt when the state
variable has a constant diffusion, and of the form γ(Xt) = a/Xt + b when the
state variable follows a square root process.

5 Option pricing under time-changed Lévy processes

To price options when the underlying asset return is driven by Lévy processes
with stochastic time changes, we first derive the generalized Fourier transform
of the asset return under the risk-neutral measure and then use Fourier inver-
sion methods to compute option prices numerically.

5.1 Deriving the Fourier transform

Carr and Wu (2004) propose a theorem that significantly enhances the
tractability of option pricing under time-changed Lévy processes. They convert

7 Examples include Backus et al. (2001a), Duffee (2002), Dai and Singleton (2002), and Roberds and
Whiteman (1999) for expectation hypotheses on the term structure in a single economy, and Backus et
al. (2001b) for international term structure and currency pricing.
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the problem of finding the Fourier transform of a time-changed Lévy process
into the problem of finding the Laplace transform of the random time under a
new complex-valued measure,

(57)φY(u) ≡ EQ
[
eiuXTt

] = EM
[
e−ψx(u)Tt

]
�

where ψx(u) denotes the characteristic exponent of the underlying Lévy
process Xt , and the second expectation is under a new measure M, defined
by the following complex-valued exponential martingale:

(58)
dM

dQ

∣∣∣∣
t

= exp
(
iuXTt + Ttψx(u)

)
�

When the activity rate vt underlying the time change is independent of the
Lévy innovation Xt , the measure change is not necessary and the result in (57)
can be obtained via the law of iterated expectations. When the two processes
are correlated, the proposed measure change simplifies the calculation by ab-
sorbing the effect of correlation into the new measure.

According to (57), tractable Fourier transforms for the time-changed Lévy
process, φY(u), can be obtained if we can obtain tractable forms for the char-
acteristic exponent of the Lévy process, ψx(u), and the Laplace transform of
the time change. The three most widely used Lévy jump specifications include
the Merton (1976) compound Poisson models with normally distributed jump
sizes, the dampened power law specification and its various special cases, and
the normal inverse gamma model and its extensions. All these models have
analytical solutions for the characteristic exponents.

To solve for the Laplace transform, it is important to note that if we write
the time change Tt in terms of the activity rate Tt =

∫ t
0 v(s−) ds, the same form

of expectation appears in the bond pricing literature with the analogous term
for the instantaneous activity rate being the instantaneous interest rate. Fur-
thermore, since both nominal interest rates and the activity rate are required
to be positive, they can be modeled using similar dynamics. Therefore, any
interest rate dynamics that generate tractable bond pricing formulas can be
borrowed to model the activity rate dynamics under measure M with tractable
solutions to the Laplace transform in Eq. (57). In particular, the affine class of
Duffie and Kan (1996), Duffie et al. (2000, 2003a) and the quadratic class of
Leippold and Wu (2002) for interest rates can be borrowed to model the activ-
ity rate dynamics with tractable exponential affine and exponential quadratic
solutions for the Laplace transform, respectively. Carr and Wu (2004) discuss
these models in their general forms. Of all these specifications, the most popu-
lar is the square root process used in Heston (1993) and its various extensions
to multiple factors and to include positive jumps. The 3/2 activity rate dynam-
ics also generate tractable solutions for the Laplace transform in (57), but the
solution contains a confluent hypergeometric function M(α�β; z), where the
two coefficients (α�β) are complex valued and are functions of the character-
istic coefficient u, and the argument z is a function of the activity rate level
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and option maturity. It remains a numerical challenge to compute this func-
tion efficiently over the wide range of complex-valued coefficients necessary
for option pricing.

I illustrate the valuation procedure using the simple examples discussed in
the previous sections, starting with the Black–Scholes model with the risk-
neutral return dynamics given in (29):

(59)

φs(u) ≡ EQ
[
eiu ln St/S0

] = eiu(r−q)tEQ
[
eiu(σWt− 1

2σ
2t)

]
= eiu(r−q)t−

1
2 (iu+u2)σ2t �

Given the constant interest rate and dividend yield assumption, we can factor
them out before taking the expectation. In this case, the concavity adjust-
ment term iu 1

2σ
2t can also be factored out. Nevertheless, with time changes

in mind, I leave it inside the expectation and write ψx(u) = 1
2(iu + u2)σ2

as the characteristic exponent of the concavity-adjusted return innovation term:
Xt = σW − 1

2σ
2t.

The Black–Scholes option pricing formula is well known, deriving the gen-
eralized Fourier transform under the Black–Scholes model merely serves as
a benchmark for more complicated examples. The first extension is to apply
random time changes to the Black–Scholes specification,

(60)ln St/S0 = (r − q)t + σWTt −
1
2
σ2Tt �

Here, we can apply Carr and Wu’s theorem to find the generalized Fourier
transform:

(61)φs(u) = eiu(r−q)tEQ
[
eiu(σWTt− 1

2σ
2Tt )] = eiu(r−q)tEM

[
e−ψx(u)Tt

]
�

where ψx(u) = 1
2(iu + u2)σ2 is the same as for the concavity-adjusted return

innovation for the Black–Scholes model. The construction of the new measure
M and the Laplace transform under this new measure depend on the specifi-
cation of the activity rate dynamics.

Take the Heston (1993) model as an example, where the activity rate dy-
namics under measure Q is, in stochastic differential equation form,

(62)dvt = κ(1 − vt) dt + σv
√
vt dW v

t � ρ dt = E[dWt dW v
t ]�

The measure change is defined by

(63)
dM

dQ

∣∣∣∣
t

= exp
(
iu

(
σWTt −

1
2
σ2Tt

)
+ Ttψx(u)

)
�

The probabilistically equivalent writing under more traditional notation is

(64)
dM

dQ

∣∣∣∣
t

= exp

(
iuσ

t∫
0

√
vs dWs + 1

2
u2σ2

t∫
0

vs ds

)
�
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where I plug inψx(u) and cancel out the concavity-adjustment term. This mea-
sure change induces a drift change in the activity rate dynamics given by the
covariance term8:

(66)
μ(v)M dt − μ(v)Q dt = 〈

iuσ
√
vt dWt� σv

√
vt dW v

t

〉 = iuσσvvtρ dt�

Hence, under measure M, the activity rate dynamics become

(67)dvt =
(
κ− κMvt

)
dt + σv

√
vt dW v

t � κM = κ− iuσσvρ�

Both the drift and the instantaneous variance are affine in vt under measure
M. The Laplace transform in (61) is exponential affine in the current level of
the activity rate:

(68)φs(u) = eiu(r−q)tEM
[
e−ψx(u)Tt

] = eiu(r−q)t−b(t)v0−c(t)�
with the coefficients b(t) and c(t) given by

b(t) = 2ψx(u)(1 − e−ξt)
2ξ − (ξ − κM)(1 − e−ξt)

�

(69)c(t) = κ

σ2
v

[
2 ln

(
1 − ξ − κM

2ξ
(
1 − e−ξt

)) + (
ξ − κM

)
t

]
�

with ξ =
√
(κM)2 + 2σ2

vψx(u).
Suppose we further allow the activity rate to revert to a stochastic central

tendency factor in generating a two-factor activity rate dynamics under mea-
sure Q:

(70)dvt = κ(mt − vt) dt + σv
√
vt dW v

t �

dmt = κm(1 −mt) dt + σm
√
mt dW m

t �

with W m
t being an independent Brownian motion. The dynamics under mea-

sure M becomes

dvt =
(
κmt − κMvt

)
dt + σv

√
vt dW v

t � κM = κ− iuσσvρ�

(71)dmt = κm(1 −mt) dt + σm
√
mt dW m

t �

Writing the dynamics in a matrix notation with Vt ≡ [vt�mt]�, we have

(72)dVt =
(
a− κM

V Vt
)

dt +
√
ΣVtdW V

t �

8 In the integral form, the covariance is

(65)

t∫
0

(
μ(vs)

M − μ(vs)
Q
)

ds = 〈iuσ dWTt � σv dW v
Tt 〉 = iuσσvvtρTt �
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with

a =
[

0
κm

]
� κM

V =
[
κM −κ
0 κm

]
� Σ =

[
σ2
v 0

0 σ2
m

]
�

Given the two-factor affine structure for the activity rate dynamics, the Laplace
transform is exponential affine in the current level of the two factors V0 =
[v0�m0]�:

(73)φs(u) = eiu(r−q)t−b(t)�V0−c(t)�
where the coefficients b(t) and c(t) can be solved from a set of ordinary differ-
ential equations:

b′(t) = ψx(u)bV − (
κM

)�
b(t)− 1

2
Σ
[
b(t)� b(t)

]
�

(74)c′(t) = a�b(t)�
starting at b(0) = 0 and c(0) = 0, with bV = [1� 0]� denoting the instan-
taneous loading of the activity rate on the two factors and � denoting the
element-by-element product operation. The ordinary differential equations
can be solved using standard numerical routines, such as an Euler approxi-
mation or the fourth-order Runge–Kutta method.

When the return innovation is not driven by a diffusion, but by a pure jump
Lévy process such as the one governed by the dampened power law in (12), we
simply need to replace the characteristic exponent of the concavity-adjusted
diffusion component ψx(u) = 1

2(iu + u2)σ2 by that of the concavity-adjusted
jump component. With α �= 0 and α �= 1, we have:

ψx(u) = −Γ (−α)λ[(β+ − iu)α − βα+ + (β− + iu)α − βα−
]

(75)+ iuΓ (−α)λ[(β+ − 1)α − βα+ + (β− + 1)α − βα−
]
�

We can also include both a diffusion and a jump component, in which case
the characteristic exponent becomes the sum of the two. Most importantly, we
can treat the specification of the Lévy process and the time change separately,
and hence derive the characteristic exponent ψx(u) and the Laplace transform
separately. Therefore, we can combine any tractable Lévy specifications with
any tractable activity rate dynamics, and the generalized Fourier transform for
the resultant return dynamics is tractable.

5.2 Computing the Fourier inversions

With tractable solutions to the generalized Fourier transform of the return
distribution, European option prices can be computed by inverting the Fourier
transform. The literature considers two broad ways of Fourier inversions. The
first approach treat options analogous to a cumulative distribution function.
Standard statistics books show how to invert the characteristic function to ob-
tain a cumulative function. The inversion formula for option prices can be
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analogously proved. The second approach treats the option price analogous
to a probability density function. In this case, for the transform to be well-
defined, the characteristic coefficient u in (57) needs to contain an imaginary
component, the domain of which depends on the payoff structure. Based on
this analogy, option prices across the whole spectrum of strikes can be obtained
via fast Fourier transform (FFT).

For both cases, the Fourier transforms for a wide variety of European pay-
offs can be obtained. Their values can then be obtained by inverting the corre-
sponding transforms. I use a European call option as an example to illustrate
the transform methods. Indeed, in most situations, a call option value is all we
need because most European payoff functions can be replicated by a portfolio
of European call options across different strikes but at the same maturity.

The terminal payoff of a European call option at maturity t and strike K is,

(76)Πt = (St −K)1St�K�

Since we have derived the Fourier transform of the asset returns, it is conve-
nient to represent the payoff in log return terms,

(77)Πt = S0
(
eln St/S0 − elnK/S0

)
1S�K = S0

(
est − ek

)
1st�k�

with st = ln St/S0 and k = lnK/S0. The time-0 value of the call option is

(78)C(K� t) = S0e
−rtEQ

0

[(
est − ek

)
1st�k

]
�

Let C(k) = C(K� t)/S0 denote the call option value in percentages of the
current spot price level as a function of moneyness k and maturity t. In what
follows, I focus on computing the relative call value C(k). We can simply mul-
tiply it by the spot price to obtain the absolute call option value C(K� t).9 For
notational clarity, we henceforth drop the maturity argument when no confu-
sion shall occur.

5.2.1 The cumulative distribution analogy
We rewrite the call option value in terms of x = −k,

(79)C(x) = C(k = −x) = e−rtEQ

0

[(
est − e−x

)
1−st�x

]
�

Treating the call option value C(x) analogous to a cumulative distribution, we
define its Fourier transform as

(80)χc(z) ≡
∞∫

−∞
eizk dC(x)� z ∈ R�

9 Some broker dealers provide the relative percentage quoteC(k) instead of the absolute quoteC(K� t)
to achieve quote stability by excluding the impact of spot price fluctuation.
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We can derive this transform in terms of the Fourier transform of the return
φs(u):

χc(z) = e−rtEQ

[ ∞∫
−∞

eizx
(
esδ−s�x − e−xδ−s�x + e−x1−s�x

)
dx

]

= e−rtEQ

[
e(1−iz)s − e(1−iz)s +

∞∫
−s

e(iz−1)x dx

]

(81)= e−rtEQ

[
e(1−iz)s

(1 − iz)

]
= e−rt φs(−i− z)

1 − iz
�

which is solved by first applying Fubini’s theorem and then applying the result
on the Fourier transform of a Dirac function δ−s�x. Thus, tractable forms for
the return transform φs(u) also means tractable forms for the option trans-
form χc(z).

Given this transform, the option value can be computed via the following
Fourier inversion formula:

(82)C(x) = 1
2
χc(0)+ 1

2π

∞∫
0

eizxχc(−z)− e−izxχc(z)
iz

dz�

The inversion formula and its proof are very much analogous to the inversion
formula for a cumulative distribution (Alan and Ord, 1987). The only differ-
ence is at the boundary: For a cumulative distribution, the transform evaluated
at z = 0 is one; for the option transform, it is χc(0) = e−rtφs(−i) = e−qt .
Given C(x), we obtain C(k) = C(k = −x). We can also directly define the
inversion formula as

(83)C(k) = 1
2
χc(0)+ 1

2π

∞∫
0

e−izkχc(−z)− eizkχc(z)

iz
dz�

(84)

= e−rt
[

1
2
φs(−i)− 1

2π

∞∫
0

(
e−izkφs(z − i)

z2 − iz

+ eizk
φs(−z − i)

z2 + iz

)
dz

]
�

To compute the option value from the transform, the inversion formula in
(82) asks for a numerical integration of an oscillating function. Fortunately,
being a weighted average of cosines, the integrand exhibits much less oscilla-
tory behavior than the transform ψ(u) itself. The integral can numerically be
evaluated using quadrature methods (Singleton, 2001).
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Duffie et al. (2000) and Leippold and Wu (2002) discuss the application
of this approach for the valuation of general European-type state-contingent
claims in the context of affine and quadratic models, respectively. In earlier
works, e.g., Chen and Scott (1992), Heston (1993), Bates (1996), and Bakshi et
al. (1997), the call option value is often written as the portfolio of two contin-
gent claims:

C(x) = e−rtEQ
[
es

]EQ[es1−s�x]
EQ[es] − e−rte−xEQ[1−s�x]

(85)= e−qtQ1(x)− e−rte−xQ2(x)�

with Q1(x) and Q2(x) being the values of two contingent claims defined by

(86)Q1(x) = EQ[es1−s�x]
φs(−i) � Q2(x) = EQ[1−s�x]�

Q2 is simply the cumulative distribution of −s. Its transform is

χ2(z) =
∞∫

−∞
eizx dQ2(x) = EQ

[ ∞∫
−∞

eizxδ−s�x dx

]

(87)= EQ
[
e−izs

] = φs(−z)�
The transform of Q1(x) is

χ1(z) = 1
φs(−i)EQ

[ ∞∫
−∞

eizxesδ−s�x dx

]
= 1
φs(−i)EQ

[
e(1−iz)s

]
(88)= φs(−z − i)

φs(−i) �

Applying the inversion formula in (83), we have the values for the two contin-
gent claims as

(89)Q1(k) = 1
2
+ 1

2πφs(−i)
∞∫

0

e−izkφs(z − i)− eizkφ(−z − i)

iz
dz�

(90)Q2(k) = 1
2
+ 1

2π

∞∫
0

e−izkφs(z)− eizkφs(−z)
iz

dz�

Nevertheless, doing one numerical integration according to my proposed
transform in (84) is more efficient than doing two numerical integrations ac-
cording to (89) and (90).
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5.2.2 The probability density analogy
The second approach treats the option price analogous to a probability den-

sity and defines the Fourier transform of the option value as

(91)χp(z) ≡
∞∫

−∞
eizkC(k) dk� z = zr − izi� zr ∈ R� zi ∈ D ⊆ R+�

The transform coefficient z is extended to the complex plane to guarantee the
finiteness of the transform. For the call option value, the transform is,

χp(z) =
∞∫

−∞
eizkEQ

[
e−rt

(
es − ek

)
1s�k

]
dk

= e−rtEQ

[ ∞∫
−∞

eizk
(
es − ek

)
1s�k dk

]

= e−rtEQ

[ s∫
−∞

eizk
(
es − ek

)
dk

]

(92)= e−rtEQ

[(
eizkes

iz
− e(iz+1)k

iz + 1

)∣∣∣∣k=s
k=−∞

]
�

For eizk = eizrk+zik to be convergent (to zero) at k = −∞, we need zi > 0,
under which e(iz+1)k also converges to zero.10 With zi > 0, the transform for
the call option value becomes

(93)χp(z) = e−rtEQ

[
e(1+iz)s

iz
− e(iz+1)s

iz + 1

]
= e−rt φs(z − i)

(iz)(iz + 1)
�

For some return distributions, the return transform φs(z − i) = EQ[e(1+iz)s]
is well-defined only when zi is in a subset of the real line. In Eq. (91), we use
D ∈ R+ to denote the subset that both guarantees the convergence of eizk and
e(iz+1)k at k = −∞, and assures the finiteness of the transform φs(z − i).

Given a finite transform χp(z) for the call option, the option value can be
computed from the following Fourier inversion formula:

(94)

C(k) = 1
2

−izi+∞∫
−izi−∞

e−izkχp(z) dz = e−zik

π

∞∫
0

e−izrkχp(zr − izi) dzr�

10 For other types of contingent claims, the transform will take different forms and the required domain
for zi that guarantees the finiteness of the transform varies accordingly.
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We can approximate the integral using summations:

(95)C(k) ≈ Ĉ(k) = e−zik

π

N−1∑
n=0

e−izr(n)kχp
(
zr(n)− izi

)
�zr�

where zr(n) are the nodes of zr and �zr is the spacing between nodes. The
fast Fourier transform (FFT) is an efficient algorithm for computing the dis-
crete Fourier coefficients. The discrete Fourier transform is a mapping of f =
(f0� � � � � fN−1)

� on the vector of Fourier coefficients d = (d0� � � � � dN−1)
�,

such that

(96)dj =
N−1∑
n=0

fne
−jn 2π

N i� j = 0� 1� � � � �N − 1�

We use d = D(f) to denote the fast Fourier transform, which allows the ef-
ficient calculation of d if N is an even number, say N = 2m, m ∈ N. The
algorithm reduces the number of multiplications in the required N summa-
tions from an order of 22m to that of m2m−1, a very considerable reduction.
By a suitable choice of �zr and a discretization scheme for k, we can cast the
approximation in the form of (96) to take advantage of the computational effi-
ciency of the FFT.

Following Carr and Madan (1999), we set zr(n) = ηn and kj = −b+λj, and
require ηλ = 2π/N . Then, we can cast the option valuation approximation in
(95) in the form of the FFT summation in (96):

(97)Ĉ(kj) =
N−1∑
n=0

fne
−jn 2π

N i = Dj(f)� j = 0� 1� � � � �N − 1�

with

(98)fn = 1
π
e−zikj+ibηnηχp(ηn− izi)�

Under such a discretization scheme, the effective upper limit for the integra-
tion is Nη, with a spacing of η. The range of log strike level is from −b to
Nλ − b, with a uniform spacing of λ in the log strike. To put at-the-money
(k = 0) option at the middle of the strike range, we can set b = Nλ/2.

The restriction of ηλ = 2π/N reveals the trade-off between a fine grid
in log strike and a fine grid in summation. With N = 212, Carr and Madan
(1999) set η = 0�25 to price stock options. To price currency and interest-rate
options, I often set η = 1 to generate a finer spacing of strikes and hence more
option values within the relevant range. The choice of the imaginary part of the
transform coefficient zi also affects the numerical accuracy of the fast Fourier
inversion. Lee (2004) provides detailed analysis on the error bounds and on
the choice of the imaginary part of the transform coefficient zi.
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5.2.3 Fractional FFT
Recently, Chourdakis (2005) adopts the fractional Fourier transform (FRFT)

method of Bailey and Swartztrauber (1991) in inverting the option transform
χp(z). The method can efficiently compute

(99)dj =
N−1∑
n=0

fne
−jnαi� j = 0� 1� � � � �N − 1�

for any value of the parameter α. The standard FFT can be seen as a special
case for α = 2π/N . Therefore, we can use the FRFT method to compute

(100)Ĉ(k� t) =
N−1∑
n=0

fne
−jnηλi� j = 0� 1� � � � �N − 1�

without the trade-off between the summation grid η and the strike spacing λ.
We use d = D(f� α) to denote the FRFT operation, withD(f) = D(f� 2π/N)

being the standard FFT as a special case. An N-point FRFT can be imple-
mented by invoking three 2N-point FFT procedures. Define the following
2N-point vectors:

(101)y =
((
fne

iπn2α
)N−1

n=0
� (0)N−1

n=0

)
�

(102)z =
((
eiπn

2α
)N−1

n=0
�
(
eiπ(N−n)2α

)N−1

n=0

)
�

The FRFT is given by

(103)Dk(h� α) =
(
eiπk

2α
)N−1

k=0
�D−1

k

(
Dj(y)�Dj(z)

)
�

where D−1
k (·) denotes the inverse FFT operation and � denotes element-by-

element vector multiplication. Due to the multiple application of the FFT
operations, Chourdakis (2005) shows that an N-point FRFT procedure de-
mands a similar number of elementary operations as a 4N-point FFT proce-
dure. However, given the free choices on λ and η, FRFT can be applied more
efficiently. Using a smaller N with FRFT can achieve the same option pricing
accuracy as using a much larger N with FFT. Numerical analysis shows that
with similar computational time, the FRFT method can often achieve better
computational accuracy than the FFT method. The accuracy improvement is
larger when we have a better understanding of the model and model parame-
ters so that we can set the boundaries more tightly. Nevertheless, the analysis
also reveals a few cases of complete breakdown when the model takes extreme
parameters and when the bounds are set too tight. Hence, the more freedom
also asks for more discretion and caution in applying this method to generate
robust results in all situations. This concern becomes especially important for
model estimation, during which the trial model parameters can vary greatly.
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6 Estimating Lévy processes with and without time changes

Model estimation can be classified into three categories: (1) estimating the
statistical dynamics to capture the behavior of the time-series returns, (2) es-
timating the risk-neutral dynamics to match the option price behavior, and
(3) estimating the statistical and risk-neutral dynamics jointly using both time-
series returns and option prices and learning the behavior of market prices of
various sources of risks.

6.1 Estimating statistical dynamic using time-series returns

Without time change, a Lévy process implies that the security returns are
i.i.d. Thus, we can regard each day’s return as random draws from the same
distribution. This property makes the maximum likelihood method easy to im-
plement. For the Lévy processes that I have discussed in this paper, only a few
of them have analytical density functions, but virtually all of them have an-
alytical characteristic functions. We can use fast Fourier transform (FFT) to
numerically convert the characteristic function into density functions. Carr et
al. (2002) use this method to estimate the CGMY model to stock returns. To
implement this method, we normally need to use a large number N for the
FFT so that we obtain numerical density values at a fine grid of realizations.
Then, we can map the actual data to the grids by grouping the actual realiza-
tions into different bins that match the grids of the FFT and assign the same
likelihood for realizations within the same bin. Alternatively, we can simply
interpolate the density values from the FFT to match the actual realizations.
Furthermore, to improve numerical stability and to generate enough points in
the relevant FFT range, it is often helpful to standardize the return series (Wu,
2006).

The estimation becomes more involved when the model contains random
time changes. Since the activity rates are not observable, some filtering tech-
nique is often necessary to determine the current level of the activity rates.
Eraker et al. (2003) and Li et al. (2007) propose to estimate the dynamics using
a Bayesian approach involving Markov Chain Monte Carlo (MCMC) simula-
tion. They use MCMC to Bayesian update the distribution of both the state
variables and model parameters. Javaheri (2005) propose a maximum likeli-
hood method in estimating time-changed Lévy processes. Under this method,
the distribution of the activity rates are predicted and updated according to
Bayesian rules and using Markov Chain Monte Carlo simulation. Then, the
model parameters are estimated by maximizing the likelihood of the time-
series returns. Kretschmer and Pigorsch (2004) propose to use the efficient
method of moments (EMM) of Gallant and Tauchen (1996).

6.2 Estimating risk-neutral dynamic to fit option prices

If the objective is to estimate a Lévy process for the risk-neutral return
dynamics using option prices, nonlinear least square or some variant of it is
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the most direct method to use. Since a Lévy process implies i.i.d. returns, the
conditional return distribution over a fixed time horizon remains the same at
different dates. Accordingly, the option price behavior across strikes and time-
to-maturities, when scaled by the spot price, should remain the same across
the different dates. In particular, the Black–Scholes implied volatility surface
across moneyness and time-to-maturity should remain the same across differ-
ent days. In reality, however, the option price behavior does change over time.
For example, the implied volatility levels vary over time. The shape of the im-
plied volatility smile also varies over time. A Lévy model without time change
cannot capture these time variations. A common practice in the industry is to
re-estimate the model daily, that is, to use different model parameters to match
the different implied volatility levels and shapes at different days. This method
is convenient and is also used in early academic works, e.g., Bakshi et al. (1997)
and Carr and Wu (2003a).

In fact, even for one day, most Lévy processes have difficulties fitting the im-
plied volatility surface across different maturities. The implied volatility smile
observed from the market often persists as maturity increases, implying that
the risk-neutral return distribution remains highly non-normal at long hori-
zons. Yet, since Lévy models imply i.i.d. returns, if the return variance is finite
under the model specification, the classic central limit theorem dictates that
the skewness of the return distribution declines like the reciprocal of the square
root of the horizon and the excess kurtosis declines like the reciprocal of hori-
zon. Hence, return non-normality declines rapidly with increasing maturities.
For these models, calibration is often forced to be done at each maturity. A dif-
ferent set of model parameters are used to fit the implied volatility smile at
different maturities.

Carr and Wu (2003a) uses a maximum negatively skewed α-stable process
to model the stock index return. Although the model-implied return distribu-
tion is i.i.d., the model-implied return variance is infinite and hence the central
limit theorem does not apply. Thus, the model is capable of generating persis-
tent implied volatility smiles across maturities. Wu (2006) use the dampened
power law to model the index return innovation. With exponential dampening
under the statistical measure, return variance is finite and the central limit the-
orem applies. The statistical return distribution is non-normal at high sampling
frequencies but converges to normal rapidly with time aggregation. However,
by applying a measure change using an exponential martingale, the dampen-
ing on the left tail can be made to disappear under the risk-neutral measure so
that the return variance becomes infinite under the risk-neutral measure and
the risk-neutral return non-normality no longer disappears with increasing op-
tion maturity.

Applying stochastic time change to Lévy processes not only generates time
variation in the return distribution, but also generates cross-sectional option
price behaviors that are more consistent with market observations. For ex-
ample, a persistent activity rate process can generate non-normality out of a
normal return innovation and can slow down the convergence of a non-normal
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return distribution to normality. For daily calibration, the unobservable activ-
ity rates are treated the same as model parameters. They are all used as free
inputs to make the model values fit market observations.

A dynamically consistent estimation is to keep the model parameters con-
stant and only allow the activity rates to vary over time. Huang and Wu (2004)
employ a nested nonlinear least square procedure for this purpose. Given para-
meter guesses, they minimize the pricing errors at each day to infer the activity
rates at that day. Then, the parameters are chosen to minimize the aggregate
pricing errors over the whole sample period. Carr and Wu (2007a) cast the
models in a state-space form and estimate the model parameters using the
maximum likelihood method. The state propagation equations are defined by
the time-series dynamics of the activity rates and the measurement equations
are defined on the option prices. Given parameter guesses, they use an ex-
tended version of the Kalman filter, the unscented Kalman filter (Wan and van
der Merwe, 2001), to obtain the forecasts and filtering on the conditional mean
and variance of the states and measurements. Then, they construct the like-
lihood of the option series assuming normally distributed forecasting errors.
Using this approach, they identify both the statistical and the risk-neutral dy-
namics of the activity rates, and thus the market price of the activity rate risk.
Nevertheless, by using only options data, they do not estimate the statistical
return dynamics, nor the market price of return risk.

6.3 Static and dynamic consistency in model estimation

Daily re-calibration or re-calibration at each option maturity raises the issue
of internal consistency. Option values generated from a no-arbitrage model are
internally consistent with one another and do not generate arbitrage opportu-
nities among themselves. When a model is re-calibrated at each maturity, the
option values generated at different maturities are essentially from different
models and hence the internal consistency between them is no longer guar-
anteed. When a model is re-calibrated daily, option values generated from the
model at one day are not guaranteed to be consistent with option values gener-
ated at another day. One of the potential dangers of doing daily re-calibration
is in risk management. A “fully” hedged option portfolio based on a model
assuming constant model parameters is destined to generate hedging errors if
the model parameters are altered on a daily basis.

Both the academia and practitioners appreciate the virtue of being both
cross-sectionally and dynamically consistent. Nevertheless, building a dynami-
cally consistent model that fits the market data well can be difficult. Hence, the
daily re-calibration method can be regarded as a compromise to achieve static
consistency cross-sectionally but not dynamic consistency over time. It remains
true that a hedging strategy with constant parameter assumptions is bound
to generate hedging errors when the model parameters are altered. One way
to minimize the impact of varying parameters is to consider short investment
horizons. For example, an investor that closes her position daily does not need
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to worry about the dynamic inconsistency of daily re-calibration. Within her
investment horizon of one day, the model parameters are fixed and the option
values generated from the model are internally consistent. Market makers are
often regarded as very short-term investors since they rarely hold long-term in-
ventories. Therefore, dynamic consistency may not be as an overriding concern
as it is to long-term investors. The more pressing concern for market makers is
to achieve cross-sectional consistency across quotes for different contracts at a
point in time. Furthermore, since they need to provide two-sided quotes, they
often need a model that can match the current market quotes well.

On the other hand, for a hedge fund that bets on long-term convergence, a
model that always fits the data well is not the key requirement. In fact, since
their objective is to find market mispricings, it is important that their model can
generate values that differ from the market. A good model produces pricing
errors that are zero on average and transient in nature, so that if the model
picks out a security that is over-valued, the over-valuation disappears in the
near future. However, although they have a less stringent requirement on the
model’s fitting performance, they often have a more stringent requirement for
dynamic consistency when they bet on long-term convergence. To them, it is
important to keep the model parameters fixed over time and only allow state
variables to vary, even if such a practice increases the model complexity and
sometimes also increase the pricing errors of the model.

In a dynamically consistent model, the parameters that are allowed to vary
daily should be converted into state variables, and their dynamics should be
priced when valuing a contingent claim. Stochastic time change provides an
intuitive and tractable way of turning a static model to a dynamic one. Un-
der Lévy processes with stochastic time changes, we can build tractable models
that generate reasonable pricing performance while maintaining dynamic con-
sistency. Recent developments in econometrics further enable us to estimate
these models with dynamic consistency constraints and within a reasonably
short time framework. Once estimated, updating the activity rates based on
newly arrived option quotes can be done almost instantaneously. Hence, it
causes no delays in trading or market making.

6.4 Joint estimation of statistical and risk-neutral dynamics

One of the frontiers in the academic literature is to exploit the information
in the derivatives market to infer the market prices on various sources of risks.
While a long time series can be used to estimate the statistical dynamics of
the security return, a large cross section of option prices across multiple strikes
and maturities provide important information about the risk-neutral dynamics.
The market prices of various sources of risks dictate the difference between the
return dynamics under the two measures. Hence, estimation using both time-
series and cross-sectional data can help us identify the dynamics under both
measures and the market pricing on various sources of risks.
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Pan (2002) uses the generalized methods of moments to estimate affine
jump-diffusion stochastic volatility models under both probability measures
and study the jump risk premia implicit in options. The moment conditions
are constructed using both options and time-series returns. Eraker (2004) es-
timate similar dynamics under both measures using the MCMC approach. At
each day, he uses the time-series returns and a few randomly sampled option
prices. As a result, many available options data are thrown out in his estima-
tion. Bakshi and Wu (2005) propose a maximum likelihood approach, where
the likelihood on options and on time-series returns are constructed sequen-
tially and the maximization is over the sum of the likelihoods on the two sets of
data. First, they cast the activity rate dynamics into a state-propagation equa-
tion and the option prices into measurement equations. Second, they use the
unscented Kalman filter to predict and update on the activity rates. Third, the
likelihood on the options are constructed based on the forecasting errors on
the options assuming normal forecasting errors. Fourth, they take the filtered
activity rates as given and construct the likelihood of the returns conditional
on the filtered activity rates. The conditional likelihood can be obtained using
fast Fourier inversion of the conditional characteristic function. Finally, model
parameters are chosen to maximize the sum of the likelihood of the time-series
returns and option prices. They use this estimation procedure to analyze the
variation of various sources of market prices around the Nasdaq bubble period.

7 Concluding remarks

Lévy processes with stochastic time changes have become the universal
building blocks for financial security returns. Different Lévy components can
be used to capture both continuous and discontinuous movements. Stochas-
tic time changes can be applied to randomize the intensity of these different
movements to generate stochastic time variation in volatility and higher re-
turn moments. I provide a summary on how different return behaviors can
be captured by different Lévy components and different ways of applying time
changes, under both the risk-neutral measure and the statistical measure. I also
discuss how to compute European option values under these specifications us-
ing Fourier transform methods, and how to estimate the model parameters
using time-series returns and option prices.
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Abstract

This paper is a survey of asset pricing based on risk factors that follow a Wishart
process. The general approach of pricing with Wishart risk factors is explained both
in discrete time and continuous time. The approach is illustrated by an application to
quadratic term structure, a multivariate extension of Heston model, an application to
a structural model for credit risk, and a model for credit risk that takes into account
default occurrence and loss-given-default.

1 Introduction

1.1 Factor models

Factor models are used in Finance to understand and represent the joint
determination and evolution of prices (or returns) of a large number of assets.
These assets may concern the stocks traded on a given stock exchange, the risk-
free zero-coupon bonds at all times-to-maturity, the derivatives written on the
same underlying asset, the credit derivatives corresponding to a given set of
firms, or currencies and index markets in international studies. The basic mod-
els assume that the prices (or returns) depend mainly on a rather small number
of driving variables, called factors, and focus on these underlying variables.

Factor models already have a long story in Finance, starting with the capi-
tal asset pricing model (Merton, 1973) and its multifactor extension by Sharpe
(1964), Lintner (1965). This model is generally applied to liquid stocks, and
highlights the role of the so-called market portfolio. This simple linear fac-
tor model is used for different purposes concerning stylized facts, prediction,
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hedging, or creation of new financial assets. (i) This model is able to repro-
duce the large historical (unconditional) correlation observed between stock
returns as a consequence of the common effect of the market portfolio return;
(ii) By distinguishing between the market and idiosyncratic effects, and noting
the weak serial dependence of the idiosyncratic terms, it allows to focus on
market prediction for predicting future asset prices; (iii) The distinction be-
tween market and idiosyncratic effects is also important for hedging, since the
idiosyncratic components are often diversifiable. Then, the risk on a rather di-
versified asset portfolio is driven by the risk on the market portfolio, that is,
the risk on the factor; (iv) Finally, appropriate insurance products on the vari-
ability of market portfolio have been introduced. These are derivatives such as
futures, or European calls written on market indexes.

A second generation of factor models were introduced in Finance at the
end of the eighties. These models focus on the underlying risk, generally rep-
resented by a so-called underlying stochastic volatility. Factor ARCH mod-
els (Diebold and Nerlove, 1989; Engle et al., 1990) use a factor representa-
tion to capture the endogenous periods of low (respectively high) variability
of asset returns, to robustify the prediction interval for future portfolio re-
turns, and to provide dynamic Value-at-Risk (Engle and Manganelli, 2004;
Gourieroux and Jasiak, 2005). As a byproduct, these models reproduce a large
part of the fat tails observed on historical (unconditional) return distribu-
tions. The stochastic volatility models (Hull and White, 1987; Heston, 1993;
Ball and Roma, 1994) have been introduced to get a better description of the
relationship between the prices of derivatives written on the same asset. In
particular, they are able to replicate a part of the smile and skewness effects ob-
served on the implied Black–Scholes volatility associated with derivative prices.

Loosely speaking, a factor model relates asset prices (returns) to factors
and idiosyncratic components. In a discrete-time framework, a dynamic factor
model can be written as (Gourieroux and Jasiak, 2001):

(1.1)pi�t = gi(Ft� Ft−1� � � � ;ui�t� ui�t−1� � � �)�

where i, i = 1� � � � � n, indexes the asset, pi�t denotes the asset price, Ft the
K-dimensional factor, ui�t , i = 1� � � � � n, the idiosyncratic components. The
idiosyncratic errors (u1�t � � � � � un�t) are assumed independent, identically dis-
tributed, which ensures that the cross-sectional and serial dependence effects
pass by means of the factors. The difficulty is of course to write a reliable and
tractable specification of the factor model. In particular, we have to choose the
number of factors, specify their dynamics, but also explain the relationships
between functions gi, i = 1� � � � � n, especially when the set of assets includes
several derivatives written on the same underlying product.

1.2 Observable or unobservable factors

The issue of factor observability has been addressed very early in the finan-
cial literature, when the market portfolio return was replaced by a proxy such
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as a market index return (see e.g. Roll, 1977). It is important to understand the
implications of factor observability, and to distinguish the information of the
investors and the information of the econometrician.

Assuming optimal portfolio management by investors, their information will
influence their asset demand and the asset prices at equilibrium. Financial
theory generally assumes that the factor values are known by the informed
investors up to current time t.

In contrast, it is preferable for the econometrician to assume a priori that
the factors are not observed, for at least the following three reasons:

(i) First, if we introduce observable factors such as for instance a cycle
indicator, the model is not easy to implement for prediction purposes.
Indeed, the asset prices can be predicted only after having predicted
the future value of this cycle indicator, which is a very difficult task.

(ii) Moreover, by specifying a priori the factors, there is a high risk of factor
misspecification. It is preferable to introduce unobservable factors, in
particular without any a priori interpretation as asset prices or returns
(such factors are often called exogeneous factors), to try to reconsti-
tute them from price data, and ex-post to give them an appropriate
financial or physical interpretation. This is in the spirit of from-general-
to-specific modeling approach.

(iii) Finally, unobservable factors are used in practice to replicate stylized
facts observed with a much smaller information set. The unobserved
factors in the Sharpe–Lintner specification are used to reproduce the
high unconditional correlations between asset returns, that is, the cor-
relation measured in the absence of information. The unobserved sto-
chastic volatility is introduced in pricing models to reproduce the smile
and skewness effects observed date by date, that is, with an informa-
tion set which does not take into account dynamic effects. Similarly,
unobservable factors are introduced in default intensity to reproduce
the observed unconditional default correlation, and unobservable fac-
tors are introduced in default intensity and loss-given-default (LGD)
to reproduce the unconditional dependence observed between default
probabilities and expected LGD, and its evolution through the business
cycle.

However, if the factors are unobservable a priori for the econometrician,
some of them can be deduced ex-post from observed derivative prices up to
some parameters to be estimated (see Section 3).

1.3 Factors representing risk

Factors are often introduced in Finance to capture the underlying risks
and their effects on asset prices. The Wishart factor models are based on the
following remark: multidimensional risk is generally represented by means of a
volatility–covolatility matrix. Thus, factors representing the risk can be chosen
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as the elements of such a matrix: Ft = vech(Yt), where Yt denotes a (n� n) sto-
chastic symmetric positive define matrix, and vech denotes the operator that
stacks the different elements of Yt into a vector.

When n = 1, we get a standard single factor model with a factor interpreted
as a stochastic volatility. When n = 2, we get a three-factor model, where
the factors are F1�t = Y11�t , F2�t = Y12�t , F3�t = Y22�t . F1�t and F3�t can be
interpreted as underlying stochastic volatilities, whereas F2�t is an underlying
stochastic covolatility. When n = 3, we get a six-factor model, and so on.

In this framework, the factor process (Ft) can be replaced by the matrix
process (Yt), which is a sequence of stochastic positive definite matrices. The
positive definiteness condition implies nonlinear inequality restrictions on the
factors. For instance, when n = 2, the factors are constrained by

Y11�t > 0� Y11�tY22�t − Y 2
12�t > 0�

where the second inequality is the Cauchy–Schwarz inequality.
Generally, the effect of factors on prices is specified by means of indexes

(also called scores in the credit literature), that is, linear combinations of fac-
tors. For a symmetric matrix Yt , a linear combination of factors is easily written
as Tr(DYt), where D denotes a (n� n) real symmetric matrix and Tr is the trace
operator, which provides the sum of the diagonal elements of a square matrix.
Indeed, we have

Tr(DYt) =
n∑
i=1

(DYt)ii =
n∑
i=1

n∑
j=1

dijYji�t =
n∑
i=1

n∑
j=1

dijYij�t �

For instance, for n = 2, we get: Tr(DYt) = d11Y11�t + d22Y22�t + 2d12Y12�t .
In the sequel, we use this transformation on the matrix factor to express linear
combinations.

Finally, we expect that these indexes, which summarize the multidimen-
sional risk, increase with multidimensional risk. This is especially the case when
such an index has to be interpreted as a risk premium. The condition can be
written as

(1.2)Tr(DY) � Tr(DY ∗)� if Y � Y ∗�
where � denotes the standard ordering on symmetric matrices. We have the
following property (see e.g. Gourieroux et al., 2007).

(i) If D is a symmetric positive semidefinite matrix, the condition (1.2) is
satisfied.

(ii) In particular, if D � 0 and Y � 0, we have Tr(DY) � 0.

The condition (1.2) does not imply that the index reacts positively to any
shock on the components of Y , when D is symmetric positive definite. In-
deed, let us consider for illustration the case n = 2. The index is: Tr(DYt) =
d11Y11�t + d22Y22�t + 2d12Y12�t , where the matrix D satisfies the constraints:
d11 > 0, d22 > 0, d11d22 − d2

12 > 0. A shock on Y11�t (respectively Y22�t) has
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a positive effect on the index, since d11 > 0 (respectively d22 > 0). However,
the restrictions on D are compatible with both positive and negative values of
the cross-term d12. Thus, a shock on the covolatility Y12�t can have a positive
or negative impact, depending on the sign of d12. This property is useful to
create positive as well as negative dependence, when some factors (here the
underlying covolatilties) are integrated out.

1.4 Plan of the paper

Wishart processes are stochastic processes that represent a sequence of sto-
chastic symmetric positive define matrices, and are good candidates for factors
representing risk. They are defined in Section 2, by means of their conditional
Laplace transform. They are special cases of Compound autoregressive (Car)
and affine processes (for discrete and continuous time, respectively), which
explains why it is easy to derive nonlinear prediction formulas at any hori-
zon for these processes. They can be seen as multivariate extensions of the
autoregressive gamma process (discrete time) (Gourieroux and Jasiak, 2006)
and Cox–Ingersoll–Ross process (continuous time) (Cox et al., 1985). As for
these standard processes, closed-form formulas can be derived for the condi-
tional Laplace transform at any horizon of the future values of the process and
integrated process.

In Section 3, we explain how Wishart factors can be introduced in pricing
models. We first recall the pricing approach by stochastic discount factor un-
der the historical probability, and its relationship with the equivalent approach
under the risk-neutral probability. Then, we explain how to jointly introduce
the Wishart factor components and the idiosyncratic components in the under-
lying asset price formulas and in the stochastic discount factor in order to get
rather simple derivative prices. The approach is illustrated by an application to
quadratic term structure, a multivariate extension of Heston model application
to a structural model for credit risk, and a model for credit risk that takes into
account default occurrence and loss-given-default. Section 4 concludes.

2 Wishart process

According to the problems of interest and conventions, derivative pricing
can be considered in discrete, or continuous time. The pricing of European
or American calls written on liquid assets is generally performed in continu-
ous time, while for instance the determination of Credit VaR for a portfolio
of retail credit or illiquid corporate bonds is done in discrete time. For this
reason, the Wishart processes are presented in this section both in discrete
and continuous time. Due to the time coherency condition, there exist much
more Wishart processes in discrete time than in continuous time, and any
discretized continuous-time Wishart process is a special case of discrete-time
Wishart process.
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2.1 Definition of the discrete-time Wishart process

The discrete-time Wishart process is a model for the dynamics of stochastic
positive definite matrices, introduced by Gourieroux et al. (2007). The dis-
tribution of the process Yt can be characterized by the conditional Laplace
transform (moment generating function), which provides the conditional mo-
ments of exponential affine combinations of the elements of Yt :

Ψt(Γ ) = E
[
exp Tr(Γ Yt+1) | Yt

]
�

where Yt denotes the information (filtration) including the current and lagged
values of Y , Γ is a (n� n) real symmetric matrix such that the above expectation
exists. Indeed, the real Laplace transform characterizes the distribution due to
the positivity of the process (Feller, 1971).

Definition 1. The Wishart autoregressive process of order one, denoted
WAR(1), is a matrix Markov process (Yt) with the following conditional
Laplace transform:

(2.1)Ψt(Γ ) = exp Tr[M ′Γ (Id − 2ΣΓ )−1MYt]
[det(Id − 2ΣΓ )]K/2 �

The transition density depends on the following parameters: K is the scalar
degree of freedom strictly larger than n − 1, M is the (n� n) matrix of autore-
gressive parameters, and Σ is a (n� n) symmetric positive definite matrix. The
Laplace transform is defined for a matrix Γ such that ‖2ΣΓ ‖ < 1, where the
norm ‖ · ‖ is the maximal eigenvalue.

The transition density of this process is noncentered Wishart Wn(K�M�Σ)
(see Muirhead, 1982, p. 442):

f (Yt+1 | Yt) = 1
2Kn/2

1
Γn(K/2)

(detΣ)−K/2(detYt+1)
(K−n−1)/2

× exp
[−Tr

[
Σ−1(Yt+1 +MYtM

′)
]/

2
]

× 0F1
(
K/2� (1/4)MYtM

′Yt+1
)
�

where Γn(K/2) = ∫
A�0 exp[Tr(−A)](detA)(K−n−1)/2 dA is the multidimen-

sional gamma function, 0F1 is the hypergeometric function of matrix argument,
and the density is defined on positive definite matrices. The hypergeometric
function has a series expansion:

0F1
(
K/2� (1/4)MYtM

′Yt+1
) =

∞∑
p=0

∑
l

Cl((1/4)MYtM
′Yt+1)

(K/2)lp! �

where
∑

l denotes summation over all partitions l = (p1� � � � � pm), p1 � · · · �
pm � 0, of p into integers, (K/2)l is the generalized hypergeometric coeffi-
cient (K/2)l =

∏m
i=1(K/2− (i−1)/2)pi , with (a)pi = a(a+1) · · · (a+pi−1),
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and Cl((1/4)MYtM
′Yt+1) is the zonal polynomial associated with partition l.

The zonal polynomials have no closed-form expressions, but can be computed
recursively (see Muirhead, 1982, Chapter 7.2; and James, 1968).

The description above of the conditional Laplace transform and conditional
density shows that computations based on the Laplace transform will likely be
simpler than computations based on the density. In fact, nonlinear prediction
and derivative pricing problems can be studied by means of the conditional
Laplace transform.

The conditional log-Laplace transform is

logΨt(Γ ) = −K

2
log det(Id − 2ΣΓ )+ Tr

[
M ′Γ (Id − 2ΣΓ )−1MYt

]
�

This is a linear affine function of the current value of the Wishart process.
Thus, the discrete-time Wishart process is a special case of compound autore-
gressive (Car) processes, for which conditional moments, and more generally
conditional distributions, are easily computed at any horizon (Darolles et al.,
2006).

2.2 Definition of a continuous-time Wishart process

The continuous-time (n� n) Wishart process can be defined as the solution
of the diffusion system (see Bru, 1989, 1991)

(2.2)

dYt = (KQQ′ +AYt + YtA
′) dt

+ Y
1/2
t dWt(Q

′Q)1/2 + (Q′Q)1/2(dWt)
′Y 1/2

t �

where K is a scalar, A, Q are (n� n) matrices, Wt is a (n� n) matrix, whose
components are independent Brownian motions, and Y 1/2

t is the positive sym-
metric square root of matrix Yt . The continuous-time Wishart process is an
affine diffusion process, since both the drift and volatility are affine func-
tions of Y (Duffie and Kan, 1996). The time discretization of the continuous-
time process (2.2) is a discrete-time Wishart process with degree of free-
dom K, autoregressive matrix M = exp(Ah), and innovation variance Σ =∫ h

0 exp(Au)QQ′[exp(Au)]′ du, where h is the time step. In particular, the au-
toregressive matrix of the discretized process is constrained to be a matrix
exponential. This shows that the class of discrete-time Wishart processes is
larger than the class of continuous-time Wishart processes, which is a general
result for Car and affine processes (Darolles et al., 2006; Gourieroux et al.,
2007).

2.3 Conditional Laplace transform at any horizon

For expository purposes, we consider the discrete-time framework. The con-
ditional distribution at horizon h is easily characterized, since it is a Wishart
distribution with modified parameters.
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Proposition 1. Let us consider a WAR(1) process. The conditional distribution
of Yt+h given Yt is a noncentered Wishart distribution Wn(K�M

h�Σ(h)), where

Σ(h) = Σ+MΣM ′ + · · · +Mh−1Σ
(
Mh−1)′�

This result is the basis for an analysis of mixing properties of Wishart
processes. Intuitively, the process is asymptotically stationary if limn→∞Mh

= 0, that is, if the eigenvalues of the autoregressive matrix M have a modulus
strictly smaller than one. When this condition is satisfied, the stationary distrib-
ution of the process is obtained by setting h → ∞, and is the centered Wishart
distribution Wn(K� 0� Σ(∞)), where Σ(∞) solves the equation:

Σ(∞) = MΣ(∞)M ′ + Σ�

2.4 Conditional Laplace transform of the integrated Wishart process

For derivative pricing, it is also useful to predict the value of integrated
stochastic volatility as in the standard Hull–White formula. These nonlinear
predictions are also easily derived by means of the conditional Laplace trans-
form.

2.4.1 Discrete-time framework
Let (Yt) ∼ Wn(K�M�Σ) be a discrete-time Wishart process. The condi-

tional Laplace transform of the integrated process is defined by

Ψt�h(C� c0� C̃) = Et exp

[
t+h∑
i=t+1

Tr(CYi + c0)+ Tr(C̃Yt+h)
]
�

where the symmetric matrices C� C̃ and the coefficient c0 can be real or com-
plex, whenever the expectation exists. It provides the conditional moments of
exponential transforms of any future path of volatilities and integrated volatil-
ities. Since (Yt) is a Car process, the conditional Laplace transform of the
integrated process has an exponential affine form

(2.3)Ψt�h(C� c0� C̃) = exp
[
Tr

(
B(h)Yt

) + b(h)
]
�

where the symmetric matrix B and the scalar b satisfy the system of difference
equations

(2.4)B(h) = M ′(B(h− 1)+ C
)[

Id − 2Σ
(
B(h− 1)+ C

)]−1
M�

(2.5)b(h) = b(h− 1)+ c0 − 0�5K log det
[
Id − 2Σ

(
B(h− 1)+ C

)]
�

with initial conditions: B(0) = C̃, b(0) = 0. This system can be solved recur-
sively.
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2.4.2 Continuous-time framework
Let us now consider the continuous-time framework and assume that (Yt)

is a continuous-time Wishart process given by the solution of Eq. (2.2). The
conditional Laplace transform of the integrated process is defined by

(2.6)Ψt�h(C� c0� C̃) = Et exp

[ t+h∫
t

Tr(CYu + c0) du+ Tr(C̃Yt+h)
]

where the symmetric matrices C� C̃ and the coefficient c0 can be real or com-
plex, whenever the expectation exists. Since (Yt) is an affine continuous-time
process, the conditional Laplace transform has an exponential-affine form
(Duffie et al., 2003)

(2.7)Ψt�h(C� c0� C̃) = exp
[
Tr

(
B(h)Yt

) + b(h)
]
�

where the symmetric matrix B and the scalar b satisfy the system of Riccati
equations

(2.8)
dB(h)

dh
= B(h)A+A′B(h)+ 2B(h)Q′QB(h)+ C�

(2.9)
db(h)

dh
= KTr

[
B(h)QQ′] + c0�

with initial conditions: B(0) = C̃, b(0) = 0.
In general, such a system of Riccati equations cannot be solved explicitly.

However, this is possible for Wishart processes (see Gourieroux and Sufana,
2005 and Fonseca et al., 2005).

Proposition 2. The solution for coefficient B(h) is

B(h) = B∗ + exp
[
(A+ 2Q′QB∗)h

]′
×

{
(C̃ − B∗)−1 − 2

h∫
0

exp
[
(A+ 2Q′QB∗)u

]
Q′Q

× exp
[
(A+ 2Q′QB∗)u

]′ du

}−1

exp
[
(A+ 2Q′QB∗)h

]
�

where B∗ is a symmetric matrix which satisfies

A′B∗ + B∗A+ 2B∗Q′QB∗ + C = 0�

The solution for b(h) is

b(h) = KTr

[ h∫
0

B(u) duQQ′
]
+ c0h�
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The existence of a symmetric matrix solution B∗ of the implicit equation in
Proposition 2 implies restrictions on matrix C. For instance, matrix C has to be
smaller than A′(2Q′Q)−1A, according to the standard ordering on symmetric
matrices. Note also that the expression of B(h) admits a closed form. Indeed,
up to an appropriate change of basis, the matrix exp[(A + 2Q′QB∗)u] can
be written under a diagonal or triangular form, whose elements are simple
functions of u (exponential or exponential times polynomial), which can be
explicitly integrated between 0 and h.

3 Pricing

3.1 Pricing with stochastic discount factor

In this section, we briefly recall the approach of derivative pricing by sto-
chastic discount factor, both in discrete and continuous time. Then, we com-
pare both approaches. We focus on European derivatives.

3.1.1 Pricing in discrete time
Let us consider the pricing at time t of a European derivative with payoff

g(Ft+h� ut+h) at time t + h, where Ft is the set of current and lagged values
of the common risk factors, Ft = {Ft , Ft−1� � � �}, and ut is the current value
of the idiosyncratic risk factor. The approach specifies the dynamic proper-
ties of the underlying risk factors under the actual (historical) probability. The
no-arbitrage assumption implies the existence of a strictly positive stochastic
discount factor Mt�t+1, for period (t� t + 1), which summarizes the one-period
discounting with respect to both time and uncertainty.

In the sequel, we assume that:
Assumption A.1: the risk factor processes (Ft) and (ut) are independent

under the actual probability,
Assumption A.2: (ut) is a m-dimensional white noise, and
Assumption A.3: the stochastic discount factor depends on the common risk

factors only: Mt�t+1 = Mt�t+1(Ft+1).
Then, the price Pt(g) at time t of the European derivative is

Pt(g) = Et
[
Mt�t+1(Ft+1) · · ·Mt+h−1�t+h(Ft+h)g(Ft+h� ut+h)

]
�

where Et denotes the expectation conditional on the information set It =
{Ft� ut} at time t. Under Assumptions A.1–A.3, the pricing formula can be
simplified. More precisely, by applying the law of iterated expectations, we get,
for h � 1,

Pt(g) = Et
[
Mt�t+1(Ft+1) · · ·Mt+h−1�t+h(Ft+h)

× E
[
g(Ft+h� ut+h) | Ft+h� ut

]]
= Et

[
Mt�t+1(Ft+1) · · ·Mt+h−1�t+h(Ft+h)



Ch. 4. Pricing with Wishart Risk Factors 173

× E
[
g(Ft+h� ut+h) | Ft+h

]]
(3.1)= Et

[
Mt�t+1(Ft+1) · · ·Mt+h−1�t+h(Ft+h)h(Ft+h)

]
�

where h(Ft+h) = E[g(Ft+h� ut+h) | Ft+h]. From Assumption A.1, we finally
deduce that

(3.2)Pt(g) = E
[
Mt�t+1(Ft+1) · · ·Mt+h−1�t+h(Ft+h)h(Ft+h) | Ft

]
�

Thus, pricing European derivatives written on (Ft+h� ut+h) is equivalent to
pricing European derivatives written on Ft+h only, using only the information
on common factors.

3.1.2 Pricing in continuous time
The pricing approach is similar in a continuous-time framework. Ft denotes

the set of all current and past values of the common risk factors, and the
horizon h is a real positive number. We again make Assumptions A.1, A.2 in
Section 3.1.1, and assume that

Assumption A�3′ the stochastic discount factor for period (t� t + h) is of the
form

Mt�t+h = exp

( t+h∫
t

m(Fu) du

)
�

where m is a real function of Fu.
Then, the price Pt(g) at time t of the European derivative with payoff

g(Ft+h� ut+h) at time t + h, is

Pt(g) = Et
[
Mt�t+hg(Ft+h� ut+h)

]
�

Under Assumptions A.1, A.2, A�3′, computations similar to those in Sec-
tion 3.1.1 lead to the same result that pricing European derivatives written
on (Ft+h� ut+h) is equivalent to pricing European derivatives written on Ft+h
only

Pt(g) = E
[
Mt�t+hh(Ft+h) | Ft

]
�

3.2 Pricing with Wishart factors

3.2.1 Pricing in discrete time
Let us consider a discrete-time Wishart process (Yt), and assume that the

stochastic discount factor Mt�t+1 has an exponential-affine form in the ele-
ments of Yt+1

Mt�t+1 = exp
[
Tr(DYt+1)+ d

]
�

where D is a (n� n) symmetric matrix, and d is a scalar. Particularly interesting
is the special case of a European derivative with an exponential-affine payoff
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written on the factors:

(3.3)h(Yt+h) = exp Tr(GYt+h)�

where G is a (n� n) symmetric matrix.
The pricing formula (3.2) implies that the price of this European derivative

is

Pt(h) = Et exp

[
t+h∑
i=t+1

Tr(DYi + d)+ Tr(GYt+h)
]

= Ψt�h(D� d�G)�

Thus, this price is equal to a conditional Laplace transform of the integrated
Wishart process calculated in Section 2.4.1. Prices of other derivatives, like for
example European call options, are obtained by using the transform analysis
(Duffie et al., 2000), that is by inverting the conditional Laplace transform
written on imaginary arguments (Fourier transform).

3.2.2 Pricing in continuous time
Let us now consider a continuous-time Wishart process (Yt), and assume

that the stochastic discount factor is affine

(3.4)m(u) = Tr(DYu)+ d�

where D is a (n� n) symmetric matrix, and d is a scalar. The price Pt(h) of a
security with payoff h(Yt+h) = exp Tr(GYt+h) at time t + h is

(3.5)Pt(h) = Et

[
exp

( t+h∫
t

(
Tr(DYu)+ d

)
du+ Tr(GYt+h)

)]
�

This is a conditional Laplace transform of the integrated process and, as shown
in Section 2.4.2, this price can be computed in closed form.

3.2.3 The link between discrete- and continuous-time pricing
It is interesting to relate the pricing in continuous and discrete time. For

expository purposes, let us consider the continuous-time pricing of a European
call with time to maturity h = 2. The price of this derivative is

Pt(τ) = Et exp

[ t+2∫
t

Tr(DYu + d) du+ Tr(GYt+2)

]

= Et

[
exp

( t+1∫
t

m(u) du

)
exp

( t+2∫
t+1

m(u) du

)

× exp Tr(GYt+2)

]
�
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Let us denote Yt the information generated by the current and future values
of Y . We can write

Pt(τ) = Et

[
exp

( t+1∫
t

m(u) du

)

× E

(
exp

( t+2∫
t+1

m(u) du

)∣∣∣∣∣Yt+1� Yt+2

)
exp Tr(GYt+2)

]

= Et
[
M̃t�t+1M̃t+1�t+2 exp Tr(GYt+2)

]
�

where

M̃t�t+1 = E

[
exp

( t+1∫
t

m(u) du

)∣∣∣∣∣Yt� Yt+1

]
�

Thus, when pricing derivatives with discrete time to maturity, it is possible to
replace the continuous-time stochastic discount factor m by the discrete-time
stochastic discount factor M̃ . M̃t�t+1 is a conditional Laplace transform of the
integrated Wishart process given both the past and future values of the process.
It is easily checked that M̃t�t+1 is also an exponential-affine function of the
closest past and future values

M̃t�t+1 = exp
[
Tr(D0Yt)+ Tr(D0Yt+1)+ d

]
�

We deduce that continuous-time pricing based on a Wishart process is equiva-
lent to discrete-time pricing based on the Wishart process, once lagged values
of the Wishart process are introduced in the discrete-time stochastic discount
factor. Simple pricing formulas also exist with this introduction of lagged
volatility in the stochastic discount factor M̃ .

4 Examples

The aim of this section is to discuss various examples of derivative pricing in
order to illustrate the flexibility and importance of Wishart risk factor models.
The presentation can be equivalently performed in discrete or continuous time.

4.1 Wishart quadratic term structure

Let D(t� h) denote the price at time t of a zero-coupon bond that pays $1 at
time t + h. We assume that bond prices depend on some underlying stochas-
tic factors that are the elements of a (n� n) matrix Wishart process Yt . From
Sections 3.1.1 and 3.2.1, the bond price D(t� h) is



176 C. Gourieroux and R. Sufana

D(t� h) = Et
[
Mt�t+1(Yt+1) · · ·Mt+h−1�t+h(Yt+h)

]
= Et exp

[
t+h∑
i=t+1

Tr(DYi + d)

]
= Ψt�h(D� d� 0)�

As shown in Section 2.4.1, the conditional Laplace transform of the integrated
Wishart process can be computed as

(4.1)D(t� h) = exp
[
Tr

(
B(h)Yt

) + b(h)
]
�

where the symmetric matrix B and the scalar b satisfy the system of difference
equations, for h � 1

(4.2)B(h) = M ′(B(h− 1)+D
)[

Id − 2Σ
(
B(h− 1)+D

)]−1
M�

(4.3)b(h) = b(h− 1)+ d − 0�5K log det
[
Id − 2Σ

(
B(h− 1)+D

)]
�

with initial conditions: B(0) = 0, b(0) = 0. The resulting term structure is
called Wishart quadratic term structure (see Gourieroux and Sufana, 2003).

The reason for this terminology is the existence of a particular interpreta-
tion of the Wishart process, when the degree of freedom is integer. When K
is integer, the Wishart process (Yt) can be expressed as the sum of squares
of K independent Gaussian vector autoregressions of order 1 (VAR(1)) with
identical dynamics:

(4.4)Yt =
K∑
k=1

xktx
′
kt�

where the n-dimensional vector xkt follows:

(4.5)xk�t+1 = Mxk�t + εk�t+1� εk�t+1 ∼ N(0� Σ)�

for k = 1� � � � �K. The sum of squares in Eq. (4.4) is a.s. positive definite, if
K � n. With this interpretation of the Wishart process, the bond prices become

D(t� h) = exp

[
Tr

(
B(h)

K∑
k=1

xktx
′
kt

)
+ b(h)

]

= exp

[
K∑
k=1

Tr
(
B(h)xktx

′
kt

) + b(h)

]

= exp

[
K∑
k=1

Tr
(
x′ktB(h)xkt

) + b(h)

]

= exp

[
K∑
k=1

x′ktB(h)xkt + b(h)

]
�
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since we can commute within the trace operator. Thus, the bond yields
r(t� h) = −(logD(t� h))/h are linear affine with respect to Yt , but quadratic
in the vectors xkt , k = 1� � � � �K. In fact, the Wishart quadratic term structure
is an extension of the standard quadratic term structure, which corresponds to
K = 1 (see Ahn et al., 2002; Leippold and Wu, 2002, for the standard quadratic
term structure model). The quadratic term structure models are very tractable
since they are special cases of affine term structure models.

An important property of the Wishart quadratic term structure is related to
the positivity of bond yields.

Proposition 3. If the symmetric matrix D is negative semidefinite and d �
0�5K log det(Id − 2ΣD), then, for h � 1,

(i) The domain for the yield r(t� h) is [−b(h)/h�∞);
(ii) The lower bound −b(h)/h is nonnegative and increases with h.

As a consequence, under the parameter restrictions of Proposition 3, the
bond yields are positive at all maturities. The fact that the lower bound of
the domain for interest rates increases with the time-to-maturity is not a con-
sequence of the Wishart assumption, but is a consequence of no-arbitrage
opportunity, as shown in Gourieroux and Monfort (2005).

4.2 Extension of Heston’s model

The Wishart process can be used to extend the stochastic volatility model in-
troduced by Heston (1993) (see Gourieroux and Sufana, 2005). Let us consider
n risky assets whose prices are the components of the n-dimensional vector St ,
and let Σt denote the volatility matrix of the infinitesimal geometric returns
d log St of the risky assets. We assume that the joint dynamics of log St and Σt
is given by the stochastic differential system

(4.6)d log St =
⎡⎣μ+

⎛⎝ Tr(D1Σt)
���

Tr(DnΣt)

⎞⎠⎤⎦ dt + Σ
1/2
t dW S

t �

(4.7)

dΣt = (KQQ′ +AΣt + ΣtA
′) dt

+ Σ
1/2
t dW σ

t (Q
′Q)1/2 + (Q′Q)1/2(dW σ

t

)′
Σ

1/2
t �

whereW S
t andW σ

t are a n-dimensional vector and a (n� n)matrix, respectively,
whose elements are independent unidimensional standard Brownian motions,
μ is a constant n-dimensional vector, and Di, i = 1� � � � � n, A, Q are (n� n) ma-
trices with Q invertible. The price equation includes a volatility-in-mean effect
to account for a dynamic risk premium, and to capture the tendency for volatil-
ity and stock price to move together even without assuming an instantaneous
correlation between the stock return and volatility innovations. However, the
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model can be extended to include such a multivariate correlation (Fonseca et
al., 2005).

If n = 1, the differential system reduces to

d log St = (μ+D1Σt) dt +
√
Σt dW S

t �

d(Σt) =
(
KQ2 + 2AΣt

)
dt + 2Q

√
Σt dW σ

t �

with a Cox–Ingersoll–Ross specification for the stochastic volatility (Cox et al.,
1985). Thus, the multivariate model in Equations (4.6)–(4.7) reduces to Hes-
ton’s specification (see Heston, 1993; Ball and Roma, 1994).

The multivariate model is an affine process since it admits drift and volatility
functions that are affine functions of log St and Σt (see Duffie and Kan, 1996;
Duffie et al., 2003). Therefore, the theory of affine processes can be used to
derive the conditional Laplace transform of the joint process (log St� Σt) and
of its integrated values, which is defined by

Ψt�h(γ� γ0� γ̃� C� c0� C̃) = Et exp

[ t+h∫
t

(γ′ log Su + γ0) du+ γ̃′ log St+h

+
t+h∫
t

Tr(CΣu + c0) du+ Tr(C̃Σt+h)
]
�

This Laplace transform is the basis for pricing derivatives by transform analysis
(Duffie et al., 2000).

Proposition 4. The conditional Laplace transform of the joint process (log St� Σt)
is

(4.8)
Ψt�h(γ� γ0� γ̃� C� c0� C̃) = exp

[
a(h)′ log St + Tr

(
B(h)Σt

) + b(h)
]
�

where a, b, and the symmetric matrix B satisfy the system of Riccati equations

(4.9)
da(h)

dh
= γ�

(4.10)

dB(h)
dh

= B(h)A+A′B(h)+ 2B(h)Q′QB(h)

+ 1
2
a(h)a(h)′ +

n∑
i=1

ai(h)Di + C�

(4.11)
db(h)

dh
= a(h)′μ+KTr

[
B(h)QQ′] + γ0 + c0�

with initial conditions: a(0) = γ̃, B(0) = C̃, b(0) = 0.
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The differential equation for a admits the explicit solution

a(h) = γh+ γ̃�

The remaining equations admit a closed-form solution under some parameter
restrictions.

Proposition 5. For γ = 0, we get

B(h) = B∗ + exp
[
(A+ 2Q′QB∗)h

]′
×

{
(C̃ − B∗)−1 − 2

h∫
0

exp
[
(A+ 2Q′QB∗)u

]
Q′Q

× exp
[
(A+ 2Q′QB∗)u

]′ du

}−1

exp
[
(A+ 2Q′QB∗)h

]
�

where B∗ is a symmetric matrix which satisfies

A′B∗ + B∗A+ 2B∗Q′QB∗ + 1
2
γ̃γ̃′ +

n∑
i=1

γ̃iDi + C = 0�

The closed-form solution for b(h) is deduced from the third differential equation

b(h) = (γ̃′μ+ γ0 + c0)h+KTr

[ h∫
0

B(u) duQQ′
]
�

4.3 Multifactor extension of Merton’s model

An application of the multivariate stochastic volatility model in Section 4.2
is the extension of the credit risk model proposed by Merton (1974) to a frame-
work with stochastic volatility, stochastic firm’s debt and more than one firm
(see Gourieroux and Sufana, 2005). In Merton’s basic structural approach,
a firm’s asset value is assumed to follow a geometric Brownian motion under
the risk-neutral probability, and the debt amount L and time-to-default are
assumed predetermined. Under these assumptions, the firm’s equity is a call
option on the asset value with a strike equal to the debt level, and its price is
computed from the Black–Scholes formula.

Let us now consider n firms indexed by i = 1� � � � � n. The extended structural
model assumes that the joint dynamics of firm i’s asset value Ai�t and liability
value Li�t are represented by(

d logAi�t

d logLi�t

)
=

[
μA�i + Tr(DA�iΣi�t)
μL�i + Tr(DL�iΣi�t)

]
dt + Σ

1/2
i�t dW S

i�t�

where Σi�t , i = 1� � � � � n, are Wishart processes. The n Wishart processes can
be independent, or some firms can be driven by the same Wishart process.
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The extended structural model for each firm is a bivariate specification
of the multivariate model in Section 4.2. However, the terms Tr(DAΣt) and
Tr(DLΣt) included in the drift do not admit an interpretation as risk premia,
since the firm’s asset value and liability value are not traded on a market. They
capture the tendency of the firm’s asset and liability values to move together
in response to an increase in volatility, in a situation when the asset value has
a mean higher than L, but a large volatility increase causes the asset value to
approach the liability level. In this case, the medium-term rating of the firm al-
lows it to increase its debt in order to stimulate its investments, and as a result
increase the asset value. Prices of various credit derivatives can be computed
as explained in Section 4.2.

4.4 Joint modeling of default intensity and recovery rates

As emphasized by the Basel Committee on Banking Supervision (2005),
the credit risk models have to allow for “realized recovery rates to be lower
than average during terms of high default rates.” Thus, it is important to de-
velop models sufficiently flexible to allow for negative (respectively positive)
dependence between the default intensity and recovery rate (respectively loss-
given-default). This section shows that the models with Wishart risk factors
have this flexibility. The results are based on Gourieroux et al. (2006).

Let us consider the following specification for the default probability DP
and loss-given-default LGD:

DP = exp
[−Tr(AY)

] = exp
[−(a11Y11 + 2a12Y12 + a22Y22)

]
�

LGD = exp
[−Tr(BY)

] = exp
[−(b11Y11 + 2b12Y12 + b22Y22)

]
�

where

Y =
(
Y11 Y12
Y12 Y22

)
� A =

(
a11 a12
a12 a22

)
� B =

(
b11 b12
b12 b22

)
�

are symmetric positive definite matrices, and Y follows the marginal (invari-
ant) distribution of a Wishart process, with Laplace transform:

E exp
[−Tr(AY)

] = [
det(Id + 2A)

]−K/2
�

Since A and B are symmetric positive definite matrices, DP and LGD are
between 0 and 1, and the elements of A and B are constrained by

a11 > 0� a11a22 − a2
12 > 0� b11 > 0� b11b22 − b2

12 > 0�

In particular, these restrictions are compatible with opposite signs of a12
and b12. In such a case, a shock on the stochastic covolatility Y12 (or equiv-
alently, on the stochastic correlation), for given volatilities, implies opposite
effects on DP and LGD. Thus, we get a negative dependence, for given volatil-
ities.

Let us now show that, unconditionally, the effects of shocks on the stochas-
tic covolatility Y12 cannot dominate the effects due to shocks on Y11 and Y22.
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More precisely, the negative dependence, given the volatilities, is compatible
with a positive unconditional dependence. For expository purposes, let us as-
sume K = 2. We get

Cov[DP�LGD] = Cov
[
exp

[−Tr(AY)
]
� exp

[−Tr(BY)
]]

= E exp
[−Tr

[
(A+ B)Y

]]
− E exp

[−Tr(AY)
]
E exp

[−Tr(BY)
]

= 1
det(Id + 2(A+ B))

− 1
det(Id + 2A)

1
det(Id + 2B)

�

The covariance is positive if and only if

� = det(Id + 2A) det(Id + 2B)− det
(
Id + 2(A+ B)

)
> 0�

Without loss of generality, we can assume a12 = 0. We get

� = 8
(
b11b22 − b2

12
)
(a11 + a22 + 2a11a22)

+ 4
(
a11b11 + a22b22 + 2a11a22(b11 + b22)

)
> 0�

by the positive definiteness of matrices A and B.

5 Concluding remarks

The aim of this survey was to explain why Wishart risk factors are good
candidates for representing the underlying multivariate risk, that is stochas-
tic volatility–covolatility matrices. The affine (Car) properties of the Wishart
processes explain the closed-form expression of the Laplace transform, and
then of derivative prices at any horizon. The examples have shown the flexibil-
ity of Wishart factor models in studying various types of derivatives. In fact, an
advantage of such models is the possibility of developing coherent approaches.
For instance, Wishart factor models can be introduced in a coherent way for
both historical and risk-neutral approaches. In credit risk analysis, this allows
to price credit derivatives (risk-neutral approach) and jointly compute the
Credit VaR or study the default occurrence (historical approach). The Wishart
risk factor models are also appropriate for coherent analysis of asset prices
across countries, for instance, to understand how the evolution of exchange
rates influences the term structure patterns in two countries (Gourieroux et
al., 2005, 2006).
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Abstract

We provide a unified framework to understand current advances in two important
fields in empirical finance: volatility estimation by virtue of microstructure noise-
contaminated asset price data and transaction cost evaluation. In this framework, we
review recently-proposed identification procedures relying on the unique possibilities
furnished by asset price data sampled at high frequency. While discussing these pro-
cedures, we offer our perspective on the existing methods and findings, as well as on
directions for future work.

Keywords: High-frequency data; Realized volatility; Market microstructure
noise; Transaction cost; Volatility and asset pricing; Liquidity and asset pric-
ing

1 Introduction

Recorded asset prices deviate from their equilibrium values due to the pres-
ence of market microstructure frictions. Hence, the volatility of the observed
prices depends on two distinct volatility components, i.e., the volatility of the
unobserved frictionless equilibrium prices (henceforth equilibrium prices) and
the volatility of the equally unobserved market microstructure effects.

In keeping with this basic premise, this review starts from a model of price
formation that allows for empirically relevant market microstructure effects
to discuss current advances in the nonparametric estimation of both volatility
notions using high-frequency asset price data.

Numerous insightful reviews have been written on volatility. The existing re-
views concentrate on work that assumes observability of the equilibrium price
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and study its volatility properties in the absence of measurement error (see,
e.g., Andersen et al., 2002, and the references therein). Reviews have also been
written on work that solely focuses on the measurement error and character-
izes it in terms of frictions induced by the market’s fine grain dynamics (see,
e.g., Hasbrouck, 1996, and Stoll, 2000). Quantifying these frictions is of crucial
importance to understand and measure the effective execution cost of trades.
More recently, Barndorff-Nielsen and Shephard, 2007 have provided a dis-
cussion of current research on alternative nonparametric volatility estimators.
While their review largely focuses on the frictionless case, it also offers inter-
esting perspectives on the empirically more relevant case of equilibrium prices
affected by market microstructure effects (see, also, McAleer and Medeiros,
2007).

The present review places emphasis on the volatilities of both unobserved
components of a recorded price, i.e., equilibrium price and microstructure fric-
tions. Specifically, our aim is to provide a unified framework to understand
current advances in two important fields in empirical finance, namely equilib-
rium price volatility estimation and transaction cost evaluation. To this extent,
we begin with a general price formation mechanism that expresses recorded
(logarithmic) asset prices as the sum of (logarithmic) equilibrium prices and
(logarithmic) market microstructure effects.

2 A model of price formation with microstructure effects

Write an observed logarithmic price as

(1)p = p∗ + η�

where p∗ denotes the logarithmic equilibrium price, i.e., the price that would
prevail in the absence of market microstructure frictions,1 and η denotes a
market microstructure contamination in the observed logarithmic price as in-
duced by price discreteness and bid–ask bounce effects, for instance (see, e.g.,
Stoll, 2000). Fix a certain time period h (a trading day, for example) and as-
sume availability of M equispaced high-frequency prices over h. Given Eq. (1)
we can readily define continuously-compounded returns over any intra-period
interval of length δ = h

M and write

(2)pjδ − p(j−1)δ︸ ︷︷ ︸
rjδ

= p∗
jδ − p∗

(j−1)δ︸ ︷︷ ︸
r∗jδ

+ηjδ − η(j−1)δ︸ ︷︷ ︸
εjδ

�

The following assumptions are imposed on the equilibrium price process and
market microstructure effects.

1 We start by being deliberately unspecific about the nature of the equilibrium price. We will add more
economic structure to the model when discussing transaction cost evaluation (Section 7).
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Assumption 1 (The equilibrium price process).

(1) The logarithmic equilibrium price process p∗
t is a continuous stochastic

volatility semimartingale. Specifically,

(3)p∗
t = αt +mt�

where αt (with α0 = 0) is a predictable drift process of finite varia-
tion and mt is a continuous local martingale defined as

∫ t
0 σs dWs, with

{Wt : t � 0} denoting standard Brownian motion.
(2) The spot volatility process σt is càdlàg and bounded away from zero.
(3) The process

∫ t
0 σ

4
s ds is bounded almost surely for all t < ∞.

Assumption 2 (The microstructure frictions).

(1) The microstructure frictions in the price process η have mean zero and
are covariance-stationary with joint density fM(�).

(2) The variance of εjδ = ηjδ − η(j−1)δ is O(1) for all δ.
(3) The η’s are independent of the p∗’s (η ⊥⊥ p∗).

In agreement with classical asset-pricing theory in continuous time (see,
e.g., Duffie, 1992), Assumption 1 implies that the equilibrium return process
evolves in time as a stochastic volatility martingale difference plus an adapted
process of finite variation. The stochastic spot volatility can display jumps,
diurnal effects, high-persistence (possibly of the long-memory type), and non-
stationarities. Leverage effects (i.e., dependence between σ and the Brownian
motion W ) are allowed.

Assumption 2 permits general dependence features for the microstruc-
ture friction components in the recorded prices. The correlation structure of
the frictions can, for instance, capture first-order negative dependence in the
recorded high-frequency returns as determined by bid–ask bounce effects (see,
e.g., Roll, 1984) as well as higher order dependence as induced by clustering in
order flow, for example. In general, the characteristics of the noise returns ε
may be a function of the sampling frequency δ = h

M . The joint density of the
η’s has a subscript M to make this dependence explicit. Similarly, the symbol
EM will be later used to denote expectations of the noise returns taken with
respect to the measure fM(�).

While the equilibrium return process r∗jδ is modeled as being Op(
√
δ) over

any intra-period time horizon of size δ = h
M , the contaminations εjδ in the

observed return process are Op(1). This result, which is a consequence of
Assumptions 1(1) and 2(2), implies that longer period returns are less con-
taminated by noise than shorter period returns. Differently put, the magnitude
of the frictions does not decrease with the distance between subsequent time
stamps. Provided sampling does not occur between high-frequency price up-
dates, the rounding of recorded prices to a grid (price discreteness) and the
existence of different prices for buyers and sellers alone make this feature of
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the setup presented here empirically compelling. As we discuss in what follows,
the different stochastic orders of r∗ and ε are important aspects of some recent
approaches to equilibrium price variance estimation as well as to transaction
cost evaluation.

2.1 The MA(1) case

Sometimes the dependence structure of the microstructure friction process
can be simplified. Specifically, one can modify Assumption 2 as follows:

Assumption 2b.

(1) The microstructure frictions in the price process η are i.i.d. mean zero.
(2) η ⊥⊥ p∗.

If the microstructure noise contaminations in the price process η are i.i.d.,
then the noise returns ε display an MA(1) structure with a negative first-order
autocorrelation. Importantly, the noise return moments do not depend on M ,
i.e., the number of observations over h. This is an important feature of the
MA(1) model which, as we discuss below, has been exploited in recent work on
volatility estimation.

The MA(1) model, as typically justified by bid–ask bounce effects, is bound
to be an approximation. However, it is known to be a realistic approxima-
tion in decentralized markets where traders arrive in a random fashion with
idiosyncratic price setting behavior, the foreign exchange market being a valid
example (see, e.g., Bai et al., 2005). It can also be a plausible approximation,
capturing first-order effects in the data, in the case of equities when consider-
ing transaction prices and/or quotes posted on multiple exchanges. Bandi and
Russell (2006b) provide additional discussions. Awartani et al. (2004) propose
a formal test of the MA(1) market microstructure model.

3 The variance of the equilibrium price

The recent availability of quality high-frequency financial data has moti-
vated a growing literature devoted to the model-free measurement of the
equilibrium price variance. We refer the interested reader to the review pa-
per by Andersen et al. (2002) and the references therein. The main idea is to
aggregate intra-period squared continuously-compounded returns and com-
pute V̂ = ∑M

j=1 r
2
jδ over h. The quantity V̂ , which has been termed “realized

variance,” is thought to approximate the increments of the quadratic variation
of the semimartingale that drives the underlying logarithmic price process, i.e.,
V = ∫ h

0 σ2
s ds. The consistency result justifying this procedure is the conver-

gence in probability of V̂ to V as returns are computed over intervals that are
increasingly small asymptotically, i.e., as δ → 0 or, equivalently, as M → ∞
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for a fixed h. This result is a cornerstone in semimartingale process theory
(see, e.g., (Chung and Williams, 1990, Theorem 4.1, p. 76)).2 More recently,
the important work of Andersen et al. (2001, 2003) and Barndorff-Nielsen and
Shephard (2002, 2004b) has championed empirical implementation of these
ideas.

The theoretical validity of this identification procedure hinges on the ob-
servability of the equilibrium price process. However, it is widely accepted that
the equilibrium price process and, as a consequence, the equilibrium return
data are contaminated by market microstructure effects. Even though the early
realized variance literature is aware of the potential importance of market mi-
crostructure effects, it has largely abstracted from them. The theoretical and
empirical consequences of the presence of market microstructure frictions in
the observed price process have been explored only recently.

3.1 Inconsistency of the realized variance estimator

Under the price formation mechanism in Section 2, the realized variance es-
timates are asymptotically dominated by noise as the number of squared return
data increases over a fixed time period. Write

(4)V̂ =
M∑
j=1

r2
jδ =

M∑
j=1

r∗2
jδ +

M∑
j=1

ε2
jδ + 2

M∑
j=1

rjδεjδ�

Since r∗jδ is Op(
√
δ) and εjδ is Op(1), the term

∑M
j=1 ε

2
jδ is the dominating

term in the sum. Specifically, this term diverges to infinity almost surely as
M → ∞. The theoretical consequence of this divergence is a realized variance
estimator that fails to converge to the increment of the quadratic variation
(integrated variance) of the underlying logarithmic price process but, instead,
increases without bound almost surely over any fixed period of time, however
small: V̂

a�s�→ ∞ as M → ∞ (or δ = h
M → 0 given h). This point has been made

in independent and concurrent work by Bandi and Russell (2003, 2006a) and
Zhang et al. (2005).3

The divergence to infinity of the realized variance estimator over any fixed
time period is an asymptotic approximation to a fairly pervasive empirical

2 The corresponding weak convergence result is discussed in Jacod (1994), Jacod and Protter (1998),
Barndorff-Nielsen and Shephard (2002), and Bandi and Russell (2003). Mykland and Zhang (2006)
cover the case of irregularly-spaced data. Goncalves and Meddahi (2004)) discuss finite sample im-
provements through bootstrap methods (see, also, Goncalves and Meddahi, 2006).
3 This theoretical result is general and relies on the different stochastic orders of the equilibrium returns
and noise returns. The result does not hinge on an MA(1) structure for the noise return component ε,
as implied by Assumption 2b(1). Also, importantly, the result does not hinge on the independence
between the price process and the noise, as implied by Assumption 2(3) and Assumption 2b(2). Bandi
and Russell (2003) clarify both statements.
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Fig. 1. “Volatility signature plots” for IBM using mid-quotes from (i) the NYSE only (solid line) and
(ii) the NYSE and the Midwest exchange (dotted line). We plot realized variance as a function of the
sampling frequency (in minutes). The data are collected for the month of February 2002 using the filter

discussed in Bandi and Russell (2006a).

fact. When computing realized variance estimates for a variety of sampling
frequencies δ, the resulting estimates tend to increase as one moves to high
frequencies (as δ → 0). In the terminology of Andersen et al. (1999, 2000),
“the volatility signature plots,” namely the plots of realized variance estimates
versus different sampling frequencies,4 are often upward sloping at high fre-
quencies. Figure 1 shows volatility signature plots constructed using IBM mid-
quotes obtained from (i) NYSE quotes and (ii) NYSE and Midwest exchange
quotes. Figure 2 presents volatility signature plots for IBM using (i) NYSE
and NASDAQ quotes and (ii) all quotes from the consolidated market. Fig-
ure 3 presents volatility signature plots using mid-quotes obtained from two
NASDAQ stocks (Cisco Systems and Microsoft). The data are collected for
the month of February 2002. In all cases the realized variance estimates in-
crease as the sampling intervals decrease (see, also, the discussion in Bandi
and Russell, 2006b).

3.2 The mean-squared error of the realized variance estimator

The presence of market microstructure contaminations induces a bias–
variance trade-off in integrated variance estimation through realized variance.
When the equilibrium price process is observable, higher sampling frequen-
cies over a fixed period of time result in more precise estimates of the inte-
grated variance of the logarithmic equilibrium price (see, e.g., Andersen et al.,

4 See, also, Fang (1996).
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Fig. 2. “Volatility signature plots” for IBM using mid-quotes from (i) the NYSE and NASDAQ (solid
line) and (ii) the consolidated market (dotted line). We plot realized variance as a function of the
sampling frequency (in minutes). The data are collected for the month of February 2002 using the filter

discussed in Bandi and Russell (2006a).

Fig. 3. “Volatility signature plots” for Cisco Systems (dotted line) and Microsoft (dashed line). We
plot realized variance as a function of the sampling frequency (in minutes). The data are mid-quotes

collected for the month of February 2002. We use the filter discussed in Bandi and Russell (2006a).

2003, and Barndorff-Nielsen and Shephard, 2002). When the equilibrium price
process is not observable, as is the case in the presence of microstructure fric-
tions, frequency increases provide information about the underlying integrated
variance but, inevitably, entail accumulation of noise that affects both the bias
and the variance of the estimator (Bandi and Russell, 2003, 2006a, and Zhang
et al., 2005).
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Under Assumptions 1 and 2, absence of leverage effects (σ ⊥⊥ W ), and
unpredictability of the equilibrium returns (αt = 0),5 Bandi and Russell (2003)
provide an expression for the conditional (on the underlying volatility path)
mean-squared error (MSE) of the realized variance estimator as a function
of the sampling frequency δ (or, equivalently, as a function of the number of
observations M), i.e.,

(5)EM

(
V̂ − V

)2 = 2
h

M

(
Q+ o(1)

) +ΠM�

where

(6)ΠM = MEM

(
ε4) + 2

M∑
j=1

(M − j)EM

(
ε2ε2

−j
) + 4EM

(
ε2)V �

and Q = ∫ h
0 σ4

s ds is the so-called quarticity (see, e.g., Barndorff-Nielsen and
Shephard, 2002). Notice that the bias of the estimator can be easily deduced
by taking the expectation of V̂ in Eq. (4), i.e.,

(7)EM

(
V̂ − V

) = MEM

(
ε2)�

As for the variance of V̂ , we can write

(8)EM

(
V̂ − EM

(
V̂

))2 = 2
h

M

(
Q+ o(1)

) +ΠM −M2(EM

(
ε2))2

�

As we discuss below, the conditional MSE of V̂ can serve as the basis for an
optimal sampling theory designed to choose M in order to balance bias and
variance.

5 Both additional assumptions, namely absence of leverage effects and unpredictability of the equilib-
rium returns, can be justified. In the case of the latter, Bandi and Russell (2003) argue that the drift
component αt is rather negligible in practice at the sampling frequencies considered in the realized
variance literature. They provide an example based on IBM. Assume a realistic annual constant drift of
0.08. The magnitude of the drift over a minute interval would be 0�08/(365 ∗ 24 ∗ 60) = 1�52 × 10−7.
Using IBM transaction price data from the TAQ data set for the month of February 2002, Bandi
and Russell (2003) compute a standard deviation of IBM return data over the same horizon equal
to 9�5 × 10−4. Hence, at the one minute interval, the drift component is 1�6 × 10−4 or nearly 1/10� 000
the magnitude of the return standard deviation. Assuming absence of leverage effects is empirically
reasonable in the case of exchange rate data. The same condition appears restrictive when examining
high frequency stock returns. However, some recent work uses tractable parametric models to show
that the effect of leverage on the unconditional MSE of the realized variance estimator in the absence
of market microstructure noise is negligible (see Meddahi, 2002). This work provides some justification
for the standard assumption of no-leverage in the realized variance literature. Andersen et al. (2002)
discuss this issue.
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4 Solutions to the inconsistency problem

4.1 The early approaches: sparse sampling and filtering

Thorough theoretical and empirical treatments of the consequences of mar-
ket microstructure contaminations in realized variance estimation are recent
phenomena. However, while abstracting from in-depth analysis of the implica-
tions of frictions for variance estimation, the early realized variance literature
is concerned about the presence of microstructure effects in recorded asset
prices (see, e.g., the discussion on this topic in Andersen et al., 2002).

In order to avoid substantial contaminations at high sampling frequencies,
Andersen et al. (2001), for example, suggest sampling at frequencies that are
lower than the highest frequencies at which the data arrives. The 5-minute
interval was recommended as a sensible approximate choice. Relying on the
leveling off of the volatility signature plots at frequencies around 15 minutes,
Andersen et al. (1999, 2000) suggest using 15- to 20-minute intervals in prac-
tice. If the equilibrium returns are unpredictable (αt = 0), the correlation
structure of the observed returns must be imputed to microstructure noise.
Andersen et al. (2001, 2003), among others, filter the data using an MA(1)
filter. An AR(1) filter is employed in Bollen and Inder (2002).

4.2 MSE-based optimal sampling

More recently, an MSE-based optimal sampling theory has been suggested
by Bandi and Russell (2003, 2006a). Specifically, in the case of the model laid
out above, the optimal frequency δ∗ = h

M∗ at which to sample continuously-
compounded returns for the purpose of realized variance estimation can be
chosen as the minimizer of the MSE expansion in Section 3.2.

Bandi and Russell’s theoretical framework clarifies outstanding issues in
the extant empirical literature having to do with sparse sampling and filtering.
We start with the former. The volatility signature plots provide useful insights
about the bias of the realized variance estimates. The bias typically manifests
itself in an upward sloping pattern as the sampling intervals become short, i.e.,
the bias increases with M (see Eq. (7)).6 However, it is theoretically fairly arbi-
trary to choose a single optimal frequency solely based on bias considerations.
While it is empirically sensible to focus on low frequencies for the purpose of
bias reduction, the bias is only one of the components of the estimator’s estima-
tion error. At sufficiently low frequencies the bias can be negligible. However,

6 The possible dependence between the equilibrium price p∗ and the market microstructure frictions η
complicates matters. Negative dependence, for instance, might drastically reduce the upward trend of
the volatility signature plots at high sampling frequencies. Equation (4) illustrates this point. The empir-
ical relevance of negative dependence between equilibrium price and market microstructure frictions
is discussed in Hansen and Lunde (2006). We focus on this issue in Section 5.2 below.
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Fig. 4. Simulated “volatility signature plot” from a stochastic volatility diffusion model with parameter
values consistent with IBM (see Bandi and Russell, 2003, 2006a, for details). The solid line is the aver-
age (across simulations) of the realized variance estimates for each sampling interval (in minutes). The
dotted lines are 95% empirical intervals from the simulations. The true integrated variance is standard-

ized to 1.

at the same frequencies, the variability of the estimates might be substantial
(see Eq. (8)). Figure 4 is a picture from simulations for parameter values con-
sistent with IBM.

The MSE-based sampling in Bandi and Russell (2003, 2006a) trades off bias
and variance optimally. As for filtering, while the dependence that the noise
induces in the return data can be reduced by it, residual contaminations are
bound to remain in the data. These contaminations continue to give rise to
inconsistent realized variance estimates. Bandi and Russell (2003) make this
point while studying the theoretical properties of both filtering at the highest
frequencies at which observations arrive and filtering at all frequencies.

Bandi and Russell (2003) discuss evaluation of the MSE under Assump-
tions 1 and 2 as well as in the MA(1) case (i.e., under Assumptions 1 and 2b).
In both cases, it is assumed that αt = 0 and σ ⊥⊥ W . When empirically jus-
tifiable, the MA(1) case is very convenient in that the moments of the noise
do not depend on the sampling frequency. Furthermore, the MSE simplifies
substantially:

(9)EM

(
V̂ − V

)2 = 2
h

M

(
Q+ o(1)

) +Mβ+M2α+ γ�

where the parameters α, β, and γ are defined as

(10)α = (
E
(
ε2))2

�
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(11)β = 2E
(
ε4) − 3

(
E
(
ε2))2

�

and

(12)γ = 4E
(
ε2)V − E

(
ε4) + 2

(
E
(
ε2))2

�

If M∗ is large, the following approximation to the optimal number of observa-
tions applies:

(13)M∗ ≈
(

hQ

(E(ε2))2

)1/3

�

This approximation readily clarifies the nature of the microstructure-induced
trade-off between the bias and variance of the realized variance estimator. If
the signal coming from the underlying equilibrium price process (Q) is large
relative to the noise determined by the frictions ((E(ε2))2), then sampling can
be conducted at relatively high frequencies. Hence, M∗ is effectively a signal-
to-noise ratio.

In the MA(1) case, evaluation of the MSE does not need to be implemented
on a grid of frequencies and simply relies on the consistent estimation of the
frequency-independent moments of the noise (E(ε2) and E(ε4)) as well as
on the estimation of the quarticity term Q.7 In this case, Bandi and Russell
(2003, 2006a) show that sample moments of the observable contaminated re-
turn data can be employed to identify the moments of the unobservable noise
process at all frequencies. Thus, while realized variance is inconsistent in the
presence of microstructure noise, appropriately defined arithmetic averages of
the observed returns consistently estimate the moments of the noise. Under
E(η8) < ∞, the following result holds:

(14)
1
M

M∑
j=1

r
q
jδ − E

(
εq

) p→ 0 1 � q � 4�

7 The quarticity term can be identified using the estimator proposed by Barndorff-Nielsen and Shep-
hard (2002), namely

Q̂ = M

3h

M∑
j=1

r4
jδ�

(See Barndorff-Nielsen and Shephard, 2004b, and Zhang et al., 2005, for alternative approaches.) How-
ever, Q̂ is not a consistent estimate of Q in the presence of noise. In practice, one could then sample
the observed returns to be used in the definition of Q̂ at a lower frequency than the highest frequency
at which observations arrive. Bandi and Russell (2006a) show by simulation that sampling returns in
a reasonable (but possibly suboptimal) fashion for the purpose of quarticity estimation does not give
rise to very imprecise sampling choices for realized variance. Using data, Bandi and Russell (2006a)
find that sampling intervals for the quarticity between 10 and 20 minutes have a negligible effect on
the resulting optimal frequency of the realized variance estimator. In light of the important role played
by the quarticity in this and other identification procedures (see below), future research should study
more efficient methods to estimate this term in the presence of realistic market microstructure noise
effects.
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asM → ∞.8 We provide intuition for this finding in the case q = 2. The sum of
the squared contaminated returns can be written as in Eq. (4) above, namely as
the sum of the squared equilibrium returns plus the sum of the squared noise
returns and a cross-product term. The price formation mechanism in Section 2
is such that the orders of magnitude of the three terms in Eq. (4) above differ
since r∗jδ = Op(

√
δ) and εjδ = Op(1). Thus, the microstructure noise com-

ponent dominates the equilibrium return process at very high frequencies, i.e.,
for small values of δ. This effect determines the diverging behavior of V̂ , as dis-
cussed above. By the same logic, when we average the contaminated squared
returns as in Eq. (14), the average of the squared noises constitutes the dom-
inating term in the average. Naturally, then, while the remaining terms in the
average vanish asymptotically due to the stochastic order of the equilibrium
returns, i.e., Op(

√
δ), the average of the squared noise returns converges to

the second moment of the noise returns as implied by Eq. (14).
Using a sample of mid-quotes for the S&P 100 stocks over the month of Feb-

ruary 2002, Bandi and Russell (2006a) report (average) daily optimal sampling
frequencies that are between 0.5 minutes and about 14 minutes with a me-
dian value of about 3.5 minutes. The MSE improvements that the MSE-based
optimal frequencies guarantee over the 5- or 15-minute frequency can be sub-
stantial. Not only do the optimal frequencies vary cross-sectionally, they also
change over time. Using mid-quotes dating back to 1993 for three stocks with
various liquidity features, namely EXXON Mobile Corporation (XOM), SBC
Communications (SBC), and Merrill Lynch (MER), Bandi and Russell (2006a)
show that the daily optimal frequencies have substantially increased in recent
times, generally due to decreases in the magnitude of the noise moments. This
effect should in turn be attributed to an overall increase in liquidity.

In agreement with the analysis in Bandi and Russell (2003, 2006a), Oomen
(2006) discusses an MSE-based approach to optimal sampling for the purpose
of integrated variance estimation. However, some important novelties charac-
terize Oomen’s work. First, the underlying equilibrium price is not modeled as
in Section 2 but as a compound Poisson process. Second, Oomen explores the
relative benefits of transaction time sampling versus calendar time sampling.

Consider a Poisson process N(t) with intensity λ(t). In Oomen (2006) the
observed logarithmic price process is expressed as

(15)pt = p0 +
N(t)∑
j=1

ξj︸ ︷︷ ︸
p∗
t

+
N(t)∑
j=1

ηj�

8 Importantly, this result is robust to the presence of a drift term (αt �= 0), dependence between the
frictions and the equilibrium price, and leverage effects (Bandi and Russell, 2003). Under assumptions,
it is also robust to dependence in the frictions (Bandi and Russell, 2004). See Section 7 for additional
discussions.
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where ξj ∼ i.i.d. N(μξ� σ2
ξ) and ηj = �νj + ρ2�νj−1 + · · · + ρq�νj−q+1 with

�νj = νj − νj−1 and νj ∼ i.i.d. N(0� σ2
ν ). The process N(t) effectively counts

the number of transactions up to time t. This process is assumed to be in-
dependent of both ξ and ν. Importantly, the equilibrium price p∗

t is equal to
p0+∑N(t)

j=1 ξj . Hence,p∗
t is a jump process of finite variation (in the tradition of

Press, 1967) with integrated variance (i.e., the object of econometric interest)
given now by V = σ2

ξ

∫ h
0 λ(s) ds = σ2

ξΛ(h). The microstructure noise conta-
minations η have an MA(q) structure. Setting q equal to one yields a negative
first-order autocorrelation of the calendar time continuously-compounded re-
turns since

(16)pt − pt−τ =
N(t)∑

j=N(t−τ)
ξj + νN(t) − νN(t−τ)−1�

for any calendar time interval τ.
Oomen (2006) provides closed-form expressions for the MSE of the realized

variance estimator under both calendar time sampling, as earlier, and transac-
tion time sampling. Given M (the total number of observations), transaction
time sampling leads to a sequence of prices {pti}Mi=0 with sampling times im-
plicitly defined as N(ti) = i N(h)M ", where  x" is the integer part of x.9 Oomen
(2006) also discusses optimal choice of M in an MSE sense. Using IBM trans-
action prices from the consolidated market over the period between 2000 and
2004, he finds that transaction time sampling generally outperforms calendar
time sampling. In his sample the average decrease in MSE that transaction
time sampling induces is about 5%. Gains up to 40% can be achieved. As in-
tuition suggests, the largest gains are obtained for days with irregular trading
patterns.

4.3 Bias-correcting

The microstructure-induced bias of the realized variance estimator repre-
sents a large component of the estimator’s MSE. This point is emphasized
by Hansen and Lunde (2006). Hansen and Lunde (2006) propose a bias-
adjustment to the conventional realized variance estimator. The bias-corrected
estimator they suggest is in the tradition of HAC estimators such as those of
Newey and West (1987) and Andrews and Monahan (1992). Its general form

9 Equivalently, given M , business time sampling can be obtained by sampling prices at times ti so that

Λ(ti) = i Λ(h)M . Because λ(�) is latent and since, conditionally on λ(�), E(N(t)) = Λ(t), transaction
time sampling can be interpreted as a feasible version of business time sampling (Oomen, 2006).
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is

(17)Ṽ =
M∑
j=1

r2
jδ + 2

qM∑
h=1

M

M − h

M−h∑
j=1

rjδr(j+h)δ�

where qM is a frequency-dependent number of covariance terms. If the cor-
relation structure of the noise returns has a finite order and αt = 0, under
appropriate conditions on qM the estimator in Eq. (17) is unbiased for the
underlying integrated variance over the period, i.e., EM(Ṽ ) = V .

The intuition readily derives from the MA(1) noise case. In this case the
estimator takes the simpler expression

(18)Ṽ MA(1) =
M∑
j=1

r2
jδ + 2

M

M − 1

M−1∑
j=1

rjδr(j+1)δ�

Under Assumption 1, Assumption 2b, and αt = 0, the covariance between
rjδ and r(j+1)δ, i.e., EM(rjδr(j+1)δ), is the same at all frequencies and equal to
−E(η2). Hence, EM(2 M

M−1
∑M−1

j=1 rjδr(j+1)δ) = −2ME(η2). The bias of the
estimator V̂ is equal to ME(ε2) = 2ME(η2) (see Eq. (7)). Therefore, the sec-
ond term in Eq. (18) provides the required bias correction. Interestingly, the
finite sample unbiasedness of Hansen and Lunde’s estimator is robust to the
presence of some dependence between the underlying local martingale price
process (under αt = 0) and market microstructure noise, i.e., Assumption 2(3)
or Assumption 2b(2) can be relaxed. In the MA(1) case, again, it is easy to
see that if EM(r

∗
jδη(j−s)δ) = 0 for all s � 1 (implying that microstructure

noise does not predict equilibrium returns) and EM(r
∗
jδη(j+1)δ) = 0, then

EM(Ṽ
MA(1)) = V (see the discussion in Bandi and Russell, 2006b). In other

words, the contemporaneous covariances EM(r
∗
jδηjδ) are not required to be

zero. This is an important property.
Under an assumed MA(1) noise structure, Zhou (1996) is the first to use

the bias-corrected estimator in Eq. (18) in the context of variance estima-
tion through high-frequency data. His original setup assumes a constant return
variance and Gaussian market microstructure noise. In this framework, Zhou
(1996) characterizes the variance of the estimator and concludes that it can be
minimized for a finite M . Under the more general assumptions in Section 2,
but again in the presence of MA(1) frictions, Hansen and Lunde (2006) have
recently further studied the MSE properties of the estimator in Eq. (18). Using
5 years of DJIA price data from January 3, 2000, to December 31, 2004, they
find that bias-correcting permits optimal sampling at higher frequencies than
those obtained by Bandi and Russell (2006a) using the classical realized vari-
ance estimator. In addition, MSE improvements can be achieved. Consider
Alcoa (AA), for example. They report an (average) daily optimal sampling
frequency for their bias-corrected estimator equal to about 46 seconds. Their
reported (average) optimal daily frequency for the realized variance estimator
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is about 9 minutes. Bias-correcting yields a reduction in the root MSE of about
33%.

Alternative bias-corrections can be provided in both the correlated noise
case and in the MA(1) case. The correlated noise case is studied in Bandi and
Russell (2003) and Zhang (2006a) (see, also, Aït-Sahalia et al., 2005b). The
MA(1) case is discussed in Bandi and Russell (2003) and Zhang et al. (2005).
For conciseness, we focus only on the MA(1) case. As we point out above,
the bias of the realized variance estimator can be estimated consistently by
computing an arithmetic average of the squared observed return data sampled
at the highest frequencies (see Eq. (14)). The bias-corrected realized variance
estimator is then equal to

(19)
←→
V = V̂ − ←→

M
1
M

M∑
j=1

r2
jδ�

where M is the number of observations in the full sample and
←→
M is the number

of observations used to compute V̂ .10 The approximate (MSE-based) optimal
number of observations

←→
M∗ of the estimator in Eq. (19) is now

(20)
←→
M∗ ≈

(
hQ

2E(ε4)− 3(E(ε2))2

)1/2

(Bandi and Russell, 2003).11 In agreement with Hansen and Lunde’s findings
(Hansen and Lunde, 2006), this optimal frequency is generally higher then
the optimal frequency of the realized variance estimator. Furthermore, it is
associated with MSE improvements.

In the spirit of Zhou (1996) and Hansen and Lunde (2006), Oomen (2005)
extends the framework in Oomen (2006) to the case of bias-corrected real-
ized variance. Specifically, he studies the MSE properties of the estimator in

10 When M is not large enough, the equilibrium return component in the estimated second moment
1
M

∑M
j=1 r

2
jδ might be non-negligible. Specifically, conditional on the volatility path, the finite sample

bias of 1
M

∑M
j=1 r

2
jδ, as an estimate of E(ε2), is equal to V

M . Hence, this empirical moment can be
purged of residual contaminations induced by the equilibrium price variance by subtracting from it a

quantity defined as 1
M

∑P̃
j=1 r

2
jδ, where P̃ is an appropriate number of low frequency returns calculated

using 15- or 20-minute intervals, for instance. The quantity 1
M

∑P̃
j=1 r

2
jδ is roughly unbiased for V

M .

The resulting estimator, i.e., 1
M (

∑M
j=1 r

2
jδ − ∑P̃

j=1 r
2
jδ), has, of course, the same limiting properties as

1
M

∑M
j=1 r

2
jδ for any fixed P̃. A similar correction is discussed in Bandi and Russell (2003, 2004) and

Hansen and Lunde (2006). The presence of dependence between the frictions and the equilibrium price
process complicates matters. Bandi and Russell (2004) discuss a bias-correction in this case.
11 The expression would be exact only if the estimator were defined as V̂ −←→

ME(ε2) which is, of course,
infeasible in practice.
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Eq. (18) for the case of an underlying jump process of finite variation (as in
Eq. (15)) and transaction time sampling. Using IBM transaction data from
the consolidated market for the period January 2, 2003–August 31, 2003, he
confirms that (i) transaction time sampling can be beneficial in practice (as in
Oomen, 2006) and (ii) bias-correcting can induce an increase in the optimal
sampling frequency along with MSE gains. In the case of the bias-corrected es-
timator, he reports an (average) optimal daily frequency of about 12 seconds.
The corresponding (average) optimal daily frequency of the classical realized
variance estimator is around 2.5 minutes. While bias-correcting yields MSE
gains of about 65% using his data, he reports that further gains (about 20%)
can be obtained by employing transaction time sampling in place of calendar
time sampling.

4.4 Sub-sampling

The bias-corrected estimators studied by Zhou (1996), Hansen and Lunde
(2006), and Oomen (2005) are inconsistent. Biased in a finite sample, but
consistent, is the estimator recently advocated by Zhang et al. (2005) in the
presence of MA(1) market microstructure noise. (See, also, Aït-Sahalia et al.,
2005a, for a study of consistent maximum likelihood estimation of the constant
variance of a scalar diffusion process in parametric models with microstructure
effects.) This promising approach relies on subsampling.12 Assume availability
of n, generally non-equispaced, observations. Define q non-overlapping sub-
grids G(i) of the full grid of n arrival times with i = 1� � � � � q. The first sub-grid
starts at t0 and takes every qth arrival time, i.e., G(1) = (t0� t0+q� t0+2q� � � �),
the second sub-grid starts at t1 and also takes every qth arrival time, i.e.,
G(2) = (t1� t1+q� t1+2q� � � �), and so on. Given the generic ith sub-grid of ar-
rival times, one can define the corresponding realized variance estimator as

(21)V̂ (i) =
∑

tj�tj+∈G(i)

(ptj+ − ptj )
2�

where tj and tj+ denote consecutive elements in G(i). Zhang et al.’s subsam-
pling approach entails averaging the realized variance estimates over sub-grids
as well as bias-correcting them. To this extent, define

(22)V̂ sub =
∑q

i=1 V̂
(i)

q
− nÊ

(
ε2)�

where n = n−q+1
q , Ê(ε2) =

∑n
j=1(ptj+−ptj )2

n is a consistent estimate of the sec-

ond moment of the noise return (as in Eq. (14)), and nÊ(ε2) is the required

12 Müller (1993), Zhou (1996), and the review of Politis et al. (1999) contain early discussions of similar
ideas.
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bias-correction (as in Eq. (7)). Under Assumption 1 and Assumption 2b (i.e.,
the MA(1) noise case), Zhang et al. (2005) show that, as q� n → ∞ with q

n → 0

and q2

n → ∞, V̂ sub is a consistent estimator of the integrated variance V over h.
Provided q = cn2/3, the rate of convergence of V̂ sub to V is n1/6 and the as-
ymptotic distribution is mixed-normal with an estimable asymptotic variance.
Specifically,

(23)n1/6(V̂ sub − V
) ⇒

(√
8c−2

(
E
(
η2

))2 + c
4
3
Q

)
N(0� 1)�

where the symbol “⇒” denotes weak convergence. The proportionality factor c
can be selected optimally in order to minimize the limiting variance in Eq. (23).
This minimization leads to an asymptotically optimal number of subsamples
given by

(24)qasy = casyn2/3 =
(

16(E(η2))2

h4
3Q

)1/3
n2/3

(Zhang et al., 2005). Both components of the factor casy, namely E(η2) and
Q, can be readily evaluated from the data. Specifically, the second moment
of the noise η can be estimated by using a (standardized) sample average of
squared continuously-compounded returns sampled at the highest frequen-
cies as discussed in Section 4.2.13 The quarticity term Q can be identified by
employing the Barndorff-Nielsen and Shephard’s quarticity estimator, namely
Q̂ = M

3h
∑M

j=1 r
4
jδ (Barndorff-Nielsen and Shephard, 2002), with continuously-

compounded returns sampled at relatively low frequencies, among other meth-
ods. The 15- or 20-minute frequency has been shown to work reasonably well
in practice.

The estimator of Zhang et al. (2005) is effectively a “two-scale” estimator
relying on very high-frequency return data to identify the bias component as
well as on lower frequency return data to characterize the individual realized
variances prior to averaging. In recent work, Zhang (2006a) has extended this
approach to a “multi-scale” setup. This new estimator achieves the best attain-
able rate for this type of problems, n1/4, and is robust to noise dependence in
transaction time. See Aït-Sahalia et al. (2005b) for further discussions.

4.5 Kernels

The subsampling, or “two-scale,” estimator is a kernel-based estimator.
Specifically, Barndorff-Nielsen et al. (2005) have shown that it can be rewritten

13 Recall that, under the MA(1) market microstructure model, E(ε2) = 2E(η2). Hence,
1

2M
∑M

j=1 r
2
jδ

p→
M→∞ E(η2).
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as a “modified” Bartlett kernel estimator, i.e.,

(25)V̂ sub =
(

1 − n− q+ 1
nq

)
γ̂0 + 2

q∑
s=1

(
q− s

q

)
γ̂s − 1

q
ϑq�

where γ̂s = ∑n−s
j=1 rjrj+s,ϑ1 = 0 andϑq = ϑq−1+(r1+· · ·+rq−1)

2+(rn−q+2+
· · · + rn)

2 for q � 2.
The modification 1

qϑq (called “edge-effect” in Barndorff-Nielsen et al.,
2005), which mechanically derives from the construction in the previous sub-
section, is crucial for the estimator’s consistency. Consider a more traditional,
“unmodified” Bartlett kernel estimator defined as

(26)V̂ Bartlett =
(
n− 1
n

q− 1
q

)
γ̂0 + 2

q∑
s=1

(
q− s

q

)
γ̂s�

Under Assumption 1 and Assumption 2b (i.e., the MA(1) noise case), Barndorff-
Nielsen et al. (2005) find that V̂ Bartlett is only “near-consistent” as q� n → ∞
with q

n → 0 and q2

n → ∞, namely under the same conditions yielding consis-
tency of V̂ sub. The limiting variance of V̂ Bartlett is given by 4(E(η2))2, which is
small in practice when compared to V .14

Traditional kernel estimators can be rendered consistent. Barndorff-Nielsen
et al. (2006b) have recently advocated unbiased symmetric kernels of the type

(27)V̂ BNHLS = γ̂0 +
q∑
s=1

ws(γ̂s + γ̂−s)�

where γ̂s = ∑n
j=1 rjrj−s with s = −q� � � � � q, ws = k(s−1

q ) and k is a function
on [0� 1] satisfying k(0) = 1 and k(1) = 0 (see, also, Sun, 2006, for a class
of unbiased, consistent estimators). If q = cn2/3, this family of estimators is
consistent (at rate n1/6) and asymptotically mixed normal. Interestingly, when
k(x) = 1 − x (the Bartlett case), the limiting variance of V̂ BNHLS is the same
as that of the two-scale estimator. Hence, c can be chosen asymptotically as
in the previous subsection. If, in addition, k′(0) = 0 and k′(1) = 0, then the
number of autocovariances can be selected so that q = cn1/2 and the estimator
is consistent at rate n1/4. When k(x) = 1 − 3x2 + 2x3, the limiting distribution
of V̂ BNHLS is the same as that of the multi-scale estimator of Zhang (2006a).

The limiting properties of the estimators in this subsection and in the previ-
ous subsection are derived under asymptotic conditions requiring the number

14 The “unmodified” Bartlett kernel estimator and the “two-scale” estimator are quadratic estimators.
A promising approach to consistent integrated variance estimation by virtue of unbiased quadratic
estimators is contained in Sun (2006).
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of autocovariances (or subsamples) q and the number of observations n to di-

verge to infinity as q
n → 0 and q2

n → ∞ (or q2

n → c2 when k′(0) = 0 and
k′(1) = 0). Whether these classical conditions in HAC estimation lead to valid
asymptotic approximations to the finite sample distributions of these estima-
tors is a question addressed in Bandi and Russell (2005b). As in Barndorff-
Nielsen et al. (2005, 2006b), Zhang et al. (2005), and Zhang (2006a), among
others, Bandi and Russell (2005b) operate under Assumption 1 (with αt = 0
and σ ⊥⊥ W ) and Assumption 2b. They recognize that, in practice, the number
of autocovariances q is selected as a function of the number of observations n
and set the ratio between q and n equal to a value φ such that φ ∈ (0� 1]. Sub-
sequently, they derive the finite sample MSE properties of the Bartlett kernel
estimator in Eq. (26), of the subsampling estimator in Eq. (22), and of the
class of symmetric kernels in Eq. (27) as a function of φ. Finally, they opti-
mize these properties by choosing φ as the minimizer of each estimator’s finite
sample MSE. Their main results can be summarized as follows:

1. The finite sample MSE properties of the consistent, two-scale estimator
and of the inconsistent, “unmodified” Bartlett kernel estimator are simi-
lar.

2. A large component of their mean-squared error is bias-induced.
3. Asymptotic bandwidth selection methods (as in Eq. (24) above) can be

very suboptimal in their case and, more generally, in the case of biased
kernel estimators. Because their finite sample bias washes out asymptoti-
cally, asymptotic methods do not take the finite sample bias into account
and have a tendency to select an excessively small number of bandwidths.
A small number of bandwidths can lead to a large bias component in a
finite sample.

4. This bias component can be reduced by choosing q in order to minimize
the estimator’s finite sample MSE. In the case of the modified (two-scale)
and “unmodified” Bartlett kernel estimator, Bandi and Russell (2005b)
propose a simple (MSE-based) rule-of-thumb which is given by:

(28)q∗ ≈
(

3
2

V 2

n2

Q

)1/3

n�

Since the finite sample bias of these estimators does not depend on the
moments of the noise (it only depends on the underlying variance process
and the number of observations), this ratio should not be surprising when
compared to Eq. (13). As earlier, the ratio trades-off bias and variance.
If the bias component (in the numerator) is large relative to the variance
component (in the denominator), then the number of autocovariances
should be large. Preliminary (roughly unbiased) V and Q estimates can
be obtained by using the classical realized variance estimator and the
quarticity estimator with returns sampled at low 15- or 20-minute fre-
quencies, for instance.
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5. While the optimal finite sample MSE values of the two-scale estimator
and of the “unmodified” Bartlett kernel estimator are generally smaller
than the optimal finite sample MSE value of the classical realized vari-
ance estimator, the gains that these useful estimators can provide over
the classical realized variance estimator might be either lost, or severely
reduced, by suboptimally choosing the number of autocovariances.

6. The class of estimators proposed by Barndorff-Nielsen et al. (2006b) is
unbiased. Asymptotic bandwidth selection criteria are expected to be less
detrimental in this case, i.e., suboptimal bandwidth choices will likely lead
to smaller finite sample losses.

7. In general, even though all available consistent and “near-consistent” (in
the terminology of Barndorff-Nielsen et al., 2005) estimators can yield
accurate estimation of V when optimized, asymptotic approximations to
their finite sample estimation error might be imprecise. A careful as-
sessment of their accuracy requires paying close attention to their finite
sample properties.

5 Equilibrium price variance estimation: directions for future work

5.1 Alternative integrated variance measures

The study of the implications of market microstructure noise for integrated
variance estimation has largely focused on realized variance and its modi-
fications. However, in the frictionless case promising alternative estimators
have been studied in recent years. The (realized) range of Parkinson (1980)
(Alizadeh et al., 2002; Brandt and Diebold, 2006; Christensen and Podolskij,
2005; Martens and Van Dijk, 2007; and Rogers and Satchell, 1991, inter alia),
the Fourier approach of Malliavin and Mancino (2002) (see, also, Barucci and
Renò, 2002a, 2002b; and Kanatani, 2004a, 2004b), the realized power variation
(Jacod, 1994, and Barndorff-Nielsen and Shephard, 2003) and the bypower
variation of Barndorff-Nielsen and Shephard (2004a)15 – more on the last two
measures in what follows – are notable examples. It is now of interest to fully
understand the properties of these estimators (and other estimators recently
proposed) in the presence of realistic market microstructure frictions. Nielsen
and Frederiksen (2005) and Huang and Tauchen (2005) contain interesting
simulation work on the subject. Much is left for future research.

15 Corradi and Distaso (2006) use this statistic in the context of specification tests for parametric volatil-
ity models. Barndorff-Nielsen et al. (2006a) contain a broad discussion of this and other measures as
well as additional references.
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5.2 Relaxing the assumptions

Most of the current work on integrated variance estimation by virtue of
noisy high-frequency data is conducted under an assumed diffusion process
for the equilibrium price process and independent (of the equilibrium price
process) MA(1) market microstructure noise. While these assumptions pro-
vide a useful theoretical and empirical framework, important applications of
interest might require a richer structure.

We start with the properties of the noise process and its relation with the
underlying equilibrium price. Bandi and Russell (2003), Hansen and Lunde
(2006), and Aït-Sahalia et al. (2005b) provide early, alternative approaches to
noise persistence. A thorough discussion of the importance of allowing for de-
pendent noise, mostly when sampling at very high frequencies, is contained
in Hansen and Lunde (2006). Phillips and Yu (2005) emphasize that at high
frequencies the noise process might even display dependence of the nonsta-
tionary type. The observations of Hansen and Lunde (2006) and Phillips and
Yu (2005) can be understood in the context of the decomposition in Eq. (2):

(29)rjδ = r∗jδ + εjδ�

When gathering data at high frequencies, sampling between price updates oc-
curring solely in correspondence with changes in the depth leads to observed
returns that are equal to zero. In general, negligible observed returns rjδ com-
bined with unpredictable equilibrium returns r∗jδ (as implied by our baseline
model with αt = 0) induce highly persistent and potentially nonstationary mi-
crostructure noise components. Assume, for simplicity, rjδ = 0. Then,

(30)0 = r∗jδ + εjδ ⇒ ηjδ = η(j−1)δ − r∗jδ�
A broader argument can be made: any factor inducing sluggishness in the ad-
justments to the observed prices mechanically determines persistence in the
market microstructure noise components (Bandi and Russell, 2006b). Bandi
and Russell (2006b) identify three main factors affecting the stickiness of the
observed prices: the market structure (centralized versus decentralized mar-
kets), the type of price measurement (mid-quotes versus transaction prices),
and the sampling method (calendar time sampling versus event time sam-
pling). Mid-quotes that are posted on centralized markets and are sampled
in calendar time are expected to have noise components that are substantially
more dependent than transaction prices posted on decentralized markets and
sampled in event time. In other words, the extent to which persistence is a first-
order effect in the data depends on the economics of price formation as well
as on the adopted sampling scheme.

In their articulate study of the properties of market microstructure noise,
Hansen and Lunde (2006) also stress that attention should be paid to the
dependence between the underlying equilibrium price process and market
microstructure noise. Similarly to noise persistence, this dependence some-
what mechanically derives from the degree of stickiness in the observed prices
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(Bandi and Russell, 2006b). Equation (29) shows that the more stable the
observed prices are, the stronger is the negative dependence between equi-
librium returns and noise returns. Hence, the factors inducing persistent noise
components are also expected to be the factors inducing negative dependence
between the noise returns and the equilibrium returns (Bandi and Russell,
2006b). Barndorff-Nielsen et al. (2006b) and Kalnina and Linton (2006) pro-
pose kernel-based approaches to the consistent estimation of integrated vari-
ance under some form of dependence between noise and equilibrium price. It
is an important challenge for the literature on nonparametric variance estima-
tion to study methods that provide satisfactory finite sample performance when
noise persistence and dependence between noise and underlying equilibrium
price are relevant effects in the data. In the case of kernel estimators, the issue
of bandwidth selection is expected to be, as earlier, of first-order importance.

We now turn to models for the equilibrium price. The equilibrium price for-
mation mechanism in Assumption 1 can be generalized to allow for a jump
component in addition to the classical continuous semimartingale component.
Barndorff-Nielsen and Shephard (2004a) have provided several stimulating
theoretical results to show how to identify the integrated variance of the equi-
librium price’s continuous sample path component when finite activity jumps
play a role (see, also, Mancini, 2003, 2004, for an alternative approach). Their
main result is that realized power and realized bypower variation measures are,
if properly constructed, “robust” to the presence of discontinuous components
of this type. Assume the equilibrium price process is defined as in Assump-
tion 1 and add a component to it expressed as vt = ∑N(t)

j=1 cj , where N(t) is a
finite activity, simple counting process and the c′js are non-zero random vari-
ables.16 Thus, p∗

t = αt +mt + vt . Now define the r� s-order bypower variation
BV(r�s) as

(31)BV(r�s) = M−1+(r+s)/2
M−1∑
j=1

∣∣r∗jδ∣∣r∣∣r∗(j+1)δ

∣∣s�
In the absence of market microstructure frictions, Barndorff-Nielsen and
Shephard (2004a) show that

(32)BV(r�s)
p→

M→∞
μrμs

h∫
0

σr+ss ds�

16 If N(t) is an homogeneous Poisson process and the c′js are i.i.d., then vt is a compound Poisson
process.
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where μr = E(|Z|r) = 2r/2 %(
1
2 (r+1))

%( 1
2 )

with Z ∼ N(0� 1), if max(r� s) < 2.17 This

result readily implies that

(33)μ−1
r μ−1

2−rBV(r�2−r)
p→ V �

as M → ∞. Since, when microstructure noise is assumed to be absent, re-
alized variance converges to V plus the sum of the squared jumps over the
period (

∑N(h)
j=1 c2

j ), subtracting μ−1
r μ−1

2−rBV(r�2−r) (with r = 1, for instance)
from realized variance consistently estimates the sum of the squared jumps in
the no noise case. This observation is employed by Andersen et al. (2007) and
Huang and Tauchen (2005) in their analysis of the contribution of jumps to
total price variance. Huang and Tauchen (2005) offer interesting simulation
evidence about the robustness of this procedure to some form of market mi-
crostructure noise. More theoretical and empirical work ought to be done on
the relative role played by jumps and continuous sample path price compo-
nents in the presence of market frictions. Extensions to infinite activity jumps,
and the impact of market frictions in this case, are also of interest. Barndorff-
Nielsen et al. (2006c) and Woerner (2006) are recent work on the subject in
the frictionless case.

As discussed above, Oomen (2005, 2006) models the underlying equilibrium
price as a pure jump process. In Large (2006), it is the observed price process
which is modeled as a pure jump process with constant jumps whereas, co-
herently with Assumption 1, the underlying equilibrium price process evolves
as a stochastic volatility semimartingale. The difference between the observed
price process and the underlying continuous semimartingale defines market
microstructure noise. Write the observed price process as

(34)pt = p0 +
t∫

0

cs dNs�

whereNs is a simple counting process and c is an adapted process taking values
k and −k, with k > 0. The quadratic variation of the observed price process
[p]h can then be expressed as k2N(h) since k represents the constant size of
the jumps and N(h) defines the number of jumps over the time interval h.
Notice that the process N(h) can be decomposed into the number of “contin-
uations” C(h), i.e., the number of jumps in the same direction as the previous
jump, and the number of “alternations” A(h), i.e., the number of jump re-
versals. Under assumptions, Large (2006) shows that the integrated variance

17 Realized r-order power variation is defined as PV(r) = M−1+r/2 ∑M
j=1 |r∗jδ|r . The limiting properties

of PV(r) are studied in Jacod (1994) and Barndorff-Nielsen and Shephard (2003, 2004a). See Barndorff-
Nielsen et al. (2006a) for discussions.
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of the underlying, unobservable semimartingale price process V can be con-
sistently estimated using the quadratic variation of observed price process.
Specifically, a consistent (in an asymptotic theory assuming increasingly fre-
quent observations and small jumps) estimator can be defined by computing
[p]h C(h)A(h) . While the quadratic variation of the observed price [p]h is generally
a biased estimate of the quadratic variation of the underlying equilibrium price
[p∗]h, the bias can be corrected by using the factor C(h)

A(h) . The intuition goes as
follows. The quadratic variation of the observed price process provides impor-
tant information about the quadratic variation of the unobserved equilibrium
price unless most of the jumps are alternations, for instance. In this case, [p]h
will be an upward biased estimate of [p∗]h. The correction factor C(h)

A(h) will then
act as a deflator.

In light of the local constancy of the observed price in the presence of an
ever-evolving underlying equilibrium price, this approach captures the “me-
chanical effect” described in Bandi and Russell (2006b) yielding noise depen-
dence and negative correlation between the noise and the underlying efficient
price. The model’s maintained assumption is that the observed prices change
by fixed amounts or can be reduced, possibly by virtue of “rounding,” to
changes by fixed amounts. The practical applicability of this promising method
will then depend on the nature of the data and hence on the price formation
mechanism in specific markets. In general, an attentive analysis of the mar-
kets’ fine grain dynamics has the potential to furnish important information
about the process leading to market frictions. This information should be put
to work to justify the use of different modeling and estimation approaches to
integrated variance estimation.

5.3 Multivariate models

The provision of methods intended to identify integrated covariances and
betas in the presence of market microstructure noise contaminations repre-
sents a necessary next step for the effective practice of portfolio choice and
risk management through high-frequency asset price data. Barndorff-Nielsen
and Shephard (2004b) study the asymptotic properties of realized covariance,
i.e., the sum of the cross-products between two asset’s calendar time returns
over a period (a natural extension of the notion of “realized variance”), and
realized beta in the frictionless case. To fix ideas, consider a second continu-
ous stochastic volatility semimartingale price process p∗

(2)t and re-define the
original price process as p∗

(1)t . Assume, for simplicity, that the dynamics of the
two price processes are driven by the same, scalar Brownian motion. The real-
ized covariance (over h) between the original price 1 and price 2 is naturally
defined as Ĉ(1)(2) = ∑M

j=1 r
∗
(1)jδr

∗
(2)jδ, where r∗(u)jδ = p∗

(u)jδ − p∗
(u)(j−1)δ with

u = 1� 2, and, as earlier, δ = h/M . Similarly, the realized beta between asset

1 and asset 2 is defined as B̂(1)(2) = Ĉ(1)(2)/(
√
V̂(1)V̂(2)). In the absence of fric-
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tions, Barndorff-Nielsen and Shephard (2004b) show that Ĉ(1)(2) is consistent
for

∫ h
0 σ(1)sσ(2)s ds, i.e., (the increment of) the covariation process between

price 1 and price 2 over h, and asymptotically mixed-normally distributed with
an estimable limiting variance as M → ∞. The corresponding results in the
B̂(1)(2) case follow from the consistency of the realized covariance and vari-
ance estimates, as well as from their joint mixed normality, in the no noise
case. Barndorff-Nielsen et al. (2006a) contains a comprehensive discussion of
these (and other) findings.

New issues arise in practice when computing high-frequency estimates of in-
tegrated covariances and betas. Information arrives at different frequencies for
different assets, thereby leading to an additional microstructure effect having
to do with nonsynchronicity in the underlying price formation processes. Even
abstracting from the presence of a noise component as in previous sections,
nonsynchronous trading leads to downward biased realized covariance esti-
mates when sampling continuously-compounded returns in calendar time at
high frequencies. This is the so-called Epps (1979) effect. The asset-pricing lit-
erature has long recognized the importance of this effect. Scholes and Williams
(1977), Dimson (1979), and Cohen et al. (1983), among others, use leads and
lags in nonparametric covariance measures to adjust for nonsynchronous trad-
ing. Martens (2005) reviews the early work on the subject. In the realized
covariance case, the adjusted estimator with U lags and L leads can be simply
defined as ĈUL

(1)(2) = ∑M
j=1

∑U
s=−L r∗(1)jδr

∗
(2)(j−s)δ. The logic behind this adjust-

ment is well known (see, e.g., Cohen et al., 1983). Assume the equilibrium
returns are martingale difference sequences (αt = 0). Then, ĈUL

(1)(2) is virtually
unbiased for the true covariation over the period provided U and L are large
enough. If U and L are small, then lack of price updates for either stock is
bound to induce (downward) biases.

Initial work on realized covariance estimation in the presence of noisy high-
frequency data is contained in Bandi and Russell (2005a) and Martens (2005).
Bandi and Russell (2005a) study MSE-based optimal sampling for the purpose
of realized covariance and beta estimation. Nonsynchronicity is accounted for
by adding leads and lags to the optimized realized covariance estimator. Future
research should study direct MSE-based optimization of the lead–lag estima-
tor (for a certain number of leads and lags) as well as optimal choice of the
number of leads and lags when noise is present. As is well known, the inclusion
of a large number of leads and lags improves the bias properties of the esti-
mator but increases its variability. Martens (2005) studies the MSE properties
of a variety of covariance estimators (including realized covariance relying on
equally-spaced returns and lead–lag estimators) through simulations based on
Lo and MacKinlay’s (1990) nonsynchronous trade model.

Recently, Hayashi and Yoshida (2005, 2006), Sheppard (2006), and Zhang
(2006b), among others, have introduced promising, alternative approaches to
high-frequency covariance estimation. The Hayashi and Yoshida’s estimator,
for instance, sums the products of all overlapping tick-by-tick returns rather
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than the products of the calendar time returns, as is the case for realized co-
variance. Specifically, the estimator is defined as

(35)
#∑
j=1

∑
s∈Sj

r∗(1)jr
∗
(2)s�

where r∗(u)j = p∗
(u)j − p∗

(u)(j−1) with u = 1� 2; Sj = {s|(t(1)j−1� t
(1)
j ) ∩ (t(2)s−1�

t(2)s ) �= 0}, the tj ’s are transaction times and # denotes the number of trans-
actions for asset 1 over the period. In the absence of classical microstruc-
ture noise contaminations, but in the presence of nonsynchronous trading,
the Hayashi and Yoshida estimator is consistent and asymptotically normally
distributed as the number of observations increases without bound over the
trading day (Hayashi and Yoshida, 2005).

Voev and Lunde (2007) and Griffin and Oomen (2006) provide thorough
finite sample studies of the MSE properties of several covariance estimators,
including realized covariance, optimally-sampled realized covariance, and the
Hayashi–Yoshida estimator, as well as recommendations for practical imple-
mentations.

Much remains to be done. While the first-order issues in high-frequency
covariance estimation are likely to be fully understood, the methods and solu-
tions are still in constant evolution. Arguably, the main goal of the literature is
to provide reliable forecasts of large covariance matrices. We are far from this
goal. On the one hand, the notion of reliability depends on the adopted metric
(see below for discussions). On the other hand, the dimensionality of problems
of practical interest continues to pose substantial issues when relying on high-
frequency nonparametric estimates. Considerable effort is now being devoted
to obtaining unbiased and efficient, in-sample, high-frequency covariance esti-
mates. We welcome this effort and emphasize that out-of-sample performance
will ultimately be the judge.

5.4 Forecasting and economic metrics

Understandably, the initial work on integrated variance estimation by virtue
of high-frequency data was largely motivated by volatility prediction (see, e.g.,
Andersen et al., 2003, 2004, 2005, and the references therein). In the no noise
case, high-frequency volatility forecasting using alternative reduced-form mod-
els, as well as alternative integrated variance estimators, has been successfully
conducted by Ghysels et al. (2006) and Forsberg and Ghysels (2007), among
many others (Andersen et al., 2006a, review this literature).

The noise case is now receiving substantial attention. Bandi and Russell
(2006a) and Bandi et al. (2006) employ reduced-form models to show that
optimally-sampled realized variances (covariances) outperform realized vari-
ances (covariances) constructed using ad hoc intervals in predicting variances
(covariances) out-of-sample (see, also, Andersen et al., 2006b). Ghysels and
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Sinko (2006) use the MIDAS approach of Ghysels et al. (2006) to evalu-
ate the relative performance of realized variance based on fixed intervals,
bias-corrected realized variance as in Eq. (17) above, and power variation.
Confirming findings in Ghysels et al. (2006), their results point to the supe-
rior out-of-sample performance of power variation. Large (2006) employs the
HAR-RV model of Corsi (2003), as in Andersen et al. (2007), to stress that his
“alternation estimator” can have better forecasting properties than realized
variance constructed using fixed, arbitrary intervals.

More work ought to be done. On the one hand, a comprehensive study
using a variety of variance/covariance measures and reduced-form models ap-
pears to be needed. To this day, the literature appears to solely agree on the
fact that realized variance constructed using ad hoc fixed intervals is gen-
erally dominated, in terms of forecasting performance, by alternative mea-
sures. A complete comparison between these alternative measures, including
optimally-sampled realized variance, optimally-sampled bias-corrected real-
ized variance, and consistent kernel estimators, appears to be an important
topic for future empirical work on the subject. On the other hand, as force-
fully emphasized by Bandi and Russell (2006b), assessing the out-of-sample
performance of alternative variance estimates using relevant economic met-
rics is arguably the single most important test in the literature. Thus far, two
economic metrics have been proposed. Bandi and Russell (2006a) consider
a portfolio allocation problem and the long-run utility that a mean-variance
representative investor derives from alternative variance forecasts as the rel-
evant performance criterion. The same portfolio-based approach has been
recently implemented by Bandi et al. (2006) and De Pooter et al. (2006)
in a multivariate context (see Fleming et al. 2001, 2003, and West et al.,
1993, in the no-noise case). Bandi and Russell (2005b, 2006c) study volatil-
ity forecasting for the purpose of option pricing in the context of a simulated
derivative market (see Engle et al., 1990, in the no-noise case). In agree-
ment with the forecasting results derived from reduced-form models, the use
of economic metrics indicates that optimally-sampled realized variances (co-
variances) have the potential to substantially outperform realized variances
(covariances) based on fixed intervals. In addition, optimally-sampled real-
ized variances can yield more accurate forecasts than certain consistent ker-
nel estimators (such as the two-scale estimator) when these estimators are
implemented using asymptotic bandwidth selection methods. Consistent and
“near-consistent” kernel estimators that are implemented at their full po-
tential on the basis of finite sample criteria (as recommended by Bandi and
Russell, 2005b) are likely to dominate optimally-sampled realized variance
in the context of the above-mentioned metrics. Again, future work on the
subject should provide a more comprehensive study focusing on a variety of
suggested measures. In addition, alternative economic metrics should be in-
vestigated.
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6 The variance of microstructure noise: a consistency result

Even though the classical realized variance estimator is not a consistent
estimator of the integrated variance of the underlying equilibrium price, a
re-scaled version of the standard realized variance estimator is, under assump-
tions, consistent for the variance of the noise return component (Bandi and
Russell, 2003, and Zhang et al., 2005). More generally, sample moments of
the observed return data can estimate moments of the underlying noise return
process at high-frequencies (see Eq. (14) above). Bandi and Russell (2003) dis-
cuss this result and use it to characterize the MSE of the conventional realized
variance estimator.

While the literature on integrated variance estimation focuses on the volatil-
ity features of the underlying equilibrium price, the empirical market mi-
crostructure literature places emphasis on the other component of the observed
price process in Eq. (1), namely the price frictions η. When p is a transaction
price, such frictions can be interpreted in terms of transaction costs in that they
constitute the difference between the observed price p and the corresponding
equilibrium price p∗.18 Hasbrouck (1993) and Bandi and Russell (2004) pro-
vide related, but different, frameworks to use transaction price data in order to
estimate the second moment of the transaction cost η (rather than moments
of ε as generally needed in the integrated variance literature) under mild as-
sumptions on the features of the price formation mechanism in Section 2. The
implications of their results for measuring transaction costs are the subject of
the next sections. We start with a discussion of traditional approaches to trans-
action cost evaluation.

7 The benefit of consistency: measuring market quality

7.1 Transaction cost estimates

Following Perold (1988), it is generally believed that an ideal measure of
the execution cost of a trade should be based on the comparison between the
trade price for an investor’s order and the equilibrium price prevailing at the
time of the trading decision. Although informed individual investors can plau-
sibly construct this measure, researchers and regulators do not have enough
information to do so (see Bessembinder, 2003, for discussions).

Most available estimates of transaction costs relying on high-frequency data
hinge on the basic logic behind Perold’s original intuition. Specifically, there
are three high-frequency measures of execution costs that have drawn atten-

18 Measuring the execution costs of stock market transactions and understanding their determinants
is of importance to a variety of market participants, such as individual investors and portfolio man-
agers, as well as regulators. In November 2000, the Security and Exchange Commission issued Rule 11
Ac. 1-5 requesting market venues to widely distribute (in electronic format) execution quality statistics
regarding their trades.
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tion in recent years, i.e., the so-called bid–ask half spread, the effective half
spread, and the realized half spread. The bid–ask half spread is defined as half
the difference between ask quote and bid quote. The effective half spread is
the (signed19) difference between the price at which a trade is executed and
the mid-point of reference bid–ask quotes. As for the realized half spread, this
measure is defined as the (signed) difference between the transaction price
and the mid-point of quotes in effect some time after the trade.20 In all cases,
an appropriately chosen bid–ask mid-point is used as an approximation for the
relevant equilibrium price.

The limitations of these measures of the cost of trade have been pointed
out in the literature (the interested reader is referred to the special issue of the
Journal of Financial Markets on transaction cost evaluation, JFM 6, 2003, for
recent discussions). The bid–ask half spread, for example, is known to overes-
timate the true cost of trade in that trades are often executed at prices within
the posted quotes. As for the effective and realized spreads, not only do they
require the trades to be signed as buyer or seller-initiated, but they also require
the relevant quotes and transaction prices to be matched.

The first issue (assigning the trade direction) arises due to the fact that com-
monly used high-frequency data sets (the TAQ database, for instance) do not
contain information about whether a trade is buyer or seller-initiated. Some
data sets do provide this information (the TORQ database being an example)
but the length of their time series is often insufficient. Naturally, then, a con-
siderable amount of work has been devoted to the construction of algorithms
intended to classify trades as being buyer of seller-initiated simply on the basis
of transaction prices and quotes (see, e.g., Lee and Ready, 1991, and Ellis et
al., 2000). The existing algorithms can of course missclassify trades (the Lee
and Ready method, for example, is known to categorize incorrectly about 15%
of the trades), thereby inducing biases in the final estimates. See Bessembinder
(2003) and Peterson and Sirri (2002) for discussions.

The second issue (matching quotes and transaction prices) requires poten-
tially arbitrary judgment calls. Since the trade reports are often delayed, when
computing the effective spreads, for example, it seems sensible to compare the
trade prices to mid-quotes occurring before the trade report time. The usual
allowance is 5 seconds (see, e.g., Lee and Ready, 1991) but longer lags can of
course be entertained.

This said, there is a well-known measure which can be computed using low
frequency data and does not require either the signing of the trades or the
matching of quotes and transaction prices, i.e., Roll’s effective spread estimator
(Roll, 1984). Roll’s estimator does not even rely on the assumption that the
mid-points of the bid and ask quotes are valid proxies for the unobserved equi-

19 Positive for buy orders and negative for sell orders.
20 The idea is that the traders possess private information about the security value and the trading costs
should be assessed based on the trades’ non-informational price impacts.
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librium prices. The idea behind Roll’s measure can be easily laid out using the
model in Section 2. Write the model in transaction time. Assume

(36)ηi = sIi�

where Ii equals 1 for a buyer-initiated trade and −1 for a seller-initiated trade
with p(Ii = 1) = p(Ii = −1) = 1

2 . If Assumption 1 (with αt = 0) and
Assumption 2b are satisfied, then

(37)E(r� r−1) = −s2�

Equivalently,

(38)s = √−E(r� r−1)�

Thus, the constant width of the spread can be estimated consistently based
on the (negative) first-order autocovariance of the observed (low-frequency)
stock returns.

Roll’s estimator hinges on potentially restrictive assumptions. The equilib-
rium returns r∗ are assumed to be serially uncorrelated. More importantly, the
microstructure frictions in the observed returns r follow an MA(1) structure,
as largely implied by bid–ask bounce effects, with a constant cost of trade s.
Finally, the estimator relies on the microstructure noise components being un-
correlated with the equilibrium prices.

7.2 Hasbrouck’s pricing errors

Hasbrouck (1993) assumes the price formation mechanism in Eq. (1). How-
ever, his setup is in discrete time and time is measured in terms of transaction
arrival times. Specifically, the equilibrium price p∗ is modeled as a random
walk while the η’s, which may or may not be correlated with p∗, are mean-zero
covariance stationary processes. Hence, he considerably relaxes the assump-
tions that are needed to derive the classical Roll effective spread estimator.
Hasbrouck (1993) interprets the difference η between the transaction price p
and the equilibrium price p∗ as a pricing error impounding microstructure ef-
fects. The standard deviation of the pricing error ση is the object of interest.
Because stocks whose transaction prices track the equilibrium price can be re-
garded as being stocks that are less affected by barriers to trade, ση is thought
to represent a natural measure of market quality.

Using methods in the tradition of Beveridge and Nelson (1981) and Watson
(1986) to study nonstationary time series (the observed price p in this case)
expressed as the sum of a nonstationary component (the equilibrium price p∗)
and a residual stationary component (the pricing error η), Hasbrouck (1993)
provides estimates (and lower bounds) for ση. His empirical work focuses on
NYSE stocks and utilizes transaction data collected from the Institute for the
Study of Securities Markets (ISSM) tape for the first quarter of 1989. His (aver-
age) estimated ση value is equal to about 33 basis points. Under an assumption
of normality, the average value for the expected transaction cost E|η| is equal
to about 26 basis points ( 2√

π
ση ≈ 0�8ση) in his data.
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7.3 Full-information transaction costs

Bandi and Russell (2004) define an alternative notion of pricing error. Their
approach imposes more economic structure on the model in Section 2. They
begin by noting that in a rational expectation setup with asymmetric informa-
tion two equilibrium prices can be defined in general: an “efficient price,” i.e.,
the price that would prevail in equilibrium given public information, and a
“full-information price,” the price that would prevail in equilibrium given pri-
vate information. Both the efficient price and the full-information price are
unobservable. The econometrician only observes transaction prices.

In this setting, two sources of “market inefficiency” arise. First, transac-
tion prices deviate from efficient prices due to classical market microstructure
frictions (see Stoll’s AFA presidential address, Stoll, 2000, for discussions).
Second, the presence of asymmetric information induces deviations between
efficient prices and full-information prices. Classical approaches to transac-
tion cost evaluation (in Section 7.1) and Hasbrouck’s important approach to
pricing error estimation (in Section 7.2) refer to the efficient price as the rel-
evant equilibrium price. Hence, these methods are meant to only account for
the first source of inefficiency.21

A cornerstone of market microstructure theory is that uninformed agents
learn about existing private information from observed order flow (see, e.g.,
the discussions in O’Hara, 1995). Since each trade carries information, mean-
ingful revisions to the efficient price are made regardless of the time interval
between trade arrivals. Hence, the efficient price is naturally thought of as
a process changing discretely at transaction times. Contrary to the public-
information set, the full-information set, by definition, contains all information
used by the agents in their decisions to transact. Hence, the full-information
price is unaffected by past order flow. Barring occasional news arrivals to the
informed agents, the dynamic behavior of the full information price is expected
to be relatively “smooth.” As for the microstructure frictions, separate prices
for buyers and sellers and discreteness of prices alone suggest that changes in
the microstructure frictions from trade to trade are discrete in nature.

Bandi and Russell (2004) formalize these ideas by writing the model in Sec-
tion 2 in transaction time. They add structure to the specification in Eq. (1) in
order to account for the desirable properties of efficient price, full-information
price, and microstructure frictions. Specifically, write

(39)pi = p∗
ti
+ ηi

(40)= p∗
ti
+ η

asy
i + ηfri

i �

21 There is of course a sense in which realized spreads can capture both components with a suitably
chosen lagged midpoint. It is plausible that the notional efficient price used in Hasbrouck’s approach
could also be viewed as a full-information price. Both issues are worth further exploration.
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where p∗
ti

is now the (logarithmic) full-information price, p∗
ti
+ η

asy
i is the

discretely-evolving (logarithmic) efficient price, and ηfri
i denotes conventional

(discrete) microstructure frictions. The deviation ηi includes a classical fric-
tion component ηfri

i and a pure asymmetric information component ηasy
i . The

former is affected by both liquidity and asymmetric information,22 the latter
should only be affected by asymmetric information. As in Section 2, it is con-
venient to rewrite the model in terms of observed continuously-compounded
returns, i.e.,

(41)ri = r∗ti + εi�

where ri = pi − pi−1, r∗ti = p∗
ti

− p∗
ti−1

, and εi = ηi − ηi−1. At very
high frequencies, the observed return data (the ri’s) are dominated by re-
turn components that are induced by the microstructure effects (the εi’s)
since the full-information returns evolve smoothly in time. Technically, r∗ti =
Op(

√
max |ti − ti−1|) and εi = Op(1). In this context, Bandi and Russell (2004)

employ sample moments of the observed high-frequency return data to iden-
tify the moments of the unobserved trading cost ηi. They do so by using the
informational content of observed return data whose full-information return
component r∗ti is largely swamped by the component εi when sampling is con-
ducted at the high frequencies at which transactions occur in practice.

Assume the covariance structure of the η’s is such that E(ηη−j) = θj �= 0
for j = 1� � � � � k < ∞ and E(ηη−j) = 0 for j > k� This structure accommo-
dates temporal dependence possibly induced by clustering in order flow. It is
then easy to show that

(42)ση =
√√√√(

1 + k

2

)
E
(
ε2

) + k−1∑
s=0

(s + 1)E(εε−k+s)�

For every sample period (a trading day, for instance), an estimate of ση can
thus be obtained by replacing the moments of the unobserved contaminations
ε with the corresponding sample moments of the observed returns. At very
high frequencies (represented here by a large number of observations for each
period), the full-information return component of each sample moment is ex-
pected to be negligible. Formally,

σ̂η =
√√√√(

k+ 1
2

)(∑M̃
i=1 r

2
i

M̃

)
+

k−1∑
s=0

(s + 1)
(∑M̃

i=k−s+1 riri−k+s
M̃ − k+ s

)
(43)

p→
M̃→∞

ση�

22 Market microstructure theory imputes classical frictions to operating (order-processing and
inventory-keeping) costs and adverse selection. See, for example, the discussion in Stoll (2000).
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where M̃ is now the total number of transactions over the period.23 This con-
sistency result only relies on the different stochastic orders of efficient price,
full-information price, and classical frictions. These orders are simply meant to
formalize the economics of price formation in markets with asymmetric infor-
mation. The result is robust to predictability in the underlying full-information
return process (αt �= 0), presence of infrequent jumps in the full-information
price, dependence between the full-information price and the frictions as well
as, of course, dependence in the frictions.

When the number of observations for each time period is not large enough,
the potential for (finite sample) contaminations in the estimates due to the
presence of a non-negligible full-information price component is higher. Bandi
and Russell (2004) suggest a finite sample adjustment.24

Bandi and Russell (2004) use the convention of calling the standard devi-
ation σ̂η, rather than the actual η, full-information transaction cost, or FITC.
While the FITCs are standard deviations, one can either assume normality of
the η’s (as done in Hasbrouck, 1993, for similar purposes) or use the approach
in Roll (1984) to derive expected costs. In the former case, a consistent esti-
mate of E|η| can be obtained by computing 2√

π
σ̂η. In the latter case, assume

η = sI, where the random variable I, defined in Section 7.1, represents now
the direction (higher or lower) of the transaction price with respect to the full-
information price and s is a constant full-information transaction cost. Then,
σ̂η consistently estimates s.

Using a sample of S&P 100 stocks over the month of February 2002, Bandi
and Russell (2004) report an average value for σ̂η equal to 14 basis points.
Under normality, their estimated average E|η| is then equal to about 11 ba-
sis points. This value is larger that the corresponding average effective spread
(about 6 basis points). Consistent with the economic interpretation underlying
the construction of the FITCs, Bandi and Russell (2004) find that the FITCs are
cross-sectionally more correlated with private information proxies, such as the
PIN measure of Easley and O’Hara (see, e.g., Easley et al., 1996), the turnover
ratio (Stoll, 1989), and the number of analysts following the stock, than the
average effective spreads and the average half bid–ask spreads. Furthermore,
they find that the deviations of the efficient prices from the full-information
prices, as determined by the existence of private information in the market

23 Under uncorrelatedness of the full-information returns, k can be estimated based on the dependence
properties of the observed returns.
24 In the absence of correlation between the frictions η and the full-information price p∗ the bias-
adjustment is relatively straightforward and can be implemented by using nonparametric estimates of
the full-information price variance as described in Footnote 10, Section 4.3. In the presence of correla-
tion betweenη andp∗, as typically implied by models with learning, a complete bias-correction requires
parametric assumptions on the underlying full-information price process. Bandi and Russell (2004) use
the price formation mechanism proposed by Hasbrouck and Ho (1987) to quantify the estimates’ finite
sample bias.
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place, can be as large as the departures of the transaction prices from the effi-
cient prices.

Assume now ση is stochastic and latent. In keeping with the logic behind
the vibrant and successful realized variance literature initiated by Andersen et
al. (2003) and Barndorff-Nielsen and Shephard (2002), the high-frequency ap-
proach suggested in Bandi and Russell (2004) can be interpreted as providing
a method to render the latent noise volatility observable (i.e., easily estimable
without filtering) for each period of interest. While the realized variance lit-
erature has placed emphasis on the volatility of the underlying equilibrium
price process, one can focus on the other volatility component of the observed
returns, i.e., microstructure noise volatility. Treating the volatility of the noise
component of the observed prices as being directly observable can allow one to
address a broad array of fundamental issues. Some have a statistical flavor hav-
ing to do with the distributional and dynamic properties of the noise variance
and its relationship with the time-varying variance of the underlying equilib-
rium price process. Some have an economic importance having to do with the
dynamic determinants of the cost of trade. Since the most salient feature of the
quality of a market is how much agents have to pay in order of transact, much
can be learned about the genuine market dynamics by exploiting the informa-
tional content of the estimated noise variances.

8 Volatility and asset pricing

Barring complications induced by the shorter observation span of asset price
data sampled at high frequencies, the methods described in the previous sec-
tions can have important implications for the cross-sectional asset pricing lit-
erature.

A promising, recent strand of this literature has been devoted to assessing
whether stock market volatility is priced in the cross-section of stock returns.
Being innovations in volatility correlated with changes in investment oppor-
tunities, this is a relevant study to undertake. Ang et al. (2005), Adrian and
Rosenberg (2006), and Moise (2004), among others, find that the price of mar-
ket volatility risk is negative. Volatility is high during recessions. Stocks whose
returns covary with innovations in market volatility are stocks which pay off
during bad times. Investors are willing to pay a premium to hold them. The re-
sults in Ang et al. (2005), Adrian and Rosenberg (2006), and Moise (2004) are
robust to the use of alternative, parametric and nonparametric, low-frequency
volatility estimates. In virtue of the potential accuracy of the newly-developed
high-frequency volatility measures, as described above, it is now of interest
to re-evaluate the importance of market volatility as a systematic risk factor
by studying the cross-sectional pricing implications of these measures. In this
context, market microstructure issues ought to be accounted for.

Another strand of this literature has focused on the pricing implication of
market liquidity. As is the case for market volatility, innovations in liquidity are
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correlated with the business cycle. Stocks yielding high returns when illiquidity
is high provide a hedge. Not surprisingly, the price of market illiquidity risk is
found to be negative (see, e.g., Acharya and Pedersen, 2005, and Pástor and
Stambaugh, 2003). Liquidity is hard to measure. The recent advances in high-
frequency volatility estimation provide a rich set of tools to separate liquidity-
induced components (named “market microstructure frictions” earlier) from
the estimated moments of the observed high-frequency asset returns. When
aggregated across stocks (for each period of interest), these components have
the potential to provide important information about the time-series proper-
ties of the overall level of market liquidity. These properties can be put to work
to better understand the pricing of (il-)liquidity risk from a novel standpoint.

The pricing of idiosyncratic risk is also of interest. Since individuals are
likely to take into account the cost of acquiring and rebalancing their portfo-
lios, expected stock returns should somehow embed idiosyncratic transaction
costs in equilibrium. This observation has given rise to a convergence be-
tween classical market microstructure work on price determination and asset
pricing in recent years (the interested reader is referred to the recent survey
of Easley and O’Hara, 2002). The studies on the cross-sectional relationship
between expected stock returns and cost of trade largely hinge on liquidity-
based theories of execution cost determination (Amihud and Mendelson, 1986;
Brennan and Subrahmanyam, 1996; Datar et al., 1998; and Hasbrouck, 2003;
among others). Alternatively, some recent studies rely on information-based
approaches to the same issue (see, e.g., Easley et al., 2002). Much remains to
be done. Full-information transaction costs, among other tools discussed ear-
lier, may provide a promising bridge between liquidity-based and information-
based arguments.

Generally speaking, the convergence between market microstructure theory
and methods and asset pricing is still in its infancy. We are convinced that the
recent interest in microstructure issues in the context of volatility estimation is
providing, and will continue to provide, an important boost to this inevitable
process of convergence.
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Abstract

In this chapter we study the problem of valuing a (possibly defaultable) derivative
asset contingent on the underlying economic state modeled as a Markov process. To
gain analytical and computational tractability both in order to estimate the model
from empirical data and to compute the prices of derivative assets, financial models in
applications are often Markovian. In the Markovian framework, the key object is the
pricing operator mapping (possibly defaultable) future payments (payoffs) into present
values. The pricing operators indexed by time form a pricing semigroup {Pt � t � 0} in
an appropriate payoff space, which can be interpreted as the transition semigroup of
the underlying Markov process with the killing rate equal to the default-free interest
rate plus default intensity. This framework encompasses a wide range of Markov-
ian financial models. In applications it is important to have a tool kit of analytically
tractable Markov processes with known transition semigroups that lead to closed-
form expressions for value functions of derivative assets. In particular, an analytical
simplification is possible when the process is a symmetric Markov process in the sense
that there is a measure m on the state space D and the semigroup {Pt � t � 0} is
symmetric in the Hilbert space L2(D�m). In this case we apply the Spectral Repre-
sentation Theorem to obtain spectral representations for the semigroup and value
functions of derivative assets. In this Chapter we survey the spectral method in gen-
eral, as well as those classes of symmetric Markov processes for which the spectral
representation can be obtained in closed form, thus generating closed form solutions
to Markovian derivative pricing problems.
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DMI-0422937.

223



224 V. Linetsky

1 Introduction

In this Chapter we study the problem of valuing a (possibly defaultable)
derivative asset contingent on the underlying state of the economy modeled as
a Markov process. While general development of financial asset pricing theory
does not require the Markovian assumption and is cast in the general setting
of the semimartingale theory as surveyed in Chapter 1 by Jarrow and Protter,
to gain analytical and computational tractability both in order to estimate the
model from empirical data and in order to compute the prices of derivative
assets, specific financial models in applications are often Markovian.

1.1 The Markovian derivatives pricing problem

In the Markovian setting, we assume that, in the risk-neutral economy, the
underlying state variable describing economic uncertainty follows a continu-
ous-time, time-homogeneous Markov process {Xt� t � 0} taking values in
some state space D. We assume that either D = Rd or D ⊂ Rd, an open
domain in Rd. In the latter case, we assume that the process starts from some
fixed state x ∈ D and is instantaneously killed at the first exit time from D,
τD = inf{t � 0: Xt /∈ D}, and sent to an isolated state denoted by Δ (cemetery
state in the terminology of Markov process theory or default or bankruptcy state
in financial terminology), where it remains forever. We adjoin the cemetery
state as an isolated point to the state space, so that the extended state space is
DΔ = D ∪ {Δ}. If the process never exits D, then, by convention, τD = ∞. We
assume that X is a strong Markov process and has right-continuous with left
limits sample paths in DΔ.

A possibly defaultable derivative asset is described by its promised payment
f (XT ) at maturity date T > 0 that depends on the state of the underlying
process XT at T . Generally, the default event can occur in one of two ways.
Either the underlying process X exits D and is killed at the first exit time τD,
at which time the derivative asset defaults, or the default occurs at a random
time τh with the hazard rate (intensity) ht = h(Xt) with h(x) � 0:

τh = inf

{
t � 0:

t∫
0

h(Xu) du � e

}
�

where e ∼ Exp(1) is an exponential random variable with unit mean and inde-
pendent of X. Thus, the default time is (x ∧ y := min{x� y}):

ζ = τh ∧ τD�

When default occurs, the holder of the asset looses the promised payoff
f (XT ) and possibly receives some recovery payment instead (see the re-
cent monographs Bielecki and Rutkowski, 2002; Duffie and Singleton, 2003;
Lando, 2004 for surveys of credit risk modeling). If h ≡ 0 and the process
never exits D, then the derivative asset is default-free.



Ch. 6. Spectral Methods in Derivatives Pricing 225

Assuming that the instantaneous default-free interest rate (the short rate)
follows the process {rt = r(Xt)� t � 0} with r(x) � 0, the present value of the
derivative asset at time zero is (for simplicity here we assume no recovery in
default):

V (T� x) = E
[
e−

∫ T
0 r(Xt) dtf (XT )1{ζ>T }

∣∣X0 = x
]
�

Recognizing that 1{ζ>T } = 1{τh>T }1{τD>T } and conditioning on the path of the
process X, the asset value can be re-written in the following form using the
intensity h:

V (T� x) = E
[
e−

∫ T
0 r(Xt) dtf (XT )1{τD>T }

× E
[
1{τh>T }|

{
Xt� t ∈ [0� T ]}]∣∣X0 = x

]
(1.1)= Ex

[
e−

∫ T
0 (r(Xt)+h(Xt)) dtf (XT )1{τD>T }

]
�

where Ex is with respect to the law of the process X started at X0 = x ∈ D.
Thus, the Markovian valuation problem reduces to computing expectations

of the form

(1.2)V (t� x) = Ptf (x) = Ex

[
e−

∫ t
0 k(Xu) du1{τD>t}f (Xt)

]
�

where the discount rate k is equal to the default-free short rate r plus the
instantaneous credit spread equal to the default intensity h, k(x) = r(x)+h(x).

The pricing operators {Pt � t � 0} indexed by time and considered as linear
operators in the Banach space Bb(D) of Borel measurable bounded payoff
functions equipped with the uniform norm form an operator semigroup called
the pricing semigroup. Introducing the pricing kernel Pt(x� dy) of the pricing
semigroup, Eq. (1.2) can be rewritten as

(1.3)V (t� x) = Ptf (x) =
∫
D

f(y)Pt(x� dy)�

If the pricing kernel has a density with respect to the Lebesgue measure on D
(the state-price density), then

(1.4)V (t� x) = Ptf (x) =
∫
D

f(y)p(t;x� y) dy�

The concept of the pricing semigroup in financial economics goes back to
Garman (1985). Applications of semigroups in financial economics have re-
cently been studied by Ait-Sahalia et al. (2004) and Hansen and Scheinkman
(2002) and by Linetsky (2004a). The primary focus of the recent survey by
Ait-Sahalia et al. (2004) is on statistical estimation of Markovian models. Our
primary focus in the present Chapter is on the valuation of derivative assets.
In probability theory and in mathematical physics the semigroup with the dis-
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count factor e−
∫ t

0 k(Xu) du is called the Feynman–Kac semigroup in honor of
Richard Feynman and Mark Kac (Feynman, 1948; Kac, 1951, 1959; see also
Chung and Zhao, 1995). Mathematical references on semigroups and Markov
processes include Applebaum (2004) and Ethier and Kurtz (1986).

The pricing semigroup can also be interpreted as the transition semigroup
of a Markov process {X̂t� t � 0} defined as the process X killed at the random
time ζ̂ = τk ∧ τD, where τD is the first exit time of X from D and τk is

τk = inf

{
t � 0:

t∫
0

k(Xu) du � e

}
�

k(x) = r(x)+ h(x)� e ∼ Exp(1)�

That is, we kill the process at the rate k equal to the short rate r plus default
intensity h (we re-interpret the discount rate as the killing rate in this formula-
tion). The resulting process X̂ is sent to the cemetery state at its lifetime ζ̂:

X̂t =
{
Xt� t < ζ̂�
Δ� t � ζ̂�

The pricing semigroup {Pt � t � 0} is thus interpreted as a transition semigroup
of the process X̂ with lifetime ζ̂, so that the value function of the derivative
asset is interpreted as:

(1.5)V (t� x) = Ptf (x) = Ex
[
f
(
X̂t

)
1{t>ζ̂}

]
�

and the pricing kernel and the state-price density (assuming it exists) are
identified with the transition kernel and the transition density of the Markov
process X̂. The semigroup is conservative, i.e., Pt(x�D) = 1 for each t � 0 and
x ∈ D, if and only if r ≡ 0, h ≡ 0, and the process never exits D, τD = ∞.
Otherwise, it is non-conservative.1 We will take advantage of this interpretation
of the pricing (Feynman–Kac) semigroup as the transition semigroup of the
Markov process X̂ with lifetime ζ̂ and will study the transition semigroup of X̂.
To distinguish the underlying process X and the process with killing at the rate
k(x) = r(x)+h(x), the latter will be denoted by X̂. Having the equality of the
pricing semigroup (1.2) with discounting and the transition semigroup (1.5) of
the killed process in mind, we will often use the terminologies of discounting
and killing interchangeably.

The Markovian valuation problem outlined above is quite general. A wide
range of financial models (various one- and multi-dimensional diffusion mod-
els, such as geometric Brownian motion, CIR, CEV, stochastic volatility mod-

1 The non-conservative case can be made into a conservative one as follows. Define an extended tran-
sition kernel on the extended state space DΔ = D ∪ {Δ} as follows: Pt(x� {Δ}) = 1 − Pt(x�D),
Pt(Δ� {Δ}) = 1, Pt(Δ�D) = 0, so that Pt(x�DΔ) = 1 for any x ∈ DΔ.
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els, Gaussian models, affine models, Lévy process-based pure jump and jump-
diffusion models, general state-inhomogeneous pure jump and jump-diffusion
models, etc.) across different markets (equity, credit, foreign exchange, com-
modity, energy, interest rate) and types of financial contracts (vanilla and
exotic options, bonds, credit derivatives, mortgages) fit into this framework.
However, in this general setting with the Banach space transition semigroup,
the expectations (1.1)–(1.5) are generally intractable analytically (the pricing
kernel and the state-price density are not known analytically) and can only
be computed numerically either by Monte Carlo simulation (see Glasserman,
2003 for a survey) or numerical partial integro-differential equations (PIDE)
methods by observing that the value function V (t� x) = Ptf (x) solves the ini-
tial value problem for the evolution equation:

(1.6)Vt = GV for t � 0 and V (0� x) = f (x)�

where G is the infinitesimal generator of the Markov process with killing X̂
and its transition semigroup, generally an integro-differential operator (see
Chapter 7 by Feng et al. in this volume for a brief survey).

However, in financial practice a premium is placed on models that are an-
alytically tractable with analytical solutions for value functions of derivative
assets that are fast and accurate to compute and, just as importantly, that al-
low easy computation of the hedge ratios (the Greeks) by direct differentiation
with respect to parameters of interest. In this regard, it is important to note
that in practice one is often interested in evaluating large portfolios. When
evaluating large portfolios, availability of analytical solutions for individual se-
curities becomes particularly important, as one needs to evaluate thousands of
security prices and hedge ratios. In fact, arguably one of the reasons why the
Black–Scholes–Merton option pricing model has been so widely successful and
so rapidly adopted in the market place lies in the fact that the model is analyt-
ically tractable. Ever since Black, Scholes, and Merton, the hunt has been on
for more general and more empirically realistic analytically tractable models
that lead to closed form solutions for value functions of derivative assets.

1.2 Symmetric semigroups and symmetric Markov processes

An important analytical simplification is possible if the Hilbert space struc-
ture is available and the Markov process is such that its transition semigroup is
symmetric in the Hilbert space metric. In particular, suppose there is a (finite
or infinite) measure m on D with full support, such that the pricing operators
Pt are symmetric operators in the real Hilbert space H := L2(D�m) with the
inner product

(1.7)(f� g) =
∫
D

f(x)g(x)m(dx)�
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i.e.,

(1.8)(Ptf� g) = (f�Ptg) for any t � 0 and f� g ∈ H�

Such a semigroup is said to be m-symmetric (or simply symmetric). Assuming
the transition density exists and the symmetry measure has a density m(x) with
respect to the Lebesgue measure, the transition density of an m-symmetric
Markov process is m-symmetric:

(1.9)p(t;x� y)m(x) = p(t; y� x)m(y) =: pm(t;x� y)m(x)m(y)�
where

(1.10)pm(t;x� y) = pm(t; y� x) = p(t;x� y)/m(y)
is the symmetric transition density with respect to the measure m (symmetry
between x and y).

If the semigroup is symmetric, then its infinitesimal generator G is a (gener-
ally unbounded) non-positive self-adjoint operator in L2(D�m). In this special
case one can invoke the Spectral Representation Theorem for self-adjoint
operators in Hilbert space to obtain a unique spectral representation for the
semigroup:

(1.11)Ptf =
∫

[0�∞)

e−λtE(dλ)f� ∀f ∈ L2(D�m)�

where E(dλ) is the so-called projection-valued spectral measure corresponding
to the negative of the infinitesimal generator −G. When the spectrum of −G
is purely discrete, the spectral representation simplifies to the eigenfunction
expansion:

(1.12)Ptf =
∞∑
n=1

cne
−λntϕn� cn = (f� ϕn)� ∀f ∈ L2(D�m)�

where ϕn are a complete orthonormal system of eigenvectors of −G with
eigenvalues λn, i.e., −Gϕn = λnϕn. The ϕn are also eigenvectors of Pt with
eigenvalues e−λnt , i.e., Ptϕn = e−λntϕn. They form a complete orthonormal
basis in L2(D�m), and cn are the expansion coefficients of the payoff f in this
basis. If for a particular model this spectral representation can be worked out
in closed form, it provides explicit closed-form representation for the pricing
operator, pricing kernel, state-price density, and value functions of derivative
assets.

A Markov process whose transition semigroup is m-symmetric is said to
be m-symmetric or simply symmetric. Fukushima et al. (1994) is the standard
reference text on the general theory of symmetric Markov processes. When
the process is a one-dimensional diffusion on some interval I ⊆ R (finite or
infinite) with the (finite or infinite) speed measure m (see Eq. (3.3) for defi-
nition) and appropriate boundary conditions at the endpoints of the interval,
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the pricing semigroup is symmetric in L2(I�m) without any further conditions,
and the Spectral Representation Theorem yields a spectral representation for
the state-price density and value functions of derivative assets. Applications of
the spectral theory to one-dimensional diffusions go back to McKean (1956).
Based on the work of Feller, McKean constructed a spectral representation
for a general one-dimensional diffusion (see also Ito and McKean, 1974, Sec-
tion 4.11). Wong (1964) investigated a class of diffusion processes possessing
stationary densities in the Pearson class for which the spectral representation
of the transition semigroup can be expressed in closed form in terms of cer-
tain special functions. Many of the diffusion processes important in finance
(such as Ornstein–Uhlenbeck, square-root CIR, Jacobi, etc.) fall within this
framework. In contrast to one-dimensional diffusions, for multi-dimensional
diffusions the m-symmetry condition restricts the form of the drift vector. For
jump processes, the m-symmetry restricts the form of the Lévy measure.

1.3 Chapter outline

The aim of this Chapter is to describe the spectral method in general, as
well as to give a survey of specific classes of analytically tractable models for
which the spectral representation can be obtained in closed form, leading to
analytical solutions for the state-price density and value functions of derivative
assets. Our plan is as follows. In Section 2 we survey some prerequisite notions
and results from the spectral theory of self-adjoint operators in Hilbert spaces
(Section 2.1) and symmetric semigroups of operators in Hilbert spaces (Sec-
tion 2.2). The key results here are the Spectral Representation Theorem for
self-adjoint operators in Hilbert space (Theorem 2.1) and the corresponding
result for symmetric semigroups (Theorem 2.2).

Since essentially all one-dimensional diffusions are symmetric, in Sections 3
and 4 we undertake a survey of the spectral method for one-dimensional
diffusions, both discussing the general spectral representation for a one-
dimensional diffusion (Section 3), and surveying specific families of analytically
tractable one-dimensional diffusions and associated analytically tractable fi-
nancial models, including options pricing models, interest rate models, and
credit risk models (Section 4). This survey of one-dimensional diffusion models
is primarily based on the series of papers Davydov and Linetsky (2001, 2003),
Gorovoi and Linetsky (2004, 2006), and Linetsky (2004a, 2004b, 2004c, 2004d,
2004e, 2005, 2006), where the spectral method has been profitably employed to
find analytical solutions for a wide range of financial models, including models
for vanilla and exotic options (such as Asian, barrier, and lookback options)
under various assumptions for the underlying asset price process, as well as
in models for interest rates, credit risk, and mortgage prepayments. Success-
ful applications of the spectral method in these models convinced the author
that the spectral method is a powerful tool to generate analytical solutions for
Markovian asset pricing problems. The spectral method has also been applied



230 V. Linetsky

to derivatives pricing by Albanese and co-authors (Albanese et al., 2001; Al-
banese and Kuznetsov, 2004, 2005; Albanese and Lawi, 2005), Boyarchenko
and Levendorskiy (2006), Lewis (1998, 2000) and Lipton (2001, 2002), Lipton
and McGhee (2002), Larsen and Sorensen (2007).

In Section 5 we discuss symmetric multi-dimensional diffusions. In Section 6
we described a procedure to generate analytically tractable jump-diffusion and
pure jump processes starting from an analytically tractable diffusion process
via Bochner’s subordination (stochastic time change, where the time change
process is a Lévy subordinator), as well as processes with stochastic volatility
via absolutely continuous time changes with the time change taken to be an
integral of an independent Markov process. Section 7 concludes this survey,
discusses some advantages of the spectral method in financial applications, and
outlines some further research directions.

The spectral expansion method has also found interesting applications in
econometrics for estimation of diffusion processes (Bibby et al., 2004; Hansen
et al., 1998; Florens et al., 1998; Larsen and Sorensen, 2007). In this chapter we
only survey derivatives pricing applications, and refer the reader to the recent
survey Ait-Sahalia et al. (2004) for econometrics applications.

2 Self-adjoint semigroups in Hilbert spaces

2.1 Spectral theory of self-adjoint operators in Hilbert spaces

In this section we review some basic notions and results from the spec-
tral theory of self-adjoint operators in Hilbert spaces. We primarily follow
Reed and Simon (1980), Demuth and van Casteren (2000), and Dunford and
Schwartz (1963).

Let H be a separable real Hilbert space. A linear operator (Dom(A)�A)
is a pair, where Dom(A) is a linear subspace of H (called the domain of A)
and A is a linear map from Dom(A) into H. The range of a linear operator
A is the image of its domain under the map A. Two operators A1 and A2 are
equal if Dom(A1) = Dom(A2) and A1f = A2f for all f ∈ Dom(A1). A linear
operator A2 is an extension of A1 if Dom(A1) ⊆ Dom(A2) and A1f = A2f for
all f ∈ Dom(A1). In this situation A1 is called a restriction of A2. The sum of
two operators A1+A2 has the domain Dom(A1+A2) = Dom(A1)∩Dom(A2)
and (A1 +A2)f := A1f +A2f for f ∈ Dom(A1 +A2).

A linear operator A is said to be bounded if there is a constant M > 0 such
that

‖Af‖ � M‖f‖ for all f ∈ Dom(A)
(here ‖f‖ ≡ (f� f ) is the norm in H). Any bounded operator A has a unique
extension A with Dom(A) = Dom(A), the closure of Dom(A). In particular,
if A is densely defined (i.e., Dom(A) is a dense subset of H), then the domain
of A coincides with the Hilbert space H. We will not distinguish between a
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bounded operator A and its bounded extension A. If we consider bounded
operators we always mean operators with Dom(A) = H.

For a densely defined operator A, its adjoint A∗ is defined as follows: g ∈
Dom(A∗) if there exists h ∈ H such that (Af� g) = (f� h), for all f ∈ Dom(A).
Then A∗ is a linear mapping from Dom(A∗) to H given by A∗g = h, g ∈
Dom(A∗). This means

(Af� g) = (f�A∗g)� ∀f ∈ Dom(A)� g ∈ Dom(A∗)�

A densely defined linear operator is called symmetric if

(Af� g) = (f�Ag)� ∀f� g ∈ Dom(A) ⊆ Dom(A∗)�

If A is symmetric and furthermore Dom(A) = Dom(A∗), then the operator
is called self-adjoint. If Dom(A) = H and A is symmetric, then A is bounded
and self-adjoint.

To formulate the spectral theorem for self-adjoint operators we need to de-
fine projection-valued measures or spectral measures.

Definition 2.1 (Spectral Measure). Let H be a separable real Hilbert space and
let B(R) be a Borel σ-algebra on R. A family of bounded linear operators
{E(B)�B ∈ B(R)} in H such that:

• (i) Each E(B) is an orthogonal projection (i.e., E2(B) = E(B) and
E∗(B) = E(B));

• (ii) E(∅) = 0, E(R) = I (I is the identity operator in H);
• (iii) If B = ⋃∞

n=1 Bn with Bn ∩ Bm = ∅ if n �= m, then E(B) =∑∞
n=1 E(Bn) (where the limit involved in the infinite series is taken

in the strong operator topology);
• (iv) E(B1)E(B2) = E(B1 ∩ B2);

is called a projection-valued measure, spectral measure, or the resolution of the
identity.

As in the case of scalar measures, the support of a spectral measure
(Supp(E)) can be defined as the smallest closed subset in R such that
E(Supp(E)) = I. For f ∈ H, μf (B) := (f� E(B)f ) is a well-defined Borel
measure on R normalized so that μf (R) = ‖f‖2.

Theorem 2.1 (Spectral Representation Theorem for Self-Adjoint Operators).
There is a one-to-one correspondence between self-adjoint operators A and
projection-valued measures {E(B)�B ∈ B(R)} in H, the correspondence being
given by:

Dom(A) =
{
f ∈ H:

∫
R

λ2μf (dλ) < ∞
}
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and

(2.1)Af =
∫
R

λE(dλ)f� f ∈ Dom(A)�

The integral in the spectral representation (2.1) of A can be understood in
the weak sense, that is,

(f�Ag) =
∫
R

λ
(
f� E(dλ)g

)
� f ∈ H� g ∈ Dom(A)�

In fact, this integral also converges in the strong sense in H. The spectral rep-
resentation of a self-adjoint operator A is abbreviated as

A =
∫
R

λE(dλ)�

The spectrum of A coincides with the support of its spectral measure E.
The spectral representation theorem gives rise to the following functional

calculus for self-adjoint operators. Let E be the spectral measure correspond-
ing to the self-adjoint operator A and let φ be a real-valued Borel measurable
function on R. Then one can define a new operator (a function φ(A) of the
operator A)

(2.2)φ(A) :=
∫
R

g(λ)E(dλ)�

which is a self-adjoint operator in H with domain

Dom
(
φ(A)

) =
{
f ∈ H:

∫
R

φ2(λ)μf (dλ) < ∞
}
�

It is bounded if and only if φ is bounded.
The resolvent set ρ(A) of a linear operator A consists of all α ∈ C such that

there exists a bounded operator Rα := (αI −A)−1 called the resolvent. From
the Spectral Representation Theorem, we have the spectral representation for
the resolvent of a self-adjoint operator:

Rαf = (αI −A)−1f =
∫
R

(α− λ)−1E(dλ)f� α ∈ ρ(A)� f ∈ H�

The complement σ(A) := C\ρ(A) of the resolvent set is called the spectrum
of A. The support of the spectral measure E of A coincides with the spectrum
σ(A). The resolvent set ρ(A) is open and the spectrum σ(A) is closed. If A is
self-adjoint, then the spectrum of A is non-empty and lies on the real axis.
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We say that a self-adjoint operator A is non-negative (non-positive) if

(f�Af ) � 0
(
(f�Af ) � 0

)
� ∀f ∈ Dom(A)�

If A is non-positive (non-negative), then its spectrum σ(A) lies on the non-
positive (non-negative) half-axis. If A is a non-negative self-adjoint operator,
its spectral representation takes the form

A =
∫

[0�∞)

λE(dλ)�

If A is a bounded operator, then its spectrum is non-empty and compact.
The pure point spectrum of A is defined as the set of all eigenvalues of A:

σpp(A) :=
{
λ ∈ R: ∃f ∈ Dom(A) such that Af = λf

}
�

One can distinguish the following subspaces in H: Hpp – the closure of the
linear hull of all eigenspaces of A, Hac – the set of all f ∈ H such that the
measure μf (B) = (f� E(B)f ) is absolutely continuous with respect to the
Lebesgue measure, and Hcs — the orthogonal complement of Hpp⊕Hac in H.
If f ∈ Hcs, then μf (B) := (f� E(B)f ) is a continuous measure singular with
respect to the Lebesgue measure. The subspaces Hpp, Hac , and Hcs are or-
thogonal to each other and invariant with respect to A. The restrictions App,
Aac , and Acs of A to Dom(A)∩Hpp, Dom(A)∩Hac , and Dom(A)∩Hcs are
self-adjoint as operators in Hpp, Hac , and Hcs, respectively. They are called
the pure point, absolutely continuous, and continuous singular components of A.
One can also define the absolutely continuous, continuous singular, and pure
point components of the spectrum of A: σac(A) := σ(Aac), σcs(A) := σ(Acs)
and σpp(A) := σ(App). The pure point spectrum so defined is the closure of
the pure point spectrum defined previously as the actual set of all eigenvalues.
Both definitions are used in the literature. With the definition of the pure point
spectrum as the closure of the set of all eigenvalues, one has a decomposition:

σ(A) = σac(A) ∪ σcs(A) ∪ σpp(A)
(however, the three components do not have to be disjoint). The continuous
spectrum is

σc(A) = σac(A) ∪ σcs(A)�
We say that λ ∈ σ(A) is in the essential spectrum of A, σe(A), if and only if

the range of E((λ−ε� λ+ε)) is infinite-dimensional for all ε > 0. If λ ∈ σ(A),
but the range of E((λ− ε� λ+ ε)) is finite-dimensional for some ε > 0, we say
that λ ∈ σd(A), the discrete spectrum of A. This gives a decomposition of the
spectrum into two disjoint components,

σ(A) = σd(A) ∪ σe(A)�
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The set σd(A) is not necessarily closed, but σe(A) is always closed. λ ∈ σd(A)
if and only if λ is an isolated point of σ(A) and λ is an eigenvalue of finite mul-
tiplicity. Obviously, σd(A) ⊂ σpp(A). λ ∈ σe(A) if and only if one or more of
the following holds: (a) λ ∈ σc(A) ≡ σac(A)∩σcs(A); (b) λ is a limit point of
the pure point spectrum σpp(A); (c) λ is an eigenvalue of infinite multiplicity.
Some authors (e.g., Dunford and Schwartz, 1963, p. 1393) define the essential
spectrum as follows: σe(A) := {λ ∈ R: Range of (λI − A) is not closed}. In
this definition, the essential spectrum of a self-adjoint operator A is the set
of non-isolated points of σ(A) (Dunford and Schwartz, 1963, p. 1395), and
λ ∈ σe(A) if and only if one or more of the following holds: (a) λ ∈ σc(A) ≡
σac(A) ∩ σcs(A); (b) λ is a limit point of the pure point spectrum σpp(A).
Eigenvalues of ordinary differential operators always have finite multiplicity,
so for such operators the two definitions of the essential spectrum coincide.

2.2 Self-adjoint semigroups in Hilbert spaces

We start by recalling some notions from the theory of operator semigroups
in Banach spaces (see Applebaum, 2004, Chapter 3; Davies, 1980; Demuth and
van Casteren, 2000; Ethier and Kurtz, 1986; Fukushima et al., 1994; Hille and
Phillips, 1957).

Definition 2.2. A family of bounded linear operators {Pt � t � 0} is called a
strongly continuous semigroup in a real Banach space (B� ‖·‖) if it possesses the
following properties:

• (i) (semigroup property) PsPt = Ps+t for all s� t � 0;
• (ii) (identity) P0 = I;
• (iii) (strong continuity) for every f ∈ B the mapping t (→ Ptf is con-

tinuous from [0�∞) to (B� ‖ · ‖) (i.e., lims→t ‖Ptf − Psf‖ = 0 for all
t � 0 and f ∈ B).

For every strongly continuous semigroup there exist constants M � 0 and
b ∈ R such that

‖Pt‖ � Mebt� t � 0

(where ‖A‖ = supf∈B ‖Af‖/‖f‖ is the operator norm). The semigroup is
called a contraction semigroup if the above inequality is valid with M = 1 and
b = 0, i.e.,

‖Pt‖ � 1� t � 0�

To every semigroup one can associate an operator which is called an infini-
tesimal generator of the semigroup:

Gf := lim
t↓0

1
t
(Ptf − f )� f ∈ Dom(G)�
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Dom(G) =
{
f ∈ B: lim

t↓0

1
t
(Ptf − f ) exists in B

}
�

We now assume that B = H is a separable real Hilbert space and Pt is a
strongly continuous contraction semigroup in H. The semigroup is called self-
adjoint in H if each Pt is a self-adjoint operator, i.e.,

(2.3)(Ptf� g) = (f�Ptg)� f� g ∈ H
(for a bounded operator the domain coincides with the whole Hilbert space H
and, hence, a bounded symmetric operator is self-adjoint; for such operators
there is no distinction between symmetric and self-adjoint).

We have the following theorem (Davies, 1980, p. 99; Hille and Phillips, 1957,
Theorem 22.3.1).

Theorem 2.2. The operator G is the infinitesimal generator of a strongly contin-
uous self-adjoint contraction semigroup {Pt � t � 0} in H if and only if G is a
non-positive self-adjoint operator in H. If

(2.4)−G =
∫

[0�∞)

λE(dλ)

is the spectral representation of −G, then for every t � 0

(2.5)Pt = etG =
∫

[0�∞)

e−λtE(dλ)�

(Note: we express the spectral expansion relative to the negative of the infinitesimal
generator to have a non-negative spectral parameter λ � 0.)

The spectral representation (2.5) comes from applying the functional calcu-
lus representation (2.2) to the exponential function. We thus have a one-to-one
correspondence between strongly continuous self-adjoint contraction semi-
groups in H and non-positive self-adjoint operators in H, their generators.

The resolvent of a strongly continuous self-adjoint contraction semigroup
{Pt � t � 0} is defined as a family {Rα� α > 0} of the resolvent operators Rα

for the infinitesimal generator G with α > 0 (note that since the spectrum
σ(G) ⊆ (−∞� 0], (0�∞) ⊂ ρ(G)):

(2.6)Rα = (αI − G)−1 =
∫

[0�∞)

(α+ λ)−1E(dλ)�

The resolvent can also be written as the Laplace transform of the semigroup:

(2.7)Rα =
∞∫

0

e−αtPt dt�
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Things simplify considerably when the infinitesimal generator has a purely
discrete spectrum (i.e., the essential spectrum is empty). Let −G be a non-
negative self-adjoint operator with purely discrete spectrum σd(−G) ⊆ [0�∞).
Then the spectral measure can be defined by

E(B) =
∑

λ∈σd(−G)∩B
P(λ)�

where P(λ) is the orthogonal projection onto the eigenspace corresponding to
the eigenvalue λ ∈ σd(−G), i.e., the subspace {f ∈ H: −Gf = λf }, and the
sum is over all eigenvalues that fall into the set B. Then the spectral represen-
tation of the semigroup generated by G takes the simpler form:

Ptf = etGf =
∑

λ∈σd(−G)
e−λtP(λ)f� t � 0� f ∈ H�

−Gf =
∑

λ∈σd(−G)
λP(λ)f� f ∈ Dom(G)�

For t = 0 we have the spectral expansion for any f ∈ H:

f =
∑

λ∈σd(−G)
P(λ)f� ‖f‖2 =

∑
λ∈σd(−G)

‖P(λ)f‖2�

If {ϕn}∞n=1 is a complete orthonormal system of eigenvectors of G with eigen-
values2 {−λn}∞n=1, λn � 0 (each eigenvalue is counted as many times as its
multiplicity, i.e., the dimension of the eigenspace; here all eigenvalues are as-
sumed to have finite multiplicity),

(2.8)−Gϕn = λnϕn�

then the eigenvector expansion is valid for any f ∈ H:

(2.9)f =
∞∑
n=1

cnϕn� cn = (f� ϕn)�

and the Parseval equality holds, ‖f‖2 = ∑∞
n=1 c

2
n. For each t > 0, the ϕn are

also eigenvectors of the operator Pt with eigenvalues e−λnt ,

(2.10)Ptϕn = e−λntϕn�
and the spectral representations of the semigroup and the resolvent take the
form:

(2.11)Ptf =
∞∑
n=1

cne
−λntϕn� t � 0� f ∈ H�

2 In our notation, λn are eigenvalues of the negative of the generator, −G, so that −λn are eigenvalues
of G.
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(2.12)Rαf =
∞∑
n=1

cnϕn

α+ λn
� α > 0� f ∈ H�

So far we have worked with an abstract Hilbert space H. We now come back
to the framework of Section 1.2 with the state space D, D = Rd or D ⊂ Rd,
an open domain in Rd, and m a (finite or infinite) measure on D and special-
ize to H = L2(D�m), the Hilbert space of square-integrable functions on D
endowed with the inner product (1.7). We further assume that the underly-
ing Markov process is symmetric, i.e., its transition semigroup is symmetric in
the sense of Eq. (1.8). All of the results in this section are thus applicable and
yield a spectral expansion of the transition semigroup of the symmetric Markov
process. Our interest is in the specific processes for which the spectral expan-
sion can be obtained in closed form, as it yields closed-form expressions for
value functions of derivative assets.

3 One-dimensional diffusions: general results

3.1 Preliminaries

The symmetry (1.8) is always satisfied for one-dimensional diffusions with
the speed measure taken to be the symmetry measure. Indeed, assume that
{X̂t� t � 0} is a one-dimensional, time-homogeneous regular (i.e., it reaches
every point in (e1� e2) with positive probability) diffusion whose state space is
some interval I ⊆ R with endpoints e1 and e2, −∞ � e1 < e2 � ∞, and with
the infinitesimal generator

(3.1)Gf (x) = 1
2
a2(x)f ′′(x)+ b(x)f ′(x)− k(x)f (x)� x ∈ (e1� e2)�

We assume that the diffusion (volatility) coefficient a(x) is twice continuously
differentiable and strictly positive on the open interval (e1� e2), the drift b(x) is
continuously differentiable on (e1� e2), and the killing rate k(x) is continuous
and non-negative on (e1� e2) (these regularity assumptions are not necessary,
but will simplify further development; in what follows we always assume that
these assumptions are in force). The infinitesimal generator of X̂ can be re-
written in the formally self-adjoint form3:

(3.2)Gf (x) = 1
m(x)

(
f ′(x)
s(x)

)′
− k(x)f (x)� x ∈ (e1� e2)�

3 We say formally self-adjoint because we have not said anything yet about the domain of G. In order to
specify G as a self-adjoint operator in the Hilbert space L2(I�m) with the speed measure m, which, in
our case, has a density m(x) given by Eq. (3.3), we need to describe its domain Dom(G) ⊂ L2(I�m),
which involves careful consideration of boundary conditions at the endpoints e1 and e2, which we will
do shortly.
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where s(x) and m(x) are the scale and speed densities (see Borodin and Salmi-
nen, 2002, Chapter II for details on one-dimensional diffusions; we include 2
in the definition of the speed density to conform to the usual convention):

(3.3)s(x) := exp

(
−

x∫
x0

2b(y)
a2(y)

dy

)
� m(x) := 2

a2(x)s(x)
�

where x0 ∈ (e1� e2) is an arbitrary point in the state space. Under our assump-
tions, both s(x) and m(x) are twice continuously differentiable and strictly
positive on (e1� e2).

The endpoints ei, i = 1� 2, are either natural, entrance, exit, or regular
boundaries for the diffusion X̂. Feller’s boundary classification for diffusions
with killing is made as follows (e.g., Borodin and Salminen, 2002, Chapter II).
For any x� y ∈ (e1� e2) define the scale function (here x0 ∈ (e1� e2) is an arbi-
trary point in the state space):

S(x) :=
x∫

x0

s(z) dz� S[x� y] := S(y)− S(x) =
y∫

x

s(z) dz�

and the limits

S(e1� y] := lim
x↓e1

S[x� y]� S[x� e2) := lim
y↑e2

S[x� y]

(the limits may be infinite). Furthermore, fix some ε ∈ (e1� e2) and define
(we did some obvious interchanges of integrations in formulas on pp. 14–15 of
Borodin and Salminen (2002) to present these formulas in this convenient for
us form)

I1 :=
ε∫

e1

S(e1� x]
(
1 + k(x)

)
m(x) dx�

I2 :=
e2∫
ε

S[x� e2)
(
1 + k(x)

)
m(x) dx�

J1 :=
ε∫

e1

S[x� ε](1 + k(x)
)
m(x) dx�

J2 :=
e2∫
ε

S[ε� x](1 + k(x)
)
m(x) dx�

The boundary ei ∈ {e1� e2} is said to be
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• regular if Ii < ∞ and Ji < ∞,
• exit if Ii < ∞ and Ji = ∞,
• entrance if Ii = ∞ and Ji < ∞,
• or natural if Ii = ∞ and Ji = ∞.

The diffusion process is instantaneously killed at the first hitting time of an exit
boundary (and is sent to the cemetery state Δ) and cannot be started from an
exit boundary. The process never reaches an entrance boundary if started in
the interior of the state space, but can be started from an entrance boundary,
in which case it immediately enters the state space and never returns to the en-
trance boundary. The process never reaches a natural boundary if started in the
interior of the state space, and cannot be started from a natural boundary. Exit,
entrance, and natural boundaries are not included in the state space I (the in-
terval I is open at an endpoint which is classified as exit, entrance, or natural).
At the regular boundary we may impose a boundary condition. Here we con-
sider either killing or instantaneously reflecting boundary conditions at regular
boundaries. In the former case the process is sent to the cemetery state Δ at
the first hitting time of the regular boundary, and the boundary point is not
included in the state space. In the latter case, the process is instantaneously
reflected from the boundary (in this case the boundary point is included in the
state space; for models with instantaneously reflecting boundaries see Linetsky,
2005). Thus, the state space I is taken to be an open interval, I = (e1� e2), un-
less any of the endpoints is a regular instantaneously reflecting boundary, in
which case the interval is closed at that end.

Note that adding the killing rate k(x) � 0 may change the nature of the
boundaries, i.e., the processes X with k = 0 and X̂ with k(x) � 0 will,
in general, have different boundary classifications. In particular, an accessible
boundary (regular or exit) may become inaccessible if the killing rate increases
fast enough towards the boundary so that the process is killed almost surely
prior to reaching the boundary.

Before we can proceed with discussing spectral expansions, we need some
preliminary material on one-dimensional diffusions. We follow Borodin and
Salminen (2002, Chapter II). Let Tz := inf{t � 0: Xt = z} be the first hitting
time of z ∈ I. Then for α > 0, the non-negative random variable Tz has the
Laplace transform:

(3.4)Ex
[
e−αTz

] =
⎧⎨⎩

ψα(x)
ψα(z)

� x � z�

φα(x)
φα(z)

� x � z�

where ψα(x) and φα(x) are continuous solutions of the second-order ordinary
differential equation (here G is the infinitesimal generator (3.1); Eq. (3.5) is
the so-called Sturm–Liouville (SL) equation):

(3.5)Gu(x) = 1
2
a2(x)u′′(x)+ b(x)u′(x)− k(x)u(x) = αu(x)�
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The functions ψα(x) and φα(x) can be characterized as the unique (up to a
multiplicative constant dependent on α but independent of x) solutions of (3.5)
by firstly demanding that ψα(x) is increasing in x and φα(x) is decreasing, and
secondly posing boundary conditions at regular boundary points. For ψα(x)
the boundary condition is only needed at e1 if e1 is a regular boundary. If e1 is a
regular boundary specified as a killing boundary, we have a Dirichlet boundary
condition:

ψα(e1+) = 0�

If e1 is a regular boundary specified as an instantaneously reflecting boundary,
we have a Neumann boundary condition:

lim
x↓e1

ψ′
α(x)

s(x)
= 0�

Similarly, if e2 is a regular boundary specified as killing (instantaneously re-
flecting), we have a Dirichlet (Neumann) boundary condition for φα(x) at e2.
At non-regular boundaries, the functions ψα and φα have the following prop-
erties for all α > 0. If e1 is entrance:

ψα(e1+) > 0� lim
x↓e1

ψ′
α(x)

s(x)
= 0�

φα(e1+) = +∞� lim
x↓e1

φ′
α(x)

s(x)
> −∞�

If e1 is exit:

ψα(e1+) = 0� lim
x↓e1

ψ′
α(x)

s(x)
> 0�

φα(e1+) < +∞� lim
x↓e1

φ′
α(x)

s(x)
= −∞�

If e1 is natural:

ψα(e1+) = 0� lim
x↓e1

ψ′
α(x)

s(x)
= 0�

φα(e1+) = +∞� lim
x↓e1

φ′
α(x)

s(x)
= −∞�

Analogous properties hold at e2 with ψ and φ interchanged.
The functions ψα(x) and φα(x) are called fundamental solutions of the

Sturm–Liouville equation (3.5). They are linearly independent for all α > 0
and all solutions can be expressed as their linear combinations. Moreover, the
Wronskian defined by (where s(x) is the scale density defined in Eq. (3.3))

(3.6)wα := φα(x)
ψ′
α(x)

s(x)
− ψα(x)

φ′
α(x)

s(x)

is independent of x.
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In the standard Markovian set-up, one considers a Banach space Cb(I) of
real-valued, bounded continuous functions on I. Then the transition operators
Pt form a semigroup {Pt � t � 0} in Cb(I). The domain Dom(G) of the infini-
tesimal generator G of {Pt � t � 0} in Cb(I) is:

Dom(G) = {
f ∈ Cb(I): Gf ∈ Cb(I)�

boundary conditions at e1 and e2
}
�

The boundary conditions are as follows (McKean, 1956, p. 522; Borodin and
Salminen, 2002, pp. 16–17). If e ∈ {e1� e2} is an exit boundary or a regular
boundary specified as a killing boundary for the process X̂, then the appropri-
ate boundary condition at e is the vanishing (Dirichlet) boundary condition:

(3.7)lim
x→e

f (x) = 0�

If e ∈ {e1� e2} is an entrance boundary or a regular boundary specified as an
instantaneously reflecting boundary for the process X, then the appropriate
boundary condition at e is the Neumann boundary condition:

(3.8)lim
x→e

f ′(x)
s(x)

= 0�

No boundary conditions are needed at natural boundaries in addition to the
boundedness requirement f�Gf ∈ Cb(I).

3.2 The Laplace transform of the transition density

Let pm(t;x� y) be the symmetric transition density with respect to the speed
measure m(dx) = m(x) dx and introduce the Green’s function, the Laplace
transform of the transition density taken with respect to time (where α > 0):

(3.9)Gα(x� y) =
∞∫

0

e−αtpm(t;x� y) dt�

Then it is classical that (Borodin and Salminen, 2002, p. 19)

(3.10)Gα(x� y) =
{
w−1
α ψα(x)φα(y)� x � y�

w−1
α ψα(y)φα(x)� y � x�

Therefore, the transition density of a one-dimensional diffusion can be found
by, firstly, determining the increasing and decreasing fundamental solutions
ψα(x) and φα(x) of the Sturm–Liouville equation (3.5) and, secondly, invert-
ing the Laplace transform (3.9):

(3.11)pm(t;x� y) = 1
2πi

c+i∞∫
c−i∞

eαtGα(x� y) dα�
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In this Bromwich Laplace transform inversion formula the integration is along
the contour in the right half-plane parallel to the imaginary axes (c > 0) and
Gα(x� y) is the analytic continuation of the Green’s function (3.10) into the
complex plane α ∈ C. If the functions ψα(x) and φα(x) are known in closed
form, one can study the analytic continuation of the Green’s function as a func-
tion of the complex variable α ∈ C and apply the Cauchy Residue Theorem
to calculate the Bromwich Laplace inversion integral. Since the Green’s func-
tion is the integral kernel (resolvent kernel) of the resolvent operator Rα (2.6),
the singularities of Gα will lie on the negative real half-line α � 0 (the spec-
trum of the non-positive self-adjoint operator G lies on the negative half-line),
and the result of the application of the Cauchy Residue Theorem will pro-
duce the spectral expansion of the transition density. In Section 3.7 we will
give more precise results on the analytic continuation of the fundamental solu-
tions and Green’s function. Recovering the spectral expansion via the Cauchy
Residue Theorem constitutes the Weyl–Titchmarsh complex variable approach
to the Sturm–Liouville problem (see Titchmarsh, 1962). Alternatively, the spec-
tral expansion can also be constructed by purely real-variable techniques (for
the real variable approach see Linetsky, 2004a, 2004b and references therein).

3.3 The general form of the spectral representation for one-dimensional
diffusions

The semigroup {Pt � t � 0} in the Banach space Cb(I) restricted to Cb(I) ∩
L2(I�m) extends uniquely to a strongly continuous semigroup of self-adjoint
contractions inL2(I�m) with the infinitesimal generator G, an unbounded self-
adjoint, non-positive operator inL2(I�m) (McKean, 1956; see also Langer and
Schenk, 1990 for a more recent reference). The domain of G in L2(I�m) is
(McKean, 1956, p. 526 and Langer and Schenk, 1990, p. 15):

Dom(G) = {
f ∈ L2(I�m): f� f ′ ∈ ACloc(I)�Gf ∈ L2(I�m)�

boundary conditions at e1 and e2
}
�

where ACloc(I) is the space of functions absolutely continuous over each com-
pact subinterval of I. If e ∈ {e1� e2} is either an exit or a regular boundary
specified as a killing boundary for the process X̂, then we have a vanishing
(Dirichlet) boundary condition at e, Eq. (3.7). If e ∈ {e1� e2} is an entrance
boundary or a regular boundary specified as an instantaneously reflecting
boundary for the process X̂, then the appropriate boundary condition at e is
the Neumann boundary condition equation (3.8). The self-adjointness of G is
proved in McKean (1956) (see also Langer and Schenk, 1990, p. 15, Theo-
rem 3.2).

The Spectral Theorem for self-adjoint semigroups in Hilbert space can now
be applied to produce a spectral representation of the form (2.5) for the tran-
sition semigroup {Pt � t � 0}. In this case the semigroup has a density. General
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results on the spectral representation for the density of the transition semi-
group of a one-dimensional diffusion were obtained by McKean (1956) (see
also Ito and McKean, 1974, Section 4.11). Specializing McKean’s general re-
sults to our case where the scale function, speed measure, and killing measure
are absolutely continuous with respect to the Lebesgue measure, the symmet-
ric transition density has the spectral representation:

pm(t;x� y) =
∫

[0�∞)

e−λt
2∑

i�j=1

ui(x� λ)uj(y� λ)ρij(dλ)�

(3.12)t > 0� x� y ∈ I�

where ui(x� λ), i = 1� 2, are solutions of the following two initial value prob-
lems for the Sturm–Liouville equation (3.5) (x0 ∈ (e1� e2) can be selected
arbitrarily):

(3.13)−Gui(x� λ) = λui(x� λ)� x ∈ (e1� e2)� i = 1� 2�

(3.14)u1(x0� λ) = 1�
u′

1(x0� λ)

s(x0)
= 0�

(3.15)u2(x0� λ) = 0�
u′

2(x0� λ)

s(x0)
= 1�

and ρ(dλ) = (ρij(dλ))2
i�j=1 is a Borel measure from [0�∞) to 2 × 2 symmetric

non-negative definite matrices (spectral matrix):

ρ11(dλ) � 0� ρ22(dλ) � 0� ρ12(dλ) = ρ21(dλ)�

(3.16)
(
ρ12(dλ)

)2 � ρ11(dλ)ρ22(dλ)�

The integral in Eq. (3.12) converges uniformly on compact squares in I × I.
McKean (1956) proved a number of smoothness properties for the symmetric
transition density pm(t;x� y).

The spectral representation for the value function of a derivative asset with
payoff f ∈ L2(I�m) can now be written in the form:

(3.17)V (t� x) = Ptf (x) =
∫
I

f (y)pm(t;x� y)m(y) dy

(3.18)=
∫

[0�∞)

e−λt
2∑

i�j=1

ui(x� λ)Fj(λ)ρij(dλ)� x ∈ I� t � 0�

with the expansion coefficients

(3.19)Fi(λ) =
∫
I

f (y)ui(y� λ)m(y) dy�
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satisfying the Parseval equality

‖f‖2 =
∫

[0�∞)

2∑
i�j=1

Fi(λ)Fj(λ)ρij(dλ)�

When there are no natural boundaries (both boundaries are exit, entrance,
or regular), the spectrum is simple and purely discrete (McKean, 1956, The-
orem 3.1). Let {−λn}∞n=1, 0 � λ1 < λ2 < · · · , limn↑∞ λn = ∞, be the
eigenvalues of G and let {ϕn}∞n=1 be the corresponding eigenfunctions nor-
malized so that ‖ϕn‖2 = 1. Then the spectral representation (3.12) for the
symmetric density and the spectral representation (3.18) for the value func-
tion simplify to (for t > 0 the eigenfunction expansion converges uniformly on
compact squares in I × I):

(3.20)pm(t;x� y) =
∞∑
n=1

e−λntϕn(x)ϕn(y)� x� y ∈ I� t > 0�

(3.21)V (t� x) = Ptf (x) =
∞∑
n=1

cne
−λntϕn(x)� cn = (f� ϕn)�

When one or both boundaries are natural, the spectrum of G may have some
non-empty (and possibly non-simple) essential spectrum, and the spectral rep-
resentation in general takes the form (3.12), (3.18). However, under some
additional regularity assumptions, the form of the spectral expansion can be
significantly simplified can be simplified.

Remark on non-L2 payoffs. The spectral expansion (3.18) (or (3.21) when the
spectrum is purely discrete) is valid for payoffs in L2(I�m). If the payoff is not
inL2(I�m) but the integral in Eq. (3.17) exists, one can write the value function
in the form (3.17) with the transition probability density given by Eq. (3.12)
(or (3.20) when the spectrum is discrete). However, one cannot interchange
the integration in y and the integration with respect to the spectral measure
to obtain the spectral expansion (3.18) (or (3.22)) for the value function. This
situation is frequent in finance applications. Among applications discussed in
Section 4, examples of non-L2 payoffs include call and put options in Mer-
ton’s cash dividend model, Asian-style call options, vanilla call options and
down-and-out call options in the CEV model, and defaultable bonds in the
jump-to-default extended Black–Scholes model in Linetsky (2004b). When X
is an asset price process, in many of these applications constants and/or linear
functions are not in L2(I�m). In some cases (e.g., Asian call, CEV call), one is
able to decompose the payoff into a linear combination of an L2(I�m)-payoff
(e.g., put) plus an affine position a + bX (e.g., payoff of a forward contract).
The value function for the affine position is found directly, and the value
function for the L2(I�m)-payoff is given by the spectral expansion (a typical
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application of the call-put parity relationship). However, in some applications
either the payoff cannot be represented as a linear combination of an affine
position plus an L2(I�m)-payoff, or the value function for the affine payoff
cannot be easily found directly. An example of the first type arises in Merton’s
cash dividend model (Lewis, 1998). An example of the second type arises in
pricing down-and-out call options in the CEV model (Davydov and Linetsky,
2003). In the latter problem, we can decompose the down-and-out call payoff
into a linear combination of the down-and-out put payoff (which is L2) and
a down-and-out forward position (not L2). However, we need to determine
the value function for the down-and-out forward, which is not straightforward.
In such cases, one can start with the representation (3.17) for the value func-
tion, but instead of the spectral representation (3.12) for the transition density
one uses the alternative representation (3.11) as the inverse Laplace transform
of the Green’s function. The next steps are interchanging the integration in y
with the Laplace inversion, integrating the Green’s function against the pay-
off, and finally inverting the Laplace transform. The Laplace inversion leads
to a spectral-type representation. However, it includes additional terms in ad-
dition to the ones in Eq. (3.18) that come from additional singularities in the
Laplace transform when analytically continued to the complex plane in prob-
lems with non-L2 payoffs. See Lewis (1998), Davydov and Linetsky (2003),
Linetsky (2004b, 2006) for more details.

3.4 Spectral classification of one-dimensional diffusions

To investigate the qualitative nature of the spectrum and describe simpli-
fications in the general form of the spectral expansion when natural bound-
aries are present we need some background from the Sturm–Liouville the-
ory. The volume by Amrein et al. (2005) is an excellent recent reference
(see also Titchmarsh, 1962; Dunford and Schwartz, 1963; Glazman, 1965;
Levitan and Sargsjan, 1975; Weidmann, 1987; Fulton et al., 1996). Consider
the SL equation (3.5) rewritten in the self-adjoint form and with α = −λ ∈ C:

−1
2
a2(x)u′′(x)− b(x)u′(x)+ k(x)u(x)

(3.22)≡ − 1
m(x)

(
u′(x)
s(x)

)′
+ k(x)u(x) = λu(x)� x ∈ (e1� e2)�

The oscillatory/non-oscillatory classification based on Sturm’s theory of oscilla-
tions of solutions is of fundamental importance in determining the qualitative
nature of the spectrum of the SL operator. For a given real λ, Eq. (3.22) is os-
cillatory at an endpoint e if and only if every solution has infinitely many zeros
clustering at e. Otherwise it is called non-oscillatory at e. This classification is
mutually exclusive for a fixed λ, but can vary with λ. For Eq. (3.22), there are
two distinct possibilities at each endpoint.



246 V. Linetsky

Theorem 3.1 (Oscillatory/Non-oscillatory Classification of Boundaries). Let e ∈
{e1� e2} be an endpoint of Eq. (3.22). Then e belongs to one and only one of the
following two cases:

(i) Equation (3.22) is non-oscillatory at e for all real λ. Correspondingly, the
endpoint e is said to be non-oscillatory.

(ii) There exists a real number Λ � 0 such that Eq. (3.22) is oscillatory at e for
all λ > Λ and non-oscillatory at e for all λ < Λ. Correspondingly, e is said
to be oscillatory with cutoff Λ. Equation (3.22) can be either oscillatory or
non-oscillatory at e for λ = Λ > 0. It is always non-oscillatory for λ = 0.

Based on the oscillatory/non-oscillatory classification of boundaries, the
spectrum of the non-negative operator −G is classified as follows.

Theorem 3.2 (Spectral Classification).

(i) Spectral Category I. If both endpoints are non-oscillatory, then the spec-
trum is simple, non-negative and purely discrete.

(ii) Spectral Category II. If one of the endpoints is non-oscillatory and the
other endpoint is oscillatory with cutoff Λ � 0, then the spectrum is simple
and non-negative, the essential spectrum is nonempty, σe(−G) ⊂ [Λ�∞),
andΛ is the lowest point of the essential spectrum. If the SL equation is non-
oscillatory at the oscillatory endpoint for λ = Λ � 0, then there is a finite
set of simple eigenvalues in [0�Λ] (it may be empty). If the SL equation is
oscillatory at the oscillatory endpoint for λ = Λ > 0, then there is an infinite
sequence of simple eigenvalues in [0�Λ) clustering at Λ.

(iii) Spectral Category III. If e1 is oscillatory with cutoff Λ1 � 0 and e2 is
oscillatory with cutoff Λ2 � 0, then the essential spectrum is nonempty,
σe(−G) ⊂ [Λ�∞), Λ := min{Λ1�Λ2}, and Λ is the lowest point of the
essential spectrum. The spectrum is simple (has multiplicity one) belowΛ :=
max{Λ1�Λ2} and is not simple (has multiplicity two) above Λ. If the SL
equation is non-oscillatory for λ = Λ � 0, then there is a finite set of simple
eigenvalues in [0�Λ] (it may be empty). If the SL equation is oscillatory for
λ = Λ > 0, then there is an infinite sequence of simple eigenvalues in [0�Λ)
clustering at Λ.

Regular, exit, and entrance boundaries in Feller’s classification are always
non-oscillatory for the associated SL equation, and, if there are no natural
boundaries, the spectrum of the infinitesimal generator is purely discrete. Nat-
ural boundaries can be either non-oscillatory or oscillatory with cutoff Λ � 0.

3.5 The Liouville transformation

To determine when a natural boundary is non-oscillatory or oscillatory with
cutoff Λ, it is convenient to transform the SL equation (3.22) to the so-called
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Liouville normal form (e.g., Everitt, 2005, p. 280). Before introducing the Li-
ouville transformation that transforms the SL equation to the Liouville normal
form, we first consider a general class of transformations of the SL equation.
Let g(x) be a strictly increasing twice continuously differentiable function on
(e1� e2) and H(x) a twice continuously differentiable function on (e1� e2). In-
troduce new independent and dependent variables in the SL equation (3.22)
according to:

(3.23)y := g(x)� v(y) := {
eH(x)u(x)

}∣∣
x=g−1(y)

�

where x = g−1(y) is the inverse of y = g(x). Then it is easy to show by di-
rect calculation that the function v(y) satisfies the transformed SL equation of
the form (3.22) on the transformed interval (g(e1)� g(e2)) and with the trans-
formed coefficients:

(3.24)ã(y) = {
a(x)g′(x)

}∣∣
x=g−1(y)

�

(3.25)b̃(y) =
{
b(x)g′(x)+ 1

2
a2(x)

[
g′′(x)− 2H ′(x)g′(x)

]}∣∣∣∣
x=g−1(y)

�

(3.26)

k̃(y) =
{
k(x)+ b(x)H ′(x)+ 1

2
a2(x)

[
H ′′(x)− (

H ′(x)
)2]}∣∣∣∣

x=g−1(y)

�

In particular, fix some x0 ∈ (e1� e2) and consider a mapping g : (e1� e2) →
(g(e1)� g(e2)):

(3.27)g(x) :=
x∫

x0

dz
a(z)

�

Since a(x) > 0 on (e1� e2), g(x) is strictly increasing on (e1� e2). Let g−1

denote its inverse. Now we transform the independent and dependent vari-
ables in the SL equation as follows (in this case eH(x) = (a(x)s(x))−1/2, or
H(x) = ∫ x

x0

b(z)
a2(z)

dz − 1
2 ln a(x)):

(3.28)y = g(x) =
x∫

x0

dz
a(z)

� v(y) =
{

u(x)√
a(x)s(x)

}∣∣∣∣
x=g−1(y)

�

Then the function v(y) satisfies the SL equation in the Liouville normal form
with ã(y) = 1, b̃(y) = 0, and c̃(y) = Q(y):

(3.29)−1
2
v′′(y)+Q(y)v(y) = λv(y)� y ∈ (

g(e1)� g(e2)
)
�

where the potential function Q(y) is given by

(3.30)Q(y) = U
(
g−1(y)

)
�
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where

U(x) := 1
8
(
a′(x)

)2 − 1
4
a(x)a′′(x)+ b2(x)

2a2(x)
+ 1

2
b′(x)

(3.31)− b(x)a′(x)
a(x)

+ k(x)�

This transformation of the dependent and independent variable4 is called
the Liouville transformation in the Sturm–Liouville theory. It reduces the SL
equation (3.22) to the Liouville normal form. The SL equation in the Liou-
ville normal form has the form of the celebrated (stationary) one-dimensional
Schrödinger equation: the coefficient in front of the second derivative term is
equal to (negative) one-half 5, there is no first derivative term, and all the in-
formation about the dynamics is encoded in the potential function Q(y) (as
well as in the boundary conditions). In Section 4.1 we will give a probabilistic
interpretation to the Liouville transform.

3.6 Further results on spectral classification

The oscillatory/non-oscillatory classification of boundaries of the SL equa-
tion remains invariant under the Liouville transformation, i.e., the SL equa-
tion (3.22) is non-oscillatory at e ∈ {e1� e2} for a particular λ if and only
if the Schrödinger equation (3.29) is non-oscillatory at g(e) for that λ. The
oscillatory/non-oscillatory classification of the Schrödinger equation depends
on the behavior of the potential function Q near the endpoints. We have the
following classification result.

Theorem 3.3 (Oscillatory/Non-Oscillatory Classification of Natural Boundaries).
Suppose e ∈ {e1� e2} is a natural boundary, U(x) is defined in Eq. (3.31), and the
limit limx→e U(x) exists (it is allowed to be infinite).

(i) If e is transformed into a finite endpoint by the Liouville transformation,
i.e., g(e) = ∫ e

x0
dz
a(z) is finite, then e is non-oscillatory.

(ii) Suppose e is transformed into −∞ or +∞ by the Liouville transformation.
If limx→e U(x) = +∞, then e is non-oscillatory. If limx→e U(x) = Λ for
some finite Λ, then e is oscillatory with cutoff Λ. Since the operator −G is
non-negative, it follows that Λ � 0. If Λ > 0 and limx→e g

2(x)(U(x) −
Λ) > −1/4, then e is non-oscillatory for λ = Λ > 0. If Λ > 0 and

4 Note that since the choice of x0 is arbitrary, g is defined up to a constant. Different choices of the
constant correspond to translations of the interval (e1� e2) → (e1 + c� e2 + c).
5 The standard form of the Schrödinger operator is − d2

dx2 +Q(x). We retain the “probabilistic” factor

1/2 in − 1
2

d2

dx2 +Q(x) to interpret it as the infinitesimal generator of standard Brownian motion killed
at the rate Q. Alternatively, Brownian motion can be taken to run twice as fast.



Ch. 6. Spectral Methods in Derivatives Pricing 249

limx→e g
2(x)(U(x) − Λ) < −1/4, then e is oscillatory for λ = Λ > 0. If

Λ = 0, e is always non-oscillatory for λ = Λ = 0.

Theorem 3.2 tells us that oscillatory natural boundaries generate some non-
empty essential spectrum above the cutoff, but it does not identify the es-
sential spectrum. It is well known that when the potential function oscillates
towards an infinite boundary, the essential spectrum above the cutoff may
have a complicated structure. In particular, it may consist of an infinite se-
quence of disjoint intervals separated by gaps. Furthermore, eigenvalues may
be present in the gaps or embedded in the continuous spectrum. The assump-
tion in Theorem 3.3 on the existence of the limit limx→e U(x) combined with
the assumption that U(x) has bounded variation in a neighborhood of a na-
tural boundary yields a drastic simplification of the essential spectrum.

Theorem 3.4 (Essential Spectrum Generated by oscillatory Natural Boundaries).
Suppose the limit limx→e U(x) exists (it is allowed to be infinite) and U(x) has
bounded variation in a neighborhood of each oscillatory natural boundary.6

(i) Spectral Category II. If one of the boundaries is non-oscillatory and the
other boundary is oscillatory with cutoff Λ � 0, then the essential spectrum
of A is σe(A) = [Λ�∞). Moreover, A has purely absolutely continuous
spectrum in (Λ�∞).

(ii) Spectral Category III. If e1 is oscillatory with cutoff Λ1 � 0 and e2 is
oscillatory with cutoff Λ2 � 0, then the essential spectrum of A is σe(A) =
[Λ�∞), Λ := min{Λ1�Λ2}. Moreover, A has purely absolutely continuous
spectrum in (Λ�∞). The part of the spectrum below Λ = max{Λ1�Λ2}
is simple (has multiplicity one). The part of the spectrum above Λ is not
simple.

Theorem 3.4 tells us that, under our assumptions, the spectrum above the
cutoff is purely absolutely continuous. The bounded variation assumption rules
out coefficients that oscillate towards oscillatory natural boundaries. They are
not particularly restrictive for financial applications (essentially all diffusion
models in finance satisfy these assumptions), but yield a drastic simplification
of the structure of the essential spectrum. Under this assumption, one can read
off the qualitative structure of the spectrum directly from the behavior of the
coefficient functions a, b, and c near the boundaries, by studying the behavior
of U(x) near the boundaries.

6 We assume that if e1 (e2) is a oscillatory natural boundary, then there is such c ∈ (e1� e2) that U(x)
has bounded variation on (e1� c] ([c� e2)).
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3.7 The simplified form of the spectral representation for one-dimensional
diffusions

3.7.1 Spectral Category I
When there are no oscillatory natural boundaries, the spectrum is simple,

non-negative and purely discrete and the spectral representation for the tran-
sition density and the spectral expansion for the value function take the form
of eigenfunction expansions (3.20) and (3.21), respectively (Linetsky, 2004a).
We now described a general procedure to explicitly determine the eigenval-
ues and eigenfunctions in this case. Recall that, for α > 0, ψα(x) and φα(x)
were defined as the fundamental solutions of the SL equation (3.5). Assume
that both boundaries are non-oscillatory. It turns out that in this case ψα(x)
and φα(x) can be normalized7 so that they can be analytically continued to the
whole complex plane α ∈ C and are entire functions of the complex variable α
for each fixed x (see Linetsky, 2004a, Lemma 1, p. 351). Hence, the Wronskian
wα can also be analytically continued to the whole complex plane α ∈ C and is
entire in α.

An eigenfunction ϕn(x) satisfies the SL equation (3.5) with α = −λn, is
square-integrable with m in a neighborhood of e1, and satisfies the appro-
priate boundary condition at e1. Hence it must be equal to ψ−λn(x) up to a
non-zero constant multiple. But ϕn(x) is also square-integrable with m in a
neighborhood of e2 and satisfies the appropriate boundary condition at e2.
Hence it must also be equal to φ−λn(x) up to a non-zero constant multi-
ple. Thus, for α = −λn, ψ−λn(x) and φ−λn(x) must be linearly dependent:
φ−λn(x) = Anψ−λn(x) for some non-zero constant An and, hence, their
Wronskian must vanish for α = −λn, w−λn = 0.

Conversely, let α = −λn be a zero of the Wronskian. Then ψ−λn(x) and
φ−λn(x) are linearly dependent with some non-zero constant An and, hence,
ψ−λn(x) is a solution that is square-integrable with m on (e1� e2) and sat-
isfies the appropriate boundary conditions at both endpoints e1 and e2, i.e.,
ψ−λn(x) is a non-normalized eigenfunction corresponding to the eigenvalue λn.
Therefore, {−λn}∞n=1 are zeros of wα, and ψ−λn(x) are the corresponding non-
normalized eigenfunctions. Since all eigenvalues of −G with k(x) � 0 are
simple and non-negative, all zeros of the Wronskian wα are simple and non-
positive. Thus, practically, to determine the eigenvalues, find the fundamental
solutions ψ and φ normalized so that their analytic continuations to complex α
are entire functions of the complex variable α for each fixed x, compute their
Wronskian, and find its zeros. The negatives of the zeros are the sought after
non-negative eigenvalues of −G. Finally, the normalized eigenfunctions can be

7 Recall that ψα(x) and φα(x) have been defined up to overall factors independent of x (but the nor-
malization factors can depend on α).
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taken in the form:

ϕn(x) = ±
√

An

w′−λn
ψ−λn(x) = ± φ−λn(x)√

Anw
′−λn

�

(3.32)where w′−λn ≡ −dwα

dα

∣∣∣∣
α=−λn

�

This normalization can be obtained by applying the Cauchy Residue Theo-
rem to invert the Laplace transform (3.11) (e.g., Davydov and Linetsky, 2003,
p. 188) or by direct calculation of the norms (see Linetsky, 2004a, pp. 352–353).

3.7.2 Spectral Category II
Suppose e1 is non-oscillatory and e2 is an oscillatory natural boundary with

cutoff Λ � 0 (the case of oscillatory e1 and non-oscillatory e2 is treated sim-
ilarly). Under our assumptions, the essential spectrum of −G is σe(−G) =
[Λ�∞) and is simple. Moreover, −G has purely absolutely continuous spec-
trum in (Λ�∞). If e2 is non-oscillatory for λ = Λ � 0, then there is a
finite set of simple eigenvalues in [0�Λ] (it may be empty). If e2 is oscilla-
tory for λ = Λ > 0, then there is an infinite sequence of simple eigenvalues
in [0�Λ) clustering towards Λ. Accordingly, the spectral representation for the
symmetric transition density (3.12) and the spectral expansion for the value
function (3.18) simplify to:

pm(t;x� y) =
∑
n

e−λntϕn(x)ϕn(y)+
∞∫
Λ

e−λtψ−λ(x)ψ−λ(y) dρac(λ)�

(3.33)t > 0�

V (t� x) =
∑
n

cne
−λntϕn(x)+

∞∫
Λ

e−λtF(λ)ψ−λ(x) dρac(λ)�

(3.34)x ∈ I� t � 0�

cn = (f� ϕn)� F(λ) =
∫
I

f (y)ψ−λ(y)m(y) dy�

(3.35)f ∈ L2(I�m)�

Here ϕn(x) are eigenfunctions corresponding to the eigenvalues λn (if any),
ψ−λ(x) is the fundamental solution of the SL equation normalized so that it
is an entire function of λ (recall that e1 is non-oscillatory and, hence, such a
normalization is possible), and ρac(λ) is the spectral function absolutely con-
tinuous on (Λ�∞) and normalized relative to ψ−λ(x).

The eigenvalues and eigenfunctions below Λ are determined in the same
way as for the Spectral Category I with one modification. Consider the end-
point e1 and suppose it is oscillatory with cutoff Λ1. Then the solution ψ−λ(x)
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can be normalized so that its analytic continuation to complex λ is analytic in
the half-plane SΛ1 for each fixed x, where SΛ1 := {λ ∈ C: Re(λ) < Λ1}. Simi-
larly, if e2 is oscillatory with cutoff Λ2, then the solution φ−λ(x) is analytic in
the half-plane SΛ2 := {λ ∈ C: Re(λ) < Λ2} (recall that for non-oscillatory
endpoints these solutions are analytic in the whole complex plane). If e1 is
non-oscillatory and e2 is oscillatory with cutoff Λ, then the eigenvalues λn can
be found as zeros (if any) of the Wronskian of the two solutions ψ−λ(x) and
φ−λ(x) analytic in the half-plane SΛ (in this case ψ−λ(x) is analytic in the
whole complex plane and φ−λ(x) is analytic in the half-plane SΛ; hence, their
Wronskian is analytic in the half-plane SΛ). The case with non-oscillatory e2
and oscillatory is treated similarly.

Since the absolutely continuous spectrum is simple, we are able to write
down the continuous part of the spectral expansion in terms of just one spec-
tral function in contrast to the general case that requires a 2 × 2 spectral
matrix. There are two approaches to obtain the spectral function, the Weyl–
Titchmarsh complex variable approach (Titchmarsh, 1962) and the real vari-
able approach of Levitan (1950) and Levinson (1951) (see also Coddington and
Levinson, 1955; McKean, 1956, and Levitan and Sargsjan, 1975). The complex
variable approach consists in inverting the Laplace transform via the Cauchy
Residue Theorem. This calculation is illustrated in detail in Linetsky (2004d,
proof of Proposition 1), and Linetsky (2004b, proof of Proposition 3.3 in Ap-
pendix D). The alternative real variable approach proceeds as follows. Suppose
e2 is the oscillatory natural boundary. Then consider the problem on (e1� b)
with some b < e2, impose the killing boundary condition at b (Dirichlet bound-
ary condition for the associated SL problem), obtain the spectral expansion for
this problem, and then take the limit b ↑ e2. This calculation is illustrated in
detail in Linetsky (2004b; 2004a, p. 355).

3.7.3 Spectral Category III
Suppose e1 is an oscillatory natural boundary with cutoff Λ1 � 0 and e2

is an oscillatory natural boundary with cutoff Λ2 � 0. To be specific, sup-
pose Λ1 < Λ2. Under our assumptions, the essential spectrum of −G is
σe(−G) = [Λ1�∞). Moreover, −G has purely absolutely continuous spectrum
in (Λ1�∞). The part of the spectrum below Λ2 is simple. The part of the spec-
trum above Λ2 is not simple. If the SL equation (3.22) is non-oscillatory for
λ = Λ1, there is a finite set of simple eigenvalues in [0�Λ1] (it may be empty).
If the SL equation (3.22) is oscillatory for λ = Λ1 > 0, then there is an infinite
sequence of simple eigenvalues in [0�Λ1) clustering towards Λ1. The general
form of the spectral expansion (3.22) reduces to the form containing three
parts: the sum over the eigenvalues (if any), the integral over the simple ab-
solutely continuous spectrum (Λ1�Λ2) similar to the Spectral Category II with
the single spectral function, and the integral over the non-simple portion of
the absolutely continuous spectrum above Λ2 that has the general form (3.12)
with the 2 × 2 spectral matrix.
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The explicit form of the spectral expansion can be obtained either via the
Weyl–Titchmarsh complex variable approach by inverting the Laplace trans-
form of the Green’s function (an example calculation is given in Section 4.2
below), or via the real variable approach. In the latter approach, pick some a
and b, e1 < a < b < e2, and kill the process at the first exit time from (a� b)
(impose Dirichlet boundary conditions for the SL equation at both a and b).
Consider the spectral representation for this process with two regular killing
boundaries, and then take the limit a ↓ e1 and b ↑ e2. McKean’s (1956) orig-
inal derivation followed this approach. An example of this calculation is given
in Linetsky (2004a, pp. 356–357).

4 One-dimensional diffusions: a catalog of analytically tractable models

4.1 Transformations of one-dimensional diffusions: transforming the state
space and changing the probability measure

In order to determine the spectral representation explicitly, one needs ex-
plicit solutions of the Sturm–Liouville equation. The Liouville transforma-
tion reduces the SL equation (3.22) on the interval (e1� e2) and with coef-
ficients (a(x)� b(x)� k(x)) to the Schrödinger equation (3.29) with potential
function (3.30)–(3.31). If analytical solutions are available in terms of known
special functions for the Schrödinger equation, inverting the Liouville trans-
formation yields analytical solutions for the original Sturm–Liouville equation,
and the spectral representation can be constructed explicitly. The celebrated
Schrödinger equation is the fundamental equation of quantum mechanics and
has been intensively studied in mathematical physics. Various specifications of
potentials such that the Schrödinger equation admits analytical solutions in
terms of certain classes of special functions (in particular, hypergeometric and
confluent hypergeometric functions) have been intensively studied (Grosche
and Steiner, 1998 provide extensive bibliography).

Conversely, suppose thatQ(x) defined on some interval (e1� e2) is an analyt-
ically tractable potential function. Then for each strictly increasing and twice
differentiable function g(x) and twice differentiable function H(x), we can
construct a diffusion process on (g(e1)� g(e2)) with the infinitesimal parame-
ters (ã(y)� b̃(y)� k̃(y)) given by Eqs. (3.24)–(3.26) with a(x) = 1, b(x) = 0,
and k(x) = Q(x). We can thus generate a family of diffusion processes associ-
ated with a given potential function and parameterized by two functions g(x)
and H(x). Since we have the analytical solution of the Schrödinger equation in
hand, we immediately obtain analytical solutions to the SL equations for this
family of diffusions by inverting the Liouville transformation for each of the
processes.

We now give a probabilistic interpretation to the Liouville transformation as
a composition of the state space transformation and the change of probability
measure. Suppose we are given an open interval (e1� e2) and two functions
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a(x) and b(x) and consider an SDE (our regularity assumptions on a and b
are in force, i.e., a ∈ C2(e1� e2), a(x) > 0 on (e1� e2), and b ∈ C1(e1� e2)):

(4.1)dXt = a(Xt) dBt + b(Xt) dt� X0 = x ∈ (e1� e2)�

where B is a standard Brownian motion. Under our assumptions this SDE can
be solved uniquely up to the first exit time from (e1� e2), τe1�e2 = Te1 ∧ Te2 .
If according to Feller’s boundary classification a and b are such that both
boundaries are inaccessible (natural or entrance) for the diffusion process with
volatility a and drift b, then τe1�e2 = ∞ a.s., there is no explosion, and the
process lives in the open interval (e1� e2) forever. Otherwise, at the first hit-
ting time of an accessible boundary (exit or regular) the solution process X is
killed, i.e., sent to the cemetery state Δ (in particular, in this section we assume
that regular boundaries are always specified as killing boundaries; we do not
deal with reflection here).

Suppose further that k(x) ∈ C(e1� e2) is also given and is such that k(x) � 0
on (e1� e2). Our aim is to calculate the expectation:

(4.2)V (t� x) = EX
x

[
e−

∫ t
0 k(Xu) du1{τe1�e2>t}f (Xt)

]
�

for some f such that the expectation exists (EX
x is with respect to the law of X

starting at x; if both boundaries are inaccessible for X, we can drop the indi-
cator 1{τe1�e2>t}).

Introduce a process Y : {Yt = g(Xt)� t < τe1�e2� Yt = Δ� t � τe1�e2}, where
g is defined as in (3.27). The process Y is a one-dimensional diffusion on the
interval (g(e1)� g(e2)) with unit diffusion and drift:

(4.3)aY (y) = 1� bY (y) = μ(y) :=
{
b(x)

a(x)
− 1

2
a′(x)

}∣∣∣∣
x=g−1(y)

�

In terms of the process Y the expectation to be computed takes the form:

V (t� x) = EY
g(x)

[
e−

∫ t
0 k(g

−1(Yu)) du1{τg(e1)�g(e2)>t}f
(
g−1(Yt)

)]
�

where τg(e1)�g(e2) is the first exit time of the process Y from (g(e1)� g(e2)) (EY
y

is with respect to the law of Y starting at y).
We now observe that, by Girsanov’s theorem and Ito’s formula, up to the

first exit time from (g(e1)� g(e2)) we have:

V (t� x) = EW
g(x)

[
eM(Wt)−M(g(x))− 1

2
∫ t

0 (μ
2(Wu)+μ′(Wu)) du

× e−
∫ t

0 k(g
−1(Wu)) du1{τg(e1)�g(e2)>t}f

(
g−1(Wt)

)]
= √

s(x)a(x)EW
g(x)

[
e−

∫ t
0 Q(Wu) du1{τg(e1)�g(e2)>t}

(4.4)× f (g−1(Wt))√
s(g−1(Wt))a(g−1(Wt))

]
�
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where EW
y is with respect to the law of standard Brownian motion W started

at y, M(y) = ∫ y
μ(y) dy is the indefinite integral of the drift μ(y) (by Ito’s for-

mula, M(Wt) = M(y)+∫ t
0 μ(Wu) dWu+ 1

2

∫ t
0 μ

′(Wu) du), and τg(e1)�g(e2) is the
first exit time of standard Brownian motion W started at y from (g(e1)� g(e2)).
Direct calculation shows that

eM(z)−M(y) =
√
s(g−1(y))a(g−1(y))

s(g−1(z))a(g−1(z))

and

k
(
g−1(y)

) + 1
2
(
μ2(y)+ μ′(y)

) = Q(y)�

where Q(y) is given by Eqs. (3.30)–(3.31).
Thus, the transition semigroup of the process X̂ on the interval (e1� e2) with

the infinitesimal parameters (a(x)� b(x)� k(x)) and with regular boundaries (if
any) specified as killing can be expressed in terms of the Feynman–Kac semi-
group of Brownian motion on the interval (g(e1)� g(e2)) discounted at the rate
Q(x) and killed at the first exit time from (g(e1)� g(e2)) if the boundaries are
accessible. The Schrödinger equation (3.29) with potential Q(x) (3.30)–(3.31)
is then the Sturm–Liouville equation associated with the Brownian motion
killed at the rate Q(x). If p(t;x� y) is the transition density (with respect to
the Lebesgue measure) of the process X̂ solving the backward Kolmogorov
equation

(4.5)
1
2
a2(x)pxx + b(x)px − k(x)p = pt

with the Dirac delta initial condition p(0;x� y) = δ(x − y) and appropriate
boundary conditions at the endpoints, and

(4.6)pQ(t;x� y) = ∂

∂y
EW
x

[
e−

∫ t
0 Q(Wu) du1{τg(e1)�g(e2)>t}1{Wt�y}

]
is the density of the Feynman–Kac semigroup of Brownian motion discounted
at the rate Q(x) (also called the heat kernel of the Schrödinger operator with
potential Q(x) because it solves the (time dependent) Schrödinger equation

(4.7)
1
2
p
Q
xx −Q(x)pQ = p

Q
t

with the Dirac delta initial condition pQ(0;x� y) = δ(x − y) and appropriate
boundary conditions at the endpoints8), then we have the following relation-
ship between the two densities

8 See Jeanblanc et al. (1997) for closely related work on integral functionals of Brownian motion, the
Feynman–Kac formula, and related references.
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(4.8)p(t;x� y) = 1
a(y)

√
s(x)a(x)

s(y)a(y)
pQ

(
t; g(x)� g(y))�

and for the value function we obtain:

V (t� x) =
e2∫

e1

p(t;x� y)f (y) dy

(4.9)=
e2∫

e1

√
s(x)a(x)

s(y)a(y)
pQ

(
t; g(x)� g(y))f (y) dy

a(y)
�

Table 1 lists some of the most important analytically tractable cases whose
spectral representations can be expressed in terms of classical special func-
tions.9 The table contains three columns. The first column presents the
Schrödinger potential10 Q(x) on the interval x ∈ (e1� e2)

11, the second col-
umn lists some of the practically important diffusion processes for which the
SL equation reduces to the Schrödinger equation with this potential, and
the third column lists financial models that feature these processes. In this
section we survey these analytically tractable models. This catalog of analyti-
cally tractable models is incomplete (some further specifications of analytically
tractable Schrödinger equations can be found in Grosche and Steiner, 1998 and
references therein), but it does include some of the most important families of
Schrödinger potentials and associated diffusion processes. For each of these
Schrödinger potentials Q(x), explicit expressions for the associated resolvent
kernels (Green’s function) GQ

α (x� y) and transition densities pQ(t;x� y) are
available. The reader can then immediately obtain the transition density for
any diffusion process with the associated SL equation reducible to this nor-
mal form (hence, the sate-price density of any asset pricing model depicted by
this diffusion process). To price derivative assets with L2((e1� e2)�m) payoffs,
one then needs to calculate expansion coefficients. If the payoff of interest is
not in L2((e1� e2)�m), one needs to proceed as described in the Remark in
Section 3.3, by either pricing an L2 payoff related to the one of interest by a
parity relationship, such as put-call parity, or by directly inverting the Laplace
transform of the integral of the payoff with the resolvent kernel.

9 Both the Mathematica and Maple software packages include all special functions appearing in these
models as built-in functions.
10 If Q̃(x) = Q(x)+c, then we clearly have pQ̃(t;x� y) = e−ctpQ(t;x� y). Thus, we consider potentials
up to an additive constant. If the process X̂ leads to the Schrödinger potential of the form included in
the table plus a constant c, the transition density needs an extra discounting with e−ct .
11 In the table we provide the maximal interval (e1� e2) on which the potential is continuous. For any
smaller interval (e′1� e

′
2) ⊂ (e1� e2), one can also consider a sub-process, imposing boundary conditions

at the regular endpoints (in this section we only consider killing boundary conditions; see Linetsky,
2005 for spectral expansions for processes with reflection).
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Table 1.
Summary of analytically tractable Schrödinger potentials, diffusion processes, and related financial
models.

Schrödinger potential Diffusion processes Financial models

Constant potential Arithmetic Brownian motion Bachelier
Q(x) = const a(x) = const, b(x) = const
I = (−∞�∞) Geometric Brownian motion Black–Scholes

a(x) = σx, b(x) = (r − q)x
Bounded diffusion on (a� b) Bounded FX, IR
a(x) = σ(b− a)−1(x− a)(b− x), b(x) = 0
Quadratic volatility Volatility smile
a(x) = ax2 + bx+ c, b(x) = 0

Harmonic oscillator Ornstein–Uhlenbeck process Vasicek model
Q(x) = ax2 + bx a(x) = σ , b(x) = κ(θ− x) Quadratic model
I = (−∞�∞)

Radial harmonic oscillator Radial OU process
Q(x) = ax2 + bx−2 or Bessel process with linear drift
I = (0�∞) a(x) = 1, b(x) = (ν + 1/2)x−1 + μx

Related diffusions
a(x) = σx1/2, b(x) = κ(θ− x) CIR model
a(x) = σx1+β, b(x) = (r − q)x CEV model
a(x) = σx1+β, b(x) = (r − q+ b+ cσ2x2β)x JDCEV model
a(x) = σx3/2, b(x) = κ(θ− x)x 3/2 model

Coulomb potential Bessel process with constant drift
Q(x) = ax−2 + bx−1 a(x) = 1, b(x) = (ν + 1/2)x−1 + μ
I = (0�∞) Related diffusions

a(x) = σx2, b(x) = κ(θ− x)x2 Non-affine models
a(x) = σx3/2, b(x) = κ(θ− x1/2)x3/2 Black–Scholes
a(x) = σx, b(x) = (r − q+ b+ α ln−1(x/K))x with default

Morse potential GBM with affine drift Asian options
Q(x) = ae−2γx + be−γx a(x) = σx, b(x) = Ax+ B Black–Scholes
I = (−∞�∞) Related models with default

a(x) = 2x, b(x) = 2(ν + 1)x+ 1 Cash dividends
a(x) = σx, b(x) = (r − q+ b+ αx−p)x Merton’s IR model
a(x) = σx, b(x) = rx− δ GARCH diffusion
a(x) = σx, b(x) = κ(θ− x)x Spot energy model
a(x) = ξx, b(x) = κ(θ− x) Brennan–Schwartz

Pöschl–Teller potential Jacobi diffusion FX target zones
Q(x) = a

cos2(γx)
+ b sin(γx)

cos2(γx)
a(x) = A

√
1 − x2, b(x) = κ(γ − x)

I = (0� 2π/γ)

Hyperbolic barrier, Hypergeometric diffusion Volatility skew
Modified Pöschl–Teller a(x) =

√
Ax2 + Bx+ C, b(x) = μx

Q(x) = a

cosh2(γx)
+ b sinh(γx)

cosh2(γx)
I = (−∞�∞)
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To summarize, when faced with a diffusion process on some interval with given
volatility, drift, and killing (discount) rate, do the Liouville transformation, reduce
the problem to Brownian motion on a transformed interval and killed at the rate
(3.32)–(3.33) that is constructed from the infinitesimal parameters of the original
diffusion, and look it up in the table of analytically tractable Schrödinger poten-
tials. If it is analytically tractable, you will immediately obtain the transition density
for the original diffusion from this density by undoing the Liouville transformation
via Eq. (4.8).

4.2 Constant potential, Brownian motion, and related financial models

We first consider Brownian motion on the real line without drift and without
killing. The SL problem is

−1
2
u′′(x) = λu(x)� x ∈ (−∞�∞)

with both boundaries −∞ and +∞ natural and oscillatory with cutoff Λ = 0.
We are in the Spectral Category III with Λ1 = Λ2 = 0 with non-simple purely
absolutely continuous spectrum [0�∞). The speed and scale densities are con-
stant, m(x) = 2, and s(x) = 1. The solutions

ψα(x) = e
√

2αx� φα(x) = e−
√

2αx

are exponentials in this case, and the Green’s function with respect to the speed
measure is:

Gα(x� y) = e−
√

2α|x−y|

2
√

2α
�

Regarded as a function of the complex variable α ∈ C, it has a branching point
at zero, and we place a branch cut from α = 0 to α → −∞ along the negative
real axes. It is convenient to parameterize the branch cut {α = −ρ2/2� ρ � 0}.
The jump across the cut is:

G 1
2ρ

2eiπ (x� y)−G 1
2ρ

2e−iπ (x� y) = − i

ρ
cos

(
ρ(x− y)

)
�

The Bromwich Laplace transform inversion (3.11) can now be accomplished
by applying the Cauchy Residue Theorem (see Titchmarsh, 1962 for details).
Since in this case the Green’s function does not have any poles, the Bromwich
integral (3.11) reduces to:

pm(t;x� y) = − 1
2πi

∞∫
0

e−
ρ2t

2
(
G 1

2ρ
2eiπ (x� y)−G 1

2ρ
2e−iπ (x� y)

)
ρ dρ

= 1
2π

∞∫
0

e−
ρ2t

2 cos
(
ρ(x− y)

)
dρ
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= 1
2π

∞∫
0

e−
ρ2t

2
(
sin(ρx) sin(ρy)+ cos(ρx) cos(ρy)

)
dρ�

yielding the spectral representation of the Brownian motion transition density
in the form (3.12). In this case, the integral with respect to the spectral para-
meter can be calculated in closed form to yield the familiar Gaussian density:

p(t;x� y) = 2pm(t;x� y) = 1
π

∞∫
0

e−
ρ2t

2 cos
(
ρ(x− y)

)
dρ

= 1√
2πt

e−
(x−y)2

2t �

Furthermore, for any diffusion process with volatility a(x), drift b(x), and
killing rate k(x) such that the Liouville transformation reduces it to Brownian
motion with a(x) = 1, b = 0, and constant potential (killing rate) Q = const,
we immediately obtain the transition density via Eq. (4.8) (note that a con-
stant c added to the potential simply shifts the spectrum by c, i.e., discounts
the transition density with e−ct). For Brownian motion with drift μ ∈ R,
the potential is constant, Q = μ2/2, and Eq. (4.8) reduces to the familiar
Cameron–Martin–Girsanov formula:

pμ(t;x� y) = eμ(y−x)−μ2t/2p0(t;x� y)�
where pμ is the transition density of Brownian motion with drift μ. Brown-
ian motion was first employed to model stock prices by Louis Bachelier in his
celebrated thesis (see Schachermayer and Teichmann, 2006 for an illuminating
discussion). The problem with Bachelier’s model is that Brownian motion lives
on the whole real line, while stock prices should stay non-negative.

To insure positive prices, an alternative is to take an exponential and con-
sider geometric Brownian motion as in the Black–Scholes (1973) and Merton
(1973) model. For geometric Brownian motion of the Black–Scholes–Merton
model,

a(x) = σx� b(x) = (r − q)x�

the Liouville transformation

y = σ−1 lnx� u(x) = σ
1
2x−

ν
σ v

(
y(x)

)
reduces the SL equation to the Schrödinger equation with constant potential:

Q = ν2

2
� ν := r − q

σ
− σ

2
�

and the lognormal risk-neutral transition density for the Black–Scholes–
Merton model is immediately recovered from (4.8).
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Next consider a bounded foreign exchange rate model of Ingersoll (1996)
and Rady (1997), where the (forward) foreign exchange rate is assumed to
follow the process:

dXt = σ
(Xt − a)(b−Xt)

(b− a)
dBt� X0 = x ∈ (a� b)�

Both a and b are inaccessible natural boundaries. The Liouville transformation
for this process with quadratic volatility in the bounded interval (a� b) is:

y = 1
σ

ln
(
x− a

b− x

)
� u(x) =

√
σ(b− a)−1(x− a)(b− x)v

(
y(x)

)
�

The resulting potential function (3.30) turns out to be a constant Q = σ2/2.
Thus, this process is reducible to Brownian motion, and we immediately obtain
its transition density from the one for Brownian motion by inverting the Liou-
ville transformation (which was, in effect, done in Ingersoll, 1996 and Rady,
1997 without explicitly referring to the Liouville transformation). This diffu-
sion has also been applied to interest rate modeling by Rady and Sandmann
(1994) and Miltersen et al. (1997) with a = 0 and b = 1.

One can also consider a diffusion with quadratic volatility and no drift,

a(x) = ax2 + bx+ c� b(x) = 0�

where one assumes that the quadratic does not have any roots in (0�∞). If the
process does not have roots in [0�∞), then the process is killed at the origin. If
a > 0 and c = 0, then the process has a root at x = 0 and the origin is a natural
boundary. These quadratic volatility processes on (0�∞) have been used to
model volatility smiles by Zuhlsdorff (2001) (see also Albanese et al., 2001).
However, one must be careful with this process as it is in general a strictly local
martingale. Infinity is an entrance boundary for this process, and the global
process dynamics is such that it rapidly falls from high positive values. The
result is that the process is a strict supermartingale. This is similar to the CEV
process with β > 0. Zuhlsdorff (2001) and Albanese et al. (2001) used this
process to value double-barrier options. There is no problem in this case as
the process is killed at some upper barrier. But special care must be taken
when considering this process on (0�∞) (one possibility is to regularize the
process similar to the Andersen and Andreasen, 2000 regularization for the
CEV process with β > 0). Carr et al. (2003) investigate more general classes
of local volatility models reducible to Brownian motion (they consider more
general transformations that also depend on time).

So far we have considered Brownian motion on the real line. Brownian mo-
tion on the half-line (a�∞) killed at a, as well as on the finite interval (a� b)
killed at both a and b, is treated similarly. In the latter case, the SL problem is

−1
2
u′′(x) = λu(x)� x ∈ (a� b)� u(a) = u(b) = 0�
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Both endpoints are regular killing boundaries and, hence, we are in the Spec-
tral Category I. The fundamental solution entire in α can be taken in the
form:

ψα(x) = sinh(
√

2α(x− a))√
2α

� φα(x) = sinh(
√

2α(b− x))√
2α

�

The Wronskian

wα = −sinh(
√

2α(b− a))√
2α

is entire in α with simple positive zeros α = −λn:

(4.10)λn = n2π2

2(b− a)2 � n = 1� 2� � � � �

At α = −λn the two solutions become linearly dependent:

φ−λn(x) = (−1)n+1ψ−λn(x)�
the Wronskian derivative at α = −λn is

w′−λn = (−1)n+1 (b− a)3

n2π2 �

the eigenfunctions (3.32) normalized in L2((a� b)� 2dx) are given by

(4.11)ϕn(x) = 1√
b− a

sin
(
nπ

x− a

b− a

)
�

and we arrive at the familiar spectral representation for the transition density
of Brownian motion between two killing barriers:

p(t;x� y) = 2pm(t;x� y)

= 2
b− a

∞∑
n=1

e−λnt sin
(
nπ

x− a

b− a

)
sin

(
nπ

y − a

b− a

)
�

We illustrate with the application to the pricing of double-barrier options
(see Davydov and Linetsky, 2003 for more details and further references). As-
sume that under the risk-neutral probability measure the underlying asset price
follows a geometric Brownian motion with the initial price S0 = x, constant
volatility σ > 0, constant risk-free rate r � 0 and constant dividend yield
q � 0. Consider a double-barrier call option with the strike price K, expiration
date T , and two knock-out barriers L and U , 0 < L < K < U . The knock-out
provision renders the option worthless as soon as the underlying price leaves
the price range (L�U) (it is assumed that S0 ∈ (L�U)). The double barrier call
payoff is 1{T(L�U)>T }(ST − K)+, where T(L�U) = inf{t � 0: St /∈ (L�U)} is the
first exit time from the range (L�U). The Liouville transformation reduces the
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SL equation to the Schrödinger equation on the interval (0� ln(U/L)/σ) with
the constant potentialQ = r+ν2/2, where ν = (r−q−σ2/2)/σ . The eigenval-
ues and eigenfunctions for the problem with zero potential and interval (a� b)
are given by (4.10) and (4.11). The additional constant in the potential simply
shifts the eigenvalues up by Q. Inverting the Liouville transformation yields
the eigenfunctions and eigenvalues of the original problem:

ϕn(x) = σx− ν
σ√

ln(U/L)
sin

(
πn ln(x/L)

ln(U/L)

)
�

λn = r + ν2

2
+ σ2π2n2

2 ln2(U/L)
� n = 1� 2� � � � �

The call option value function is given by the eigenfunction expansion (3.21):

C(t� x) =
∞∑
n=1

cne
−λntϕn(x)�

The expansion coefficients are calculated in closed form in this case:

cn = (
(· −K)+� ϕn

) = L
ν
σ√

ln(U/L)

[
Lψn(ν + σ)−Kψn(ν)

]
�

where

ψn(a) := 2
ω2
n + a2

[
eak

(
ωn cos(ωnk)− a sin(ωnk)

) − (−1)nωne
au

]
�

and

ωn := nπ

u
� k := 1

σ
ln

(
K

L

)
� u := 1

σ
ln

(
U

L

)
�

A practically important observation is that the eigenvalues increase as n2 to
facilitate fast convergence of the eigenfunction expansion. The longer the time
to expiration, the faster the eigenfunction expansion converges. The option
delta and gamma can be obtained by differentiating the eigenfunction expan-
sion term-by-term:

Δ(t� x) = Cx(t� x) =
∞∑
n=1

cne
−λntϕ′

n(x)�

%(t� x) = Cxx(t� x) =
∞∑
n=1

cne
−λntϕ′′

n(x)�

To illustrate, Table 2 shows convergence of the spectral expansions for
double-barrier call option prices, deltas and gammas with T = 1/12 and one
year to expiration and S0 = K = 100, L = 80, U = 130, r = 0�1, q = 0,
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Table 2.
Convergence of spectral expansions for double-barrier call prices, deltas and gammas with T = 1/12
(one month) and one year.

N Price Delta Gamma

Double-Barrier Call T = 1/12 Years
1 7.65069 −0�020999 −0�028245
2 5.78096 0�932450 0�032490
3 2.60902 0�720920 0�143401
4 3.11276 0�480955 0�102269
5 3.35713 0�536457 0�078607
6 3.29822 0�561105 0�088242
7 3.28703 0�554994 0�090335
8 3.28941 0�554203 0�089673
9 3.28958 0�554412 0�089623

10 3.28953 0�554422 0�089643
11 3.28953 0�554419 0�089643

Double-Barrier Call T = 1 Years
1 2.03207 −0�0055774 −0�0075021
2 2.01848 0�0013543 −0�0070606
3 2.01842 0�0013505 −0�0070586
4 2.01842 0�0013505 −0�0070586

The number in the N column indicates how many terms are included in the truncated expansion (e.g.,
N = 2 means that the first two terms with n = 1 and n = 2 are included in the eigenfunction expan-
sions). Parameters: S0 = K = 100, L = 80, U = 130, r = 0�1, q = 0, σ = 0�25.

σ = 0�25. For one-year options, the first three terms are enough to converge
to five significant digits. For one-month options (T = 1/12), the first ten terms
are required to achieve this level of accuracy. There is no loss of accuracy in
computing delta and gamma. This is in contrast to numerical option pricing
methods such as lattices, numerical PDE schemes and simulation. This basic
example illustrates the two key characteristics of the spectral method: numer-
ical convergence improves with increasing maturity, and the Greeks (delta and
gamma) are obtained at no additional computational cost by direct differentiation
of the expansion.

4.3 Harmonic oscillator, Ornstein–Uhlenbeck process, and related models

4.3.1 Harmonic oscillator potential
Our next example is the quadratic potential:

Q(x) = ax2 + bx+ b2

4a
= κ2

2
(x+ β)2�

κ > 0� a = κ2

2
� b ∈ R� β = b

2a
� x ∈ R
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known as the harmonic oscillator potential in quantum mechanics (e.g., Morse
and Feshbach, 1953, p. 1641). Consider Brownian motion killed at the rate
Q(x). Since Q(x) → +∞ as x → ±∞, both −∞ and +∞ are non-oscillatory
natural boundaries and the spectrum is purely discrete. This is in contrast with
standard Brownian motion that has oscillatory natural boundaries and purely
absolutely continuous spectrum. Intuitively, the killing rate increases fast as
the process wanders away from β, rapidly increasing the killing probability.
This “localization” relative to the free Brownian motion results in the discrete
spectrum, similar to the discrete spectrum of Brownian motion killed at the
endpoints of a finite interval.

For simplicity set β = 0. The fundamental solutions are expressed in terms
of the Weber–Hermite parabolic cylinder function:

ψα(x) = D− α
κ− 1

2
(−x√2κ )� φα(x) = D− α

κ− 1
2
(x

√
2κ )

with the Wronskian

wα = 2
√
πκ

%(α/κ+ 1/2)
�

The zeros of the Wronskian are (for notational convenience here we label the
eigenvalues and eigenfunctions starting from n = 0):

α = −λn� λn = κ(n+ 1/2)� n = 0� 1� � � � �

At an eigenvalue, α = −λn, the Weber–Hermite functions Dν degenerate into
Hermite polynomials Hn, the eigenfunctions are expressed in terms of the
latter, and the spectral representation of the transition density of Brownian
motion killed at the quadratic rate is:

p(t;x� y) = ∂

∂y
EW
x

[
e−

κ2
2

∫ t
0 W

2
u du1{Wt�y}

]

(4.12)

=
∞∑
n=0

e−κ(n+1/2)t 1
2nn!

(
κ

π

) 1
2
e−

κ
2 (x

2+y2)Hn
(
x
√
κ
)
Hn

(
y
√
κ
)
�

Applying Mehler’s formula (Eq. (22) in Erdelyi, 1953, p. 194)
∞∑
n=0

(z/2)n

n! Hn(x)Hn(y) = (1 − z2)−
1
2 exp

{
2xyz − (x2 + y2)z2

1 − z2

}
�

the spectral representation reduces to the familiar expression (e.g., Borodin
and Salminen, 2002, p. 168, Eq. (1.9.7))

(4.13)

p(t;x� y) =
√

κ

2π sinh(κt)
exp

{
−(x2 + y2)κ cosh(κt)− 2xyκ

2 sinh(κt)

}
�
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4.3.2 Ornstein–Uhlenbeck process
The mean-reverting Ornstein–Uhlenbeck (OU) process has the infinitesi-

mal parameters

a(x) = σ� b(x) = κ(θ− x)�

where κ > 0, θ, and σ > 0 are the rate of mean reversion, the long-run level,
and volatility, respectively (in finance applications, typically θ > 0). The Liou-
ville transformation (3.28) with x0 = θ reduces the SL equation (3.22) to the
Schrödinger equation with quadratic potential:

Q(x) = 1
2
κ2x2 − 1

2
κ�

The spectral representation of the OU transition density immediately follows
from (4.12) by Eq. (4.8). This spectral representation in terms of Hermite
polynomials is well known (e.g., Wong, 1964; Karlin and Taylor, 1981, p. 333;
Schoutens, 2000). The eigenvalues are λn = κn. The principal eigenvalue is
zero, λ0 = 0. Hence, the first term of the eigenfunction expansion of the tran-
sition density gives the Gaussian stationary density of the OU process:

π(x) =
√

κ

πσ2 e
− κ(x−θ)2

σ2 �

The eigenfunction expansion can be summed up, resulting in the familiar
Gaussian density of the OU process (obtained from (4.12) by (4.8)).

If the OU process is considered on some interval I ⊂ R with killing or
reflection at finite boundaries, then the eigenfunctions are expressed in terms
of the Weber-Hermite functions, rather than reduce to Hermite polynomials
(see Linetsky, 2004e and Alili et al., 2005 for the case of killing and associated
results on hitting times of the OU process, and Linetsky, 2005 for the case of
reflection).

4.3.3 Vasicek, quadratic, and Black’s interest rate models
If we take the short rate r(x) = x, we obtain the state-price density of the

Vasicek (1977) interest rate model. In the Vasicek model the short rate r can
get negative. Consequently, the pricing semigroup is not, in general, a contrac-
tion semigroup. This leads to serious economic problems (see Gorovoi and
Linetsky, 2004). If we take

r(x) = ax2 + bx+ c� with c � b2/4a�

we obtain the state-price density of a non-negative interest rate model where
the short rate is a quadratic of the OU process (this quadratic model was pro-
posed by Beaglehole and Tenney, 1992; see also Jamshidian, 1996; Leippold
and Wu, 2002, and Chen et al., 2004). For further details and references see
Gorovoi and Linetsky (2004), where an alternative non-negative interest rate
model with r(x) = x+ ≡ max{x� 0}, the so-called Black’s model of interest
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rates as options (Black, 1995), is solved analytically via the spectral expansion
method and calibrated to Japanese Government Bond data. This model can
handle low interest rate regimes and has been recently adopted by the Bank of
Japan (Bank of Japan, “Financial Markets Report: Developments during the
First Half of 2005,” p. 7).

4.4 Radial harmonic oscillator, radial OU and Bessel processes, and related
models

4.4.1 Radial OU process and Bessel processes
Next we consider a d-dimensional Ornstein–Uhlenbeck process {Xt� t � 0}

with the infinitesimal generator

1
2
Δ− μx · ∇�

where Δ is the standard d-dimensional Laplacian (infinitesimal generator of
d-dimensional Brownian motion) and μ ∈ R. The radial part of this process,
{Rt = |Xt |� t � 0} (here |x| = √

x · x is the Euclidean norm), turns out to be a
one-dimensional diffusion process with volatility and drift

a(x) = 1� b(x) = ν + 1/2
x

− μx� x ∈ (0�∞)�

where ν = d/2 − 1. In fact, the process can be considered for all ν ∈ R.
When μ �= 0, it is called the radial Ornstein–Uhlenbeck process (Shiga and
Watanabe, 1973; Pitman and Yor, 1982; Goeing-Jaeschke and Yor, 2003;
Borodin and Salminen, 2002). When μ = 0, it is the Bessel process of index ν
(Revuz and Yor, 1999; Borodin and Salminen, 2002). The boundary classifica-
tion at the origin is independent of the drift parameter μ. For all μ ∈ R, 0 is
entrance for ν � 0, regular for −1 < ν < 0 (both killing and reflecting bound-
ary conditions arise in finance applications) and exit for ν � −1. For all ν and
μ infinity is a natural boundary.

The Liouville transformation with x0 = 0 reduces the radial OU SL equa-
tion to the Schrödinger equation with the radial harmonic oscillator potential
(Morse and Feshbach, 1953, p. 1661; Grosche and Steiner, 1998):

Q(x) = 1
2
(
ν2 − 1/4

)
x−2 + 1

2
μ2x2 − μ(ν + 1)� x ∈ (0�∞)�

For μ �= 0 and all ν ∈ R, Q(x) → ∞ as x → +∞, and +∞ is non-
oscillatory natural. Thus, the spectrum is purely discrete (Spectral Category I).
For μ = 0, the process reduces to the Bessel process of index ν, Q(x) → 0
as x → +∞, +∞ is oscillatory with cutoff Λ = 0. Zero is not an eigenvalue
and the Bessel process has a simple and purely absolutely continuous spectrum
σ(−G) = σac(−G) = [0�∞) (Spectral Category II).

A property of this process important for practical calculations is that if we
kill the process at the rate k(x) = β2

2 x
−2 + γ2

2 x
2, the process R̂ with killing
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is just as analytically tractable as the process R with β = γ = 0. Indeed, both
processes lead to the same potential function:

Q(x) = 1
2
(
ν2 + β2 − 1/4

)
x−2 + 1

2
(
μ2 + γ2)x2 − μ(ν + 1)�

(4.14)x ∈ (0�∞)�

Only the coefficients in front of x−2 and x2 change.
For μ �= 0, the solutions ψα(x) and φα(x) are expressed in terms of the

Whittaker functions (or, equivalently, in terms of the Kummer and Tricomi
confluent hypergeometric functions). Explicit expressions can be found on
pp. 139–140 in Borodin and Salminen (2002). At an eigenvalue, λ = λn, the
Whittaker functions degenerate into the generalized Laguerre polynomials,
and the eigenfunctions are expressed in terms of the latter. If the process is
considered on an interval with killing or reflection at finite boundaries, then
the eigenfunctions are expressed in terms of the Whittaker functions. For
μ = 0, the solutions ψα(x) and φα(x) are expressed in terms of the modi-
fied Bessel function (explicit expressions can be found on p. 133 in Borodin
and Salminen, 2002), and the spectral representation with absolutely continu-
ous spectrum (3.33) has an integral form (e.g., Karlin and Taylor, 1981, p. 338
for ν = d/2 − 1).

4.4.2 The CIR model
Let {Rt� t � 0} be a radial OU process with ν � 0 and μ > 0. For σ > 0, the

squared process {Xt = σ2

4 R
2
t � t � 0} is a Feller’s (1951) square-root diffusion

on (0�∞) with the infinitesimal parameters (see also Wong, 1964):

a(x) = σ
√
x� b(x) = κ(θ− x)�

where θ := σ2

4μ
(ν + 1) > 0� κ := 2μ > 0�

Here κ > 0, θ > 0, and σ > 0 are the rate of mean reversion, the long-
run level, and volatility, respectively. This diffusion is known in finance as the
CIR process (Cox et al., 1985) and is widely used as a model of interest rates
(the CIR term structure model), stochastic volatility (Heston, 1993), and credit
spreads (Duffie and Singleton, 2003).

The scale and speed densities of the CIR diffusion are:

s(x) = x−βeax� m(x) = 2
σ2x

β−1e−ax�

where a := 2κ
σ2 � β := 2κθ

σ2 �

For β � 1, zero is an inaccessible entrance boundary, and +∞ is a non-
attracting natural boundary. The fundamental solutions are:

ψα(x) = M(α/κ�β� ax)� φα(x) = U(α/κ�β� ay)�
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where M(a� b� z) and U(a� b� z) are the Kummer and Tricomi confluent hy-
pergeometric functions (see Slater, 1960 and Buchholz, 1969). The Wronskian
is (%(z) is the Gamma function):

wα = %(β)

%(α/κ)
a−β+1�

The zeros of the Wronskian are α = −λn, λn = κn, n = 0� 1� � � � . The spectrum
is purely discrete with the eigenvalues λn = κn (for notational convenience
here we label the eigenvalues starting from zero). At an eigenvalue, α = −κn,
the confluent hypergeometric functions M and U become linearly dependent
and degenerate into the generalized Laguerre polynomials. The normalized
eigenfunctions (3.32) are:

λn = κn� ϕn(x) =
√

n!κ
%(β+ n)

a
β−1

2 L
(β−1)
n (ax)� n = 0� 1� � � � �

where L(α)n (x) are the generalized Laguerre polynomials. Note that the prin-
cipal eigenvalue is zero, λ0 = 0. Hence, the first term of the eigenfunction
expansion of the transition density gives the stationary density of the CIR
process:

π(x) = κaβ−1

%(β)
m(x) = aβ

%(β)
xβ−1e−ax�

which is a gamma density. Note that in this case the speed measure is a finite
measure and, hence, the stationary density exists and is equal to the speed
density normalized to integrate to one.

The symmetric transition density has the eigenfunction expansion (3.20)
(here we count the eigenvalues starting from n = 0). Applying the Hille–Hardy
formula (Eq. (20) in Erdelyi, 1953, p. 189; Iα(x) is the modified Bessel function
of order α)

∞∑
n=0

znn!
%(n+ α+ 1)

L(α)n (x)L(α)n (y)

= (1 − z)−1 exp
{
−zx+ y

1 − z

}
(xyz)−

α
2 Iα

(
2
√
xyz

1 − z

)
�

the spectral representation for the symmetric CIR transition density with re-
spect to the speed measure m reduces to the closed-form expression in terms
of the modified Bessel function:

pm(t;x� y) = κ

1 − e−κt
(xye−κt)

1−β
2 exp

{
−α(x+ y)

eκt − 1

}
× Iβ−1

(
2α

√
xye−κt

1 − e−κt

)
�
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The transition density with respect to the Lebesgue measure is p(t;x� y) =
pm(t;x� y)m(y).

The state-price density of the CIR term structure model can be interpreted
as the transition density for the CIR process killed at the rate k(x) = r(x) = x.
This is equivalent to killing the Bessel process with linear drift at the rate
k(x) = σ2

4 x
2. From Eq. (4.14) we see that adding the killing only changes

the coefficient in front of the x2 term in the corresponding Schrödinger poten-
tial, and the spectral representation for the CIR term structure model follows
immediately. A detailed spectral analysis of the CIR model can be found in
Davydov and Linetsky (2003, Section 4) and Gorovoi and Linetsky (2004, Sec-
tion 5). Applications to modeling mortgages with prepayment can be found in
Gorovoi and Linetsky (2006).

4.4.3 The 3/2 model
Let {Rt� t � 0} be a radial OU process with ν > 1 and μ > 0. For σ > 0,

the reciprocal squared process {Xt := 4σ−2R−2
t � t � 0} is a diffusion on (0�∞)

with infinitesimal parameters

a(x) = σx3/2� b(x) = κ(θ− x)x�

κ := σ2

2
(ν − 1) > 0� θ := 4μ

σ2(ν − 1)
> 0�

This diffusion with non-linear drift and infinitesimal variance σ2x3 is the recip-
rocal of the square-root CIR process. This process was proposed by Cox et al.
(1985, p. 402, Eq. (50)) as a model for the inflation rate in their three-factor
inflation model. They were able to solve the three-factor valuation PDE for the
real value of a nominal bond (their Eqs. (53–54)). More recently this diffusion
appeared in Lewis (1998, 2000), Heston (1997), Ahn and Gao (1999) in differ-
ent contexts. Heston (1997) and Lewis (2000) apply this process in the context
of stochastic volatility models. The latter reference provides a detailed study of
a stochastic volatility model where the instantaneous asset price variance fol-
lows this process. Lewis (1998) and Ahn and Gao (1999) propose this process
as a model for the nominal short rate. They show that the 3/2 model is more
empirically plausible than the square-root model. The accumulated empirical
evidence estimating short rate models with the diffusion parameter ∼ rγ sug-
gests that empirically γ > 1, thus contradicting the square-root specification.
Furthermore, recent empirical studies suggest that the short rate drift is sub-
stantially non-linear in the short rate. Lewis (1998) (see also Ahn and Gao,
1999) obtains an analytical solution for the zero-coupon bond price by directly
solving the PDE. This solution is, in fact, contained in a more general solution
given in Eq. (54) of Cox et al. (1985) for their three-factor inflation model. The
spectral analysis of the 3/2 model is given in Linetsky (2004a).
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4.4.4 The CEV model
Let {Xt� t � 0} be a radial OU process with index ν < 0 and drift parameter

m ∈ R. If ν ∈ (−1� 0), the origin is regular and we send the process to the
cemetery state Δ at the first hitting time of zero, T0. If ν � −1, the origin is
exit. Thus, in both cases the lifetime of the process is ζ = T0. If m = 0, then
X is the Bessel process of index ν < 0 and killed at the origin. For some δ > 0
define a new process {St� t � 0} as follows:

St :=
{
( δ

2|ν|Xt)
−2ν� 0 � t < ζ�

Δ� t � ζ�

This process is a diffusion on (0�∞) with infinitesimal parameters

a(x) = σ(x)x = δx1+β� b(x) = μx�

where β := 1
2ν

< 0� μ := 2νm ∈ R�

and killing (default) at the first hitting time of zero. This is a constant elastic-
ity of variance (CEV) model of Cox (1975) (see also Schroder, 1989; Delbaen
and Shirakawa, 2002a, 2002b; Andersen and Andreasen, 2000; Davydov and
Linetsky, 2001, 2003; Linetsky, 2004c and references therein).

The CEV specification nests the absolute diffusion (β = −1) and square-
root (β = −1/2) models of Cox and Ross (1976) as particular cases. For β < 0,
the local volatility σ(x) = δxβ is a decreasing function of the asset price. We
have two model parameters β and δ; β is the elasticity of the local volatility
function and δ is the scale parameter. For β < 0, +∞ is a natural boundary;
attracting for μ > 0 and non-attracting for μ � 0 (the risk-neutral drift is
μ = r − q, where r � 0 and q � 0 are the constant risk-free rate and dividend
yield, respectively). For −1/2 � β < 0, the origin is an exit boundary. For
−∞ < β < −1/2, the origin is a regular boundary and is specified as killing,
by sending the stock process to the default state Δ. In this paper we focus
on the CEV process with β < 0. This process is used to model the volatility
skew in the equity options market. The CEV process can also be considered
for β > 0. In this case when μ = 0 the process is a strict local martingale
(similar situation to the quadratic volatility process discussed above). We refer
to Davydov and Linetsky (2001) for further discussion and references. Davydov
and Linetsky (2003) and Linetsky (2004c) provide detailed spectral analysis
of the CEV process and obtain analytical solutions for barrier and lookback
options in terms of spectral expansions. Here we will consider the case μ � 0
(r � q). The negative drift case μ < 0 is treated similarly.

The scale and speed densities of the CEV process are

s(x) = e−ax−2β
� m(x) = 2δ−2x−2β−2eax

−2β
� where a := μ

δ2|β| �
For μ > 0, the fundamental solutions and their Wronskian are:

ψα(x) = e−
a
2x

−2β
xβ+

1
2Mk(α)� ν2

(
ax−2β)�
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φα(x) = e−
a
2x

−2β
xβ+

1
2Wk(α)� ν2

(
ax−2β)�

wα = 2μ%(ν + 1)
δ2%(α/γ + 1)

�

where ν := 1
2|β| � γ := 2μ|β|� k(α) := ν − 1

2
− α

γ
�

and Mk�m(x) and Wk�m(x) are the Whittaker functions (which are related to
the confluent hypergeometric functions; see Slater, 1960 and Buchholz, 1969).
For notational convenience in what follows, here we re-define ν = 1/(2|β|) as
the absolute value of the index ν of the radial OU process X we started with.
The spectrum is purely discrete and the symmetric transition density admits
an eigenfunction expansion (3.20) with the eigenvalues and normalized eigen-
functions

λn = γ(n+ 1)�

ϕn(x) = aν/2

√
n!μ

%(ν + n+ 1)
xe−ax−2β

L(ν)n

(
ax−2β)� n = 0� 1� � � � �

where L(ν)n (x) are the generalized Laguerre polynomials. Applying the Hille–
Hardy formula as we did for the CIR process, we can show that the eigenfunc-
tion expansion collapses to the expression with the modified Bessel function:

pm(t;x� y) = μ(xy)1/2

eγt − 1
exp

{
−a(x−2β + y−2β)

1 − e−γt
+ μt

2

}
× Iν

(
2a(xy)−βe−γt/2

1 − e−γt

)
�

Now consider the driftless case with μ = 0 and β < 0. This case is impor-
tant for pricing options on futures (recall that futures prices have zero drift
under the risk-neutral measure). This case is related to the Bessel processes
with negative index and killing at the origin. The fundamental solutions and
their Wronskian are (here ν := 1/(2|β|)):

ψα(x) =
√
xIν

(
Ax−β

√
2α

)
� φα(x) =

√
xKν

(
Ax−β

√
2α

)
�

wα = |β|� A := 1
δ|β| �

where Iν(x) and Kν(x) are the modified Bessel functions.
In the driftless case the spectrum is purely absolutely continuous and the

symmetric transition density admits an absolutely continuous spectral repre-
sentation (3.33) (with Λ = 0, dρac(λ) = |β|−1 dλ, and no additional eigen-
values in this case):

pm(t;x� y) =
∞∫

0

e−λtψ−λ(x)ψ−λ(y)|β|−1 dλ�
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where ψ−λ(x) =
√
xJν

(
Ax−β

√
2λ

)
�

where Jν is the Bessel function of order ν (recall that Jν(z) = Iν(iz)).
The continuous spectral representation of the driftless CEV density has the

form of the Laplace transform. This Laplace transform can be explicitly calcu-
lated using the following integral identity (Erdelyi, 1953, vol. II, p. 53) (for all
ν > −1 and t > 0):

1
t

exp
{
−u2 + v2

2t

}
Iν

(
uv

t

)
=

∞∫
0

e−λtJν
(
u
√

2λ
)
Jν

(
v
√

2λ
)

dλ�

yielding the following explicit expression:

pm(t;x� y) = (xy)1/2

2|β|t exp
{
−A2

2t
(
x−2β + y−2β)}Iν(A2

t
(xy)−β

)
�

Since zero is a killing boundary, the transition density is defective, and we
obtain the survival probability:

Pt
(
x� (0�∞)

) =
∞∫

0

p(t;x� y) dy = γ(ν� η(t� x))

%(ν)
< 1�

where

η(t� x) :=
{
ax−2β/(1 − e−γt)� μ > 0�
Ax−2β/(2t)� μ = 0

and γ(ν� z) is the incomplete Gamma function, defined γ(ν� z) = ∫ z
0 tν−1e−t dt.

The probability of killing by hitting zero (default) up to time t is:

Pt
(
x� {Δ}) = 1 − Pt

(
x� (0�∞)

) = %(ν� η(t� x))

%(ν)
�

where %(ν� z) is the complementary incomplete Gamma function %(ν� z) =
%(ν) − γ(ν� z) =

∞∫
z
tν−1e−t dt (Abramowitz and Stegun, 1972, p. 260). Thus,

the CEV model is completely analytically tractable.

4.4.5 The jump-to-default extended CEV model
In the standard CEV model default happens when the stock price hits zero.

However, for empirically realistic values of parameters β and δ the default
probability is small. Moreover, default often happens as a surprise when the
firm has a positive stock price. Carr and Linetsky (2006) extend the CEV model
by introducing the possibility of default from a positive stock price. They intro-
duce default intensity specified as a function of the underlying stock price as
follows:

h(x) = b+ cσ2(x) = b+ cδ2x2β�
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with default intensity parameters b � 0 and c > 0 (here we consider a constant
parameter version of the model; the general version allows for deterministic
time dependence of parameters). This default intensity is an affine function
of the instantaneous stock variance σ2(x) (the greater the stock volatility, the
greater the default intensity). Since in the CEV model the stock volatility is
a negative power of the stock price (recall that the CEV diffusion coefficient
is a(x) = σ(x)x = δx1+β), the default intensity is also a negative power of
the stock price (plus a constant). In order for the discounted gains process
(including price changes, dividends, and possible default) to be a martingale
under the risk-neutral measure, the risk-neutral drift of the process has to be
adjusted to compensate the jump:

b(x) = (
r − q+ h(x)

)
x = (

r − q+ b+ cδ2x2β)x�
The resulting model is called Jump-to-Default extended CEV (JDCEV for
short). When c � 1/2, zero is an inaccessible boundary. As the killing rate
(default intensity) increases fast, the process is always killed from a positive
value (default occurs from a positive stock price via a jump-to-default), before
the process has the opportunity to diffuse down to zero. When c < 1/2, zero
is a killing boundary for the process (exit for β ∈ [c − 1/2� 0) and regular
specified as killing for β < c − 1/2), and the default event can occur either
from a positive value by a jump-to-default, or via diffusion down to zero. The
JDCEV model retains complete analytical tractability of the standard CEV
model, with defaultable bond and stock option pricing formulas available in
closed from (Carr and Linetsky, 2006).

4.5 Coulomb potential, Bessel processes with constant drift, and related models

4.5.1 Coulomb potential and Bessel processes with constant drift
Next we consider a d-dimensional (d � 2) pole seeking Brownian motion

process {Xt� t � 0}, a diffusion process in Rd with the infinitesimal generator

1
2
Δ+ μ

x

|x| · ∇
with μ ∈ R. The radial part of this process, {Rt = |Xt |� t � 0}, turns out to be
a one-dimensional diffusion process with

a(x) = 1� b(x) = ν + 1/2
x

+ μ� x ∈ (0�∞)�

where ν = d/2 − 1. For d = 2 and μ < 0 this process was studied by Kendall
(1972), where it was called a pole seeking Brownian motion (see also Pitman
and Yor, 1981, pp. 362–364; Yor, 1984, p. 104; and DeLong, 1981 for related
work). Here we consider this process with ν� μ ∈ R and call it Bessel process
of index ν with constant drift μ. The boundary classification at 0 is indepen-
dent of μ and is the same as for the standard Bessel process. For all ν ∈ R,
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+∞ is oscillatory natural with cutoff Λ = μ2/2. According to Theorem 3.3,
+∞ is non-oscillatory (oscillatory) for λ = Λ = μ2/2 if μ(ν + 1/2) � 0
(μ(ν + 1/2) < 0). Thus, we are in the Spectral Category II with purely ab-
solutely continuous spectrum above μ2/2. If μ(ν + 1/2) < 0 we have an
infinite sequence of eigenvalues clustering at μ2/2 (i.e., μ2/2 is the limit point
of the point spectrum). If μ(ν + 1/2) � 0, there may only be a finite set of
non-negative eigenvalues in [0� μ2/2] (it turns out that this set is empty). The
explicit form of the spectral representation for this process is given in Linetsky
(2004d).

The Liouville transformation with x0 = 0 reduces the SL equation to the
Schrödinger equation with Coulomb potential (Morse and Feshbach, 1953,
p. 1663):

Q(x) = 1
2
(
ν2 − 1/4

)
x−2 + μ(ν + 1/2)x−1 + μ2

2
� x ∈ (0�∞)�

This is the celebrated Coulomb potential appearing in the quantum mechan-
ical model of the hydrogen atom. The Schrödinger equation with Coulomb
potential has the form of the Whittaker equation with the Whittaker functions
as solutions.

A property of this process important for practical applications is that if we
kill the process at the rate k(x) = 1

2β
2x−2 + γx−1, the process R̂ with killing

is just as analytically tractable as the process R without killing, β = γ = 0.
Indeed, both processes lead to the same potential function:

Q(x) = 1
2
(
ν2 + β2 − 1/4

)
x−2 + (

μ(ν + 1/2)+ γ
)
x−1 + μ2

2
�

x ∈ (0�∞)�

Only the coefficients in front of x−2 and x−1 change.

Remark. Yor (1984) calls this process with unit volatility and drift b(x) =
(ν + 1/2)x−1 − δ Bessel process with “naive” drift δ > 0 in order to avoid
confusion with the diffusion obtained by taking the radial part of an Rd-valued
Brownian motion started at the origin and with some drift vector -δ and with
the infinitesimal generator 1

2Δ + -δ · ∇. This latter diffusion has unit volatility
and drift

b(x) = ν + 1/2
x

+ δIν+1(δx)

Iν(δx)
�

where ν = d/2 − 1, δ = |-δ|, and Iν(z) is the Bessel function of order ν, and
is usually called Bessel process with drift (Watanabe, 1975; Pitman and Yor,
1981, p. 310).
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4.5.2 Two non-affine term structure models
Let {Xt� t � 0} be a Bessel process with ν > 1 and constant drift μ < 0 and

α = β = 0. For σ > 0, the reciprocal squared process {4σ−2R−2
t � t � 0} is a

diffusion on (0�∞) with the infinitesimal parameters

a(x) = σx3/2� b(x) = κ(θ− x1/2)x3/2�

κ := σ2

2
(ν − 1) > 0� θ := − 2μ

σ(ν − 1)
> 0�

This diffusion with infinitesimal variance σ2x3 is similar to the 3/2 model of
Section 4.4.3 but has a different specification of non-linear drift. The spectral
representation of the state-price density in the term structure model with the
short rate following this diffusion is obtained by killing the process at the lin-
ear rate r(x) = x. This corresponds to killing the Bessel process with constant
drift at the rate r(x) = 4σ−2x−2. Transforming to the Liouville normal form,
only the coefficient in front of the x−2 is modified. Thus, in this term structure
model the spectral representation for the state-price density follows immedi-
ately from the spectral representation for the transition density of the Bessel
process with constant negative drift.

Let {Xt� t � 0} be a Bessel process with ν � 1/2 and constant drift μ < 0
and α = β = 0. For some σ > 0, the reciprocal process {(σXt)

−1� t � 0} is a
diffusion on (0�∞) with the infinitesimal parameters

a(x) = σx2� b(x) = κ(θ− x)x2�

κ := σ2(ν − 1/2) > 0� θ := − μ

σ(ν − 1/2)
> 0�

This diffusion has the CEV infinitesimal variance σ2x2γ with γ = 2 in contrast
to the 3/2 model. Its drift is also more non-linear that the 3/2 model. In light
of the recent empirical evidence on non-linearity of the drift and high positive
values for γ, this model may be expected to outperform the 3/2 model in em-
pirical tests. The spectral representation of the state-price density is obtained
by killing the process at the rate r(x) = x. This corresponds to killing the
Bessel process with constant drift at the rate r(x) = (σx)−1. Transforming
to the Liouville normal form, only the coefficient in front of x−1 is modi-
fied. Thus, in this term structure model the spectral representation for the
state-price density follows immediately from the spectral representation for
the transition density of the Bessel process with constant negative drift. More
details on Bessel processes with constant drift and the associated non-affine
term structure models can be found in Linetsky (2004d).

4.5.3 A jump-to-default extended Black–Scholes model
Consider the following extension of the Black–Scholes model that includes

default. Start with the standard Black–Scholes geometric Brownian motion
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process for the stock price and assume that the default intensity has the form:

h(x) = c

ln(x/B)
�

where x is the stock price of the underlying firm and B is some threshold de-
fault barrier. This intensity tends to infinity as the stock price falls towards the
barrier, and tends to zero as the stock price goes to infinity. This specification
of default intensity as a function of the stock price is similar to the one used by
Madan and Unal (1998).

In order for the discounted gain process (including stock price changes, divi-
dends, and possible default) to be a martingale under the risk-neutral measure,
the risk-neutral drift of the process has to be adjusted as follow (the volatility
is assumed lognormal in the Madan and Unal model, a(x) = σx):

b(x) = (
r − q+ h(x)

)
x =

(
r − q+ c

ln(x/B)

)
x�

We now show that this model reduces to the killed Bessel process with
constant drift associated with the Coulomb potential and is, thus, analytically
tractable. Let {St� t � 0} be a diffusion process with the above drift and
lognormal volatility σ > 0. Introduce a new process {Rt = σ−1 ln(St/B)}.
This process is a Bessel process with ν = c/σ2 − 1/2 and constant drift
μ = (r − q − σ2/2)/σ . The associated Schrödinger potential is the Coulomb
potential. Furthermore, introducing default by killing the original process at
the rate h(x) = c/ ln(x/B) (equivalently, killing the Bessel process with drift
at the rate h(x) = cσ−1x−1) only modifies the constant in front of the term
with x−1 in the Coulomb potential, and we obtain the analytical state-price
density in this model of default.

4.6 Morse potential, geometric Brownian motion with affine drift, and related
models

4.6.1 Morse potential and geometric Brownian motion with affine drift
Consider a diffusion process with infinitesimal parameters

a(x) = σx� b(x) = Ax+ B�

(4.15)x ∈ (0�∞)� σ > 0� A�B ∈ R� B �= 0�

For B = 0 this is a geometric Brownian motion. For B �= 0 we call this process
geometric Brownian motion with affine drift. This process was studied by Wong
(1964) who obtained a spectral representation for B > 0 and A < σ2/2 (this
process also appeared in Shiryaev, 1961 in the context of quickest detection
problems; see also Peskir, 2006). For all A�B ∈ R, +∞ is a natural boundary.
Adding the constant B �= 0 in the drift drastically changes the behavior of the
process near the origin. For all A ∈ R, 0 is exit (entrance) for B < 0 (B > 0).
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For B > 0 and A < σ2/2 (the case studied by Wong, 1964), the process has
a stationary distribution with the reciprocal Gamma density:

π(x) ∼ x
2A
σ2 −2

e
− 2B
σ2 x

−1
�

Let ζ := T0 be the lifetime of the process (ζ = ∞ if B > 0). The process
{lnXt� 0 � t < ζ} is a diffusion with

a(x) = σ� b(x) = A− 1
2
σ2 + Be−x�

The Liouville transformation reduces the corresponding SL equation to the
Schrödinger equation with Morse potential (Morse, 1929; Morse and Feshbach,
1953, p. 1671):

Q(x) = c0 + c1e
−γx + c2e

−2γx� x ∈ (0�∞)�

(4.16)

c0 = 1
2σ2

(
A− 1

2
σ2

)2
� c1 = B

(
A

σ2 − 1
)
� c2 = B2

2σ2 � γ = 2σ�

The Schrödinger equation with potential of the form ae−2γx + be−γx first ap-
peared in Morse (1929). The origin is non-oscillatory and +∞ is oscillatory
with cutoffΛ = c0. The cutoff value is non-oscillatory. Thus we have absolutely
continuous spectrum above c0 plus a finite set of non-negative eigenvalues be-
low c0.

Consider a standardized version of the process with B > 0 that has the
following standardized parameters σ = 2, A = 2(ν + 1), and B = 1. In
what follows this process will be denoted X(ν). This process was studied in
Donati-Martin et al. (2001) and Linetsky (2004b) in connection with Asian op-
tions and in Linetsky (2006) in connection with the jump-to-default extended
Black–Scholes model. The fundamental solutions and their Wronskian for this
process are:

ψs(x) = x
1−ν

2 e
1

4xW 1−ν
2 �μ(α)

(
1

2x

)
�

φs(x) = x
1−ν

2 e
1

4xM 1−ν
2 �μ(α)

(
1

2x

)
� wα = 1

2%(μ(α)+ ν/2)
�

where μ(α) = 1
2

√
2α+ ν2, and Mκ�μ(z) and Wκ�μ(z) are the Whittaker func-

tions (Mκ�μ(z) = Mκ�μ(z)/%(2μ+ 1) is the regularized Whittaker function).
For ν < 0, the Green’s function (3.10) considered in the complex α-plane

has some poles in the interval α ∈ [−ν2/2� 0] (the poles of the Gamma function
in the denominator of wα) and a branch cut from α = −ν2/2 to −∞ placed
along the negative real axes. It is convenient to parameterize the branch cut
as follows: {α = −ν2/2 − ρ2/2� ρ ∈ [0�∞)}. Applying the Cauchy Residue
Theorem, the Laplace inversion produces the spectral representation of the
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symmetric transition density:

p(ν)m (t;x� y) = 1{ν<0}
[|ν|/2]∑
n=0

e−λntResα=−λnGα(x� y)

− 1
2πi

∞∫
0

e−
(ν2+ρ2)t

2 {G 1
2 (ν

2+ρ2)eiπ (x� y)

−G 1
2 (ν

2+ρ2)e−iπ (x� y)}ρ dρ�

The poles give the eigenvalues, and the residues at the poles give the corre-
sponding contributions to the density from the eigenfunctions. The integral
along the branch cut produces the continuous spectrum. For x� y > 0 and
ν ∈ R, the transition density has the following spectral representation:

p(ν)(t;x� y) = 1{ν<0}π(y)

+ 1{ν<−2}
[|ν|/2]∑
n=1

e−2n(|ν|−n)t 2(|ν| − 2n)n!
%(1 + |ν| − n)

× e
− 1

2y (2x)n(2y)n−1−|ν|L(|ν|−2n)
n

(
1

2x

)
L
(|ν|−2n)
n

(
1

2y

)

+ 1
2π2

∞∫
0

e−
(ν2+ρ2)t

2 e
1

4x− 1
4y
( y
x

) ν−1
2
W 1−ν

2 � iρ2

(
1

2x

)

×W 1−ν
2 � iρ2

(
1

2y

)∣∣∣%(ν + iρ

2

)∣∣∣2 sinh(πρ)ρ dρ�

where L(α)n (x) are the generalized Laguerre polynomials, [x] denotes the inte-
ger part of x, 1{·} is the indicator function, and

π(x) = 2ν

%(−ν)x
ν−1e−

1
2x

is the stationary density of the process (reciprocal Gamma). When x = 0 (re-
call that the process can be started at zero (zero is an entrance boundary)),
y > 0, and ν ∈ R,

p(ν)(t; 0� y) = 1
2π2

∞∫
0

e−
(ν2+ρ2)t

2 e
− 1

4y (2y)
ν−1

2 W 1−ν
2 � iρ2

(
1

2y

)

×
∣∣∣%(ν + iρ

2

)∣∣∣2 sinh(πρ)ρ dρ

+ 1{ν<0}
2ν

%(−ν)x
ν−1e−

1
2x
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+ 1{ν<−2}
[|ν|/2]∑
n=1

e−2n(|ν|−n)t (−1)n2(|ν| − 2n)
%(1 + |ν| − n)

× e
− 1

2y (2y)n−1−|ν|L(|ν|−2n)
n

(
1

2y

)
�

4.6.2 A jump-to-default extended Black–Scholes model
Linetsky (2006) studies the following extension of the Black–Scholes model

that includes default. Start with the standard Black–Scholes geometric Brown-
ian motion process for the stock price and assume that the default intensity has
the form:

h(x) = cx−p�
for some p > 0 and c > 0. That is, the default intensity is the negative power
of the underlying stock price. When the stock tends to zero, the intensity tends
to infinity. When the stock tends to infinity, the intensity asymptotically goes to
zero. In order for the discounted gains process (including stock price changes,
dividends, and possible default) to be a martingale under the risk-neutral mea-
sure, the risk-neutral drift of the process has to be adjusted to compensate for
the possible default (the volatility is assumed lognormal, a(x) = σx):

b(x) = (
r − q+ h(x)

)
x = (

r − q+ cx−p)x�
Let {St� t � 0} be a diffusion process with this drift and volatility. Introduce
a new process {Zt = βS

p
t � t � 0}, where β = pσ2/(4α). This process is a

diffusion with volatility and drift:

a(x) = γx� b(x) = αx+ β�

with α = p
(
r − q+ (p+ 1)σ2/2

)
� β = p2σ2/4� γ = pσ�

Thus, we are in the class (4.15) with the analytically tractable transition density,
and closed-form expressions are available for both corporate bonds and stock
options in this model.

4.6.3 Arithmetic Asian options
The process X(ν) and its density p(ν) are also closely related to the problem

of pricing arithmetic Asian options. Assume that, under the risk-neutral mea-
sure, the underlying asset price follows a geometric Brownian motion process
{St = S0 exp(σBt+(r−q−σ2/2)t)� t � 0}. For t > 0, let At be the continuous
arithmetic average price,

At = 1
t

t∫
0

Su du�

An Asian put option with strike K > 0 and expiration T > 0 delivers the
payoff (K − AT )

+ at T (Asian calls can be obtained by the call-put parity for
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Asian options; we only consider puts here). After standardizing the problem
(see Geman and Yor, 1993), it reduces to computing the expectation of the
form

P(ν)(k� τ) = E
[(
k−A(ν)

τ

)+]
�

where τ = σ2T/4, ν = 2(r − q − σ2/2)/σ2, k = τK/S0, and A(ν)
τ is the

so-called Brownian exponential functional (see Yor, 2001)

A(ν)
τ =

τ∫
0

e2(Bu+νu) du�

Dufresne’s identity in law (Dufresne, 1989, 1990; see also Donati-Martin et al.,
2001) states that, for each fixed t > 0,

A(ν)
t

(law)= X(ν)
t �

where X(ν)
t is starting at the origin. Since the spectral representation for this

diffusion is known, we immediately obtain the spectral expansion for the arith-
metic Asian put (Linetsky, 2004b):

P(ν)(k� τ) = 1
8π2

∞∫
0

e−
(ν2+ρ2)τ

2 (2k)
ν+3

2 e−
1

4kW− ν+3
2 � ip2

(
1

2k

)

×
∣∣∣%(ν + iρ

2

)∣∣∣2 sinh(πρ)ρ dρ

+ 1{ν<0}
1

2%(|ν|)
{
2k%

(|ν|� 1/(2k)
) − %

(|ν| − 1� 1/(2k)
)}

+ 1{ν<−2}e−2(|ν|−1)τ (|ν| − 2)
2%(|ν|) %

(|ν| − 2� 1/(2k)
)

+ 1{ν<−4}
[|ν|/2]∑
n=2

e−2n(|ν|−n)τ (−1)n(|ν| − 2n)
2n(n− 1)%(1 + |ν| − n)

× (2k)ν+n+1e−
1

2kL
(|ν|−2n)
n−2

(
1

2k

)
�

This explicit expression constitutes an analytical inversion of the celebrated
Geman and Yor (1993) Laplace transform result for arithmetic Asian options
originally obtained via the theory of Bessel processes (see also Donati-Martin
et al., 2001 for an alternative derivation of the Geman and Yor Laplace trans-
form via Dufresne’s identity).
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4.6.4 Merton’s cash dividends model
Let {St� t � 0} be the risk-neutral price process for an asset with constant

volatility σ > 0 that continuously pays cash dividends at the rate of D > 0
dollars per year. It is a diffusion with infinitesimal parameters (r > 0 is the
constant risk-free rate):

(4.17)a(x) = σx� b(x) = rx−D�

Similar to the arithmetic Asian option application, it is a diffusion of the gen-
eral form (4.15). The difference is that here B = −D < 0 and, hence, zero is
exit (the asset price hits zero in finite time and is sent to the bankruptcy state
with probability one), while in the Asian option application B = 1 > 0, and
zero is entrance. The problem of pricing options on assets that continuously
pay cash dividends has been first studied by Merton (1973) who obtained an
asymptotic result for the call option price with infinite time to maturity. Lewis
(1998) has recently obtained closed-form solutions for call and put options
with finite time to maturity in terms of spectral expansions. As mentioned in
the remark in Section 3, in this case neither call nor put payoffs are square-
integrable with the speed density, and the analysis requires special care. The
close connection between the Asian option problem and the cash dividends
problem was also emphasized by Lipton (1999).

4.6.5 GARCH stochastic volatility model, spot energy model, and Brennan and
Schwartz interest rate model

Under a GARCH diffusion specification (Nelson, 1990; see also Lewis,
2000) the infinitesimal variance Vt = σ2

t of the asset return is assumed to follow
a positive mean-reverting diffusion process solving the SDE

dVt = κ(θ− Vt) dt + ξVt dBt� V0 = σ2
0 �

where θ > 0 is the long-run variance level, ξ > 0 is the volatility of vari-
ance, and κ > 0 is the rate of mean-reversion. This process belongs to the
family (4.15) with A < 0 and B > 0. It possesses a stationary distribu-
tion with the reciprocal Gamma density. Re-scaling and time-changing, the
process {Xt := αV4t/ξ2� t � 0}, where α = ξ2/(4κθ), is a diffusion X(ν)

with ν = −1 − 4κ/(ξ2) < −1 and starting at X0 = αV0 > 0. Hence, the
spectral representation for the transition density of the GARCH stochastic
volatility process is immediately obtained from the spectral representation for
the process X(ν).

In the energy markets the spot price is also often modeled as a mean-
reverting positive diffusion (e.g., Pilipović, 1998, p. 64)

dSt = κ(L− St) dt + σSt dBt� S0 > 0�

whereL > 0 is the long-run equilibrium spot price level, σ > 0 is the spot price
volatility and κ > 0 is the rate of mean-reversion. This is the same process as
in the GARCH diffusion model.
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The same diffusion is also known in the interest rate literature as the
Brennan–Schwartz (1979) short rate model. While the spectral representa-
tion for the transition density for this model is available in closed form, there
is no analytical solution for the state-price density and, hence, zero-coupon
bonds. If we discount at the linear rate r(x) = x, the resulting SL equa-
tion leads to the Schrödinger equation with a three-term potential of the form
c1e

−γy+c2e
−2γy+c3e

γy . To the best of our knowledge, there is no closed-form
solution in terms of classical special functions.

4.6.6 Two non-affine term structure models
For A < σ2/2 and B > 0 let {Xt� t � 0} be a diffusion with the infinitesimal

parameters (4.15) and consider a reciprocal process {(σXt)
−1� t � 0}. It is a

diffusion on (0�∞) with the infinitesimal parameters:

a(x) = σx� b(x) = κ(θ− x)x�

κ := σB > 0� θ := (σB)−1(σ2 −A
)
> 0�

This process has been deduced by Merton (1975) as a model for the short rate
in his economic growth model. Lewis (1998) has recently obtained closed-form
solutions for zero-coupon bonds in this model in terms of spectral expansions.

Consider a squared reciprocal process {(σXt)
−2� t � 0}. It is a diffusion on

(0�∞) with infinitesimal parameters:

a(x) = 2σx� b(x) = κ
(
θ− x1/2)x�

κ := 2σB > 0� θ := (σB)−1(3σ2/2 −A
)
> 0�

This process provides another analytically tractable specification for the short
rate with non-affine drift.

4.7 Modified Pöschl–Teller potential, hypergeometric diffusions, and volatility
skew

4.7.1 Hypergeometric diffusions
Our next example is a diffusion with the infinitesimal parameters

a(x) =
√
Ax2 + Bx+ C� b(x) = μx�

(4.18)A�C � 0� B2 < 4AC� μ ∈ R�

For B2 < 4AC the parabola Ax2 + Bx + C is above the x-axis for all real x.
Hence, a diffusion {Xt� t � 0} with the infinitesimal parameters (4.18) can
be defined on the whole real line. We call this process hypergeometric diffu-
sion since solutions to the associated SL equation are expressed in terms of
the Gauss hypergeometric function. This diffusion was first studied by Wong
(1964) in a special case. The process {Zt := (2AXt+B)(4AC−B2)−1/2� t � 0}
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is a diffusion on R with the infinitesimal parameters:

a(x) =
√
A(x2 + 1)� b(x) = μ(x− L)� L := B√

4AC − B2
�

The process {Yt := arcsinh(Zt)� t � 0} is a diffusion on R with the infinitesimal
parameters:

a(x) = √
A� b(x) =

(
μ− 1

2
A

)
tanhx− μL

coshx
�

The Liouville transformation reduces the associated SL equation to the
Schrödinger equation with potential:

Q(x) = c0 + c1

cosh2(Ax)
+ c2

sinh(Ax)

cosh2(Ax)
�

c0 := 1
2

(
μ

A
− 1

2

)2
� c1 := μ2L2

2A
− 1

2A

(
μ− A

2

)(
μ− 3A

2

)
�

c2 := μL

A
(A− μ)�

This is known as a hyperbolic barrier potential closely related to the modified
Pöschl–Teller potential (Grosche and Steiner, 1998, p. 251). Solutions are ex-
pressed in terms of the Gauss hypergeometric function. Both −∞ and +∞
are oscillatory with cutoff Λ1 = Λ2 = c0 (Q(x) → ∞ as y → ±∞) and we
have non-simple purely absolutely continuous spectrum above c0 (similar to
the standard Brownian motion on the real line) plus a finite set of eigenvalues
below c0 (Spectral Category III).

4.7.2 A volatility skew model
For the purpose of modeling non-negative asset prices, we restrict the

process with the infinitesimal parameters (4.18) to the positive half-line (0�∞)
and make 0 a killing boundary by sending the process to a cemetery state Δ at
its lifetime ζ = T0. The resulting process {St� t � 0} is a hybrid of the Black–
Scholes–Merton geometric Brownian motion, square-root, and absolute diffu-
sion specifications. With three volatility parameters A�B� and C, this model
can be calibrated to a variety of implied volatility skew shapes. To facilitate cal-
ibration, it is convenient to parameterize the diffusion coefficient as follows:

a(x) = σK

√
x2 + αKx+ βK2

1 + α+ β
� σK > 0� K > 0� α ∈ R� β >

α2

4
�

so that a(K) = σKK. Here K is some reference asset price level (e.g., the asset
price level at the time of calibration), σK is the local volatility at the reference
level (ATM volatility), and α and β are two model parameters governing the
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shape of the local volatility function

σ(x) := a(x)

x
= σK

√
1 + α(K/x)+ β(K/x)2

1 + α+ β
�

4.8 Pöschl–Teller-type potentials, Jacobi diffusion, and related models

Larsen and Sorensen (2007) propose an analytically tractable model for a
foreign exchange rate in a target zone enforced by the central banks and ap-
plied it to the European Monetary System from 1979 until the introduction of
the Euro in 1999. They model a spot exchange rate as a diffusion process S that
may not be more than a× 100 percent over the central parity μ for any of the
two currencies, i.e., μ/(1 + a) < St < μ(1 + a). Then Xt = ln(St) must satisfy
that m − z < Xt < m + z, where m = lnμ and z = ln(1 + a). The logarithm
of the spot exchange rate is modeled as a diffusion

dXt = β
[
(m+ γz)−Xt

]
dt + σ

√
z2 − (Xt −m)2 dBt�

where β > 0 and γ ∈ (−1� 1). This process reverts to its mean m + γz.
The parameter γ is an asymmetry parameter that expresses whether one cur-
rency is stronger than the other. The process is ergodic on the interval (m− z�
m + z) if and only if β � σ2 and −1 + σ2/β � γ � 1 − σ2/β. The station-
ary distribution is a shifted and re-scaled Beta distribution. Both boundaries at
m−z and m+z are unattainable entrance boundaries. A standardized process
Zt := (Xt −m)/z follows a Jacobi diffusion

dZt = κ(γ − Zt) dt +A
√

1 − Z2 dBt� κ := βz� A := σz�

on the interval (−1� 1). The Liouville transformation reduces the associated
SL equation to the Schrödinger equation with potential of the form:

Q(x) = c0 + c1

cos2(γx)
+ c2

sin(γx)
cos2(γx)

� γ := σz�

This potential is of the Pöschl–Teller type (Grosche and Steiner, 1998, Sec-
tion 6.5, pp. 240–241). The spectrum is purely discrete and the eigenfunctions
are expressed in terms of Jacobi polynomials. The explicit form of the spectral
representation is given in Wong (1964) and Karlin and Taylor (1981, p. 335).

Delbaen and Shirakawa (2002a) study an interest rate model based on the
Jacobi diffusion. The short rate is assumed to stay within a range between some
lower and upper boundaries. See also Borodin and Salminen (2004) for some
applications of Jacobi diffusions and further references.

4.9 Concluding comments on one-dimensional diffusion models

In this section we have cataloged some of the most important analytically
tractable diffusions that appear in financial applications. Further analytically
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tractable examples of Schrödinger potentials can be found in the literature
on the Schrödinger equation (see Grosche and Steiner, 1998 and references
therein). In particular, the general form of potential functions leading to solu-
tions in terms of hypergeometric and confluent hypergeometric equations have
been classified (the so-called Natanzon potentials, Natanzon, 1979). With each
of these potentials one can associate diffusion processes with transition densi-
ties explicitly given in terms hypergeometric functions (see, e.g., Albanese and
Lawi, 2005 for some recent work in this direction).

For simplicity, in this survey we only discussed the case of continuous infin-
itesimal parameters, assuming a ∈ C2(I), b ∈ C1(I), and k ∈ C(I). However,
the methods described can be used to study diffusions with discontinuous co-
efficients. Decamps et al. (2006) consider a class of models called self-exciting
threshold models, which are diffusion counterparts of discrete-time regime
switching time series models. In these models drift, volatility, or discount rate
can have discontinuities, changing when the process crosses a certain level. For
example, drift can have the form:

b(x) = 1{x<k}b1(x)+ 1{x�k}b2(x)�

where k is some threshold. Below k the drift b1 is in effect. Above k the drift b2
is in effect. The spectral method is well suited to such models, yielding the
spectral representation of the transition density (Decamps et al., 2006).

We hope that the survey in this section provides enough ammunition for
our reader, whenever faced with a diffusion process, to be able to determine
whether or not the process is analytically tractable in the sense that an explicit
analytical expression for its transition density can be obtained in terms of clas-
sical special functions and, if the answer is positive, to find that expression.

5 Symmetric multi-dimensional diffusions

5.1 Drift of a symmetric diffusion

We now come back to the set-up of Section 1.1 and consider a d-dimensional
diffusion process X̂ in D ⊆ Rd, with D = Rd or an open domain in Rd. The
infinitesimal generator G of X̂ is a 2nd-order differential operator defined by

(5.1)Gf (x) := 1
2

d∑
i�j=1

aij(x)
∂2f

∂xi∂xj
(x)+

d∑
i=1

bi(x)
∂f

∂xi
(x)− k(x)f (x)

for f ∈ C2
c (D) (twice-continuously differentiable functions with compact sup-

port in D). Here aij(x) is a diffusion matrix, bi(x) is a drift vector, and k(x) =
r(x) + h(x) is the killing rate. For simplicity, we assume that aij(x) ∈ C2(D),
and bi(x) ∈ C1(D), k(x) ∈ C(D), and aij(x) is positive definite for each
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x ∈ D. If the process can reach the boundary of D when started from the
interior, it is killed at the first exit time τD.

We further assume that a measure m on D is given and has a density with
respect to the Lebesgue measure, m(dx) = m(x) dx, m(x) > 0 on D. For
simplicity we assume that m(x) ∈ C1(D). While the symmetry condition was
automatically satisfied for one-dimensional diffusions, for multi-dimensional
diffusions it imposes the following restriction on the form of the drift.

Theorem 5.1. The symmetry condition (Gf� g) = (f�Gg) is satisfied for all f� g ∈
C2
c (D) (twice-differentiable functions with compact support) if and only if the drift

vector has the form:

(5.2)bi(x) = 1
2

d∑
j=1

∂aij

∂xj
(x)+ 1

2

d∑
j=1

aij(x)
∂ lnm
∂xj

(x)�

Proof. For f� g ∈ C2
c (D) we have (∂i = ∂/∂xi):

(Gf� g)− (f�Gg) = 1
2

d∑
i�j=1

∫
D

aij(g∂i∂jf − f∂i∂jg)m dx

+
d∑
i=1

∫
D

bi(g∂if − f∂ig)m dx

=
d∑
i=1

∫
D

{
bi − 1

2

d∑
j=1

(∂jaij + aij∂j lnm)

}
× (g∂if − f∂ig)m dx�

where we integrated by parts. In order for this to vanish for every f� g ∈ C2
c (D),

the drift must satisfy

bi − 1
2

d∑
j=1

(∂jaij + aij∂j lnm) = 0� �

This restriction on the drift insures that the infinitesimal generator can be
written in the divergence form:

(5.3)Gf (x) = 1
2m(x)

d∑
i�j=1

∂

∂xi

(
m(x)aij(x)

∂f

∂xj
(x)

)
− k(x)f (x)�

Thus, a symmetric diffusion process is parameterized by a diffusion matrix a
and a scalar m.

If D is a compact domain in Rd with a boundary ∂D and the diffusion
process is killed at the first hitting time of the boundary, then it is well known
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that the infinitesimal generator G with the Dirichlet boundary condition is a
self-adjoint operator in L2(D�m) with purely discrete spectrum and, hence,
the eigenfunction expansion (2.11) is valid. More generally, if the state space is
a compact d-dimensional manifold (with or without a boundary; in the former
case the process is killed on the boundary), the spectrum is also purely discrete.
When the state space is not compact, there may be some essential spectrum.

From the point of view of finance applications, we are interested in the
following question. Can a rich enough catalog of analytically tractable sym-
metric multi-dimensional diffusions be developed (similar to Table 1 for one-
dimensional diffusions) to facilitate building analytically tractable multi-factor
models in financial applications?

We start by considering the simplest example of the unit diffusion matrix,
aij = δij . The drift restriction reduces to:

bi(x) = 1
2
∂ lnm
∂xi

(x)�

i.e., the drift is the gradient of a scalar, and the infinitesimal generator is (Δ is
the Laplacian)

1
2
Δ+∇φ · ∇ − k�

whereφ(x) := 1
2 lnm(x). In particular, consider the case ofD = Rd, k(x) ≡ 0,

and the following two specifications for the scalar φ(x):

φ1(x) =
d∑
i=1

μixi� φ2(x) =
d∑
i=1

μixi − 1
2

d∑
i�j=1

κijxixj�

where μ is a constant vector, and κ is a symmetric positive-definite constant
matrix. In the first case, the process is a d-dimensional Brownian motion with
constant drift μ. In the second case, the process is a d-dimensional Ornstein–
Uhlenbeck process with mean-reverting drift bi(x) = μi − ∑d

j=1 κijxj . Both
cases are analytically tractable. In the first case there is a continuous spectrum,
as in the case of one-dimensional Brownian motion. In the second case the
spectrum is purely discrete, as in the case of one-dimensional OU processes,
and the eigenfunctions are expressed in terms of Hermite polynomials. Both
of these cases are Gaussian. Furthermore, if we kill either of the processes at
the rate

k(x) =
d∑

i�j=1

Aijxixj +
d∑
i=1

Bixi + C�

i.e., a discount (killing) rate is quadratic-affine in the state variables, we are
still in the Gaussian class. The corresponding quadratic term structure models
(QTSM) are multi-dimensional version of the one-dimensional QTSM consid-
ered in Section 4.3.3, where one can find further references. The eigenfunction
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expansion method has been applied to the pricing of interest rate derivatives
in QTSM by Boyarchenko and Levendorskiy (2006), who study a more difficult
non-symmetric case with the non-symmetric matrix κij .

Another classical example of a symmetric diffusion in Rd is a pole-seeking
Brownian motion with the generator 1

2Δ+μ x
|x| · ∇ considered in Section 4.5.1.

This is obtained by choosing φ(x) = μ|x|.
5.2 Diffusions on symmetric Riemannian manifolds

What about multi-dimensional diffusions with general (non-diagonal) state-
dependent diffusion matrices? Are there rich enough classes of analytically
tractable processes? The answer to this question comes from harmonic analy-
sis on symmetric Riemannian spaces. We can relate the diffusion matrix a to a
Riemannian metric g on the state space and take the state space of the diffu-
sion process to be a Riemannian manifold (M� g). Our symmetric diffusion
process is then interpreted as a process on this Riemannian manifold. An-
alytical tractability arises if this Riemannian manifold possesses an isometry
group G, a Lie group of transformations that leave the metric g invariant. If
the state space is a symmetric Riemannian space, then the powerful represen-
tation theory of Lie groups and algebras can be brought to bear and construct
the spectral expansion of the transition density (heat kernel) explicitly (e.g.,
Anker et al., 2002; Anker and Ostellari, 2004 and references therein). This
provides a rich supply of analytically tractable multi-dimensional diffusions. To
the best of our knowledge, these classes of processes have not been systemati-
cally explored in mathematical finance so far.

6 Introducing jumps and stochastic volatility via time changes

6.1 Bochner’s subordination of Markov processes and semigroups

In this section we follow Carr, Linetsky and Mendoza (2007). Let {Tt� t � 0}
be a subordinator, i.e., a non-decreasing Lévy process with the Laplace trans-
form (λ � 0)

E
[
e−λTt

] = e−tφ(λ)

with the Laplace exponent

φ(λ) = γλ+
∫

(0�∞)

(
1 − e−λs

)
ν(ds)

with the Lévy measure ν(ds) satisfying∫
(0�∞)

(s ∧ 1)ν(ds) < ∞�
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non-negative drift γ � 0, and transition kernel πt(ds),∫
[0�∞)

e−λsπt(ds) = e−tφ(λ)�

The standard references on subordinators include Bertoin (1996) and Sato
(1999).

Let X̂ be a Markov process with lifetime ζ̂ (we are in the framework
of Section 1.1). Consider a time-changed (also called subordinated) process
{X̂φ

t � t � 0} defined by:

X̂
φ
t =

{
X̂Tt � Tt < ζ̂�

Δ� Tt � ζ̂

(the process T is assumed to be independent of the process X̂; the superscript
φ indicates that the process X̂φ

t is a subordinated process with the subordina-
tor with Laplace exponent φ). The idea of time changing a stochastic process
with a subordinator is originally due to S. Bochner (1948, 1955). The subordi-
nator is also called the directing process. The following fundamental theorem
due to R.S. Phillips (1952) (see Sato, 1999, Theorem 32.1, p. 212) characterizes
the time-changed transition semigroup and its infinitesimal generator.

Theorem 6.1. Let {Tt� t � 0} be a subordinator with Lévy measure ν, drift γ,
Laplace exponentφ(λ), and transition kernelπt(ds). Let {Pt � t � 0} be a strongly
continuous contraction semigroup of linear operators in the Banach space B with
infinitesimal generator G. Define (the superscript φ refers to the subordinated
quantities with the subordinator with the Laplace exponent φ):

(6.1)Pφ
t f :=

∫
[0�∞)

(Psf )πt(ds)� f ∈ B�

Then {Pφ
t � t � 0} is a strongly continuous contraction semigroup of linear opera-

tors on B. Denote its infinitesimal generator by Gφ. Then Dom(G) ⊂ Dom(Gφ),
Dom(G) is a core of Gφ, and

(6.2)Gφf = γGf +
∫

(0�∞)

(Psf − f )ν(ds)� f ∈ Dom(G)�

In our case here the semigroup {Pt � t � 0} is the transition semigroup of
the diffusion process X̂ with generator (5.1). We assume that X̂ has a density
p(t;x� y). From Eq. (6.1) the subordinated process X̂φ has a density:

(6.3)pφ(t;x� y) =
∫

[0�∞)

p(s;x� y)πt(ds)�
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The subordinated process is a Markov process with the generator (6.2). We can
re-write this generator in the Lévy-type form:

Gφf(x) : = 1
2

d∑
i�j=1

a
φ
ij (x)

∂2f

∂xi∂xj
(x)+

d∑
i=1

b
φ
i (x)

∂f

∂xi
(x)− kφ(x)f (x)

+
∫

D\{x}

(
f (y)− f (x)− 1{‖y−x‖�1}

d∑
i=1

(yi − xi)
∂f

∂xi
(x)

)

(6.4)×Πφ(x� dy)

for any f ∈ C2
c (D). Here a

φ
ij (x), b

φ
i (x), and kφ(x) are the diffusion matrix,

drift vector, and killing rate of the subordinated process, and Πφ(x� dy) is a
jump measure (state-dependent Lévy measure). Intuitively, for any x ∈ D and a
Borel set A ⊂ D\{x} bounded away from x, the Lévy measure Π(x�A) gives
the arrival rate of jumps from the state x into the set A, i.e.,

Px(Xt ∈ A) ∼ Π(x�A)t as t → 0�

If Π is a finite measure with λ(x) := Π(x�D) < ∞ for every x ∈ D, then the
process has a finite number of jumps in any finite time interval and λ(x) is the
(state-dependent) jump arrival rate. If the Lévy measure Π is infinite, then the
process X has infinite activity jumps. If aφ ≡ 0, then X̂φ is a jump process with
drift and killing.

6.2 Lévy’s local characteristics of the subordinated process

We can explicitly identify the local Lévy characteristics aφij , bφi , Πφ, and kφ

of the subordinated process by re-writing the operator (6.2) in the form (6.4)
(references on the Lévy characteristics of the subordinated process include
Okura, 2002, Theorem 2.1 and Chen and Song, 2005a, Section 2).

Theorem 6.2. The Lévy characteristics aφij , bφi , Πφ, and kφ of the subordinated
process are:

a
φ
ij (x) = γaij(x)�

b
φ
i (x) = γbi(x)+

∫
(0�∞)

( ∫
{y∈D:‖y−x‖�1}

(yi − xi)p(s;x� y) dy
)
ν(ds)�

Πφ(x� dy) =
∫

(0�∞)

p(s;x� y)ν(ds) dy�

kφ(x) = γk(x)+
∫

(0�∞)

Ps
(
x� {Δ})ν(ds)�
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where

Ps
(
x� {Δ}) = 1 − Ps(x�D) = 1 −

∫
D

p(s;x� y) dy

is the probability for the original process X̂ to end up in the cemetery state Δ by
time s.

Thus, Bochner’s subordination of a diffusion process scales the diffusion
matrix with the constant γ, the subordinated process acquires a jump com-
ponent with the Lévy measure with the Lévy density

∫
(0�∞) p(s;x� y)ν(ds)

determined by the Lévy measure of the subordinator and the transition density
of the original diffusion process, the killing rate is modified by scaling the orig-
inal killing rate with γ and adding an additional term

∫
(0�∞) Ps(x� {Δ})ν(ds)

determined by the killing probability of the original process and the Lévy mea-
sure of the subordinator, and the drift is scaled with γ, as well as acquires an
additional term due to regularization.

Suppose γ > 0 and, without loss of generality, set γ = 1. Subordination adds
the jump component so that the process X̂φ is now a jump-diffusion process
with the same diffusion component as the original process X̂ plus jumps with
the (generally state-dependent) Lévy density. If the original process is a dif-
fusion with killing, then the time-changed process is a jump-diffusion process
with killing with the modified killing rate. Thus, the subordination procedure
allows us to add jumps to any pure diffusion model. If γ = 0, then the time
changed process is a pure jump process.

If the original process is a Lévy process, then the subordinated process
is also a Lévy process with state-independent local characteristics. In this
case, Theorem 6.2 specializes to Theorem 30.1 of Sato (1999, p. 196) on the
Lévy characteristics of a subordinated Lévy process. In particular, many Lévy
processes popular in finance (such as VG, CGMY, NIG) can be obtained from
standard Brownian motion with drift by subordination with an appropriate sub-
ordinator.

The key observation for our purposes here is that when the original process
is not a Brownian motion but a more general space-inhomogeneous diffusion
process, then the time-changed process is a either a jump-diffusion or a pure
jump process with state-dependent Lévy density. This allows us to introduce
jumps and default in many prominent asset pricing models, such as CIR, CEV,
etc. The results are Markov processes with diffusion, jumps, and killing (dis-
counting and default) with state-dependent local characteristics (as opposed
to space-homogeneous Lévy processes).

6.3 Subordinating symmetric Markov processes and spectral expansions

So far we have considered subordinating a general diffusion process. We
now study subordination of symmetric Markov processes and semigroups. We
have the following key result.



292 V. Linetsky

Theorem 6.3. Let X̂ be a symmetric Markov process with lifetime ζ̂ and symmetry
measure m and T a subordinator with Laplace exponent φ. The time-changed
process X̂φ is also m-symmetric.

Proof. The proof follows from Theorem 6.1 with B = H := L2(D�m). From
Eq. (6.1):(

Pφ
t f� g

) =
∫

[0�∞)

(Psf� g)πt(ds) =
∫
[0�∞)

(f�Psg)πt(ds) =
(
f�Pφ

t g
)
�

f� g ∈ H�
�

Then the infinitesimal generator Gφ is self-adjoint in H and we obtain its
spectral representation and the spectral representation of the subordinated
semigroup from that for the process X̂ and the subordinatorφ (see also Okura,
2002 and Chen and Song, 2005a, 2005b for subordination of symmetric Markov
processes).

Theorem 6.4. Let X̂, T , X̂φ be the processes defined previously. We have:

Pφ
t f = etG

φ
f =

∫
[0�∞)

e−tφ(λ)E(dλ)f� f ∈ H�

Gφf = −φ(−G)f = −
∫

[0�∞)

φ(λ)E(dλ)f� f ∈ Dom(Gφ)�

Dom
(
Gφ

) =
{
f ∈ H :

∫
[0�∞)

φ2(λ)
(
E(dλ)f� f

)
< ∞

}
�

Proof. From Theorem 6.1, Eq. (6.1), the Spectral Representation Theo-
rems 2.1 and 2.2, Eq. (2.5), we have:

Pφ
t f =

∫
[0�∞)

(Psf )πt(ds) =
∫
[0�∞)

( ∫
[0�∞)

e−λsE(dλ)f
)
πt(ds)

=
∫

[0�∞)

( ∫
[0�∞)

e−λsπt(ds)
)
E(dλ)f =

∫
[0�∞)

e−tφ(λ)E(dλ)f�

and similarly for the generator. �

The consequences of this theorem for asset pricing are profound. For any
symmetric pricing semigroup for which we know its spectral representation,
we can construct a new family of tractable asset pricing models by subordi-
nating it with Lévy subordinators. The resulting pricing semigroup is again
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analytically tractable, as long as we know the characteristic exponent φ(λ)
of the subordinator in closed form. In particular, this allows us to introduce
jumps and default in all the diffusion processes and corresponding asset pric-
ing models considered in Section 4 and summarized in Table 1, such as CIR,
CEV, etc. The results are general Markov processes with diffusion, jump, and
killing (discounting and default) with state-dependent local characteristics (as
opposed to space-homogeneous Lévy processes) that are nevertheless analyt-
ically tractable. The local Lévy characteristics of the subordinated process are
given by Theorem 6.2.

As an immediate corollary, if the spectrum of the original semigroup is
purely discrete, the spectrum of the subordinated semigroup is also purely dis-
crete and the eigenfunction expansion reads:

Pφ
t f =

∑
n

e−tφ(λn)cnϕn�

where cn = (f� ϕn) are the expansion coefficients of the payoff f ∈ H in
the eigenfunction basis {ϕn}. The crucial observation is that the subordinated
process X̂φ shares the eigenfunctions ϕn(x) with the original process X̂, and
the eigenvalues of the (negative of) the infinitesimal generator of the subordi-
nated process are

−Gφϕn = λ
φ
n ϕn� λ

φ
n = φ(λn)�

where λn are the eigenvalues of −G and φ(λ) is the Laplace exponent of the
subordinator T . Hence, for the subordinated semigroup we have:

Pφ
t ϕn = e−λ

φ
n tϕn�

Thus, if we know the eigenfunction expansion of the original process X̂ (the
original pricing semigroup), we also know it for the subordinated process. This
makes the spectral representation very convenient for time changes. This was
already observed by S. Bochner (1948) in his pioneering paper introducing the
concept of time changes for stochastic processes.

6.4 Stochastic volatility via time changes

One can also take the time change to be the integral of another positive
process:

Tt =
t∫

0

Vu du�

As long as the Laplace transform

E
[
e−λ

∫ t
0 Vu du

]
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is known analytically and the process V is independent of the process X, the
time changed process Yt := XTt is analytically tractable. This idea is used in
Carr et al. (2003) and Carr and Wu (2004) to build financial models based
on time changed Lévy processes (see the Chapter by Wu in this volume for a
survey), and in Carr, Linetsky and Mendoza (2007) to build financial models
based on time changed Markov processes. In the asset pricing applications, the
rate of time change Vu can be interpreted as stochastic volatility of the time-
changed process Yt . In particular, when X is Brownian motion and V is a CIR
process, the time change leads to Heston’s stochastic volatility model. Carr,
Linetsky and Mendoza (2007) construct more general models with stochastic
volatility, such as CEV and JDCEV with stochastic volatility.

7 Conclusion

In this Chapter we surveyed the spectral expansion approach to the val-
uation of derivatives when the underlying state follows a symmetric Markov
process. In the Markovian framework, the key object is the pricing opera-
tor mapping (possibly defaultable) future payments into present values. The
pricing operators indexed by time form a pricing semigroup in an appropri-
ate payoff space, which can be interpreted as the transition semigroup of the
Markov process with killing at the rate equal to the default-free interest rate
plus default intensity. In applications it is important to have a tool kit of analyti-
cally tractable Markov processes with known transition semigroups that lead to
closed-form pricing formulas for derivative assets. When the Markov process is
symmetric in the sense that there is a measure m on the state space D and the
semigroup is symmetric in the Hilbert space L2(D�m), we apply the Spectral
Representation Theorem to obtain spectral representations for the semigroup
and value functions of derivative assets. In this Chapter we surveyed the spec-
tral method in general, as well as those classes of symmetric Markov processes
for which the spectral representation can be obtained in closed form, thus
generating closed-form solutions to derivative pricing problems. This Chap-
ter supplies a tool kit of analytically tractable Markovian models that can be
adapted to a wide range of financial engineering applications, as well as a
framework to solve new problems.
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Abstract

When underlying financial variables follow a Markov jump-diffusion process, the
value function of a derivative security satisfies a partial integro-differential equa-
tion (PIDE) for European-style exercise or a partial integro-differential variational
inequality (PIDVI) for American-style exercise. Unless the Markov process has a
special structure, analytical solutions are generally not available, and it is necessary
to solve the PIDE or the PIDVI numerically. In this chapter we briefly survey a com-
putational method for the valuation of options in jump-diffusion models based on:
(1) converting the PIDE or PIDVI to a variational (weak) form; (2) discretizing the
weak formulation spatially by the Galerkin finite element method to obtain a system
of ODEs; and (3) integrating the resulting system of ODEs in time. To introduce
the method, we start with the basic examples of European, barrier, and American
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options in the Black–Scholes–Merton model, then describe the method in the gen-
eral setting of multi-dimensional jump-diffusion processes, and conclude with a range
of examples, including Merton’s and Kou’s one-dimensional jump-diffusion models,
Duffie–Pan–Singleton two-dimensional model with stochastic volatility and jumps in
the asset price and its volatility, and multi-asset American options.

1 Introduction

When underlying financial variables follow a Markov jump-diffusion process,
the value function of a derivative security satisfies a partial integro-differential
equation (PIDE) for European-style exercise or a partial integro-differential
variational inequality (PIDVI) for American-style exercise. Unless the Markov
process has a special structure (as discussed in the previous chapter), analytical
solutions are generally not available, and it is necessary to solve the PIDE or
the PIDVI numerically. Numerical solution of initial and boundary value prob-
lems for partial differential equations (PDE) of diffusion-convection-reaction
type (the type arising in Markov process models when the underlying state
variable follows a diffusion process with drift and killing or discounting) on
bounded domains is standard in two and three spatial dimensions. Such PDE
problems arise in a wide variety of applications in physics, chemistry, and vari-
ous branches of engineering. A variety of standard (both free and commercial)
software implementations are available for this purpose.

However, PDE problems that arise in finance in the context of derivatives
pricing in Markov process models have a number of complications: (1) dif-
fusion models often have more than three state variables, resulting in multi-
dimensional PDE formulations; (2) Markov process often has a jump compo-
nent in addition to the diffusion component, resulting in a nonlocal integral
term in the evolution equation (making it into a partial integro-differential
equation (PIDE)); (3) the state space is often an unbounded domain in Rn, re-
sulting in PDE and PIDE problems on unbounded domains, which need to be
localized to bounded domains in order to be solved numerically; (4) American-
style early exercise is often permitted (early exercise in American options, con-
version and call features in convertible bonds, etc.), leading to free-boundary
problems that can be formulated as partial differential (or integro-differential
if jumps are present) variational inequalities (PDVI or PIDVI); (5) payoffs are
often nonsmooth (e.g., call and put option payoffs have a kink, digital option
payoffs have discontinuities), creating additional challenges for numerical so-
lution methods.

In this chapter we briefly survey a general computational method for the
valuation of derivative securities in jump-diffusion models. The method is
based on: (1) converting the PIDE or PIDVI to a variational (weak) form;
(2) discretizing the weak formulation spatially by the Galerkin finite element
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method to obtain a system of ODEs (this framework is called the finite element
method-of-lines); and (3) integrating the resulting system of ODEs in time by
applying appropriate time stepping schemes. To introduce the method, we start
with the basic examples of European, barrier, and American options in the
Black–Scholes–Merton model, then describe the method in the general set-
ting of multi-dimensional jump-diffusion processes, and conclude with a range
of examples, including Merton’s and Kou’s one-dimensional jump-diffusion
models, Duffie–Pan–Singleton two-dimensional model with stochastic volatil-
ity and jumps in the asset price and its volatility, and multi-asset American
options.

Historically, binomial and trinomial trees (lattices) have been the numerical
method of choice in financial applications (e.g., Hull, 2006). Their main ad-
vantage securing their popularity in financial applications is the ease of imple-
mentation for low-dimensional diffusion problems (one or two state variables),
as well as the ease of incorporating American-style early exercise via dynamic
programming. However, tree methods have serious limitations. Since trinomial
trees can be interpreted as first-order fully explicit finite-difference schemes
for the pricing PDE, they are only first-order accurate in time and have stabil-
ity restrictions of the form �t � C�x2, where �t is the time step and �x is the
step size of the spatial discretization. This may require one to take prohibitively
large number of time steps to converge to reasonable accuracies. This disad-
vantage becomes particularly serious for multi-dimensional diffusion problems
with more than two state variables and/or for jump-diffusion processes (where
one also needs to deal with nonlocal integral terms, that present significant
challenges for tree methods). In contrast, implicit finite-difference methods
avoid the undesirable stability restrictions on the size of the time step relative
to the size of the spatial discretization. Furthermore, higher order time step-
ping schemes are available, such as Crank–Nicolson, backward differentiation
formulae based schemes (BDF), etc. Surveys of finite-difference methods in
derivatives pricing can be found in Tavella and Randall (2000) and Wilmott et
al. (1993).

In this chapter we focus on the finite element method. The finite element
method is a general technique for the numerical solution of differential equa-
tions in science and engineering. The method has its origins in structural engi-
neering in the late 50’s and early 60’s. It soon became clear that the method was
quite general with roots in the variational methods in mathematics introduced
in the beginning of the 20th century. Continuing development of the finite el-
ement method has resulted in a general purpose method for the numerical
solution of partial differential equations.

The basic idea in any numerical method for a differential equation is to
discretize a given continuous problem in order to obtain a discrete problem
with only finitely many unknowns, which may be solved using a computer.
The classical numerical method for partial differential equations is the fi-
nite difference method. Here, the discrete problem is obtained by replacing
derivatives with difference quotients involving values at finitely many points.
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The discretization process using a finite element method is quite different.
We start not from the given partial differential equation, but from its equiv-
alent reformulation in terms of a variational problem. In order to obtain a
discrete problem, we consider solutions consisting only of simple functions.
That is, if the solution to the continuous problem u is an element of the
infinite-dimensional function space V , we consider a discrete solution uh ∈ Vh,
where the space of simple functions Vh has finite dimension. The hope is that
the solution uh of the discrete problem is a sufficiently good approximation
of the solution u of the original partial differential equation. If one chooses
Vh ⊂ V , then the discrete problem corresponds to the classical Ritz–Galerkin
method. The special feature of the finite element method as a particular Ritz–
Galerkin method is that the functions in Vh are chosen to be piecewise poly-
nomial (in particular, piecewise affine functions in the case of linear finite
elements). Specifically, the state space domain of the problem is partitioned
into nonoverlapping elements (intervals in one dimension, triangles or rectan-
gles in two dimensions, etc.). Thus, the state space domain is covered with
a mesh called a triangulation. The maximal degree p of the polynomial ap-
proximation is chosen (e.g., p = 1 for linear finite elements). The space Vh
consists of functions of V whose restrictions to the elements are polynomi-
als of degree � p. For derivatives pricing problems, the approximation to
the value function u(t� x) solving the pricing PDE or PIDE is written in the
form

uh(t� x) =
m∑
i=1

ui(t)φh�i(x)�

where φh�i(x) are some basis functions in Vh (e.g., piecewise affine functions
in the case of the linear finite element method) and ui(t) are time-dependent
coefficients to be determined by numerically solving a system of ODEs, the
so-called finite element method-of-lines.

The advantage of the finite element method is that complicated geometry
of the state space, general boundary conditions, nonlinear and nonlocal equa-
tions can all be handled relatively easily in the same general framework. The
finite element method is particularly suited for nonlocal integro-differential
equations appearing in jump-diffusion models in finance. The finite element
method has a functional analytic grounding which provides added reliability
and in many cases makes it possible to mathematically analyze and estimate the
error in the approximate finite element solution. In addition, the clear struc-
ture and versatility of the finite element method make it possible to construct
general purpose software for applications. See the monographs Ciarlet (1978),
Hundsdorfer and Verwer (2003), Johnson (1987), Larsson and Thomee (2003),
Quarteroni and Valli (1997), Thomee (1997, 2001) for general introduction to
finite element methods for parabolic problems. A recent monograph Achdou
and Pironneau (2005) is devoted to applications of the finite element method
to options pricing. In this chapter we give a brief survey of the finite element
method in derivatives pricing problems.
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2 European and barrier options in the Black–Scholes–Merton model

2.1 PDE formulation

In the Black–Scholes–Merton model, the asset price is assumed to follow a
geometric Brownian motion process under an equivalent martingale measure
(EMM):

St = KeXt � Xt = x+ μt + σBt� t � 0�

where {Xt� t � 0} is a Brownian motion with drift μ = r − q − σ2/2 and
volatility σ > 0 (here B is a standard Brownian motion), r � 0 is the risk-free
interest rate, q � 0 is the continuous dividend yield, and K > 0 is some refer-
ence asset price level. One typically sets K = S0, the initial asset price at time
zero. This corresponds to starting the process Xt at the origin, X0 = 0. Then
Xt has the interpretation of the continuously compounded return process net
of dividends. Alternatively, when pricing call and put options, it will be con-
venient for us to set K equal to the strike price of the option contract to be
priced. This corresponds to starting the process Xt at

X0 = x = ln(S0/K)�

whereK is the strike price. The drift μ is such that after discounting at the risk-
free rate the total gains process, including price appreciation and dividends,
is a martingale under the EMM. The infinitesimal generator of the Markov
process X is

Gf (x) = 1
2
σ2fxx(x)+ μfx(x)�

Consider a European-style option contract that delivers a payoff F(ST ) at
expiration T > 0. The payoff function F is assumed to depend on the under-
lying asset price at expiration. To be specific, we will call the underlying asset
a stock. The price of the option at time t ∈ [0� T ] is given by its expected dis-
counted payoff, where the expectation is taken under the EMM:

(2.1)V (t� x) = e−r(T−t)Et�x
[
ψ(XT )

]
�

Here we substituted ST = KeXT and defined the payoff function ψ(XT ) :=
F(KeXT ) in terms of the variable XT = ln(ST /K). The subscript in the
conditional expectation operator Et�x signifies that at time t the state of the
Markov process X is known, Xt = x. For call and put options, we set K
equal to the strike price, and the payoffs are ψcall(x) = K(ex − 1)+ and
ψput(x) = K(1 − ex)+, where x+ ≡ max{x� 0}.

The value function V = V (t� x) can be characterized as the solution of the
following fundamental pricing PDE (the backward Kolmogorov equation for
the expectation (2.1)):

Vt + GV − rV = 0� t ∈ [0� T )�
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with the terminal (payoff) condition V (T� x) = ψ(x). For future convenience,
we transform the terminal value problem into an initial value problem (IVP)
by definingU(t� x) := V (T−t� x) and include the discounting in the definition
of the operator:

AU := 1
2
σ2Uxx + μUx − rU�

Then we need to solve the following parabolic PDE:

Ut −AU = 0� t ∈ (0� T ]�
with the initial condition U(0� x) = ψ(x).

We will also be interested in knock-out options. A knock-out option contract
is canceled (knocked out) if the underlying state variable exits a pre-specified
open domain Ω in the state space. Let τ be the first hitting time of the bound-
ary ∂Ω (here we consider diffusions, and so the process will always hit the
boundary due to the path continuity). The knock-out option is then canceled
(declared null and void) at time τ if τ � T , where T is the option expiration.
Otherwise, the option holder receives the payoff at expiration. In some cases
the option holder receives a rebate R(Xτ) at time τ if τ � T . It can be constant
or depend on the state of the underlying process at time τ (more generally, it
can also depend on time, i.e., the rebate is R(τ�Xτ) if the process hits ∂Ω at
time τ and is in stateXτ ∈ ∂Ω at τ, but for simplicity we assume it only depends
on the state and is independent of time). In particular, there are six types of
knock-out options: calls and puts with lower barriers, calls and puts with upper
barriers, and calls and puts with both lower and upper barriers. A down-and-
out call (put) delivers a call (put) payoff at T if the stock does not fall to or
below a lower barrier L, 0 < L < S0. An up-and-out call (put) delivers a call
(put) payoff prior to and including expiration T if the stock does not increase
to or above an upper barrier U , S0 < U < ∞, prior to and including expira-
tion T . A double-barrier call (put) delivers a call (put) payoff at T if the stock
does not exit from an open interval (L�U) prior to and including expiration
T . Here 0 < L < S0 < U < ∞ are lower and upper barriers. In terms of the
process Xt = ln(St/K), the lower and upper barriers are x = ln(L/K) and
x = ln(U/K). In terms of the PDE, the value function of the knock-out option
satisfies the following knock-out condition with rebate:

U(t� x) = R(x)� x ∈ ∂Ω� t ∈ [0� T ]�
where ∂Ω = {x}, ∂Ω = {x}, and ∂Ω = {x� x} for down-and-out, up-and-out,
and double-barrier options, respectively. If there is no rebate, R = 0, then the
value function vanishes on the boundary ∂Ω.

2.2 Localization to bounded domains

For double-barrier options the state space is bounded, Ω = (x� x). For
European and single-barrier calls and puts, the state space Ω is unbounded
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(Ω = (x�∞) for down-and-out options, Ω = (−∞� x) for up-and-out op-
tions, and Ω = R for European options without barriers). In order to develop
numerical approximations, we localize the original problem by considering
an increasing exhausting sequence of bounded open domains {Ωk} such that
Ωk ⊂ Ωk+1 and

⋃
k Ωk = Ω (i.e., the sequence exhausts the state space). Then

the value function U of the original problem on the unbounded domain Ω is
realized as the limit of a sequence of functions Uk which solve the PDEs on
bounded domains Ωk:

(2.2)Uk�t −AUk = 0� t ∈ (0� T ]� x ∈ Ωk

with the initial condition:

(2.3)Uk(0� x) = ψ(x)� x ∈ Ωk�

An artificial boundary condition is imposed on the boundary ∂Ωk:

(2.4)Uk(t� x) = R(x)� x ∈ ∂Ωk� t ∈ [0� T ]�
where R(x) is the artificial rebate. In other words, we approximate the original
option contract with a contract that knocks out when the process exits an open
bounded domain Ωk and pays a rebate R(Xτ) at the first hitting time τ of the
boundary ∂Ωk. The economics of the problem often suggests an appropriate
choice of the artificial boundary condition. For European options, the payoff
function provides a reasonable choice for the artificial boundary condition:
R(x) = ψ(x) for x ∈ ∂Ωk, where ∂Ωk = {xk� xk} and xk → −∞, xk → ∞
as k → ∞. For down-and-out put options with the lower barrier L and with-
out rebate, the vanishing boundary condition R(x) = 0, x ∈ ∂Ωk, provides a
reasonable choice. Here ∂Ωk = {x� xk}, where x = ln(L/K) is determined
by the contractual lower barrier L and xk → ∞ as k → ∞ is the artificial
upper barrier. For x = x, this is the knock-out condition specified by the op-
tion contract. For x = xk, it provides a reasonable choice for the artificial
boundary condition, since the value function of the down-and-out put rapidly
decreases towards zero for high stock prices. Other types of knock-out options
are treated similarly. For the localized problem, we have (see Bensoussan and
Lions, 1984 for general results on localization to bounded domains):

max
t∈[0�T ]

∥∥U(t� ·)−Uk(t� ·)
∥∥
L∞(G)

→ 0 as k → ∞
for any fixed compact set G ⊂ Ω1. The set G is referred to as the approxima-
tion domain, where we are interested in the value function U . The bounded
domain Ωk is referred to as the computational domain (see Marcozzi, 2001,
for details). Kangro and Nicolaides (2000), Matache et al. (2004), and Hilber
et al. (2005) show that the localization error decays exponentially in the size
of the computational domain in the Black–Scholes setting, in the Lévy process
setting, and in the stochastic volatility setting, respectively.

Other choices for artificial boundary conditions can be used to localize the
problem to a bounded domain. In the present paper, we use the payoff func-
tion as the artificial rebate in the artificial boundary condition for European
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options, down-and-out calls, and up-and-out puts (R(x) = ψ(x)) and vanish-
ing boundary conditions for double-barrier call and put options, down-and-out
puts, and up-and-out calls (R(x) = 0) (for simplicity in this paper we assume
that the original knock-out contracts do not pay any contractual rebates). In
what follows, we take a bounded computational domain Ωk as given and solve
the PDE on Ωk with the artificial boundary condition on ∂Ωk selected as dis-
cussed above. We drop the index k to lighten our notation.

2.3 Variational formulation

We consider a variational (weak) formulation of the problem (2.2)–(2.4) on
a given bounded domain Ω. This PDE may have a nonhomogeneous boundary
condition (with artificial rebate R(x) �= 0, x ∈ ∂Ω). To simplify future devel-
opment, we homogenize it as follows. The artificial rebate R(x) is defined on
∂Ω. We extend it to Ω and also denote the extended version by R(x), x ∈ Ω.
In this paper we either have R(x) = 0 or R(x) = ψ(x) for x ∈ ∂Ω. We extend
it so that R(x) = 0 or R(x) = ψ(x) for x ∈ Ω, respectively. Let u := U − R
(for European and American options, u can be interpreted as the excess op-
tion premium over the payoff; for European options it can be negative, as the
option exercise is not allowed until expiration).

A variational (weak) formulation of the PDE problem is obtained by consid-
ering a space of test functions square-integrable on Ω, with their (weak) first
derivatives square-integrable on Ω, and vanishing on the boundary ∂Ω (the
Sobolev space H1

0(Ω) := {f ∈ L2(Ω): fx ∈ L2(Ω)� f |∂Ω = 0}). Multiplying
the PDE with a test function v = v(x), integrating over Ω, and integrating by
parts, we arrive at the variational (weak) formulation of the PDE:

(2.5)(ut� v)+ a(u� v)+ a(R� v) = 0�

(2.6)
(
u(0� ·)� v) = (ψ− R� v)�

where (u� v) = ∫
Ω u(x)v(x) dx is the inner product in L2(Ω), and the bilinear

form a(·� ·) is defined by

a(u� v) = 1
2
σ2

x∫
x

uxvx dx− μ

x∫
x

uxv dx+ r

x∫
x

uv dx�

To solve the variational formulation, we seek a function u = u(t� x) in an
appropriate function space such that (2.5)–(2.6) hold for any test function v ∈
H1

0(Ω). The solution u vanishes on the boundary ∂Ω. The value function U
of the problem with the inhomogeneous boundary conditions is then obtained
by U = R+ u. More details on the variational formulation of parabolic PDEs
associated with diffusion processes can be found in Quarteroni and Valli (1997)
and Thomee (1997), where the relevant functional analytic background can be
found.
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2.4 Galerkin finite element approximation

We now consider a spatial discretization of the variational formulation
(2.5)–(2.6) by the Galerkin finite element method (see Ciarlet, 1978; Larsson
and Thomee, 2003; Quarteroni and Valli, 1997; and Thomee, 1997, for text-
book treatments of the finite element method). Consider a one-dimensional
problem on a bounded domain Ω = (x� x). We divide the interval Ω = [x� x]
into m+ 1 subintervals (elements), each having length of h = (x− x)/(m+ 1).
Let xi = x + i h, i = 0� � � � �m + 1, be the nodes in [x� x]. We define the
following piecewise linear finite element basis functions {φh�i(x)}mi=1:

φh�i(x) =
{
(x− xi−1)/h� xi−1 � x � xi�
(xi+1 − x)/h� xi < x � xi+1�
0� x /∈ [xi−1� xi+1]�

The ith basis function φh�i(x) is a hat function equal to one at the node xi and
zero at all other nodes, φi(xj) = δij , where δij = 1 (0) if i = j (i �= j). It is
illustrated in Figure 1. If we define the hat functionφ(x) := (x+1)1{−1�x�0}+
(1−x)1{0<x�1}, then φh�i(x) = φ((x−xi)/h). More generally, we can define
φh�i(x) for all integer i ∈ Z. The nodes x0 = x and xm+1 = x are on the
boundary ∂Ω and the nodes xi with i < 0 or i > m+1 are outside ofΩ = [x� x]
(we will need to consider nodes outside of [x� x] when dealing with jumps).

We look for a finite-element approximation uh to the solution u of the vari-
ational formulation (2.5)–(2.6) as a linear combination of the finite element
basis functions with time-dependent coefficients:

(2.7)uh(t� x) =
m∑
i=1

ui(t)φh�i(x)� t ∈ [0� T ]�

Figure 1. Hat function.



310 L. Feng et al.

Note that, by construction, uh vanishes on the boundary ∂Ω (since the basis
functions vanish on the boundary). Thus, we look for an approximation uh to
the true solution u in the finite element basis space Vh spanned by the finite
element basis functions {φh�i}mi=1.

Denote by u(t) = (u1(t)� � � � � um(t))
� the m-dimensional vector of time-

dependent coefficients to be determined. Substituting (2.7) into (2.5)–(2.6)
and letting the test function v in (2.5)–(2.6) run through the set of all basis
functions {φh�i}mi=1 (i.e., we also approximate the test function by vh(x) =∑m

i=1 viφh�i(x)), we obtain the following m-dimensional system of ODEs:

(2.8)Mu′(t)+ Au(t)+ F = 0� t ∈ (0� T ]�
with the initial condition:

(2.9)Mu(0) = C�

Here u′(t) = (u′
1(t)� � � � � u

′
m(t))

�, u′
i(t) ≡ dui(t)/dt, M = (mij)

m
i�j=1, where

mij = (φj�φi)�

A = (aij)
m
i�j=1, where

aij = a(φj�φi)�

C = (c1� � � � � cm)
�, where

ci = (ψ− R�φi)�

and F = (F1� � � � � Fm)
�, where

Fi = a(R�φi)

(to lighten notation, we omit the index h in φh�i; recall that a(·� ·) is the
previously defined bilinear form). This ODE system is referred to as a semi-
discretization of the variational problem (spatially discrete and continuous in
time). The pricing problem is reduced to the integration of this ODE sys-
tem. This is referred to as the finite element method-of-lines (MOL) (“lines”
is a metaphor for the lines (xi� t), t � 0 in the (x� t)-domain, xi fixed, along
which the approximations to the PDE solution are studied; see Hundsdorfer
and Verwer, 2003). Due to the origins of the finite element method in struc-
tural engineering, M is referred to as the mass matrix, A as the stiffness matrix,
and F as the load vector. For each t, on a bounded domain Ω the semi-discrete
finite element approximation is known to be second order accurate in the spa-
tial step size h:∥∥uh(t� ·)− u(t� ·)∥∥ � Ch2�

both in the L2(Ω) norm and in the L∞(Ω) norm. Maximum norm error esti-
mates available in the finite element method are particularly relevant in finan-
cial engineering as they give the worst case pricing error estimates.
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The mass matrix M and the stiffness matrix A can be easily computed in
closed form in this model with constant coefficients (numerical quadrature,
such as the Gaussian quadrature, is used in more general models). For any
i� j ∈ Z, from the definition of the bilinear form a(·� ·), we have:

a(φi�φi) = a0 = 2
3
rh+ 1

h
σ2�

a(φi�φi±1) = a∓1 = ±1
2
μ+ 1

6
rh− 1

2h
σ2�

and a(φi�φj) = 0 for |i− j| > 1. Moreover,

(φi�φi) = 2
3
h� (φi�φi±1) = 1

6
h� (φi�φj) = 0� |i− j| > 1�

Therefore, both A and M are tri-diagonal m×m matrices with constant diag-
onals:

A =

⎛⎜⎜⎜⎝
a0 a1

a−1 a0
� � �

� � �
� � � a1
a−1 a0

⎞⎟⎟⎟⎠ � M = h

6

⎛⎜⎜⎝
4 1

1 4
� � �

� � �
� � � 1
1 4

⎞⎟⎟⎠ �

The load vector F, Fi = a(R�φi), i = 1� � � � �m, can be computed analyti-
cally in this model for R = ψ, where ψ is a call or put payoff, K(ex − 1)+ or
K(1 − ex)+, respectively. Generally, it can be computed numerically (e.g., by
Gaussian quadrature). Finally, the initial condition Mu(0) = C with the vector
C, ci = (ψ−R�φi), is treated as follows. ForR = ψ, C vanishes identically, and
we have a vanishing initial condition u(0) = 0. For R = 0, ci = (ψ�φi) can be
computed analytically for simple payoffs or numerically by Gaussian quadra-
ture in general. Then the initial vector u(0) is obtained by solving Mu(0) = C.

2.5 Integrating the ODE system

We have reduced the option pricing problem to the solution of the ODE
system (2.8)–(2.9). This ODE system needs to be integrated numerically. We
observe that M ∼ O(h) and A ∼ O(h−1). Hence, the system (2.8) is stiff. In
particular, the term Au resulting from the discretization of the diffusion opera-
tor generates stiffness. For stiff systems, explicit schemes are only conditionally
stable and may require prohibitively small time steps when h is small via sta-
bility restrictions of the form �t � Ch2.

The simplest time discretization is provided by the so-called θ-scheme. Di-
vide the time interval [0� T ] into N time steps, each having length k = T/N ,
and with the nodes ti = ik, i = 0� 1� � � � �N . Define ui := u(ti), i = 0� 1� � � � �N .
Then the θ-scheme starts with the initial condition Mu0 = C (or u0 = 0 if
C = 0) and marches forward according to:

(2.10)(M + θkA)ui = (
M − (1 − θ)kA

)
ui−1 − kF� i = 1� � � � �N�
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For θ = 0, this is the fully explicit forward Euler scheme (that corresponds
to replacing the time derivative at time ti with the finite difference u′(ti) →
k−1(ui − ui−1) in the ODE and evaluating the rest of the terms at the previous
time level ti−1). For θ = 1, this is the fully implicit backward Euler scheme
(that corresponds to replacing the time derivative with the finite difference
u′(ti) → k−1(ui − ui−1) in the ODE and evaluating the rest of the terms at
the current time level ti). At each step, the linear system (2.10) is solved to de-
termine the m-dimensional vector ui. The matrices M and A are tri-diagonal
in this case, and the linear system can be solved directly by LU decomposition.
For all θ � 1/2, the θ-scheme is unconditionally stable. It is first-order accu-
rate in time for θ �= 1/2, and it is second-order accurate in time for θ = 1/2.
The latter choice is the well-known Crank–Nicolson scheme popular in finan-
cial engineering. Its advantage is that it is second-order accurate in time and is
very easy to implement. Its disadvantages are that it may generate spurious os-
cillations in the computed numerical solution if the time step exceeds twice the
maximum stable explicit time step and, furthermore, the expected quadratic
convergence may not be realized when initial conditions are not smooth (see
Zvan et al., 1998a and Pooley et al., 2003 for discussions of these issues and
suggested remedies).

Another way to attain second order accuracy in time is to approximate
the time derivative in the ODE by the second-order backward differentia-
tion formula. This results in the second-order backward differentiation (BDF)
scheme:(

3
2

M + kA

)
ui = 2Mui−1 − 1

2
Mui−2 − kF� i = 2� � � � �N

(u1 needed to launch the second-order BDF scheme to compute u2 is obtained
by the backward Euler time stepping).

Generally, there are several major classes of time stepping schemes used
to integrate systems of ODEs resulting from semi-discretization of parabolic
PDEs in the finite element method-of-lines framework: schemes based on
Runge–Kutta methods, schemes based on high order backward differen-
tiation formulae (BDF), and schemes based on Richardson extrapolation.
References include Deuflhard and Bornemann (2002), Hairer and Wanner
(1996), Hundsdorfer and Verwer (2003), Quarteroni and Valli (1997), and
Thomee (1997). There are a number of software packages available (both
freely and commercially) based on these schemes that include adaptive au-
tomatic time step selection and adaptive automatic integration order selec-
tion in some packages. In Section 5 we present some example computa-
tions with the variable step-size and variable-order BDF-based package SUN-
DIALS (SUite of Nonlinear and DIfferential/ALgebraic equation Solvers)
available from the Lawrence Livermore National Laboratory (http://www.llnl.
gov/CASC/sundials/). The details of the adaptive order and step size selection
can be found in the SUNDIALS documentation Hindmarsh et al. (2005, 2006).



Ch. 7. Variational Methods in Derivatives Pricing 313

We now present a simple to implement high order time stepping scheme
based on applying a Richardson-type extrapolation procedure to the backward
Euler scheme. Some computational examples are given in Section 5. The error
of the backward Euler scheme is known to have an asymptotic expansion in the
powers of the time step k:

(2.11)u(T)− uN = e1(T)k+ e2(T)k
2 + · · · �

Generally, the Euler scheme for the ODE u′ = G(u) has an asymptotic error
expansion (2.11) if the right-hand side G is smooth. In our case G is linear
and, hence, (2.11) holds. This asymptotic error expansion suggests applying
extrapolation to cancel lower order terms in the error expansion and to in-
crease the order of the scheme. References on extrapolation methods for stiff
ODE systems include Deuflhard (1985), Deuflhard and Bornemann (2002,
Section 6.4.2), and Hairer and Wanner (1996, Section IV.9). For applications
of the extrapolation scheme to option pricing see Feng and Linetsky (2006b).

We now describe the extrapolation scheme based on the backward Euler
scheme. We need to integrate the ODE system on the interval [0� T ]. As-
sume that a basic stepsize H (H = T/N) and an extrapolation stage num-
ber s � 1 are given. Then one constructs a sequence of approximations to
u(H) (at time H) using the backward Euler scheme with internal stepsizes
ki = H/ni, i = 1� 2� � � � � s + 1, where {ni}s+1

i=1 is the step number sequence.
For the Euler scheme, the harmonic sequence {1� 2� � � � � s+1} or the sequence
{2� 3� � � � � s + 2} are often used. Denoting the approximation obtained at time
H (after one basic step) with internal stepsize ki by Ti�1 = u(H;ki), the ex-
trapolation tableau is constructed as follows:

(2.12)
Ti�j = Ti�j−1 + Ti�j−1 − Ti−1�j−1

(ni/ni−j+1)− 1
� i = 2� � � � � s + 1� j = 2� � � � � i�

The extrapolation tableau can be graphically depicted as follows:

T1�1

T2�1 T2�2
���

���
� � �

Ts+1�1 Ts+1�2 · · · Ts+1�s+1�

The value Ts+1�s+1 after s extrapolation stages is taken as the approximation
to u(H) and is used as the starting point to launch a new basic integration step
over the next interval [H� 2H]. The procedure is continued in this way for N
basic steps until the approximation of u(T) at time T = NH is obtained. After
one basic step, we have the following error estimate:

u(H)− Ts+1�s+1 = O(k1k2 · · ·ks+1) = O
(
Hs+1/(n1n2 · · ·ns+1)

)
�

For the step number sequence {2� 3� � � � � s + 2} we have in particular:

(2.13)u(H)− Ts+1�s+1 = O
(
Hs+1/(s + 2)!)�
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The total number of time steps required to compute Ts+1�s+1 (the total number
of times the linear system (2.10) needs to be solved) is

Ns = (s + 4)(s + 1)/2�

Recall that the factorial can be well approximated by n! ≈ √
2π(1 + 1/(6n))×

nn+1/2e−n (a refinement of the Stirling formula). This approximation is very
accurate even for small n (e.g., for n = 2 this gives 1�9974). For the sequence
{2� 3� � � � � s + 2}, for fixed s the error of the extrapolation scheme is thus:

u(H)− Ts+1�s+1 = O
({

2π
(
1 + 1/

(
6(s + 2)

))}−1/2

× exp
{−(s + 5/2) ln(s + 2)

+ (s + 1)(1 + lnH)+ 1
})
�

To get some intuition on the dependence of the error on the number of time
steps, recalling that the total number of time steps needed to integrate the
ODE on the interval [0�H] is Ns = (s+1)(s+4)/2, we write the error estimate
as follows:

(2.14)u(H)− Ts+1�s+1 = O
(
e−c

√
Ns lnNs

)
�

This suggests that the error decreases as e−c
√
Ns lnNs with the increasing num-

ber of time steps Ns. We stress that the argument above is not rigorous. The
error estimate only states that for fixed s and small H → 0 the error is as-
ymptotically O(Hs+1/(s + 2)!). Generally, it does not say anything about the
behavior of the error with increasing s, as the constant C in the estimate
CHs+1/(s + 2)! may depend on s and, hence, on Ns. If a hypothesis that
the constant can be made independent of s (or increases slowly with s) holds,
then Eq. (2.14) would, in fact, provide an error estimate in terms of the num-
ber of time steps. Unfortunately, it appears difficult to prove this hypothesis.
However, in our numerical experiments with option pricing applications we do
observe the rate of convergence suggested by the heuristic (2.14).

For a fixed basic step H, the total number of time steps needed to integrate
the ODE on the time interval [0� T ] is: NT�H�s = N(s + 4)(s + 1)/2, where
N = T/H. Due to rapid convergence of the extrapolation method, N and s
are typically small in option pricing applications, resulting in the small total
number of time steps N required to achieve desired accuracy.

At each time step, we need to solve the linear system (2.10). In one-
dimensional models, we have a tri-diagonal system. This can be solved using
the LU decomposition with forward/backward substitution inO(m) operations
for a system of order m (recall that here m is the number of elements in the
finite element discretization). Hence, this time stepping scheme takes O(Nm)
floating point operations, where N is the total number of time steps.

So far we have taken the basic step size H and the number of extrapo-
lation stages s as given. We now discuss selection of H and s in practice.
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First suppose H is fixed, and select a local error tolerance ε > 0. After
j extrapolation stages, Tj+1�j+1 approximates u(H). The error estimate is:
Ej := ‖Tj+1�j+1 − Tj+1�j‖L∞ (the so-called subdiagonal error estimate, see
Hairer and Wanner, 1996, p. 140). After each extrapolation stage with j � 2,
we compare the estimated error Ej with the preceding error Ej−1 and with the
desired local error tolerance ε. Whenever Ej � ε for some j � smax, we accept
Tj+1�j+1 as the approximation to u(H) and move on to compute the solution
over the next basic step [H� 2H] starting with u(H) = Tj+1� j+1 determined at
the previous step. Alternatively, whenever Ej � Ej−1 (i.e., increasing extrapo-
lation depth does not result in further error reduction) or if the desired error
tolerance is not achieved in smax stages, we restart the computation of the step
with a smaller H, say Hnew = Hold/2. In our numerical experiments we se-
lected smax = 10, so that if the desired error tolerance is not achieved in ten
extrapolation stages, we reduce the basic step size. This simple procedure al-
lows us to select the basic step size H and the extrapolation stage s adaptively.
The only user-specified parameter in addition to the desired error tolerance is
the initial basic step size H. If the initial H is too large relative to the error tol-
erance, the adaptive procedure will reduce it and restart the computation with
smaller H. If H is selected too small relative to the desired error tolerance,
more time steps than necessary will be computed. In our computational exper-
iments with options pricing problems, H = 0�5 year has proven adequate as a
starting basic step size for error tolerances up to 10−5 (without the need to re-
duce the basic step size in most cases). For problems with maturities less than
six months we set H = T . For faster computations with less precision (e.g.,
error tolerances up to 10−3), the basic step H = 1 or even longer can be used
as a starting step. Computational examples are given in Section 5 and in Feng
and Linetsky (2006b). More sophisticated fully adaptive schemes that allow
adaptive time step selection and adaptive extrapolation depth selection can be
found in Deuflhard (1985), Deuflhard and Bornemann (2002, Section 6.4.2),
and Hairer and Wanner (1996, Section IV.9).

3 American options in the Black–Scholes–Merton model

3.1 Optimal stopping, variational inequality, localization, discretization, linear
complementarity problem

An American-style derivative security has a payoffψ = ψ(x), and the option
holder can exercise at any time between the contract inception at time t = 0
and expiration T > 0 and receive the payoff. In general, the payoff can depend
both on the time of exercise and the state of the underlying process at the
time of exercise, ψ = ψ(t� x), but to simplify notation we assume that it only
depends on the state and not on time. Assuming the option holder follows a
value-maximizing exercise strategy, the value function of the American option
is given by the value function of the optimal stopping problem (Bensoussan,
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1984; Karatzas, 1988):

(3.1)V (t� x) = sup
θ∈Θt�T

Et�x
[
e−r(θ−t)ψ(Xθ)

]
�

where the supremum is taken over the set of all stopping times θ taking values
in [t� T ], denoted by Θt�T .

Based on the fundamental work of Bensoussan and Lions (1982, 1984)
on the variational inequality formulation of optimal stopping problems for
Markov processes and Glowinski et al. (1981) on numerical methods for vari-
ational inequalities, Jaillet et al. (1990) show that the value function of the
American-style problem can be determined as the unique solution of the vari-
ational inequality (see also Lamberton and Lapeyre, 1996 for a textbook treat-
ment):

Vt +AV � 0� t ∈ [0� T )� x ∈ R�

V � ψ� t ∈ [0� T )� x ∈ R�

(Vt +AV ) · (V − ψ) = 0� t ∈ [0� T )� x ∈ R�

with the terminal condition

V (T� x) = ψ(x)� x ∈ R�

Introducing a time value (excess premium over the payoff) function u(t� x) =
V (T − t� x) − ψ(x), which is always positive for American options, the varia-
tional inequality is transformed into:

(3.2a)ut −Au−Aψ � 0� t ∈ (0� T ]� x ∈ R�

(3.2b)u � 0� t ∈ (0� T ]� x ∈ R�

(3.2c)(ut −Au−Aψ) · u = 0� t ∈ (0� T ]� x ∈ R�

with the homogeneous initial condition

(3.2d)u(0� x) = 0� x ∈ R�

First we localize the problem (3.2) to a bounded domain Ω = (x� x) by
assuming that (3.2) hold on Ω and the function vanishes on the boundary,

u(t� x) = 0� x ∈ {x� x}� t ∈ [0� T ]�
This corresponds to the following artificial boundary condition for the value
function: V (t� x) = ψ(x), x ∈ {x� x}, t ∈ [0� T ].

Consider a space of test functions v ∈ H1
0(Ω) (the previously introduced

Sobolev space of functions vanishing on the boundary) and such that v � 0. By
multiplying (3.2a) with v and integrating on Ω, we obtain:

(3.3)(ut� v)+ a(u� v)+ a(ψ� v) � 0� ∀v � 0� v ∈ H1
0(Ω)�
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where a(u� v) is the previously defined bilinear form and (u� v) is the inner
product in L2(Ω). Integrating (3.2c) on Ω, we obtain:

(3.4)(ut� u)+ a(u� u)+ a(ψ� u) = 0�

Subtracting (3.4) from (3.3), we obtain:

(3.5)
(ut� v − u)+ a(u� v − u)+ a(ψ� v − u) � 0� ∀v � 0� v ∈ H1

0(Ω)�

We seek a solution u = u(t� x) of (3.5) that vanishes on the boundary ∂Ω, with
the vanishing initial condition, u(0� x) = 0, and such that the nonnegativity
constraint u � 0 is satisfied on Ω.

We now consider a fully discrete finite element approximation. We seek
an approximate solution in the form (2.7). We also approximate test func-
tions in the finite element basis, vh(x) = ∑m

i=1 vi φh�i(x), and denote by v
the m-dimensional vector of nonnegative coefficients vi. We discretize time
by the fully implicit backward Euler method. Divide the time interval [0� T ]
into N time steps, each having length k = T/N , and with the nodes tn = nk,
n = 0� 1� � � � �N . Define un := u(tn), n = 0� 1� � � � �N . Then the full discretiza-
tion of Eq. (3.5) starts with the initial condition u0 = 0 and marches forward
according to:

un � 0�
(
v − un

)�(
(M + kA)un − Mun−1 + kF

)
� 0�

(3.6)∀v � 0� n = 1� � � � �N�

where at each time step we need to determine an m-dimensional vector un

such that all its elements are nonnegative, un � 0, and (3.6) is satisfied for
every m-dimensional vector v with all its elements nonnegative, vn � 0. The
load vector F is given by Fi = a(ψ�φh�i).

This is equivalent to solving a linear complementarity problem (LCP) at each
step (one for each n = 1� 2� � � � �N): determine an m-dimensional vector
un such that (see Jaillet et al., 1990; Lamberton and Lapeyre, 1996 for the
LCP formulation of the American option problem discretized by finite differ-
ences):

(3.7a)
(
un

)�(
(M + kA)un − Mun−1 + kF

) = 0�

(3.7b)(M + kA)un − Mun−1 + kF � 0�

(3.7c)un � 0�

This LCP can be solved by, e.g., the projected successive over-relaxation
(PSOR) algorithm (Cryer, 1971; Cottle et al., 1992). A textbook treatment
of PSOR in the context of American option pricing in the finite difference
framework can be found in Wilmott et al. (1993). While it is straightforward to
implement, a disadvantage of this approach based on the discretization of the
variational inequality and solution of the resulting LCP is that this approach is
inherently only first-order accurate in time as it is based on the implicit Euler
scheme.
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3.2 Penalization and the nonlinear system of ODEs

An alternative approach is to apply the penalization technique to the varia-
tional inequality. Penalty methods approximate the variational inequality by a
sequence of nonlinear PDEs (see Bensoussan and Lions, 1982, 1984; Glowinski
et al., 1981; and Glowinski, 1984). The advantage of this approach is that, uti-
lizing the finite element method-of-lines framework, one can apply available
ODE solvers to obtain adaptive high-order integration in time. In the context
of pricing American options, penalty methods have been applied by Zvan et
al. (1998b), Forsyth and Vetzal (2002), d’Halluin et al. (2004) in the finite-
difference framework and Sapariuc et al. (2004) and Kovalov and Linetsky
(2007), Kovalov et al. (2007) in the finite-element framework.

We now briefly discuss the penalized formulation. The original variational
inequality (3.2) on the bounded domain Ω is approximated with the nonlinear
PDE problem with the penalty term approximating the constraint u � 0 (x− ≡
max{−x� 0}):

(3.8a)
∂uε

∂t
−Auε − 1

ε
(uε)

− −Aψ = 0� t ∈ (0� T ]� x ∈ Ω�

(3.8b)uε(t� x) = 0� x ∈ ∂Ω� t ∈ (0� T ]�
(3.8c)uε(0� x) = 0� x ∈ Ω�

The nonlinear penalty term 1
ε (uε)

− approximates the action of the early exer-
cise constraint u � 0. According to Friedman (1976, Chapter 16), Bensoussan
and Lions (1982, Chapter 3, Section 4), and Bensoussan and Lions (1984,
Theorem 8.3, p. 155), the solution uε of the nonlinear penalized PDE prob-
lem (4.1)–(4.2) converges to the solution of the variational inequality (3.2) as
ε → 0. In particular, the following penalization error estimate holds for the
penalty approximation (e.g., Boman, 2001; Sapariuc et al., 2004):

(3.9)max
t∈[0�T ]

∥∥uε(t� ·)− u(t� ·)∥∥
L∞(Ω)

� Cε

for some C > 0 independent of ε, and

uε � −Cε�
The intuition behind this result is as follows. While the solution u of the varia-
tional inequality is constrained to stay nonnegative (which corresponds to the
value function V � ψ, or not less than the payoff that can be obtained by early
exercise), the solution of the nonlinear penalized PDE uε can fall below zero.
However, while when uε � 0 the penalty term vanishes, when uε < 0, the
penalty term 1

ε (uε)
− has a positive value that rapidly increases as the solution

falls below zero, forcing the solution of the PDE back above zero. The smaller
the value of ε, the larger the value of the coefficient 1/ε in the penalty term and
the more closely the penalty term approximates the action of the early exercise
constraint. The penalized solution uε can fall below zero, but uε � −Cε for
some constant C > 0 independent of ε.
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The variational formulation of this nonlinear PDE in the bounded domain
Ω is (

∂uε

∂t
� v

)
+ a(uε� v)+

(
πε(uε)� v

) + a(ψ� v) = 0� ∀v ∈ H1
0(Ω)�

with the initial condition (3.8c). Here

(3.10)πε(uε) = −1
ε
(uε)

−

is the penalty term. The semi-discrete finite element formulation then leads to
the nonlinear ODE:

(3.11)Mu′
ε(t)+ Auε(t)+ Mπε(uε)(t)+ F = 0� t ∈ (0� T ]�

with the initial condition uε(0) = 0, where the nonlinear penalty vector
πε(uε) = (πε(uε�1)� � � � � πε(uε�m))

� has elements

πε(uε�i)(t) = −1
ε

(
uε�i(t)

)−
� i = 1� 2� � � � �m�

The problem is then reduced to integrating the nonlinear ODE system (3.11)
with the vanishing initial condition. Note that due to the small parameter ε
in the denominator, the penalty term adds stiffness to the ODE system. We
thus have a tradeoff. From the estimate (3.9), the error of the penalty ap-
proximation is of the order ε. To reduce the approximation error, we wish to
select small ε. However, excessively small ε makes the system stiff, and tempo-
ral integration methods for stiff ODEs need to be employed. If the penalty
term is treated implicitly, then a nonlinear equation needs to be solved at
each step. This can be accomplished by Newton iterations. In our numerical
examples in Section 5, we employ the freely available SUNDIALS software
package implementing adaptive variable order and variable step size BDF time
stepping with a built-in Newton iterative solver. As an alternative to the fully
implicit treatment of the penalty term, a linear-implicit scheme can be used,
such as linear-implicit (or semi-implicit) extrapolation schemes for stiff sys-
tems (Hairer and Wanner, 1996; Deuflhard and Bornemann, 2002).

While the specific functional form of the penalty term in (3.10) is commonly
used in the literature on the penalty approximation of variational inequali-
ties and its applications in finance (e.g., Bensoussan and Lions, 1982, 1984;
Forsyth and Vetzal, 2002; Friedman, 1976; Glowinski et al., 1981; Glowinski,
1984; Marcozzi, 2001; Sapariuc et al., 2004; Zvan et al., 1998a, 1998b), more
general forms of the penalty term can be considered (see Glowinski, 1984 for
general results about penalty approximations of variational inequalities). In
fact, the penalty term 1

ε (uε)
− has a discontinuous first derivative with respect

to uε. In the numerical solution, one needs to use Newton-type iterations to
solve a nonlinear system of algebraic equations resulting from the discretiza-
tion of the PDE. The discontinuity in the Jacobian of this system stemming
from the discontinuity in the derivative of the penalty term with respect to uε
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presents some computational challenges, as nonsmooth Newton-type iterative
schemes for nonlinear systems with discontinuous Jacobians need to be used
(see, e.g., Forsyth and Vetzal, 2002). An alternative is to consider more gen-
eral penalty terms of the form ( 1

εu
−)p for some p � 1, which we call power-p

penalty terms (Kovalov et al., 2007). Taking p > 1 restores the continuity of
the derivative of the penalty term with respect to u, and standard Newton iter-
ations with continuous Jacobian can be used. In the numerical experiments in
this paper we take p = 2 and verify that the estimate (3.9) holds in this case as
well. Thus, we consider a smoothed penalty term of the form

(3.12)πε(uε) = −
(

1
ε
(uε)

−
)p

�

that leads to the penalty vector in the ODE system:

(3.13)πε(uε�i) = −
(

1
ε
(uε�i)

−
)p

�

where p � 2. This smoothed penalty term has p−1 continuous derivatives and
has a continuous Jacobian in particular. This improves numerical performance
of high-order time integrators.

4 General multi-dimensional jump-diffusion models

4.1 General formulations for European, barrier, and American derivatives

Let (Ω�F� {Ft}t�0�P) be a complete filtered probability space with a fil-
tration {Ft}t�0 satisfying the usual hypothesis that the filtration is right-
continuous and every Ft contains all the P-null sets of F . Let {Bt� t � 0}
be an Ft-adapted standard Brownian motion on Rn and p(dt dz) an Ft-
adapted Poisson random measure on [0�∞) × Rn with intensity measure
q(dt dz) = Λ dt F(dz), such that Λ � 0 is a Poisson jump arrival inten-
sity and F is a jump size (magnitude) probability measure on Rn for which
F{0} = 0. That is, we consider that jumps arrive according to a Poisson
process {Nt� t � 0} with intensity Λ. On arrival, the jump size is an Rn-valued
random variable with probability distribution F (independent of the Poisson
process N and Brownian motion B). For a time interval [t1� t2], a Borel set
A ⊂ Rn and ω ∈ Ω, the Poisson random measure p(ω; [t1� t2] × A) =
#{jumps of size ∈ A arriving during [t1� t2]}. The Poisson random measure is a
counting measure of a compound Poisson process with jump arrival intensity Λ
and jump size distribution F .

We model the underlying economic uncertainty affecting financial variables
such as asset prices, interest rates, foreign exchange rates, etc. in the risk-
neutral economy as an Ft-adapted Markov jump-diffusion process {Xt� t � 0}
in Rn with cádlág (right continuous with left limits) sample paths solving the
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stochastic differential equation (SDE) with jumps

(4.1a)dXt = b(t�Xt−) dt + σ(t�Xt−) dBt + dJt�

with the deterministic initial condition X0 = x ∈ Rn, and jump component

(4.1b)Jt =
t∫

0

∫
Rn

γ(s�Xs−� z)p(ds dz)�

If a Poisson jump arrives at time τ and has size z, then the jump-diffusion
process X experiences a jump of size �Xτ = Xτ − Xτ− = γ(τ�Xτ−� z). In
particular, (4.1b) has the form:

Jt =
∑
τn�t

�Xτn =
∑
τn�t

γ(τn�Xτn−� Zn)�

where τn are jump arrival times and Zn are jump sizes (i.i.d. random variables
with distribution F , independent of N and B). We note that it is possible that
γ(τ�Xτ−� z) = 0 andX has a zero jump even though the Poisson process expe-
riences a jump. The intensity measure of the jump process Jt is M(t� x; dz) dt,
where

M(t� x;A) = ΛF
{
z: γ(t� x� z) ∈ A� γ(t� x� z) �= 0

}
�

for any Borel set A ⊂ Rn, while the arrival rate of nonzero jumps is

λ(t� x) = M
(
t� x;Rn

) = ΛF
{
z: γ(t� x� z) �= 0

}
� Λ�

On arrival of a nonzero jump at time t when Xt− = x, the jump size of the
process X is an Rn-random variable with distribution

μ(t� x;A) = M(t� x;A)
λ(t� x)

�

We assume that there exists a unique strong solution of the SDE (4.1) that
is an Ft-adapted cádlág Markov jump-diffusion process in Rn. In particular,
it is sufficient to suppose that the drift vector b : [0�∞) × Rn → Rn, the dis-
persion (volatility) matrix σ : [0�∞) × Rn → Rn×n, and the jump-size vector
γ : [0�∞) × Rn × Rn → Rn are Borel-measurable and satisfy the respective
linear growth and local Lipschitz conditions (T denotes the matrix transpose):

trσ · σT (t� x)+ ∣∣b(t� x)∣∣2 +
∫
Rn

∣∣γ(t� x� z)∣∣2F(dz) � K
(
1 + |x|2)�

and for each N ∈ N there exists a constant CN such that

tr
(
σ(t� x)− σ(t� y)

)(
σ(t� x)− σ(t� y)

)T + ∣∣b(t� x)− b(t� y)
∣∣2

+
∫
Rn

∣∣γ(t� x� z)− γ(t� y� z)
∣∣2F(dz) � CN |x− y|2�
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for all |x|� |y| � N (see Bensoussan and Lions, 1984, Theorem 6.2, p. 276, and
Jacod and Shiryaev, 2003, Theorem 2.32, p. 158).

A European-style derivative security has a promised payoff ψ = ψ(x) at
expiration T > 0. Its present value at time t ∈ [0� T ] when the process is in
state x, Xt = x, is given by its expected discounted payoff (under the EMM):

(4.2)V (t� x) = Et�x
[
e−

∫ T
t r(s�Xs) dsψ(XT )

]
�

where the discount rate (default-free or defaultable) is assumed to be a func-
tion of the underlying state variable, r = r(t� x) � 0 (this framework includes
the possibility of default governed by some default intensity, in which case r is
the default-free rate plus the default intensity; for simplicity here we assume
no recovery in default).

A knock-out derivative security in addition specifies an open domain
D ⊂ Rn in the state space, and the contract pays a rebate R(τ�Xτ) if the un-
derlying state variable exits D prior to and including expiration:

V (t� x) = Et�x
[
e−

∫ T
t r(s�Xs) dsψ(XT )1{τ>T }

]
(4.3)+ Et�x

[
e−

∫ τ
t r(s�Xs) dsR(τ�Xτ)1{τ�T }

]
�

where τ := inf{u ∈ [t� T ]: Xu /∈ D} is the first exit time from D (we assume
that Xt = x ∈ D), and the rebate R(τ�Xτ) generally depends on the knock-
out time τ and the state of the process Xτ ∈ Dc at τ. Note that, in contrast to
the pure diffusion case, it is possible that the process jumps right through the
boundary and into the interior of the complementDc (the so-called overshoot).

An American-style derivative security has a payoff ψ = ψ(t� x), and the
option holder can exercise at any time between the contract inception at time
t = 0 and expiration T > 0 and receive the payoff. In general, the payoff can
depend both on the time of exercise and the state of the process at the time
of exercise. Assuming the option holder follows a value-maximizing exercise
strategy, the value function of the American option is given by the value func-
tion of the optimal stopping problem:

(4.4)V (t� x) = sup
θ∈Θt�T

Et�x
[
e−

∫ θ
t r(s�Xs) dsψ(θ�Xθ)

]
�

where the supremum is taken over the set of all stopping times θ taking values
in [t� T ], denoted by Θt�T .

Let a = σ · σT denote the diffusion matrix, and define a differential opera-
tor A:

Au(t� x) := 1
2

n∑
i�j=1

aij(t� x)
∂2u

∂xi∂xj
(t� x)

+
n∑
i=1

bi(t� x)
∂u

∂xi
(t� x)− (

r(t� x)+ λ(t� x)
)
u(t� x)
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and an integral operator B:

Bu(t� x) := λ(t� x)

∫
Rn

u(t� x+ y)μ(t� x; dy)�

Then the infinitesimal generator G of the (generally time-inhomogeneous)
Markov jump-diffusion process is given by:

Gu(t� x)+ r(t� x)u(t� x) = Au(t� x)+ Bu(t� x)�
We now characterize the value functions (4.2)–(4.4) as solutions to PIDE

problems. To simplify exposition and avoid dealing with technical complica-
tions, we also suppose that r, bi, aij , and ∂aij/∂xk are bounded on Rn and that
the coercivity condition holds for the diffusion matrix; i.e., there exists a con-
stant α > 0 such that

n∑
i�j=1

aij(t� x)ξiξj � α|ξ|2�

for all ξ ∈ Rn. In particular, here we do not consider pure jump processes
without the diffusion component, a ≡ 0, as this case requires special care (see
Matache et al., 2004, 2005a). These conditions are not necessary and can be
relaxed, but since our exposition here is informal, we do not go into this. Under
these conditions, it follows that the value function V (t� x) defined by (4.2) is
the unique solution of the PIDE:

Vt +AV + BV = 0� t ∈ [0� T )� x ∈ Rn

with the terminal condition

V (T� x) = ψ(x)� x ∈ Rn�

The value function of the knock-out contract (4.3) is the unique solution of
the same PIDE but subject to the additional knock-out condition with rebate:

V (t� x) = R(t� x)� x ∈ Dc� t ∈ [0� T )�
An important observation is that in the presence of jumps the rebate must be
specified everywhere in Dc and not only on the boundary ∂D, as in the pure
diffusion case. This is due to the possibility of overshoot. Hence, the knock-out
condition also must be imposed everywhere inDc and not just on the boundary.

The value function of the American-style problem is the unique solution of
the variational inequality:

(4.5a)Vt +AV + BV � 0� t ∈ [0� T )� x ∈ Rn�

(4.5b)V � ψ� t ∈ [0� T )� x ∈ Rn�

(4.5c)(Vt +AV + BV ) · (V − ψ) = 0� t ∈ [0� T )� x ∈ Rn�
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with the terminal condition

(4.5d)V (T� x) = ψ(T� x)� x ∈ Rn�

The fundamental reference for jump-diffusion processes, optimal stopping
problems, and variational inequalities is Bensoussan and Lions (1984) (see
Theorems 3.3, 4.4, 9.3 in particular). The variational formulation of the Amer-
ican option problem in one-dimensional jump-diffusion models was developed
by Zhang (1997), who extended the results in Jaillet et al. (1990) to jump-
diffusions.

4.2 Localization and variational formulation

To simplify exposition, in what follows we assume that the process coeffi-
cients (a, b, r, λ, μ) and the contract specification (payoff ψ and rebate R) are
time-independent. First consider European and American options (without
contractual knock-out provisions). We start with localizing the original prob-
lem on Rn by considering an increasing exhausting sequence of bounded open
domains {Ωk} such that Ωk ⊂ Ωk+1 and

⋃
k Ωk = Rn. Then the value function

U = V (T − t� x) of the original problem is realized as the limit of a sequence
of functions Uk which solve the localized PIDEs on bounded domains:

Uk�t −AUk − BUk = 0� t ∈ (0� T ]� x ∈ Ωk

with the initial condition:

Uk(0� x) = ψ(x)� x ∈ Ωk�

An artificial knock-out condition is imposed everywhere in (Ωk)
c = Rn\Ωk:

Uk(t� x) = ψ(x)� x ∈ (Ωk)
c�

where we set the artificial rebate equal to the payoff for European and Ameri-
can options. In other words, we approximate the original option contract with
an artificial option contract that knocks out when the process exits a bounded
domain Ωk and pays a rebate ψ(Xτ) at the first exit time τ. In the presence of
jumps, we must impose the artificial knock-out condition everywhere in (Ωk)

c

due to the possibility of an overshoot. If the original option contract already has
a knock-out provision with some bounded domain D, then we simply set the
computational domain equal to D. If D is unbounded (e.g., single-barrier op-
tions), then we also need to localize the problem to a bounded domain Ω ⊂ D.

For the localized problem, we have (see Bensoussan and Lions, 1984 for
general results on localization to bounded domains):

max
t∈[0�T ]

∥∥U(t� ·)−Uk(t� ·)
∥∥
L∞(G)

→ 0 as k → ∞

for any fixed compact set G ∈ Ωk. As discussed previously, the localization
errors can be shown to decay exponentially in the size of the computational
domainΩk. In the remainder of this section, we take a bounded computational
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domain Ωk as given and solve the PIDE on Ωk with the artificial knock-out
condition in (Ωk)

c . We drop the index k to lighten notation.
We consider a variational formulation on a given bounded domain Ω. We

first consider European options. The PIDE has a nonhomogeneous artificial
knock-out condition with artificial rebate ψ(x). We homogenize it by introduc-
ing u := U − ψ. A variational formulation of the PIDE problem is obtained
by considering a space of test functions square-integrable on Ω, with their
(weak) first derivatives square-integrable on Ω, and vanishing in Ωc . Multiply-
ing the PIDE with a test function v = v(x), integrating over Ω, and integrating
by parts, we arrive at the variational (weak) formulation of the PIDE: find
u = u(t� x) such that for every test function v = v(x)

(4.6a)
(ut� v)+ a(u� v)− b(u� v)+ a(ψ� v)− b(ψ� v) = 0� t ∈ (0� T ]�

and

(4.6b)u(0� x) = 0�

where (u� v) = ∫
Ω u(x)v(x) dx is the inner product in L2(Ω), and the two

bilinear forms a(·� ·) and b(·� ·) are defined by

a(u� v) := 1
2

n∑
i�j=1

∫
Ω

aij(x)
∂u

∂xi
(x)

∂v

∂xj
(x) dx

−
n∑
i=1

∫
Ω

ai(x)
∂u

∂xi
(x)v(x) dx

(4.7)+
∫
Ω

(
r(x)+ λ(x)

)
u(x)v(x) dx�

where

ai(x) = bi(x)− 1
2

n∑
j=1

∂aij

∂xj
(x)�

and

(4.8)b(u� v) := (Bu� v) =
∫
Ω

∫
Rn

u(x+ y)v(x)λ(x)μ(x; dy) dx�

The terms with the bilinear form b result from the jump dynamics. To solve the
variational formulation, we seek a function u in an appropriate function space
such that (4.6) hold for any test function v. The solution u vanishes outside
of Ω. The value function U is then given by U = ψ+u. The general framework
for variational formulations of PIDEs associated with jump-diffusion processes
can be found in Bensoussan and Lions (1984). A variational formulation of
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Merton’s jump-diffusion model can be found in Zhang (1997). Matache et al.
(2004, 2005a) develop a variational formulation for Lévy process-based mod-
els.

Similarly to the Black–Scholes–Merton case, for American options we ob-
tain a variational inequality (that now acquires additional terms due to jumps):

(ut� v − u)+ a(u� v − u)− b(u� v)+ a(ψ� v − u)− b(ψ� v) � 0�

(4.9)∀v � 0�

We seek such u that (4.9) is satisfied for all nonnegative test functions van-
ishing on Ωc and such that u vanishes on Ωc , with the vanishing initial condi-
tion (4.6b) and such that the nonnegativity constraint u � 0 is satisfied on Ω.
We can approximate this variational inequality with nonlinear PDE in the pe-
nalized formulation. In the penalized formulation a penalty term approximates
the action of the early exercise constraint:

(4.10)
(uε�t� v)+ a(uε� v)− b(uε� v)+ a(ψ� v)− b(ψ� v)+ (

πε(uε)� v
) = 0

with the vanishing initial condition (4.6b) and vanishing artificial knock-out
condition in Ωc .

4.3 Finite element approximation and integration of the ODE system

In d � 1 dimensions, the state space domain is partitioned into nonover-
lapping elements (intervals in one dimension, triangles or rectangles in two
dimensions, etc.), covering the state space domain with a mesh called a tri-
angulation. In this chapter for simplicity we only consider rectangular ele-
ments. Consider a two-dimensional example with a bounded computational
domain Ω = (x� x) × (y� y). We divide [x� x] into m1 + 1 equal intervals
of length hx = (x − x)/(m1 + 1) and [y� y] into m2 + 1 equal intervals of
length hy = (y − y)/(m2 + 1). The nodes are (xi� yj) = (x + ihx� y + jhy),
i = 0� � � � �m1 + 1, j = 0� � � � �m2 + 1. The rectangular two-dimensional finite
element basis functions are defined for any i = 1� � � � �m1 and j = 1� � � � �m2
as the product of the one-dimensional basis functions:

φij(x� y) = φi(x)φj(y) = φ
(
(x− xi)/h

)
φ
(
(y − yj)/h

)
�

whereφi(x),φj(y), andφ(·) are as previously defined for the one-dimensional
case. The two-dimensional pyramid function φij is equal to one at the node
(xi� yj) and zero at all other nodes. There are m1 × m2 nodes in the interior
(x� x)× (y� y). We order the nodes as follows: (x1� y1), (x1� y2), � � � , (x1� ym2),
(x2� y1), (x2� y2), � � � , (xm1� ym2), and number the nodes and the basis func-
tions accordingly. We will use the same notation φi(x) for the basis functions
in d dimensions, where i = 1� � � � �m, and m is the total number of interior
nodes in the triangulation (e.g., m = m1 × · · · ×md for rectangular elements
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in d dimensions, where mk is the number of intervals in discretizing kth co-
ordinate). Much more general triangulations can be employed in the finite
element method, covering the domain with an essentially unstructured mesh
consisting of triangles or rectangles in two dimensions, or tetrahedra, prisms,
or hexahedra in three dimensions, etc. Details can be found in Quarteroni and
Valli (1997) and Achdou and Pironneau (2005), as well as other finite element
references cited above. Associated basis functions are taken to be piecewise
polynomials of order p. Here we only consider piecewise affine basis functions.
For derivatives pricing problems, the approximation to the value function solv-
ing the variational formulation (4.6) (or (4.9) or (4.10) for American-style
derivatives) is written in the form (2.7) with time-dependent coefficients ui(t)
to be determined by integrating an ODE system similar to Eq. (2.8). In the
general case of a d-dimensional jump-diffusion process and European-style
options, the ODE system takes the form:

(4.11)Mu′(t)+ Au(t)− Bu(t)+ F = 0� t ∈ (0� T ]�
with the initial condition (2.9). Here the mass matrix, the stiffness matrix, the
load vector, and the initial condition vector are defined as before with the
L2(Ω) inner product and the bilinear form (4.7). In the presence of jumps
we also have a jump matrix B = (bij)

m
i�j=1,

bij = b(φj�φi) = (Bφj�φi)�

defined by the bilinear form (4.8) associated with jumps. In the one-dimen-
sional Black–Scholes–Merton model, we were able to calculate the integrals in
the expressions for elements of the mass and stiffness matrices in closed form.
In general, elements of the mass, stiffness and jump matrices, as well as the
load and the initial condition vector, are computed by numerical quadrature.
In one dimension, the one-point Gaussian quadrature rule that evaluates the
integrand at the center of the element (interval) of length h has error of the or-
der O(h2) and is, thus, sufficient for the finite element approximation since the
error of the finite element discretization of the variational formulation of the
PIDE is itself O(h2) (see, e.g., Ciarlet, 1978, Section 4.1 on the use of numer-
ical integration in the finite element method). In d dimensions, d-dimensional
tensor product of the one-point Gaussian quadrature rule evaluates the inte-
grand at the center of the d-dimensional element (here we are only considering
rectangular elements). Higher order Gaussian quadrature may be used to im-
prove the constant in the estimate (see Feng and Linetsky, 2006b).

We have reduced the option pricing problem to the solution of the ODE
system (4.11). For a d-dimensional jump-diffusion model, we observe that
A ∼ O(h−d) and the elements of the matrix A increase as h decreases. In
contrast, B and M decreases as h decreases. Hence, the term Au resulting
from discretization of the diffusion part of the PIDE generates stiffness, while
the term Bu resulting from discretization of the integral operator does not
generally generate stiffness. For stiff systems, fully explicit schemes are only
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conditionally stable and may require prohibitively small time steps when h
is small. Therefore, we treat the term Au implicitly for stability reasons. Re-
call that B is a dense matrix (as opposed to the stiffness matrix A which is
tri-diagonal in the one-dimensional case and has 3d nonzero diagonals in d
dimensions). Since it does not generate stiffness, we may treat the term Bu
explicitly to avoid inverting the dense matrix. This is an example of an implicit–
explicit (IMEX) time stepping scheme (see Hundsdorfer and Verwer, 2003,
Section IV.4 for a survey of IMEX methods for ODEs and PDEs, where some
terms in the ODE or PDE are treated implicitly, while other terms are treated
explicitly).

In particular, the IMEX Euler time stepping scheme starts with the initial
condition Mu0 = C and marches forward according to:

(4.12)(M + kA)ui = (M + kB)ui−1 − kF� i = 1� � � � �N�

At each step, the linear system (4.12) is solved to determine the m-dimensional
vector ui. This scheme is unconditionally stable,1 first-order accurate in time,
and its error is known to have an asymptotic expansion in the powers of the
time step k of the form (2.11). This asymptotic error expansion suggests ap-
plying extrapolation to cancel lower order terms in the error expansion and
to increase the order of the scheme, as we did for the pure diffusion Black–
Scholes–Merton model. Some computational experiments with the extrapola-
tion scheme based on the IMEX Euler are provided in Section 5 (see Feng
and Linetsky, 2006b for more details). IMEX versions of other high order
schemes are also available, such as Crank–Nicolson–Adams–Bashforth, IMEX
BDF, etc. (e.g., Ascher et al., 1995, 1997).

Remark 1. In this chapter we have only considered the basic formulation of
the Galerkin finite element method with piecewise affine basis functions. For
the finite element method with more general piecewise polynomial basis func-
tions see the finite element references given in the Introduction, as well as the
monograph Solin et al. (2003). As an alternative to piecewise polynomial finite
element basis functions, wavelet basis functions may also be used (Matache et
al., 2004, 2005a, 2005b, 2006; Hilber et al., 2005). In particular, interesting re-
cent research on sparse wavelet tensor products that effectively compress the
dimension of the problem can be found in von Petersdorff and Schwab (2004),
where some prototype high-dimensional problems (up to twenty dimensions)
have been considered.

1 Note that we include the term λU in the PIDE in the definition of the operator A to be treated
implicitly, so only the integral is included in the definition of the operator B to be treated explicitly.
The resulting IMEX scheme is proved to be unconditionally stable by d’Halluin et al. (2005). This is
in contrast with the IMEX scheme in Zhang (1997), who treats the reaction term explicitly as well,
resulting in a stability condition of the form �t � C with some constant C.



Ch. 7. Variational Methods in Derivatives Pricing 329

Remark 2. Within the framework of the finite element method, further com-
putational efficiency is achieved by adaptively refining the finite element mesh
(triangulation) based on local errors in the computed numerical solution. An
application of adaptive mesh refinement to the pricing of American-style op-
tions can be found in Achdou and Pironneau (2005). General references on
adaptive mesh refinement are Adjerid et al. (1999a, 1999b), Bergam et al.
(2005), Babuška and Suri (1994), Eriksson and Johnson (1991, 1995).

5 Examples and applications

5.1 One-dimensional jump-diffusion models

Consider the setup of Section 4.1, where now {Xt� t � 0} is a one-dimen-
sional jump-diffusion process:

dXt = μ dt + σ dBt + dJt� μ = r − q− σ2/2 + λ
(
1 − E

[
eZ

])
�

where {Jt� t � 0} is a jump process, a compound Poisson process with inten-
sity λ > 0 and a given jump size (magnitude) distribution, i.e., Jt = ∑Nt

n=1 Zn,
where Nt is a Poisson process with intensity λ and {Zn} are i.i.d. jump magni-
tudes. It is also assumed that the Brownian motion, the Poisson process, and
the jump magnitudes are all independent. The drift μ is adjusted so that the
discounted total gains process, including price changes and dividends, is a mar-
tingale under the EMM, i.e., E[St] = e(r−q)tS0 for each t > 0 for the price
process.

In Merton’s (1976) model the jump magnitude distribution is normal with
mean m and standard deviation s with the probability density:

p(z) = 1√
2πs2

exp
(
−(z −m)2

2s2

)
�

In this model, the drift parameter is μ = r − q−σ2/2 +λ[1 − exp(m+ s2/2)].
In Kou’s (2002) model (see also Kou and Wang, 2004) the jump magnitude
distribution is double exponential with the density:

p(z) = pη1e
−η1z1{z�0} + (1 − p)η2e

η2z1{z<0}

and μ = r − q − σ2/2 + λ[(1 − p)(η2 + 1)−1 − p(η1 − 1)−1]. In this model
positive jumps occur with probability p and are exponentially distributed with
mean 1/η1 with η1 > 1, and negative jumps occur with probability 1 − p and
are exponentially distributed with mean 1/η2 with η2 > 0.

To price European options, we need to solve the PIDE

Ut −AU − BU = 0� t ∈ (0� T ]�
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with the initial condition U(0� x) = ψ(x). For one-dimensional jump-diffusion
models the operators are

AU = 1
2
σ2Uxx + μUx − (r + λ)U�

BU(t� x) = λ

∫
R

U(t� x+ z)p(z) dz�

As discussed in Section 4.1, for knock-out options due to the possibility of
overshoot the knock-out condition needs to be imposed everywhere in Ωc and
not only on the boundary ∂Ω.

After localization to a bounded computational domain (x� x), the bilinear
forms in the variational formulation of the PIDE are

a(u� v) = 1
2
σ2

x∫
x

uxvx dx− μ

x∫
x

uxv dx+ (r + λ)

x∫
x

uv dx

and

b(u� v) = (B u� v) = λ

x∫
x

∞∫
−∞

u(x+ z)v(x)p(z) dz dx�

In the finite element formulation of this jump-diffusion model the mass and
stiffness matrices M and A are the same as in the Black–Scholes–Merton model
in Section 2.4, but we also have a jump matrix B. Its elements bij = b(φj�φi) =
(Bφj�φi) have the form:

bij = λ

x∫
x

∞∫
−∞

φj(x+ z)φi(x)p(z) dz dx

= λ

xi+1∫
xi−1

xj+1∫
xj−1

φj(y)φi(x)p(y − x) dy dx

= λh2

1∫
−1

1∫
−1

φ(u)φ(w)p
(
(w − u+ j − i)h

)
dw du

and depend only on the difference j − i. Therefore, B is a Toeplitz matrix
with the same elements along each diagonal. Hence, we only need to com-
pute 2m − 1 values. The double integral can be computed directly by the
two-dimensional Gaussian quadrature. Alternatively, in our implementation
we compute bij = (Bφj�φi) as follows. We approximate the function (Bφj)(x)
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by its finite element interpolant IhBφj(x):

Bφj(x) ≈ IhBφj(x) =
∑
l∈Z

(
Bφj(xl)

)
φl(x)�

where Ih is the finite element interpolation operator. The finite element in-
terpolant Ihf (x) = ∑

l f (xl)φl(x) of a function f (x) is equal to the value
of the function at the nodes xl and interpolates between the nodes with the
piecewise-linear finite element basis functions φl(x). The error of the finite
element interpolation is O(h2) and is, thus, of the same order as the spatial
discretization error in our semi-discrete formulation of the PIDE. We then
have the following approximation:

(Bφj�φi) ≈
i+1∑
l=i−1

Bφj(xl) · (φl�φi)

= 1
6
hBφj(xi−1)+ 2

3
hBφj(xi)+ 1

6
hBφj(xi+1)

for any i� j ∈ Z, where

Bφj(xl) = λ

∫
R

φj(xl + z)p(z) dz = λh

1∫
−1

φ(x)p
(
(x+ j − l)h

)
dx

(5.1)

= λh

1∫
0

[
xp

(
(x− 1 + j − l)h

) + (1 − x)p
(
(x+ j − l)h

)]
dx�

Note that Bφj(xl) depends only on the difference j − l. Hence, to compute
the jump matrix B, we need to compute 2m + 1 values Bφj(xl). In Kou’s and
Merton’s models, the integral in (5.1) can be calculated analytically. For a gen-
eral jump magnitude distribution, the integral (5.1) is computed by numerical
quadrature. The one-point Gaussian quadrature rule that evaluates the inte-
grand at the center of the integration interval of length h has errors of the
order O(h2) and is, thus, sufficient for the finite element approximation (see,
e.g., Ciarlet, 1978, Section 4.1):

Bφj(xl) ≈ 1
2
hλ

[
p
(
(j − l − 1/2)h

) + p
(
(j − l + 1/2)h

)]
�

We integrate the resulting ODE system (4.11) by the extrapolation scheme
based on the IMEX Euler scheme as described in Section 4.3. We note that
the jump matrix B is Toeplitz. In the numerical solution of the system (4.12),
we need to perform the jump matrix–vector multiplication at each time step.
The Toeplitz matrix–vector multiplication can be accomplished efficiently in
O(m log2(m)) floating point operations using the fast Fourier transform (FFT)
(see Feng and Linetsky, 2006a, 2006b).
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Table 1.
Parameter values used in numerical experiments

Kou σ = 0�1, λ = 3, p = 0�3, η1 = 40, η2 = 12, T = 1 year

Merton σ = 0�1, λ = 3, m = −0�05, s = 0�086, T = 1 year

SVCJ λ = 4, ν = 0�01, m = −0�01, s = 0�01, ρD = −0�5, ρJ = −1
ξ = 0�1, κ = 2, θ = 0�04, T = 3 months

Other parameters K = 100, L = 80, U = 120, r = 5%, q = 2%

We now present some numerical examples for European, single- and
double-barrier options. Parameters used in our numerical experiments are
given in Table 1. We investigate pricing errors due to localization and spa-
tial and temporal discretizations. Errors are in the maximum norm on the
approximation domain G = [log(0�8)� log(1�2)] in the x-variable (correspond-
ing to the approximation domain G = [80� 120] in the underlying stock price
variable S). For barrier options, benchmark prices are computed with small
enough space steps and time steps. For European options in Kou’s and Mer-
ton’s models, accurate benchmark prices can be computed using available
analytical solutions.

Figure 2 illustrates convergence of the finite element spatial discretization,
temporal discretization, and localization in Kou’s and Merton’s models. The
two plots at the top show spatial convergence and localization error decay for
the down-and-out put (DOP) in Kou’s model. The two plots in the middle row
show spatial convergence and localization error decay for the up-and-out call
(UOC) in Merton’s model. The two bottom plots show temporal convergence
of the IMEX extrapolation scheme for double-barrier put (DBP) options in
Kou’s model. The first and second plots in the first column plot the maximum
norm pricing error as a function of the spatial discretization step size h. The
error plots are in log–log scale and clearly demonstrate the Ch2 convergence
of the finite element approximation. While the double-barrier problem has a
bounded domain and no localization is needed, for single-barrier and Euro-
pean options, we localize to bounded computational domains. In particular,
for down-and-out options, the domain is [x� xk], where the lower barrier x is
fixed contractually, x = ln(L/K), and a sequence of increasing artificial up-
per barriers xk is considered (denoted by xmax in the plots). Similarly, for
up-and-out options, the upper barrier x is fixed contractually, x = ln(U/K),
and a sequence of decreasing artificial lower barriers xk is considered (de-
noted by xmin in the plots). When a computational domain is fixed and h is
refined, there is a minimum error beyond which no further error reduction
can be obtained by refining h. This is a localization error corresponding to
this computational domain. The computation domain needs to be enlarged
to obtain further error reduction. This can be clearly seen in the first and
second plots in the first column for dow-and-out puts and up-and-out calls,
respectively. For each fixed computational domain, these plots exhibit the Ch2
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Figure 2. Maximum norm pricing errors in Kou’s and Merton’s models: spatial discretization, lo-
calization, and temporal discretization. DOP = down-and-out put, UOC = up-and-out call,
DBP = double-barrier put. Parameters are given in Table 1. The approximation domain is [80� 120]

in the stock price.

convergence up until the localization error starts to dominate. The localiza-
tion error itself decays exponentially in the size of the computational domain,
as shown in the first and second plots in the second column. The two bottom
plots illustrate convergence of the temporal discretization for one-year double-
barrier puts in Kou’s model. The spatial discretization step size h was taken
small enough to guarantee spatial discretization errors less than 10−5, our tar-
get accuracy. For one-year options, two basic steps of six months each were
taken. Time discretization errors are plotted for the IMEX Euler scheme and
the extrapolation scheme. The plots illustrate that the extrapolation scheme is
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remarkably fast and accurate. For the one-year double-barrier put option, our
extrapolation scheme took a total of 88 time steps (in 0.07 seconds on a Dell
Xeon 3.06 GHz PC) to achieve our target accuracy of 10−5, while the IMEX
Euler scheme took more than 1.3 million steps (in 833 seconds) to achieve the
same accuracy. The second plot in the last row plots the maximum norm er-
ror as a function of N 1/2 lnN . This plot illustrates that our scheme exhibits
error decay O(exp(−cN 1/2 lnN )) in the number of time steps N , consistent
with Eq. (2.14).

5.2 Duffie–Pan–Singleton model with stochastic volatility and
contemporaneous and correlated jumps in asset return and volatility

In the one-dimensional model, the volatility σ is constant. In contrast, in the
model with stochastic volatility and contemporaneous and correlated jumps in
the asset price and volatility (SVCJ), the instantaneous variance Vt = σ2

t is
assumed to follow a CIR diffusion punctuated by positive jumps. The corre-
sponding two-dimensional stochastic differential equation (SDE) is (Duffie et
al., 2000)

dXt = (μ− Vt−/2) dt + √
Vt−

[√
1 − ρ2

D dB1
t + ρD dB2

t

]
+ dJXt �

dVt = κ(θ− Vt−) dt + ξ
√
Vt− dB2

t + dJVt �

where θ is the long-run variance level, κ is the rate of mean reversion, ξ is
the volatility-of-volatility parameter, B1 and B2 are two independent stan-
dard Brownian motions, ρD is the correlation coefficient correlating Brownian
shocks in the return and variance processes, and (JXt � J

V
t ) is a two-dimensional

jump process, a R×R+-valued compound Poisson process with intensity λ > 0
and a bi-variate jump magnitude distribution in R × R+. The process starts at
X0 := x = ln(S0/K) and V0 = v > 0 at time zero. The jump magnitudes
(ZX

n �Z
V
n ) are i.i.d. with a joint bi-variate probability density p(zx� zv). The

marginal distribution of the jump size in variance is assumed to be exponential
with mean ν. Conditional on a jump of size zv in the variance process, the jump
size in the return process Xt is assumed to be normally distributed with mean
m+ρJz

v (where ρJ defines correlation between jumps in return and variance)
and standard deviation s. The bi-variate density is

p
(
zx� zv

) = 1

ν
√

2πs2
exp

(
−zv

ν
− (zx −m− ρJz

v)2

2s2

)
�

zx ∈ R� zv > 0�

The drift parameter is: μ = r − q+ λ[1 − (1 − νρJ)
−1 exp(m+ s2/2)]. The in-

finitesimal generator of the two-dimensional Markov process (Xt� Vt) is given
by

Gf (x� v) = 1
2
vfxx + ρξvfvx + 1

2
ξ2vfvv +

(
μ− 1

2
v

)
fx + κ(θ− v)fv
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+ λ

∞∫
−∞

∞∫
0

[
f
(
x+ zx� v + zv

) − f (x� v)
]
p
(
zx� zv

)
dzv dzx�

For future convenience, we introduce a scaled and centered dimensionless
variance process Yt = (Vt − θ)/θ. A jump of size /V in Vt corresponds to a
jump of size /Y = /V /θ in Yt . Hence, the joint distribution of jumps in the
state variables (Xt� Yt) has a density:

p
(
zx� zy

) = θ

ν
√

2πs2
exp

(
−θzy

ν
− (zx −m− ρJθz

y)2

2s2

)
�

zx ∈ R� zy > 0�

In the PDE formulation of the two-dimensional SVJJ model, the value func-
tion also depends on the initial variance at time t, represented by the scaled and
centered state variable Yt = y, U = U(t� x� y). The differential and integral
operators are

AU = 1
2
θ(y + 1)Uxx + ρDξ(y + 1)Uxy + ξ2

2θ
(y + 1)Uyy

+
(
μ− 1

2
θ(y + 1)

)
Ux − κyUy − (r + λ)U�

BU(t� x� y) = λ

∞∫
−∞

∞∫
0

U
(
t� x+ zx� y + zy

)
p
(
zx� zy

)
dzy dzx�

The initial condition is U(0� x� y) = ψ(x), where ψ(x) is the payoff (which
for call and put options depends only on the x variable). Finally, for knock-out
options the appropriate knock-out conditions are imposed.

In the SVJJ model, after localization to a bounded computational domain
(x� x)× (y� y), the bilinear forms in the variational formulation are

a(u� v) =
x∫

x

y∫
y

(
1
2
(y + 1)

(
θuxvx + ρξuyvx + ρξuxvy + 1

θ
ξ2uyvy

)

+
(
ky + ξ2

2θ

)
uyv −

(
μ− 1

2
ρξ − 1

2
θ− 1

2
θy

)
uxv

+ (r + λ)uv

)
dy dx

and

b(u� v) = λ

x∫
x

y∫
y

∞∫
−∞

∞∫
0

u
(
x+ zx� y + zy

)
v(x� y)p

(
zx� zy

)
dzy dzx dy dx�
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The finite element formulation is constructed as described in Section 4.3. In
our examples we consider rectangular finite elements. Explicit expressions for
the mass M, stiffness A, and jump matrices B and the load vector are rather
cumbersome and can be found in Feng and Linetsky (2006b).

We now present some numerical examples. Parameters used in our numer-
ical examples are given in Table 1. For European options in the SVCJ model,
the benchmark prices are computed using the Fourier transform method for
affine jump-diffusions (Duffie et al., 2000). Figure 3 shows double-barrier put
option pricing in the SVCJ model. The first plot shows the value function for
a double-barrier put option as a function of the underlying stock price and
volatility. The second plot shows convergence of the finite element spatial dis-
cretization. The Ch2 error estimate is clearly verified. The two bottom plots
show convergence of the extrapolation time stepping scheme based on the
IMEX Euler scheme. Maximum norm errors of the IMEX Euler scheme and
the extrapolation scheme with the basic step sizes H = T = 0�25 year are
plotted. The extrapolation scheme is remarkably fast and accurate for this two-
dimensional application with bi-variate jumps. The double-barrier put option
is priced with the accuracy of nearly 10−4 in 35 time steps (in 6�68 seconds
on a Dell Xeon 3.06 GHz PC). The IMEX Euler scheme takes about 10,000
time steps to attain 10−3 accuracy (in 484 seconds). The last plot illustrates the
O(exp(−cN 1/2 lnN )) error decay in the number of time steps N .

Figure 3. Double-barrier put option in the SVCJ model. Parameters are given in Table 1.
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5.3 Multi-asset American-style options

In this section we consider an example of a multi-asset American-style
option. Consider a Black–Scholes–Merton model with n assets with the risk-
neutral dynamics:

dSi(t) = (r − qi)Si(t) dt + σiSi(t) dWi(t)� Si(0) = Si�

where Wi are n correlated Brownian motions with the correlation matrix ρij ,
dWi(t) dWj(t) = ρij dt. We will consider an American-style put option on the
geometric average of the prices of n assets. Introducing the geometric aver-
age process It := (

∏n
i=1 Si(t))

1/n, the put payoff is (K − It)
+ if the option is

exercised at time t ∈ [0� T ] between the contract inception and expiration T .
We choose this geometric average option for our example due to the fact that
the geometric average of n geometric Brownian motions is itself a geometric
Brownian motion with volatility σI and risk-neutral drift r−qI , where volatility
and the “effective dividend yield” are

σ2
I = 1

n2

n∑
i�j=1

ρijσiσj� qI = 1
n

n∑
i=1

(
qi + 1

2
σ2
i

)
− 1

2
σ2
I �

Therefore, the problem of valuing options on the geometric average of n assets
can be reduced to the one of valuing options on the one-dimensional geometric
Brownian motion I. This allows us to produce accurate benchmark prices for
American options on geometric average by solving this one-dimensional option
pricing problem. Specifically, we use a one-dimensional trinomial tree with two
million time steps to produce benchmarks that are accurate to at least 10−6. In
the examples that follow, we assume that K = 100, all assets have initial values
Si(0) = 100, σi = 20%, qi = 0, and pairwise correlations ρij = 0�5 for i �= j.

It will be convenient to do the log transform to the dimensionless variables
Xi(t) = ln(Si(t)/K):

Xi(t) = xi +
(
r − qi − σ2

i /2
)
t + σiWi(t)� xi = ln(Si/K)�

The payoff function is then:

ψ(x1� x2� � � � � xn) = K
(
1 − e

1
n

∑n
i=1 xi

)+
�

We solve the nonlinear penalized PDE formulation of Section 3.2. The finite
element spatial discretization leads to the ODE system of the form (3.11). We
consider the penalty with p = 2 in our examples. To discretize spatially, we use
rectangular n-dimensional finite elements (tensor products of one-dimensional
finite elements) as discussed in Section 4.3. The ODE system is integrated with
the adaptive step size and variable order BDF-based package SUNDIALS dis-
cussed in Section 2.5.

The nonlinear ODE system (3.11) approximates the original continuous
valuation problem for the n-asset American put. It contains the following ap-
proximation parameters: the spatial step size hi for each of the variables xi



338 L. Feng et al.

(we select hi = h in our example since all assets have the same volatility), the
radius R = maxi Ri of the computational domain [−R1� R1] × · · · × [−Rn�Rn]
(we select Ri = R in our example since all assets have the same volatility), and
the penalization parameter ε in (3.12), (3.13). In the numerical examples we
used the penalty term (3.12)–(3.13) with p = 2. We select the approximation
domain G = [−0�25� 0�25] × · · · × [−0�25� 0�25] in the xi variables, which cor-
responds to the price interval [77�9� 128�4] for each underlying asset Si. We
integrate the nonlinear ODE system with the SUNDIALS solver discussed
in Section 2.5 and compute the approximation error between the computed
solution and the benchmark (obtained by the one-dimensional trinomial tree
with two million time steps) in the maximum norm over the approximation do-
main G. From theory we expect to observe maximum norm errors to be O(h2)
in the spatial discretization step size and O(ε) in the penalization parameter.
We also expect exponential error decay in the radius of the computational do-
main O(e−cR). Figure 4 presents our results for three-month American-style
put options on the geometric average of four assets. The first plot shows the
maximum norm error as a function of h. We clearly observe the quadrative
convergence rate. The second plot shows the error as a function of the compu-
tational domain radius R = xmax. The exponential error decay with increasing
xmax is evident. The third plot shows the error as a function of the penal-

Figure 4. Convergence studies for the American-style put option on the geometric average of four
assets.
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ization parameter ε. The linear convergence in ε is verified. The fourth plot
shows the time step history of the SUNDIALS solver in temporally integrating
the ODE system. We observe that the adaptive solver starts with a small initial
step size, and then rapidly increases the step size as the temporal integration
progresses. The reason for this is as follows. The option payoff function is only
C0 (it has a kink at the strike). For any time prior to maturity, the American
option value function is C1 (it is continuous and once continuously differen-
tiable across the optimal exercise boundary). The optimal exercise boundary
itself changes rapidly near maturity. In the penalized formulation, this results
in large gradients of the PDE solution near maturity. Thus, near maturity small
time steps are needed to insure desired accuracy. As temporal integration pro-
gresses, the optimal exercise boundary of the American option flattens out
and, correspondingly, the gradients in the solution of the nonlinear PDE de-
crease, allowing the solver to take progressively larger time steps to achieve
the same error tolerance. The SUNDIALS solver also varies the integration
order between the first and fifth order, based on the smoothness of the so-
lution. High-order time stepping with larger time steps generally works best
for smooth solutions, while low-order time stepping with small time steps is
needed in the regions where the solution is not smooth. The average integra-
tion order realized by the solver in this example is 2.92.

6 Summary

In this chapter we briefly surveyed a powerful computational method for the
valuation of options in multi-dimensional jump-diffusion models based on: (1)
converting the PIDE or PIDVI to a variational (weak) form; (2) discretizing
the weak formulation spatially by the Galerkin finite element method to ob-
tain a system of ODEs; and (3) integrating the resulting system of ODEs in
time. This finite element method-of-lines framework to solve PDEs and PI-
DEs is quite general theoretically and flexible and powerful computationally.
The method is applicable to general Markov processes with diffusion and jump
components with time- and state-dependent coefficients, as well as a large class
of derivative contracts, including European and American-style exercise, barri-
ers, averages, etc. The growing literature on financial engineering applications
of variational methods includes:

• Multi-asset American options: Marcozzi (2001), Sapariuc et al. (2004),
Achdou and Pironneau (2005);

• Foreign currency options with stochastic foreign and domestic interest
rates: Choi and Marcozzi (2001, 2003), Kovalov et al. (2007);

• American-style Asian options: Marcozzi (2003);
• Stochastic volatility models: Zvan et al. (1998b, 1999), Hilber et al.

(2005), Achdou and Tchou (2002);
• Jump-diffusion models: Zhang (1997), Feng and Linetsky (2006b);



340 L. Feng et al.

• European and American options in Lévy process models: Matache et
al. (2004, 2005a, 2005b, 2006);

• Convertible bonds: Kovalov and Linetsky (2007);
• Inverse problems arising in option calibration: Achdou et al. (2004),

Achdou (2005);
• Bond options: Allegretto et al. (2003).

References

Achdou, Y. (2005). An inverse problem for a parabolic variational inequality arising in volatility cali-
bration with American options. SIAM Journal on Control and Optimization 43, 1583–1615.

Achdou, Y., Pironneau, O. (2005). Computational Methods for Option Pricing. SIAM Frontiers in Applied
Mathematics. SIAM, Philadelphia.

Achdou, Y., Tchou, N. (2002). Variational analysis for the Black and Scholes equation with stochastic
volatility. M2AN Mathematical Modelling and Numerical Analysis 36, 373–395.

Achdou, Y., Indragoby, G., Pironneau, O. (2004). Volatility calibration with American options. Methods
and Applications of Analysis 11 (3), 1–24.

Adjerid, S., Babuška, I., Flaherty, J.E. (1999a). A posteriori error estimation with finite element method
of lines solution of parabolic systems. Mathematical Models and Methods Applied in Science 9, 261–
286.

Adjerid, S., Belguendouz, B., Flaherty, J.E. (1999b). A posteriori finite element error estimation for
diffusion problems. SIAM Journal on Scientific Computing 21, 728–746.

Allegretto, W., Lin, Y.P., Yang, H.T. (2003). Numerical pricing of American put options on zero-coupon
bonds. Applied Numerical Mathematics 46 (2), 113–134.

Ascher, U.M., Ruuth, S.J., Wetton, B.T.R. (1995). Implicit–explicit methods for time-dependent partial
differential equations. SIAM Journal on Numerical Analysis 32, 797–823.

Ascher, U.M., Ruuth, S.J., Spiteri, R.J. (1997). Implicit–explicit Runge–Kutta methods for time-
dependent partial differential equations. Applied Numerical Mathematics 25, 151–167.

Babuška, I., Suri, M. (1994). The p and hp versions of the finite element method, basic principles and
properties. SIAM Review 36 (4), 578–632.

Bensoussan, A. (1984). On the theory of option pricing. Acta Applicandae Mathematicae 2 (2), 139–158.
Bensoussan, A., Lions, J.L. (1982). Applications of Variational Inequalities in Stochastic Control. Elsevier,

Amsterdam.
Bensoussan, A., Lions, J.L. (1984). Impulse Control and Quasi-Variational Inequalities. Gauthier–Villars,

Paris.
Bergam, A., Bernardi, C., Mghazli, Z. (2005). A posteriori analysis of the finite element discretization

of a non-linear parabolic equation. Mathematics of Computation 74, 1097–1116.
Boman, M., (2001). A posteriori error analysis in the maximum norm for a penalty finite element

method for the time-dependent obstacle problem. Preprint. Chalmers Finite Element Center, Gote-
borg, Sweden.

Choi, S., Marcozzi, M.D. (2001). A numerical approach to American currency option valuation. Journal
of Derivatives 9 (2), 19–29.

Choi, S., Marcozzi, M.D. (2003). The valuation of foreign currency options under stochastic interest
rates. Computers and Mathematics with Applications 45, 741–749.

Ciarlet, P.G. (1978). The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (re-
vised ed., SIAM, 2002).

Cottle, R., Pang, J.-S., Stone, R.E. (1992). The Linear Complementary Problem. Academic Press.
Cryer, C.W. (1971). The solution of a quadratic programming problem using systematic overrelaxation.

SIAM Journal on Control 9, 385–392.
Deuflhard, P. (1985). Recent progress in extrapolation methods for ordinary differential equations.

SIAM Review 27 (4), 505–535.



Ch. 7. Variational Methods in Derivatives Pricing 341

Deuflhard, P., Bornemann, F. (2002). Scientific Computing with Ordinary Differential Equations.
Springer, Berlin.

d’Halluin, Y., Forsyth, P.A., Labahn, G. (2004). A penalty method for American options with jump-
diffusion processes. Numerische Mathematik 97 (2), 321–352.

d’Halluin, Y., Forsyth, P.A., Vetzal, K.R. (2005). Robust numerical methods for contingent claims under
jump-diffusion processes. IMA Journal of Numerical Analysis 25, 87–112.

Duffie, D., Pan, J., Singleton, K. (2000). Transform analysis and asset pricing for affine jump-diffusions.
Econometrica 68 (6), 1343–1376.

Eriksson, E., Johnson, C. (1991). Adaptive finite element methods for parabolic problems. I. A linear
model problem. SIAM Journal on Numerical Analysis 28, 43–77.

Eriksson, E., Johnson, C. (1995). Adaptive finite element methods for parabolic problems. II. Optimal
error estimates in L∞L2 and L∞L∞. SIAM Journal on Numerical Analysis 32, 706–740.

Feng, L., Linetsky, V., (2006a). Pricing discretely monitored barrier options and defaultable bonds in
Lévy process models: A Hilbert transform approach. Mathematical Finance, in press.

Feng, L., Linetsky, V., (2006b). Pricing options in jump-diffusion models: An extrapolation approach.
Operations Research, in press.

Friedman, A. (1976). Stochastic Differential Equations and Applications, vol. II. Academic Press, New
York.

Forsyth, P.A., Vetzal, K.R. (2002). Quadratic convergence for valuing American options using a penalty
method. SIAM Journal on Scientific Computing 23 (6), 2095–2122.

Glowinski, R. (1984). Numerical Methods for Nonlinear Variational Problems. Springer, Berlin.
Glowinski, R., Lions, J.L., Tremolieris (1981). Numerical Analysis of Variational Inequalities. North-

Holland, Amsterdam.
Hairer, E., Wanner, G. (1996). Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic

Problems, second ed. Springer, Berlin.
Hilber, H., Matache, A.-M., Schwab, C. (2005). Sparse wavelet methods for option pricing under sto-

chastic volatility. Journal of Computational Finance 8 (4).
Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker, D.E., Woodward, C.S.

(2005). SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM Transac-
tions on Mathematical Software 31 (3), 363–396. Also available as LLNL technical report UCRL-JP-
200037.

Hindmarsh, A.C., Serban, R., Collier, A. (2006). User documentation for IDA, a differential-algebraic
equation solver for sequential and parallel computers. Technical Report UCRL-MA-136910, De-
cember, Lawrence Livermore National Laboratory.

Hull, J. (2006). Options, Futures and Other Derivatives, sixth ed. Prentice Hall, NJ.
Hundsdorfer, W., Verwer, J.G. (2003). Numerical Solution of Time-dependent Advection-Diffusion–

Reaction Equations. Springer, Berlin.
Jacod, J., Shiryaev, A.N. (2003). Limit Theorems for Stochastic Processes. Springer, Berlin.
Jaillet, P., Lamberton, D., Lapeyre, B. (1990). Variational inequalities and the pricing of American

options. Acta Applicandae Mathematicae 21, 263–289.
Johnson, C. (1987). Numerical Solution of Partial Differential Equations by the Finite Element Method.

Cambridge Univ. Press, Cambridge.
Kangro, R., Nicolaides, R. (2000). Far field boundary conditions for Black–Scholes equations. SIAM

Journal on Numerical Analysis 38 (4), 1357–1368.
Karatzas, I. (1988). On the pricing of American options. Applied Mathematics and Optimization 17,

37–60.
Kou, S.G. (2002). A jump-diffusion model for option pricing. Management Science 48 (8), 1086–1101.
Kou, S.G., Wang, H. (2004). Option pricing under a double exponential jump-diffusion model. Man-

agement Science 50, 1178–1192.
Kovalov, P., Linetsky, V. (2007). Valuing convertible bonds with stock price, volatility, interest rate, and

default risk. Working paper. Northwestern University.
Kovalov, P., Linetsky, V., Marcozzi, M. (2007). Pricing multi-asset American options: A finite element

method-of-lines with smooth penalty. Journal of Scientific Computing, in press.



342 L. Feng et al.

Lamberton, D., Lapeyre, B. (1996). Introduction to Stochastic Calculus Applied to Finance. Chapman &
Hall.

Larsson, S., Thomee, V. (2003). Partial Differential Equations with Numerical Methods. Springer, Berlin.
Marcozzi, M. (2001). On the approximation of optimal stopping problems with application to financial

mathematics. SIAM Journal on Scientific Computing 22 (5), 1865–1884.
Marcozzi, M.D. (2003). On the valuation of Asian options by variational methods. SIAM Journal on

Scientific Computing 24 (4), 1124–1140.
Matache, A.-M., von Petersdorff, T., Schwab, C. (2004). Fast deterministic pricing of options on Lévy

driven assets. M2NA Mathematical Modelling and Numerical Analysis 38 (1), 37–72.
Matache, A.-M., Nitsche, P.-A., Schwab, C. (2005a). Wavelet Galerkin pricing of American options on

Lévy driven assets. Quantitative Finance 5 (4), 403–424.
Matache, A.-M., Schwab, C., Wihler, T. (2005b). Fast numerical solution of parabolic integro-

differential equations with applications in finance. SIAM Journal on Scientific Computing 27 (2),
369–393.

Matache, A.-M., Schwab, C., Wihler, T. (2006). Linear complexity solution of parabolic integro-
differential equations. Numerische Mathematik, in press.

Merton, R. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial
Economics 3, 125–144.

Pooley, D.M., Forsyth, P.A., Vetzal, K. (2003). Remedies for non-smooth payoffs in option pricing.
Journal of Computational Finance 6 (4), 25–40.

Sapariuc, I., Marcozzi, M.D., Flaherty, J.E. (2004). A numerical analysis of variational valuation tech-
niques for derivative securities. Applied Mathematics and Computation 159 (1), 171–198.

Solin, P., Segeth, K., Dolezel, I. (2003). Higher Order Finite Element Methods. Chapman & Hall/CRC.
Quarteroni, A., Valli, A. (1997). Numerical Approximation of Partial Differential Equations. Springer,

Berlin.
Tavella, D., Randall, C. (2000). Pricing Financial Instruments: The Finite Difference Method. Wiley.
Thomee, V. (1997). Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin.
Thomee, V. (2001). From finite differences to finite elements. A short history of numerical analysis.

Journal of Computational and Applied Mathematics 128, 1–54.
von Petersdorff, T., Schwab, C. (2004). Numerical solution of parabolic equations in high dimensions.

M2NA Mathematical Modelling and Numerical Analysis 38, 93–128.
Wilmott, P., Dewynne, J., Howison, S. (1993). Option Pricing: Mathematical Models and Computations.

Oxford Financial Press, Oxford, UK.
Zhang, X.-L. (1997). Numerical analysis of American option pricing in a jump-diffusion model. Math-

ematics of Operations Research 22 (3), 668–690.
Zvan, R., Forsyth, P.A., Vetzal, K.R. (1998a). Swing low, swing high. RISK 11, 71–75.
Zvan, R., Forsyth, P.A., Vetzal, K.R. (1998b). Penalty methods for American options with stochastic

volatility. Journal of Computational and Applied Mathematics 91 (2), 199–218.
Zvan, R., Forsyth, P.A., Vetzal, K.R. (1999). A finite element approach to the pricing of discrete look-

backs with stochastic volatility. Applied Mathematical Finance 6, 87–106.



J.R. Birge and V. Linetsky (Eds.), Handbooks in OR & MS, Vol. 15
Copyright © 2008 Elsevier B.V. All rights reserved
DOI: 10.1016/S0927-0507(07)15008-8

Chapter 8

Discrete Barrier and Lookback Options

S.G. Kou
Department of Industrial Engineering and Operations Research, Columbia University
E-mail: sk75@columbia.edu

Abstract

Discrete barrier and lookback options are among the most popular path-dependent
options in markets. However, due to the discrete monitoring policy almost no ana-
lytical solutions are available for them. We shall focus on the following methods for
discrete barrier and lookback option prices: (1) Broadie–Yamamoto method based on
fast Gaussian transforms. (2) Feng–Linetsky method based on Hilbert transforms. (3)
A continuity correction approximation. (4) Howison–Steinberg approximation based
on the perturbation method. (5) A Laplace inversion method based on Spitzer’s iden-
tity. This survey also contains a new (more direct) derivation of a constant related to
the continuity correction approximation.

1 Introduction

Discrete path-dependent options are the options whose payoffs are deter-
mined by underlying prices at a finite set of times, whereas the payoff of a
continuous path-dependent option depends on the underlying price through-
out the life of the option. Due to regulatory and practical issues, most of
path-dependent options traded in markets are discrete path-dependent op-
tions.

Among the most popular discrete path-dependent options are discrete
Asian options or average options, discrete American options or Bermuda op-
tions, discrete lookback options and discrete barrier options. The payoff of a
discrete Asian option depends on a discrete average of the asset price. For
example, a standard discrete (arithmetic European) Asian call option has a
payoff ( 1

n

∑n
i=1 S(ti) − K)+ at maturity T = tn, where t1, t2� � � � � tn are mon-

itoring points, K is the strike price of the call option, and S(t) is the asset
price at time t; see Zhang (1998), Hull (2005). A discrete American option
is an American option with exercise dates being restricted to a discrete set of
monitoring points; see Glasserman (2004).
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In this survey we shall focus on discrete barrier and lookback options, be-
cause very often they can be studied in similar ways, as their payoffs all depend
on the extrema of the underlying stochastic processes. The study of discrete
Asian options is of separate interest, and requires totally different techniques.
Discrete American options are closely related to numerical pricing of Ameri-
can options; there is a separate survey in this handbook on them. Due to the
similarity between discrete barrier options and discrete lookback options, we
shall focus on discrete barrier options, although most of the techniques dis-
cussed here can be easily adapted to study discrete lookback options.

1.1 Barrier and lookback options

A standard (also called floating) lookback call (put) gives the option holder
the right to buy (sell) an asset at its lowest (highest) price during the life of
the option. In other words, the payoffs of the floating lookback call and put
options are S(T)−m0�T and M0�T − S(T), respectively, where m0�T and M0�T
are minimum and maximum of the asset price between 0 and T . In a discrete
time setting the minimum (maximum) of the asset price will be determined at
discrete monitoring instants. In the same way, the payoffs of the fixed strike put
and call are (K−m0�T )

+ and (M0�T −K)+. Other types of lookback options in-
clude percentage lookback options in which the extreme values are multiplied
by a constant, and partial lookback options in which the monitoring interval
for the extremum is a subinterval of [0� T ]. We shall refer the interested reader
to Andreasen (1998) for a detailed description.

A barrier option is a financial derivative contract that is activated (knocked
in) or extinguished (knocked out) when the price of the underlying asset (which
could be a stock, an index, an exchange rate, an interest rate, etc.) crosses a cer-
tain level (called a barrier). For example, an up-and-out call option gives the
option holder the payoff of a European call option if the price of the underly-
ing asset does not reach a higher barrier level before the expiration date. More
complicated barrier options may have two barriers (double barrier options),
and may have the final payoff determined by one asset and the barrier level de-
termined by another asset (two-dimensional barrier options); see Zhang (1998)
and Hull (2005).

Taken together, discrete lookback and barrier options are among the most
popular path-dependent options traded in exchanges worldwide and also in
over-the-counter markets. Lookback and barrier options are also useful out-
side the context of literal options. For example, Longstaff (1995) approximates
the values of marketability of a security over a fixed horizon with a type of
continuous-time lookback option and gives a closed-form expression for the
value; the discrete version of lookback options will be relevant in his setting.
Merton (1974), Black and Cox (1976), and more recently Leland and Toft
(1996), Rich (1996), and Chen and Kou (2005) among others, have used bar-
rier models for study credit risk and pricing contingent claims with endogenous
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default. For tractability, this line of work typically assumes continuous moni-
toring of a reorganization boundary. But to the extent that the default can be
modeled as a barrier crossing, it is arguably one that can be triggered only at
the specific dates – e.g. coupon payment dates.

An important issue of pricing barrier options is whether the barrier cross-
ing is monitored in continuous time or in discrete time. Most models assume
the continuous time version mainly because this leads to analytical solutions;
see, for example, Gatto et al. (1979), Goldman et al. (1979), and Conze and
Viswanathan (1991), Heynen and Kat (1995) for continuous lookback op-
tions; and see, for example, Merton (1973), Heynen and Kat (1994a, 1994b),
Rubinstein and Reiner (1991), Chance (1994), and Kunitomo and Ikeda (1992)
for various formulae for continuously monitored barrier options under the
classical Brownian motion framework. Recently, Boyle and Tian (1999) and
Davydov and Linetsky (2001) have priced continuously monitored barrier and
lookback options under the CEV model using lattice and Laplace transform
methods, respectively; see Kou and Wang (2003, 2004) for continuously moni-
tored barrier options under a jump-diffusion framework.

However in practice most, if not all, barrier options traded in markets are
discretely monitored. In other words, they specify fixed times for monitor-
ing of the barrier (typically daily closings). Besides practical implementation
issues, there are some legal and financial reasons why discretely monitored
barrier options are preferred to continuously monitored barrier options. For
example, some discussions in trader’s literature (“Derivatives Week”, May 29th,
1995) voice concern that, when the monitoring is continuous, extraneous bar-
rier breach may occur in less liquid markets while the major western markets
are closed, and may lead to certain arbitrage opportunities.

Although discretely monitored barrier and lookback options are popular
and important, pricing them is not as easy as that of their continuous counter-
parts for several reasons:

(1) There are essentially no closed solutions, except using m-dimensional
normal distribution functions (m is the number of monitoring points),
which cannot be computed easily if, for example, m > 5; see Section 3.

(2) Direct Monte Carlo simulation or standard binomial trees may be diffi-
cult, and can take hours to produce accurate results; see Broadie et al.
(1999).

(3) Although the central limit theorem asserts that as m → ∞ the differ-
ence between the discretely and continuously monitored barrier options
should be small, it is well known that the numerical differences can be
surprisingly large, even for large m; see, e.g., the table in Section 4.

Because of these difficulties, many numerical methods have been proposed
for pricing discrete barrier and lookback options.
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1.2 Overview of different methods

First of all, by using the change of numeraire argument the pricing of bar-
rier and lookback options can be reduced to studying either the marginal
distribution of the first passage time, or the joint probability of the first pas-
sage time and the terminal value of a discrete random walk; see Section 2.
Although there are many representations available for these two classical prob-
lems, there is little literature on how to compute the joint probability explicitly
before the recent interest in discrete barrier and lookback options. Many nu-
merical methods have been developed in the last decade for discrete barrier
and lookback options. Popular ones are:

(1) Methods based on convolution, e.g. the fast Gaussian transform method
developed in Broadie and Yamamoto (2003) and the Hilbert transform method
in Feng and Linetsky (2005). This is basically due to the fact that the joint
probability of the first passage time and the terminal value of a discrete ran-
dom walk can be written as m-dimensional probability distribution (hence a
m-dimensional integral or convolution.) We will review these results in Sec-
tion 3.

(2) Methods based on the asymptotic expansion of discrete barrier options
in terms of continuous barrier options, assuming m → ∞. Of course, as we
mentioned, the straightforward result from the central limit theorem, which
has error o(1), does not give a good approximation. An approximation based
on the results from sequential analysis (see, e.g., Siegmund, 1985 with the error
order o(1/

√
m) is given in Broadie et al. (1999), whose proof is simplified in

Kou (2003) and Hörfelt (2003). We will review these results in Section 4.
(3) Methods based on the perturbation analysis of differential equations,

leading to a higher order expansion with the error order o(1/m). This is inves-
tigated in Howison and Steinberg (2005) and Howison (2005). We will review
these results in Section 5.

(4) Methods based on transforms. Petrella and Kou (2004) use Laplace
transforms to numerically invert the Spitzer’s identity associated with the first
passage times. We will review these transform-based methods in Section 6.

Besides these specialized methods, there are also many “general methods,”
such as lattice methods, Monte Carlo simulation, etc. We call them general
methods because in principle these methods can be applied to broader con-
texts, e.g. American options and other path-dependent options, not just for
discrete barrier and lookback options. Broadly speaking, general methods will
be less efficient than the methods which take advantage of the special struc-
tures of discrete barrier and lookback options. However, general methods are
attractive if one wants to develop a unified numerical framework to price dif-
ferent types of options, not just discrete barrier and lookback options. Because
of their generality, many methods could potentially belong to this category,
and it is very difficult to give a comprehensive review for them. Below is only a
short list of some of general methods.
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(a) Lattice methods are among the most popular methods in option pric-
ing. It is well known that the straightforward binomial tree is not efficient
in pricing discrete and lookback barrier options, due to the inefficiencies
in computing discrete extreme values of the sample paths involved in the
payoffs. Broadie et al. (1999) proposed an enhanced trinomial tree method
which explicitly uses the continuity correction in Broadie et al. (1997) and
a shift node. A Dirichlet lattice method based on the conditional distribu-
tion via Brownian bridge is given in Kuan and Webber (2003). Duan et al.
(2003) proposed a method based on Markov chain, in combination of lat-
tice, simulation, and the quadrature method. Other lattice methods include
adjusting the position of nodes (Ritchken, 1995; Cheuk and Vorst, 1997;
Tian, 1999) and refining branching near the barrier (Figlewski and Gao, 1999;
Ahn et al., 1999). See also Babbs (1992), Boyle and Lau (1994), Hull and White
(1993), Kat (1995).

(b) Another popular general method is Monte Carlo simulation. Because
the barrier options may involve events (e.g. barrier crossing) with very small
probabilities, the straightforward simulation may have large variances. Vari-
ance reduction techniques, notably importance sampling and conditional sam-
pling methods using Brownian bridge, can be used to achieve significant vari-
ance reduction. Instead of giving a long list of related papers, we refer the
reader to an excellent book by Glasserman (2004).

(c) Since the price of a discrete barrier option can be formulated as a so-
lution of partial differential equation, one can use various finite difference
methods; see Boyle and Tian (1998) and Zvan et al. (2000).

(d) Because the prices of a discrete barrier price can be written in terms
of m-dimensional integrals, one can also use numerical integration meth-
ods. See Ait-Sahalia and Lai (1997, 1998), Sullivan (2000), Tse et al. (2001),
Andricopoulos et al. (2003), and Fusai and Recchioni (2003).

1.3 Outline of the survey

Due to the page limit, this survey focuses on methods that takes into account
of special structures of the discrete barrier and lookback options, resulting in
more efficient algorithms but with narrower scopes. In particular, we shall sur-
vey the following methods

(1) Broadie–Yamamoto method based on the fast Gaussian transform; see
Section 3.

(2) Feng–Linetsky method based on Hilbert transform; see Section 3.
(3) A continuity correction approximation; see Section 4.
(4) Howison–Steinberg approximation based on the perturbation method;

see Section 5.
(5) A Laplace inversion method based on Spitzer’s identity; see Section 6.
This survey also contains a new (more direct) derivation of the constant

related to the continuity correction; see Appendix B.
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Because this is a survey article we shall focus on giving intuition and compar-
ing different methods, rather than giving detailed proofs which can be found
in individual papers. For example, when we discuss the continuity correction
we use a picture to illustrate the idea, rather than giving a proof. When we
present the Howison–Steinberg approximation we spend considerable time on
the basic background of the perturbation method (so that people with only
probabilistic background can understand the intuition behind the idea), rather
than giving the mathematical details, which involve both the Spitzer function
for Wiener–Hopf equations and can be found in the original paper by Howison
and Steinberg (2005).

2 A representation of barrier options via the change of numeraire argument

We assume the price of the underlying asset S(t), t � 0, satisfies S(t) =
S(0) exp{μt + σB(t)}, where under the risk-neutral probability P∗, the drift is
μ = r − σ2/2, r is the risk-free interest rate and B(t) is a standard Brown-
ian motion under P∗. In the continuously monitored case, the standard finance
theory implies that the price of a barrier option will be the expectation, taken
with respect to the risk-neutral measure P∗, of the discounted (with the dis-
count factor being e−rT with T the expiration date of the option) payoff of the
option. For example, the price of a continuous up-and-out call option is given
by

V (H) = E∗(e−rT (
S(T)−K

)+
I
(
τ(H� S) > T

))
�

where K � 0 is the strike price, H > S(0) is the barrier and, for any process
Y(t), the notation τ(x�Y) means that τ(x�Y) := inf{t � 0: Y(t) � x}. The
other seven types of the barrier options can be priced similarly. In the Brown-
ian motion framework, all eight types of the barrier options can be priced in
closed forms; see Merton (1973).

In the discretely monitoring case, under the risk neutral measure P∗, at the
nth monitoring point, n�t, with �t = T/m, the asset price is given by

Sn = S(0) exp

{
μn�t + σ

√
�t

n∑
i=1

Zi

}
= S(0) exp

(
Wnσ

√
�t

)
�

n = 1� 2� � � � �m�

where the random walk Wn is defined by

Wn :=
n∑
i=1

(
Zi + μ

σ

√
�t

)
�

the drift is given by μ = r − σ2/2, and the Zi’s are independent standard
normal random variables. By analogy, the price of the discrete up-and-out-call
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option is given by

Vm(H) = E∗(e−rT (Sm −K)+I
(
τ′(H� S) > m

))
= E∗{e−rT (Sm −K)+I

{
τ′
(
a
/(
σ
√
T

)
�W

)
> m

}}
�

where a := log(H/S(0)) > 0, τ′(H� S) = inf{n � 1: Sn � H}, τ′(x�W ) =
inf{n � 1: Wn � x

√
m }.

For any probability measure P , let P̂ be defined by

dP̂
dP

= exp

{
m∑
i=1

aiZi − 1
2

m∑
i=1

a2
i

}
�

where the ai, i = 1� � � � � n, are arbitrary constants, and the Zi’s are standard
normal random variables under the probability measure P . Then a discrete
Girsanov theorem (Karatzas and Shreve, 1991, p. 190) implies that under the
probability measure P̂, for every 1 � i � m, Ẑi := Zi−ai is a standard normal
random variable.

By using the discrete Girsanov theorem, we can represent the price of a
discrete barrier options as a difference of two probabilities under different
measures. This is called the change of numeraire argument; for a survey, see
Schroder (1999). It is applied to the case of discrete barrier options by Kou
(2003) and Hörfelt (2003) independently. However, the methods in Kou (2003)
and Hörfelt (2003) lead to slightly different barrier correction formulae. To il-
lustrate the change of numeraire argument for the discrete barrier options. Let
us consider the case of the discrete up-and-out call option, as the other seven
options can be treated similarly; see e.g. Haug (1999).

First note that

E∗(e−rT (Sm −K)+I
(
τ′(H� S) > m

))
= E∗(e−rT (Sm −K)I

(
Sm � K� τ′(H� S) > m

))
= E∗(e−rT SmI(Sm � K� τ′(H� S) > m

))
−Ke−rT P∗(Sm � K� τ′(H� S) > m

)
�

Using the discrete Girsanov theorem with ai = σ
√
�t, we have that the first

term in the above equation is given by

E∗
[
e−rT S(0) exp

{
μm�t + σ

√
�t

m∑
i=1

Zi

}
I
(
Sm � K� τ′(H� S) > m

)]

= S(0)E∗
[

exp

{
−1

2
σ2T + σ

√
�t

m∑
i=1

Zi

}
I
(
Sm � K� τ′(H� S) > m

)]
= S(0)Ê

(
I
(
Sm � K� τ′(H� S) > m

))
= S(0)P̂

(
Sm � K� τ′(H� S) > m

)
�
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Under P̂ , log Sm has a mean μm�t + σ
√
�t ·mσ√

�t = (μ+ σ2)T instead of
μT under the measure P∗. Therefore, the price of a discrete up-and-out-call
option is given by

Vm(H) = S(0)P̂
(
Wm � log(K/S(0))

σ
√
�t

� τ′
(
a
/(
σ
√
T

)
�W

)
> m

)
−Ke−rT P∗

(
Wm � log(K/S(0))

σ
√
�t

� τ′
(
a
/(
σ
√
T

)
�W

)
> m

)
�

where

under P̂� Wm =
m∑
i=1

(
Ẑi +

{(
μ+ σ2)/σ}√T

m

)

=
m∑
i=1

(
Ẑi +

{(
r + 1

2
σ2

)/
σ

}√
T

m

)
and

under P∗� Wm =
m∑
i=1

(
Zi + (μ/σ)

√
T

m

)

=
m∑
i=1

(
Zi +

{(
r − 1

2
σ2

)/
σ

}√
T

m

)
with Ẑi and Zi being standard normal random variables under P̂ and P∗, re-
spectively.

Therefore, the problem of pricing discrete barrier options is reduced to
studying the joint probability of the first passage time (τ′) and the terminal
values (Wm) of a discrete random walk. Note that we have a first passage prob-
lem for the random walk Wn with a small drift (μσ

√
�t → 0, as m → ∞) to

cross a high boundary (a
√
m/(σ

√
T) → ∞, as m → ∞).

3 Convolution, Broadie–Yamamoto method via the fast Gaussian
transform, and Feng–Linetsky method via Hilbert transform

As we have seen in the last section, under the geometric Brownian motion
model the prices of discrete barrier options can be represented as probabilities
of random walk with increments having normal distributions. Thus, in principle
analytical solutions of discrete barrier options can be derived using multivari-
ate normal distributions; see, e.g., Heynan and Kat (1995) and Reiner (2000).

To give an illustration of the idea, consider a discrete up-and-in call option
with two monitoring points, t1 = T/3, t2 = 2T/3, and H < K. Note that the
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maturity T is not a monitoring point. We have

V3(H) = S(0)N2
(
â1�H�−� âK;√t1/T )

−Ke−rTN2
(
a∗1�H�−� a

∗
K;√t1/T )

+ S(0)N3
(
â1�H�+� â2�H�−� âK;−√

t1/t2�−
√
t1/T �

√
t2/T

)
(1)

−Ke−rTN3
(
a∗1�H�+� a

∗
2�H�−� a

∗
K;−√

t1/t2�−
√
t1/T �

√
t2/T

)
�

where the constants are

â1�H�± ≡ ± log(H/S(0))− {(r + 1
2σ

2)}t1
σ
√
t1

�

a∗1�H�± ≡ ± log(H/S(0))− {(r − 1
2σ

2)}t1
σ
√
t1

â2�H�± ≡ ± log(H/S(0))− {(r + 1
2σ

2)}t2
σ
√
t2

�

a∗2�H�± ≡ ± log(H/S(0))− {(r − 1
2σ

2)}t2
σ
√
t2

�

âK ≡ − log(K/S(0))− {(r + 1
2σ

2)}T
σ
√
T

�

a∗K ≡ − log(K/S(0))− {(r − 1
2σ

2)}T
σ
√
T

�

The proof of (1) is given ir Appendix A. Here N2 and N3 denote the standard
bivariate and trivariate normal distributions:

N2(z1� z2;*) = P(Z1 � z1� Z2 � z2)�

where Z1 and Z2 are standard bivariate normal random variables with corre-
lation *, and

N3(z1� z2� z3;*12� *13� *23) = P(Z1 � z1� Z2 � z2� Z3 � z3)�

with correlations *12� *13� *23. The pricing formula in (1) can be easily gen-
eralized to the case of m (not necessarily equally spaced) monitoring points,
so that the price of a discrete barrier option with m monitoring points can be
written involving the sum of multivariate normal distribution functions, with
the highest dimension in the multivariate normal distributions being m.

However, m-dimensional normal distribution functions can hardly be com-
puted easily if, for example, m > 5. Reiner (2000) proposed to use the fast
Fourier transform to compute the convolution in the multivariate normal dis-
tribution. Recently there are two powerful ways to evaluate the convolution.
One is the fast Gaussian transform in Broadie and Yamamoto (2003) in which
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the convolution is computed very fast under the Gaussian assumption. The
second method is the Hilbert transform method in Feng and Linetsky (2005),
in which they recognize an interesting linking between Fourier transform of
indicator functions and Hilbert transform. Feng and Linetsky method is more
general, as it works as long as the asset returns follow a Lévy process. Below
we give a brief summary of the two methods.

3.1 Broadie–Yamamoto method via the fast Gaussian transform

One of the key idea of Broadie–Yamamoto method is to recognize that one
can compute integrals in convolution very fast if the integrals only involves
normal density. For example, consider the discrete sum of Gaussian densities.

A(xm) =
N∑
n=1

wn exp
{
−(xm − yn)

2

δ

}
� i = 1� � � � �M�

The direct computation of the above sums will need O(NM) operations. How-
ever, by using the Hermite functions to approximate the Gaussian densities,
one can perform the above sum in O(N) + O(1) + O(M) = O(max(N�M))
operations.

More precisely, the Hermite expansion yields

exp
{
−(xm − yn)

2

δ

}
=

∞∑
i=1

∞∑
j=1

1
i!j!

(
yn − y0√

δ

)j(xm − x0√
δ

)i

×Hi+j
(
x0 − y0√

δ

)
�

where Hi+j(·) is the Hermite function. The expansion converges quite fast,
typically eight terms may be enough. In other words, we have an approximation

exp
{
−(xm − yn)

2

δ

}
≈

αmax∑
i=1

αmax∑
j=1

1
i!j!

(
yn − y0√

δ

)j(xm − x0√
δ

)i

×Hi+j
(
x0 − y0√

δ

)
�

where αmax is a small number, say no more than 8. Using this approximation,
we have the Gaussian sum is given by

A(xm) ≈
N∑
n=1

wn

αmax∑
i=1

αmax∑
j=1

1
i!j!

(
yn − y0√

δ

)j(xm − x0√
δ

)i

Hi+j
(
x0 − y0√

δ

)

=
αmax∑
i=1

1
i!

[
αmax∑
j=1

1
j!

{
N∑
n=1

wn

(
yn − y0√

δ

)j
}
Hi+j

(
x0 − y0√

δ

)]
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×
(
xm − x0√

δ

)i

�

Now the algorithm becomes
1. Compute Bj = ∑N

n=1 wn(
yn−y0√

δ
)j for j = 1� � � � � αmax.

2. Compute Ci = ∑αmax
j=1

1
j!BjHi+j(x0−y0√

δ
) for i = 1� � � � � αmax.

3. Approximate A(xm) as
∑αmax

i=1
1
i!Ci(

xm−x0√
δ
)i for m = 1� � � � �M .

When αmax is fixed, the total number of operations is therefore O(N) +
O(1) + O(M) = O(max(N�M)). Broadie and Yamamoto (2003) show that
the above fast Gaussian transform is very fast. In fact, it is perhaps the fastest
algorithm we can get so far under the Gaussian assumption. Of course, the
algorithm relies on the special structure of the Gaussian distribution. For other
distributions, similar algorithms might be available if some fast and accurate
expansions of the density functions are available.

3.2 Feng–Linetsky method via Hilbert transform

Feng and Linetsky (2005) proposed a novel method to compute the convo-
lution related to discrete barrier options via Hilbert transform. The key idea
is that multiplying a function with the indicator function in the state space
corresponds to Hilbert transform in the Fourier space. The method computes
a sequence of Hilbert transforms at the discrete monitoring points, and then
conducts one final Fourier inversion to get the option price. Feng–Linetsky
method is quite general, as it works in principle for any Lévy process and for
both single and double barrier options. The method also works very fast, as the
number of operations is O(MN log2 N), where M is the number of monitoring
points and N is the number of sample points needed to compute the Hilbert
transform.

To get an intuition of the idea, we shall illustrate a basic version of the
method in terms of computing the probability p(x) for a standard Brownian
motion B(t)

p(x) = P
(
min{B��B2�� � � � � BM�} > 0 | B0 = x

)
= E

{
M∏
i=1

I[Bi� > 0] ∣∣ B0 = x

}
�

We can compute p(x) by the backward induction

vM(x) = I(x > 0)�

vM−1(x) = I(x > 0) · E
{
I(B� > 0) | B0 = x

}
= I(x > 0) · E

{
vM(B�) | B0 = x

}
�
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vM−2(x) = I(x > 0) · E
{
I(B� > 0)I(B2� > 0) | B0 = x

}
= I(x > 0) · E

{
vM−1(B�) | B0 = x

}
�

· · ·
p(x) = E

{
v1(B�) | B0 = x

}
�

To take a Fourier transform we introduce a rescaling factor eαx,

v
j
α(x) = eαxvj(x)� α < 0�

because the indicator function I(x > 0) is not a L1 function. This is equivalent
to perform a Laplace transform. The backward induction becomes

vMα (x) = eαxI(x > 0)�

vM−1
α (x) = eαx · I(x > 0) · E

{
I(B� > 0) | B0 = x

}
= I(x > 0) · E

{
e−α(B�−x)eαB�I(B� > 0) | B0 = x

}
= I(x > 0) · E

{
e−α(B�−x)vMα (B�) | B0 = x

}
= e�α

2/2 · I(x > 0) · E
{
e−�α2/2e−α(B�−x)vMα (B�) | B0 = x

}
= e�α

2/2 · I(x > 0) · E−α
{
vMα (B�) | B0 = x

}
�

where E−α means Brownian motion with drift −α and the last equality follows
from Girsanov theorem. Similarly,

vM−2
α (x) = eαx · I(x > 0) · E

{
I(B� > 0)I(B2� > 0) | B0 = x

}
= I(x > 0) · E

{
e−α(B�−x)I(B� > 0)

· E
{
e−α(B2�−B�)vM(B2�) | B�

} | B0 = x
}

= I(x > 0) · E
{
e−α(B�−x)vM−1(B�) | B0 = x

}
= e�α

2/2I(x > 0) · E
{
e−�α2/2e−α(B�−x)vM−1(B�) | B0 = x

}
= e�α

2/2I(x > 0) · E−α
{
vM−1
α (B�) | B0 = x

}
�

In general, we have a backward induction

vMα (x) = eαxI(x > 0)�

v
j−1
α (x) = e�α

2/2I(x > 0) · E−α
{
vj(B�) | B0 = x

}
� j = M� � � � � 2�

p(x) = e−αxe�α2/2 · E−α
{
v1(B�) | B0 = x

}
�

Denote v̂
j
α(x) to be the Fourier transform of v jα(x), which is possible as

eαxI(x > 0) is a L1 function. Now the Fourier transform in the backward
induction will involve Fourier transform of product of the indicator function
and another function. The key observation in Feng and Linetsky (2005) is that
Fourier transform of the product of the indicator function and a function can
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be written in terms of Hilbert transform. More precisely,

F(I(0�∞) · f )(ξ) = 1
2
(Ff )(ξ)+ i

2
(Hf )(ξ)�

where F denotes Fourier transform and H denotes Hilbert transform defined
by the Cauchy principle value integral, i.e.

(Hf )(ξ) = 1
π
P�V �

∞∫
−∞

f (η)

ξ − η
dη�

To compute p(x) one needs to compute M − 1 Hilbert transforms and then
conducts one final Fourier inversion. As shown in Feng and Linetsky (2005),
a Hilbert transform can be computed efficiently by using approximation theory
in Hardy spaces which leads to a simple trapezoidal-like quadrature sum.

In general Feng–Linetsky method is slower than Broadie–Yamamoto meth-
od, if the underlying model is Gaussian (e.g. under Black–Scholes model or
Merton (1976) normal jump diffusion model). For example, as it is pointed out
in Feng and Linetsky (2005) it may take 0.01 seconds for Broadie–Yamamoto
to achieve accuracy of 10−12 under the Black–Scholes model, while it may
take 0.04 seconds for Feng–Linetsky method to achieve accuracy of 10−8. The
beauty of Feng–Linetsky method is that it works for general Lévy processes
with very reasonable computational time.

4 Continuity corrections

4.1 The approximation

Broadie et al. (1997) proposed a continuity correction for the discretely
monitored barrier option, and justified the correction both theoretically and
numerically (Chuang, 1996 independently suggested the approximation in a
heuristic way). The resulting approximation, which only relies on a simple
correction to the Merton (1973) formula (thus trivial to implement), is nev-
ertheless quite accurate and has been used in practice; see, for example, the
textbook by Hull (2005).

More precisely, let V (H) be the price of a continuous barrier option, and
Vm(H) be the price of an otherwise identical barrier option with m monitoring
points. Then for any of the eight discrete monitored regular barrier options the
approximation is

(2)Vm(H) = V
(
He±βσ

√
T/m

) + o(1/
√
m)�

with + for an up option and − for a down option, where the constant β =
−ζ(1/2)√

2π
≈ 0�5826, ζ the Riemann zeta function. The approximation (2) was
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Table 1.
Up-and-Out-Call Option Price Results, m = 50 (daily monitoring).

Barrier Continuous
barrier

Corrected
barrier,
Eq. (2)

True Relative error
of Eq. (2)
(in percent)

155 12�775 12�905 12�894 0�1
150 12�240 12�448 12�431 0�1
145 11�395 11�707 11�684 0�2
140 10�144 10�581 10�551 0�3
135 8�433 8�994 8�959 0�4
130 6�314 6�959 6�922 0�5
125 4�012 4�649 4�616 0�7
120 1�938 2�442 2�418 1�0
115 0�545 0�819 0�807 1�5

This table is taken from Broadie et al. (1997, Table 2.6). The option parameters are S(0) = 110, K =
100, σ = 0�30 per year, r = 0�1, and T = 0�2 year, which represents roughly 50 trading days.

proposed in Broadie et al. (1997), where it is proved for four cases: down-
and-in call, down-and-out call, up-and-in put, and up-and-out put. Kou (2003)
covered all eight cases with a simpler proof (see also Hörfelt, 2003). The con-
tinuity corrections for discrete lookback options are given in Broadie et al.
(1999).

To get a feel of the accuracy of the approximation, Table 1 is taken from
Broadie et al. (1997). The numerical results suggest that, even for daily mon-
itored discrete barrier options, there can still be big differences between the
discrete prices and the continuous prices. The improvement from using the
approximation, which shifts the barrier from H to He±βσ

√
T/m in the contin-

uous time formulae, is significant.
Cao and Kou (2007) derived some barrier correction formulae for two-

dimensional barrier options and partial barrier options, which have some com-
plications. For example, for a partial barrier option one cannot simply shifts the
barrier up or down uniformly by a fixed constant, and one has to study care-
fully the different roles that the barrier plays in a partial barrier option; more
precisely, the same barrier can sometimes be a terminal value, sometimes as a
upcrossing barrier, and sometimes as a downcrossing barrier, all depending on
what happens along the sample paths.

4.2 Continuity correction for random walk

The idea of continuity correction goes back to a classical technique in “se-
quential analysis,” in which corrections to normal approximation are made
to adjust for the “overshoot” effects when a discrete random walk crosses a
barrier; see, for example, Chernoff (1965), Siegmund (1985), and Woodroofe
(1982).
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For a standard Brownian motion B(t) under any probability space P , define
the stopping times for discrete random walk and for continuous-time Brownian
motion as

τ′(b�U) := inf
{
n � 1: Un � b

√
m

}
�

τ̃′(b�U) := inf
{
n � 1: Un � b

√
m

}
�

τ(b�U) := inf
{
t � 0: U(T) � b

}
�

τ̃(b�U) := inf
{
t � 0: U(T) � b

}
�

HereU(t) := vt+B(t) andUn is a random walk with a small drift (asm → ∞),
Un := ∑n

i=1(Zi + v√
m
), where the Zi’s are independent standard normal ran-

dom variables under P. Note that for general Lévy processes, we have the
discrete random increments Zi’s are independent standard random variables,
not necessarily normally distributed under P . In the case of Brownian mo-
tion, the approximation comes from a celebrated result in sequential analysis
(Siegmund and Yuh, 1982; Siegmund, 1985, pp. 220–224): For any constants
b � y and b > 0, as m → ∞,

(3)

P
(
Um < y

√
m� τ′(b�U) � m

)
= P

(
U(1) � y� τ(b+ β/

√
m�U) � 1

) + o
(
1/

√
m

)
�

Here the constant β is the limiting expectation of the overshoot,

β = E(A2
N)

2E(AN)
�

where the mean zero random walk An is defined as An := ∑n
i=1 Zi, and N

is the first ladder height associated with An, N = min{n � 1: An > 0}. For
general Lévy processes, there will be some extra terms in addition to the con-
stant β.

4.2.1 An intuition via the reflection principle
To get an intuition of (3), we consider the reflection principle for the stan-

dard Brownian motions when the drift v = 0. The general case with a nonzero
drift can be handled by using the likelihood ratio method. The reflection prin-
ciple (see, e.g., Karatzas and Shreve, 1991) for the standard Brownian motion
yields that

P
(
U(1) � y� τ(b�U) � 1

) = P
(
U(1) � 2b− y

)
�

Intuitively, due to the random overshoot Rm := Uτ′ − b
√
m, the reflection

principle for random walk should be

P
(
Um < y

√
m� τ′(b�U) � m

) = P
(
Um � 2(b

√
m+Rm)− y

√
m

)
�

See Fig. 1 for an illustration.
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Fig. 1. An Illustration of the Heuristic Reflection Principle.

Replacing the random variable Rm by its is expectation E(Rm) and using
the fact from the renewal theory that

(4)E(Rm) → E(A2
N)

2E(AN)
= β�

we have

P
(
Um < y

√
m� τ′(b�U) � m

)
≈ P

(
Um �

{
2
(
b+ β√

m

)}√
m− y

√
m

)
≈ P

(
U(1) � 2

(
b+ β√

m

)
− y

)
= P

(
U(1) � y� τ

(
b+ β/

√
m�U

)
� 1

)
�

thus providing an intuition for (3).

4.2.2 Calculating the constant β
For any independent identically distributed random variables Zi with mean

zero and variance one there are two ways to compute β, one by infinite series
and the other a one-dimensional integral.

In the first approach, we have the following result from Spitzer (1960) about
E(AN):

E(AN) = 1√
2
eω0�
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and from Lai (1976) about E(A2
N):

E(A2
N) =

{
ω2 + E(Z3

1)

3
√

2
−√

2ω1

}
eω0�

where

ω0 =
∞∑
n=1

1
n

(
P{An � 0} − 1

2

)
�

ω2 = 1 − 1√
π

∞∑
n=1

{
1√
n

−√
π

(−1
2
n

)
(−1)n

}
�(

x

n

)
= x(x− 1) · · · (x− n+ 1)/n!�

ω1 =
∞∑
n=1

1√
n

(
E
[(
An/

√
n
)−] − 1√

2π

)
�

In the special of normal random variables, an explicit calculation of β is
available. Indeed in this case we have ω0 = 0, ω1 = 0, E(Z3

1) = 0, whence

β = E(A2
N)

2E(AN)
=

{
ω2 + E(Z3

1)

3
√

2
− √

2ω1
}
eω0

2 1√
2
eω0

= ω2√
2
�

In Appendix B, we shall prove in the case of normal random variables, i.e. the
Brownian model,

(5)β = E(A2
N)

2E(AN)
= ω2√

2
= −ζ(1/2)√

2π
with ζ being Riemann zeta function. Comparing to the existing proofs, the
proof in Appendix B appears to be more direct and is new.

The link between β and the Riemann zeta function as in (5) has been
noted by Chernoff (1965) in an optimal stopping problem via Wiener–Hopf
integral equations. The links between Wiener–Hopf integral equations and
the Riemann zeta function are advanced further by Howison and Steinberg
(2005), who provide a very elegant second order expansion via the perturba-
tion method and the Spitzer function. The proof that the constant calculated in
Chernoff (1965) from Wiener–Hopf equations and the constant in Siegmund
(1979) for the continuity correction are the same is given in Hogan (1986).
Later Chang and Peres (1997) who give a much more general result regarding
connections between ladder heights and Riemann zeta function in the case of
normal random variables, which covers (5) as a special case. See also a related
expansion in Blanchet and Glynn (2006), Asmussen et al. (1995). In Appen-
dix B we shall prove (5) in the case of normal random variables directly without
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using the general results in Chang and Peres (1997) or appealing to the argu-
ment in Hogan (1986).

There is also another integral representation (Siegmund, 1985, p. 225) forβ,
if Z1 is a continuous random variable:

(6)β = E(Z3
1)

6
− 1
π

∞∫
0

1
λ2 Re

{
log

(
2(1 − E(exp{iλZ1}))

λ2

)}
dλ�

In the case of normal random variables we have E(exp{iλZ1}) = e−λ2/2, and

β = − 1
π

∞∫
0

1
λ2 log

(
1 − e−λ2/2

λ2/2

)
dλ

= − 1

π
√

2

∞∫
0

1
x2 log

(
1 − e−x2

x2

)
dx�

It is shown by Comtet and Majumdar (2005) that

1
π

∞∫
0

1
x2 log

(
1 − e−xα

xα

)
dx = ζ(1/α)

(2π)1/α sin( π2α)
� 1 < α � 2�

In particular, letting α = 2 yields

1
π

∞∫
0

1
x2 log

(
1 − e−x2

x2

)
dx = − ζ(1/2)

(2π)1/2 sin(π4 )
= ζ(1/2)

(π)1/2 �

and

β = − 1

π
√

2

∞∫
0

1
x2 log

(
1 − e−x2

x2

)
dx = −ζ(1/2)√

2π
�

Comtet and Majumdar (2005) also evaluated (6) for other symmetric distribu-
tions, such as symmetric Laplace and uniform distributions.

4.2.3 A difficulty in generalization
The above theory of continuity correction depends crucially on the idea of

asymptotic analysis of a random walk (in our case
∑n

i=1 Zi) indexed by a single
exponential family of random variables. In our case the exponential family has
a base of N(0� 1) related to Zi and the members in the family being Zi+v/

√
m

with a distribution N(v/
√
m� 1). In the general case, such as jump diffusion

models, it is not clear how to write down a formula for the continuity correc-
tion for an exponential family of distribution indexed by a single parameter,
because there could be several sources of randomness (Brownian parts, jump
parts, etc.) and several parameters involved.
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5 Perturbation method

Since the price of a discrete barrier option can be written as a solution to a
partial differential equation (PDE) with piecewise linear boundary conditions,
numerical techniques from PDEs are also useful. One particular numerical
technique is the perturbation method, which formally matches various asymp-
totic expansions to get approximations. This has been used by Howison and
Steinberg (2005), Howison (2005) to get very accurate approximation for dis-
crete barrier and American options.

5.1 Basic concept of the perturbation method

The perturbation method first identifies a parameter to be small so that
approximations can be made around the zero value of the parameter. In fact
the perturbation method will identify two solutions, inner and outer solutions,
to match boundary conditions. The final approximation is a sum of both solu-
tions minus a matching constant. To illustrate the basic idea of the perturbation
method, let us consider an ordinary differential equation

εy ′′ + y ′ = t� 0 < t < 1; y(0) = y(1) = 1�

where the parameter ε is a small number. If we let ε = 0, then we get a solution
y = t2/2 + C. However this solution cannot satisfy both boundary conditions
y(0) = y(1) = 1. To get around with this difficulty, we shall have two solutions,
one near 0 (inner solution) and one near 1 (outer solution) so that the final
approximation can properly combine the two (called “matching”).

The outer solution is given by setting ε = 0 and matching the value at the
right boundary,

y1(t) = t2

2
+ 1

2
� y1(1) = 1�

For the inner solution we can rescale the time, as we are more interested in
what happen around t = 0. Using s = t/ε and A(s) = y(t), we have a rescaled
equation

ε

ε2
d2A

ds2 + 1
ε

dA
ds

= εs� or
d2A

ds2 + dA
ds

= ε2s�

Letting ε = 0 yields a linear ordinary differential equation,

d2A

ds2 + dA
ds

= 0�

which has a solution A(s) = a+ be−s. Changing it back to t we have the inner
solution y2(t) = a+ be−t/ε. Matching the boundary at 0, we have

y2(t) = (1 − b)+ be−t/ε� y2(0) = 1�
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Next we need to choose b to match the inner and outer solution at some
immediate region after t = 0. To do this we try u = t/

√
ε. Then

y1
(
u
√
ε
) = u2ε

2
+ 1

2
→ 1

2
�

y2
(
u
√
ε
) = (1 − b)+ be−u

√
ε/ε → 1 − b�

yielding that 1−b = 1/2 or b = 1/2. In summary the outer and inner solutions
are

y1(t) = t2

2
+ 1

2
� y2(t) = 1

2
+ 1

2
e−t/ε�

Finally the perturbation approximation is given by the sum of the (matched)
inner and outer solutions minus the common limiting value around time 0:

y1(t)+ y2(t)− lim
ε→0

y1
(
u
√
ε
) =

(
t2

2
+ 1

2

)
+

(
1
2
+ 1

2
e−t/ε

)
− 1

2

= t2

2
+ 1

2
+ 1

2
e−t/ε�

5.2 Howison–Steinberg approximation

Howison and Steinberg (2005) and Howison (2005) use both inner and outer
solutions to get very accurate approximation for discrete barrier options and
Bermudan (discrete American) options. Indeed, the approximation not only
gives the first order correction as in Broadie et al. (1997), it also leads to a
second order correction.

The outer expansion is carried out assuming that the underlying asset price
is away from the barrier; in this case a barrier option price can be approximated
by the price for the corresponding standard call and put options. The inner
solution corresponds to the case when the asset price is close to the barrier.

Since the barrier crossing is only monitored at some discrete time points,
the resulting inner solution will be a periodic heat equation. Howison and
Steinberg (2005) present an elegant asymptotic analysis of the periodic heat
equation by using the result of the Spitzer function (Spitzer, 1957, 1960) for
the Wiener–Hopf equation. Afterwards, they matched the inner and outer so-
lutions to get expansions. We shall not give the mathematical details here, and
ask the interested reader to read the inspiring papers by Howison and Stein-
berg (2005) and Howison (2005).

In fact the approximation in Howison and Steinberg (2005) is so good that
it can formally give the second order approximation with the order o(1/m) for
discrete barrier options, which is more accurate than the order o(1/

√
m) in

the continuity correction in Broadie et al. (1997). The only drawback seems to
be that perturbation methods generally lack rigorous proofs.
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6 A Laplace transform method via Spitzer’s identity

Building on the result in Ohgren (2001) and the Laplace transform (with re-
spect to log-strike prices) introduced in Carr and Madan (1999), Petrella and
Kou (2004) developed a method based on Laplace transform that easily allows
us to compute the price and hedging parameters (the Greeks) of discretely
monitored lookback and barrier options at any point in time, even if the previ-
ous achieved maximum (minimum) cannot be ignored. The method in Petrella
and Kou (2004) can be implemented not only under the classical Brownian
model, but also under more general models (e.g. jump-diffusion models) with
stationary independent increments. A similar method using Fourier transforms
in the case of pricing discrete lookback options at the monitoring points (but
not at any time points hence with no discussion of the hedging parameters)
was independently suggested in Borovkov and Novikov (2002, pp. 893–894).
The method proposed in Petrella and Kou (2004) is more general, as it is ap-
plicable to price both discrete lookback and barrier options at any time points
(hence to compute the hedging parameters).

6.1 Spitzer’s identity and a related recursion

Consider the asset value S(t), monitored in the interval [0� T ] at a sequence
of equally spaced monitoring points, 0 ≡ t(0) < t(1) < · · · < t(m) ≡ T .
Let Xi := log{S(t(i))/S(t(i − 1))}, where Xi is the return between t(i − 1)
and t(i). Denote t(l) to be a monitoring point such that time t is between
the (l − 1)th and lth monitoring points, i.e., t(l − 1) � t < t(l). Define the
maxima of the return process between the monitoring points to be M̃l�k :=
maxl�j�k

∑j
i=l+1 Xi, l = 0� � � � � k, where we have used the convention that the

sum is zero if the index set is empty. Assume that X1, X2, . . . , are independent
identically distributed (i.i.d.) random variables. With Xs�t := log{S(t)/S(s)}
being the return between time s and time t, t � s, define

(7)C(u� v; t) := E∗[euXt�t(l)
]
E∗[euM̃l�m+vXt�T

] = x̂l�mE∗[e(u+v)Xt�t(l)
]
�

where

(8)x̂l�k := E∗[euM̃l�k+vBl�k]� l � k; Bl�k :=
k∑

i=l+1

Xi�

Define for 0 � l � k,

(9)âl�k := E∗[e(u+v)B+
l�k

] + E∗[e−vB−
l�k

] − 1� u� v ∈ C�

Spitzer (1956) proved that, for s < 1 and u� v ∈ C, with Im(u) � 0 and
Im(v) � 0:

(10)
∞∑
k=0

skx̂l�k = exp

( ∞∑
k=1

sk

k
âl�k

)
�
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where B+
l�k and B−

l�k denote the positive and negative part of the Bl�k, respec-
tively. We can easily extend (10) to any u� v ∈ C, by limiting s � s′0 for some s′0
small enough.

To get x̂l�k from âl�k we can invert the Spitzer’s identity by using Leibniz’s
formula at s = 0, as in Ohgren (2001). In fact, Petrella and Kou (2004) show
that for any given l, we have

(11)x̂l�k+1 = 1
k− l + 1

k−l∑
j=0

âl�k+1−jx̂l�l+j�

To compute âl�k, when u and v are real numbers, Petrella and Kou (2004) also
show that

(12)E∗[euB+
l�k] =

⎧⎪⎪⎨⎪⎪⎩
1 + E∗[(euBl�k − 1)1{uBl�k>0}

] = 1 + C1(u� k)�
if u � 0�

1 − E∗[(1 − euBl�k)1{uBl�k<0}
] = 1 − P1(u� k)�

if u < 0�

(13)E∗[e−vB−
l�k

] =

⎧⎪⎪⎨⎪⎪⎩
1 + E∗[(e−vBl�k − 1)1{vBl�k<0}

] = 1 + C1(−v� k)�
if v � 0�

1 − E∗[(1 − e−vBl�k)1{vBl�k>0}
] = 1 − P1(−v� k)�

if v < 0�

where C1(u� k) is the value of a European call option with strike K = 1 on the
asset St with S0 = 1 and return u ·Xt(l)�t(k) (ignoring the discount factor), and
P1(u� k) is the value of a European put option with strike K = 1 on the asset
St with S0 = 1 and return u ·Xt(l)�t(k). In other words, we can easily compute
âl�k via analytical solutions of the standard call and put options.

6.2 Laplace transform for discrete barrier options

To save the space, we shall only discuss the case of barrier options, as the
case of lookback options can be treated similarly; see Petrella and Kou (2004).
Let ξ > 1 and ζ > 0 and assume that C(−ζ� 1 − ξ; t) < ∞. At any time
t ∈ [t(l − 1)� t(l)), m � l � 1, Petrellla and Kou (2004) show that the double
Laplace transform of f (κ� h; S(t)) = E∗[(eκ − S(T))+1{M0�T<eh} | Ft] is given
by

f̂ (ξ� ζ) :=
∞∫

−∞

∞∫
−∞

e−ξκ−ζhf
(
κ� h; S(t)) dκ dh

(14)= (
S(t)

)−(ξ+ζ−1) · C(−ζ� 1 − ξ; t)
ξ(ξ − 1)ζ

�
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with the function C defined in (7). The Greeks can also be computed similarly.
For example, at any time t ∈ [t(l − 1)� t(l)), with 1 � l � m, we have:

∂

∂S(t)
UOP(t� T )

= −e−r(T−t)L−1
ξ�ζ

(
(ξ + ζ − 1)(S(t))−(ξ+ζ)

ξ(ξ − 1)ζ

× C(−ζ� 1 − ξ; t)
)∣∣∣∣

log(K)�log(H)

�

To illustrate the algorithm, without loss of generality, we shall focus on com-
puting the price and the hedging parameters (the Greeks) for an up-and-out
put option.

The Algorithm:
Input: Analytical formulae of standard European call and put options.
Step 1: Use the European call and put formulae to calculate âi�k, via (9),

(12) and (13).
Step 2: Use the recursion in Eq. (11) to compute x̂l�k.
Step 3: Compute C(u� v; t) from Eq. (7).
Step 4: Numerically invert the Laplace transforms given in Eq. (14).

In Step 4 the Laplace transforms are inverted by using two-sided Euler in-
version algorithms in Petrella (2004), which are extensions of one-sided Euler
algorithms in Abate and Whitt (1992) and Choudhury et al. (1994).

The algorithm essentially only requires to input the standard European call
and put prices, thanks to Spitzer’s identity. The algorithm can also be extended
to price other derivatives, whose values are a function of the joint distribution
of the terminal asset value and its discretely monitored maximum (or mini-
mum) throughout the lifetime of the option, such as partial lookback options.
As demonstrated in the numerical examples in Petrella and Kou (2004), for a
wide variety of parameters (including the cases where the barrier is very close
to the initial asset price and there are many monitoring points), the algorithm is
quite fast (typically only requires a few seconds), and is quite accurate (typically
up to three decimal points). The total workload for both barrier and lookback
options is of the order O(NM2), where N is the number terms needed for
Laplace inversion, and M is the total number of monitoring points.

7 Which method to use

So far we have introduced four recent methods tailored to discrete barrier
and lookback options. A natural question is which method is suitable for your
particular needs. The answer really depends on four considerations: speed, ac-
curacy, generality (e.g. whether a method is applicable to models beyond the
standard Brownian model), and programming effort.
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The consideration of programming effort is often ignored in the literature,
although we think it is important. For example, the popularity of binomial trees
and Monte Carlo methods in computational finance is a testimony that simple
algorithms with little programming effort are better than faster but more com-
plicated methods. This is also because the CPU time improves every year with
increasing computer technology. Therefore, an algorithm not only compete
with other algorithms but also with ever faster microprocessors. A tenfold in-
crease in the computation speed of an algorithm is less important five years
from now, but the simplicity of the algorithm will remain throughout time.

In terms of speed and programming effort, the fastest and easiest ones are
the approximation methods, such as the continuity correction and Howison
and Steinberg method, as they have analytical solutions. However, approxima-
tions will not yield exact results. More precisely, if you can tolerate about 5
to 10% pricing error (which is common in practice, as the bid–ask spreads for
standard call/put options are in the range of 5 to 10% and the bid–ask spreads
for barrier and lookback options are even more), then you should choose the
approximation methods. A drawback for the approximation methods is that it
is not clear how to generalize the approximations outside the classical Brown-
ian model.

If accuracy is of great concern, e.g. when you need to set up some nu-
merical benchmarks, then the “exact” methods will be needed. For example,
if you use the standard Brownian model or models that only involves nor-
mal random variables (such as Merton’s normal jump diffusion model), then
Broadie–Yamamoto method via the fast Gaussian transform is perhaps the
best choice, as it is very fast and accurate, and it is quite easy to implement.

However, if you want to price options under more general Levy processes
for a broader class of return processes, including non-Gaussian distributions
(e.g. the double exponential jump-diffusion model), which may not be easily
written as a mixture of independent Gaussian random variables, then Feng–
Linetsky or the Laplace transform via Spitzer’s identity may be appropriate.
Feng–Linetsky method is a powerful method that can produce very accurate
answers in a fast way, and is faster than the Laplace method via Spitzer’s iden-
tity; but it perhaps requires more programming effort (related to computing
Hilbert transforms) than the Laplace transform method. Furthermore, it is
very easy to compute, almost at no additional computational cost, the hedg-
ing parameters (the Greeks) using the Laplace transform method via Spitzer’s
identity.

Appendix A. Proof of (1)

By considering the events {τ′(a/(σ√
T )�W ) = 1} and {τ′(a/(σ√

T )�
W ) = 2}, we have
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V3(H) = S(0)
2∑
i=1

P̂

(
W3 � log(K/S(0))

σ
√
�t

� τ′
(
a
/(
σ
√
T

)
�W

) = i

)

−Ke−rT
2∑
i=1

P∗
(
W3 � log(K/S(0))

σ
√
�t

� τ′
(
a
/(
σ
√
T

)
�W

) = i

)

= S(0)P̂
(
−W1 � − log(H/S(0))

σ
√
T

√
3�−W3 � − log(K/S(0))

σ
√
�t

)
+ S(0)P̂

(
W1 <

log(H/S(0))

σ
√
T

√
3�

−W2 � − log(H/S(0))

σ
√
T

√
3�

−W3 � − log(K/S(0))

σ
√
�t

)
−Ke−rT P∗

(
−W1 � − log(H/S(0))

σ
√
T

√
3�

−W3 � − log(K/S(0))

σ
√
�t

)
−Ke−rT P∗

(
W1 <

log(H/S(0))

σ
√
T

√
3�

−W2 � − log(H/S(0))

σ
√
T

√
3�

−W3 � log(K/S(0))

σ
√
�t

)
�

Observe the correlations

*(W1�W2) = *(Z1� Z1 + Z2) =
√

1/2 = √
t1/t2�

*(W1�−W3) = *(Z1�−Z1 − Z2 − Z3) = −√
t1/T �

*(W2�−W3) = *(Z1 + Z2�−Z1 − Z2 − Z3) = −√
t2/T �

and

Var(Wk) = k� Ê(Wk) = k
r + 1

2σ
2

σ

√
�t�

E∗(Wk) = k
r − 1

2σ
2

σ

√
�t� k = 1� 2� 3�

Note some identities for calculation related to P̂

± log(H/S(0))

σ
√
�t

−
{(

r + 1
2
σ2

)/
σ

}√
�t
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= ± log(H/S(0))− {(r + 1
2σ

2)}t1
σ
√
t1

≡ â1�H�±�

1√
2

(
± log(H/S(0))

σ
√
�t

− 2
{(

r + 1
2
σ2

)/
σ

}√
�t

)
= ± log(H/S(0))− {(r + 1

2σ
2)}t2

σ
√
t2

≡ â2�H�±�

1√
3

(
− log(K/S(0))

σ
√
�t

− 3
{(

r + 1
2
σ2

)/
σ

}√
�t

)
= − log(K/S(0))− {(r + 1

2σ
2)}T

σ
√
T

≡ âK�

and some identities for calculation related to P∗

± log(H/S(0))

σ
√
�t

−
{(

r − 1
2
σ2

)/
σ

}√
�t

= ± log(H/S(0))− {(r − 1
2σ

2)}t1
σ
√
t1

≡ a∗1�H�±�

1√
2

(
± log(H/S(0))

σ
√
�t

− 2
{(

r − 1
2
σ2

)/
σ

}√
�t

)
= ± log(H/S(0))− {(r − 1

2σ
2)}t2

σ
√
t2

≡ a∗2�H�±�

1√
3

(
− log(K/S(0))

σ
√
�t

− 3
{(

r − 1
2
σ2

)/
σ

}√
�t

)
= − log(K/S(0))− {(r − 1

2σ
2)}T

σ
√
T

≡ a∗K�

from which the conclusion follows.

Appendix B. Calculation of the constant β

First of all, we show that the series in (5)

(15)
∞∑
n=1

{
1√
n

−√
π

(−1/2
n

)
(−1)n

}
converges absolutely. Using Stirling’s formula (e.g. Chow and Teicher, 1997)

n! = nne−n
√

2πn · εn� e 1
12n+1 < εn < e

1
12n �
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we have
√
π

(−1/2
n

)
(−1)n = √

π
1
2

3
2
· · · (2n− 1)

2
/n! = √

π
(2n)!
22n

1
n!n!

= √
π
(2n)2ne−2n

√
2π · 2n

22n

× 1

nne−n
√

2πn · nne−n√2πn

ε2n

εnεn

= 1√
n

ε2n

εnεn
�

Since ε2n
εnεn

= 1 +O(1/n), we have the terms inside the series (15):

1√
n

− √
π

(−1/2
n

)
(−1)n = 1√

n
− 1√

n

ε2n

εnεn
= 1√

n

(
1 − ε2n

εnεn

)
= O

(
1

n
√
n

)
�

from which we know that the series (15) converges absolutely.
Next, in the case of the standard normal density we have

β = E(A2
N)

2E(AN)
= ω2√

2
= 1√

2

(
1 − 1√

π

∞∑
n=1

{
1√
n

−√
π

(−1
2
n

)
(−1)n

})
�

It was shown in Hardy (1905) that

lim
x↑1

∞∑
n=1

(
xn

ns
− Γ (1 − s)

{
log

(
1
x

)}s−1)
= ζ(s)�

Taking s = 1/2 and using the fact that Γ (1/2) = √
π, we have

(16)lim
x↑1

∞∑
n=1

xn√
n

−√
π

{
log

(
1
x

)}−1/2

= ζ(1/2)�

Furthermore, letting x = 1 − ε yields

1√
1 − x

−
{

log
(

1
x

)}−1/2

=
√

log(1/x)−√
1 − x√

log(1/x)
√

1 − x

= log(1/x)− (1 − x)√
log(1/x)

√
1 − x(

√
log(1/x)+√

1 − x )

= − log(1 − ε)− ε√− log(1 − ε)
√
ε(

√− log(1 − ε)+√
ε )
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= O(ε2)

O(
√
ε )O(

√
ε ){O(√ε )+ O(

√
ε )} = O(

√
ε ) → 0�

as x ↑ 1. Therefore, we have

lim
x↑1

(
1√

1 − x
−

{
log

(
1
x

)}−1/2)
= 0�

This is interesting, as the both terms 1/
√

1 − x and {log( 1
x)}−1/2 go to infinity

as x ↑ 1 but the difference goes to zero.
The above limit, in conjunction with (16), yields

lim
x↑1

∞∑
n=1

xn√
n

−√
π

1√
1 − x

= ζ(1/2)�

Since (1 − x)−α = ∑∞
n=0

(−α
n

)
(−x)n, we have

lim
x↑1

∞∑
n=1

xn√
n

−√
π

∞∑
n=1

(−1/2
n

)
(−x)n −√

π

(−1/2
0

)
(−x)0 = ζ(1/2)�

In other words,

lim
x↑1

∞∑
n=1

{
1√
n

−√
π

(−1/2
n

)
(−1)n

}
xn = √

π + ζ(1/2)�

and
∞∑
n=1

{
1√
n

−√
π

(−1/2
n

)
(−1)n

}
= √

π + ζ(1/2)�

because the series (15) converges absolutely so that we can interchange the
limit and summation.

In summary we have

β = 1√
2

(
1 − 1√

π

∞∑
n=1

{
1√
n

− √
π

(−1
2
n

)
(−1)n

})

= 1√
2

(
1 − 1√

π

{√
π + ζ(1/2)

}) = −ζ(1/2)√
2π

�
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Abstract

The purpose of this chapter is to give an overview of some recent aspects of interest
rate theory. After having recapitulated some basic results, we discuss forward rate
models in the Heath–Jarrow–Morton framework. We then go on to a more detailed
investigation of the geometric properties of the forward rate equation, such as con-
sistency problems and finite dimensional realizations. The LIBOR market model is
given a separate section. We end by showing how stochastic potential theory can be
used to construct and analyze positive interest rate models.

1 Introduction

The purpose of this essay is to give an overview of some recent aspects of
interest rate theory. The reader is assumed to be familiar with arbitrage theory,
and basic interest rate theory including martingale models for the short rate
and affine term structures. We do not assume familiarity with Heath–Jarrow–
Morton. The list of topics below is subjective, largely reflecting my personal
interests. The mathematical level is informal in the sense that we often are
content with giving a heuristic argument, and silently assume that all objects
under study are “regular enough” or “integrable enough.”

At the end of each section there are Notes with references to the literature.
For general information on arbitrage theory, see the textbooks (Bingham and
Kiesel, 2004; Björk, 2003, and Duffie, 2001) which also provide chapters on
interest rate theory. For monographs on interest rate theory see Brigo and
Mercurio (2001) and Cairns (2004).
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2 Basics

We consider a financial market model living on a filtered probability space
(Ω�F�F� P) where F = {Ft}t�0. The basis is assumed to carry a standard
m-dimensional Wiener process W , and we also assume that the filtration F is
the internal one generated by W . At this point we do not make any particular
assumptions about P – it can be interpreted as the objective measure or as
an equivalent martingale measure. We also assume that the measure Q is a
martingale measure. Our main object of study is the zero coupon bond market,
and we need some formal definitions.

Definition 2.1. A zero coupon bond with maturity date T , also called a T -bond,
is a contract which guarantees the holder $1 to be paid on the date T . The price
at time t of a bond with maturity date T is denoted by p(t� T).

We now make an assumption to guarantee the existence of a sufficiently rich
bond market.

Assumption 2.1. We assume that

1. There exists a (frictionless) market for T -bonds for every T > 0.
2. For every fixed T , the process {p(t� T); 0 � t � T } is an optional sto-

chastic process with p(t� t) = 1 for all t.
3. For every fixed t, p(t� T) is P-a.s. continuously differentiable in the T -

variable. This partial derivative is often denoted by

pT (t� T ) = ∂p(t� T )

∂T
�

Given the given bond market above, one can define a (surprisingly large)
number of riskless interest rates, and the basic construction is as follows. Sup-
pose that we are standing at time t, and let us fix two other points in time S
and T with t < S < T . The immediate project is to write a contract at time t
which allows us to make an investment of $1 at time S, and to have a determin-
istic rate of return, determined at the contract time t, over the interval [S� T ].
This can easily be achieved as follows.

1. At time t we sell one S-bond. This will give us $p(t� S).
2. For this money we can by exactly p(t� S)/p(t� T ) T -bonds. Thus our net

investment at time t equals zero.
3. At time S the S-bond matures, so we are obliged to pay out $1.
4. At time T the T -bonds mature at $1 a piece, so we will receive the amount

$p(t� S)/p(t� T ) · 1.
5. The net effect of all this is that, based on a contract at t, an investment of

$1 at time S has yielded $p(t� S)/p(t� T ) at time T .
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We now go on to compute the relevant interest rates implied by the con-
struction above. We will use two (out of many possible) ways of quoting for-
ward rates, namely as continuously compounded rates or as simple rates.

The simple forward rate (or LIBOR rate) L, is the solution to the equation

1 + (T − S)L = p(t� S)

p(t� T )
�

whereas the continuously compounded forward rate R is the solution to the
equation

eR(T−S) = p(t� S)

p(t� T )
�

The simple rate notation is the one used in the market, whereas the continu-
ously compounded notation is used in theoretical contexts. They are of course
logically equivalent, and the formal definitions are as follows.

Definition 2.2.

1. The simple forward rate for [S� T ] contracted at t, henceforth referred
to as the LIBOR forward rate, is defined as

L(t; S� T) = −p(t� T)− p(t� S)

(T − S)p(t� T )
�

2. The simple spot rate for [S� T ], henceforth referred to as the LIBOR spot
rate, is defined as

L(S� T) = − p(S� T)− 1
(T − S)p(S� T)

�

3. The continuously compounded forward rate for [S� T ] contracted at t is
defined as

R(t; S� T) = − logp(t� T)− logp(t� S)
T − S

�

4. The continuously compounded spot rate, R(S� T), for the period [S� T ]
is defined as

R(S� T) = − logp(S� T)
T − S

�

5. The instantaneous forward rate with maturity T , contracted at t, is de-
fined by

f (t� T ) = −∂ logp(t� T)
∂T

�

6. The instantaneous short rate at time t is defined by

r(t) = f (t� t)�
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We note that spot rates are forward rates where the time of contracting
coincides with the start of the interval over which the interest rate is effective,
i.e. t = S. The instantaneous forward rate, which will be of great importance
below, is the limit of the continuously compounded forward rate when S → T .
It can thus be interpreted as the riskless interest rate, contracted at t, over the
infinitesimal interval [T� T + dT ].

We now go on to define the money account process B.

Definition 2.3. The money account process is defined by

Bt = e
∫ t

0 r(s) ds�

i.e. {
dB(t) = r(t)B(t) dt�
B(0) = 1�

The interpretation of the money account is that you may think of it as de-
scribing a bank with the stochastic short rate r. It can also be shown that
investing in the money account is equivalent to investing in a self-financing
“rolling over” trading strategy, which at each time t consists entirely of “just
maturing” bonds, i.e. bonds which will mature at t + dt.

We recall the following fundamental result in arbitrage theory.

Theorem 2.1. Let X ∈ FT be a T -claim, i.e. a contingent claim paid out at
time T , and let Q be the “risk neutral” martingale measure with B as the nu-
meraire. Then the arbitrage free price is given by

(1)Π(t;X) = EQ
[
e−

∫ t
0 rs dsX

∣∣ Ft

]
�

In particular we have

(2)p(t� T) = EQ
[
e−

∫ t
0 rs ds ∣∣ Ft

]
�

As an immediate consequence of the definitions we have the following use-
ful formulas.

Lemma 2.1. For t � s � T we have

p(t� T) = p(t� s) · exp

{
−

T∫
s

f (t� u) du

}
�

and in particular

p(t� T) = exp

{
−

T∫
t

f (t� s) ds

}
�
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3 Forward rate models

In this section we give a brief recap of forward rate models a long the lines
of Heath–Jarrow–Morton.

3.1 The HJM framework

We now turn to the specification of the Heath–Jarrow–Morton (HJM)
framework (see Heath et al., 1992). We start by specifying everything under
a given objective measure P .

Assumption 3.1. We assume that, for every fixed T > 0, the forward rate
f (·� T ) has a stochastic differential which under the objective measure P is
given by

(3)df (t� T ) = α(t� T ) dt + σ(t� T ) dW̄ (t)�

(4)f (0� T ) = f &(0� T )�

where W̄ is a (d-dimensional) P-Wiener process whereas α(·� T ) and σ(·� T )
are adapted processes.

Note that conceptually equation (3) is one stochastic differential in the t-
variable for each fixed choice of T . The index T thus only serves as a “mark”
or “parameter” in order to indicate which maturity we are looking at. Also note
that we use the observed forward rated curve {f &(0� T ); T � 0} as the initial
condition. This will automatically give us a perfect fit between observed and
theoretical bond prices at t = 0, thus relieving us of the task of inverting the
yield curve.

Remark 3.1. It is important to observe that the HJM approach to interest rates
is not a proposal of a specific model, like, for example, the Vasiček model. It is
instead a framework to be used for analyzing interest rate models. Every short
rate model can be equivalently formulated in forward rate terms, and for every
forward rate model, the arbitrage free price of a contingent T -claim X will still
be given by the pricing formula

Π(0;X ) = EQ
[
e−

∫ T
0 r(s) ds ·X

]
�

where the short rate as usual is given by r(s) = f (s� s).

We now show how bond price dynamics are induced by a given specification
of forward rate dynamics.
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Proposition 3.1. If the forward rate dynamics are given by (3) then the induced
bond price dynamics are given by

dp(t� T) = p(t� T)

{
r(t)+A(t� T)+ 1

2

∥∥S(t� T )∥∥2
}

dt

+ p(t� T)S(t� T ) dW (t)�

where ‖ · ‖ denotes the Euclidean norm, and

(5)

{
A(t� T) = − ∫ T

t α(t� s) ds�
S(t� T ) = − ∫ T

t σ(t� s) ds�

Proof. We give a slightly heuristic argument. The full formal proof, see Heath
et al. (1992), is an integrated version of the proof given here, but the infinites-
imal version below is (hopefully) easier to understand. Using the definition of
the forward rates we may write

(6)p(t� T) = eY(t�T)�

where Y is given by

(7)Y(t� T) = −
∫ T

t
f (t� s) ds�

From the Itô formula we then obtain the bond dynamics as

(8)dp(t� T) = p(t� T) dY(t� T)+ 1
2
p(t� T)

(
dY(t� T)

)2
�

and it remains to compute dY(t� T). We have

dY(t� T) = −d

( T∫
t

f (t� s) ds

)
�

and the problem is that in the integral the t-variable occurs in two places: as the
lower limit of integration, and in the integrand f (t� s). This is a situation that
is not covered by the standard Itô formula, but it is easy to guess the answer.
The t appearing as the lower limit of integration should give rise to the term

∂

∂t

( T∫
t

f (t� s) ds

)
dt�

Furthermore, since the stochastic differential is a linear operation, we should
be allowed to move it inside the integral, thus providing us with the term( T∫

t

df (t� s) ds

)
�
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We have therefore arrived at

dY(t� T) = − ∂

∂t

( T∫
t

f (t� s) ds

)
dt −

T∫
t

df (t� s) ds�

which, using the fundamental theorem of integral calculus, as well as the for-
ward rate dynamics, gives us

dY(t� T) = f (t� t) dt −
T∫
t

α(t� s) dt ds −
T∫
t

σ(t� s) dWt ds�

We now use a stochastic Fubini Theorem, allowing us to exchange dt and dWt

with ds. We also recognize f (t� t) as the short rate r(t), thus obtaining

dY(t� T) = r(t) dt +A(t� T) dt + S(t� T ) dWt�

with A and S as above. We therefore have(
dY(t� T)

)2 = ∥∥S(t� T )∥∥2 dt�

and, substituting all this into (8), we obtain our desired result. �

3.2 Absence of arbitrage

Suppose now that we have specified α, σ and {f &(0� T ); T � 0}. Then we
have specified the entire forward rate structure and thus, by the relation

(9)p(t� T) = exp

{
−

∫ T

t
f (t� s) ds

}
�

we have in fact specified the entire term structure {p(t� T); T > 0� 0 � t � T }.
Since we have d sources of randomness (one for every Wiener process), and an
infinite number of traded assets (one bond for each maturity T ), we run a clear
risk of having introduced arbitrage possibilities into the bond market. The first
question we pose is thus very natural: How must the processes α and σ be
related in order that the induced system of bond prices admits no arbitrage
possibilities? The answer is given by the HJM drift condition below.

Theorem 3.1 (HJM Drift Condition). Assume that the family of forward rates is
given by (3) and that the induced bond market is arbitrage free. Then there exists
a d-dimensional column-vector process

λ(t) = [
λ1(t)� � � � � λd(t)

]′
with the property that for all T � 0 and for all t � T , we have

(10)α(t� T ) = σ(t� T )

T∫
t

σ(t� s)′ ds − σ(t� T )λ(t)�
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In these formulas ′ denotes transpose.

Proof. From Proposition 3.1 we have the bond dynamics

(11)

dp(t� T) = p(t� T)

{
r(t)+A(t� T)+ 1

2

∥∥S(t� T )∥∥2
}

dt

+ p(t� T)S(t� T ) dW̄ (t)�

where

(12)

{
A(t� T) = − ∫ T

t α(t� s) ds�
S(t� T ) = − ∫ T

t σ(t� s) ds�

We now look for a candidate martingale measure Q so we perform a Girsanov
transformation by specifying the dynamics of the likelihood process as

(13)dL(t) = L(t)λ′(t) dW̄ (t)�

(14)L(0) = 1�

where

L(t) = dQ
dP

� on Ft �

From the Girsanov Theorem we know that

dW̄ (t) = λ(t) dt + dW (t)�

where W is Q-Wiener so, substituting this into (11) gives us the bond price
Q-dynamics as

(15)

dp(t� T) = p(t� T)

{
r(t)+A(t� T)+ 1

2

∥∥S(t� T )∥∥2 + S(t� T )λ(t)

}
dt

(16)+ p(t� T)S(t� T ) dW (t)�

Furthermore, Q is a martingale measure with the money account B as the nu-
meraire if and only if the local rate of return of every asset price underQ equals
the short rate. We thus have

r(t)+A(t� T)+ 1
2

∥∥S(t� T )∥∥2 + S(t� T )λ(t) = 0�

Taking the T -derivative of this equation gives us Eq. (10). �

3.3 Martingale modeling

As a special case we now turn to the question of martingale modeling, and
thus assume that the forward rates are specified directly under a martingale
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measure Q as

(17)df (t� T ) = α(t� T ) dt + σ(t� T ) dW (t)�

(18)f (0� T ) = f &(0� T )�

where W is a (d-dimensional) Q-Wiener process. Since a martingale measure
automatically provides arbitrage free prices, we no longer have a problem of
absence of arbitrage, but instead we have another problem. This is so because
we now have the following two different formulas for bond prices

p(0� T ) = exp

{
−

T∫
0

f (0� s) ds

}
�

p(0� T ) = EQ

[
exp

{
−

T∫
0

r(s) ds

}]
�

where the short rate r and the forward rates f are connected by r(t) = f (t� t).
In order for these formulas to hold simultaneously, we have to impose some
sort of consistency relation between α and σ in the forward rate dynamics. The
result is the famous Heath–Jarrow–Morton drift condition.

Proposition 3.2 (HJM Drift Condition). Under the martingale measure Q, the
processes α and σ must satisfy the following relation, for every t and every T � t.

(19)α(t� T ) = σ(t� T )

∫ T

t
σ(t� s)′ ds�

Proof. We only need to observe that if we start by modeling directly under the
martingale measure, then we may apply Proposition 3.1 with λ = 0. �

The moral of Proposition 3.2 is that when we specify the forward rate dy-
namics (under Q) we may freely specify the volatility structure. The drift para-
meters are then uniquely determined.

To see at least how part of this machinery works we now study the simplest
example conceivable, which occurs when the process σ is a deterministic con-
stant. With a slight abuse of notation let us thus write σ(t� T ) ≡ σ , where
σ > 0. Equation (19) gives us the drift process as

(20)α(t� T ) = σ

∫ T

t
σ ds = σ2(T − t)�

so by integrating Eq. (3) we obtain

(21)f (t� T ) = f &(0� T )+
t∫

0

σ2(T − s) ds +
t∫

0

σ dW (s)�
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i.e.

(22)f (t� T ) = f &(0� T )+ σ2t

(
T − t

2

)
+ σW (t)�

In particular we see that r is given as

(23)r(t) = f (t� t) = f &(0� t)+ σ2 t
2

2
+ σW (t)�

so the short rate dynamics are

(24)dr(t) = {
fT (0� t)+ σ2t

}
dt + σ dW (t)�

which is exactly the Ho–Lee model, fitted to the initial term structure. Observe
in particular the ease with which we obtained a perfect fit to the initial term
structure.

3.4 The Musiela parameterization

In many practical applications it is more natural to use time to maturity,
rather than time of maturity, to parameterize bonds and forward rates. If we
denote running time by t, time of maturity by T , and time to maturity by x,
then we have x = T − t, and in terms of x the forward rates are defined as
follows.

Definition 3.1. For all x � 0 the forward rates r(t� x) are defined by the rela-
tion

(25)r(t� x) = f (t� t + x)�

Suppose now that we have the standard HJM-type model for the forward
rates under a martingale measure Q

(26)df (t� T ) = α(t� T ) dt + σ(t� T ) dW (t)�

The question is to find the Q-dynamics for r(t� x), and we have the following
result, known as the Musiela equation.

Proposition 3.3 (The Musiela Equation). Assume that the forward rate dynamics
under Q are given by (26). Then

(27)dr(t� x) = {
Fr(t� x)+D(t� x)

}
dt + σ0(t� x) dW (t)�

where

σ0(t� x) = σ(t� t + x)�

D(t� x) = σ0(t� x)

x∫
0

σ0(t� s)
′ ds�
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F = ∂

∂x
�

Proof. We give a heuristic proof which can be made precise. Using a slight
variation of the Itô formula we have

dr(t� x) = df (t� t + x)+ ∂f

∂T
(t� t + x) dt�

where the differential in the term df (t� t + x) only operates on the first t. We
thus obtain

dr(t� x) = α(t� t + x) dt + σ(t� t + x) dW (t)+ ∂

∂x
r(t� x) dt�

and, using the HJM drift condition, we obtain our result. �

The point of the Musiela parameterization is that it highlights Eq. (27) as
an infinite dimensional SDE. It has become an indispensable tool of modern
interest rate theory and we will use it repeatedly below.

3.5 Notes

The forward rate methodology was introduced in the seminal paper Heath
et al. (1992). The Musiela parameterization was developed in Brace and
Musiela (1994), and Musiela (1993).

4 Change of numeraire

In this section we will give a very brief account of the change of numeraire
technique. We will then use the results in Section 5. All the results are standard.
See Björk (2003) for more details and bibliographic information.

4.1 Generalities

Consider as given a financial market (not necessarily a bond market) with
the usual locally risk free asset B, and a risk neutral martingale measure Q.
We recall from general theory that a measure is a martingale measure only
relative to some chosen numeraire asset, and we recall that the risk neutral
martingale measure, with the money account B as numeraire, has the property
of martingalizing all processes of the form S(t)/B(t) where S is the arbitrage
free price process of any traded asset.

Assumption 4.1. Assume thatQ is a fixed risk neutral martingale measure, and
S0(t) is a strictly positive process with the property that the process S0(t)/B(t)
is a Q-martingale.
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The economic interpretation of this assumption is of course that S0(t) is
the arbitrage free price process of a traded asset. We are now searching for a
measure Q& with the property that, for every arbitrage free price process Π(t),
the process Π(t)/S0(t) is a Q&-martingale.

In order to get an idea of what Q& must look like, let us consider a fixed
time T and a T -contract X. Assuming enough integrability we then know that
the arbitrage free price of X at time t = 0 is given by

(28)Π(0;X) = EQ

[
X

B(T)

]
�

Assume, on the other hand, that the measure Q& actually exists, with a Radon–
Nikodym derivative process

L(t) = dQ&

dQ
� on Ft �

Then we know that, because of the assumed Q&-martingale property of the
process Π(t;X)/S0(t), we have

Π(0;X)
S0(0)

= E&

[
Π(T ;X)
S0(T)

]
= E&

[
X

S0(T)

]
= EQ

[
L(T)

X

S0(T)

]
�

Thus we have

(29)Π(0;X) = EQ

[
L(T)

X · S0(0)
S0(T)

]
�

and, comparing (28) with (29), we see that a natural candidate as likelihood
process for the intended change of measure is given by L(t) = S0(t)/S0(0) ×
B(t).

We now go on to the formal definitions and results.

Definition 4.1. Under Assumption 4.1 define, for any fixed t, the measure Q&

on Ft by

(30)
dQ&

dQ
= L(t)�

where the likelihood process L is defined by

(31)L(t) = S0(t)

S0(0) · B(t) �

We note at once that L is a positive Q-martingale with L(0) = 1, so the
measure Q& is indeed a probability measure. We now want to prove that Q&

martingalizes every process of the form Π(t)/S0(t), where Π(t) is any arbi-
trage free price process. The formalization of this idea is the following result.

Proposition 4.1. Define Q& as above. Assume that Π(t) is a process such that
Π(t)/B(t) is a Q-martingale. Then the process Π(t)/S0(t) is a Q&-martingale.
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Proof. Denoting integration with respect to Q& by E&, and using the abstract
Bayes’s formula, we obtain

E&

[
Π(t)

S0(t)

∣∣∣ Fs

]
= EQ

[
L(t)Π(t)S0(t)

∣∣ Fs
]

L(s)
=
EQ

[ Π(t)
B(t)S0(0)

∣∣ Fs
]

L(s)

= Π(s)

B(s)S0(0)L(s)
= Π(s)

S0(s)
� �

As an immediate corollary we have the following.

Proposition 4.2. Define Q& as above and consider a T -claim X such that
X/B(T) ∈ L1(Q). Then the price process, Π(t;X) is given by

(32)Π(t;X) = S0(t)E
&

[
X

S0(T)

∣∣∣ Ft

]
�

Remark 4.1. Note that it is easy to find the Girsanov transformation which car-
riesQ into Q&. Since Q& martingalizes the process S0(t)/B(t), the Q&-dynamics
of S0 must be of the form

(33)dS0(t) = r(t)S0(t) dt + S0(t)v(t) dM(t)

where M is the driving Q-martingale of S0 (typically M is a Wiener process),
and v is the volatility for S0. From (33) and (31) it now follows that the likeli-
hood process L has the Q-dynamics

(34)dL(t) = L(t)v(t) dM(t)�

so we can easily read off the relevant Girsanov kernel directly from the volatil-
ity of the S0-process.

4.2 Forward measures

In this section we specialize the theory developed in the previous section to
the case when the new numeraire chosen is a bond maturing at time T . As can
be expected, this choice of numeraire is particularly useful when dealing with
interest rate derivatives.

Suppose therefore that we are given a specified bond market model with a
fixed martingale measure Q. For a fixed time of maturity T we now choose the
process p(t� T) as our new numeraire.

Definition 4.2. The T -forward measure QT is defined by

dQT = LT (t) dQ

on Ft for 0 � t � T where

(35)LT (t) = p(t� T)

B(t)p(0� T )
�
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Observing that P(T� T) = 1 we have the following useful pricing formula as
an immediate corollary of Proposition 4.2.

Proposition 4.3. Assume that the T -claim X has the property that X/B(T) ∈
L1(Q). Then

(36)Π(t;X) = p(t� T)ET [X | Ft]�
where ET denotes integration w.r.t. QT .

5 LIBOR market models

In the previous chapters we have concentrated on studying interest rate
models based on infinitesimal interest rates like the instantaneous short rate
and the instantaneous forward rates. While these objects are nice to handle
from a mathematical point of view, they have two main disadvantages.

• The instantaneous short and forward rates can never be observed in
real life.

• If you would like to calibrate your model to cap- or swaption data, then
this is typically very complicated from a numerical point of view if you
use one of the “instantaneous” models.

A further fact from real life, which has been somewhat disturbing from a theo-
retical point of view is the following.

• For a very long time, the market practice has been to value caps, floors,
and swaptions by using a formal extension of the Black (1976) model.
Such an extension is typically obtained by an approximation argument
where the short rate at one point in the argument is assumed to be de-
terministic, while later on in the argument the LIBOR rate is assumed
to be stochastic. This is of course logically inconsistent.

• Despite this, the market happily continues to use Black-76 for the pric-
ing of caps, floors, and swaptions.

In a situation like this, where market practice seems to be at odds with acad-
emic work there are two possible attitudes for the theorist: you can join them
(the market) or you can try to beat them, and since the fixed income market
does not seem to collapse because of the use of Black-76, the more realistic
alternative seems to be to join them.

Thus there has appeared a natural demand for constructing logically con-
sistent (and arbitrage free!) models having the property that the theoretical
prices for caps, floors and swaptions produced by the model are of the Black-
76 form. This project has in fact been carried out very successfully, starting with
Miltersen et al. (1997), Brace et al. (1997) and Jamshidian (1997). The basic
structure of the models is as follows.
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• In stead of modeling instantaneous interest rates, we model discrete
market rates like LIBOR rates in the LIBOR market models, or for-
ward swap rates in the swap market models.

• Under a suitable choice of numeraire(s), these market rates can in fact
be modeled log normally.

• The market models will thus produce pricing formulas for caps and
floors (the LIBOR models), and swaptions (the swap market models)
which are of the Black-76 type and thus conforming with market prac-
tice.

• By construction the market models are thus very easy to calibrate to
market data for caps/floors and swaptions respectively. They are then
used to price more exotic products. For this later pricing part, however,
we will typically have to resort to some numerical method, like Monte
Carlo.

5.1 Caps: definition and market practice

In this section we discuss LIBOR caps and the market practice for pricing
and quoting these instrument. To this end we consider a fixed set of increasing
maturities T0� T1� � � � � TN and we define αi, by

αi = Ti − Ti−1� i = 1� � � � �N�

The number αi is known as the tenor, and in a typical application we could for
example have all αi equal to a quarter of a year.

Definition 5.1. We let pi(t) denote the zero coupon bond price p(t� Ti) and let
Li(t) denote the LIBOR forward rate, contracted at t, for the period [Ti−1� Ti],
i.e.

(37)Li(t) = 1
αi

· pi−1(t)− pi(t)

pi(t)
� i = 1� � � � �N�

We recall that a cap with cap rate R and resettlement dates T0� � � � � TN is a
contract which at time Ti gives the holder of the cap the amount

(38)Xi = αi · max
[
Li(Ti−1)− R� 0

]
�

for each i = 1� � � � �N . The cap is thus a portfolio of the individual caplets
X1� � � � �XN . We note that the forward rate Li(Ti−1) above is in fact the spot
rate at time Ti−1 for the period [Ti−1� Ti], and determined already at time Ti−1.
The amount Xi is thus determined at Ti−1 but not payed out until at time Ti.
We also note that, formally speaking, the caplet Xi is a call option on the un-
derlying spot rate.

The market practice is to use the Black-76 formula for the pricing of caplets.
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Definition 5.2 (Black’s Formula for Caplets). The Black-76 formula for the
caplet

(39)Xi = αi · max
[
L(Ti−1� Ti)− R� 0

]
�

is given by the expression

(40)CaplBi (t) = αi · pi(t)
{
Li(t)N[d1] − RN[d2]

}
� i = 1� � � � �N�

where

(41)d1 = 1
σi

√
Ti − t

[
ln

(
Li(t)

R

)
+ 1

2
σ2
i (T − t)

]
�

(42)d2 = d1 − σi
√
Ti − t�

The constant σi is known as the Black volatility for caplet No. i. In order to
make the dependence on the Black volatility σi explicit we will sometimes write
the caplet price as CaplBi (t;σi).

It is implicit in the Black formula that the forward rates are lognormal (un-
der some probability measure), but until recently there was no firm theoretical
base for the use of the Black-76 formula for caplets. One of the main goals
of this chapter is precisely that of investigating whether it is possible to build
an arbitrage free model object which produces formulas of the Black type for
caplet prices.

In the market, cap prices are not quoted in monetary terms but instead in
terms of implied Black volatilities, and these volatilities can furthermore be
quoted as flat volatilities or as spot volatilities (also known as forward volati-
lities). They are defined as follows.

Let us consider a fixed date t, the fixed set of dates T0� T1� � � � � TN where
t � T0, and a fixed cap rate R. We assume that, for each i = 1� � � � �N ,
there is a traded cap with resettlement dates T0� T1� � � � � Ti, and we denote the
corresponding observed market price by Capm

i . From this data we can easily
compute the market prices for the corresponding caplets as

(43)Caplmi (t) = Capm
i (t)− Capm

i−1(t)� i = 1� � � � �N

with the convention Capm
0 (t) = 0. Alternatively, given market data for caplets

we can easily compute the corresponding market data for caps.

Definition 5.3. Given market price data as above, the implied Black volatilities
are defined as follows.

• The implied flat volatilities σ̄1� � � � � σ̄N are defined as the solutions of
the equations

(44)Capm
i (t) =

i∑
k=1

CaplBk (t; σ̄i)� i = 1� � � � �N�
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• The implied forward or spot volatilities σ̄1� � � � � σ̄N are defined as so-
lutions of the equations

(45)Caplmi (t) = CaplBi (t; σ̄i)� i = 1� � � � �N�

A sequence of implied volatilities σ̄1� � � � � σ̄N (flat or spot) is called a volatility
term structure. Note that we use the same notation σ̄i for flat as well as for
spot volatilities. In applications this will be made clear by the context.

Summarizing the formal definition above, the flat volatility σ̄i is volatility
implied by the Black formula if you use the same volatility for each caplet in
the cap with maturity Ti. The spot volatility σi is just the implied volatility
from caplet No. i. The difference between flat and forward volatilities is thus
similar to the difference between yields and forward rates. A typical shape of
the volatility term structure (flat or spot) for caps with, say, a three months
tenor is that it has an upward hump for maturities around two–three years, but
that the long end of the curve is downward sloping.

5.2 The LIBOR market model

We now turn from market practice to the construction of the so-called LI-
BOR market models. To motivate these models let us consider the theoretical
arbitrage free pricing of caps. The price ci(t) of a caplet No. i of course one
hand given by the standard risk neutral valuation formula

Capli(t) = αiE
Q
[
e−

∫ Ti
0 r(s) ds · max

[
Li(Ti−1)− R� 0

] ∣∣ Ft

]
�

i = 1� � � � �N�

but it is much more natural to use the Ti forward measure to obtain

(46)
Capli(t) = αipi(t)E

Ti
[
max

[
Li(Ti−1)− R� 0

] ∣∣ Ft
]
� i = 1� � � � �N�

whereETi denotes expectation under theQTi . In order to have a more compact
notation we will from now on denote QTi by Qi.

The focal point of the LIBOR models is the following simple result.

Lemma 5.1. For every i = 1� � � � �N , the LIBOR process Li is a martingale under
the corresponding forward measure QTi , on the interval [0� Ti−1].
Proof. We have

αi · Li(t) = pi−1(t)

pi(t)
− 1�

The process 1 is obviously a martingale under any measure. The process
pi−1/pi is the price of the Ti−1 bond normalized by the numeraire pi. Since pi
is the numeraire for the martingale measure QTi , the process pi−1/pi is thus
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trivially a martingale on the interval [0� Ti−1]. Thus αiLi is a martingale and
hence Li is also a martingale. �

The basic idea is now to define the LIBOR rates such that, for each i, Li(T)
will be lognormal under “its own” measure Qi, since then all caplet prices in
(46) will be given by a Black type formula. In order to do this we consider the
following objects as given a priori.

• A set of resettlement dates T0� � � � � TN .
• An arbitrage free market bonds with maturities T0� � � � � TN .
• A k-dimensional QN -Wiener process W N .
• For each i = 1� � � � �N a deterministic function of time σi(t).
• An initial nonnegative forward rate term structure L1(0)� � � � � LN(0).
• For each i = 1� � � � �N , we define W i as the k-dimensional Qi-Wiener

process generated by W N under the Girsanov transformation QN →
Qi.

Definition 5.4. If the LIBOR forward rates have the dynamics

(47)dLi(t) = Li(t)σi(t) dW i(t)� i = 1� � � � �N�

where W i is Qi-Wiener as described above, then we say that we have a discrete
tenor LIBOR market model with volatilities σ1� � � � � σN .

From the definition above it is not obvious that, given a specification of
σ1� � � � � σN , there exists a corresponding LIBOR market model. In order to
arrive at the basic pricing formulas a quickly as possible we will temporarily ig-
nore the existence problem, but we will come back to it below and thus provide
the missing link.

5.3 Pricing caps in the LIBOR model

Given a LIBOR market model, the pricing of a caplet, and hence also a cap,
is trivial. Since Li in (47) is just a GBM we obtain

Li(T) = Li(t) · e
∫ T
t σi(s) dW i(s)− 1

2
∫ T
t ‖σi(s)‖2 ds�

Since σi is assumed to be deterministic this implies that, conditional on Ft ,
Li(T) is lognormal, i.e. we can write

Li(T) = Li(t)e
Yi(t�T )�

where Yi(t� T ) is normally distributed with expected value

(48)mi(t� T ) = −1
2

T∫
t

∥∥σi(s)∥∥2 ds�



Ch. 9. Topics in Interest Rate Theory 395

and variance

(49)Σ2
i (t� T ) =

T∫
t

∥∥σi(s)∥∥2 ds�

Using these results and (46), a simple calculation gives us the pricing formula
for caps. Alternatively we see that the expectation Ei for the cap price in (46)
is just the call price, within the Black–Scholes framework, in a world with zero
short rate on an underlying traded asset with lognormal distribution as above.

Proposition 5.1. In the LIBOR market model, the caplet prices are given by

(50)Capli(t) = αi · pi(t)
{
Li(t)N[d1] − RN[d2]

}
� i = 1� � � � �N�

where

(51)d1 = 1
Σi(t� Ti−1)

[
ln

(
Li(t)

R

)
+ 1

2
Σ2
i (t� Ti−1)

]
�

(52)d2 = d1 − Σi(t� Ti−1)�

with Σi defined by (49).

We thus see that each caplet price is given by a Black type formula.

Remark 5.1. Sometimes it is more convenient of working with a LIBOR model
of the form

(53)dLi(t) = Li(t)σi(t) dW i(t)� i = 1� � � � �N�

where σi(t) is a scalar deterministic function, W i is a scalar Qi-Wiener process.
Then the formulas above still hold if we replace ‖σi‖2 by σ2

i . We can also allow
for correlation between the various Wiener processes, but this will not affect
the pricing of caps and floors. Such a correlation will however affect the pricing
of more complicated products.

5.4 Terminal measure dynamics and existence

We now turn to the question whether there always exists a LIBOR market
model for any given specification of the deterministic volatilities σ1� � � � � σN . In
order to even get started we first have to specify all LIBOR rates L1� � � � � LN
under one common measure, and the canonical choice is the terminal mea-
sure QN .

Our problem is then basically that of carrying out a two stage program.

• Specify all LIBOR rates under QN with dynamics of the form

(54)

dLi(t) = Li(t)μi
(
t� L(t)

)
dt + Li(t)σi(t) dW N(t)�

i = 1� � � � �N�
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where L(t) = [L1(t)� � � � � LN(t)]&, and μi is some deterministic func-
tion.

• Show that, for some suitable choice of μ1� � � � � μN , the QN dynamics
in (54) will imply Qi dynamics of the form (47).

In order to carry out this program we need to see how W N is transformed
into W i as we change measure from QN to Qi. We do this inductively by study-
ing the effect of the Girsanov transformation from Qi to Qi−1.

Remark 5.2. We have a small but irritating notational problem. LIBOR rates
are typically denoted by the letter “L”, but this is also a standard notation for
a likelihood process. In order to avoid confusion we therefore introduce the
notational convention that, in this chapter only, likelihood processes will be
denoted by the letter η. In particular we introduce the notation

(55)η
j
i (t) =

dQj

dQi
� on Ft for i� j = 1� � � � �N�

In order to get some idea of how we should choose the QN drifts of the
LIBOR rates in (54) we will now perform some informal calculations. We thus
(informally) assume that the LIBOR dynamics are of the form (54) under QN

and that they are also of the form (47) under their own martingale measure. It
is easily seen that the Radon–Nikodym derivative ηji is given by

(56)η
j
i (t) =

pi(0)
pj(0)

· pj(t)
pi(t)

�

and in particular

(57)ηi−1
i (t) = ai · pi−1(t)

pi(t)
= ai

(
1 + αiLi(t)

)
�

where ai = pi(0)/pi−1(0). From this formula we can now easily compute the
ηi−1
i dynamics under Qi as

(58)dηi−1
i (t) = aiαi dLi(t)�

Assuming (still informally) that the Li-dynamics are as in (47), and using (37)
we then obtain

(59)dηi−1
i (t) = aiαiLi(t)σi(t) dW i(t)

(60)= aiαi
1
αi

(
pi−1(t)

pi(t)
− 1

)
σi(t) dW i(t)

(61)= ηi−1
i (t)aiαi

1

ηi−1
i (t)

(
pi−1(t)

pi(t)
− 1

)
σi(t) dW i(t)�
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Using (57) we finally obtain

(62)dηi−1
i (t) = ηi−1

i (t)
αiLi(t)

1 + αiLi(t)
σi(t) dW i(t)�

Thus the Girsanov kernel for ηi−1
i is given by

(63)
αiLi(t)

1 + αiLi(t)
σ&i (t)�

so from the Girsanov Theorem we have the relation

(64)dW i(t) = αiLi(t)

1 + αiLi(t)
σ&i (t) dt + dW i−1(t)�

Applying this inductively we obtain

(65)dW i(t) = −
N∑

k=i+1

αkLk(t)

1 + αkLk(t)
σ&k(t) dt + dW N(t)�

and plugging this into (47) we can finally obtain the QN dynamics of Li (see
(66) below).

All this was done under the informal assumption that there actually existed
a LIBOR model satisfying both (47) and (54). We can however easily turn the
argument around and we have the following existence result.

Proposition 5.2. Consider a given volatility structure σ1� σN , where each σi is
assumed to be bounded, a probability measure QN and a standard QN -Wiener
process W N . Define the processes L1� � � � � LN by

(66)

dLi(t) = −Li(t)
(

N∑
k=i+1

αkLk(t)

1 + αkLk(t)
σk(t)σ

&
i (t)

)
dt

+ Li(t)σi(t) dW N(t)�

for i = 1� � � � �N where we use the convention
∑N

N(� � �) = 0. Then the Qi-
dynamics of Li are given by (47). Thus there exists a LIBOR model with the given
volatility structure.

Proof. Given that (66) has a solution for i = 1� � � � �N , and that the Girsanov
kernel in (63) satisfies the Novikov condition, the proof consists of exactly the
calculations above. As for the existence of a solution of (66), this is trivial for
i = N since then the equation reads

dLN(t) = Li(t)σN(t) dW N(t)�

which is just GBM and since σN is bounded a solution does exist. Assume now
that (66) admits a solution for k = i + 1� � � � �N . We can then write the ith
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component of (66) as

dLi(t) = Li(t)μi
[
t� Li+1(t)� � � � � LN(t)

]
dt + Li(T)σi(t) dW N(t)�

where the point is that μi does only depend on Lk for k = i+1� � � � �N and not
on Li. Denoting the vector (Li+1� � � � � LN) by LNi+1 we thus have the explicit
solution

Li(t) = Li(0) exp

{ t∫
0

(
μi

[
s� LNi+1(s)

] − 1
2
‖σi‖2(s)

)
ds

}

× exp

{ t∫
0

μi
[
s� LNi+1(s)

]
dW N(s)

}
�

thus proving existence by induction. It also follows by induction that, given
an initial positive LIBOR term structure, all LIBOR rate processes will be
positive. From this we see that the Girsanov kernel in (63) is also bounded and
thus it satisfies the Novikov condition. �

5.5 Calibration and simulation

Suppose that we want to price some exotic (i.e. not a cap or a floor) inter-
est rate derivative, like a Bermudan swaption, performing this with a LIBOR
model means that we typically carry out the following two steps.

• Use implied Black volatilities in order to calibrate the model parame-
ters to market data.

• Use Monte Carlo (or some other numerical method) to price the exotic
instrument.

In this section we mainly discuss the calibration part, and only comment briefly
on the numerical aspects. For numerics and simulation see the Notes.

Let us thus assume that, for the resettlement dates T0� � � � � TN , we are given
an empirical term structure of implied forward volatilities, σ̄1� � � � � σ̄N , i.e. the
implied Black volatilities for all caplets. For simplicity we assume that we are
standing at time t = 0. Comparing the Black formula (40) with (50) we see that
in order to calibrate the model we have to choose the deterministic LIBOR
volatilities σ1(·)� � � � � σN(·), such that

(67)σ̄i = 1
Ti

Ti−1∫
0

∥∥σi(s)∥∥2 ds� i = 1� � � � �N�
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Alternatively, if we use a scalar Wiener process for each LIBOR rate we must
choose the scalar function σi(·) such that

(68)σ̄i = 1
Ti

Ti−1∫
0

σ2
i (s) ds� i = 1� � � � �N�

This is obviously a highly under determined system, so in applications it is
common to make some structural assumption about the shape of the volatility
functions. Below is a short and incomplete list of popular specifications. We
use the formalism with a scalar Wiener process for each forward rate, and we
recall that Li lives on the time interval 0 � t � Ti−1. We also introduce the
temporary convention that T−1 = 0.

1. For each i = 1� � � � �N , assume that the corresponding volatility is con-
stant in time, i.e. that

σi(t) = σi

for 0 � t � Ti−1.
2. For each i = 1� � � � �N , assume that σi is piecewise constant, i.e. that

σi(t) = σij� for Tj−1 < t � Tj� j = 0� � � � � i− 1�

3. As in item 2, but with the requirement that the volatility only depends on
the number of resettlement dates left to maturity, i.e. that

σij = βi−j� for Tj−1 < t � Tj� j = 0� � � � � i− 1

where β1� � � � � βN are fixed numbers.
4. As in item 2, with the further specification that

σij = βiγj� for Tj−1 < t � Tj� j = 0� � � � � i− 1

where βi and γj are fixed numbers.
5. Assume some simple functional parameterized form of the volatilities

such as for example

σi(t) = qi(Ti−1 − t)eβi(Ti−1−t)

where qi(·) is some polynomial and βi is a real number.

Assuming that the model has been calibrated to market data, Monte Carlo
simulation is the standard tool for computing prices of exotics. Since the SDE
(66) is to complicate to allow an analytical solution, we have to resort to simu-
lation of discretized versions of the equations.
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6 Notes

The basic papers on the LIBOR and swap market models are Miltersen et
al. (1997), Brace et al. (1997), and Jamshidian (1997). Since these basic papers
were published there has appeared a huge literature on the subject. Very read-
able accounts can be found in Hunt and Kennedy (2000), Protter (2000) and
the almost encyclopedic Brigo and Mercurio (2001).

7 Geometric interest rate theory

The object of this section is to give an introduction to some recent works on
the geometric aspects of interest rate theory.

7.1 Setup

We consider a given forward rate model under a risk neutral martingale
measure Q. We will adopt the Musiela parameterization and use the notation

r(t� x) = f (t� t + x)�

We recall the following result which is the HJM drift condition in the Musiela
parameterization.

Proposition 7.1 (The Forward Rate Equation). Under the martingale measure Q
the r-dynamics are given by

(69)

dr(t� x) =
{
∂

∂x
r(t� x)+ σ(t� x)

x∫
0

σ(t� u)& du

}
dt + σ(t� x) dW (t)�

(70)r(0� x) = ro(0� x)�

where & denotes transpose.

7.2 Main problems

Suppose now that we are give a concrete model M within the above frame-
work, i.e. suppose that we are given a concrete specification of the volatility
process σ . We now formulate a couple of natural problems:

1. Take, in addition to M, also as given a parameterized family G of forward
rate curves. Under which conditions is the family G consistent with the
dynamics of M? Here consistency is interpreted in the sense that, given
an initial forward rate curve in G, the interest rate model M will only
produce forward rate curves belonging to the given family G.
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2. When can the given, inherently infinite dimensional, interest rate model
M be written as a finite dimensional state space model? More precisely,
we seek conditions under which the forward rate process r(t� x) induced
by the model M, can be realized by a system of the form

(71)dZt = a(Zt) dt + b(Zt) dWt�

(72)r(t� x) = G(Zt� x)

where Z (interpreted as the state vector process) is a finite dimensional
diffusion, a(z), b(z) andG(z� x) are deterministic functions andW is the
same Wiener process as in (69).

As will be seen below, these two problems are intimately connected, and the
main purpose of this chapter is to give an overview of some recent work in this
area.

8 Consistency and invariant manifolds

In this section we study when a given submanifold of forward rate curves
is consistent (in the sense described above) with a given interest rate model.
This problem is of interest from an applied as well as from a theoretical point
of view. In particular we will use the results from this section to analyze prob-
lems about existence of finite dimensional factor realizations for interest rate
models on forward rate form.

We have a number of natural problems to study.

I� Given an interest rate model M and a family of forward curves G, what
are necessary and sufficient conditions for consistency?

II� Take as given a specific family G of forward curves (e.g. the Nelson–
Siegel family). Does there exist any interest rate model M which is
consistent with G?

III� Take as given a specific interest rate model M (e.g. the Hull–White
model). Does there exist any finitely parameterized family of forward
curves G which is consistent with M?

We now move on to give precise mathematical definition of the consistency
property discussed above, and this leads us to the concept of an invariant man-
ifold.

Definition 8.1 (Invariant Manifold). Take as given the forward rate process dy-
namics (69). Consider also a fixed family (manifold) of forward rate curves G.
We say that G is locally invariant under the action of r if, for each point
(s� r) ∈ R+ × G, the condition rs ∈ G implies that rt ∈ G, on a time interval
with positive length. If r stays forever on G, we say that G is globally invariant.

The purpose of this section is to characterize invariance in terms of local
characteristics of G and M, and in this context local invariance is the best one
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can hope for. In order to save space, local invariance will therefore be referred
to as invariance.

8.1 The formalized problem

8.1.1 The space
As our basic space of forward rate curves we will use a weighted Sobolev

space, where a generic point will be denoted by r.

Definition 8.2. Consider a fixed real number γ > 0. The space Hγ is defined
as the space of all differentiable (in the distributional sense) functions

r :R+ → R

satisfying the norm condition ‖r‖γ < ∞. Here the norm is defined as

‖r‖γ2 =
∞∫

0

r2(x)e−γx dx+
∞∫

0

(
dr
dx

(x)

)2
e−γx dx�

Remark 8.1. The variable x is as before interpreted as time to maturity. With
the inner product

(r� q) =
∞∫

0

r(x)q(x)e−axdx+
∞∫

0

(
dr
dx

(x)

)(
dq
dx

(x)

)
e−γx dx�

the space Hγ becomes a Hilbert space. Because of the exponential weighting
function all constant forward rate curves will belong to the space. In the sequel
we will suppress the subindex γ, writing H instead of Hγ.

8.1.2 The forward curve manifold
We consider as given a mapping

(73)G :Z → H�

where the parameter space Z is an open connected subset of Rd, i.e. for each
parameter value z ∈ Z ⊆ Rd we have a curve G(z) ∈ H. The value of this
curve at the point x ∈ R+ will be written as G(z� x), so we see that G can also
be viewed as a mapping

(74)G :Z × R+ → R�

The mapping G is thus a formalization of the idea of a finitely parameterized
family of forward rate curves, and we now define the forward curve manifold
as the set of all forward rate curves produced by this family.

Definition 8.3. The forward curve manifold G ⊆ H is defined as

G = Im(G)�
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8.1.3 The interest rate model
We take as given a volatility function σ of the form

σ :H× R+ → Rm

i.e. σ(r� x) is a functional of the infinite dimensional r-variable, and a function
of the real variable x. Denoting the forward rate curve at time t by rt we then
have the following forward rate equation.

(75)drt(x) =
{
∂

∂x
rt(x)+ σ(rt� x)

x∫
0

σ(rt� u)
& du

}
dt + σ(rt� x) dWt�

Remark 8.2. For notational simplicity we have assumed that the r-dynamics
are time homogeneous. The case when σ is of the form σ(t� r� x) can be treated
in exactly the same way. See Björk and Cristensen, 1999.

We need some regularity assumptions, and the main ones are as follows. See
Björk and Cristensen (1999) for technical details.

Assumption 8.1. We assume the following.

• The volatility mapping r (−→ σ(r) is smooth.
• The mapping z (−→ G(z) is a smooth embedding, so in particular the

Frechet derivative G′
z(z) is injective for all z ∈ Z .

• For every initial point r0 ∈ G, there exists a unique strong solution in
H of Eq. (75).

8.1.4 The problem
Our main problem is the following.

• Suppose that we are given
– A volatility σ , specifying an interest rate model M as in (75).
– A mapping G, specifying a forward curve manifold G.

• Is G then invariant under the action of r?

8.2 The invariance conditions

In order to study the invariance problem we need to introduce some com-
pact notation.

Definition 8.4. We define Hσ by

Hσ(r� x) =
x∫

0

σ(r� s) ds�
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Suppressing the x-variable, the Itô dynamics for the forward rates are thus
given by

(76)drt =
{
∂

∂x
rt + σ(rt)Hσ(rt)&

}
dt + σ(rt) dWt

and we write this more compactly as

(77)drt = μ0(rt) dt + σ(rt) dWt�

where the drift μ0 is given by the bracket term in (76). To get some intuition
we now formally “divide by dt” and obtain

(78)
dr
dt

= μ0(rt)+ σ(rt)Ẇt�

where the formal time derivative Ẇt is interpreted as an “input signal” chosen
by chance. We are thus led to study the associated deterministic control system

(79)
dr
dt

= μ0(rt)+ σ(rt)ut�

The intuitive idea is now that G is invariant under (77) if and only if G is invari-
ant under (79) for all choices of the input signal u. It is furthermore geometri-
cally obvious that this happens if and only if the velocity vector μ(r) + σ(r)u
is tangential to G for all points r ∈ G and all choices of u ∈ Rm. Since the
tangent space of G at a point G(z) is given by Im[G′

z(z)], where G′
z denotes

the Frechet derivative (Jacobian), we are led to conjecture that G is invariant
if and only if the condition

μ0(r)+ σ(r)u ∈ Im
[
G′
z(z)

]
is satisfied for all u ∈ Rm. This can also be written

μ0(r) ∈ Im
[
G′
z(z)

]
�

σ(r) ∈ Im
[
G′
z(z)

]
�

where the last inclusion is interpreted component wise for σ .
This “result” is, however, not correct due to the fact that the argument above

neglects the difference between ordinary calculus, which is used for (79), and
Itô calculus, which governs (77). In order to bridge this gap we have to rewrite
the analysis in terms of Stratonovich integrals instead of Itô integrals.

Definition 8.5. For given semimartingales X and Y , the Stratonovich integral
of X with respect to Y ,

∫ t
0 X(s) ◦ dY(s), is defined as

(80)

t∫
0

Xs ◦ dYs =
t∫

0

Xs dYs + 1
2
〈X�Y 〉t �
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The first term on the RHS is the Itô integral. In the present case, with
only Wiener processes as driving noise, we can define the ‘quadratic variation
process’ 〈X�Y 〉 in (80) by

(81)d〈X�Y 〉t = dXt dYt�

with the usual ‘multiplication rules’ dW · dt = dt · dt = 0, dW · dW = dt. We
now recall the main result and raison d’être for the Stratonovich integral.

Proposition 8.1 (Chain Rule). Assume that the function F(t� y) is smooth. Then
we have

(82)dF(t� Yt) = ∂F

∂t
(t� Yt) dt + ∂F

∂y
◦ dYt�

Thus, in the Stratonovich calculus, the Itô formula takes the form of the
standard chain rule of ordinary calculus.

Returning to (77), the Stratonovich dynamics are given by

drt =
{
∂

∂x
rt + σ(rt)Hσ(rt)&

}
dt − 1

2
d
〈
σ(rt)�Wt

〉
(83)+ σ(rt) ◦ dWt�

In order to compute the Stratonovich correction term above we use the infinite
dimensional Itô formula (see Da Prato and Zabzcyk, 1992) to obtain

(84)dσ(rt) = {� � �} dt + σ ′
r(rt)σ(rt) dWt�

where σ ′
r denotes the Frechet derivative of σ w.r.t. the infinite dimensional

r-variable. From this we immediately obtain

(85)d
〈
σ(rt)�Wt

〉 = σ ′
r(rt)σ(rt) dt�

Remark 8.3. If the Wiener process W is multidimensional, then σ is a vector
σ = [σ1� � � � � σm], and the RHS of (85) should be interpreted as

σ ′
r(rt)σ(rt� x) =

m∑
i=1

σ ′
ir(rt)σi(rt)�

Thus (83) becomes

drt =
{
∂

∂x
rt + σ(rt)Hσ(rt)& − 1

2
σ ′
r(rt)σ(rt)

}
dt

(86)+ σ(rt) ◦ dWt�

We now write (86) as

(87)drt = μ(rt) dt + σ(rt) ◦ dWt�
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where

(88)μ(r� x) = ∂

∂x
r(x)+ σ(rt� x)

x∫
0

σ(rt� u)
& du− 1

2
[
σ ′
r(rt)σ(rt)

]
(x)�

Given the heuristics above, our main result is not surprising. The formal
proof, which is somewhat technical, is left out. See Björk and Cristensen
(1999).

Theorem 8.1 (Main Theorem). The forward curve manifold G is locally invariant
for the forward rate process r(t� x) in M if and only if

(89)G′
x(z)+ σ(r)Hσ(r)& − 1

2
σ ′
r(r)σ(r) ∈ Im

[
G′
z(z)

]
�

(90)σ(r) ∈ Im
[
G′
z(z)

]
hold for all z ∈ Z with r = G(z).

Here,G′
z andG′

x denote the Frechet derivative of G with respect to z and x,
respectively. The condition (90) is interpreted component wise for σ . Condi-
tion (89) is called the consistent drift condition, and (90) is called the consistent
volatility condition.

Remark 8.4. It is easily seen that if the family G is invariant under shifts in the
x-variable, then we will automatically have the relation

G′
x(z) ∈ Im

[
G′
z(z)

]
�

so in this case the relation (89) can be replaced by

σ(r)Hσ(r)& − 1
2
σ ′
r(r)σ(r) ∈ Im

[
G′
z(z)

]
�

with r = G(z) as usual.

8.3 Examples

The results above are extremely easy to apply in concrete situations. As a
test case we consider the Nelson–Siegel (see Nelson and Siegel, 1987) family
of forward rate curves. We analyze the consistency of this family with the Ho–
Lee and Hull–White interest rate models.

8.3.1 The Nelson–Siegel family
The Nelson–Siegel (henceforth NS) forward curve manifold G is parame-

terized by z ∈ R4, the curve x (−→ G(z� x) as

(91)G(z� x) = z1 + z2e
−z4x + z3xe

−z4x�
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For z4 �= 0, the Frechet derivatives are easily obtained as

(92)G′
z(z� x) =

[
1� e−z4x� xe−z4x� −(z2 + z3x)xe

−z4x
]
�

(93)G′
x(z� x) = (z3 − z2z4 − z3z4x)e

−z4x�

In the degenerate case z4 = 0, we have

(94)G(z� x) = z1 + z2 + z3x�

We return to this case below.

8.3.2 The Hull–White and Ho–Lee models
As our test case, we analyze the Hull and White (henceforth HW) extension

of the Vasiček model. On short rate form the model is given by

(95)dR(t) = {
Φ(t)− aR(t)

}
dt + σ dW (t)�

where a, σ > 0. As is well known, the corresponding forward rate formulation
is

(96)dr(t� x) = β(t� x) dt + σe−ax dWt�

Thus, the volatility function is given by σ(x) = σe−ax, and the conditions of
Theorem 8.1 become

(97)G′
x(z� x)+

σ2

a

[
e−ax − e−2ax] ∈ Im

[
G′
z(z� x)

]
�

(98)σe−ax ∈ Im
[
G′
z(z� x)

]
�

To investigate whether the NS manifold is invariant under HW dynamics, we
start with (98) and fix a z-vector. We then look for constants (possibly depend-
ing on z) A, B, C, and D, such that for all x � 0 we have

(99)σe−ax = A+ Be−z4x + Cxe−z4x −D(z2 + z3x)xe
−z4x�

This is possible if and only if z4 = a, and since (98) must hold for all choices of
z ∈ Z we immediately see that HW is inconsistent with the full NS manifold
(see also the Notes below).

Proposition 8.2 (Nelson–Siegel and Hull–White). The Hull–White model is in-
consistent with the NS family.

We have thus obtained a negative result for the HW model. The NS mani-
fold is ‘too small’ for HW, in the sense that if the initial forward rate curve is
on the manifold, then the HW dynamics will force the term structure off the
manifold within an arbitrarily short period of time. For more positive results
see Björk and Cristensen, 1999.

Remark 8.5. It is an easy exercise to see that the minimal manifold which is
consistent with HW is given by

G(z� x) = z1e
−ax + z2e

−2ax�
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8.4 The Filipović state space approach to consistency

As we very easily detected above, neither the HW nor the HL model is con-
sistent with the Nelson–Siegel family of forward rate curves. A much more
difficult problem is to determine whether any interest rate model is. In a very
general setting, inverse consistency problems like this has been studied in great
detail by Filipović (Filipović, 1999, 2000a, 2000b). In this section we will give an
introduction to the Filipović state space approach to the (inverse) consistency
problem, and we will also study a small laboratory example.

The study will be done within the framework of a factor model.

Definition 8.6. A factor model for the forward rate process r consists of the
following objects and relations.

• A d-dimensional factor or state processZ withQ-dynamics of the form

(100)dZt = a(Zt) dt + b(Zt) dWt�

where W is an m-dimensional Wiener process. We denote by ai the
ith component of the column vector a, and by bi the ith row of the
matrix b.

• A smooth output mapping

G :Rd → H�

For each z ∈ Rd, G(z) is thus a real valued C∞ function and it’s value
at the point x ∈ R is denoted by G(z� x).

• The forward rate process is then defined by

(101)rt = G(Zt)�

or on component form

(102)rt(x) = G(Zt� x)�

Since we have given the Z dynamics under the martingale measure Q, it is
obvious that there has to be some consistency requirements on the relations
between a, b and G in order for r in (101) to be a specification of the forward
rate process under Q. The obvious way of deriving the consistency require-
ments is to compute the r dynamics from (100)–(101) and then to compare the
result with the general form of the forward rate equation in (69). For ease of
notation we will use the shorthand notation

(103)Gx = ∂G

∂x
� Gi = ∂G

∂zi
� Gi = ∂2G

∂zi∂zj
�

From the Itô formula, (100), and (101) we obtain

(104)drt =
{

d∑
i=1

Gi(Zt)ai(Zt) dt + 1
2

d∑
i�j=1

Gij(Zt)bi(Zt)b
&
j (Zt)

}
dt
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(105)+
d∑
i=1

Gi(Zt)bi(Zt) dWt

where & denotes transpose. Going back to the forward rate equation (69), we
can identify the volatility process as

σt =
d∑
i=1

Gi(Zt)bi(Zt)�

We now insert this into the drift part of (69). We then use (101) to deduce
that Frt = Gx(Zt) and also insert this expression into the drift part of (69).
Comparing the resulting equation with (104) gives us the required consistency
conditions.

Proposition 8.3 (Filipović). Under a martingale measureQ, the following relation
must hold identically in (z� x).

Gx(z� x)+
d∑

i�j=1

bi(z)b
&
j (z)Gi(z� x)

x∫
0

Gj(z� s) ds

(106)=
d∑
i=1

Gi(z� x)ai(z)+ 1
2

d∑
i�j=1

Gij(z� x)bi(z)b
&
j (z)�

We can view the consistency equation (106) in three different ways.

• We can check consistency for a given specification of G, a, b.
• We can specify a and b. Then (106) is a PDE for the determination of

a consistent output function G.
• We can specify G, i.e. we can specify a finite dimensional manifold of

forward rate curves, and then use (106) to investigate whether there
exist an underlying consistent state vector process Z, and if so, to find
a and b.

We will focus on the last inverse problem above, and to see how the consis-
tency equation can be used, we now go on to study to two simple laboratory
examples.

Example 8.1. In this example we consider the 2-dimensional manifold of linear
forward rate curves, i.e. the output function G defined by

(107)G(z� x) = z1 + z2x�

This is not a very natural example from a finance point of view, but it is a
good illustration of technique. The question we ask is whether there exist some
forward rate model consistent with the class of linear forward rate curves and
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if so what the factor dynamics look like. For simplicity we restrict ourselves to
the case of a scalar driving Wiener process, but the reader is invited to analyze
the (perhaps more natural) case with a two-dimensional W .

We thus model the factor dynamics as

(108)dZ1�t = a1(Zt) dt + b1(Zt) dWt�

(109)dZ2�t = a1(Zt) dt + b2(Zt) dWt�

In this case we have

Gx(z� x) = z2� G1(z� x) = 1� G2(z� x) = x�

G11(z� x) = 0� G12(z� x) = 0� G22(z� x) = 0�

and
x∫

0

G1(z� s) ds = x�

x∫
0

G2(z� s) ds = 1
2
x2�

so the consistency equation (106) becomes

(110)

z2 + b2
1(z)x+ b1(z)b2(z)

1
2
x2 + b2(z)b1(z)x

2 + b2
2(z)

1
2
x3

= a1(z)+ a2(z)x�

Identifying coefficients we see directly that b2 = 0 so the equation reduces to

(111)z2 + b2
1(z)x = a1(z)+ a2(z)x

which gives us the relations a1 = z2 and a2 = b2
1. Thus we see that for this

choice of G there does indeed exist a class of consistent factor models, with
factor dynamics given by

(112)dZ1�t = Z2�t dt + b1(Zt) dWt�

(113)dZ2�t = b2
1(Zt) dt�

Here b1 can be chosen completely freely (subject only to regularity conditions).
Choosing b1(z) = 1, we see that the factor Z2 is essentially running time, and
the model is then in fact a special case of the Ho–Lee model.

8.5 Notes

The section is largely based on Björk and Cristensen (1999) and Filipović
(1999). In our presentation we have used strong solutions of the infinite dimen-
sional forward rate SDE. This is of course restrictive. The invariance problem
for weak solutions has been studied by Filipović in great depth (Filipović, 2001,
2000b). An alternative way of studying invariance is by using some version of
the Stroock–Varadhan support theorem, and this line of thought is carried out
in depth in Zabczyk (2001).
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9 Existence of nonlinear realizations

We now turn to Problem 2 in Section 7.2, i.e. the problem when a given
forward rate model has a finite dimensional factor realization. For ease of ex-
position we mostly confine ourselves to a discussion of the case of a single
driving Wiener process and to time invariant forward rate dynamics. We will
use some ideas and concepts from differential geometry, and a general refer-
ence here is Warner (1979). The section is based on Björk and Svensson (2001).

We now take as given a volatility σ :H → H and consider the induced for-
ward rate model (on Stratonovich form)

(114)drt = μ(rt) dt + σ(rt) ◦ dWt

where as before (see Section 8.2),

(115)μ(r) = ∂

∂x
r + σ(r)Hσ(r)& − 1

2
σ ′
r(r)σ(r)�

Remark 9.1. The reason for our choice of H as the underlying space, is that the
linear operator F = ∂/∂x is bounded in this space. Together with the assump-
tions above, this implies that both μ and σ are smooth vector fields on H, thus
ensuring the existence of a strong local solution to the forward rate equation
for every initial point ro ∈ H.

9.1 The geometric problem

Given a specification of the volatility mapping σ , and an initial forward rate
curve ro we now investigate when (and how) the corresponding forward rate
process possesses a finite, dimensional realization. We are thus looking for
smooth d-dimensional vector fields a and b, an initial point z0 ∈ Rd, and a
mapping G :Rd → H such that r, locally in time, has the representation

(116)dZt = a(Zt) dt + b(Zt) dWt� Z0 = z0�

(117)r(t� x) = G(Zt� x)�

Remark 9.2. Let us clarify some points. Firstly, note that in principle it may
well happen that, given a specification of σ , the r-model has a finite dimen-
sional realization given a particular initial forward rate curve ro, while being
infinite dimensional for all other initial forward rate curves in a neighborhood
of ro. We say that such a model is a non-generic or accidental finite dimen-
sional model. If, on the other hand, r has a finite dimensional realization for
all initial points in a neighborhood of ro, then we say that the model is a gener-
ically finite dimensional model. In this text we are solely concerned with the
generic problem. Secondly, let us emphasize that we are looking for local (in
time) realizations.
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We can now connect the realization problem to our studies of invariant
manifolds.

Proposition 9.1. The forward rate process possesses a finite dimensional realiza-
tion if and only if there exists an invariant finite dimensional submanifold G with
ro ∈ G.

Proof. See Björk and Cristensen (1999) for the full proof. The intuitive argu-
ment runs as follows. Suppose that there exists a finite dimensional invariant
manifold G with ro ∈ G. Then G has a local coordinate system, and we may
define the Z process as the local coordinate process for the r-process. On the
other hand it is clear that if r has a finite dimensional realization as in (116)–
(117), then every forward rate curve that will be produced by the model is
of the form x (−→ G(z� x) for some choice of z. Thus there exists a finite di-
mensional invariant submanifold G containing the initial forward rate curve ro,
namely G = ImG. �

Using Theorem 8.1 we immediately obtain the following geometric charac-
terization of the existence of a finite realization.

Corollary 9.1. The forward rate process possesses a finite dimensional realization
if and only if there exists a finite dimensional manifold G containing ro, such that,
for each r ∈ G the following conditions hold:

μ(r) ∈ TG(r)�

σ(r) ∈ TG(r)�

Here TG(r) denotes the tangent space to G at the point r, and the vector fields μ
and σ are as above.

9.2 The main result

Given the volatility vector field σ , and hence also the field μ, we now are
faced with the problem of determining if there exists a finite dimensional man-
ifold G with the property that μ and σ are tangential to G at each point of G.
In the case when the underlying space is finite dimensional, this is a standard
problem in differential geometry, and we will now give the heuristics.

To get some intuition we start with a simpler problem and therefore con-
sider the space H (or any other Hilbert space), and a smooth vector field f on
the space. For each fixed point ro ∈ H we now ask if there exists a finite di-
mensional manifold G with ro ∈ G such that f is tangential to G at every point.
The answer to this question is yes, and the manifold can in fact be chosen to be
one-dimensional. To see this, consider the infinite dimensional ODE

(118)
drt
dt

= f (rt)�
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(119)r0 = ro�

If rt is the solution, at time t, of this ODE, we use the notation

rt = ef tro�

We have thus defined a group of operators {ef t : t ∈ R}, and we note that the set
{ef tro: t ∈ R} ⊆ H is nothing else than the integral curve of the vector field f ,
passing through ro. If we define G as this integral curve, then our problem is
solved, since f will be tangential to G by construction.

Let us now take two vector fields f1 and f2 as given, where the reader infor-
mally can think of f1 as σ and f2 as μ. We also fix an initial point ro ∈ H and
the question is if there exists a finite dimensional manifold G, containing ro,
with the property that f1 and f2 are both tangential to G at each point of G.
We call such a manifold an tangential manifold for the vector fields. At a first
glance it would seem that there always exists an tangential manifold, and that
it can even be chosen to be two-dimensional. The geometric idea is that we
start at ro and let f1 generate the integral curve {ef1sro: s � 0}. For each point
ef1sro on this curve we now let f2 generate the integral curve starting at that
point. This gives us the object ef2tef1sro and thus it seems that we sweep out a
two-dimensional surface G in H. This is our obvious candidate for an tangential
manifold.

In the general case this idea will, however, not work, and the basic problem
is as follows. In the construction above we started with the integral curve gen-
erated by f1 and then applied f2, and there is of course no guarantee that we
will obtain the same surface if we start with f2 and then apply f1. We thus have
some sort of commutativity problem, and the key concept is the Lie bracket.

Definition 9.1. Given smooth vector fields f and g on H, the Lie bracket [f� g]
is a new vector field defined by

(120)[f� g](r) = f ′(r)g(r)− g′(r)f (r)�

The Lie bracket measures the lack of commutativity on the infinitesimal
scale in our geometric program above, and for the procedure to work we need
a condition which says that the lack of commutativity is “small”. It turns out
that the relevant condition is that the Lie bracket should be in the linear hull
of the vector fields.

Definition 9.2. Let f1� � � � � fn be smooth independent vector fields on some
space X. Such a system is called a distribution, and the distribution is said to
be involutive if

[fi� fj](x) ∈ span
{
f1(x)� � � � � fn(x)

}
� ∀i� j�

where the span is the linear hull over the real numbers.
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We now have the following basic result, which extends a classic result from
finite dimensional differential geometry (see Warner, 1979).

Theorem 9.1 (Frobenius). Let f1� � � � � fk and be independent smooth vector
fields in H and consider a fixed point ro ∈ H. Then the following statements
are equivalent.

• For each point r in a neighborhood of ro, there exists a k-dimensional
tangential manifold passing through r.

• The system f1� � � � � fk of vector fields is (locally) involutive.

Proof. See Björk and Svensson (2001), which provides a self contained proof
of the Frobenius Theorem in Banach space. �

Let us now go back to our interest rate model. We are thus given the vec-
tor fields μ, σ , and an initial point ro, and the problem is whether there exists
a finite dimensional tangential manifold containing ro. Using the infinite di-
mensional Frobenius theorem, this situation is now easily analyzed. If {μ�σ}
is involutive then there exists a two-dimensional tangential manifold. If {μ�σ}
is not involutive, this means that the Lie bracket [μ�σ] is not in the linear
span of μ and σ , so then we consider the system {μ�σ� [μ�σ]}. If this system
is involutive there exists a three-dimensional tangential manifold. If it is not
involutive at least one of the brackets [μ� [μ�σ]], [σ� [μ�σ]] is not in the span
of {μ�σ� [μ�σ]}, and we then adjoin this (these) bracket(s). We continue in
this way, forming brackets of brackets, and adjoining these to the linear hull of
the previously obtained vector fields, until the point when the system of vector
fields thus obtained actually is closed under the Lie bracket operation.

Definition 9.3. Take the vector fields f1� � � � � fk as given. The Lie algebra gen-
erated by f1� � � � � fk is the smallest linear space (over R) of vector fields which
contains f1� � � � � fk and is closed under the Lie bracket. This Lie algebra is
denoted by

L = {f1� � � � � fk}LA�
The dimension of L is defined, for each point r ∈ H as

dim
[
L(r)

] = dim span
{
f1(r)� � � � � fk(r)

}
�

Putting all these results together, we have the following main result on finite
dimensional realizations.

Theorem 9.2 (Main Result). Take the volatility mapping σ = (σ1� � � � � σm) as
given. Then the forward rate model generated by σ generically admits a finite di-
mensional realization if and only if

dim{μ�σ1� � � � � σm}LA < ∞
in a neighborhood of ro.
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When computing the Lie algebra generated by μ and σ , the following ob-
servations are often useful.

Lemma 9.1. Take the vector fields f1� � � � � fk as given. The Lie algebra L =
{f1� � � � � fk}LA remains unchanged under the following operations.

• The vector field fi(r) may be replaced by α(r)fi(r), where α is any smooth
nonzero scalar field.

• The vector field fi(r) may be replaced by

fi(r)+
∑
j �=i

αj(r)fj(r)�

where αj is any smooth scalar field.

Proof. The first point is geometrically obvious, since multiplication by a scalar
field will only change the length of the vector field fi, and not its direction, and
thus not the tangential manifold. Formally it follows from the “Leibnitz rule”
[f� αg] = α[f� g]−(α′f )g. The second point follows from the bilinear property
of the Lie bracket together with the fact that [f� f ] = 0. �

9.3 Applications

In this section we give some simple applications of the theory developed
above, but first we need to recall some facts about quasi-exponential functions.

Definition 9.4. A quasi-exponential (or QE) function is by definition any func-
tion of the form

(121)f (x) =
∑
i

eλix +
∑
j

eαix
[
pj(x) cos(ωjx)+ qj(x) sin(ωjx)

]
�

where λi� α1�ωj are real numbers, whereas pj and qj are real polynomials.

QE functions will turn up over and over again, so we list some simple well
known properties.

Lemma 9.2. The following hold for the quasi-exponential functions.

• A function is QE if and only if it is a component of the solution of a vector
valued linear ODE with constant coefficients.

• A function is QE if and only if it can be written as f (x) = ceAxb, where
c is a row vector, A is a square matrix and b is a column vector.

• If f is QE, then f ′ is QE.
• If f is QE, then its primitive function is QE.
• If f and g are QE, then fg is QE.
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9.3.1 Constant volatility
We start with the simplest case, which is when the volatility σ(r� x) is a con-

stant vector in H, and we assume for simplicity that we have only one driving
Wiener process. Then we have no Stratonovich correction term and the vector
fields are given by

μ(r� x) = Fr(x)+ σ(x)

x∫
0

σ(s) ds�

σ(r� x) = σ(x)�

where as before F = ∂
∂x .

The Frechet derivatives are trivial in this case. Since F is linear (and
bounded in our space), and σ is constant as a function of r, we obtain

μ′
r = F�

σ ′
r = 0�

Thus the Lie bracket [μ�σ] is given by

[μ�σ] = Fσ�

and in the same way we have[
μ� [μ�σ]] = F2σ�

Continuing in the same manner it is easily seen that the relevant Lie algebra L
is given by

L = {μ�σ}LA = span
{
μ�σ�Fσ�F2σ� � � �

}
= span

{
μ�Fnσ ;n = 0� 1� 2� � � �

}
�

It is thus clear that L is finite dimensional (at each point r) if and only if the
function space

span
{
Fnσ ;n = 0� 1� 2� � � �

}
is finite dimensional. We have thus obtained tho following result.

Proposition 9.2. Under the above assumptions, there exists a finite dimensional
realization if and only if σ is a quasi-exponential function.

9.3.2 Constant direction volatility
We go on to study the most natural extension of the deterministic volatility

case (still in the case of a scalar Wiener process) namely the case when the
volatility is of the form

(122)σ(r� x) = ϕ(r)λ(x)�
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In this case the individual vector field σ has the constant direction λ ∈ H, but
is of varying length, determined by ϕ, where ϕ is allowed to be any smooth
functional of the entire forward rate curve. In order to avoid trivialities we
make the following assumption.

Assumption 9.1. We assume that ϕ(r) �= 0 for all r ∈ H.

After a simple calculation the drift vector μ turns out to be

(123)μ(r) = Fr + ϕ2(r)D− 1
2
ϕ′(r)[λ]ϕ(r)λ�

where ϕ′(r)[λ] denotes the Frechet derivative ϕ′(r) acting on the vector λ, and
where the constant vector D ∈ H is given by

D(x) = λ(x)

x∫
0

λ(s) ds�

We now want to know under what conditions on ϕ and λ we have a finite
dimensional realization, i.e. when the Lie algebra generated by

μ(r) = Fr + ϕ2(r)D− 1
2
ϕ′(r)[λ]ϕ(r)λ�

σ(r) = ϕ(r)λ�

is finite dimensional. Under Assumption 9.1 we can use Lemma 9.1, to see that
the Lie algebra is in fact generated by the simpler system of vector fields

f0(r) = Fr +Φ(r)D�

f1(r) = λ�

where we have used the notation

Φ(r) = ϕ2(r)�

Since the field f1 is constant, it has zero Frechet derivative. Thus the first Lie
bracket is easily computed as

[f0� f1](r) = Fλ+Φ′(r)[λ]D�
The next bracket to compute is [[f0� f1]� f1] which is given by[[f0� f1]� f1

] = Φ′′(r)[λ;λ]D�
Note that Φ′′(r)[λ;λ] is the second order Frechet derivative of Φ operating on
the vector pair [λ;λ]. This pair is to be distinguished from (notice the semi-
colon) the Lie bracket [λ� λ] (with a comma), which if course would be equal
to zero. We now make a further assumption.

Assumption 9.2. We assume that Φ′′(r)[λ;λ] �= 0 for all r ∈ H.
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Given this assumption we may again use Lemma 9.1 to see that the Lie
algebra is generated by the following vector fields

f0(r) = Fr�

f1(r) = λ�

f3(r) = Fλ�

f4(r) = D�

Of these vector fields, all but f0 are constant, so all brackets are easy. After
elementary calculations we see that in fact

{μ�σ}LA = span
{
Fr�Fnλ� FnD; n = 0� 1� � � �

}
�

From this expression it follows immediately that a necessary condition for
the Lie algebra to be finite dimensional is that the vector space spanned by
{Fnλ; n � 0} is finite dimensional. This occurs if and only if λ is quasi-
exponential. If, on the other hand, λ is quasi-exponential, then we know from
Lemma 9.2, that also D is quasi-exponential, since it is the integral of the
QE function λ multiplied by the QE function λ. Thus the space {FnD; n =
0� 1� � � �} is also finite dimensional, and we have proved the following result.

Proposition 9.3. Under Assumptions 9.1 and 9.2, the interest rate model with
volatility given by σ(r� x) = ϕ(r)λ(x) has a finite dimensional realization if and
only if λ is a quasi-exponential function. The scalar field ϕ is allowed to be any
smooth field.

9.4 Notes

The section is largely based on Björk and Svensson (2001) where full proofs
and further results can be found, and where also the time varying case is con-
sidered. In our study of the constant direction model above, ϕ was allowed to
be any smooth functional of the entire forward rate curve. The simpler special
case when ϕ is a point evaluation of the short rate, i.e. of the form ϕ(r) =
h(r(0)), has been studied in Bhar and Chiarella (1997), Inui and Kijima (1998)
and Ritchken and Sankarasubramanian (1995). All these cases fall within our
present framework and the results are included as special cases of the general
theory above. A different case, treated in Chiarella and Kwon (2001), occurs
when σ is a finite point evaluation, i.e. when σ(t� r) = h(t� r(x1)� � � � � r(xk))
for fixed benchmark maturities x1� � � � � xk. In Chiarella and Kwon (2001) it
is studied when the corresponding finite set of benchmark forward rates is
Markovian.

The Lie theory can also be used to determine when a HJM model leads to
a Markovian short rate. A classic paper on Markovian short rates is Carverhill
(1994), where a deterministic volatility of the form σ(t� x) is considered. The
first to state and prove a general result was Jeffrey (1995). See Eberlein and
Raible (1999) for an example with a driving Levy process.
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The problem of how to construct a concrete realization, given knowledge
of the structure of the (finite dimensional) Lie algebra has been studied in
Björk and Landén (2002). Stochastic volatility models are treated in Björk et
al. (2002).

The functional analytical framework above has been extended consider-
ably by Filipovć and Teichmann (Filipović and Teichmann, 2002, 2003, 2004).
In particular, Filipović and Teichmann prove the remarkable result that any
forward rate model admitting an FDR must necessarily have an affine term
structure.

The geometric ideas presented above and in Björk and Svensson (2001) are
intimately connected to controllability problems in systems theory, where they
have been used extensively (see Isidori, 1989). They have also been used in
filtering theory, where the problem is to find a finite dimensional realization of
the unnormalized conditional density process, the evolution of which is given
by the Zakai equation. See Brocket (1981) for an overview of these areas.

10 Potentials and positive interest

In the previous sections, all modeling has been done under an equivalent
martingale measure Q. It is of course also possible to model the relevant sto-
chastic processes under the objective probability measure P , provided one can
link it to the (not necessarily unique) martingale measure Q. This way of mod-
eling is in fact what is done routinely in theoretical and empirical asset pricing
theory, where one uses a stochastic discount factor (or SDF for short) instead
of a martingale measure, and the purpose of this section is to present two
approaches to interest rate theory based on stochastic discount factor, and re-
lating bond pricing to stochastic potential theory.

Another appealing aspects of the approaches described below is that they
both generate positive term structures, i.e. a system of bond prices for which all
induced forward rates are positive. It is easily seen that positivity is equivalent
to a positive short rate, and also equivalent to the conditions 0 � p(t� T) � 1
and pT (t� T ) < 0 where pT denotes the partial derivative of the bond price
w.r.t. maturity.

At the end of the section we will also present a new approach to positive
interest rate modeling, based on a study of the “term structure density.” Al-
though this approach is not based directly on potential we include it in the
present section because of its connection to positive interest rates.

10.1 Generalities

As a general setup we consider a standard filtered probability space
(Ω�F�F� P) where P is the objective measure. We now need an assumption
about how he market prices various assets.



420 T. Björk

Assumption 10.1. We assume that the market prices all assets, underlying and
derivative, using a fixed martingale measure Q (with the money account as the
numeraire).

We now recall that for a T -claim Y the arbitrage free price process is given
by

Π(t;X) = EQ
[
e−

∫ T
t rs ds · Y ∣∣ Ft

]
�

and, in particular, we have the price at t = 0 as

(124)Π(0;X) = EQ
[
e−

∫ T
0 rs ds · Y

]
�

We denote the likelihood process for the transition from the objective mea-
sure P to the martingale measure Q by L, i.e.

(125)Lt = dQt

dPt
�

where subindex t denotes the restriction of P and Q to Ft . We may of course
also write the price in (124) as an expected value under P:

(126)EP
[
e−

∫ T
0 rs ds · LT · Y

]
= EP [ZT · Y ]�

This leads us to the following definition.

Definition 10.1. The state price density process, or stochastic discount fac-
tor Z is defined by

(127)Z(t) = e−
∫ t

0 rs ds · Lt�

We now have the following basic pricing result.

Proposition 10.1. For any T -claim Y , the arbitrage free price process is given by

(128)Π(t;X) = EP [ZTY | Ft]
Zt

�

In particular, bond prices are given by

(129)p(t� T) = EP [ZT | Ft]
Zt

�

Proof. From the Bayes formula we obtain

Π(t;X) = EQ
[
e−

∫ T
t rs dsY

∣∣ Ft

]
= EP [e−

∫ T
t rs dsLTY | Ft]

EQ[LT | Ft]
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= EP [e−
∫ T
t rs dsLTY | Ft]
Lt

= EP [ZTY | Ft]
Zt

� �

We now have the following fact which we will use extensively.

Proposition 10.2. Assume that the short rate is strictly positive and that the eco-
nomically natural condition p(0� T ) → 0 as T → ∞ is satisfied. Then the
stochastic discount factor Z is a probabilistic potential, i.e.

• Z is a supermartingale.
• E[Zt] → 0 as t → ∞.

Conversely one can show that any potential will serve as a stochastic dis-
count factor. The moral is thus that modeling bond prices in a market with
positive interest rates is equivalent to modeling a potential, and in the next
sections we will describe two ways of doing this.

We end by noticing that we can easily recover the short rate from the dy-
namics of Z.

Proposition 10.3. If the dynamics of Z are written as

(130)dZt = −ht dt + dMt

where h is nonnegative and M is a martingale, then the short rate is given by

(131)rt = Z−1
t ht �

Proof. Applying the Itô formula to the definition of Z we obtain

(132)dZt = −rtZt dt + e−
∫ t

0 rs ds dLt�

�

10.2 The Flesaker–Hughston fractional model

Given a stochastic discount factor Z and a positive short rate we may, for
each fixed T , define the process {X(t� T); 0 � t � T } by

(133)X(t� T) = EP [ZT | Ft]�
and thus, according to (129) write bond prices as

(134)p(t� T) = X(t� T)

X(t� t)
�

We now have the following result.
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Proposition 10.4. For each fixed t, the mapping T (−→ X(t� T) is smooth, and
in fact

(135)
∂

∂T
X(t� T) = −EP [rTZT | Ft]�

Furthermore, for each fixed T , the process

XT(t� T ) = ∂

∂T
X(t� T)

is a negative P-martingale satisfying

(136)XT(0� T ) = −pT (0� T )� for all T � 0�

Proof. Using the definition of Z and the Itô formula, we obtain

dZs = −rsZs ds + B−1
s dLs�

so

ZT = Zt −
T∫
t

rsZs ds +
T∫
t

B−1
s dLs�

Since L is a martingale, this gives us

EP [ZT | Ft] = −EP

[ T∫
t

rsZs ds | Ft

]
�

and (135) follows immediately. The martingale property now follows directly
from (135). �

We can now state the basic result from Flesaker–Hughston.

Theorem 10.1. Assume that the term structure is positive. Then there exists a
family of positive martingales M(t� T) indexed by T and a positive determinis-
tic function Φ such that

(137)p(t� T) =
∫ ∞
T Φ(s)M(t� s) ds∫ ∞
t Φ(s)M(t� s) ds

�

The M family can, up to multiplicative scaling by the Φ process, be chosen as

(138)M(t� T) = −XT(t� T ) = EP [rTZT | Ft]�
In particular, Φ can be chosen as

(139)Φ(s) = −pT (0� s)�
in which case the corresponding M is normalized to M(0� s) = 1 for all s � 0.
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Proof. A positive short rate implies X(t� T) → 0 as T → ∞, so we have

X(t� T) = −
∞∫
T

XT (t� s) ds�

and thus we obtain from (134)

(140)p(t� T) =
∫ ∞
T XT (t� s) ds∫ ∞
t XT (t� s) ds

�

If we now define M(t� T) by

(141)M(t� T) = −XT(t� T )�

then (137) follows from (140) with Φ ≡ 1. The function Φ is only a scale factor
which can be chosen arbitrarily, and the choice in (139) is natural in order to
normalize theM family. SinceXT is negative,M is positive and we are done. �

There is also a converse of the result above.

Proposition 10.5. Consider a given family of positive martingales M(t� T) in-
dexed by T and a positive deterministic function Φ. Then the specification

(142)p(t� T) =
∫ ∞
T Φ(s)M(t� s) ds∫ ∞
t Φ(s)M(t� s) ds

will define an arbitrage free positive system of bond prices. Furthermore, the sto-
chastic discount factor Z generating the bond prices is given by

(143)Zt =
∞∫
t

Φ(s)M(t� s) ds�

Proof. Using the martingale property of the M family, we obtain

EP [ZT | Ft] =
∞∫
T

EP
[
Φ(s)M(T� s) | Ft

]
ds =

∫ ∞

T
Φ(s)M(t� s) ds�

This implies, by the positivity of M and Φ, that Z is a potential and can thus
serve as a stochastic discount factor. The induced bond prices are thus given
by

p(t� T) = EP [ZT | Ft]
Zt

�

and the calculation above shows that the induced (arbitrage free) bond prices
are given by (142). �

We can also easily compute forward rates.
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Proposition 10.6. With bond prices given by (142), forward rates are given by

(144)f (t� T ) = Φ(T)M(t� T)�

and the short rate has the form

(145)rt = Φ(t)M(t� t)�

Proof. Follows directly from (142) and the formula f (t� T ) = ∂
∂T lnp(t� T). �

The most used instance of a Flesaker–Hughston model is the so-called ra-
tional model. In such a model we consider a given martingale K and two
deterministic positive functions α(t) and β(t). We then define the M family
by

(146)M(t� T) = α(T)+ β(T)K(t)�

With this specification of M it is easily seen that bond prices will have the form

(147)p(t� T) = A(T)+ B(T)K(t)

A(t)+ B(t)K(t)

where

A(t) =
∞∫
t

Φ(s)α(s) ds� B(t) =
∞∫
t

Φ(s)β(s) ds�

We can specialize this further by assuming K to be of the form

K(t) = e
∫ t

0 γ(s) dWs− 1
2
∫ t

0 γ
2(s) ds

where γ is deterministic. ThenK will be a lognormal martingale, and the entire
term structure will be analytically very tractable.

10.3 Changing base measure

The arguments above do not at all depend upon the fact that P was assumed
to be the objective probability measure. If instead we work with another base
measure P0 ∼ P , we will of course have a Flesaker–Hughston representation
of bond prices of the form

(148)p(t� T) =
∫ ∞
T Φ(s)M0(t� s) ds∫ ∞
t Φ(s)M0(t� s) ds

�

where M0(t� T ) is a family of positive P0 martingales, and the question is how
M0 relates to M .
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Proposition 10.7. With notation as above, we have

(149)M0(t� T ) = M(t� T)

L0
t

�

where

(150)L0
t = dP0

dP
on FT �

Proof. From (138) we have, modulo scaling, the relation

M(t� T) = EP
[
rTB

−1
T LT | Ft

]
where L = dQ/dP , so by symmetry we have

M0(t� T ) = EP0
[
rTB

−1
T

{
dQ
dP0

}
T

∣∣∣ Ft

]
where {

dQ
dP0

}
T

= dQ
dP0 on Ft �

We now obtain, using the Bayes formula,

M0(t� T ) = EP0
[
rTB

−1
T

{
dQ
dP0

}
T

∣∣∣ Ft

]
= EP0

[
rTB

−1
T

{
dQ

dP

}
T

{
dP

dP0

}
T

∣∣∣ Ft

]
=

{
dP
dP0

}
t

· EP

[
rTB

−1
T

{
dQ

dP

}
T

∣∣∣ Ft

]
= M(t� T)

L0
t

� �

10.4 Multi-currency models

The potential setup above can easily be extended to a multi-currency situ-
ation. Let us assume that we have N countries, that the economy is arbitrage
free and complete, that there is a money account Bi for each country, and that
there are no frictions on international trade.

Definition 10.2. The exchange rate process Yij
t denotes the price, at time t in

currency j, of one unit of currency i, and let Zi denote the SDF under P for
country No. i (w.r.t. its own currency).

Now choose an arbitrary but fixed T -claim Ψ expressed in currency i. The
arbitrage free price of this claim, at t = 0 in currency i will of course be given
by the expression

(151)Π(0;Ψ)i = EP
[
Zi
TΨ

]
�
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so the arbitrage free price expressed in currency j will be given by

(152)Π(0;Ψ)j = Y
ij
0 E

P
[
Zi
TΨ

]
�

On the other hand, the claim Ψ is, at time T , worth exactly

Y
ij
T Ψ

units of currency j, so we can also compute the j price at t = 0 as

(153)Π(0;Ψ)j = EP
[
Z
j
TY

ij
T Ψ

]
�

We thus have

Y
ij
0 E

P
[
Zi
TΨ

] = EP
[
Z
j
TY

ij
T Ψ

]
�

and if this holds for every T -claim Ψ , we must have

Y
ij
0 Z

i
T = Z

j
TY

ij
T

and we have the following result.

Proposition 10.8. With assumptions as above, exchange rates are related to SDFs
according to the formula

(154)Y
ij
t = Zi

t

Z
j
t

Y
ij
0 �

The moral of this is that exchange rates are determined completely by a
consistent specification of stochastic discount factors for each country. All
this can also be expressed in the Flesaker–Hughston terminology. Denoting
by Mi(t� T ) and Φi the Flesaker–Hughston family of martingales and scaling
processes in country i, we immediately have, from (143)

(155)Y
ij
t = Y

ij
0 ·

∫ ∞
t Φi(s)Mi(t� s) ds∫ ∞
t Φj(s)Mj(t� s) ds

�

10.5 Connections to the Riesz decomposition

In Section 10.1 we saw that any SDF generating a nice bond market is a
potential, so from a modeling point of view it is natural to ask how one can
construct potentials from scratch.

The main result used is the following.

Proposition 10.9 (Riesz Decomposition). If Z is a potential, then it admits a re-
presentation as

(156)Zt = −At +Mt�

where A is an increasing process, and M is a martingale defined by

(157)Mt = EP [A∞ | Ft]�
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To construct a potential, let us assume that we define A as

(158)At =
t∫

0

as ds

for some integrable nonnegative process a. Then we easily obtain

(159)Zt = EP

[ ∞∫
0

as ds | Ft

]
−

t∫
0

as ds =
∞∫
t

EP [as | Ft] ds�

We can now connect this to the Flesaker–Hughston framework. The family
of processes X(t� T) defined in (133) will, in the present framework, have the
form

(160)X(t� T) = EP

[ ∞∫
T

EP [as | FT ] ds
∣∣∣ Ft

]
=

∞∫
T

EP [as | Ft] ds�

so the basic family of Flesaker–Hughston martingales are given by

(161)M(t� T) = − ∂

∂T
X(t� T) = EP [aT | Ft]�

10.6 Conditional variance potentials

An alternative way of representing potentials which have been studied in
depth by Hughston and co-authors is through conditional variances.

Consider a fixed random variable X∞ ∈ L2(P�F∞). We can then define a
martingale X by setting

(162)Xt = EP [X∞ | Ft]�
Now let us define the process Z by

(163)Zt = EP
[
(X∞ −Xt)

2 ∣∣ Ft
]
�

An easy calculation shows that

(164)Zt = EP
[
X2∞

∣∣ Ft
] −X2

t �

Since the first term is a martingale and the second is a submartingale, the dif-
ference is a supermartingale, which by definition is positive and it is in fact a
potential.

The point of this is that the potential Z, and thus the complete interest rate
model generated by Z, is in fact fully specified by a specification of the single
random variable X∞. A very interesting idea is now to expand X∞ in Wiener
chaos. See the Notes below.
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10.7 The Rogers Markov potential approach

As we have seen above, in order to generate an arbitrage free bond market
model it is enough to construct a positive supermartingale to act as stochastic
discount factor (SDF), and in the previous section we saw how to do this using
the Riesz decomposition. In this section we will present a systematic way of
constructing potentials along the lines above, in terms of Markov processes
and their resolvents. The ideas are due to Rogers (1994), and we largely follow
his presentation.

We consider a time homogeneous Markov process X under the objective
measure P , with infinitesimal generator G.

For any positive real valued sufficiently integrable function g and any pos-
itive number α we can now define the process A in the Riesz decomposition
(156) as

(165)At =
t∫

0

e−αsg(Xs) ds�

where the exponential is introduced in order to allow at least all bounded func-
tions g. In terms of the representation (158) we thus have

(166)at = e−αtg(Xt)�

and a potential Z is, according to (159), obtained by

(167)Zt =
∞∫
t

e−αsEP
[
g(Xs) | Ft

]
ds�

Using the Markov assumption we thus have

(168)Zt = EP

[ ∞∫
t

e−αsg(Xs) ds | Xt

]
�

and this expression leads to a well known probabilistic object.

Definition 10.3. For any nonnegative α the resolvent Rα is an operator, de-
fined for any bounded measurable function g by the expression

(169)Rαg(x) = EP
x

[ ∞∫
0

e−αsg(Xs) ds

]

where subindex x denotes the conditioning X0 = x.

We can now connect resolvents to potentials.
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Proposition 10.10. For any bounded nonnegative g, the process

(170)Zt = e−αt Rαg(Xt)

Rαg(X0)

is a potential with Z0 = 1.

Proof. The normalizing factor is trivial so we disregard it in the rest of the
proof. Using time invariance we have, from (168),

(171)Zt = EP

[ ∞∫
0

e−α(t+s)g(Xt+s) ds | Xt

]
= e−αtRαg(Xt)�

�

Given a SDF of the form above, we can of course compute bond prices, and
the short rate can easily be recovered.

Proposition 10.11. If the stochastic discount factor Z is defined by (170) then
bond prices are given by

(172)p(t� T) = e−α(T−t) EP [Rαg(XT ) | Ft]
Rαg(Xt)

and the short rate is given by

(173)rt = g(Xt)

Rαg(Xt)
�

Proof. The formula (172) follows directly from (170) and the general formula
(129). From (167) we easily obtain

dZt = −e−αtg(Xt) dt + dMt�

where M is a martingale defined by

Mt = EP

[ ∞∫
0

e−αsg(Xs) | Ft

]
ds

and (173) now follows from Proposition 10.3. �

One problem with this scheme is that, for a concrete case, it may be very
hard to compute the quotient in (173). To overcome this difficulty we recall the
following standard result.

Proposition 10.12. With notation as above we have essentially

(174)Rα = (α− G)−1�
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The phrase “essentially” above indicates that the result is “morally” correct,
but that care has to be taken concerning the domain of the operators. We now
provide a lighthearted heuristic argument for the result. The point of the ar-
gument below is not to provide a precise proof, but to build an intuition which
allows us to guess the result. For a rigorous proof, see any textbook on Markov
processes.

Proof sketch. Define a family of operators {St; t � 0} by

(175)Stg(x) = EP
x

[
g(Xt)

]
�

By time invariance it is now easily seen that we also can write

(176)Stg(x) = EP
[
g(Xu+t) | Xu = x

]
�

In particular we can use the Markovian assumption to obtain

(177)St+sg(x) = StSsg(x)�

Thus we have St+s = StSs, so the family St forms a semigroup. By definition,
the infinitesimal generator G is given by

(178)Gg(x) = d
dt
Stg(x)� at t = 0�

Using (177) and S0 = I where I is the identity operator we have

(179)
St+h − St

h
= Sh − I

h
St�

which (at least formally) gives us the Kolmogorov equation

(180)
dSt
dt

= GSt�

Since G is a linear operator we expect to be able to solve this ODE as

(181)St = eGt �

and this can indeed be shown to be correct at a certain technical cost. (If we
have a finite state space for X, then G is a square matrix and there are no
problems, but in the general case G is an unbounded operator and care has to
be taken.)

With this formalism we should, at least morally, be able to write

(182)Rαg(x) =
∞∫

0

e−αseGsg(x) ds =
( ∞∫

0

e(G−α)s ds

)
g(x)�

By formal integration (acting as if G is a real number), we obtain

(183)

∞∫
0

e(G−α)s ds = (G − α)−1{0 − I} = (α− G)−1�
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which is the result.
The end of proof sketch. �

We now go back to the Rogers scheme and using the identityRα = (α−G)−1

we see that with f = Rαg we have

g(Xt)

Rαg(Xt)
= (α− G)f (Xt)

f (Xt)
�

where it usually is a trivial task to compute the last quotient.
This led Rogers to use the following scheme.

1. Fix a Markov process X, number α and a nonnegative function f .
2. Define g by

g = (α− G)f�
3. Choose α (and perhaps the parameters of f ) such that g is nonnegative.
4. Now we have f = Rαg, and the short rate can be recaptured by

r(t) = (α− G)f (Xt)

f (Xt)
�

In this way Rogers produces a surprising variety of concrete analytically
tractable nonnegative interest rate models and, using arguments of the type
in Section 10.4 above, exchange rate models are also treated within the same
framework.

For illustration we consider the simplest possible example of a potential
model, where the underlying Markov process is an n-dimensional Gaussian
diffusion of the form

(184)dXt = −AXt dt + dWt�

In this case we have

(185)Gf (x) = 1
2
�f(x)−∇f (x)Ax

where � is the Laplacian and ∇f is the gradient viewed as a row vector.
We now define f by

f (x) = ecx

for some row vector c ∈ Rn. We immediately obtain

g(x) = (α− G)f (x) = f (x)

(
α− 1

2
‖c‖2 + cAx

)
�

The corresponding short rate is given by

(186)rt = α− 1
2
‖c‖2 + cAx�
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so we have a Gaussian multi factor model.
We end this section by connecting the Rogers theory to the Flesaker–

Hughston framework, and this is quite straightforward. Comparing (161) to
(166) we have

(187)M(t� T) = e−αTEP
[
g(XT ) | Ft

]
10.8 The term structure density approach

One of the major problem of the Heath–Jarrow–Morton framework for for-
ward rates is that there is no easy way to specify forward rate volatilities in such
a way that they guarantee positive interest rates. To address this problem (and
others), Brody and Hughston have in a series of papers studied interest rate
models based on the “term structure density” and we now go on to present
some of the main ideas.

Definition 10.4. Let, as usual, p(t� T) denote the price at t of a zero coupon
bond maturing at t. Now define pt(x) and qt(x) by

(188)pt(x) = p(t� t + x)�

(189)qt(x) = − ∂

∂x
pt(x)�

Thus pt(x) is the bond price in Musiela parameterization.
We now notice that for a model with positive interest rates, pt as a func-

tion of x has the property that it is decreasing, pt(0) = 1 and pt(∞) = 0. In
other words, pt has all the properties of a complementary probability distribu-
tion. The object qt is the associated density (always assumed to exist), and the
idea of Brody and Hughston is to study the evolution of qt in a Wiener driven
framework.

Working under the objective measure P we can easily derive the pt dynam-
ics. From general theory we know that the p(t� T) dynamics are of the form

(190)dp(t� T) = p(t� T)rt dt + Σ0(t� T ){dWt + λt dt}
where Σ0 denotes the total volatility and λ is the market price of risk process.
Arguing as in the derivation of the Musiela equation for forward rates, we can
easily obtain the following dynamics for pt :

(191)dpt(x) =
{
Fpt(x)+ rtpt(x)

}
dt + Σt(x){dWt + λtdt}�

where

F = ∂

∂x
� Σt(x) = Σ0(t� t + x)�

Noticing that Fpt = qt , and taking x-derivatives in (190), we obtain the equa-
tion

(192)dqt(x) =
{
Fqt(x)+ rtqt(x)

}
dt +ωt(x){dWt + λt dt}�
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where

ωt(x) = ∂

∂x
Σt(x)�

Brody and Hughston now observe that since pt(∞) = 0 in any positive
model, we must have Σt(∞) = 0. We also know from (5) that Σt(0) = 0 so the
volatility ω has the property that

(193)

∞∫
0

ωt(x) dx = 0�

Thus we cannot choose ω freely, so in order to isolate the degrees of freedom
we instead write ωt as

(194)ωt(x) = qt(x)
(
νt(x)− ν̄t

)
�

where νt is chosen freely and

(195)ν̄t =
∞∫

0

qt(x)νt(x) dx�

We also notice that the bond price volatility Σt(x) is invariant under all
transformations of the form νt(x) → νt(x)+βt so we can normalize by setting
ν̄t = λt . We have thus derived the following basic result, which is the starting
point of further investigations of Brody and Hughston.

Proposition 10.13. For a positive interest rate model, the q dynamics are of the
form

(196)
dqt(x) =

{
Fqt(x)+ rtqt(x)

}
dt + qt(x)

(
νt(x)− ν̄t

){dWt + ν̄t dt}�

10.9 Notes

For general information on stochastic discount factors and asset pricing,
see the textbook Cochrane (2001). The Flesaker–Hughston fractional model
was developed in Flesaker and Hughston (1996) and Flesaker and Hughston
(1997), and the connection between general potential theory and the Flesaker–
Hughston approach is discussed in Jin and Glasserman (2001). In Brody and
Hughston (2004) and Hughston and Rafailidis (2005) the conditional variance
approach and Wiener chaos expansions are investigated in depth. The Rogers
Markovian potential approach was first presented in Rogers (1994). The term
structure density model has been studied in Brody and Hughston (2001) and
Brody and Hughston (2002).
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Filipović, D. (1999). A note on the Nelson–Siegel family. Mathematical Finance 9 (4), 349–359.
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Chapter 10

Calculating Portfolio Credit Risk&

Paul Glasserman
403 Uris Hall, Columbia Business School, New York, NY 10027, USA
E-mail: pg20@columbia.edu

Abstract

This chapter provides an overview of modeling and computational issues associated
with portfolio credit risk. We consider the problem of calculating the loss distribu-
tion in a portfolio of assets exposed to credit risk, such as corporate bonds or bank
loans. We also discuss the pricing of portfolio credit derivatives, such as basket de-
fault swaps and collateralized debt obligations. A portfolio view of credit risk requires
capturing dependence between the assets in the portfolio; we discuss models of de-
pendence and associated computational techniques. A standard modeling framework
takes the assets to be conditionally independent given a set of underlying factors, and
this is convenient for computational purposes. We discuss a recursive convolution
technique, transform inversion, saddlepoint approximation, and importance sampling
for Monte Carlo simulation.

1 Introduction

This chapter provides an overview of modeling and computational issues
associated with portfolio credit risk. A simple example of the type of setting
we consider is a portfolio of corporate bonds or bank loans. The promised
cashflows of these underlying assets are known, but there is a risk that an issuer
or borrower will default and fail to make the promised payments. This type of
risk should be contrasted with market risk – the fluctuations in the market
levels of interest rates, exchange rates, stock prices and other asset prices. Of
course, a corporate bond is also subject to interest rate risk and other types of
risk, but we focus on the credit risk resulting from the possibility of default.

Credit risk models are generally somewhat simpler than the models used for
the dynamics of asset prices, in large part because of the limited data available

&This work is supported by NSF grants DMI0300044 and DMS0410234.
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to support complex models. For equities and currencies, continuous trading
both in quantity and time is a reasonable approximation of reality, and new
price information arrives virtually continuously. This leads to diffusion models
of prices and models for derivative pricing based on dynamic replication or
hedging. In contrast, defaults are comparatively rare events and the mechanics
of default depend on the inner workings of a firm, which are at best only partly
observable. The most commonly used models and those we consider here are
fairly simple, often just modeling the occurrence of default through a binary
random variable or the time to default through a nonnegative random variable.

Taking a portfolio view of credit risk entails capturing dependence between
the creditworthiness of different borrowers or obligors, and that is the focus
of this chapter. Defaults exhibit dependence because firms operate in a com-
mon economic environment (defaults are more common during recessions)
and may share exposure to risks associated with a particular geographic region
or industry. These types of factors underlie portfolio models. A model of the
creditworthiness of a single firm often incorporates balance sheet information
and describes the mechanisms leading to the firm’s default. This type of analy-
sis is used to determine credit ratings and to determine the fundamental value
of a corporate bond or a convertible security. In contrast, a portfolio model
often takes information about the credit quality of individual firms (through
ratings or bond spreads, for example) as inputs and combines this with a model
of dependence to arrive at the overall credit risk in a portfolio.

Portfolio credit risk models are used both for risk management and for the
pricing of derivative securities that are exposed to multiple sources of credit
risk. In risk management applications, the primary objective is measuring the
distribution of losses in a portfolio over a fixed horizon. This loss distribution
is typically summarized through a single risk measure, such as value-at-risk
or expected shortfall. A further risk management objective is decomposing
the overall risk in a portfolio into risk contributions associated with individual
counterparties or transactions. Examples of portfolio credit derivatives include
basket credit default swaps and collateralized debt obligations (described later
in this chapter); the cashflows of these securities depend on the timing of de-
faults of a set of underlying bonds or firms.

In both types of applications, dependence between defaults complicates the
computation of the distribution of losses. In the models we consider, defaults
are conditionally independent, given a set of common factors. This structure
is important to the computational procedures we discuss. In its simplest form,
the computational problem we consider reduces to finding the distribution of
a sum of conditionally independent random variables.

The rest of this chapter is organized as follows. Section 2 gives a more
detailed description of the risk management and pricing applications we con-
sider. Section 3 describes models of dependence between defaults. Section 4
discusses the calculation of conditional loss distributions – i.e., the loss distri-
bution conditional on the factors that make defaults independent. Section 5
extends the methods of Section 4 to unconditional loss distributions. Section 6
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discusses importance sampling for portfolio credit risk and Section 7 concludes
the chapter.

2 Problem setting

Throughout, we consider a portfolio or individual security that is exposed to
the risk of default by any of m different obligors, also referred to as counterpar-
ties, credits, or simply names. We let

τk = the time of default of obligor k� k = 1� � � � �m�

with τk = ∞ if the kth obligor never defaults. For a fixed horizon T , we set

Yk = 1{τk � T }� k = 1� � � � �m�

the indicator that the kth obligor defaults in [0� T ].
A default triggers a loss. In the simplest case, the default of an obligor results

in the loss of a fixed amount known in advance – the full amount of a loan or
the value of a bond, for example. In practice, several considerations may make
the loss upon default depend on the time of default and other factors. If the
obligor is making regular payments on a loan or coupon payments on a bond,
then the size of the loss depends on the time of default. Also, creditors will
often recover some of the value of loans, bonds and other credit instruments
after default through bankruptcy proceedings or by selling defaulted assets;
the loss is then reduced by the amount recovered. We will not consider the
problem of modeling losses upon default but instead set

Vk = loss upon default of obligor k� k = 1� � � � �m�

In fact, we will often take these to be constants, in which case we denote them
by vk. We take the Vk to be nonnegative, though it is sometimes possible for
the default of a counterparty in a swap, for example, to result in a gain rather
than a loss.

Two of the central problems in credit risk are (i) modeling the marginal
distribution of the time to default for a single obligor and (ii) modeling the de-
pendence between the default times of multiple obligors. We will detail models
used for the second issue in Section 3. The first problem is often addressed by
specifying a hazard rate or, more generally, a default intensity. For example,
the distribution of the time to default is often represented as

(1)P(τk � t) = 1 − exp

(
−

t∫
0

hk(s) ds

)
�

with hk a (deterministic) hazard rate with the interpretation that the proba-
bility of default in (t� t + δ) given that default has not occurred by time t is
hk(t)δ + o(δ). In a more general stochastic intensity model of default times,
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the hazard rate is replaced by a stochastic process; see, e.g., Duffie and Single-
ton (1999), Duffie and Garleanu (2001), Giesecke and Tomecek (2005), and
Jarrow et al. (1997).

Default hazard rates are typically inferred from yield spreads on corpo-
rate bonds and spreads in credit default swaps, which are, in effect, default
insurance contracts. Information about the time to default can also be gleaned
from economic variables, an obligor’s credit rating and its financial statements,
when available. To be precise, we must distinguish between the distribution of
time to default under a risk-adjusted probability measure and the distribution
observed empirically. The first is potentially observable in market prices and
credit spreads and is relevant to pricing credit risky instruments. The second is
relevant to risk management applications – it is the actual distribution of time
to default that matters for measuring risk – but it cannot be inferred from mar-
ket prices without correcting for the market risk premium for bearing default
risk. Das et al. (2005) estimate models of actual and risk-adjusted default prob-
abilities and find that the relation between the two varies widely over time, with
the latter often much larger than the former. Some models, such as Jarrow et
al. (1997), adopt simple assumptions on the nature of the risk-adjustment for
tractability; and in the absence of sufficient data, the distinction between the
two types of probabilities is sometimes ignored.

We focus here on credit losses resulting from default, but at least two other
aspects of credit risk are important in practice. Fluctuations in spreads in, e.g.,
corporate bonds, are a source of risk derived at least in part from changes in
creditworthiness of the issuer; changes in spreads affect prices continually, not
just upon default. (See, e.g., the models in Schonbucher, 2003.) Changes in
an issuer’s credit rating also affect the market value of a credit-sensitive instru-
ment. A natural extension of a model based on default times allows for multiple
states associated with ratings and transitions between them; see, in particular,
Jarrow et al. (1997). From this perspective, a default-time model is the special
case of a two-state specification. The credit risk associated with spread fluctua-
tions and ratings transitions results from changes in market prices, rather than
the failure of an obligor to make a contractual payment.

We turn now to a description of some of the main problems that arise in
credit risk management and the pricing of credit derivatives.

2.1 Measuring portfolio credit risk

Over a fixed horizon T , the losses from default suffered by a fixed portfolio
can be written as

(2)L = Y1V1 + Y2V2 + · · · + YmVm�

where, as before, the Yk are default indicators and Vk is the loss triggered
by the default of obligor k. The problem of measuring portfolio credit risk
is the problem of calculating the distribution of L. This distribution is often
summarized through a single measure of risk. One widely used measure is
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value-at-risk (VaRα) at confidence level 1−α, often with α = 1% or α = 0�01%.
This is simply the 1−α quantile of the distribution – the infimum over all x for
which

P(L > x) � α�

Thus, in the case of a continuous loss distribution, we have

P(L > VaRα) = α�

A closely related risk measure is the expected shortfall ESα, defined by

ESα = E[L | L � VaRα]�
Key to calculating either of these risk measures is accurate measurement of
the tail of the loss random variable L. The difficulty of the problem depends
primarily on the dependence assumed among the Yk and Vk.

2.2 Measuring marginal risk contributions

The measurement of portfolio credit risk is often followed by a process of
decomposing the total risk into a sum of risk contributions associated with in-
dividual obligors, subportfolios, or transactions. This decomposition is used to
allocate capital and measure profitability. A standard decomposition of VaR
(= VaRα) sets

VaR = E[L | L = VaR]
= E[Y1V1 + Y2V2 + · · · + YmVm | L = VaR]
= E[Y1V1 | L = VaR] + E[Y2V2 | L = VaR] + · · ·

(3)+ E[YmVm | L = VaR]�
The risk contribution for obligor k is then E[YkVk | L = VaR]. This of course
assumes that the event {L = VaR} has positive probability; in practice, it may be
necessary to condition on |L−VaR| < ε, for some ε > 0. By a similar argument,
a portfolio’s expected shortfall can be decomposed into risk contributions of
the form E[YkVk | L � VaR], k = 1� � � � �m.

Both VaR and expected shortfall belong to the class of positively homo-
geneous risk measures (as in Artzner et al., 1999), and such risk measures
admit convenient decompositions as a consequence of Euler’s theorem for
positively homogeneous functions. Suppose, for example, that the losses Vk
are constants vk and consider some measure of risk ρ viewed as a function of
v1� � � � � vm with the joint distribution of Y1� � � � � Ym held fixed. Positive homo-
geneity means that

ρ(γv1� γv2� � � � � γvm) = γρ(v1� v2� � � � � vm)

for all γ � 0. In addition to VaR and ES, the standard deviation of the loss has
this property. Assuming differentiability of the risk measure and differentiating
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both sides with respect to γ at γ = 1, we get
m∑
k=1

vk
∂ρ

∂vk
= ρ(v1� v2� � � � � vm)�

Thus, as observed in Garman (1999) and Litterman (1999), the weighted sum
of sensitivities on the left gives a decomposition over obligors of the total risk
on the right. In this decomposition, vk∂ρ/∂vk is the kth obligor’s contribution
to the total risk in the portfolio.

Subject only to modest regularity conditions, the risk contributions for VaR
and ES defined through conditional expectations (as in (3)) coincide with those
obtained as weighted sensitivities of each risk measure; see Gourieroux et al.
(2000), Kurth and Tasche (2003) and Tasche (1999). These decompositions
based on weighted sensitivities have also been shown to satisfy sets of axioms
for sensible risk allocation; see Denault (2001) and Kalkbrener (2005). For
computational purposes, the representation as conditional expectations is the
most transparent, but calculating a large number of conditional expectations,
all conditioned on a rare event, remains a computationally demanding prob-
lem; see Glasserman (2005), Kalkbrener et al. (2004) and Martin et al. (2001b).

2.3 Pricing nth-to-default swaps

Credit default swaps are among the most actively traded credit derivatives.
A credit default swap functions like an insurance contract on a bond. The pro-
tection buyer in the swap makes regular premium payments to the protection
seller until either the expiration of the swap or the default of the obligor refer-
enced in the swap. If such a default occurs during the life of the swap, the
protection seller makes a payment to the buyer; this payment would often
equal the face value of a bond referenced in the swap. Thus, the swap insures
the buyer against a loss from default.

The owner of a portfolio of bonds might consider buying such protection for
every bond in the portfolio, but the payments required on the various swaps
would make this expensive. An alternative to insuring each bond separately
would be to enter into a basket default swap that references a basket of bonds.
The simplest such structure is a first-to-default swap, which provides protection
against the first default in a basket. The swap terminates upon the occurrence
of the first default (or the expiration of the swap), and provides no protection
against subsequent defaults. This is far less expensive than buying separate pro-
tection for each bond and provides adequate coverage if the chance of multiple
defaults is small.

More generally, an nth-to-default swap provides protection against only the
nth default in a basket. Let τ1� � � � � τm be the default times of the names in the
basket and let

τ(1) � τ(2) � · · · � τ(m)
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Fig. 1. Cashflows of an nth-to-default swap.

be their order statistics, so that τ(n) is the time of the nth default. The protec-
tion buyer in an nth-to-default swap makes regular payments to the protection
seller until min{τ(n)� T } – that is, until the nth default or the maturity T ,
whichever comes first. If τ(n) � T , then upon the nth default the protection
seller makes a payment to the protection buyer to compensate for the loss re-
sulting from the nth default; if τ(n) > T , the protection seller pays nothing (see
Fig. 1). Thus, if n > 1, the protection buyer assumes the risk of the first n − 1
defaults.

The price of an nth-to-default swap depends primarily on the probability
that the nth default occurs before time T . (The relevant default probabilities
for pricing are the risk-adjusted or risk-neutral probabilities, not the empirical
probabilities.) We say “primarily” because the timing of defaults also matters.
The probability that τ(n) is less than T is strongly influenced by the dependence
between the individual default times τ1� � � � � τm.

The marginal distribution of each τi is, of course, also important. The (risk-
adjusted) distribution of τi is at least partly determined by the market prices of
credit default swaps on the ith obligor: a credit default swap with maturity T
referencing obligor i contains information about the probability that τi < T .
(The prices of corporate bonds contain such information as well; see Duffie
and Singleton (1999) and Jarrow and Turnbull (1995).) Thus, modeling for bas-
ket default swaps primarily deals with combining information about marginal
default probabilities observed in market prices with a mechanism for capturing
dependence between defaults.

2.4 Pricing collateralized debt obligations

A collateralized debt obligation or CDO is a collection of notes backed
by a portfolio of bonds or other credit instruments. Each note carries with
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it promised payments that are financed by coupon payments received from
the underlying bond portfolio. Defaults of the underlying bonds reduce the
payments received by the CDO and – through a set of allocation rules – the
payments made to the holders of the notes issued by the CDO.

The notes are grouped into tranches of different levels of seniority, with
senior tranches protected from defaults of the underlying bond by junior
tranches. A CDO can create highly rated senior notes from a portfolio of low
quality credits through the rules used to allocate cashflows from the underlying
assets to the tranches. (In a synthetic CDO, the underlying assets are replaced
by credit default swaps.)

Consider, for simplicity, the case of a CDO with a single payment date. Each
tranche of the CDO is defined by upper and lower loss limits u and l, with
u = ∞ for the most senior tranche and l = 0 for the most junior (equity)
tranche. Let L denote the loss suffered by the portfolio underlying the CDO
up to the payment date. Then the loss experienced by a tranche with limits u
and l is

(4)min
{
u�max{L− l� 0}}�

Thus, the tranche suffers no losses unless the portfolio lossL exceeds the lower
limit l, and the tranche is wiped out if the portfolio’s loss exceeds u. The equity
tranche has lower limit l = 0 and absorbs the initial losses. Losses exceeding
the upper limit of the equity tranche are absorbed by the next tranche and so
on. In this way, more senior tranches are protected from losses by more junior
tranches and can therefore achieve higher credit ratings than the underlying
debt instruments.

In the case of a single payment date, the value of a tranche is the differ-
ence between the present value of the promised payment and the expected
discounted value of the tranche loss (4). Thus, the key to valuing the tranche is
determining the (risk-adjusted) distribution of the portfolio loss L.

In practice, the notes backed by a CDO make regular coupon payments.
However, a note with multiple payments may be viewed as a portfolio of single-
payment notes and then priced as a linear combination of the prices of these
single-payment notes. Thus, valuing a tranche with regular payments reduces
to finding the loss L at each coupon date and then finding the expected dis-
counted value of (4) for each coupon date. For more on CDOs and other credit
derivatives, see Duffie and Singleton (2003) and Schonbucher (2003).

3 Models of dependence

In this section, we describe mechanisms used to model dependence among
the default times τ1� � � � � τm and among the default indicators Y1� � � � � Ym. We
discuss structural models, stochastic intensity models, copula models (particu-
larly the widely used Gaussian copula) and a mixed Poisson model.
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3.1 Structural models

A structural model of default is one that describes how the inner workings
of a firm’s finances lead to default. Starting with Merton (1974), the general
outline of these models goes as follows. Through a basic accounting identity,
the value of a firm’s equity and the value of its debt sum to equal the value
of the assets owned by the firm. Equity carries limited liability and therefore
cannot have negative value. Should the value of the firm’s assets fall below
the value of the debt, the equityholders may simply surrender the firm to the
bondholders. Thus, the equityholders have a put option on the firm’s assets,
and default occurs when they exercise this put.

In Merton’s (1974) model, firm value A(t) is described by a geometric
Brownian motion

A(t) = A(0) exp
(
μt + σW (t)

)
�

for some parameters μ�σ > 0 and a standard Brownian motion W . The firm’s
debt matures at T with a face value of D, and no payments are due prior to T .
The firm defaults at T if A(T) < D. This occurs with probability

P
(
A(T) < D

) = P
(
μT + σW (T) < log

(
D/A(0)

))
(5)= Φ

(
log(D/A(0))− μT

σ
√
T

)
�

with Φ the cumulative normal distribution.
This model has been generalized in several ways. One line of work has tried

to capture more features of a firm’s finances; another has sought to add real-
ism to the dynamics of A. In the model of Black and Cox (1976), default occurs
the first time firm value drops belows a boundary (rather than at a fixed ma-
turity date T ), so the time to default is a first-passage time. In Leland (1994)
and Leland and Toft (1996), this boundary is chosen by the equityholders to
maximize the value of equity. Models with dynamics for firm value that go
beyond geometric Brownian motion include Chen and Kou (2005), Hilberink
and Rogers (2002), Kijima and Suzuki (2001) and Linetsky (2006). Duffie and
Lando (2001) and Giesecke (2004) link structural models with intensity-based
models by limiting the information about the firm available to the market.

A small step (at least in principle) takes us from a structural model of de-
fault of a single firm to a model of dependence of default times across multiple
firms. For m firms, we may specify a multivariate process (A1(t)� � � � �Am(t))
of firm values and then posit that the default of firm i is triggered by a decline
in Ai in accordance with any of the existing single-firm models. This approach
transfers the problem of specifying dependence between default times to the
ostensibly simpler problem of specifying dependence between firm values: firm
value is more directly related to economic, geographic and industry factors.
Though conceptually appealing, this approach is not directly applied in prac-
tice because firm values are not observable and because no fully satisfactory
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structural model of a single firm’s default is yet available. Nevertheless, the
structural perspective provides an important conceptual framework on which
to build simpler models.

3.2 Copula models

A copula function is simply a way of describing the dependence structure in
a multivariate distribution. If random variables X1� � � � �Xm have joint distrib-
ution function F , meaning that

P(X1 � x1� � � � �Xm � xm) = F(x1� � � � � xm)�

for any x1� � � � � xm, then there exists a function C : [0� 1]m → [0� 1] for which

(6)F(x1� � � � � xm) = C
(
F1(x1)� � � � � Fm(xm)

)
�

for all x1� � � � � xm, where Fi is the marginal distribution of Xi, i = 1� � � � �m.
The function C (which is essentially unique) is the copula function associ-
ated with the multivariate distribution F . The representation (6) distinguishes
purely marginal features of F (the Fi) from the dependence structure, which is
entirely determined by C. See Embrechts et al. (2000), Li (2000), and Nelsen
(1999) for background on copulas.

The marginal distributions of default times are often taken to be roughly
known through the hazard rate representation in (1) and the link between haz-
ard rates and credit spreads. In building a model of the joint distribution of
default times, it is therefore natural to approach the problem through the cop-
ula representation (6).

The Gaussian copula is particularly convenient because it is completely sum-
marized by a correlation matrix Σ. Write ΦΣ for the m-dimensional normal
distribution with correlation matrix Σ in which all marginals have zero mean
and unit variance. Write Φ for the one-dimensional standard normal distribu-
tion. Then the normal copula function CΣ associated with correlation matrix Σ
satisfies

ΦΣ(x1� � � � � xm) = CΣ
(
Φ(x1)� � � � �Φ(xm)

)
�

Thus,

(7)CΣ(u1� � � � � um) = ΦΣ

(
Φ−1(u1)� � � � �Φ

−1(um)
)
�

for any ui ∈ (0� 1), i = 1� � � � �m. The function CΣ extracts the dependence
structure from the multivariate normal distribution for use with other marginal
distributions. The Gaussian copula model for default times specifies

(8)P(τ1 � t1� � � � � τm � tm) = CΣ
(
F1(t1)� � � � � Fm(tm)

)
�

where Fi is the marginal distribution of the time to default for obligor i, i =
1� � � � �m.
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Fig. 2. Bivariate illustration of Gaussian copula construction of default times.

The interpretation of this specification is clarified by the mechanism used
to simulate default times under this model. Figure 2 gives a bivariate illustra-
tion. One would start by finding an m × m matrix A for which AA� = Σ,
for example through Cholesky factorization. Next, one would generate inde-
pendent standard normal random variables Z1� � � � � Zm and set ξ = AZ, with
Z = (Z1� � � � � Zm)

�. The vector ξ now has distribution N(0� Σ). In Figure 2,
the ellipses illustrate the contour lines of the bivariate normal distribution of
(ξ1� ξ2). Next, set Ui = Φ(ξi), i = 1� � � � �m; each Ui is uniformly distrib-
uted between 0 and 1, but the Ui are clearly not independent – they retain
the dependence of the Gaussian copula. The final step is to set τi = F−1

i (Ui),
i = 1� � � � �m, where Fi is the marginal distribution of τi. If (1) holds with
hi > 0, this means solving for τi in the equation

1 − exp

(
−

τi∫
0

hi(s) ds

)
= Ui�

This algorithm ensures that each τi has the correct marginal distribution and
imposes a joint distribution on τ1� � � � � τm that is completely specified by Σ.

A similar construction defines the Gaussian copula for the default indica-
tors Y1� � � � � Ym as well (as in Gupton et al., 1997). Indeed, if we simply set
Yi = 1{τi � T }, i = 1� � � � �m, then the default indicators inherit the Gaussian
copula from the default times. But we can also construct the default indicators
directly (without generating the default times) by setting

(9)Yi = 1{ξi � xi}� xi = Φ−1(pi)� i = 1� � � � �m�

with pi = P(τi � T), the marginal default probability for the ith obligor.
This is illustrated in Fig. 3. Observe that this construction is consistent with the
Merton (1974) default mechanism (5) if we set

ξi = log(Ai(T)/Ai(0))− μiT

σi
√
T

� xi = log(Di/Ai(0))− μiT

σi
√
T

�
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Fig. 3. Bivariate illustration of Gaussian copula construction of default indicators.

the subscript i indicating parameters of (5) associated with the ith firm.
In this setting, we assume that the losses V1� � � � � Vm are independent of

each other and of everything else. But we could bring these into the Gaussian
copula as well by replacing YkVk with a more general loss random variable Xk

having a known marginal distribution and then linking X1� � � � �Xm through
the Gaussian copula.

The popularity of the Gaussian copula model is due at least as much to its
simplicity as to its empirical validity. In particular, the fact that its dependence
structure is summarized through a correlation matrix allows a parsimonious
representation and also provides a vehicle for translating correlations in equity
returns (for which a great deal of data is available) to dependence between
default times (for which much less data is available).

The underlying correlation matrix is often assumed (or estimated) to have a
factor structure, meaning that we can write

Σ = AA� + B2�

with B an m ×m diagonal matrix and A an m × d matrix and d � m. In this
case, we can write

(10)ξk = ak1Z1 + · · · + akdZd + bkεk� k = 1� � � � �m�

where

◦ Z1� � � � � Zd are independent standard normal random variables (the
factors);

◦ the akj (the factor loadings) are the elements of the matrixA (the load-
ing matrix);

◦ the εk (representing idiosyncratic risks) are standard normal random
variables, independent of each other and of the factors;

◦ and bk =
√

1 − a2
k1 − · · · − a2

kd, so that ξk has unit variance.



Ch. 10. Calculating Portfolio Credit Risk 449

The resulting ξ1� � � � � ξm have the multivariate normal distribution N(0� Σ).
A feature of the factor representation is that the ξk (and thus the τk and
the Yk) are conditionally independent given Z1� � � � � Zd. The factor structure
is sometimes derived from economic factors (associated with industry sectors
or geographic regions, for example) affecting default probabilities.

In pricing applications, a single-factor (d = 1) structure is sometimes as-
sumed and, indeed, the coefficients ak1 all taken to be identical. In this case,
all the off-diagonal elements of Σ are equal to a2, where a is the common value
of all the coefficients ak1. This gives rise to the notion of an implied correlation
for a credit derivative such as an nth-to-default swap: the implied correlation is
the value of a2 (if one exists) that equates the prices in the model to the price
in the market. The market prices of CDOs typically produce different implied
correlations for different tranches, indicating that the Gaussian copula (or at
least the single-factor Gaussian copula with constant loading) cannot fully de-
scribe the joint distribution of default times. Nevertheless, implied correlations
and the Gaussian copula remain a standard (and convenient) way to compare,
price and hedge credit derivatives.

The specification in (7)–(8) can be extended to other copulas as well. For
example, a t-copula is given by

(11)CΣ�ν(u1� � � � � um) = FΣ�ν
(
F−1
ν (u1)� � � � � F

−1
ν (um)

)
�

where FΣ�ν is the multivariate t distribution with ν degrees of freedom and
“correlation” matrix Σ, and Fν is the univariate t distribution with ν degrees of
freedom. The multivariate t density is given by

fΣ�ν(x) ∝
(
1 + x�Σ−1x

)−(m+ν)
� x ∈ Rm;

Σ is the correlation matrix if ν > 2 but otherwise the second-order moments
of the distribution are infinite.

The Gaussian copula is a limiting case of the t copula with infinite degrees
of freedom. But the cases ν < ∞ and ν = ∞ exhibit a qualitative difference in
the dependence they introduce between extreme events. Except in the case of
perfect correlation, the Gaussian copula exhibits zero extreme tail dependence,
whereas t copulas have positive extreme tail dependence. Roughly speaking,
this means that a pair of random variables linked through a Gaussian cop-
ula become independent when we condition on an extreme value of one of
the two. In contrast, they remain dependent when linked through a t cop-
ula, the strength of the extreme tail dependence increasing as ν decreases;
cf. Embrechts et al. (2000). Mashal and Zeevi (2003) find that this makes
the t copula a better description of market returns. Hull and White (2004)
suggest a “double t copula” for CDO pricing. Kalemanova et al. (2007) find
that the multivariate normal inverse Gaussian distribution has features simi-
lar to the multivariate t while offering greater tractability. A different copula
is constructed from the normal inverse Gaussian distribution in Guegan and
Houdain (2005).
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3.3 Mixed Poisson model

An alternative way of introducing dependence uses a mixed Poisson model,
as in the CreditRisk+ framework developed by Credit Suisse First Boston
(Wilde, 1997). Although this model could also be cast in the copula frame-
work, it is sufficiently distinctive to merit separate consideration.

The mixed Poisson model achieves greater tractability than, e.g., the
Gaussian copula model but requires an important approximation from the
outset: each default time τk is replaced with a (conditionally) Poisson process
of times

(12)τ1
k = τk < τ2

k < τ3
k < · · · �

Only the first of these is meaningful, but if the intensity for the Poisson process
is small, the probability of observing more than one arrival within the interval
[0� T ] of interest may be small enough to be neglected. Similarly, in this set-
ting the default indicators get replaced with (conditionally) Poisson random
variables counting the number of arrivals in [0� T ]. A Poisson random variable
with a very small mean is nearly an indicator variable because the probability
that the Poisson variable takes a value other than 0 or 1 is small.

We describe the time points (12) as conditionally Poisson because they be-
come the epochs of a Poisson process only when we condition on a set of
underlying random variables Γ1� � � � � Γd. We interpret these as underlying risk
factors (much as the Zi in (10)), but we require that they be mutually indepen-
dent and positive; in fact, we will later specialize to the case in which each Γi
has a gamma distribution.

Conditional on these random variables, each Yk has a Poisson distribution
with mean Rk,

(13)Rk = ak0 + ak1Γ1 + · · · + akdΓd�

for some positive coefficients ak0� � � � � akd. Thus, each Yk may be viewed as
a Poisson random variable with a random mean — a mixed Poisson random
variable. We normalize Γ1� � � � � Γd to have mean 1 and variances σ2

1 � � � � � σ
2
d .

The times in (12) are similarly the points of a mixed Poisson process — a
Poisson process with randomized intensity. Because Yk counts the number of
arrivals in [0� T ], the arrival rate for (12) consistent with (13) is Rk/T .

Applications of mixed Poisson models have long history; see, e.g., the dis-
cussion in Johnson et al. (1993, Section 8.3.2). Using gamma random variables
for the mixing variables leads to some tractability and allows calculation of
the distribution of L through numerical inversion of its probability generating
function, as we will see in Section 5.3. To help fix ideas, we briefly describe
simulation of the model.

In each replication, we first generate the common risk factors Γj � 0, j =
1� � � � � d, independently. For example, we will choose Γj to have the gamma
distribution with shape parameter αj and scale parameter βj , j = 1� � � � � d,
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with

αj = 1

σ2
j

� βj = σ2
j � j = 1� � � � � d�

This gives Γj mean 1 and variance σ2
j . Then we evaluate Rk as in (13) and draw

Yk from the Poisson distribution with mean Rk.
In the original CreditRisk+ model, the losses upon default are fixed

amounts vk and must be integer valued. Each loss amount vk is then inter-
preted as a multiple of a base amount and all losses must be rounded to such
a multiple. This can be extended to allow random (integer-valued) losses Vk
independent of each other and of theYk. The total portfolio loss is given by (2).

4 Conditional loss distributions

A general approach to calculating the loss distribution in a credit portfolio
(and also to pricing credit derivatives tied to a portfolio) in the Gaussian copula
and similar models proceeds by calculating the loss distribution conditional on
a set of underlying factors that make defaults independent and then integrating
over the distribution of the underlying factors to get the unconditional loss
distribution. In this section, we discuss methods for carrying out the inner part
of this calculation – finding the conditional loss distribution when conditioning
makes defaults independent.

Consider, for example, the Gaussian copula with the factor structure in
(10). Defaults become independent once we condition on the vector Z =
(Z1� � � � � Zd)

� of underlying factors. Thus, in calculating the conditional loss
distribution

P(L � x | Z) = P(Y1V1 + · · · + YmVm | Z)
we are calculating the distribution of the sum of independent random vari-
ables. The conditional default probability for obligor k is given by

(14)

pk(Z) = P(Yk = 1 | Z) = P(ξk � xk | Z) = Φ

(
Φ−1(pk)− akZ

bk

)
�

with ak = (ak1� � � � � akd) the row vector of coefficients in (10). We have thus
far assumed that the losses upon default, Vk, are independent of each other
and of the factors; so long as the losses Y1V1� � � � � YmVm are conditionally in-
dependent givenZ, the conditional distribution ofL is given by the distribution
of the sum of independent random variables.

In order to keep our discussion generic and to lighten notation, for the rest
of this section we will simply take Y1� V1� � � � � Ym� Vm to be independent and
omit explicit reference to the conditioning that makes them independent. We
write pk (rather than, e.g., pk(Z)) for the kth obligor’s default probability.
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The remainder of this section thus deals with methods for calculating the dis-
tribution of sums of independent random variables.

4.1 Recursive convolution

Andersen et al. (2003) develop a recursive method to compute the loss
distribution for independent (or conditionally independent) defaults; a simi-
lar idea is used in Hull and White (2004). In its simplest form, this method
is applicable when the losses upon default are constants v1� � � � � vm and in
fact integers. Losses are thus measured as multiples of a basic unit. The loss
distribution admits a probability mass function π on the integers from 0 to
+max = v1 + · · · + vm.

The recursion produces a sequence of probability mass functionsπ1� � � � � πm
in which πk records the distribution of losses from just the first k obligors and
πm = π. The first of these distributions is simply

π1(x) =
{
p1� x = v1;
0� otherwise�

When we add the kth obligor, the portfolio loss increases by vk with probability
pk remains unchanged with probability 1 − pk. Thus, for k = 2� � � � �m, and
all integers x from 0 to v1 + · · · + vk,

(15)πk(x) = pkπk−1(x− vk)+ (1 − pk)πk−1(x)�

The method generalizes to a model in which the default of the kth obligor
results in possible losses vk1� � � � � vknk with probabilities qk1� � � � � qknk . We
now initialize by setting

π1(v1j) = p1q1j� j = 1� � � � � n1�

and π1(x) = 0 for all other x. At the kth step, the recursion gives

(16)πk(x) = pk

nk∑
j=1

qkjπk−1(x− vkj)+ (1 − pk)πk−1(x)�

As observed in Andersen et al. (2003), this method lends itself to the calcu-
lation of sensitivities. Consider, for example, the effect of small changes in the
default probabilities (which, in turn, may result from small changes in credit
spreads through (1)). Suppose the probabilities pk depend smoothly on a pa-
rameter θ and use a dot to indicate derivatives with respect to this parameter.
Then

π̇1(v1j� θ) = ṗ1(θ)q1j� j = 1� � � � � n1�

and π̇1(x� θ) = 0 for all other x. Differentiating both sides of (16) yields

(17)π̇k(x� θ) = ṗk(θ)

( nk∑
j=1

qkjπk−1(x− vkj� θ)− πk−1(x� θ)

)
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+ pk(θ)

nk∑
j=1

qkjπ̇k−1(x− vkj� θ)

(18)+ (
1 − pk(θ)

)
π̇k−1(x� θ)�

4.2 Transform inversion

The recursive algorithm in Section 4.2 computes a sequence of explicit con-
volutions, at the kth step convolving the loss distribution for a subportfolio of
obligors 1� � � � � k with the loss distribution of the (k + 1)st obligor. An alter-
native to computing convolutions is to compute either a Fourier or Laplace
transform of the distribution of a sum of random variables and then numeri-
cally invert the transform. This approach applies whether the individual obligor
losses are fixed or stochastic.

The distribution of the loss L depends on the distribution of the individual
losses V1� � � � � Vm. The distribution of each Vi may be characterized through its
cumulant generating function

(19)Λi(θ) = log E
[
exp(θVi)

]
� θ ∈ R�

the logarithm of the moment generating function of Vi. Each Vi is a random
fraction of a largest possible loss upon the default of obligor i, so it is reason-
able to take the Vi to be bounded random variables. This is more than sufficient
to ensure that Λi(θ) is finite for all real θ.

Recall that in this section we take the obligors to be independent of each
other. (More commonly, they are only conditionally independent given a set
of underlying factors, in which case the loss distributions we compute should
be interpreted as conditional loss distributions.) As a consequence of indepen-
dence we find that the moment generating function of the loss L is

φL(θ) = E

[
exp

(
θ

m∑
k=1

YkVk

)]

=
m∏
k=1

E
[
exp(θYkVk)

]
=

m∏
k=1

(
1 + pk

[
exp

(
Λi(θ)

) − 1
])
�

The Laplace transform of the distribution ofL is the function s (→ φL(−s) and
the characteristic function of L is the function ω (→ φL(iω), with i = √−1.

We apply Laplace transform inversion to the calculate the tail of the loss
distribution,

1 − FL(x) = P(L > x)�
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But first we review Laplace transform inversion more generically. Thus, let f
be a function on [0�∞) with Laplace transform

f̂ (s) =
∞∫

0

e−stf (t) dt�

The original function f can be recovered from the transform f̂ through the
Bromwich inversion integral

(20)f (t) = 1
2πi

b+i∞∫
b−i∞

est f̂ (s) ds�

where b is any real number such that all singularities of f̂ (viewed as a function
of the complex plane) lie to the left of the line from b− i∞ to b+ i∞. Noting
that the Laplace transform of 1 − FL is given by

1 −φL(−s)
s

�

with φL the moment generating function of L, as above, the Bromwich inver-
sion integral gives

P(L > t) = 1
2πi

b+i∞∫
b−i∞

est
(

1 −φL(−s)
s

)
ds�

Moreover, this is valid for all values of b, because [1−φL(−s)]/s is well-defined
and finite for all values of s; the limit as s → 0 is finite because φL is differen-
tiable at the origin.

Abate and Whitt (1995) develop numerical procedures for Laplace trans-
form inversion that allow the user to control roundoff and approximation
error. Their method rewrites (20) as

f (t) = 2ebt

π

∞∫
0

Re
(
f̂ (b+ iu)

)
cos(ut) du�

where Re gives the real part of a complex number. They then use a trapezoidal
rule with step size h to approximate the integral as

f (t) ≈ fh(t) = hebt

π
Re

(
f̂ (b)

) + 2hebt

π

∞∑
k=1

Re
(
f̂ (b+ ikh)

)
cos(kht)�

In practice, the infinite sum must be truncated and Abate and Whitt (Abate
and Whitt, 1995) bound the truncation error. They also apply Euler summation
to accelerate convergence. To use the Abate–Whitt method to calculate the
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loss distribution, set

f̂ (s) = 1 −φL(−s)
s

�

Glasserman and Ruiz-Mata (2006) report experiments with this approach in
the Gaussian copula model. Gregory and Laurent (2003) suggest the use of
Fourier inversion but do not specify a particular inversion technique.

4.3 Saddlepoint approximation

Saddlepoint approximation uses transforms to approximate the distribution
of a random variable without numerical integration. This approach is most
conveniently formulated in terms of the cumulant generating function of the
random variable, which is the logarithm of its moment generating function.
The cumulant generating function of L is thus

(21)ψL(θ) = logφL(θ) =
m∑
k=1

log
(
1 + pk

[
exp

(
Λk(θ)

) − 1
])
�

This function (like the cumulant generating function of any nonnegative ran-
dom variable) is increasing, convex, infinitely differentiable and takes the value
zero at θ = 0. The saddlepoint associated with a loss level x > 0 is the root θx
of the equation

(22)ψ′
L(θx) = x�

The derivative of ψL is an increasing function with ψ′
L(θ) → 0 as θ → −∞

and ψ′
L(θ) → ∞ as θ → ∞, so this equation has exactly one root for each

x > 0.
The significance of the saddlepoint θx is best explained through a more

general examination of the cumulant generating function ψL. The derivatives
of ψL at the origin give the cumulants of L, and the first cumulant is just the
mean; indeed,

ψ′
L(0) =

m∑
k=1

pkΛ
′
k(0) =

m∑
k=1

pkE[Vk] = E[L]�

Consider, now, the case of fixed losses Vk ≡ vk, k = 1� � � � �m. In this case,

(23)ψ′
L(θ) =

m∑
k=1

pke
θvk

1 + pk(eθvk − 1)
vk;

this may be interpreted as the expected loss when the original default proba-
bilities pk are replaced with

(24)pk�θ = pke
θvk

1 + pk(eθvk − 1)
�
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In the case of stochastic Vk, we have

ψ′
L(θ) =

m∑
k=1

pke
Λk(θ)

1 + pk(eΛk(θ) − 1)
Λ′
k(θ)�

This corresponds to the expected loss when the default probabilities pk are
replaced with

pk�θ = pke
Λk(θ)

1 + pk(eΛk(θ) − 1)

and the expected loss E[Vk] is replaced with Λ′
k(θ). The original expected loss

E[Vk] coincides with Λ′
k(0), because Λk is the cumulant generating function

of Vk.
Thus, each value of θ determines a modified set of default probabilities and

a modified loss given default for each obligor. For each θ,ψ′
L(θ) is the expected

portfolio loss under the portfolio parameters determined by θ. The saddlepoint
θx in (22) is the value of θ that shifts the expected loss to x.

Saddlepoint approximations can be derived as approximations to contour
integrals that arise in inverting transforms to obtain probability distributions.
They can also often be interpreted as the result of shifting (or exponentially
twisting or tilting) probabilities by θx and then applying a normal approxima-
tion. A standard (cf. Jensen (1995)) saddlepoint approximation, for x > E[L],
gives

P(L > x) ≈ exp
(−θxx+ ψL(θx)+ (1/2)ψ′′

L(θx)
)
Φ

(−θx√ψ′′
L(θx)

)
�

where Φ is the cumulative normal distribution. This is used in Martin et al.
(2001a, 2001b). The closely related Lugannani–Rice approximation is

P(L > x) ≈ 1 −Φ
(
r(x)

) +φ
(
r(x)

)( 1
λ(x)

− 1
r(x)

)
�

with

r(x) =
√

2
(
θxx− ψL(θx)

)
and λ(x) = θx

√
ψ′′
L(θx)�

Gordy (2002) applies this to the CreditRisk+ model. A modification of the
Lugannani–Rice formula is

(25)P(L > x) ≈ 1 −Φ

(
r(x)+ 1

r(x)
log

λ

r(x)

)
�

This modification has the advantage that it always produces a value between 0
and 1. All of these approximations give quite accurate results, particularly
when the loss threshold x is large, when the number of obligors m is large,
and the obligors losses YkVk, k = 1� � � � �m, are similarly distributed.
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5 Unconditional loss distributions

5.1 Factor models

In Section 4, we discussed methods for computing loss distributions when
obligors are independent. The motivation for considering this lies in its appli-
cation to factor models in which obligors are conditionally independent, given
a set of underlying factors. The methods of Section 4 then apply to the cal-
culation of conditional loss distributions, and finding the unconditional loss
distribution is a matter of integrating out the factors.

A simple model might specify two sets of parameters – corresponding to
a high-default regime and a low-default regime, with independent obligors
in each regime – and then model portfolio losses using a mixture of the two
sets of parameters. In this case, the underlying “factor” is the regime and the
unconditional loss distribution may be computed as a mixture of the two con-
ditional loss distributions. This case is straightforward, as is any finite mixture
of independent-obligor models.

In the Gaussian copula model, using (10), obligors become independent
conditional on the normally distributed factors Z1� � � � � Zd. Thus, finding the
loss distribution in this model entails integrating out the effect of the factors.
If the number of factors d is large, this almost invariably requires Monte Carlo
simulation.

A straightforward simulation algorithm repeats the following steps for each
replication:

◦ generate factors Z = (Z1� � � � � Zd);
◦ generate latent variables ξ1� � � � � ξm, using (10);
◦ evaluate default indicators Y1� � � � � Ym as in (9) and, for each k for

which Yk = 1, generate the loss given default Vk;
◦ calculate portfolio loss L = Y1V1 + Y2V2 + · · · + YmVm.

From multiple independent replications of the portfolio loss, one can estimate
the loss distribution and any quantities (such as value-at-risk) derived from the
distribution.

An alternative approach uses simulation only for the factors and then ap-
plies a deterministic numerical method (as in Section 4) to compute or ap-
proximate the conditional loss distribution. This yields the following steps for
each replication, for a given set of loss thresholds x1� � � � � xn:

◦ generate factors Z = (Z1� � � � � Zd);
◦ calculate or approximate P(L > xi|Z), i = 1� � � � � n.

Averaging over independent draws of the factors yields estimates of the un-
conditional loss probabilities P(L > xi), i = 1� � � � � n.

The second step in this algorithm may be carried out through convolution,
transform inversion, or saddlepoint approximation, as described in Section 4.
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A rough but fast alternative is to apply a normal approximation to the condi-
tional distribution of L given Z, using the first two moments of the conditional
loss, an idea explored in Shelton (2004) and Zheng (2004).

Glasserman and Ruiz-Mata (2006) compare the computational efficiency
of ordinary Monte Carlo simulation with methods that combine simulation
for the factors with the techniques of Section 4. Their comparison invites the
following remarks:

(i) Numerical transform inversion and saddlepoint approximation involve
some error in the calculation of conditional loss probabilities, so the
estimates they produce when combined with Monte Carlo simulation
of the factors are biased. The investigation in (Glasserman and Ruiz-
Mata, 2006) therefore compares the mean square errors obtained in a
fixed amount of computing time as a figure of merit.

(ii) Because each replication using convolution, transform inversion or
saddlepoint approximation takes longer than each replication using or-
dinary simulation, these methods complete fewer (indeed, far fewer)
replications in a fixed amount of computing time.

(iii) The recursive convolution method computes the full conditional loss
distribution on each replication, whereas transform inversion and sad-
dlepoint approximation must in practice be limited to a smaller number
of loss thresholds x1� � � � � xn.

(iv) Using ordinary Monte Carlo, the same replications can be used to es-
timate loss probabilities P(L > x) at a large number of loss thresholds
with little additional effort.

(v) Using the saddlepoint approximation requires solving for multiple sad-
dlepoint parameters θxi on each replication.

(vi) The computing time required using recursive convolution grows quickly
with the number of obligors m.

As a consequence of these properties, Glasserman and Ruiz-Mata (2006)
find that, with the total computing time held fixed, ordinary Monte Carlo often
produces a smaller mean square error than methods that combine simulation
with the techniques of Section 4, except at large loss levels.

When the number of factors is small – up to three or four, say – one can
replace Monte Carlo sampling of the factors with a numerical integration pro-
cedure, such as Gaussian quadrature. For a moderate number of dimensions –
five to twenty, say – quasi-Monte Carlo sampling of the factors may be at-
tractive. As an alternative to integrating out the factors, Glasserman (2004)
proposes approximations that use a single “most important” value of the fac-
tors, as in the classical Laplace approximation for integrals. Shelton (2004)
and Zheng (2004) approximate the conditional loss distribution using a normal
distribution by matching two moments and then compute the unconditional
distribution through numerical integration, assuming a small number of fac-
tors.
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5.2 Homogeneous approximation

Full computation of the unconditional loss distribution in the Gaussian cop-
ula model can be somewhat time consuming; an alternative is to approximate
the unconditional distribution using a simpler family of distributions.

One approach is to look at the limiting distribution for a large portfolio
of homogeneous obligors. Suppose, therefore, that the default indicators Yk,
k = 1� 2� � � � , are conditionally i.i.d. given a single factor Z and that the losses
Vk, k = 1� 2� � � � are i.i.d. and independent of Z. The latent variables have the
form

(26)ξk = ρZ +
√

1 − ρ2εk� k = 1� 2� � � � �

with 0 < ρ < 1. Thus, all obligors are identical and conditionally independent.
The portfolio loss L ≡ Lm = Y1V1 + Y2V2 + · · · + YmVm satisfies

Lm/m → E[Y1V1 | Z] = P(Y1 = 1 | Z)v ≡ p(Z)v� v = E[V1]�
with probability 1. Also, if the unconditional default probability is
P(Y = 1) = p, then

(27)p(Z) = P
(
ξk < Φ−1(p) | Z) = Φ

(
Φ−1(p)− ρZ√

1 − ρ2

)
�

Thus, for 0 < q < 1,

P(Lm/m � vq) → P
(
p(Z) � q

)
(28)= Gp�ρ(q) = Φ

(√
1 − ρ2Φ−1(q)−Φ−1(p)

ρ

)
�

This limiting loss distribution was identified by Vasicek (1991) and is applied
in regulatory standards (Basel Committee on Bank Supervision, 2003), among
many other places. With the expected loss given default (per obligor) fixed
at v, this defines a two-parameter family of distributions that can be used to
approximate loss distributions in more general portfolios by setting

(29)P(Lm � x) ≈ Gp�ρ

(
x
/ m∑

k=1

vk

)
�

for some p and ρ.
The parameter p is the mean of the distributions Gp�ρ,

∞∫
0

u dGp�ρ(u) = p�
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In approximating the loss distribution of an arbitrary portfolio with default
probabilities pk and conditional expected losses vk, k = 1� � � � �m, it is there-
fore natural to use p to match the mean; this is accomplished by setting

p =
m∑
k=1

pkvk

/ m∑
k=1

vk�

The parameter ρ can be chosen to match the variance of the distribution.
Glasserman (2004) shows that the variance of Gp�ρ is

(30)σ2
p�ρ = 2Φ2

(
0�Φ−1(p);−

√
1 − ρ2/

√
2
) − p2�

where Φ2(·� ·; r) is the standard bivariate normal distribution with correla-
tion r. The variance of the actual loss distribution is

σ2
L = Var[L] =

m∑
k=1

Var[YkVk] + 2
m−1∑
k=1

m∑
j=k+1

vkvjCov[Yk�Yj]�

with

Var[YkVk] = pkE
[
V 2
k

] − p2
kv

2
k

and, for j �= k,

Cov[Yk�Yj] = P
(
ξk � Φ−1(pk)� ξj � Φ−1(pj)

) − pkpj

= Φ2
(
Φ−1(pk)�Φ

−1(pj); aka�j
) − pkpj�

in light of (10). To match the variance of the actual and approximating distrib-
utions in (29), we therefore want ρ to satisfy (

∑m
k=1 vk)

2σ2
p�ρ = σ2

L.
The effectiveness of this two-moment approximation is discussed in Glasser-

man (2004) along with other methods for choosing ρ in using Gp�ρ as an
approximating distribution. Gordy (2004) develops “granularity adjustments”
for risk measures computed from the limiting distribution Gp�ρ as corrections
to (29) for finite m. Kalemanova et al. (2007) derive limiting homogeneous ap-
proximations under the double t copula of Hull and White (2004) and under
the normal inverse Gaussian copula. A different approach to approximating
the unconditional loss distribution, using a correlation expansion, is developed
in Glasserman and Suchintabandid (2007).

5.3 Mixed Poisson model

Next, we consider the unconditional loss distribution in the mixed Poisson
model discussed in Section 3.3. Although the distribution itself is not available
in closed form, its Laplace transform (and cumulant generating function) can
be made explicit. This contrasts with the Gaussian copula model for which only
the conditional loss distribution has an explicit Laplace transform.
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If N is a Poisson random variable with mean λ, then its moment generating
function is

E
[
exp(θN)

] = exp
(
λ
(
eθ − 1

))
�

for all θ. In the mixed Poisson model of Section 3.3, each Yk is conditionally
Poisson, given the factor random variables Γ1� � � � � Γd, with conditional mean
Rk in (13). Thus,

E
[
exp(θYk) | Γ1� � � � � Γd

] = exp
(
Rk

(
eθ − 1

))
= exp

(
d∑
j=0

akjΓj
(
eθ − 1

))
�

with Γ0 ≡ 1. Moreover, Y1� � � � � Ym are conditionally independent given
Γ1� � � � � Γd, so, for the portfolio loss L = Y1v1 + · · · + Ymcm, we have

E
[
exp(θL) | Γ1� � � � � Γd

] =
m∏
k=1

E
[
exp(θvkYk) | Γ1� � � � � Γd

]
= exp

(
m∑
k=1

d∑
j=0

akjΓj
(
evkθ − 1

))
�

To complete the calculation of the moment generating function (or the
Laplace transform) of the L we suppose that Γj has cumulant generating func-
tion ψj , so that

log E
[
exp(αΓj)

] = ψj(α)� j = 1� � � � � d�

and ψ0(α) ≡ α. We suppose that ψj(α) is finite for some α > 0. Then

(31)φL(θ) ≡ E
[
exp(θL)

] = E

[
exp

(
d∑
j=0

αjΓj

)]
= exp

(
d∑
j=0

ψj(αj)

)
�

with

αj =
m∑
k=1

akj
(
evkθ − 1

)
� j = 0� 1� � � � � d�

Becauseψj(αj) is finite for all sufficiently small αj > 0, the moment generating
function of L in (31) is finite for all sufficiently small θ > 0.

In the particular case that Γj has a gamma distribution with mean 1 and
variance σ2

j , j = 1� � � � � d, we have

ψj(α) = − 1

σ2
j

log
(
1 − σ2

j α
)
� α < 1/σ2

j �
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This case is used in the CreditRisk+ framework (Wilde, 1997). It generalizes
a classical model (see, e.g., Greenwood and Yule, 1920, Section IV) used in
actuarial science with d = 1 (a single underlying factor). The tractability of
this case rests, in part, on the fact that a gamma mixture of Poisson random
variables has a negative binomial distribution, as explained in Johnson et al.
(1993, p. 328).

From the moment generating function φL in (31), one can evaluate the
Laplace transform s (→ φL(−s) and the characteristic function ω (→
φL(

√−1ω); either of these can then be inverted numerically to find the distri-
bution of L. One may alternatively apply a saddlepoint approximation to the
cumulant generating function logφL, as in Gordy (2002). If all v1� � � � � vm are
integers (interpreted as multiples of a basic loss amount), then L is integer-
valued with probability generating function z (→ φL(log z). The Panjer (1981)
recursion is used in the actuarial literature for this case and applied in Wilde
(1997). Haaf et al. (2005) develop a numerically stable alternative procedure
for transform inversion. Haaf and Tasche (2002) discuss the calculation of mar-
ginal risk contributions.

6 Importance sampling

In Section 4, we discussed methods for computing the loss distribution in
a portfolio of independent obligors. These methods also allow calculation of
conditional loss distributions when obligors become independent conditional
on a set of underlying factors. As noted in Section 5.1, ordinary Monte Carlo
simulation is often the most effective way to calculate the unconditional loss
distribution in a model with multiple underlying factors. But ordinary Monte
Carlo simulation is generally inefficient for the estimation of small probabili-
ties associated with large losses, and these are often of primary importance for
risk management.

In this section, we discuss the application of importance sampling for rare-
event simulation in credit risk. In importance sampling, we change the distribu-
tion from which we generate outcomes in order to generate more observations
of a rare event; we then weight each scenario to correct for the change in dis-
tribution. The appropriate weight to “unbias” the simulation is the likelihood
ratio relating the original and new probabilities. The application of importance
sampling to credit risk has been suggested in Avranitis and Gregory (2001),
Joshi and Kainth (2004), Kalkbrener et al. (2004), Merino and Nyfeler (2004),
Morokoff (2004), Glasserman and Li (2005), and Glasserman et al. (2005); we
base our discussion on the last two of these references which include theoreti-
cal support for the methods they develop.

6.1 Independent obligors

We begin by considering the case of independent obligors. This is the sim-
plest case to introduce and will be a building block in the case of dependent
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obligors that become conditionally independent given a set of underlying fac-
tors.

Consider, therefore, the case of independent default indicators Y1� � � � � Ym,
with P(Yk = 1) = pk. To further simplify the setting, let losses given default
be constants v1� � � � � vm, so that the portfolio loss is L = Y1v1 + · · · + Ymvm.
Our objective is to estimate P(L > x) for large x; from precise estimates of
the tail of L, we can then estimate VaR and other risk measures. See Glynn
(1996) for an analysis of importance sampling for quantile estimation.

In order to generate more scenarios with large losses, we might increase
each default probability pk to some new value qk and then simulate using the
higher default probabilities. The resulting likelihood ratio associated with any
outcome Y1� � � � � Ym is the ratio of the probabilities of these outcomes under
the original and new default probabilities, which is given by

(32)+ =
m∏
k=1

(
pk
qk

)Yk
(

1 − pk
1 − qk

)1−Yk
�

We obtain an importance sampling estimate of P(L > x) by generating the
default indicators Yk from the new probabilities, evaluating the portfolio loss
L = Y1v1 + · · · + Ymvm and returning the estimator 1{L > x}+, with 1{·} the
indicator of the event in braces. Multiplying by the likelihood ratio + makes
this an unbiased estimator for all choices of qk, 0 < qk < 1, k = 1� � � � �m.

Although increasing the default probabilities produces more replications
with large losses, it does not guarantee a reduction in variance; indeed, a poor
choice for the qk can easily produce an increase in variance. Some guidance in
the choice of probabilities is available from the simulation literature.

The problem of rare-event simulation for sums of independent random vari-
ables has been studied extensively, as have generalizations of this problem. It
follows, for example, from Sadowsky and Bucklew (1990) that a particularly
effective approach to this problem is to apply an exponential twist to the dis-
tributions of the increments. Applying an exponential twist means multiplying
the value of a probability density or mass function at every point x by a factor
exp(θx), for some parameter θ, and then normalizing so that the scaled density
or mass function has total probability 1.

In our setting, the increments are the random variables Ykvk. Each takes
two values, vk and 0, with probabilities pk and 1−pk. Applying an exponential
twist with parameter θ thus means multiplying the first probability by exp(θvk),
multiplying the second probability by exp(θ0) = 1, and then normalizing so
that the two values sum to 1. This produces exactly the values pk�θ in (24). In
other words, the exponentially twisted probabilities are the probabilities used
in the saddlepoint approximation.

With qk = pk�θ, the likelihood ratio in (32) reduces, through algebraic sim-
plification, to

+ = exp
(−θL+ ψL(θ)

)
�
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where ψL the cumulant generating function in (21). (With Vk ≡ vk, we have
Λk(θ) = vkθ in (21).) From this expression, we see that the likelihood ratio
is decreasing in L for all θ > 0. This is attractive because the key to reduc-
ing variance is making the likelihood ratio small on the event {L > x}. More
explicitly, if we write Eθ to denote expectation using the default probabilities
pk�θ, then the second moment of the importance sampling estimator is

Eθ
[
1{L > x}+2] = E

[
1{L > x}+];

thus, we reduce variance by making + small when L > x.
We would like to choose the parameter θ to minimize variance. Doing so

exactly is generally infeasible, but we can approximate the second moment of
the estimator by the upper bound

E
[
1{L > x}+] = E

[
1{L > x} exp

(−θL+ ψL(θ)
)]

� exp
(−θx+ ψL(θ)

)
and then minimize this upper bound. Because ψL is convex, the upper bound
is minimized at the value θ = θx solving ψ′

L(θx) = x. This is precisely the sad-
dlepoint in (22). Recall from (22) and (23) that the probabilities pk�θx defined
by the saddlepoint have the property that they set the expected loss equal to x.
Glasserman and Li (2005) show that using this change of probability produces
variance reduction that is asymptotically optimal as the portfolio size m and
the threshold x grow in fixed proportion.

The foregoing discussion extends, with minor modification, to the case of
random losses Vk. In addition to twisting the default probabilities, we now twist
the loss amounts. If, for example, Vk has density fk, then applying an exponen-
tial twist means replacing fk with

fk�θ(v) = eθv−Λk(θ)fk(v)�

where, as in Section 4.3, Λk is the cumulant generating function of Vk. The
resulting likelihood ratio is

+ =
m∏
k=1

(
pk
pk�θ

)Yk
(

1 − pk
1 − pk�θ

)1−Yk m∏
k=1

fk(Vk)

fk�θ(Vk)

= exp
(−θL+ ψL(θ)

)
�

Thus, the likelihood ratio has the same form as before, but the fact that the Vk
are random is reflected in the functions Λk appearing in ψL, as in (21). The
argument used in the case of fixed losses again leads us to take θ = θx, the
saddlepoint associated with loss level x.

6.2 Importance sampling in the Gaussian copula

A model with independent obligors is a useful place to begin a discussion
of importance sampling, but from a practical perspective it is necessary to con-
sider a model with dependent defaults. We consider the case of the Gaussian
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copula model of dependence, in which defaults become independent condi-
tional on a set of underlying factors Z = (Z1� � � � � Zd)

�.
If the kth obligor has unconditional default probability pk, then its condi-

tional default probability, given Z, is pk(Z), as defined in (14). A straightfor-
ward extension of the importance sampling technique described above for the
independent case would apply the same ideas conditional on Z. This means
replacing the pk(Z) with

pk�θ(Z) = pk(Z)e
Λk(θ)

1 + pk(Z)(eΛk(θ) − 1)
�

and replacing the loss densities fk with fk�θ. The conditional likelihood ratio
for this conditional change of distribution is

+(Z) = exp
(−θL+ ψL(θ�Z)

)
�

Observe that ψL now depends on Z because the conditional default probabil-
ities pk(Z) replace the original default probabilities pk in (21).

Furthermore, the saddlepoint θx itself depends on Z because it solves the
equation

∂

∂θ
ψL(θx�Z) = x�

which depends on Z. For some values of Z, it is possible to get θx(Z) < 0;
this happens when E[L|Z] > x. Rather than twist with a negative parameter
(which would decrease the conditional default probabilities), it is preferable to
replace θx(Z) with 0. The two cases can be combined by twisting by θ+x (Z) =
max{θx(Z)� 0}. Using this parameter, the conditional likelihood ratio becomes

+(Z) = exp
(−θ+x (Z)L+ ψL

(
θ+x (Z)�Z

))
�

This approach parallels (conditional on Z) the technique described above
for the case of independent obligors. But whereas this approach produces size-
able variance reduction in the independent case, Glasserman and Li (2005)
prove that, by itself, it cannot be very effective once defaults are only condi-
tionally independent. This phenomenon may be explained by noting that large
losses occur in two ways in the Gaussian copula – either because Z falls near
the origin and many obligors default by chance, despite having small default
probabilities; or because Z falls in a region far from the origin in which many
of the conditional default probabilities pk(Z) are large. The conditional ex-
ponential twist addresses only the first of these two vehicles: it increases the
conditional default probabilities to generate more defaults conditional on Z.
But the second vehicle is the more important one: large losses are generally
more likely to occur because of exceptional outcomes of a relatively small num-
ber of factors, rather than because of exceptional outcomes of a large number
of default indicators.

This second mechanism can be incorporated into the importance sampling
procedure by changing the distribution of the factors in order to generate more
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outcomes in which the conditional default probabilitiespk(Z) are large. Recall
that Z has a standard multivariate normal distribution. The simplest change of
distribution to consider is to move the mean ofZ from the origin to some other
point μ. The ratio of the N(0� I) and N(μ� I) densities at Z is exp(−μ�Z +
μ�μ/2); if we first change the mean of Z and then twist the conditional default
probabilities given Z, the overall likelihood ratio is

exp
(−θ+x (Z)L+ ψL

(
θ+x (Z)�Z

))
exp

(−μ�Z + 1
2μ

�μ
)
�

It remains to choose the new mean μ. Glasserman and Li (2005) suggest
that μ should be chosen as the value of z maximizing

(33)P(L > x | Z = z) exp
(−z�z/2

)
�

The second factor is proportional to the standard normal density, so a maxi-
mizing z may be interpreted as the “most likely” factor outcome leading to a
large loss. In the same spirit, one may seek to choose z to

(34)minimize z�z subject to E[L | Z = z] � x�

Solving (33) is generally impractical, so Glasserman and Li (2005) replace
the conditional loss probability with the upper bound

P(L > x | Z = z) � exp
(−θ+x (z)x+ ψL

(
θ+x (z)� z

)) ≡ exp
(
Fx(z)

)
�

By using this upper bound as an approximation in (33), they arrive at the opti-
mization problem

max
z

{
Fx(z)− 1

2z
�z

}
and they choose the new mean μ = μ∗ to solve this problem. Problem (34)
may be recast as

minimize z�z subject to Fx(z) � 0�

because of the equivalences

Fx(z) � 0 ⇔ Fx(z) = 0 ⇔ θ+x (z) = 0 ⇔ θx(z) � 0
⇔ E[L|Z = z] � x�

Figure 4 illustrates the solutions μ∗ and z∗ to these optimization problems
for a single-factor homogeneous portfolio with pk ≡ 0�02, vk ≡ 1, m = 100
and x = 10. Also, we take the factor loading ρ = −0�3 (in the notation of
(26)), so that the default probabilities (and Fx(z)) are increasing functions of
z. The function Fox in the figure is what we get if we replace θ+x with θx in the
definition of Fx.

Glasserman and Li (2005) establish asymptotic optimality results using μ∗
in single-factor homogeneous models. For multifactor models, Glasserman et
al. (2005) use a mixture of mean shifts, using a procedure that generalizes
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Fig. 4. Graphs of the functions Fx(z), Fox (z), and Fx(z)− z2/2 for a single-factor, homogeneous port-
folio with pk ≡ 0�02, vk ≡ 1, ρ ≡ −0�3, m = 100, and x = 10. The point μ∗ maximizes Fx(z)− z2/2,

and z∗ is the smallest point for which Fx(z) = 0.

(34) for selecting the new means, and establish asymptotic optimality. Nu-
merical results in these papers indicate that the variance reduction achieved
is around a factor of 50 for values of x with P(L > x) ≈ 1%, and that the
variance reduction achieved generally increases with the rarity of the event.
Thus, these techniques specifically address the region in which precise esti-
mates are difficult to obtain using ordinary Monte Carlo simulation. Related
importance sampling techniques are developed for the t copula and other mod-
els in Bassamboo et al. (2006), Kang and Shahabuddin (2005) and Kostadinov
(2005).

7 Summary

This chapter provides an overview of some of the primary models and com-
putational methods used in measuring portfolio credit risk and pricing credit
derivatives. The models used in these applications combine marginal informa-
tion – the default probability or the distribution of the time to default for a
single obligor – with a mechanism that captures dependence between obligors.
We have given particular attention to the Gaussian copula model of depen-
dence and a mixed Poisson model.
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A common feature of the Gaussian copula and mixed Poisson models is that
defaults become independent conditional on a set of underlying factors. This
has important implications for the computational procedures used with these
models. In the Gaussian copula model, the losses from default are given by a
sum of independent random variables, conditional on the underlying factors.
Thus, any method for computing or approximating the distribution of a sum of
independent random variables can be applied to find the conditional loss distri-
bution. These methods include recursive convolution, transform inversion, and
saddlepoint approximation. Finding the unconditional loss distribution then
requires integrating over the distribution of the factors. The greater tractabil-
ity of the mixed Poisson model allows direct calculation of the unconditional
distribution, regardless of the number of underlying factors.

Monte Carlo simulation can be combined with deterministic numerical
methods. In the Gaussian copula model, deterministic methods can be used to
compute the conditional loss distribution given a set of underlying factors, with
simulation then used to integrate over the distribution of the factors. But simu-
lation can also be used to calculate the unconditional loss distribution directly.
Ordinary Monte Carlo can be quite effective in estimating the unconditional
loss distribution, except at rarely observed large loss levels. Importance sam-
pling techniques designed for rare-event simulation can be very effective in
improving Monte Carlo estimates of the upper tail of the loss distribution.
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Abstract

The goal of this work is to present a methodology aimed at valuation and hedging
of basket credit derivatives, as well as of portfolios of credits/loans, in the context of
several possible credit ratings of underlying credit instruments. The methodology is
based on a specific Markovian model of a financial market.
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1 Introduction

The goal of this work is to present some methods and results related to
the valuation and hedging of basket credit derivatives, as well as of portfolios
of credits/loans, in the context of several possible credit ratings of under-
lying credit instruments. Thus, we are concerned with modeling dependent
credit migrations and, in particular, with modeling dependent defaults. On
the mathematical level, we are concerned with modeling dependence between
random times and with evaluation of functionals of (dependent) random times;
more generally, we are concerned with modeling dependence between random
processes and with evaluation of functionals of (dependent) random processes.
Modeling of dependent defaults and credit migrations was considered by sev-
eral authors, who proposed several alternative approaches to this important
issue. Since the detailed analysis of these methods is beyond the scope of this
text, let us only mention that they can be roughly classified as follows:

• modeling correlated defaults in a static framework using copulae (Hull
and White, 2001; Gregory and Laurent, 2004),

• modeling dependent defaults in a “dynamic” framework using cop-
ulae (Schönbucher and Schubert, 2001; Laurent and Gregory, 2003;
Giesecke, 2004),

• dynamic modeling of credit migrations and dependent defaults via
proxies (Douady and Jeanblanc, 2002; Chen and Filipovic (2003, 2005);
Albanese et al., 2003; Albanese and Chen, 2004a, 2004b),

• factor approach ((Jarrow and Yu, 2001; Yu, 2007; Frey and Backhaus,
2004); Bielecki and Rutkowski, 2002b, 2003),

• modeling dependent defaults using mixture models (Frey and McNeil,
2003; Schmock and Seiler, 2002),

• modeling of the joint dynamics of credit ratings by a voter process
(Giesecke and Weber, 2002),

• modeling dependent defaults by a dynamic approximation (Davis and
Esparragoza, 2004).

The classification above is rather arbitrary and by no means exhaustive. In
the next section, we shall briefly comment on some of the above-mentioned ap-
proaches. In this work, we propose a fairly general Markovian model that, in
principle, nests several models previously studied in the literature. In particu-
lar, this model covers jump-diffusion dynamics, as well as some classes of Lévy
processes. On the other hand, our model allows for incorporating several credit
names, and thus it is suitable when dealing with valuation of basket credit prod-
ucts (such as, basket credit default swaps or collateralized debt obligations) in
the multiple credit ratings environment. Another practically important feature
of the model put forward in this paper is that it refers to market observables
only. In contrast to most other papers in this field, we carefully analyze the is-
sue of preservation of the Markovian structure of the model under equivalent
changes of probability measures.



Ch. 11. Valuation of basket credit derivatives 473

1.1 Conditional expectations associated with credit derivatives

We present here a few comments on evaluation of functionals of random
times related to financial applications, so to put into perspective the approach
that we present in this paper. In order to smoothly present the main ideas we
shall keep technical details to a minimum.

Suppose that the underlying probability space is (Ω�G�P) endowed with
some filtration G (see Section 2 for details). Let τl, l = 1� 2� � � � � L be a fam-
ily of finite and strictly positive random times defined on this space. Let also
real-valued random variables X and X̃, as well as real-valued processes A (of
finite variation) and Z be given. Next, consider an Rk+-valued random variable
ζ := g(τ1� τ2� � � � � τL) where g : RL+ → Rk+ is some measurable function. In the
context of valuation of credit derivatives, it is of interest to evaluate conditional
expectations of the form

(1)EPβ

( ∫
]t�T ]

β−1
u dDu

∣∣ Gt)�
for some numeraire process β, where the dividend process D is given by the
following generic formula:

Dt =
(
Xα1(ζ)+ X̃α2(ζ)

)
1{t�T } +

∫
]0�t]

α3(u; ζ) dAu

+
∫

]0�t]
Zu dα4(u; ζ)�

where the specification of αis depends on a particular application. The proba-
bility measure Pβ, equivalent to P, is the martingale measure associated with a
numeraire β (see Section 4.2 below). We shall now illustrate this general set-
up with four examples. In each case, it is easy to identify the processes A�Z as
well as the αis.

Example 1.1 (Defaultable Bond). We set L = 1 and τ = τ1, and we interpret τ
as a time of default of an issuer of a corporate bond (we set here ζ = τ = τ1).
The face value of the bond (the promised payment) is a constant amount X
that is paid to bondholder at maturity T , provided that there was no default
by the time T . In addition, a coupon is paid continuously at the instantaneous
rate ct up to default time or bond’s maturity, whichever comes first. In case
default occurs by the time T , a recovery payment is paid, either as the lump
sum X̃ at bond’s maturity, or as a time-dependent rebate Zτ at the default
time. In the former case, the dividend process of the bond equals

Dt =
(
X(1 −HT)+ X̃HT

)
1{t�T } +

∫
]0�t]

(1 −Hu)cu du�
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where Ht = 1{τ�t}, and in the latter case, we have that

Dt = X(1 −HT)1{t�T } +
∫

]0�t]
(1 −Hu)cu du+

∫
]0�t]

Zu dHu�

Example 1.2 (Credit Ratings Triggered Step-Up Corporate Bonds). These are
corporate coupon bonds for which the coupon payment depends on the issuer’s
credit quality: the coupon payment increases when the credit quality of the
issuer declines. In practice, for such bonds, credit quality is reflected in credit
ratings assigned to the issuer by at least one credit ratings agency (such as
Moody’s-KMV, Fitch Ratings or Standard & Poor’s). Let Xt stand for some
indicator of credit quality at time t. Assume that ti� i = 1� 2� � � � � n are coupon
payment dates and let ci = c(Xti−1) be the coupons (t0 = 0). The dividend
process associated with the step-up bond equals

Dt = X(1 −HT)1{t�T } +
∫

]0�t]
(1 −Hu) dAu

+ possible recovery payment

where τ, X and H are as in the previous example, and At = ∑
ti�t ci.

Example 1.3 (Default Payment Leg of a Collateralized Debt Obligation (CDO)
Tranche). We consider a portfolio ofL credit names. For each l = 1� 2� � � � � L,
the nominal payment is denoted by Nl, the corresponding default time by τl
and the associated loss given default byMl = (1−δl)Nl, where δl is the recovery
rate for the lth credit name. We set Hl

t = 1{τl�t} for every l = 1� 2� � � � � L, and
ζ = (τ1� τ2� � � � � τL). Thus, the cumulative loss process equals

Lt(ζ) =
L∑
l=1

MlH
l
t �

Similarly as in Laurent and Gregory (2003), we consider a cumulative default
payments process on the mezzanine tranche of the CDO:

Mt(ζ) =
(
Lt(ζ)− a

)
1[a�b]

(
Lt(ζ)

) + (b− a)1]b�N]
(
Lt(ζ)

)
�

where a� b are some thresholds such that 0 � a � b � N := ∑L
l=1 Nl. If we

assume that M0 = 0 then the dividend process corresponding to the default
payment leg on the mezzanine tranche of the CDO is Dt =

∫
]0�t] dMu(ζ).

Example 1.4 (Default Payment Leg of a kth-to-default CDS). Consider a port-
folio ofL reference defaultable bonds. For each defaultable bond, the notional
amount is taken to be deterministic and denoted as Nl; the corresponding re-
covery rate δl is also deterministic. We suppose that the maturities of the bonds
are Ul and the maturity of the swap is T < min{U1�U2� � � � � UL}. Here, we set



Ch. 11. Valuation of basket credit derivatives 475

ζ = (τ1� τ2� � � � � τL� τ
(k)), where τ(k) is the kth order statistics of the collection

{τ1� τ2� � � � � τL}.
A special case of the kth-to-default-swap is the case when the protection

buyer is protected against only the last default (i.e. the kth default). In this
case, the dividend process associated with the default payment leg is

Dt = (1 − δι(k))Nι(k)1{τ(k)�T }H
(k)
t �

where H(k)
t = 1{τ(k)�t} and ι(k) stands for the identity of the kth defaulting

credit name. This can be also written as Dt =
∫
]0�t] dNu(ζ), where

Nt(ζ) =
∫

]0�t]

L∑
l=1

(1 − δl)Nl1τl (u) dH(k)
u �

1.2 Existing methods of modeling dependent defaults

It is apparent that in order to evaluate the expectation in (1) one needs to
know, among other things, the conditional distribution of ζ given Gt . This, in
general, requires the knowledge of conditional dependence structure between
random times τl� τ2� � � � � τL, so that it is important to be able to appropri-
ately model dependence between these random times. This is not an easy
task, in general. Typically, the methodologies proposed in the literature so
far handle well the task of evaluating the conditional expectation in (1) for
ζ = τ(1) = min{τ1� τ2� � � � � τL}, which, in practical applications, corresponds
to first-to-default or first-to-change type credit derivatives. However, they suf-
fer from more or less serious limitations when it comes to credit derivatives
involving subsequent defaults or changes in credit quality, and not just the
first default or the first change, unless restrictive assumptions are made, such
as conditional independence between the random times in question. In con-
sequence, the existing methodologies would not handle well computation of
expectation in (1) with process D as in Examples 1.3 and 1.4, unless restrictive
assumptions are made about the model. Likewise, the existing methodolo-
gies can’t typically handle modeling dependence between credit migrations,
so that they can’t cope with basket derivatives whose payoffs explicitly depend
on changes in credit ratings of the reference names.

Arguably, the best known and the most widespread among practitioners
is the copula approach (cf. Li, 2000; Schubert and Schönbucher, 2001; and
Laurent and Gregory, 2003, for example). Although there are various versions
of this approach, the unifying idea is to use a copula function so to model de-
pendence between some auxiliary random variables, say υ1� υ2� � � � � υL, which
are supposed to be related in some way to τl� τ2� � � � � τL, and then to infer
the dependence between the latter random variables from the dependence be-
tween the former.
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It appears that the major deficiency of the copula approach, as it stands
now, is its inability to compute certain important conditional distributions. Let
us illustrate this point by means of a simple example. Suppose that L = 2 and
consider the conditional probability P(τ2 > t + s | Gt). Using the copula ap-
proach, one can typically compute the above probability (in terms of partial
derivatives of the underlying copula function) on the set {τ1 = t1} for t1 � t,
but not on the set {τ1 � t1}. This means, in particular, that the copula ap-
proach is not “Markovian,” although this statement is rather vague without
further qualifications. In addition, the copula approach, as it stands now, can’t
be applied to modeling dependence between changes in credit ratings, so that it
can’t be used in situations involving, for instance, baskets of corporate step-up
bonds (cf. Example 1.2). In fact, this approach can’t be applied to valuation and
hedging of basket derivatives if one wants to account explicitly on credit ratings
of the names in the basket. Modeling dependence between changes in credit
ratings indeed requires modeling dependence between stochastic processes.

Another methodology that gained some popularity is a methodology
of modeling dependence between random times in terms of some proxy
processes, typically some Lévy processes (cf. Hull and White, 2001; Albanese
et al., 2003; and Chen and Filipović, 2003, 2005, for example). The major prob-
lem with these approaches is that the proxy processes are latent processes
whose states are unobservable virtual states. In addition, in this approach,
when applied to modeling of credit quality, one can’t model a succession of
credit ratings, e.g., the joint evolution of the current and immediately preced-
ing credit ratings (see Remark 2.1 (ii) below).

2 Notation and preliminary results

The underlying probability space containing all possible events over a finite
time horizon is denoted by (Ω�G�P), where P is a generic probability measure.
Depending on the context, we shall consider various (mutually equivalent)
probability measures on the space (Ω�G). The probability space (Ω�G�P) is
endowed with a filtration G = H̃ ∨ F, where the filtration H̃ carries the infor-
mation about evolution of credit events, such as changes in credit ratings of
respective credit names, and where F is some reference filtration. We shall be
more specific about both filtrations later on; at this point, we only postulate
that they both satisfy the so-called “usual conditions.”

The credit events of fundamental interest to us are changes in credit ratings,
in particular – the default event. The evolution of credit ratings can be modeled
in terms of an appropriate stochastic process defined on (Ω�G�P). Various
approaches to the choice of this process have been already proposed in the
literature. We shall focus here on the Markov approach, in the sense explained
in Section 2.1.1 below.
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2.1 Credit migrations

We consider L obligors (or credit names). We assume that current credit
rating of the lth reference entity can be classified to one of Kl different rat-
ing categories. We let Kl = {1� 2� � � � �Kl} to denote the set of such categories.
However, without a loss of generality, we assume that Kl = K := {1� 2� � � � �K}
for every l = 1� 2� � � � � L. By convention, the category K corresponds to de-
fault.

Let Xl� l = 1� 2� � � � � L be some processes on (Ω�G�P) with values in K.
A process Xl represents the evolution of credit ratings of the lth reference
entity.

Let us write X = (X1�X2� � � � �XL). The state space of X is X := KL; the
elements of X will be denoted by x. We call the process X the (joint) migration
process. We assume that Xl

0 �= K for every l = 1� 2� � � � � L, and we define the
default time τl of the lth reference entity by setting

(2)τl = inf
{
t > 0: Xl

t = K
}

with the usual convention that inf ∅ = ∞. We assume that the default state K
is absorbing, so that for each name the default event can only occur once. Put
another way, for each l the processXl is stopped at τl. Since we are considering
a continuous time market then, without loss of practical generality, we assume
that simultaneous defaults are not allowed. Specifically, the equality P(τl′ =
τl) = 0 will hold for every l′ �= l in our model.

Remark 2.1. (i) In the special case when K = 2, only two categories are distin-
guished: pre-default (j = 1) and default (j = 2). We then have Xl

t = Hl
t + 1,

where Hl
t = 1{τl�t}.

(ii) Each credit rating j may include a “history” of transitions. For example,
j may be a two-dimensional quantity, say j = (j′� j′′), where j′ represents the
current credit rating, whereas j′′ represents the immediately preceding credit
rating.

2.1.1 Markovian set-up
From now on, we set H̃ = FX , so that the filtration H̃ is the natural filtration

of the process X. Arguably, the most convenient set-up to work with is the
one where the reference filtration F is the filtration FY generated by relevant
(vector) factor process, say Y , and where the process (X�Y) is jointly Markov
under P with respect to its natural filtration G = FX ∨ FY = H̃ ∨ F, so that we
have, for every 0 � t � s, x ∈ X and any set Y from the state space of Y ,

(3)P(Xs = x�Ys ∈ Y | Gt) = P(Xs = x�Ys ∈ Y | Xt�Yt)�

This is the general framework adopted in the present paper. A specific Markov
market model will be introduced in Section 3 below.
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Of primary importance in this paper will be the kth default time for an arbi-
trary k = 1� 2� � � � � L. Let τ(1) < τ(2) < · · · < τ(L) be the ordering (for eachω)
of the default times τ1� τ2� � � � � τL. By definition, the kth default time is τ(k).

It will be convenient to represent some probabilities associated with the kth
default time in terms of the cumulative default process H, defined as the in-
creasing process

Ht =
L∑
l=1

Hl
t �

where Hl
t = 1{Xl

t=K} = 1{τl�t} for every t ∈ R+. Evidently H ⊆ H̃, where H

is the filtration generated by the cumulative default process H. It is obvious
that the process S := (H�X�Y) has the Markov property under P with respect
to the filtration G. Also, it is useful to observe that we have {τ(1) > t} =
{Ht = 0}� {τ(k) � t} = {Ht � k} and {τ(k) = τl} = {Hτl = k} for every
l� k = 1� 2� � � � � L.

2.2 Conditional expectations

Although we shall later focus on a Markovian set-up, in the sense of equal-
ity (3), we shall first derive some preliminary results in a more general set-up.
To this end, it will be convenient to use the notation FX�t = σ(Xs; s � t) and
FY�t = σ(Ys; s � t) for the information generated by the processes X and Y
after time t. We postulate that for any random variable Z ∈ FX�t ∨ FY∞ and
any bounded measurable function g, it holds that

(4)EP

(
g(Z) | Gt

) = EP

(
g(Z) | σ(Xt) ∨FY

t

)
�

This implies, in particular, that the migration processX is conditionally Markov
with regard to the reference filtration FY , that is, for every 0 � t � s and
x ∈ X ,

(5)P(Xs = x | Gt) = P
(
Xs = x | σ(Xt) ∨FY

t

)
�

Note that the Markov condition (3) is stronger than condition (4). We assume
from now on that t � 0 and x ∈ X are such that px(t) := P(Xt = x | FY

t ) > 0.
We begin the analysis of conditional expectations with the following lemma.

Lemma 2.1. Let k ∈ {1� 2� � � � � L}, x ∈ X , and let Z ∈ FX�t ∨ FY∞ be an
integrable random variable. Then we have, for every 0 � t � s,

(6)1{Xt=x}EP(1{Hs<k}Z|Gt) = 1{Ht<k�Xt=x}
EP(1{Hs<k�Xt=x}Z | FY

t )

px(t)
�

Consequently,

(7)EP(1{Hs<k}Z|Gt) = 1{Ht<k}
∑
x∈X

1{Xt=x}
EP(1{Hs<k�Xt=x}Z | FY

t )

px(t)
�
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Proof. Let At be an arbitrary event from Gt . We need to check that

EP(1At1{Xt=x}1{Hs<k}Z)

= EP

(
1At1{Ht<k�Xt=x}

EP(1{Hs<k�Xt=x}Z | FY
t )

px(t)

)
�

Since {Hs < k} ⊂ {Ht < k} and the random variable Z̃ := 1{Hs<k�Xt=x}Z
belongs to FX�t ∨FY∞, the left-hand side is equal to

EP

(
EP(1At1{Ht<k�Xt=x}1{Hs<k}Z | Gt)

)
= EP

(
1At1{Ht<k�Xt=x}EP(1{Hs<k�Xt=x}Z | Gt)

)
= EP

(
1At1{Ht<k�Xt=x}EP(1{Hs<k�Xt=x}Z | σ(Xt) ∨FY

t )
)

= EP

(
1At1{Ht<k�Xt=x}

EP(1{Hs<k�Xt=x}Z | FY
t )

px(t)

)
�

where the second equality is a consequence of (4), and the last one follows
from the equality

1{Xt=x}EP

(
Ẑ | σ(Xt) ∨FY

t

) = 1{Xt=x}
EP(1{Xt=x}Ẑ | FY

t )

P(Xt = x | FY
t )

�

which is valid for any integrable random variable Ẑ. Equality (7) is an immedi-
ate consequence of (6). �

In the case of a single credit name, that is, in the case of L = 1, we have for
any t � 0 that {Ht < 1} = {Ht �= 1} = {Xt �= K}� This leads to the following
result.

Corollary 2.1. Let L = 1 and let Z ∈ FX�t ∨ FY∞ be an integrable random
variable. Then we have, for any 0 � t � s,

(8)EP(1{Xs �=K}Z | Gt) =
K−1∑
x=1

1{Xt=x}
EP(1{Xs �=K�Xt=x}Z | FY

t )

px(t)
�

For any 0 � t � s, we write

qk�x;t(s) = P
(
Hs < k�Xt = x

∣∣ FY
t

) = P
(
τ(k) > s�Xt = x

∣∣ FY
t

)
�

pk�x;t(s) = P
(
Hs � k�Xt = x

∣∣ FY
t

) = P
(
τ(k) � s�Xt = x

∣∣ FY
t

)
�

so that formally dpk�x;t(s) = P(τ(k) ∈ ds�Xt = x|FY
t ). The following propo-

sition extends Lemma 2.1.
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Proposition 2.1. Let k ∈ {1� 2� � � � � L} and letZ be an integrable, FY -predictable
process. Then we have, for every 0 � t � s,

(9)

EP(1{t<τ(k)�s}Zτ(k) | Gt)
= 1{Ht<k}

∑
x∈X

1{Xt=x}
px(t)

EP

( ∫
]t�s]

Zu dpk�x;t(u)
∣∣ FY

t

)
�

Proof. Let t < α < β < s. Let us first establish (9) for a process Z of the form
Zu = 1]α�β](u)Zα where Zα is a FY

α -measurable, integrable random variable.
In this case, we have

EP(1{t<τ(k)�s}Zτ(k) | Gt)
= EP(1{α<τ(k)�β}Zα | Gt)
= EP(1{Hα<k}Zα | Gt)− EP(1{Hβ<k}Zα | Gt)
= 1{Ht<k}

∑
x∈X

1{Xt=x}
px(t)

EP

(
Zα

[
qk�x�t(α)− qk�x�t(β)

] ∣∣ FY
t

)
= 1{Ht<k}

∑
x∈X

1{Xt=x}
px(t)

EP

( ∫
]t�s]

Zu dpk�x;t(u)
∣∣ FY

t

)
�

where the third equality follows easily from (7) and the definitions of qk�x;t(s)
and pk�x;t(s). The general case follows by standard approximation argu-
ments. �

Corollary 2.2. Let L = 1 and let Z be an integrable, FY -predictable stochastic
process. Then we have, for every 0 � t � s,

(10)

EP(1{t<τ�s}Zτ | Gt)

= 1{Xt �=K}
K−1∑
x=1

1{Xt=x}
px(t)

EP

( ∫
]t�s]

Zu dp1�k;t(u)
∣∣ FY

t

)
�

For K = 2, Corollaries 2.1 and 2.2 coincide with Lemma 5.1.2(i) and Propo-
sition 5.1.1(i) in Bielecki and Rutkowski (2002a), respectively.

2.2.1 Markovian case
Let us now assume the Markovian set-up of Section 2.1.1. Let Z be a Gt =

FX�t ∨FY�t-measurable, integrable random variable. Then formula (7) yields,
for every 0 � t � s,

(11)

EP(1{Hs<k}Z | Gt) = 1{Ht<k}
∑
x∈X

1{Xt=x}
p̄x(t)

EP(1{Hs<k�Xt=x}Z | Yt)�
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where p̄x(t) = P(Xt = x | Yt), and formula (9) becomes

(12)

EP(1{t<τ(k)�s}Zτ(k) | Gt)
= 1{Ht<k}

∑
x∈X

1{Xt=x}
p̄x(t)

EP

( ∫
]t�s]

Zu dp̄k�x;t(u) | Yt
)
�

where

p̄k�x;t(u) = P(Hu � k�Xt = x | Yu) = P(τ(k) � u�Xt = x | Yu)�

3 Markovian market model

We assume that the factor process Y takes values in Rn so that the state
space for the process M = (X�Y) is X × Rn. At the intuitive level, we wish
to model the process M = (X�Y) as a combination of a Markov chain X
modulated by the Lévy-like process Y and a Lévy-like process Y modulated
by a Markov chain X. To be more specific, we postulate that the infinitesimal
generator A of M is given as

Af (x� y) = (1/2)
n∑

i�j=1

aij(x� y)∂i∂jf (x� y)+
n∑
i=1

bi(x� y)∂if (x� y)

+ γ(x� y)

∫
Rn

(
f
(
x� y + g(x� y� y ′)

) − f (x� y)
)
Π(x� y; dy ′)

+
∑
x′∈X

λ(x� x′; y)f (x′� y)�

where λ(x� x′; y) � 0 for every x = (x1� x2� � � � � xL) �= (x′ 1� x′ 2� � � � � x′L) =
x′, and

λ(x� x; y) = −
∑

x′∈X �x′ �=x
λ(x� x′; y)�

Here ∂i denotes the partial derivative with respect to the variable yi. The exis-
tence and uniqueness of a Markov process M with the generator A will follow
(under appropriate technical conditions) from the respective results regarding
martingale problems. Specifically, one can refer to Theorems 4.1 and 5.4 in
Chapter 4 of Ethier and Kurtz (1986).

We find it convenient to refer to X (Y , respectively) as the Markov chain
component of M (the jump-diffusion component of M , respectively). At any
time t, the intensity matrix of the Markov chain component is given as Λt =
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[λ(x� x′;Yt)]x�x′∈X . The jump-diffusion component satisfies the SDE:

dYt = b(Xt� Yt) dt + σ(Xt� Yt) dWt

+
∫
Rn

g(Xt−� Yt−� y ′)π(Xt−� Yt−; dy ′� dt)�

where, for a fixed (x� y) ∈ X × Rn, π(x� y; dy ′� dt) is a Poisson measure with
the intensity measure γ(x� y)Π(x� y; dy ′) dt, and where σ(x� y) satisfies the
equality σ(x� y)σ(x� y)T = a(x� y).

Remark 3.1. If we take g(x� y� y ′) = y ′, and we suppose that the coefficients
σ = [σij], b = [bi], γ, and the measure Π do not depend on x and y then
the factor process Y is a Poisson-Lévy process with the characteristic triplet
(a� b� ν), where the diffusion matrix is a(x� y) = σ(x� y)σ(x� y)T, the “drift”
vector is b(x� y), and the Lévy measure is ν(dy) = γΠ(dy). In this case, the
migration process X is modulated by the factor process Y , but not vice versa.
We shall not study here the “infinite activity” case, that is, the case when the
jump measure π is not a Poisson measure, and the related Lévy measure is an
infinite measure.

We shall provide with more structure the Markov chain part of the genera-
tor A. Specifically, we make the following standing assumption.

Assumption (M). The infinitesimal generator of the process M = (X�Y)
takes the following form

Af (x� y) = (1/2)
n∑

i�j=1

aij(x� y)∂i∂jf (x� y)+
n∑
i=1

bi(x� y)∂if (x� y)

+ γ(x� y)

∫
Rn

(
f
(
x� y + g(x� y� y ′)

) − f (x� y)
)
Π(x� y; dy ′)

(13)+
L∑
l=1

∑
xl

′∈K
λl(x� x′l; y)f (x′

l� y)�

where we write x′l = (x1� x2� � � � � xl−1� x′ l� xl+1� � � � � xL).

Note that x′l is the vector x = (x1� x2� � � � � xL) with the lth coordinate xl

replaced by x′ l. In the case of two obligors (i.e., for L = 2), the generator
becomes
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Af (x� y) = (1/2)
n∑

i�j=1

aij(x� y)∂i∂jf (x� y)+
n∑
i=1

bi(x� y)∂if (x� y)

+ γ(x� y)

∫
Rn

(
f
(
x� y + g(x� y� y ′)

) − f (x� y)
)
Π(x� y; dy ′)

+
∑
x′ 1∈K

λ1(x� x′1; y)f (x′
1� y)+

∑
x′ 2∈K

λ2(x� x′2; y)f (x′
2� y)�

where x = (x1� x2)� x′1 = (x′ 1� x2) and x′2 = (x1� x′ 2). In this case, coming
back to the general form, we have for x = (x1� x2) and x′ = (x′ 1� x′ 2)

λ(x� x′; y) =
⎧⎨⎩λ1(x� x′1; y)� if x2 = x′ 2�

λ2(x� x′2; y)� if x1 = x′ 1�
0� otherwise�

Similar expressions can be derived in the case of a general value of L. Note
that the model specified by (13) does not allow for simultaneous jumps of the
components Xl and Xl′ for l �= l′. In other words, the ratings of different
credit names may not change simultaneously. Nevertheless, this is not a seri-
ous lack of generality, as the ratings of both credit names may still change in an
arbitrarily small time interval. The advantage is that, for the purpose of simu-
lation of paths of process X, rather than dealing with X × X intensity matrix
[λ(x� x′; y)], we shall deal with L intensity matrices [λl(x� x′l; y)], each of di-
mension K×K (for any fixed y). The structure (13) is assumed in the rest of the
paper. Let us stress that within the present set-up the current credit rating of
the credit name l directly impacts the intensity of transition of the rating of the
credit name l′, and vice versa. This property, known as frailty, may contribute
to default contagion.

Remark 3.2. (i) It is clear that we can incorporate in the model the case when
some – possibly all – components of the factor process Y follow Markov chains
themselves. This feature is important, as factors such as economic cycles may
be modeled as Markov chains. It is known that default rates are strongly related
to business cycles.

(ii) Some of the factors Y 1� Y 2� � � � � Yd may represent cumulative duration
of visits of rating processes Xl in respective rating states. For example, we may
set Y 1

t = ∫ t
0 1{X1

s=1} ds. In this case, we have b1(x� y) = 1{x1=1}(x), and the
corresponding components of coefficients σ and g equal zero.

(iii) In the area of structural arbitrage, so called credit-to-equity (C2E) models
and/or equity-to-credit (E2C) models are studied. Our market model nests both
types of interactions, that is C2E and E2C. For example, if one of the factors is
the price process of the equity issued by a credit name, and if credit migration
intensities depend on this factor (implicitly or explicitly) then we have a E2C
type interaction. On the other hand, if credit ratings of a given obligor impact
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the equity dynamics (of this obligor and/or some other obligors), then we deal
with a C2E type interaction.

As already mentioned, S = (H�X�Y) is a Markov process on the state
space {0� 1� � � � � L} × X × Rd with respect to its natural filtration. Given the
form of the generator of the process (X�Y), we can easily describe the gener-
ator of the process (H�X�Y). It is enough to observe that the transition inten-
sity at time t of the component H from the state Ht to the state Ht + 1 is equal
to

∑L
l=1 λ

l(Xt�K;X(l)
t � Yt), provided that Ht < L (otherwise, the transition

intensity equals zero), where we write X(l)
t = (X1

t � � � � �X
l−1
t �Xl+1

t � � � � �XL
t )

and we set λl(xl� x′ l;x(l)� y) = λl(x� x′l; y).
3.1 Specification of credit ratings transition intensities

One always needs to find a compromise between realistic features of a fi-
nancial model and its complexity. This issue frequently nests the issues of func-
tional representation of a model, as well as its parameterization. We present
here an example of a particular model for credit ratings transition rates, which
is rather arbitrary, but is nevertheless relatively simple and should be easy to
estimate/calibrate.

Let X̄t be the average credit rating at time t, so that

X̄t = 1
L

L∑
l=1

Xl
t �

Let L = {l1� l2� � � � � lL̂} be a subset of the set of all obligors, where L̂ < L.
We consider L to be a collection of “major players” whose economic situation,
reflected by their credit ratings, effectively impacts all other credit names in
the pool. The following exponential-linear “regression” model appears to be a
plausible model for the rating transition intensities:

lnλl
(
x� x′l; y

) = αl�0
(
xl� x′ l

) + n∑
j=1

αl�j
(
xl� x′ l

)
yj + βl�0

(
xl� x′ l

)
h

+
L̄∑
i=1

βl�i
(
xl� x′ l

)
xi + β̃l

(
xl� x′ l

)
x̄

(14)+ β̂l
(
xl� x′ l

)(
xl − x′ l

)
�

where h represents a generic value of Ht , so that h = ∑L
l=1 1{K}(xl), and x̄

represents a generic value of X̄t , that is, x̄ = 1
L

∑L
l=1 x

l.
The number of parameters involved in (14) can easily be controlled by the

number of model variables, in particular – the number of factors and the num-
ber of credit ratings, as well as structure of the transition matrix (see Section 7.2



Ch. 11. Valuation of basket credit derivatives 485

below). In addition, the reduction of the number of parameters can be ob-
tained if the pool of all L obligors is partitioned into a (small) number of
homogeneous sub-pools. All of this is a matter of practical implementation
of the model. Assume, for instance, that there are L̃ � L homogeneous sub-
pools of obligors, and the parameters α�β� β̃ and β̂ in (14) do not depend on
xl� x′ l. Then the migration intensities (14) are parameterized by L̃(n+ L̂+ 4)
parameters.

3.2 Conditionally independent migrations

Suppose that the intensities λl(x� x′l; y) do not depend on x(l) = (x1� x2� � � � �

xl−1� xl+1� � � � � xL) for every l = 1� 2� � � � � L. In addition, assume that the dy-
namics of the factor process Y do not depend on the migration process X� It
turns out that in this case, given the structure of our generator as in (13), the
migration processes Xl� l = 1� 2� � � � � L, are conditionally independent given
the sample path of the process Y .

We shall illustrate this point in the case of only two credit names in the pool
(i.e., for L = 2) and assuming that there is no factor process, so that condi-
tional independence really means independence between migration processes
X1 and X2. For this, suppose that X1 and X2 are independent Markov chains,
each taking values in the state space K, with infinitesimal generator matrices
Λ1 and Λ2, respectively. It is clear that the joint process X = (X1�X2) is
a Markov chain on K × K. An easy calculation reveals that the infinitesimal
generator of the process X is given as

Λ = Λ1 ⊗ IdK + IdK ⊗Λ2�

where IdK is the identity matrix of order K and ⊗ denotes the matrix tensor
product. This agrees with the structure (13) in the present case.

4 Changes of measures and Markovian numeraires

In financial applications, one frequently deals with various absolutely con-
tinuous probability measures. In order to exploit – for pricing applications – the
Markovian structure of the market model introduced above, we need that the
model is Markovian under a particular pricing measure corresponding to some
particular numeraire process β that is convenient to use for some reasons. The
model does not have to be Markovian under some other equivalent probability
measures, such as the statistical probability, say Q, or the spot martingale mea-
sure, say Q∗. Nevertheless, it may be sometimes desirable that the Markovian
structure of the market model is preserved under an equivalent change of a
probability measure, for instance, when we change a numeraire from β to β′.
In this section, we shall provide some discussion of the issue of preservation of
the Markov property of the process M .
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Let T ∗ > 0 be a fixed horizon date, and let η be a strictly positive, GT ∗-
measurable random variable such that EPη = 1. We define an equivalent
probability measure Pη on (Ω�GT ∗) by the equality

dPη

dP
= η� P-a.s.

4.1 Markovian change of a probability measure

We place ourselves in the setup of Section 2.1.1, and we follow Palmowski
and Rolski (2002) in the presentation below. The standing assumption is that
the process M = (X�Y) has the Markov property under P with respect to the
filtration G. Let (A�D(A)) be the extended generator of M . This means that the
process

(15)M
f
t = f (Mt)−

t∫
0

Af (Ms) ds

is a local G-martingale for any function f in D(A).
For any strictly positive function h ∈ D(A), we define an auxiliary process

ηh by setting

(16)ηht = h(Mt)

h(M0)
exp

(
−

t∫
0

(Ah)(Ms)

h(Ms)
ds

)
� t ∈ [0� T ∗]�

Any function h for which the process ηh is a martingale is called a good func-
tion for A. Observe that for any such function h, the equality EP(η

h
t ) = 1 holds

for every t ∈ [0� T ∗]. Note also that any constant function h is a good function
for A; in this case we have, of course, that ηh ≡ 1. The next lemma follows
from results of Palmowski and Rolski (2002) (see Lemma 3.1 therein).

Lemma 4.1. Let h be a good function for A . Then the process ηh is given as
Doléans exponential martingale

ηht = Et
(
Nh

)
�

where the local martingale Nh is given as

Nh
t =

t∫
0

κhs− dMh
s

with κht = 1/h(Mt). In other words, the process ηh satisfies the SDE

(17)dηht = ηht−κht− dMh
t � ηh0 = 1�
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Proof. An application of Itô’s formula yields

dηht = 1
h(M0)

exp

(
−

t∫
0

(Ah)(Ms)

h(Ms)
ds

)
dMh

t �

where the local martingale Mh is given by (15). This proves formula (17). �

For any good function h for A, we define an equivalent probability measure
Ph on (Ω�GT ∗) by setting

(18)
dPh

dP
= ηhT ∗� P-a.s.

From Kunita and Watanabe (1963), we deduce that the process M preserves
its Markov property with respect to the filtration G when the probability mea-
sure P is replaced by Ph. In order to find the extended generator of M under
Ph, we set

Ahf = 1
h

[
A(fh)− fA(h)

]
�

and we define the following two sets:

Dh
A =

{
f ∈ D(A): fh ∈ D(A) and

T ∗∫
0

∣∣Ahf (Ms)
∣∣ ds < ∞� Ph-a.s.

}

and

Dh−1

Ah =
{
f ∈ D

(
Ah

)
: fh−1 ∈ D

(
Ah

)
and

T ∗∫
0

∣∣Af (Ms)
∣∣ ds < ∞� P-a.s.

}
�

Then the following result holds (see Palmowski and Rolski 2002, Theorem 4.2).

Theorem 4.1. Suppose that Dh
A = D(A) and Dh−1

Ah
= D(Ah). Then the process

M is Markovian under Ph with the extended generator Ah and D(Ah) = D(A).

We now apply the above theorem to our model. The domain of D(A) con-
tains all functions f (x� y) with compact support that are twice continuously
differentiable with respect to y. Let h be a good function. Under mild assump-
tions on the coefficients of A, the assumptions of Theorem 4.1 are satisfied. It
follows that the generator of M under Ph is given as
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Ahf (x� y)

= (1/2)
n∑

i�j=1

aij(x� y)∂i∂jf (x� y)+
n∑
i=1

bhi (x� y)∂if (x� y)

+ γ(x� y)

∫
Rn

(
f
(
x� y + g(x� y� y ′)

) − f (x� y)
)
Πh(x� y; dy ′)

+
∑
x′∈X

λh(x� x′; y)f (x′� y)�

where

bhi (x� y) = bi(x� y)+ 1
h(x� y)

n∑
i�j=1

aij(x� y)∂jh(x� y)�

Πh(x� y;dy ′) = h(x� y + g(x� y� y ′))
h(x� y)

Π(x� y;dy ′)�

(19)

λh(x� x′; y) = λ(x� x′; y)h(x
′� y)

h(x� y)
� x �= x′�

λh(x� x; y) = −
∑
x′ �=x

λh(x� x′; y)�

Before we proceed to the issue of valuation of credit derivatives, we state the
following useful result, whose easy proof is omitted.

Lemma 4.2. Let h and h′ be two good functions for A. Then φ(h� h′) := h′/h is
a good function for Ah. Moreover, we have that

(20)
dPh

′

dPh
= η

φ(h�h′)
T ∗ � Ph-a.s.

where the process ηφ(h�h
′) is defined in analogy to (16) with A replaced with Ah.

4.2 Markovian numeraires and valuation measures

Let us first consider a general set-up. We use here the notation and ter-
minology of Jamshidian (2004). We fix the horizon date T ∗, and we assume
that G = GT ∗ . Let us fix some (G-adapted) deflator process ξ, that is, a strictly
positive, integrable semimartingale, with ξ0 = 1. Any G-measurable random
variable C such that ξT ∗C is integrable under P is called a claim. The price
process Ct� t ∈ [0� T ∗], of a claim C is formally defined as

Ct = ξ−1
t EP(ξT ∗C | Gt)�

so that, in particular, CT ∗ = C. It is implicitly assumed here that the informa-
tion carried by the filtration G is available to all trading agents.
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Suppose that we are interested in providing valuation formulae for some
financial products, and suppose that we find it convenient to use a particular
numeraire (that is, a strictly positive claim), denoted by β. Let Pβ be the corre-
sponding valuation measure, defined on (Ω�G) as

(21)
dPβ

dP
= ξT ∗β

β0
= ξT ∗βT ∗

β0
� P-a.s.

From the abstract Bayes rule, it follows that the price process C can be ex-
pressed as follows:

Ct = βtEPβ

(
β−1
T ∗C | Gt

)
�

As before, we assume that our market model M is Markovian under P,
where P might be the statistical probability measure Q, the spot martingale
measure Q∗, or some other martingale measure. We want the process M to
remain a time-homogeneous Markov process under Pβ.

Definition 4.1. A valuation measure Pβ is said to be a Markovian if the process
M remains a time-homogeneous Markov process under Pβ. Any numeraire
process β such that the valuation measure Pβ is Markovian is called a Markov-
ian numeraire.

In view of results of Section 4.1, for a valuation measure Pβ to be Markovian,
it suffices that the Radon–Nikodým derivative process ηβt = dPβ

dP
|Gt satisfies

η
β
t = hβ(Mt)

hβ(M0)
exp

(
−

t∫
0

(Ahβ)(Ms)

hβ(Ms)
ds

)
� t ∈ [0� T ∗]�

for some good function hβ for A. The corresponding deflator process is then
given as ξβt = β0β

−1
t η

β
t , that is, for any claim C we have that

Ct = βtEPβ

(
β−1
T ∗C | Gt

) = (
ξ
β
t

)−1
EP

(
ξ
β
T ∗C | Gt

)
�

If β and β′ are two such numeraires, and hβ and hβ
′

are the corresponding
good functions then, in view of Lemma 4.2, we have

(22)
dPβ

′

dPβ
= η

φ(hβ�hβ
′
)

T ∗ � Pβ-a.s.

An interesting question arises: under what conditions on ξ and β the prob-
ability measure Pβ is a Markovian valuation measure? In order to partially
address this question, we shall consider the case where the valuation measure
Pβ is a Markovian for any constant numeraire β, that is, for any β ≡ const > 0.

Proposition 4.1. Assume that the deflator process satisfies ξ = ηh for some good
function h for A . Then the following statements are true:
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(i) for any constant numeraire β, the valuation measure Pβ is Markovian,
(ii) if a numeraire β is such that β = β0η

χ
T ∗/ηhT ∗ for some good function χ

for A , then the valuation measure Pβ is Markovian,
(iii) if numeraires β and β′ are such that β = β0η

χ
T ∗/ηhT ∗ and β′ =

β′
0η

χ′
T ∗/ηhT ∗ for some good functions χ and χ′ for A , then

(23)
dPβ

′

dPβ
= β′/β′

0
β/β0

= η
χ′
T ∗

η
χ
T ∗
� Pξ�β

′
-a.s.

Proof. Let ξ = ηh for some good function h, where ηh is given by (16). Then
for any constant numeraireβwe get Pβ = Ph and thus, by results of Kunita and
Watanabe (1963), the processM is Markovian under the valuation measure Pβ.
This proves part (i). To establish the second part, it suffices to note that

dPβ

dP
= ξT ∗β

β0
= η

χ
T ∗�

and to use again the result of Kunita and Watanabe (1963). Formula (23)
follows easily from (21) (it can also be seen as a special case of (22)). This
completes the proof. �

4.3 Examples of Markov market models

We shall now present three pertinent examples of Markov market models.
We assume here that a numeraire β is given; the choice of β depends on the
problem at hand.

4.3.1 Markov chain migration process
We assume here that there is no factor process Y . Thus, we only deal with

a single migration process X. In this case, an attractive and efficient way to
model credit migrations is to postulate that X is a birth-and-death process with
absorption at state K. In this case, the intensity matrix Λ is tri-diagonal. To
simplify the notation, we shall write pt(k� k

′) = Pβ(Xs+t = k′ | Xs = k).
The transition probabilities pt(k� k′) satisfy the following system of ODEs, for
t � 0 and k′ ∈ {1� 2� � � � �K},

dpt(1� k′)
dt

= −λ(1� 2)pt(1� k′)+ λ(1� 2)pt(2� k′)�

dpt(k� k′)
dt

= λ(k� k− 1)pt(k− 1� k′)

− (
λ(k� k− 1)+ λ(k� k+ 1)

)
pt(k� k

′)
+ λ(k� k+ 1)pt(k+ 1� k′)
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for k = 2� 3� � � � �K − 1, and

dpt(K� k′)
dt

= 0�

with initial conditions p0(k� k
′) = 1{k=k′}. Once the transition intensities

λ(k� k′) are specified, the above system can be easily solved. Note, in par-
ticular, that pt(K� k′) = 0 for every t if k′ �= K. The advantage of this
representation is that the number of parameters can be kept small.

A slightly more flexible model is produced if we allow for jumps to the de-
fault state K from any other state. In this case, the master ODEs take the
following form, for t � 0 and k′ ∈ {1� 2� � � � �K},

dpt(1� k′)
dt

= −(
λ(1� 2)+ λ(1�K)

)
pt(1� k′)+ λ(1� 2)pt(2� k′)

+ λ(1�K)pt(K� k′)�
dpt(k� k′)

dt
= λ(k� k− 1)pt(k− 1� k′)− (

λ(k� k− 1)+ λ(k� k+ 1)

+ λ(k�K)
)
pt(k� k

′)+ λ(k� k+ 1)pt(k+ 1� k′)
+ λ(k�K)pt(K� k

′)
for k = 2� 3� � � � �K − 1, and

dpt(K� k′)
dt

= 0�

with initial conditions p0(k� k
′) = 1{k=k′}. Some authors model migrations

of credit ratings using a (proxy) diffusion, possibly with jumps to default. The
birth-and-death process with jumps to default furnishes a Markov chain coun-
terpart of such proxy diffusion models. The nice feature of the Markov chain
model is that the credit ratings are (in principle) observable state variables –
whereas in case of the proxy diffusion models they are not.

4.3.2 Diffusion-type factor process
We now add a factor process Y to the model. We postulate that the fac-

tor process is a diffusion process and that the generator of the process M =
(X�Y) takes the form

Af (x� y) = (1/2)
n∑

i�j=1

aij(x� y)∂i∂jf (x� y)+
n∑
i=1

bi(x� y)∂if (x� y)

+
∑

x′∈K�x′ �=x
λ(x� x′; y)(f (x′� y)− f (x� y)

)
�

Let φ(t� x� y� x′� y ′) be the transition probability of M . Formally,

φ(t� x� y� x′� y ′) dy ′ = Pβ(Xs+t = x′� Ys+t ∈ dy ′ | Xs = x�Ys = y)�
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In order to determine the function φ, we need to study the following Kol-
mogorov equation

(24)
dv(s� x� y)

ds
+ Av(s� x� y) = 0�

For the generator A of the present form, Eq. (24) is commonly known as the
reaction-diffusion equation. Existence and uniqueness of classical solutions for
such equations were recently studied by Becherer and Schweizer (2003). It is
worth mentioning that a reaction-diffusion equation is a special case of a more
general integro-partial-differential equation (IPDE). In a future work, we shall
deal with issue of practical solving of equations of this kind.

4.3.3 CDS spread factor model
Suppose now that the factor process Yt = κ(1)(t� T S� TM) is the forward

CDS spread (for the definition of κ(1)(t� T S� TM), see Section 5.3 below), and
that the generator for (X�Y) is

Af (x� y) = (1/2)y2a(x)
d2f (x� y)

dy2

+
∑

x′∈K�x′ �=x
λ(x� x′)

(
f (x′� y)− f (x� y)

)
�

Thus, the credit spread satisfies the following SDE

dκ(1)
(
t� T S� TM

) = κ(1)
(
t� T S� TM

)
σ(Xt) dWt

for some Brownian motion process W , where σ(x) = √
a(x). Note that in

this example κ(1)(t� T S� TM) is a conditionally log-Gaussian process given a
sample path of the migration process X, so that we are in the position to make
use of Proposition 5.1 below.

5 Valuation of single name credit derivatives

We maintain the Markovian set-up, so that M = (X�Y) follows a Markov
process with respect to G under P. In this section, we only consider one un-
derlying credit name, that is, we set L = 1. Basket credit derivatives will be
studied in Section 6 below.

5.1 Survival claims

Suppose that β is a Markovian numeraire, in the sense of Definition 4.1.
Let us fix t ∈ [0� T ], and let us assume that a claim C and the random variable
βt/βT ∗ are measurable with respect to Gt = FX�t ∨ FY�t . Then we deduce
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easily that Ct = Vξ�β
t (C), where

Vξ�β
t (C) = EPβ

(
βtβ

−1
T ∗C | Mt

)
�

A claim C such that C = 0 on the set {τ � T }, so that

C = 1{τ>T }C = 1{XT �=K}C = 1{HT<1}C�

is termed a T -survival claim. For a survival claim, a more explicit expression for
the price can be established. Since most standard credit derivatives can be seen
as survival claims, the following simple result will prove useful in what follows.

Lemma 5.1. Assume that a claim C and that the random variable βt/βT ∗ are
measurable with respect to Gt . If C is a T -survival claim then we have

Ct = 1{Xt �=K}Vξ�β
t (C) =

K−1∑
x=1

1{Xt=x}
EPβ(1{Xt=x}βtβ

−1
T ∗C|Yt)

Pβ(Xt = x|Yt) �

Proof. The first equality is clear. To derive the second equality above, it suffices
to apply formula (11) with L = 1, s = T , k = 1 and Z = C. �

Remark 5.1. Assume that K = 2, so that only the pre-default state (x = 1)
and the default state (x = 2) are recognized. Then we have, for any T -survival
claim C,

Ct = 1{Xt �=2}Vξ�β
t (C) = 1{Xt=1}V ξ�β

t (C)

Pβ(Xt = 1 | Yt)�

where V ξ�β
t (C) = EPβ(βtβ

−1
T ∗C | Yt). In the paper by Jamshidian (2004), the

process V ξ�β
t (C) is termed the pre-price of C.

5.2 Credit default swaps

The standing assumption is that β is a Markovian numeraire and βt/βs is
Gt-measurable for any t � s. For simplicity, we shall discuss a vanilla credit
default swap (CDS, for short) written on a corporate discount bond under the
fractional recovery of par covenant. We suppose that the maturity of the refer-
ence bond is U , and the maturity of the swap is T < U .

5.2.1 Default payment leg
Let N = 1 be a notional amount of the bond, and let δ be a deterministic

recovery rate in case of default. The recovery is paid at default, so that the cash
flow associated with the default payment leg – also known as the reference leg –
is given by (1 − δ)1{τ�T }1τ(t) per unit of a notional amount, where τ is the
default time of a reference credit name. Consequently, the time-t value of the
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default payment leg is equal to

A(1)
t = (1 − δ)EPβ

(
1{t<τ�T }βtβ−1

τ | Mt
)

= (1 − δ)

K−1∑
x=1

1{Xt=x}
EPβ(1{Xt=x�XT=K}βtβ−1

τ | Yt)
Pβ(Xt = x | Yt) �

The notation A(1) refers to the first default, which is formally the case here,
since we currently deal with one name only. Since L = 1, the cumulative de-
fault process H takes values in the set {0� 1}, and we have that {Ht = 1} =
{Xt = K}.

Since the process S = (H�X�Y) is a Markov process under Pβ, and the
transition intensity at time t of a jump from Ht = 0 to Ht + 1 is λ(Xt�K;Yt).
Hence, it is easy to write down the form of the generator of the process S. Us-
ing the Chapman–Kolmogorov equation, we can thus compute the conditional
probability (recall that conditioning on St is equivalent to conditioning on Mt)

Pβ(τ � s | St) = Pβ(τ � s | Mt)�

Knowing the conditional density Pβ(τ ∈ ds | Mt), we can evaluate the condi-
tional expectation

EPβ(1{t<τ�T }βtβ−1
τ | Mt)�

For example, if β is a deterministic function of time then we have

EPβ

(
1{t<τ�T }βtβ−1

τ | Mt
) = βt

T∫
t

β−1
s Pβ(τ ∈ ds | Mt)�

5.2.2 Premium payment leg
Let T = {T1� T2� � � � � TJ} be the tenor of the premium payment, where 0 =

T0 < T1 < · · · < TJ < T . If the premium accrual covenant is in force, then the
cash flows associated with the premium payment leg are

κ

(
J∑
j=1

1{Tj<τ}1Tj (t)+
J∑
j=1

1{Tj−1<τ�Tj}1τ(t)
t − Tj−1

Tj − Tj−1

)
�

where κ is the CDS premium (also known as the CDS spread). Thus, the time-t
value of the premium payment leg equals κB(1)t , where

B(1)t = EPβ

(
1{t<τ}

[
J∑

j=j(t)

βt

βTj
1{Tj<τ}

+
J∑

j=j(t)

βt

βτ
1{Tj−1<τ�Tj}

τ − Tj−1

Tj − Tj−1

] ∣∣∣ Mt

)
�
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where j(t) is the smallest integer such that Tj(t) > t. Again, since we know the
conditional density Pβ(τ ∈ ds | Mt), this expectation can be computed given
our assumption about the numeraire β.

5.3 Forward CDS

As before, the reference claim is a defaultable bond maturing at time U . We
now consider a forward (start) CDS with the maturity date TM < U and the
start date TS < TM . If default occurs prior to or at time TS the contract is
terminated with no exchange of payments. Therefore, the two legs of this CDS
are manifestly TS-survival claims, and the valuation of a forward CDS is not
much different from valuation a straight CDS discussed above.

5.3.1 Default payment leg
As before, we let N = 1 be the notional amount of the bond, and we let δ be

a deterministic recovery rate in case of default. The recovery is paid at default,
so that the cash flow associated with the default payment leg of the forward
CDS can be represented as follows

(1 − δ)1{TS<τ�TM }1τ(t)�

For any t � TS , the time-t value of the default payment leg is equal to

A(1)�T S
t = (1 − δ)EPβ

(
1{TS<τ�TM }βtβ−1

τ

∣∣ Mt
)
�

As explained above, we can compute this conditional expectation. If β is a
deterministic function of time then simply

EPβ

(
1{TS<τ�TM }βtβ−1

τ

∣∣ Mt
) = βt

TM∫
TS

β−1
s Pβ(τ ∈ ds | Mt)�

5.3.2 Premium payment leg
Let T = {T1� T2� � � � � TJ} be the tenor of premium payment, where TS <

T1 < · · · < TJ < TM . As before, we assume that the premium accrual covenant
is in force, so that the cash flows associated with the premium payment leg are

κ

(
J∑
j=1

1{Tj<τ}1Tj (t)+
J∑
j=1

1{Tj−1<τ�Tj}1τ(t)
t − Tj−1

Tj − Tj−1

)
�
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Thus, for any t � TS the time-t value of the premium payment leg is κB(1)�T
S

t ,
where

B(1)�T
S

t = EPβ

(
1{TS<τ}

[
J∑
j=1

βt

βTj
1{Tj<τ}

+
J∑
j=1

βt

βτ
1{Tj−1<τ�Tj}

τ − Tj−1

Tj − Tj−1

] ∣∣∣ Mt

)
�

Again, knowing the conditional density Pβ(τ ∈ ds | Mt), we can evaluate this
conditional expectation.

5.4 CDS swaptions

We consider a forward CDS swap starting at TS and maturing at TM > TS ,
as described in the previous section. We shall now value the corresponding
CDS swaption with expiry date T < TS . Let K be the strike CDS rate of the
swaption. Then the swaption cash flow at expiry date T equals(

A(1)�T S
T −KB(1)�T

S

T

)+
�

so that the price of the swaption equals, for any t � T ,

EPβ

(
βtβ

−1
T

(
A(1)�T S
T −KB(1)�T

S

T

)+ ∣∣ Mt
)

= EPβ

(
βtβ

−1
T B(1)�T

S

T

(
κ(1)

(
t� T S� TM

) −K
)+ ∣∣ Mt

)
�

where κ(1)(t� T S� TM) := A(1)�T S
t /B(1)�T

S

t is the forward CDS rate. Note that

the random variablesA(1)�T S
t andB(1)�T

S

t are strictly positive on the set {τ > T }
for t � T < TS , so that κ(1)(t� T S� TM) enjoys the same property.

5.4.1 Conditionally Gaussian case
We shall now provide a more explicit representation for the value of a CDS

swaption. To this end, we fix a Markovian numeraire β and we assume that the
forward CDS swap rates κ(1)(t� T S� TM) are conditionally log-Gaussian under
Pβ for t � T (for an example of such a model, see Section 4.3.3). Then we have
the following result.

Proposition 5.1. Suppose that, on the set {τ > T } and for arbitrary t < t1 <
· · · < tn � T , the conditional distribution

Pβ
(
κ(1)

(
t1� T

S� TM
)

� k1� κ
(1)(t2� T S� TM

)
� k2� � � � � κ

(1)(tn� T S� TM
)

� kn
∣∣ σ(Mt) ∨FX

T

)
is Pβ-a.s. log-Gaussian. Let σ(s� T S� TM)� s ∈ [t� T ], denote the conditional
volatility of the process κ(1)(s� T S� TM)� s ∈ [t� T ], given the σ-field σ(Mt)∨FX

T .
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Then the price of a CDS swaption equals, for t < T ,

EPβ

(
βtβ

−1
T

(
A(1)�T S
T −KB(1)�T

S

T

)+ ∣∣ Mt
)

= EPβ

(
1{τ>T }βtβ−1

T B(1)�T
S

T

[
κ(1)

(
t� T S� TM

)
×N

(
log κ(1)(t�T S�TM)

K

υt�T
+ υt�T

2

)

−KN

(
log κ(1)(t�T S�TM)

K

υt�T
− υt�T

2

)] ∣∣∣ Mt

)
�

where

υ2
t�T = υ

(
t� T� TS� TM

)2 :=
T∫
t

σ
(
s� T S� TM

)2 ds�

Proof. We have

EPβ

(
βtβ

−1
T

(
A(1)�T S
T −KB(1)�T

S

T

)+ ∣∣ Mt
)

= EPβ

(
1{τ>T }βtβ−1

T

(
A(1)�T S
T −KB(1)�T

S

T

)+ ∣∣ Mt
)

= EPβ

(
1{τ>T }βtβ−1

T EPβ

((
A(1)�T S
T −KB(1)�T

S

T

)+∣∣σ(Mt) ∨FX
T

)∣∣Mt
)

= EPβ

(
1{τ>T }βtβ−1

T B(1)�T
S

T EPβ

((
κ(1)

(
T� TS� TM

) −K
)+

× ∣∣σ(Mt) ∨FX
T

)∣∣Mt
)
�

In view of our assumptions, we obtain

EPβ

((
κ(1)

(
T� TS� TM

) −K
)+ ∣∣ σ(Mt) ∨FX

T

)
= κ(1)

(
t� T S� TM

)
N

(
log κ(1)(t�T S�TM)

K

υt�T
+ υt�T

2

)

−KN

(
log κ(1)(t�T S�TM)

K

υt�T
− υt�T

2

)
�

By combining the above equalities, we arrive at the stated formula. �

6 Valuation of basket credit derivatives

In this section, we shall discuss the case of credit derivatives with several
underlying credit names. Feasibility of closed-form calculations, such as ana-
lytic computation of relevant conditional expected values, depends to a great
extent on the type and amount of information one wants to utilize. Typically, in
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order to efficiently deal with exact calculations of conditional expectations, one
will need to amend specifications of the underlying model so that information
used in calculations is given by a coarser filtration, or perhaps by some proxy
filtration.

6.1 k th-to-default CDS

We shall now discuss the valuation of a generic kth-to-default credit default
swap relative to a portfolio ofL reference defaultable bonds. The deterministic
notional amount of the ith bond is denoted asNi, and the corresponding deter-
ministic recovery rate equals δi. We suppose that the maturities of the bonds
areU1�U2� � � � � UL, and the maturity of the swap is T < min{U1�U2� � � � � UL}.

As before, we shall only discuss a vanilla basket CDS written on such a port-
folio of corporate bonds under the fractional recovery of par covenant. Thus,
in the event that τ(k) < T , the buyer of the protection is paid at time τ(k) a
cumulative compensation∑

i∈Lk

(1 − δi)Ni�

where Lk is the (random) set of all reference credit names that defaulted in
the time interval ]0� τ(k)]. This means that the protection buyer is protected
against the cumulative effect of the first k defaults. Recall that, in view of our
model assumptions, the possibility of simultaneous defaults is excluded.

6.1.1 Default payment leg
The cash flow associated with the default payment leg is given by the expres-

sion ∑
i∈Lk

(1 − δi)Ni1{τ(k)�T }1τ(k)(t)�

so that the time-t value of the default payment leg is equal to

A(k)
t = EPβ

(
1{t<τ(k)�T }βtβ

−1
τ(k)

∑
i∈Lk

(1 − δi)Ni

∣∣ Mt

)
�

In general, this expectation will need to be evaluated numerically by means of
simulations.

A special case of a kth-to-default-swap is when the protection buyer is pro-
tected against losses associated with the last default only. In the case of a
last-to-default credit default swap, the cash flow associated with the default pay-
ment leg is given by the expression

(1 − δι(k))Nι(k)1{τ(k)�T }1τ(k)(t)

=
L∑
i=1

(1 − δi)Ni1{Hτi
=k}1{τ(i)�T }1τ(i)(t)�
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where ι(k) stands for the identity of the kth defaulting credit name. Assuming
that the numeraire process β is deterministic, we can represent the value at
time t of the default payment leg as follows:

A(k)
t =

L∑
i=1

EPβ

(
1{t<τi�T }1{Hτi

=k}βtβ−1
τi
(1 − δi)Ni | Mt

)
=

L∑
i=1

βt(1 − δi)Ni

×
T∫
t

β−1
s Pβ(Hs = k | τi = s�Mt)P

β(τi ∈ ds | Mt)�

Note that the conditional probability Pβ(Hs = k | τi = s�Mt) can be approxi-
mated as

Pβ(Hs = k | τi = s�Mt) ≈ Pβ(Hs = k�Xi
s−ε �= K�Xi

s = K | Mt)

Pβ(Xi
s−ε �= K�Xi

s = K | Mt)
�

Hence, if the number L of credit names is small, so that the Kolmogorov equa-
tions for the conditional distribution of the process (H�X�Y) can be solved,
the value of A(k)

t can be approximated analytically.

6.1.2 Premium payment leg
Let T = {T1� T2� � � � � TJ} denote the tenor of the premium payment, where

0 = T0 < T1 < · · · < TJ < T . If the premium accrual covenant is in force, then
the cash flows associated with the premium payment leg admit the following
representation:

κ(k)

(
J∑
j=1

1{Tj<τ(k)}1Tj (t)+
J∑
j=1

1{Tj−1<τ(k)�Tj}1τ(k)(t)
t − Tj−1

Tj − Tj−1

)
�

where κ(k) is the CDS premium. Thus, the time-t value of the premium pay-
ment leg is κ(k)B(k)t , where

B(k)t = EPβ

(
1{t<τ(k)}

N∑
j=j(t)

βt

βTj
1{Tj<τ(k)}

∣∣∣ Mt

)

+ EPβ

(
1{t<τ(k)}

J∑
j=j(t)

βt

βτ(k)
1{Tj−1<τ(k)�Tj}

τ(k) − Tj−1

Tj − Tj−1
|Mt

)
�

where j(t) is the smallest integer such that Tj(t) > t. Again, in general, the
above conditional expectation will need to be approximated by simulation. And
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again, for a small portfolio size L, if either exact or numerical solution of rele-
vant Kolmogorov equations can be derived, then an analytical computation of
the expectation can be done. This is left for a future study.

6.2 Forward kth-to-default CDS

Forward kth-to-default CDS is an analogous structure to the forward CDS.
The notation used here is consistent with the notation used previously in Sec-
tions 5.3 and 6.1.

6.2.1 Default payment leg
The cash flow associated with the default payment leg can be expressed as

follows ∑
i∈Lk

(1 − δi)Ni1{TS<τ(k)�TM }1τ(k)(t)�

Consequently, the time-t value of the default payment leg equals, for every
t � TS ,

A(k)�TS

t = EPβ

(
1{TS<τ(k)�TM }βtβ

−1
τ(k)

∑
i∈Lk

(1 − δi)Ni

∣∣ Mt

)
�

6.2.2 Premium payment leg
As before, let T = {T1� T2� � � � � TJ} be the tenor of a generic premium pay-

ment leg, where TS < T1 < · · · < TJ < TM . Under the premium accrual
covenant, the cash flows associated with the premium payment leg are

κ(k)

(
J∑
j=1

1{Tj<τ(k)}1Tj (t)+
J∑
j=1

1{Tj−1<τ(k)�Tj}1τ(k)(t)
t − Tj−1

Tj − Tj−1

)
�

where κ(k) is the CDS premium. Thus, the time-t value of the premium pay-

ment leg is κ(k)B(k)�T
S

t , where

B(k)�T
S

t = EPβ

(
1{t<τ(k)}

[
N∑
j=1

βt

βTj
1{Tj<τ}

+
J∑
j=1

βt

βτ
1{Tj−1<τ(k)�Tj}

τ − Tj−1

Tj − Tj−1

] ∣∣∣ Mt

)
�

7 Model implementation

The last section is devoted to a brief discussion of issues related to the model
implementation.
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7.1 Curse of dimensionality

When one deals with basket products involving multiple credit names, di-
rect computations may not be feasible. The cardinality of the state space K for
the migration process X is equal to KL. Thus, for example, in case of K = 18
rating categories, as in Moody’s ratings,1 and in case of a portfolio of L = 100
credit names, the state space K has 18100 elements.2 If one aims at closed-form
expressions for conditional expectations, but K is large, then it will typically
be infeasible to work directly with information provided by the state vector
(X�Y) = (X1�X2� � � � �XL�Y) and with the corresponding generator A. A re-
duction in the amount of information that can be effectively used for analytical
computations will be needed. Such reduction may be achieved by reducing the
number of distinguished rating categories – this is typically done by consider-
ing only two categories: pre-default and default. However, this reduction may
still not be sufficient enough, and further simplifying structural modifications
to the model may need to be called for. Some types of additional modifications,
such as homogeneous grouping of credit names and the mean-field interactions
between credit names, are discussed in Frey and Backhaus (2004).3

7.2 Recursive simulation procedure

When closed-form computations are not feasible, but one does not want to
give up on potentially available information, an alternative may be to carry
approximate calculations by means of either approximating some involved for-
mulae and/or by simulating sample paths of underlying random processes. This
is the approach that we opt for.

In general, a simulation of the evolution of the process X will be infeasible,
due to the curse of dimensionality. However, the structure of the genera-
tor A that we postulate (cf. (13)) makes it so that simulation of the evolution
of process X reduces to recursive simulation of the evolution of processes
Xl whose state spaces are only of size K each. In order to facilitate simula-
tions even further, we also postulate that each migration process Xl behaves
like a birth-and-death process with absorption at default, and with possible
jumps to default from every intermediate state (cf. Section 4.3.1). Recall that
X(l)
t = (X1

t � � � � �X
l−1
t �Xl+1

t � � � � �XL
t ). Given the state (x(l)� y) of the process

(X(l)� Y), the intensity matrix of the lth migration process is sub-stochastic and

1 We think here of the following Moody’s rating categories: Aaa, Aa1, Aa2, Aa3, A1, A2, A3, Baa1,
Baa2, Baa3, Ba1, Ba2, Ba3, B1, B2, B3, Caa, D(efault).
2 The number known as Googol is equal to 10100. It is believed that this number is greater than the
number of atoms in the entire observed Universe.
3 Homogeneous grouping was also introduced in Bielecki (2003).
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is given as:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 · · · K − 1 K

1 λl(1� 1) λl(1� 2) 0 · · · 0 λl(1�K)
2 λl(2� 1) λl(2� 2) λl(2� 3) · · · 0 λl(2�K)
3 0 λl(3� 2) λl(3� 3) · · · 0 λl(3�K)

���
���

���
���

� � �
���

���
K − 1 0 0 0 · · · λl(K − 1�K − 1) λl(K − 1�K)
K 0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

where we set λl(xl� x′ l) = λl(x� x′l; y). Also, we find it convenient to write
λl(xl� x′ l;x(l)� y) = λl(x� x′l; y) in what follows.

Then the diagonal elements are specified as follows, for xl �= K,

λl(x� x; y) = −λl(xl� xl − 1;x(l)� y) − λl
(
xl� xl + 1;x(l)� y)

− λl
(
xl�K;x(l)� y)

−
∑
i �=l

(
λi

(
xi� xi − 1;x(i)� y) + λi

(
xi� xi + 1;x(i)� y)

+ λi
(
xi�K;x(i)� y))

with the convention that λl(1� 0;x(l)� y) = 0 for every l = 1� 2� � � � � L.
It is implicit in the above description that λl(K� xl;x(l)� y) = 0 for any l =

1� 2� � � � � L and xl = 1� 2� � � � �K. Suppose now that the current state of the
process (X�Y) is (x� y). Then the intensity of a jump of the process X equals

λ(x� y) := −
L∑
l=1

λl(x� x; y)�

Conditional on the occurrence of a jump of X, the probability distribution of
a jump for the component Xl, l = 1� 2� � � � � L, is given as follows:

• probability of a jump from xl to xl − 1 equals pl(xl� xl − 1;x(l)� y) :=
λl(xl�xl−1;x(l)�y)

λ(x�y) ,

• probability of a jump from xl to xl + 1 equals pl(xl� xl + 1;x(l)� y) :=
λl(xl�xl+1;x(l)�y)

λ(x�y) ,

• probability of a jump from xl to K equals pl(xl�K;x(l)� y) :=
λl(xl�K;x(l)�y)

λ(x�y) .
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As expected, we have that
L∑
l=1

(
pl

(
xl� xl − 1;x(l)� y) + pl

(
xl� xl + 1;x(l)� y) + pl

(
xl�K;x(l)� y))

= 1�

For a generic state x = (x1� x2� � � � � xL) of the migration process X, we
define the jump space J (x) = ⋃L

l=1{(xl − 1� l)� (xl + 1� l)� (K� l)} with the
convention that (K+1� l) = (K� l). The notation (a� l) refers to the lth compo-
nent of X. Given that the process (X�Y) is in the state (x� y), and conditional
on the occurrence of a jump of X, the process X jumps to a point in the jump
space J (x) according to the probability distribution denoted by p(x� y) and
determined by the probabilities pl described above. Thus, if a random vari-
able J has the distribution given by p(x� y) then, for any (x′ l� l) ∈ J (x), we
have that Prob(J = (x′ l� l)) = pl(xl� x′ l;x(l)� y).
7.2.1 Simulation algorithm: special case

We shall now present in detail the case when the dynamics of the factor
process Y do not depend on the credit migrations process X. The general case
appears to be much harder.

Under the assumption that the dynamics of the factor process Y do not
depend on the process X, the simulation procedure splits into two steps. In
Step 1, a sample path of the process Y is simulated; then, in Step 2, for a given
sample path Y , a sample path of the process X is simulated. We consider here
simulations of sample paths over some generic time interval, say [t1� t2], where
0 � t1 < t2. We assume that the number of defaulted names at time t1 is less
than k, that is Ht1 < k. We conduct the simulation until the kth default occurs
or until time t2, whichever occurs first.

Step 1: The dynamics of the factor process are now given by the SDE

dYt = b(Yt) dt + σ(Yt) dWt +
∫
Rn

g(Yt−� y)π(Yt−; dy� dt)�

t ∈ [t1� t2]�
Any standard procedure can be used to simulate a sample path ofY (the reader
is referred, for example, to Kloeden and Platen, 1995). Let us denote by Ŷ the
simulated sample path of Y .

Step 2: Once a sample path of Y has been simulated, simulate a sample path
of X on the interval [t1� t2] until the kth default time.

We exploit the fact that, according to our assumptions about the infinitesi-
mal generator A, the components of the processX do not jump simultaneously.
Thus, the following algorithm for simulating the evolution of X appears to be
feasible:
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Step 2.1: Set the counter n = 1 and simulate the first jump time of the process
X in the time interval [t1� t2]. Towards this end, simulate first a value, say
η̂1, of a unit exponential random variable η1. The simulated value of the
first jump time, τX1 , is then given as

τ̂X1 = inf

{
t ∈ [t1� t2]:

t∫
t1

λ
(
Xt1� Ŷu

)
du � η̂1

}
�

where by convention the infimum over an empty set is +∞. If τ̂X1 = +∞,
set the simulated value of the kth default time to be τ̂(k) = +∞, stop the
current run of the simulation procedure and go to Step 3. Otherwise, go to
Step 2.2.

Step 2.2: Simulate the jump of X at time τ̂X1 by drawing from the distribution
p(Xt1� Ŷτ̂X1 −) (cf. discussion in Section 7.2). In this way, one obtains a sim-

ulated value X̂τ̂X1
, as well as the simulated value of the number of defaults

Ĥτ̂X1
. If Ĥτ̂X1

< k then let n := n + 1 and go to Step 2.3; otherwise, set

τ̂(k) = τ̂X1 and go to Step 3.
Step 2.3: Simulate the nth jump of process X. Towards this end, simulate a

value, say η̂n, of a unit exponential random variable ηn. The simulated
value of the nth jump time τXn is obtained from the formula

τ̂Xn = inf

{
t ∈ [τ̂Xn−1� t2]:

t∫
τ̂Xn−1

λ(Xτ̂Xn−1
� Ŷu) du � η̂n

}
�

In case τ̂Xn = +∞, let the simulated value of the kth default time to be
τ̂(k) = +∞; stop the current run of the simulation procedure, and go to
Step 3. Otherwise, go to Step 2.4.

Step 2.4: Simulate the jump of X at time τ̂Xn by drawing from the distribution
p(Xτ̂Xn−1

� Ŷτ̂Xn −). In this way, produce a simulated value X̂τ̂Xn
, as well as the

simulated value of the number of defaults Ĥτ̂Xn
. If Ĥτ̂Xn

< k, let n := n+ 1
and go to Step 2.3; otherwise, set τ̂(k) = τ̂Xn and go to Step 3.

Step 3: Calculate a simulated value of a relevant functional. For example, in
case of the kth-to-default CDS, compute

(25)Â(k)
t1

= 1{t1<τ̂(k)�T }β̂t1β̂
−1
τ̂(k)

∑
i∈L̂k

(1 − δi)Ni

and

(26)

β̂(k)t1
=

N∑
j=j(t1)

β̂t1

β̂Tj
1{Tj<τ̂(k)} +

J∑
j=j(t1)

β̂t1

β̂τ̂(k)
1{Tj−1<τ̂(k)�Tj}

τ̂(k) − Tj−1

Tj − Tj−1
�
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where, as usual, the ‘hat’ indicates that we deal with simulated values.

7.3 Estimation and calibration of the model

Our market model (13) has the same structure under either the pricing
probability measure or the statistical measure. The model parameters corre-
sponding to the two measures (or any other two measures for that matter) are
related via (19).

Estimation of the statistical parameters of the model, that is, the parame-
ters corresponding to the statistical measure, can be split into two separate
problems – the estimation of the dynamics of the factor process Y , and the
estimation of the transition intensities of the process X. With regard to the
former: typically, the estimation of parameters of the drift function and the
estimation of parameters of the Poisson measure is not easy; the estimation
of parameters of the volatility function σ(x� y) is rather straightforward, as it
can be done via estimation of the quadratic variation process of the diffusion
component. Estimates of parameters involved in the transition intensities can,
in principle, be obtained from the statistical estimates of transition probability
matrices that are produced by major rating agencies.

Calibration of the pricing parameters of the model, that is, the parameters
corresponding to the pricing measure, depends on the types of the market
quotes data used for calibration. Since, in case of basket credit derivatives, we
typically will not have access to closed-form pricing formulae, the calibration
of the model parameters will need to be done via simulation. For example, if
the model is calibrated to market quotes for the kth-to-default basket swaps, in
order to select the best fitted model, we shall use simulated averages of expres-
sions (25) and (26) obtained for various parametric settings. Then, the market
prices of credit risk can be obtained from estimated and calibrated values of
the parameters and from formula (19). We shall deal with the issues of model
estimation and calibration in a future work, which will be devoted to model
implementation. Some significant progress in this direction has already been
made in Bielecki et al. (2006).

7.4 Portfolio credit risk

The issue of evaluating functionals associated with multiple credit migra-
tions, defaults in particular, is also prominent with regard to portfolio credit
risk. In some segments of the credit markets, only the deterioration of the value
of a portfolio of debts (bonds or loans) due to defaults is typically considered.
In fact, such is the situation regarding various tranches of (cash or synthetic)
collateralized debt obligations (CDOs), as well as with various tranches of re-
cently introduced CDS indices, such as, DJ CDX NA IG or DJ iTraxx Europe.4

4 See http://www.creditflux.com/public/publications/0409CFindexGuide.pdf.
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Nevertheless, it is rather apparent that a valuation model reflecting the possi-
bility of intermediate credit migrations, and not only defaults, is called for in
order to better account for changes in creditworthiness of the reference credit
names. Likewise, for the purpose of managing risks of a debt portfolio, it is
necessary to account for changes in value of the portfolio due to changes in
credit ratings of the components of the portfolio.

The problem of valuation of tranches of a CDO (or tranches of a CDS in-
dex) is closely related to the problem of valuation of the kth-to-default swap.
In a future work, we shall focus on implementation of our model to all these
problems. It is perhaps worth mentioning though that we have already done
some numerical tests of our model so to see whether the model can reproduce
so called market correlation skews. Figure 1 shows that the model performs
very well in this regard.5

Fig. 1.

5 We thank Andrea and Luca Vidozzi from Applied Mathematics Department at the Illinois Institute
of Technology for numerical implementation of the model and, in particular, for generating the picture.
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Abstract

In reality, markets are incomplete, meaning that some payoffs cannot be replicated
by trading in marketed securities. The classic no-arbitrage theory of valuation in a
complete market, based on the unique price of a self-financing replicating portfolio,
is not adequate for nonreplicable payoffs in incomplete markets. We focus on pric-
ing over-the-counter derivative securities, surveying many proposed methodologies,
drawing relationships between them, and evaluating their promise.

1 Introduction

Incomplete markets are those in which perfect risk transfer is not possi-
ble. Despite the ever-increasing sophistication of financial and insurance mar-
kets, markets remain significantly incomplete, with important consequences
for their participants: workers and homeowners remain exposed to risks involv-
ing labor income, property value, and taxes, investors and portfolio managers
have limited choices, and traders of derivative securities must bear residual
risks. From a theoretical perspective, incomplete markets complicate the study
of financial market equilibrium, portfolio optimization, and derivative securi-
ties.

Although the theory of derivative securities in complete markets is under-
stood very well, and is the subject of numerous textbook accounts, there is
as yet no fully developed, sound theoretical framework for pricing derivative
securities in incomplete markets. This has profound consequences for the prac-
tice of trading, speculating, and hedging with derivative securities. This chapter
surveys the topic of incomplete markets, with an emphasis on pricing and hedg-
ing derivative securities.

Other surveys have treated different aspects of incomplete markets. For
portfolio optimization in incomplete markets, see Skiadas (2006). The finance
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literature emphasizes the existence and characteristics of equilibria, including
market efficiency. Magill and Quinzii (1996) offer a book-length exposition,
and Hens (1998) provides an overview with a low level of technicalities. Appen-
dix B presents perspectives from the finance literature, not usually addressed in
financial engineering, on the degree to which markets are actually incomplete,
and the implications for welfare.

Surveys of derivative security pricing in incomplete markets include Jouini
(2001), who covers no-arbitrage bounds, utility maximization, and equilibrium
valuation, as an introduction to a special journal issue on these topics. Cont
and Tankov (2004, Chapter 10) cover these approaches and others, includ-
ing quadratic and entropy criteria, as well as calibration. Another survey is
by Davis (2004b), whose “intention is not to aim at a maximum level of gener-
ality but, on the contrary, to concentrate on specific cases and solved problems
which give insight into the nature of optimal strategies for hedging and invest-
ment.” In contrast, we will cover all major approaches to pricing derivative
securities in incomplete markets, as well as providing enough background to
evaluate them and understand them in relation to one another.

Thus, due to limitation of space, we will not be able to concentrate on spe-
cific derivative securities or models of markets, although we will give simple
examples that illustrate major ideas. Likewise, we can neither recount the de-
velopment of each method nor provide an exhaustive list of references, so
many significant papers will not be mentioned. Instead, we will merely provide
references to the literature as a substitute for an exposition of the technical de-
tails of all the methods we survey, for which there is also not space. However,
we address the technicalities of defining incompleteness in Appendix A.

We begin with background for the problem of incomplete markets. In Sec-
tion 2, there is a description of the over-the-counter market for derivative
securities and the financial engineering problems we will address. The causes
of incomplete markets are addressed in Section 3. Next, we turn to general the-
oretical considerations about pricing in incomplete markets. The connections
between pricing and optimization occupy Section 4, which covers no-arbitrage
bounds, indifference prices, good deal bounds, and minimum-distance pricing
measures. In Section 5, simple examples based on expected utility illustrate is-
sues in pricing and optimization. Subsequent sections are devoted to various
particular methods. The quadratic approach to hedging occupies Section 6.
Exponential utility, with its connection to relative entropy, is the topic of Sec-
tion 7. Several methods based on considering only losses, not gains, appear
in Section 8: these include partial replication schemes such as quantile hedg-
ing. Restrictions on pricing kernels, including methods based on low-distance
pricing kernels, are covered in Section 9. Ambiguity and robustness to model
risk is the topic of Section 10. The standard practice of calibrating a model to
market prices occupies Section 11. In Section 12, we offer some conclusions,
evaluation, and directions for future research.
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2 The over-the-counter market

Let us imagine ourselves in the position of a market-maker in an over-the-
counter (OTC) derivatives market. Throughout this survey, we will consider
incomplete markets from the market-maker’s perspective, focusing on the fi-
nancial engineering of solving the problems of pricing and risk management.
The same considerations apply to customers in the OTC market.

2.1 The workings of OTC markets

Although some derivative securities, including some stock options and com-
modity or currency futures, are listed on exchanges and traded in the same
manner as the underlying securities, many are not. A hedger or speculator
who wishes to trade them must participate in the OTC market by calling OTC
market-makers, usually at investment banks, and requesting a quote for bid
and ask prices at which the market-makers are willing to buy or sell, respec-
tively. Duffie et al. (2006) address the relationship of frictions and liquidity
in OTC markets to valuation. We will focus on the process by which market-
makers prepare these prices. Through an analogous process, the potential
customer must then decide whether to sell at the highest of the quoted bid
prices, buy at the lowest of the quoted ask prices, or do nothing.

If the customer indeed transacts a deal with a market-maker, the market-
maker must bear risk associated with this trade, because markets are incom-
plete. In order to measure the risk of his portfolio and manage it through
hedging, he needs to model the future value of the OTC derivatives he has
traded. As time passes, he must track the profit or loss generated by his hedged
portfolio, based on values of OTC derivatives updated in light of current mar-
ket prices, a process known as marking to market. It is a matter of debate among
practitioners whether and when it is appropriate to mark to market using a bid
price, a “mid-market price” between the bid and ask prices, or an “unwind
price” at which the derivative might be sold. Marking to market is not studied
enough relative to pricing, but the risk-adjusted value processes of Artzner et
al. (2007) may be useful in this regard.

Establishing bid and ask prices for an OTC derivative security is not the
same as determining the equilibrium price for a new security if it were to be
listed on an exchange, which is another goal often considered in the literature
on incomplete markets. Determining the equilibrium price is more difficult
than it might seem, because introducing a new security could alter the exist-
ing security prices (Boyle and Wang, 2001). In financial engineering, although
equilibrium concepts may be useful in pricing, it is too ambitious to attempt
to construct an entire equilibrium, based on the preferences and endowments
of all participants. This is more appropriate in finance, where one may use a
simplified model to formulate a hypothesis or explain some phenomenon.
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2.2 Standard practice

Whether using a model in which markets are complete or incomplete, deriv-
atives traders know that markets are actually incomplete, and that after trad-
ing, they will not be able to hedge away all the risk, to which they are averse.
Nonetheless, their standard practice is to assign prices to OTC derivative secu-
rities primarily on the basis of consistency with the market prices of underlying
and other derivative securities. We will further discuss and evaluate this stan-
dard practice in Section 11.

According to the classic theory of financial engineering, in a complete mar-
ket, the unique no-arbitrage price of a derivative security whose payoff is X
is the expected discounted payoff EQ[DX] under the risk-neutral probability
measure Q, under which the marketed securities’ expected returns equal the
risk-free rate of interest. Traders calibrate the parameters of Q to prices of
marketed securities so as to minimize the discrepancy between these market
prices and the prices given by the model, i.e. the expected discounted payoffs.
To recoup their business expenses and to earn compensation for bearing the
risks that they will not be able to hedge, traders establish a bid–ask interval
around the expected discounted payoff. The exact level of the bid and ask de-
pend on informal consideration of several factors, such as how the trade will
affect the portfolio’s Greeks, the trader’s outlook on likely market events, what
the competition is charging, and the relationship with the customer. One of the
major challenges facing financial engineering in the area of derivative securi-
ties is to establish a sound basis for this pricing decision, based on quantitative
risk assessment using models of incomplete markets.

If the market is incomplete, then pricing by calibration of a complete-market
model does not systematically account for the costs of hedging or the risks that
remain after hedging. This approach wrongly prices the unhedgeable part of
the risk as though it too could be hedged away; it assigns to a derivative security
the same price as a fictitious replicating portfolio strategy, when this strategy
will not actually succeed in replicating the target payoff. As Foldes (2000) says,

Enthusiasm for methods of hedging and valuation of derivatives in complete
markets, and for associated methods of computation, seems often to obscure
the fact that these techniques do not provide a general theory of valuation and
that they are liable to give at best only imprecise results when applied beyond
their proper domain.

The need to quantify and value residual risks motivates the search for a prac-
tical method of pricing with incomplete-markets models.

2.3 The apparent and real problems

The apparent problem of pricing in incomplete markets is mathematical:
given the statistical probability measure P, there is a set Q of equivalent mar-
tingale measures (EMMs) such that the expected discounted payoff EQ[DX] is



Ch. 12. Incomplete Markets 515

an arbitrage-free price for X.1 There is an interval

(1)
(

inf
Q∈Q

EQ[DX]� sup
Q∈Q

EQ[DX]
)

of arbitrage-free prices for X, and it is usually too wide for these no-arbitrage
bounds (Section 4.2.1) to serve as useful bid and ask prices (see e.g. Eberlein
and Jacod, 1997). The problem may appear to be that we want a way of choos-
ing one of the pricing measures Q ∈ Q, so that we may then assign the unique
price EQ[DX] to each payoff X.

Another way to view the situation is that the no-arbitrage criterion allows
a multiplicity of possible pricing kernels Π. A pricing kernel Π = D dQ/dP
where dQ/dP is the likelihood ratio, i.e. Radon–Nikodym derivative, between
some Q ∈ Q and P. The value Π(ω) of the pricing kernel in state ω can be
interpreted as the price now for $1 to be paid if state ω occurs. With no restric-
tion on the pricing kernel, the price can be anywhere within the no-arbitrage
price bounds. However, some of these pricing kernels may seem implausible
from an economic perspective. See Section 9 for methodologies that work by
eliminating implausible pricing kernels.

The real problem of pricing in incomplete markets depends on the objective.
For example, a goal in setting bid and ask prices is to ensure that any trade un-
dertaken at these prices is advantageous to the firm. A grounding of the pricing
scheme in financial economics would be desirable. It is not clear how select-
ing a single pricing measure Q ∈ Q will accomplish this goal; indeed, given a
unique price EQ[DX], further considerations would be required to generate
distinct bid and ask prices. Another objective is marking to market, in which
the goal is to assign to the firm’s portfolio of derivative securities a value, not
a price, that is accurate from an accounting or actuarial perspective. Again,
for risk management, there may be different goals that involve assessing the
future value of derivative securities. However, in all cases, we want a method-
ology that respects the no-arbitrage bounds, is computationally efficient, and is
robust to those errors that are likely in specifying its inputs, e.g. to stale prices
of marketed securities, or to estimation error of statistical probabilities.

In constructing bid and ask prices, the difficulty posed by incomplete mar-
kets is more significant than it might at first seem, because of adverse selection.
If the ask price is too high, few potential customers will be willing to pay so
much, and the result is forgone profits. If the ask price is too low, the resulting
trade is bad for the firm and good for the customer, which entices many cus-
tomers to make trades that entail likely loss for the firm. For example, Dunbar
(2005) describes an incident in which it was thought that a large portion of a
$200 million loss by JP Morgan could be attributed to this adverse selection:

� � � by selling a swaption straddle that expired the day before a non-farm payroll
announcement and buying one that expired immediately after, a hedge fund

1 For precise details, see Appendix A. We assume an arbitrage-free market.
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could profit from [the] potential volatility. However, a dealer on the other side
of this one-day calendar spread trade might find it difficult to hedge its position
over such a short interval of time, and ought to price this risk into the trade, or
not undertake the trade at all. But JP Morgan seemed to lack such caution, say
market sources, and in effect offered ‘lottery tickets’ to the market.

As we see from this example, a calibrated model can assign a wrong price. The
price for the calendar spread was consistent with market prices, but did not
account for an unusual feature of the statistical probability measure P: interest
rate volatility is concentrated at the date of an important news announcement.
See Section 11 for further discussion.

3 Causes of incompleteness

Several phenomena cause incompleteness. One is an insufficiency of mar-
keted assets relative to the class of risks that one wishes to hedge, which may
involve jumps or volatility of asset prices, or variables that are not derived from
market prices. Market frictions, such as transaction costs and constraints on
portfolios, may also cause incompleteness. A source of effective incomplete-
ness is ambiguity, i.e. ignorance of the true stochastic model for market prices:
it is effectively the same if it is impossible to transfer risk perfectly or if one
merely does not know how to do so.

3.1 Insufficient span of marketed assets

Markets are incomplete with respect to payoffs that are not entirely de-
termined by market prices: examples include weather derivatives, catastrophe
bonds, and derivatives written on economic variables such as gross domestic
product. Corporate investment projects provide another example; real options
analysis applies to a valuation problem in an incomplete market.

Features such as jumps and stochastic volatility of marketed asset prices may
also cause incompleteness, depending on the available trading opportunities.
For example, in the Heston (1993) model of a stock with stochastic volatil-
ity and a bond with constant interest rate, the market is incomplete because
it is not possible to hedge the risk factor associated with stochastic volatility.
However, if an option on the stock were also to be marketed, both risk factors
could be hedged by trading in stock and option, and the market would be com-
plete. Jumps tend to cause incompleteness except in very simple or unusual
models (see e.g. Dritschel and Protter, 1999). Whereas in the Black–Scholes
model, delta is the hedge ratio that matches the locally linear dependence of
an option’s value on infinitesimal changes in the stock price, it is not so easy to
hedge against potential jumps of various sizes, because value is not linear. To
complete a market in which jumps of all sizes are possible might require many
more marketed securities, for example, vanilla European options of all strikes
and maturities.
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Jumps and stochastic volatility are important as ways to model volatility
smiles. A primary alternative is a local volatility model, in which the market
is complete. However, the local volatility model is criticized (e.g. by Davis,
2004a, §2a) for the crucial, counterfactual assumption that an asset’s volatility
is a function of its price: precisely the absence of a second risk factor, which
makes the model complete, prevents it from saying anything about volatility
risk and vega hedging.

For evidence that it may be necessary to model jumps, or jumps and sto-
chastic volatility, in describing equity or equity index returns adequately, see
Andersen et al. (2002), Carr et al. (2002). The most realistic models imply in-
complete markets.

3.2 Market frictions

Constraints produce incompleteness by forbidding portfolio strategies that
replicate some payoffs. For example, an executive who is granted stock options
is not supposed to hedge them by selling stock in the company. Different in-
terest rates for borrowing and lending may be modeled by constraints: where
rb > r+ are the rates for borrowing and lending respectively, only positive
shares of a money market account paying rate r+ and negative shares of one
paying rate rb are allowed.

Transaction costs produce incompleteness less straightforwardly. Continu-
ous-time portfolio strategies accrue transaction costs at every instant the port-
folio is rebalanced. These strategies are effectively forbidden if their costs
are infinite, which can happen, for instance, in the Black–Scholes model be-
cause of the infinite first variation of geometric Brownian motion. Fixed and
proportional transaction costs are the most frequently studied; the latter are
equivalent to bid–ask spreads for marketed securities. There is a substantial
literature on the topic, looking back to Hodges and Neuberger (1989). More
recent work on the topic includes Clewlow and Hodges (1997).

Rather than model transaction costs explicitly, one might use a model in
which trading is allowed only at a fixed, discrete set of times. This also elimi-
nates continuous-time strategies that would incur infinite costs, and it can be
more tractable; however, rebalancing the portfolio at fixed times is typically
not as good as rebalancing at a finite number of random times.

3.3 Ambiguity

Suppose a stock index follows a geometric Brownian motion whose volatility
is known to be 20%. How many years’ data are required to construct a 95%
two-sided confidence interval of width 1% for the drift? The answer is 6,147:
this yields a width of approximately 2 × 1�96 × 20%/

√
6147 = 1%. On the

other hand, according to this Black–Scholes model, knowledge of the drift is
unnecessary for option pricing, and the volatility can be estimated perfectly by
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observing any time interval, no matter how short. This has to do with the non-
equivalence of Black–Scholes models with different volatilities, but it is merely
an artifact of the continuous-time model. In reality, estimating volatility from
high-frequency data is quite difficult (Zhang et al., 2005). Moreover, a cursory
examination of financial time series shows that, for instance, daily historical
volatility has varied dramatically from year to year. Ambiguity about volatility
is so important that, according to Carr (2002), a frequently asked question in
option pricing is whether one should hedge at historical or implied volatility.
Carr (2002, §IX) provides a formula for the error resulting from hedging a
derivative security at the wrong volatility, given a diffusion model. The hedging
error can be quite substantial.

4 Pricing and optimization

Pricing can be grounded in portfolio optimization (Sections 4.1–4.2) or in
an optimization over pricing measures (Section 4.4).

4.1 Portfolio optimization

Conditions for the existence of optimal portfolio strategies and related
probability measures have attracted much attention. There may be no opti-
mal strategy or measure if there is a sequence of them converging to a limit
point that is excluded from the feasible set, or if the optimization problem is
unbounded. If the limiting strategy is infeasible, one may be satisfied to choose
a nearly optimal strategy. When the problem is unbounded, usually something
is wrong with the way it has been posed. For example, if there is no bound on
the expected utility one can attain by investing, it may be that the set of al-
lowed strategies is unrealistically large, the utility function is unsuitable, or the
probability measure is erroneous.

In the interests of simplicity, we will not treat the question of the exis-
tence of an optimal solution: the interested reader can find precise results
in the literature cited in the sections on specific methodologies. We will also
speak primarily of optimizing random wealth at a fixed future date, and the
connected problem of pricing payoffs at that date, although the same ideas ap-
ply to continuous consumption streams, American options, etc. We ignore the
structure of the portfolio strategies, which could be a single vector of weights
determining a static portfolio in a one-period problem, or a continuous-time
vector stochastic process, or something in between, focusing instead on the
payoffs they provide. Expository treatments of portfolio optimization include
Karatzas and Shreve (1998), Schachermayer (2002), Skiadas (2006).

However, we will now consider briefly two issues in formulating an optimiza-
tion underlying a pricing scheme: whether the optimization takes into account
only the market risk of the OTC trade itself or also accounts for the opportu-
nities for future trades, and whether the portfolio strategy is instantaneously,
myopically optimal or optimal over an entire time interval.
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4.1.1 Opportunity
Accounting for changing investment opportunities leads to better portfolio

strategies. The optimal portfolio can be decomposed into a term that would
be optimal if asset returns were independent, plus a term that corrects for
the dependence of current asset returns and the conditional distribution of
all future asset returns. For example, suppose that there is a riskless asset and
one risky stock whose log price follows a diffusion with stochastic drift and
volatility. A state with a higher ratio of drift to volatility constitutes a more
favorable investment opportunity (cf. the Sharpe ratio) and thus a greater
certainty equivalent for wealth. Suppose further that the change in this drift-
volatility or mean–variance ratio is negatively correlated with the asset return.
The optimal allocation to the stock is greater than it would be if the mean–
variance ratio were deterministic: a loss from investing in the stock is cushioned
by an increased certainty equivalent for each dollar of wealth. This increased
demand for stock in the optimal portfolio is hedging demand. For a very lucid
theoretical account of this phenomenon in the context of quadratic hedging
(Section 6), see Schweizer (1995, especially p. 16). Extensive numerical results
for hedging options occupy Brandt (2003); Example 4.1 is related.

Analogously, for an OTC market-maker, there is a stochastic process of
OTC trade opportunities, i.e. requests for a quote of bid and ask prices by
a potential customer, where each customer has reservation prices below or
above which he is willing to buy or sell. Routledge and Zin (2004) take a step
in this direction, which merits greater attention. The methods of pricing cov-
ered in this survey all focus on whether an individual OTC trade is attractive
to the market-maker without considering its effect on future trades. However,
a trade done now affects the portfolio the trader will have in the future, and in
light of which he will evaluate future trades. For example, if there is a risk con-
straint, doing an OTC trade now might prevent the trader from doing a more
attractive trade in the future. Therefore, each opportunity should be evaluated
in light of the stochastic process of future opportunities: the compensation for
doing a trade should reflect the direct cost of possible losses and also the indi-
rect cost of lost opportunity for profit on future trades that may be passed up
due to the risk associated with this trade.

4.1.2 Local vs. global
In pricing an OTC security, a global optimization optimizes over portfo-

lio strategies that cover an entire time interval. This may be difficult to solve,
whether numerically or analytically, or even to set up. A simpler alternative is
a local optimization, in which the objective and constraints contain only static
criteria, changes over a single time step, or instantaneous rates of change. A lo-
cal optimization optimizes over the current portfolio weights only: whether one
intends to hedge dynamically or not, a local optimization is a static problem, in
a sense.

Global criteria include terminal wealth, total utility from consumption over
an entire time interval, value at risk, and squared hedging error. The global
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criteria can be constraints as well as objectives, for example, the constraint
that the wealth process never be negative. Local criteria include Greeks and
often form pairs with global criteria. For example, in quadratic hedging there
is a locally risk-minimizing strategy and a global variant, the variance-optimal
hedge: see Example 6.1. Analogous to the usual expected utility maximization
(Section 4.2.3) is the local utility maximization Kallsen (2002a), discussed in
Section 9.2 similar to the following example based on Schweizer (1995, §5),
but in continuous time.

Example 4.1. There is a riskless bank account whose value is always $1, and
a risky asset whose prices are given by Table 1. An investor has $100 of initial
wealth and utility function u(W ) = −(W /100)−4. The investor maximizes the
expected utility of wealth at time 2 over self-financing strategies: the decision
variables are ξ1, the number of shares of the risky asset to hold over the first
step, and ξ(+)2 , ξ(0)2 , and ξ(−)2 , the number of shares to hold over the second
step, respectively if the risky asset price at time 1 is 1, 0, or −1.

Local optimization of one-step expected utility in each of the four scenarios
yields ξ1 = ξ(0)2 = ξ(−)2 = 0 and ξ(+)2 = 16�13: only when the risky asset’s price
is $1 at time 1 is its one-step expected return positive, so that it is worth invest-
ing in it, from a local perspective. A global optimization of two-step expected
utility yields ξ1 = −3�27, ξ(0)2 = ξ(−)2 = 0, and ξ(+)2 = 15�60: the negative
position in the risky asset over the first step hedges the increase in the derived
utility of wealth at time 1 if the asset’s price should rise. See Example 6.1 for a
continuation.

That is, local optimization ignores hedging demand, while global optimiza-
tion captures it. Intermediate wealth is worth more in states with better invest-
ment opportunities, and the global optimization yields greater expected utility
from terminal wealth by producing more wealth in the intermediate states with
poorer investment opportunities.

Table 1.
Risky Asset Prices.

State Probability Time 0 Time 1 Time 2

1 1/9 $0 $1 $3
2 1/6 $0 $1 $2
3 1/18 $0 $1 $0

4 1/6 $0 $0 $1
5 1/6 $0 $0 −$1

6 1/6 $0 −$1 $0
7 1/6 $0 −$1 −$2
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4.2 Pricing via portfolio optimization

No-arbitrage bounds (Section 4.2.1) and indifference prices (Section 4.2.2)
are special cases of the mathematical structure of good deal bounds (Sec-
tion 4.2.4). Let R be the set of replicable payoffs, π(Y) be the market price
to replicate a payoff Y ∈ R, and A be an acceptance set of payoffs that are
acceptable compared to the status quo. The lower good deal bound for a pay-
off X, which might be interpreted as a bid price, is

(2)b(X) = sup
Y∈R

{−π(Y) | Y +X ∈ A
}
�

If we can buy X over the counter for less than b(X) then there is a Y that
we can buy in the market for π(Y), such that in total we get X + Y , which is
acceptable, for a cost b(X) + π(Y) < 0. The upper good deal bound or ask
price for X is

(3)a(X) = −b(−X) = inf
Y∈R

{
π(Y) | Y −X ∈ A

}
�

To sell X or to buy −X has the same effect. The other minus sign in a(X) =
−b(−X) reflects the convention that the buyer pays the price to the seller.
Because of the relationship a(X) = −b(−X), one may specify only b (or a),
getting distinct price bounds unless b is antisymmetric.

The interpretation of −b(X) is the cost of rendering X acceptable, and this
can be thought of as a risk measure. As Jaschke and Küchler (2001, n. 6) say,
“any valuation principle that yields price bounds also induces a risk measure
and vice versa.” Indeed, under some conditions, −b is a coherent or convex
risk measure (Artzner et al., 1999; Föllmer and Schied, 2002). The no-arbitrage
bounds provide an example. For generalities, see Jaschke and Küchler (2001,
Prop. 7) and Staum (2004, Prop. 4.2).

The acceptance set A must include {Z | Z � 0}, the set of riskless payoffs,
which is the acceptance set that generates no-arbitrage bounds. It must not
intersect the set {Z | Z < 0} of pure losses with no chance of gain. Finally,
Z ∈ A and Z′ � Z must imply Z′ ∈ A. These three properties correspond to
a subset of the axioms defining coherent risk measures (Artzner et al., 1999).

The acceptance set A must also be consistent with market prices π, or ar-
bitrage will result. For example, if there is an acceptable payoff Y ∈ A with
negative cost π(Y) < 0, then b(0) > 0, and the trader is thus expressing will-
ingness to give money away in exchange for nothing. For a concrete example
using expected utility indifference pricing, see Section 5.2.1. For general re-
marks, related to duality, see Section 4.2.5.

4.2.1 No-arbitrage pricing
The no-arbitrage price bounds are given by Eqs. (2) and (3) with the accep-

tance set A = {Z | Z � 0} = {Z | ess infZ � 0}:
(4)bNA(X) := sup

Y∈R
{−π(Y) | Y +X � 0

} = − inf
Y∈R

{
π(Y) | Y � −X}
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and

(5)aNA(X) := inf
Y∈R

{
π(Y) | Y −X � 0

} = inf
Y∈R

{
π(Y) | Y � X

}
�

That is, a payoff is acceptable if and only if it has no risk of loss under the
statistical probability measure P. Buying X for less than bNA(X) or selling it
for more than aNA(X) admits arbitrage. For instance, for any ε > 0, there
is a Yε ∈ R such that π(Y) < ε − bNA(X) and Yε � −X. Thus, if we buy
X for bNA(X) − ε and also buy Yε, we acquire Yε + X � 0 (this is super-
replication of −X) for a negative total cost: we get paid now and assume no risk
of loss. El Karoui and Quenez (1995) give a dynamic programming algorithm
for computing the no-arbitrage bounds.

While −ess infX measures the worst possible loss X can yield, −bNA is also
a risk measure, measuring the cost of hedging to prevent the worst possible
loss. The solution Y ∗ to Problem (4) is an optimal hedge for X: it is the cheap-
est payoff that combines with X to produce a portfolio with zero probability
of loss. The typical result for a complete market is that Y ∗ = −X, X solves
Problem (5), and bNA(X) = aNA(X) = π(X), the cost of replicating X. In
an incomplete market, bNA(X) and aNA(X) are usually too low and too high,
respectively, to be of use to an OTC market-maker: few customers would be
willing to trade at such prices (see e.g. Eberlein and Jacod, 1997).

4.2.2 Indifference pricing
Indifference prices are good deal bounds with acceptance set A = {Z |

P(Z) � P(0)} in Eqs. (2) and (3), where P is a preference function specify-
ing complete preferences. Completeness of preferences is different from com-
pleteness of markets: it means that for any pair of payoffs X and Y , either
one prefers X to Y , is indifferent between X and Y , or prefers Y to X.
With a preference function, these three cases correspond to P(X) > P(Y),
P(X) = P(Y), and P(X) < P(Y) respectively. Buying X for less than b(X)
results in a nonnegative cost to acquire a total payoff X + Y that is at least as
good as the status quo, i.e. P(X + Y) � 0.

The main point of indifference pricing is not the mathematics of a prefer-
ence function versus an acceptance set; it is possible to convert between them
as for risk measures and acceptance sets (Jaschke and Küchler, 2001). The
point is the interpretation of the set A as the set of all payoffs that are at least
as good as the status quo. The no-arbitrage bounds are not to be interpreted as
indifference prices. They have the form of indifference prices with P equal to
the essential infimum, which is far too conservative: it says that zero is prefer-
able to any payoff with a positive probability of loss.

Indifference pricing takes place against the background of the portfolio op-
timization problem

(6)sup
Y∈R

{
P̃(W + Y) | π(Y) � c

}
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where the initial endowment consists of c dollars and the random wealth W ,
and P̃ is a preference function over the total random wealth. Then V ∗ =
W + Y ∗ is the total random wealth produced by the trader’s optimal portfo-
lio strategy. A trader who has the opportunity to purchase X over the counter
formulates the problem

(7)b(X) = sup
Y∈R

{−π(Y) | P̃(V ∗ +X + Y) � P̃(V )
}

to find the indifference bid price. If Y ∗ solves Problem (7) with the constraint
tight, then the trader is indeed indifferent between V ∗ +X + Y ∗ and V ∗, i.e.
between doing and not doing the trade at b(X).

Problem (7) coincides with Problem (2) when P(Z) = P̃(V ∗ + Z) − P̃(Z).
That is, preferences over payoffs, which are changes in wealth, used in con-
structing indifference prices, are derived from more fundamental preferences
over total wealth. Therefore, preferences over payoffs depend on the optimal
total random wealth V ∗ in Problem (6). For various reasons, e.g. that the proce-
dure takes too long or that one does not trust its results, one may wish to avoid
solving Problem (6) first, instead simply solving Problem (7) with V , deter-
mined by the status quo portfolio strategy, replacing the optimal V ∗. However,
Problem (7) can be quite sensitive to V , and if V �= V ∗, the indifference price
can violate the no-arbitrage principle. There is an example and further discus-
sion in Section 5.2.1. Another way of dealing with this situation is to formulate
indifference prices by incorporating the portfolio optimization problem (6):

(8)b(X) = sup
Y∈R

{
c − π(Y) | P̃(X + Y) � sup

V ∈R
{
P̃(V ) | π(V ) � c

}}
based on an initial budget of c.

4.2.3 Expected utility
Expected utility theory specifies the preference function as P̃(W ) =

E[u(W )], where the utility function u is increasing because more money is bet-
ter and concave because of risk aversion. It is characteristic of expected utility
indifference pricing that a(X) �= b(X) for a typical nonreplicable payoff X: it
leads to price bounds, not a unique price, because of aversion to risk that can-
not be hedged. As Musiela and Zariphopoulou (2004b) emphasize, “no linear
pricing mechanism can be compatible with the concept of utility based valua-
tion,” so we should not expect to have the ask price a(X) = −b(−X) equal
to the bid price b(X). Marginal indifference pricing (Section 4.3) delivers a
unique price based on expected utility.

Expected utility indifference pricing is difficult to implement in the context
of derivative security pricing. The key inputs to expected utility maximization
are the endowment V , the statistical probability measure P, and the utility
function u. As Carr et al. (2001, §1) observe,

Unfortunately, the maximization is notoriously sensitive to these inputs, whose
formulation is suspect at the outset. This shortcoming renders the methodology
potentially useless � � �
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OTC traders prefer calibration (Section 11), which does not require them to
specify the endowment, the utility function, or the parameters of P, but only
the form of the pricing measure Q. In particular, it is not required to estimate
the expected return of marketed assets under P, which is difficult (Section 3.3),
but of the utmost importance for expected utility maximization. It is likewise
difficult to determine an appropriate utility function in the corporate setting
of making a market in OTC derivatives. What is the basis for corporate risk
aversion? The view of the equity of a firm with debt as a call option on the
firm’s value suggests that shareholders should be risk-seeking, so as to max-
imize the value of this call option. Does corporate risk aversion come from
regulatory capital requirements, or from financial distress costs (for which see
Jarrow and Purnanandam, 2004, and references therein), and if so, how is it
to be quantified? To model the firm’s endowment, one ought to include not
only all securities, loans, and liabilities currently on the books, but also future
business earnings as a going concern: for instance, one would want to know the
dependence between portfolio returns and earnings from doing advisory work
on mergers and acquisitions.

Aside from these perplexities in modeling, continuous-time expected utility
maximization also involves difficult technicalities. For example, it is not easy to
pick a suitable set of portfolio strategies over which to optimize (Delbaen et al.,
2002; Kabanov and Stricker, 2002; Schachermayer, 2003). Work has continued
in this area, to clarify the conditions that are necessary for existence of optimal
portfolios and unique prices (Hugonnier and Kramkov, 2004; Hugonnier et al.,
2005; Karatzas and Žitković, 2003). Schachermayer (2002) and Skiadas (2006)
give expository treatments of the problem of expected utility maximization in a
continuous-time incomplete market, providing a basis for indifference pricing.

4.2.4 Good deal bounds
The acceptance set A for use in the good deal bounds (2) and (3) includes

only payoffs that are preferable to the status quo, but possibly not all of them.
At prices below b(X), it is preferable to buy; at prices above a(X), it is prefer-
able to sell. In indifference pricing, A contains all payoffs preferable to the
status quo, so at prices between b(X) and a(X) it is preferable to do noth-
ing. Otherwise, b(X) is a lower bound on the indifference bid price and a(X)
is an upper bound on the indifference ask price, and the best policy at prices
between b(X) and a(X) is unknown. This is the difference of interpretation
between good deal bounds and indifference prices, which are a mathematical
special case of the former.

There are two alternative interpretations of good deal bounds. One treats
good deal bounds as possible bid and ask prices for a market-maker, much like
indifference prices: see e.g. Cochrane and Saá-Requejo (2000, p. 86), Carr et
al. (2001, §7), Staum (2004), and Larsen (2005, §5). This is financial engineer-
ing, with the goal of making only subjectively good deals, by trading outside the
subjective price bounds, buying below b(X) and selling above a(X). The other
interpretation is that A is a subset of the payoffs that many traders prefer to
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the status quo, as in Section 9. It treats good deal bounds like no-arbitrage
bounds, asserting that good deals should not be available, because almost
everyone would be willing to take them: see e.g. Cochrane and Saá-Requejo
(2000, p. 82), Carr et al. (2001, §1), and Černý and Hodges (2002). This may
be mathematical finance, with the goal of making a more precise statement
about observed prices in incomplete markets than does the no-arbitrage prin-
ciple. However, if these objective good deal bounds are narrow enough, they
indeed offer market-makers useful guidance about prices: they should buy be-
low a(X) and sell above b(X). In such a trade, the counterparty sells below
a(X) and buys above b(X), not receiving a good deal from the market-maker.
If the counterparty also insists on buying below a(X) and selling above b(X),
trades take place inside the price bounds, so that neither party gets a good deal.

So far we have been discussing an abstract framework. How can it be given
economic content by specifying the acceptance setA? The primary approaches
include restrictions on the pricing kernel (Section 9) and robustness (Sec-
tion 10). A simple version involves a convex risk measure formed by a finite
number of valuation measures and stress measures with floors (Carr et al.,
2001; Larsen et al., 2005), which might be specified by looking at the mar-
ginal utility and the risk management constraints of several market participants
(Carr et al., 2001, §2). In Section 8, we consider methods that yield price
bounds and have the same mathematical form as good deal bounds, except
that they use acceptance sets A that violate the axioms in Section 4.2. This
causes them to be unsuitable for OTC pricing, although they have other uses.

4.2.5 Duality
Duality provides Formula (1) for no-arbitrage bounds and related expres-

sions for a good deal bound or indifference price as in Eq. (2): see Jaschke and
Küchler (2001, §4) and Staum (2004, Thm. 4.1). It yields both computational
advantage and insight. For example, in pricing a path-independent European
option given continuous trading, the dual optimization is taken over a set of
probability measures on terminal payoffs, which is more tractable than the set
of continuous-time portfolio strategies appearing in the primal problem. The
two major ways of grounding pricing in optimization involve the two sides of
this duality: portfolio optimization is optimization over portfolios or the pay-
offs they provide, while the methods of selecting minimum-distance measures
or subsets of the set Q of EMMs involve optimization over probability mea-
sures. For more on duality in indifference pricing, see Frittelli (2000a, §3).

For an exposition of portfolio optimization in incomplete markets in terms
of convex duality, including equivalent martingale measures and marginal in-
difference pricing, see Schachermayer (2002). Convex duality also appears in
representation and optimization of risk measures (Ruszczyński and Shapiro,
2004). The conditions for the price bounds (2) and (3) to avoid arbitrage are
best understood in terms of duality: for a version of the first fundamental the-
orem of asset pricing, see Staum (2004).
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Under some conditions, including that the acceptance set A be related to a
coherent risk measure, the price bounds (2), (3) have the dual representation

(9)
(

inf
Q∈D

EQ[DX]� sup
Q∈D

EQ[DX]
)
�

where D is a subset of the set Q of EMMs (Jaschke and Küchler, 2001). For the
no-arbitrage bounds, D = Q. When the price bounds coincide and are linear,
D is a singleton, i.e. the method selects a single EMM (see Section 2.3 for
a discussion). Marginal indifference pricing and minimum-distance measures
are the principal methods of selecting a single EMM.

4.3 Marginal pricing

For any price bounds b and a, limγ↓0 γa(X/γ) and limγ↓0 γb(X/γ) may co-
incide and provide a unique price p̃(X) suitable for small trades. For a general
result on good deal bounds, see Staum (2004, Prop. 5.2). Under expected util-
ity preferences, P̃(W ) = E[u(W )], this suggestion corresponds to using the
marginal utility u′ to define a pricing measure Q:

(10)p̃(X) = EP
[
u′(V )DX

] = EQ[DX]�
where D is the discount factor and dQ/dP = u′(V )/E[u′(V )]. That is, in the
most straightforward case, marginal indifference pricing results in the selec-
tion of a single EMM Q whose likelihood ratio with respect to the statistical
probability measure P is proportional to the marginal utility of terminal wealth
provided by an optimal portfolio.

Marginal indifference pricing is based on the idea that a single trade is small
and does not need to be hedged. This argument is appropriate for finding the
equilibrium price of a security that is traded and infinitely divisible, but see
Section 2.1. If a small trade has negligible impact on the whole portfolio’s risk
profile, e.g. it has little effect on marginal utility, that is an argument for using
the unique marginal indifference price. This argument is not generally appro-
priate for OTC market-making. A single small trade might seem to be priced
adequately by marginal indifference, but many small trades cumulatively can
involve large risks. Ignoring the likely cumulation of risks can cause initial, my-
opic underpricing of OTC securities that are in high demand, followed by a
concentration of related risks and thus the need to set high prices, at which
fewer trades would be made (see Section 4.1.1). The contribution of a small
trade to total risk depends on the opportunities for hedging, which should
therefore affect pricing.

4.4 Minimum-distance pricing measures

Marginal indifference prices based on expected utility are an example of
pricing with a minimum-distance measure. The expected utility is an expecta-
tion under a statistical probability measure P. The marginal indifference price
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is an expected discounted payoff under a minimax martingale measure Q ∈ Q
that is “closest” to P in the sense of providing the least possible expected utility
to an investor who could buy any payoff V for EQ[DV ]. That is, Q corresponds
to the “least favorable market completion”: in the fictitious complete market
in which the price of any payoff V is EQ[DV ], the utility derived from opti-
mal investment is as low as possible (Skiadas, 2006). The minimax martingale
measure Q is the solution to

(11)min
Q∈Q

max
V

{
EP

[
u(V )

] | EQ[DV ] � c
}
�

For a version based on local utility, see Kallsen (2002b) and references
therein. Particular choices of utility yield quadratic and exponential methods
in Sections 6–7; the latter distance can also be described in terms of rela-
tive entropy. The same concepts appear in Section 9, featuring not just the
minimum-distance measure but a set of EMMs having low distance to P. For
more on portfolio optimization and minimum-distance measures, see Goll and
Rüschendorf (2001).

Somewhat different is the case of calibration (Section 11), which is not based
on a statistical probability measure P. Instead it starts from a parametric fam-
ily P , and selects the pricing measure Q̂ ∈ P that is closest to Q in the sense of
having the least error in replicating the prices of marketed derivative securities;
an EMM in Q would yield zero replication error.

Figure 1 illustrates the structure of four schemes for selecting a probability
measure for pricing in an incomplete market. It uses the very simple setting of
a one-period model with three states and two marketed securities: a riskless
bond paying $1 in all states and with initial price of $1, and a stock worth $2
in state 1, $1 in state 2, and $0 in state 3 and having initial price $0�80. To
simplify matters even further for purposes of two-dimensional representation,
we will assume that the bond must be repriced exactly, so the price assigned to
a payoff X is EQ[DX] = EQ[X] where the pricing measure Q = (q1� q2� q3) is
a true probability measure, such that the probabilities of the three states sum to
one: q1+q2+q3 = 1. Thus, q3 = 1−(q1+q2), so all possible pricing measures
can be parametrized by the triangle in Fig. 1: q1 � 0� q2 � 0� q1 + q2 � 1. The
diagonal line 2q1 + q2 = 0�8 represents the constraint of repricing the stock,
so its line segment in the interior of the triangle is the set Q of EMMs for any
statistical probability measure P that assigns positive probability to all states.
The vertical line segment inside the triangle and defined by q1 = 0�5 represents
a set P of models. Of course, this example is so simple that there is no need
to restrict attention to a subset of the possible pricing measures that does not
include any measures that reprice the stock; also, ordinarily models include
underlying securities’ initial prices as parameters, so all underlying securities,
as opposed to derivative securities, are repriced exactly. The point of the setup
in Fig. 1 is that the resulting structure is not only very simple, but also similar
to that encountered in practice, in which one works with a parametric family
of models that does not include an EMM.
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Fig. 1. Structures of schemes for selecting a pricing measure.

Calibrating the family of models P to the stock price selects Q̂ = (0�5� 0� 0�5)
as the pricing measure, which minimizes the error in repricing the stock by as-
signing it the price $1, the least possible within this family of models. Another
scheme begins with a statistical probability measure P, which may have been
estimated within the family P by econometric inference, and then selects the
EMM Q that is closest to P. In Figure 1, Q = (0�34� 0�12� 0�44) minimizes
Euclidean distance, but several distances have been proposed, relating e.g. to
entropy or expected utility. Instead of selecting only Q, which minimizes the
distance to P, to get a unique price, one may select a set of pricing measures
having low distance to P, and get an interval of prices: the empty dots con-
nected by a curved arc around Q represent the extreme measures selected
by this scheme. Where distance is a function of dQ/dP, this scheme includes
some approaches based on pricing kernel restrictions (Section 9). The fourth
scheme begins with multiple probability measures, here P and P′, yielding ro-
bustness to ambiguity about the statistical probability measure (Section 10).
Each of these yields a minimum-distance EMM, here Q and Q′ respectively,
and this resulting set of EMMs can be used to generate a unique price or a
price interval.

5 Issues in pricing and expected utility examples

Our main example is adapted from Carr et al. (2001).

Example 5.1. Consider a single-period economy with five possible states and
three assets: a riskless bond, a stock, and a straddle. The bond and stock are
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Table 2.
Terminal Asset Values.

State 1 State 2 State 3 State 4 State 5

Bond $1 $1 $1 $1 $1
Stock $80 $90 $100 $110 $120
Straddle $20 $10 $0 $10 $20

Table 3.
Expected Utility Indifference Pricing of a Straddle.

Initial
wealth

Initial portfolio Transaction
type

Portfolio adjustment Indifference
priceBond Stock Bond Stock

$100 77�6 0�334 buy −25�1 0�147 $9�92
sell 21�3 −0�082 $12�11

$1000 776 3�34 buy −22�8 0�111 $10�94
sell 22�5 −0�105 $11�17

marketed, with initial prices $0�9091 and $88�1899 respectively. The terminal
values of the three assets are given in Table 2. The no-arbitrage bounds for
the straddle price are $2�72 and $18�18. Consider the utility function u(W ) =
−(W /100)−4 for W > 0, and suppose the states have equal probabilities.

For any level of initial wealth, the optimal portfolio in marketed securities
has 70�55% of the wealth in the bond and 29�45% in the stock.2 Pricing by mar-
ginal utility uses the probabilities Q = (26�55%� 22�68%� 19�46%� 16�78%�
14�53%), yielding a unique price of $11�06 for the straddle. The bid and ask
indifference prices when the initial wealth is $100 or $1000 allocated optimally
are ($9�92� $12�11) and ($10�94� $11�17) respectively. Table 3 shows the corre-
sponding portfolio adjustments providing optimal payoff Y ∗.

5.1 Dependence on trading opportunities

The opportunities to trade in the market affect the indifference price. For
example, suppose that the stock were not marketed, but the initial portfolio
still had 29.45% of its wealth in the stock. Then the indifference prices based
on initial wealth of $100 would be ($9�86� $12�14): with fewer opportunities to
rebalance the portfolio, the price interval would become wider. The marginal

2 Power and log utilities, having constant relative risk aversion, can lead to optimal portfolios whose
allocation fractions do not depend on the initial wealth: see e.g. Karatzas and Shreve (1998, Exam-
ples 3.6.6–7).
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indifference price given by Eq. (10) would not change: it involves an infinites-
imal change in the portfolio, in the direction defined by the straddle payoff,
and no portfolio rebalancing. On the other hand, there is a difference in the
marginal prices derived from the indifference price (8) incorporating portfolio
optimization, depending on whether the optimal portfolio is allowed to con-
tain stocks and bonds, or only bonds. In the latter case, the optimal portfolio
provides the same wealth in each state, so the marginal indifference price is
$12, based on Q = (20%� 20%� 20%� 20%� 20%).

5.2 Dependence on current portfolio

The indifference prices and the optimal portfolio adjustments also depend
on the random wealth V provided by the initial portfolio. This is intuitively rea-
sonable, as a trader should be less eager to acquire a payoff that exacerbates
unhedgeable risk in the current portfolio than one that cancels out such risks.
As Rouge and El Karoui (2000) say, “it is unrealistic that agents with different
endowments should have the same attitude toward risk.” Indeed, OTC market
makers describe an unhedgeable risk in their portfolios as an “axe,” thinking
of the expression “having an axe to grind.” For example, suppose a trader is
long OTC options on a stock with no marketed options. It would not be easy to
hedge the risk of a decline in the implied volatility (and hence value) of these
options, so this long position is an “axe” which the trader would like to “grind”
by selling OTC options. The trader would set low ask and bid prices, to encour-
age sales of options, which decrease this risk, and get adequate compensation
for purchases, which increase this risk.

Table 4 illustrates this point for Example 5.1. It shows that after a trader has
bought a straddle and re-optimized the portfolio, as in Table 3, the bid and ask
prices decrease. The new ask price is the same as the original bid price, which
makes sense: together, the two transactions return the trader to the original
portfolio, so a net cost of zero produces indifference. The marginal indiffer-
ence price after buying a straddle and optimally rebalancing is $8.77 for the
case of $100 initial wealth; this too decreases because the change in the portfo-
lio has reduced marginal utility in most of the states in which the straddle pays
off.

Table 4.
Effect of Initial Portfolio on Expected Utility Indifference Pricing.

Initial
wealth

Initial portfolio Transaction
type

Hedge portfolio Indifference
priceBond Stock Bond Stock

$100 52�5 0�481 buy −33�5 0�258 $7�66
plus 1 straddle sell 25�1 −0�147 $9�92

$1000 753 3�45 buy −23�2 0�118 $10�72
plus 1 straddle sell 22�8 −0�111 $10�94
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The dependence of indifference price on initial portfolio, illustrated in Ta-
ble 4 for constant relative risk aversion, occurs even with constant absolute risk
aversion (exponential utility, Section 7), which is often used to obtain separa-
tion of investment and hedging decisions. In Example 5.1, if the utility function
is replaced by u(W ) = − exp(−(0�0453)W ), the optimal allocation of $100 ini-
tial wealth remains very nearly the same, leading to a similar bid–ask spread
of ($9�89� $12�10). After the trader has bought a straddle and re-optimized the
portfolio, the bid–ask spread becomes ($7�64� $9�89).

5.2.1 Optimality as prerequisite for indifference pricing
Indifference prices should fall within the no-arbitrage bounds, so as to avoid

arbitrage in OTC trades. To prevent the indifference price in Eq. (7) from
violating no-arbitrage bounds, the initial portfolio V must be optimal, i.e.
V = V ∗ = W + Y ∗ where Y ∗ solves the portfolio optimization problem (6).
If V is suboptimal, the indifference price may exceed the market price for a
replicable payoff that increases the preference index P̃ in Problem (6). Like-
wise, the indifference price for a non-replicable payoff may exceed its upper
no-arbitrage bound. Example 5.2 illustrates these effects.

Example 5.2. Continuing Example 5.3, suppose the initial portfolio delivers
$100 except in state 1, in which it delivers only $60. Consider the payoff Y
provided by a portfolio long 100 shares of the bond and short one share of the
stock.

Based on marginal utility, the valuation probability of state 1 is 76.28%, giv-
ing a marginal indifference price for the put of $6�93. Its indifference price is
$8�42. These both exceed the upper no-arbitrage bound of $5�23. Acquiring Y
increases expected utility. Its market price is $2�72, but its marginal indiffer-
ence price is $9�49 and its indifference price is $7�28.

The need to base indifference pricing on an optimal portfolio causes a grave
difficulty in using expected utility. Because expected utility maximization is not
robust to ambiguity about the statistical probability measure P (Section 4.2.3),
it is not actually a good idea to adopt the supposedly optimal portfolio. Typ-
ically, the true expectation of V ∗ is lower than EP[V ∗], because the optimal
portfolio overinvests in assets that are wrongly believed to have high expected
returns. Consequently, the trader does not optimize his portfolio, V �= V ∗,
but to avoid arbitrage, the indifference prices must be based on V ∗. The result
is that the trader is not indifferent between trading and not trading at these
“indifference prices”; someone else with a different portfolio would be. The
economic justification for expected utility indifference pricing evaporates.

5.3 Risk vs. preference

It is tempting to think of the optimal portfolio adjustment Y ∗ in Problem (7)
as a hedge for the payoff X, but as we have seen, Y ∗ and the indifference price



532 J. Staum

b(X) depend on the payoff V from the existing portfolio strategy as well as
on the payoff X. Only in special cases such as neutralization of Greeks does
hedging apply to payoffs without reference to a portfolio: delta-hedging each
security in a portfolio produces the same net position as delta-hedging the
whole portfolio. The hedge that minimizes a portfolio’s risk does not gener-
ally coincide with the sum of such hedges for each security in the portfolio.

Another way in which the optimal Y ∗ in Problem (2) or (7) is not a hedge is
that it need not reduce risk. To formulate a less risky alternative, suppose that
market prices π are linear and there is a reference security (e.g. riskless bond)
with payoff denoted 1. One can finance the purchase of a payoff X for b(X) by
acquiring Y ∗ or, more simply, by acquiring −(b(X)/π(1))1. By definition, it is
preferable to acquireY ∗: P(V +X+Y ∗) � P(V +X−(b(X)/π(1))1, but it need
not be less risky to acquire Y ∗. Unless the preference P and risk measure ρ are
related as P = −ρ, it is possible that ρ(V +X+Y ∗) > ρ(V +X−(b(X)/π(1))1.
The following example illustrates this point.

Example 5.3. We extend Example 5.1 by including another non-traded asset, a
put option on the stock with strike $90. Its only nonzero payoff is $10 in state 1,
in which the stock is worth $80. As a risk measure of a payoff W , we use the
tail conditional expectation (see Artzner et al., 1999) of W − 110, the shortfall
relative to investing $100 in bonds.

The no-arbitrage bounds on the put’s price are ($0� $5�23) and the bid and
ask indifference prices when the initial wealth is $100 allocated optimally are
($2�22� $2�60), with marginal indifference price $2�41. Table 5 shows the state-
by-state values of the original optimized portfolio V , of the portfolio V +X −
(b(X)/π(1))1 after buying the put for $2�22 by selling bonds, and of the re-
optimized portfolio V +X+Y ∗. Table 6 shows these portfolio’s tail conditional
expectations at several probability levels, corresponding to average values over
the worst 1–5 states.

The last column, tail conditional expectation at the 100% level, is E[110 −
W ], which simply measures the portfolio’s expected value. The other columns
are more properly risk measurements. They each show that buying the put
by selling bonds reduces risk, while re-optimizing the portfolio increases risk
even beyond its original levels. Because the put adds extra wealth in state 1,
the worst state for the original portfolio, it allows the re-optimized portfolio

Table 5.
Portfolio Values when Buying a Put.

Portfolio State 1 State 2 State 3 State 4 State 5

Original Optimal $104.32 $107.66 $111.00 $114.34 $117.68
Buy Put, Sell Bonds $111.88 $105.22 $108.55 $111.89 $115.23
Re-optimized $107.97 $103.61 $109.24 $114.88 $120.51
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Table 6.
Risk in Buying a Put.

Portfolio Tail Conditional Expectation

20% 40% 60% 80% 100%

Original Optimal 5.68 4.01 2.34 0.67 −1�00
Buy Put, Sell Bonds 4.78 3.11 1.45 0.61 −0�56
Re-optimized 6.39 4.21 3.06 1.07 −1�24

to allocate a greater fraction of wealth to the stock. This maximizes expected
utility, but it increases risk: for instance, the re-optimized portfolio has less
wealth ($103.61) in its worst state than does the original portfolio ($104.32) in
its worst state.

Even if preferences are risk-averse, preference and risk are not simply oppo-
sites, as the example shows, even though it is always preferable and less risky to
have more wealth. To incorporate risk management concerns, one may add a
risk constraint. We could reformulate the trader’s portfolio optimization prob-
lem (6) as

(12)sup
Y∈R

{
P̃(W + Y) | π(Y) � c� ρ(W + Y) � r

}
�

where internal or external regulators impose the risk measure ρ and the limit r
on the risk of the trader’s portfolio. Given this formulation, one might think of
the solution to Problem (6) as an optimal portfolio adjustment and of the dif-
ference between the solutions to Problems (6) and (12) as a hedge. “Hedging”
is a good description of neutralizing Greeks, which is solely risk minimization,
with no other preference involved; when optimizing with preferences distinct
from risk, portfolio re-optimization need not be hedging i.e. risk reduction.

6 Quadratics

Quadratic hedging is a much-studied, mathematically elegant approach to
incomplete markets. Surveys include Pham (2000) and Schweizer (2001). The
quadratic method is a special case of expected utility indifference pricing, with
quadratic utility u(x) = −x2. Because it is decreasing for x > 0, quadratic
utility is not a realistic model of preferences, as has often been pointed out, e.g.
by Dybvig (1992). Quadratic utility penalizes the gain due to a hedge’s excess
over the liability to be covered, as well as the loss due to shortfall with respect to
the liability. The same charge has been leveled against mean–variance portfolio
analysis. Markowitz (2002, pp. 155–156) responds:

� � � the problem was to reconcile the use of single-period mean–variance analy-
sis by (or on behalf of) an investor who should maximize a many-period utility
function. My answer lay in the observation that for many utility functions and
for probability distributions of portfolio returns “like” those observed in fact,
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one can closely approximate expected value of the (Bellman 1957 “derived”)
utility function knowing only the mean and variance of the distribution.

For details, see the references Markowitz (2002) cites after this quote. It would
be interesting to investigate how well the mean and variance can approximate
the derived utility of hedged portfolios resulting from OTC market-making.

One might try to separate the problems of hedging, to be solved with a
quadratic approach for tractability, and optimal investment, to be solved with
an appropriate utility function. However, Dybvig (1992) provides a negative
result for the case where incompleteness is due to nonmarket risks: this sepa-
ration does not occur except with constant absolute risk aversion (exponential
utility) and independence of the hedging residual and the marketed risks.

Föllmer and Schweizer (1991) developed a martingale decomposition theo-
rem that yields a locally risk-minimizing hedging strategy for a payoff X, where
risk is instantaneous or one-step variance. The solution relates to the mini-
mal martingale measure P̂ . For senses in which P̂ is minimal, relating both to
quadratic and entropy criteria, see Schweizer (1999). In local risk minimiza-
tion, it is standard to optimize over hedging strategies that need not be self-
financing. A non-self-financing portfolio strategy has an associated cost process
C, where C(t) is the cumulative cash influx required to rebalance the port-
folio over the time interval [0� t]. At each instant t, a locally risk-minimizing
strategy minimizes E[(C(T) − C(t))2|Ft], the conditional expectation of the
squared cumulative future costs, without regard to past costs. A locally risk-
minimizing strategy is “mean-self-financing” in the sense that its cost process
is a martingale (Schweizer, 2001, Lem. 2.3), so C(t) = E[C(T)|Ft], and
thus local risk minimization is equivalent to minimizing the conditional vari-
ance of the cumulative cost. In discrete time, a backward recursion shows
that this is equivalent to choosing the portfolio weights at time ti to mini-
mize Var[(C(ti+1)− C(ti))

2|Fti ], the conditional variance of the cost incurred
at time ti+1. This method is local in the sense that it involves one-step op-
timizations, and in the sense that an infinitesimal perturbation of the locally
risk-minimizing strategy must increase the variance of the cost over the next
step or instant. The optimal cost process is orthogonal to the gains process of
the locally risk-minimizing strategy, which is a projection of the P̂-conditional
expectation process of X (Pham, 2000, Thm. 4.2).

The mean–variance optimal self-financing hedging strategy minimizes E[(Y−
X)2], the variance of the hedging residual. This global quadratic criterion re-
lates to the variance-optimal martingale measure P̃ (Schweizer, 1996), which is
a minimum-distance measure (Section 4.4) based on L2-distance. Bertsimas et
al. (2001) provide a stochastic dynamic programming algorithm for comput-
ing the mean–variance optimal hedging strategy. This hedging problem can be
studied by means of martingale measures or backward stochastic differential
equations: for recent work on the latter, see Lim (2004) and references therein.
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Heath et al. (2001) provide a theoretical and numerical comparison of the
local and global quadratic approaches. The following example illustrates the
difference between a local and global approach in the quadratic setting.

Example 6.1. Continuing Example 4.1, suppose that a trader wishes to hedge
the sale of a contingent claim paying $1 in state 1.

The locally risk-minimizing hedge is ξ1 = 0�1, ξ(0)2 = ξ(−)2 = 0, and ξ(+)2 =
0�2. The variance-optimal hedge is ξ1 = ξ(0)2 = ξ(−)2 = 0 and ξ(+)2 = 0�33.
The cost processes associated with these hedges are given in Table 7. The total
cost is the hedging residual. Its variance is minimized by the variance-optimal
hedge, yielding a variance of 0�037, as opposed to 0�047 for the locally risk-
minimizing hedge, which does not take into account the partial cancellation of
costs incurred at different times in state 2. The conditional variances at time 1
of the cost incurred at time 2 are 0 when the risky asset’s price is 0 or −1,
under either hedging scheme, and 0�133 or 0�222 for the locally risk-minimizing
and variance-optimal hedges respectively, when the risky asset’s price is 1. The
unconditional variance of the cost incurred at time 1 is 0�007 or 0�037 for the
locally risk-minimizing and variance-optimal hedges respectively.

Suppose that the set R of replicable payoffs is a linear space. The quadratic
criteria behave linearly in the sense that, if the hedge Y is optimal for a pay-
off X, then for any multiple γ ∈ R, γY is optimal for γX. Consequently, the
quadratic methods result in unique prices and select a single martingale mea-
sure P̂ or P̃ .

However, it is not appropriate to interpret an expected discounted pay-
off under P̂ or P̃ as a price. As suggested earlier, because quadratic utility
does not model preferences well, these prices may not be compatible with
the trader’s preferences (Bertsimas et al., 2001). Moreover, they may violate
the no-arbitrage bounds. The measures P̂ and P̃ may be signed, that is, they
may assign negative values to some events. Pricing under a signed measure

Table 7.
Quadratic Hedging Cost Processes.

State Probability Locally risk-minimizing Variance-optimal

Time 1 Time 2 Total Time 1 Time 2 Total

1 1/9 $0.1 $0�4 $0�5 $0.33 $0 $0�33
2 1/6 $0.1 −$0�4 −$0�3 $0.33 −$0�67 −$0�33
3 1/18 $0.1 $0 $0�1 $0.33 $0 $0�33

4 1/6 $0 $0 $0 $0 $0 $0
5 1/6 $0 $0 $0 $0 $0 $0

6 1/6 $0.1 $0 $0�1 $0 $0 $0
7 1/6 $0.1 $0 $0�1 $0 $0 $0
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would imply willingness to pay to give away a lottery ticket, i.e. Arrow–Debreu
security, for such an event (Schweizer, 1995). The reason this happens is pre-
cisely that quadratic utility penalizes gains as well as losses, so its marginal
utility may be negative. For examples of arbitrage resulting from quadratic
pricing, see Schweizer (1995, §5) or Frittelli (2000b, p. 50). For similar reasons,
jump processes in continuous time pose difficulties for the quadratic approach:
there may be negative marginal utility for wealth in a state in which a jump
in marketed asset prices causes the optimal portfolio’s value to exceed the li-
ability X. An example of what can go wrong occurs in Example 6.1, where
P̂(ω1) = P̃(ω1) = 0, so the optimal initial capital for local or global quadratic
hedging of the Arrow–Debreu security for state 1 is zero.

According to Biagini and Pratelli (1999), in discrete time or with jumps, the
results of local risk-minimization depend on the numéraire: the hedging strat-
egy depends on whether the costs of the portfolio, which is not self-financing,
are measured in units of cash, bonds, stocks, etc. One response to this is that
the trader should simply choose the numéraire such that the variance of costs
as measured in this numéraire best describes his preferences. However, this ob-
servation draws attention to a theoretical shortcoming of using strategies that
are not self-financing: costs which are cashflows at different times are simply
added, ignoring the time value of money. This may not be a significant issue
unless long time spans or high interest rates are involved.

7 Entropy and exponential utility

Another special case of expected utility indifference pricing uses exponen-
tial utility, also known as negative exponential utility, which may be conveniently
expressed as u(x) = 1 − exp(−αx). It has the feature of constant absolute risk
aversion, which can produce theoretically elegant results, such as separation
of hedging and investment decisions, and independence of the indifference
price in Eq. (8) of the initial budget c. Also interesting is the relationship be-
tween maximization of exponential utility and minimization of relative entropy
EQ[ln(dQ/dP)]. The marginal exponential utility indifference price is the ex-
pected discounted payoff under a minimum-distance measure (Section 4.4),
the minimal entropy martingale measure (MEMM) having minimal relative en-
tropy with respect to the statistical probability measure P (Frittelli, 2000b;
Rouge and El Karoui, 2000). Relative entropy also appears in Section 10 as
a way of quantifying ambiguity.

Delbaen et al. (2002) cover the topic of exponential utility maximization and
valuation via the MEMM with special attention to the set of feasible portfolio
strategies over which the optimization occurs. Becherer (2003) gives a general
presentation and more explicit results in a special case in which the financial
market is complete, but one must value payoffs that depend also on risks in-
dependent of the financial market. Mania et al. (2003) discuss special cases
in which the MEMM can be constructed explicitly. Another explicit example,
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with intuition, and an algorithm for indifference pricing in a similar setting are
in Musiela and Zariphopoulou (2004a, 2004b). Fujiwara and Miyahara (2003)
discuss representation of the MEMM in terms of Esscher transforms when the
underlying process is a geometric Lévy process, giving as examples Brownian
motion plus a compound Poisson process, a stable process, and the variance
gamma process.

Under some conditions, including restrictions on the form of the mean–
variance ratio, the minimal martingale measure coincides with the MEMM
(Mania et al., 2003, Prop. 3.2). The minimal martingale measure P̂ (see Sec-
tion 6) is the solution to the dual of the problem of maximizing exponential
utility given an initial endowment equal to a multiple of the mean–variance ra-
tio (Delbaen et al., 2002, Thm. 5.1). An alternative is to minimize the entropy-
Hellinger process instead of relative entropy. Choulli and Stricker (2005) de-
velop this approach and show that it corresponds to the neutral derivative
prices of Kallsen (2002a), for which see Section 9.1, and that it selects the
minimal martingale measure (Section 6) when the discounted price process
is continuous. Choulli et al. (2006) provide an extension of this approach and a
more general framework including it and other minimum-distance measures.

8 Loss, quantiles, and prediction

What unifies the ideas covered in this section is an emphasis on the loss or
shortfall (Y − X)− associated with hedging the sale of the payoff X by ac-
quiring the payoff Y . They ignore the positive part of the hedging residual,
(Y − X)+. Unfortunately, the nomenclature surrounding these methods is a
bit confusing: they may also involve a loss function +, which is another way
of expressing utility: +(x) = −u(−x). Minimizing the expected loss is then
the same as maximizing expected utility, so pricing via expected loss mini-
mization could be understood as a special case of expected utility indifference
pricing. That is, the trader would be seeking the cheapest hedge Y such that
E[+((V + Y − X − B)−)] � E[+((V − B)−)], where V is the endowment
and B is a benchmark relative to which losses are measured, possibly zero. (If
V = B = 0, the resulting indifference prices are the no-arbitrage bounds, be-
cause gains are ignored and cannot make up for losses.) However, this is not
the way that loss minimization has usually been treated.

This literature primarily addresses the problem of minimizing expected loss
given a fixed initial budget with which to hedge a liability, without reference to
an endowment payoff V . The focus is solely on the shortfall of an approximate
hedge. This literature also addresses the very closely related problem of deter-
mining the minimal required initial budget to hedge so that expected loss does
not exceed some prespecified threshold.

We will consider how the latter problem may apply to pricing in incomplete
markets. The approach falls into the framework described in Section 4.2, with
the acceptance set A = {Z | E[+(Z−)] � p}. Because the loss function ignores
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gains, if A is nontrivial, it must include a payoff Z < 0. Therefore, pricing a
payoffX as the minimal initial budget required to hedge so that expected loss is
less than p can result in giving the counterparty an arbitrage. For example, the
minimal cost of a replicable payoff Y subject to the constraint E[+(Y−)] � p
for p > 0 may be negative. This method is not generally sound for OTC pric-
ing, as illustrated in Example 8.1.

The two following subsections describe two particular choices of loss func-
tion, whose original application was for hedging given a capital constraint, and
show that this expected loss methodology should not be transposed directly to
the application of OTC pricing.

8.1 Expected shortfall

The choice +(x) = x is minimization of expected shortfall. For theoretical
results, see Cvitanić (2000), who discusses the form of the optimal hedge in a
market that is incomplete due to stochastic volatility or trading constraints.

Example 8.1. Continuing Example 5.1, consider the minimal initial capital re-
quired to hedge the straddle given a constraint on expected shortfall.

Figure 2 shows this initial capital as a function of the level p of the con-
straint. The lower curve in Fig. 2 has negative values for largep because the op-
timal “hedge” has a negative value in some states, and its cost is negative. The
upper curve gives the initial capital required to attain the expected shortfall
constraint given the additional constraint that the hedge must be nonnegative;
this constraint is appropriate only when treating nonnegative payoffs X such
as the straddle. The result is that for p = $12, which is the expected shortfall
of the unhedged straddle, the required initial capital is $0. This is still below

Fig. 2. Cost of hedging a straddle to achieve an expected shortfall constraint.
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the lower no-arbitrage bound, which is $2�72. For p = 0, the initial capital
equals the no-arbitrage upper bound. The initial capital required for hedging a
replicable payoff does not, in general, equal its market price. For example, the
no-arbitrage price is $0 for an equity swap replicated by a portfolio that is long
1 share of stock and short approximately 97 shares of the bond. However, with
an expected shortfall constraint of p = 0�25, the price assigned is −$0�26.

8.2 Quantile hedging

Another special case, +(x) = 1{x > 0}, is known as quantile hedging
(Föllmer and Leukert, 1999). With this loss function, the hedger tries to mini-
mize the probability of a positive shortfall, without regard to the magnitude of
shortfall. Alternatively, one might try to apply quantile hedging to pricing by
finding the minimal initial budget required to hedge so that the probability of
a positive shortfall does not exceed p. The special case p = 0 results in super-
replication, that is, any feasible hedge Y satisfies Y � X, corresponding to the
no-arbitrage upper bound.

However, for p > 0, the method may not work: if there is an event F such
that P[F] � p and a replicable payoff YF of negative price π(YF) such that
YF1F � 0, the optimization minY∈R{π(Y) | P[Y − X < 0] � p} tends to
be unbounded. For example, if the space of replicable payoffs R and market
prices π are linear, and Y ∗ � X is a superreplicating payoff, then Y ∗ + λYF
is feasible for all λ ∈ R, so the optimization is unbounded. Even if portfolio
constraints and nonlinear market prices render the optimization bounded, the
results are still likely to be unusable. The optimal solution will tend to involve,
for any X, a large negative price to be paid to the buyer of X, funded by in-
curring large liabilities on some event F of sufficiently small probability. The
more complete the market is, the worse this problem will be, as it becomes eas-
ier to concentrate liabilities on events of low probability but high state price.
One way to ameliorate this problem is to restrict the hedge to be nonnegative
(Föllmer and Leukert, 1999). This still leaves the methodology with the same
deficiencies as for expected shortfall.

8.3 Statistical prediction intervals

Related to quantile hedging is a statistical approach based on prediction
intervals for financial quantities such as cumulative interest rates and volatil-
ity over an option’s life (Mykland, 2003a, 2003b). Quantile hedging looks for
a hedge Y that covers the liability X on some event FX of probability p, i.e.
1FX (Y −X) � 0 and P[FX ] = p. By contrast, this statistical approach specifies
a fixed event G, a prediction interval of probability p used for all payoffs X,
and requires that Y satisfy 1G(Y −X) � 0. This makes the bounds wider for
this prediction interval approach than for quantile hedging at the same error
level p, assuming the same statistical probability measure P in both cases. An
advantage of the prediction interval approach is that it need not be based on a
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single probability measure P. Without assuming a specific model for stochastic
volatility and interest rates, much less that its parameters are known, Mykland
(2003a, 2003b) works out bounds for European option prices and the related
hedging strategies in a diffusion setting, given prediction intervals for cumu-
lative volatility

∫ T
0 σ2(t) dt, or for this and cumulative interest rates

∫ T
0 r(t) dt

together.
Because it is similar to quantile hedging, this prediction interval approach

has a similar drawback as a method for OTC pricing: it assigns zero value to
payoffs that are zero inside the prediction interval but positive outside it, which
allows arbitrage. The prediction interval approach may be most useful in risk
management, for reducing model risk (Mykland, 2003b, §1) or in formulating
a liquidation strategy for a trade (Mykland, 2003a, §6).

9 Pricing kernel restrictions

One way of expressing the problem of pricing in incomplete markets is that
total ignorance about the pricing kernel Π allows the price to be anywhere
within the no-arbitrage price bounds (Section 2.3). This suggests that one may
apply a restriction to the pricing kernel to get price bounds. The main idea
is that some of the pricing kernels that are possible, in the sense of repricing
all marketed securities, are economically implausible. One basis for this is to
assert that some pricing kernels make some of the replicable payoffs into ob-
jective good deals (Section 4.2.4), and it is implausible that such good deals
should exist. That is, one may exclude pricing kernels that would result in too
good a deal for a typical investor or most investors.

An early approach, not related to good deals, is to impose restrictions on
the moments of asset prices under the pricing measure, rather than directly on
the moments of the pricing kernel. If the statistical probability measure P is
known, this restriction on the pricing measure Q is equivalent to a restriction
on the pricing kernel Π = DdQ/dP. Lo (1987) applied restrictions on a stock’s
variance under Q to pricing an option on that stock. Further research has
incorporated restrictions on higher moments and developed computational al-
gorithms. It may seem advantageous that the bounds derived from Q-moment
restrictions do not depend on the statistical probability measure P, and thus
do not require a choice of statistical model – but from where does knowl-
edge of Q-moments come? Lo (1987) showed that, for two simple models, the
Q-variance can be computed from the P-variance under the statistical mea-
sure, and that method-of-moments estimation yields the same result for the
two models. However, in general, the need to connect Q-variance to estimable
quantities can introduce dependence on a model.
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9.1 Low-distance pricing measures: pricing kernels and good deals

Pricing by minimum-distance measure (Section 4.4) selects the single pricing
measure Q with the lowest distance from the statistical probability measure P,
or equivalently, the corresponding pricing kernel or likelihood ratio dQ/dP
representing the lowest distance. For example, the relative entropy distance
(Section 7) is a function of the likelihood ratio. A modification of this method
is to select a set of pricing measures {Q | d(P�Q) < ε} with low distance d
from P. The distance constraint is equivalent to a restriction on the pricing
kernel. It may be more convenient to consider restrictions directly in terms of
the pricing kernel.

One approach is to place restrictions on the moments of the pricing ker-
nel, which can be translated into restrictions on the assets’ returns. Hansen
and Jagannathan (1991) discussed relations between the mean and variance of
the pricing kernel, connecting this to assets’ Sharpe ratios. Cochrane and Saá-
Requejo (2000) adapted these results to asset pricing and initiated the phrase
“good-deal bounds” for their price bounds based on a ceiling for the variance
of the pricing kernel. The point is to bound the prices of payoffs based on the
assumption that they should not have Sharpe ratios that are too high. Here
“too high” means more than some arbitrary multiple of the highest Sharpe ra-
tio of any replicable payoff. A similar approach to establishing bounds is taken
by all papers discussed in this section.

Bernardo and Ledoit (2000) have an approach very similar to that of
Cochrane and Saá-Requejo (2000), restricting not the Sharpe ratio, but the
gain–loss ratio EQ[X+]/EQ[X−] of any payoff X replicable at zero cost. Here
Q is a benchmark pricing measure: although one might not trust it to assign
unique prices to all contingent claims, it can serve as the basis for assessing
whether a deal is good in the sense that gains outweigh losses. Subjective con-
siderations might be taken into account through the choice of benchmark pric-
ing kernel. Bernardo and Ledoit (2000) relate the gain–loss ratio restriction to
a restriction not on the pricing kernel’s variance, but to bounds on the ratio be-
tween the pricing kernel and the benchmark pricing kernel. However, as Černý
(2003, pp. 195–196) points out, it may not be possible to find any other pricing
kernels that satisfy such a bound at any finite level. For example, in the Black–
Scholes model, the ratio between pricing kernels is proportional to a power
of the stock price, based on the equation dQ/dP = exp(−(λ2/2)T − λB(T)),
where λ is the market price of risk, B is Brownian motion under P, and T is
the time horizon: this ratio is unbounded because B(T) is unbounded.

A drawback of the Sharpe ratio approach is that the Sharpe ratio is a poor
measure of preference, especially for derivative securities having nonlinear
payoffs. As Bernardo and Ledoit (2000, p. 166) point out, this can cause the
lower good-deal bound based on pricing kernel variance (Sharpe ratio) for an
out-of-the-money call option to be zero, because the upside variance is too
great. As Černý (2003, p. 193) illustrates, one payoff may stochastically domi-
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nate another, while the latter has a higher Sharpe ratio than the other. These
problems relate to the defects of quadratic utility (Section 6).

Summaries of the main points and mathematical results of Bernardo and
Ledoit (2000) and Cochrane and Saá-Requejo (2000) can be found in Geman
and Madan (2004). For an example of good deal bounds, involving Sharpe
ratios, applied to pricing European options on a stock following the Hes-
ton stochastic volatility model, see Bondarenko and Longarela (2004, §4.2).
Björk and Slinko (2006) provide a solid mathematical foundation for good
deal bounds based on Sharpe ratios in the case of a continuous-time under-
lying price process that has jumps.

Černý (2003) proposes to adapt the approach of Cochrane and Saá-Requejo
(2000) by replacing the Sharpe ratio, with its connection to quadratic utility,
with a generalized Sharpe ratio based on a more suitable utility function. For
example, using exponential utility corresponds to a bound on relative entropy
(Section 7), power utility corresponds to a bound on the expectation of a neg-
ative power of the pricing kernel, and log utility corresponds to a bound on the
expected log of the pricing kernel. A 6-period example of a call option shows
that the good deal bounds do not depend very much on the choice of utility
function, i.e. of which generalized Sharpe ratio to use, but depend strongly on
the level of the bound which defines the set A of good deals (Černý, 2003,
§4.2). This makes sense, as changing the utility function changes the shape of
A, while changing the bound changes the size of A.

In a dynamic model, one can implement the pricing kernel restrictions
globally or locally (see Section 4.1.2). The local approach in continuous time
rules out instantaneous good deals, forbidding any pricing kernel such that, if
one could trade all claims frictionlessly at the prices it assigns, one could in-
crease expected utility at too fast a rate at any instant. This relates to the
local utility maximization of Kallsen (2002a), whose “neutral derivative pric-
ing” assigns prices such that the opportunity to trade in derivatives does not
allow for greater local utility than does trading in marketed securities alone.
He derives price bounds by considering prices that are consistent with a lim-
ited nonzero position for the derivative security within an optimal portfo-
lio. Exploring the local approach, Černý (2003, §5.1) concludes that, if the
discounted gains processes from portfolio strategies are Itō processes, then
ruling out instantaneous good deals imposes, for all utility functions having
the same coefficient of absolute risk aversion, the same bound on the norm
‖λ(t)‖ of the market price of risk vector stochastic process λ. As the minimal
martingale measure of Section 6 corresponds to a pricing kernel dQ/dP =
exp(− ∫ T

0 ‖λ(t)‖/2 dt− ∫ T
0 λ(t) dB(t)) where ‖λ(t)‖ is minimal for each t, this

means the instantaneous good deal bounds always contain the value assigned
by the minimal martingale measure (Černý, 2003, §7).
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9.2 Equilibrium and stochastic dominance

Other pricing kernel restrictions are related to equilibrium among expected
utility maximizers. Structural considerations can impose direct restrictions on
the pricing kernel, and bounds for prices of nonreplicable payoffs can be con-
structed by comparison to replicable payoffs.

A structural feature of equilibrium among expected utility maximizers is that
the pricing kernel should be decreasing in aggregate wealth (or consumption,
depending on the economic model). Usually, the pricing kernel is decreasing in
the price of an asset that is held in net positive supply, unless it has a negative
association with aggregate wealth. For example, if there are two assets, a stock
in net positive supply and a bond in net zero supply, the set of pricing kernels
can be restricted to include only those that are decreasing in the stock price.
Chazal and Jouini (2004) show that this restriction can significantly tighten the
option pricing bounds when added to restrictions on the first two moments in
the manner of Lo (1987). This approach goes back at least to Perrakis and
Ryan (1984), who also initiated a literature on option price bounds based on
comparisons among portfolios.

That method might be thought of as ruling out comparative good deals.
Perrakis and Ryan (1984) used the CAPM pricing rule, in which the expected
return of a portfolio is an affine function of the covariance between a represen-
tative investor’s marginal utility of consumption and the portfolio’s final value.
Although this marginal utility and the distribution of portfolio value may not
be known, the comparison of three portfolios allows Perrakis and Ryan (1984)
to formulate bounds for the price of a European call option in a model with
one stock and bond. The lower and upper bounds involve an expectation of a
function of the terminal stock price, discounted at either the risk-free rate or
the stock’s expected return, respectively. To use the bounds, one need not know
the statistical probability measure P, but one must know the P-expectations of
some functions of the terminal stock price. Various extensions have been de-
rived, involving intermediate trading, transaction costs, and puts. An apparent
limitation of the methodology is the necessity, for each new security, to iden-
tify new comparison portfolios. For a review of subsequent literature related
to Perrakis and Ryan (1984), see Constantinides and Perrakis (2002, §1).

Bizid and Jouini (2005) point out that an equilibrium among various agents
in an incomplete market need not coincide with the equilibrium in a comple-
tion of that market. They demonstrate that the bounds imposed by very weak
equilibrium conditions in an incomplete market, without assuming that the
pricing kernel is a nonincreasing function of aggregate consumption, might
be wider than those that result from considering any possible completion of
that market. They view the reliance of Perrakis and Ryan (1984) on the CAPM
as invoking a possible, but unknown, completion of the market. On the other
hand, the CAPM might be justified not by market completeness, but by in-
voking the approximately quadratic preferences of well-diversified investors.
Moreover, Constantinides and Perrakis (2002) rederive and extend results of
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Perrakis and Ryan (1984) and related work, while relying on stochastic domi-
nance rather than the CAPM.

They use stochastic dominance considerations to rule out option prices that
allow trades in the option to increase expected utility, versus a portfolio only
of marketed securities, under all increasing, convex utility functions. If a deriv-
ative security were offered for less than this lower bound, any expected utility
maximizer would prefer to buy some of it than to keep all wealth invested in
the market. This is very much in the spirit of bounding the Sharpe ratios, etc.,
of all payoffs to be no more than a certain multiple of the maximum Sharpe
ratio of a replicable payoff. The differences are that the multiple is fixed at 1,
and no particular measure such as a generalized Sharpe ratio is used, rather, a
price is excluded only if it gives rise to an increase in any expected utility. The
CAPM approach is even more similar, with the excess return “alpha” in the
CAPM substituting for the Sharpe ratio.

For stochastic dominance constraints in optimization, which may be applied
to portfolio optimization or pricing, see Dentcheva and Ruszczyński (2003).

10 Ambiguity and robustness

Risk, as something that can be quantified by means of a probability distribu-
tion, is to be distinguished from ambiguity or Knightian uncertainty, which rep-
resent a greater degree of ignorance. (Sometimes “uncertainty” is used more
broadly to include both risk and ambiguity.) When we can assign a probability
distribution and compute risk, we know something. For example, suppose we
can assign to a potentially infinite sequence of repeatable experiments a prob-
ability measure such that the experiments are independent, and an event F
has probability 30% of occurring in any repetition. Although we do not know
whether F will occur in the next repetition, we do know, by the law of large
numbers, that the fraction of experiments in which F occurs will eventually
be between 29.99 and 30.01%. If we do not possess such knowledge, then we
cannot assign a probability measure to this phenomenon, and we may require
concepts such as that of imprecise probability (Walley, 1991). We may, for ex-
ample, regard all probability measures in a set P as plausible, and all those
not in P as implausible, and assign infP∈P P[F] and supP∈P P[F] as bounds for
the probability of F . There is a substantial literature devoted to the Ellsberg
(1961) experiment, which showed that such considerations affect willingness to
gamble: subjects prefer to bet on unambiguous gambles rather than ambiguous
ones, and these preferences are not consistent with maximizing any expected
utility function. This may be because subjects have no faith that they can de-
scribe an ambiguous gamble with a single probability measure.

The unreliability of our stochastic models of financial markets suggests that
ambiguity should be an important consideration in financial engineering. As
discussed in Section 3.3, to be able to hedge all payoffs perfectly, the hedger
must be in a complete market and know the stochastic process that marketed
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security prices follow. Ambiguity about this stochastic process is a source of
effective incompleteness, as it becomes impossible to find the perfect hedge.

The theme of the application of ambiguity to incomplete markets is the
decomposition of uncertainty about eventual outcomes into risk and ambi-
guity. A trader’s aversions to delaying consumption (intertemporal substitu-
tion), to risk, and to ambiguity all determine the price at which he is will-
ing to trade. Aversion to ambiguity is often described as a desire for ro-
bustness to misspecification of the stochastic model. A common approach
in the financial literature (Chen and Epstein, 2002; Anderson et al., 2003;
Maenhout, 2004) is to consider an equilibrium in which all traders have the
same preferences, resulting in an analysis of assets’ equilibrium expected re-
turns in terms of market prices of risk and of ambiguity. Anderson et al. (2003)
conclude, “Because mean returns are hard to estimate, � � � there can still be
sizable model uncertainty premia in security prices,” and Maenhout (2004)
concurs: “Empirically a 3% to 5% wedge is difficult to detect given the usual
length of available time series. Given plausible values of risk aversion and un-
certainty aversion, an equilibrium equity premium between 4% and 6% can
then be sustained.” Liu et al. (2005) proceed in similar fashion, but consider
only ambiguity about rare jump events, not diffusion coefficients, and examine
the impact on option prices. This main stream of financial research, discussed
in Section 10.1, is an example of equilibrium marginal indifference pricing.
A somewhat different, subjective approach occupies Section 10.2.

10.1 Complete preferences

In Section 4.2.3, expected utility maximization was criticized as a basis for
portfolio optimization or derivative security pricing because it is too sensi-
tive to unknown inputs, such as the probability measure. This defect has in-
spired work on robust utility. The literature looks back primarily to Gilboa
and Schmeidler (1989), who considered portfolio optimization in which the
expected utility E[u(V )] of random wealth V is replaced by

(13)U(V ) = inf
P∈P EP

[
u(V )

]
�

where P is a set of plausible probability measures or multiple priors. Given P ,
one can choose a portfolio to maximize the robust utility of Eq. (13), which as
a preference function specifies complete preferences and is a foundation for
indifference prices (Section 4.2.2). Talay and Zheng (2002) describe such an
approach to derivative security pricing given considerations of model risk.

Although the form of Eq. (13) makes it look like a convex risk measure
(Föllmer and Schied, 2002), not all convex risk measures have an interpreta-
tion in terms of ambiguity or robustness. For example, Schied (2004) describes
the problem of maximizing robust utility functionals, equivalently, minimizing
convex risk measures, subject to a capital constraint. He provides more explicit
results for law-invariant risk measures ρ, where ρ(X) depends only on the
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law of X under P0, a reference probability measure. This lacks the interpre-
tation of ambiguity, in which the law of X under other measures also counts.
An example of a law-invariant risk measure is expected shortfall, defined by
P = {P | dP/dP0 � r}, i.e. a pointwise (almost sure) constraint on the likeli-
hood ratio. This considers only one probability measure P0, but all conditional
probability measures P0[·|F], where F is an event such that P0[F] < 1/r.

The pointwise constraint on the likelihood ratio contrasts with a constraint
on the relative entropy EP[ln(dP/dP0)]. The set

(14)P = {
P | EP

[
ln(dP/dP0)

]
< ε

}
can be interpreted as a set of probability measures that are plausible, given that
econometric inference leaves P0 as the best estimate, but the econometrician
remains uncertain as to the true probability measure. After estimation, some
probability measures are more plausible, i.e. have a higher p-value or poste-
rior likelihood, than others. An entropy criterion can be tractable, at least if
one works with the intersection of P in Eq. (14) with a family of models, such
as diffusions. However, entropy may not be a suitable way of describing which
probability measures are plausible. It may be that different events have differ-
ent levels of ambiguity, or that some aspects or parameters of the model are
more ambiguous than others. For example, practitioners of financial engineer-
ing often have less confidence in their estimates of correlations or of means
than of volatilities. Interesting effects arise when one considers that there may
not simply be one correct entropy penalty or constraint for all traders to use
in accounting for the ambiguity surrounding a probability measure estimated
from commonly available data. Some assets may be more ambiguous than oth-
ers, which can lead to under-diversification (Uppal and Wang, 2003) or cause
negative skewness in short-term returns and premia for idiosyncratic volatility
(Epstein and Schneider, 2005). Different traders may assign different levels of
ambiguity to assets, which could explain the home-bias puzzle in investments
(Epstein and Miao, 2003) and limited participation in the stock market (Cao
et al., 2005).

Anderson et al. (2003) consider a portfolio-optimizing econometrician who
wishes to construct a portfolio whose utility is robust with respect to the am-
biguity about the true probability measure, that is, is high for all alternatives
which remain plausible given the observed data. This leads them to an opti-
mization including a penalty proportional to the relative entropy between each
model under consideration and the best-fit model. Results can be computed
using a worst-case model among those that are plausible. Maenhout (2004)
considers a more tractable version of this methodology, in which the entropy
penalty depends on wealth in a way that makes the optimal portfolio weights
wealth-independent, and gives some more explicit results. An alternative to a
penalty on relative entropy is a constraint on relative entropy, as in Eq. (14).
Entropy penalty and entropy constraint model different preferences, but not
only do they both result in the use of a worst-case model, entropy-penalty
and entropy-constraint problems come in pairs sharing the same solution, i.e.
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worst-case model and optimal portfolio (Hansen et al., 2006, §5). Thus, it is
not possible to deduce whether a trader’s portfolio is the result of solving a
problem with an entropy penalty or constraint.

This issue is known as observational equivalence, and it appears frequently in
the finance literature. Skiadas (2003) shows that, in a market driven by Brown-
ian motion, the entropy-penalty value function coincides with that of stochastic
differential utility (SDU): see also the discussion of source-dependent risk
aversion in Skiadas (2006). Maenhout (2004) shows that his homothetic ver-
sion of the entropy-penalty formulation is also observationally equivalent to
SDU, but emphasizes that this observational equivalence is limited to portfolio
choice and asset prices within a single model. The observational equivalence
arises because the solution to the portfolio optimization with robust prefer-
ences reduces to the use of a worst-case model, which can then be mapped to a
specific case of SDU. However, if market opportunities change, then the worst-
case model will also change, becoming equivalent to a different case of SDU,
so the observational equivalence breaks down in a broader context (Chen and
Epstein, 2002, §1.2).

Moreover, from a financial engineering perspective, different methods that
may yield the same answer given different inputs are different. As instrumental
rather than descriptive devices, one method may be superior: it may be easier
to specify good inputs and compute a useful result with one method than the
other. For example, when preferences featuring risk aversion and ambiguity
aversion are observationally equivalent to preferences featuring risk aversion
only, the level of risk aversion is greater in the latter case. It would be eas-
ier to specify risk aversion and ambiguity aversion by introspection than to
guess what level of risk aversion alone yields the same price. Indeed, Maenhout
(2004) uses ambiguity aversion to explain the equity premium puzzle, which is
that the level of risk aversion required to justify an expected return for equities
matching the historical average is implausibly high when compared to the level
of risk aversion that most subjects display when confronted with unambiguous
gambles (Mehra, 2003; Mehra and Prescott, 2003). However, it may be that
they display much greater risk aversion in financial markets, much of which is
actually generated by aversion to these markets’ ambiguity. Liu et al. (2005)
find that aversion towards ambiguity about rare events involving jumps in the
aggregate endowment can account for option pricing smirks. Routledge and
Zin (2004) model fluctuations in the liquidity supplied by market-makers who
have multiple priors, giving explicit, simple examples of OTC option trading,
with the market-maker’s optimal bid, ask, and hedges based on robust utility.

It is possible to construct a set P of multiple priors on principles other than
entropy. One major motivation for not using the tractable entropy methodol-
ogy is dynamic consistency. Various versions of dynamic consistency have been
much discussed in the recent literature on risk measures: see Roorda and Schu-
macher (2005). Roughly speaking, dynamic consistency means that for payoffs
X and Y occurring at time T , if X will always be preferred to Y at time t < T ,
then X must be preferred to Y at any time s < t. To do otherwise would create
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inconsistency between choices at different times. Whether such inconsistency
is unacceptable depends on the application: for example, it is more trouble-
some in regulation than in pricing OTC securities. Such inconsistency might
even be appropriate given certain kinds of beliefs incorporating ambiguity: see
Epstein and Schneider (2003, §4) and Roorda et al. (2005, §4).

Dynamic consistency requires that the set P of multiple priors be rectangu-
lar. In a discrete-time model, this means that P has the following property:
for any event Fi that involves only step i, any event F<i that involves only
steps 1� � � � � i − 1, and any pair P1� P2 ∈ P , there must exist a P3 ∈ P such
that P3(Fi ∩ F<i) = P1(Fi)P2(F<i). That is, any one-step conditional proba-
bility for step i must appear in combination with all probability measures for
steps 1� � � � � i − 1. For example, if P contains two probability measures, both
of which correspond to multi-period binomial models of a log stock price with
independent increments, and one of them says that the probability of an up
move is 40% and the other says that it is 60%, then P is not rectangular. It
would also have to contain, among others, a probability measure under which
the probability of an up move is 40% at step 1 and 60% at step 2.

Rectangularity leads to the preference structure known as “recursive mul-
tiple priors” (Chen and Epstein, 2002; Epstein and Schneider, 2003), which
can be viewed as a combination of stochastic differential utility and the robust
utility of Equation (13). The set P of multiple priors defined by an entropy con-
straint is not rectangular (Epstein and Schneider, 2003; Hansen et al., 2006).
Advocates of dynamic consistency suggest enlarging a non-rectangular can-
didate set of multiple priors until it becomes rectangular, while others (e.g.
Hansen et al., 2006, § 9) object that the resulting rectangular set is too large,
depriving the modeler of the ability to impose interesting restrictions on prob-
abilities. In terms of pricing in incomplete markets, the result is price bounds
that are too wide.

10.2 Incomplete preferences

Using the robust utility of Eq. (13) to define complete preferences as in
Gilboa and Schmeidler (1989) is suitable for the application of a one-time
portfolio optimization, in which a portfolio strategy is chosen with a pessimistic
attitude in the face of ambiguity about which of the probability measures inP is
correct. The result is the selection of a worst-case model P∗ ∈ P , similar to the
least favorable completion mentioned in Section 4.4. The methods discussed in
Section 10.1 price all payoffs under an equilibrium pricing measure Q∗ derived
from P∗. Assigning this price to all payoffs at all times would reflect an ongoing
concern with maximizing expected utility under the worst-case model, and no
concern for expected utility under any other plausible model in P .

To see what might be undesirable about this, consider the difference be-
tween optimizing over random total wealth and optimizing over a payoff,
which is a change in wealth, discussed in Section 4.2.2. Also, whereas indiffer-
ence pricing is based on complete preferences, no-arbitrage pricing and other
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good deal bounds are based on incomplete preferences. No-arbitrage pricing
is based on the incomplete preference such that V is weakly preferable to W
when ess inf(V −W ) � 0, i.e. V � W . When neither V � W nor W � V , this
preference structure expresses neither indifference nor preference between V
and W , but rather cannot decide between them. A complete preference struc-
ture using the essential infimum as the preference function for total wealth
evaluates portfolios based on the worst-case scenario: V is preferred to W if
ess infV > ess infW . This is not a suitable preference structure for financial
decisions. According to this preference function, it is better to get one cent for
sure than to have a 99.99% chance of getting one million dollars and a 0.01%
chance of getting nothing.

The same problem can occur with the Gilboa and Schmeidler (1989) robust
utility. If the set P of plausible measures is large, reflecting a great degree of
ambiguity, we may find that a change in the portfolio that increases expected
utility under the worst-case measure decreases it under other plausible mea-
sures. Then we may lack confidence that this change is an improvement, or
even suspect it of being a bad deal. In other words, the acceptance set

(15)AGS =
{
Z | inf

P∈P E
[
u(V + Z)

]
� inf

P∈P E
[
u(V )

]}
defined by robust utility for use in subjective good deal bounds (see Section 4.2)
may not be suitable as a set of good deals.

An alternative is robust evaluation not of total wealth but of changes in it, or
equivalently, incomplete preferences over portfolios, as in no-arbitrage price
bounds. This corresponds to the incomplete preference scheme of Bewley
(2002), in which the acceptance set is

(16)AB =
{
Z | inf

P∈P E
[
u(V + Z)

] − E
[
u(V )

]
� 0

}
⊆ AGS�

That is, a change is considered a good deal if it increases expected utility un-
der every plausible probability measure, not if it merely increases expected
utility under the worst-case measure. This smaller acceptance set is more con-
servative in that it recognizes fewer good deals and thus leads to wider good
deal bounds. This Bewley (2002) approach also responds better to an error of
wrongly including an implausible measure Px in P = P ′ ∪ {Px}, where P ′ is
the correct set of plausible probability measures. Then there might be a pay-
off Z such that infP∈P E[u(V + Z)] > infP∈P E[u(V )] � infP∈P ′ E[u(V )] >
infP∈P ′ E[u(V + Z)], so that Px is the worst-case model and the Gilboa and
Schmeidler (1989) approach would have us erroneously switch from V to
V + Z, which actually makes us worse off. The Bewley (2002) approach fo-
cusing on changes in portfolios would only cause us wrongly to reject some
good deals, not wrongly accept bad deals.

The question is how aversion to ambiguity manifests itself in OTC market-
making. Is one willing to pay high prices for “ambiguity hedges,” that is, payoffs
that reduce the ambiguity of one’s expected utility? Or does one accept only
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unambiguously good deals, paying a low enough price so that it is implausible
that they do not improve one’s portfolio?

11 Calibration

It is standard practice to price with an incomplete-markets model much as
described in Section 2.2 for complete-markets models, by calibrating Q to mar-
keted securities’ prices and assigning the expected discounted payoff EQ[DX]
as the price for a payoff X. If one calibrates to a family of complete-market
models containing the true model, then Q must be the unique no-arbitrage
pricing measure. However, if the market is incomplete, choosing Q such that
EQ[DS] is the market price for any payoff S of a marketed security does not
guarantee that EQ[DX] is an arbitrage-free price for any payoff X. This is
merely a curve-fitting scheme. Arbitrage-free pricing requires that Q be equiv-
alent to the statistical probability measure P. Moreover, it is characteristic of
incomplete markets that more than one pricing measure Q yields arbitrage-
free prices.

Researchers who propose new incomplete-markets models of underlying
asset prices often provide a formula for a single “risk-neutral” price, which
appeals to practitioners. A typical procedure is to posit a model for the sta-
tistical probability measure P, next to assume that one should look for an
equivalent pricing measure Q of the same parametric form, and finally to re-
late the parameters under P and Q. The last step can be done by means of an
unspecified market price of risk (e.g. Heston, 1993), or through construction
of an equilibrium among expected utility maximizers, in which case unspeci-
fied parameters of the utility function are involved (e.g. Madan et al., 1998;
Kou, 2002). This last step is not important in practice, because practitioners
calibrate the parameters of Q to market prices without any regard to P.

What usually happens is that parsimonious models, with a small number
of parameters, cannot exactly match the prices of all marketed securities: the
models are not perfect.3 Although multiple pricing measures Q are consis-
tent with observed market prices, in practice, none of the probability measures
within the family under consideration will be perfectly consistent. Calibration
selects the member of the family that is most consistent. The rationale for us-
ing prices based on calibration in OTC trading is that because these prices are
nearly consistent with market prices, they are likely to avoid arbitrage and to
assign reasonable values to payoffs if market prices are reasonable.

That is, if market prices exclude arbitrage and good deals, then it seems
likely that OTC prices calibrated to market prices should also exclude arbitrage
and good deals. However, the plausibility of this conclusion depends on how

3 Models with many parameters may fit the data exactly, but their calibrated parameters tend to change
substantially over time, a sign that they are not perfect either; they tend to suffer from over-fitting.
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similar payoffs of OTC securities are to those of marketed securities. If there
are no marketed securities whose prices yield information through the model
about events that are important to valuing the OTC securities, the scheme will
be unreliable. An example is the calendar spread on swaption straddles dis-
cussed in Section 2.3. Good price quotes are available for swaptions expiring
on one of a limited set of dates, all of which are much more than two days
apart. Therefore, calibration to these swaptions’ prices can only give informa-
tion about the total volatility under Q of interest rates over the long periods
between adjacent expiration dates, not about how volatility is spread between
the expiration dates. Typical calibration schemes interpolate smoothly, assum-
ing that there is no reason for volatility to be concentrated. However, interest
rate volatility under P is concentrated around dates of scheduled major eco-
nomic announcements. Therefore the prices at which JP Morgan sold the
calendar spreads on swaption straddles, although consistent with market prices
of swaptions, resulted in a good deal for the customers and a bad deal for JP
Morgan. Having a better model could not solve this problem, because market
prices do not contain the information required to calibrate the model. What is
needed is a better method, one which is grounded in an assessment of statisti-
cal probabilities, allowing the trader to base pricing on such information as the
concentration of volatility around economic announcements.

12 Conclusion

One might dream of a unified theory of contingent claim valuation in incom-
plete markets, covering not only derivative securities but also equilibrium pric-
ing of underlying securities and corporate investment via the real options ap-
proach. Although these applications have much in common, we have focused
entirely on making a market in OTC derivatives, in the belief that the practical
settings of these applications differ so much that any valuation methodology
should be evaluated differently, depending on the use to which it is to be put.
For example, when making a market in derivatives, a trader is concerned that
potential customers may possess superior information, while executives mak-
ing corporate investment decisions are concerned that interested subordinates
may have provided biased information about future cashflows; also, hedging
is of paramount importance in trading derivatives, but of at most secondary
importance in corporate investment. For the application of OTC derivatives
market-making, we want a valuation methodology that is robust to misspecifi-
cation of inputs that are hard to infer, that ensures that each trade made at the
bid or ask prices is beneficial, and that is tractable, allowing rapid computation.

What is beneficial may be the subject of some debate, but a suitable valua-
tion methodology should either have an appropriate economic grounding, as
expected utility indifference pricing does, or be shown to give answers that
agree with the results of a well-grounded method under specified circum-
stances. The economic grounding should involve the subjective situation of
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the market-maker who is considering a trade, including his current portfolio,
the risk management framework in which he operates, and his future oppor-
tunities; again, an objective methodology that does not take account of the
individual’s situation would be appropriate only in circumstances in which it
could be shown to yield results that are subjectively beneficial. For example, if
some objective good deal bounds were wider than a trader’s subjective good
deal bounds and still narrow enough to be usable, they would be appropriate.
It is more helpful to a decision-maker to identify a price at which trade benefits
him than to identify a “fair price”; $300,000 might be a fair price for a luxury
automobile, but if one cannot resell it, it might not be beneficial to buy it at or
near this price.

We conclude by assessing the extent to which various methods achieve these
desiderata. Along the way, we will point out some cases in which further re-
search is needed for such an evaluation. We focus on a few major kinds of
methods. These include, first, the standard practice of calibrating to market
prices without reference to a statistical probability measure. Second are meth-
ods based on expected utility maximization and indifference, including mar-
ginal indifference pricing or minimum-distance measures, whether founded
on local or global criteria. Third, there are methods of pricing kernel restric-
tion founded on constraints, such as pricing with low-distance measures rather
than minimum-distance measures. Finally, there are methods that account for
ambiguity, whether they deal with it by using just a worst-case model or by
considering all plausible models.

The most tractable method is calibration: it prices all payoffs by taking ex-
pectations under a single probability measure calculated by a single parametric
optimization. Next best are other methods that also price using just one proba-
bility measure, such as any minimum-distance method or marginal indifference
pricing, whether it is founded on expected utility or robust utility yielding a
worst-case model. It appears that it takes more work to identify these single
measures than calibration requires. Less tractable than these is non-marginal
indifference pricing, which is not simply pricing under one measure: it requires
a new optimization to price each payoff. Local variants are more tractable than
global variants. Pricing kernel restrictions and robust methods that use opti-
mization over multiple probability measures look most difficult of all. These
optimizations may be non-parametric, e.g. requiring computation of a pricing
kernel in all states.

Robustness is the aim of the methods founded on multiple statistical prob-
ability measures, but it remains to be confirmed by extensive empirical study
that the resulting prices are indeed robust to statistical sampling error. Pricing
kernel restrictions featuring low-distance measures also use a single statistical
probability measure P, but use multiple pricing measures; their robustness too
is an open question. Any method involving expected utility indifference or dis-
tance minimization, including the quadratic and exponential special cases, is
not robust with respect to the statistical probability measure P.
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Calibration is more robust to its observed inputs, because it is easier to
observe market prices than to infer the parameters of econometric models;
however, because price data may be out of date, erroneous, or have noise due
to market microstructure and bid–ask spreads, robustness to this data is still
an issue. The more parsimonious models tend to be more robust. Calibration
is not robust to the choice of the family P of models within which calibration
takes place. The resulting risk of trading losses is known as model risk. It would
be interesting to know whether model risk can be mitigated by using multi-
ple calibrated models Q̂ from different families P in the manner of the robust
methods (Section 10), or by using all the models from a single family that have
sufficiently low calibration error, instead of just the one with minimal error, in
the manner of low-distance measures (Section 9).

To ensure that trades made at bid and ask prices are beneficial, it helps to
use a method that produces price bounds that are suitable for use as bid and
ask prices. When using a method that produces unsuitable price bounds, or
a single price, a trader is reduced to intuition in setting bid and ask prices,
making it difficult to tell whether trades include adequate compensation for
unhedgeable risk.

Expected utility indifference pricing, based on the trader’s optimized portfo-
lio, is the paradigm of a method for generating price bounds that are beneficial,
but this method’s fatal flaw is its lack of robustness. Either the trader must op-
timize his portfolio according to an unreliable expected utility maximization
procedure, or the indifference prices are suited to an imagined optimal port-
folio, not his actual portfolio (Section 5.2.1).

The methods founded on marginal indifference pricing and minimum-
distance measures have weaker economic grounding than expected utility in-
difference pricing. It remains to be seen whether and under what circumstances
they yield results that are approximately the same as expected utility indiffer-
ence pricing, despite the apparent flaws of various of these methods, such as
producing a single price, using an inappropriate utility function, and an ob-
jective orientation that disregards the trader’s portfolio. This last point also
affects the methods based on low-distance measures. A major issue in using
them is the question of how great a distance is “low.”

Calibration provides no reason to believe that trading at the resulting price
is beneficial. Its successes have much to do with traders’ skillful use of their
experience and intuition, the ability to hedge well in very competitive OTC
markets, and large bid–ask spreads in OTC markets where hedging is harder.
Its failures point to its limitations. As hedge funds know, the ability to price
all OTC securities well must include an assessment of the statistical proba-
bility measure P, which calibration avoids. A synthesis with econometrics is
desirable. This returns us to the problem of robustness to statistical errors
in specifying P. Methods based on robustness to subjective ambiguity try to
overcome this problem while retaining the justifiability of expected utility in-
difference prices, for instance, by using robust utility. However, it remains to
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show how to model and quantify the ambiguity left after econometric inference
in a way that yields a useful method for OTC pricing.

A fundamental question is how we derive information from current mar-
ket prices of derivative securities and from econometric study of underlying
securities’ price histories. In particular, how do we respond when derivative se-
curities’ current prices seem to be out of line with our beliefs about underlying
securities’ future prices, as expressed in the statistical probability measure P,
making possible a good deal by trading in marketed securities? If we are not
only making a market in OTC securities but also willing to speculate or invest
in marketed securities, then this is an opportunity to trade against a perceived
mispricing. This trade would generate enough risk for our indifference price
bounds for marketed securities to adjust so that they contain the actual market
prices. If we are not willing to speculate or invest in marketed securities, do we
simply take account of their market prices when computing hedging costs, or
do we infer something about P based on the belief that good deals should not
exist? If the latter, inference about P might seek not just to maximize statistical
likelihood, but to balance this objective with minimizing a distance to the set
Q of EMMs.
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Appendix A. Definition of incompleteness and fundamental theorems

We might like to define a complete market as one in which it is possible
to replicate any cashflow. This raises several questions. What is the set C of
cashflows that we hope to be able to replicate? What is the set Θ of possible
portfolio strategies with which we hope to replicate them? What does it mean
to replicate?

First, we must specify the set C of cashflows to be replicated. As usual, let
us focus on cashflows that are simply random variables representing a payoff
at a terminal time T . In assessing completeness of the market, it makes sense
to consider replication only of payoffs that are functions of underlying finan-
cial variables observed over the time interval [0� T ]. Even this set is too large
for mathematical convenience, and the literature usually imposes a further re-
striction that the payoffs under consideration must be integrable or bounded.
There are also economic reasons for a boundedness restriction.
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The second question is of which portfolio strategies are allowed, and with
limited credit, it is impossible to execute a portfolio strategy whose value is un-
bounded below. Along with this restriction of “admissibility” or “tameness,” we
also restrict attention to portfolio strategies that are self-financing (after any
transaction costs), for the same reasons as in the study of no-arbitrage pricing
and the first fundamental theorem of asset pricing. We must also consider only
portfolio strategies whose initial cost is finite; this is a substantive restriction in
models with an infinite number of marketed securities. We might also consider
imposing other restrictions. For instance, we may consider only “stopping time
simple” portfolio strategies, which (almost surely) include only a finite number
of times at which the portfolio is rebalanced, because continuous-time hedging
is impossible. We might also restrict the number of marketed securities in the
portfolio to be finite, even if an infinite number are available in the model, for
similar reasons. The result of defining the set Θ of possible portfolio strategies
is a set of exactly replicable payoffs, R := {Y | ∃θ ∈ Θ 4 Y = θTST }, where S
is the stochastic process of marketed securities’ prices and θTST is the terminal
value of portfolio strategy θ.

Third, what does it mean to replicate? Exact replication led to the definition
of R, and one candidate definition for completeness is C = R, all payoffs can
be exactly replicated. Jarrow et al. (1999) refer to this property as algebraic
completeness, saying, “This definition is too strong and would hardly ever be
satisfied in practice.” After a discussion of mathematics, we will argue that
algebraic completeness is unnecessarily strong, and completeness should be
defined differently.

The mathematical finance literature originally focused on algebraic com-
pleteness, but this created difficulties with the second fundamental theorem of
asset pricing (FTAP), which relates market completeness to uniqueness of a
pricing kernel. These difficulties were analogous to those that previously beset
the first FTAP, which relates absence of arbitrage to existence of a pricing ker-
nel. The difficulties with the first FTAP were solved by introducing a weaker
notion than arbitrage, namely the free lunch with vanishing risk (Delbaen and
Schachermayer, 1999; Protter, 2006). While an arbitrage is a portfolio strategy
in Θ with nonpositive initial cost and terminal value that is nonnegative and
nonzero, a free lunch with vanishing risk is a sequence of portfolio strategies
in Θ with nonpositive initial cost and whose limiting terminal value is non-
negative and nonzero. Mathematically, the idea is to replace the no-arbitrage
condition with a stronger one, which excludes even approximate arbitrages,
such as a free lunch with vanishing risk. What constitutes an “approximate”
arbitrage is determined by a topology on the space of payoffs i.e. terminal val-
ues: the concepts of closure and limit depend on this topology (Cherny, 2005;
Staum, 2004). By analogy, for the second FTAP, it would make sense to re-
place algebraic completeness with a weaker, topological notion (Battig and
Jarrow, 1999; Jarrow et al., 1999; Jarrow and Madan, 1999). The resulting
second FTAPs connect uniqueness of a pricing kernel that is continuous with
respect to some topology to approximate replicability of any payoff Y ∈ C in
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the sense that, for any neighborhood U of Y , there is a portfolio strategy in Θ
whose terminal value is in U .

That is, the more successful mathematical notion of completeness relates
the target payoffs C and the replicable payoffs R by means of a topology
specifying what approximate replication means. This is an eminently practi-
cal notion, because we need only concern ourselves with whether a payoff can
be approximately replicated. If we can find a hedging scheme that results in
an arbitrarily small hedging error, we will be satisfied. An incomplete market,
then, is one in which there are target payoffs that cannot even be approximately
replicated, so that we must find a methodology for dealing with the resulting
non-negligible residual risks after hedging.

Appendix B. Financial perspectives on incompleteness

B.1 Descriptive analysis: Are markets incomplete? How much so?

Whereas a financial engineer might directly test financial time series for fea-
tures that are known to cause incompleteness (see Section 3.1), tests of market
incompleteness in the financial literature often look for evidence of incom-
pleteness in consumption data. As Saito (1999, §II) says, “When markets are
complete, the intertemporal rate of substitution is equalized among agents.” If
so, then a calibrated representative agent model would reflect aggregate pref-
erences, and microeconomic data would show that households are capable of
fully insuring themselves against idiosyncratic risks. The approach focusing on
calibration to aggregate data typically finds that calibrated parameters reflect
implausible aggregate preferences. For instance, this is one guise of the equity
premium puzzle. One response is to conclude that markets must not be com-
plete after all. However, attempts to explain away the equity premium puzzle
on the basis of incomplete markets have not been universally accepted (Mehra,
2003; Mehra and Prescott, 2003). An alternative conclusion is that the models
being calibrated are themselves wrong, so that these tests do not correctly as-
sess market completeness. However, Hansen and Jagannathan (1991) devised
a test which is based on fewer assumptions and not specific to a particular
model, and once again one is led to the conclusion that there is a puzzle if mar-
kets are complete. Another approach to testing is to use microeconomic data
to show that household consumption has not been fully insured against idiosyn-
cratic risks. A tentative conclusion is that markets are significantly incomplete,
but some doubts may remain. See Saito (1999, §II) for further references.

B.2 Normative analysis: What should we do about incompleteness?

Completing the market increases welfare, but increasing the attainable span
in an incomplete market without completing it may increase or decrease wel-
fare. See Huang (2000, §III.A) for a qualitative summary and Duffie and Rahi
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(1995, §2.2) for a mathematical synopsis of one result. Even something as
apparently straightforward as an increase in welfare does not have clear nor-
mative implications. One way in which incomplete markets can lower welfare
is by inducing agents to engage in precautionary saving as a substitute for un-
available insurance against risks. The resulting investment exceeds the level
consistent with maximal welfare of agents existing today and thus produces
economic growth which is in this sense excessive (Saito, 1999, §IV.B), but which
may lead to greater welfare for future generations.

It is also unclear how great the welfare loss due to incompleteness is. Many
factors influence the welfare loss generated within a model of an incomplete-
market equilibrium: how many goods there are, whether the model describes
only exchange or also production, what assets are marketed, whether there is
aggregate risk or only idiosyncratic risk, and whether the time horizon and the
persistence of shocks are infinite, short, or long relative to agents’ patience,
which has to do, for instance, with whether one can find a new job after be-
ing laid off, and with the length of business cycles. Levine and Zame (2002)
ask “Does market incompleteness matter?” They answer that it does not in a
model of an exchange economy with a single perishable good, agents who are
patient, i.e. have a low discount rate in their intertemporal utility functions,
and have an infinite time horizon, shocks that are not persistent, and only idio-
syncratic risk; incompleteness matters if it prevents insuring against aggregate
risks or the relative prices of multiple goods. To their question, Kübler and
Schmedders (2001) respond unequivocally that “incomplete markets matter
for welfares,” even if agents are patient. Kim et al. (2003) study a simple inter-
national model of two countries and report that welfare loss is negligible when
agents are patient and shocks are transitory, but is considerable and highly
sensitive to the model’s parameters in the more realistic case of patience and
persistent shocks.

Equilibria in incomplete markets may even be Pareto inefficient given the
constraints about contingent claims that cannot be traded, because agents
make decisions based on the current equilibrium prices, whereas everyone’s
welfare might be increased at a different price system and allocation: see Hens
(1998, §4), Huang (2000, §III.B), and Duffie and Rahi (1995, §3.3). This raises
the possibility that suitably crafted regulatory intervention might increase wel-
fare (for a simple example, see Huang, 2000, Appendix), but such a suggestion
needs to be treated with the utmost caution, as the relevant central plan-
ning problem would require a tremendous amount of information: see Huang
(2000, §§IV–VI) and Herings and Polemarchakis (2005).

There is a connection between Pareto inefficiency and the topic of sunspot
equilibria in incomplete markets. On sunspot equilibrium see e.g. Hens
(1998, §9). A sunspot equilibrium is one in which allocations of goods depend
on extrinsic events, such as sunspots, having nothing to do with preferences,
endowments, and production possibilities; agents may have self-fulfilling ex-
pectations associated with these extrinsic events, generating volatility in excess
of what is warranted by fundamentals (Prescott and Shell, 2002). According
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to Hens (1998, §9.2), “sunspots matter if and only if markets are incomplete.”
Sunspot equilibria generate excess uncertainty and are Pareto inefficient and
dominated by nonsunspot equilibria in strictly convex economies (Prescott and
Shell, 2002). Pareto efficiency of sunspot and non-sunspot equilibria remains
a subject of active research, e.g. Pietra (2004). The existence of sunspot and
non-sunspot equilibria has an interesting relation to options. Antinolfi and
Keister (1998) report that the introduction into a market of a small number
of options can render it “strongly sunspot immune,” i.e. eliminate the possi-
bility of sunspot equilibria no matter what extrinsic phenomenon constitutes
the sunspots; this is in contrast to previous results they cite, asserting that op-
tions can have a destabilizing effect. For instance, according to Bowman and
Faust (1997), it is possible for the addition of a market in options to introduce
sunspot equilibria into an economy that previously did not have any, even if
that economy’s market was already complete! This has to do with the fact that
options, as derivative securities, have payoffs related to underlying security
prices and not directly to the state of the economy.

Public prices reveal private information and one may analyze how much
private information a certain market structure reveals (Duffie and Rahi, 1995,
§3.2); recent work on this topic includes Kübler et al. (2002). One is tempted
to suppose that complete revelation is desirable because it increases market
efficiency (in the sense of the efficient markets hypothesis, not Pareto effi-
ciency) and thus promotes the allocation of resources to maximally productive
uses. However, the normative issues surrounding information revelation are
not simple. When private information is not revealed, uninformed investors
may be hesitant to trade; this is the rationale behind the prohibition on insider
trading, and the insight underlying an extensive economic literature spawned
by the famous paper on lemons (Akerlof, 1970). Yet private information might
be revealed in a way that resolves uncertainty about individuals’ endowments
so that they cannot well insure it. Hirshleifer (1971) describes how public in-
formation can disrupt a market’s ability to provide insurance. For example,
suppose that the only uncertainty about the price of corn at harvest comes from
ignorance about the total number of acres planted. In this case farmers would
not be able to insure themselves well against price risk by hedging in futures
markets, because the very act of their attempting to hedge their crops would
reveal the total crop size, thus resolving all uncertainty about the price. Marin
and Rahi (2000) and Dow and Rahi (2003) study this tension; the magnitude
of these opposing informational effects is unknown.
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Ruszczyński, A., Shapiro, A. (2004). Optimization of convex risk functions. Working paper.
Saito, M. (1999). Dynamic allocation and pricing in incomplete markets: A survey. Monetary and Eco-

nomic Studies 17 (1), 45–75.
Schachermayer, W. (2002). Optimal investment in incomplete financial markets. In: Geman, H., Madan,

D., Pliska, S., Vorst, T. (Eds.), Mathematical Finance – Bachelier Congress 2000. Springer-Verlag,
Berlin, pp. 427–462.

Schachermayer, W. (2003). A super-martingale property of the optimal portfolio process. Finance and
Stochastics 7, 433–456.

Schied, A. (2004). On the Neyman–Pearson problem for law-invariant risk measures and robust utility
functionals. Annals of Applied Probability 14 (3), 1398–1423.

Schweizer, M. (1995). Variance-optimal hedging in discrete time. Mathematics of Operations Research 20
(1), 1–32.

Schweizer, M. (1996). Approximation pricing and the variance-optimal martingale measure. Annals of
Probability 24, 206–236.

Schweizer, M. (1999). A minimality property of the minimal martingale measure. Statistics and Proba-
bility Letters 42, 27–31.

Schweizer, M. (2001). A guided tour through quadratic hedging approaches. In: Jouini, E., Cvitanić, J.,
Musiela, M. (Eds.), Option Pricing, Interest Rates and Risk Management. In: Handbooks in Mathe-
matical Finance. Cambridge University Press, Cambridge, pp. 538–574. Chapter 15.

Skiadas, C. (2003). Robust control and recursive utility. Finance and Stochastics 7, 475–489.
Skiadas, C. (2006). Dynamic portfolio theory. In: Birge, J.R., Linetsky, V. (Eds.), Financial Engineering.

In: Handbooks in Operations Research and Management Science. Elsevier, Amsterdam.
Staum, J. (2004). Fundamental theorems of asset pricing for good deal bounds. Mathematical Finance 14

(2), 141–161.
Talay, D., Zheng, Z. (2002). Worst case model risk management. Finance and Stochastics 6, 517–537.
Uppal, R., Wang, T. (2003). Model misspecification and underdiversification. Journal of Finance 58 (6),

2465–2486.
Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities. Chapman & Hall, New York.
Zhang, L., Mykland, P.A., Aït-Sahalia, Y. (2005). A tale of two time scales: Determining integrated

volatility with noisy high-frequency data. Journal of the American Statistical Association 100 (472),
1394–1411.



This page intentionally left blank



J.R. Birge and V. Linetsky (Eds.), Handbooks in OR & MS, Vol. 15
Copyright © 2008 Elsevier B.V. All rights reserved
DOI: 10.1016/S0927-0507(07)15013-1

Chapter 13

Option Pricing: Real and Risk-Neutral
Distributions

George M. Constantinides
University of Chicago and NBER
E-mail: gmc@ChicagoGSB.edu

Jens Carsten Jackwerth
University of Konstanz
E-mail: Jens.Jackwerth@uni-konstanz.de

Stylianos Perrakis
Concordia University
E-mail: SPerrakis@jmsb.concordia.ca

Abstract

The central premise of the Black and Scholes [Black, F., Scholes, M. (1973). The
pricing of options and corporate liabilities. Journal of Political Economy 81, 637–659]
and Merton [Merton, R. (1973). Theory of rational option pricing. Bell Journal of
Economics and Management Science 4, 141–184] option pricing theory is that there
exists a self-financing dynamic trading policy of the stock and risk free accounts that
renders the market dynamically complete. This requires that the market be complete
and perfect. In this essay, we are concerned with cases in which dynamic trading breaks
down either because the market is incomplete or because it is imperfect due to the
presence of trading costs, or both. Market incompleteness renders the risk-neutral
probability measure non unique and allows us to determine the option price only
within a range. Recognition of trading costs requires a refinement in the definition
and usage of the concept of a risk-neutral probability measure. Under these market
conditions, a replicating dynamic trading policy does not exist. Nevertheless, we are
able to impose restrictions on the pricing kernel and derive testable restrictions on the
prices of options. We illustrate the theory in a series of market setups, beginning with
the single period model, the two-period model and, finally, the general multiperiod
model, with or without transaction costs. We also review related empirical results that
document widespread violations of these restrictions.
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1 Introduction

The Nobel-winning ingenious idea behind the classic option pricing model
of Black and Scholes (1973) and Merton (1973), hereafter BSM, is that, in
the absence of arbitrage, the price of an option equals the cost of setting up a
judiciously managed portfolio with payoff that replicates the option payoff.

The central premise of the BSM theory is that there exists a self-financing
dynamic trading policy of the stock and risk free accounts that renders the mar-
ket dynamically complete. This requires that the market be complete and perfect.
Two assumptions of the BSM model make the market complete. First, the
price of the underlying security has continuous sample paths at the exclusion of
jumps. Second, the stock return volatility is constant. These assumptions essen-
tially imply that the price of the underlying security is a geometric Brownian
motion. Finally, the assumption of the BSM model that renders the market
perfect is that trading is frictionless. In the BSM model, the volume of trading
over any finite time interval is infinite. The transaction costs associated with
the replicating dynamic trading policy would be infinite for any given positive
proportional transactions cost rate.

Formally, absence of arbitrage in a frictionless market implies the existence
of a risk-neutral probability measure, not necessarily unique, such that the price
of any asset equals the expectation of its payoff under the risk-neutral measure,
discounted at the risk free rate. Furthermore, if the market is complete then
the risk-neutral measure is unique and the option price is unique as well. In the
BSM model, the price of the underlying security follows a geometric Brownian
motion which renders the market complete and the option price unique as well.

The risk-neutral probability measure is the real probability measure with
the expected rate of return on the underlying security replaced by the risk free
rate. The real probability distribution of stock returns can be estimated from
the time series of past returns. The risk-neutral probability distribution of stock
returns can be estimated from the cross section of option prices. As discussed
in detail in the empirical Section 10, this prediction of the BSM theory does not
fare well and provides the motivation to reexamine the premises of the theory.

In this essay, we are concerned with cases in which dynamic trading breaks
down either because the market is incomplete or because there are trading
costs or both. Market incompleteness renders the risk-neutral probability mea-
sure non unique and allows us to determine the option price only within a
range. Recognition of trading costs requires a refinement in the definition and
usage of the concept of a risk-neutral probability measure.

In Section 2, we discuss the implications of the absence of arbitrage. We
introduce the concept of the risk-neutral probability and the closely related
concept of the state price density or pricing kernel. We apply the theory to price
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options under the assumption of the absence of arbitrage in complete and in-
complete markets. In Section 3, we lay out the general framework for pricing
options in a market that is incomplete and also imperfect due to trading costs.
Under these market conditions, a replicating dynamic trading policy does not
exist. Nevertheless, we are able to impose further restrictions on the pricing
kernel and provide testable restrictions on the prices of options. In Sections 4–
9, we illustrate the theory in a series of market setups, beginning with the single
period model, the two-period model and finally the general multiperiod model,
with or without transaction costs. In Section 10, we review related empirical re-
sults and, in Section 11, conclude.

2 Implications of the absence of arbitrage

2.1 General theory

Absence of arbitrage in a frictionless market implies the existence of a risk-
neutral probability measure, not necessarily unique, such that the price of any
asset equals the expectation of its payoff under the risk-neutral measure, dis-
counted at the risk free rate. If a risk-neutral measure exists, the ratio of the
risk-neutral probability density and the real probability density, discounted at
the risk free rate, is referred to as the pricing kernel or stochastic discount factor
(SDF). Thus, absence of arbitrage implies the existence of a strictly positive
SDF. These ideas are implicit in the option pricing theory of Black and Scholes
(1973) and Merton (1973) and are further developed by Ross (1976), Cox and
Ross (1976), Constantinides (1978), Harrison and Kreps (1979), Harrison and
Pliska (1981), and Delbaen and Schachermayer (1994).

To fix ideas, let there be J securities. Security j, j = 1� � � � � J, has price Pj at
the beginning of the period and payoff Xij in state i, i = 1� � � � � I, at the end
of the period. An investor purchases θj securities of type j, j = 1� � � � � J, with
the objective to minimize the purchase cost, subject to the constraint that the
portfolio payoff is strictly positive in all states of nature. The investor solves
the following LP problem:

(2.1)inf{θj}

J∑
j=1

θjPj

subject to

(2.2)
J∑
j=1

θjXij > 0� ∀i�

If the minimum purchase cost is negative, then there is an arbitrage opportu-
nity.
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Absence of arbitrage implies that the above problem, with the added condi-
tion

(2.3)
J∑
j=1

θjPj < 0

is infeasible. Then the dual of this LP problem is feasible. This implies the
existence of strictly positive state prices, {πi}i=1�����I , such that:

(2.4)Pj =
I∑
i=1

πiXij� ∀j

and

(2.5)πi > 0� ∀i�
If the number of states does not exceed the number of securities with linearly
independent payoffs, the market is said to be complete and the state prices
are unique. Otherwise, the market is incomplete and the state prices are not
unique.

The normalized state prices qi ≡ πi/
∑I

k=1 πk can be thought of as proba-
bilities because they are strictly positive and add up to one. The inverse of the
sum of the state prices, R ≡ 1/

∑I
k=1 πk, has the interpretation as one plus the

risk free rate. Then we may write Eq. (2.4) as

(2.6)Pj = R−1
I∑
i=1

qiXij = R−1EQ[Xj]� ∀j

with the interpretation that the price of security j is its expected payoff under
the probability measure Q = {qi}, discounted at the risk free rate. For this
reason, the probability measureQ is referred to as a risk-neutral or risk-adjusted
probability measure. Thus, absence of arbitrage implies the existence of a risk-
neutral probability measure. This property of the absence of arbitrage is far
more general than this simple illustration implies.

Let P = {pi} denote the real probability measure of the states. The ratio
mi ≡ πi/pi is referred to as the state price density or stochastic discount factor
or pricing kernel or intertemporal marginal rate of substitution. In terms of the
pricing kernel, we may write Eq. (2.4) as

(2.7)Pj =
I∑
i=1

pimiXij = EP [miXj]� ∀j

where the expectation is with respect to the real probability measure P .
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2.2 Application to the pricing of options

Let the stock market index have price S0 at the beginning of the period;
ex dividend price Si with probability pi in state i, i = 1� � � � � I, at the end of
the period; and cum dividend price (1 + δ)Si at the end of the period. The
jth derivative, j = 1� � � � � J, has price Pj at the beginning period, and its cash
payoff Xij is Gj(Si), a given function of the terminal stock price, at the end of
the period in state i. In this context, absence of arbitrage implies the existence
of a strictly positive pricing kernel m : mi, i = 1� � � � � I, such that:

(2.8)1 = R

I∑
i=1

pimi�

(2.9)S0 =
I∑
i=1

pimi(1 + δ)Si

and

(2.10)Pj =
I∑
i=1

pimiGj(Si)� j = 1� � � � � J�

Non-existence of a strictly positive pricing kernel implies arbitrage such as vio-
lations of the Merton (1973) no-arbitrage restrictions on the prices of options.

In practice, it is always possible to estimate the real probability measure P
from time series data on past index returns. A derivatives pricing model is then a
theory that associates the appropriate pricing kernel m : mi > 0, i = 1� � � � � I,
with the estimated probability measure P.

In the absence of arbitrage, a unique pricing kernel may be derived in terms
of the prices of J securities with linearly independent payoffs, if the market is
complete, J � I. Then any derivative is uniquely priced in terms of the prices
of I securities. This is the essence of derivatives pricing when the market is
complete. An example of a complete market is the binomial model, described
next.

In a single-period binomial model, there are just two states and the pricing
kernel is derived in terms of the prices of the risk free asset and the stock or
index on which options are written. Then any derivative is uniquely priced in
terms of the risk free rate and the stock or index price. The natural extension
of the single period binomial model is the widely used multiperiod binomial
model developed by Cox and Ross (1976), Cox et al. (1979), and Rendleman
and Bartter (1979). The stock price evolves on a multi-stage binomial tree over
the life of the option so that the stock price assumes a wide range of values.
Yet the market is complete because in each subperiod there are only two states.
An option can be hedged or replicated on the binomial tree by adjusting the
amounts held in the stock and the risk free asset at each stage of the binomial
process. This type of trading is called dynamic trading and renders the market
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dynamically complete. These fundamental ideas underlie the original option
pricing model of Black and Scholes (1973) and Merton (1973). The binomial
model is often used as a pedagogical tool to illustrate these ideas as in the text-
book treatments by Hull (2006) and McDonald (2005). The binomial model is
also a powerful tool in its own right in numerically pricing American and exotic
options.

In this essay, we are concerned with cases in which dynamic trading or hedg-
ing breaks down either because the market is incomplete or because there are
trading costs or both. In these cases, we impose further restrictions on the
pricing kernel by taking into account the economic environment in which the
derivatives are traded.

3 Additional restrictions implied by utility maximization

3.1 Multiperiod investment behavior with proportional transaction costs

We consider a market with heterogeneous agents and investigate the re-
strictions on option prices imposed by a particular class of utility-maximizing
traders that we simply refer to as traders. We do not make the restrictive as-
sumption that all agents belong to the class of the utility-maximizing traders.
Thus our results are unaffected by the presence of agents with beliefs, endow-
ments, preferences, trading restrictions, and transaction cost schedules that
differ from those of the utility-maximizing traders.

As in Constantinides (1979), trading occurs at a finite number of trading
dates, t = 0� 1� � � � � T� � � � � T ′.1 The utility-maximizing traders are allowed to
hold only two primary securities in the market, a bond and a stock. The stock
has the natural interpretation as the market index. Derivatives are introduced
in the next section. The bond is risk free and pays constant interest R− 1 each
period. The traders may buy and sell the bond without incurring transaction
costs. At date t, the cum dividend stock price is (1 + δt)St , the cash dividend
is δtSt , and the ex dividend stock price is St , where δt is the dividend yield. We
assume that the rate of return on the stock, (1+δt+1)St+1/St , is identically and
independently distributed over time.

The assumption of i.i.d. returns is not innocuous and, in particular, rules
out state variables such as stochastic volatility, stochastic risk aversion, and
stochastic conditional mean of the growth rate in dividends and consumption.
In this essay, we deliberately rule out such state variables in order to explore
the extent to which market incompleteness and market imperfections (trading
costs) alone explain the prices of index options. We discuss models with such
state variables in Section 10.

1 The calendar length of the trading horizon is N years and the calendar length between trading dates
is N/T ′ years. Later on we vary T ′ and consider the mispricing of options under different assumptions
regarding the calendar length between trading dates.
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Stock trades incur proportional transaction costs charged to the bond ac-
count as follows. At each date t, the trader pays (1 + k)St out of the bond
account to purchase one ex dividend share of stock and is credited (1 − k)St
in the bond account to sell (or, sell short) one ex dividend share of stock. We
assume that the transactions cost rate satisfies the restriction 0 � k < 1. Note
that there is no presumption that all agents in the economy face the same
schedule of transaction costs as the traders do.

A trader enters the market at date t with dollar holdings xt in the bond ac-
count and yt/St ex dividend shares of stock. The endowments are stated net
of any dividend payable on the stock at time t.2 The trader increases (or, de-
creases) the dollar holdings in the stock account from yt to y ′t = yt + υt by
decreasing (or, increasing) the bond account from xt to x′t = xt − υt − k|υt |.
The decision variable υt is constrained to be measurable with respect to the
information at date t. The bond account dynamics are

(3.1)xt+1 = {
xt − υt − k|υt |

}
R+ (yt + υt)

δtSt+1

St
� t � T ′ − 1

and the stock account dynamics are

(3.2)yt+1 = (yt + υt)
St+1

St
� t � T ′ − 1�

At the terminal date, the stock account is liquidated, υT ′ = −yT ′ , and the
net worth is xT ′ + yT ′ − k|yT ′ |. At each date t, the trader chooses investment
υt to maximize the expected utility of net worth, E[u(xT ′ + yT ′ − k|yT ′ |)|St].3
We make the plausible assumption that the utility function, u(·), is increasing
and concave, and is defined for both positive and negative terminal net worth.4
Note that even this weak assumption of monotonicity and concavity of prefer-
ences is not imposed on all agents in the economy but only on the subset of
agents that we refer to as traders.

We recursively define the value function V (t) ≡ V (xt� yt� t) as

V (xt� yt� t) = max
υ

E

[
V

({
xt − υ− k|υ|}R

2 We elaborate on the precise sequence of events. The trader enters the market at date t with dollar
holdings xt − δtyt in the bond account and yt/St cum dividend shares of stock. Then the stock pays
cash dividend δtyt and the dollar holdings in the bond account become xt . Thus, the trader has dollar
holdings xt in the bond account and yt/St ex dividend shares of stock.
3 The results extend routinely to the case that consumption occurs at each trading date and utility is
defined over consumption at each of the trading dates and over the net worth at the terminal date.
See Constantinides (1979) for details. The model with utility defined over terminal net worth alone is a
more realistic representation of the objective function of financial institutions.
4 If utility is defined only for non-negative net worth, then the decision variable is constrained to be
a member of a convex set that ensures the non-negativity of net worth. See Constantinides (1979) for
details. However, the derivation of bounds on the prices of derivatives requires an entirely different
approach and yields weaker bounds. This problem is studied in Constantinides and Zariphopoulou
(1999, 2001).
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(3.3)+ (yt + υ)
δtSt+1

St
� (yt + υ)

St+1

St
� t + 1

) ∣∣∣ St]
for t � T ′ − 1, and

(3.4)V (xT ′� yT ′� T ′) = u
(
xT ′ + yT ′ − k|yT ′ |)�

We assume that the parameters satisfy appropriate technical conditions such
that the value function exists and is once differentiable.

Equations (3.1)–(3.4) define a dynamic program that can be numerically
solved for given utility function and stock return distribution. We shall not solve
this dynamic program because our goal is to derive restrictions on the prices
of options that are independent of the specific functional form of the utility
function but solely depend on the plausible assumption that the traders’ utility
function is monotone increasing and concave in the terminal wealth.

The value function is increasing and concave in (xt� yt), properties that it
inherits from the assumed monotonicity and concavity of the utility function,
as shown in Constantinides (1979):

(3.5)Vx(t) > 0� Vy(t) > 0� t = 0� � � � � T� � � � � T ′

and

V
(
αxt + (1 − α)x′t � αyt + (1 − α)y ′t � t

)
� αV (xt� yt� t)+ (1 − α)V (x′t � y ′t � t)�

(3.6)0 < α < 1� t = 0� � � � � T� � � � � T ′�
On each date, the trader may transfer funds between the bond and stock

accounts and incur transaction costs. Therefore, the marginal rate of substitu-
tion between the bond and stock accounts differs from unity by, at most, the
transaction costs rate:

(3.7)(1 − k)Vx(t) � Vy(t) � (1 + k)Vx(t)� t = 0� � � � � T� � � � � T ′�
Marginal analysis on the bond holdings leads to the following condition on the
marginal rate of substitution between the bond holdings at dates t and t + 1:

(3.8)Vx(t) = REt
[
Vx(t + 1)

]
� t = 0� � � � � T� � � � � T ′ − 1�

Finally, marginal analysis on the stock holdings leads to the following condition
on the marginal rate of substitution between the stock holdings at date t and
the bond and stock holdings at date t + 1:

Vy(t) = Et

[
St+1

St
Vy(t + 1)+ δtSt+1

St
Vx(t + 1)

]
�

(3.9)t = 0� � � � � T� � � � � T ′ − 1�

Below we employ these restrictions on the value function to derive restrictions
on the prices of options.
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3.2 Application to the pricing of options

We consider J European-style derivatives on the index, with random cash
payoff Gj(ST ), j = 1� 2� � � � � J, at their common expiration date T , T � T ′. At
time zero, the trader can buy the jth derivative at price Pj + kj and sell it at
price Pj − kj , net of transaction costs. Thus 2kj is the bid–ask spread plus the
round-trip transaction costs that the trader incurs in trading the jth derivative.
Note that there is no presumption that all agents in the economy face the same
bid–ask spreads and transaction costs as the traders do.

We assume that the traders are marginal in all J derivatives. Furthermore,
we assume that, if a trader holds a finite (positive or negative) number of deriv-
atives, these positions are sufficiently small relative to her holdings in the bond
and stock that the monotonicity and concavity conditions (3.5) and (3.6) on the
value function remain valid.5

Marginal analysis leads to the following restrictions on the prices of options:

(Pj − kj)Vx(0) � E0
[
Gj(ST )Vx(T)

]
� (Pj + kj)Vx(0)�

(3.10)j = 1� 2� � � � � J�

Similar restrictions apply to the prices of options at dates t = 1� � � � � T − 1.
Below, we illustrate the implementation of the restrictions on the prices of

options in a number of important special cases. First, we consider the case
T = 1 which rules out trading between the bond and stock accounts over the
lifetime of the options. We refer to this case as the single-period case. Note that
the single-period case does not rule out trading over the trader’s horizon after
the options expire; it just rules out trading over the lifetime of the options. We
discuss the single-period case both with and without transaction costs.

A useful way to identify the options that cause infeasibility or near-
infeasibility of the problem is to single out a “test” option, say the Jth option,
and solve the problem

(3.11)min
{Vx(t)�Vy(t)}t=0�����T

E0

[
GJ(ST )

Vx(T)

Vx(0)

]
�

subject to conditions (3.5)–(3.10), where in Eq. (3.10) the subscript j runs from
1 to J − 1. If this problem is feasible, then the attained minimum has the fol-
lowing interpretation. If one can buy the test option for less than the minimum
attained in this problem, then at least one investor, but not necessarily all in-
vestors, increases her expected utility by trading the test option.

Likewise, we may solve the problem

(3.12)max
{Vx(t)�Vy(t)}t=0�����T

E0

[
GJ(ST )

Vx(T)

Vx(0)

]
�

5 Conditions (3.7)–(3.9) remain valid even if the holdings of the derivatives are not small.
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subject to conditions (3.5)–(3.10), where in Eq. (3.10) the subscript j runs
from 1 to J − 1. If this problem is feasible, then the attained maximum has
the following interpretation. If one can write the test option for more than the
maximum attained in this problem, then at least one investor, but not necessar-
ily all investors, increases her expected utility by trading the test option.

As the number of trading dates T increases, the computational burden
rapidly increases. One way to reduce computational complexity is to limit at-
tention to the case J = 1 (one option) and convex payoff (as, for example,
the payoff of a call or put option). In this special case, we present closed-form
solutions with and without transaction costs and, in many cases, present lim-
iting forms of the option prices, as the number of intermediate trading dates
becomes infinitely large.

4 Special case: one period without transaction costs

4.1 Results for general payoffs

The stock market index has price S0 at the beginning of the period; ex divi-
dend price Si with probabilitypi in state i, i = 1� � � � � I, at the end of the period;
cum dividend price (1 + δ)Si at the end of the period; and return (1 + δ)Si/S0.
We define by zi ≡ Si/S0 the ex dividend price ratio. We order the states such
that Si is increasing in i. The jth derivative, j = 1� � � � � J, has price Pj at the
beginning period and cash payoff Gj(zi) at the end of the period in state i. We
denote by V i(t) the value function at date t and state i.

Since the transaction costs rate is assumed to be zero, we have Vx(0) =
Vy(0) and V i

x(1) = V i
y (1). We identify the previously defined stochastic dis-

count factor or pricing kernel mi with the intertemporal marginal rate of sub-
stitution in state i�mi ≡ V i

x(1)/Vx(0). Conditions (3.8)–(3.10) become:

(4.1)1 = R

I∑
i=1

pimi�

(4.2)1 =
I∑
i=1

pimi(1 + δ)zi

and

(4.3)Pj =
I∑
i=1

pimiGj(zi)� j = 1� � � � � J�

The concavity relation (3.6) of the value function implies additional restric-
tions on the pricing kernel. Historically, the expected premium of the return on
the stock over the bond is positive. Under the assumption of positive expected
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premium, the trader is long in the stock. Since the assumption in the single-
period model is that there is no trading between the bond and stock accounts
over the life of the option, the trader’s wealth at the end of the period is in-
creasing in the stock return. Note that this conclusion critically depends on the
assumption that there is no intermediate trading in the bond and stock. Since
we employed the convention that the stock return is increasing in the state i,
the trader’s wealth on date T is increasing in the state i. Then the concavity of
the value function implies that the marginal rate of substitution is decreasing
in the state i:

(4.4)m1 � m2 � · · · � mI > 0�
A pricing kernel satisfying restrictions (4.1)–(4.4) defines the intertempo-

ral marginal rate of substitution of a trader who maximizes her increasing and
concave utility and is marginal in the options, the index and the risk free rate.
If there does not exist a pricing kernel satisfying restrictions (4.1)–(4.4), then
any trader with increasing and concave utility can increase her expected utility
by trading in the options, the index, and the risk free rate – hence equilibrium
does not exist. These strategies are termed stochastically dominant for the pur-
poses of this essay, insofar as they would be adopted by all traders with utility
possessing the required properties, in the same way that all risk averse investors
would choose a dominant portfolio over a dominated one in conventional sec-
ond degree stochastic dominance comparisons. Thus, the existence of a pricing
kernel that satisfies restrictions (4.1)–(4.4) is said to rule out stochastic domi-
nance between the observed prices.

We emphasize that the restriction on option prices imposed by the criterion
of the absence of stochastic dominance is motivated by the economically plau-
sible assumption that there exists at least one agent in the economy with the
properties that we assign to a trader. This is a substantially weaker assumption
than requiring that all agents have the properties that we assign to traders. Sto-
chastic dominance then implies that at least one agent, but not necessarily all
agents, increases her expected utility by trading.6

As before, we single out a “test” option, say the Jth option, and derive
bounds that signify infeasibility if the price of the test option lies outside the
bounds. The general form of this problem was stated in expressions (3.11)
and (3.12). In the special case of no trading over the life of the option and
zero transactions costs, the bounds on the test option with payoff GJ(zi) in
state i are given by

(4.5)max{mi}

(
or�min{mi}

) I∑
i=1

pimiGJ(zi)�

6 We also emphasize that the restriction of the absence of stochastic dominance is weaker than the
restriction that the capital asset pricing model (CAPM) holds. The CAPM requires that the pricing
kernel be linearly decreasing in the index price. The absence of stochastic dominance merely imposes
that the pricing kernel be monotone decreasing in the index price.
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subject to conditions (4.1)–(4.4), where in Eq. (4.3) the subscript j runs from 1
to J − 1.

4.2 Results for convex payoffs

The feasibility of relations (4.1)–(4.4) can be expressed in closed form in
the special case where the options are puts and calls, with payoff Gj(zi) that
is a convex function of the end-of-period return (or stock price). Ryan (2000,
2003) provided inequalities that define an admissible range of prices for each
option by considering the prices of the two options with immediately adjacent
strike prices and Huang (2005) tightened these inequalities. In practice, this
means that (4.1)–(4.4) become infeasible in most realistic problems with a large
enough set of traded options.

Perrakis and Ryan (1984), Levy (1985), and Ritchken (1985) expressed the
upper and lower bounds in (4.5) in closed form in the special case J = 1 (one
option) where the option is a put or call, with payoff G1(zi) that is a convex
function of the end-of-period stock price. Consider a European call option
with strike price K, payoff G1(zi) = [S0zi(1 + δ)−K]+ ≡ ci and price P1 = c.
Define ẑ ≡ ∑I

i=1 pizi and assume (1+δ)ẑ � R. Equations (4.1)–(4.5) become

(4.6)max(or�min)
{mi}

I∑
i=1

pimici

subject to
I∑
i=1

pimi(1 + δ)zi = 1� and

(4.7)R

I∑
i=1

pimi = 1� m1 � · · · � mI > 0�

The solution to (4.6)–(4.7) crucially depends on the minimum value zmin ≡ z1.
If zmin > 0, the upper and lower bounds c0 and c0 on the call option price are
given by

c0 = 1
R

[
R− (1 + δ)zmin

(1 + δ)(ẑ − zmin)
ĉI + (1 + δ)ẑ − R

(1 + δ)(ẑ − zmin)
c1

]
�

(4.8)c0 = 1
R

[
R− (1 + δ)ẑh

(1 + δ)(ẑh+1 − ẑh)
ĉh+1 + (1 + δ)ẑh+1 − R

(1 + δ)(ẑh+1 − ẑh)
ĉh

]
�

In the above equations, h is a state index such that (1+δ)ẑh � R � (1+δ)ẑh+1
and we have used the following notation for conditional expectations for k =
1� � � � � I:

ĉk =
∑k

i=1 cipi∑k
i=1 pi

= E
[
cT | ST � S0(1 + δ)zk

]
�



Ch. 13. Option Pricing: Real and Risk-Neutral Distributions 577

(4.9)ẑk =
∑k

i=1 zipi∑k
i=1 pi

= E
[
zT | zT � zk

]
�

Inspection of Eqs. (4.8) and (4.9) reveals that both the upper and lower bounds
of the call option are discounted expectations with two different distributions,
U = {ui} and L = {li}. These distributions are both risk neutral, since it can be
easily verified that R−1 ∑i=I

i=1 ui(1 + δ)zi = R−1 ∑i=I
i=1 li(1 + δ)zi = 1. These

distributions are:

u1 = R− (1 + δ)zmin

(1 + δ)(ẑ − zmin)
p1 + (1 + δ)ẑ − R

(1 + δ)(ẑ − zmin)
�

ui = R− (1 + δ)zmin

(1 + δ)(ẑ − zmin)
pi� i = 2� � � � � I�

li = (1 + δ)ẑh+1 −R

(1 + δ)(ẑh+1 − ẑh)

pi∑h
k=1 pk

+ R− (1 + δ)ẑh
(1 + δ)(ẑh+1 − ẑh)

pi∑h+1
k=1 pk

�

i = 1� � � � � h�

(4.10)lh+1 = R− (1 + δ)ẑh
(1 + δ)(ẑh+1 − ẑh)

ph+1∑h+1
k=1 pk

�

As the states increase, the distribution of z becomes continuous over the inter-
val [zmin�∞), with actual distribution P(z) and expectation E(z). Then, U and
L become

U(z) =
⎧⎨⎩P(z) with probability R−(1+δ)zmin

(1+δ)(E(z)−zmin)
�

1zmin with probability (1+δ)E(z)−R
(1+δ)(E(z)−zmin)

�

(4.11)L(z) = P
(
z | (1 + δ)E(z) � R

)
�

We note that the two call option bounds become two increasing and convex
functions c(S0) and c(S0) given by

c(S0) = 1
R
EU

[(
S0(1 + δ)z −K

)+]
�

(4.12)c(S0) = 1
R
EL

[(
S0(1 + δ)z −K

)+]
�

In the important special case zmin = 0, the upper bound in (4.12) becomes

(4.13)c(S0) = 1
(1 + δ)E[z]E

P
[(
S0(1 + δ)z −K

)+]
�

Similar results are available for put options. We have thus shown that un-
der the no intermediate trading assumption the option price is bound by two
values given as the expectation of discounted payoff under two limiting dis-
tributions. Oancea and Perrakis (2006) provided corresponding bounds when
(1 + δ)ẑ � R.
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5 Special case: one period with transaction costs and general payoffs

In a one-period model with transaction costs and general payoffs, conditions
(3.8)–(3.10) become

(5.1)Vx(0) = R

I∑
i=1

piV
i
x(1)�

(5.2)Vy(0) =
I∑
i=1

pi

[
Si
S0
V i
y (1)+

δSi
S0

V i
x(1)

]
and

(Pj − kj)Vx(0) �
I∑
i=1

piGj(Si)V
i
x(1) � (Pj + kj)Vx(0)�

(5.3)j = 1� � � � � J�

Conditions (3.5)–(3.7) become7

(5.4)Vx(0) > 0� Vy(0) > 0� V i
x(1) > 0� V i

y (1) > 0� i = 1� � � � � I�

(5.5)V 1
y (1) � V 2

y (1) � · · · � V I
y (1) > 0

and

(5.6)(1 − k)V i
x(1) � V i

y (1) � (1 + k)V i
x(1)� i = 1� � � � � I�

As before, a useful way to pinpoint options that cause infeasibility or near-
infeasibility of the problem is to single out a “test” option and solve the prob-
lems (3.11) and (3.12) subject to restrictions (5.1)–(5.6).

In order to highlight the difference in the formulation brought about by
transaction costs, we adopt a notation similar to that in (4.1)–(4.5). We de-
fine mi ≡ V i

x(1)/Vx(0), the marginal rate of substitution between the bond
account at time one and the bond account at time zero and state i; and
λi ≡ V i

y (1)/Vx(0), the marginal rate of substitution between the stock account
at time one and the bond account at time zero and state i. Then (5.1)–(5.6)
become

(5.7)1 = R

I∑
i=1

pimi�

7 Since the value of the bond account at the end of the period is independent of the state i, the concavity
conditions Vxx(t) < 0 and Vxx(1)Vyy(1) − (Vxy(1))2 > 0 cannot be imposed. Only the concavity
condition Vyy(t) < 0 is imposed as in Eq. (5.5).
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(5.8)(1 − k) �
I∑
i=1

pizi(λi + δmi) � (1 + k)�

(5.9)(Pj − kj) �
I∑
i=1

pimiGj(zi) � (Pj + kj)� j = 1� � � � � J�

(5.10)λ1 � λ2 � · · · � λI > 0

and

(5.11)(1 − k)mi � λi � (1 + k)mi� i = 1� � � � � I�

The bounds on the nth option with payoff Gn(zi) in state i are given by

(5.12)max
mi�λi

(
or� min

mi�λi

) I∑
i=1

pimiGn(zi)�

Transaction costs double the number of variables that must be determined by
the solution of the program. Furthermore, transaction costs expand the feasi-
ble region of the pricing kernel for any given set of option prices. Indeed, it
is easy to see that for k = 0, kj = 0, j = 1� � � � � J the problem (5.7)–(5.12)
becomes identical to (4.1)–(4.5). Therefore, if a feasible solution to (4.1)–(4.4)
exists, then this solution is feasible for (5.7)–(5.11) with mi = λi, i = 1� � � � � I.
This implies that the spread between the two objective functions of (4.5) lies
within the spread of the objective functions of (5.12).

6 Special case: two periods without transaction costs and general payoffs

The single-period model without transaction costs implies that the wealth
at the end of the period is an increasing function of the stock price at the end
of the period and, therefore, the pricing kernel is a decreasing function of the
stock price at the end of the period. Likewise, the single period model with
transaction costs implies that the value of the stock account at the end of the
period is an increasing function of the stock price at the end of the period and,
therefore, the marginal utility of wealth out of the stock account is a decreasing
function of the stock price at the end of the period.

Constantinides and Zariphopoulou (1999) pointed out that intermediate
trading invalidates the above implications with or without transaction costs,
because the wealth at the end of the period (or, the value of the stock account
at the end of the period) becomes a function not only of the stock price at
the option’s expiration but also of the entire sample path of the stock price.8

8 In the special case of i.i.d. returns, power utility, and zero transaction costs, the wealth at the end of
the period is a function only of the stock price. However, this assumption would considerably diminish
the generality of the model.
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Constantinides and Perrakis (2002) recognized that it is possible to recursively
apply the single-period approach with or without transaction costs and derive
stochastic dominance bounds on option prices in a market with intermediate
trading over the life of the options.

In this section, we study a two-period model without transaction costs and,
in the next section, a two-period model with transaction costs. In the absence of
transaction costs, the value function V (t) ≡ V (xt� yt� t) defined in (3.1)–(3.4)
becomes a function of the aggregate trader wealth, V (xt + yt� t). Therefore,
we have Vx(t) = Vy(t), t = 0� 1� 2. As before, we define the first period pricing
kernel as m1i ≡ V i

x(1)/Vx(0). For the second period, we define the pricing
kernel as m2ik ≡ V ik

y (2)/Vx(0), i� k = 1� � � � � I. Then conditions (3.5)–(3.11)
become

(6.1)1 = R

I∑
i=1

pim1i� 1 = R

I∑
k=1

pk
m2ik

m1i
� i = 1� � � � � I�

1 =
I∑
i=1

pim1i(1 + δ)zi� 1 =
I∑

k=1

pk
m2ik

m1i
(1 + δ)zk�

(6.2)i = 1� � � � � I�

(6.3)Pj =
I∑
i=1

I∑
k=1

pipkm2ikGj(zizk)� j = 1� � � � � J

and

m11 � m12 � · · · � m1I > 0� m2i1 � m2i2 � · · · � m2iI > 0�

(6.4)i = 1� � � � � I�

We test for feasibility by solving the program

(6.5)max
m1i�m2ik

(
or� min

m1i�m2ik

) I∑
i=1

I∑
k=1

pipkm2ikGn(z1iz2k)�

The extension of the program (6.1)–(6.5) to more than two periods becomes
potentially explosive. In Section 8, we present closed form expressions for the
bounds on the prices of European options in the special case where the payoff
Gj(ST ) is convex (call or put) and J = 1, by using the expressions developed
in Section 4.2.

7 Special case: two periods with transaction costs and general payoffs

We now allow for transaction costs in the two-period model with general
payoffs. Unlike Section 6, we have Vx(t) �= Vy(t), t = 0� 1� 2. We define
the first period marginal rates of substitution as m1i ≡ V i

x(1)/Vx(0) and
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λ1i ≡ V i
y (1)/Vx(0), i = 1� � � � � I. We define the two-period marginal rates of

substitution asm2ik ≡ V ik
x (2)/Vx(0) and λ2ik ≡ V ik

y (2)/Vx(0), i� k = 1� � � � � I.
Then conditions (3.5)–(3.11) become

(7.1)1 = R

I∑
i=1

pim1i� 1 = R

I∑
k=1

pk
m2ik

m1i
� i = 1� � � � � I�

(1 − k) �
I∑
i=1

piz1i(λ1i + δm1i) � (1 + k)�

(7.2)λ1i =
I∑

k=1

pkz2k(λ2ik + δm2ik)� i = 1� � � � � I�

(7.3)Pj − kj �
I∑
i=1

I∑
k=1

pipkm2ikGj(zizk) � Pj + kj� j = 1� � � � � J�

λ11 � λ12 � · · · � λ1I > 0� λ2i1 � λ2i2 � · · · � λ2iI > 0�

(7.4)i = 1� � � � � I

and

(1 − k)m1i � λ1i � (1 + k)m1i�

(7.5)
(1 − k)m2ik � λ2ik � (1 + k)m2ik� i = 1� � � � � I� k = 1� � � � � I�

As before, we test for feasibility by solving the program

(7.6)max
m1i�λ1i�m2ik�λ2ik

(
or� min

m1i�λ1i�m2ik�λ2ik

) I∑
i=1

I∑
k=1

pipkm2ikGn(z1iz2k)

subject to (7.1)–(7.5). Constantinides et al. (2007) tested for violations of the
stochastic dominance conditions (7.1)–(7.6).

In Section 9, we present closed form expressions for the bounds on the
prices of European options for T � 2 in the special case where the payoff
Gj(ST ) is convex (call or put) and J = 1, by using the expressions developed
in Section 4.2.

8 Multiple periods without transaction costs and with convex payoffs

For the case J = 1 and with convex payoffs, it is possible to use the special
structure of the closed-form solution (4.8)–(4.12), in order to decompose the
general problem into a series of one-period problems for any value of T . In-
deed, consider the U and L distributions defined in (4.10) or (4.11) and define
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the following recursive functions:

ct(St) = 1
R
EU

[
ct+1

(
St(1 + δ)zt+1

) ∣∣ St]�
ct(St) =

1
R
EL

[
ct+1

(
St(1 + δ)zt+1

) ∣∣ St]�
(8.1)cT (ST ) = cT (ST ) =

(
ST−1zT (1 + δ)−K

)+
�

In (8.1), the P, U and L distributions of the successive price ratios zt+1 ≡
St+1/St are allowed to depend on the current index value St , provided such
dependence preserves the convexity of the option value ct(St) at any time t
with respect to St .

Assume that zt+1 takes I ordered values zt+1�i, i = 1� � � � � I that determine
the states at time t + 1, set ct+1�i ≡ ct(St(1 + δ)zt+1�i) and define at time t the
variables mt+1 : mt+1�i ≡ V i

y (t + 1)/Vx(t), i = 1� � � � � I. We can then show
by induction that the expressions (8.1) define upper and lower bounds on the
option value ct(St) at any time t < T .9 We clearly have10

(8.2)

ct(St) =
i=I∑
i=1

pt+1�imt+1�ict+1�i = EP
[
mt+1ct

(
St(1 + δ)zt+1

) ∣∣ St]�
With these definitions consider now the program

min(or�max){mt+1�i}ct =
I∑
i=1

ct+1�ipt+1�imt+1�i�

subject to: 1 =
I∑
i=1

(1 + δ)zt+1�ipt+1�imt+1�i�

1 = R

I∑
i=1

pt+1�jmt+1�i�

(8.3)mt+1�1 � mt+1�2 � · · · � mt+1�I > 0�

Given the assumed convexity of ct+1 = ct(St(1 + δ)zt+1), the solution of (8.3)
produces upper and lower bounds on ct(St) that are discounted expectations
of ct(St(1 + δ)zt+1) under the U and L distributions given by (4.10) or (4.11),

9 The multiperiod upper bound in (8.1) was initially developed in Perrakis (1986). The lower bound was
derived in Ritchken and Kuo (1988).
10 In (8.2) the expectations are conditional on the stock price at time t. In fact the model is more
general and the P-distribution may be allowed to depend on other variables such as, for instance, the
current volatility of the stock price provided convexity is preserved and these other variables do not
affect independently the trader’s utility function.
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conditional on St . The bounds on ct are still given by the recursive expressions
in (8.1).

Oancea and Perrakis (2006) addressed the asymptotic behavior of the mul-
tiperiod bounds in (8.1) as the number of trading dates increases. They con-
sidered specific cases of convergence of the P distribution to a particular sto-
chastic process at the limit of continuous time. They showed that both the U
and L distributions defined in (4.11) converge to a single risk-neutral stochas-
tic process whenever the P distribution converges to a generalized diffusion,
possibly a two-dimensional one, that preserves convexity of the option with re-
spect to the underlying asset price.11 A necessary and sufficient condition for
the convergence of a discrete process to a diffusion is the Lindeberg condition,
which was used by Merton (1982) to develop criteria for the convergence of
binomial and, more generally, multinomial discrete time processes. This con-
dition is applicable to multidimensional diffusion processes.

With minor reformulation, Oancea and Perrakis (2006) extended the va-
lidity of the bounds to stochastic volatility and GARCH models of the stock
price. They also demonstrated that U and L converge to distinct limits when
the limit of the P distribution is a mixed jump-diffusion process. They applied
the stochastic dominance bounds to a discrete time process that converges to
a mixed jump-diffusion process, in which the logarithm of the jump size am-
plitude G converges to a distribution with support G ∈ [Gmin�Gmax], with
Gmin < 0 < Gmax. The fact that the two option bounds converge to two dif-
ferent values is not particularly surprising. Recall that the bounds derived in
earlier studies are also dependent either on the special assumption of fully di-
versifiable jump risk as in Merton (1976), or on the risk aversion parameter
of the power utility function of the representative investor, as in Bates (1991)
and Amin (1993). The option prices derived in these earlier studies are special
cases located within the continuous time limits of the stochastic dominance
bounds derived by (8.1).

9 Multiple periods with transaction costs and with convex payoffs

Constantinides and Perrakis (2002) recognized that it is possible to re-
cursively apply the single-period approach with transaction costs and derive
stochastic dominance bounds on option prices in a market with intermediate
trading over the life of the options. The task of computing these bounds is easy
compared to the full-fledged investigation of the feasibility of conditions (3.5)–
(3.10) for large T for two reasons. As with the no transaction costs case, the
derivation of the bounds takes advantage of the special structure of the payoff

11 The conditions for the preservation of convexity were first presented by Bergman et al. (1996). Con-
vexity is preserved in all one-dimensional diffusions and in most two-dimensional diffusions that have
been used in the option pricing literature.
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of a call or put option, specifically the convexity of the payoff as a function of
the stock price. Second, the set of assets is limited to three assets: the bond,
stock, and one option, the test option. Below, we state these bounds without
proof.

At any time t prior to expiration, the following is an upper bound on the
price of a call:

(9.1)c(St� t) = (1 + k)

(1 − k){(1 + δ)ẑ}T−t E
[[
(1 + δ)ST −K

]+ ∣∣ St]�
where (1 + δ)ẑ is the expected return on the stock per unit time. Observe
that (9.1) is the same as the upper bound given in (4.13) for zmin = 0 times
the roundtrip transaction cost. The tighter upper bound given in (4.8), (4.11),
and (8.1) does not survive the introduction of transaction costs and is eventu-
ally dominated by (9.1).

A partition-independent lower bound for a call option can also be found,
but only if it is additionally assumed that there exists at least one trader for
whom the investment horizon coincides with the option expiration, T = T ′. In
such a case, transaction costs become irrelevant in the put-call parity and the
following is a lower bound12:

c(St� t) = (1 + δ)t−T St −K/RT−t

(9.2)+ E
[
(K − ST )

+ ∣∣ St]/{
(1 + δ)ẑ

}T−t
�

where R is one plus the risk free interest rate per unit time.
Put option upper and lower bounds also exist that are independent of the

frequency of trading. They are given as follows:

(9.3)
p(St� t) = K

RT−t +
1 − k

1 + k

(
(1 + δ)ẑ

)t−T [
E
[[K − ST ]+

] −K | St
]
�

and

(9.4)p(St� t)

⎧⎨⎩
(
(1 + δ)ẑ

)t−T 1 − k

1 + k
E
[[K − ST ]+

∣∣ St]� t � T − 1�

[K − ST ]+� t = T�

The bounds presented in (9.1)–(9.4) may not be the tightest possible bounds
for any given frequency of trading. Nonetheless, they have the property that
they do not depend on the frequency of trading over the life of the option. For
a comprehensive discussion and derivation of these and other possibly tighter
bounds that are specific to the allowed frequency of trading, see Constantinides
and Perrakis (2002). See also Constantinides and Perrakis (2007) for exten-
sions to American-style options and futures options.

12 In the special case of zero transaction costs, the assumption T = T ′ is redundant because the put-call
parity holds.
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10 Empirical results

A robust prediction of the BSM option pricing model is that the volatility
implied by market prices of options is constant across strike prices. Rubinstein
(1994) tested this prediction on the S&P 500 index options (SPX), traded on
the Chicago Board Options Exchange, an exchange that comes close to the
dynamically complete and perfect market assumptions underlying the BSM
model. From the start of the exchange-based trading in April 1986 until
the October 1987 stock market crash, the implied volatility is a moderately
downward-sloping function of the strike price, a pattern referred to as the
“volatility smile”, also observed in international markets and to a lesser extent
on individual-stock options. Following the crash, the volatility smile is typically
more pronounced.13

An equivalent statement of the above prediction of the BSM model, that the
volatility implied by market prices of options is constant across strike prices, is
that the risk-neutral stock price distribution is lognormal. Aït-Sahalia and Lo
(1998), Jackwerth and Rubinstein (1996), and Jackwerth (2000) estimated the
risk-neutral stock price distribution from the cross section of option prices.14

Jackwerth and Rubinstein (1996) confirmed that, prior to the October 1987
crash, the risk-neutral stock price distribution is close to lognormal, consistent
with a moderate implied volatility smile. Thereafter, the distribution is system-
atically skewed to the left, consistent with a more pronounced smile.

Several no-arbitrage models have been proposed and tested that general-
ize the BSM model. These models explore the effects of generalized stock
price processes including stock price jumps and stochastic volatility and typ-
ically generate a volatility smile. The textbooks by Hull (2006) and McDonald
(2005) provide excellent discussions of these models.

Economic theory imposes restrictions on equilibrium models beyond merely
ruling out arbitrage. As we have demonstrated in Section 3, if prices are set by
a utility-maximizing trader in a frictionless market, the pricing kernel must be
a monotonically decreasing function of the market index price. To see this, the
pricing kernel equals the representative agent’s intertemporal marginal rate
of substitution over each trading period. If the representative agent has state
independent (derived) utility of wealth, then the concavity of the utility func-
tion implies that the pricing kernel is a decreasing function of wealth. Under
the two maintained hypotheses that the marginal investor’s (derived) utility
of wealth is state independent and wealth is monotone increasing in the mar-
ket index level, the pricing kernel is a decreasing function of the market index
level.

13 Brown and Jackwerth (2004), Jackwerth (2004), Shefrin (2005), and Whaley (2003) review the liter-
ature and potential explanations.
14 Jackwerth (2004) reviews the parametric and non-parametric methods for estimating the risk-neutral
distribution.
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In a frictionless representative-agent economy, Aït-Sahalia and Lo (2000),
Jackwerth (2000), and Rosenberg and Engle (2002) estimated the pricing ker-
nel implied by the observed cross section of prices of S&P 500 index options
as a function of wealth, where wealth is proxied by the S&P 500 index level.
Jackwerth (2000) reported that the pricing kernel is everywhere decreasing
during the pre-crash period 1986–1987 but widespread violations occur over
the post-crash period 1987–1995. Aït-Sahalia and Lo (2000) reported viola-
tions in 1993 and Rosenberg and Engle (2002) reported violations over the
period 1991–1995.15 On the other hand, Bliss and Panigirtzoglou (2004) esti-
mated plausible values for the risk aversion coefficient of the representative
agent, albeit under the assumption of power utility, thus restricting the shape
of the pricing kernel to be monotone decreasing in wealth.

Several theories have been suggested to explain the inconsistencies with the
BSM model and the violations of monotonicity of the pricing kernel. Bollen
and Whaley (2004) suggested that buying pressure drives the volatility smile
while Han (2004) and Shefrin (2005) provided behavioral explanations based
on sentiment. However, most of the discussion has focused on the risk premia
associated with stock market crashes and state dependence of the pricing kernel.

Bates (2001) introduced heterogeneous agents with utility functions that
explicitly depend on the number of stock market crashes, over and above
their dependence on the agent’s terminal wealth. The calibrated economy
exhibits the inconsistencies with the BSM model but fails to generate the non-
monotonicity of the pricing kernel. Brown and Jackwerth (2004) suggested that
the reported violations of the monotonicity of the pricing kernel may be an ar-
tifact of the maintained hypothesis that the pricing kernel is state independent
but concluded that volatility cannot be the sole omitted state variable in the
pricing kernel.

Pan (2002), Garcia et al. (2003), and Santa-Clara and Yan (2004), among
others, obtained plausible parameter estimates in models in which the pricing
kernel is state dependent, using panel data on S&P 500 options. Others cali-
brated equilibrium models that generate a volatility smile pattern observed in
option prices. Liu et al. (2005) investigated rare-event premia driven by uncer-
tainty aversion in the context of a calibrated equilibrium model and demon-
strated that the model generates a volatility smile pattern observed in option
prices. Benzoni et al. (2005) extended the above approach to show that uncer-
tainty aversion is not a necessary ingredient of the model. More significantly,
they demonstrated that the model can generate the stark regime shift that oc-
curred at the time of the 1987 crash. While not all of the above papers deal
explicitly with the monotonicity of the pricing kernel, they do address the prob-
lem of reconciling the option prices with the historical index record.

15 Rosenberg and Engle (2002) found violations when they used an orthogonal polynomial pricing ker-
nel but not when they used a power pricing kernel.
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These results are encouraging but stop short of demonstrating absence of
stochastic dominance violations on a month-by-month basis in the cross section
of S&P 500 options. This inquiry is the focus in Constantinides et al. (2007),
hereafter CJP. CJP empirically investigated whether the observed cross sec-
tions of S&P 500 index option prices are consistent with various economic
models that explicitly allow for a dynamically incomplete market and also
recognize trading costs and bid–ask spreads. In the first part of their paper,
CJP introduced transaction costs (trading fees and bid–ask spreads) in trad-
ing the index and options and investigated the extent to which violations of
stochastic dominance, gross of transaction costs, are explained by transactions
costs. They found that transaction costs decrease the frequency of violations
but violations persist in several months both before and after the October 1987
crash.

Then CJP explored the second maintained hypothesis that every economic
agent’s wealth on the expiration date of the options is monotone increasing in
the S&P 500 index price on that date. This assumption is unwarranted once we
recognize that trading occurs over the (one-month) life of the options. With
intermediate trading, a trader’s wealth on the expiration date of the options is
generally a function not only of the price of the market index on that date but
also of the entire path of the index level. Thus the pricing kernel is a function
not only of the index level but also of the entire path of the index level. CJP ex-
plored the month-by-month violations of stochastic dominance while allowing
the pricing kernel to depend on the path of the index level.

In estimating the real distribution of the S&P 500 index returns, CJP re-
frained from adopting a particular parametric form of the distribution and
proceeded in four different ways. In the first approach, they estimated the
unconditional distribution as the histograms extracted from two different his-
torical index data samples covering the periods 1928–1986 and 1972–1986.
In the second approach, they estimated the unconditional distribution as the
histograms extracted from two different forward-looking samples, one that in-
cludes the October 1987 crash (1987–2002) and one that excludes it (1988–
2002). In the third approach, CJP modeled the variance of the index return as
a GARCH (1, 1) process and estimated the conditional variance over the pe-
riod 1972–2002 by the semiparametric method of Engle and Gonzalez-Rivera
(1991) that does not impose the restriction that conditional returns are nor-
mally distributed. In the fourth approach, CJP used the VIX-implied volatility
as an estimate of the conditional variance.

Based on the index return distributions extracted in the above four ap-
proaches, CJP tested the compliance of option prices with the predictions of
models that sequentially introduce market incompleteness, transactions costs,
and intermediate trading over the life of the options.

CJP’s empirical design allows for at least three implications associated with
state dependence. First, each month they searched for a pricing kernel to price
the cross section of one-month options without imposing restrictions on the
time series properties of the pricing kernel month by month. Thus they allowed
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the pricing kernel to be state dependent. Second, in the second part of their
investigation, CJP allowed for intermediate trading; a trader’s wealth on the
expiration date of the options is generally a function not only of the price of
the market index on that date but also of the entire path of the index level
thereby rendering the pricing kernel state dependent. Third, CJP allowed the
variance of the index return to be state dependent and employed the estimated
conditional variance.

A novel finding is that, even though pre-crash option prices follow the BSM
model reasonably well, it does not follow that these options are correctly
priced. Pre-crash option prices are incorrectly priced, if index return expec-
tations are formed based on the historical experience. Furthermore, some of
these prices lie below the theoretical bounds, contrary to received wisdom that
historical volatility generally underprices options in the BSM model.

Another novel finding dispels the common misconception that the observed
smile is too steep after the crash. Most of the violations post-crash are due to
the option smile not being steep enough relative to expectations on the index
price formed post-crash. Even though the BSM model assumes that there is
no smile, an investor who properly understood the post-crash distribution of
index returns should have priced the options with a steeper smile than the
smile reflected in the actual option prices.

In all cases, there is a higher percentage of months with stochastic dom-
inance violations by out-of-the-money calls (or, equivalently, in-the-money
puts) than by in-the-money calls, suggesting that the mispricing is caused by
the right-hand tail of the index return distribution and not by the left-hand tail.
This observation is novel and contradicts the common inference drawn from
the observed implied volatility smile that the problem lies with the left-hand
tail of the index return distribution.

Finally, CJP found that the effect of allowing for one intermediate trading
date over the life of the one-month options is to uniformly decrease the num-
ber of feasible months in each subperiod. They concluded that intermediate
trading strengthens the single-period evidence of systematic stochastic domi-
nance violations.

Constantinides et al. (2007) extended the results in CJP to American options
on S&P 500 index futures. They demonstrated corresponding violations and
implemented trading strategies that exploit the violations.

11 Concluding remarks

We presented an integrated approach to the pricing of options that allows
for incomplete and imperfect markets. The BSM option pricing model is the
nested case of complete and perfect markets. When the market is incomplete,
imperfect, or both, the principle of no-arbitrage by itself implies restrictions on
the prices of options that are too weak to be useful to either price options or
confront the data with a testable hypothesis.
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Instead of the principle of the absence of arbitrage that underlies the BSM
model, we introduced the economic restriction that at least one risk-averse
trader is a marginal investor in the options and the underlying security. Given
the cross section of the prices of options and the real probability distribution of
the return of the underlying security, the implied restrictions may be tested by
merely solving a linear program. We also showed that the economic restrictions
may be expressed in the form of upper and lower bounds on the price of an
option, given the prices of the stock and the other outstanding options.

By providing an integrated approach to the pricing of options that allows for
incomplete and imperfect markets, we provided testable restrictions on option
prices that include the BSM model as a special case. We reviewed the empiri-
cal evidence on the prices of S&P 500 index options. The economic restrictions
are violated surprisingly often, suggesting that the mispricing of these options
cannot be entirely attributed to the fact that the BSM model does not allow for
market incompleteness and realistic transaction costs. These are indeed excit-
ing developments and are bound to stimulate further theoretical and empirical
work to address the month-by-month pattern of option price violations.
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Abstract

In an incomplete market, it is generally impossible to replicate an option exactly. In
this case, total risk minimization chooses an optimal self-financing strategy that best
approximates the option payoff by its final value. Total risk minimization is a dynamic
stochastic programming problem, which is generally very challenging to solve; a direct
approach may lead to very expensive computations.

We investigate total risk minimization using a piecewise linear criterion. We de-
scribe a method for computing the optimal hedging strategies for this stochastic
programming problem using Monte Carlo simulation and spline approximations. We
illustrate this method in the Black–Scholes and the stochastic volatility frameworks.
We also compare the hedging performance of the strategies based on piecewise lin-
ear risk minimization, the traditional, quadratic risk minimizing strategies and the
shortfall risk minimizing strategies. The numerical results show that piecewise linear
risk minimization may lead to smaller hedging cost and significantly different, possi-
bly better, hedging strategies. The values of the shortfall risk for the piecewise linear
total risk minimizing strategies suggest that these strategies typically under-hedge the
options.

1 Introduction

Hedging is a method for reducing the sensitivity of a portfolio to market
fluctuations. In particular, when hedging an option, one tries to construct a

593
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trading strategy that replicates the option payoff with no inflow or outflow of
capital besides the initial costs. In the Black–Scholes framework, an option
can be hedged by using only the underlying asset and a bond. However, the in-
vestor’s position must be adjusted continuously, since it is only instantaneously
risk-free. In practice, however, it is impossible to hedge continuously in time. In
addition, one may want to hedge as little as possible due to transaction costs. If
only discrete hedging times are allowed, achieving a risk-free position at each
time is no longer possible since this instantaneous hedging will not last till the
next rebalancing time. Moreover, presence of additional risks, e.g., jump risks,
leads to an incomplete market. Under these conditions, it is not possible to
totally hedge the intrinsic risk of an option that cannot be exactly replicated.
There is much uncertainty regarding the choice of an optimal hedging strategy
and in defining the fair price of an option.

El Karoui and Quenez (1995) use the super-replication method for pricing
and hedging in incomplete markets. The method consists in finding a self-
financing strategy of minimum initial cost such that its final value is always
larger than the option payoff. This minimum initial cost represents the ask
price, or the seller’s price of the option. Correspondingly, the method com-
putes a bid price, or a buyer’s price. However, only an interval of no-arbitrage
prices is determined in this manner. Moreover, there are cases when using a
super-replicating strategy for hedging an option is not interesting from a finan-
cial point of view. For example, in the Hull–White (1987) stochastic volatility
model, the super-replicating strategy for a call option is to hold the underlying
asset (Frey, 1997). In addition, the minimum initial cost of a super-replicating
strategy may be undesirably large.

Another approach to pricing and hedging in incomplete markets is to com-
pute an optimal strategy by minimizing a particular measure of the intrinsic risk
of the option. Föllmer and Schweizer (1989), Schäl (1994), Schweizer (1995,
2001), Mercurio and Vorst (1996), Heath et al. (2001a, 2001b), Bertsimas et al.
(2001) study quadratic criteria for risk minimization. We only briefly describe
them here, but they are presented in more detail in Section 2.

Suppose we want to hedge an option whose payoff is denoted by H and
we only have a finite number of hedging times: t0� t1� � � � � tM . Suppose also
that the financial market is modeled by a probability space (Ω�F� P), with
filtration (Fk)k=0�1�����M and the discounted underlying asset price follows a
square integrable process. Denote by Vk the value of the hedging strategy at
time tk and by Ck the cumulative cost of the hedging strategy up to time tk
(this includes the initial cost for setting up the hedging portfolio and the cost
for rebalancing it at the hedging times t0� � � � � tk).

Currently, there are two main quadratic hedging approaches for choosing an
optimal strategy. One possibility is to control the total risk by minimizing the
L2-norm E((H − VM)

2), where E(·) denotes the expected value with respect
to the probability measure P . This is the total risk minimization criterion. An
optimal strategy for this criterion is self-financing, that is, its cumulative cost
process is constant. A total risk minimizing strategy exists under the additional
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assumption that the discounted underlying asset price has a bounded mean–
variance tradeoff. In this case, the strategy is given by an analytic formula.
The existence and the uniqueness of a total risk minimizing strategy have been
extensively studied by Schweizer (1995).

Another possibility is to control the local incremental risk, by minimizing
E((Ck+1 − Ck)

2|Fk) for all 0 � k � M − 1. This is the local quadratic risk
minimizing criterion. The same assumption that the discounted underlying as-
set price has a bounded mean–variance tradeoff is sufficient for the existence
of an explicit local risk minimizing strategy (see Schäl, 1994). This strategy is
no longer self-financing, but it is mean-selffinancing, i.e., the cumulative cost
process is a martingale. In general, the initial costs for the local risk minimizing
and total risk minimizing strategies are different. As Schäl noticed, the initial
costs agree in the case when the discounted underlying asset price has a de-
terministic mean–variance tradeoff. He then suggests the interpretation of this
initial cost as a fair hedging price for the option. However, as mentioned by
Schweizer (1995), this is not always appropriate.

The quadratic total and local risk minimizing hedging strategies have many
theoretical properties, their existence and uniqueness have been extensively
studied and, in the case of existence, they are given by analytic formula. How-
ever, the optimal hedging strategies hinge on the criteria for measuring the
risk. Therefore, it is important to answer the natural question of how different
hedging strategies are under different risk measures. Moreover, how should
one choose a risk measure?

In the Black–Scholes framework, an option can be hedged completely, with
no risk, i.e., zero in or out cashflows, besides the initial cost. When rebalancing
can only be done at discrete times, a natural optimal hedging strategy is the
one which minimizes the expected magnitude of the cashflows; this leads to
the optimization problems, minimize E(|H − VM |), or minimize E(|Ck+1 −
Ck| |Fk), respectively.

Coleman et al. (2003) investigate the piecewise linear criterion for local
risk minimization. They illustrate the fact that piecewise linear local risk mini-
mization may lead to very different, possibly better, hedging strategies. These
strategies have a larger probability of small hedging cost and risk, although a
very small probability of larger cost and risk than the traditional quadratic risk
minimizing strategies. Although there is no analytic solution to the piecewise
linear local risk minimization problem, the optimal hedging strategies can be
computed very easily.

In this paper, we investigate hedging strategies based on piecewise linear
total risk minimization. Minimizing the piecewise linear risk, E(|H−VM |), and
minimizing the quadratic risk,E((H−VM)2) are also likely to yield significantly
different solutions. Assume that p(S) is the conditional density function of the
underlying price at time T . Minimizing E((H − VM)) puts more emphasis on
reducing the largest value of

√
p(S)|H−VM |, whereas minimizingE(|H−VM |)

attempts to reduce the density weighted incremental cashflow, p(S)|H − VM |
for each underlying value S equally.
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To illustrate the above discussion in more detail, consider the following com-
parison between the piecewise linear risk minimization with respect to the total
risk measure E(|H−VM |), and the quadratic risk minimization with respect to
E((H−VM)2). Suppose the price of the underlying asset satisfies the stochastic
differential equation:

dSt
St

= μ dt + σ dZt

where Zt is a Wiener process. Let the initial value of the asset S0 = 100, the
instantaneous expected return μ = 0�2, the volatility σ = 0�2 and the riskless
rate of return r = 0�1. Suppose we want to statically hedge a deep in-the-
money and a deep out-of-money put option with maturity T = 1; we only have
one hedging opportunity, at time 0. At the maturity T we compare the payoff
of the options with the hedging portfolio values of the strategies obtained by
the piecewise linear and quadratic local risk minimization. The payoff and the
hedging portfolio values at time T are multiplied by the density function of
the asset price and are discounted to time 0. The first plot in Fig. 1 shows

Fig. 1. Best fitting of the option payoff.
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the density weighted payoff and the density weighted values of the hedging
portfolios at the maturity T for the in-the-money put option. The second plot
presents the corresponding data for the out-of-money put option.

In the case of the in-the-money put option, the weighted payoff, closer to
lognormal, is much easier to fit. We remark that in this case both criteria gen-
erate similar plots of the hedging strategy values and they fit the option payoff
relatively well. However, the weighted payoff for the out-of-money put op-
tion seems more difficult to match. Despite the small values (of order 10−3),
it is important to note that the relative differences between the weighted pay-
off and the weighted values of the hedging portfolios are large. (The cost of
an out-of-money put is much smaller than the cost of the in-the-money put.)
We have illustrated the hedging of only one out-of-money put option; if we
want to hedge 100 put options identical to the one considered, the absolute
differences between the weighted payoff and the weighted hedging portfolio
values will also be significant. The hedging styles of the two strategies are very
different. The L2-norm (i.e., quadratic) attempts to penalize large residuals
excessively and this actually leads to a worse fit under most scenarios. Indeed,
the probability that the put option expires out of money is very large, around
0�97, but the L2-hedging strategy either over or under replicates the option
payoff. On the other hand, the L1-strategy hedges exactly the option payoff
when it expires out of money. Suppose we short the out-of-money put option.
At the maturity of the option, our possible losses are never greater than the
strike price. Assume now that we want to hedge our position by buying the
L2-hedging strategy. We can see from the figure that, by excessively trying to
reduce the risk in the unlikely event that the option expires in the money, the
L2-strategy actually introduces the very small probability of unlimited losses.
This is not the case if we try to hedge the short position using the L1-strategy.

The main difficulty in computing the optimal strategies under the piecewise
linear total risk minimization criterion is that, because these strategies are self-
financing, the total risk, H−VM , depends on the entire path of the stock price.
Total risk minimization is a dynamic stochastic programming problem which
is computationally challenging to solve. Using a tree method to model the fu-
ture uncertainties may lead to very expensive computations for solving this
stochastic programming problem, since the number of tree nodes increases
exponentially as the number of trading opportunities increases. We propose
a method for computing the piecewise linear total risk minimizing hedging
strategies using Monte Carlo simulation and approximating the holdings in
the hedging portfolios by unknown cubic splines which are determined as the
solution to an optimization problem.

The key insight underlying our method is similar to the idea behind the
Longstaff–Schwartz method for valuing American options (Longstaff and
Schwartz, 2001). Essentially, the optimal exercise strategy for an American
option is determined by the conditional expected value of the payoff from con-
tinuing to keep the option alive. Longstaff and Schwartz compute the optimal
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exercise strategy for American options using Monte Carlo methods and ap-
proximating the conditional expected values of the payoff from continuation
by functions of the state variables.

The method we propose for computing the optimal piecewise linear total
risk minimizing strategies may also be useful in computing the quadratic total
risk minimizing strategies, for example, in the case of the stochastic volatility
models. Schweizer (1995) establishes an analytical formula for the computa-
tion of the quadratic risk minimizing strategies when the stock price has a
bounded mean–variance tradeoff and Bertsimas et al. (2001) present a formula
based on dynamic programming under the additional assumption of vector-
Markov price processes. However, the numerical implementation of these for-
mula may be quite involved in the stochastic volatility framework.

We illustrate our method in the Black–Scholes and stochastic volatility
framework. We also investigate the differences between the hedging styles of
the trading strategies based on piecewise linear and quadratic risk minimiza-
tion. The behavior of the different hedging strategies for total risk minimiza-
tion is similar to the one observed in the case of the local risk minimization (see
Coleman et al., 2003). Piecewise linear total risk minimization generally leads
to smaller hedging cost and risk than the corresponding quadratic criterion,
although there is a very small probability of larger cost and risk.

Both quadratic and piecewise linear risk minimization are symmetric risk
measures, since they penalize losses as well as gains. However, when hedging
an option, one may be more interested in penalizing only the losses of his po-
sition. This leads to minimizing the shortfall risk, E((H − VM)

+). We remark
that, while total risk minimization can be used for both hedging and pricing an
option, shortfall risk minimization can only be used for hedging purposes. We
investigate criteria for shortfall risk minimization and compare the optimal
hedging strategies for these criteria with the quadratic and piecewise linear
total risk minimizing strategies. The optimal hedging strategy performances
depend on the moneyness of the options and the number of rebalancing op-
portunities. Analyzing the values of the shortfall risk for the optimal total risk
minimizing strategies, suggests that, while quadratic total risk minimization
shows no trend for either over-hedging, or under-hedging, the corresponding
piecewise linear criterion typically under-hedges the options.

To summarize the main contributions of this paper, we firstly propose a
computational method to approximate optimal hedging strategies for total risk
minimization under the L1-risk measure. Secondly, we compare the total risk
minimizing hedging strategies for the L1, L2 and shortfall risk measures.

Section 2 of the paper describes the different risk minimization criteria for
discrete hedging. In Section 3 we present our method for computing the piece-
wise linear total risk minimizing strategies. We illustrate this method in the
Black–Scholes framework and compare the different criteria for total risk min-
imization in this framework. Section 4 has a similar analysis for a stochastic
volatility framework. In Section 5 we investigate criteria for shortfall risk mini-
mization and compare the performance of the hedging strategies for shortfall,
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piecewise linear and quadratic total risk minimization. We conclude in Sec-
tion 6.

2 Discrete hedging criteria

Consider a financial market where a risky asset (called stock) and a risk-
free asset (called bond) are traded. Let T > 0 and assume we only have a
finite number of hedging dates over the time horizon [0� T ]. Let 0 = t0 <
t1 < · · · < tM = T denote these discrete hedging times. Suppose the
financial market is modeled as a filtered probability space (Ω�F� P), with
filtration (Fk)k=0�1�����M , where Fk corresponds to the hedging time tk and
w.l.o.g. F0 = {∅�Ω} is trivial. Suppose, moreover, that the stock price follows
a stochastic process S = (Sk)k=0�1�����M , with Sk being Fk-measurable for all
0 � k � M . We can set the bond price B ≡ 1 by assuming the discounted stock
price process X = (Xk)k=0�1�����M , where Xk = Sk

Bk
, ∀0 � k � M .

Assume that we want to hedge a European option with maturity T and
payoff given by a FM -measurable random variable H. For example, H =
(K−XM)

+ for a European put with maturity T and discounted strike price K.
A trading strategy is given by two stochastic processes (ξk)k=0�1�����M and

(ηk)k=0�1�����M , where ξk is the number of shares held at time tk and ηk is the
amount invested in the bond at time tk. We assume ξk� ηk are Fk-measurable,
for all 0 � k � M and ξM = 0. Consider the portfolio consisting of the
combination of the stock and bond given by the trading strategy. The condition
ξM = 0 corresponds to the fact that at time M we liquidate the portfolio in
order to cover for the option payoff.

The value of the portfolio at any time tk, 0 � k � M , is given by

Vk = ξkXk + ηk�

For all 0 � j � M − 1, denote by �Xj = Xj+1 − Xj . With this notation,
ξj�Xj represents the change in value due to the change in the stock price at
time tj+1 before any changes in the portfolio. Therefore, the accumulated gain
Gk is given by:

Gk(ξ) =
k−1∑
j=0

ξj�Xj� 1 � k � M

and G0 = 0.
The cumulative cost at time tk, Ck, is defined by:

Ck = Vk −Gk� 0 � k � M�

A strategy is called self-financing if its cumulative cost process (Ck)k=0�1�����M
is constant over time, i.e. C0 = C1 = · · · = CM . This is equivalent to
(ξk+1 − ξk)Xk+1 + ηk+1 − ηk = 0 (a.s.), for all 0 � k � M − 1. In other
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words, any fluctuations in the stock price can be neutralized by rebalancing
ξ and η with no inflow or outflow of capital. The value of the portfolio for a
self-financing strategy is then given by Vk = V0 +Gk at any time 0 � k � M .

A market is complete if any claim H is attainable, that is, there exists a self-
financing strategy with VM = H (a.s.). If the market is incomplete, for instance
in the case of discrete hedging, a claim is, in general, non-attainable and a
hedging strategy has to be chosen based on some optimality criterion.

One approach to hedging in an incomplete market is to first impose
VM = H. Since such a strategy cannot be self-financing, we should then choose
the optimal trading strategy to minimize the incremental cost incurred from
adjusting the portfolio at each hedging time. This is the local risk minimization.
The traditional criterion for local risk minimization is the quadratic criterion,
given by minimizing:

(1)E
(
(Ck+1 − Ck)

2∣∣Fk

)
� 0 � k � M − 1�

This criterion is discussed in detail in Föllmer and Schweizer (1989), Schäl
(1994), Schweizer (1995, 2001).

A quadratic local risk minimizing strategy is guaranteed to exist under the
assumptions that H is a square integrable random variable, X is a square inte-
grable process with bounded mean–variance tradeoff, that is:

(E(�Xk|Fk))
2

Var(�Xk|Fk)
is P-a.s. uniformly bounded�

Moreover, this hedging strategy is given explicitly by

(2)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ(l)M = 0� η(l)M = H�

ξ(l)k = Cov(ξ(l)k+1Xk+1+η(l)k+1�Xk+1|Fk)

Var(Xk+1|Fk)
� 0 � k � M − 1�

η(l)k = E((ξ(l)k+1 − ξ(l)k )Xk+1 + η(l)k+1

∣∣ Fk)� 0 � k � M − 1�

The choice of the quadratic criterion for risk minimization is, however, sub-
jective. Alternatively, one can choose to minimize:

(3)E
(|Ck+1 − Ck| | Fk

)
� 0 � k � M − 1�

As illustrated by Coleman et al. (2003), even if there is no analytic solution
to the above piecewise linear risk minimization problem, an optimal hedging
strategy can be easily computed. Criterion (3) for piecewise linear local risk
minimization leads to significantly different hedging strategies and possibly
better hedging results.

Another approach to hedging in an incomplete market is to consider only
self-financing strategies. An optimal self-financing strategy is then chosen
which best approximates H by its terminal value VM . The quadratic criterion
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for this total risk minimization is given by minimizing the L2-norm:

(4)E
(
(H − VM)

2) = E

((
H − V0 −

M−1∑
j=0

ξj�Xj

)2)
�

By solving the total risk minimization problem (4), we obtain the initial value
of the portfolio, V0, and the number of shares, (ξ0� � � � � ξM−1). The amount
invested in the bond, (η0� � � � � ηM), is then uniquely determined since the
strategy is self-financing. If the discounted stock price is given by a square inte-
grable process with bounded mean–variance tradeoff and if the payoff is given
by a square integrable random variable, then problem (4) has a unique solu-
tion. The existence and uniqueness of a total risk minimizing strategy under
the quadratic criterion have been extensively studied by Schweizer (1995).

Schweizer gives an analytic formula which relates the holdings and the hedg-
ing portfolio values for the quadratic total risk minimizing strategy to the
holdings and the portfolio values for the quadratic local risk minimizing strat-
egy:

(5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V (t)

0 = E(H
∏M−1
j=0 (1−βj�Xj))

E(
∏M−1
j=0 (1−βj�Xj))

�

ξ(t)M = 0�

ξ(t)k = ξ(l)k + βk(V
(l)
k − V (t)

0 −Gk(ξ
(t)))+ γk� 0 � k � M − 1�

where the processes (βk)k=0�����M−1 and (γk)k=0�����M−1 are given by the for-
mula:

βk = E(�Xk
∏M−1

j=k+1(1 − βj�Xj)|Fk)

E(�X2
k

∏M−1
j=k+1(1 − βj�Xj)2|Fk)

�

γk =
E((V (l)

T −GT(ξ
(l))− V (l)

k +Gk(ξ
(l)))�Xk

∏M−1
j=k+1(1 − βj�Xj)|Fk)

E(�X2
k

∏M−1
j=k+1(1 − βj�Xj)2|Fk)

�

Bertsimas et al. (2001) also obtain a formula for the quadratic total risk
minimizing strategy, using dynamic programming, in the case of vector-Markov
price processes.

The corresponding piecewise linear total risk minimization criterion is given
by the L1-norm:

(6)E
(|H − VM |) = E

(∣∣∣∣∣H − V0 −
M−1∑
j=0

ξj�Xj

∣∣∣∣∣
)
�

We are interested in computing optimal hedging strategies given by the
piecewise linear total risk minimization problem (6). This is a dynamic sto-
chastic programming problem that is, in general, very difficult to solve. Since
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H − V0 − ∑M−1
j=0 ξj�Xj depends on the entire path of the stock price, a di-

rect approach to problem (6) can be very expensive computationally. In order
to see this, assume that we use Monte Carlo simulation and we generate L
independent scenarios for the stock price. The total risk minimization prob-
lem (6) corresponds, in this case, to minimizing the expected total risk over all
the scenarios:

(7)min
V0�ξ0�ξ

(k)
j

ξj :Fj -measurable

L∑
k=1

∣∣∣∣∣H(k) − V0 − ξ0�X
(k)
1 −

M−1∑
j=1

ξ(k)j �X(k)
j

∣∣∣∣∣�
The notation (k) means that the option payoff, the stock price and the hold-

ings correspond to the kth scenario. We remark that at time 0, the stock price
is deterministic and, therefore, the holdings in the hedging portfolio at time 0
have to be the same for all the scenarios.

The number of unknowns in problem (7) is of order L ·M , where L is the
number of scenarios and M is the number of rebalancing times. Therefore,
trying to solve this problem directly is computationally very challenging when
the number of scenarios is large and the rebalancing is frequent.

In order to reduce the complexity of problem (7) we try to approximate the
holdings ξj . Spline functions have been extensively used for function approxi-
mations, since they are very attractive from a computational point of view. We
choose to approximate the holdings ξj by unknown cubic splines.

The number of unknowns at each hedging time in the problem formula-
tion (7) is equal to the number of scenarios; after approximating the holdings
by cubic splines, the number of unknowns at each hedging time is reduced
to the number of parameters in the cubic splines, which is typically very
small.

An important issue to be considered when approximating the holdings in a
hedging strategy by cubic splines is that the optimal hedging strategy has to be
path dependent. Indeed, the total risk,

H − VM = H − V0 −
M−1∑
j=0

ξj�Xj�

minimized by the optimal hedging strategy, depends on the entire path of the
stock price. Although the holdings (ξj)j=0�����M−1 are computed at time 0 and
any measurable (ξj)j=0�����M−1 is an admissible hedging strategy, intuitively, at
any time tj , 0 � j � M − 1, the optimal holdings ξj will have an intrinsic
information about the past history of the stock price and the optimal holdings
up to time tj .

In this paper, we describe a method for solving the total risk minimization
problem (6) by approximating the holdings in the optimal hedging strategy with
unknown cubic splines and trying to capture the path dependency of the strat-
egy by a simple spline formulation. The unknown cubic splines are determined
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as solutions of an optimization problem that consists in minimizing the total
risk over a set of scenarios for the stock price. Since the strategy computed
in this way is suboptimal we have to analyze its degree of optimality. We also
compare the hedging strategies based on the piecewise linear total risk min-
imization criterion, to the traditional strategies based on quadratic total risk
minimization.

3 Total risk minimization in the Black–Scholes framework

We will first describe our method in the Black–Scholes framework. We sup-
pose that the stock price is given by the stochastic differential equation:

(8)
dSt
St

= μ dt + σ dZt�

where Zt is a Brownian motion. We also assume that the writer of a European
option with maturity T has only M hedging opportunities at 0 = t0 < t1 <
· · · < tM−1 < tM := T to hedge his position using the underlying stock and a
bond.

Using Monte Carlo simulation, we generate L independent samples for
the stock price, based on Eq. (8). We want to determine the holdings in the
hedging strategy such that the expected total risk over all the scenarios is min-
imized.

The total risk minimization problem for the piecewise linear criteria be-
comes:

(9)min
V0�ξ0�ξ

(k)
j

ξj :Fj -measurable

L∑
k=1

∣∣∣∣∣H(k) − V0 − ξ0�X
(k)
1 −

M−1∑
j=1

ξ(k)j �X(k)
j

∣∣∣∣∣�
As before, the notation (k) refers to the kth scenario.

3.1 First formulation

We want to reduce the complexity of the above problem by approximating
the holdings ξk. We first choose to ignore the fact that the hedging strategy is
path dependent and assume that the amount ξjXj invested in the stock at any
time tj depends only on the stock price at time tj . We will investigate the degree
of optimality that can be achieved under this assumption and we will pursue
subsequent refinement of this assumption. This is a natural assumption, since
one should take into account the current value of the stock price, Xj , when
rebalancing the portfolio at time tj . Thus, we can assume:

(10)ξj = Dj(Xj)� ∀j = 1� � � � �M − 1�
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with Dj unknown functions. Let us suppose that the holdings depend continu-
ously on the stock price, that is,Dj is a continuous function, ∀j = 1� � � � �M−1.
We denote by D0 the constant function identically equal to ξ0. The total risk
minimization problem under the piecewise linear criterion becomes:

(11)min
V0�D0�����DM−1

L∑
k=1

∣∣∣∣∣H(k) − V0 −
M−1∑
j=0

Dj

(
X(k)
j

)
�X(k)

j

∣∣∣∣∣�
In order to make the above problem computationally attractive, we assume

that each function Dj is a cubic spline with fixed end conditions and spline
knots placed with respect to the stock price. The function Dj is then uniquely
determined by its values at the spline knots. Note that Dj is a linear function of
its knot values. In this way, problem (11) becomes an L1-optimization problem
with unknowns V0, D0 and the values of the cubic splines Dj , j � 1, at their
knots.

The number of knots for each spline in our implementation is typically very
small (around 8) and independent of the number of scenarios. Therefore, the
number of unknowns in theL1-optimization problem (11) is of orderM , where
M is the number of rebalancing times. We can now solve this problem and com-
pute the piecewise linear risk minimizing strategy that satisfies assumption (10)
on the special form of the holdings ξj .

The question that arises is how good assumption (10) is. In order to an-
swer this question, we will investigate the quadratic total risk minimization
problem (4). We can compute the quadratic risk minimizing strategy either by
solving an optimization problem similar to (11), or by using the theoretical for-
mula (5). By comparing the hedging strategies obtained by these two methods,
we will try to assert the quality of assumption (10).

We can modify the quadratic risk minimization problem (4), using an ap-
proach similar to the one described above for piecewise linear risk minimiza-
tion. Under the assumption, ξj = Dj(Xj), ∀j = 1� � � � �M − 1 and with the
notation D0 ≡ ξ0, the problem becomes:

(12)min
V0�D0�����DM−1

L∑
k=1

(
H(k) − V0 −

M−1∑
j=0

Dj

(
X(k)
j

)
�X(k)

j

)2

�

We obtain, therefore, the optimal quadratic risk minimizing hedging strat-
egy which satisfies assumption (10).

Another method for solving problem (4) is to use Schweizer’s analytic so-
lution (5) and compute the optimal quadratic risk minimizing strategy, in the
general case, with no assumption on the form of the holdings. In the Black–
Scholes model, the mean–variance of the stock price is not only bounded, but
also deterministic. As mentioned in Schweizer’s paper (Schweizer, 1995), for-
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mula (5) reduces in this case to:

(13)

⎧⎪⎪⎨⎪⎪⎩
V (t)

0 = V (l)
0 �

ξ(t)M = 0�

ξ(t)k = ξ(l)k + αk(V
(l)
k − V (l)

0 −Gk(ξ
(t)))� 0 � k � M − 1�

where the process (αk)k=0�����M−1 is given by:

αk = E(�Xk|Fk)

E(�X2
k|Fk)

�

We first compute the quadratic local risk minimizing strategy, as given by
formula (2). The details of this computation are given in Coleman et al. (2003).
We then use formula (13) to obtain the holdings in the total risk minimizing
hedging portfolio for each scenario.

The total risk minimizing hedging strategy computed from the analytical
formula (13) in the above manner, is used as a benchmark for the solution of
the quadratic risk minimization problem (12), in order to evaluate the validity
of the assumption (10).

We also want to compare the effectiveness of the hedging strategies based
on piecewise linear risk minimization and, respectively, quadratic risk mini-
mization.

The numerical results presented below refer to hedging put options with
maturity T = 1 and different strike prices. The initial stock price is S0 = 100.
The instantaneous expected return of the stock price is μ = 0�15, the volatility,
σ = 0�2 and the riskless rate of return, r = 0�04. The number of scenarios in
the Monte Carlo simulation of the stock price is L = 40,000 and the number
of time steps in this simulation is 600.

We have computed three risk minimizing hedging strategies:

• Strategy 1: Piecewise linear risk minimizing strategy satisfying (10).
• Strategy 2: Quadratic risk minimizing strategy satisfying (10).
• Strategy 3: Quadratic risk minimizing strategy given by the analytical

formula (13).

For each of these strategies and each scenario, we compute the following:

• Total cost:

(14)H −
M−1∑
k=0

ξk�Xk�

This is the total amount of money necessary for the writer to imple-
ment the self-financing hedging strategy and honor the option payoff
at expiry. Since the hedging strategy is self-financing, there are no in-
termediate costs for rebalancing the hedging portfolio.
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• Total risk:

(15)|H − VM |�
This measures the difference between the final value of the hedging
portfolio and the option payoff. The strategy being self-financing, it is
the only unplanned cost or income.

Tables 1 and 2 show the average cumulative cost and average total risk over
40,000 simulated scenarios, for different number of time steps per rebalancing
time. The last column in these tables correspond to the case of the static hedge,
when we only have one hedging opportunity at time 0.

We remark that, in the case of Strategy 1, the average values of the cumula-
tive cost in Table 1 and total risk in Table 2 are equal for some of the put options
considered, as for example, the out-of-money put options with 1 or 2 hedging
opportunities. This happens because the holdings in the optimal hedging port-
folio of Strategy 1 are zero. Therefore, if the put option is not in-the-money
and the number of rebalancing opportunities is sufficiently small, the optimal
hedging Strategy 1 is not to hedge at all. This is intuitively quite reasonable
since the likelihood of the option expiring out-of-money is large and one has
no opportunity of further adjusting the hedging portfolio. The optimal hedg-
ing Strategies 2 and 3, on the other hand, still choose to hedge these particular

Table 1.
Average value of the total cost over 40,000 scenarios.

Strike Strategy # of time steps per rebalancing time

25 50 100 300 600

90 1 2�2194 1�9764 1�0876 0�9398 0.9398
2 2�4540 2�4033 2�3155 2�0400 1.7421
3 2�4838 2�4387 2�3474 2�0429 1.7454

95 1 3�7878 3�6356 3�2435 1�6648 1.6648
2 3�9512 3�8830 3�7647 3�4006 2.9735
3 3�9770 3�9188 3�8022 3�4018 2.9745

100 1 5�8421 5�7082 5�5074 4�0392 2.7269
2 5�9183 5�8396 5�6983 5�2566 4.6948
3 5�9413 5�8773 5�7399 5�2565 4.6928

105 1 8�3549 8�2549 8�1113 7�2494 5.5301
2 8�3613 8�2809 8�1280 7�6307 6.9449
3 8�3866 8�3221 8�1724 7�6303 6.9392

110 1 11�2609 11�1988 11�0950 10�6364 9.2160
2 11�2566 11�1789 11�0264 10�4994 9.7148
3 11�2858 11�2221 11�0713 10�5007 9.7072

Notes. Average total cost for put options with T = 1, different strike prices and number of timesteps per
rebalancing time, for strategies: 1 – piecewise linear with (10), 2 – quadratic with (10) and 3 – quadratic
given by analytical formula; S0 = 100, μ = 0�15, σ = 0�2, r = 0�04.
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Table 2.
Average value of the total risk over 40,000 scenarios.

Strike Strategy # of time steps per rebalancing time

25 50 100 300 600

90 1 0�6031 0�7822 0�9276 0�9398 0.9398
2 0�6312 0�8410 1�1212 1�5727 1.7707
3 0�5336 0�7450 1�0377 1�5799 1.7759

95 1 0�7761 1�0419 1�3829 1�6648 1.6648
2 0�7918 1�0771 1�4687 2�1945 2.6222
3 0�6885 0�9641 1�3592 2�1993 2.6251

100 1 0�9790 1�2921 1�7293 2�5544 2.7269
2 0�9877 1�3144 1�7784 2�7944 3.5117
3 0�8295 1�1636 1�6479 2�7914 3.5119

105 1 1�1000 1�4535 1�9668 3�1622 3.9566
2 1�1068 1�4677 2�0051 3�2892 4.3184
3 0�9465 1�3180 1�8694 3�2774 4.3170

110 1 1�1240 1�5192 2�0798 3�4688 4.7912
2 1�1308 1�5344 2�1240 3�6189 4.9366
3 1�0147 1�4171 2�0036 3�6027 4.9355

Notes. Average total risk for the hedging of put options with different strike prices and different number
of time steps per rebalancing time, for the three strategies and in the setup described in Table 1.

put options. We remark that out-of-money put options with more hedging op-
portunities are hedged by Strategy 1. Experiments show that out-of-money put
options which are closer to expiry will be hedged by Strategy 1.

When the rebalancing is infrequent, the average values of the total risk for
the quadratic risk minimizing Strategies 2 and 3 are very close. The same can
be observed for the cumulative cost. However, as the rebalancing becomes fre-
quent enough, the total risk for Strategy 2 becomes larger than the total risk for
Strategy 3. The results maintain the same trend even if we increase the number
of spline knots or change their position. This suggests that the constraint (10),
on the form of the holdings leads to supplementary risk and a better assump-
tion has to be found.

The numerical results in Tables 1 and 2 illustrate that the hedging strategies
based on the piecewise linear and, respectively, quadratic risk minimization
perform differently in terms of average cumulative cost and risk. In the case
of the in-the-money put options, the values of the average cumulative cost are
very close for all the three strategies. However, as the option becomes out-of-
money and the rebalancing is less frequent, the average cumulative cost for
Strategy 1 is almost half the average cumulative cost of the quadratic strate-
gies. The average total risk has the same trend. Nevertheless, since it may be
possible to eliminate part of the total risk for Strategies 1 and 2, by using a
less restrictive constraint than (10), the above results do not show very clearly
the difference between the piecewise linear and the quadratic risk minimiz-
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ing strategies. The numerical results obtained with a better assumption on the
form of the holdings will allow further discussion on this subject.

3.2 Second formulation

As illustrated above, the constraint that the holdings at any time tj depend
only on the current stock price, ξj = Cj(Xj), may be too restrictive. In order
to obtain a better formulation, let us analyze in more detail the holdings sat-
isfying assumption (10). Consider the particular case of the at-the-money put
options with 6 hedging opportunities. Figure 2 shows the number of shares in
the optimal hedging portfolio after the third rebalancing opportunity, for the
quadratic risk minimizing Strategies 2 and 3.

We can see that in the case of Strategy 3, for the same value of the current
stock price, we may have different number of shares in the hedging portfo-
lio for the different scenarios. This is because this hedging strategy depends
not only on the current value of the stock price, but also on the path of the
stock price up to the current time. However, since the holdings for Strategy 2
satisfy assumption (10), they only depend on the current stock price and this
assumption can become too restrictive. Note, however, that the holdings ob-
tained under (10) capture quite well the trend of the optional holdings. To
further reduce the risk, we have to incorporate the dependence on the path of
the stock price in the assumption on the form of the holdings.

Fig. 2. Number of shares in the hedging portfolio after the third rebalancing time for the at-the-money
put option with 6 rebalancing opportunities.
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Strategy 2 considers only the hedging strategies for which the amount in-
vested in the stock at any time tj depends only on the stock price Xj at time tj .
It may be more natural to assume, however, that the investment in the stock at
time tj also depends on the cumulative gain up to time tj . We assume that the
holdings depend linearly on the past gain, specifically:

ξj = Dj(Xj)+ 1
Xj

j−1∑
i=0

ξi�Xi� ∀j = 1� � � � �M − 1

with Dj unknown cubic splines. As before, we make the convention D0 ≡ ξ0.
After some algebraic manipulation and ignoring the higher order terms con-
taining products �Xi1�Xi2 , we obtain:

ξj = Dj(Xj)+ 1
Xj

j−1∑
i=0

Di(Xi)�Xi� ∀j = 0� � � � �M − 1�

We introduce more degrees of freedom in the above formulation by allow-
ing the effect of the current stock price, Xj , on the holdings at time tj to be
different from the effect of the past stock prices, X0� � � � �Xj−1.

The assumption on the form of the holdings ξj becomes:

(16)ξj = Dj(Xj)+ 1
Xj

j−1∑
i=0

D̃i(Xi)�Xi� ∀j = 0� � � � �M − 1�

where for j � 1,Dj and D̃j are unknown cubic splines with fixed end conditions
and spline knots, while D0, D̃0 are constant functions. With this formulation,
the piecewise linear optimization problem (6) becomes:

min
V0�Dj�D̃j

L∑
k=1

∣∣∣∣∣H(k) − V0

(17)−
M−1∑
j=0

(
Dj

(
X(k)
j

) + j−1∑
i=0

D̃j

(
X(k)
j

)�X(k)
i

X(k)
j

)
�X(k)

j

∣∣∣∣∣�
Problem (17) can be interpreted, similarly to problem (11), as a L1-

optimization problem with unknowns V0, D0, D̃0 and the values of the cubic
splines Dj , D̃j , j � 1 at their knots.

The corresponding formulation for the quadratic risk minimization criterion
is:
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min
V0�Dj�D̃j

L∑
k=1

(
H(k) − V0

(18)−
M−1∑
j=0

(
Dj

(
X(k)
j

) + j−1∑
i=0

D̃j

(
X(k)
j

)�X(k)
i

X
(k)
j

)
�X(k)

j

)2

�

We note that the number of knots for each spline is usually small (around 8).
The number of unknowns in the above problems is approximately double to the
number of unknowns in the previous formulation.

The optimization problems (17) and (18) allow us to compute the optimal
piecewise linear and, respectively, quadratic risk minimizing strategies satisfy-
ing assumption (16) on the form of the holdings in the hedging portfolio. We
can now investigate the quality of this assumption using the three strategies:

• Strategy 1: Piecewise linear risk minimizing strategy satisfying (16).
• Strategy 2: Quadratic risk minimizing strategy satisfying (16).
• Strategy 3: Quadratic risk minimizing strategy given by the analytical

formula (13).

We first re-examine the case considered in Fig. 3 of the at-the-money put op-
tion with 6 hedging opportunities. The number of shares in the optimal hedging
portfolio for Strategies 2 and 3, after the third rebalancing time is shown in
Fig. 3. We remark that the values of the holdings for the optimal quadratic
Strategy 2 satisfying constraint (16) follow closely the values of the holdings
for the theoretical quadratic Strategy 3.

Tables 3 and 4 show the average values over 40,000 scenarios of the cumula-
tive cost and total risk, as defined before, for the above hedging strategies and
different numbers of hedging opportunities.

We remark that in the case of one hedging opportunity, the assumptions (10)
and (16) on the form of the holdings coincide and, therefore, the last column
in Tables 3 and 4 has the same results as the last column in Tables 1 and 2,
respectively.

As noticed before, the optimal hedging Strategy 1 for some of the put op-
tions which are not in-the-money and have very few rebalancing opportunities,
is not to hedge at all. This is shown by the fact that the holdings in the hedging
portfolios for these options are zero, which implies that the average cumulative
cost and the average total risk are equal.

In contrast with the numerical results presented earlier, the quadratic
Strategies 2 and 3 now yield very close values for the average cumulative cost
in Table 3 and, respectively, the average total risk in Table 4. We conclude that
imposing the constraint (16) on the form of the holdings in the hedging portfo-
lio does not affect significantly the optimal value of the average total hedging
risk over the 40,000 simulated scenarios.

The numerical results suggest that assumption (16) leads to smaller average
total hedging risk than assumption (10). In the case of the quadratic risk mini-
mization, the average total hedging risk is very close to optimal. Therefore, we
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Fig. 3. Number of shares in the hedging portfolio after the third rebalancing time for the at-the-money
put option with 6 rebalancing opportunities.

use the optimization problems (17) and (18) to compute the optimal hedging
strategies under the piecewise linear and the quadratic risk minimizing criteria.

Tables 3 and 4 allow a clearer comparison of the hedging strategies based
on the two criteria for risk minimization. We remark that the performance of
these strategies depends on the moneyness of the options and on the num-
ber of rebalancing opportunities. The piecewise linear risk minimizing strategy
yields a smaller average cumulative cost and risk for almost all the options
considered. However, for in-the-money put options the values for the average
cumulative cost and, respectively, total risk are close for all three strategies.
The differences tend to increase as the put options are out-of-money and the
rebalancing is less frequent. For the out-of-money put options with only 1 or 2
hedging opportunities the average cumulative cost for Strategy 1 is almost half
the average cumulative cost for Strategies 2 and 3. The same happens for the
average total risk.

Even if the market is incomplete due to the discrete hedging, many practi-
tioners are still using delta hedging in order to hedge an option in the current
framework. They choose a self-financing strategy such that the initial value of
the hedging portfolio, V0, is given by the value of the option at t0, as computed
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Table 3.
Average value of the total cost over 40,000 scenarios.

Strike Strategy # of time steps per rebalancing time

25 50 100 300 600

90 1 2�2728 2�1093 1�5031 0�9398 0.9398
2 2�4504 2�4086 2�3224 2�0388 1.7421
3 2�4838 2�4387 2�3474 2�0429 1.7454

95 1 3�7964 3�6640 3�4080 1�6648 1.6648
2 3�9443 3�8885 3�7741 3�3983 2.9735
3 3�9770 3�9188 3�8022 3�4018 2.9745

100 1 5�8223 5�6896 5�5067 4�0644 2.7269
2 5�9118 5�8455 5�7119 5�2530 4.6948
3 5�9413 5�8773 5�7399 5�2565 4.6928

105 1 8�2982 8�1835 8�0393 7�2893 5.5301
2 8�3584 8�2882 8�1412 7�6261 6.9449
3 8�3866 8�3221 8�1724 7�6303 6.9392

110 1 11�2072 11�1146 10�9945 10�6934 9.2160
2 11�2569 11�1881 11�0413 10�4945 9.7148
3 11�2858 11�2221 11�0713 10�5007 9.7072

Notes. Average total cost for put options with different strike prices and number of time steps per
rebalancing time, for the three strategies: 1 – piecewise linear with (16), 2 – quadratic with (16) and 3 –
quadratic given by analytical formula; the same setup as in Table 1.

Table 4.
Average value of the total risk over 40,000 scenarios.

Strike Strategy # of time steps per rebalancing time

25 50 100 300 600

90 1 0�5033 0�6819 0�8874 0�9398 0.9398
2 0�5450 0�7497 1�0325 1�5722 1.7707
3 0�5336 0�7450 1�0377 1�5799 1.7759

95 1 0�6575 0�9062 1�2512 1�6648 1.6648
2 0�6952 0�9662 1�3551 2�1908 2.6222
3 0�6885 0�9641 1�3592 2�1993 2.6251

100 1 0�8246 1�1269 1�5635 2�5524 2.7269
2 0�8563 1�1789 1�6518 2�7843 3.5117
3 0�8295 1�1636 1�6479 2�7914 3.5119

105 1 0�9380 1�2800 1�7897 3�1551 3.9566
2 0�9722 1�3319 1�8802 3�2738 4.3184
3 0�9465 1�3180 1�8694 3�2774 4.3170

110 1 1�0140 1�3806 1�9099 3�4619 4.7912
2 1�0460 1�4279 2�0079 3�6025 4.9366
3 1�0147 1�4171 2�0036 3�6027 4.9355

Notes. Average total risk for put options with different strike prices and number of time steps per
rebalancing time, for the three strategies and in the setup described in Table 3.
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by the Black–Scholes formula and the number of shares, ξk, at any hedging
time tk is equal to the delta of the option at tk,

ξk =
(
∂V

∂S

)
tk

�

where V denotes the value of the option as given by the Black–Scholes formula.
However, delta hedging insures a risk-free replication of the option only if
the hedging is continuous. In the case of discrete rebalancing, delta hedging
is no longer optimal since the corresponding portfolio is only instantaneously
risk-free and the risk-free position does not last till the next rebalancing time.
Tables 5 and 6 show the average values of the cumulative cost and risk over the
40,000 generated scenarios for the delta hedging strategy in comparison to the
piecewise linear and quadratic risk minimizing strategies satisfying assumption
(16) – Strategies 1 and 2, respectively.

We remark that when the rebalancing is frequent, the values of the total
hedging cost and risk for the delta hedging strategy are very close, though
slightly larger than the corresponding values for the piecewise linear and
quadratic total risk minimizing strategies. However, as the number of rebal-
ancing opportunities decreases, delta hedging an option leads to much larger
hedging cost and risk than hedging the option by any of the two optimal hedg-
ing strategies for total risk minimization.

Table 5.
Average value of the total cost over 40,000 scenarios.

Strike Strategy # of time steps per rebalancing time

25 50 100 300 600

90 1 2�2728 2�1093 1�5031 0�9398 0�9398
2 2�4504 2�4086 2�3224 2�0388 1�7421
Delta 2�5583 2�5859 2�6454 2�8838 3�2819

95 1 3�7964 3�6640 3�4080 1�6648 1�6648
2 3�9443 3�8885 3�7741 3�3983 2�9735
Delta 4�0702 4�1028 4�1763 4�4830 4�9793

100 1 5�8223 5�6896 5�5067 4�0644 2�7269
2 5�9118 5�8455 5�7119 5�2530 4�6948
Delta 6�0483 6�0897 6�1734 6�5382 7�1098

105 1 8�2982 8�1835 8�0393 7�2893 5�5301
2 8�3584 8�2882 8�1412 7�6261 6�9449
Delta 8�5011 8�5505 8�6407 9�0457 9�6607

110 1 11�2072 11�1146 10�9945 10�6934 9�2160
2 11�2569 11�1881 11�0413 10�4945 9�7148
Delta 11�4019 11�4537 11�5484 11�9712 12�5952

Notes. Average total cost for put options with different strike prices and number of time steps per
rebalancing time, for the three strategies: 1 – piecewise linear with (16), 2 – quadratic with (16) and 3 –
delta hedging; the same setup as in Table 3.
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Table 6.
Average value of the total risk over 40,000 scenarios.

Strike Strategy # of time steps per rebalancing time

25 50 100 300 600

90 1 0�5033 0�6819 0�8874 0�9398 0.9398
2 0�5450 0�7497 1�0325 1�5722 1.7707
Delta 0�6366 0�8935 1�2681 2�2099 3.2836

95 1 0�6575 0�9062 1�2512 1�6648 1.6648
2 0�6952 0�9662 1�3551 2�1908 2.6222
Delta 0�8042 1�1325 1�6160 2�8786 4.2846

100 1 0�8246 1�1269 1�5635 2�5524 2.7269
2 0�8563 1�1789 1�6518 2�7843 3.5117
Delta 0�9481 1�3385 1�9128 3�4582 5.1359

105 1 0�9380 1�2800 1�7897 3�1551 3.9566
2 0�9722 1�3319 1�8802 3�2738 4.3184
Delta 1�0576 1�4881 2�1282 3�8736 5.7216

110 1 1�0140 1�3806 1�9099 3�4619 4.7912
2 1�0460 1�4279 2�0079 3�6025 4.9366
Delta 1�1144 1�5725 2�2450 4�0892 5.9833

Notes. Average total risk for put options with different strike prices and number of time steps per
rebalancing time, for the three strategies and in the setup described in Table 5.

Next we analyze the distributions of the cumulative cost and total risk for the
at-the-money put option with 6 hedging opportunities. The average cumulative
cost from Table 3 is 5�5067 for Strategy 1, 5�7119 for Strategy 2 and 5�7399 for
Strategy 3. The histograms for each strategy of the cumulative cost over the
40,000 simulated scenarios are presented in Fig. 4. We mention that all three
strategies have very few values of the cumulative cost larger than the range of
values illustrated in Fig. 4, however, we chose this range in order to make the
figure clearer.

The distribution of the cumulative cost for Strategy 1 is more asymmetric
about its mean compared to the distributions for Strategies 2 and 3. About
60% of the cumulative costs for Strategy 1 are less than the mean, while in
the case of the quadratic Strategies 2 and 3 the median is almost equal to the
mean. The skewness of the distributions, which is another indication of the
asymmetry of the data, is equal to 1�9012 for Strategy 1, 0�8017 for Strategy 2
and 0�8394 for Strategy 3.

We remark, however, that while Strategy 1 has a larger probability of smaller
hedging cost, it also has a small probability of larger hedging costs than Strate-
gies 2 and 3.

The next figure, Fig. 5, shows the histograms of the total risk over the simu-
lated scenarios, for each hedging strategy. As in the case of Fig. 4, the range of
values in Fig. 5 was chosen for clarity, though all the strategies lead to very few
values of the total risk larger than the values in the chosen interval.
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Fig. 4. Histograms of the total hedging cost over 40,000 scenarios.

The distributions of the total hedging risk for the three strategies have sim-
ilar shapes. However, the mean for Strategy 1 is smaller than the mean for the
quadratic strategies. The mean values of the total risk, as given in Table 4, are
1�5635, 1�6518 and, respectively, 1�6479. 65% of the total risk for Strategy 1 is
less than the mean, while this happens 62% of the time for Strategies 2 and
3. The skewness in the case of Strategy 1 is 3�4414, larger than the skewness
for Strategy 2, 2�0153, and Strategy 2, 2�1058. We note, however, that, as in the
case of the total hedging cost, Strategy 1 has also a small probability of larger
risk than Strategies 2 and 3. We remark that the distributions of Strategies 2
and 3, for both cumulative cost and risk, are very similar, another indication
that (16) is sufficiently flexible to capture the optimal risk performance.

A similar behavior of the strategies based on the piecewise linear and
quadratic criteria has been observed in the case of the local risk minimization,
as shown by Coleman et al. (2003). Table 7 presents, for comparison, the aver-
age cumulative cost over the same 40,000 scenarios for the optimal piecewise
linear (Strategy 1) and quadratic (Strategy 2) local risk minimizing hedging
strategies. We do not include the results for the average risk, since the risk
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Fig. 5. Histograms of the total hedging risk over 40,000 scenarios.

measure has different meanings in the case of the local risk minimization and
the total risk minimization.

As mentioned by Schäl (1994), when the stock price has a determinis-
tic mean–variance tradeoff, the expected total hedging cost for the optimal
quadratic local risk minimizing strategy is equal to the expected total hedging
cost for the optimal quadratic total risk minimizing strategy. We remark that
the average cumulative cost for the quadratic local risk minimizing Strategy 2
in Table 7 is very close to the average cumulative cost for the quadratic total
risk minimizing Strategies 2 and 3 in Table 3 for all the put options consid-
ered. Schäl (1994) suggests the interpretation of the total hedging cost as a
fair hedging price for the option. However, an example given by Mercurio and
Vorst (1996), shows that this is not always appropriate.

We note that, in the case of static hedging, that is only one hedging op-
portunity, the local risk minimization and the total risk minimization criteria
coincide. This is why the numerical results for the piecewise linear and the the-
oretical quadratic risk minimizing strategies in the last column of Table 3 are
the same as the corresponding results in Table 7.
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Table 7.
Average value of the total cost over 40,000 scenarios for local risk minimization.

Strike Strategy # of time steps per rebalancing time

25 50 100 300 600

90 1 2�1933 2�1043 1�8592 1�1690 0.9398
2 2�4846 2�4377 2�3487 2�0424 1.7454

95 1 3�7284 3�6485 3�3907 2�1243 1.6648
2 3�9785 3�9178 3�8036 3�4008 2.9745

100 1 5�7803 5�7698 5�5225 4�2964 2.7269
2 5�9433 5�8765 5�7414 5�2550 4.6928

105 1 8�3483 8�4152 8�1908 7�4178 5.5301
2 8�3889 8�3220 8�1738 7�6285 6.9392

110 1 11�3760 11�5276 11�3383 11�0652 9.2160
2 11�2883 11�2226 11�0723 10�4989 9.7072

Notes. Average total for the hedging of put options with different strike prices and number of rebalanc-
ing opportunities, for the two strategies: 1 – piecewise linear local risk minimization, 2 – quadratic local
risk minimization; the same setup as in Table 3.

In the case of the local risk minimization the hedging performance of the
strategies also depends on the moneyness of the options and on the number of
rebalancing opportunities, with the average cumulative cost for the piecewise
linear local risk minimizing strategy being the smaller for the out-of-money
and at-the-money put options. However, for in-the-money put options, the
quadratic local risk minimizing strategy is slightly better, even though the val-
ues are close. The total risk minimization shows an improvement in terms of
total hedging cost for the piecewise linear criterion, especially in the case of
in-the-money put option. As a result, the average cumulative cost for the piece-
wise linear total risk minimizing strategy is the smallest for almost all the put
options considered.

As shown by Coleman et al. (2003), the values of the optimal hedging port-
folios for local risk minimization satisfy discrete hedging put-call parity. This is
also true in the case of the total risk minimization, the proof being very similar.

Suppose that we have computed the optimal holdings ξp, ηp in the portfolio
for hedging a put option with maturity T , discounted strike price K and M
hedging opportunities at 0 = t0 < t1 < · · · < tM−1 < tM := T . We can derive
a relation between these holdings and the corresponding optimal holdings ξc ,
ηc for the call option on the same underlying asset and with the same maturity,
strike price and hedging opportunities. We have the following property:{

ξck = ξ
p
k + 1�

ηck = η
p
k −K

for all 0 � k � M − 1.
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Moreover, the discounted values of the portfolios for hedging the put and
the call options, V p

k and V c
k , satisfy the following put-call parity relation for all

0 � k � M:

V c
k − V

p
k = Xk −K�

Similarly, the relation between the cumulative costs for the call and put op-
tions is given by:

Cc
k = C

p
k +X0 −K�

for all 0 � k � M .
Therefore, if we know the optimal strategy for hedging the put option, we

can compute the optimal strategy for the call, directly, without solving any op-
timization problems.

4 Total risk minimization in a stochastic volatility framework

In this section we assume that the stock price follows a Heston type sto-
chastic volatility model (Heston, 1993). The discounted stock price X and its
volatility Y satisfy a stochastic differential equation of the form:

dXt

Xt
= α dt + Yt dZt�

(19)dYt =
(

4βθ− δ2

8Yt
− β

2
Yt

)
dt + δ

2
dZ′

t

where Zt and Z′
t are Brownian motions with instantaneous correlation ρ.

In the Heston type model, the square of the volatility, F := Y 2 is a Cox–
Ingersoll–Ross type process satisfying the stochastic differential equation:

(20)dFt = β(θ− Ft) dt + δ
√
Ft dZ′

t �

As in the previous section, we assume the writer of a European option wants
to hedge his position using only the underlying stock and a bond, but he only
has a finite number of hedging opportunities.

Formula (5) given by Schweizer (1995), or the formula presented by
Bertsimas et al. (2001), can be used to compute the optimal quadratic total
risk minimizing strategy. We compute both the piecewise linear and quadratic
risk minimizing strategies as given by the optimization problems (17) and (18)
using Monte Carlo implementation.

Since the formulation of problems (17) and (18) depends on the entire stock
price path, we are interested in generating strongly convergent discrete path
approximations to the stochastic differential equations (19) and (20). We use
Euler’s method for Eqs. (19) and (20) to generate scenarios for the stock price
and volatility.
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The parameters for our numerical experiments are chosen as in Heath et
al. (2001a, 2001b), in which the authors investigate continuous hedging under
the total and local quadratic risk minimizing criteria and provide comparative
numerical results for a class of stochastic volatility models. The values of the
parameters are α = 0�5, β = 5, θ = 0�04, δ = 0�6 and ρ = 0. As empha-
sized by Heath et al. (2001a, 2001b), these parameters satisfy Feller’s test for
explosions: βθ � 1

2δ, which insures a positive solution for Ft in the stochastic
differential equation (20). We generate 10,000 scenarios using 1024 time steps
in Euler’s method. We have also performed numerical experiments for 20,000
simulated scenarios, the results being very close in value to the results pre-
sented below. The initial stock price and volatility are X0 = 100 and Y0 = 0�2.
The riskless rate of return is r = 0�04. As before, we want to hedge put options
with maturity T = 1 and different strike prices.

We first assume that the holdings in the hedging portfolio depend on the
current stock price and the past gains, their form being given by the con-
straint (16):

ξj = Dj(Xj)+ 1
Xj

j−1∑
i=0

D̃i(Xi)�Xi� ∀j = 0� � � � �M − 1�

We remark that this constraint assumes the holdings are independent of
the current volatility. This is attractive, since the volatility is not observable
in the market. On the other hand, since the volatility is no longer constant
in the current framework, it may be reasonable to assume that it also affects
the form of the holdings. We will investigate later a different constraint on the
form of the holdings which takes into account the volatility. However, the new
formulation, while being computationally more expensive to implement, does
not improve significantly the average total hedging cost and risk.

We compute the total risk minimizing strategies satisfying assumption (16):

• Strategy 1: Piecewise linear risk minimizing strategy.
• Strategy 2: Quadratic risk minimizing strategy.

Tables 8 and 9 present the average values of the total hedging cost and risk
over the 10,000 simulated scenarios. We remark that the last column in these
tables corresponds to the static hedging, when we only have one rebalancing
opportunity, at time 0.

The above numerical results follow the trend observed in the Black–Scholes
framework. For out-of-money and at-the-money put options the average cu-
mulative cost and risk for the piecewise linear risk minimizing strategy are
much smaller than the corresponding values for the quadratic risk minimizing
strategy. The differences increase as the rebalancing is less frequent. For the
deep out-of-money put options with very few hedging opportunities the values
for the piecewise linear risk minimizing strategy are almost half the values for
the quadratic risk minimizing strategy.
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Table 8.
Average value of the total cost over 10,000 scenarios.

Strike Strategy # of time steps per rebalancing time

16 64 128 512 1024

90 1 1�9433 1�5446 1�1637 1�0199 1.0199
2 2�3366 2�2365 2�2137 1�9469 1.7340

95 1 3�4682 3�2307 3�0079 1�7710 1.7738
2 3�7234 3�6141 3�5726 3�2049 2.9003

100 1 5�4967 5�2277 5�1111 3�8699 2.8902
2 5�5977 5�4786 5�4225 4�9567 4.5512

105 1 7�9197 7�7034 7�6502 7�0733 5.8629
2 8�0112 7�8777 7�8106 7�2709 6.7681

110 1 10�8262 10�7099 10�6651 10�5153 9.5471
2 10�9231 10�7769 10�7051 10�1219 9.5382

Notes. Average total cost for the hedging of put options with T = 1, different strike prices and number
of rebalancing opportunities, for the two strategies satisfying (16): 1 – piecewise linear, 2 – quadratic;
X0 = 100, Y0 = 0�2, r = 0�04, α = 0�5, β = 5, θ = 0�04, δ = 0�6 and ρ = 0.

Table 9.
Average value of the total risk over 10,000 scenarios.

Strike Strategy # of time steps per rebalancing time

16 64 128 512 1024

90 1 0�8395 0�9099 0�9901 1�0199 1.0199
2 0�9727 1�0942 1�2546 1�7399 1.8985

95 1 1�1469 1�2728 1�4854 1�7737 1.7738
2 1�2599 1�4251 1�6598 2�4190 2.7518

100 1 1�4342 1�5745 1�8701 2�7670 2.8902
2 1�5274 1�7164 2�0283 3�1000 3.6495

105 1 1�6076 1�7925 2�1315 3�4513 4.1089
2 1�7032 1�9303 2�3000 3�6521 4.4442

110 1 1�7004 1�9156 2�2754 3�7799 4.8597
2 1�7915 2�0499 2�4533 4�0204 5.0373

Notes. Average total risk for the hedging of put options with different strike prices and number of
rebalancing opportunities, for the two strategies and in the setup described in Table 8.

In the case of the in-the-money put options, the two strategies yield close
values for the average cumulative cost and risk, with the piecewise linear risk
minimizing strategy being better in most of the cases.

We can also analyze the distributions of the total hedging cost and risk for
the two hedging strategies. Figure 6 shows the histograms of the total hedging
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Fig. 6. Histograms of the total hedging cost over 10,000 scenarios.

cost over the 10,000 simulated scenarios for each strategy, in the case of the
at-the-money put option with 8 hedging opportunities.

The average cumulative costs, given in Table 8, are 5�1111 for Strategy 1,
and 5�4225 for Strategy 2. As in the Black–Scholes framework, the distribu-
tion of the cumulative cost for the piecewise linear risk minimizing strategy
is more asymmetric about its mean than the distribution of the quadratic risk
minimizing strategy. In the case of Strategy 1, 65% of the cumulative costs for
Strategy 1 are less than the mean, while this happens only 55% of the time
for Strategy 2. The skewness is 2�7526 for Strategy 1 and 1�3711 for Strategy 2.
However, we remark again that piecewise linear risk minimization may lead,
with a very small probability, to larger total hedging cost than the quadratic
risk minimization.

Figure 7 presents the histograms of the total hedging risk for the same at-
the-money put option with 8 hedging opportunities. As shown in Table 9, the
average total hedging risk is 1�8701 in the case of Strategy 1 and 2�0283 in the
case of Strategy 2.

The distributions of the total risk for both strategies are asymmetric about
their mean. However, the mean for Strategy 1 is smaller than the mean for
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Fig. 7. Histograms of the total hedging risk over 10,000 scenarios.

Strategy 2. Strategy 1 yields smaller than the mean total risk 67% of the time,
while this happens for 62% of the total risk for Strategy 2. The skewness is
4�0549 for Strategy 1 and 2�5346 for Strategy 2. The total risk for the piecewise
linear risk minimizing strategy has a very small probability of larger values than
the cumulative cost for the quadratic risk minimizing strategy.

We mention that the range of values illustrated in Figs. 6 and 7 was chosen
for clarity, but both strategies can lead to values of the cumulative cost and risk
larger than the values in the selected interval.

It is interesting to analyze the quadratic risk minimizing Strategy 2 as the
number of hedging opportunities increases and compare it to the quadratic risk
minimizing strategy for continuous trading. Such an analysis requires, however,
a very thorough investigation and the simulation of a larger number of scenar-
ios. For a very brief comparison, we illustrate the case of the in-the-money put
option with maturity T = 1 and strike price 100 ∗ exp(r · T), where r is the
riskless rate of return. Heath et al. (2001a, 2001b) compute the expected cu-
mulative hedging cost and the expected squared net loss E((H − VM)

2) for
the continuous hedging of this option under the quadratic risk measure. They
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Table 10.
Average total hedging cost and squared net loss for Strategy 2 over 10,000 scenarios.

Time steps Cost Net loss

1024 6.3182 32�9453
512 6.8041 22�5713
128 7.2715 9�5157
64 7.3155 6�4883
16 7.3260 3�7875

Notes. Average total cost and squared net loss for the hedging of the put option with T = 1 and strike
price 100∗ exp(r ·T), for the quadratic risk minimizing strategy; the same setup as described in Table 8.

obtain an expected hedging cost of 7�691 and an expected squared net loss of
3�685. Table 10 shows the average over 10,000 of the cumulative hedging cost
and squared net loss for the quadratic risk minimizing Strategy 2 as the number
of time steps per rebalancing time decreases. We remark that, as the number of
hedging opportunities increases, the average values of the cumulative hedging
cost and squared net loss in Table 10, approach the values given by Heath et al.
(2001a, 2001b).

We have remarked earlier in this section that the constraint (16) on the
form of the holdings does not take into account the volatility Yt . It may be
reasonable to include the effect of the volatility on the holdings in the hedging
portfolio and use the following constraint:

(21)ξj = Dj(Xj� Yj)+ 1
Xj

j−1∑
i=0

D̃i(Xi� Yi)�Xi� ∀j = 0� � � � �M − 1�

The unknown functions Dj , D̃j , j = 1� � � � �M − 1, are now bicubic splines
with fixed end conditions and knots placed with respect to the stock price and
volatility. For each j = 1� � � � �M − 1, Dj and D̃j depend on the stock price
and the volatility at time tj . We assume, as before, that D0 and D̃0 are constant
functions.

Solving an L1-optimization problem similar to (17) and, respectively, an L2-
optimization problem similar to (18), we compute the total risk minimizing
strategies satisfying assumption (21):

• Strategy 1: Piecewise linear risk minimizing strategy.
• Strategy 2: Quadratic risk minimizing strategy.

Since the assumption (21) involves bicubic splines, computing the above op-
timal strategies is much more expensive than computing the optimal strategies
satisfying (16).

The average values of the cumulative hedging cost and risk for these two
strategies over the 10,000 simulated scenarios are presented below, in Tables 11
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Table 11.
Average value of the total cost over 10,000 scenarios.

Strike Strategy # of time steps per rebalancing time

With assumption (18) With assumption (13)

128 512 1024 128 512 1024

90 1 1�2055 1�0186 1.0199 1�1637 1�0199 1.0199
2 2�1913 1�9507 1.7340 2�2137 1�9469 1.7340

95 1 2�9708 1�7715 1.7738 3�0079 1�7710 1.7738
2 3�5455 3�2149 2.9003 3�5726 3�2049 2.9003

100 1 5�0478 3�9188 2.8902 5�1111 3�8699 2.8902
2 5�3959 4�9729 4.5512 5�4225 4�9567 4.5512

105 1 7�6027 7�0814 5.8629 7�6502 7�0733 5.8629
2 7�7734 7�2961 6.7681 7�8106 7�2709 6.7681

110 1 10�6063 10�5019 9.5471 10�6651 10�5153 9.5471
2 10�6836 10�1544 9.5382 10�7051 10�1219 9.5382

Notes. Average total cost for the hedging of put options with different strike prices and number of
rebalancing opportunities, for the two strategies satisfying (21): 1 – piecewise linear, 2 – quadratic; the
same setup as described in Table 8.

Table 12.
Average value of the total risk over 10,000 scenarios.

Strike Strategy # of time steps per rebalancing time

With assumption (21) With assumption (16)

128 512 1024 128 512 1024

90 1 0�9464 1�0193 1.0199 0�9901 1.0199 1.0199
2 1�2028 1�7407 1.8985 1�2546 1.7399 1.8985

95 1 1�4197 1�7726 1.7738 1�4854 1.7737 1.7738
2 1�6107 2�4152 2.7518 1�6598 2.4190 2.7518

100 1 1�8175 2�7492 2.8902 1�8701 2.7670 2.8902
2 1�9414 3�0880 3.6495 2�0283 3.1000 3.6495

105 1 2�1104 3�4145 4.1089 2�1315 3.4513 4.1089
2 2�2950 3�6276 4.4442 2�3000 3.6521 4.4442

110 1 2�2754 3�7335 4.8597 2�2754 3.7799 4.8597
2 2�4102 3�9797 5.0373 2�4533 4.0204 5.0373

Notes. Average total risk for the hedging of put options with different strike prices and number of
rebalancing opportunities, for the two strategies and in the setup described in Table 11.

and 12, respectively. In order to make the comparison easier, we also repro-
duce the corresponding results from Tables 8 and 9. We remark that in the
case of the static hedging, assumptions (16) and (21) coincide. This is why, in
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Tables 11 and 12, the columns for 1024 time steps per rebalancing time, which
correspond to static hedging in our implementation, coincide.

Computing the optimal strategies satisfying the constraint (21) on the form
of the holdings is expensive, however, these strategies do not lead to signifi-
cantly better cumulative hedging cost or risk, as can be seen by comparing the
values of the cumulative cost and risk for these strategies to the correspond-
ing values for the optimal hedging strategies satisfying the constraint (16).
Moreover, assumption (21) relies on the values of the volatility, which are
not directly observable in the market. In conclusion, it seems reasonable to
compute the optimal hedging strategies in this framework by solving the opti-
mization problems (17) and (18), even if their formulation takes into account
only the dependence of the holdings in the hedging portfolio on the stock price
path.

The numerical results presented in this section refer to hedging put options.
However, as mentioned at the end of Section 3, hedging call options is closely
related to hedging put options on the same underlying asset and with the same
maturity and strike price. The optimal hedging portfolio values satisfy discrete
hedging put-call parity. Moreover, if the holdings in the optimal portfolio for
hedging the put options are known, the optimal holdings for the call options
can be computed directly, without solving any optimization problems.

5 Shortfall risk minimization

An important criticism of the quadratic risk minimizing criterion, which is
also valid for the piecewise linear risk measure, is the fact that it penalizes
symmetrically losses, as well as gains.

It has been argued (see Bertsimas et al., 2001) that, in the case of pricing
an option, a symmetric risk measure is the natural choice, since we do not
know a priori if the option is being sold or purchased. However, when hedging
an option, one tries to replicate the option payoff by constructing a hedging
portfolio and he may be interested in penalizing only the costs and not also the
profits from his position.

We will investigate here only the perspective of the writer of an option.
When using a self-financing strategy to hedge an option with payoff H and
maturity T , the total risk for the writer of the option is given by the difference
between the payoff H and the final value of the hedging strategy, VM . Even if
VM does not match exactly H, if VM � H the writer is still on the safe side,
that is, he can cover the option payoff with no suplementary inflow of capital.
Therefore, the writer of the option may prefer to choose a hedging strategy
that minimizes only the shortfall risk, E((H − VM)

+):

(22)minE
(
(H − VM)

+)
�

and not the total risk, E(|H − VM |) or E((H − VM)
2).
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A self-financing hedging strategy such that VM � H, a.s., is called a
super-replicating strategy. Unfortunately, the minimum initial cost of a super-
replicating strategy is often too high. Moreover, in practice, one may be in-
clined not to use a super-replicating hedging strategy if he can make higher
profits by accepting the risk of a loss.

In order to see that it can be quite expensive to super-replicate an option,
we compare the minimum initial cost of a super-replicating strategy – obtained
by minimizing E((H−VM)

+) – with the initial cost of the total risk minimizing
strategies described in Section 3.1 – computed by minimizing E(|H−VM |) and
E((H − VM)

2), respectively. The numerical results refer to the hedging put
options with maturity T = 1 and different strike prices when we only have a
finite number of hedging opportunities at 0 = t0 < t1 < · · · < tM := T . The
stock price follows a Black–Scholes model with instantaneous expected return
μ = 0�15 and volatility σ = 0�2. The initial stock price is S0 = 100. We generate
40,000 scenarios for the stock price using Monte Carlo simulation. The riskless
rate of return is r = 0�04.

An optimal super-replicating strategy for (22) can be obtained in a similar
way to the computation of a total risk minimizing strategy described in Sec-
tion 3.1, by assuming that the optimal holdings have the special form given
by (16). Moreover, since,

(23)(H − VM)
+ = 1

2
(
H − VM + |H − VM |)

problem (22) can be implemented as a linear programming problem.
Table 13 shows the minimum initial cost for a super-replicating strategy sat-

isfying assumption (16), in comparison with the initial cost of the piecewise
linear total risk minimizing strategy – Strategy 1 – and the quadratic total risk
minimizing strategy – Strategy 2 – satisfying the same assumption.

We can see from Table 13 that buying the initial portfolio for super-hedging
is much more expensive than buying the initial portfolio for total risk min-
imization. Therefore, computing a hedging strategy by simply minimizing the
shortfall riskE((H−VM)+) is not very attractive from a practical point of view,
even if a super-replicating strategy prevents the risk of any loss at the maturity
of the option. In these conditions, an investor who still wants to penalize only
the shortfall risk, but has a given initial capital and is willing to accept some risk
of loss, may choose an optimal self-financing hedging strategy in the following
way:

min E
(
(H − VM)

+)
(24)s.t. V0 given�

The above criteria for minimizing the shortfall risk has been studied by
Föllmer and Leukert (2000), and Runggaldier (2001).

Alternative to penalizing the positive values of H − VM , by minimizing
E((H−VM)+), one may try to penalize those values which are above the mean.
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Table 13.
Initial portfolio cost.

Strike Strategy # of time steps per rebalancing time

50 100 300 600

90 Super-replicate 7�4806 10�3742 19�5669 28�1378
1 1�9022 1�0070 0�0000 0�0000
2 2�4086 2�3224 2�0388 1�7421

95 Super-replicate 9�7100 12�7437 22�2787 32�2861
1 3�5152 3�0875 0�0000 0�0000
2 3�8885 3�7741 3�3983 2�9735

100 Super-replicate 12�3146 15�3754 24�9454 35�7017
1 5�5279 5�2248 2�7110 0�0000
2 5�8455 5�7119 5�2530 4�6948

105 Super-replicate 15�3226 18�1656 27�7273 39�3592
1 8�0693 7�8209 6�5076 3�2595
2 8�2882 8�1412 7�6261 6�9449

110 Super-replicate 18�9710 21�4535 30�8217 43�1454
1 11�0098 10�9945 10�1126 7�6382
2 11�1881 11�0413 10�4945 9�7148

Notes. Initial portfolio cost for put options with different strike prices and number of time steps per
rebalancing time, for the three strategies: super-replicating, 1 – piecewise linear and 2 – quadratic; the
same setup as in Table 1.

This corresponds to minimizing:

(25)E
((
H − VM − E(H − VM)

)+)
�

However, note that, since for a self-financing strategy, VM = V0 +∑M−1
k=0 ξk�Xk, we have:

H − VM − E(H − VM)

= H − E(H)−
M−1∑
k=0

ξk�Xk + E

(
M−1∑
k=0

ξk�Xk

)
�

Therefore, the initial value of the hedging portfolio, V0 cannot be deter-
mined by minimizing (25). In these conditions, a natural idea is to impose the
constraint:

(26)E(H − VM) = 0 ⇔ V0 = E

(
H −

M−1∑
k=0

ξk�Xk

)
�

that is, the initial value of the hedging portfolio is equal to the expected value
of the difference between the option payoff and the cumulative gain of the
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portfolio. With this constraint, criterion (25) becomes:

min E
(
(H − VM)

+)
(27)s.t. E(H − VM) = 0�

By (23), this criterion is equivalent to:

min E
(|H − VM |)

(28)s.t. E(H − VM) = 0�

Assuming that the holdings have the special form given by (16):

ξj = Dj(Xj)+ 1
Xj

j−1∑
i=0

D̃i(Xi)�Xi� ∀j = 0� � � � �M − 1�

an optimal strategy for the above problem can be computed is a similar way to
the piecewise linear total risk minimization problem (6).

We remark that the shortfall risk minimization problem (27) is not equiva-
lent to problem (24), since (27) imposes a relation between the optimal hold-
ings ξk and the initial value of the hedging portfolio, V0.

In order to investigate the two shortfall risk minimization criteria (24)
and (27), we first compute the optimal hedging strategy for the second cri-
terion, (27), then using the initial value of this hedging strategy as given value
for V0, we calculate the optimal holdings for the strategy based on the first
criterion, (24).

We denote by Strategy 3, the optimal strategy solving the first shortfall risk
minimization problem, (24), and by Strategy 4, the optimal strategy for the
second problem, (27). We remark the initial portfolio values, V0, are the same
for both strategies, however, the holdings, ξk, are different. For comparison
with the minimum initial cost super-replicating strategy, Table 14 illustrates
the values of V0 for Strategy 4, for the same put options as in Table 13.

Table 14.
Initial portfolio cost.

Strike # of time steps per rebalancing time

50 100 300 600

90 2�2065 2�0562 1�4911 1.2486
95 3�7236 3�5833 2�8130 2.3168

100 5�7089 5�5760 4�8485 3.9832
105 8�1940 8�0620 7�5616 6.3626
110 11�1355 11�0106 10�7330 9.5202

Notes. Initial portfolio cost for hedging put options with different strike prices and number of time steps
per rebalancing time, for the optimal shortfall risk minimizing strategy solving (27); the same setup as
in Table 1.
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We remark that the initial portfolio values for Strategies 3 and 4 are much
smaller than the initial values for the minimal cost super-replicating strategy
and they are comparable to the initial portfolio values for the total risk mini-
mizing strategies.

Strategies 3 and 4 have a reasonable initial cost compared to the super-
replicating strategy. However, this reduction in the initial cost has been
achieved by allowing a nonzero probability of a loss. While a super-replicating
strategy prevents any loss, Strategies 3 and 4 have a nonzero shortfall risk.
Table 15 illustrates the average values of the shortfall risk, (H − VM)

+, over
40,000 scenarios for the hedging Strategies 3 and 4. We note that the short-
fall risk increases as the options become more in-the-money and we rebalance
less frequently. Moreover, since Strategy 3 minimizes the shortfall risk for a
given initial portfolio, this strategy yields smaller values of the shortfall risk
than Strategy 4, which has the same initial investment.

We can also compute the average values of the shortfall risk, (H − VM)
+,

over the same 40,000 paths, for the piecewise linear and quadratic total risk
minimizing Strategies 1 and 2, respectively. These values will certainly be larger
than the corresponding values for Strategies 3 and 4, which are shortfall risk
minimizing strategies. However, the results provide interesting information
about the behavior of the total risk minimizing strategies. The average shortfall
risk for Strategies 1 and 2 is illustrated in Table 16.

We remark from Table 16 that the quadratic total risk minimizing Strategy 2
always yields smaller average shortfall risk than the piecewise linear risk mini-

Table 15.
Average value of the shortfall risk over 40,000 scenarios.

Strike Strategy # of time steps per rebalancing time

50 100 300 600

90 3 0.2826 0.4280 0.6768 0.7578
4 0.3437 0.4735 0.6904 0.7632

95 3 0.3638 0.5571 0.9822 1.1761
4 0.4570 0.6391 1.0279 1.1957

100 3 0.4349 0.6782 1.2353 1.6182
4 0.5597 0.7847 1.3547 1.6781

105 3 0.4944 0.7534 1.3846 1.9844
4 0.6498 0.9008 1.6037 2.1252

110 3 0.5288 0.8007 1.4518 2.1905
4 0.7035 0.9693 1.7426 2.4653

Notes. Average value of the shortfall risk for hedging put options with different strike prices and number
of time steps per rebalancing time, for the optimal shortfall risk minimizing strategies solving (24) and
(27); the same setup as in Table 1.
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Table 16.
Average value of the shortfall risk over 40,000 scenarios for the piecewise linear and quadratic total
risk minimizing strategies.

Strike Strategy # of time steps per rebalancing time

50 100 300 600

90 1 0.4446 0.7533 0.9398 0.9398
2 0.3920 0.5299 0.7868 0.8854

95 1 0.5306 0.8057 1.6648 1.6648
2 0.4905 0.6850 1.0966 1.3111

100 1 0.6222 0.9088 1.9555 2.7269
2 0.5868 0.8259 1.3938 1.7558

105 1 0.7043 0.9979 1.9898 3.1136
2 0.6690 0.9420 1.6385 2.1592

110 1 0.7650 1.0773 2.0424 3.1845
2 0.7214 1.0160 1.8026 2.4683

Notes. Average value of the shortfall risk for hedging put options with different strike prices and number
of time steps per rebalancing time, for the optimal total risk minimizing Strategies 1 and 2; the same
setup as in Table 1.

mizing Strategy 1. Using the relation:

(29)|H − VM | = (H − VM)
+ + (VM −H)+�

we can analyze the average values of the shortfall risk, (H − VM)
+, from

Table 16, in comparison with the average values of the total hedging risk,
|H − VM |, from Table 4. While in the case of Strategy 2, the average short-
fall risk is approximately half the average total risk, in the case of Strategy 1,
these values are much closer, especially for out-of-money put options. By (29),
it follows that Strategy 1 typically under-hedges the options, while Strategy 2
shows no trend for either under-hedging, or over-hedging.

We will now investigate the cumulative hedging cost. Table 17 illustrates the
average values of the cumulative hedging cost over 40,000 scenarios for the
shortfall risk minimizing Strategies 3 and 4. For comparison we include the
corresponding values from Table 3 for the piecewise linear and quadratic total
risk minimizing strategies satisfying (16).

As illustrated in Table 17, even if the two shortfall risk minimizing strategies
start with the same investment in the hedging portfolio, Strategy 4, which has
to satisfy the constraint E(H−VM) = 0, yields larger values of the average cu-
mulative hedging cost than Strategy 3. We also note that using a quadratic cri-
terion for minimizing the risk leads to the largest hedging cost, as can be seen
by comparing the cost for Strategy 2 to the cost of the other three strategies.
The performance of the hedging strategies also depends on the moneyness of
the options and the number of rebalancing opportunities: the piecewise linear
total risk minimization has the smallest average cost when the put options are
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Table 17.
Average value of the total cost over 40,000 scenarios.

Strike Strategy # of time steps per rebalancing time

50 100 300 600

95 1 3.6640 3.4080 1.6648 1.6648
2 3.8885 3.7741 3.3983 2.9735
3 3.2156 3.1629 2.5151 2.1555
4 3.7236 3.5833 2.8130 2.3168

100 1 5.6896 5.5067 4.0644 2.7269
2 5.8455 5.7119 5.2530 4.6948
3 5.0506 5.0474 4.2289 3.6124
4 5.7089 5.5760 4.8485 3.9832

105 1 8.1835 8.0393 7.2893 5.5301
2 8.2882 8.1412 7.6261 6.9449
3 7.3748 7.3405 6.5371 5.6365
4 8.1940 8.0620 7.5616 6.3626

Notes. Average total hedging cost for put options with different strike prices and number of time steps
per rebalancing time, for the total risk minimizing strategies: 1 – piecewise linear and 2 – quadratic
and the shortfall risk minimizing strategies: 3 – strategy solving (24), 4 – strategy solving (27); the same
setup as in Table 1.

out-of-the-money and the rebalancing in infrequent, however, as the options
become in-the-money or the number of hedging opportunities increases, the
shortfall risk minimization criterion (24) is the least expensive on average.

As in Section 3.1, we investigate the distributions of the shortfall risk and
cumulative cost for the shortfall risk minimizing Strategies 3 and 4, in the par-
ticular case of the at-the-money put options with 6 hedging opportunities. The
histograms of the shortfall risk, (H − VM)

+, over the 40,000 simulated scenar-
ios are presented in Fig. 8. We mention that the strategies have a few values
of the shortfall risk outside the represented interval, however, we chose this
range to make the figure clearer.

From Table 15 the average values of the shortfall risk are 0�6782 for Strat-
egy 3 and 0�7847 for Strategy 4. The distributions of the shortfall risk for the
two strategies are very similar in the chosen interval. However, Strategy 3 has
a longer right tail, outside the interval. This can be seen from the values of the
skewness: 6�6456 for Strategy 3, compared to 4�2451 for Strategy 4.

The histograms of the cumulative cost for the shortfall risk minimizing
Strategies 3 and 4 are illustrated in Fig. 9. As before, the range of the figure
has been chosen for clarity.

The average values of the cumulative cost for Strategies 3 and 4 are 5�0474
and 5�5760, respectively, as can be seen from Table 17. We remark that Strat-
egy 3 is more asymmetric than Strategy 4. The values of the skewness, 3�2878
for Strategy 3 and 1�7171 for Strategy 4, show that Strategy 3 has also a longer
right tail.
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Fig. 8. Histograms of the shortfall risk over 40,000 scenarios.

As illustrated in this section, the shortfall risk minimizing strategies have
attractive features, they have smaller average loss and, possibly, smaller cumu-
lative hedging cost than the total risk minimizing strategies. However, when
choosing between shortfall and total risk minimization, one has to take into
account the fact that shortfall risk minimization can only be used for hedging
purposes, while total risk minimization can be used for both hedging and pric-
ing, since the initial value of a total risk minimizing strategy may be considered
as a “fair value” of the option. Moreover, when hedging an option, the shortfall
risk measure is appropriate if one is inclined to penalize only the costs, and not
the profits of his position; if one prefers to penalize both losses and gains, he
has to choose a symmetric risk measure, such as the total risk measure.

6 Conclusions

In a complete market, there exists a unique self-financing strategy that ex-
actly replicates the option payoff. Market completeness is not, however, a
realistic assumption. For example, introducing stochastic volatility or volatil-
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Fig. 9. Histograms of the cumulative cost over 40,000 scenarios.

ity with jumps in the Black–Scholes model in order to explain the market data,
or allowing for discrete hedging, leads to an incomplete market. If the market
is incomplete, the optimal hedging strategy for an option depends on the cri-
terion for measuring the risk. The traditional strategies found in the literature
are based on quadratic risk measures.

We investigate alternative piecewise linear risk minimizing criteria for total-
risk minimization. Unfortunately, there are no analytic solutions to the piece-
wise linear risk minimization problem. Since a direct approach to this dynamic
stochastic programming problem may be computationally very expensive, we
obtain the optimal piecewise linear risk minimizing strategies using Monte
Carlo simulations and approximating the holdings in the hedging portfolio by
cubic splines. We analyze this approach in the Black–Scholes and stochastic
volatility frameworks.

The numerical results illustrate that, as in the case of the local risk mini-
mization, the piecewise linear total risk minimization criterion typically leads
to smaller average hedging cost and risk. We remark that the hedging perfor-
mance of the optimal strategies depends on the moneyness of the options and
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on the number of rebalancing opportunities. The hedging strategies based on
piecewise linear risk minimization have quite different, and often preferable,
properties compared to the traditional, quadratic risk minimizing strategies.
The distributions of the cumulative cost and risk show that these new strate-
gies have a larger probability of small cost and risk, though they also have a
very small probability of larger cost and risk. We also remark that in the sto-
chastic framework analyzed in this paper, the volatility does not significantly
affect the average total cost and risk of the hedging strategies.

Comparing the hedging performance of the optimal strategies for piecewise
linear and quadratic total risk minimization to the performance of the short-
fall risk minimizing strategies, we note that the quadratic criterion yields the
largest values of the average cumulative hedging cost. Shortfall risk minimiza-
tion may lead to smaller average cumulative hedging cost than piecewise linear
risk minimization, depending on the moneyness of the options and the number
of hedging opportunities.

By analyzing the values of the shortfall risk for the piecewise linear and
quadratic total risk minimizing hedging strategies, we infer that the piecewise
linear criterion typically leads to options being under-hedged, while quadratic
total risk minimization shows no trend for either over-hedging, or under-
hedging the options.

A shortfall risk measure may be more attractive than a total risk measure
when one tries to hedge an option and he is inclined to penalize only the costs
of his position. However, shortfall risk minimization cannot be used for pricing
the option, while total risk minimization can be used for both hedging and pric-
ing. Moreover, when one prefers to penalize both losses and gains, a shortfall
risk measure is no longer appropriate.
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Abstract

One approach to the analysis of stochastic fluctuations in market prices is to model
characteristics of investor behavior and the complex interactions between market
participants, with the aim of extracting consequences in the aggregate. This agent-
based viewpoint in finance goes back at least to the work of Garman [Garman,
M. (1976). Market microstructure. Journal of Financial Economics 3, 257–275] and
shares the philosophy of statistical mechanics in the physical sciences. We discuss re-
cent developments in market microstructure models. They are capable, often through
numerical simulations, to explain many stylized facts like the emergence of herding
behavior, volatility clustering and fat tailed returns distributions. They are typically
queuing-type models, that is, models of order flows, in contrast to classical economic
equilibrium theories of utility-maximizing, rational, “representative” investors. Math-
ematically, they are analyzed using tools of functional central limit theorems, strong
approximations and weak convergence. Our main examples focus on investor inertia,
a trait that is well-documented, among other behavioral qualities, and modeled using
semi-Markov switching processes. In particular, we show how inertia may lead to the
phenomenon of long-range dependence in stock prices.
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1 Introduction

Modeling market microstructure in order to understand the effects of many
individual investors on aggregate demand and price formation is both a clas-
sical area of study in economics, and a rapidly growing activity among re-
searchers from a variety of disciplines, partly due to modern-day computa-
tional power for large-scale simulations, and the increased availability of price
and order-book data. Among the benefits of this type of analysis, whether
mathematical or simulation-based, is the design of better models of macro-
scopic financial variables such as prices, informed by microscopic (investor-
level) features, that can then be utilized for improved forecasts, investment
and policy decisions.

The approach we discuss here is to identify characteristics common to large
groups of investors, for example prolonged inactivity or inertia, and study the
resulting price dynamics created by order flows. Typically, we are interested
in understanding the microstructure effects on the aggregate quantity through
approximations from stochastic process limit theorems when there is a large
number of investors.

In this point of view, we model right away the behavior of individual traders
rather than characterizing agents’ investment decisions as solutions to individ-
ual utility maximization problems. Such an approach has also been taken in
Garman (1976), Föllmer and Schweizer (1993), Lux (1998) and Föllmer et al.
(2005), for example. As pointed out by O’Hara in her influential book Market
Microstructure Theory (O’Hara, 1995), it was Garman’s 1976 paper (Garman,
1976) that “inaugurated the explicit study of market microstructure.” There,
he explains the philosophy of this approach as follows: “The usual develop-
ment here would be to start with a theory of individual choice. Such a theory
would probably include the assumption of a stochastic income stream [and]
probabilistic budget constraints � � � But here we are concerned rather with ag-
gregate market behavior and shall adopt the attitude of the physicist who cares
not whether his individual particles possess rationality, free will, blind igno-
rance or whatever, as long as his statistical mechanics will accurately describe
the behavior of large ensembles of those particles.” This approach is also com-
mon in much of the econophysics literature (see the discussion in Farmer et al.,
2005, for example), and is of course prevalent in queuing models of telephone
calls or Internet traffic (Chen and Yao, 2001), where interest is not so much on
causes of phone calls or bandwidth demand, but on phenomenological models
and their overall implications. As one econophysicist explained it in reaction
to the usual battle-cry of the classical economist about rational behavior, when
AT&T uses queuing models, it doesn’t ask why you call your grandmother.

In this article, we provide an outline to recent surveys on agent-based com-
putational models and analytical models based on dynamical systems, while
our focus is on developing limit theorems for queuing models of investor be-
havior, which apply modern methods from stochastic analysis to models based
on economic intuition and empirical evidence. The goal is in obtaining insights
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into market dynamics by understanding price formation from typical behav-
ioral qualities of individual investors.

The remainder of this paper is summarized as follows: in Section 2, we
briefly survey some recent research on agent based models. These models
relate the behavioral qualities of investors and quantitative features of the
stock price process. We give a relevant literature review of Queuing Theory
approaches to the modeling of stock price dynamics in Section 2.3. In Sec-
tion 2.4, we discuss evidence of investor inertia in financial markets, and we
study its effect on stock price dynamics in Section 3. Key tools are a functional
central limit theorem for semi-Markov processes and approximation results for
integrals with respect to fractional Brownian motion, that establish a link be-
tween investor inertia and long range dependence in stock price returns. These
are extended in Section 3.2 to allow for the feedback of the stock price into
agents’ investment decisions, using methods and techniques from state depen-
dent queuing networks. We establish approximation results for the stock price
in a non-Walrasian framework in which the order rates of the agents depend
on the stock price and exogenously specified investor sentiment. Section 4 con-
cludes and discusses future directions.

2 Agent-based models of financial markets

In mathematical finance, the dynamics of asset prices are usually modeled
by trajectories of some exogenously specified stochastic process defined on an
underlying probability space (Ω�F�P). Geometric Brownian motion has long
become the canonical reference model of financial price dynamics. Since prices
are generated by the demand of market participants, it is of interest to support
such an approach by a microeconomic model of interacting agents. In recent
years there has been increasing interest in agent-based models of financial
markets where the demand for a risky asset comes from many agents with inter-
acting preferences and expectations. These models are capable of reproducing,
often through simulations, many “stylized facts” like the emergence of herd-
ing behavior (Föllmer et al., 2005; Lux, 1998); volatility clustering (Cont, 2004;
Lux and Marchesi, 2000), or fat-tailed distributions of stock returns (Cont and
Bouchaud, 2000), that are observed in financial data.

In contrast to the traditional framework of an economy with a utility-
maximizing representative agent, agent-based models typically comprise many
heterogeneous traders who are so-called boundedly rational. Behavioral finance
models assume that market participants do not necessarily share identical ex-
pectations about the future evolution of asset prices or assessments about a
stock’s fundamental value. Instead, agents are allowed to use rule of thumb
strategies when making their investment decisions and to switch randomly be-
tween them as time passes. Following the seminal article of Frankel and Froot
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(1986), one typically distinguishes fundamentalists, noise traders and chartists.1
A fundamentalist bases his forecasts of future asset prices upon market fun-
damentals and economic factors such as dividends, quarterly earnings or GDP
growth rates. He invests in assets he considers undervalued, that is, he invests
in assets whose price is beneath his subjective assessment of the fundamental
value. Chartists, on the other hand, base their trading strategy upon observed
historical price patterns such as trends. Technical traders try to extrapolate
future asset price movements from past observations. Fundamentalists and
chartists typically coexist with fractions varying over time as agents are allowed
to change their strategies in reaction to either the strategies’ performances or
the choices of other market participants. Some of these changes can be self re-
inforcing when agents tend to follow the more successful strategies or agents.
This may lead to temporary deviations of prices from the benchmark funda-
mental or rational expectations prices generating bubbles or crashes in periods
when technical trading predominates. Fundamentalists typically have a stabi-
lizing impact on stock prices.

In this section, we review some agent-based models of financial markets.
Our focus will be on a class probabilistic models in which asset price dynamics
are modeled as stochastic processes in a random environment of investor sen-
timent. These models are perhaps most amenable to rigorous mathematical
results. Behavioral finance models based on deterministic dynamical systems
are covered only briefly as they are discussed extensively in a recent survey by
Hommes (2006). For results on evolutionary dynamics of financial markets we
refer to Hens and Schenk-Hoppé (2005), Estigneev et al. (2006), or Sandroni
(2000) and references therein.

2.1 Stock prices as temporary equilibria in random media

Föllmer and Schweizer (1993) argue that asset prices should be viewed as a
sequence of temporary equilibrium prices in a random environment of investor
sentiment; see also (Föllmer, 1994). In reaction to a proposed price p in period
t, agent a ∈ A forms a random excess demand eat (p�ω), and the actual asset
price Pt(ω) is determined by the market clearing condition of zero total excess
demand. In Föllmer and Schweizer (1993), individual excess demand involves
some exogenous liquidity demand and an endogenous amount obtained by com-
paring the proposed price p with some reference level Ŝat . This dependence is
linear on a logarithmic scale and individual excess demand takes the form

(2.1)eat (p�ω) := cat (ω)
(
log Ŝat (ω)− logp

) + ηat (ω)

with nonnegative random coefficients cat (ω). Here ηat (w) is the individual’s
liquidity demand. The logarithmic equilibrium price St(ω) := logPt(ω) is then

1 Survey data showing the importance of chartist trading rules among financial practitioners can be
found in, e.g., Taylor and Allen (1992) and Frankel and Froot (1987).
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determined via the market clearing condition
∑

a∈A e
a(Pt(ω)�ω) = 0. It is

thus formed from an aggregate of individual price assessments and liquidity
demands. If the agents have no sense of the direction of the market and simply
take the last logarithmic price St−1 as their reference level, i.e., if log Ŝat = St−1,
then the log-price dynamics reduces to an equation of the form

St = St−1 + ηt

were ηt denotes the aggregate liquidity demand. In this case the dynamics of
logarithmic prices reduces to a simple random walk model if the aggregate liq-
uidity demand is independent and identically distributed over time. This is just
the discretized version of the Black–Scholes–Samuelson geometric Brownian
motion model.

A fundamentalists bases his investment decision on the idea that asset prices
will move closer to his subjective benchmark fundamental value Fa. In a simple
log-linear case

(2.2)log Ŝat := St−1 + αat
(
Fa − St−1

)
for some random coefficient 0 < αat < 1. If only such information traders are
active on the market, the resulting logarithmic stock price process takes the
form of a mean-reverting random walk in the random environment {αt}t∈N

(αt = {αat }a∈A). A combination of information trading and a simple form of
noise trading where some agents take the proposed price seriously as a signal
about the underlying fundamental value replacing Fa in (2.2) by p leads to a
class of discrete time Ornstein–Uhlenbeck processes. Assuming for simplicity
that subjective fundamentals equal zero the logarithmic price process takes the
form

(2.3)St − St−1 = γ̃tSt−1 + γt

with random coefficients γ̃t and γt . These coefficients describe the fluctuations
in the proportion between fundamentalist and noise traders. When noise trad-
ing predominates, γ̃t becomes negative and the price process transient. Asset
prices behave in a stable manner when the majority of the agents adopts a
fundamentalist benchmark.

2.1.1 Random environment driven by interactive Markov processes
Let us now discuss a possible source of randomness driving the environment

for the evolution of stock prices. Extending an earlier approach in Föllmer
(1994), Horst (2005) analyzes a situation with countably many agents located
on some integer lattice A where the environment is generated by an underlying
Markov chain with an interactive dynamics. There is a set C of possible char-
acteristics or trading strategies. An agent’s state xat ∈ C specifies her reference
level for the following period. The environment is then driven by a Markov
chain

(2.4)Π(xt; ·) =
∏
a∈A

πa(xt; ·)
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where xt = (xat )a∈A denotes the current configuration of reference levels. The
distribution πa(xt; ·) of an agent’s state in the following period may depend
both on the current states of some “neighbors” and signals about the aggregate
behavior. Information about aggregate behavior is carried in the empirical dis-
tribution *(xt) or, more generally, the empirical field R(xt) associated to the
configuration xt . The empirical field is defined as the weak limit

R(xt) := lim
n→∞

1
|An|

∑
a∈An

δθaxt (·)

along an increasing sequence of finite sub-populations An ↑ A and (θa)a∈A

denotes the canonical shift group on the space of all configurations. Due to
the dependence of the transition probabilities πa(x; ·) on aggregate behavior,
the kernel Π does not have the Feller property, and so standard convergence
results for Feller processes on compact state spaces do not apply. As shown
by Föllmer and Horst (2001) and Horst (2002) the evolution of aggregate be-
havior on the level of empirical fields can be described by a Markov chain. In
Horst (2005), it is the {R(xt)}t∈N process that generates the environment:

(γ̃t� γt) ∼ Z
(
R(xt); ·

)
for a suitable stochastic kernel Z�

Under a weak interaction condition the process {R(xt)}t∈N settles down to a
unique limiting distribution. Hence asset prices asymptotically evolve in a sta-
tionary and ergodic random environment. This allows us to approximate the
discrete time process {St}t∈N by the unique strong solution to the stochastic
differential equation

dZt = Zt dXt + dX̃t

where X and X̃ are Brownian motions with drift and volatility; see Föllmer
and Schweizer (1993) or Horst (2005) for details.

2.1.2 Feedback effects
The random environment in (Horst, 2005) is generated by a Markov process

describing the evolution of individual behavior. While this approach is capa-
ble of capturing some interaction and imitation effects such as word-of-mouth
advertising unrelated to market events, the dynamics of {xt}t∈N lacks a depen-
dence on asset price dynamics. The model by Föllmer et al. (2005) captures
feedback effects from stock prices into the environment. At the same time it
allows for trend chasing. A trend chaser or chartist bases his expectation of fu-
ture asset prices and hence his trading strategy upon observed historical price
patterns such as trends. In Föllmer et al. (2005), for instance, the chartist’s
benchmark level takes the form

(2.5)log Ŝat := St−1 + βat (St−1 − St−2)�

A combination of the trading strategies (2.2) and (2.5) yields a class of asset
price processes that can be described by a higher order stochastic difference
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equation. In Föllmer et al. (2005) the agents use one of a number of predic-
tors which they obtain from financial “gurus” to forecast future price move-
ments. The agents evaluate the gurus’ performance over time. Performances
are measured by weighted sums of past profits the strategies generate. The
probability of choosing a given guru is related to the guru’s success. As a re-
sult, the configuration xt of individual choices at time t is a random variable
whose distribution depends on the current vector of performance levels Ut−1.
This dependence of the agents’ choices on performances introduces a feedback
from past prices into the random environment. Loosely speaking one obtains
a difference equation of the form (2.3) where

(γ̃t� γt) ∼ Z(Ut; ·) for a suitable stochastic kernel Z�

While prices can temporarily deviate from fundamental values, the main result
in Föllmer et al. (2005) shows that the price process has a unique stationary
distribution, and time averages converge to their expected value under the sta-
tionary measure if the impact of trend chasing is weak enough.

2.1.3 Multiplicity of equilibria
As argued by Kirman (1992), in a random economy with many heteroge-

neous agents, a natural idea of an equilibrium is not a particular state, but
rather a distribution of states reflecting the proportion of time the economy
spends in each of the states. In the context of microstructure models where
liquidity trading or interaction effects prevent asset prices from converging
pathwise to some steady state, stationary distributions for asset prices are thus
a natural notion of equilibrium. In this sense, the main result in (Föllmer et
al., 2005) may be viewed as an existence and uniqueness result for equilibria in
financial markets with heterogeneous agents. Horst and Wenzelburger (2005)
study a related model with many small investors where performances are eval-
uated according historic returns or Sharpe ratios. In the limit of an infinite set
of agents the dynamics of asset prices can be described by a path dependent
linear stochastic difference equation of the form

Yt = A(*t−1)Yt−1 + B(*t−1� εt)�

Here {εt}t∈N is an exogenous i.i.d sequence of noise trader demand and *t−1
denotes the empirical distribution of the random vector Y0� Y1� � � � � Yt−1.
While the models shares many of the qualitative features of Horst (2005) and
Föllmer et al. (2005), it allows for multiple limiting distributions of asset prices.
If the interaction between different agents is strong enough, asset prices con-
verge in distribution to a random limiting measure. Randomness in the limiting
distribution may be viewed as a form of market incompleteness generated by
contagious interaction effects.

2.1.4 Interacting agent models in an overlapping generations framework
The work in Horst and Wenzelburger (2005) is based on earlier work by

Böhm et al. (2000), Böhm and Wenzelburger (2005), and Wenzelburger (2004).
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These authors developed a dynamic analysis of endogenous asset price forma-
tions in the context of overlapping generations economies where agents live
for two periods and the demand for the risky asset comes from young house-
holds. They investigate the impact of different forecasting rules on both asset
price and wealth dynamics under the assumption that agents are myopic and
therefore boundedly rational, mean–variance maximizers. Böhm et al. (2000)
study asset prices and equity premia for a parameterized class of examples and
investigate the role of risk aversion and of subjective as well as rational beliefs.
It is argued that realistic parameter values explain Mehra and Prescott’s eq-
uity premium puzzle (Mehra and Prescott, 1985). The model is generalized in
Wenzelburger (2004) to a model with an arbitrary number of risky assets and
heterogeneous beliefs, thus generalizing the classical CAPM. A major result is
conditions under which a learning scheme converges to rational expectations
for one investor while other investors have non-rational beliefs. A second ma-
jor result is the notion of a modified market portfolio along with a generalization
of the security market line result stating that in a world of heterogeneous my-
opic investors, modified market portfolios are mean–variance efficient in the
classical sense of CAPM, regardless of the diversity of beliefs of other agents.
See Böhm and Chiarella (2005) for a related approach.

2.1.5 Feedback effects from program trading, large agents and illiquidity
A different type of feedback effect, from the actions of a large group of pro-

gram traders or large influential agents has been modeled in the financial math-
ematics literature. In the 1990s, following the Brady report that attributed part
of the cause of the 1987 stock market crash to program trading by institutions
following portfolio insurance strategies, researchers analyzed the feedback ef-
fect from option Delta-hedging by a significant fraction of market participants
on the price dynamics of the underlying security. See, for example, Frey and
Stremme (1997), Sircar and Papanicolaou (1998), Schönbucher and Wilmott
(2000) and Platen and Schweizer (1998).

Related analyses can be found in models where there is a large investor
whose actions move the price, for example Jonsson and Keppo (2002), and
where there is a market depth function describing the impact of order size on
price, for example Cetin et al. (2004). A cautionary note on all such models
is that, under sensible conditions, they do not explain the implied volatility
smile/skew that is observed in modern options markets (in fact they predict a
reverse smile). This would suggest that program trading, large agent or illiq-
uidity effects are second order phenomena as far as derivatives markets are
concerned, compared with the impacts of jumps or stochastic volatility.

There has also been some recent empirical work on estimating the market
depth function, in particular the tail of the distribution governing how order
size impacts trading price: see Farmer and Lillo (2004) and Gabaix et al. (2003).
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2.2 Stock prices and random dynamical systems

An important branch of the literature on agent-based financial market mod-
els analyzes financial markets in which the dynamics of asset prices can be
described by a deterministic dynamical system. The idea is to view agent-based
models as highly nonlinear deterministic dynamical systems and markets as
complex adaptive systems, with the evolution of expectations and trading strate-
gies coupled to market dynamics. Many such models, when simulated, generate
time paths of prices which switch from one expectations regime to another gen-
erating rational routes to randomness, i.e., chaotic price fluctuations. As these
models are considerably more complex than the ones reviewed in the previous
section, analytical characterizations of asset price processes are typically not
available. However, when simulated, these model generate much more realis-
tic time paths of prices explaining many of the stylized facts observed in real
financial markets.

Particularly relevant contributions include the early work of Day and Huang
(1990), Frankel and Froot (1986) and the work of Brock and Hommes (1997).
The latter studies a model in which boundedly rational agents can use one of
two forecasting rules or investment strategies. One of them is costly but when
all agents use it, the emerging price process is stable. The other is cheaper
but when used by many individuals induces unstable behavior of the price
process. Their model has periods of stability interspersed with bubble like be-
havior. In Brock and Hommes (1998) the same authors introduced the notion
of Adaptive Belief Systems (ABS), a “financial market application of the evolu-
tionary selection of expectation rules” analyzed in Brock and Hommes (1997).
An ABS may be viewed as asset pricing models derived form mean-variance
optimization with heterogeneous beliefs. As pointed out in Hommes (2006),
“a convenient feature of an ABS is that it can be formulated in terms of (price)
deviations from a benchmark fundamental and (� � �) can therefore be used in
experimental and empirical testing of deviations from the (rational expecta-
tions) benchmark.” Recently, several modifications of ABSs have been studied.
While in Brock and Hommes (1998) the demand for a risky asset comes from
agents with constant absolute risk aversion utility functions and the number
of trader types is small, Chiarella and He (2001) and Brock et al. (2005) de-
veloped models of interaction of portfolio decisions and wealth dynamics with
heterogeneous agents whose preferences are described by logarithmic CRRA
utility functions and many types of traders, respectively. Gaunersdorfer (2000)
extends the work in Brock and Hommes (1997) to the case of time-varying
expectations about variances of conditional stock returns.2

2 There are many other papers utilizing dynamical system theory to analyze asset price dynamics in
behavioral finance models. For a detailed survey, we refer the interested reader to Hommes (2006).
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2.3 Queuing models and order book dynamics

The aforementioned models differ considerably in their degree of complex-
ity and analytical tractability, but they are all based on the idea that asset price
fluctuations can be described by a sequence of temporary price equilibria. All
agents submit their demand schedule to a market maker who matches indi-
vidual demands in such a way that markets clear. While such an approach is
consistent with dynamic microeconomic theory, it should only be viewed as a
first steps towards a more realistic modeling of asset price formation in large
financial markets. In real markets, buying and selling orders arrive at different
points in time, and so the economic paradigm that a Walrasian auctioneer can
set prices such that the markets clear at the end of each trading period typically
does not apply. In fact, almost all automated financial trading systems function
as continuous double auctions. They are based on electronic order books in
which all unexecuted limit orders are stored and displayed while awaiting exe-
cution. While analytically tractable models of order book dynamics would be of
considerable value, their development has been hindered by the inherent com-
plexity of limit order markets. So far, rigorous mathematical results have only
been established under rather restrictive assumptions on aggregate order flows
by, e.g., Mendelson (1982), Luckock (2003) and Kruk (2003). Statistical prop-
erties of continuous double auctions are often analyzed in the econophysics
literature, e.g., Smith et al. (2003) and references therein.

Microstructure models with asynchronous order arrivals where orders are
executed immediately rather than awaiting the arrival of a matching order and
where asset prices move into the order to market imbalance are studied by, e.g.
Garman (1976); Lux (1995, 1998, 1997) or Bayraktar et al. (2006). These mod-
els may be viewed as an intermediate step towards a more realistic modeling
of electronic trading systems.

A convenient mathematical framework for such models, which we will de-
velop in detail in Section 3.2, is based on the theory of state-dependent queuing
networks (see Mandelbaum et al., 1998 or Mandelbaum and Pats, 1998 for de-
tailed discussions of Markovian queuing networks). Underlying this approach
is the idea that the dynamics of order arrivals follows a Poisson-type process
with price dependent rates and that a buying (selling) order increases (de-
creases) the stock price by a fixed amount (on a possibly logarithmic scale to
avoid negative prices).

More precisely, the arrival times of aggregate buying and selling orders are
specified by independent Poisson processes Π+ and Π− with price and time
dependent rates λ+ and λ−, respectively, that may also depend on investor
characteristics or random economic fundamentals. In the simplest case the log-
arithmic price process {St}t�0 takes the form

St = S0 +Π+

( t∫
0

λ+(Su� u) du

)
−Π−

( t∫
0

λ−(Su� u) du

)
�
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The excess order rate λ+(Su� u) − λ−(Su� u) may be viewed as a measure of
aggregate excess demand while Π+(

∫ t
0 λ+(Su� u) du) − Π−(

∫ t
0 λ−(Su� u) du)

denotes the accumulated net order flow up to time t. In a model with many
agents and after suitable rescaling the asset price process may be approximated
by a deterministic process while the fluctuations around this first-order approx-
imation can typically be described by an Ornstein–Uhlenbeck diffusion.

Recently, such queuing models have also been applied to modeling the
credit risk of large portfolios by Davis and Esparragoza (2004). They approxi-
mate evolution of the loss distribution of a large portfolio of credit instruments
over time. We further elaborate on queuing theoretic approaches to stock price
dynamics in Section 3. Before that, we introduce a common investor trait, in-
vestor inertia, and show the effects of this common trait on stock prices.

2.4 Inertia in financial markets

The models mentioned previously assume that agents trade the asset in each
period. At the end of each trading interval, agents update their expectations
for the future evolution of the stock price and formulate their excess demand
for the following period. However, small investors are not so efficient in their
investment decisions: they are typically inactive and actually trade only occa-
sionally. This may be because they are waiting to accumulate sufficient capital
to make further stock purchases; or they tend to monitor their portfolios in-
frequently; or they are simply scared of choosing the wrong investments; or
they feel that as long-term investors, they can defer action; or they put off the
time-consuming research necessary to make informed portfolio choices. Long
uninterrupted periods of inactivity may be viewed as a form of investor inertia.

2.4.1 Evidence of inertia
Investor inertia is a common experience and is well documented. The New

York Stock Exchange (NYSE)’s survey of individual shareownership in the
United States, “Shareownership2000” (Grasso, 2000), demonstrates that many
investors have very low levels of trading activity. For example they find that “23
percent of stockholders with brokerage accounts report no trading at all, while
35 percent report trading only once or twice in the last year.” The NYSE survey
also reports (Table 28) that the average holding period for stocks is long, for ex-
ample 2.9 years in the early 1990s. Empirical evidence of inertia also appears in
the economic literature. For example, Madrian and Shea (2001) looked at the
reallocation of assets in employees’ individual 401(k) (retirement) plans and
found “a status quo bias resulting from employee procrastination in making or
implementing an optimal savings decision.” A related study by Hewitt Asso-
ciates (a management consulting firm) found that in 2001, four out of five plan
participants did not do any trading in their 401(k)s. Madrian and Shea explain
that “if the cost of gathering and evaluating the information needed to make
a 401(k) savings decision exceeds the short-run benefit from doing so, indi-
viduals will procrastinate.” The prediction of Prospect Theory (see Kahneman
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and Tversky, 1979) that investors tend to hold onto losing stocks too long has
also been observed in Shefrin and Statman (1985). Another typical cause is
that small investors seem to find it difficult to reverse investment decisions,
as is discussed even in the popular press. A recent newspaper column (by Russ
Wiles in the Arizona Republic, November 30, 2003) states: “Perhaps more than
anything, investor inertia is a key force (in financial markets). When the news
turns sour, people tend to hold off on buying rather than bail out. In 2002,
the toughest market climate in a generation and a year with ample Wall Street
scandals, equity funds suffered cash outflows of just one percent.”

2.4.2 Inertia and long range dependencies in financial time series
One of the outcomes of a limit analysis of an agent-based model of investor

inertia is a stock price process based on fractional Brownian motion, which ex-
hibits long-range dependence (that is correlation or memory in returns). This
is discussed in Section 3.1. In particular, the limit fluctuation process is a frac-
tional Brownian motion.

We recall that fractional Brownian motion BH with Hurst parameter H ∈
(0� 1] is an almost surely continuous and centered Gaussian process with auto-
correlation

(2.6)E
{
BHt B

H
s

} = 1
2
(|t|2H + |s|2H − |t − s|2H)

�

Remark 2.1. Note that the case H = 1
2 gives standard Brownian motion. Also

note that the auto-correlation function is positive definite if and only if H ∈
(0� 1].

Bayraktar et al. (2004) studied an asymptotically efficient wavelet-based es-
timator for the Hurst parameter, and analyzed high frequency S&P 500 index
data over the span of 11.5 years (1989–2000). It was observed that, although
the Hurst parameter was significantly higher than the efficient markets value
of H = 1

2 up through the mid-1990s, it started to fall to that level over the
period 1997–2000 (see Fig. 1). This might be explained by the increase in In-
ternet trading in that period, which is documented, for example, in NYSE’s
“Shareownership2000” (Grasso, 2000; Barber and Odean, 2001; and Choi et
al., 2002), in which it is demonstrated that “after 18 months of access, the Web
effect is very large: trading frequency doubles.” Indeed, as reported in Barber
and Odean (2002), “after going online, investors trade more actively, more
speculatively and less profitably than before.” Similar empirical findings to that
of Bayraktar et al. (2004) were recently reached, using a completely different
statistical technique by Bianchi (2005).

Thus, the dramatic fall in the estimated Hurst parameter in the late 1990s
can be thought of as a posteriori validation of the link the limit theorem in
Bayraktar et al. (2006) provides between investor inertia and long-range de-
pendence in stock prices. We review this model in Section 3.1. An extension
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Fig. 1. Estimates of the Hurst exponent of the S&P 500 index over 1990s, taken from Bayraktar et al.
(2004).

based on state dependent queuing networks with semi-Markov switching is dis-
cussed in Section 3.2.

3 Microstructure models with inert investors

We illustrate the use of microstrucure, or agent-based models, combined
with limit theorems by focusing on investor inertia as a very common character-
istic among small and casual market participants. In Section 3.1 we summarize
earlier work (Bayraktar et al., 2006) that established a mathematical link be-
tween inertia, long-range dependence in stock returns and potential short-lived
arbitrage opportunities for other ‘sophisticated’ parties. Section 3.2 contains
an extension allowing for feedback effects from current prices into the agents’
order rates.

3.1 A microstructure model without feedback

We now introduce the basic concepts and notation of the market microstruc-
ture model analyzed in Bayraktar et al. (2006) that will serve as basis for the
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more sophisticated model in Section 3.2. We start with a financial market with
a set A := {a1� a2� � � � � aN} of agents trading a single risky asset. Each agent
a ∈ A is associated with a continuous-time stochastic process xa = {xat }t�0 on
a finite state space E describing his trading activity.

We take a pragmatic approach to specify the demand. Instead of formulating
an individual optimization problem under budget constraints for the agents, we
start right away with the agent’s order rates. The agent a ∈ A accumulates the
asset at a rate Ψtx

a
t at time t � 0. Here xat may be negative indicating that

the agent is selling. The random process Ψ = {Ψt}t�0 describes the evolution
of the size of a typical trade. It can also be interpreted as a stochastic elasticity
coefficient (the reaction of the price to the market imbalance). We assume that
Ψ is a continuous non-negative semi-martingale which is independent of the
processes xa and that 0 ∈ E. The agents do not trade at times when xat = 0.
The holdings of the agent a ∈ A and the “market imbalance” at time t � 0 are
thus given by, respectively,

(3.1)

t∫
0

Ψsx
a
s ds and

∑
a∈A

t∫
0

Ψsx
a
s ds�

Remark 3.1. In our continuous time model, buyers and sellers arrive at differ-
ent points in time. Hence the economic paradigm that a Walrasian auctioneer
can set prices such that the markets clear at the end of each trading period
does not apply. Rather, temporary imbalances between demand and supply
will occur. Prices will reflect the extent of market imbalance.

All the orders are received by a single market maker. The market maker
clears all trades and prices in reaction to the evolution of market imbalances,
the only component driving asset prices. Reflecting the idea that an individ-
ual agent has diminishing impact on market dynamics if the number of traders
is large, we assume that the impact of an individual order is inversely pro-
portional to the number of possible traders: a buying (selling) order increases
(decreases) the logarithmic stock price by 1/N . The pricing rule for the evolu-
tion of the logarithmic stock price process SN = {SNt }t�0 is linear and taken to
be:

(3.2)dSNt = 1
N

∑
a∈A

Ψtx
a
t dt�

In order to incorporate the idea of market inertia, the agents’ trading
activity is modeled by independent and identically distributed semi-Markov
processes xa. Semi-Markov processes are tailor-made to model individual
traders’ inertia as they generalize Markov processes by removing the require-
ment of exponentially distributed, and therefore thin-tailed, holding (or so-
journ) times. Since the processes xa are independent and identically distrib-
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uted, it is enough to specify the dynamics of some “representative” process
x = {xt}t�0.

3.1.1 Semi-Markov processes
A semi-Markov process x defined on a probability space (Ω�F�P) is spec-

ified in terms of random variables ξn : Ω → E and Tn : Ω → R+, satisfying
0 = T1 � T1 � · · · almost surely and

P{ξn+1 = j� Tn+1 − Tn � t | ξ1� � � � � ξn;T1� � � � � Tn}
= P{ξn+1 = j� Tn+1 − Tn � t | ξn}

for each n ∈ N, j ∈ E and all t ∈ R+, through the relation

(3.3)xt =
∑
n�0

ξn1[Tn�Tn+1)(t)�

In economic terms, the representative agent’s mood in the random time in-
terval [Tn� Tn+1) is given by ξn. The distribution of the length of the interval
Tn+1−Tn may depend on the sequence {ξn}n∈N through the states ξn and ξn+1.
This allows us to assume different distributions for the lengths of the agents’
active and inactive periods, and in particular to model inertia as a heavy-tailed
sojourn time in the zero state.

Remark 3.2. In the present analysis of investor inertia, we do not allow for
feedback effects of prices into agents’ investment decisions. While such an as-
sumption might be justified for small, non-professional investors, it is clearly
desirable to allow active traders’ investment decisions to be influenced by asset
prices. We discuss such an extension in the next section.

We assume that x is temporally homogeneous under the measure P, that is,

(3.4)Q(i� j� t) � P{ξn+1 = j� Tn+1 − Tn � t | ξn = i}
is independent of n ∈ N. By Çinlar (1975, Proposition 1.6), this implies that
{ξn}n∈N is a homogeneous Markov chain on E whose transition probability
matrix (pij) is given by

pij = lim
t→∞Q(i� j� t)�

Clearly, x is an ordinary temporally homogeneous Markov process if Q takes
the form

(3.5)Q(i� j� t) = pij
(
1 − e−λit

)
�

We also assume that the embedded Markov chain {ξn}n∈N satisfies pij > 0 so
that {ξn}n∈N has a unique stationary distribution. The conditional distribution
function of the length of the n-th sojourn time, Tn+1 − Tn, given ξn+1 and ξn
is specified in terms of the semi-Markov kernel {Q(i� j� t); i� j ∈ E� t � 0} and
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the transition matrix P by

(3.6)G(i� j� t) := Q(i� j� t)

pij
= P{Tn+1 − Tn � t | ξn = i� ξn+1 = j}�

The semi-Markov processes are assumed to satisfy the following conditions.

Assumption 3.3.

(i) The average sojourn time at state i ∈ E is finite:

(3.7)mi := E[Tn+1 − Tn | ξn = i] < ∞�

Here E denotes the expectation operator with respect to P.
(ii) There exists a constant 1 < α < 2 and a locally bounded function

L : R+ → R+ which is slowly varying at infinity (e.g. log), i.e.,

lim
t→∞

L(xt)

L(t)
= 1 for all x > 0�

such that

(3.8)P{Tn+1 − Tn � t | ξn = 0} ∼ t−αL(t)�
Here we use the notation f (t) ∼ g(t) for two functions f� g : R+ → R+
to mean that limt→∞ f (t)/g(t) = 1.

(iii) The distributions of the sojourn times at state i �= 0 satisfy

(3.9)lim
t→0

P{Tn+1 − Tn � t | ξn = i}
t−(α+1)L(t)

= 0�

(iv) The distribution of the sojourn times in the various states have contin-
uous and bounded densities with respect to Lebesgue measure on R+.

The key parameter is the tail index α of the sojourn time distribution of the
inactive state zero. Condition (3.8) is satisfied if, for instance, the length of the
sojourn time at state 0 ∈ E is distributed according to a Pareto distribution.
The idea of inertia is then reflected by (3.9): the probability of long uninter-
rupted trading periods is small compared to the probability of an individual
agent being inactive for a long time. In fact, it is natural to think of the sojourn
times in the various active states as being thin tailed as in the exponential dis-
tribution since small investors typically do not trade persistently.

3.1.2 A limit theorem for financial markets with inert investors
We assume that the semi-Markov processes xa are stationary. Stationarity

can be achieved by a suitable specification of the common distribution of the
initial states and initial sojourn times. We denote the resulting measure on the
canonical path space by P∗. Independence and stationarity of the semi-Markov
processes guarantees that the logarithmic price process can be approximated
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pathwise by the process {st}t�0 defined by

st = μ

t∫
0

Ψs ds where μ := E∗xa0

when the number of agents grows to infinity. Our functional central limit theo-
rem for stationary semi-Markov processes shows that after suitable scaling, the
fluctuations around (st)t�0 can be approximated in law by a process with long
range dependence. The convergence concept we shall use is weak convergence
with respect to the measure P∗ of the Skorohod space D of all right continuous
processes. We write L- limn→∞ Yn = Y if {Yn}n∈N is a sequence of D-valued
stochastic processes that converges weakly to the process Y .

The convergence result is formulated in terms of a scaling limit for the
processes {xaTt}t�0 (T ∈ N). For T large, xaTt is a “speeded-up” semi-Markov
process. In other words, the investors’ individual trading dispensations are
evolving on a faster scale than Ψ . Observe, however, that we are not altering
the main qualitative feature of the model: agents still remain in the inactive
state for relatively much longer times than in an active state. In the rescaled
model the logarithmic asset price process SN�T is given by

(3.10)SN�Tt = 1
N

t∫
0

∑
a∈A

Ψux
a
Tu du�

The central limit theorem allows us to approximate the fluctuations around the
first-order approximation as N → ∞. In terms of the Gaussian processes XT

and YT defined by

(3.11)

XT
t � L- lim

N→∞
T 1−H 1√

N

N∑
a=1

(
xaTt − μt

)
and YT

t �
t∫

0

XT
s ds�

with H = (3 −α)/2, the fluctuations around the first-order approximation can
be approximated by an integral of the elasticity coefficient with respect to YT :

L- lim
N→∞

√
N

{
S
N�T
t − μt

}
0�t�1 =

{ t∫
0

Ψs dYT
s

}
0�t�1

�

In order to see more clearly the effects of investor inertia, we rescale the price
process in space and time and let T tend to infinity. In a benchmark model
with many agents where Ψ ≡ 1 these fluctuations, when suitably normalized,
can be described by a fractional Brownian motion BH if T → ∞. The Hurst
coefficient is related to the degree of investor inertia.
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Theorem 3.4. (See Bayraktar et al., 2006 .) Let H = 3−α
2 . Assume that Ψ ≡ 1,

that Assumption 3.3 holds and that μ �= 0. Then there exists σ > 0 such that

(3.12)

L- lim
T→∞

L- lim
N→∞

T 1−H
√
N√

L(T)

{
SN�Tt − μt

}
0�t�1 = {

σBHt
}

0�t�1�

To generalize this result to a market in which the agents’ order rates are
coupled by a stochastic elasticity coefficient as in (3.2), we need the following
approximation result for stochastic integrals of continuous semi-martingales
with respect to fractional Brownian motion.

Theorem 3.5. (See Bayraktar et al., 2006.) Let {Ψn}n∈N be a sequence of good
semimartingales and {Zn}n∈N be a sequence of D-valued stochastic processes that
satisfy

(i) The sample paths of the processes Zn are almost surely of zero quadratic
variation on compact sets, and P{Zn

0 = 0} = 1.
(ii) The stochastic integrals

∫
Ψn dZn and

∫
Zn dZn exist as limits in prob-

ability of Stieltjes-sums, and the sample paths t (→ ∫ t
0 Z

n
s dZn

s and t (→∫ t
0 Ψ

n
s dZn

s are càdlàg.

If Ψ is a continuous semimartingale and if BH is a fractional Brownian motion
process with Hurst parameterH > 1

2 , then the convergenceL- limn→∞(Ψn�Zn) =
(Ψ�BH) implies the convergence

L- lim
n→∞

(
Ψn�Zn�

∫
Ψn dZn

)
=

(
Ψ�BH�

∫
Ψ dBH

)
�

As an immediate corollary to Theorem 3.5 we see that the fluctuations of
the price process (3.10) around its first-order approximation converge in dis-
tribution to a stochastic integral with respect to fractional Brownian motion.

Corollary 3.6. Let Ψ be a continuous semi martingale with Doob–Meyer decom-
position Ψ = M +A. If E{[M�M]T } < ∞, E{|A|T } < ∞ and μ �= 0, then there
exists σ > 0 such that

(3.13)

L- lim
T→∞

L- lim
N→∞

T 1−H
√
N√

L(T)

{
SN�Tt − μ

∫ t

0
Ψs ds

}
0�t�1

=
{
σ

∫ t

0
Ψs dBHs

}
0�t�1

�

The increments of a fractional Brownian motion with Hurst coefficient
H ∈ (1

2 � 1] are positively correlated. The correlation increases in H. Thus,
the limit theorem reveals that, in isolation, investor inertia may lead to long
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range dependence in asset returns. Indeed, a greater degree of inactivity, rep-
resented by a smaller tail index α, leads to a larger H, and so greater positive
correlation between returns. Since fractional Brownian motion is not a semi-
martingale, it may also lead to arbitrage opportunities for other traders whose
impact has not been considered in the model so far. Explicit arbitrage strate-
gies for various models were constructed in, e.g. Bayraktar and Poor (2005).

Remark 3.7. In a model without inertia where all the sojourn time distributions
are thin-tailed, the logarithmic stock price fluctuations can be approximated in
law by a process of the form

(3.14)

{∫ t

0
Ψs dWs

}
0�t�1

where W is a standard Brownian motion. Thus, when all traders’ mood
processes are standard Markov processes and Ψ is constant, we recover in
the limit the standard Black–Scholes–Samuelson geometric Brownian motion
model.

The approach of studying queuing systems through their limiting behavior
has a long history in many applications, see Whitt (2002), for example. This
analysis of investor inertia is built upon the works of Taqqu et al. (1997) on In-
ternet traffic. However, even the simple model we have discussed so far shows
how economic applications lead to new mathematical challenges: in the tele-
traffic application, it is sufficient to consider a binary (on/off) state space, but
when agents buy, sell or do nothing, there must be at least three states. This re-
quires different techniques from the binary case. Our functional central limit
theorems for stationary semi-Markov processes may also serve as a mathe-
matical basis for proving heavy-traffic limits in the multilevel network models
studied in, e.g. Duffield and Whitt (1998a, 1998b).

3.2 A limit theorem with feedback effects

The model in the previous section assumes that investors’ actions affect the
price, but prices did not affect the agents’ demands. This assumption might be
justified for Internet or new economy stocks where no accurate information
about the actual underlying fundamental value is available. In such a situation,
price is not always a good indicator of value and is often ignored by unin-
formed small investors. In general, however, it is certainly desirable to allow
for feedback effects from current prices into the agents’ order rates. In this
section we extend our previous model to allow for feedback effects from prices
into the agents’ order rates. At the same time we provide a unified mathemat-
ical framework for analyzing microstructure models with asynchronous order
arrivals. Our approach is based on methods and techniques from state depen-
dent Markovian service networks. Mathematically, it extends earlier results in
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Anisimov (2002) beyond semi-Markov models with thin-tailed sojourn time
distributions.

3.2.1 The dynamics of logarithmic asset prices
Let us now be more precise about the probabilistic structure our model.

We assume that the agents’ orders arrive with an order rate that depends on
the price and the investor sentiment. Each order is good for one unit of the
stock. Specifically, we associate to each agent a ∈ A two independent stan-
dard Poisson processes {Πa+(t)}t�0 and {Πa−(t)}t�0, a stationary semi-Markov
process xa on E satisfying Assumption 3.3, and bounded Lipschitz continuous
rate functions λ± : E × R → R+. The rate functions along with the Pois-
son processes Πa± specify the arrivals times of buying and selling orders. The
agent’s holdings at time t � 0 are given by

(3.15)Πa+

( t∫
0

λ+
(
xau� S

N
u

)
du

)
−Πa−

( t∫
0

λ−
(
xau� S

N
u

)
du

)

where {SNt }t�0 denotes the logarithmic asset price process. As before, a buying
(selling) order increases (decreases) the logarithmic price by 1/N . Assuming
for simplicity that SN0 = 0, we thus obtain

(3.16)

SNt = 1
N

∑
a∈A

Πa+

( t∫
0

λ+
(
xau� S

N
u

)
du

)

− 1
N

∑
a∈A

Πa−

( t∫
0

λ−
(
xau� S

N
u

)
du

)
�

Remark 3.8.

(i) In the model studied in the previous section, the agents continuously
accumulated the stock at rates specified by semi-Markov processes.
Our current models assume that stocks are purchased at random points
in times. The arrival times of buying and selling times follow exponen-
tial distributions conditional on random arrival rates that depend on
current prices and exogenous semi-Markov processes.

(i) As before, we think of xa as being the investor’s “mood” (for trading)
process. Loosely speaking, λ+(xat � s)− λ−(xat � s) may be viewed as the
agent’s excess demand at time t at a logarithmic price level s, given his
trading mood xat .

(ii) To develop a model of interaction, in which the participants are inert,
out of (3.15), it is natural to assume that λ±(0� s) ≡ 0 and that the
buying and selling rates λ+(x� ·) and λ−(x� ·) are increasing, resp. de-
creasing, in the second variable meaning that meaning high (low) prices
temper buying (selling) rates.
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The sum of independent Poisson processes is a Poisson process with inten-
sity given by the sum of the intensities. As a result, the logarithmic price process
satisfies the equality

(3.17)

SNt = 1
N
Π+

(
N∑
a=1

∫ t

0
λ+

(
xau� S

N
u

)
du

)

− 1
N
Π−

(
N∑
a=1

∫ t

0
λ−

(
xau� S

N
u

)
du

)
in distribution where Π+ and Π− are independent standard Poisson processes.
Since our focus will be on a limit result for the distribution of the price process
as the number of agents grows to infinity, we may with no loss of generality
assume that the logarithmic price process is defined by (3.17) rather than (3.16).

Assumption 3.9.

(i) The rate functions λ± are uniformly bounded.
(ii) For each x ∈ E, the rate functions λ±(x� ·) are continuously differ-

entiable with first derivative bounded in absolute value by some con-
stant L.

Our convergence results will be based on the following strong approxima-
tion result which allows for a pathwise approximation of a Poisson process by
a standard Brownian motion living on the same probability space.

Lemma 3.10. (See Kurtz, 1978.) A standard Poisson process {Π(t)}t�0 can be
realized on the same probability space as a standard Brownian motion {B(t)}t�0
in such a way that the almost surely finite random variable

sup
t�0

|Π(t)− t − B(t)|
log(2 ∨ t)

has a finite moment generating function in the neighborhood of the origin and in
particular finite mean.

In view of Assumption 3.9(i), the strong approximation result yields the fol-
lowing alternative representation of the logarithmic asset price process:

SNt = 1
N

{
N∑
a=1

t∫
0

λ
(
xau� S

N
u

)
du+ B+

(
N∑
a=1

t∫
0

λ+
(
xau� S

N
u

)
du

)

(3.18)− B−

(
N∑
a=1

t∫
0

λ−
(
xau� S

N
u

)
du

)}
+O

(
logN
N

)
�
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where λ(xau� ·) denotes the excess order rate of the agent a ∈ A, given his mood
for trading xau and O(logN/N) holds uniformly over compact time intervals.
Using this representation of the logarithmic price process our goal is to prove
approximation results for the process {SNt }t�0. In a first step we show that it
can almost surely be approximated by the trajectory of an ordinary differen-
tial equation (“fluid limit”). In the subsequent step, we apply a result from
(Bayraktar et al., 2006) to show that, after suitable scaling, the fluctuations
around this first-order approximation can be described in terms of a fractional
process {Zt}t�0 of the form

dZt = μtZt dt + σt dBHt �

In a benchmark model without feedback, where the order rates do not depend
on current prices, the process {Zt}t�0 reduces to a fractional Brownian mo-
tion. That is, we recover the type of results of Section 3.1.2 with the alternative
model presented in this section.

3.2.2 First-order approximation
In order to prove our first convergence result, it is convenient to denote by

(3.19)λ(x� s) � λ+(x� s)− λ−(x� s)
the accumulated net order rate at a given logarithmic price level s ∈ R and
trading mood x ∈ E and by

λ̄(s) � λ̄+(s)− λ̄−(s)
the expected excess order flow where

λ̄±(s) �
∫
E

λ±(x� s)ν(dx)�

and ν is the stationary distribution of the semi-Markov process xt . We are first
going to show that in a financial market with many agents the dynamics of the
logarithmic price process can be approximated by the solution {st}t�0 to the
ODE

(3.20)
d
dt
st = λ̄(st)�

with initial condition s0 = 0. To this end, we need to prove that the average
excess order rate converges almost surely to the expected excess order flow
uniformly on compact time intervals.

Lemma 3.11. Uniformly on compact time intervals

(3.21)lim
N→∞

1
N

N∑
a=1

t∫
0

λ±
(
xau� su

)
du =

t∫
0

λ̄±(su) du P∗-a.s.
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Proof. The stationary semi Markov processes xa are independent, and so the
random variables

∫ t
0 λ(x

a
u� su) du (a = 1� 2� � � �) are also independent. Thus,

the law of large numbers for independent random variables along with Fubini’s
theorem (to exchange the sum and the integral) and bounded convergence
theorem (to exchange the limit and the integral) yields convergence for each t.
In order to prove that the convergence holds uniformly over compact time
intervals we will use uniform law of large numbers of Potscher and Prucha
(1989). Denoting DE[0� t] the class of all cádlág functions y : [0� t] → E we
need to show that the maps q± : DE[0� t] × [0� t] → R defined by

q±(y� t) �
t∫

0

λ±
(
y(u)� su

)
du

are continuous. Since the rate functions are bounded, it is enough to show that
the map y (→ ∫ ·

0 λ±(y(u)� su) du is continuous uniformly over compact time
intervals.

To this end, we denote by d the metric defined in Ethier and Kurtz (1986,
(3.5.2)) which induces the Skorohod topology in DE[0� t] and recall that
limn→∞ d(yn� y) = 0 if and only if

(3.22)lim
n→∞ sup

0�s�t

∣∣yn ◦ τn(s)− y(s)
∣∣ = 0

for a suitable sequence of strictly increasing time-shifts τn; see Ethier and
Kurtz (1986, p. 117) for details. Let {yn} denote a sequence in DE[0� t] that
converges to y and put

λn±(u) � λ±
(
yn(u)� su

)
�

In view of the transformation formula for Lebesgue integrals and because
τ(0) = 0 and τ−1

n (t) � t we obtain

t∫
0

[
λn±(u)− λ±(u)

]
du =

τ−1
n (t)∫
0

[
λn± ◦ τn(u)τ′n(u)− λ±(u)

]
du

−
t∫

τ−1
n (t)

λ±(u) du

=
τ−1
n (t)∫
0

[
λn± ◦ τn(u)− λ±(u)

]
du

+
τ−1
n (t)∫
0

λn± ◦ τn(u)
[
τ′n(u)− 1

]
du
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−
t∫

τ−1
n (t)

λ±(u) du�

By Ethier and Kurtz (1986, (3.5.5)–(3.5.7)),

lim
n→∞ sup

0�u�t

∣∣τ′n(u)− 1
∣∣ = 0 and lim

n→∞ sup
0�u�t

∣∣τ−1
n (u)− u

∣∣ = 0

so that the last two terms on the right-hand side of the inequality above van-
ish uniformly on compact time intervals. As far as the first term is concerned,
observe that boundedness of the rate function’s derivative with respect to the
second argument yields∣∣λ±

(
yn ◦ τn(u)� sτn(u)

) − λ±
(
y(u)� su

)∣∣
� L

∣∣yn ◦ τn(u)− y(u)
∣∣ + L

∣∣s ◦ τn(u)− s(u)
∣∣�

As a continuous function s is uniformly continuous over compact time inter-
vals. This, along with (3.22) yields

lim
n→∞ sup

0�u�t

∣∣λ±
(
yn ◦ τn(u)� sτn(u)

) − λ±
(
y(u)� su

)∣∣ = 0

so that the maps q± are indeed continuous. Thus, the uniform law of large
numbers yields

lim
N→∞

1
N

N∑
a=1

q±
(
xau� u

) = lim
N→∞

1
N

N∑
a=1

u∫
0

λ±
(
xav� sv

)
dv = λ±(μ� su)

almost surely uniformly on compact time intervals. �

We are now ready to state and prove our functional law of large numbers.

Theorem 3.12. As N → ∞, the sequence of stochastic processes {SNt }t�0
(N ∈ N) converges almost surely to the deterministic process {st}t�0:

lim
N→∞

SNt = st P∗-a.s.

where the convergence is uniform over compact time intervals.

Proof. In view of the strong approximation result formulated in Lemma 3.10
and because the rate functions are uniformly bounded,∣∣∣∣∣Π±

(
N∑
a=1

t∫
0

λ±
(
xau� S

N
u

)
du

)
−

N∑
a=1

t∫
0

λ±
(
xau� S

N
u

)
du

− B±

(
N∑
a=1

t∫
0

λ±
(
xau� S

N
u

)
du

)∣∣∣∣∣
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is of the order O(logN) almost surely where B± are the Brownian motions
used in (3.18). Since the rate functions are uniformly bounded, the law of iter-
ated logarithm for Brownian motion yields

lim
N→∞

sup
u�t

1
N
B±

(
N∑
a=1

u∫
0

λ±
(
xav� S

N
v

)
dv

)
= 0 P∗-a.s.

It follows from this and Lemma 3.11 above, that the quantities

BNt � 1
N

∣∣∣∣∣B+

(
N∑
a=1

t∫
0

λ+
(
xau� S

N
u

)
du

)
− B−

(
N∑
a=1

t∫
0

λ−
(
xau� S

N
u

)
du

)∣∣∣∣∣
and

ΛN
t �

∣∣∣∣∣ 1
N

N∑
a=1

t∫
0

{
λ
(
xau� su

) − λ̄(su)
}

du

∣∣∣∣∣
converge to zero uniformly over compact time intervals as N → ∞.

Let us now fix ε > 0. Due to Lemma 3.10 there exists N∗ ∈ N such that for
all N � N∗ and uniformly on compact time sets, for l � t we can write

∣∣SNl − sl
∣∣ �

∣∣∣∣∣ 1
N

N∑
a=1

l∫
0

λ
(
xau� S

N
u

)
du−

l∫
0

λ̄(su) du

∣∣∣∣∣ + BNl + ε

�
∣∣∣∣∣ 1
N

N∑
a=1

l∫
0

{
λ
(
xau� S

N
u

) − λ
(
xau� su

)}
du

∣∣∣∣∣
+ΛN

l + BNl + ε P∗-a.s.

Lipschitz continuity of the rate functions yields

∣∣SNl − sl
∣∣ � L

l∫
0

sup
0�r�u

∣∣SNr − sr
∣∣ du+ΛN

l + BNl + ε

� L

t∫
0

sup
0�r�u

∣∣SNr − sr
∣∣ du+ sup

0�r�t

ΛN
r + sup

0�r�t

BNr + ε

P∗-a.s.
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for some L > 0 and so

(3.23)

sup
0�r�t

∣∣SNr − sr
∣∣ � L

t∫
0

sup
0�r�u

∣∣SNr − sr
∣∣ du

+ sup
0�r�t

ΛN
r + sup

0�r�t

BNr + ε P∗-a.s.

Now, an application of Gronwall’s lemma yields

sup
0�r�t

∣∣SNr − sr
∣∣ �

(
sup

0�r�t

ΛN
r + sup

0�r�t

BNr + ε
)
eLt P∗-a.s.

for all N � N∗. This proves our assertion. �

3.2.3 Second-order approximation
In this section we analyze the fluctuations of the logarithmic price process

around its first-order approximation. We are interested in the distribution of
asset prices around their first-order approximation as N → ∞. In view of the
representation (3.18) and by self-similarity of Brownian motion we may thus
assume that {SNt }t�0 is defined by the integral equation:

(3.24)

SNt = 1
N

N∑
a=1

t∫
0

λ
(
xau� S

N
u

)
du+ 1√

N
B+

(
1
N

N∑
a=1

t∫
0

λ+
(
xau� S

N
u

)
du

)

− 1√
N
B−

(
1
N

N∑
a=1

t∫
0

λ−
(
xau� S

N
u

)
du

)
+ O

(
logN
N

)
�

As we shall see, the fluctuations around the first-order approximation are
driven by two Gaussian processes. The first,

(3.25)Xt � B+

( t∫
0

λ̄+(su) du

)
− B−

( t∫
0

λ̄−(su) du

)
�

captures the randomness in the agents’ trading times. The second, {Yt}t�0, is
defined in terms of the integral of a non-stationary Gaussian process whose
covariance function depends on the first-order approximation. It captures the
second source randomness generated by the agents’ trading activity. Specifi-
cally,

(3.26)Yt �
t∫

0

ys ds�

where {yt}t�0 denotes the centered Gaussian process whose covariance
function γ is given by the covariance function of the stochastic process
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{λ(xt� st)}t�0, i.e.,

(3.27)γ(t� u) � E
[
λ(xt� st)λ(xu� su)

] − λ̄(st)λ̄(su)�

It turns out that the fluctuations can be approximated in distribution by the
process {Zt}t�0 which satisfies the integral equation

(3.28)Zt =
t∫

0

λ̄′(su)Zu du+ Yt +Xt�

Our goal is to establish the following second-order approximation for the
asset price process in an economy with many market participants.

Theorem 3.13. The fluctuations of the market imbalance {SNt }0�t�1 around its
first-order approximation can be described by the process {Zt}0�t�1 defined in
(3.28). More precisely,

L- lim
N→∞

√
N

{
SNt − st

}
0�t�1 = {Zt}0�t�1�

The proof of Theorem 3.13 requires some preparation. For notational
convenience we introduce stochastic processes QN = {QN

t }0�t�1, YN =
{YN

t }0�t�1 and XN = {XN
t }0�t�1 by, respectively,

(3.29)

QN
t �

√
N

(
SNt − st

)
and YN

t �
N∑
a=1

t∫
0

λ(xau� su)− λ̄(su)√
N

du�

and

(3.30)

XN
t � B+

(
1
N

N∑
a=1

t∫
0

λ+
(
xau� S

N
u

)
du

)

− B−

(
1
N

N∑
a=1

t∫
0

λ−
(
xau� S

N
u

)
du

)
�

We first prove convergence in distribution of the sequence {(XN�YN)}N∈N to
(X�Y).

Proposition 3.14. The sequence {(XN�YN)}N∈N converges in distribution to the
process (X�Y) defined by (3.25) and (3.26).

Proof. For any α ∈ (0� 1
2) and T > 0, there exist integrable and hence almost

surely finite random variables M± such that for all t1� t2 � T we have∣∣B±(t1)− B±(t2)
∣∣ � M±|t1 − t2|α P∗-a.s.�
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see, for instance, Karatzas and Shreve (1991, Remark 2.12). Thus, the first-
order approximation shows that the sequence of processes {XN}N∈N converges
almost surely to X on any compact time interval. Since the processes

t∫
0

λ(xau� su)− λ̄(su)√
N

du

have Lipschitz continuous sample paths and the semi-Markov processes
are independent, the central limit theorem for Lipschitz processes (Whitt
(2002, Corollary 7.2.1)) shows that {YN}N∈N converges in distribution to the
Gaussian process Y . As a result, both sequences {XN}N∈N and {YN}N∈N are
tight. Since {XN}n∈N is also C-tight, the sequence {(XN�YN)}N∈N is tight. It
is therefore enough to prove weak convergence of the finite dimensional dis-
tributions of the process (XN�YN) to the finite dimensional distributions of
(X�Y).

In order to establish weak convergence of the one-dimensional distributions
we fix a Lipschitz continuous functions with compact support F : R2 → R. We
may with no loss of generality assume that both the Lipschitz constant and the
diameter of the support of F equal one. In this case∣∣∣∫ F

(
XN
t � Y

N
t

)
dP∗ −

∫
F
(
Xt�Y

N
t

)
dP∗

∣∣∣
�

∫
min

{∣∣XN
t −Xt

∣∣� 1
}

dP∗�

In view of the convergence properties of the sequence {XN}N∈N, there exists,
for any ε > 0, a constant N∗ ∈ N such that

sup
0�t�1

∫
min

{∣∣XN
t −Xt

∣∣� 1
}

dP∗ � ε for all N � N∗�

This yields

lim
N→∞

∣∣∣∫ F
(
XN
t � Y

N
t

)
dP∗ −

∫
F
(
Xt�Y

N
t

)
dP∗

∣∣∣ = 0�

Since the random variables Xt and YN
t are independent, we also have that

lim
N→∞

∫
F
(
Xt�Y

N
t

)
dP∗ =

∫
F(Xt� Yt) dP∗�

This proves vague convergence3 of the one-dimensional marginal distributions
of (XN�YN) to the one-dimensional distributions of (X�Y) and hence weak

3 A sequence of probability measure {μn} converges to a measure μ in the vague topology if
limn→∞

∫
f dμn = ∫

f dμ for all continuous functions f with bounded support. The vague limit μ
is not necessarily a probability measure. However, if there is an a priori reason that μ is a probability
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convergence. Weak Convergence of the finite dimensional distributions follows
from similar considerations. �

The following “compact containment condition” is key to the second-order
approximation.

Lemma 3.15.

(i) The sequence of stochastic processes {QN}N∈N is bounded in probability.
That is, for any ε > 0, there exists N∗ ∈ N and K < ∞ such that

(3.31)P∗[ sup
0�t�1

∣∣QN
t

∣∣ > K
]
< ε for all N � N∗�

(ii) If fN = {fNt }t�0 be a sequence of non-negative random processes such
that

(3.32)lim
N→∞

1∫
0

fNu du = 0 in probability�

then, for all δ > 0,

lim
N→∞

P∗
[

sup
0�t�1

∣∣∣∣∣
t∫

0

QN
u f

N
u du

∣∣∣∣∣ > δ

]
= 0�

Proof. (i) The strong approximation for Brownian motion yields the represen-
tation

(3.33)

QN
t =

∫ t
0
∑N

a=1{λ(xau� SNu )− λ(xau� su)} du√
N

+ YN
t +XN

t

+O

(
logN√
N

)
�

By Proposition 3.14 the sequence {(XN�YN)}n∈N is tight, and hence it is
bounded in probability (see e.g. Duffield and Whitt, 1998a). As a result, Lip-
schitz continuity of the rate functions yields

sup
0�t�1

∣∣QN
t

∣∣ � L

T∫
0

sup
0�t�u

∣∣QN
u

∣∣ du+ sup
0�t�1

∣∣YN
t

∣∣ + sup
0�t�1

∣∣XN
t

∣∣
+O

(
logN√
N

)
�

measure, then weak convergence of {μn} to μ can be established by analyzing integrals of continuous
and hence Lipschitz continuous functions with bounded support. See e.g. Bauer (1992) and Billingsley
(1995).
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for some L > 0. Hence, by Gronwall’s inequality,

sup
0�t�1

∣∣QN
t

∣∣ � eLT
[

sup
0�t�1

∣∣YN
t

∣∣ + sup
0�t�1

∣∣XN
t

∣∣ +O
(

logN√
N

)]
P∗-a.s.

This proves (i).
(ii) Let us fix ε > 0. There exists a constant N∗ such that when N � N∗

there exist sets ΩN and AN such that

1∫
0

fNu du <
ε

2
on ΩN and such that P∗[ΩN ] � 1 − ε

2

and

sup
0�t�1

|QN
t | < K on AN and such that P∗[AN ] � 1 − ε

2
�

Hence

sup
0�t�1

∣∣∣∣∣
t∫

0

QN
u f

N
u du

∣∣∣∣∣ � sup
0�t�1

∣∣QN
t

∣∣ 1∫
0

fNu du < Kε on AN ∩ΩN�

�

Proof of Theorem 3.13. Let us first define a sequence of stochastic processes
Q̃N = {Q̃N

t }0�t�1 by

Q̃N
t �

t∫
0

λ̄′(su)Q̃N
u du+ YN

t +XN
t �

By the continuous mapping theorem and Lemma 3.14 the sequence {Q̃N}N∈N

converges in distribution to the process Z defined in (3.28). It is now enough
to show that

(3.34)lim
N→∞

sup
0�t�1

∣∣QN
t − Q̃N

t

∣∣ = 0 in probability.

To this end, let EN
t � QN

t − Q̃N
t . From the definition of Q̃N

t and the represen-
tation (3.33) of QN

t we obtain

EN
t =

t∫
0

λ̄′(su)EN
u du+ 1√

N

t∫
0

N∑
a=1

{
λ
(
xau� S

N
u

) − λ
(
xau� su

)}
du

−
t∫

0

λ̄′(su)QN
u du
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=
t∫

0

λ̄′(su)EN
u du+

t∫
0

(
1
N

N∑
a=1

λ′(xau� su) − λ̄′(su)
)
QN
u du

+
∫ t

0

(
1
N

N∑
a=1

λ′(xau� ξNu ) − λ′(xau� su)
)
QN
u du�

The second equality follows from the mean value theorem for λ(xau� ·),

λ
(
xau� S

N
u

) − λ
(
xau� su

) = 1√
N
λ′(xau� ξNu )

QN
u �

where ξNu lies between 1
N S

N
u and su. We put

fN�1u � 1
N

N∑
a=1

λ′(xau� su) − λ̄′(su) and

fN�2u � 1
N

N∑
a=1

λ′(xau� ξNu ) − λ′(xau� su)
in order to obtain

sup
0�s�t

∣∣EN
s

∣∣ � L

t∫
0

sup
0�s�u

∣∣EN
s

∣∣ du+
∣∣∣∣∣ sup
0�s�t

s∫
0

∣∣fN�1u

∣∣QN
u du

∣∣∣∣∣
+

∣∣∣∣∣ sup
0�s�t

∫ s

0

∣∣fN�2u

∣∣QN
u du

∣∣∣∣∣�
The processes |fN�1| and |fN�2| satisfy the condition (3.32) of Lemma 3.15
by the law of large numbers. Thus, an application of Gronwall’s lemma yields
(3.34). �

3.2.4 Approximation by a fractional Ornstein–Uhlenbeck process
So far we have shown that the fluctuations of the logarithmic price process

around its first-order approximation can be described in terms of an Ornstein–
Uhlenbeck process Z driven by two Gaussian processes X and Y . In order
to see more clearly the effects of investor inertia on asset processes we need
to better understand the dynamics of Y . As before, this will be achieved by a
proper scaling of the semi-Markov processes xa in time and the price process
in space. Specifically, we introduce a family of processes SN�T (T ∈ N) with
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initial value 0 by

S
N�T
t = 1

NT

{
Π+

(
T

N∑
a=1

t∫
0

λ+
(
xaTu� S

N�T
u

)
du

)

−Π−

(
T

N∑
a=1

t∫
0

λ−
(
xaTu� S

N�T
u

)
du

)}
�

The strong approximation result for Poisson processes with respect to Brown-
ian motion allow us to represent the process {SN�Tt }t�0 as in (3.18) with
the semi-Markov processes {xat }t�0 replaced by the “speeded-up” processes
{xaTt}t�0. Moreover, by Lemma 3.11, the sequence of processes

ΛN�T
t �

∣∣∣∣∣ 1
N

N∑
a=1

t∫
0

{
λ
(
xaTu� su

) − λ̄(su)
}

du

∣∣∣∣∣
converges to zero uniformly over compact time intervals asN → ∞. Following
the same line of arguments as in the proof of Proposition 3.12 it can then be
shown that for any T > 0

(3.35)lim
N→∞

SN�Tt = st P∗-a.s.

Here {st}t�0 denotes the deterministic process defined by the ordinary differ-
ential equation (3.20) with initial condition s0 = 0 and the convergence holds
uniformly over compact time intervals. Thus, the first-order approximation is
independent of T . By analogy to (3.24)–(3.28) introduce a Gaussian process
YT by

(3.36)YT
t �

t∫
0

yTs ds�

where {yTt }t�0 denotes the centered Gaussian process with covariance function

γT (t� u) � E
[
λ(xTt� st)λ(xTu� su)

] − λ̄(st)λ̄(su)�

Following the same arguments in the proof of Theorem 3.13, we see that as the
number of agents tends to infinity the price fluctuations round the fluid limit
can be approximated in distribution by a process {ZT

t }t�0 of the form

ZT
t =

t∫
0

λ̄′(su)ZT
u du+ YT

t + 1√
T
Xt�



Ch. 15. Queuing Theoretic Approaches to Financial Price Fluctuations 669

Proposition 3.16. For any T , the fluctuations of the logarithmic price process
{SN�Tt }0�t�1 around its first-order approximation can be described by the process
{ZT

t }0�t�1. More precisely,

L- lim
N→∞

√
N

{
SN�Tt − st

}
0�t�1 = {

ZT
t

}
0�t�1�

To take the T -limit, we need the following assumption on the structure of
the rate functions.

Assumption 3.17. The rate function λ defined in (3.19) can be written as

(3.37)λ(x� s) = f (x)g(s)+ h(s)�

Moreover, the function f in (3.37) is one-to-one and μ̂ � f (0) �= E∗f (x0).

Example 3.18. The previous assumption is always satisfied if (xat )t�0 is a sta-
tionary on/off process, i.e., if E = {0� 1}. In this case

xat = λ(xat � st)− λ(0� st)
λ(1� st)− λ(0� st)

�

and the representation (3.37) holds with

f (x) = x� g(s) = λ(1� s)− λ(0� s) and h(s) = λ(0� s)�

We are now ready to show that the fluctuations of the logarithmic stock
price around its first-order approximation behaves like a fractional Ornstein–
Uhlenbeck process.

Theorem 3.19. Under the Assumptions 3.9 and 3.17 we have that

L- lim
T→∞

L- lim
N→∞

T 1−H
√
N√

L(T)

{
SN�Tt − st

}
0�t�1 = {

Ẑt
}

0�t�1�

Here Ẑ denotes unique solution starting at zero to the stochastic differential equa-
tion

dẐt = λ̄′(st)Ẑt dt + σg(st) dBHt

where BH is a fractional Brownian motion with Hurst coefficient H = 3−α
2 . The

integral with respect to BH is understood as a limit in probability of Stieltjes sums.

Proof. The proof uses modifications of arguments given in the proof of Theo-
rem 3.13 and the approximation result for integrals with respect to fractional
Brownian motion in Bayraktar et al. (2006).
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(i) In a first step we study the dynamics of the process {YN�T
t }t�0 defined

by

YN�T
t =

N∑
a=1

t∫
0

λ(xaTu� su)− λ̄(su)√
N

du�

Under Assumption 3.17 we can write

YN�T
t =

N∑
a=1

t∫
0

1√
N

[
f
(
xaTu

)
g(su)+ h(su)− λ̄(su)

]
du

(3.38)=
N∑
a=1

t∫
0

1√
N

[
f
(
xaTu

) − μ̂
]
g(su) du�

Since f is one-to-one, (f (xat ))t�0 is a semi-Markov process that has
the same sojourn time structure as the underlying semi-Markov process
(xat )t�0. In particular, f (0) is the state whose sojourn time distribution
has heavy tails. Therefore it follows from Bayraktar et al. (2006, Theo-
rem 4.1) that

(3.39)

L- lim
T→∞

L- lim
N→∞

T 1−H
{

1√
L(T)

YN�T

}
0�t�1

=
{
σ

t∫
0

g(su) dBHu

}
0�t�1

for some σ > 0 because μ̂ �= f (0).
(ii) Let us now define a family of stochastic processes Q̃N�T = {Q̃N�T

t }0�t�1
by

Q̃N�T
t �

t∫
0

λ̄′(su)Q̃N�T
u du+ T 1−H

√
L(T)

YN�T
t + T 1/2−H

√
L(T)

XN
t �

Since the rate functions are bounded and H > 1
2

lim
T→∞

sup
N

sup
0�t�1

T 1/2−H
√
L(T)

XN
t = 0 P-a.s.

almost surely, and the continuous mapping theorem along with (i)
yields

L- lim
T→∞

L- lim
N→∞

{
Q̃N�T
t

}
0�t�1 = {

Ẑt
}

0�t�1�
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(iii) Let us put

QN�T
t � T 1−H

√
N√

L(T)

(
SN�Tt − st

)
�

Up to a term of the order logN√
N

we obtain

QN�T
t =

∫ t
0
∑N

a=1{λ(xaTu� SN�Tu )− λ(xaTu� su)} du√
N

+ T 1−H
√
L(T)

YN
t + T 1/2−H

√
L(T)

XN
t �

Using the same arguments as in the proof of Theorem 3.13, we thus see
that

lim
N→∞

sup
0�t�1

|QN�T
t − Q̃N�T

t | = 0 in probability

for all T ∈ N. Hence the assertion follows from (ii).
�

Remark 3.20. In the case of Markov switching, i.e., when the process xt is a
Markov process, we obtain standard Ornstein–Uhlenbeck process, i.e., we have
that

L- lim
T→∞

L- lim
N→∞

√
T

√
N√

L(T)

{
SN�Tt − st

}
0�t�1 = {

Z̃t
}

0�t�1�

where Z̃ denotes unique solution to the stochastic differential equation

dZ̃t = λ̄′(st)Z̃t dt + σg(st) dBt�

with B a standard Brownian motion.

4 Outlook and conclusion

We briefly outline two possible avenues of future research: microstructure
models of fractional volatility and strategic interactions between “big players.”

4.1 Fractional volatility

In this article, we suggested a microeconomic approach to financial price
fluctuations that is capable of explaining the decay of the Hurst coefficient of
the S&P 500 index in the late 1990s. We note that the evidence of long memory
in stock price returns is mixed, there are several papers in the empirical finance
literature providing evidence for the existence of long memory, yet there are
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several other papers that contradict these empirical findings; see e.g. Bayraktar
et al. (2004) for an exposition of this debate and references. However, long
memory is a well accepted feature in volatility (squared and absolute returns)
and trading volume (see e.g. Cont, 2001 and Ding et al., 1993). We are now go-
ing to illustrate how the mathematical results of this paper might also be seen
as an intermediate step towards a microstructural foundation for this phenom-
enon. To ease notational complexity and to avoid unnecessary technicalities we
restrict ourselves to the simplest case where the order rates do not depend on
asset prices. Specifically, we assume that (after taking the N-limit) the dynam-
ics of the asset price process can be described by a stochastic equation of the
from

STt = 1
T

{
Π+

(
T

t∫
0

λ+
(
YT
u

)
du

)
−Π−

(
T

t∫
0

λ−
(
YT
u

)
du

)}

where the Gaussian process YT defined in (3.11) converges in distribution
to a fractional Brownian motion process. In view of the strong approxima-
tion of Poisson processes by Brownian motion, and because the rate functions
are bounded, the evolution of prices can be described in terms of an ordi-
nary differential equation in a random environment generated by a fractional
Brownian motion:

L- lim
T→∞

{
STt

}
0�t�1 = {ŝt}t�0�1 where dŝt = λ

(
BHt

)
dt�

The fluctuations around this first-order approximation satisfy

√
T

(
STt −

t∫
0

λ
(
YT
u

)
du

)
= B+

( t∫
0

λ+
(
YT
u

)
du

)

− B−

( t∫
0

λ−
(
YT
u

)
du

)
�

up to a term of the order logT√
T

. Convergence of the Gaussian process YT to
fractional Brownian motion along with continuity of the rate functions yields

L- lim
T→∞

{
B±

( t∫
0

λ±
(
YT
u

)
du

)}
0�t�1

=
{ t∫

0

√
λ±(BHu ) dB±

u

}
0�t�1

�

Thus, for large T , logarithmic asset prices satisfy

STt
D≈

t∫
0

λ
(
YT
u

)
du+ 1√

T

t∫
0

√
λ+(YT

u ) dB+
u − 1√

T

t∫
0

√
λ−(YT

u ) dB−
u
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D≈
t∫

0

λ
(
BHu

)
du+ 1√

T

t∫
0

√
λ+(BHu ) dB+

u − 1√
T

t∫
0

√
λ−(BHu ) dB−

u �

i.e., the volatility is driven by a fractional Brownian motion process which is
independent of the Wiener processes B+ and B−. We will further elaborate on
the microstructure of fractional volatility in a separate paper.

4.2 Strategic interactions

Together with the price taking small investors, it is also possible to incor-
porate the effects of large investors who influence the price. The existence
of large agent price effects has been empirically described in several papers:
Kraus and Stoll (1972), Holthausen et al. (1987) and Chan and Lakanishok
(1993) describe the impacts of institutional trades on stock prices. In the pres-
ence of large agents there is limited liquidity in the market since the holdings
of the stocks is concentrated in the hands of a few big traders. Trades of “big
player’s” also affect stock prices due to large order sizes.

4.2.1 Stochastic equations in strategically controlled environments
Horst (2004, 2005) provides a mathematical framework for analyzing lin-

ear stochastic difference equation of the form (2.3) when the dynamics of the
random environment is simultaneously controlled by the actions of strategi-
cally interacting agents playing a discounted stochastic game with complete
information. In Horst (2004), we considered a simple microstructure models
where small investors choose their current benchmarks in reaction to the ac-
tions taken by some “big players.” One may, for example, think of a central
bank that tries to keep the “mood of the market” from becoming too optimistic
and, if necessary, warns the market participants of emerging bubbles. One may
also think of financial experts whose recommendations tempt the agents into
buying or selling the stock. These market participants influence the stock price
process through their impact on the behavior of small investors, but without
actively trading the stock themselves. It seems natural to assume that the big
players anticipate the feedback effect their actions have on the evolution of
stock prices and thus interact in a strategic manner. Under a weak interaction
condition, the resulting stochastic game has a homogeneous Nash equilibrium
in Markovian strategies. It turns out that the main qualitative feature of the
models studied in Föllmer and Schweizer (1993), Föllmer et al. (2005) and
Horst (2005), namely asymptotic stability of stock prices, can be preserved
even in a model of strategic interactions. However, the long run distribution
of stock prices depends on the equilibrium strategy and is thus not necessarily
uniquely determined. Hence, the presence of strategically interacting market
participants can be an additional source of uncertainty.
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4.2.2 Stochastic games in a non-Markovian setting
Bayraktar and Poor (2005) considered the strategic interaction of large in-

vestors and found an equilibrium stock price taking into account that the
feedback effects of the large investors on the price. The large traders find them-
selves in a random environment due to the trades of small (i.e. price taking)
investors. In Bayraktar and Poor (2005), the institutional investors strategically
interact through the controls they exert on the coefficients of a stochastic dif-
ferential equation driven by a fractional Brownian motion. Here, the fractional
Brownian motion models the effect of the price taking investors on the price.
It can be argued that the observed stock price is the Nash-equilibrium price
that arises as a result of the strategic interaction of the institutional investors
this random environment. Bayraktar and Poor carries out an analysis of sto-
chastic differential games in a non-Markov environment using the stochastic
analysis for fractional Brownian motion developed in Duncan et al. (2000).
This analysis can be viewed as a first step toward incorporating the feedback
effects of the large investors and the strategic interaction into the description
of the stock price dynamics.
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Abstract

Economic capital (EC) acts as a buffer for financial institutions to absorb large un-
expected losses, thereby protecting depositors and other claim holders and providing
confidence to external investors and rating agencies on the financial health of the
firm. Once the amount of capital has been determined, it must be allocated equitably
among the various components of a portfolio (e.g., activities, business units, obligors
or individual transactions). Capital allocation is an important management decision
support and business planning tool, required for pricing, profitability assessment and
limits, building optimal risk-return portfolios and strategies, performance measure-
ment and risk based compensation.

This chapter provides a practical overview of the measurement of economic credit
capital contributions and their application to capital allocation. We discuss the ad-
vantages and disadvantages of various risk measures and models, the interpretation
of various allocation strategies as well as the numerical issues associated with this task.
We stress four key points. First, marginal risk contributions provide a useful basis for
allocating EC since they are additive and reflect the benefits of diversification within
a portfolio. Second, the choice of the risk measure can have a substantial impact on
capital allocation. In particular, Value at Risk (VaR) and expected shortfall (ES) con-
tributions avoid the inconsistencies, and potentially inefficient allocations, associated
with the widely-used volatility-based methods. The quantile level chosen for measur-
ing risk can also have a significant impact on the relative amount of capital allocated
to portfolio components. Third, VaR and ES contributions can be calculated ana-
lytically under certain simple models. These methods provide fast calculations and
can be used to understand capital allocation strategies better, but they present im-
portant practical limitations, as well. Finally, Monte Carlo methods may be required
to compute risk contributions in more realistic credit models. Computing VaR and
ES contributions is challenging, especially at the extreme quantiles typically used for
credit capital definition. The quality of contribution estimates can be improved by
exploiting the conditional independence framework underlying the most common
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models, through the use of more sophisticated quantile estimators (especially for
VaR) and through the use of variance reduction techniques, such as Importance Sam-
pling.

1 Introduction

In financial institutions, economic capital (EC) acts as a buffer to absorb
large unexpected losses, thereby protecting depositors and other claim hold-
ers and providing confidence to external investors and rating agencies on
the financial health of the firm. In contrast, regulatory capital refers to the
minimum capital requirements which banks are required to hold, based on
regulations established by the banking supervisory authorities. From the per-
spective of the regulator, the objectives of capital adequacy requirements are
to safeguard the security of the financial institutions and to ensure their on-
going viability, as well as to create a level playing field. For example, reg-
ulations for internationally active banks are given by the Basel Accord, the
framework created by the Basel Committee on Banking Supervision (BCBS),
which is now the basis for banking regulation around the world (BCBS, 1988;
BCBS, 2004).

Economic capital covers all the risks (e.g., market, credit, operational and
business) that may force a financial institution into insolvency. While most of
the concepts and methodologies in this chapter have broader applicability, we
focus on economic credit capital – the buffer against those risks specifically asso-
ciated with obligor credit events such as default, credit migrations (downgrades
or upgrades) and credit spread changes.

Traditionally, capital is designed to absorb unexpected losses, at a specified
confidence level, while credit reserves are set aside to cover expected losses.
Thus, EC is commonly defined as the difference between the portfolio’s value-
at-risk (VaR) and the expected loss of the portfolio. The VaR level (i.e., quan-
tile) is chosen in a way that trades off providing a high return on capital for
shareholders with protecting debt holders and depositors (and maintaining a
desired credit rating).

Once the amount of capital has been determined, it must be allocated eq-
uitably among the various components of the credit portfolio (e.g., activities,
business units, obligors or individual transactions). This is vital for manage-
ment decision support and business planning, performance measurement and
risk based compensation, pricing, profitability assessment and limits, as well as
building optimal risk-return portfolios and strategies.

There is no unique method to allocate EC; each methodology has its ad-
vantages and disadvantages, and might be appropriate for a given manage-
rial application. In particular, marginal risk contributions yield an additive
decomposition of EC that accounts for the effects of diversification within
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the portfolio. An EC allocation based on the marginal contribution to the
volatility (or standard deviation) of the portfolio losses is the most com-
mon approach used today by practitioners. However, this allocation scheme
is ineffective if the loss distribution is not Normal, as is typical of credit
losses. This can produce inconsistent capital charges, and in some cases a
loan’s capital charge can even exceed its exposure (see Praschnik et al., 2001;
Kalkbrener et al., 2004).

Given the definition of EC, it is more natural to allocate capital based on
contributions to VaR. However, VaR has several shortcomings since it is not
a coherent risk measure (Artzner et al., 1999). Specifically, while VaR is sub-
additive for Normal distributions, this is not true in general. This limitation is
especially relevant for credit loss distributions, which may be far from Normal
and not even smooth. Furthermore, VaR refers to one particular loss (i.e., one
point in the loss distribution), which makes it difficult to obtain accurate and
stable risk contributions with Monte Carlo simulation.

Recently, several authors have proposed using expected shortfall (ES) for
allocating EC (see, for example, Kalkbrener et al., 2004). As a coherent risk
measure, ES represents a good alternative both for measuring and allocating
capital. In particular, Kalkbrener et al. (2004) show that ES yields a linear
(or additive), diversifying capital allocation. This requires a slight modification
of the standard interpretation of economic capital, namely that it offsets an
expected loss conditional on exceeding a certain quantile.

The marginal risk contribution of a position in a portfolio is based on the
derivative of the risk measure with respect to the size of that position. While
this derivative may not always exist, it has been shown (see Gouriéroux et al.,
2000; Tasche, 2000, 2002) that the derivatives of quantile measures (e.g. VaR,
or ES) can be expressed as conditional expectations. Several semi-analytical
approaches have been proposed for calculating VaR or ES contributions (e.g.
Martin et al., 2001; Kurth and Tasche, 2003) and, for certain simple models,
risk contributions can be obtained analytically (e.g. Gordy, 2003a; Emmer and
Tasche, 2005; Garcia Cespedes et al., 2006).

More realistic credit models typically entail the use of Monte Carlo (MC)
simulation, which readily supports diversification through multiple factors and
more flexible co-dependence structures, multiple asset classes and default
models, as well as stochastic (correlated) modeling of exposures and loss given
default. However, computing conditional expectations with simulation is com-
putationally challenging, primarily due to the effects of random noise in the
data and the discrete nature of individual credit losses.

Various numerical methods have been proposed to improve the quality of
simulation-based risk contributions. For instance, the standard quantile esti-
mator, which considers only a single observation, is known to be unreliable for
this purpose (Mausser and Rosen, 1998) and several authors have suggested es-
timating VaR contributions from multiple observations (Praschnik et al., 2001;
Hallerbach, 2003; Mausser, 2003; Mausser and Rosen, 2005). Alternatively,
importance sampling generates a greater number of observations from the tail
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of the loss distribution in order to obtain more stable estimates (Kalkbrener et
al., 2004; Merino and Nyfeler, 2004; Glasserman, 2005).

This chapter provides a practical overview of the measurement of economic
credit capital contributions and their application to capital allocation. We dis-
cuss the advantages and disadvantages of various risk measures and models,
the implications of various allocation strategies, as well as the numerical issues
associated with measuring risk contributions.

Various methods of calculating VaR and ES contributions are presented,
including both analytical and simulation-based approaches. For the latter, we
explain the difficulties associated with estimating the required conditional ex-
pectations, and describe numerical techniques, such as semi-analytical convo-
lutions, L-estimators and Importance Sampling, that can be used to address
these problems. Several examples are provided to illustrate concepts relevant
to using marginal risk contributions for allocating EC and, in particular, stress
the shortcomings of volatility contributions relative to quantile-based measures
such as VaR and ES.

The reader is further referred to Martin (2004) and Glasserman (this vol-
ume) for comprehensive presentations on credit portfolio modeling and com-
putational methodologies for calculating portfolio credit risk. For basic presen-
tations on economic capital and regulatory capital see Aziz and Rosen (2004)
and Rosen (2004) and the references cited therein. Finally, for credit portfolio
optimization see Mausser and Rosen (2000, 2001).

The rest of this chapter is organized as follows. Section 2 briefly reviews
the general framework for credit portfolio models and describes the popular
Normal-copula model. Section 3 first introduces capital allocation and then
focuses on marginal risk contributions as a way of accomplishing this task.
Section 4 describes three models where marginal risk contributions can be
obtained analytically: the one-factor credit model in Basel II, the granularity
adjustment and a multi-factor extension to Basel II. The more general problem
of computing risk contributions with simulation is considered in Section 5. Il-
lustrative examples are presented in Section 6, and Section 7 offers concluding
remarks and suggestions for further research.

2 Credit portfolio models and general framework

Over the last decade, several credit portfolio models have been developed
for measuring economic credit capital. Some popular industry models include
CreditMetrics (Gupton et al., 1997), CreditRisk+ (Credite Suisse Financial
Products, 1997), Credit Portfolio View (Wilson, 1997a, 1997b), KMV’s Port-
folio Manager (Crosbie, 1999). Although the models appear quite different
on the surface, they all share an underlying mathematical equivalence among
them (Koyluoglu and Hickman, 1998; Gordy, 2000; Frey and McNeil, 2003).
The models differ in their distributional assumptions, restrictions, calibration



Ch. 16. Economic Credit Capital Allocation and Risk Contributions 685

and solution, but can be calibrated to yield similar results if the input data is
consistent.

All of the above are single-period models and generally assume that market
risk factors, such as interest rates, are constant. While these assumptions are
appropriate for portfolios of simple loans or bonds, they may lead to significant
errors when a portfolio contains derivatives or instruments with embedded op-
tionality (such as credit lines), or when exposures vary over time (and hence
the timing of the default affects the portfolio losses). An example of a multi-
step integrated market and credit risk model that overcomes these limitations
is given in Iscoe et al. (1999).

The credit portfolio modeling framework which encompasses these models
is referred to as the conditional independence framework. In general terms, it
consists of five parts:

1. Systemic Scenarios (“states of the world”). This models the evolution of
the relevant “systemic” or sector-specific credit drivers that affect credit
events, as well as market factors driving obligor exposures, over the pe-
riod of analysis.

2. Conditional default and credit migration probabilities. Default and migra-
tion probabilities vary as a result of changing economic conditions. At
each point in time, an obligor’s default/migration probabilities are condi-
tioned on the state of the world. Default correlations among obligors are
determined from a correlated default/migration model, which describes
how changes in the credit drivers affect the conditional default/migration
probabilities.

3. Conditional obligor exposures, recoveries and losses. The credit exposure
to an obligor is the amount that the institution stands to lose should the
obligor default. Recovery rates are generally expressed as the percentage
of the exposure that is recovered through such processes as bankruptcy
proceedings, the sale of assets or direct sale to default markets. Expo-
sures can be assumed to be constant in all scenarios for banking instru-
ments without optionality as well as bonds, but not for other instruments
such as derivatives, lines of credit, collateral or unhedged exposures in
various currencies.

4. Conditional portfolio loss distribution. Conditional on a scenario, obligor
defaults (and migrations) are independent. This property facilitates ob-
taining the conditional portfolio loss distribution, as the conditional
portfolio loss is the sum of independent random variables (i.e., obligor
losses).

5. Unconditional portfolio loss distribution. The unconditional distribution
of portfolio credit losses is obtained by averaging the conditional loss
distributions over all scenarios.

We now illustrate the framework with the so-called Normal copula model,
originally popularized by the CreditMetrics and KMV portfolio models.
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2.1 Multi-factor Normal copula model

Consider a portfolio of N obligors and a single-step model. Without loss of
generality, assume that each obligor j has a single loan with loss given default
and exposure at default given by LGDj , EADj respectively.

For each obligor, we define a continuous variable, the creditworthiness index
(CWI), that represents its financial health, and assume that it has a standard
Normal distribution. The CWI of each obligor j depends on d systemic factors
(also assumed to be independent and standard Normal) through the multi-
factor model

Yj = βj1Z1 + βj2Z2 + · · · + βjdZd + σjεj�

(1)σj =
√

1 − (β2
j1 + β2

j2 + · · · + β2
jd)

where

• Z1� � � � � Zd are independent, standard Normal distributed systemic
risk factors;

• εj is a standard Normal distributed specific risk factor for obligor j;
• βj1� � � � � βjd are the sensitivities of obligor j to the systemic risk fac-

tors.

Suppose that obligors migrate into one of R possible credit states, ordered
by increasing credit quality (i.e., in a default-only model,R = 2 and r = 1 is the
default state), and let pjr denote the unconditional probability that obligor j
transitions into state r.

Assume that defaults for each obligor are driven by a Merton-type model,
so that obligor j defaults when its CWI, Yj , falls below a given threshold at
the horizon. If PDj denotes the obligor’s (unconditional) default probability
(PDj = pj1), we can express the default threshold by Φ−1(PDj), with Φ−1(·)
the cumulative standard Normal distribution. Also in a given scenario given
by the outcomes of the risk factors Z, the conditional default probability of
obligor j is

pj1(Z) = Pr
[
Yj < Φ−1(PDj) | Z

]
(2)= Φ−1

(
Φ−1(PDj)− (βj1Z1 + βj2Z2 + · · · + βjdZd)

σj

)
�

Similar formulae are obtained for the conditional transition probabilities to
each credit state r (see, for example, Gupton et al., 1997).1

Other credit models can be used to obtain different functional forms similar
to Eq. (2). For example in a logit model the expression for conditional default

1 This model is also referred to as an ordered probit model.
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probabilities is given by2

pj1(Z) =
[

1 + a · exp

(
b ·

(
d∑
j=1

βijZj

))]−1

�

Credit migrations can also be handled similarly in such a model (this is re-
ferred to as an ordered logit model).

Let cjr denote the loss that is incurred if obligor j transitions into state r.3
Since an integrated market/credit model recognizes that credit losses can be
dependent on the systemic factors, one can denote by cjr(Z) the loss that re-
sults if obligor j transitions into state r, given the factors Z (e.g. Iscoe et al.,
1999). However, for simplicity, we ignore such dependence in the sequel.

To understand conditional independence models, consider sampling ran-
domly from the systemic risk factors, Z. We refer to each sample Zm, m =
1� � � � �M , as a scenario. For ease of notation, define the random variable Lmj
to be the loss of obligor j conditional on Zm, and denote the conditional
transition probability and (known) loss of obligor j in state r as pmjr and cmjr ,
respectively. For each obligor j, we have a discrete conditional credit loss dis-
tribution

(3)Lm
j ∼ Dm

j = {(
cmjr � p

m
jr

) | r = 1� � � � � R
}
�

Since obligors are conditionally independent, the portfolio loss in scenario m,
denoted Lm, is a sum of independent random variables and its distribution is
the convolution of the obligor loss distributions

(4)Lm ≡
N∑
j=1

Lmj ∼ Dm = Dm
1 ⊗ · · · ⊗Dm

N

Dm has finite support Cm, comprising up to rN elements (in practice, this num-
ber is often less because various combinations of obligor losses sum to the same
portfolio loss).

Computing the conditional portfolio loss distribution (Eq. (4)) exactly is
computationally challenging if the number of possible portfolio losses (i.e.,
Cm) is large. However, any method for obtaining the distribution of a sum
of independent random variables can be applied in this case. In practice, vari-
ous techniques that have been used to approximate this convolution efficiently
include4:

• Fast Fourier Transform methods (in conjunction with a discretization
scheme, where losses are assigned to “buckets” in a common grid).

2 See Wilson (1997a, 1997b), Bucay and Rosen (2000).
3 Losses are net of recovery in the case of default, r = 1.
4 See, for example, Finger (1999), Martin (2004), Glasserman (this volume), and the references cited
therein.
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• Saddle Point methods, based on analytical approximations of the dis-
tribution around the quantile of interest.

• Analytical approximations of the conditional portfolio loss distribu-
tions by simpler distributions. For example, if the portfolio is large and
granular, the Law of Large Numbers suggests that the conditional port-
folio loss distribution is effectively a point mass at the sum of the mean
obligor losses (all other moments vanish). Alternatively, the Central
Limit Theorem can be applied under the assumption that all condi-
tional losses are Normally distributed.

• Direct sampling from each obligor’s conditional loss distribution (Dm
j )

and aggregation to get a sample observation from Dm.

The unconditional loss distribution requires integrating the conditional loss
distributions across all scenarios (the joint distribution of the systemic factors).
Thus, it is the average of the M conditional portfolio loss distributions (i.e., its
support is the union of the Cm and all probabilities are multiplied by 1/M).
In the case of a one-factor model, the integration might be done analytically,
but with multi-factor models, simulation is typically required (although some
semi-analytical approximations are available, e.g. Pykhtin, 2004).

Credit capital is commonly defined in terms of a high quantile (e.g. in
Basel II it is defined at the 99.9% level). Therefore, in practice, it might be diffi-
cult to get numerically stable and accurate VaR or expected shortfall estimates
for realistic credit portfolios using standard MC methods. This problem is fur-
ther amplified when calculating risk contributions (see next section). Variance
reduction techniques, such as Importance Sampling (IS) and Control Vari-
ates, can be applied which reduce significantly the variance of Monte Carlo
simulation. For example, IS increases the number of extreme observations,
thereby improving accuracy in the tail of the portfolio loss distribution (e.g.
Glasserman and Li, 2005). Tchistiakov (2004) applies a control variate tech-
nique to estimate portfolio risk, where the control variable is derived from
the limiting distribution of a homogeneous portfolio (Vasicek loss distribution)
that approximates the portfolio.

3 Capital allocation and risk contributions

In addition to computing the total EC for a portfolio, it is important to
develop methodologies to attribute this capital a posteriori to various sub-
portfolios such as the firm’s activities, business units, counterparties or even
individual transactions, and to allocate it a priori in an optimal fashion, to max-
imize risk-adjusted returns.

In general, the sum of the stand-alone EC for each sub-portfolio or asset is
higher than the total portfolio EC due to the benefits of diversification. There
is no unique method to allocate EC down a portfolio, and we can classify the
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capital allocation methodologies that are currently used in practice into three
broad categories5:

• Stand-alone capital contributions – a sub-portfolio is assigned the
amount of capital that it would consume on a stand-alone basis. As
such, it does not reflect the beneficial effect of diversification; the sum
of stand-alone capital for the individual sub-portfolios may exceed the
total EC for the portfolio.

• Incremental capital contributions (or discrete marginal capital contri-
butions) – calculated by taking the EC for the entire portfolio and
subtracting from it the EC for the portfolio without the sub-portfolio.
This method captures the amount of capital that would be released if
the sub-portfolio were sold or added. Thus it is a natural measure for
evaluating the risk of acquisitions or divestitures. A disadvantage of
this method is that it does not yield an additive risk decomposition.

• Marginal capital contributions (or diversified capital contributions) –
measures of risk contributions that are additive. By construction, the
sum of diversified capital for all the sub-portfolios is equal to total EC
for the portfolio. Marginal contributions are specifically designed to
allocate the diversification benefit among the sub-portfolios, by cap-
turing the amount of the portfolio’s capital that should be allocated
to each sub-portfolio, on a marginal basis, when viewed as part of the
portfolio.

Several alternative methods for additive risk contributions have been pro-
posed from game theory (see Denault, 2001; Koyluoglu and Stoker, 2002). For
example, the Shapley method is based on the formation of coalitions so that
a group of units benefits more as a group than if each works separately. This
method is computationally intensive, and may be impractical for problems with
even a small number of sub-portfolios. A variant called the Aumann–Shapley
method requires less computation and is, thus, potentially more practical. Un-
der most (but not all) conditions, these methods yield similar results to mar-
ginal contributions. While these methods are today receiving some academic
attention, they are mostly not yet used in practice by financial institutions.

We now describe the methodology for capital allocation based on marginal
risk contributions, leading to an additive decomposition of a portfolio’s risk.

3.1 Definitions

Consider a credit portfolio that contains positions in N obligors (while our
discussion assumes that obligors are the components of interest, one could al-
ternatively consider individual loans or transactions). For each obligor j, define
xj to be the size of the position (number of units), and let the random variable

5 There is no unique terminology for risk contributions, and here we follow Aziz and Rosen (2004).
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lj denote the credit loss per unit position. Credit losses can arise from default
events, credit migration or more general spread movements.

If Lj denotes the credit loss due to the jth obligor then the loss of the port-
folio is

(5)L =
N∑
j=1

Lj =
N∑
j=1

ljxj�

Let F denote the portfolio loss probability distribution, which may or may not
be available in closed form (e.g., F may be defined empirically by the results
of a Monte Carlo simulation). Let ρ(L) denote a measure of the risk of the
portfolio, as implied by the distribution F . An additive decomposition of the
risk ρ(L) satisfies

(6)ρ(L) =
N∑
j=1

C
ρ
j

where Cρ
j represents the risk contribution of obligor j. The relative risk contri-

bution of obligor j is defined to be its proportion of the total risk:

R
ρ
j =

C
ρ
j

ρ(L)
�

If ρ(L) is homogeneous of degree one and differentiable, then Euler’s Theo-
rem implies that

(7)C
ρ
j = xj

∂ρ

∂xj
�

From Eq. (7), the marginal risk contribution of an entity can be loosely inter-
preted as the rate of change of the portfolio due to a 1% change in the positions
of that entity.

3.2 Risk measures and coherent capital allocation

Economic capital is designed in practice to absorb unexpected losses up
to a certain confidence level, α, while credit reserves are set aside to absorb
expected losses (EL). Thus, economic capital is typically estimated as the α-
quantile of the portfolio loss distribution (VaRα) minus the expected losses
over a specified time horizon6:

(8)ECα = VaRα − EL�

6 The regulatory proposal in Basel II is based on the 99.9% VaR (BCBS, 2004).
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This is the approach commonly taken by practitioners, and generally leads to
conservative estimates of EC. More formally Eq. (8) represents only a simpli-
fying approximation to the true EC (see Kupiec, 2002; Aziz and Rosen, 2004).
The rationale for subtracting EL is that credit products are already priced such
that net interest margins less non-interest expenses are sufficient to cover es-
timated EL (and also a desired return to capital). More precisely, the credit
VaR measure appropriate for EC should consider losses relative to the port-
folio’s initial mark-to-market (MtM) value and not relative to the EL in its
end-of-period distribution. Also, credit VaR normally ignores the interest pay-
ments that must be made on the funding debt. These payments must be added
explicitly to the EC.

Three risk measures are often used for allocating economic capital among a
portfolio’s constituent positions: volatility, VaR and expected shortfall (some-
times called CVaR or conditional tail expectation). All three measures are
homogeneous and hence lead to additive marginal risk contributions.

In current practice, the most common approach for assigning capital on a
diversified basis computes a component’s marginal contribution to the volatil-
ity of the portfolio loss distribution and scales it to correspond to the economic
capital (e.g. Smithson, 2003). Specifically, if ρ(L) ≡ σ(L) then Eq. (7) leads
to the well-known formula

(9)Cσ
j = cov(Lj� L)

σ(L)

and the capital charged to obligor j is

CECα
j = Rσ

j × ECα�

This approach works well if losses are normally distributed, since quantiles are
constant multiples of the volatility in this case.7 Due to the non-normality of
credit loss distributions, however, volatility allocation often produces inconsis-
tent capital charges (see Praschnik et al., 2001). In particular, Kalkbrener et al.
(2004) show that a loan’s capital charge can exceed its exposure.

The VaR contribution of obligor j is

(10)CVaRα
j = E[Lj | L = VaRα]�

This follows from the relation between partial derivatives and conditional ex-
pectations (e.g., Tasche, 1999; Gouriéroux et al., 2000). The capital charged to
obligor j is then

(11)CECα
j = CVaRα

j − E[Lj]�
An obligor’s contribution to EL is simply its expected loss, which is easy to
compute analytically. Thus, capital allocation essentially reduces to the more
difficult task of measuring VaR contributions (i.e., Eq. (10)).

7 More precisely, this is the case for elliptic distributions in general.
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It is widely recognized that VaR has several shortcomings since it is not a
coherent risk measure (in the sense of Artzner et al., 1999). Specifically, while
VaR is sub-additive (or diversifying) for normal distributions, this is not true in
general. This limitation is relevant for credit loss distributions, which may be
far from normal and not even smooth. In particular, the discreteness of indi-
vidual credit losses leads to non-smooth profiles and marginal contributions.

Expected shortfall (ES) is a coherent risk measure and presents a good al-
ternative to VaR and volatility both for measuring and allocating capital. As
with VaR, ES contributions represent conditional expectations (Tasche, 2002;
Scaillet, 2004)

(12)CESα
j = E[Lj | L � VaRα]�

Since ES acts as a buffer for an expected loss conditional on exceeding a certain
quantile, its use in allocating economic capital requires a rescaling similar to
that of volatility. That is, the capital charged to obligor j equals

(13)CECα
j = RESα

j × VaRα − E[Lj]�

Although VaR and ES may not be differentiable in some cases,8 it is rea-
sonable to define the risk contributions by Eqs. (10) and (12) in general (e.g.,
Kurth and Tasche, 2003; Hallerbach, 2003).

Kalkbrener et al. (2004) formally introduce an axiomatic approach to define
the concept of a coherent capital allocation. The three axioms can be summa-
rized as follows:

• Linear (or additive) allocation: the capital allocated to a union of sub-
portfolios is equal to the sum of the capital amounts allocated to the
individual sub-portfolios.

• Diversifying allocation: the capital allocated to a sub-portfolio X of a
larger portfolio Y never exceeds the risk capital of X considered as a
stand-alone portfolio.

• Continuous allocation: a small increase in a position only has a small
effect on the risk capital allocated to that position.

The authors show that these three axioms uniquely determine a capital al-
location scheme – which is essentially a marginal capital allocation. Also, they
show that any allocation satisfying these axioms is associated with a coherent
risk measure. Notably, ES yields a linear (or additive), diversifying and con-
tinuous capital allocation, while VaR yields an additive but not a diversifying
allocation.

8 Laurent (2003) discusses the differentiability of risk measures when the loss distribution is discrete.
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4 Credit risk contributions in analytical models

In the presence of diversification, the marginal capital required for a coun-
terparty or loan may depend on the overall portfolio composition. If capital
charges are based on marginal portfolio contributions, these charges are not,
in general, portfolio-invariant, and are different from their stand-alone capital.
Thus, an interesting question is: under what circumstances do portfolio models
yield portfolio-invariant capital contributions?

If economic capital is defined in terms of a VaR measure, Gordy (2003a)
shows that two conditions are necessary and sufficient to guarantee portfolio-
invariant contributions:

• The portfolio must be asymptotically fine-grained; i.e. no single ex-
posure can account for more than an arbitrarily small share of total
portfolio exposure.

• There must be only a single systematic risk factor.

The “single-factor, asymptotically-fine-grained” portfolio model is at the
heart of the new Basel II banking credit regulation (BCBS, 2004). In this
context, capital only covers systemic credit risk; it does not account for the idio-
syncratic risk that exists in non-granular portfolios, leading to counterparty (or
name) concentrations. Gordy (2003a, 2003b) and Martin and Wilde (2002) fur-
ther present an asymptotic approximation for the idiosyncratic credit risk when
portfolios are not sufficiently granular (the so called “granularity” adjustment).
Of course, in the presence of idiosyncratic credit risk, marginal capital contri-
butions are dependent on the portfolio composition (specifically, the level of
name concentration risk in the portfolio).9

We now briefly describe the analytical formulae for credit risk contributions
in the one-factor, Basel II model and its extension to account for idiosyncratic
risk (the so-called granularity adjustment). Finally, we discuss capital alloca-
tions in the context of a simple multi-factor extension of the Basel II model.
By introducing explicitly the concept of a diversification factor at both the port-
folio and obligor or sector levels, the multi-factor extended model provides
useful intuition on capital contributions, and their sources.

4.1 Capital contributions in the Basel II model

Consider a portfolio with N obligors and a single-step model. Without loss
of generality, assume that each obligor j has (unconditional) default probabil-
ity PDj , and a single loan with loss given default and exposure at default given
by LGDj , EADj respectively.10

9 See for example Emmer and Tasche (2005) for a discussion of risk contributions in a one factor model
with the granularity adjustment.
10 We use here the notation commonly used in the Basel accord, where now the product EADj ·LGDj =
cj1, as given in Section 2. As they are assumed deterministic, they are the same in each scenario m.
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For each obligor j, the credit losses at the end of the horizon (e.g., one year)
are driven by a Merton model, as given in Section 2, but in this case with one,
single, systemic factor. Obligor j defaults when its creditworthiness index falls
below a given threshold, given by Φ−1(PDj).

The creditworthiness of obligor j is driven by a single systemic factor:

(14)Yj = bjZ +
√

1 − b2
j εj

with Z is a standard Normal variable representing the single systemic,
economy-wide factor, and the εj are independent standard Normal variables
representing the idiosyncratic movement of obligors’ creditworthiness. We
commonly refer to b2

j as the asset correlation of obligor j.
Gordy (2003a) shows that the α-percentile systemic portfolio loss (i.e. the

loss assuming the portfolio is asymptotically fine-grained), VaRα, is given by
the sum of individual obligor losses, when an α-percentile move occurs in the
systemic sector factor Z:

(15)VaRα =
∑
j

LGDj · EADj ·Φ
(
Φ−1(PDj)− bjz

α√
1 − b2

j

)

where zα denotes the α-percentile of a standard normal variable.
EC is defined to cover only the unexpected losses (i.e., Eq. (8)), where the

expected losses are E[L] = ∑N
j=1 LGDj · EADj · PDj .11 Thus, the capital for

the portfolio can be written as

(16)ECα =
N∑
j=1

CECα
j

where CECα
j denotes the capital contribution of counterparty j:

(17)CECα
j = LGDj · EADj ·

[
Φ

(
Φ−1(PDj)− bjz

α√
1 − b2

j

)
− PDj

]
�

The capital contribution in Eq. (17) does not depend on the composition of
the rest of the portfolio. In Section 4 we present an example of the allocation
produced by this model and discuss the impact of the quantile chosen on the
capital allocation.

11 The following discussion still holds if capital is defined by VaR, by simply adding back the EL at the
end of the analysis.
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4.2 Capital contributions with idiosyncratic risk (the granularity adjustment)

When there is one systemic factor and the portfolio is (infinitely) granular,
the credit portfolio loss distribution is obtained analytically and risk contribu-
tions are portfolio-invariant. Idiosyncratic risk arises when the portfolio is of
finite size and not homogeneous (i.e. with some counterparty or name con-
centrations). In this case, even with a one-factor model, a general analytical
solution might not be available, and various methods can be used to approxi-
mate the loss distribution.

Risk measures (including VaR and ES) can be decomposed into their sys-
temic risk and idiosyncratic contributions. For example, the variance of portfo-
lio losses can be written as the sum of the variance of the conditional expected
losses and the expected conditional variance of losses:

V [L] = V [E[L|Z]] + E
[
V [L|Z]]�

The first term is the contribution of systemic risk, and the second can be in-
terpreted as the idiosyncratic risk, which vanishes as the number of obligors in
a portfolio goes to infinity (and the idiosyncratic risk is diversified away). In a
moderately large portfolio, the systemic component may be much larger than
the idiosyncratic risk, but the latter may be too large to be neglected.

VaR and ES can be decomposed in a similar manner, although their idio-
syncratic components do not have general closed-form expressions. When the
conditional variance of losses is small, we can obtain analytical approximations
of VaR and ES for non-granular portfolios as “small adjustments” to the in-
finitely granular portfolio. This granularity adjustment method is essentially a
second order Taylor series expansion of the quantile (around the “infinitely
granular” portfolio).12

Denote by VaRα and VaRS
α = VaRα(E[L|Z]) the VaR of the (non-granular)

portfolio and the systemic VaR of the portfolio (the VaR of the portfolio
assuming it is infinitely granular), respectively. The VaR of the portfolio is ap-
proximated by:

(18)VaRα ≈ VaRS
α + GAα�

The general formula for the granularity adjustment is

(19)GAα = − 1
2f (y)

∂

∂y

[
σ2(zα)f (y)]∣∣

y=VaRS
α

where f (y) denotes the density function of the infinitely granular portfolio’s
loss, and σ2(zα) is the (idiosyncratic) variance of the portfolio losses con-
ditional on the systemic factor level corresponding to the systemic portfolio
losses being equal to VaRS

α. A similar expression is available for ES.

12 Gordy (2003a, 2003b) presented this approach first and has then been refined (see for example
Martin and Wilde, 2002). Pykhtin (2004) further extended the method to multiple factors.
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By applying Eqs. (18) and (19) directly to a given (one-factor) portfolio
model, we can obtain closed form expressions to approximate the portfolio
VaR and the risk contributions. For the one-factor Merton model, the systemic
VaR, VaRS

α, is given by expression (15) and the granularity adjustment is13:

(20)GAα =
N∑
j=1

CGAα
j

with

(21)

CGAα
j = EAD2

jLGD2
j

2(VaRS
α)

′

[(√√√√ b2
j

1 − b2
j

·φ(
PDα

j

) · (1 − 2Φ
(
PDα

j

)))

+
(
zα + (VaRS

α)
′′

(VaRS
α)

′

)
· (Φ(

PDα
j

) −Φ
(
PDα

j

)2)]

where PDα
j = (Φ−1(PDj) − bjz

α)/
√

1 − b2
j , and (VaRS

α)
′ and (VaRS

α)
′′ denote

the first and second derivatives of expression (15).
The terms CGAα

j can be interpreted as the idiosyncratic risk contribution
of each obligor j. In this case, contributions are not portfolio invariant, since
they depend on the total portfolio composition through the terms (VaRS

α)
′ and

(VaRS
α)

′′.

4.3 Credit risk contributions in an extended multi-factor model

A model that yields portfolio-invariant capital contributions is desirable for
regulatory purposes, management transparency and computational tractabil-
ity. However, such a model does not fully recognize diversification and may
not be useful for capital allocation. We thus require also tools to understand
and measure diversification in a multi-factor portfolio setting. Pykhtin (2004)
recently obtains an elegant, analytical multi-factor adjustment to the Basel II
one-factor model. This method can also be used effectively to compute capital
contributions numerically (given its closed form solution to compute portfolio
capital). However, closed-form expressions for capital contributions are quite
intricate.

Garcia Cespedes et al. (2006) present a simple model that recognizes the
diversification obtained from a multi-factor credit setting. The authors intro-
duce the concept of a diversification factor at the portfolio level and also at
the obligor or sub-portfolio level to account for diversification contributions to
the portfolio (marginal diversification factors). Tasche (2006) further presents a

13 See Emmer and Tasche (2005).
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mathematical foundation for the diversification factor and analytical formulae
for computing diversification contributions.14

To illustrate the Garcia Cespedes et al. model, consider a single-step model
withK homogeneous sectors (each of these sectors can represent an asset class
or geography, etc.). Similar to the Basel II model, for each obligor j in a given
sector k, the credit losses at the end of the horizon are driven by a single-factor
Merton model.15 In this case, however, the creditworthiness of obligor j, in
sector k, is driven by a single systemic factor:

(22)Yj = bkZk +
√

1 − b2
kεj

where Zk is a standard Normal variable representing the systemic factor for
sector k, and the εj are independent standard Normal variables represent-
ing the idiosyncratic movement of an obligor’s creditworthiness. While in the
Basel II model all sectors are driven by the same systemic factor Z, here each
sector can be driven by a different factor.

Assume further that the systemic factors are correlated through a single
macro-factor, Z,

(23)Zk = BkZ +
√

1 − B2
kηk� k = 1� � � � �K

where ηk are independent standard Normals, and each sector has a different
correlation level Bk to the systemic, economy-wide factor, Z.

Assume, as before, that each obligor j has a single loan with loss given de-
fault and exposure at default given by LGDj and EADj , respectively. Since
credit losses within each sector are driven by a one-factor model, for asymp-
totically fine-grained sector portfolios, the stand-alone α-percentile capital for
a given sector k, ECα�k, is given by

(24)

ECα�k =
∑

j∈Sectork

LGDj · EADj ·
[
Φ

(
Φ−1(PDj)− bkz

α√
1 − b2

k

)
− PDj

]
�

Under Basel II, or equivalently assuming perfect correlation between all the
sectors, the overall capital is simply the sum of the stand-alone capital for all
individual sectors (for simplicity, we omit the parameter α hereafter from the
notation):

(25)EC1f =
K∑
k=1

ECk�

14 The paper presents a two-dimensional example which has an analytical solution. Problems of dimen-
sion N require numerical integration of dimension N − 1.
15 We focus the discussion on a one-period Merton model for default losses. The methodology and
results are quite general and can be used with other credit models, and can also incorporate losses due
to credit migration, in addition to default.
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We define the capital diversification factor, DF, as the ratio of the actual capital
computed using the multi-factor model and the stand-alone capital, DF � 1.
This allows us to express the (diversified) economic capital as:

(26)EC = DF · EC1f �

Economic capital is thus a function of

• the “additive” bottom-up capital from the one-factor (Basel II) model,
EC1f , and

• DF, a “factor adjustment” which represents the diversification of the
portfolio.

The basic idea behind the model is to approximate DF, by a scalar function
of a small number of parameters, which leads to a reasonable approximation
of the true, multi-factor, economic credit capital, and which can be tabulated.

We can think of diversification basically being a result of two sources:

• The relative size of various sector portfolios; clearly a portfolio with
one dominating, very large, sector results in high concentration risk and
limited diversification. So we seek a parameter representing essentially
an “effective number of sectors” accounting for their sizes.

• The cross-sector correlations. Hence a natural choice for a parameter
in our model is some form of average cross-sector correlation.

Ideally, the “concentration index” representing the first source of diversi-
fication should account for the size of the exposures and also the differences
in credit characteristics as they affect capital. Thus, a sector with a very large
exposure on highly rated obligors, might not necessarily represent a large con-
tribution from a capital perspective.

The Garcia Cespedes et al. model expresses the economic capital in
Eq. (26), for a given confidence level, as

(27)EC = DF
(
CDI� B̄2) · K∑

k=1

ECk

where the two parameters in the diversification factor are:

• The capital diversification index, CDI, given by the sum of squares of
the capital weights in each sector

(28)CDI =
∑

k EC2
k

(EC1f )2
=

∑
k

w2
k

withwk = ECk/EC1f the contribution to one-factor capital of sector k.
• The (capital weighted) average cross-sector correlation: B̄2.
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The CDI is the well-known Herfindahl concentration index applied to the
stand-alone capital of each sector (instead of the exposures, EADs, as is com-
monly used). Intuitively, it gives an indication of the portfolio diversification
across sectors (not accounting for the correlation between them). For example,
in the two-factor case, the CDI ranges between 0.5 (maximum diversification)
and one (maximum concentration). The inverse of the CDI can be interpreted
as an “effective number of sectors” in the portfolio, from a capital perspective.

In a similar way, the average correlation parameter is also capital weighted,
to account better for the “contributions” of each sector (and accounting for the
credit quality in addition to size). From the various possible definitions for an
average sector correlation, we choose the following one. Assume a general sec-
tor factor correlation matrix, Q (which can be more general than that resulting
from Eq. (23), where Qij = βiβj� j �= i), and a vector of portfolio weights
W = (w1 � � � wS)

T . We define the average sector factor correlation as

B̄2 =
∑

i

∑
j �=i Qijwiwj∑

i

∑
j �=i wiwj

= σ2 − δ2

ϑ2 − δ2

where σ2 = W TQW is the variance of the random variable given by the
weighted sum of the factors, δ2 = ∑

i w
2
i and ϑ2 = (

∑
i wi)

2. B̄2 is an average
correlation in the sense that W TBW = W TQW = σ2, with B the correla-
tion matrix with all the non-diagonal entries equal to B̄2. For our specific case,
we chose the portfolio weights to be the stand alone capital for each sector.
Therefore, δ2 = ∑

i EC2
i and ϑ2 = (

∑
i ECi)

2 = (ECsf )2.
Garcia Cespedes et al. (2006) calibrate the model (27) through Monte Carlo

simulation, and tabulate the diversification factor for several levels of correla-
tion and CDI (see Fig. 1).

Fig. 1. Calibrated DF model in Garcia Cespedes et al. (2006).
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Using the diversification factor model, one might be tempted simply to allo-
cate back the diversification effect evenly across sectors, so that the total capital
contributed by a given sector is DF · Ck. We refer to these as the unadjusted
capital contributions. This does not account, however, for the fact that each sec-
tor contributes differently to the overall portfolio diversification. Instead, we
seek a capital decomposition of the form

(29)ECmf =
K∑
k=1

DFk · ECk�

We refer to the factors DFk in (29) as the marginal sector diversification factors.
For a general model of the form (26), if DF a homogeneous function of

degree zero in the ECk’s, Euler’s theorem leads to the additive marginal capital
decomposition (29) with

(30)DFk = ∂ECmf

∂ECk
� k = 1� � � � �K�

In the specific model (27), the DF only depends on CDI and β̄, which are both
homogeneous of degree zero. By solving for the derivatives in expression (30),
the marginal sector diversification factors are given by

(31)

DFk = DF + 2
∂DF
∂CDI

·
[

ECk

ECsf
− CDI

]
+ 2

∂DF

∂B̄2
· 1 − (ECk/ECsf )

1 − CDI
· [Q̄k − B̄2]

where

Q̄k =
∑

j �=k QkjECj∑
j �=k ECj

can be interpreted as the average correlation of sector factor k to the rest of
the systemic sector factors in the portfolio.

The marginal capital allocation resulting from the model leads to an intu-
itive decomposition of diversification effects (or concentration risk) into three
components: overall portfolio diversification, sector size and sector correla-
tion:

DFk = DF + �DFSize + �DFCorr�

The three components represent:

• The overall portfolio DF;
• An adjustment due to the “relative size” of the sector to the over-

all portfolio. Intuitively, for DF > 0 and all sectors having the same
correlation B2, a sector with small stand-alone capital (wk < CDI)
contributes, on the margin, less to the overall portfolio capital; thus, it
gets a higher diversification benefit DFk;
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• An adjustment due to cross-sector correlations. Sectors with lower than
average correlation get a higher diversification benefit, as one would
expect.

5 Numerical methods to compute risk contributions

Simulation may be required to obtain portfolio loss distributions and cal-
culate risk contributions when the underlying credit model presents a richer
co-dependence structure described by multiple systemic factors, when the port-
folio contains name concentrations (i.e. it is not granular), when credit losses
account for migration and spread risk, or when exposures and LGDs are sto-
chastic (and correlated). We can divide the simulation methods for calculating
risk contributions into two broad classes:

• Full Monte Carlo (MC) simulation, with direct sampling of credit
events and losses. In this case, the output of the simulation is an in-
dependent, identically-distributed sample of size M , where each ob-
servation comprises losses for all obligors (and the portfolio loss which
is the sum of obligor losses). We make no assumptions about the model
that underlies the sample.

• Two stage numerical solution based on the conditional independence
framework for credit portfolio models (Section 2). In this case, it is
possible to simulate first the systemic factors and then employ various
numerical methods to obtain the unconditional portfolio loss distrib-
ution. Each systemic scenario comprises the conditional loss distribu-
tions for all obligors, with the conditional portfolio loss distribution as
the convolution of these losses. As noted earlier, conditional portfolio
loss distributions may be obtained using various techniques.

We now briefly summarize the application of these methods to compute
credit risk contributions for VaR and ES.

5.1 Monte Carlo simulation with direct sampling of credit events

In a direct simulation approach, VaR and ES are estimated from the or-
der statistics of the sampled portfolio losses.16 Given the extreme quantiles
typically used to measure credit risk, obtaining accurate risk contributions is a
challenging task since the conditional expectations (Eqs. (10) and (12)) depend
on rare events. This is of particular concern for VaR since the contribution is
conditional on a single level of loss, while the ES contribution is conditional on
a range of losses. Thus the accuracy of the VaR contributions depends critically
on the chosen quantile estimator. In particular, the sample quantile, which is

16 Order statistic k is the kth smallest loss.
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frequently used in practice, is poorly suited for this task since it relies on a
single order statistic. In contrast, L-estimators yield more robust estimates of
VaR contributions.

5.1.1 Sample quantile estimators
Consider estimating a portfolio’s VaR and ES at the 95% level, from an

independent MC sample of size 100. In practice, the 95% VaR is often taken
to equal the sample quantile (i.e., the 96th order statistic L(96)), since P(L �
L(96)) = 0�05 for the sample. A corresponding estimate of the 95% ES is given
by the arithmetic average of order statistics 96 through 100.

The sample quantile, as defined in the example above, corresponds to an es-
timator known as the upper empirical cumulative distribution value (UECV).
More generally, in a sample of size M , the UECV estimator estimates the α-
quantile of the loss distribution by

VaRα = L( Mα"+1)�

where  x" denotes the largest integer less than or equal to x, and the ES at
level α by

ESα = 1
M(1 − α)

[( Mα" + 1 −Mα
)
L( Mα"+1) +

M∑
k= Mα"+2

L(k)

]
�

Since the portfolio loss in any particular scenario is given by the sum of the
obligor losses, in the example above, the contribution of obligor j to the 95%
VaR is estimated by L(96)

j (i.e., the loss of obligor j that occurs with the 5th
largest portfolio loss). Its contribution to the 95% ES is estimated by averaging
the losses of obligor j that occur with the five largest portfolio losses.

From Eq. (10), the VaR contribution of obligor j equals the average loss of
obligor j when the sampled portfolio loss equals the VaR estimate. Formally,
if L(k) = VaRα for kmin

α � k � kmax
α then

CVaRα
j = E

[
Lj | L = VaRα

] = 1
kmax
α − kmin

α + 1

kmax
α∑

k=kmin
α

L(k)j �

If only one sampled portfolio loss equals the estimated VaR (as is typically
the case in a MC simulation) then kmin

α = kmax
α =  Mα" + 1 and the VaR

contribution is estimated from a single observation, namely

CVaRα
j = L

( Mα"+1)
j �

Since a given portfolio loss may result from numerous combinations of
obligor losses, estimates of VaR contributions provided by the sample quan-
tile are often unreliable (e.g., Mausser and Rosen, 1998; Mausser, 2003). Two
approaches for improving these estimates are:
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• use quantile estimators that average multiple order statistics (e.g., L-
estimators);

• use sampling strategies that increase the number of observations with
a portfolio loss of VaRα (e.g., importance sampling).17

In contrast, the estimated ES contributions

CESα
j = 1

M(1 − α)

[(
kmax
α −Mα

)
CVaRα
j +

M∑
k=kmax

α +1

L(k)j

]

tend to be more robust because ES is, by definition, an average of multiple
order statistics. Nevertheless, both L-estimators and importance sampling can
be applied to refine estimated ES contributions.

5.1.2 L-estimators
To improve the quality of the VaR contributions, several authors have pro-

posed computing a weighted average of the losses over a range of order statis-
tics around the sample quantile (e.g., Praschnik et al., 2001; Hallerbach, 2003).
Conceptually, this is consistent with a more general class of quantile estimators
known as L-estimators.

An L-estimator (e.g. Sheather and Marron, 1990) computes a quantile es-
timate as a weighted average of multiple order statistics.18 Specifically, in a
sample of size M , VaRα is estimated as

(32)VaRα =
M∑
k=1

wVaR
α�M�kL

(k)�

where the weights depend only on the VaR level and the sample size. The VaR
contribution for obligor j is then estimated as19

(33)CVaRα
j =

M∑
k=1

wVaR
α�M�kL

(k)
j �

To estimate ESα, observe that

ESα = E
[
F−1(p) | p � α

]
17 As pointed out in Glasserman (2005), it may be necessary to define a small “window” around VaRα
in order to obtain a sufficiently large sample for estimating the conditional expectation.
18 It is interesting to note the similarities between L-estimators and spectral risk measures (Acerbi,
2002). The quantity computed by theL-estimator is a spectral risk measure (i.e., coherent) if the weights
are non-negative, non-decreasing (with respect to loss size) and sum to one.
19 If a loss occurs multiple times in the sample, then its total weight is distributed equally among all
relevant order statistics. For example, if L(j) = L(j+1) for some j, then we set the weights for both

order statistics equal to 1
2 (w

VaR
α�S�j + wVaR

α�S�j+1) in Eq. (33).
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(34)= 1
1 − α

1∫
α

F−1(p) dp�

Replacing F−1(p) in Eq. (34) by its estimate from Eq. (32) yields

ESα = 1
1 − α

1∫
α

(
M∑
k=1

wVaR
p�M�kL

(k)

)
dp

(35)=
M∑
k=1

(
1

1 − α

1∫
α

wVaR
p�M�k dp

)
L(k)�

Equation (35) defines an L-estimator for expected shortfall with weights

wES
α�M�k = 1

1 − α

∫ 1

α
wVaR
p�M�k dp�

The ES contribution for obligor j is estimated as

CESα
j =

M∑
k=1

wES
α�M�kL

(k)
j �

with the weights again adjusted for duplicate losses, if any (see footnote 19).
An L-estimator that has been found to perform well in practice is due

to Harrell and Davis (1982). Empirical evidence suggests that the Harrell–
Davis (HD) estimator outperforms the sample quantile for VaR contributions
(Mausser, 2003; Mausser and Rosen, 2005). Appendix A derives the HD esti-
mator weights for VaR and ES.

It is useful to compare Eq. (10), which defines a VaR contribution as a
conditional expectation, and Eq. (33), which expresses it as weighted sum of
ordered statistics. This suggests an intuitive interpretation of the weights in
the L-estimator: for a desired quantile, they reflect the estimated probabilities
that each order statistic equals the actual VaR, i.e.,

CVaRα
j =

M∑
k=1

Pr
[
L(k) = VaRα

]
E
[
Lj | L = L(k)

]
�

In fact, Sheather and Marron (1990) point out that the HD estimator is actually
the bootstrap estimator of E[L((M+1)α)], where the expectation is computed
analytically rather than by resampling.

For extreme quantiles of the portfolio loss distribution, standard MC may
not generate enough observations in the tail to estimate VaR or ES contribu-
tions accurately, regardless of the quantile estimator used. Further improve-
ments in the accuracy of risk contributions can be achieved by a combination
of
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• Exploiting the structure of the model and taking advantage of the un-
derlying conditional independence framework;

• Applying variance reduction techniques such as Importance Sampling,
Control Variates or Quasi MC methods.

5.2 Risk contributions in conditional independence models

Consider the conditional independence framework described in Section 2.
We can express risk contributions as follows. Let the random variable

L̄mj = Lm − Lmj

denote the combined loss of all obligors other than j in scenario m. Since Lmj
and L̄mj are independent, the VaR contribution of obligor j in scenario m is

(36)E
[
Lmj | Lm = VaRα

] =
∑R

r=1 c
m
jrp

m
jr Pr[L̄mj = VaRα − cmjr ]

Pr[Lm = VaRα] �

The unconditional contribution of obligor j is then computed as follows

(37)

E[Lj | L = VaRα] =
M∑
m=1

E
[
Lmj

∣∣ Lm = VaRα
]

Pr
[
Zm

∣∣ L = VaRα
]
�

Expected shortfall contributions are obtained similarly by conditioning on the
loss being greater than or equal to the VaR in Eqs. (36) and (37). That is, the
probabilities in the numerator and denominator of Eq. (36) are substituted by

(38)Pr
[
L̄mj � VaRα − cmjr

]
and Pr

[
Lm � VaRα

]
�

Equation (36) shows that the conditional contribution for obligor j essentially
entails convoluting the distributions ofLmj and L̄mj . As with the computation of
the conditional portfolio loss distribution (Eq. (4)), various numerical methods
may be used to approximate this convolution efficiently. For example, Saddle
Point methods provide semi-analytical expressions for VaR and ES contribu-
tions (see Martin et al., 2001). Also, by assuming that conditional portfolio
losses are roughly Normal and applying the Central Limit Theorem, we can
obtain analytical formulae for risk contributions. Appendix A further presents
the analytical expressions for VaR and ES contributions under the CLT.

It is important to emphasize that the objective of these methods is essen-
tially to capture the idiosyncratic risk (which arises from the conditionally
independent obligor losses in each scenario). On their own, these methods are
generally not effective for risk contributions of very large and granular port-
folios (where the systemic scenarios are largely driving the portfolio losses) or
when capital is calculated at high quantiles in the tail. This requires a greater
emphasis on generating “relevant” scenarios on the systemic factors, and hence
MC variance reduction methods can provide significant improvements.
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5.3 Variance reduction techniques

Variance reduction techniques can be used to improve significantly the qual-
ity of risk contribution estimates, particularly for extreme quantiles. In particu-
lar, Importance Sampling can be used for simulating both systemic and specific
risk factors to have more relevant scenarios in the tail of the distribution. The
following list represents several examples of its application to estimating risk
contributions:

• Merino and Nyfeler (2004) compute ES contributions in a default-
only model, using importance sampling to estimate the probabilities
in Eq. (38). Their approach requires first obtaining VaRα for the de-
sired α-quantile of the unconditional portfolio loss distribution. Then,
if VaRα exceeds E[Lm], they adjust each conditional default probabil-
ity pmj1 (by means of a so-called “exponential twisting”) so that the
expected value of Lm under the adjusted probability measure equals
VaRα.20 Thus, importance sampling is applied to the specific risk fac-
tors in each systemic scenario.

• Kalkbrener et al. (2004) also compute ES contributions in a default-
only model, but apply importance sampling to the systemic risk fac-
tors. That is, they sample Z1� � � � � Zd from Normal distributions whose
means are shifted to increase the likelihood of an extreme loss. The
conditional expectation (see Eq. (36)) is effectively estimated based on
a single sample from the conditional portfolio loss distribution associ-
ated with each systemic scenario (i.e., the entire simulation consists of
M samples, where M is the number of systemic scenarios).

• Glasserman (2005) applies IS jointly to the systemic factors (shifting
both their means and covariances) and specific factors (exponential
tilting) to compute VaR and ES contributions. He also derives an ana-
lytical approximation that, instead of sampling from the shifted distri-
butions, computes the conditional expectation directly.

6 Case studies

We now present several examples that demonstrate the use of marginal risk
contributions for capital allocation and highlight some of the practical issues
involved. Specifically, the intent is to illustrate the key properties of risk contri-
butions, the management implications of using various risk measures, and the
related numerical issues. We consider the following cases:

20 Although they consider a default only model, the exponential twisting can be generalized for credit
migration losses as well.
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• The first example shows the behavior of VaR and ES contributions
obtained using a one-factor model and a granular portfolio. It demon-
strates that the choice of the quantile can have a significant impact on
the capital allocation.

• The second example analyzes the impact of diversification from a
multi-factor model on the portfolio capital and the capital contribu-
tions. It shows the sensitivity of the marginal allocations to the size of
their components and the level of diversification.

• The third example analyzes an international bond portfolio with simu-
lation. It shows how the discrete nature of the issuer credit losses makes
it difficult to compute risk contributions and uses L-estimators to mit-
igate these effects.

• The final example compares the risk contributions of the bond portfo-
lio based on volatility, VaR and ES measures. We show how volatility-
based contributions can lead to an inefficient allocation of capital and
discuss management implications.

6.1 Risk contributions in a one-factor credit model – impact of quantile

The risk measure used to define capital and measure risk contributions can
have a significant impact on capital allocation decisions. We now illustrate the
sensitivity of the capital allocation to the confidence level (quantile) when
using VaR-type measures. Similar effects are observed when using expected
shortfall.

Consider, as first example, the credit portfolio described in Table 1. It con-
sists of ten homogeneous pools or sectors, each containing a very large number
of obligors. The portfolio weights are uniform, with each sector contributing to
10% of the total exposure. Without loss of generality, we apply 100% LGD to
all sectors. We model portfolio losses using a one-factor Merton model, and
assign uniformly an asset correlation of 15% (this is consistent, for example,
with mortgage portfolios in Basel II). For modeling purposes we assume that
the portfolio is infinitely granular, and only susceptible to systemic risk.

The expected losses in the portfolio are 3.5% of the total exposure and,
given that sectors are all the same size, their EL contributions are proportional
to their PD. The VaR losses of this portfolio are obtained through the closed
form expression (15) and the sector contributions are portfolio invariant. The
99.9% portfolio losses are over 19% and the total capital is just short of 16%.
The first four sectors contribute to almost 80% of the VaR.21 Three sectors
contribute to almost 86% of EL and 72% of VaR.

Figure 2 shows the portfolio losses in the tail of the distribution. The maxi-
mum loss at a confidence level of 100% is the total exposure of 100. The figure

21 We focus hereon on the VaR contributions, which also include EL contributions, but similar conclu-
sions can be drawn for capital (as defined by unexpected losses only) contributions.
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Table 1.
Portfolio Description (Uniform Exposures)

Sector EAD LGD PD Corr EL VaR (99.9%)

1 10 100% 11�00% 0�15 31�3% 25�2%
2 10 100% 10�00% 0�15 28�4% 24�0%
3 10 100% 9�00% 0�15 25�6% 22�7%
4 10 100% 2�00% 0�15 5�7% 9�1%
5 10 100% 1�50% 0�15 4�3% 7�5%
6 10 100% 1�00% 0�15 2�8% 5�7%
7 10 100% 0�30% 0�15 0�9% 2�4%
8 10 100% 0�20% 0�15 0�6% 1�8%
9 10 100% 0�10% 0�15 0�3% 1�0%

10 10 100% 0�05% 0�15 0�1% 0�6%
Total 100 3�5 19�3

Capital = 15.8.

Fig. 2. Tail of Portfolio Loss Distribution (uniform exposures).
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further zooms in on the tail from the 90%–99.99995%, on a log scale (where
an exponential law describes well the losses in that range of the tail).

The quantile chosen can have a substantial impact on the capital allocation.
This is illustrated in Fig. 3, which gives the VaR contributions as functions of
the quantile (and tabulates these contributions for several quantiles). We can
make the following observations from Fig. 3:

• Since all counterparties have equal exposure, at a confidence level of
100%, every sector contributes to one tenth of the losses, regardless of
their credit quality. PD influences loss exposures however at all other
confidence levels.

Fig. 3. Risk Contributions in the Tail of the Distribution (uniform exposures).
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• At the 66% level, the three sectors with the highest PD (lowest credit
quality) contribute 87% of the VaR. This goes down to 72% at a 99.9%
level (the one used in Basel II) and to less than 63% for a 99.999%
level.

• In general, as the quantile increases, the capital attributed to the low
quality sectors is shifted to high quality sectors. For example, the shift
in quantile from 99% to 99.99% results almost an almost 10% capital
reallocation from low to high quality sectors.

The table also gives the inverse of the CDI (as defined in Eq. (28)), which
essentially gives an “effective number of sectors” as accounted for their capi-
tal contributions. This is a simple summary measure that allows us to see the
overall impact of the quantile on the capital allocation. At a 90% level the port-
folio shows 4.2 effective sectors. This increases to 5.2 at the 99.9% level, 6.2 at
9.999% and 10 at 100% (which is the number of effective sectors as seen from
an exposure perspective).

In this example, only the credit quality (PD) was varied across sectors. While
the risk attributed to different sectors changed with the quantile, the ranking
of sectors by risk contribution remains the same under all quantiles. This is not
the case, however, when sectors vary across other dimensions as well. Consider
now the portfolio in Table 2.

The total exposure and the distribution of PDs are the same as in the previ-
ous case (as are the losses at 100% level). However, both EL and capital at the
99.9% level are much smaller, since the exposures are in this case distributed
proportionately to the credit quality (as is often the case in balanced portfo-
lios).

The impact of the quantile chosen on the capital allocation is more complex
in this case, due to the opposing effects of the distributions of credit quality and

Table 2.
Portfolio Description (Non-uniform Exposures)

Sector EAD LGD PD Corr EL VaR (99.9%)

1 2 100% 11�00% 0�15 25�9% 16�2%
2 2 100% 10�00% 0�15 23�6% 15�4%
3 2 100% 9�00% 0�15 21�2% 14�6%
4 2 100% 2�00% 0�15 4�7% 5�9%
5 5 100% 1�50% 0�15 8�8% 12�1%
6 5 100% 1�00% 0�15 5�9% 9�2%
7 5 100% 0�30% 0�15 1�8% 3�8%
8 10 100% 0�20% 0�15 2�4% 5�7%
9 30 100% 0�10% 0�15 3�5% 10�0%

10 37 100% 0�05% 0�15 2�2% 7�1%
Total 100 0�85 6�0

Capital = 5.2.
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Fig. 4. Risk Contributions in the Tail of the Distribution (non-uniform exposures).

exposure sizes. This is shown in Fig. 4. We can make the following observations
on this portfolio:

• The three sectors with the lowest creditworthiness are the biggest con-
sumers of capital at lower confidence levels. At a 66% level they ac-
count for 75% of losses. This number goes down to 55% and then to
39%, at 99% and 99.99% levels respectively. At high confidence levels,
these sectors are not even the highest contributors. At a 100% level,
the three biggest sectors (which are also the best credits) account for
77% of the capital.
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• The ranking of the sectors based on their capital consumption changes
with the quantile. This can be seen by the lines intersecting in the graph
in Fig. 4 and also from the adjacent table.

• The effective number of sectors (inverse of the CDI) is not a monotonic
function of the quantile. The effective number of sectors reaches its
peak around the 99.999% level and then goes down again to slightly
over four at the 100% level.

We can think of the CDI as a measure of the “dispersion” of the risk con-
tribution profiles in the plot at a given quantile. Thus the minimum occurs at
the quantile where the dispersion is the smallest. This is basically the quantile
at which the portfolio looks the most diversified. If all the capital contributions
are the same for each sector, the effective number of sectors is the maximum
and coincides with the actual number of sectors (in this case 10).

6.2 The diversification factor and capital contributions

Consider again the portfolio in Table 1, in the previous section, consisting of
ten homogeneous, granular, sectors with uniform weights (each contributing
10% of the total exposure). Using a one-factor credit model, the first three
sectors (with high PDs) contribute over 72% of the losses at the 99.9% level,
and almost 69% of the capital (given their high EL contributions).

Now, assume that the portfolio is driven by the multi-factor model given by
Eqs. (22) and (23). Each sector is driven by a single factor, with inter-sector
correlation of 15% as in the previous example. Furthermore, assume that all
sectors have the same correlation level to the single systemic factor (Eq. (23)).
Figure 5 summarizes the capital and allocations, assuming intra-sector corre-
lation levels of 100%, 60% and 40%.

The capital diversification index (CDI) for the portfolio is 0.18, which im-
plies 5.6 effective sectors (the Herfindahl index on the exposures is 0.1). The
one factor model corresponds to the case when all the sectors have correla-
tion of 100% and hence the diversification factor (DF) is 100%. Correlations
of 60% and 40%, results in 27% and 60% lower capital, respectively (DFs of
73.2% and 40%).

The last three columns (and the graph) give the capital allocations for the
different correlation values. In the one factor model (100% correlation), each
sector contributes its stand-alone capital. In the presence of diversification,
Eq. (27) shows that each sector’s marginal diversification factor, DFk, depends
also on the relative size of the sector (in terms of its stand-alone capital)
and the relative intra-sector correlation (which in this example is the same
for all sectors). Smaller sectors contribute more to the overall diversification
and get percentage capital allocations smaller than their corresponding stand-
alone contributions. The bigger portfolios, in contrast, get bigger contributions
(percent-wise). This effect grows with the level of diversification, as can be seen
from the figure (i.e. the smaller the correlation the higher this effect). Thus,
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Fig. 5. Capital Contributions in a Multi-Factor Model (uniform exposures portfolio).

while the three largest portfolios contribute 69% of the capital in a one-factor
model, their percent contribution grows to almost 76%.

6.3 VaR contributions, discreteness of loss distributions and L-estimators

We now analyze the credit risk of a portfolio of emerging markets debt un-
der a multi-factor model. The portfolio, comprising 197 long-dated corporate
and sovereign bonds issued by 86 obligors, has a mark-to-market value of 8.3
billion USD and a duration of approximately five years. The credit model con-
siders both default and MtM losses. Credit migrations for each obligor occur
among eight possible credit states, including a terminal default state, with tran-
sition probabilities specified by a Standard & Poor’s transition matrix. The
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co-dependence structure is defined by a multi-factor model of asset returns
(for details, see Bucay and Rosen, 1999). For illustration purposes only, and
to keep the example simple, we compute the portfolio credit loss distribution
using a Monte Carlo simulation with 20,000 scenarios.22

Figure 6 shows the VaR and ES for a range of quantile levels, as obtained
by the UECV and HD estimators.23 Both estimators yield virtually identical
results.

When applied to risk contributions, the UECV and HD estimators give sim-
ilar results for ES but not for VaR. For example, Fig. 7 shows the risk attributed
to Brazilian debt. While the HD estimator consistently identifies Brazil as a sig-
nificant source of risk under both measures, the VaR contributions produced
by the UECV estimator are erratic and, in fact, frequently fail to attribute any
risk to Brazil.

Fig. 6. Risk of Bond Portfolio.

22 The scenario set might be relatively small for estimating accurately extreme tails (e.g. 99.9%). In
practice, one would use a larger number of scenarios, or enhanced techniques such as Quasi-MC meth-
ods or importance sampling.
23 Weights less than 10−6 are set to zero in our analysis.



Ch. 16. Economic Credit Capital Allocation and Risk Contributions 715

Fig. 7. Risk Contributions for Brazil.

Figure 8 shows the 400 largest portfolio losses in the sample (i.e., the tail
of the empirical portfolio loss distribution beyond the 98% quantile) and the
component losses due to Brazilian bonds. While the portfolio loss profile is
relatively smooth, the Brazilian losses often change drastically from one order
statistic to the next. (Note that under the chosen model, an obligor incurs one
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Fig. 8. Brazilian Losses Relative to Portfolio Losses.

of eight possible losses, corresponding to the eight possible credit states, in
each scenario.)

In practice, given a sufficiently large sample, a quantile estimator that is
based on a single order statistic (e.g., UECV) produces a robust portfolio
VaR estimate. Moreover, since the smoothness of the portfolio loss distrib-
ution increases with sample size, the accuracy of the VaR estimate improves
accordingly. In contrast, UECV estimates of the VaR contributions are un-
reliable and, since the smoothness of the obligor loss profile is unaffected by
sample size, their accuracy cannot necessarily be improved by increasing the
number of scenarios.

This property has significant implications for typical credit risk models, in
which a loss is triggered by an obligor’s default or, more generally, by its tran-
sition to a lower credit grade. Since there is a relatively high probability of an
individual obligor retaining its original credit rating, many obligors do not in-
cur a loss in a given scenario. As a result, the UECV estimator tends to report
an excessive number of zero VaR contributions.

In contrast, ES is defined as an average of the losses spanning a range of
order statistics. Since averaging has the effect of smoothing the obligor loss
profile, the UECV estimator is generally reliable for ES contributions.

The HD estimator applies a similar averaging approach to VaR estima-
tion. While this improves the stability of the HD VaR contributions, they still
show greater variability than the ES contributions (e.g., the dip at the 99.25%
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level in Fig. 7). This is due to the different weighting schemes: the ES weights
are distributed more or less equally among order statistics beyond the sample
quantile, while the VaR weights are focused on a smaller “window” of order
statistics around the sample quantile. Since larger samples result in the weights
extending over a greater number of order statistics, increasing the sample size
produces more reliable estimates of both VaR and ES contributions.

Figure 9 illustrates the estimation of Brazil’s contribution to ES and VaR,
respectively, at the 99.25% level (the contribution is denoted by the large
icon above order statistic 19,850 in each case). The graphs show the relative
contribution of Brazil to each of the 400 largest portfolio losses (i.e., the Brazil-
ian loss component divided by the total portfolio loss), shaded to reflect the
size of its corresponding estimator weight. The ES contribution is essentially
a weighted average of the loss contributions associated with the 200 largest
portfolio losses. In contrast, the VaR estimation weights are distributed among
order statistics 19,790 through 19,900, with the largest weights surrounding or-
der statistic 19,850.

6.4 Comparing quantile-based and volatility contributions

Assigning capital based on volatility allocation is problematic since an
obligor’s contribution to volatility may fail to represent the tail of the distri-
bution (e.g., Praschnik et al., 2001; Kurth and Tasche, 2003; Kalkbrener et al.,
2004). It is important to understand that risk contributions vary across mea-
sures, and also across different confidence levels. This is apparent in Fig. 10,
which plots, for the top six obligors, the ranges of the tail-based (VaR and ES)
risk contributions, for quantile levels between 98 and 99.9%, against volatility
contributions. For example, Brazil contributes between 21.9 and 27.4% of the
VaR and between 24.8 and 26.0% of the ES, but accounts for only 20.6% of
the volatility.

In this case, the tail-based risk contributions consistently exceed the volatil-
ity contribution for the two largest contributors, Brazil and Russia. Moreover,
the rankings of Russia and Venezuela are reversed when based on volatility.
Also, the range of VaR contributions is typically larger than that for ES. As
discussed previously, this might also reflect the relative lack of precision (i.e.,
a greater sensitivity to random error) on the part of the HD estimator in the
former case.

7 Summary and further research

Capital allocation is an important management decision support and busi-
ness planning tool for financial institutions, which is required for pricing,
profitability assessment and limits, building optimal risk-return portfolios and
strategies, performance measurement and risk based compensation. This chap-
ter provides a practical overview of the measurement of economic credit cap-
ital contributions and their application to capital allocation. We discuss the
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Fig. 9. Estimation of ES and VaR Contributions for Brazil.

advantages and disadvantages of various risk measures and models, the in-
terpretation of various allocation strategies as well as the numerical issues
associated with this task.
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Fig. 10. Most Significant Risk Contributors.

Our key points may be summarized as follows:

• Marginal risk contributions provide a useful basis for allocating EC
since they are additive and reflect the benefits of diversification within
a portfolio.

• The choice of the risk measure can have a substantial impact on cap-
ital allocation. VaR and ES contributions avoid the inconsistencies,
and potentially inefficient allocations, associated with the widely-used
volatility-based method for EC allocation. The quantile level chosen
for measuring risk can also have a significant impact on the relative
amount of capital allocated to portfolio components.

• VaR and ES contributions can be calculated analytically under certain
simple models (e.g. the Basel II model and several extensions). In addi-
tion to providing fast calculations, these models can be used effectively
to get a deeper understanding of the behavior of risk contributions.
However, these models may present important practical limitations.
For example, one-factor, systemic risk models result in linear alloca-
tion strategies which are portfolio invariant. Modeling in more detail
non-granular portfolios and diversification through multi-factor mod-
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els provides a richer picture of diversification and results in more real-
istic capital allocation strategies.

• Sophisticated credit models that capture the behavior of portfolios in a
more realistic manner may entail the use of Monte Carlo simulation for
assessing risk. Computing VaR and ES contributions is challenging in
this case, specially at the extreme quantiles typically used for credit cap-
ital definition. The quality of contribution estimates can be improved
in three ways. First, the conditional independence framework can be
exploited by using advanced methods to perform the convolution of in-
dependent random variables. Second, the use of L-estimators provides
more stable contributions, especially for VaR. Finally, the use of vari-
ance reduction techniques, such as Importance Sampling can be used
effectively to get more accurate contributions at high quantiles in the
tails.

Several practical problems relevant to capital allocation are currently the
focus of research. These include:

• Statistical estimation of multi-factor models as well as their impact on
capital allocation and concentration risk. In addition to requiring ac-
curate PDs, exposures and LGDs, capital allocation methods are very
sensitive to the correlations of credit events built into the model. Em-
pirical work is important to understand the relative impact of system-
atic and idiosyncratic risk, as well as the relationship between economic
factors and credit events (e.g. Wendin and McNeil, 2005)

• Consistent capital contributions in large portfolios (and small posi-
tions). How can risk contributions be measured accurately when con-
tributions are very small (e.g. for very large portfolios)? In some cases,
the size of the risk contribution may be smaller than the error range of
the estimator (and the parameters used in model). Examples include
retail portfolio with millions of transactions, large corporate portfolios
or enterprise portfolios. A practical solution may include the applica-
tion of a simpler (calibrated) analytical model or the use of a consis-
tent hierarchical methodology to allocate contributions through a large
portfolio (e.g. using basic properties of granular, homogeneous portfo-
lios).

• Real-time marginal capital calculations. How can marginal capital be
computed consistently for a new loan or transaction (accounting prop-
erly for diversification) in “real-time”? In this case, full simulation
is typically not an option, although performance might be improved
with some semi-analytical models. Some practical solutions may in-
clude the application of a simpler analytical model (calibrated to a
full economic capital model) as given in Garcia Cespedes et al. (2006).
In order to gain acceptance, such a model should be intuitive, based
on a small number of parameters and recalibrated frequently over
time.
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• Contributions of systemic factors. While this chapter has considered
the risk contributions of portfolio components, a practitioner may also
want to know the contribution to economic capital of the various sys-
temic factors (credit drivers) that are at the heart of a multi-factor
economic capital model (such as KMV or CreditMetrics). Such factors
explain only the systemic portion of the portfolio’s total risk.24 In ad-
dition, the standard theory of marginal capital contributions does not
work well since the total capital is not a homogeneous function of these
factors. Finally, the most interesting cases, in practice, require simula-
tion of the multi-factor models. For further discussion of systemic risk
factor contributions and hedging techniques, see Rosen and Saunders
(2006a, 2006b).

Appendix A

A.1 The Harrell–Davis estimator

The Harrell–Davis (HD) estimator derives from the fact that, for 0 < α < 1,
the expected value of order statistic (M+1)α converges to F−1(α) as the sam-
ple size increases.25 Thus, the HD estimator computes VaRα as E[L((M+1)α)],
regardless of the integrality of (M + 1)α. The resulting weights are

wVaR
α�M�k = 1

β[(M + 1)α� (M + 1)(1 − α)]

×
k/M∫

(k−1)/M

y(M+1)α−1(1 − y)(M+1)(1−α)−1 dy

= Ik/M
[
(M + 1)α� (M + 1)(1 − α)

]
(39)− I(k−1)/M

[
(M + 1)α� (M + 1)(1 − α)

]
where IX(a� b) is the incomplete beta function. Figure 11 compares the
weights of the HD and UECV estimators for computing the 95% VaR from
a sample of size 100. A similar comparison for the 95% ES is shown in
Fig. 12.

24 Furthermore, a linear combination of these factors may only explain a portion of the systemic risk
(see Rosen and Saunders, 2006a).
25 In practice, L((M+1)α) is computed as a weighted average of order statistics L( (M+1)α") and
L(5(M+1)α6).
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Fig. 11. Weights for Estimating 95% VaR when S = 100.

A.2 VaR and ES contributions with CLT in conditional independence models

If conditional losses are Normal, the tail probability of portfolio losses is
given by

(40)Pr(L < y) = 1
M

M∑
m=1

Φ

(
y − μm

σm

)
where Φ(·) denotes the cumulative standard Normal probability function,

μm =
N∑
j=1

μmj and
(
σm

)2 =
N∑
j=1

(
σmj

)2

with the mean and variance of the individual obligor losses Lmi (see Eq. (3))

μmj =
R∑
r=1

cmjrp
m
jr and

(
σmj

)2 =
R∑
r=1

pmjr
(
cmjr − μmj

)2
�
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Fig. 12. Weights for Estimating 95% ES when S = 100.

Equivalently, if we denote byΦμ�σ , theN(μ�σ2) cumulative distribution (with
ϕμ�σ , the density functions), we can write Eq. (40) in terms of the estimated
VaRα(L) as

(41)
1
M

M∑
m=1

Φμm�σm
(
VaRα(L)

) = α�

Analytical expressions are obtained in this case for the VaR and ES contribu-
tions of a given obligor by computing the conditional expectations or taking the
derivative of VaR from Eq. (41) (see, for example, Kreinin and Mausser, 2003;
Martin, 2004):

(42)

E
[
Lj | L = VaRα

]
= 1

ϕμ�σ(VaRα)

M∑
m=1

ϕμm�σm(VaRα)

M

(
μmj +

(σmj )
2

σm
Zm
α

)
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and

(43)

E
[
Lj | L � VaRα

]
= 1

1 − α

M∑
m=1

1
M

[
μmj

(
1 −Φ0�1

(
Zm
α

)) + (σmj )
2

σm
ϕ0�1

(
Zm
α

)]
where

Zm
α = VaRα − μm

σm
�
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Abstract

This paper summarizes the recent advances of Çetin [Çetin, U. (2003). Default and
liquidity risk modeling. Ph.D. thesis, Cornell University], Çetin et al. [Çetin, U., Jar-
row, R., Protter, P. (2004). Liquidity risk and arbitrage pricing theory. Finance and
Stochastics 8, 311–341], Çetin et al. [Çetin, U., Jarrow, R., Protter, P., Warachka, M.
(2006). Pricing options in an extended Black Scholes economy with illiquidity: The-
ory and empirical evidence. Review of Financial Studies 19 (2), 493–529], Blais [Blais,
M. (2006). Liquidity and data. Ph.D. thesis, Cornell University], and Blais and Protter
[Blais, M., Protter, P. (2006). An analysis of the supply curve for liquidity risk through
book data, in preparation] on the inclusion of liquidity risk into option pricing theory.
This research provides new insights into the relevance of the classical techniques used
in continuous time finance for practical risk management.

1 Introduction

Classical asset pricing theory assumes that traders act as price takers, that
is, the theory assumes that investors’ trades have no impact on the prices
paid or received. The relaxation of this price taking assumption and its im-
pact on realized returns in asset pricing models is called liquidity risk. Liq-
uidity risk has been extensively studied in the market microstructure liter-
ature, but not in the asset pricing literature. In the market microstructure
literature, it is well known that a quantity impact on prices can be due
to asymmetric information or differential risk tolerances (see Kyle, 1985;

† Supported in part by NSF grant DMS-0202958 and NSA grant MDA-904-03-1-0092.
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Glosten and Milgrom, 1985; or Grossman and Miller, 1988 in this regard).
In an extreme form, liquidity risk has also been studied in the market ma-
nipulation literature (see Cvitanic and Ma, 1996; Jarrow, 1992; and Bank and
Baum, 2004). And, as argued in Çetin (2003), liquidity risk is related to the
transaction costs literature because transaction costs induce a quantity im-
pact on prices paid/received (see also Barles and Soner, 1998; Constantinides
and Zariphopoulou, 1999; Cvitanic and Karatzas, 1996; Cvitanic et al., 1999;
Jouini, 2000; Jouini and Kallal, 1995; Jouini et al., 2001; Soner et al., 1995 in
this regard).

The purpose of this paper is to review the recent research of Çetin (2003),
Çetin et al. (2004), and Çetin et al. (2006) on the inclusion of liquidity risk into
option pricing theory, and the recent of results of Blais (2006) and Blais and
Protter (2006) where these results are interpreted through an analysis of book
data. This approach embeds liquidity risk into the classical theory by having
investors act as price takers with respect to a C2 supply curve for the shares.
In essence, instead of a single price for all shares traded, investors face a twice
continuously differentiable price/quantity schedule. In this framework, it is as-
sumed that the quantity impact on the price transacted is temporary.1 Given
this extension, Çetin et al. (2004) show that appropriate generalizations of the
first and second fundamental theorems of asset pricing hold. Briefly stated, in
this model, markets are arbitrage free if and only if there exists an equivalent
martingale measure. In addition, markets will be approximately complete (in
the L2 sense), if the martingale measure is unique. The converse of this last
implication does not hold.

The first and second fundamental theorems extend in this model due to the
fact that trading strategies that are both continuous and of finite variation can
approximate (in the L2 sense) arbitrary predictable trading strategies. And,
these continuous and finite variation trading strategies can be shown to avoid
all liquidity costs. Consequently, the arbitrage-free price of any derivative is
shown to be equal to the expected value of its payoff under the risk neutral
measure. This is the same price as in the classical economy with no liquidity
costs. However, in a world with liquidities, the classical hedge will not be used
to replicate the option. Instead, a continuous and finite variation approxima-
tion will be used. Both of these observations are consistent with industry usage
of the classical arbitrage free pricing methodology. But, they have another set
of strong implications for practice.

If one is interested in understanding the quantity impact of trades on prices
in options markets as well, then this theory does not readily apply. Indeed, un-
der the C2 supply curve with continuous trading strategies, all liquidity costs
can be avoided when trading in the underlying shares. Although liquidity costs
exist, they are nonbinding. Consequently, there can be no quantity impact on

1 Permanent quantity impacts on prices relates to the previously cited market manipulation literature
and it is not studied here.
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option prices in such an economy,2 otherwise arbitrage opportunities exist.
To accommodate upward sloping supply curves for options, either the supply
curve for the stock must have a discontinuity at 0 (it must violate the C2 hy-
pothesis) or continuous trading strategies must be excluded. Both extensions
are possible. The first extension relates to the transaction cost literature (see
Çetin, 2003). The second extension is investigated in Çetin et al. (2006). This
second extension is important because continuous trading strategies are not
feasible in practice, and only approximating simple trading strategies can be
applied. Yet, for simple trading strategies, liquidity costs are binding. This liq-
uidity cost impact implies that the markets are no longer complete, and exact
replication is not possible, implying an upward sloping supply curve for options
can exist. Çetin et al. (2006) show, in this context, how to super-replication op-
tions with minimum liquidity costs. The cost of the super-replication strategy
provides an upper bound on the supply curve for the option market.

An outline for this paper is as follows. Section 2 describes the basic econ-
omy. Sections 3 and 4 study the first and second fundamental theorems of asset
pricing, respectively. Section 5 provides an example – the extended Black–
Scholes economy. Section 6 investigates a model with supply curves for options,
Section 7 relates the supply curve formulation to transaction costs, Section 8
discusses examples inspired by an analysis of data, and Section 9 concludes the
paper.

2 The model

This section presents the model. We are given a filtered probability space
(Ω�F� (Ft)0�t�T �P) satisfying the usual conditions where T is a fixed time.
P represents the statistical or empirical probability measure. We also assume
that F0 is trivial, i.e. F0 = {∅�Ω}.

We consider a market for a security that we will call a stock with no divi-
dends. Also traded is a money market account that accumulates value at the
spot rate of interest. Without loss of generality, we assume that the spot rate of
interest is zero, so that the money market account has unit value for all times.3

2.1 Supply curve

We consider an arbitrary trader who acts as a price taker with respect to an
exogenously given supply curve for shares bought or sold of this stock within
the trading interval. More formally, let S(t� x�ω) represent the stock price, per
share, at time t ∈ [0� T ] that the trader pays/receives for an order of size x ∈ R

2 Recall that the previous theory implies that there is a unique price for an option (long or short),
independent of the quantity of shares in the underlying traded.
3 A numéraire invariance theorem is proved in Çetin et al. (2004).
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given the state ω ∈ Ω. A positive order (x > 0) represents a buy, a negative
order (x < 0) represents a sale, and the order zero (x = 0) corresponds to
the marginal trade. By construction, rather than the trader facing a horizon-
tal supply curve as in the classical theory (the same price for any order size),
the trader now faces a supply curve that depends on his order size.4 Note that
the supply curve is otherwise independent of the trader’s past actions, endow-
ments, risk aversion, or beliefs. This implies that an investor’s trading strategy
has no lasting impact on the price process.

We now impose some structure on the supply curve.

Assumption 1 (Supply curve).

1. S(t� x� ·) is Ft-measurable and nonnegative.
2. x (→ S(t� x�ω) is a.e. t nondecreasing in x, a.s. [i.e. x � y implies

S(t� x�ω) � S(t� y�ω) a.s. P, a.e. t].
3. S is C2 in its second argument, ∂S(t� x)/∂x is continuous in t, and

∂2S(t� x)/∂x2 is continuous in t.
4. S(·� 0) is a semimartingale.
5. S(·� x) has continuous sample paths (including time 0) for all x.

Except for the second condition, these restrictions are self-explanatory.
Condition 2 is the situation where the larger the purchase (or sale), the larger
the price impact that occurs on the share price. This is the usual situation
faced in asset pricing markets, where the quantity impact on the price is due
to either information effects or supply/demand imbalances (see Kyle, 1985;
Glosten and Milgrom, 1985; Grossman and Miller, 1988). It includes, as a spe-
cial case, horizontal supply curves.5

Example 1 (Supply curve). To present a concrete example of a supply curve,
let S(t� x) ≡ f (t�Dt� x) where Dt is an n-dimensional, Ft-measurable semi-
martingale, and f :Rn+2 → R+ is Borel measurable, C1 in t, and C2 in all
its other arguments. This nonnegative function f can be viewed as a reduced
form supply curve generated by a market equilibrium process in a complex and
dynamic economy. Under this interpretation, the vector stochastic process Dt

represents the state variables generating the uncertainty in the economy, often
assumed to be diffusion processes or at least Markov processes (e.g. a solution
to a stochastic differential equation driven by a Levy process).

4 In contrast, the trader is assumed to have no quantity impact due to his trades in the money market
account.
5 This structure can also be viewed as a generalization of the model in Jouini (2000) where the traded
securities have distinct selling and buying prices following separate stochastic processes.
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2.2 Trading strategies

We start by defining the investor’s trading strategy.

Definition 1. A trading strategy is a triplet ((Xt� Yt : t ∈ [0� T ])� τ) where Xt

represents the trader’s aggregate stock holding at time t (units of the stock),
Yt represents the trader’s aggregate money market account position at time t
(units of the money market account), and τ represents the liquidation time
of the stock position, subject to the following restrictions: (a) Xt and Yt are
predictable and optional processes, respectively, with X0− ≡ Y0− ≡ 0, and
(b) XT = 0 and τ is a predictable (Ft : 0 � t � T) stopping time with τ � T
and X = H1[0�τ) for some predictable process H(t�ω).

We are interested in a particular type of trading strategy – those that are self-
financing. By construction, a self-financing trading strategy generates no cash
flows for all times t ∈ [0� T ). That is, purchase/sales of the stock must be ob-
tained via borrowing/investing in the money market account. This implies that
Yt is uniquely determined by (Xt� τ). The goal is to define this self-financing
condition for Yt given an arbitrary stock holding (Xt� τ).

Definition 2. A self-financing trading strategy (s.f.t.s.) is a trading strategy
((Xt� Yt : t ∈ [0� T ])� τ) where (a) Xt is càdlàg if ∂S(t� 0)/∂x ≡ 0 for all t,
and Xt is càdlàg with finite quadratic variation ([X�X]T < ∞) otherwise,
(b) Y0 = −X0S(0�X0), and (c) for 0 < t � T ,

Yt = Y0 +X0S(0�X0)+
t∫

0

Xu− dS(u� 0)−XtS(t� 0)

(1)

−
∑

0�u�t

�Xu
[
S(u��Xu)− S(u� 0)

] − t∫
0

∂S

∂x
(u� 0) d[X�X]cu�

Condition (a) imposes restrictions on the class of acceptable trading strate-
gies. Under the hypotheses that Xt is càdlàg and of finite quadratic variation,
the right side of expression (1) is always well defined although the last two
terms (always being nonpositive) may be negative infinity. The classical theory,
under frictionless and competitive markets, does not need these restrictions.
An example of a trading strategy that is allowed in the classical theory, but dis-
allowed here, isXt = 1{S(t�0)>K} for some constantK > 0 where S(t� 0) follows
a Brownian motion. Under the Brownian motion hypothesis this is a discontin-
uous trading strategy that jumps infinitely often immediately after S(t� 0) = K
(the jumps are not square summable), and hence Yt is undefined.
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Condition (b) implies the strategy requires zero initial investment at time 0.
When studying complete markets in a subsequent section, condition (b) of the
s.f.t.s. is removed so that Y0 +X0S(0�X0) �= 0.

Condition (c) is the self-financing condition at time t. The money market ac-
count equals its value at time 0, plus the accumulated trading gains (evaluated
at the marginal trade), less the cost of attaining this position, less the price im-
pact costs of discrete changes in share holdings, and less the price impact costs
of continuous changes in the share holdings. This expression is an extension
of the classical self-financing condition when the supply curve is horizontal. To
see this note that using condition (b) with expression (1) yields the following
simplified form of the self-financing condition:

Yt +XtS(t� 0) =
t∫

0

Xu− dS(u� 0)

−
∑

0�u�t

�Xu
[
S(u��Xu)− S(u� 0)

]

(2)−
t∫

0

∂S

∂x
(u� 0) d[X�X]cu for 0 � t � T�

The left side of expression (2) represents the classical “value” of the portfolio
at time 0. The right side gives its decomposition into various components. The
first term on the right side is the classical “accumulated gains/losses” to the
portfolio’s value. The last two terms on the right side capture the impact of
illiquidity, both entering with a negative sign.

2.3 The marked-to-market value of a s.f.t.s. and its liquidity cost

This section defines the marked-to-market value of a trading strategy and
its liquidity cost. At any time prior to liquidation, there is no unique value
of a trading strategy or portfolio. Indeed, any price on the supply curve is a
plausible price to be used in valuing the portfolio. At least three economically
meaningful possibilities can be identified: (i) the immediate liquidation value
(assuming that Xt > 0 gives Yt + XtS(t�−Xt)), (ii) the accumulated cost of
forming the portfolio (Yt), and (iii) the portfolio evaluated at the marginal
trade (Yt + XtS(t� 0)).6 This last possibility is defined to be the marked-to-
market value of the self-financing trading strategy (X�Y� τ). It represents the
value of the portfolio under the classical price taking condition.

Motivated by expression (2), we define the liquidity cost to be the difference
between the accumulated gains/losses to the portfolio, computed as if all trades

6 These three valuations are (in general) distinct except at one date, the liquidation date. At the liqui-
dation time τ, the value of the portfolio under each of these three cases are equal because Xτ = 0.
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are executed at the marginal trade price S(t� 0), and the marked-to-market
value of the portfolio.

Definition 3. The liquidity cost of a s.f.t.s. (X�Y� τ) is

Lt ≡
t∫

0

Xu− dS(u� 0)− [
Yt +XtS(t� 0)

]
�

The following lemma follows from the preceding definition.

Lemma 1 (Equivalent characterization of the liquidity costs).

Lt =
∑

0�u�t

�Xu
[
S(u��Xu)− S(u� 0)

] + t∫
0

∂S

∂x
(u� 0) d[X�X]cu � 0�

where L0− = 0, L0 = X0[S(0�X0)− S(0� 0)] and Lt is nondecreasing in t.

Proof. The first equality follows directly from the definitions. The second in-
equality and the subsequent observation follow from the fact that S(u� x) is
increasing in x.

We see here that the liquidity cost is nonnegative and nondecreasing in t.
It consists of two components. The first is due to discontinuous changes in the
share holdings. The second is due to the continuous component. This expres-
sion is quite intuitive. Note that because X0− = Y0− = 0, �L0 = L0 − L0− =
L0 > 0 is possible. �

3 The extended first fundamental theorem

This section studies the characterization of an arbitrage free market and
generalizes the first fundamental theorem of asset pricing to an economy with
liquidity risk.

To evaluate a self-financing trading strategy, it is essential to consider its
value after liquidation. This is equivalent to studying the portfolio’s real wealth,
as contrasted with its marked-to-market value or paper wealth, see Jarrow
(1992). Using this insight, an arbitrage opportunity can now be defined.

Definition 4. An arbitrage opportunity is a s.f.t.s. (X�Y� τ) such that P{YT �
0} = 1 and P{YT > 0} > 0.

We first need to define some mathematical objects. Let st ≡ S(t� 0), (X− ·
s)t ≡

∫ t
0 Xu− dS(u� 0), and for α � 0, let Θα ≡ {s.f.t.s (X�Y� τ) | (X− · s)t �

−α for all t almost surely}.
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Definition 5. Given an α � 0, a s.f.t.s. (X�Y� τ) is said to be α-admissible if
(X�Y� τ) ∈ Θα. A s.f.t.s. is admissible if it is α-admissible for some α.

Lemma 2 (Yt +XtS(t� 0) is a supermartingale). If there exists a probability mea-
sure Q ∼ P such that S(·� 0) is a Q-local martingale, and if (X�Y� τ) ∈ Θα for
some α, then Yt +XtS(t� 0) is a Q-supermartingale.

Proof. From Definition 3 we have that Yt +XtS(t� 0) = (X− · s)t − Lt . Un-
der the Q measure, (X− · s)t is a local Q-martingale. Since (X�Y� τ) ∈ Θα for
some α, it is a supermartingale (Duffie, 1996). But, by Lemma 1, Lt is non-
negative and nondecreasing. Therefore, Yt + XtS(t� 0) is a supermartingale
too. �

Theorem 1 (A sufficient condition for no arbitrage). If there exists a probability
measure Q ∼ P such that S(·� 0) is a Q-local martingale, then there is no arbitrage
for (X�Y� τ) ∈ Θα for any α.

Proof. Under this hypothesis, by Lemma 2, Yt + XtS(t� 0) is a supermartin-
gale. Note that Yτ +XτS(τ� 0) = Yτ by the definition of the liquidation time.
Thus, for this s.f.t.s., EQ[Yτ] = EQ[Yτ + XτS(τ� 0)] � 0. But, by the defini-
tion of an arbitrage opportunity, EQ[Yτ] > 0. Hence, there exist no arbitrage
opportunities in this economy. �

The intuition behind this theorem is straightforward. The marked-to-market
portfolio is a hypothetical portfolio that contains zero liquidity costs (see Defi-
nition 3). If S(·� 0) has an equivalent martingale measure, then these hypothet-
ical portfolios admit no arbitrage. But, since the actual portfolios differ from
these hypothetical portfolios only by the subtraction of nonnegative liquidity
costs (Lemma 1), the actual portfolios cannot admit arbitrage either.

In order to get a sufficient condition for the existence of an equivalent local
martingale measure, we need to define the notion of a free lunch with vanishing
risk as in Delbaen and Schachermayer (1994). This will require a preliminary
definition.

Definition 6. A free lunch with vanishing risk (FLVR) is either: (i) an admis-
sible s.f.t.s. that is an arbitrage opportunity or (ii) a sequence of εn-admissible
s.f.t.s. (Xn�Yn� τn)n�1 and a nonnegative FT -measurable random variable, f0,
not identically 0 such that εn → 0 and Yn

T → f0 in probability.7

To state the theorem, we need to introduce a related, but fictitious econ-
omy. Consider the economy introduced previously, but suppose instead that

7 Delbaen and Schachermayer (1994, Proposition 3.6, p. 477) shows that this definition is equivalent to
FLVR in the classical economy.
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S(t� x) ≡ S(t� 0). When there is no confusion, we denote S(t� 0) by the simpler
notation st . In this fictitious economy, a s.f.t.s. (X�Y 0� τ) satisfies the classical
condition with X0 = 0, the value of the portfolio is given by Z0

t ≡ Y 0
t + Xtst

with Y 0
t = (X · s)t − Xtst for all 0 � t � T , and X is allowed to be a

general S(·� 0) ≡ s integrable predictable process [see the remark following
expression (1)]. So, in this fictitious economy, our definitions of an arbitrage
opportunity, an admissible trading strategy, and a NFLVR collapse to those in
(Delbaen and Schachermayer, 1994).

Theorem 2 (First fundamental theorem). Suppose there are no arbitrage oppor-
tunities in the fictitious economy. Then, there is no free lunch with vanishing
risk (NFLVR) if and only if there exists a probability measure Q ∼ P such that
S(·� 0) ≡ s is a Q-local martingale.

The proof is in Appendix A.

4 The extended second fundamental theorem

This section studies the meaning and characterization of a complete mar-
ket and generalizes the second fundamental theorem of asset pricing to an
economy with liquidity risk. For this section we assume that there exists an
equivalent local martingale measure Q so that the economy is arbitrage free
and there is no free lunch with vanishing risk (NFLVR).

Also for this section, we generalize the definition of a s.f.t.s (X�Y� τ)
slightly to allow for nonzero investments at time 0. In particular, a s.f.t.s.
(X�Y� τ) in this section will satisfy Definition 2 with the exception that con-
dition (b) is removed. That is, a s.f.t.s. need not have zero initial value (Y0 +
X0S(0�X0) �= 0).8

To proceed, we need to define the space H2
Q of semimartingales with respect

to the equivalent local martingale measure Q. Let Z be a special semimartin-
gale with canonical decomposition Z = N +A, where N is a local martingale
under Q and A is a predictable finite variation process. The H2 norm of Z is
defined to be

‖Z‖H2 = ∥∥[N�N]1/2∞
∥∥
L2 +

∥∥∥∥∥
∞∫

0

|dAs|
∥∥∥∥∥
L2

�

8 In this section we could also relax condition (b) of a trading strategy, Definition 1, to remove the
requirement that XT = 0. However, as seen below, it is always possible to approximate any random
variable with such a trading strategy. Consequently, this restriction is without loss of generality in the
context of our model. This condition was imposed in the previous section to make the definition of an
arbitrage opportunity meaningful in a world with liquidity costs.
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where the L2-norms are with respect to the equivalent local martingale mea-
sure Q.

Throughout this section we make the assumption that s(·) = S(·� 0) ∈ H2
Q.

Since we are assuming s ∈ H2
Q, it is no longer necessary to require that X · s is

uniformly bounded from below.

Definition 7. A contingent claim is any FT -measurable random variable C
with EQ(C2) < ∞.

Note that the contingent claim is considered at a time T , prior to which the
trader’s stock position is liquidated. If the contingent claim’s payoff depends on
the stock price at time T , then the dependence of the contingent claim’s payoff
on the shares purchased/sold at time T must be made explicit. Otherwise, the
contingent claim’s payoff is not well defined. An example helps to clarify this
necessity.

Consider a European call option on the stock with a strike price9 of K and
maturity T0 � T .10 To write the modified boundary condition for this option
incorporating the supply curve for the stock, we must consider two cases: cash
delivery and physical delivery.

1. If the option has cash delivery, the long position in the option receives
cash at maturity if the option ends up in-the-money. To match the cash
settlement, the synthetic option position must be liquidated prior to
time T0. When the synthetic option position is liquidated, the underly-
ing stock position is also liquidated. The position in the stock at time T0
is, thus, zero.

If we sell the stock at time T0 to achieve this position, then the bound-
ary condition is C ≡ max[S(T0�−1) − K� 0] where �XT0 = −1 since
the option is for one share of the stock. However, as we show below, one
could also liquidate this stock position just prior to time T0 using a contin-
uous and finite variation process, so that �XT0 = 0. This alternative liq-
uidation strategy might be chosen in an attempt to avoid liquidity costs at
time T0. In this case, the boundary condition is C ≡ max[S(T0� 0)−K� 0].
Note that using this latter liquidation strategy, the option’s payoff is only
approximately obtained (to a given level of accuracy) because liquidation
occurs just before T0.

2. If the option has physical delivery, then the synthetic option position
should match the physical delivery of the stock in the option contract.
With physical delivery, the option contract obligates the short position

9 To be consistent with the previous construct, one should interpret K as the strike price normalized by
the value of the money market account at time T0.
10 Recall that interest rates are zero, so that the value of the liquidated position at time T0 is the same
as the position’s value at time T .
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to deliver the stock shares. To match the physical delivery, the stock
position in the synthetic option is not sold. Unfortunately, our model
requires the stock position to be liquidated at time T0. Formally, phys-
ical delivery is not possible in our construct. However, to approximate
physical delivery in our setting, we can impose the boundary condition
C ≡ max[S(T0� 0) − K� 0] where �XT0 = 0. This boundary condition is
consistent with no liquidity costs being incurred at time T0, which would
be the case with physical delivery of the stock.11

Definition 8. The market is complete if given any contingent claim C, there
exists a s.f.t.s. (X�Y� τ) with EQ(

∫ T
0 X2

u d[s� s]u) < ∞ such that YT = C.

To understand the issues involved in replicating contingent claims, let
us momentarily consider a contingent claim C in L2(dQ) where there ex-
ists a s.f.t.s. (X�Y� τ) such that C = c + ∫ T

0 Xu dsu where c ∈ R and
EQ{∫ T0 X2

u d[s� s]u} < ∞. Note that EQ(C) = c since
∫ 0

0 Xu dsu = X0�s0 = 0
by the continuity of s at time 0. This is the situation where, in the absence of
liquidity costs, a long position in the contingent claim C is redundant. In this
case, Y0 is chosen so that Y0 +X0s0 = c. But, the liquidity costs in trading this
stock position are (by Lemma 1):

Lt =
∑

0�u�t

�Xu
[
S(u��Xu)− S(u� 0)

] + t∫
0

∂S

∂x
(u� 0) d[X�X]cu � 0�

We have from Definition 2 that

YT = Y0 +X0s0 +
T∫

0

Xu− dsu −XTsT − LT + L0

and12 ∫ T
0 Xu− dsu = ∫ T

0 Xu dsu so that

YT = C −XTsT − LT + L0�

By assumption, we have liquidated by time T , giving XT = 0. Thus, we have

YT = C − (LT − L0) � C�

11 We are studying an economy with trading only in the stock and money market account. Expanding
this economy to include trading in an option expands the liquidation possibilities prior to time T . In-
cluded in this set of expanded possibilities is the delivery of the physical stock to offset the position in
an option, thereby avoiding any liquidity costs at time T . Case 2 is the method for capturing no liquidity
costs in our restricted setting.
12 ∫ T

0 Xu dsu = ∫ T
0 Xu− dsu +∑

0�u�T �Xu�su and �Xu�su = 0 for all u since �su = 0 for all u by
the continuity of s.
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That is, considering liquidity costs, this trading strategy sub-replicates a long
position in this contingent claim’s payoffs. Analogously, if we use −X to hedge
a short position in this contingent claim, the payoff is generated by

YT = −C − (LT − L0) � −C�
where Y is the value in the money market account and L is the liquidity cost
associated with −X. The liquidation value of the trading strategies (long and
short) provide a lower and upper bound on attaining the contingent claim’s
payoffs.

Remark 1.

1. If ∂S
∂x(·� 0) ≡ 0, then L· = L0 if X is a continuous trading strategy. So,

under this hypothesis, all claims C where there exists a s.f.t.s. (X�Y� τ)
such that C = c + ∫ T

0 Xu dsu with X continuous can be replicated.
For example, if S(·� 0) is a geometric Brownian motion (an extended
Black–Scholes economy), a call option can be replicated since the Black–
Scholes hedge is a continuous s.f.t.s.

2. If ∂S
∂x(·� 0) � 0 (the general case), then L = L0 if X is a finite variation

and continuous trading strategy. So, under this hypothesis, all claims C
where there exists a s.f.t.s. (X�Y� τ) such that C = c+ ∫ T

0 Xu dsu with X
of finite variation and continuous can be replicated.

The remark above shows that if we can approximate X using a finite vari-
ation and continuous trading strategy, in a limiting sense, we may be able to
avoid all the liquidity costs in the replication strategy. In this regard, the fol-
lowing lemma is relevant.

Lemma 3 (Approximating continuous and finite variation s.f.t.s.). Let C ∈
L2(dQ). Suppose there exists a predictable X with EQ(

∫ T
0 X2

u d[s� s]u) < ∞ so
that C = c + ∫ T

0 Xu dsu for some c ∈ R. Then, there exists a sequence of s.f.t.s.
(Xn�Yn� τn)n�1 with Xn bounded, continuous and of finite variation such that
EQ(

∫ T
0 (Xn

u)
2 d[s� s]u) < ∞, Xn

0 = 0, Xn
T = 0, Yn

0 = EQ(C) for all n and

Yn
T = Yn

0 +Xn
0 S

(
0�Xn

0
) + T∫

0

Xn
u− dsu −Xn

TS(T� 0)− LnT

(3)→ c +
T∫

0

Xu dsu = C

in L2(dQ).
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Proof. Note that for any predictable X that is integrable with respect to s,∫ T
0 Xu dsu = ∫ T

0 Xu1(0�T ](u) dsu since
∫ T

0 1(0�T ]Xu dsu = ∫ T
0 Xu dsu −X0�s0

and �s0 = 0. Therefore, we can without loss of generality assume that X0 = 0.
Given any H ∈ L (the set of adapted processes that have left continuous

paths with right limits a.s.) with H0 = 0, we define, Hn, by the following:

Hn
t (ω) = n

t∫
t− 1

n

Hu(ω) du�

for all t � 0, letting Hu equal 0 for u < 0. Then H is the a.s. pointwise
limit of the sequence of adapted processes Hn that are continuous and of
finite variation. Note that Hn

0 = 0 for all n. Theorem 2 in Chapter IV of
Protter (2005) remains valid if bL is replaced by the set of bounded, con-
tinuous processes with paths of finite variation on compact time sets. Let X
with X0 = 0 be predictable and EQ(

∫ T
0 X2

u d[s� s]u) < ∞. Since X · s is
defined to be the limk→∞Xk · s, where the convergence is in L2(dQ) and
Xk = X1{|X|�k}, and using the above observation, there exists a sequence
of continuous and bounded processes of finite variation, (Xn)n�1, such that
EQ(

∫ T
0 (Xn

u)
2 d[s� s]u) < ∞, Xn

0 = 0 for all n and

T∫
0

Xn
u dsu →

T∫
0

Xu dsu�

in L2(dQ) (see Protter, 2005, Theorems 2, 4, 5 and 14 in Chapter IV in this
respect).

Furthermore, Theorem 12 and Corollary 3 in Appendix A allow us to choose
Xn
T = 0 for all n. Now, choose Yn = EQ(C) for all n and define Yn

t for t > 0
by (1). Let τn = T for all n. Then, the sequence (Xn�Yn� τn)n�1 will sat-
isfy (3). Note that Ln ≡ 0 for all n and

∫ T
0 Xn

u− dsu = ∫ T
0 Xn

u dsu. �

This lemma motivates the following definition and extension of the second
fundamental theorem of asset pricing.

Definition 9. The market is approximately complete if given any contingent
claim C, there exists a sequence of s.f.t.s. (Xn�Yn� τn) with
EQ(

∫ T
0 (Xn

u)
2 d[s� s]u) < ∞ for all n such that Yn

T → C as n → ∞ in L2(dQ).

Theorem 3 (Second fundamental theorem). Suppose there exists a unique prob-
ability measure Q ∼ P such that S(·� 0) = s is a Q-local martingale. Then, the
market is approximately complete.

Proof. The proof proceeds in two steps. Step 1 shows that the hypothesis guar-
antees that a fictitious economy with no liquidity costs is complete. Step 2
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shows that this result implies approximate completeness for an economy with
liquidity costs.

Step 1. Consider the economy introduced in this paper, but suppose that
S(·� x) ≡ S(·� 0). In this fictitious economy, a s.f.t.s. (X�Y 0� τ) satisfies the
classical condition with Y 0

t ≡ Y0 +X0S(0� 0)+ ∫ t
0 Xu− dsu −Xtst . The classi-

cal second fundamental theorem (see Harrison and Pliska, 1981) applies: the
fictitious market is complete if and only if Q is unique.

Step 2. By Step 1, given Q is unique, the fictitious economy is complete and,
moreover, s has the martingale representation property. Hence, there exists a
predictable X such that C = c + ∫ T

0 Xu dsu with EQ(
∫ T

0 X2
u d[s� s]u) < ∞ [see

Protter (2005, Section 3 of Chapter IV) in this respect]. Then, by applying the
lemma above, the market is approximately complete. �

Suppose the martingale measure is unique. Then, by the theorem we
know that given any contingent claim C, there exists a sequence of s.f.t.s.
(Xn�Yn� τn)n�1 with EQ(

∫ T
0 (Xn

u)
2 d[s� s]u) < ∞ for all n so that Yn

T =
Yn

0 +Xn
0 S(0�X

n
0 )− LnT + ∫ T

0 Xn
u− dS(u� 0) → C in L2(dQ). We call any such

sequence of s.f.t.s., (Xn�Yn� τn)n�1 an approximating sequence for C.

Definition 10. Let C be a contingent claim andΨC be the set of approximating
sequences for C. The time 0 value of the contingent claim C is given by

inf
{

lim inf
n→∞ Yn

0 +Xn
0 S

(
0�Xn

0
)
:
(
Xn�Yn� τn

)
n�1 ∈ ΨC

}
�

Corollary 1 (Contingent claim valuation). Suppose there exists a unique proba-
bility measure Q ∼ P such that S(·� 0) = s is a Q-local martingale. Then, the
time 0 value of any contingent claim C is equal to EQ(C).

Proof. Let (Xn�Yn� τn)n�1 be an approximating sequence for C. Then,
EQ(Yn

T − C)2 → 0, and thus, EQ(Yn
T − C) → 0. However, since

EQ(
∫ T

0 (Xn
u)

2d[s� s]u) < ∞ for all n,
∫ ·

0 X
n
u− dsu is a Q-martingale for each n.

This yields EQ(Yn
T ) = Yn

0 + Xn
0 S(0�X0) − EQ(LnT ). Combining this with the

fact that Ln � 0 for each n and EQ(Yn
T − C) → 0 gives lim infn→∞ Yn

0 +
Xn

0 S(0�X0) � EQ(C) for all approximating sequences. However, as proven
in Lemma 3, there exists some approximating sequence (Xn�Yn� τn)n�1 with
Ln = 0 for all n. For this sequence, lim infn→∞ Yn

0 +Xn
0S(0�X0) = EQ(C). �

Remark 2.

1. The above value is consistent with no arbitrage. Indeed, suppose the
contingent claim is sold at price p > EQ(C). Then, one can short the
contingent claim at p and construct a sequence of continuous and of fi-
nite variation s.f.t.s., (Xn�Yn� τn)n�1, with Yn

0 = EQ(C), Xn
0 = 0 and
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limn→∞ Yn
T = C in L2, hence, in probability, creating a FLVR. However,

this is not allowed since Q is an equivalent martingale measure for s. Sim-
ilarly, one can show that the price of the contingent claim cannot be less
than EQ(C).

2. Given our supply curve formulation, this corollary implies that continu-
ous trading strategies of finite variation can be constructed to both (i) ap-
proximately replicate any contingent claim, and (ii) avoid all liquidity
costs. This elucidates the special nature of continuous trading strategies
in a continuous time setting.

5 Example (extended Black–Scholes economy)

To illustrate the previous theory, we consider an extension of the Black–
Scholes economy that incorporates liquidity risk. This example along with
some empirical evidence regarding the pricing of traded options in the ex-
tended Black–Scholes economy can be found in Çetin et al. (2006).

5.1 The economy

Let

(4)S(t� x) = eαxS(t� 0) with α > 0�

(5)S(t� 0) ≡ s0e
μt+σWt

ert
�

where μ�σ are constants and W is a standard Brownian motion initialized at
zero.

For this section, let the spot rate of interest be constant and equal to r
per unit time. The marginal stock price follows a geometric Brownian motion.
The normalization by the money market account’s value is made explicit in ex-
pression (5). Expressions (4) and (5) characterize an extended Black–Scholes
economy. It is easy to check that this supply curve satisfies Assumption 1 in
Section 2.

Under these assumptions, there exists a unique martingale measure for
S(·� 0) = s, see Duffie (1996). Hence, we know that the market is arbitrage-
free and approximately complete.

5.2 Call option valuation

Consider a European call option with strike price K and maturity date T
on this stock with cash delivery. Given cash delivery, in order to avoid liquidity
costs at time T , the payoff13 to the option at time T is selected to be CT =
max[S(T� 0)−K� 0].

13 The strike price needs to be normalized by the value of the money market account.
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Under this structure, by the corollary to the second fundamental theorem
of asset pricing, the value of a long position in the option is

C0 = e−rTEQ
(
max

[
S(T� 0)−K� 0

])
�

It is well known that the expectation in this expression gives the Black–Scholes–
Merton formula:

s0N
(
h(0)

) −Ke−rTN
(
h(0)− σ

√
T

)
�

where N(·) is the standard cumulative normal distribution function and

h(t) ≡ log st − logK + r(T − t)

σ
√
T − t

+ σ

2

√
T − t�

Applying Itô’s formula, the classical replicating strategy, X = (Xt)t∈[0�T ], im-
plied by the classical Black–Scholes–Merton formula is given by

(6)Xt = N
(
h(t)

)
�

This hedging strategy is continuous, but not of finite variation.
In this economy, we have that (∂S∂x(t� 0) = αe0st = αst). Hence, although

the call’s value is the Black–Scholes formula, the standard hedging strategy
will not attain this value. Indeed, using this strategy, it can be shown that the
classical Black–Scholes hedge leads to the following nonzero liquidity costs
[from expression (1)]14:

(7)LT = X0
(
S(0�X0)− S(0� 0)

) + T∫
0

α(N ′(h(u)))2su

T − u
du�

In contrast, an approximate hedging strategy that is continuous and of finite
variation having zero liquidity costs is the sequence of s.f.t.s. (Xn�Yn� τn)n�1
with

Xn
t = 1[ 1

n �T− 1
n )
(t)n

t∫
(t− 1

n )
+

N
(
h(u)

)
du� if 0 � t � T − 1

n
�

(8)Xn
t = (

nTXn
(T− 1

n )
− nXn

(T− 1
n )
t
)
� if T − 1

n
� t � T�

and Yn
0 = EQ(CT ). In the limit, this trading strategy attains the call’s time T

value, i.e. Yn
T = Yn

0 + ∫ T
0 Xn

u− dsu → CT = max[S(T� 0)−K� 0] in L2(dQ).

14 Note that both LT and Yn
T are normalized by the value of the money market account.
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6 Economies with supply curves for derivatives

Extended first and second fundamental theorems hold in the above econ-
omy, with a C2 supply curve for the stock and allowing continuous trading
strategies, consequently, there is a unique price for any option on the stock.
This implies that the supply curve for trading an option is horizontal, exhibit-
ing no quantity impact on the price. Otherwise, there would exist arbitrage
opportunities (given trading in options and the stock). This is inconsistent with
practice. And, it seems that any model analyzing liquidity risk, should imply
supply curves for both stocks and options.

The reason they exist for stocks, but not options in the above model, is
that continuous trading strategies of finite variation enable the investor to
avoid all liquidity costs in the stock. Hence, although liquidity costs exist,
they are nonbinding, and the classical theory still applies (albeit in a modi-
fied and approximate manner). To make liquidity costs binding (as they are
in practice), one must either remove the C2 condition or disallow contin-
uous trading strategies. The removal of the C2 condition has been stud-
ied in the transaction cost literature (see Çetin, 2003; Barles and Soner,
1998; Constantinides and Zariphopoulou, 1999; Cvitanic and Karatzas, 1996;
Cvitanic et al., 1999; Jouini, 2000; Jouini and Kallal, 1995; Jouini et al., 2001;
Soner et al., 1995) and will be discussed here directly in Section 7, and in the
context of estimating supply curves when summarizing Blais (2006) and Blais
and Protter (2006) in Section 8 below. The exclusion of continuous trading
strategies, but still retaining the C2 condition, has been studied by Çetin et al.
(2006). This exclusion is consistent with practice because continuous trading
strategies are impossible to utilize, except as approximations via simple trad-
ing strategies. But, with simple trading strategies, liquidity costs are binding.
We discuss this extension next.

We modify the previous theory by considering only the class of the discrete
trading strategies defined as any simple s.f.t.s. Xt where

Xt ∈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
xτ01{τ0} +

N∑
j=1

xτj1(τj−1�τj]

∣∣∣∣∣∣∣∣∣∣∣

1. τj are F stopping times for
each j

2. xτj is in Fτj−1 for each j
(predictable)

3. τ0 ≡ 0 and τj > τj−1 + δ
for a fixed δ > 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
�

These trading strategies are discontinuous because once a trade is executed,
the subsequent trade is separated by a minimum of δ > 0 time units, as in
Cheridito (2003). For the remainder of the paper, lower case values x and y
denote discrete trading strategies.

By restricting the class of trading strategies in this manner, we retain an
arbitrage-free environment (the extended first fundamental theorem still ap-
plies), although the minimum distance δ between trades prevents the mar-
ket from being approximately complete. In an incomplete (not approximately
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complete market), the cost of replicating an option depends on the chosen
trading strategy. Hence, the extended second fundamental theorem fails. This
failure implies that there can be a quantity impact on the price of an option,
i.e. the supply curve for an option need not be horizontal.

To investigate no arbitrage constraints on this supply curve, we can study the
super-replication of options via the use of discrete trading strategies. For any
discrete trading strategy, the liquidity cost equals

(9)LT =
N∑
j=0

[xτj+1 − xτj ]
[
S(τj� xτj+1 − xτj )− S(τj� 0)

]
�

For a discrete trading strategy with xT = 0, the hedging error is given by

CT − YT = CT −
[
y0 + x0S(0� 0)+

N−1∑
j=0

xτj+1

[
S(τj+1� 0)− S(τj� 0)

]]
+ LT �

Thus, there are two components to this hedging error. The first quantity,

(10)

[
y0 + x0S(0� 0)+

N−1∑
j=0

xτj+1

[
S(τj+1� 0)− S(τj� 0)

]] − CT �

is the error in replicating the option’s payoff CT . The second component is the
liquidity cost LT defined in Equation (9).

To provide an upper bound on the price a particular quantity of options, one
can investigate the minimum cost of super-replication. For a single call option
on the stock, this cost can be obtained as follows. DefineZt = XtS(t� 0)+Yt as
the time t marked-to-market value of the replicating portfolio. The optimiza-
tion problem is

(11)min
(X�Y)

Z0 s.t. ZT � CT = max
{
S(T� 0)−Ke−rT � 0

}
�

where

ZT = y0 + x0S(0� 0)+
N−1∑
j=0

xτj+1

[
S(τj+1� 0)− S(τj� 0)

] − LT �

The solution to this problem requires a numerical approximation. One such
numerical procedure involving the binomial approximation is discussed in
Çetin et al. (2006).15

15 For multiple call options on the stock, the right side of the equation is premultiplied by the number
of option shares.
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Since liquidity costs in the underlying stock are quantity dependent, the
cost of super-replication will also be quantity dependent. The cost of super-
replicating a number of shares of the option then provides an upper bound
on the entire supply curve for the option (as a function of the quantity con-
structed).

In Çetin et al. (2006), for various traded options, some empirical evidence is
provided showing that the difference between the classical price and the super-
replication cost to an option is economically significant.

7 Transaction costs

As previously stated, transaction costs can be viewed as a special case of our
liquidity risk formulation where the C2 hypothesis on the supply curve is vi-
olated. This section provides the justification for this statement. We discuss
three kinds of transaction costs, where all costs are per share unless other-
wise stated. The three kinds are fixed transaction costs, proportionate transaction
costs, and mixed fixed and proportionate transaction costs. We are now ignoring
liquidity issues, and we use the mathematics of the supply curve framework
to study only transaction costs. To emphasize this distinction, we now call the
supply curve the transaction curve. Our goal is to see when continuous trading
is feasible.16 This section largely follows Umut Çetin’s thesis (Çetin, 2003).

Definition 11. We define three kinds of transaction costs:

1. Fixed transaction costs are defined by a transaction curve giving the (per
share stock price) by

S(t� x) = S(t� 0)+ a

x
�

2. Proportionate transaction costs depend proportionately on the dollar
value of the trade, and are given by

S(t� x) = S(t� 0)
(
1 + β sign(x)

)
�

where β > 0 is the proportionate transaction cost per unit value.
3. Combined fixed and proportionate transaction costs vary with the specific

application. Two examples are17:

16 Obviously in practice continuous trading is not truly feasible, since one cannot physically trade con-
tinuously. However, there remains the issue of whether one would desire to approximate a continuous
trading strategy arbitrarily closely with discrete trading strategies. If continuous trading strategies have
infinite transaction costs, then any approximating sequence would have unboundedly large transaction
costs, and be undesirable to utilize. It is the desirability of using approximating sequences that is really
being investigated below.
17 These characterizations were obtained from information provided on both the Fidelty and Vanguard
web sites in 2004.
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• Fidelity

S(t� x) = S(t� 0)+ β

x
+ sign(x)γ1{|x|>δ}�

where β, γ and δ are positive constants;
• Vanguard

S(t� x) = S(t� 0)+ max{α� |x|c}
x

�

where α and c are positive constants.

Our first result implies that in the presence of fixed transaction costs, only
piecewise constant trading strategies need be considered for modeling pur-
poses.

Theorem 4. Continuous trading in the presence of fixed transaction costs creates
infinite costs in finite time.

Proof. We assume the structure given in Definition 11, part 1. First assume that
our trading strategy X is of the form X = ∑n−1

i=0 Xi1[Ti�Ti+1), for a sequence of
trading times 0 = T0 � T1 � · · · � Tn = T . Then the cumulative trading costs
are

∑n−1
i=0 a1{Xi �=Xi−1}, and if we further assume that always Xi �= Xi−1, then it

is equal simply to na.
Now suppose our trading strategy X has continuous paths. Let TC(X) de-

note the transaction costs of following the strategy X. We have

TC(X) = lim sup
n→∞

∑
Tni ∈Πk

a1{XTn
i
�=XTn

i+1
} = lim sup

n→∞
aNΠn(X)�

where Πn is a sequence of random partitions tending to the identity18 and
NΠn(X) is the number of times that XTni

�= XTni−1
for the random stopping

times of Πn. Note that lim supn→∞NΠn(X) = ∞ unless X is a.s. piecewise
constant. Thus continuous trading strategies incur infinite transaction costs.
Finally, if our trading strategy has both jumps and continuous parts to it, the
transaction costs will exceed the costs for each part, hence will also be infi-
nite. �

The situation for proportional transaction costs is more complicated. Here
it is possible to trade continuously, provided one follows a trading strategy with
paths of finite variation (which is not the case, for example, with the standard
Black–Scholes hedge of a European call or put option).

18 This is terminology from Protter (2005); it means that each Πn is a finite increasing sequence of
stopping times covering the interval [0� T ], and the mesh of Πn tends to 0 as n → ∞.
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Theorem 5. Continuous trading in the presence of proportional transaction costs
is infinite if the trading strategy has paths of infinite variation. If the strategy X has
paths of finite variation on [0� T ] for a subset Λ of Ω, then the cumulative transac-
tion costs are b

∫ T
0 S(s� 0)|dXs| a.s. on Λ, where |dXs| denotes the total variation

Stieltjes path by path integral, and they are infinite on Λc . (b is the constant in
Definition 11, part 2 .)

Proof. Let Πn be a sequence of random partitions tending to the identity on
[0� T ]. LetX be a continuous trading strategy. Then the cumulative transaction
costs for proportional costs can be written as

TC(X) = lim sup
n→∞

∑
Tni ∈Πk

S
(
Tn
k � 0

)|�Xn�k|b�

where �Xn�k = XTnk
−XTnk−1

. When X has paths of finite variation, this con-

verges to the path by path Stieltjes integral b
∫ T

0 S(s� 0)|dXs|, and when X
paths of infinite variation is diverges to ∞. Since it is a path by path result,
we deduce the theorem. �

Theorem 6. Continuous trading in the presence of combined fixed and propor-
tional transaction costs creates infinite costs in finite time.

Proof. Suppose our trading strategy X has continuous paths. Let TC(X) de-
note the transaction costs of following the strategy X. We have

TC(X) � lim sup
n→∞

∑
Tni ∈Πk

δ1{XTn
i
�=XTn

i+1
} � lim sup

n→∞
δNΠn(X)�

for some constant δ, and where Πn is a sequence of random partitions tending
to the identity, and NΠn(X) is the number of times that XTni

�= XTni−1
for the

random stopping times of Πn. This leads to infinite costs as in the proof of
Theorem 4. �

8 Examples of supply curves

We now discuss recent results of Blais (2006) and Blais and Protter (2006).
These results are inspired by an analysis of a trading book, provided to Blais
and Protter by Morgan Stanley, via the good office of Robert Ferstenberg (see
Ferstenberg, 2004). See Blais (2006) and Blais and Protter (2006) for a detailed
description of the data and its more profound implications. Note that the clas-
sical theory, with unlimited liquidity, is embedded in the structure previously
discussed, using a standard price process St = S(t� 0). In this case the supply
curve

x → S(t� x) reduces to x → S(t� 0)�
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that is, it is a line with slope 0 and vertical axis intercept S(t� 0). If one supposes
that the supply curve is linear, that is of the form

x → S(t� x) = Mtx+ bt�

then if the classical theory is accurate one must have Mt = 0. Taking this as
the null hypothesis, Blais (2006) has shown that it can be rejected at the 0�9999
significance level. From this we conclude that the supply curve exists and is
nontrivial.

Using linear regression, Blais (2006) has further shown that for liquid
stocks19 the supply curve is linear, with time varying slope and intercept; thus
for liquid stocks the supply curve can be written

x → S(t� x) = Mtx+ bt�

where bt = S(t� 0). Moreover it is reasonable to assume that (Mt)t�0 is itself a
stochastic process with continuous paths. We have then the following theorem
for this case, which is a special case of Theorem 11 of Appendix A.

Theorem 7. For a liquid stock with linear supply curve of the form

x → S(t� x) := Mtx+ bt�

and a càdlàg trading strategy X with finite quadratic variation, the value in the
money market account for a self financing trading strategy is given by

Yt = −XtS(t� 0)+
t∫

0

Xu− dS(u� 0)−
t∫

0

Mu d[X�X]u�

Note that in this theorem, the quadratic variation differential term can have
jumps.

The case for nonliquid stocks presents a new problem, and the previously
established theory breaks down at one particular point, because the standing
hypothesis that the supply curve x → S(t� x) is C2 no longer holds. Indeed, in
this case the data shows that the supply curve is jump linear, with one jump,
which can be thought of as the bid–ask spread. Fortunately the only place Çetin
et al. (2004) use the C2 hypothesis is in the derivation of the self financing strat-
egy, and in the jump linear case the simple structure allows Blais and Protter
to eliminate this hypothesis.20 Since we no longer assume the supply curve is
continuous, we can let S(t� 0−) denote the marginal ask, and S(t� 0+) will de-
note the marginal bid, whence we can let γ(t) = S(t� 0+)−S(t� 0−) denote the

19 We deliberately leave the definition of a “liquid stock” vague. For a precise definition, see Blais and
Protter (2006). Examples of liquid stocks include BP, ATT, IBM.
20 The C2 hypothesis of the supply curve in the space variable is of course also not needed for the linear
supply curve case, and thus in practice perhaps it is not needed at all.
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bid/ask spread. Assume that the supply curve has a jump linear form given by

(12)S(t� x) =
{
β(t)x+ S(t� 0+) (x � 0)�
α(t)x+ S(t� 0−) (x < 0)�

where α and β assumed to be continuous stochastic processes. Next define

(13)b+(t) = S(t� 0+) and b−(t) = S(t� 0−)

and assume that both b+ and b− are (random and) continuous functions of t.
In the next theorem, we restrict our attention to trading strategies with paths of
finite variation, which is reasonable since we are considering the illiquid case.
For such a trading strategy X let

(14)Xt = X0 + Ct −At

which is the path-by path Lebesgue decomposition of X into the difference
of two monotone nondecreasing processes with disjoint supports. Note that
both A and C can of course contain jumps. Note also that for such an X,
[X�X]t = ∑

s�t(�Xs)
2. We have in this case the following result (Blais and

Protter, 2006):

Theorem 8. For an illiquid stock with jump linear supply curve of the form given
in Equation (12) and a càdlàg trading strategy X with paths of finite variation (of
the form (14)), the value in the money market account for a self financing trading
strategy is given by

Yt = Y0 −XtS(t� 0+)+
t∫

0

Xu− dS(u� 0+)

−
t∫

0

{
β(s)1Λc(s)+ α(s)1Λ(s)

}
d[X�X]s

−
t∫

0

{
b+(s)1Λc(s)− b−(s)1Λ(s)

}
dXs�

where Λ denotes the (random) support of the increasing process A defined in (14)
above.

Proof. It is clear that the money market process Y should satisfy

Yt = Y0 − lim
n→∞

∑
k�1

(XTnk
−XTnk−1

)S
(
Tn
k � (XTnk

−XTnk−1
)
)

= −X(0)S(0�X0)
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− lim
n→∞

∑
k�1

(XTnk
−XTnk−1

)
[
S
(
Tn
k � (XTnk

−XTnk−1
)
) − S

(
Tn
k � 0

)]
− lim

n→∞
∑
k�1

(XTnk
−XTnk−1

)S
(
Tn
k � 0

)
�

We know from Example 2 (given in Appendix A) that the last sum converges
to −X0S(0� 0)+XtS(t� 0)− ∫ t

0 Xu− dS(u� 0). Let us thus focus on the term

(15)− lim
n→∞

∑
k�1

(XTnk
−XTnk−1

)
[
S
(
Tn
k � (XTnk

−XTnk−1
)
) − S

(
Tn
k � 0

)]
�

Due to our jump linear hypothesis on the structure of the supply curve, we can
re-write the sum in expression (15) as:∑

k�1

(XTnk
−XTnk−1

)
[
S
(
Tn
k � (XTnk

−XTnk−1
)
) − S

(
Tn
k � 0

)]
=

∑
k�1

�Xn�k1{�Xn�k�0}
[
β
(
Tn
k

)
�Xn�k − b+

(
Tn
k

)]
+

∑
k�1

�Xn�k1{�Xn�k<0}
[
α
(
Tn
k

)
�Xn�k − b−

(
Tn
k

)]
=

∑
k�1

(�Xn�k)
21{�Xn�k�0}β

(
Tn
k

) + ∑
k�1

(�Xn�k)
21{�Xn�k<0}α

(
Tn
k

)
−

∑
k�1

�Xn�k1{�Xn�k�0}b+
(
Tn
k

) − ∑
k�1

�Xn�k1{�Xn�k<0}b−
(
Tn
k

)
�

where we have written �Xn�k as a shorthand for XTnk
−XTnk−1

.
Next we take the limits as indicated in expression (15) and using that b+ and

b− are both continuing, it follows from standard theorems from stochastic cal-
culus (see, e.g., Protter, 2005) that we get convergence uniformly on compact
time sets in probability to the expression

−
t∫

0

{
β(s)1Λc(s)+ α(s)1Λ(s)

}
d[X�X]s

−
t∫

0

{
b+(s)1Λc(s)− b−(s)1Λ(s)

}
dXs

and the result follows. �
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9 Conclusion

This paper reviews the work of Çetin (2003), Çetin et al. (2004, 2006), Blais
(2006), and Blais and Protter (2006) which extends classical arbitrage pricing
theory to include liquidity risk. This is accomplished by studying an economy
where the security’s price depends on the trade size. Extended first and sec-
ond fundamental theorems of asset pricing are shown to hold. For the first
theorem, the economy is shown to be arbitrage free if and only if the sto-
chastic process for the price of a marginal trade has an equivalent martingale
probability measure. The second fundamental theory of asset pricing also ap-
proximately holds: markets will be approximately complete if the martingale
measure is unique. In an approximately complete market, derivative prices are
shown to equal the classical arbitrage free price of the derivative security. This
implies horizontal supply curves for a derivative on the stock. To obtain upward
sloping supply curves for derivatives, continuous trading strategies need to be
excluded. This extension implies an incomplete market. Minimal cost super-
replicating trading strategies are discussed in this regard. Last, an analysis of
the theory and how it applies to data in both the liquid and illiquid cases is
reviewed.
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Appendix A

A.1 Proof of the first fundamental theorem

This theorem uses Assumption 1, sample path continuity of S(t� x). The
proof proceeds in two steps. Step 1 constructs a fictitious economy where all
trades are executed at the marginal stock price. The theorem is true in this
fictitious economy by the classical result. Step 2 then shows the theorem in this
fictitious economy is sufficient to obtain the result in our economy.

Prior to this proof, we need to make the following observation in order to
utilize the classical theory. The classical theory (see Delbaen and Schacher-
mayer, 1994 or alternatively Protter, 2001 for an expository version) has trading
strategies starting with X0 = 0, while we have trading strategies with X0− = 0
but not X0 = 0. Without loss of generality, in the subsequent proof, we can
restrict ourselves to predictable processes with X0 = 0. Here is the argument.
Recall su = S(u� 0). In our setup, choose Y 0 so that X0S(0� 0) + Y 0

0 = 0
and XtS(t� 0) + Y 0

t = X0S(0� 0) + Y 0
0 + ∫ T

0+Xu dsu = ∫ T
0+Xu dsu. Define
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X̂ = 1(0�T ]X. X̂ is predictable, X̂0 = 0, and
∫ T

0+Xu dsu = ∫ T
0 X̂u dsu. The

analysis can be done for X̂.

A.1.1 Step 1. The fictitious economy
Consider the fictitious economy introduced in Section 3. Delbaen and

Schachermayer prove the following in Section 4 of (Delbaen and Schacher-
mayer, 1994):

Theorem 9. Given Assumption 1 and no arbitrage, there is NFLVR in the ficti-
tious economy if and only if there exists a measure Q ∼ P such that S(·� 0) is a
Q-local martingale.

Since the stochastic integral of a predictable process can be written as a limit
(uniformly on compacts in probability) of stochastic integrals with continuous
and finite variation integrands (see Appendix A.3 below), we have the follow-
ing corollary.21

Corollary 2. Suppose there is no arbitrage opportunity in the fictitious economy.
Given Assumption 1, if there is an (FLVR) in the fictitious economy, there exists
a sequence of εn-admissible trading strategies Xn, continuous and of FV, and a
nonnegative FT -measurable random variable f0, not identically zero, such that
εn → 0 and (Xn · S)T → f0 in probability.

The proof of this corollary is straightforward, and hence we omit it.

A.1.2 Step 2. The illiquid economy
In the economy with liquidity risk, restricting consideration to s.f.t.s.

(X�Y� τ) with X finite variation and continuous processes, by Lemma 1, we
have that Yt = (X · s)t − XtS(t� 0). At time T , we have YT = (X · s)T . This
is the value of the same s.f.t.s. in the fictitious economy. We use this insight
below.

Lemma 4. Given Assumption 1, let X be an α-admissible trading strategy which
is continuous and of FV in the fictitious economy. Then there exists a sequence of
(α + εn)-admissible trading strategies, in the illiquid economy, (Hn�Yn� τn)n�1
of FV and continuous on [0� τn), such that Yn

T tends to (X · S)T , in probability,
and εn → 0.

21 In the original paper (Delbaen and Schachermayer, 1994), there is a missing hypothesis in the state-
ment of their theorem related to this corollary. We include here and in other results as needed the
missing hypothesis of no arbitrage. We are grateful to Professor Delbaen for providing us with a coun-
terexample that shows one does in fact need this hypothesis (Delbaen, 2003).
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Proof. Let Tn = T − 1
n . Define

(A.1)fn(t) = 1[Tn�t�Tn+1]
XTn

Tn − Tn+1
(t − Tn+1)

so that fn(Tn) = XTn and fn(Tn+1) = 0. Note that fn(t) → 0, a.s., ∀t. Define

(A.2)Xn
t = Xt1[t<Tn] + fn(t)�

By this definition, Xn is continuous and of FV. Note that T is a fixed time and
not a stopping time, so Xn is predictable. Moreover,

(A.3)
(
Xn · S)

t
= (X · S)t∧Tn +

t∫
0

fn(s) dS(s� 0)�

Notice that |fn(ω)| � supt |Xt(ω)| ≡ K(ω) ∈ R since X is continuous on
[0� T ]. Thus, fn is bounded by an S(·� 0)-integrable function. Therefore, by
dominated convergence theorem for stochastic integrals (see Protter, 2005,
p. 145)

∫
fn(s) dS(s� 0) tends to 0 in u.c.p. on the compact time interval [0� T ],

and therefore Xn · S → X · S in u.c.p. on [0� T ].22

Now, let (εn)n�1 be a sequence of positive real numbers converging to 0
such that

∑
n εn < ∞. Define τn = inf{t > 0: (Xn · S)t < −α − εn} ∧ T .

τn is a predictable stopping time by the continuity of S(·� x). Due to u.c.p.
convergence of Xn · S to X · S, passing to a subsequence if necessary, we have
the following:

(A.4)P
(

sup
0�t�T

∣∣(Xn · S)
t
− (X · S)t

∣∣ � εn
)

� εn�

Notice that P(τn < T) � εn, i.e. τn → T in probability. Moreover, τn �
Tn because Xn = X up to time Tn. Choose Hn = Xn1[0�τn). Consider the
sequence of trading strategies (Hn� τn)n�1. Note that (Hn · S)t � −α− εn for
all t ∈ [0� τn] since Hn

τn = 0 for all n. Therefore, (Hn� τn)n�1 is a sequence of
(α+ εn)-admissible trading strategies. The value of the portfolio at liquidation
for each trading strategy is given by

(A.5)Yn
τn = Xn

(
τn

)[
S
(
τn�−Xn

(
τn

)) − S
(
τn� 0

)] + (
Xn · S)

τn

since Hn is of FV and jumps only at τn for each n by the continuity of Xn.
Therefore, it remains to show Xn(τn) → 0 in probability since this, together
with τn → T in probability, will prove the theorem. Indeed,

∑
n P(τn < T) �∑

n εn < ∞. Therefore, by the first Borel–Cantelli lemma, P[τn < T i.o.] = 0,
which implies Xn(τn) = Xn(T) = 0, with probability 1, for all but at most
finitely many n. �

22 One can also show this using integration by parts.
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Lemma 5. Suppose there is no arbitrage opportunity in the fictitious economy.
Given Assumption 1, there is NFLVR in the fictitious economy if and only if there
is NFLVR in the illiquid economy.

Proof. Suppose there is NFLVR in the fictitious economy. Since, given any
s.f.t.s. (X�Y� τ) in the illiquid economy, Yτ � (X · S)τ, it follows there exists
NFLVR in the illiquid economy. Conversely, suppose there is FLVR in the
fictitious economy. In view of Corollary 2, there is a sequence, (Xn)n�1, with
eachXn continuous, of FV, and εn-admissible trading strategies such that (Xn ·
S)T → f0 in probability where f0 is as before and εn → 0. However, by the
previous lemma, there exists a sequence of αn-admissible trading strategies,
(Hn�Yn� τn)n�1, where αn → 0, in the illiquid economy such that Yn

τn → f0
in probability, which gives an FLVR in the illiquid economy. �

Theorem 10 (First fundamental theorem). Suppose there is no arbitrage oppor-
tunity in the fictitious economy. Given Assumption 1, there is no free lunch with
vanishing risk (NFLVR) in the illiquid economy if and only if there exists a mea-
sure Q ∼ P such that S(·� 0) is a Q-local martingale.

Proof. By the previous lemma, (NFLVR) in the illiquid economy is equivalent
to (NFLVR) in the fictitious economy, which is equivalent to existence of a
martingale measure by Theorem 9. �

A.2 Construction of the self-financing condition for a class of trading strategies

The purpose of this section is to provide justification for Definition 2 in the
text. This proof uses only the weaker hypotheses of Assumption 2.23

Let t be a fixed time and let (σn) be a sequence of random partitions of [0� t]
tending to identity in the following form:

σn: 0 = Tn
0 � Tn

1 � · · · � Tn
kn

= t�

where Tn
k s are stopping times. For successive trading times, t1 and t2, the self-

financing condition can be written as

Yt2 − Yt1 = −(Xt2 −Xt1)
[
S(t2�Xt2 −Xt1)

]
�

Note that Yt = Y0 + ∑
k�1(YTnk − YTnk−1

) for all n. Therefore, we will define
Yt to be the following limit whenever it exists:

(A.6)Y0 − lim
n→∞

∑
k�1

(XTnk
−XTnk−1

)S
(
Tn
k �XTnk

−XTnk−1

)
�

23 Note that we have already justified the notion of a self financing strategy in the jump linear illiquid
case of Section 8.
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Example 2. In the classical case, S(t� x) = S(t� 0) for all x ∈ R. Thus, self-
financing condition becomes

Yt2 − Yt1 = −[Xt2 −Xt1]S(t2� 0)

and initial trades must satisfy Y(0) = −X(0)S(0� 0) instead. Therefore,

Yt = Y0 − lim
n→∞

∑
k�1

(XTnk
−XTnk−1

)S
(
Tn
k � 0

)
= Y(0)− lim

n→∞

[ ∑
k�1

XTnk
S
(
Tn
k � 0

) − ∑
k�1

XTnk−1
S
(
Tn
k � 0

)]

= Y(0)− lim
n→∞

[ ∑
k�1

XTnk
S
(
Tn
k � 0

)
−

∑
k�1

XTnk−1

(
S
(
Tn
k � 0

) − S
(
Tn
k−1� 0

)) − ∑
k�1

XTnk−1
S
(
Tn
k−1� 0

)]
= Y0 −XtS(t� 0)+X0S(0� 0)

+ lim
n→∞

∑
k�1

XTnk−1

(
S
(
Tn
k � 0

) − S
(
Tn
k−1� 0

))

= −XtS(t� 0)+
t∫

0

Xu− dS(u� 0)�

Notice that the limit agrees with the value of Y(t) in classical case. So, we have
a framework that contains the existing theory.

Theorem 11. For X càdlàg and has finite quadratic variation (QV ), the value in
the money market account is given by

Yt = −XtS(t� 0)+
t∫

0

Xu− dS(u� 0)−
t∫

0

S(1)x (u−� 0) d[X�X]cu

(A.7)−
∑

0�u�t

[
S(u��Xu)− S(u� 0)

]
�Xu�

where S(n)x is the nth partial derivative of S with respect to x.

Proof. The proof of this theorem is reminiscent of the proof of Theorem 8.
Expression (A.6) is

Yt = Y0 − lim
n→∞

∑
k�1

(XTnk
−XTnk−1

)S
(
Tn
k � (XTnk

−XTnk−1
)
)
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= −X(0)S(0�X0)

− lim
n→∞

∑
k�1

(XTnk
−XTnk−1

)
[
S
(
Tn
k � (XTnk

−XTnk−1
)
) − S

(
Tn
k � 0

)]
− lim

n→∞
∑
k�1

(XTnk
−XTnk−1

)S
(
Tn
k � 0

)
�

We know from Example 2 that the last sum converges to −X0S(0� 0) +
XtS(t� 0) − ∫ t

0 Xu− dS(u� 0). Let A = A(ε� t) be a set of jumps of X that has
a.s. a finite number of times s, and let B = B(ε� t) be such that

∑
s∈B(�Xs)

2 �
ε2, where A and B are disjoint and A∪B exhaust the jumps of X on (0� t], see
proof of Itô’s formula in Protter (2005). Thus,

lim
n→∞

∑
k�1

(XTnk
−XTnk−1

)
[
S
(
Tn
k � (XTnk

−XTnk−1
)
) − S

(
Tn
k � 0

)]
= lim

n→∞
∑
k�A

(XTnk
−XTnk−1

)
(
S
(
Tn
k � (XTnk

−XTnk−1
)
) − S

(
Tn
k � 0

))
+ lim

n→∞
∑
k�B

(XTnk
−XTnk−1

)
(
S
(
Tn
k � (XTnk

−XTnk−1
)
) − S

(
Tn
k � 0

))
�

where
∑

k�A denotes
∑

k�1 1[A∩(Tnk−1�T
n
k ]�=∅], and

∑
k�B denotes∑

k�1 1[B∩(Tnk−1�T
n
k ]=∅] Since A has only finitely many elements, ω by ω, the

first limit equals

(A.8)
∑
u∈A

[
S(u��Xu)− S(u� 0)

]
�Xu�

Applying Taylor’s formula to each S(Tn
k � ·), the second limit becomes

lim
n→∞

∑
k�B

S(1)x

(
Tn
k � 0

)
(XTnk

−XTnk−1
)2

+ lim
n→∞

∑
k�B

(XTnk
−XTnk−1

)R
(
Tn
k � |XTnk

−XTnk−1
|)

= lim
n→∞

∑
k�1

S(1)x

(
Tn
k � 0

)
(XTnk

−XTnk−1
)2

− lim
n→∞

∑
k�A

S(1)x

(
Tn
k � 0

)
(XTnk

−XTnk−1
)2

+ lim
n→∞

∑
k�B

(XTnk
−XTnk−1

)R
(
Tn
k � |XTnk

−XTnk−1
|)

= lim
n→∞

∑
k�1

S(1)x

(
Tn
k−1� 0

)
(XTnk

−XTnk−1
)2
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+ lim
n→∞

∑
k�1

[
S(1)x

(
Tn
k � 0

) − S(1)x

(
Tn
k−1� 0

)]
(XTnk

−XTnk−1
)2

− lim
n→∞

∑
k�A

S(1)x

(
Tn
k � 0

)
(XTnk

−XTnk−1
)2

(A.9)+ lim
n→∞

∑
k�B

(XTnk
−XTnk−1

)R
(
Tn
k � |XTnk

−XTnk−1
|)�

where R is the remainder term in Taylor’s formula. The sum of the first three
limits converges to24

t∫
0

S(1)x (u−� 0) d[X�X]u + [
S(1)x (·� 0)� [X�X]]

t
−

∑
u∈A

S(1)x (u� 0)(�Xu)
2

=
t∫

0

S(1)x (u−� 0) d[X�X]u +
∑

0<u�t

�S(1)x (u� 0)(�Xu)
2

(A.10)−
∑
u∈A

S(1)x (u� 0)(�Xu)
2�

Now we will show as ε tends to 0, the last term in (A.9) vanishes. Assuming
temporarily that |S(2)x | < K < ∞ uniformly in x and t,∣∣R(

Tn
k � |XTnk

−XTnk−1
|)∣∣

� sup
0�|x|�|XTn

k
−XTn

k−1
|

∣∣S(1)x

(
Tn
k � x

) − S(1)x

(
Tn
k � 0

)∣∣∣∣(XTnk
−XTnk−1

)
∣∣

� sup
0�|y|�|x|�|XTn

k
−XTn

k−1
|

∣∣S(2)x

(
Tn
k � y

)
x(XTnk

−XTnk−1
)
∣∣

� K(XTnk
−XTnk−1

)(XTnk
−XTnk−1

)�

where the second inequality follows from the Mean Value Theorem. There-
fore, the last sum in (A.9) is less than or equal to, in absolute value,

K lim
n→∞

∑
k�B

(|XTnk
−XTnk−1

|)3

< K lim
n→∞ sup

k�B

|XTnk
−XTnk−1

|
∑
k

(|XTnk
−XTnk−1

|)2

� Kε[X�X]t �

24 Note that the assumption that S(1)x (·� 0) has a finite QV is not needed when S(1)x (·� 0) is continuous.

In this case, the second limit is zero. This follows from the fact that X has a finite QV and S(1)x (·� 0) is
uniformly continuous, ω by ω, over the compact domain [0� T ].
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Note that ε can be made arbitrarily small and X has a finite QV. Furthermore,
since all summands are positive, as ε → 0, (A.8) converges to∑

0<u�t

[
S(u��Xu)− S(u� 0)

]
�Xu

and (A.10) converges to

t∫
0

S(1)x (u−� 0) d[X�X]u +
∑

0<u�t

�S(1)x (u� 0)(�Xu)
2

−
∑

0<u�t

S(1)x (u� 0)(�Xu)
2

=
t∫

0

S(1)x (u−� 0) d[X�X]u −
∑

0<u�t

S(1)x (u−� 0)(�Xu)
2

=
t∫

0

S(1)x (u−� 0) d[X�X]cu�

For the general case, let V x
k = inf{t > 0: S(2)(t� x) > k}. Define S̃(t� x) :=

S(t� x)1[0�V x
k )

. Therefore, (A.7) holds for S̃, for each k. Now, a standard ar-
gument using set unions, as in the proof of Itô’s formula in Protter (2005),
establishes (A.7) for S. �

A.3 Approximating stochastic integrals with continuous and of FV integrands

The next lemma (Lemma 6) is well known and can be found in Protter
(2005).

Lemma 6. Let X be a special semimartingale with the canonical decomposition
X = N +A, where N is a local martingale and A is predictable. Suppose S has
totally inaccessible jumps. Then A is continuous.

We make the following assumption. (Note that this assumption is satisfied in
all classical market models studies, since [for example] a Lévy process has only
totally inaccessible jumps, and indeed by a classic theorem of P.A. Meyer, all
“reasonable” strong Markov processes have only totally inaccessible jumps.)

Assumption 2. S(·� 0) has only totally inaccessible jumps.

We recall a few definitions.
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Definition 12. Let X be a special semimartingale with canonical decomposi-
tion X = N̄ + Ā. The H2 norm of X is defined to be

‖X‖H2 = ∥∥[N̄� N̄]1/2∞
∥∥
L2 +

∥∥∥∥∥
∞∫

0

|dĀu|
∥∥∥∥∥
L2

�

The space H2 of semimartingales consists of all special semimartingales with
finite H2 norm.

Definition 13. The predictable σ-algebra P on R+ × Ω is the smallest σ-
algebra making all processes in L measurable where L is the set of processes
that have paths that are left continuous with right limits. We let bP denote
bounded processes that are P-measurable.

Definition 14. Let X ∈ H2 with X = N̄ + Ā its canonical decomposition, and
let H� J ∈ bP . We define dX(H� J) by

dX(H� J) ≡
∥∥∥∥∥
( T∫

0

(Hu − Ju)
2 d[N̄� N̄]u

)1/2∥∥∥∥∥
L2

+
∥∥∥∥∥

T∫
0

|Hu − Ju||dĀu|
∥∥∥∥∥
L2

�

From here on, we suppose s ∈ H2 with the canonical decomposition s =
N̄ + Ā.

Theorem 12. Let ε > 0. For any H bounded, continuous and of FV, there exists
Hε, bounded, continuous and of FV, with Hε

T = 0 such that ds(H�Hε) < ε.

Proof. Define

Hm
t = Ht1[0�Tm] +HTm

T − t

T − Tm
1(Tm�T ]�

where Tm = T − 1
m . We will first show ds(H�H1[0�Tm]) → 0 as m → ∞.

To show ‖(∫ T0 (Hu(ω) −Hu(ω)1[0�Tm])2 d[N̄� N̄]u(ω))1/2‖L2 → 0, first ob-
serve that [N̄� N̄] = 〈N̄� N̄〉 + M , where 〈N̄� N̄〉 is the compensator, hence
predictable, of [N̄� N̄] and M is a local martingale. Since M is a local martin-
gale, there exists a sequence (Tn)n�1 of stopping times increasing to ∞ such
that MTn is a martingale for each n. Thus, given a bounded G, G · MTn is a
martingale implying E[(G ·MTn)t] = 0 for all t. Moreover,
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)
t

∣∣ � |G| · [N̄� N̄]Tnt + |G| · 〈N̄� N̄〉Tnt
(A.11)� |G| · [N̄� N̄]t + |G| · 〈N̄� N̄〉t

where the first equality is the triangle inequality and the second follows from
[N̄� N̄] and 〈N̄� N̄〉 being increasing. Furthermore, G1[0�Tn] converges to G

hence by Dominated Convergence Theorem for stochastic integrals, G ·MTn

converges toG·M in ucp. Moreover, by (A.11), sinceG is bounded and [N̄� N̄]
and 〈N̄� N̄〉 are integrable, E[(G · MTn)t] converges to E[(G · M)t] by ordi-
nary Dominated Convergence Theorem. Therefore, E[(G ·M)t] = 0 for all t.
Hence, we have

E
[
G · [N̄� N̄]t

] = E
[
G · 〈N̄� N̄〉t

]
�

Jump times of [N̄� N̄] are those of N̄ , which are totally inaccessible as a corol-
lary to the previous lemma. Therefore, by the same lemma, 〈N̄� N̄〉 is continu-
ous. Now,

T∫
0

(
Hu(ω)−Hu(ω)1[0�Tm]

)2 d〈N̄� N̄〉u(ω)

�
T∫

0

(
Hu(ω)

)2 d〈N̄� N̄〉u(ω) < ∞�

for all m, for almost all ω. Thus, by Lebesgue’s Dominated Convergence The-
orem

T∫
0

(
Hu(ω)−Hu(ω)1[0�Tm]

)2 d〈N̄� N̄〉u(ω) → 0� a.s.

since 〈N̄� N̄〉 is continuous. Moreover,∥∥((H −H1[0�Tm])2 · 〈N̄� N̄〉)1/2∥∥
L2 �

∥∥(H2 · 〈N̄� N̄〉)1/2∥∥
L2 < ∞

since H · s ∈ H2. A second application of Dominated Convergence Theorem
yields ∥∥∥∥∥

( T∫
0

(
Hu(ω)−Hu(ω)1[0�Tm]

)2 d〈N̄� N̄〉u(ω)
)1/2∥∥∥∥∥

L2

→ 0�

Since, for any bounded |G|�E[G · [N̄� N̄]t] = E[G · 〈N̄� N̄〉t], for all t,∥∥∥∥∥
( T∫

0

(
Hu(ω)−Hu(ω)1[0�Tm]

)2 d[N̄� N̄]u(ω)
)1/2∥∥∥∥∥

L2

→ 0�
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too. By the previous lemma, Ā is continuous as well, so ‖ ∫ T
0 |Hu −

Hu1[0�Tm]||dĀu|‖L2 → 0 by a similar argument. Hence, ds(H�H1[0�Tm]) → 0
as m → ∞.

It remains to show ds(HTm
T−t
T−Tm 1(Tm�T ]� 0) → 0, as m → ∞. First note that

T∫
0

H2
Tm
(ω)

(
T − u

T − Tm

)2
1(Tm�T ] d〈N̄� N̄〉u(ω)

�
T∫

0

K d〈N̄� N̄〉u(ω) < ∞�

where K = ‖max0�t�T H
2
t (ω)‖∞ < ∞ since H is bounded. Thus, by the

Dominated Convergence Theorem,

T∫
0

H2
Tm
(ω)

(
T − u

T − Tm

)2
1(Tm�T ] d〈N̄� N̄〉u(ω) → 0� a.s.

Moreover, another application of the Dominated Convergence Theorem
yields

lim
m→∞ E

[ T∫
0

H2
Tm

(
T − u

T − Tm

)2
1(Tm�T ] d〈N̄� N̄〉u

]
= 0�

A similar argument shows∥∥∥∥∥
T∫

0

∣∣∣∣HTm

(
T − u

T − Tm

)∣∣∣∣1(Tm�T ]|dAu|
∥∥∥∥∥
L2

→ 0

which completes the proof. �

Corollary 3. Let ε > 0. For any H, bounded, continuous and of FV, there exists
Hε, bounded, continuous and of FV, withHε

T = 0 such that ‖H ·s−Hε ·s‖L2 < ε.

Proof. This follows from a combination of Theorem 12 and Theorem 5 of
Chapter IV in (Protter, 2005). �
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Abstract

This chapter provides an introduction to the insurance area and discusses financial
engineering applications in insurance. There are some key differences between the
nature of the risks found in insurance products and those typically found in banking
applications. Historically insurance risks were handled using the actuarial approach
and we describe this approach and contrast it with the financial engineering approach.
We focus on life insurance applications. Life insurance products often include a va-
riety of investment options which are related to the performance of a stock portfolio
or an index portfolio. The pricing and risk management of these contracts has pro-
vided a challenge to traditional actuarial techniques. In this chapter we describe how
the modern approach to risk management combines concepts from modern financial
economics and econometrics with ideas from the traditional actuarial approach. We
discuss two specific applications: variable annuity contracts and guaranteed annuity
options.

1 Introduction

In the early development of life insurance companies and pension plans it
became clear that a scientific approach was required to ensure that these in-
stitutions would be able to meet their liabilities. This role was filled initially by
mathematicians who performed calculations to ensure that these enterprises
charged adequate premiums to maintain their solvency. Over time this role de-
veloped into a new profession of insurance mathematicians or actuaries. The
first official use of the word actuary was in 1762 to describe Edward Rowe

763
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Mores, the chief officer of a newly formed life insurance company which sub-
sequently became known as1 Equitable Life. Actuaries were entrusted with
maintaining the solvency of insurance and pension enterprises and they have
a strong claim to be regarded as the first financial engineers. In many jurisdic-
tions the actuarial profession has a statutory role in certifying the solvency of
life insurance companies and pension plans.

The initial focus of the actuarial profession was in safeguarding the solvency
of insurance companies and pension plans. Over time the profession developed
a more active role in financial engineering and actuaries became key players
in the development of risk management techniques. Notable names include
Macauley and Redington. However, apart from a few exceptions actuaries have
not been heavily involved in the financial engineering revolution of the last
thirty years. The application of modern financial engineering to insurance risks
has largely evolved in the past ten years. The contingent claims in modern
insurance are very similar in some ways to standard capital markets contingent
claims. However, there are also some very significant differences.

The insurance market lacks many of the attributes we associate with a per-
fect frictionless market. Insurance and pension contracts have much longer
terms than most other financial contracts. One cannot assume the same de-
gree of rationality with regards to the exercise of the various embedded options
in an insurance policy, as in the case of traded options. The market for in-
surance products is incomplete. Phenomena like adverse selection and moral
hazard are much more prevalent in insurance contracts than in most financial
contracts. Standard financial engineering methods were developed mostly for
shorter term, more marketable contracts. These methods require substantial
adaptation when dealing with insurance contracts.

Contemporary life insurance products are more likely to combine tradi-
tional death benefit coverage with a product that has more of an investment fo-
cus. These contracts developed as the market for traditional products slowed,
and insurers recognized that expansion was achievable by offering products
that could compete with retail products offered by other financial institutions
such as banks and the mutual funds market. In designing these products, it was
natural for insurers to introduce guarantees. In part financial guarantees were
incorporated because insurance has always guaranteed benefits. In addition, in
some jurisdictions, there were tax benefits for insurance contracts which were
not available for pure investment contracts. By offering guarantees that were
not a conventional part of the mutual fund type contract, the insurer could
ensure that the contract qualified for the favorable tax treatment.

In the remainder of this chapter we explain how actuaries have adapted the
techniques of capital markets, and combined them with traditional actuarial
techniques, to develop a synergetic approach to insurance risks. In the next

1 See Ogborn (1956). This insurance company – the first in the world – was originally known as The
Society for Equitable Assurances on Lives and Survivorships.
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section we discuss the evolution of insurance contracts from policies which
provided fixed benefits and life insurance protection to contemporary prod-
ucts which often contain direct participation in market performance coupled
with financial guarantees. Section 3 summarizes early actuarial approaches to
the problem of charging an appropriate premium to cover the risk. These so
called premium principles correspond to risk measures. In Section 4 we ex-
amine modern approaches to risk management by insurance companies and
contrast the actuarial approach of using capital as a cushion to the financial en-
gineering approach of dynamic hedging. Section 5 gives details of an important
class of contracts known as variable annuities. We discuss the risk management
of one form of these contracts and explain both the actuarial approach and the
dynamic hedging approach in this case. Section 6 uses guaranteed annuity op-
tions to illustrate the complexity of some of the long term embedded options
found in insurance contracts and the risk management challenges they present.

2 Insurance products and markets

The major difference between the traditional type of insurance contract
and more modern products is that the liability in the traditional contract is
largely diversifiable, while many of the more recent products contain a sig-
nificant investment component which represents a nondiversifiable risk. If a
large number of independent lives buy traditional term insurance, the claims
experience is highly predictable. From the strong law of large numbers the ex-
perience will tend towards the mean and from the central limit theorem the
distribution of claims will tend to the Normal. The more contracts that are
sold, the smaller the relative risk. The easiest way to hedge the mortality risk
is to sell more contracts.2

Traditional life insurance products provided a fixed level of financial pro-
tection in the event of the death of the insured life or survival to a given age.
A term insurance product provides life insurance coverage for a given period
while a whole life contract provides life insurance coverage for the duration of
the insured’s life. An endowment policy pays the sum assured either if the life
insured dies within the term of the policy or if the life insured survives to the
end of the contract period. In the beginning, the sum assured was fixed and
was funded by level periodic premiums or in some cases by a single lump sum
premium.

Let us start with a very simple example. Suppose an insurance company sells
a single3 term life insurance contract. For a premium of $1050, the insurer will
pay a sum assured of $100,000. This sum assured is payable if and only if the

2 Another method is to sell longevity risk and mortality risk (life insurance) to the same lives.
3 Of course insurance companies do not operate in this way. They sell several policies to diversify the
risk.
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life insured dies within the term of the contract: in this case one year. Suppose,
further, that the probability of the life in question dying within one year is 0.01.
Then either the life survives or dies within the year. In the first case the insurer
pockets the premium and it also survives. In the second case the insurer needs
to pay the claim of $100,000. If the insurer does not have access to this amount
of capital then it too fails. If this is the case the insurer has a 1% probability of
failure.

Now suppose the insurer sells one million identical contracts to indepen-
dent lives, each with a claim probability of 0.01 and the same sum assured as
before. The insurer collects $1050 million in total premiums. This amount will
be sufficient to pay all the claims if there are no more than 10,500 deaths. The
probability of this happening is less than 10−6. The risk of insurer insolvency
has been reduced to a negligible amount by writing more business. The central
limit theorem also states that the experience will become very close to the ex-
pected loss as more policies are written. This is why the expected loss is one of
the key valuation measures used by actuaries.

An important development in the evolution of insurance products was the
introduction of participating or with-profits insurance. It was realized that to
ensure ongoing solvency of the insurer it was necessary to charge premiums
that were greater than the expected value of the benefits. Often this was ac-
complished by using conservative assumptions in determining the premiums.
This device provided a cushion for the insurance company against unfavorable
experience and it lead to the accumulation of a profit or surplus. Under these
contracts the policyholder shared in the favorable experience of the insurance
company, often through a reduction in subsequent premiums.

In markets dominated by UK insurers the profit participation was effected
through bonus additions to the sum assured. The periodic increases to the sum
assured were called reversionary bonuses, and once declared became a guaran-
teed benefit, provided the policyholder did not surrender the contract early.
The introduction of the bonus system allowed a freer investment policy, with
policyholders sharing in the resulting profits. As UK insurers increasingly used
this freedom to invest in equity investments, they realized that the regular dec-
laration of reversionary bonuses was still too restrictive. In the 1960s, many of
them began postponing a large part of the bonus until the policy reached the
end of the term, either by death or by reaching the maturity date. This terminal
bonus was not guaranteed. The terminal bonus sometimes constituted as much
as 50% of the final benefit payment. In this way, the traditional life insurance
contract took on more of an investment focus, particularly for the endowment
insurance contract. In principle these UK with profits policies are designed to
smooth out the actual fluctuations in investment returns. In practice the with
profits contract is often criticized4 for being opaque and paternalistic.

4 In 2004 Callum McCarthy a senior UK regulator commented More significantly, it requires a lifting of
the veils which have traditionally obscured what was actually on offer in a with-profits policy: in future, we
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In the last few decades we have witnessed the development in many insur-
ance markets of new types of retail insurance products where the investment
performance is more explicitly linked to the performance of the underlying as-
sets. One of the main factors behind the growth of this business has been the
increasing competition from banks and other financial institutions for the sav-
ings of retail investors. The increasing globalization of financial services was
another factor in this development. In these investment linked contracts the
benefits under the insurance policy are tied directly to the performance of
some benchmark portfolio or index such as for example the S&P 500. Such
contracts are known by different names in different jurisdictions. Examples of
such contracts include the variable annuity and equity indexed annuity prod-
ucts in the USA, segregated funds in Canada, unit linked contracts in the UK
and other parts of Europe and structured products in parts of Asia. Since all
these products carry benefits linked directly to the performance of a portfolio
of equities or another equity index (or a mix of equities and other investments)
the generic term for such contracts is equity-linked life insurance.

We now give an example of an equity-linked policy. In this case the insured
pays a single premium for a seven year contract. The maturity benefit under
the contract in seven years is the maximum of

• The single premium.
• The single premium rolled up at a rate equal to sixty percent of the

return on the S&P index over the seven year period.

To preserve the insurance status of the arrangement there is life cover for
the duration of the contract. The policyholder also has the option of lapsing or
surrendering the contract and obtaining a cash surrender value. This contract
can be viewed as a package of embedded options:

• They are often very long term.
• They are not traded separately in a liquid secondary market but are

bundled together in the contract.
• We cannot assume they will be exercised in a rational fashion just as

mortgage prepayment option exercise behavior is not fully rational.

An equity-linked insurance policy contains both investment risk and mor-
tality risk, and it is only the mortality risk which can be diversified by pooling a
large number of similar contracts. The investment risk is not reduced by pool-
ing. For example, the contract we just described can be viewed as a package
consisting of a seven year zero coupon bond, a type of call option on the S&P

expect information to be made available – comprehensibly – on how a firm manages its with-profits funds,
its approach to payouts (on maturity and on surrender), its smoothing policy, its investment strategy and
any changes to asset share. This is the information needed if a customer is to make an informed choice be-
tween competing companies – and, for that matter, between competing investment opportunities (McCarthy,
2004).
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and a seven year term insurance benefit. The mortality risk is still diversifi-
able, but the size of the payout is now also random, depending on the index
performance. This type of investment risk is not diversifiable. For this type of
contract, insurers are increasingly turning to financial engineering solutions.

These options are more challenging to value than traded financial options
for several reasons. The major differences between the embedded option in
insurance and the standard options of financial markets are:

• Insurance contracts tend to be very long term. Some contracts have
terms of over thirty years.

• The embedded options in insurance contracts are life contingent; the
variable annuity guarantee described in the previous paragraph ma-
tures on the death of the policyholder. The term is therefore random.
In general, the term of these options depends on the survival status of
a policyholder.

• The factors that influence the exercise of these options are more com-
plicated than in the case of traded financial options. We cannot assume
that they will be exercised in a perfectly rational manner. The exercise
of individual consumers is much harder to predict as we have seen in
the case of the exercise of mortgage prepayment options.

• Many of the guarantees offered are deeply out-of-the-money at issue.
• When pricing financial options it is often assumed that there is no ar-

bitrage and that the market is complete. In the case of the long term
embedded options in insurance contracts, both these assumptions are
less likely to hold.

These differences mean that the adaptation and implementation of standard
financial engineering techniques will not be straightforward.

3 Premium principles and risk measures

One of the landmark contributions to actuarial science is the work of
F. Lundberg, who in 1909 developed the so-called collective risk theory
(Lundberg, 1909). Lundberg developed a mathematical model which showed
under certain assumptions how the amount of additional loading on the pre-
mium was related to the probability of insurer insolvency or ruin. The use of
the probability of ruin in this way foreshadowed the concept of Value-at-Risk5

or VaR. Although from a modern perspective Lundberg’s model lacked eco-
nomic realism, it was a landmark contribution. It provided a precise scientific
connection between the premium charged and the probability of the company
remaining solvent.

5 In financial markets Value-at-Risk, or VaR, has become a ubiquitous risk measure. It is now widely
used by financial institutions, corporations and regulators as a measure of risk.
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Lundberg’s work provided an early example of how to construct a risk mea-
sure. A risk measure maps the claims distribution to the real numbers, and
is used to quantify riskiness according to some criteria. The expected value6

is an example of a risk measure. The use of risk measures to assess capital
requirements has a much longer history in insurance, where risk measures
are known as premium principles (Bühlmann, 1970; Gerber, 1979). Premium
principles are measures applied to insurance loss distributions, and therefore
differ slightly from banking risk measures where profit/loss distributions must
be accommodated. For a loss random variable, X > 0, the standard premium
principles described by Gerber (1979) are defined for some positive parameter
α � 0 as follows:

• The expected value principle is (1 + α)E[X].
• The standard deviation principle is E[X] + α

√
Var[X].

• The variance principle is E[X] + αVar[X].
• The zero utility principle; for some utility function u(x) and surplus w,

the premium principle is P such that

u(w) = E
[
u(w + P −X)

]
�

A popular choice for u() is exponential utility, in which case the initial
surplus does not affect the calculations, giving the exponential principle:

1
α

log
(
E
[
eαX

])
�

• The quantile principle; let FX(x) denote the distribution function of X,
and α is a parameter such that 0 � α � 1. The quantile principle is
F−1
X (α).

Since Buhlmann and Gerber categorized the known premium principles, in-
surance scholars have been developing new variations. Wang (1995) developed
a new approach to risk measures (premium principles) for loss distributions,
using distortion of the survival function.

For a nonnegative loss random variable X, with survival function S(x) =
Pr[X > x], the mean loss is∫ ∞

0
S(x) dx�

Wang’s contribution was to suggest a risk measure based on a distor-
tion function g(S(x)). The distortion function is an increasing function, with
g(0) = 0 and g(1) = 1. The distortion risk measure is H(X), say, where

H(X) =
∫ ∞

0
g
(
S(x)

)
dx�

6 Plus a loading factor.
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Wang (1995) suggested the proportional hazard risk measure, where g(u) =
u

1
ρ , for some ρ � 1. The ρ parameter determines the risk loading factor. An-

other suggestion from Wang (2002) is the normal–normal transform, where
g(u) = Φ(Φ−1(u) + k) for some parameter k > 0. This can be shown to
lead to the Black–Scholes–Merton option pricing formula in some cases, with
a suitable choice for k. The risk measure might be applied to individual risks
or to portfolios. It is interesting to note that the quantile principle corresponds
to the widely used Value-at-Risk measure.

While these premium principles can be useful tools they do not capture
some important dimensions of the insurance market place. Usually the seller
cannot just decide on the price according to some formula and ignore the de-
mand side. This criticism is not new and it dates back to Karl Borch. More
economic based approaches have been advocated by Borch and Bühlmann and
others.

These measures can be used for either pricing or economic capital calcula-
tions, or both. Typically, in life insurance the expected value principle would be
used for both, with a larger α value for the economic capital. The risk manage-
ment would then be fairly passive, with any excess liability over the accumu-
lated premium absorbed by the additional economic capital held. In property
and casualty insurance, other premium principles are sometimes used. Risk
management in life insurance was originally relatively passive: the insurer set
aside enough capital to ensure that the liabilities could be met with a certain
probability. Actuaries of course recognized that the premiums should be in-
vested in securities that were appropriate given the nature of the liabilities.

Redington (1952) developed this idea more fully through the concept of im-
munization, a precursor of dynamic hedging. Redington demonstrated that by
selecting assets to equal the liabilities in duration and exceed the liabilities in
convexity, it was possible to hedge against small movements in the interest rate.
Immunization became an important tool in actuarial risk management, and is
still utilized in asset-liability management strategies today. From the start, it
was noted that when the interest rate shift occurred, some rebalancing of the
asset portfolio would be required. It was also recognized that perfect immu-
nization would not be possible, due to various uncertainties, and because the
theory ignores the term structure of interest rates. Nevertheless, immunization
was recognized as an important risk management tool for long term insurance
liabilities.

4 Risk management for life insurance

Insurance companies use different methods to manage the financial risk as-
sociated with embedded options and we can distinguish two main approaches.
These are:

• The actuarial reserving method whereby the financial institution sets
aside additional capital to ensure that the liabilities under the guaran-
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tee will be covered with a high probability. In this case the projection is
carried out under the real-world measure often called the P-measure.

• The second approach is the financial engineering approach used by
investment banks. The insurer sets up a replicating portfolio of traded
securities and dynamically hedges this portfolio over time so that at ma-
turity it matches the liability. In this case the investment proportions in
the replicating portfolio are computed using the equivalent martingale
measure, or Q-measure.

In practice a combination of these approaches can be used. We describe
each method in turn.

4.1 The actuarial approach

Actuaries first began to recognize the challenges of nondiversifiable risk
management in the late 1960s and early 1970s when equity-linked contracts
first became popular. The Black–Scholes–Merton approach to risk manage-
ment first became available in 1973 and it was initially viewed with skepticism7

by many actuaries.
Instead the insurance industry adopted a semi-passive approach. A real-

world model was used to project the liability distribution, using Monte Carlo
simulation. The liabilities were discounted using a ‘conservative’ discount rate
(which would approximate the risk free rate). Then a risk measure would be
applied to the simulated liability present value distribution to determine a
capital requirement. The process is described in the report of the Maturity
Guarantees Working Party of the Faculty and Institute of Actuaries (MGWP,
1980). The risk measure applied in this report and in much of the subsequent
work was the quantile measure, so the capital requirement would be set at the
99% or even the 99.9% quantile of the loss distribution. The approach is es-
sentially passive in principle, but in practice, the requirement to recalculate the
capital requirement each year enforced a more dynamic approach.

The liability modeling for embedded options required more sophisticated
models than those that were being used by actuaries. Consequently, an im-
portant part of the development of risk management for financial guarantees
has been concerned with constructing sophisticated integrated models of as-
sets and liabilities that can be used to project the future distribution of the
liabilities. These are all real-world models. In the late 1970s, an early version
of the Wilkie (1986, 1995) model was first developed for projecting the liabili-
ties for the Maturity Guarantees Working party in the UK. The Wilkie model
is an integrated model of inflation, equity prices and dividends and bond prices

7 This viewpoint is summarized in the following quote from the Maturity Guarantees Working Party
(1980). The Working Party spent time studying the subject and reached varying degrees of confidence that
the mathematics was sound. In some cases the confidence was derived from the fact that nobody seems to
have seriously challenged the underlying theory.
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that has proven to be a popular basis for asset and liability projections. Other
real-world models are discussed in Section 4.5.

We can summarize the traditional P-measure approach as follows. Suppose
Lt is the amount payable under an insurance contract at time t. For an embed-
ded put option, the liability might consist of the excess, if any, of the guaranteed
amount Gt over the value of the reference fund Ft , say. The instantaneous
mortality8 rate at t is denoted by μx(t) for a life aged x at inception. The sur-
vival probability for the life from age x to age x + t is denoted by tpx. We
assume the contract lasts for n years and that the risk free rate is r. Then for
a guarantee payable on the earlier event of death or expiration the discounted
expected present value of the liability at inception (t = 0) is

A0 =
∫ n

0
tpxμx(t)Lte

−rt dt + npxLne
−rn�

The price and the initial capital requirement would then be determined from
the distribution of A0, using appropriate risk measures.

In practice, the A0 distribution is estimated by simulation, and the risk mea-
sure applied to the simulated distribution.

4.2 The dynamic hedging approach

The approach described in the previous section does not involve any attempt
to use a dynamic hedging strategy to mitigate the risk, even though many of
the embedded options in life insurance contracts are relatively straightforward.
Originally, the reason was lack of awareness, or lack of credibility in what was
a fairly new and very radical approach.

More recently, actuaries have adopted dynamic hedging techniques, but
with adaptations. There are challenges with a naïve application of the Black–
Scholes methodology arising largely from the issues listed at the end of Sec-
tion 2 – these are the very long term nature of the options, the dependence
on mortality and the fact that often the options are deeply out-of-the-money
at issue. Consequently, insurers may now combine financial engineering tech-
niques from the banking world with the models and techniques of the insurance
world. We call this the hybrid approach.

Both the long term nature of the liabilities and the moneyness issues mean

• The standard models of Black–Scholes may not be appropriate for in-
surance guarantees.

• Econometric modeling is critical to successful risk management.
• The practical issues of discrete hedging and transactions costs may

have a significant effect on the liability.
• The mortality factor means that the term of the guarantee is random,

being dependent on the survival of the policyholder.

8 This is known as the hazard rate in other applications.
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4.3 Mortality dependent options

The mortality issue was first addressed by Brennan and Schwartz (1976) and
Boyle and Schwartz (1977). If the value at time 0 of an option which matures
at time n with certainty is H(n), then the value of an option which matures at
time n dependent on the survival to n of a life who is age x at time t = 0, and
who has future lifetime random variable Tx at age x, is simply H(n)Pr[Tx > n].
That is, the risk neutral measure for the mortality risk is simply the real world
measure provided it is fully diversifiable, and independent of the guarantee
liability. Similarly, if the guarantee is payable at n conditional on the life dying
in the interval (n− ε� n), then the value of the option is

H(n)Pr[n− ε < Tx � n]�
And in general, the value of a guarantee payoff H(Tx� n), where the term is
n-years, and which is dependent on the future lifetime random variable Tx, is

ETx
[
EQ

[
e−rnH(Tx� n)

∣∣ Tx]]�
where the Tx expectation uses the real-world mortality measure, and the Q
expectation uses the risk neutral financial measure.

The reason why we can use the P-measure for the future lifetime is ex-
plained more fully in Boyle and Schwartz (1977), and also in Lin and Tan
(2003). The intuition is that for a fully diversifiable risk one can use the P-
measure for pricing.

4.4 The hybrid approach – combining P and Q measure

One approach to the problems of discrete hedging, and the need for more
realistic econometric models for longer term options is to model the costs of
a hedge strategy under a realistic P-measure. That is, use the Q-measure to
determine a hedge strategy, and then use the realistic P-measure to project
the hedge, and estimate the unhedged liability, arising from discrete hedging
error, transactions costs, and model error.

If we assume that the hedge portfolio follows a pre-determined dynamic
strategy, and is re-arranged at unit time intervals, then the Monte Carlo simu-
lation process requires the following steps, at each time unit:

1. Simulate the updated values for the underlying risky assets using the real
world measure.

2. Calculate the updated value of the hedge portfolio brought forward from
the previous time step.

3. Calculate the revised value of the required hedge based on the updated
information.

4. The difference between the value of the hedge carried forward and the
value of the hedge brought forward is the hedging or tracking error. Dis-
count all the hedging errors as part of the unhedged liability.
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5. Calculate the transactions costs associated with rebalancing the hedge
portfolio. This too is discounted, and forms the second part of the un-
hedged liability.

At the final time step, the hedge required is the simulated option liability.
Combining the present value of the hedging error and the present value of

the transaction costs gives the unhedged liability (there may be other items of
unhedged cashflow, this is the simplest case).

The insurer can add additional capital to allow for the hedging errors and
the transaction costs. We would expect the average hedging error to be close to
zero. However, if we apply a risk measure that gives weighting to the more risky
outcomes, then the possibility of hedging error leads to a capital requirement.
For example, if we select as the capital requirement the 99% quantile of the
hedging error distribution, then we would run this fund alongside the hedge
portfolio. When the hedging error is negative, the surplus is paid into the fund.
When the hedging error is positive, meaning that additional cash is required
to make up the hedge, then the cash can be taken from the fund. There is
(broadly) only a 99% chance that the whole fund will be used up in meeting
the cost of hedging errors. If it is not all needed, the excess would be released
back to the company in due course. The total capital requirement at inception
would be the cost of the hedge portfolio, plus the capital requirement to cover
unhedged costs. This hybrid approach to risk management is permitted for
Canadian insurers writing equity-linked contracts with guarantees.

4.5 Realistic models for price projection

In order to apply either the actuarial or the hybrid approaches, a realis-
tic distribution of the reference portfolio is required. For example using a
standard lognormal model for the price process involved in an equity-linked
contract generally underestimates the risk for an out-of-the-money option.
This is due to the fact that the lognormal distribution is too thin-tailed to
fit the empirical distribution, and the fact that for some products, stochastic
volatility is a significant source of potential liability. The problems arise be-
cause the risks are so very long term, and because they tend to start deeply
out-of-the-money, so that the tails of the distribution are particularly impor-
tant. Consequently the identification of models which adequately capture the
fat tails and the uncertain volatility of equity prices is now an important com-
ponent of risk management.

Models which are popular with actuaries include the Wilkie model, men-
tioned above (Wilkie, 1986, 1995), and various models derived from it, such
as in Whitten and Thomas (1999). For the common form of equity-linked life
insurance a complex integrated model is not required – the critical risk is from
the stock price process. Hardy (2001) shows that the regime switching lognor-
mal model with two regimes provides a good fit to S&P 500 monthly returns
over the last forty years. Hardy’s model outperforms other competing candi-
dates, including GARCH. Under the regime switching model (which is based
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on the framework proposed by Hamilton, 1989), the price process jumps ran-
domly between two regimes. Within each regime the process is lognormal, but
the two regimes have different parameters; the more common regime has low
volatility and a high mean; the less common regime has high volatility and low
mean (capturing the association of high volatility with market crashes). The
switching process is a hidden Markov process, with a relatively low chance of
moving from the low volatility to the high volatility regimes, and a much higher
probability of moving back once the process has switched.

4.6 Risk measures

Once the liability distribution is simulated, we need a risk measure to deter-
mine an appropriate price and capital requirement. For capital requirements,
quantile measures such as VaR were common, but more recently have been
displaced by the Conditional Tail Expectation or CTE risk measure. This mea-
sure is also known as the expected shortfall or tail VaR.

The CTE risk measure is defined as the average loss given that the loss falls
in the worst (1 − α) part of the distribution. Suppose that Qα(X) is the α-
quantile of the loss distribution, of X > 0, and that, further, the quantile does
not fall in a probability mass, so that for all γ > α,

(1)Qγ(X) > Qα(X)

then the CTE is defined as

(2)CTEα(X) = E
[
X | X > Qα(X)

]
�

Where the constraint in (1) is not met, the fuller definition of the CTE uses
β′ � α where

β′ = max
{
β: Qβ(X) = Qα(X)

}
then

(3)CTEα(X) = (1 − β′)E[X | X > Qα(X)] + (β′ − α)Qα(X)

(1 − α)

which just uses all the distribution above the quantile, plus weighting the quan-
tile enough so that the expectation involves exactly (1 − α) of the distribution.

Using stochastic simulation the estimation of the CTE is achieved very sim-
ply by taking the average of the worst 100α% of outcomes. The advantages of
the CTE measure over quantile measures are discussed in Artzner et al. (1999).
The CTE is the basis of the capital requirements for segregated fund contracts
in Canada and is proposed for Variable Annuity business in the USA.

5 Variable annuities

Variable annuities are very popular contracts in the United States. They are
investment-insurance vehicles designed to increase retirement income. They



776 P. Boyle and M. Hardy

permit participation in the equity markets together with investment guaran-
tees. In this section we first describe the main types of variable annuities. Then
we discuss a particular type of contract known as the Guaranteed Minimum
Maturity Benefit. Then we describe the risk management of the embedded put
option in the Guaranteed Minimum Maturity Benefit.

5.1 Main types of variable annuities

Variable annuities comprise a mutual fund type investment, together with
insurance and investment guarantees. As the business has become more com-
petitive, the range and complexity of the guarantees offered has increased. We
now briefly describe some of the common types of guarantees.

• Guaranteed Minimum Death Benefit (GMDB): If the policyholder dies
during the policy term, it is guaranteed that the claim payment will be
at least equal to the initial investment, possibly with some interest. This
guarantee corresponds to an embedded put option with a stochastic
exercise time.

• Guaranteed Minimum Maturity Benefit (GMMB): In this contract the
proceeds at the end of the policy term are guaranteed to be at least
equal to some minimum amount, such as the initial investment, or the
initial investment plus some interest. In this case the put option has a
fixed maturity.

• Guaranteed Minimum Withdrawal Benefit (GMWB): Under a GMWB
withdrawals of up to some proportion of the original investment may
be made from time to time, and the total withdrawals are guaranteed
at least to meet the initial investment. There are a couple of ways that
this benefit can be decomposed into more basic option contracts.

• Guaranteed Minimum Income Benefit (GMIB): Under this contract,
when the initial term of the contract has expired, the policyholder may
annuitize the proceeds. The GMIB guarantees the minimum annuity
payments.

• Guaranteed Minimum Accumulation Benefit (GMAB): This is a form
of a GMMB (though it may also be applied to the GMDB). When the
initial term of the contract has expired, the policyholder may renew the
contract on the original terms. If the value of the policyholder’s fund is
greater than the original guarantee, the new contract continues at the
higher guarantee level. If the market value of the policyholder’s fund
is less than the original guarantee, the insurer must pay the difference
into the fund, and the policy is renewed at the original guarantee level.

• The Reset Option: This is not a guarantee, but an option to reset the
guarantee level at certain times. The term of the contract is generally
then extended, effectively issuing a new contract at the reset date. This
is a form of lapse and re-entry option, in insurance terms – or a shout
option in finance terminology.
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The term of a VA contract is usually at least 10 years, often longer. All VA
contracts offer some GMDB, but the GMMB is becoming more popular. The
GMMB carries significantly more risk than the GMDB, since in general more
policyholders will survive to maturity than will die during the policy term, and
because deaths are time diversified. In the case of a GMMB the survivors’
policies of a given cohort all mature at the same time and the if the market is
depressed then the put options for all the contracts will be in the money.

In the remainder of this section we will work through some examples of
the hybrid actuarial/financial engineering approach to the risk management of
VA guarantees. We assume that all cashflows and hedge rebalancing occurs at
monthly intervals, so we use months (assumed all to be of length 1/12 years)
as the time unit. It would also be feasible to use move-based discrete hedg-
ing, where re-balancing the hedge portfolio is triggered by the amplitude of
the move in the underlying stock price process, rather than time-based hedg-
ing where re-balancing is assumed to be carried out at regular intervals. For a
comparison between move-based hedging and time-based hedging in an insur-
ance context see Boyle and Hardy (1997).

5.2 Guaranteed Minimum Death Benefit (GMMB) example

We use the following notation/assumptions for this example. These are sim-
plified, but should be adequate for illustration purposes.

• We assume a $100 initial investment. The contract is a single premium
contract, which means that any further investment is effectively a new
contract carrying separate guarantees. The term of the contract is n
years.

• The premium is invested in a fund which has a market value of Ft at
time t. The returns on the fund are driven by an equity index, denoted
by St . The management charge of 100m%, per year is deducted from
the policyholder’s account. The initial index value is S0 = 100.

• We assume the guaranteed benefit payable immediately on survival to
the end of the term is the amount of the initial premium without inter-
est.

• The policyholder is age x at inception. The random time to death is
denoted by Tx, and this random variable is assumed to have a known
distribution.

• The t-year survival probability for Tx is denoted tpx, in the conven-
tional actuarial notation, and the force of mortality after t years is
μx(t). The density function for Tx is then tpxμx(t). We will also use
the fact that, for any t� u > 0, t+upx = tpx upx+t .

• The risk free rate of interest is r per year (continuously compounded).
• The maximum term of the contract is n years.

The embedded option represented by the GMMB is a put option with term
n and strike price G = 100.
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5.3 P-measure approach

We use a realistic model of equity prices to project the GMMB liability;
the force of mortality μ (hazard rate) is assumed to be deterministic. For each
simulated path of index prices, St , the simulated present value of the liability is

PVAL = npx(G− Fn)
+e−rn = npx

(
100 − Sne

−mn
)+
e−rn�

The initial capital requirement for the contract might be the 95% CTE of the
simulated distribution of PVAL. The price of the guarantee might be deter-
mined using a lower CTE level, although the price tends to be very small (the
option being well out of the money at issue). In practice the price is also influ-
enced by competitive considerations.

5.4 Hybrid approach

Under the hybrid approach we select a Q-measure, and determine the ini-
tial price of the hedging portfolio. Then the hedge is projected under the
P-measure, allowing the actuary to estimate the distribution of the unhedged
liability arising from the realistic P-measure, the discrete hedging error and
the transaction costs. We assume in this example that the Q-measure selected
is the standard Black–Scholes measure, so that the hedge portfolio price at any
stage is a simple Black–Scholes put option price, allowing of course for survival
to maturity. We let σ denote the index price volatility.

The price at issue is

ETx

[
EQ

[
e−rn(G− Fn)

+ ∣∣ Tx > n
]]

and

EQ
[
e−rn(G− Fn)

+] = EQ
[
e−rn

(
G− Sne

−mn)+]
�

This expectation is the Black–Scholes price for a put option on the index St ,
with the management charge deduction (which is effectively a negative divi-
dend), and with strike price G.

Let BSP(K� t� T ) denote the Black–Scholes price at time, t for a put option
on a unit of the index St maturing at T , with management charge m per year.
We have

BSP(K� t� T ) = Ke−r(T−t)Φ
(−d2(t)

) − Ste
−mTΦ

(−d1(t)
)
�

where d1(t) = log(Ste−mT/K)+ (r + σ2/2)(T − t)

σ
√
T − t

and d2(t) = d1(t)− σ
√
(T − t)�

If we ignore mortality, then the initial price of the GMMB, H(0), say, is

H(0) = BSP(100� 0� n)�
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The price can be broken down, as usual, into the delta hedge components.
The delta hedge portfolio at issue comprises HS(0) in equities, and HB(0) in
risk free bonds, where

HB(0) = 100e−rnΦ
(−d2(0)

)
� HS(0) = −S0e

−mnΦ
(−d1(0)

)
�

We assume the hedge is re-balanced monthly; after one month, if the pol-
icyholder survives, the delta hedge required depends on the prevailing index
price. The hedge portfolio after one month is

H

(
1

12

)
= HB

(
1
12

)
+ HS

(
1
12

)
�

where

HB
(

1
12

)
= 100e−r(n−1)Φ

(
−d2

(
1

12

))
�

HS
(

1
12

)
= −S1e

−mnΦ
(
−d1

(
1
12

))
�

The hedge brought forward from the first month has value

HF
(

1
12

)
= HBF

(
1
12

)
+ HSF

(
1
12

)
say, where HBF

( 1
12

)
is the value at time t = 1

12 of the bond hedge established
at time 0, and HSF

( 1
12

)
is the value at t = 1

12 of the equity hedge established at
time 0. That is

HBF
(

1
12

)
= 100e−r(n−

1
12 )Φ

(−d2(0)
)

and

HSF
(

1
12

)
= −S 1

12
e−mnΦ

(−d1(0)
)
�

We can repeat this at monthly intervals. For each month, say t = 1/12� 2/12�
� � � � n, the difference between the hedge required, H(t) and the hedge brought
forward HF(t) is the hedging error at t and is part of the unhedged liability.
So, assuming Tx > n, the hedging error at t is H(t)− HF(t).

Now we incorporate mortality. The hedge required at issue is

ETx
[
H(0) | Tx > n

] = npxH(0)�

If the policyholder survives to t, the hedge required is n−tpx+tH(t). The prob-
ability of survival is tpx, so the expected cost of the hedge at t, taking expecta-
tions at issue, is

n−tpx+t tpxH(t) = npxH(t)�

Similarly, the hedge brought forward at t, given the survival of the pol-
icyholder to t − 1/12 is n−(t− 1

12 )
px+(t− 1

12 )
HF(t). At t, the hedging error is
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n−tpx+tH(t) − n−(t− 1
12 )
px+(t− 1

12 )
HF(t) if the policy holder survives to t, and

0 − n−(t− 1
12 )
px+(t− 1

12 )
HF(t) if the policyholder dies in the month from t − 1

12
to t. Taking expectations at issue, the expected hedging error at t is

het = npx
(
H(t)− HF)

)
�

This result is very convenient; it means that we can calculate the hedge and
hedging error ignoring mortality, and then simply multiply everything by the
n-year survival probability.

By using a more realistic P-measure to determine the stock price process
St the hedging error implicitly captures two sources of unhedged liability; the
inadequacy of the lognormal distribution for long term modeling of the stock
process, and the error resulting from discrete hedging.

As we simulate the hedge process we can also simulate the transaction costs,
which may be substantial for very long contracts. We generally assume that
transaction costs are a fixed percentage of the change in value of the stock part
of the hedge. That is, if we have stock worth HSF(t) at t = 1/12� 2/12� � � � � n,
and we need to rebalance to a stock position of HS(t), and we assume trans-
actions costs of, say, α per $1 change in value for stocks (and 0% for bonds),
then the transactions costs would be

α
∣∣HS(t)− HSF(t)

∣∣�
Allowing for mortality requires simply multiplication by npx, as for the

hedging error above, so the transactions costs at t are

tct = npxα
∣∣HS(t)− HSF(t)

∣∣�
The total unhedged liability at t is modeled as tct + het , and this can be

discounted at the risk free rate of interest to give the present value at issue,
PVUL. Using stochastic simulation for the P-measure for the fund value, we
can estimate the distribution for PVUL and can apply a risk measure, such as
the quantile or CTE measures.

The total capital required at issue would be the sum of the hedge cost and
the capital requirement. The price would be the price of the hedge plus some
allowance for the cost of carrying the additional capital requirement for the
unhedged liability.

In Figure 1 we show the CTE for all possible values of α, 0 � α < 1 for the
present value of future outgo for both the actuarial and dynamic hedging risk
management approaches. The CTE with α = 0 is the mean present value of
future outgo. On average, the actuarial approach is cheaper. At the other end
however, we see that for values of α greater than around 80%, the tail mean
values for the actuarial approach are considerably higher than for the dynamic
hedge approach. This is all consistent with the principle of risk and return. The
dynamic hedging approach mitigates the tail risk, at the expense of a higher
mean cost. Actuaries are still somewhat divided on the best approach, though
the dynamic hedge approach is gaining in popularity.
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Fig. 1. CTE for GMMB, actuarial and dynamic hedging risk management; Cost per $100 single
premium.

6 Guaranteed annuity options

In this section we discuss guaranteed annuity options. These guarantees are
sometimes included in contracts designed to produce retirement income. One
form of the guarantee provides that the yearly annuity payment will not be
less than some minimum amount. The guarantee is more likely to be valuable
when interest rates decline. In some respects this guarantee resembles a put
option on interest rates but as we will see the actual guarantees offered by in-
surance companies are often much more complicated and their value depends
on other variables as well as the interest rate. The most dramatic example of
the importance of these guarantees was in the case of the Equitable Life In-
surance company and this is the topic of the current section. These guarantees
were responsible for the demise of Equitable Life (UK), the oldest insurance
company in the world.

Often the guaranteed annuity options have been viewed by insurers as hav-
ing negligible value and were not taken into account when the products were
priced and were ignored when setting up reserves. These options can be very
long dated, lasting 30 to 40 years, and over such long time spans there can
be significant fluctuations in economic variables which affect the value of these
options. The case of guaranteed annuity options in the UK provides a dramatic
illustration of this phenomenon. Guaranteed annuity options have proved to
be a significant risk management challenge for several UK insurance compa-
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nies. Bolton et al. (1997) describe the origin and nature of these guarantees.
The major factors which affected the value of these options included a decline
in long term interest rates and improvements in mortality. For many contracts
the liability is also related to equity performance.

We now describe these guarantees and explain why they became such a se-
vere problem. Under a guaranteed annuity, the insurance company guarantees
to convert the maturing policy proceeds into a life annuity at a fixed rate. Typ-
ically, these policies mature when the policyholder reaches a certain age. In
the UK the most popular guaranteed rate for males, aged sixty five, was 111
per annum per 1000 and we use this rate in our illustrations. If the prevailing
annuity rates at maturity are such that the annual payment per 1000 exceeds
111, a rational policyholder would opt for the prevailing market rate. On the
other hand, if the prevailing annuity rates at maturity produce a lower amount
than 111, a rational policyholder would take the guaranteed annuity rate. A life
annuity is affected by interest rate movements in the same way as a bond. As
interest rates rise the annuity amount purchased by a lump sum of 1000 in-
creases and as interest rates fall the annuity amount available per 1000 falls.
Hence the guarantee corresponds to a put option on interest rates.

These guarantees began to be included in some UK policies over fifty years
ago and they became very popular in the 1970s and 1980s. Long term interest
rates throughout the world were quite high in 1970s and 1980s. During these
two decades the average UK long term interest rate was around 11%. The
break even interest rate implicit in the guaranteed annuity options depends on
the mortality assumption, but based on the mortality basis used in the original
calculations, this interest rate was in the region of 5–6 percent. We can think of
the break even rate as the strike price of the option. At inception these options
were far out of the money and the insurance companies apparently assumed
that interest rates would never fall to these low levels again. This presumption
was incorrect and interest rates did fall in the 1990s.

The guaranteed annuity conversion rate is a function of the assumed interest
rate and the assumed mortality rate. There was an unprecedented improve-
ment in the mortality of the relevant segment of the UK population during
the period 1970–2000. This improvement lead to an increase in the break-even
interest rate at which the guarantee applied. We can illustrate this point as fol-
lows. An amount of 1000 is equivalent to a thirteen year annuity certain of 111
p.a. at an interest rate of 5.70% per annum. The same lump sum is equivalent
to a sixteen year annuity certain of 111 p.a. at a rate of 7.72%. If mortality rates
improve the annuity is payable for a longer expected term and the break even
interest rate at which the option comes into the money will increase.

There was another factor which also affected the size of the liability un-
der these guarantees. The value of the guarantee at maturity (time T ) for the
benchmark contract is

(4)S(T)max
[(

a65(T)

9
− 1

)
� 0

]
�
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where S(T) is the size of the proceeds at time T and a65(T) is market annuity
rate9 at time T for a life aged 65. The market annuity rate depends on long
term interest rates and the mortality assumptions used. We see that the option
will have a positive value at maturity (be in the money) whenever the current
annuity factor exceeds the guaranteed factor (9 in this case).

It is clear from Equation (4) that the size of the option if the guarantee is
in force is proportional to S(T). The size of S(T) will depend on the nature of
the contract and also on the investment returns attributed to the policy. The
procedure by which the investment returns are determined depends on the
terms of the policy. These guarantees applied to two main types of policies:
with profits policies and unit linked policies. For the sake of brevity we will just
describe the unit linked contracts.

Under a unit linked policy the investment gains and losses are distributed
directly to the policyholder’s account. Contracts of this nature have become
very popular in many countries in recent years because of their transparency.
Under a unit linked contract the size of the option liability, if the guarantee is
operative, will depend on the investment performance of the assets in which
the funds are invested. In the UK there is a strong tradition of investing in
equities and during the period from 1980 until 2000 the rate of growth on the
major UK stock market index was 18% per annum.

Hence three principal factors contributed to the growth of the guaranteed
annuity option liabilities in the UK over the last few decades. First, there was
a large decline in long term interest rates over the period. Second, there was
a significant improvement in longevity that was not factored into the initial
actuarial calculations. Third, the strong equity performance during the period
served to further increase the magnitude of the liabilities. It would appear that
these events were not considered when the guarantees were initially granted.
It is clear now with the benefit of hindsight that it was imprudent to grant such
long term open ended guarantees of this type.

Although these guarantees were neglected until it was too late, a number
of papers have discussed ways of better managing the risk using the methods
described in Section 4. Yang (2001) and Wilkie et al. (2003) focus mainly on
the actuarial approach but they also discuss dynamic hedging as well. They
conclude that the actuarial approach, if applied from the outset, would have
at least partially solved the problem. At a minimum this approach would have
alerted companies much earlier to the costs of these guarantees as the options
started to move into the money. Regarding the dynamic hedging approach,
they conclude, that it would not have worked because the required traded
securities were not available. Boyle and Hardy (2003) discuss the challenges
involved in hedging these guarantees and conclude that even with our current
knowledge of financial engineering this would be a very difficult task. Pelsser

9 In other words a65(T) denotes the value at time T of an annuity of one per annum payable during the
surviving lifetime of a life aged 65 (at time T ).
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(2003) analyzes a hedging strategy based on the purchase of long dated re-
ceiver swaptions. This approach deals only with the interest rate component
of the guarantee. Another possibility is for the insurer to reinsure the liability
with another financial institution. Dunbar (1999) discusses some of the details
of this approach and describes how Scottish Widows offset its guaranteed an-
nuity liabilities by purchasing a structured product from an investment bank.

7 Conclusions

In this chapter we have given a short account of the application of finan-
cial engineering to insurance problems. We saw that the financial options
embedded in insurance products can be quite complex and that this leads to
challenging risk management problems. We contrasted the traditional actuar-
ial approach with dynamic hedging and discussed the risk management of the
Guaranteed Minimum Maturity Benefit and the Guaranteed Annuity Option
contract. In a survey chapter of this nature one has to be selective and there
are several important topics that we have not discussed.

For example, one current area of research interest to insurance scholars
concerns pricing in incomplete markets. As is well known the usual no ar-
bitrage approach does not furnish a unique price in this cases. Under the
Föllmer–Schweizer (1991) approach the contract can be priced by minimiz-
ing the squared hedging error. El Karoui and Quenez (1995) propose a super
hedging procedure while Föllmer and Leukert (1999) describe quantile hedg-
ing. These methods have been applied to the pricing of insurance contracts by
Moeller (1998). In addition Kolkiewicz and Tan (2004) have implemented a
robust hedging approach to deal with the incompleteness in regime switching
models.

Another area concerns the question of the optimal contract design. Arrow
(1973) and Raviv (1979) have studied the question of optimal contract design
in the case of nonlife insurance contracts. Brennan (1993) demonstrated that
the UK version of the with profits contract has an inefficient contract design.
There is widespread evidence that retail investors like to have downside pro-
tection as well as upside participation in the market. It is of interest to explore
the characteristics of the optimal design of an equity linked contract. Boyle
and Tian (2006) have taken initial steps in this direction. They propose a con-
tract design under which the investor maximizes expected utility subject to a
guaranteed minimum and optimal participation in the equity market.
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Abstract

This chapter presents a theory of optimal lifetime consumption-portfolio choice in
a continuous information setting, with emphasis on the modeling of risk aversion
through generalized recursive utility. A novel contribution is a decision theoretic de-
velopment of the notions of source-dependent first- or second-order risk aversion.
Backward stochastic differential equations (BSDEs) are explained heuristically as
continuous-information versions of backward recursions on an information tree, and
are used to formulate utility functions as well as optimality conditions. The role of
scale invariance and quadratic BSDEs in obtaining tractable solutions is explained.
A final section outlines extensions, including optimality conditions under trading con-
straints, and tractable formulations with nontradeable income.

1 Introduction

This chapter analyzes the optimal consumption-portfolio choice of a risk-
averse agent, with emphasis on the modeling of risk aversion given a stochastic
investment opportunity set. The main part of the analysis is based on Schroder
and Skiadas (2003). A novel contribution is a decision theoretic development
of the notions of source-dependent first- or second-order risk aversion that are
implicit in the utility representations of Schroder and Skiadas (2003). These
ideas unify, at least in the context of continuous information, standard notions
of risk aversion with some models of ambiguity aversion or robustness that
have recently received considerable attention in the literature. The dynamic
portfolio methodology presented should, however, also be of interest to read-
ers only concerned with conventional source-independent risk aversion in a
dynamic setting.

Following Merton’s (1969, 1971) seminal work, most papers on dynamic
portfolio choice assume that the investor maximizes time-additive expected
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utility, that we refer to as “additive utility” for the purposes of this discus-
sion. The limitations of additive utility in modeling risk aversion are, however,
well recognized by now (see, for example, Epstein, 1992). We will argue that
any two additive utilities that imply identical preferences over deterministic
plans must be ordinally equivalent, and therefore equally risk-averse. In this
chapter, we consider utility functions for which risk aversion can be adjusted
without changing the utility value of deterministic plans. The stochastic setting
is one in which information is revealed continuously by a finite set of Brownian
motions. Utility is defined over consumption plans in terms of a single non-
durable good, with an exogenous planning horizon and endowment. Markets
can be incomplete, but they are sufficiently complete so that the investor’s en-
dowed income stream is tradeable, and there are no other trading constraints
or transaction costs. The last section outlines extensions dealing with trading
constraints and nontradeable income, and points to further extensions in the
literature relaxing various combinations of the above assumptions (typically at
the cost of other restrictions).

In its simplest form, the utility function we will adopt is the Duffie and Ep-
stein (1992) continuous-information limit of the recursive utility of Kreps and
Porteus (1978), which includes the widely used homothetic recursive utility
specification of Epstein and Zin (1989) (a special case of which is expected
discounted power or logarithmic utility1). In the Kreps–Porteus formulation,
current utility is computed as a function of current consumption and a von
Neumann–Morgenstern (1944) certainty equivalent of the continuation util-
ity. Given sufficient smoothness, the classic analysis of small risks of Arrow
(1965, 1970) and Pratt (1964) implies that the certainty equivalent can be re-
placed by a quadratic criterion in the continuous-information limit, which is the
reason why some elements of the original single-period mean–variance port-
folio analysis of Markowitz (1952) survive in a continuous-information setting
with Duffie–Epstein utility. Assuming constant relative risk aversion, the opti-
mal portfolio is a weighted sum of an instantaneously mean–variance efficient
portfolio and a hedging portfolio that accounts for the stochastic nature of the
investment opportunity set (and vanishes in the case of i.i.d. instantaneous re-
turns).

An extension of Duffie–Epstein utility we will consider allows risk aversion
to depend on the source of risk. For example, investors have been documented
to show a preference toward investing in the familiar: domestic stocks, firms
whose products are familiar, local firms, one’s employer’s stock.2 The well-
known experimental findings of Ellsberg (1961), and a large literature follow-
ing it, show that subjects prefer to bet on risk sources to which probabilities can

1 Under some regularity, a homothetic additive utility is necessarily the additive special case of Epstein–
Zin utility. On the other hand, Epstein–Zin utility is only a parametric special case of the much broader
class of homothetic Duffie–Epstein utilities.
2 Daniel et al. (2002) survey such psychological biases in asset markets.
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be more unambiguously assigned, a phenomenon known as ambiguity aver-
sion.3 One can think of risk as reflecting not only the risk that is conditional on
the assumed model of the risk source, but also uncertainty about the model’s
validity, which is itself too difficult to model. Since model risk can vary with the
source of risk, it is useful to consider source-dependent risk aversion. With this
motivation, we will extend the Kreps–Porteus recursion by letting the certainty
equivalent be a function of the entire vector of continuation utilities attribut-
able to each Brownian motion separately. The locally-quadratic analysis under
Duffie–Epstein utility extends to this case, but with a different coefficient of
risk aversion assigned to each source of risk.

As shown in Skiadas (2003), Duffie–Epstein utility includes the “robust”
specifications of Anderson et al. (2000), Hansen et al. (2001) and Maenhout
(1999). Similarly, the criterion of Uppal and Wang (2003) is equivalent to a
special form of recursive utility with source-dependent risk aversion (included
in the “quasi-quadratic proportional aggregator” specification of Schroder and
Skiadas, 2003). The multiple-prior expressions of these authors suggest a ro-
bustness interpretation of risk aversion. Conversely, their robustness interpre-
tation of multiple-prior formulations can be thought of as risk aversion in the
context of recursive utility. To avoid this semantic redundancy, in this chapter
we define formally only risk aversion, and we think of robustness or ambiguity
aversion as an informal consideration in selecting the degree of risk aversion
toward a given source of risk.

Another way in which the Duffie–Epstein representation will be extended
relates to the distinction between first- and second-order risk aversion made
in a static setting by Segal and Spivak (1990). The Arrow–Pratt analysis,
and by extension the Duffie–Epstein limit of Kreps–Porteus utility, relies
on the smoothness of the von Neumann–Morgenstern certainty equivalent,
an assumption for which there is no compelling decision-theoretic justifica-
tion. Smooth expected utility implies local risk-neutrality, meaning that an
investor should be willing to undertake any actuarially favorable investment
in sufficiently small scale, and should be unwilling to perfectly insure a suffi-
ciently small risk at actuarially unfavorable terms. We will consider a source-
dependent extension of Kreps–Porteus utility with nonsmooth certainty equiv-
alent for which these conclusions are invalidated, and we will derive corre-
sponding optimal trading strategy expressions that highlight the relationship
between first-order risk aversion and portfolio holdings.

Motivated by the notion of ambiguity aversion, Epstein and Schneider
(2003) formulated a multiple prior utility, whose continuous-information limit
was studied by Chen and Epstein (2002). Consistent with the view of ambiguity
aversion as being a form of risk aversion, the Chen–Epstein “κ-ignorance” for-
mulation is mathematically equivalent to a case of the above mentioned exten-
sion of Duffie–Epstein utility with source-dependent first-order risk aversion.

3 The view of ambiguity aversion as a form of risk aversion is further supported by the arguments of
Klibanoff et al. (2002).
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Lazrak and Quenez (2003) analyzed the properties of a utility that is defined as
a solution to a general backward stochastic differential equation (BSDE), and
includes the Chen–Epstein formulation. Lazrak and Quenez made the impor-
tant observation that comparative risk aversion can depend on the “direction”
of risk. Complementing the Lazrak–Quenez analysis, this chapter provides a
heuristic decision–theoretic foundation of their proposed utility form, that we
will refer to simply as “recursive utility.” The more specific models of risk aver-
sion discussed above correspond to special functional forms of recursive utility.

Following the development of Schroder and Skiadas (2003), optimality con-
ditions will first be derived for general concave recursive utilities, as a system
of forward–backward stochastic differential equations (FBSDEs). The forward
component of the system is the wealth process, which follows the investor’s
budget equation, and the backward components are the utility and shadow-
price-of-wealth processes. The FBSDE system uncouples if the problem is
scale-invariant (with respect to wealth). Combining scale-invariance with the
various types of risk aversion discussed above, we will be able to formulate
some interesting optimal trading strategy expressions, in terms of the solution
to a single BSDE. Moreover, we will give some examples of preferences and
stochastic investment opportunity sets for which the BSDE of the optimality
conditions takes a quadratic form whose solution can be reduced to a tractable
ODE system. A parallel theory based on translation-invariant recursive util-
ity (which generalizes expected discounted exponential utility) can be found in
Schroder and Skiadas (2005a), and is briefly discussed in the final section.

Merton approached the dynamic optimal portfolio selection problem using
the Hamilton–Jacobi–Bellman equation of optimal control theory, modern ex-
positions of which are given by Fleming and Soner (1993) and Yong and Zhou
(1999). Examples of solutions with Epstein–Zin utility using this method are
Giovannini and Weil (1989), Svensson (1989), Obstfeld (1994), Zariphopoulou
and Tiu (2002), and Chacko and Viceira (2005). Cox and Huang (1989) and
Karatzas et al. (1987) rederived the Merton solution by using the state-price
density property of marginal utilities at the optimum, in a way that relied on
utility additivity. This “utility gradient approach” was generalized to include
recursive utilities in Duffie and Skiadas (1994), Schroder and Skiadas (1999),
El Karoui et al. (2001), and Schroder and Skiadas (2003, 2005a, 2005b), and
is the method adopted in this chapter. [An alternative dynamic programming
derivation of the scale-invariant solutions is outlined in Schroder and Skiadas
(2003).] While some further leads to the literature will be given in the final sec-
tion, this chapter is not intended as a literature survey, and no attempt has been
made to be comprehensive. Monographs or collected papers on dynamic port-
folio choice include Merton (1990), Korn (1997), Sethi (1997), Karatzas and
Shreve (1998), Gollier (2001), and Campbell and Viceira (2002). An overview
of the econometrics of portfolio choice is given by Brandt (forthcoming).

The mathematical background for this chapter is outlined in the appendices
of Duffie (2001), and is covered in detail by Karatzas and Shreve (1988). Less
widely known are the more recent mathematical tools of BSDEs and FBSDEs,
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a general perspective on which can be found in the expositions of El Karoui et
al. (1997) and Ma and Yong (1999).

The remainder of this chapter is organized in five sections. Section 2 sets
up the problem and characterizes the optimum with minimal restrictions on
preferences over consumption plans. Section 3 develops recursive utility, and
the associated optimality conditions. Section 4 motivates some more special-
ized recursive utility forms, representing the various types of risk aversion
introduced above. Section 5 formulates optimality conditions for these spe-
cial recursive utility forms, assuming utility homotheticity. Section 6 concludes
with an outline of several extensions.

2 Optimality and state pricing

This section introduces the stochastic setting, the investor problem, and the
basic optimality verification argument in terms of the state price density prop-
erty of a utility supergradient density. The essential tool of linear BSDEs is
introduced in the context of state pricing. The section imposes only minimal
preferences restrictions, and concludes with a discussion of the inadequacy of
additive utility as a representation of risk aversion. The discussion of recursive
utility begins with Section 3.

2.1 Dynamic investment opportunity set

Uncertainty is represented by the probability space (Ω�F� P), on which is
defined a d-dimensional Brownian motion B = (B1� � � � � Bd)′ over a finite
time-horizon [0� T ]. As with every vector in this chapter, B is a column vec-
tor, and the prime denotes transposition. Information is represented by the
(augmented) filtration {Ft : t ∈ [0� T ]} generated by the Brownian motion B.
Intuitively, we think of an information tree whose time-t nodes or spots cor-
respond to the possible paths of B up to time t. A time-t spot is therefore
a continuous function of the form ωt : [0� t] → Rd. Conditional expectation
given time-t information, Ft , is denoted Et . Similarly, covariance (variance)
given Ft is denoted covt (vart). We assume that F = FT , and therefore
ET [x] = x for every random variable x.

A process in this chapter is by definition a stochastic process that is progres-
sively measurable with respect to {Ft}. For any process x, we think of the time-t
value xt (alternatively denoted x(t)) as a function of the realized spot ωt .
In heuristic explanations (that ignore issues regarding null sets) we will write
x[ωt] to express this dependence. Given any subset S of some Euclidean space,
we let L(S) denote the set of processes of the form x :Ω×[0� T ] → S. For any
integer p, typically p = 1 or 2, we define the set Lp(S) of all x ∈ L(S) such
that

∫ T
0 |xt |p dt < ∞ with probability one (where | · | denotes Euclidean norm).

We consider a financial market allowing instantaneous default-free borrow-
ing and lending at a continuously-compounded rate given by the process r.
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A dollar can be invested from time t to time t + dt earning interest rt dt,
which is risk-free in the sense that Vart[rt dt] = 0, but whose value depends
on time-t information. For expositional simplicity, r is assumed bounded (al-
though this assumption is violated in some later applications). The rest of the
market consists of trading in m risky assets, whose cumulative excess returns
are represented by the m-dimensional process R = (R1� � � � � Rm)′. A dollar
invested at time t in risky asset i is worth 1 + rt dt + dRi

t at time t + dt.
We assume that R is an Itô process with dynamics

(1)dRt = μRt dt + σR′
t dBt� μR ∈ L1

(
Rm

)
� σR ∈ L2

(
Rd×m)

�

There is, therefore, one column of σR for every risky asset, and one row for
every component of the Brownian motion B. The investment opportunity set
is defined by the triple (r� μR� σR), whose value can vary from spot to spot. We
think of (1) as an instantaneous linear factor model, where

μRj (t) dt = Et
[
dRj

t

]
and σRij (t) dt = covt

[
dBit� dRj

t

]
�

i = 1� � � � � d� j = 1� � � � �m�

Since Et[dBt] = 0 and Et[dBt dB′
t] = I dt (where I is an identity matrix) the

conditional variance–covariance matrix of dRt is

Et
[(

dRt − Et[dRt]
)(

dRt − Et[dRt]
)′] = σR′

t σRt dt�

A time-t allocation is an Ft-measurable random vector ψt = (ψ1
t � � � � � ψ

m
t )

′,
where ψi

t represents the proportion of wealth invested at time t in risky asset i,
with the remaining nonconsumed wealth invested risk-free. Negative propor-
tions indicate short positions. The choice of a time-t allocation can depend on
time-t information, and therefore we think of ψt as a function of the realized
time-t spot. A dollar invested at time t according to allocation ψt is worth

1 + rt dt + ψ′
t dRt = 1 + (

rt + ψ′
tμ

R
t

)
dt + (

σRt ψt
)′ dBt

at time t + dt. The vector σRt ψt represents the risk profile of the allocation ψt ,
since it specifies the loadings of the instantaneous excess return ψ′

t dRt on the
instantaneous factors dBt .

If the column span of σR is Rd at all times then the market is complete,
in the sense that every risk profile is feasible through some allocation at all
times. We do not assume that the market is complete, allowing the rank of σR
to be less than d. While the market can be effectively complete even if σR
drops rank, we will consider applications in which market incompleteness is a
binding constraint. We will not allow, however, the rank of σR to vary from
spot to spot, and we assume that at no spot of the information tree are any of
the assets redundant over an infinitesimal time interval. This is the economic
content of the following condition, assumed throughout:

Asset nonredundancy. The columns of σR, corresponding to the m risky as-
sets, are everywhere linearly independent, and therefore m � d.
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As a consequence of this assumption, the m × m instantaneous variance–
covariance rate matrix σR′σR is everywhere invertible. If σt is a risk profile
attainable through the allocation ψt , meaning that σRt ψt = σt , then ψt is the
unique allocation with this property, and is given by

(2)ψt =
(
σR′
t σRt

)−1
σR′
t σt �

The traditional portfolio analysis of Markowitz (1952) can be applied condi-
tionally spot-by-spot on the information tree. Selecting an allocation ψt results
in an instantaneous excess return with conditional mean and variance

Et[ψ′
t dRt] = ψ′

tμ
R
t dt and vart[ψ′

t dRt] = ψ′
tσ

R′
t σRt ψt dt�

Letμt be any Ft-measurable random variable. Minimizing vart[ψ′
t dRt] subject

to the constraint Et[ψ′
t dRt] = μt dt results in an allocation of the form

ψt = kt
(
σR′
t σRt

)−1
μRt �

for some Ft-measurable random variable kt that depends on the choice of μt .
We call an allocation of this form instantaneously minimum-variance efficient.
The corresponding squared conditional instantaneous Sharpe ratio is maxi-
mized, and is given by

(3)
Et[ψ′

t dRt]2
vart[ψ′

t dRt] = μR′
t

(
σR′
t σRt

)−1
μRt dt�

2.2 Strategies, utility, and optimality

An optimal investment strategy is one that finances a consumption plan for
which there exists no other consumption plan that is both more desirable and
feasible. In this subsection we formalize this notion, while placing minimal re-
strictions on investor preferences.

We let H denote the Hilbert space of every x ∈ L(R) such that E[∫ T0 x2
t dt+

x2
T ] < ∞, with the inner product

(x | y) = E

[ T∫
0

xtyt dt + xT yT

]
� x� y ∈ H�

The set of strictly positive4 elements of H is H++ = H ∩L(R++). The element
of H that is identically equal to one is denoted 1.

We postulate a convex cone C ⊆ H++ of consumption plans such that 1 ∈ C,
and for any x ∈ H and y� z ∈ C, y � x � z implies x ∈ C. For any c ∈ C and

4 More precisely, any two processes x� y such that (x− y | x− y) = 0 are identified as elements of H.
A strictly positive element of H is one that can be identified in this way with a process in L(R++).
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time t < T , we interpret ct as the time-t consumption rate, while cT represents
a terminal lump-sum consumption or bequest. In a typical application, C is
specified by some integrability restriction required for a utility function to be
well defined. The strict positivity of consumption plans reflects our implicit
assumption that a consumption nonnegativity constraint is nonbinding. In later
sections, the positivity of optimal consumption will be enforced by assuming
infinite marginal utility at zero.

We consider an investor with initial wealth w0 > 0 and no subsequent in-
come. (This includes the case of an endowed income stream as long as it can be
traded.) A consumption strategy is any process ρ ∈ L1(R++) such that ρT = 1.
For t < T , we interpret ρt as the investor’s consumption rate as a proportion
of time-t wealth, while the convention ρT = 1 is used below to express the
assumption that final wealth equals terminal consumption. A trading strategy is
any process ψ ∈ L(Rm) such that ψ′μR ∈ L1(R) and σRψ ∈ L2(R

d), with ψt

representing a time-t allocation. A strategy is a pair (ρ�ψ) of a consumption
strategy and a trading strategy.

The wealth process W generated by a strategy (ρ�ψ) is defined through the
budget equation

(4)
dWt

Wt
= (rt − ρt) dt + ψ′

t dRt� W0 = w0�

The consumption plan c is financed by the strategy (ρ�ψ) if c = ρW , meaning
that ct = ρtWt for every time t (and therefore cT = WT ). A consumption plan
is feasible if it can be financed by some strategy.

The investor’s problem is to select a feasible consumption plan that is op-
timal. To define optimality, we introduce utility functions. We say that the
investor prefers plan b to plan a at spot ωt if, conditionally on the realization
ofωt , an agent with plan a as the status quo would switch to plan b if presented
with the opportunity to do so at no cost. The investor is indifferent between two
plans if neither plan is preferred to the other.

We are going to measure utility concretely by taking as a unit the consump-
tion plan 1. We assume throughout that the investor prefers more consumption
to less, and therefore, given any scalars α�β such that β > α > 0, the agent
prefers β1 to α1 at every spot. We further assume that, given any consumption
plan c and spot ωt , there exists a (necessarily unique) scalar α such that, con-
ditionally on the realization of spot ωt , the agent is indifferent between plans
c and α1. We call this value of α the spot-ωt cardinal utility of c, and denote it
U(c)[ωt]. Specifying a value at every spot of the information tree defines the
cardinal utility process U(c) of plan c. We note that, by definition, UT(c) = cT .

Another preference assumption we adopt is that if the investor is indifferent
between a and a′ and between b and b′, then the investor prefers b to a if and
only if the investor prefers b′ to a′. Applying this condition with a′ = U(a)[ωt]1
and b′ = U(b)[ωt]1, we conclude that, conditionally on the realization of spot
ωt , the investor prefers plan b to plan a if and only if U(b)[ωt] > U(a)[ωt].
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The investor’s objective at spot ωt is therefore to select the feasible consump-
tion plan c of maximum spot-ωt utility U(c)[ωt].

Utility maximization at every spot can be an inconsistent objective, since the
investor may have an incentive to deviate at some spot from a strategy selected
at an earlier spot. We exclude this possibility by assuming the following key
condition throughout.

Dynamic consistency. Suppose two consumption plans a and b are equal up to
a stopping time τ, and P[Uτ(b) � Uτ(a)] = 1. Then U0(b) � U0(a), with the
inequality being strict if P[Uτ(b) > Uτ(a)] > 0.

Suppose time-zero utility is maximized by the strategy (ρ�ψ), which fi-
nances the consumption plan c, and generates the wealth process W . Then
there cannot exist a stopping time τ and trading strategy (ρ̃� ψ̃), that finances
consumption plan c̃ and generates a wealth process W̃ , such that Wτ = W̃τ,
P[Uτ(c̃) � Uτ(c)] = 1, and P[Uτ(c̃) > Uτ(c)] > 0. Otherwise, by dynamic
consistency, the strategy that starts as (ρ�ψ) and switches to (ρ̃� ψ̃) at time τ
would result in higher time-zero utility than U0(c), contradicting the time-zero
optimality of strategy (ρ�ψ).

Dynamic consistency justifies the following definition of optimality in terms
of the single time-zero utility function U0 : C → R.

Definition 1. The consumption plan c is optimal if it is feasible and there exists
no feasible consumption plan c̃ such that U0(c̃) > U0(c). A strategy (ρ�ψ) is
optimal if it finances an optimal consumption plan. Finally, a consumption or
trading strategy is optimal if it is part of an optimal strategy.

A function Ũ0 : C → R is ordinally equivalent to U0 : C → R if Ũ0 = f ◦ U0
for some strictly increasing function f : R → R. We call such a function Ũ0 an
ordinal utility representation of the investor’s time-zero preferences. A prop-
erty of U0 is ordinal if it is also true of any utility that is ordinally equivalent
to U0. Optimality of a given consumption plan relative to U0 is an example
of an ordinal property of U0. (Extending the notion of ordinal equivalence to
utility at every spot, we note that dynamic consistency is an ordinal property of
the entire utility process U .)

We henceforth take as given the time-zero utility functionU0 : C → R, which
can be either ordinal or cardinal, the distinction made only where relevant. The
following two properties are assumed throughout the chapter:

Monotonicity. For any c� c + x ∈ C, 0 �= x � 0 implies U0(c + x) > U0(c).

Concavity. For all c0� c1 ∈ C, α ∈ (0� 1) implies U0(αc
1 + (1 − α)c0) �

αU0(c
1)+ (1 − α)U0(c

0).
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Monotonicity is an ordinal property, while concavity is not. For cardinal util-
ity, concavity can be thought of as an expression of a preference for consump-
tion smoothing. Later we will introduce the important class of scale-invariant
problems in which U0 is assumed to have the additional ordinal property of
homotheticity. A cardinal utility is homothetic if and only if it is homogeneous
of degree one, in which case concavity is equivalent to the ordinal property of
quasiconcavity.

Let (ρ�ψ) be a candidate optimal strategy that generates the wealth process
W and finances the consumption plan c = ρW . We will verify the optimality
of c by constructing a utility supergradient density at c that is also a state price
density at c. These notions are defined below.

Definition 2. (a) A process π ∈ H is a state price density at c if (π | x) � 0 for
any x ∈ H such that c + x is a feasible consumption plan.

(b) A process π ∈ H is a supergradient density of U0 at c if U0(c + x) �
U0(c)+ (π | x) for every x ∈ H such that c + x ∈ C.

Interpreting (π | x) as a present value of x, the state-price density property
states that there is no feasible incremental consumption plan relative to c that
has positive present value. A supergradient density can be thought of as a gen-
eralized notion of marginal utility. SinceU0 is assumed (strictly) increasing and
concave, any supergradient density of U0 is necessarily strictly positive. Given
a reference plan, the state-price density property depends on the market op-
portunities and not on preferences, while the supergradient density property
depends on preferences and not on the market opportunities.

The following observation is the basis for optimality verification in this chap-
ter. [While we will not discuss the necessity of optimality conditions in this
chapter, a simple partial converse is given in Schroder and Skiadas (2003).]

Proposition 3. Suppose c is a feasible consumption plan, and π ∈ H++ is a
supergradient density of U0 at c that is also a state price density at c. Then the plan
c is optimal.

Proof. If c + x ∈ C is feasible, then U0(c + x) � U0(c)+ (π | x) � U0(c). �

2.3 State price dynamics and linear BSDEs

In order to apply the optimality verification argument of Proposition 3, we
study below the dynamics of a state price density. In the process we introduce
the mathematical tool of a linear backward stochastic differential equation
(BSDE), which plays a basic role in this chapter and asset pricing theory in
general.

The key to understanding the state price density dynamics is the following
notion of risk pricing:
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Definition 4. A market-price-of-risk process is any process η ∈ L2(R
d) such

that

(5)μR = σR′η�

Recalling the linear-factor-model interpretation (1), the above equation can
be thought of as (exact) factor pricing, with ηit representing the time-t price
of instantaneous linear factor dBit . Since σR is assumed everywhere full-rank,
a market-price-of-risk process is unique if and only if m = d.

The existence of a market-price-of-risk process is implied by the absence
of arbitrage opportunities. While a rigorous statement and proof of this claim
can be found in Karatzas and Shreve (1998), it is worth recalling the essential
idea. In an arbitrage-free market there cannot be an instantaneously riskless
allocation with positive instantaneous excess returns; that is,

(6)σRt ψt = 0 implies ψ′
tμ

R
t = 0�

The existence of a market price of risk process is the dual equivalent to (6).
Clearly, (5) implies (6). Conversely, we define the orthogonal decomposition
μRt = σR′

t ηt + εt , where σRt εt = 0. If (6) holds, then ε′tμRt = 0, and therefore
ε′tεt = ε′tμRt = 0, proving that μRt = σR′

t ηt .
Suppose that the process π ∈ H++ follows the dynamics

(7)
dπt
πt

= −rt dt − η′
t dBt� t ∈ [0� T ]�

for some market-price-of-risk process η. We will argue that π is a state-price
density at any given consumption plan satisfying an integrability condition.

Consider any strategy (ρ�ψ), generating the wealth process W , and financ-
ing the consumption plan c = ρW . Letting Σ = W σRψ in the budget equa-
tion (4) and using the assumption μR = σR′η results in

(8)dWt = −(ct − rtWt − η′
tΣt) dt + Σ′

t dBt� WT = cT �

This is a linear BSDE. The Itô process W solves the BSDE if (8) is satisfied for
some Σ ∈ L2(R

d). Given the solution W , the corresponding Σ ∈ L2(R
d) is

uniquely determined (by the uniqueness of Itô representations) and therefore
we can also think of a solution as being the pair (W �Σ) ∈ L1(R) × L2(R

d).
Nonlinear BSDEs are introduced in the following section, where it is explained
that a BSDE is essentially a backward recursion on the information tree. For
the linear case, the backward recursion interpretation is suggested by a present
value formula given in the lemma below. Even though the symbols have specific
meanings in this context, the lemma is stated in a way that applies to a general
linear BSDE.

Lemma 5. Suppose that W solves BSDE (8) for some c ∈ H, r ∈ L1(R), and
η ∈ L2(R), and that π ∈ H++ follows the dynamics (7).
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(a) If W ∈ L(R+), then

(9)Wt � 1
πt
Et

[ T∫
t

πscs ds + πT cT

]
� t ∈ [0� T ]�

(b) If E[supt πt |Wt |] < ∞, then

(10)Wt = 1
πt
Et

[ T∫
t

πscs ds + πT cT

]
� t ∈ [0� T ]�

Proof. Suppose (W �Σ) satisfies (8). Integration by parts gives d(πW ) =
−πc dt + � � � dB. Let {τn} be an increasing sequence of stopping times con-
verging to T almost surely, and such that the � � �dB term stopped at τn is a
martingale. Integrating the last equation from t to T , and applying the opera-
tor Et on both sides, we find

πtWt = Et

[ τn∫
t

πscs ds + πτnWτn

]
�

If W � 0, we can take the limit as n → ∞ and apply Fatou’s lemma to con-
clude (9). If E[supt πt |Wt |] < ∞, then we can apply dominated convergence to
conclude (10). �

Remark 6. Conversely, ifW is given by (10), thenW solves BSDE (8). This can
be shown by rearranging (10), and using integration by parts and a martingale
representation theorem.

In our context, whereW is the wealth process generated by a strategy financ-
ing the consumption plan c, the above lemma implies the state-price-density
property of π:

Proposition 7. Suppose π ∈ H++ follows the dynamics (7) for a market-price-
of-risk process η. If E[supt πtWt] < ∞, then π is a state price density at c.

Proof. Suppose c + x is a feasible consumption plan. By Lemma 5, π0w0 �
(π | c + x) and π0w0 = (π | c). Therefore, (π | x) � 0. �

Remark 8. The necessity of condition (7) for an Itô process π ∈ H++ to
be a state price density at c is shown, under some regularity assumptions, in
Schroder and Skiadas (2003), where the characterization is also extended to
allow for trading constraints. For example, necessity follows if C = H++ and
c ∈ C is continuous.
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In Lemma 5, we saw that the linear term rW +η′Σ in BSDE (8) corresponds
to stochastic discounting in the present value formula (10). Alternatively, the
two terms can be interpreted separately, with rW corresponding to temporal
discounting and η′Σ corresponding to a change of measure. To see how, we
define, given any η ∈ L2(R

d), the processes ξη and Bη by

(11)

dξηt
ξ
η
t

= −η′
t dBt� ξ

η
0 = 1� and dBηt = dBt + ηt dt� B

η
0 = 0�

We recall that ξη is a positive supermartingale, and is a martingale if and only
if EξηT = 1. Suppose η ∈ L2(R

d) is such that ξη is a martingale. In this case
an equivalent-to-P probability measure Pη, with expectation operator Eη, is
well defined through the change-of-measure formula Eη[x] = E[ξTx] (or
dPη/dP = ξT ). By Girsanov’s theorem, Bη is standard Brownian motion un-
der Pη. The linear BSDE (8) can equivalently be stated as

dWt = −(ct − rtWt) dt + Σ′
t dBηt � WT = cT �

Applying Lemma 5 and Remark 6 to this BSDE with underlying probability
Pη, we conclude that, if Eη[supt exp(− ∫ t

0 rτ dτ)|Wt |] < ∞, then W solves
BSDE (8) if and only if

(12)Wt = E
η
t

[ T∫
t

e−
∫ s
t rτ dτcs ds + e−

∫ T
t rτ dτcT

]
�

Equation (12) is the familiar risk-neutral-pricing version of the present-
value formula (10), stating that financial wealth is equal to the present value
of the future cash flow that this wealth finances. In a Markovian setting, such
a present value can be computed (under some regularity) in terms of a corre-
sponding PDE solution, sometimes referred to as the Feynman–Kac solution
(see Duffie, 2001). The PDE form can be derived by writing W as a function
of time and the underlying Markov state, applying Itô’s lemma, and matching
terms with the linear BSDE (8). This type of construction applies more gen-
erally to BSDEs, and can be used to characterize optimal portfolios, as will be
outlined for a class of scale-invariant solutions in Section 5.

2.4 Expected time-additive utility and what is wrong with it

Having understood the structure of state price dynamics, which is unrelated
to preferences, we turn our attention to the utility side. Our objective is to
specify some utility functional structure that properly captures a notion of risk
aversion, and then compute the supergradient density dynamics. Combining
the latter with the state price dynamics will result in optimality conditions.
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A widely used functional form of the time-zero utility function U0 : C → R
is

(13)U0(c) = E

[ T∫
0

e−βtu(ct) dt + e−βTυ(cT )
]
�

for some β ∈ R and concave increasing functions u� υ : R++ → R. The more
concave u is, the more risk-averse the utility. An advantage of this specification
is that a supergradient density can be computed separately at each spot, sim-
plifying the investor problem, at least under complete markets. For example,
suppose that (13) holds with u = υ, the derivative u′ exists and maps R++ onto
R++, and the optimal consumption plan c satisfies u′(c) ∈ H2. It is straight-
forward to check that the process e−βtu′(ct) is a supergradient density of U0
at c. If the market is complete (m = d), then there exists a unique state price
density π with π0 = 1, given by the dynamics (7) with η = σR′−1μR. The
optimal consumption is ct = u′−1(eβtkπt), where the scalar k > 0 is selected
so that (π | c) = w0. The corresponding wealth process W is given by the
present value formula (10). If dW/W = � � �dt +σ ′ dB, then we have seen that
the corresponding optimal trading strategy ψ is given by (2). This is essentially
the analysis of the Merton problem by Cox and Huang (1989) and Karatzas et
al. (1987). Later in this chapter, we will see that much of the simplicity of the
above argument is lost if markets are incomplete.

We argue that, despite its popularity, the time-additive utility specifica-
tion (13) is fundamentally flawed as a representation of risk aversion, which
is a good reason for investing some effort in studying recursive utility. Empha-
sizing the temporal aspect of consumption, we focus in the remainder of this
section on preferences over consumption plans with fixed terminal consump-
tion or bequest, and we therefore assume that (13) holds with υ = 0. We show
below that in this case the investor’s preferences over deterministic choices de-
termine, up to ordinal equivalence, the investor’s entire utility function, and in
particular the investor’s risk aversion. On the other hand, we will see that with
recursive utility two investors can have identical preference in a deterministic
environment, and yet one investor can be more risk-averse than the other.

We use the following standard uniqueness result from additive representa-
tion theory. A proof can be found in Narens (1985) or Wakker (1989).

Lemma 9. For any integer N > 1, and each i ∈ {1� 2}, suppose the function
Fi : RN++ → R has the additive structure Fi(x1� � � � � xN) = ∑N

n=1 f
i
n(xn), x ∈

RN++, where f in : R++ → R, n = 1� � � � �N . Suppose also that F1 and F2 are
ordinally equivalent, meaning that F1(x) � F1(y) if and only if F2(x) � F2(y).
Then there exists α ∈ R++ and β ∈ RN such that f 1

n = αf 2
n + βn, n = 1� � � � �N .

Proposition 10. For each i ∈ {1� 2}, suppose the utility function Ui
0 : C → R takes

the form Ui
0(c) = E

∫ T
0 υi(t� ct) dt, where υi : [0� T ] × R++ → R is continuous.
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Suppose also that, for any deterministic5 consumption plans a� b ∈ C, U1
0 (a) �

U1
0 (b) if and only if U2

0 (a) � U2
0 (b). Then the utility functions U1

0 and U2
0 are

ordinally equivalent on the entire space C.

Proof. After replacing Ui
0 with Ui

0 − Ui
0(1), we can and do assume that

υi(t� 1) = 0 for all t. Given any integer N > 1, we define the time inter-
vals Jn = [(n − 1)T/N� nT/N), n = 1� � � � �N , partitioning [0� T ). Let DN

be the set of deterministic plans of the form
∑N

n=1 xn1Jn . Since U1
0 and U2

0
order the elements of DN the same, we can apply the above lemma with
f in(x) =

∫
Jn υ

i(t� x) dt to conclude that, for some α ∈ R++ and all n,

(14)
∫
Jn

υ1(t� x) dt = α

∫
Jn

υ2(t� x) dt�

Repeating the above argument with 2N in place of N results in the same rela-
tionship, with the same constant α, since DN can be embedded into D2N . For
any x > 0, we can therefore take a sequence of intervals {Jn: n = 1� 2� � � �}
containing x, whose length converges to zero and (14) holds for all n. Divid-
ing both sides of (14) by the length of Jn and taking the limit as n → ∞, we
conclude that υ1(t� x) = αυ2(t� x). �

The limitation of additive utility in capturing risk aversion is illustrated in
the following variant of what seems to be a folklore example (which I learned
from Duffie and Epstein, 1992).6

Example 11. Suppose that T = 100 and U0(c) = E[∫ 100
0 υ(t� ct) dt] for some

continuous function υ : [0� 100] × R++ → R. The plans a and b are defined by

at = 1 + 1� 000 × 1{t>1� B1>0} and

bt = 1 + 1� 000 ×
99∑
n=1

1{1+n�t>n�Bn−Bn−1>0}�

While Eat = Ebt for all t, one could reasonably argue that plan b is less risky
than plan a. Yet, it is straightforward to check that U0(a) = U0(b).

5 We call a process x deterministic if xt is F0-measurable for every time t.
6 In their introduction, Duffie and Epstein (1992) give another example of the limitation of additive
utility that is based on the notion of preferences for the timing of resolution of uncertainty of Kreps
and Porteus (1978). The notion was extended in Skiadas (1998) in terms of preferences over pairs of
consumption plans and information streams (filtrations). Additivity relates to the nondependence of
utility on the filtration argument.
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3 Recursive utility

In this section, we motivate and define recursive utility, and we derive its
basic properties. By combining a computation of the utility supergradient dy-
namics with last section’s state price dynamics, we obtain optimality conditions
under recursive utility as a FBSDE system. Finally, we introduce homothetic
recursive utility and its role in uncoupling the FBSDE system of the optimality
conditions. Continuous-time recursive utility was first defined and analyzed by
Duffie and Epstein (1992), who imposed some special structure that is useful
in modeling risk aversion. Following Lazrak and Quenez (2003), we adopt a
broader definition of recursive utility as a solution to a general BSDE. In the
following section, we will see that the broader definition of recursive utility al-
lows for interesting models of risk aversion that go beyond the Duffie–Epstein
specification.

3.1 Recursive utility and BSDEs

We begin with a heuristic derivation from general principles of recursive
utility. The argument should also help clarify the interpretation of a BSDE as
a continuous-time representation of a backward recursion on an information
tree.

We consider the cardinal dynamic utility function U : C → R that was infor-
mally constructed in terms of preferences in Section 2.2, and we assume that
U(c) is an Itô process for every c ∈ C. In addition to our earlier assumptions
of dynamic consistency, monotonicity, and concavity, we impose the following
simplifying restriction.

Irrelevance of past or unrealized consumption. For any consumption plans a
and b, any time t � T , and any event A ∈ Ft , if a = b on7 A × [t� T ], then
U(a) = U(b) on A× [t� T ].

This assumption is not an essential aspect of a recursive utility structure, but
serves as a natural benchmark in an analysis whose main focus is risk aversion.
Together with dynamic consistency, it implies that, for any consumption plan c
and times t < u, the restriction of Ut(c) on a time-t event A can be expressed
as a function of the restriction of c on A × [t� u] and the restriction of Uu(c)
on A. More formally, we can show8:

7 This means that the indicator of {(ω� u): ω ∈ A� u ∈ [t� T ]� a(ω� u) �= b(ω� u)} is zero as an element
of H.
8 Proof. Let D = A ∩ {Ut(a) > Ut(b)}, and define the stopping times σ = t1D + T1Ω\D and τ =
u1D + T1Ω\D. We define the plan a′ (respectively b′) to be equal to a (respectively b) on D × [t� T ],
and some arbitrary plan c outside D× [t� T ]. Since a = a′ on [σ� T ], we have U(a) = U(a′) on [σ� T ],
and therefore Uτ(a′) = Uτ(a) a.s. Analogously, Uτ(b′) = Uτ(b) a.s., and therefore Uτ(a′) = Uτ(b

′)
a.s. Since a′ and b′ are equal up to the stopping time τ, dynamic consistency implies U0(a

′) = U0(b
′).
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Lemma 12. Given any times t < u � T and event A ∈ Ft , suppose that the
consumption plans a and b are equal on A × [t� u] and Uu(a) = Uu(b) on A.
Then Ut(a) = Ut(b) on A.

Proceeding heuristically, we apply the above functional relationship with the
time-event (t�A) corresponding to a single spot ωt and u = t + dt, where dt
is an infinitesimal time-interval. Fixing any c ∈ C, we let U = U(c). Given the
instantaneous factor decomposition

Ut+dt = mt + Σ′
t dBt� where

(15)mt = Et[Ut+dt] and Σit = covt
[
Ut+dt � dBit

]
� i = 1� � � � � d�

we obtain the functional restriction

(16)Ut = Φ(t� ct�mt� Σt)�

for some (possibly state-dependent) function Φ :Ω× [0� T ] × R++ × R1+d →
(0�∞) that is adapted to the underlying information structure. Utility mono-
tonicity and concavity heuristically imply9 that Φ(ω� t� c�m�Σ) is increasing in
(c�m) and concave in (c�m�Σ). Given Ut+dt , Equation (16), with mt and Σt
defined in (15), is used to compute Ut . Equation (16) is therefore a heuristic
backward recursion on the information tree, which determines the entire utility
process U given the terminal value UT .

To formulate a rigorous version of the utility recursion, we assume that the
function F , called an (infinitesimal) aggregator, is implicitly defined, at any
state ω and time t < T , by

(17)μ = −F(ω� t� c�U�Σ) ⇐⇒ U = Φ(ω� t� c�U + μ dt� Σ)�

By monotonicity of Φ in the conditional mean argument, there is at most
one value μ satisfying the right-hand side equation in (17), and therefore F
is uniquely determined given Φ. Moreover, the monotonicity and concavity
properties of Φ imply that F(ω� t� c�U�Σ) is increasing in c and concave in
(c�U�Σ). (If Φ is strictly concave in m it also follows10 that F is decreasing
in U . We will not need to assume this condition, although it is helpful in veri-
fying technical regularity conditions.) We use the notation UT = F(T� cT ) to

On the other hand, a′ and b′ are equal up to σ , Uσ(a′) > Uσ(b
′) on D, and Uσ(a

′) = Uσ(b
′) on

Ω\D. If P(D) > 0, then dynamic consistency would imply U0(a
′) > U0(b

′), a contradiction. Therefore
P(D) = 0. This shows Ut(a) � Ut(b) on A. The reverse inequality is true by symmetry. �
9 The idea is that the dependence ofΦ(ω� t� c�m�Σ) on (c�m�Σ) is through the pair (c�U), whereU =
m+Σ′ dB. One can heuristically identify (c�U) with a plan that is equal to c at spot ωt (corresponding
to (ω� t)), takes the valueU on [t+dt� T ] conditionally on spotωt having occurred, and it takes, say, the
value one at all remaining spots. Utility monotonicity and concavity over the set of such plans translates
to the corresponding properties for Φ(ω� t� ·).
10 To see that, make a plot of Φ(ω� t� c�U + μ dt� Σ) as a function of U . The concave graph intersects
the 45◦ line at U . As μ increases, the graph moves up and the intersection with the 45◦ line moves to
the right.
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express the dependence of terminal utility on terminal consumption (which is
the identity for cardinal utility).

Assuming the Itô decomposition dU = μ dt+Σ′ dB, and thereforem = U+
μ dt, recursion (16) is equivalent to the drift restriction μt = −F(t� ct� Ut� Σt),
resulting in the utility dynamics

(18)dUt = −F(t� ct� Ut� Σt) dt + Σ′
t dBt� UT = F(T� cT )�

Equation (18) is a BSDE to be solved jointly in the (adapted) process pair
(U�Σ). The function f (ω� t� y� z) = F(ω� t� c(ω� t)� y� z), is known as the
BSDE driver. We say that the Itô process U solves BSDE (18) if there exists
a (necessarily unique) Σ ∈ L2(R

d) such that (18) is satisfied. While we have
motivated BSDE (18) in terms of cardinal utility, it can also be used to charac-
terize other ordinally equivalent utility versions, as in the following example.

Example 13 (Expected discounted utility). In the above heuristic argument,
suppose

Φ(ω� t� c�m�Σ) = u(ω� t� c) dt +m exp
(−β(ω� t) dt

)
�

F(ω� t� c�U�Σ) = u(ω� t� c)− β(ω� t)U� t < T�

By Lemma 5, under a regularity assumption, the solution to BSDE (18) is

Ut = Et

[ T∫
t

exp

(
−

s∫
t

βτ dτ

)
u(s� cs) ds + exp

(
−

T∫
t

βτ dτ

)
F(T� cT )

]
�

Initial BSDE existence and uniqueness results, based on the type of
Lipschitz-growth assumptions on the driver familiar from SDE theory, were
first obtained by Pardoux and Peng (1990) and Duffie and Epstein (1992). An
improved version of the Pardoux–Peng argument can be found in El Karoui et
al. (1997). These conditions are violated in our main homothetic application to
follow, which includes the widely used Epstein–Zin utility [a continuous-time
version of the recursive utility parametrization used in Epstein and Zin (1989)].
Existence, uniqueness and basic properties for continuous-time Epstein–Zin
utility were shown in Appendix A of Schroder and Skiadas (1999). BSDE the-
ory has been further developed by Hamadene (1996), Lepeltier and Martin
(1997, 1998, 2002), Kobylanski (2000), and others (see also El Karoui and
Mazliak, 1997). Moreover, the numerical solution of BSDEs has received in-
creasing attention, with contributions by Douglas Jr. et al. (1996), Chevance
(1997), Bally and Pages (2002), Ma et al. (2002), Zhang (2004), Bouchard and
Touzi (2004), Bouchard and Elie (2005), Gobet et al. (2005), Lemor et al.
(2006), and others. Issues of existence, uniqueness, or numerical computation
will not be further addressed in this chapter.

Given the above motivation, we now formally define the utility class used in
the remainder of this chapter. We assume that utility takes values in an open
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interval IU ⊆ R, which is equal to R++ for cardinal utility. Utility processes
will be assumed to be members of a linear subspace U ⊆ L(IU), taken as
a primitive. We assume throughout that every U ∈ U is an Itô process and
satisfies E[supt U

2
t ] < ∞. Below we define a dynamic utility, meaning that an

entire utility process U(c) is assigned to a plan c. Later we will verify that
dynamic consistency is satisfied, and is therefore sufficient to maximize time-
zero utility.

Definition 14. An (increasing in consumption and concave) aggregator is a pro-
gressively measurable function of the form F :Ω×[0� T ]×R++×IU×Rd → R
satisfying:

1. F(ω� t� c�U�Σ) is strictly increasing in c and concave in (c�U�Σ).
2. F(ω� T� c�U�Σ) does not depend on (U�Σ), and is therefore denoted

F(ω� T� c).

The function U : C → IU is recursive utility with aggregator function F if,
for any c ∈ C, U(c) solves BSDE (18) uniquely in U . The aggregator F is
deterministic if it does not depend on the state variable. The recursive utility U
is state-independent if the corresponding aggregator F is deterministic, and for
any deterministic plan c, U(c) is the unique deterministic element of U solving
the ODE dUt = −F(t� ct� Ut� 0) dt, UT = F(T� cT ).

Remark 15 (Aggregator and beliefs). Suppose that U is recursive utility with
aggregator F , and the process b ∈ L(Rd) is (for simplicity) bounded. Consider
the modified aggregator

Fb(ω� t� c�U�Σ) = F(ω� t� c�U�Σ)+ b(ω� t)′Σ�
Recalling the notation in (11), we note that

dUt = −Fb(t� ct� Ut� Σt) dt + Σ′
t dBbt and

dRt =
(
μRt − σR′

t bt
)

dt + σR′
t dBbt �

Since Bb is Brownian motion under the probability Pb (where dPb/dP = ξbT ),
an investor with prior Pb still assesses the same risk profile σR, but believes
that the instantaneous expected returns are μR − σR′b. A solution method to
the investor’s problem for b = 0 extends to any value of b after the formal
substitution (P�B�μR) → (Pb� Bb� μR − σR′b).

3.2 Some basic properties of recursive utility

In this subsection we derive, under regularity assumptions, some basic prop-
erties of recursive utility. We first verify dynamic consistency, monotonicity,
concavity, and the irrelevance of past or unrealized alternatives. We then dis-
cuss comparative risk aversion, and finally we compute the dynamics of a utility
supergradient density.
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The following notation will be useful. For any function of the form f :Ω ×
[0� T ] × S → R, where S is a convex subset of some Euclidean space X, we
define the superdifferential notation:

∂f (ω� t� s) = {
δ ∈ X: f (ω� t� s + h) � f (ω� t� s)+ δ′h
for all h ∈ X such that s + h ∈ S

}
�

Given any processes d ∈ L(X) and x ∈ L(S), the notation d ∈ ∂f (x)
means that the indicator function of the set of all (ω� t) such that d(ω� t) /∈
∂f (ω� t� x(ω� t)) is the zero element of H. Given any d = (a� b) ∈ L1(R) ×
L2(R

d), we let E(d) or E(a� b) denote the stochastic exponential with dynam-
ics

dEt(a� b)
Et(a� b)

= at dt + b′t dBt� E0(a� b) = 1�

The key to deriving properties of recursive utility is the so-called compar-
ison principle, stated below in terms of the (progressively measurable) driver
functions f i :Ω× [0� T ] × IU × Rd → R, i = 0� 1.

Condition 16 (Comparison principle). For each i ∈ {0� 1}, suppose (Ui� Σi) ∈
U × L(Rd) solves the BSDE

dUi
t = −f i(t� Ui

t � Σ
i
t

)
dt + Σi′t dB� t ∈ [0� T ]� Ui

T given�

Given stopping times σ� τ such that σ � τ a.s., suppose also that11

f 0(t� U1� Σ1) � f 1(t� U1� Σ1) on [σ� τ] and U0
τ � U1

τ a.s.

Then U0
σ � U1

σ a.s. Assuming further that P[U0
τ < U1

τ ] > 0, then P[U0
σ <

U1
σ ] > 0.

A comparison lemma (or stochastic Gronwall–Bellman inequality in the
language of Duffie and Epstein) imposes sufficient regularity restrictions for
the comparison principle to hold. Various comparison lemmas are given in the
BSDE literature referenced earlier. We show below an apparently new version
whose applicability relies on our concavity assumption.

Lemma 17 (Comparison lemma). The comparison principle (Condition 16)
holds if there exists some d ∈ L1(R) × L2(R

d) such that d ∈ ∂f 0(U1� Σ1) a.e.
and E[supt Et(d)2] < ∞.

11 For processes x� y, we say that x � y on [σ� τ] if the indicator function of the set of all (ω� t) such
that x(ω� t) > y(ω� t) and σ(ω) � t � τ(ω) is zero as an element of H.
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Proof. Notationally suppressing the arguments (ω� t), we define the processes
y = U1 − U0 ∈ U , z = Σ1 − Σ0, and p = f 1(U1� Σ1) − f 0(U1� Σ1), and we
note that

dy = −(
f 0(U1� Σ1) − f 0(U0� Σ0) + p

)
dt + z′ dB�

Let d = (dU� dΣ) be as in the lemma’s statement, and define the process q =
f 0(U1� Σ1) − f 0(U0� Σ0) − (dUy + d′

Σ
z). Then the above dynamics for y can

be restated as

dy = −(δ+ dUy + d′
Σz) dt + z′ dB�

where δ = p + q. Our assumptions imply that δ � 0 on [σ� τ] and yτ � 0
a.s. Arguing as in the proof of Lemma 5, we can select a sequence of stopping
times {τn} such that τn ↑ τ a.s. and

Eσ(d)yσ = Eσ

[ τn∫
σ

Et(d)δt dt + Eτn(d)yτn

]
� Eσ [Eτnyτn] a.s.

We recall that, by assumption, y ∈ U implies E[supt y
2
t ] < ∞. Letting n → ∞,

and using dominated convergence, it follows that yσ � 0 a.s. �

Next we introduce a regularity condition that will allow us to apply the com-
parison lemma to derive the utility properties we are interested in. The reader
who wants to skip technicalities can read “regular” as meaning “we can apply
the comparison principle where we have to.”

Given any aggregator F and c ∈ C, we use the notation Fc(ω� t� y� z) =
F(ω� t� c(ω� t)� y� z). We call an aggregator F regular if, given any (c�U) ∈
C × U with dU = � � � dt + Σ′ dB, there exists d ∈ L1(R) × L2(R

d) such
that d ∈ ∂Fc(U�Σ) a.e. and E[supt Et(d)2] < ∞. For example, suppose F
is differentiable and FU � 0 [which follows from the strict concavity of Φ in
Equation (16)]. In this case, regularity of F becomes an integrability restriction
on FΣ, which is satisfied if FΣ is bounded. Boundedness of FΣ is usually too
strong an assumption, however, and confirming regularity is more challenging.

Proposition 18. A recursive utility with a regular aggregator is dynamically con-
sistent, monotonically increasing, concave, and satisfies the irrelevance of past or
unrealized alternatives condition.

Proof. Suppose U is recursive utility with aggregator F , and c0� c1 ∈ C. We
use the notation Ui = U(ci) and dUi = � � �dt+Σi′ dB. To show monotonicity,
suppose c1 � c0. The comparison lemma with f i = Fc

i
implies U1 � U0. To

show concavity, we fix any α ∈ (0� 1) and define the notation xα = (1−α)x0 +
αx1. Notationally suppressing the arguments (ω� t), we define the process p =
F(cα�Uα�Σα)− (1 − α)F(c0�U0� Σ0)− αF(c1�U1� Σ1), and note that

dUα = −(
F
(
cα�Uα�Σα

) − p
)

dt + Σα dB� Uα
T = F

(
T� cαT

) − pT �
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The concavity assumption on F implies that p � 0. Applying Lemma 17 with
f 1 = Fc

α
and f 0 = Fc

α − p, we conclude that U(cα) � Uα, confirming
concavity. The remaining claims are left as an exercises in the application of
Lemma 17. �

A state-independent recursive utility with aggregator F ranks deterministic
plans in a way determined by the function (t� c�U) (→ F(t� c�U� 0), while the
dependence of F on Σ can be used to adjust risk aversion without affecting the
utility of deterministic plans. The formal statement of this property is based on
the following partial order of utility functions.

Comparative risk aversion. A utility function U1
0 : C → R is more risk-averse

than a utility function U2
0 : C → R if

• For any deterministic plans a� b ∈ C,

U1
0 (a) � U1

0 (b) ⇐⇒ U2
0 (a) � U2

0 (b)�

• For any c ∈ C and deterministic c̄ ∈ C,

U2
0 (c̄) � U2

0 (c) 8⇒ U1
0 (c̄) � U1

0 (c)�

Remark 19. If U1
0 and U2

0 are cardinal utilities, then U1
0 is more risk-averse

than U2
0 if and only if U1

0 (c) = U2
0 (c) for every deterministic plan c, and

U1
0 (c) � U2

0 (c) for every plan c.

Proposition 20. Suppose that, for i ∈ {1� 2}, Ui is state-independent recursive
utility with aggregator Fi, and F1 is regular. If F1(t� c�U� 0) = F2(t� c�U� 0) and
F1(t� c�U�Σ) � F2(t� c�U�Σ) for all (t� c�U�Σ), then U1

0 is more risk-averse
than U2

0 .

Proof. By definition, F1(t� c�U� 0) = F2(t� c�U� 0) implies that U1(c) =
U2(c) for every deterministic plan c. The proof is completed using Lemma 17.

�

Finally, we derive a utility supergradient density expression for recursive
utility, which will be key in establishing optimality conditions.

Proposition 21. Suppose U is recursive utility with aggregator F such that
Fc� FU ∈ L1(R) and FΣ ∈ L2(R

d) satisfy

(19)(Fc� FU� FΣ) ∈ ∂F(c�U�Σ)

and E[supt Et(FU� FΣ)2] < ∞. Let the process π be defined by

π = E(FU� FΣ)Fc�
Provided it belongs to H, the process π is a supergradient density of U0 at c.
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Proof. Assuming c + x ∈ C, we define δ = U(c + x)−U(c)� � = Σ(c + x)−
Σ(c), and p = F(c�U�Σ)+ Fcx+ FUδ+ F ′

Σ
�− F(c + x�U + δ�Σ+ �) � 0,

where the last inequality follows from the assumed condition (19). The BSDEs
for U(c + h) and U(c) imply the linear BSDE

dδ = −(Fcx+ FUδ+ F ′
Σ�− p) dt + �′ dB� δT = Fc(T)xT − pT �

An exercise, using Lemma 17 and Lemma 5, shows that δ0 � (π | x). �

3.3 Optimality under recursive utility

Proposition 3 verifies the optimality of a feasible consumption plan c based
on the existence of a process that is both a utility supergradient density at c and
a state price density at c. Specializing this argument to recursive utility, in this
subsection, we apply Itô’s lemma to the supergradient density expression of
Proposition 21, and we use the state price dynamics of Proposition 7 to derive
sufficient optimality conditions for recursive utility as a FBSDE system.

We fix a reference recursive utility U : C → IU with aggregator F , relative to
which optimality is defined. By definition, F(ω� t� ·) is concave but not neces-
sarily differentiable. In the following section, we will see that nonsmoothness
of F(ω� t� c�U�Σ) in (U�Σ) is useful in modeling first-order risk aversion. On
the other hand, we will have no use for nonsmoothness of F in the consumption
argument, and we therefore assume the existence of the corresponding partial
derivative Fc . In addition, we finesse the issue of a consumption nonnegativity
constraint by the usual trick of making marginal utility go to infinity near zero.
Finally, we assume that marginal utility converges to zero as consumption goes
to infinity. These assumptions and some associated notation are summarized
below, and are adopted for the remainder of this chapter’s main part.

Regularity assumptions and notation. The partial derivative Fc exists every-
where, and the function Fc(ω� t� ·�U�Σ) is strictly decreasing and maps (0�∞)
onto (0�∞), for any (ω� t�U�Σ). The function I :Ω× [0� T ] × (0�∞)× IU ×
Rd → (0�∞) is therefore well-defined implicitly by

Fc
(
ω� t�I(ω� t� λ�U�Σ)�U�Σ

) = λ� λ ∈ (0�∞)�

The superdifferential of F with respect to (U�Σ) is defined by

∂U�ΣF(ω� t� c�U�Σ)

= {
(a� b) ∈ R × Rd:

(
Fc(ω� t� c�U�Σ)� a� b

) ∈ ∂F(ω� t� c�U�Σ)
}
�

We fix a reference strategy (ρ�ψ), generating the wealth process W , and
financing the consumption plan c = ρW . To formulate sufficient conditions
for the optimality of c, we define the strictly positive process

(20)λt = Fc(t� ct� Ut� Σt)�



812 C. Skiadas

The last equation is equivalent to

(21)ct = I(t� λt�Ut� Σt)�

By the usual envelope-type argument of microeconomics, if c is optimal then
λt represents the shadow price of the time-t wealth constraint. Although we
will not need to formalize this interpretation, it will be helpful to keep in mind
that λ is a shadow-price-of-wealth process. The dynamics of λ are denoted

(22)
dλt
λt

= μλt dt + σλ′t dBt�

We know that (under regularity assumptions) π = Eλ is a supergradient
density at c, where E = E(FU� FΣ) is computed as in Proposition 21. Integra-
tion by parts gives

dπ
π

= (
FU + μλ + σλ′FΣ

)
dt + (

FΣ + σλ
)′ dB�

To ensure that π is also a state-price density at c, we match terms with the
dynamics of Proposition 7, resulting in the restrictions:

(23)r = −(
FU + μλ + σλ′FΣ

)
� η = −(

FΣ + σλ
)
� μR = σR′η�

We round up the optimality conditions by combining the above restrictions
with the utility and wealth dynamics, as well as Equations (21) and (22):

Condition 22 (Optimality conditions for recursive utility). The trading strategy
ψ and the processes (U�Σ� λ� σλ�W ) ∈ U × L2(R

d) × L(R++) × L2(R
d) ×

L(R++) solve

dU = −F(
I(λ�U�Σ)�U�Σ

)
dt + Σ′ dB� UT = F(T�WT )�

dλ
λ

= −(
r + FU + σλ′FΣ

)
dt + σλ′ dB� λT = Fc(T�WT )�

dW = (
W

(
r + ψ′μR

) − I(λ�U�Σ)
)

dt +Wψ′σR′ dB� W0 = w0�

μR + σR′(FΣ + σλ
) = 0� (FU� FΣ) ∈ (∂U�ΣF)

(
I(t� λ�U�Σ)�U�Σ

)
�

Proposition 23. Suppose Condition 22 holds, and let ct = I(t� λt�Ut� Σt) and
ρt = ct/Wt . If c ∈ C, π = E(FU� FΣ)λ ∈ H, and E[supt πtWt] < ∞, then the
strategy (ρ�ψ) is optimal, it generates the wealth process W , and it finances the
consumption plan c, whose utility process is U .

Proof. The dynamics of W can be used to verify that (ρ�ψ) finances c with
wealth process W . By Proposition 21, π is a utility supergradient density at c.
By Proposition 7, π is also a state price density at c. By Proposition 3, c is
optimal. The dynamics of U show that U = U(c). �
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Remark 24. In Schroder and Skiadas (2003) the above conditions are extended
to include convex trading constraints, and a necessity argument is given for a
smooth aggregator under some regularity assumptions. The case of no inter-
mediate or no terminal consumption is essentially the same as above, omitting
the appropriate consumption arguments in the formulation.

Condition 22 is a FBSDE system. The wealth dynamics are computed re-
cursively forward in time, starting with W0 = w0, and the dynamics of (U� λ)
are computed recursively backward on the information tree, starting with their
terminal values. The forward and backward components are coupled. In the
following subsection we will introduce scale-invariance as a way of uncoupling
this FBSDE system. In a Markovian setting, a PDE version of the FBSDE sys-
tem can be obtained as in Ma et al. (1994). The construction is outlined in
Schroder and Skiadas (2003), as well as later in this chapter for a more special
class of homothetic recursive utilities.

3.4 Homothetic recursive utility

The utility function U0 : C → R is homothetic (or scale-invariant) if for any
c1� c2 ∈ C,

U0
(
c1) = U0

(
c2) implies U0

(
kc1) = U0

(
kc2) for all k ∈ (0�∞)�

If U0 is homothetic and cardinal, then12 it is homogeneous (of degree one).
For recursive utility, with IU = (0�∞), homogeneity of U0 is implied by (and
is essentially equivalent to) homogeneity of the aggregator with respect to the
utility argument; that is, an aggregator of the form

(24)F(ω� t� c�U�Σ) = UG

(
ω� t�

c

U
�
Σ

U

)
� F(ω� T� c) = c�

for some function G :Ω×[0� T ]× (0�∞)×Rd → R that we call a proportional
aggregator.

Assuming the above aggregator form, suppose that (ρ�ψ) is an optimal
strategy with corresponding wealth process W and utility process U . Recall-
ing the interpretation of the process λ as the sensitivity of the optimal time-t
utility value on time-t wealth, the homogeneity of the utility function implies
that

(25)U = λW �

The intuition behind this relationship is straightforward. Suppose that at some
spot ωt the investor with unit wealth finds a consumption plan c̄ optimal, re-
sulting in the spot-ωt optimal utility value λ[ωt]. If the same investor’s wealth

12 Proof. For any c ∈ C and k ∈ (0�∞), U0(c) = U0(U0(c)1) implies U0(kc) = U0(kU0(c)1) =
kU0(c). �



814 C. Skiadas

at ωt were instead W [ωt], then, by the homogeneity of the utility function and
the budget equation, the investor would find the consumption plan W [ωt]c̄
optimal at ωt , resulting in the optimal utility value U[ωt] = λ[ωt]W [ωt]. In
other words, the optimization problem at every spot is a scaled version of the
unit-wealth version of the problem.

Equation (25) allows us to reduce the optimality conditions to a single
BSDE for λ, whose general form can be found in Schroder and Skiadas (2003).
Rather than dealing with the general case here, we will instead consider, in Sec-
tion 5, optimality under special proportional aggregator functional forms that
are motivated by the models of risk aversion of the following section.

We close this section with an example of a proportional aggregator specifi-
cation, under which the optimal consumption strategy is a given process, for
any investment opportunity set.

Example 25 (A robustly optimal consumption strategy). Let the aggregator F
be given by Equation (24) for a proportional aggregator of the form

(26)G(t� x� σ) = β(t) log(x)+H(t� σ)� t < T�

where β is any strictly positive and (for simplicity) bounded process. While the
optimal trading strategy depends on the specification of H and the investment
opportunity set, the optimal consumption strategy is independent of both, and
is simply equal to β. Ignoring technical details, we assume the sufficiency and
necessity of the optimality conditions and the existence of an optimum. To
see the essential part of the argument, suppose (ρ�ψ) is an optimal strat-
egy, with corresponding wealth process W , consumption plan c = ρW , utility
processU = � � �dt+Σ′ dB, and shadow-price-of-wealth process λ. Using Equa-
tion (25), we observe that

λt = Fc(t� c�U�Σ) = βt
Ut

ct
= βt

Wt

ct

Ut

Wt
= βt

ρt
λt�

Therefore, ρ = β, independently of the investment opportunity set. [In
Schroder and Skiadas (2003) it is shown that this conclusion is valid even under
trading constraints.]

4 Modeling risk aversion

This section formulates some concrete representations of possibly source-
dependent second- or first-order risk aversion in the context of recursive utility.
These representations will be used in the following section to derive optimal
trading strategy formulas that help clarify the relationship between risk aver-
sion and optimal portfolio allocations.
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4.1 Conditional certainty equivalents

Let us recall the essential intuition of a recursive utility formulation, cap-
tured by Lemma 12. We fix a consumption plan c with cardinal utility process
U = U(c). For any time-t spot ωt , the corresponding utility value Ut[ωt] can
be computed as a function of ωt , the immediate consumption c[ωt] dt, and
the restriction of the random variable Ut+dt to the spot ωt , which we denote
Ut+dt[ωt].

In this section, we assume that the functional dependence ofUt onUt+dt en-
ters through the conditional certainty equivalent νt(Ut+dt), an Ft-measurable
random variable such that νt(Ut+dt)[ωt] depends on Ut+dt only through its re-
striction Ut+dt[ωt], and is the identity if Ut+dt[ωt] is constant. The value of
νt(Ut+dt) is a conditional certainty equivalent in the sense that, conditionally
on the spot ωt and immediate consumption c[ωt] dt, the investor is indiffer-
ent between the continuation of the plan c and a constant consumption rate
of νt(Ut+dt)[ωt] over the entire remaining period [t + dt� T ]. Under this as-
sumption, we can write the heuristic recursion for the utility process U = U(c)
as

(27)Ut = φ
(
t� dt� ct� νt(Ut+dt)

)
�

where φ can be spot-dependent. The dependence of φ on the recursion in-
terval dt is important in the approximation argument that follows. We further
assume that φ has continuous partial derivatives φdt , φc , and φU . Since pref-
erences are increasing, φc and φU are strictly positive.

In the following three subsections we derive the functional form of the ag-
gregator F for various specifications of the certainty equivalent ν. In each case,
the conditional certainty equivalent has a local representation in terms of the
utility dynamics dUt = μt dt + Σ′

t dBt that takes the form

(28)νt(Ut+dt) = Ut + μt dt −A(t�Ut� Σt) dt�

where A(t�U� 0) = 0. The function A represents the risk aversion implicit in ν.
Recalling Equations (16) and (27), and using a first-order Taylor expansion
of φ, we obtain

Ut = Φ(t� ct� Ut + μt dt� Σt)

= φ
(
t� dt� ct� Ut +

(
μt −A(t�Ut� Σt)

)
dt

)
= Ut +

[
φdt(t� 0� ct� Ut)+φU(t� 0� ct� Ut)

(
μt −A(t�Ut� Σt)

)]
dt�

Using the definition of F in terms of Φ in (17) and the last equation, we obtain
the aggregator functional form

(29)F(ω� t� c�U�Σ) = f (ω� t� c�U)−A(ω� t�U�Σ)�
where f (ω� t� c�U) = φdt(ω� t� 0� c�U)/φU(ω� t� 0� c�U).

Suppose now that φ and A are state independent, and therefore f and F
are also state independent. If the plan c is deterministic, then Σ = 0 and [since
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A(t�U� 0) = 0] utility can be computed in terms of the aggregator section
F(t� c�U� 0) = f (t� c�U). The function f (or φ) therefore determines the in-
vestor’s preferences over deterministic choices. By Proposition 20, given f , the
larger A is the more risk-averse the investor. This hierarchical separation of
preferences toward deterministic choices and risk aversion can also be seen
directly in the recursive form (27). If c is deterministic, then so is U , and
therefore νt(Ut+dt) = Ut+dt . This shows that utility over deterministic plans
is determined by φ. Given φ, increasing A decreases the conditional certainty
equivalent value and therefore Ut , resulting in more risk-averse utility.

The key behavioral restriction introduced by the assumption of the recur-
sive form (27) is that, given the agent’s preferences over deterministic choices,
the agent’s risk aversion at a spot ωt , represented by A(U�Σ)[ωt], does not
depend on the amount c[ωt] dt consumed at time t. This separation of current
consumption and risk aversion is reflected in the separable representation (29).

Homothetic utility with an aggregator of the form (29) is obtained by further
imposing the functional restriction (24). In this case, the proportional aggrega-
tor G takes the functional form

(30)G(ω� t� x� σ) = g(ω� t� x)−R(ω� t� σ)�

where g(ω� t� x) = f (ω� t� x� 1) and R(ω� t� σ) = A(ω� t� 1� σ).

4.2 The Duffie–Epstein limit of Kreps–Porteus utility

The first specialization of the aggregator form (29) we consider results from
the continuous-time formulation of Kreps and Porteus (1978) utility due to13

Duffie and Epstein (1992). In this formulation, the conditional certainty equiv-
alent νt is defined by

(31)u
(
νt(Ut+dt)

) = Et
[
u(Ut+dt)

]
�

for some strictly increasing, concave, twice continuously differentiable function
u : IU → R. We denote the corresponding coefficient of absolute risk aversion
by

a(U) = −u′′(U)
u′(U)

�

In the current context, the classic Arrow (1965, 1970) and Pratt (1964) ap-
proximation of expected utility for small risks can be expressed through Itô’s

13 In fact, Duffie–Epstein utilities are obtained as the continuous-time limit of a broader class of
discrete-time utilities than the Kreps–Porteus class, since the investor’s certainty equivalent over con-
tinuation utility need only be von Neumann–Morgenstern in an approximate local sense. It is sufficient
for our purposes, however, to think of Duffie–Epstein utility as (sufficiently smooth) continuous-time
Kreps–Porteus utility.
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lemma as

u(Ut+dt) = u(Ut)+ u′(Ut) dUt + 1
2
u′′(Ut)(dUt)

2�

Given the utility process Itô decomposition dUt = μt dt + Σ′
t dBt , the above

results in

Et
[
u(Ut+dt)

] = u(Ut)+ u′(Ut)μt dt + 1
2
u′′(Ut)Σ

′
tΣt dt�

On the other hand, a first-order Taylor expansion gives

u
(
νt(Ut+dt)

) = u(Ut)+ u′(Ut)
(
νt(Ut+dt)−Ut

)
�

Combining the last two equations with the certainty equivalent definition (31)
results in the certainty-equivalent expression (28) with the quadratic risk-
aversion component

A(ω� t�U�Σ) = 1
2
a(U)Σ′Σ�

The corresponding aggregator (29) takes Duffie–Epstein form:

(32)F(ω� t� c�U�Σ) = f (ω� t� c�U)− 1
2
a(U)Σ′Σ�

We refer to Duffie and Epstein (1992) for further analysis of this utility form.
For example, they show that there is always an ordinally equivalent utility ver-
sion with the same recursive representation but a = 0. The latter restriction
can be analytically helpful, but minimizes the usefulness of the hierarchical sep-
aration of choice over deterministic plans and risk aversion of Proposition 20.
If a = 0 and F = f is linear in U , as in Example 13, then one obtains time-
additive expected discounted utility.

Homothetic Duffie–Epstein utility is obtained if the aggregator takes the
homogeneous form (24), for a proportional aggregator of the form (30) with
R(ω� t� σ) = (γ/2)σ ′σ for some γ ∈ R+. In this case, the BSDE specifying
the utility process U = U(c) is

(33)
dUt

Ut
= −

(
g

(
t�
ct

Ut

)
− γ

2
σ ′
tσt

)
dt + σ ′

t dBt� UT = cT �

The coefficient γ can be obtained from the certainty equivalent (31) with

(34)u(U) = U1−γ − 1
1 − γ

�

in which case γ = a(U)U is the coefficient of relative risk aversion of the
von Neumann–Morgenstern utility u. Here and below, we interpret the func-
tion (34) with γ = 1 by taking the limit as γ → 1, resulting in u(U) =
logU . Assuming it is state-independent, the function g entirely determines the
agent’s preferences over deterministic consumption plans. Given g, increasing
the value of γ makes the agent more risk averse.
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Example 26. The continuous-time version of Epstein–Zin utility is contained
in the specification

(35)

g(ω� t� x) = α+ β
x1−δ − 1

1 − δ
�

where α ∈ R� β ∈ (0�∞)� δ ∈ [0�∞)�

Within this class, the utility is additive if and only if γ = δ, a condition that
ties the relative risk-aversion coefficient γ to a parameter that is determined
entirely by the agent’s preferences over deterministic plans. Assuming γ = δ,
let b = β− (1 − γ)α, and consider the ordinally equivalent utility process

Vt(c) = 1
β

Ut(c)
1−γ − 1

1 − γ
− α

β

∫ T

t
e−b(s−t) ds�

An exercise using Itô’s lemma shows that14

(36)Vt(c) = Et

[ T∫
t

e−b(s−t) c
1−γ
s − 1
1 − γ

ds + 1
β
e−b(T−t) c

1−γ
T − 1
1 − γ

]
�

4.3 Source-dependent risk aversion

As noted in the Introduction, it is of interest to consider risk aversion that
can depend on the source of risk, for example, as an expression of aversion
to ambiguity associated with a given source of risk. With a version of Proposi-
tion 20, Lazrak and Quenez (2003) made the important observation that the
functional dependence of a general aggregator F(t� c�U�Σ) on Σ allows the
modeling of risk-aversion that varies with the direction of risk. Since Σ rep-
resents loadings to instantaneous linear factors, such directional risk aversion
can be interpreted as source-dependent risk aversion. In this section and the
following one, we motivate some special functional aggregator forms repre-
senting source-dependent risk aversion that were introduced in Schroder and
Skiadas (2003) (for the homothetic case).

We begin with a simple extension of Duffie–Epstein utility that allows for
source-dependent risk aversion, where each Brownian motion is viewed as a
separate source of risk. In the Duffie–Epstein formulation, the certainty equiv-
alent (31) is applied to the continuation utility, Ut+dt = Ut + μt dt + Σ′

t dBt ,
which aggregates all sources of risk. Here we assume that the investor perceives
and worries about the individual risk terms Σ1

t dB1
t � � � � � Σ

d
t dBdt separately,

14 For γ = 1, this example’s argument works only with b = β. It is shown in Schroder and Skiadas
(2005b), however, that any V of the form (36) is ordinally equivalent to a homothetic Duffie–Epstein
utility (33), with g specified as in (35) with α = 0 and β a deterministic function of time (even if γ = 1
and b �= β).



Ch. 19. Dynamic Portfolio Choice and Risk Aversion 819

since they represent exposure to different sources of risk. We model this by
postulating a twice continuously differentiable concave function u : R1+d → R
such that the time-t conditional certainty equivalent in the recursive specifica-
tion (27) is defined by

(37)u
(
νt(Ut+dt)� 0� � � � � 0

) = Et
[
u
(
Ut + μt dt� Σ1 dB1� � � � � Σd dBd

)]
�

The first- and second-order partial derivatives of u(x0� x1� � � � � xd) with re-
spect to xi are denoted ui and uii, respectively. We assume that u is strictly
increasing in its first argument. The absolute risk aversion coefficient with re-
spect to the ith risk source is defined by

(38)ai(U) = −uii(U� 0� � � � � 0)
u0(U� 0� � � � � 0)

�

We also define the diagonal matrixA(U) = diag[a1(U)� � � � � ad(U)]. Applying
Itô’s lemma and taking conditional expectations results in

Et
[
u
(
Ut + μt dt� Σ1 dB1� � � � � Σd dBd

)]
= u(Ut� 0� � � � � 0)+ u0(Ut� 0� � � � � 0)

(
μt − 1

2
Σ′
tA(Ut)Σt

)
dt�

Similarly, we have the first-order Taylor expansion

u
(
νt(Ut+dt)� 0� � � � � 0

) = u(Ut� 0� � � � � 0)+ u0(Ut� 0� � � � � 0)

× (
νt(Ut+dt)−Ut

)
�

Matching the lasts two expressions and simplifying results in the certainty-
equivalent expression (28), and corresponding aggregator (29), with the
quadratic risk-aversion component

A(ω� t�U�Σ) = 1
2
Σ′A(U)Σ�

The Duffie–Epstein case is obtained if ai = a for all i. Combining the above
representation with the homothetic specification (24) results in a proportional
aggregator of the form (30), where R is a quadratic form.

Remark 27. A simple extension is obtained if the Brownian motion in the
above argument is replaced by a new Brownian motion B̄, where dB̄ is a pos-
sibly spot-dependent rotation of dB. More formally, we assume dB̄t = Φt dBt
for some Φ ∈ L2(R

d×d) such that Φ′
tΦt = I. In this case, Ut+dt = Ut +μt dt+

Σ̄′
t dB̄t , where Σ̄t = ΦtΣt , and

A(t�Ut� Σt) = 1
2
Σ̄′
tA(Ut)Σ̄t = 1

2
Σ′
tΦ

′
tA(Ut)ΦtΣt�

In the Duffie–Epstein case, Φ′AΦ = A. With source-dependent risk aversion,
however, the aggregator form changes with the Brownian motion rotation.
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4.4 First-order risk aversion

Consider an investor who maximizes expected von Neumann–Morgenstern
(vNM) utility in a single-period setting. If one were to zoom in a very small
area of the graph of the vNM utility, one would see a straight line. This means
that an investor is essentially risk-neutral toward the addition of sufficiently
small risks to a given wealth level. As an implication, such an investor would
seek some exposure to all investment opportunities of positive expected excess
return, and would not completely insure a source of risk in actuarially unfavor-
able terms. These conclusions extend to the recursive utility formulations of
the last two sections, as will become clear in the following section. In reality,
we observe that investors do not necessarily participate in investment oppor-
tunities with positive Sharpe ratios, and they often pay actuarially unfavorable
premia to completely insure some sources of risk (for example, against loss of
individual items of negligible value relative to total wealth). While such behav-
ior can relate to a number of issues, it is consistent with a certainty-equivalent
specification exhibiting first-order risk aversion in the sense of Segal and Spi-
vak (1990). In this subsection, we formulate recursive utility with a conditional
certainty equivalent exhibiting first-order risk aversion, whose implication for
portfolio choice is discussed in the following section.

In a static expected-utility setting, first-order risk aversion amounts to intro-
ducing a kink of the vNM utility around the given wealth level, hence removing
local risk neutrality. Since a risk-averse vNM utility can have at most countably
many kinks, the approach seems problematic. If one keeps track of different
sources of risk, however, as in the source-dependent certainty equivalent in-
troduced above, this problem does not arise. As in the last subsection, we
assume the recursive utility specification (27) with the source-dependent cer-
tainty equivalent specification in (37), except that the function u in (37) is now
replaced with the function

û(x0� x1� � � � � xd) = u(x0� x1� � � � � xd)−
d∑
i=1

δi(x0)|xi|
√

dt�

The
√

dt scaling factor is necessary for a meaningful trade-off between the
conditional mean of dUt , which is order dt, and the conditional absolute vari-
ation of Σi dBi, which is order

√
dt. We assume that each δi is differentiable

and nonnegative valued, and that u is exactly as in the last subsection. Since
û(U� 0� � � � � 0) = u(U� 0� � � � 0), the conditional certainty equivalent νt is spec-
ified by

u
(
νt(Ut+dt)� 0� � � � � 0

) = Et
[
u
(
Ut + μt dt� Σ1 dB1� � � � � Σd dBd

)]
−

d∑
i=1

Et
[
δi(Ut + μt dt)

∣∣Σit dBit
∣∣√dt

]
�
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The left-hand side and the first term of the right-hand side in the above
equation are computed exactly as in the last subsection. To compute the last
term, we first note that Et |dBit | = √

2dt/π (since dBit is normally distributed
with zero mean and variance dt). Using the first-order Taylor expansion δi(Ut+
μt dt) = δi(Ut)+ δi′(Ut)μt dt and the usual Itô calculus, we find

Et
[
δi(Ut + μt dt)

∣∣Σit dBit
∣∣√dt

] = u0(U� 0� � � � � 0)κi(Ut)
∣∣Σit∣∣ dt�

where κi(U) = √
2/π δi(U)/u0(U� 0� � � � � 0). Substituting these calculations

in the above equation specifying νt results in the conditional certainty equiva-
lent expression (28), and corresponding aggregator (29), with

A(ω� t�U�Σ) = κ(U)′|Σ| + 1
2
Σ′A(U)Σ�

where κ(U) = (
κ1(U)� � � � � κd(U)

)′ and |Σ| = (∣∣Σ1∣∣� � � � � ∣∣Σd∣∣)′�
For the homothetic specification (24), the proportional aggregator takes the
form (30), where R(ω� t� σ) = κ(1)′|Σ|+(1/2)Σ′A(1)Σ. We revisit the homo-
thetic case in the following section, where the effect of first-order risk aversion
on portfolio choice is discussed.

A dual formulation of this subsection’s utility corresponds to the “κ-
ignorance” multiple-prior formulation of Chen and Epstein (2002). Further
discussion of recursive utility duality can be found in El Karoui et al. (2001).

5 Scale-invariant solutions

In this section we study optimal strategies under the homothetic case of
last section’s utilities, thus taking advantage of the simplifications of scale
invariance introduced in Section 3.4, as well as specific risk-aversion parame-
terizations.

The following condition is assumed to hold throughout the section.

Condition 28. Utility processes are valued in IU = (0�∞), and are defined in
terms of the functions15 g : [0� T ]× (0�∞) → R and R :Ω×[0� T ]×Rd → R,
where R(ω� t� 0) = 0. For any c ∈ C, the utility process U = U(c) solves,
uniquely in U , the BSDE

(39)
dUt

Ut
= −

(
g

(
t�
ct

Ut

)
−R(t� σt)

)
dt + σ ′

t dBt� UT = cT �

For every time t, g(t� ·) is differentiable and strictly concave, with deriva-
tive gx(t� ·) that maps (0�∞) onto (0�∞). Finally, g is sufficiently regular so

15 The function g is assumed state-independent for economy of exposition. The optimality conditions,
however, remain valid for a state-dependent g.
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that, for any deterministic c ∈ C, the ordinary differential equation dU/U =
−g(t� c/U) dt, UT = 1, has a unique deterministic solution U in U .

The function g determines choice over deterministic plans. Given g, increas-
ing R increases the investor’s risk aversion, without changing the investor’s
preferences over deterministic plans. The restriction on gx reflects our earlier
assumption on Fc , and guarantees the strict positivity of an optimal consump-
tion plan.

To state the simplified optimality conditions under the above specification,
we introduce some notation. The functions Ig� g∗ : [0� T ] × (0�∞) → (0�∞)
are defined by

gx
(
t�Ig(t� λ)

) = λ and

g∗(t� λ) = max
x∈R++

(
g(t� x)− λx

) = g
(
t�Ig(t� λ)

) − Ig(t� λ)λ�

For any strictly positive Itô process y (such as λ, U , or W ), the notation σy is
defined by the Itô decomposition

dy
y

= � � �dt + σy′ dB�

As discussed in Section 3.4, since utility is homogeneous of degree-one, at
the optimum, the utility process U , the wealth process W , and the shadow-
price-of-wealth process λ are related by U = λW . The central part of the
optimality conditions to follow will be a BSDE solved by (λ� σλ). The form of
this BSDE is specified by the utility parameters (g�R), and the investment op-
portunity set parameters (r� μR� σR). The optimal strategy (ρ�ψ) is computed
in terms of (λ� σλ) by simple formulas. For the optimal consumption strategy,
we note that

ρ = c

W
= U

W

c

U
= λx� where x = c

U
�

Since λ = Fc(t� c�U�Σ) = gx(t� x), it follows that

(40)ρt = λtIg(t� λt)�
The optimal consumption strategy is therefore determined entirely by λ and g.
On the other hand, for last section’s risk-aversion models, we will see that the
optimal trading strategy ψ is determined entirely by σλ, the risk-aversion func-
tion R, and the excess-return parameters (μR� σR).

5.1 Smooth quasi-quadratic proportional aggregator

The first specification we consider includes the homothetic version of last
section’s models of, possibly source-dependent, risk aversion with a smooth
aggregator. The case of first-order risk aversion will be treated at the end of
this section. Up to that point, we assume:
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Condition 29 (Smooth quasi-quadratic proportional aggregator). Condition 28
holds with

(41)R(ω� t� σ) = 1
2
σ ′Q(ω� t)σ�

for some bounded Q :Ω×[0� T ] → Rd×d, where Q(ω� t) is symmetric positive
definite for all (ω� t).

In terms of the risk-aversion function A(U) of Section 4.3, Q = A(1), and
thereforeQ can be thought of as a relative risk-aversion process. In the Duffie–
Epstein case,Q = γI, where γ is a coefficient of relative risk aversion, common
to all sources of risk. IfQ is diagonal, then its ith diagonal element corresponds
to relative risk aversion toward risk generated by the ith Brownian motion.
Remark 27 leads us to consider nondiagonal positive definite specifications
of Q. In last section’s parametric formulations of risk aversion, the conditional
certainty equivalent was defined in a spot-independent way in terms of the
function u, resulting inQ being constant. The same analysis goes through, how-
ever, for a function u, and associated conditional certainty equivalent, that is
spot-dependent, implying a stochastic risk-aversion process Q.

For every (ω� t) ∈ Ω× [0� T ], the quadratic function Q(ω� t� ·) : Rd → R is
defined by

Q(t� z) = z′Qtz − (
μRt − σR′

t (Qt − I)z
)′(
σR′
t Qtσ

R
t

)−1

× (
μRt − σR′

t (Qt − I)z
)
� z ∈ Rd�

Under Condition 29, the solution of the optimality conditions (stated in
Condition 22) reduces to the following procedure:

1. Compute (λ� σλ) by solving the BSDE:

(42)

dλt
λt

= −
(
rt + g∗(t� λ)− 1

2
Q(t� σλ)

)
dt + σλ′t dBt� λT = 1�

2. Given the solution (λ� σλ), the optimal consumption strategy ρ is given
by Equation (40), and the optimal trading strategy is

(43)ψt =
(
σR′
t Qtσ

R
t

)−1(
μRt − σR′

t (Qt − I)σλt
)
�

3. The wealth process W generated by the strategy (ρ�ψ) is computed
from the budget equation (4). The optimal consumption plan financed
by (ρ�ψ) is c = ρW , and the utility process of c is U = λW .

The proof of this claim (given in Schroder and Skiadas, 2003) is a matter
of direct calculation using the specific aggregator form, and the key homo-
geneity condition U = λW . The optimal trading strategy expression follows
from Equations (23), which imply that μR + σR′(FΣ + σλ) = 0. In this equa-
tion we substitute FΣ = −QσU (from the definition of F), σU = σλ + σW
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(from U = λW ), and σW = σRψ (from the budget equation). Solving for ψ
gives (43).

The optimal trading strategy of Equation (43) can deviate from an instan-
taneously mean–variance efficient solution for two possible reasons. One is
source dependence of risk aversion, reflected in Q, and the other is the term
involving σλ which arises from a stochastic investment opportunity set or sto-
chastic risk aversion. Two special cases in which instantaneous mean–variance
efficiency is recovered are given in the following examples. For expositional
simplicity, we informally identify optimality with the above optimality condi-
tions (ignoring the regularity assumptions required for actual equivalence).

Example 30 (Deterministic investment opportunity set and risk aversion).
Suppose that the investment opportunity set parameters (r� μR� σR), and the
risk-aversion process Q are all deterministic. Then the solution simplifies sig-
nificantly by setting σλ = 0. That is, λ is a deterministic process solving the
ODE

dλt
λt

= −
(
rt + g∗(t� λ)+ 1

2
μR′
t

(
σR′
t Qtσ

R
t

)−1
μRt

)
dt� λT = 1�

Since λ is deterministic and g is assumed state-independent, the optimal con-
sumption strategy ρ = λIg(λ) is also deterministic. The optimal trading strat-
egy is ψ = (σR′QσR)−1μR.

Suppose further that risk aversion is source-independent, and therefore
Q = γI for some deterministic process γ. Then the optimal trading strat-
egy ψ = γ−1(σR′σR)−1μR is instantaneously mean–variance efficient. Since
ψ does not depend on g, it is the same as for the choice of g given in Ex-
ample 26 with γ = δ. In other words, the optimal trading strategy is the same
as for time-additive power expected utility (considered by Merton, 1971). On
the other hand, λ and the optimal consumption strategy depend on the spec-
ification of g. It is also worth noting that in the current special context the
investment opportunity set enters the dynamics of λ only through the maxi-
mum squared conditional Sharpe ratio of Equation (3).

Example 31 (Robustly mean–variance efficient optimal trading strategies).
Even under a stochastic investment opportunity set, the instantaneously mean–
variance efficient strategy ψ = (σR′σR)−1μR is optimal if Q = I (the identity
matrix). Moreover, forQ = I, the investment opportunity set enters the BSDE
for λ only through λ and the maximum squared instantaneous Sharpe ratio of
Equation (3). Combining time additivity with the assumption Q = I implies
that g is logarithmic (Example 26 with γ = δ = 1), and therefore the optimal
consumption strategy equals the utility discount rate as in Example 25. With-
out time-additivity, g is unrestricted. A discrete-time example of this type was
first given by Giovannini and Weil (1989). The construction is further extended
in Example 33 below.
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As noted earlier, in a Markovian setting, a BSDE is characterized (under
some regularity) by a corresponding PDE. The argument is outlined below for
the BSDE (42) satisfied by λ.

Example 32 (Markovian solutions). Given is some underlying n-dimensional
Markov process Z, uniquely solving the SDE

dZ = a(t�Z) dt + b(t�Z)′ dB� Z0 = z0�

for some z0 ∈ Rn and functions a : [0� T ] × Rn → Rn and b : [0� T ] × Rn →
Rd×n. With some convenient abuse of notation, we assume that

rt = r(t� Zt) and ηt = η(t�Zt)�

for some functions r : [0� T ] × Rn → R and η : [0� T ] × Rn → Rd. We con-
jecture that λ can be written as a function of time and the Markov state that
is smooth enough to apply Itô’s lemma. With the usual abuse of notation, we
write λ(ω� t) = λ(t�Z(ω� t)). Omitting the argument (t� Zt), and with sub-
scripts of λ denoting partial derivatives, Itô’s lemma implies:

dλ =
(
λt + λ′

za+ 1
2

tr
[
bλzzb

′
])

dt + (bλz)
′ dB�

Comparing the above dynamics to BSDE (42) suggests that σλ = bλz/λ and λ
solves the PDE

r + g∗(λ)− 1
2
Q

(
b
λz

λ

)
+ λt

λ
+ a′λz

λ
+ 1

2
tr
[
b
λzz

λ
b′

]
= 0�

λ(T� ·) = 1�

where r and Q are viewed as functions of the underlying Markov state, in the
same notational pattern used earlier for λ. Reversing the above steps, one can
construct a solution to BSDE (42) from a solution to the above PDE.

5.2 Relating complete and incomplete market solutions

Continuing with the assumption of a smooth quasiquadratic proportional
aggregator (Condition 29), we consider some connections between complete
and incomplete market solutions. (The type of market incompleteness dis-
cussed here leaves out the case of undiversifiable income risk. A tractable class
of problems dealing with the latter is outlined in the final section.)

We recall that m is the number of traded risky assets. Given a matrix A of
dimension n× k, where n � m, we use the block matrix notation:

A =
[
AM

AN

]
� AM ∈ Rm×k� AN ∈ R(n−m)×k�

In particular, R = RM , μR = μRM , and σR′ = [σR′
M �σR′

N ].



826 C. Skiadas

While the solution summarized by BSDE (42) is valid for incomplete mar-
kets, the role of nonmarketed uncertainty becomes clearer after passing to a
new Brownian motion that generates the same filtration as B, and separates
marketed and nonmarketed uncertainty. Informally, at each spot, the linear
span of dRM−μRM dt can be obtained as the linear span of the first m elements
of a rotated version of dB. This transformation (stated formally in Schroder
and Skiadas, 2003) corresponds to the type of spot-by-spot Brownian motion
rotation of Remark 27, which preserves the quasiquadratic proportional aggre-
gator structure. We therefore lose no generality in assuming that

(44)dRM = μRM dt + σR′
M dBM and σRN = 0�

For the remainder of this section, we assume the normalized return struc-
ture (44), and we think of M and N as sets of indices corresponding to mar-
keted and nonmarketed uncertainty, respectively. The processes r, μRM , and
σRM need not, however, be adapted to the filtration generated by BM .

A market-price-of-risk process in this context takes the form

(45)η =
[
ηM
ηN

]
� where ηM = (

σR′
M

)−1
μRM�

The process ηM represents the price of marketed risk, while the unrestricted
process ηN represents the price of nonmarketed risk. The latter parameterizes
the set of every state price density π consistent with the given market:

π = πMξηN � where
dπM

πM
= −r dt − η′

M dBM

and
dξηN

ξηN
= −η′

N dBN�

If π is a state price density that is also a utility supergradient density at an
optimum, then the corresponding ηN reflects the shadow price of nonmar-
keted risk, in the following sense. Consider a hypothetical market completion
in which risk generated by dBN is priced by ηN . In such a market, the investor
would find it optimal to not trade risk generated by dBN , since the original
incomplete-markets strategy would still be optimal. Since the original strategy
need not be optimal under any other choice of ηN , the incomplete-markets
optimal utility is the minimum of optimal utilities over all market completions
(parameterized by ηN). This connection between complete and incomplete
market solutions is illustrated more concretely in Example 34 below, and ex-
tends to more general convex constraints (see Cvitanić and Karatzas, 1992 and
Karatzas and Shreve, 1998 for the case of time-additive expected utility, and
Schroder and Skiadas, 2003 and Appendix A of Schroder and Skiadas, 2005b
for the case of recursive utility).

For expositional simplicity, in the remainder of this section we further as-
sume that the relative risk aversion process Q assumes the block diagonal
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structure

(46)Q =
[
QMM 0

0 QNN

]
�

where QMM ∈ L(Rm×m) and QNN ∈ L(R(d−m)×(d−m)). In this context, the
function Q of BSDE (42) of the optimality conditions can be written as

Q
(
σλ

) = σλ′NQNNσ
λ
N + 2

(
ηM + σλM

)′
σλM

(47)− (
ηM + σλM

)′
Q−1
MM

(
ηM + σλM

)
�

The corresponding optimal trading strategy is

ψM = (
QMMσ

R
M

)−1(
ηM − (QMM − IMM)σ

λ
M

)
�

where IMM is the m×m identity matrix.

Example 33 (Mean–variance efficiency). If QMM = IMM , then ψM is instan-
taneously mean–variance efficient, an observation that extends Example 31.

Example 34 (Fictitious market completion and duality). Consider the above
incomplete-market setting, with the normalized return dynamics (44), where
m < d, and the block-diagonal Q in (46). Suppose that (λ� σλ) solves the
BSDE of the optimality conditions, (ρ�ψM) is the corresponding optimal strat-
egy, and U is the corresponding optimal utility process. Given any choice of a
nonmarketed-price-of-risk process ηN , we consider the complete market ob-
tained by introducing d − m fictitious assets, whose cumulative excess return
process RN follows the dynamics dRN = ηN dt + dBN . The unique market-
price-of-risk process in this fictitious complete market is given by (45). We let
UηN denote the corresponding complete-market optimal utility process. Sim-
ple algebra shows that if one makes the specific selection

ηN = (QNN − INN)σ
λ
N�

then (λ� σλ) satisfies the BSDE of the optimality conditions in the fictitious
complete market defined by this choice of ηN . Moreover, the corresponding
optimal strategy in the fictitious complete market is (ρ�ψ), where (ρ�ψM)
is the incomplete-market optimal strategy and ψN = 0. In other words, the
above specification of ηN prices nonmarketed risk so that the investor finds it
optimal to not trade the fictitious assets at all. As a consequenceU = UηN . For
any other choice of ηN , (ρ�ψ) need not be optimal in the fictitious complete
market defined by ηN , and therefore U � UηN .

A different type of connection between incomplete and complete market
solutions is given in the following example (which is generalized in Schroder
and Skiadas, 2003). A particular case of the example shows that if the investor
has the time-additive expected power utility (36) with γ ∈ (0� 2), then the
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solution to the investor’s problem in an incomplete market is equivalent (in a
sense clarified below) to the solution of the complete market problem obtained
by pricing nontraded uncertainty risk-neutrally, and setting the investor’s rela-
tive risk aversion toward nonmarketed uncertainty to 1/(2 − γ). The original
additive-utility problem with incomplete markets is therefore equivalent to a
complete-markets problem with recursive utility.

Example 35 (Market-incompletess and source-dependent risk aversion). We
further specialize the quasiquadratic form (41) of the proportional aggregator
by assuming that

Q = γI� where γ ∈ (0� 2)�

In Example 26 we saw that this class includes cases of Epstein–Zin utility,
as well as time-additive expected discounted power utility. Let (ρ�ψM) be
an incomplete-market optimal strategy, with corresponding shadow-price-of-
wealth process λ, wealth process W , and utility process U .

We complete the market by introducing fictitious assets that are priced risk-
neutrally; that is, the price-of-nonmarketed risk process is zero (ηN = 0). We
let the corresponding excess return dynamics be given by RN = BN . In the
resulting fictitious complete market, we consider the optimal strategy, not of
the original investor, but rather of a fictitious investor whose proportional ag-
gregator is

(48)Ḡ(t� c� σ) = g(t� c)− 1
2

(
γσ ′

MσM + 1
2 − γ

σ ′
NσN

)
�

In other words, the fictitious investor’s relative risk aversion toward nonmar-
keted risk is modified from γ to 1/(2 − γ). Let (ρ̄� ψ̄) be the optimal strategy
of the fictitious investor in the fictitious complete market, and let λ̄, W̄ and
Ū be the corresponding shadow-price-of wealth, wealth, and utility processes.
Comparing optimality conditions, we observe that

λ̄ = λ� ρ̄ = ρ� ψ̄M = ψM�

and
W̄t

Wt
= Ūt

Ut
= exp

( t∫
0

ψ̄′
N dBN

)
�

The incomplete market solution can therefore be immediately recovered from
the fictitious complete-market solution. This is true even though the specifica-
tion of the fictitious-investor preferences does not depend on market prices!

5.3 Solutions based on quadratic BSDEs

In this subsection, we discuss scale-invariant formulations in which the
BSDE satisfied by log(λ) takes a quadratic form. For certain specifications
of the return dynamics, the quadratic BSDE solution can be expressed as a
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quadratic function16 of an exogenous state process, with deterministic coeffi-
cients that solve an ODE system. This type of solution is familiar in Finance
mainly in the context of risk-neutral pricing (see, for example, Duffie, 2005 and
Piazzesi, 2005), where the relevant BSDE is linear. Our application extends
the solution method to quadratic BSDEs, where the quadratic term reflects
risk aversion. For expositional simplicity, we outline below only some exam-
ples, referring to Schroder and Skiadas (2003, 2005a, 2005b) for more general
treatments. Examples of this type of solution can also be found in Chacko and
Viceira (2005), Kim and Omberg (1996), Liu (2005), Schroder and Skiadas
(1999), and Wachter (2002).

Continuing with the assumption of a homothetic recursive utility, we adopt
the utility specification in the intersection of Examples 25 and 26; that is, the
proportional aggregator is of the form

(49)G(t� x� σ) = α+ β log(x)− γ

2
σ ′σ�

for some constants α ∈ R and β� γ ∈ R++. The parameters (α�β) determine
preferences over deterministic choices. Given (α�β), the parameter γ adjusts
risk aversion.

Remark 36. The treatment in Schroder and Skiadas (2003) allows possible
source-dependent risk aversion, and parameters α and β that are processes,
the latter deterministic. The above specification for β = 0 results in a utility
that is ordinally equivalent to expected power utility for terminal consumption.
Even though we have not covered the case of no intermediate consumption,
essentially the same analysis applies.

Recalling Example 25, the optimal strategy for the above utility specification
is

ρ = β and ψ = 1
γ

(
σR′σR

)−1(
μR − (γ − 1)σR′σλ

)
�

A myopic solution results for γ = 1, corresponding to time-additive loga-
rithmic utility (the intersection of Examples 25 and 31). The solution also
simplifies if the investment opportunity set is deterministic, in which case
σλ = 0 (Example 30). To compute the optimal strategy with a stochastic in-
vestment opportunity set and γ �= 1, we need to determine (λ� σλ) by solving
BSDE (42). Making the convenient change of variables

+t = log(λt)�

16 As explained in Schroder and Skiadas (2005b), the quadratic dependence on the state can be made
affine by a suitable redefinition of the state process. A similar construction in a term-structure context
appears in Cheng and Scaillet (2005).
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we note that g∗(t� λ) = α−β+β log(β)−β+t . Direct computation shows that
BSDE (42) can be written as a quadratic BSDE to be solved for +:

(50)d+t = −
(
pt − β+t + h′

tσ
+
t + 1

2
σ+′t Htσ

+
t

)
dt + σ+′t dB� +T = 0�

where

p = r + α− β+ β log(β)+ 1
2γ

μR′(σR′σR
)−1

μR�

h = 1 − γ

γ
σR

(
σR′σR

)−1
μR�

H = (1 − γ)

[
I + 1 − γ

γ
σR

(
σR′
t σR

)−1
σR′

]
�

A general set of conditions under which the above quadratic BSDE can be
reduced to an ODE is given in Schroder and Skiadas (2003). We only consider
here two representative examples. As in the last subsection, we assume the
normalization dR = μR dt + σR′

M dBM , and therefore the price-of-marketed-
risk process is ηM = (σR′

M )−1μR. We outline the form of the solution below,
leaving the details as an exercise.

Example 37. Given is an underlying n-dimensional state vector Z following
the dynamics

dZ = (μ− θZ) dt + Σ′ dB�

for some μ ∈ Rn, Σ ∈ Rd×n, and θ ∈ Rn×n. The short-rate process and price-
of-marketed-risk process are assumed to be given by

r = Cr
0 + Cr′

1 Z + 1
2
Z′Cr

2Z and ηM = C
η
0 + C

η′
1 Z�

where the coefficients Cr
i and C

η
i are all constants of conforming dimensions.

In this case, we conjecture a solution to BSDE (50) of the form

+t = C0(t)+ C1(t)
′Zt + 1

2
Z′
tC2(t)Zt�

where the Ci(t) are deterministic differentiable processes. Applying Itô’s
lemma to the above conjectured expression, collecting terms and comparing
to the corresponding coefficients of BSDE (50) confirms that such a solution
indeed solves BSDE (50), provided the coefficients Ci solve an ODE system.

Example 38. We modify the above example by assuming the dynamics

dZ = (μ− θZ) dt + Σ′ diag
(√

υ+ V Z
)

dB�

r = Cr
0 + Cr′

1 Z and ηM = diag
(√

υM + VMZt
)
ϕ�
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where diag(x) denotes the diagonal matrix with x on the diagonal,
√
x denotes

the vector with ith element
√
xi, and μ ∈ Rn, Σ ∈ Rd×n, θ ∈ Rn×n, Cr

0 ∈ R,
Cr

1 ∈ Rn, υ = [υ′
M�υ

′
N ]′ ∈ Rd, V = [V ′

M� V
′
N ]′ ∈ Rd×n, ϕ ∈ Rm. In this case,

the conjectured solution takes the form

+t = C0(t)+ C1(t)
′Z�

where again the Ci(t) are differentiable deterministic processes. Arguing as in
the last example, one obtains an ODE solved by C1 alone, and another ODE
(which uses the solution of the first ODE) that is satisfied by C0. Given the pair
(C0� C1) satisfying the ODE pair, the above affine expression defines a solution
to BSDE (50).

5.4 Solutions with first-order risk aversion

The final set of scale-invariant solutions we consider utilizes the kinked pro-
portional aggregator of Section 4.4, representing source-dependent first-order
risk aversion. More specifically, we assume the following condition, using the
notation

|x|′ = (|x1|� � � � � |xd|
)
� x ∈ Rd�

Condition 39 (Quasi-quadratic proportional aggregator). Condition 28 holds
with

R(ω� t� σ) = κ(ω� t)′|σ | + 1
2
σ ′Q(ω� t)σ�

for some bounded processes κ :Ω× [0� T ] → Rd and Q :Ω× [0� T ] → Rd×d,
where Q(ω� t) is diagonal and positive definite for all (ω� t).

We adopt the notation and return normalization of Section 5.2. In particu-
lar, the excess return dynamics and the marketed-price-of-risk process are

dR = μR dt + σR′
M dBM and ηM = (

σR′
M

)−1
μRM�

To formulate optimality conditions in this setting, we define, for any κ ∈ R+,
the collar function

C(α;κ) = min
{
max{0� α− κ}� α+ κ

}
� α ∈ R�
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plotted below for κ = 1:

The collar function will be applied to vectors coordinate by coordinate:

C(α;κ) = (
C(α1;κ1)� � � � � C(αm;κm)

)′
�

for any α ∈ Rm and κ ∈ Rm+ �
The BSDE for λ in this case is of the same form as in the smooth-quasi-
quadratic case, except that Q is replaced with the function K :Ω × [0� T ] ×
Rd → R defined by

K(z) = 2κ′
N |zN | + z′NQNNzN + 2(ηM + zM)

′zM
− C(ηM + zM;κM)′Q−1

MMC(ηM + zM;κM)�
Expression (47) for Q is recovered if one sets κ = 0.

With the above notation and return normalization in place, the optimality
conditions (Condition 22) under Condition 39 reduce to the following steps:

1. The shadow-price-of-wealth process λ solves the BSDE:

dλt
λt

= −
(
rt + g∗(t� λt)− 1

2
K

(
t� σλt

))
dt + σλ′t dBt� λT = 1�

2. Given the solution (λ� σλ) from step one, the optimal strategy is

ρ = λIg(λ) and ψ = (
σRM

)−1[
Q−1
MMC

(
ηM + σλM;κM

) − σλM
]
�

3. The wealth process generated by the strategy (ρ�ψ) is computed from
the budget equation, the corresponding optimal consumption plan is c =
ρW , and its utility process is U = λW .

The proof of the above claim (given in Schroder and Skiadas, 2003) is a
matter of direct calculation using the specific aggregator form, and the key
homogeneity condition at the optimum: U = λW . The latter also implies that
if dU/U = � � � dt + σU ′ dB, then

σUM = (QMM)
−1C

(
ηM + σλM;κM

)
�
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Consequently, for any i ∈ M , σUi vanishes whenever ηiM + σλiM ∈ [−κi� κi].
Such perfect hedging of utility risk with respect to some source of risk is not
encountered with an aggregator derived from a smooth certainty equivalent.
The following example (from Schroder and Skiadas, 2003) extends Section 5.3
of Chen and Epstein (2002). Further examples of nonparticipation as an ex-
pression of source-dependent first-order risk aversion can be found in Epstein
and Miao (2003) and Schroder and Skiadas (2003).

Example 40 (Deterministic investment opportunity set). Suppose that r, μR,
σR, κ, and Q are all deterministic. Then the solution simplifies by setting
σλ = 0. In particular, the optimal trading strategy is ψ = (QMMσ

R
M)

−1 ×
C(ηM;κM). Let us further assume, for simplicity, that σRMM is diagonal with
positive diagonal. For any i ∈ M , ψi = 0 when ηi ∈ [−κi�+κi]; the agent
will not participate in the market for risk i, unless its instantaneous expected
return relative to its risk is sufficiently far from zero. This type of solution can
be combined with different belief specifications, as in Remark 15, to obtain
a richer set of optimal portfolio holdings. In particular, adding the term b′σ
to the proportional aggregator, for some (bounded) process b, means that the
investor believes the market price of risk process to be η − b, rather than η,
and therefore the investor will not participate in the market for risk source i if
ηi ∈ [bi − κi� bi + κi]. If we further assume that bi = −κi, then the optimal
holding of asset i is ψi = Q−1

ii μ
R
i /(σ

R
ii )

2 when μRi > 0 (just as with κ = b = 0),
but the agent will only short asset i when μRi < −2κiσRii . In other words, in
this case, the optimal portfolio is identical to the Merton solution for positive
expected excess returns, yet it is optimal for the investor to not go short for
sufficiently small negative expected returns.

6 Extensions

This section concludes with two direct extensions of the main chapter’s ma-
terial, and a list of further topics and related references.

6.1 Convex trading constraints

We outline an extension of this chapter’s arguments to include convex trad-
ing constraints, referring to Schroder and Skiadas (2003) for details. Examples
of analysis of the Merton problem with constraints based on the Hamilton–
Jacobi–Bellman approach include Zariphopoulou (1994) and Vila and Za-
riphopoulou (1997). Convex duality with trading constraints and additive utility
is studied by He and Pearson (1991), Karatzas et al. (1991) (incomplete mar-
kets); Shreve and Xu (1992a, 1992b) (short-sale constraints); and Cvitanić and
Karatzas (1992) (convex constraints). Related discussions with recursive pref-
erences can be found in El Karoui et al. (2001), and Schroder and Skiadas
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(2003, 2005b). We will not discuss duality here. Also not discussed here are
constraints that prevent the investor from borrowing against future income,
which is the focus of He and Pagès (1993), El Karoui and Jeanblanc-Picquè
(1998), and Detemple and Serrat (2003).

We consider this chapter’s setting with the additional constraint that the
investor’s trading strategy must be valued in some given convex set K ⊆ Rm at
all times. For example, K = Rm+ represents the impossibility of short-selling.
The definition of a feasible cash flow now includes the requirement that it can
be financed by a K-valued trading strategy. We let δK(εt) = sup{k′εt : k ∈ K}
denote the support function of K.

We fix a feasible strategy (ρ�ψ) financing the consumption plan c. Given
our new notion of feasibility, the definition of a state-price density at c is the
same as before. The smaller the set K, the smaller the set of feasible incre-
mental cash flows, and therefore the larger the set of state price densities at c.
Under some regularity, state price dynamics are characterized in Schroder and
Skiadas (2003) as

dπt
πt

= −(
rt + δK(εt)

)
dt − η′

t dBt�

εt = μRt − σR′
t ηt� ψ′

tεt = δK(εt)�

Proposition 3 still applies here, so combining the above dynamics with those
of a utility supergradient density results in sufficient optimality conditions as a
constrained FBSDE system.

As in the unconstrained case, scale invariance results in the uncoupling of
the forward and backward components of the BSDE system. For example,
consider a scale-invariant recursive utility with the smooth quasi-quadratic pro-
portional aggregator of Condition 29, a specification that includes expected
discounted power utility and Epstein–Zin utility (see Example 26). As shown
in Schroder and Skiadas (2003), in this case the optimality conditions can be
written as the constrained BSDE:

dλt
λt

= −
(
rt + δK(εt)+ g∗(t� λt)− 1

2
σλ′t Qtσ

λ
t

+ 1
2
ψ′
tσ

R′
t Qtσ

R
t ψt

)
dt + σλ′t dBt� λT = 1�

ψt =
(
σR′
t Qtσ

R
t

)−1(
μRt − εt − σR′

t (Qt − I)σλt
) ∈ K�

ψ′
tεt = δK(εt)�

Example 41. Under Condition 29, a particularly simple expression for the op-
timal trading strategy is obtained if K = {k ∈ Rm: α � l′k � β} where l ∈ Rm

and α and β are valued in [−∞�+∞]. The case of a short-sale constraint on
asset i corresponds to α = 0, β = ∞, and l a vector of zeros except for a one in
the ith position. The case of a cap on the proportion of wealth borrowed, pos-
sibly combined with a limit on short sales as a fraction of wealth, corresponds
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to letting l be a vector of ones. We assume that K is nonempty, and define

ψ∗
t = At

(
μRt − σR′

t (Qt − I)σλt
)
� At =

(
σR′
t Qtσ

R
t

)−1
�

The above expression gives the optimal trading strategy as a function of σλ in
the unconstrained case (α = −∞� β = ∞). The (constrained) optimal trading
strategy ψ and process ε in the dynamics of λ are given by

(51)
ψt = ψ∗

t −Atεt� εt = −(l′Atl)
−1[min

{
max{l′ψ∗

t � α}� β
} − l′ψ∗

t

]
l�

These equations can in turn be used to complete the specification of the BSDE
for λ, which can then be solved by some numerical method (for example, with
numerical PDE methods in a Markovian setting).

6.2 Translation-invariant formulations and nontradeable income

A parallel theory to this chapter’s scale-invariance argument is based on
a notion of translation invariance in a setting that allows for a nontradeable
income stream. This type of formulation is familiar in the subclass of prob-
lems with expected discounted exponential utility and Gaussian dynamics, as,
for example, in Svensson and Werner (1993) and Musiela and Zariphopoulou
(2004). We outline below a formulation with recursive utility, which is a special
case of Schroder and Skiadas (2005a, 2005b) (where trading constraints, non-
linear wealth dynamics, and unpredictable return jumps are also considered).

We modify our earlier setting by assuming that the investor is endowed with
a possibly nontradeable cash flow e, in addition to the initial wealth w0. Con-
sumption in this subsection is allowed to take negative values, and financial
wealth can vanish. The representation of portfolios in terms of proportions
of wealth is therefore unsuitable in our new setting. We correct this by defin-
ing a trading plan to be a process φ ∈ L(Rm), where φi

t represents a dollar
amount invested in asset i at time t. The dollar amount invested in the money
market at time t is Wt − ∑m

i=1 φ
i
t , where Wt represents total time-t finan-

cial wealth (excluding e). Ignoring some integrability requirements, a plan is
a triple (c�φ�W ) of a consumption plan c, a trading plan φ, and a wealth
process W . The plan (c�φ�W ) is feasible if it satisfies the budget equation:

(52)W0 = w� dWt = (rtWt + et − ct) dt +φ′
t dRt� cT = WT + eT �

The derivation and form of the optimality conditions as a FBSDE system in
this setting is similar to this chapter’s main analysis, as explained in Schroder
and Skiadas (2005a, 2005b).

We place restrictions on the market and preferences in terms of a strictly
positive (bounded) cash flow γ, that is fixed throughout. On the market side,
we assume there is a tradeable fund that generates γ as a dividend stream. We
refer to this fund as the “γ-fund,” and we let Γt and κt be its time-t value and
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value allocation, respectively.17 The γ-fund budget equation is

dΓt = (rtΓt − γt) dt + Γtκ
′
t dRt� ΓT = γT �

For example, if r and γ are deterministic, the γ-fund can be implemented en-
tirely through the money market (with κ = 0). If either r or γ is stochastic,
one can assume that risky asset one is a share in the γ-fund, and therefore
κ = (1� 0� � � � � 0).

On the preference side, we assume that the investor’s time-zero utility func-
tion is translation-invariant with respect to γ, meaning that, for any consumption
plans a and b,

U0(a) = U0(b) implies U0(a+ kγ) = U0(b+ kγ) for all k ∈ R�

If utility is normalized so that the investor is indifferent between the con-
sumption plan c and the consumption plan U0(c)γ, the above property can
equivalently be stated as quasilinearity with respect to γ; that is, U0(c+kγ) =
U0(c) + k for any consumption plan c and scalar k. For recursive utility, the
latter restriction is essentially equivalent to the BSDE form:

(53)dUt = −G
(
t�
ct

γt
−Ut�Σt

)
dt + Σ′

t dBt� UT = cT
γT

�

for a possibly state-dependent function G that we call an absolute aggregator.
For concreteness, we combine the above representation with our earlier for-
mulation of possibly source-dependent risk aversion with a smooth conditional
certainty equivalent, resulting in the quasi-quadratic absolute aggregator spec-
ification

(54)G(t� x�Σ) = g(t� x)− 1
2
Σ′QtΣ�

In the remainder of this subsection, we assume this absolute aggregator form,
where g(t� x) is strictly increasing, concave, and differentiable in x, the partial
derivative gx(t� ·) maps R onto R, and Q is a (bounded) process valued in the
space of positive-definite d × d matrices.

Example 42 (Expected discounted exponential utility). Let β be any (say
bounded) process, and suppose the utility process V of the plan c is well de-
fined by

Vt = Et

[ T∫
t

− exp

(
−

s∫
t

βu du− cs

γs

)
ds − exp

(
−

T∫
t

βu du− cT
γT

)]
�

17 In Schroder and Skiadas (2005a) * = Γ κ was set, without loss in generality, equal to a constant for
simplicity of exposition. Their analysis applies essentially unchanged with * stochastic, as assumed here
and in Schroder and Skiadas (2005b) (where the exposition is simplified by taking κ to be constant).
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Then the ordinally equivalent utility processUt = − log(−Vt) solves BSDE (53)
with the absolute aggregator (54), where Q(ω� t) = 1 and g(ω� t� x) =
β(ω� t)− exp(−x).

Analogously to the scale-invariance argument, translation-invariance with
respect to γ uncouples the FBSDE of the first-order conditions. Intuitively,
if the agent’s problem is solved at some information spot at a given financial
wealth level, it is also solved at all wealth levels, since the agent can always
invest any additional wealth to the γ-fund while preserving optimality.

More specifically, at the optimum, the utility process U , the wealth proc-
ess W , and the shadow-price-of-wealth process λ, are related by

Ut = 1
Γt
(Yt +Wt) and λt = 1

Γt
�

where the process Y solves the quadratic BSDE

dYt = −
(
et + pt − rtYt + ΣY ′

t ht + 1
2
ΣY ′
t HtΣ

Y
t

)
dt + ΣY ′

t dBt�

YT = eT �

with

p = Γ g∗
(
γ

Γ

)
+ Γ

2
(
μR − σR′

t σRt κ
)′(
σR′QσR

)−1(
μR − σR′

t σRt κ
)
�

h = −σRκ−QσR
(
σR′QσR

)−1(
μR − σR′

t σRt κ
)
�

H = 1
Γ

(
QσR

(
σR′QσR

)−1
σR′Q−Q

)
�

The optimal plan trading plan φ and consumption plan c can be written as

φ = φ0 +UΓ κ� c = γU + γg−1
x

(
γ

Γ
�
σRφ0 + ΣY

Γ

)
�

where φ0 = (
σR′QσR

)−1[
Γ
(
μR − σR′σRκ

) − σR′QΣY
]
�

Just as with the quadratic BSDE case of the scale-invariant formulation, for a
certain class of price dynamics the solution reduces to an ODE system. We re-
fer to Schroder and Skiadas (2005a, 2005b) for examples and extensions (some
of which are outlined below).

6.3 Other directions

We conclude with a list of selected topics on dynamic portfolio theory and
a highly biased small sample of associated references that can be consulted for
further leads to a large related literature. Brandt (forthcoming) reviews the
econometrics of portfolio choice.
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Nonlinear wealth dynamics. Cuoco and Cvitanić (1998), El Karoui et al.
(2001), and Schroder and Skiadas (2005b) characterize optimality with wealth
dynamics that can allow nonlinearities reflecting, for example, market impact
or differential borrowing and lending rates. The last reference includes the ex-
tension of this chapter’s scale/translation invariance arguments to this case.

Discontinuous information. Merton’s original work includes examples of dis-
continuous information generated by Poisson jumps. The extension of Mer-
ton’s work to Lévy type processes using the Hamilton–Jacobi–Bellman ap-
proach is presented in the monograph by Øksendal and Sulem (2005). This
chapter’s arguments are extended in Schroder and Skiadas (2005b) so that the
filtration is generated by Brownian motions as well as marked point processes.
The above references provide links to several other papers on this topic.

Habit formation. Asset pricing models with habit formation include Sundare-
san (1989), Constantinides (1990), and Detemple and Zapatero (1991). Duffie
and Skiadas (1994) defined recursive utility with habit formation, and com-
puted its gradient density. The latter can be combined with this chapter’s
state price dynamics to formulate optimality conditions as a FBSDE system.
Schroder and Skiadas (2002) showed that, by redefining consumption, a for-
mulation with linear habit formation can be transformed to an equivalent one
without habit formation. This technique can be used to mechanically trans-
late this chapter’s solutions (assuming either a deterministic short-rate process
or complete markets) to corresponding solutions that incorporate linear habit
formation. The same argument applies with durability of consumption.

Nontradeable income. We have seen that the optimality conditions given a
nontradeable income simplify in the translation-invariant formulation, which
implies constant absolute risk aversion. More general models of nontradeable
income must deal with a fully coupled FBSDE system. The Merton prob-
lem with nontradeable income and additive utility has been analyzed in terms
of the Hamilton–Jacobi–Bellman approach by Duffie and Zariphopoulou
(1993), Duffie et al. (1997), and Koo (1998). Related theoretical results with
nontradeable income and additive utilities include Cuoco (1997), Kramkov
and Schachermeyer (1999, 2003), Cvitanić et al. (2001), and Hugonnier and
Kramkov (2002).

Endogenous labor supply and retirement. Bodie et al. (1992), Bodie et al.
(2004), Dybvig and Liu (2005), Farhi and Panageas (2005), and Liu and Neis
(2002), among others, have analyzed the lifetime consumption-portfolio prob-
lem with endogenous labor supply and/or retirement. Recursive utility formu-
lations in this area are yet to be developed.

Transaction costs. The Merton analysis has been extended to include propor-
tional transaction costs by Davis and Norman (1990), Shreve and Soner (1994),
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Liu and Loewenstein (2002), and others. Grossman and Laroque (1990) and
Cuoco and Liu (2000) studied problems in which transaction costs apply to
changes in the stock of a durable good. Proportional transaction costs preserve
scale invariance, motivating the use of expected discounted power utility in
the above papers. Fixed transaction costs on the other hand destroy scale in-
variance. For this reason existing analytically tractable formulations with fixed
transaction costs are based on translation invariance, so far only with additive
exponential utility, as in Vayanos (1998) and Liu (2004). Optimality conditions
with both proportional and fixed transaction costs with i.i.d. returns are given
in Øksendal and Sulem (2002). This is only a small sample of a large litera-
ture dealing with some form of transaction costs. I am not aware of any related
theoretical results with recursive utility.
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Optimization Methods in Dynamic Portfolio
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John R. Birge
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Abstract

This chapter describes various methods for solving optimal portfolio and asset-
liability management models as discrete-time stochastic programs. The focus is on
solution methods that consider investment decisions concerning large numbers of
alternative assets and liabilities with general constraints, return distributions, trans-
action costs, and taxes. Each method relies on a form of approximation, which we use
for classification. We discuss results concerning the approximations, relative compu-
tational advantages of the approaches, and potential areas for future research.

1 Introduction

Dynamic portfolio management arises in virtually every area of financial en-
gineering, e.g., in creating hedges for derivative pricing, in determining capital
reserves and credit positions in risk management, and in determining asset al-
locations to meet streams of liabilities. While continuous-time models provide
solution structure and often lead to useful analytical results, practical limi-
tations, such as transaction costs and various constraints, usually necessitate
discrete-time models that sacrifice simplifying structure for general applica-
tion. These general models, as dynamic stochastic programs (or stochastic dy-
namic programs), then assume some form of approximation to obtain tractable
computation. This chapter describes the form of those approximations, the re-
lationship between the approximations and optimization algorithms, and open
issues for future research.

The following section provides the general formulation that will appear
here. Section 3 considers a variety of approaches to approximation of the prob-
lem. Section 4 discusses optimization methodology that applies to the various
approximation schemes. Section 5 presents conclusions and areas for future
research.
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2 Formulation

In this section, we first present a broad general formulation and then pro-
vide specifications for the dynamic portfolio management problem. Additional
details on this general formulation appear in the textbook, Birge and Louveaux
(1997), and the surveys by Dempster (1980) and Wets (1990). This formulation
combines state and control variables into a single state vector in contrast to
many control-theoretic expositions [see, for example, the discussion in Varaiya
and Wets (1989)]. The formulation also assumes that the data process is ob-
servable and has a known distribution, again, in contrast to other models, such
as Bayesian decision models (see, for example, Berger, 1985), although exten-
sions to Bayesian approaches are direct (and considered in Section 5). While
other models can generally be captured through the variable, constraint, or
objective structure of the model described below, the emphasis here is (as gen-
erally in stochastic programming) on high-dimensional decisions that require
significant computational effort for optimization, thereby motivating a focus
on relevant optimization methodology.

For this general model, we assume a data process, ω := {ωt : t = 0� 1� 2� � � �}
in a (canonical) probability space (Ω�Σ�μ). We also assume a decision process
x := {xt : t = 0� 1� 2� � � �} such that x is a measurable function x: ω (→ x(ω).
As in most stochastic programming situations, we assume the decision process
space is the space of essentially bounded functions, Ln∞ := L∞(Ω × N� Σ ×
P(N)� μ×#; 9n), where P is the power set and # is counting measure. [Other
spaces are, of course, possible, but spaces such as Lp�p < ∞, described,
for example, in Eisner and Olsen (1975), are more difficult for defining con-
straint qualifications, particularly due to their lack of interior points for positive
cones.] The norm on this (vector) sequence space is defined by

‖x‖ := sup
n

ess sup
∣∣xn(ω)∣∣�

The data process has an associated filtration F := {Σt}∞t=0, where Σt :=
σ(ωt) is the σ-field of the history processωt := {ω0� � � � � ωt} and the Σt satisfy
{0�Ω} ⊂ Σ0 ⊂ · · · ⊂ Σ. The history of the decision process is defined similarly,
xt = (x0� � � � � xt).

A fundamental property of the decision process at time t is that it must
only depend on the data up to time t only, i.e., xt must be Σt-measurable, or
xt(ω) = E{xt(ω) | Σt} a.s., t = 0� 1� 2� � � � , where E{· | Σt} is conditional ex-
pectation with respect to the σ-field Σt . In stochastic programming, this condi-
tion is called the nonanticipative property (and is also known as implementable
or that xt is Σt adapted). We write the nonanticipative condition as a constraint
using the projection operator, Πt : z (→ πtz := E{z | Σt}� t = 0� 1� 2� � � � , on
Ln∞, as

(2.1)(I −Πt)xt = 0� t = 0� 1� 2� � � � �

If we let N denote the closed linear subspace of nonanticipative processes
in Ln∞ and denote by Π := (Π0�Π1� � � �) the projection operator from Ln∞
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onto N , our general optimization model is to find

(2.2)inf
x∈N E

∞∑
t=0

ft
(
ω�xt(ω)� xt+1(ω)

)
�

where “E” denotes expectation with respect to the probability measure μ on Σ,
assumed completed with respect to μ. For many applications, we might only be
concerned with a finite horizon H and would truncate the sum to t = H. Fol-
lowing the convention in this literature, we use the notation xt and ft to denote
respectively xt and ft as functions of ω, i.e., as random entities. Problem (2.2)
then becomes

(2.3)inf
x∈N E

∞∑
t=0

ft(xt � xt+1)�

where we can then write the objective as F(x) := E
∑∞

t=0 ft(xt � xt+1). We
assume in (2.3) that the objective components ft are proper convex normal
integrands (see Rockafellar, 1976).

Most portfolio problems would involve maximization of a concave, utility
function in place of the convex objective in (2.3), which only requires a change
of sign in the objective. For the general problem, we will continue with mini-
mization and convex integrands again to be consistent with the majority of the
literature in this area. In the utility function framework, a question arises over
the ability of the time-additive form in (2.3) to satisfy various preference ax-
ioms. The objective in (2.3) can, however, be defined to meet a broad range of
objectives by appropriate definition of xt to include the history process and by
allowing ft to depend generally on the history of actions and the resolution of
uncertainty. In particular, when ft includes a product of functions of previous
consumption and future wealth, the objective can fit the temporal utility form
in Kreps and Porteus (1978). [For a discussion of alternative utility forms in
continuous time, see the chapter in this volume by Skiadis (2007).]

For specifying the portfolio management problem, we suppose that xt in-
cludes components yt(i) for allocations in asset i, i = 1� � � � �K; actions, bt(i),
for the amount bought of asset i; st(i), for the amount sold of asset i; and
ct(j)� j = 1� � � � �m for the amount consumed of product or service category j
(where, for example, for individuals, consumption utility in a category, such
as housing, may depend on an asset allocation, such as residential real estate).
The history process would also determine parameters such as lt(ωt), the net ex-
ternal cash flow at t (generally a liability in asset-liability management models);
dt(i), i = 1� � � � �K, the vector of cash dividends (perhaps negative) for each
asset i; rt(i), i = 1� � � � �K, the vector of returns (net dividends) of each asset i,
and α±(i), i = 1� � � � �K, the vector of transaction costs for buying (α+(i)) and
selling (α−(i)) each asset i. With these definitions and a consumption utility
Ut(ct� ct+1�ω

t) that depends on previous and current consumption (to model
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persistence and habit formation), we would have, for xt = (yt� bt� st� ct),

(2.4)

ft(xt� xt+1�ω
t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Ut(ct� ct+1�ω

t)
if diag(r(ωt))yt = yt+1 + bt+1 − st+1�
(e+ α+)T bt+1 + eT ct+1 + lt(ω

t)− dt(ω
t)T yt

− (e− α−)T st+1 = 0�
+∞ otherwise�

This definition can also be extended to include additional portfolio con-
straints that might include other risk characteristics (that restrict yt+1), trad-
ing restrictions (that may limit bt+1 or st+1), and liability funding restrictions
(that may require multiple liability categories including, for example, that cer-
tain categories are restricted in some countries as only payable with cash or
dividend income). Taxes can also be included, but this generally requires main-
taining the tax basis for all assets, which rapidly increases the size of the state
space. While allowing for all of these possibilities, we will assume that we can
represent ft as a convex objective function subject to linear constraints:

(2.5)

ft(xt� xt+1�ω
t) =

⎧⎨⎩ gt(xt� xt+1�ω
t) if Bt(ωt)xt +At+1xt+1

= ht+1(ω
t)� xt+1 � 0�

+∞ otherwise�

This formulation does not restrict the general classification (since we can still
place any other restrictions in the definition of gt), but it provides a convenient
format for several methods discussed below.

For convenience, we may also consider problem (2.3) as a dynamic program.
For that format, let Vt(xt�ωt) be the value function in state xt with history ωt ,
defined as:

(2.6)Vt
(
xt�ω

t
) = sup

xt+1

[
ft
(
xt� xt+1�ω

t
) + Eωt+1|ωt

[
Vt+1

(
xt+1�ω

t+1)]]�
with a given terminal value, VH(xH�ωH).

In some cases, we may also use the implicit formulation of the model in
which xt is defined for each realization of ωt . In these cases, we would gener-
ally assume a finite set of possible history processes at t as scenarios, 1� � � � �Nt .
Associated with each scenario i at t is an ancestor scenario a(i) at t − 1 and a
set of descendant scenarios, D(i), at t+1. In many cases, it is also convenient to
consider a set of relevant parameters, ξt , that are determined by ωt and form
a random vector ξt .

This format fits the classical investment-consumption problem in discrete
time [as, for example, in Samuelson (1969)]. Extensions to continuous time
(e.g., Merton, 1969) are also possible, but the focus here is on numerical meth-
ods that would in turn require some form of discretization. The discussion
below pertains to general models in this form. When specific characteristics
for portfolio problems are relevant, the notation above will be used.
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3 Approximation methods

Problems of form (2.3) are naturally quite computationally intense. From
the computational complexity view, for example, these problems are PSPACE-
hard (Dyer and Stougie, 2006) and require exponential effort in the hori-
zon H for provably tight approximations with high probability (Swamy and
Shmoys, 2005 and Shmoys and Swamy, 2006). Even the common-case of a two-
stage (H = 2) problem with the common mean-variance objective is NP-hard
(Ahmed, 2006). Worst-case results can, therefore, be quite disappointing, but
specific forms, such as the portfolio representation in (2.4), may offer oppor-
tunities for reliable approximation and efficient computation. Approximation
is generally required in any event and forms the theme of this section.

This variety of approximation approaches considered here are as follows.

1. Time, state, and path aggregation or scenario generation and reduction:
These methods essentially start with a large (often continuous) set of
possibilities and then combine (or select) them to form more tractable
representations;

2. Value function approximation: These methods focus on the form of the
value function Vt with some simplified representation;

3. Policy restriction: These approaches restrict the set of alternative controls
to a simplified form that allows for efficient computation;

4. Constraint relaxation and dualization: These approaches relax constraints
or look at dual forms, generally not guaranteeing implementable policies
but perhaps giving bounds or guidelines for implementable policies;

5. Monte Carlo methods: These methods rely on sampling results and can
often be applied to any of the previous methods as well.

3.1 Time, path, and state aggregation or scenario generation and reduction

Approximation of (2.3) can take many forms. The fixing in time of decisions
(that may start as continuous controls) represents one form of approximation
that can be viewed as aggregation across time. Aggregation can also be applied
to states [especially in using the dynamic programming view in (2.6)]. Stochas-
tic programs of this form also often involve the representation of sample paths
or scenarios of potential outcomes that require sample selection or aggregation
to derive tractable formulations. This section discusses each of these forms of
problem reduction as used in dynamic portfolio optimization.

3.1.1 Time aggregation
Aggregation of time periods involves replacing k periods of decisions

s� � � � � s + k with a single period decision, where xs+1� � � � � xs+k+1 is replaced
by an aggregate decision Xs+1 and the objective sum,

∑s+k
i=s+1 fi(xi� xi+1), is

replaced by Fs(Xs�Xs+1). The overall approach then includes an aggregation
step, (xs+1� � � � � xs+k+1) → Xs and

∑s+k
i=s+1 fi(xi� xi+1) → Fs(Xs�Xs+1), fol-

lowed potentially by disaggregation, Xs → (xs+1� � � � � xs+k+1), with objective
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measurement using the original objective function with the disaggregated so-
lution (or some bound on that value).

Various results provide bounds on optimal solutions from the solutions of
the aggregated and disaggregated solutions. The bounds either use duality re-
sults or bounds on state-to-state transitions (generally in a setting with a finite
number of states and actions). In the general linear constraint case, the duality-
based bounds rely on known penalties for constraint violation or bounds on
the associated Lagrange multipliers for each constraint. Typically, Xs repre-
sents an average over the lower-level decision vectors, Xs = ∑s+k+1

l=s+1 xl/k
and the objective is a sum or multiple of the original objective values, e.g.,
Fs(Xs�Xs+1) = fs(Xs�Xs+1)+ ∑s+k

l=s+1 fl(Xs�Xs+1).
Linear constraints as in (2.5) can also be aggregated directly to produce an

aggregate constraint in defining Fs. For example, when the objective in period
s includes a discount factor, ρs, the set of constraints can be aggregated using
a discount factor weighting (see, e.g., Grinold, 1986 and Birge, 1985a). The
linear constraints, Blxl + Al+1xl+1 = hl+1 for l = s + 1� � � � � s + k + 1, are
replaced by B̃sXs + Ãs+1Xs+1 = h̃s+1, where B̃s = ∑s+k

l=s ρ
l−sBl, Ãs+1 =∑s+k+1

l=s+1 ρl−s−1Al, and h̃s+1 = ∑s+k+1
l=s+1 ρl−s−1hl. This form of aggregation

is especially useful in controlling for the end effects of truncating a horizon
for a long or infinite-horizon problem. With assumptions on the form of the
objective, bounds arise. For convex objectives, for example, an averaging ag-
gregation implies by Jensen’s inequality that the solution of the aggregated
problem yields a lower bound on V0(x0). Maximum penalties for constraint vi-
olations or other objective function properties produce dual formulations with
bounded multipliers that can yield upper bounds on V0(x0). Descriptions of
these bounding procedures appear in Birge (1985a), Wright (1994), and Kuhn
(2005).

3.1.2 Path aggregation
In conversions from continuous-time to discrete-time models, time aggrega-

tion is often referred to as time discretization. Implementation also generally
requires discretization or aggregation of sample paths. This process can involve
Monte Carlo sampling as described in Section 3.5 below, or deterministic selec-
tion of sample paths, as in quasi-Monte Carlo methods (see, e.g., Niederreiter,
1978 and Glasserman, 2004), or bounding approximations (see, e.g., Birge and
Wets, 1986 and Birge and Louveaux, 1997) that may also be derived from con-
vexity and duality results as in the time aggregation process given above (Birge,
1985a; Kuhn, 2005).

Lower bounds (for minimization problems) again result from Jensen-like
inequalities on the expectation of convex functions of random variables when
path aggregation corresponds to expectations (and properly weighted condi-
tional expectations) of original paths. For example, if x∗t (ω) is an optimal
solution to (2.2) and the aggregation at time t corresponds to a partition of
Σt into Nt subsets, St(1)� � � � � St(Nt), such that pt(i) = Prob{St(i)}, xt(i) =
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E[x∗t (ω) | ω ∈ St(i)], and ft is a convex function of random parameters ξt(ω)
such that E[ξt(ω) | ω ∈ St(i)] = ξt(i), then EΣt [ft−1(xt−1� xt(ω)� ξt(ω))x] �∑Nt

i pt(i)ft−1(xt−1� xt(i)� ξt(i)) for any xt−1. Applying this inequality sequen-
tially then yields that conditional expectations of optimal x∗t produce a lower
objective that is then feasible in a path-aggregated formulation. Optimizing
that aggregate formulation then produces a lesser lower bound.1

Finite upper bounds (for minimization objectives) are possible in this case
as well when the solutions and random parameters, or the objective gradient
(and constraint violation penalties) are bounded (i.e., grow at most linearly
at a known rate beyond some point). Relaxations of this assumption are also
possible but require higher moment bounds, since a higher-order penalty func-
tion may lead only to trivial bounds otherwise. The general idea is again to use
convexity properties (or equivalently duality to construct feasible solutions to
a dual problem). A basic useful result for these bounds is the following that
appears in Birge and Wets (1986) and Birge and Louveaux (1997).

Theorem 3.1. Suppose that ξ (→ g(x� ξ) is convex and Ξ is compact. For all
ξ ∈ Ξ, let φ(ξ� ·) be a probability measure on (extΞ� E), such that

(3.7)
∫
e∈extΞ

eφ(ξ� de) = ξ�

and ω (→ φ(ξ(ω)�A) is measurable for all A ∈ E ; then

(3.8)E
(
g(x)

)
�

∫
e∈extΞ

g(x� e)λ(de)�

where λ is the probability measure on E defined by

(3.9)λ(A) =
∫
Ω

φ
(
ξ(ω)�A

)
P(dω)�

This result is extended to noncompactΞ by also considering the value of the
objective g along extreme directions of Ξ. The bounding problem results from
substituting the original measure onΞt(ω), the random vector in period t, with
the measure λ on the extreme points (and directions) of Ξt in each period t.
This approach can also be employed on some partition of Ξt , resulting in an
improving bounding approximation. Partitions, such as simplices, that maintain
a manageable set of extremal values are particularly efficient [see, e.g., the
barycentric methods in Frauendorfer (1992)].

1 This form of aggregation also appears in revenue management models where the approximate xt
represents the vector of expected allocations to different customer classes and is constrained by both
expected future demand and an overall capacity constraint. The resulting formulation is known as
bid–price control (Talluri and Van Ryzin, 1998) and can also be interpreted as a linear value function
approximation (Adelman, 2007).
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Bounds of this form also can be viewed as general semi-parametric schemes
that assume some limited moment information about the underlying distribu-
tions and then construct solutions to the resulting moment problems to obtain
bounds in the form of limiting distributions (see, e.g., Birge and Wets, 1986).
These forms of extreme value and conditional expectation substitutions for
path aggregation then lead to deterministic approximations which produce
bounds on the overall value of the original formulation in (2.2). The tightness
of these bounds generally depends on the relative degree of nonlinearity of the
value function. Functions with close to linear behavior yield tighter approxi-
mations while significant nonlinear response yields quite loose approximation.

3.1.3 State aggregation
A related approach to the path and time aggregation approaches mentioned

above is to aggregate states directly in the dynamic programming formulation
(2.6). The most basic approach is to assume xt ∈ Xt , to form some partition
of Xt into Nt subsets and to assign xt(i), i = 1� � � � �Nt for each of the subsets.
This general approach can be given the same interpretation as the path aggre-
gation approaches mentioned above and may lead to similar overall bounding
results.

Other possibilities for state reduction in the context of the portfolio opti-
mization are possible when the optimal policy only depends on a lower di-
mensional representation of the general state space. For example, in the case
without transaction costs, the policy may only depend on wealth. In that case,
the dynamic programming form (2.6) is reduced fromK dimensions of the vari-
able y to a single dimension. In a more realistic setting with transaction costs,
if the objective function is independent of wealth, the state may be reduced to
the proportion held in each asset class [as, for example, in Papi and Sbaraglia
(2006)]. This reduction by a single dimension is, however, only useful when
the dimension is already quite low. In more general cases, state aggregation
involves some loss of optimality.

Other bounds based on the dynamic programming state aggregation are
possible using bounds on the state-to-state transition objective contributions
(see, e.g., Bean et al., 1987 and Shen and Caines, 2002). Other state aggrega-
tion methods rely on forms of interpolation between explicit states that repre-
sent grid points for the approximation. Bounds for this form of approximation
generally use properties of the value function (such as derivative bounds) that
may not hold for constrained problems (as here) where derivatives are not usu-
ally continuous.

3.1.4 Scenario generation and reduction
The general approaches given in the previous sub-sections relate to state

and path reductions that enable bounding approximations. In many cases, ob-
taining deterministic bounds of this type, particularly in very high dimensional
problems, may lead either to intractably large problems or excessively loose
bounds. Other procedures to generate representative samples (scenarios) of
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sample paths are often more heuristic in nature (without provable determin-
istic error estimates), but still yield empirically effective results. This section
describes some of these basic approaches.

The general term for this approach is scenario generation, which refers to
generating a (finite) set of sample paths that form the basis of a tractable
formulation of (2.2). These scenarios may also have some statistical represen-
tation (that is described later), but, in many implementations, are found by a
deterministic process meant to produce a simplified representation of some
unknown distribution.

This general approach for designing trees of scenarios appears in papers
including Høyland and Wallace (2001), Kouwenberg (2001), Gondzio and
Kouwenberg (2001), and Pflug (2001). These approaches generally advocate
fitting moments of the distributions or, in the case of Pflug, a transportation
metric on the distance between the underlying and approximate distribution.
The result is effectively fitting the trees used for solution to the overall dy-
namic distributions. In portfolio optimization problems for asset-liability man-
agement, scenario generation requires some care to avoid creating arbitrage
opportunities within the resulting trees. Strategies to avoid these problems ap-
pear in Klaassen (1998) and the constrained optimization approach presented
by Pflug (2001).

These general approaches can also be augmented by scenario reduction
techniques that start with large trees and attempt to find close trees with fewer
branches using different metrics (such as the transportation metric) on the dis-
tance between distributions. These approaches appear, e.g., in Dupačová et al.
(2003) and Heitsch and Römisch (2003). They also have some justification in
sensitivity results that bound the distance between optimal solutions of stochas-
tic programs with differing underlying distributions [see, e.g., Römisch (2003)
for an overview and Römisch and Wets (2006) for recent results with convex
objectives]. General extensions of these results for the multi-stage form in (2.2)
are the subject of ongoing research.

3.2 Value function approximation

Many of the approaches to approximating the dynamic programming form
in (2.6) amount to approximations of the value function Vt . These approaches
may involve approximation by a set of basis functions (e.g., separable and
piecewise linear as in Tsitsiklis and Van Roy, 1997, 2001; Birge and Louveaux,
1997, Chapter 11.3; Frantzeskakis and Powell, 1993), by general spline approxi-
mations as described in Trick and Zin (1997) and Judd (1998), and by outer lin-
earizations (e.g., Louveaux, 1980; Birge, 1985a, 1985b; Birge and Rosa, 1996).
The latter approaches rely on convexity properties of the objective function.

For the general portfolio problems, convexity of the objective in the state
variables generally follows from assumptions on the utility and the constraint
representation. For example, convex transaction costs and von Neumann–
Morgenstern utilities yield a convex form of objective in (2.4). The form of
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Ut in this case can be quite general (as long as it is concave). In practice, the
specific functional form appears to have relatively little overall impact on the
portfolio solution as long as the relative risk aversion in the utility is captured
adequately (Kallberg and Ziemba, 1983).

The general value function approximation with linear basis functions ap-
proximates Vt(xt�ωt) by V̂t(xt�ω

t) = ∑p
j=1 φ

j
t (xt� ξt(ω

t)), where φ
j
t has a

simple structure, such as separable linear or piecewise linear, that allows for
efficient computation and integration. The approaches build on some discrete
representation of ξt , use Monte Carlo methods to generate samples from ξt ,
or assume a functional relationship (especially separability) in ξt to obtain the
expectation of V̂t . Lower and upper bounds are again possible using similar
arguments to those for path aggregation.

Outer approximation or cutting plane methods use local information
of Vt to produce global approximations under the convexity assumption.
The general approach is to assume a lower-bounding convex approximation
V l
t+1(xt+1�ω

t+1) � Vt+1(xt+1�ω
t+1) to solve for a given xkt and ωt to find:

(3.10)

V l
t

(
xkt �ω

t
) = inf

xt+1

[
ft
(
xkt � xt+1�ω

t
) + Eωt+1|ωt

[
V l
t+1

(
xt+1�ω

t+1)]]�
Using convexity, this yields a global approximation for all xt given ωt such that

(3.11)Vt
(
xt�ω

t
)

� V l
t

(
xkt �ω

t
) + ηkTt

(
xt − xkt

)
�

where ηkt is a subgradient of V l at xkt given ωt . In the case of serial inde-
pendence (where the distribution of ωt+1 does not depend on ωt as is often
assumed for random elements determining return distributions), solving for
V l
t (x

k
t ) is independent of ωt and yields a global bound for all ωt .

The bounding result in (3.11) is the basis for the nested decomposition
method (e.g., Birge, 1985b and Birge and Louveaux, 1997, Chapter 11) that
is used widely for portfolio optimization and asset-liability management mod-
els (e.g., Cariño et al., 1994 and Dempster et al., 2003). The method converges
by generating increasingly tight bounds V l

t whenever the updated solution to
(3.11) improves on the previous value of V l

t (x
k
t ). If no improvement occurs,

then another xkt can be chosen or the bound can be tested at t − 1 (or t + 1).
When no improvement is possible at any t, the method has converged.

3.3 Policy restriction

Another approach that is often useful for approximations is to limit the set
of possible actions or policies xt that may be taken at each stage of the process.
In asset-liability management models, this may, for example, represent having
a default borrowing or investment strategy that is taken whenever net cash
flows are nonzero. The result of this approach then is that a given investment
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strategy is followed regardless of actual cash flow realizations and then penal-
ties are applied using the default policies. This approach then can produce a
separable response function (upper bounding for minimization objectives) as
described for value function approximation.

An example in asset-liability management appears in Kusy and Ziemba
(1986). The result is that x1 represents a target investment profile (in this case,
targets for bank deposit and loan holdings) and all future uncertainty is repre-
sented in a second-stage with short-term borrowing and investment strategies
carried out through all subsequent periods. This produces a two-stage model
for which efficient solution methods apply.

This approach also appears in Dempster and Thompson (2002) who also
show how to derive general policy rules that can be tested on large-scales
samples of a full multi-period model. This general idea also allows for a lim-
ited number of full-scale optimization or re-balancing points as a form of
partial time aggregation. Restricted policies at intermediate times between re-
balancing periods then allow for capturing of the model dynamics.

Other restricted policy methods include fixed mix optimization schemes that
build on the continuous time stationary solution in which fixed proportions of
assets are held in each asset category (as in Merton, 1969). Without transaction
costs and nonstationary dynamics, such solutions may be optimal. Finding the
best fixed-mix allocation in general, however, becomes a nonconvex optimiza-
tion problem, which may be amenable to global optimization methods (see,
e.g., Maranas et al., 1997).

The use of continuous-time optimization approaches as a guide also appears
in other approaches, such as Davis and Norman (1990), who use the result with
proportional transaction costs that an optimal portfolio policy consists of a no-
trade region around an optimal proportional allocation and that, whenever
the portfolio values reach the boundary of the no-trade region, the portfolio
should be re-balanced to the optimal proportional allocation. In very low di-
mensions, this approach is computational tractable, but the general discovery
of the no-trade region boundaries becomes quite complex. Recent results using
Monte Carlo methods combined with boundary estimates (e.g., Muthuraman
and Zha, 2006), however, offer some promise in this direction.

Other possibilities for generalizing continuous-time results include relax-
ing the form of the transaction costs. Morton and Pliska (1995), for example,
show that assuming a proportion of the entire portfolio value is lost with each
transaction (instead of a proportion of the amount traded as in reality) yields
a computable solution with an ellipsoidal region around the no-transaction-
cost optimum (or Merton point) that is asymptotically optimal (Atkinson and
Wilmott, 1995). Korn (2004) shows that this methodology can also be used to
bound actual proportional transaction costs and proposes an approximation
using the Morton–Pliska method.
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3.4 Constraint relaxation and dualization

As noted earlier, methods that allow for constraint relaxation (and penaliza-
tion) can often produce upper bounds on an original maximization objective
problem. Most of these relaxations focus on relaxation of allocation bounds
(e.g., no short positions), incomplete markets, elimination of transaction costs,
and other complications that invalidate general continuous-time solutions. The
approaches in Haugh et al. (2006) and Haugh and Kogan (2007, this volume)
represent an example of this procedure that relies on using a dual solution that
corresponds to using multipliers on the relevant constraints. By obtaining dual
feasibility, these methods obtain lower bounding solutions. A key to their effi-
cient implementation is that the relaxed problem and the generation of feasible
dual solutions are solved simply, for example, using structural results from the
continuous time solution. These methods are effectively a type of Lagrangian
method, in which relaxed constraints appear with a suitable multiplier in the
objective, that is described in the next section.

3.5 Monte Carlo methods

Most of the approaches given above have natural extensions that include
Monte Carlo methods. The solution of the sampled problem and statistical
properties of bounding estimates appears in Blomvall and Shapiro (2006).
Value function approximation based on polynomial basis functions and Monte
Carlo methods are the basis of the approach in Brandt et al. (2005) and van
Binsbergen and Brandt (2006). Direct solution of the continuous-time formu-
lation also forms the basis for the methods considered in Detemple et al. (2007,
this volume). Since these methods depend highly on specific problem structure,
we will not describe them in more detail here, although their use of continuous-
time solution structure could be valuable for more general problem solutions
as well.

Procedures to incorporate Monte Carlo sampling into outer approximation
methods appear in Pereira and Pinto (1991), Dantzig and Infanger (1991),
Higle and Sen (1996), and Donohue and Birge (2006). In general, the Monte
Carlo methods rely on asymptotic properties of the sampled problems (as in
Blomvall and Shapiro, 2006). If a solution xN is generated with N samples of
paths ωH in (2.2), then the general result is that xN → D(x∗) where D(x∗)
is a suitably defined distribution around an optimal solution x∗. The rate of
this convergence depends on both N and H through the number of distinct
branches at each time t = 1� � � � �H. In the case of serial independence, the
bias of the number of stages can be reduced.

The methods in Pereira and Pinto (1991) and Donohue and Birge (2006)
also use an assumption of serial independence to allow for efficient solution.
These methods assume that a lower bounding approximation is available V l

t
by solving an exhaustive sample of the next period stochastic parameters ξt+1
beginning with t + 1 = H. Since the lower bounding approach with convex
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objective produces global approximations, this procedure can be continued
through all stages t producing lower bounds for any selection of states xt .
The resulting lower bounding approximations are then used to produce up-
per bounding forward estimates by sampling full sample paths and using the
resulting objective values. The methods terminate when the upper bounding
forward sample and lower bound are sufficiently close.

4 Solution methods

The previous section described various methods for constructing approxi-
mations of the general optimization problem in (2.2). This section describes
various optimization procedures for solving the overall optimization problem
that use the structure of the problem above. The methods include general
active set methods, interior point methods, decomposition methods, and La-
grangian methods.

4.1 Active set methods

The goal in active set methods is to take advantage of sparsity structure of
the matrices generated by the optimality conditions for a fixed active set of
constraints. These approaches have been applied to linear versions of (2.2)
(e.g., Kall, 1979; Strazicky, 1980; Birge, 1985b). Specialized linear algebra pro-
cedures for the structure in (2.2) can lead to computational efficiencies, but
many commercial optimization codes currently include efficient linear algebra
techniques that achieve similar performance gains.

4.1.1 Interior point methods
Interior point methods point methods include linear algebra operations that

require solution with differently structured (from an active set basis) matrices
that may be dense in direct application. The factorization scheme given by
Birge and Qi (1988) avoids the dense matrices from direct approaches and
achieves a polynomial complexity result that increases linearly in the number
of samples. Large-scale implementations with interior point methods appear
in Yang and Zenios (1997) and Czyzyk et al. (1995). Other possibilities include
methods using a symmetric indefinite, augmented system as in Berger et al.
(1995).

4.2 Decomposition approaches

The general idea behind decomposition methods is the use of the outer ap-
proximations given above. This general approach began as a method called
L-shaped by Van Slyke and Wets (1969) that is a form of Benders’ (1962)
decomposition. That approach is essentially a Dantzig–Wolfe decomposition
(inner linearization) (1960) of the dual to the linear two-stage form of (2.2). As
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noted, the method easily generalizes to multiple stages (Birge, 1985b), where
it is known as the nested L-shaped or Benders’ decomposition method.

4.3 Lagrangian-based approaches

Lagrangian-based methods are essentially relaxation strategies that take
complicating constraints into the objective with a multiplier that is then ad-
justed to obtain a dual optimal (or approximate) solution. The complicating
constraints can be those associated with nonanticipativity, with state con-
straints (such as short sales as noted above for the relaxation in Haugh et al.,
2006), or any combination that allows rapid solution of the relaxed problem.
For the case of relaxing state constraints, for example, continuous-time opti-
mal solutions are often easily derived. In the case of relaxing nonanticipativity
constraints, the optimization can decompose into problems for separate sam-
ple paths, enabling a combination of simulation of separate sample paths and
optimization over each individual path.

If the nonanticipativity constraints are relaxed, then the solution reduces to
separate problems for each realization of the underlying parameters, ξ. To see
how the procedure develops, assume a multiplier,π [defined on an appropriate
dual space as in, for example, Rockafellar and Wets (1976)], to obtain a dual
problem to (2.2):

(4.12)max
π(ξ)

w = θ(π)�

where

(4.13)

θ(π) = inf
x∈X

z = E

[
H∑
t=0

ft+1
(
xt(ξ)� xt+1(ξ)�ξ

)]

+ E

[
H∑
t=0

πt(ξ)(I −Πt)x
t(ξ)

]
�

where X represents all constraints in Xt(ξ) and πt corresponds to the first t
period components of π.

The general idea in these methods is to ascend in the dual to a maximum,
which, under appropriate regularity conditions, corresponds to a minimum in
the primal. Assuming that (4.12) always has a unique solution, a basic method
is the following (where we assume a finite number N of sample paths and ΠN
is projection on the nonanticipative subspace N ).
Lagrangian dual ascent method

• Step 0. Set π0� ν = 0 and go to Step 1.
• Step 1. Given π = πν in (4.12), find a solution, (xν1� � � � � x

ν
N).• Step 2. If xνk−ΠNxν = 0� k = 1� � � � �N , stop (with optimality); other-

wise, let π̂k = xνk −ΠNxν and go to Step 3.
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• Step 3. Let λν minimize θ(πν + λπ̂) over πν + λπ̂ � 0� λ � 0. Let
πν+1 = πν + λνπ̂, ν = ν + 1, and go to Step 1.

With the unique solution assumption, this method always produces an as-
cent direction in θ. The algorithm either converges finitely to an optimal solu-
tion or produces an infinite sequence with all limit points optimal assuming a
bounded set of optima. When (4.12) has multiple optima, a nondifferentiable
procedure (i.e., subgradient method) must be used. In this case, the maximum
norm subgradient assures ascent or various bundle type methods (see, e.g.,
Lemaréchal, 1978 and Kiwiel, 1983) are possible.

For computational efficiency in the dual ascent procedure, the number of
dual iterations must be small compared to the number of function evaluations
that might be required by directly solving (2.2). Time may be saved by oper-
ating on the dual instead of the primal (by avoiding the linking constraints),
but many iterations might be required. Since this method uses a single-point
linearization of θ that may slow convergence, other Lagrangian approaches to
(2.2) use more global or at least second-order information.

Rockafellar and Wets (1986) suggest a procedure that applies to a special
case of (2.2) in which f0 is a convex quadratic function over a convex region and
f1 is a quadratic function subject to linear constraints. In a general augmented
Lagrangian approach (see, e.g., Bertsekas, 1982) for this problem, a penalty
r
2‖xk −ΠNx‖2 is added to each term k of θ(π) and iterations include a fixed
step size such that πν+1

k = πν
k + rpk(xk − ΠNx). An advantage (as noted

in Dempster, 1988) of this approach is that it allows Newton type steps by
maintaining a nonsingular Hessian and achieving an improved convergence
rate.

Dempster suggests adding a new variable, x0, substituting for ΠNx to solve
for:

(4.14)

θ̂(π) = min
x�y

f0(x0)+
N∑
k=1

pk

[
f1(x1k� x2k� ξk)

+ πν
k · (x1k − x0)+ r

2
‖x1k − x0‖2

]
�

In this approach, iterations alternate between searches in x0 and then separa-
ble optimizations for each k. In this way, the augmented Lagrangian approach
of solving (4.14) achieves improved overall convergence.

This method is similar to the progressive hedging algorithm (PHA) of
Rockafellar and Wets (1991), which achieves full separation of the separate
scenario problems for each iteration, resulting in considerably less work per
iteration but perhaps more iterations. PHA offers computational advantages
particularly for structured problems (see, e.g., Mulvey and Vladimirou, 1991).
A related approach, the extension of the row action algorithm of Censor and
Lent (1981) by Nielsen and Zenios (1993a, 1993b), also has particular efficien-
cies for network constraints, which appear in portfolio problems. The key to
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these methods is that individual subproblem structure is maintained through-
out the algorithm.

The general structure of the augmented Lagrangian methods and PHA
allows for a variety of conditions on the objective functions (and implicitly
defined constraints). Augmented Lagrangian methods also may apply to prob-
lem with integer variables as well (e.g., for fixed transaction costs or limits on
the number of nonzero positions). In these cases, PHA may not converge (see
Takriti et al., 1996), but PHA may still obtain good solutions quite efficiently.

Mulvey and Ruszczyński (1995) also develop a variant of the augmented
Lagrangian method called diagonal quadratic approximation (DQA) that fixes
nonseparable terms to allow separation. Their approach places the nonan-
ticipativity constraints in a permutation order, σk� k = 1� � � � �N , as x1k −
x1σ(k)� k = 1� � � � �N in the two-stage case and approximates the ‖x1k −
x1σ(k)‖2 terms in the objective with a current iterate, x̂1k. The result is that
the original augmented Lagrangian problem then decomposes again into sep-
arate subproblems (allowing parallel computation) for each k. For two stages,
the formulation is the following:

(4.15)

inf zk = f0(x1k)+ f1(x1k� x2k� ξk)+ (πk − πσ−1(k)) · (x1k)

+ r

2
[‖x1k − x̂1σ(k)‖2 + ‖x1k − x̂1σ−1(k)‖2]�

where σ−1(k) refers to the scenario j such that σ(j) = k.

5 Extensions and conclusions

This chapter has focused on methods that apply to general portfolio prob-
lems that appear in contexts such as asset-liability management. The treatment
in the approaches here generally involves situations in which distributions are
known but Bayesian assumptions, such as those in Pástor (2000), Pástor and
Stambaugh (2000), can readily be incorporated in the approaches above, as
long as the expected objective functional remains convex in the actions in xt . If
the actions affect learning (e.g., when the price of a nonmarket asset may not
be known until it is purchased), then the convexity relationship may no longer
hold, causing complications for the optimization procedures here.

Other forms of distributional assumptions include max–min (or min–max)
objectives or robust optimization procedures (e.g., Goldfarb and Iyengar, 2003;
Tütüncü and Koenig, 2004; and Garlappi et al., 2007) and optimization meth-
ods built on robust estimation (DeMiguel and Nogales, 2006). These ap-
proaches have generally been applied to static optimization models (or applied
myopically in a dynamic environment), although the principles can be applied
in the general setting of dynamic portfolio optimization as well. In robust op-
timization, the objective is effectively modified to represent a extremum over
a set of distributions as in a max–min utility representation (e.g., Ghilboa and
Schmeidler, 1989). The extreme case of this is that any set of distributions with
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the same support are considered. Robust estimators also incorporate an inner
optimization to obtain an implied distribution that fits observations while not
allowing contamination to dominate the estimation. These methods can be in-
corporated into the optimization procedures above, but again with the caveat
on convexity preservation.

The discussion in this chapter is to show that a variety of approximation
techniques and computational methods can be applied to dynamic portfolio
optimization with general constraints and objectives. The methods builds on
basic principles in representing sample path distributions, the relationship be-
tween distributions and optimal values, the effect of restriction and relaxation,
and the use of problem structure in optimization. Many opportunities exist
for further results that relate continuous-time solutions to their discrete-time
counterparts, that consider the effects of estimation and model uncertainty on
optimization, and that adapt optimization procedures to distribution represen-
tation and estimation.
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Abstract

This chapter surveys and compares Monte Carlo methods that have been proposed
for the computation of optimal portfolio policies. The candidate approaches include
the Monte Carlo Malliavin derivative (MCMD) method proposed by Detemple et al.
[Detemple, J.B., Garcia, R., Rindisbacher, M. (2003). A Monte-Carlo method for op-
timal portfolios. Journal of Finance 58, 401–446], the Monte Carlo covariation (MCC)
method of Cvitanic et al. [Cvitanic, J., Goukasian, L., Zapatero, F. (2003). Monte
Carlo computation of optimal portfolio in complete markets. Journal of Economic
Dynamics and Control 27, 971–986], the Monte Carlo regression (MCR) method of
Brandt et al. [Brandt, M.W., Goyal, A., Santa-Clara, P., Stroud, J.R. (2005). A sim-
ulation approach to dynamic portfolio choice with an application to learning about
return predictability. Review of Financial Studies 18, 831–873] and Monte Carlo finite
difference (MCFD) methods. The asymptotic properties of the various portfolio esti-
mators obtained are described. A numerical illustration of the convergence behavior
of these estimators is provided in the context of a dynamic portfolio choice problem
with exact solution. MCMD is shown to dominate other approaches.

1 Introduction

The optimal allocation of wealth among various assets is an important issue
that has been of long-standing interest both for academics and practitioners.
The workhorse models in the field, have been, for almost 50 years, based on the

867
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mean–variance analysis developed by Markowitz (1952). This simple frame-
work brought to light the fundamental notion of a mean–variance trade-off
associated with the choice of different securities or portfolios. This popular
notion and the associated portfolio rules remain, to this day, at the core of de-
cisions taken and practical recommendations formulated by investment firms
and financial advisors.

Yet, mean–variance portfolio rules have been known to be flawed for over
3 decades. In a seminal contribution, Merton (1971) identified the main prob-
lem, their failure to account for stochastic shifts in the investment opportunity
set (i.e. in means and variances).1 While of little consequence for very short
term investors, this failure proves important for economic units with long hori-
zons. Indeed, only a very particular class of long term investors, namely those
with unit relative risk aversion (logarithmic utility), will find it optimal to be-
have as short term mean–variance optimizers. Generic long term investors fol-
low amended portfolio rules that include intertemporal hedging terms, in addi-
tion to mean–variance components. The benefit of those hedging terms is intu-
itively clear: in a stochastically changing environment it pays to take intertem-
poral links into account and hedge against variations in means and variances.

Numerical methods for computing these hedging terms and the associated
optimal portfolios have notably lagged behind. Much of the earlier literature
has indeed searched for closed form solutions in the context of simple para-
metric models, with limited assets and state variables and simple dynamics.
The earliest attempt to numerically solve a nontrivial portfolio choice problem
can perhaps be attributed to Brennan et al. (1997), who examine a model with
3 assets and 4 state variables. Their approach uses numerical methods for par-
tial differential equations (PDEs) and is based on the dynamic programming
characterization of the optimal solution developed by Merton. Their study re-
veals the importance of the dynamic portfolio choice problem and highlights
some of the difficulties that need to be overcome.

Rapid developments have followed. Simulation methods were first proposed
by Detemple et al. (2003), who exploit a portfolio formula based on Mallia-
vin calculus derived by Ocone and Karatzas (1991) for Itô price processes.
Their basic method, labeled Monte Carlo Malliavin derivative (MCMD), in-
volves the simulation of state variables and Malliavin derivatives to com-
pute the expectations arising in the portfolio components. A variation of the
method applies a change of variables (a Doss transformation) and simulates
the transformed variables and their Malliavin derivatives to compute the rel-
evant expressions. This Monte Carlo Malliavin derivative method with Doss
transformation (MCMD-Doss) is proposed and studied in Detemple et al.
(2003, 2005a, 2005c). An alternative, suggested by Cvitanic et al. (2003), uses
an approximation of the optimal portfolio rule, based on the covariation be-
tween wealth and the underlying Brownian motions, as the basis for Monte

1 See also Breeden (1979).
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Carlo simulation. This simple approach, called the Monte Carlo covariation
(MCC) method, is easy to implement as it only involves the simulation of
the primitive state variables. Another approximation, that combines dynamic
programming with regressions and simulations, is advocated by Brandt et al.
(2005). It relies on an approximation of the optimality conditions for the port-
folio and uses a regression-simulation method to evaluate conditional expec-
tations in the coefficients of the approximate portfolio conditions. This Monte
Carlo regression (MCR) scheme is reminiscent of the regression method de-
veloped by Longstaff and Schwartz (2001) for American options’ valuation.
Monte Carlo finite difference (MCFD) methods complete the list of simulation
approaches that have been proposed to date for optimal portfolio calculations.
This approach exploits the link between Malliavin derivatives and tangent
processes (loosely speaking derivatives with respect to initial conditions) and
evaluates the relevant derivatives using finite differences. MCFD approaches
are described in Detemple et al. (2005d) and evaluated along with MCMD and
MCC in the context of risk management problems.

This chapter surveys the recent literature on simulation methods for optimal
portfolios. The various methods, informally described above, are presented in
details and discussed. A numerical study is performed to evaluate their relative
performances. MCMD is shown to dominate other candidate approaches.

Section 2 outlines the consumption-portfolio choice problem in a set-
ting with complete markets and von Neumann–Morgenstern preferences and
presents several representations formulas for its solution. Simulation meth-
ods for optimal portfolio calculations are reviewed in Section 3. Asymptotic
properties of portfolio estimators are examined in Section 4 and a numerical
study of the convergence behavior of the various methods is conducted in Sec-
tion 5. Concluding remarks and avenues for future work are outlined in the
last section. Appendix A presents elementary rules of Malliavin calculus that
are needed to derive formulas underlying some of the methods. Proofs are
collected in Appendix B.

2 The consumption-portfolio choice problem

We formulate a continuous time consumption-portfolio choice model in
the tradition of Merton (1971). A finitely-lived investor operates in a friction-
less economy in which asset prices and state variables follow a joint diffusion
process. The investor’s planning horizon is [0� T ].

2.1 The financial market

The financial market has d risky assets (stocks) and 1 locally riskless

(2.1)
dSit = Sit

[(
μi(t� Yt)− δi(t� Yt)

)
dt + σi(t� Yt)

′ dWt
]; Si0 given�
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where μi represents the return’s drift, δi the dividend yield and σ ′
i the 1 × d

vector of volatility coefficients. The coefficients of (2.1) depend on a k × 1
vector of state variables Y = (Y1� � � � � Yk)

′. The interest rate on the riskless
asset, r(t� Yt), also depends on the state variables. To simplify notation we will
write μt for the d× 1 vector of expected risky asset returns at date t, δt for the
d × 1 vector of dividend yields, σt for the d × d matrix of return volatilities
and rt for the interest rate. We assume that σ is invertible at all times (i.e. the
market is complete).

The price system (2.1) induces a unique d-dimensional vector of market
prices of risk θt = (θ1t � � � � � θdt)

′ defined by θt ≡ σ−1
t (μt − rt1d) where

1d = (1� � � � � 1)′ is the d-dimensional vector of ones. The market prices of
risk represent the premia implicitly assigned by the financial market to the
sources of uncertainty (the Brownian motions) affecting the economy. The
state price density (SPD), ξv ≡ exp(− ∫ v

0 (rs + 1
2θ

′
sθs) ds − ∫ v

0 θ
′
s dWs), is the

stochastic discount factor that matters to find the value at date 0 of cash
flows received at v � 0. The relative state price density (RSPD), ξt�v ≡
exp(− ∫ v

t (rs + 1
2θ

′
sθs) ds− ∫ v

t θ
′
s dWs) = ξv/ξt , is the stochastic discount factor

that matters to find the value at date t of cash flows received at v � t.

2.2 State variables

The state variables Y = (Y1� � � � � Yk)
′ affect the coefficients of asset returns

and the riskfree rate (i.e. the opportunity set). The list of state variables can
include the market prices of risk and the interest rate (e.g. Y1 = r and Yj = θj ,
j = 2� � � � � d+1). Additional variables that could be relevant include dividend–
price ratios, measures of firm sizes and measures of sales or revenues. State
variables are assumed to evolve according to

(2.2)dYt = μY(t� Yt) dt + σY (t� Yt) dWt; Y0 given�

where μY(t� Yt) is the k×1 vector of drift coefficients and σY (t� Yt) is a k×d
matrix of volatility coefficients.

2.3 Consumption, portfolios and wealth

The investor under consideration consumes and allocates his/her wealth
among the different assets available. Let Xt be wealth at date t. Consumption
is ct and πt is the d×1 vector of wealth proportions invested in the risky assets
(thus 1 − π′

t1d is the proportion invested in the riskless asset). The evolution
of wealth is governed by the stochastic differential equation

(2.3)dXt = (Xtrt − ct) dt +Xtπ
′
t

[
(μt − rt1d) dt + σt dWt

]
subject to the initial condition X0 = x.
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2.4 Preferences

Preferences are assumed to have the time-separable von Neumann–Morgen-
stern representation. A consumption-terminal wealth plan (c�XT ) is ranked
according to the criterion

(2.4)E

[ T∫
0

u(cv� v) dv +U(XT � T)

]

where the utility functions u : [d1�∞) × [0� T ] → R and U : [d2�∞) → R
are strictly increasing, strictly concave and differentiable over their respec-
tive domains. We also assume that the limiting conditions limc→d1 u

′(c� t) =
limX→d2 U

′(X� T) = ∞ and limc→∞ u′(c� t) = limX→∞U ′(X� T) = 0 hold
for all t ∈ [0� T ]. If domains include R+ × [0� T ] (i.e. d1� d2 � 0) no further
restrictions are imposed. If [d1�∞) is a proper subset of R+ (i.e. d1 > 0) we ex-
tend the function u to R+×[0� T ] by setting u(c� t) = −∞ for c ∈ R+\[d1�∞)
and for all t ∈ [0� T ]. We proceed in the same manner to extend U if [d2�∞)
is a proper subset of R+.

This class of utility functions includes the HARA specification

u(c� t) = 1
1 − R

(c +A)1−R�

where R > 0. If A is positive the utility function u(c� t) is defined over the do-
main [d1�∞) = [−A�∞) and satisfies all the required conditions. IfA < 0 the
function has the required properties over the subset [d1�∞) = [−A�∞)⊂ R+.
The function is then extended by setting u(c� t) = −∞ for c � d1. This particu-
lar HARA specification corresponds to a model with subsistence consumption
−A.

Under these assumptions the respective inverses I : R+ × [0� T ] → [d1�∞)
and J : R+ → [d2�∞) of the marginal utility functions u′(c� t) and U ′(X� T)
exist and are unique. They are also strictly decreasing with limiting val-
ues limy→0 I(y� t) = limy→0 J(y� T) = ∞ and limy→∞ I(y� t) = d1,
limy→∞ J(y� T) = d2.

2.5 The dynamic consumption-portfolio choice problem

The investor seeks to maximize expected utility

(2.5)max
(c�π)

E

[ T∫
0

u(cv� v) dv +U(XT � T)

]

subject to the following constraints

(2.6)
dXt = (rtXt − ct) dt +Xtπ

′
t

[
(μt − rt1d) dt + σt dWt

]; X0 = x�
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(2.7)ct � 0� XT � 0

for all t ∈ [0� T ]. The first constraint, (2.6), describes the evolution of wealth
given a consumption-portfolio policy (c� π). The next one (2.7) captures the
physical restriction that consumption and bequest cannot become negative.
This constraint ensures that wealth, that is the present value of future con-
sumption, cannot become negative.

2.6 Optimal consumption, portfolio and wealth

Standard results of Pliska (1986), Karatzas et al. (1987) and Cox and Huang
(1989) (see Karatzas and Shreve, 1998) can be invoked to show that the optimal
consumption policy is

(2.8)c∗t = I(y∗ξt� t)+ = max
{
I(y∗ξt� t)� 0

}
�

(2.9)X∗
T = J(y∗ξT � T)+ = max

{
J(y∗ξT � T)� 0

}
where the constant y∗ is the unique solution of the static budget constraint

(2.10)E

[ T∫
0

ξvI(yξv� v)
+ dv + ξT J(yξT � T)

+
]

= x

with x � max{E[∫ T0 ξvd1 dv + ξTd2]� 0}.
The resulting wealth process is the present value of optimal future consump-

tion and is therefore given by

(2.11)

X∗
t = Et

[ T∫
t

ξt�vI(y
∗ξv� v)+ dv + ξt�T J(y

∗ξT � T)+
]

≡ Et[Ft�T ]

for t ∈ [0� T ], where Ft�T ≡ ∫ T
t ξt�vI(y

∗ξv� v)+ dv + ξt�T J(y
∗ξT � T)+. The

associated optimal portfolio can be expressed as

(2.12)X∗
t π

∗
t = X∗

t (σ
′
t )

−1θt + ξ−1
t (σ ′

t )
−1φt�

where φ is the predictable process in the representation of the martingale
Mt = Et[F] − E[F] with F ≡ F0�T = ∫ T

0 ξtc
∗
t dt + ξTX

∗
T .

2.7 The optimal portfolio: an explicit formula

To find a more explicit expression for the optimal portfolio it remains to
identify the process φ in (2.12). The Clark–Ocone formula (see Appendix A)
becomes instrumental for that purpose: it identifies the integrand in the repre-
sentation of the martingale M and enables us to express the optimal portfolio
in terms of the parameters of the model (i.e. the structure of F). Ocone and
Karatzas (1991) establish this portfolio formula for general models with Itô
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price processes. The specialization to diffusions can be found in Detemple et
al. (2003).

Applying the Clark–Ocone formula and using the rules of Malliavin calculus
shows that

φt = Et[DtF]
where

(2.13)DtF = Et

[ T∫
t

Z1(y
∗ξv� v)Dtξv dv + Z2(y

∗ξT � T)DtξT

]

with

(2.14)

Z1(y
∗ξv� v) = I(y∗ξv� v)+ + y∗ξvI ′(y∗ξv� v)1{I(y∗ξv�v)�0}

= c∗v
(

1 − 1
Ru(c∗v� v)

)
�

(2.15)

Z2(y
∗ξT � T) = J(y∗ξT � T)+ + y∗ξT J′(y∗ξT � T)1{J(y∗ξT �T)�0}

= X∗
T

(
1 − 1

RU(X
∗
T � T)

)
�

In these expressions I ′(y∗ξv� v)� J′(y∗ξT � T) are the derivatives with respect to
the first argument y∗ξ of the inverse marginal utility functions and Ru(x� v) =
−ucc(x� v)x/uc(x� v), RU(x� T) = −UXX(x� T)x/UX(x� T) are relative risk
aversion coefficients.

From the definition of the stochastic discount factor ξ in Section 2.1 we
obtain

Dtξv ≡ −ξv
( v∫

t

(Dt rs + θ′sDtθs) ds +
v∫
t

dW ′
s ·Dtθs + θ′t

)
�

The chain rule of Malliavin calculus then gives Dtξv = −ξv(H ′
t�v + θ′t) with

(2.16)

H ′
t�v =

v∫
t

(
∂r(s� Ys)+ θ′s∂θ(s� Ys)

)
DtYs ds +

v∫
t

dW ′
s · ∂θ(s� Ys)DtYs

and where DtYs satisfies the stochastic differential equation

(2.17)

dDtYs =
[
∂μY (s� Ys) ds +

d∑
j=1

∂σYj (s� Ys) dW j
s

]
DtYs;

DtYt = σY (t� Yt)�

In this expression the notation ∂f (Y) stands for thep×k-dimensional Jacobian
matrix of a p-dimensional vector function f with respect to the k-dimensional
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vector Y . Substituting (2.13)–(2.17) back in (2.12), collecting terms and sim-
plifying leads to our explicit portfolio formula (for details see the proof of
Proposition 1 in Appendix B). Our next proposition summarizes the results

Proposition 1. Consider the dynamic consumption-portfolio problem (2.6)–
(2.7). The optimal consumption policy is

(2.18)c∗v = I(y∗ξv� v)+� X∗
T = J(y∗ξT � T)+�

The optimal portfolio policy has the decomposition X∗
t π

∗
t = X∗

t [π∗
1t+π∗

2t] where
π∗

1t is the mean–variance demand andπ∗
2t the intertemporal hedging demand. The

two components are

(2.19)X∗
t π

∗
1t = −Et[Dt�T ](σ ′

t )
−1θt�

(2.20)X∗
t π

∗
2t = −(σ ′

t )
−1Et[Gt�T ]�

where

(2.21)

Dt�T ≡
T∫
t

ξt�v(y
∗ξv)I ′(y∗ξv� v)1{I(y∗ξv�v)�0} dv

+ ξt�T (y
∗ξT )J′(y∗ξT � T)1{J(y∗ξT �T)�0}�

(2.22)Gt�T ≡
T∫
t

ξt�vZ1(y
∗ξv� v)Ht�v dv + ξt�TZ2(y

∗ξT � T)Ht�T

and where Z1(y
∗ξv� v) and Z2(y

∗ξT � T) are given in (2.14)–(2.15), the random
variableHt�v is defined in (2.16) and the Malliavin derivative of the state variables,
DtYs, satisfies the stochastic differential equation (2.17). The multiplier y∗ solves
the nonlinear equation (2.10). Optimal wealth is X∗

t = Et[Ft�T ].
The portfolio decomposition described in this proposition reflects two in-

vestment motives. The first one, which underlies the mean–variance demand
π1, is driven by the trade-off between risk and return embedded in asset re-
turns. This motive, originally identified by Markowitz (1952), has played an
important role in portfolio theory and remains at the core of practical im-
plementations. The second one, underlying the demand component π2, is a
hedging motive prompted by stochastic fluctuations in the opportunity set. This
intertemporal motive, identified by Merton (1971), is a fundamental aspect of
optimal dynamic portfolio policies whose implementation has become a focus
of current practice.

For later developments we record the special case of constant relative risk
aversion in the following corollary:

Corollary 1. Suppose that the investor exhibits constant relative risk aversion R
and has subjective discount factor ηt ≡ exp(−βt) where β is a constant rate.
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The optimal consumption policy is given by c∗v = (y∗ξv/ηv)−1/R and X∗
T =

(y∗ξT /ηT )−1/R. The optimal portfolio is X∗
t π

∗
t = X∗

t [π∗
1t + π∗

2t] where

(2.23)X∗
t π

∗
1t =

X∗
t

R
(σ ′

t )
−1θt�

(2.24)X∗
t π

∗
2t = −X∗

t ρ(σ
′
t )

−1
Et[

∫ T
t ξ

ρ
t�vη

1/R
t�v Ht�v dv + ξ

ρ
t�Tη

1/R
t�T Ht�T ]

Et[
∫ T
t ξ

ρ
t�vη

1/R
t�v dv + ξ

ρ
t�Tη

1/R
t�T ]

with ρ = 1 − 1/R and Ht�v defined in (2.16).

For general model structures the conditional expectations appearing in the
formulas of Proposition 1 and Corollary 1 cannot be calculated in more explicit
form. Numerical methods must then be used in order to implement the optimal
portfolio policies. The complexity inherent in the random variables ξt�v�Ht�v

appearing in the expressions obtained, and in particular their path-dependent
nature, naturally suggests the use of Monte Carlo simulation for computation
purposes.

2.8 Malliavin derivative representation and dynamic programming

The classic approach to the consumption-portfolio choice problem in a
Markovian setting was pioneered by Merton (1971) and is based on dy-
namic programming principles. Let V (t�X∗� Y) be the value function as-
sociated with the problem. The optimal consumption and terminal wealth
policies and the optimal portfolio are expressed in terms of the derivatives
Vt� Vx� Vy� Vxx� Vxy� Vyy of the value function as

(2.25)c∗t = I
(
Vx(t�X

∗
t � Yt)� t

)+
� X∗

T = J
(
Vx(T�X

∗
T � YT )� T

)+
�

(2.26)

X∗
t π

∗
t = Vx(t�X

∗
t � Yt)

−Vxx(t�X∗
t � Yt)

(
σ(t� Yt)

′)−1
θ(t� Yt)

+ (
σ(t� Yt)

′)−1
σY (t� Yt)

′ Vyx(t�X∗
t � Yt)

−Vxx(t�X∗
t � Yt)

�

The value function solves the partial differential equation (PDE)

(2.27)

u
(
I(Vx� t)

+� t
) − VxI(Vx� t)

+ + Vt + Vyμ
Y + 1

2
trace

{
Vyyσ

Y
(
σY

)′}
− 1

2
Vxx‖ψ′‖2 = 0�

whereψ ≡ Vx−Vxx θ+(σY )′
Vyx
−Vxx , subject to the boundary conditions V (T� x� y) =

U(x� T) and V (t� 0� y) = ∫ T
t u(0� s) ds +U(0� T ).

Our next result draws the link between Merton’s solution and the proba-
bilistic representation obtained in Proposition 1.
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Proposition 2. The state price density is proportional to the wealth derivative of
the value function

(2.28)y∗ξt = Vx(t�X
∗
t � Yt)� or ξt = Vx(t�X

∗
t � Yt)

Vx(0�X∗
0 � Y0)

ensuring that the optimal consumption and terminal wealth policies in (2.18)
and (2.25) are identical. The scaling factors in the mean–variance and hedging
demands (2.19)–(2.20) are given by

(2.29)−Et[Dt�T ] = Vx(t�X
∗
t � Yt)

−Vxx(t�X∗
t � Yt)

�

(2.30)−Et[Gt�T ] = σY (t� Yt)
′ Vxy(t�X∗

t � Yt)

−Vxx(t�X∗
t � Yt)

�

Formulas (2.18)–(2.22) are alternative representations of the solution as expressed
in (2.25)–(2.27).

Proposition 2 shows that our previous expressions for the optimal policies,
(2.18)–(2.22), are probabilistic representations of the formulas derived by Mer-
ton. These representation are in the spirit of Feynman–Kac as they express the
elements of the HJB equation in terms of conditional expectations of random
variables. Note, in particular, that −Et[Dt�T ] in (2.29) is simply the probabilis-
tic representation of the coefficient of “absolute risk tolerance” of the indirect
utility function V (the value function).2

The results in Proposition 2 shed light on the relation between the value
function and the fundamentals of the model, namely preferences and the state
price density. For instance, it is well known that the hedging motive vanishes
(at all times and in all states) if and only if the vector of cross partial derivatives
of the value function, Vxy , is identically equal to zero. The Malliavin derivative
representation in (2.30) and Equation (2.22) show that this condition is sat-
isfied if and only if the processes (r� θ) are deterministic and/or the investor
displays myopic behavior (Ru = RU = 1).

2.9 Malliavin derivative and tangent process

For interpretation and computational purposes it is also instructive to
rewrite the portfolio policy in terms of the derivative of the state variables
with respect to their initial values. This derivative, called the tangent process
(or first variation process), is described in Appendix A (see Section A.8).

The tangent process ofY , denoted by ∇t�yY ≡ {∇t�yYv: v ∈ [t� T ]}, captures
the change in the future values of Y following an incremental perturbation of

2 The coefficient of absolute risk aversion A(x) of a utility function u is A(x) ≡ R(x)/x where R(x) =
−u′′(x)x/u′(x) is relative risk aversion. Absolute risk tolerance is 1/A(x).
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the position Yt = y at time t. In particular, for v � t, ∇t�yYv is the variation in
Yv due to the initial perturbation. The tangent process is easy to characterize
when Y solves an SDE. In fact, one can verify that ∇t�yY solves the SDE

(2.31)

d(∇t�yYv) =
(
∂μY (v�Yv) dv +

d∑
j=1

∂σYj (v� Yv) dW j
v

)
∇t�yYv;

∇t�yYt = Ik�

where Ik is the k-dimensional identity matrix. A comparison of (2.31) with
(2.17) shows that the equation for the tangent process differs from the one for
the Malliavin derivative only through the initial condition (∇t�yYt = Ik versus
DtYt = σY (t� Yt)). It follows immediately that the relationship

(2.32)DtYt = ∇t�yYvσ
Y (t� Yt)

holds. The tangent process can be viewed as a normalized version of the Malli-
avin derivative. Conversely, the Malliavin derivative is a linear transformation
of the tangent process.

Relationship (2.32) between the two notions enables us to rewrite the hedg-
ing term (2.20) in the form

(2.33)X∗
t π

∗
2t = −(

σt(t� Yt)
′)−1

σY (t� Yt)
′Et

[
Gt�T (Φ)

]
where

(2.34)Gt�T (Φ) ≡
T∫
t

ξt�vZ1(y
∗ξv� v)Φt�v dv + ξt�TZ2(y

∗ξT � T)Φt�T

and

(2.35)

Φ′
t�v ≡

v∫
t

(
∂r(s� Ys)+ θ′s∂θ(s� Ys)

)∇t�yYs ds

+
v∫
t

dW ′
s · ∂θ(s� Ys)∇t�yYs�

To derive this representation we used H ′
t�v = Φ′

t�vσ
Y (t� Yt). For computations

it is also useful to note that Φt�v = −∇t�y log(ξt�v): the functional Φt�v is the
variation of − log(ξt�v) for a perturbation in the position of the state variables
Yt = y at time t. Finally, one can write the general representation

(2.36)X∗
t π

∗
2t = −(

σt(t� Yt)
′)−1

σY (t� Yt)
′Et

[
(∇t�yFt�T )

′]
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where the functional Ft�T is as defined in (2.11) and (∇t�yFt�T )
′ = Gt�T (Φ).

A comparison of (2.33) with (2.30) also shows that

(2.37)

Vxy(t�X
∗
t � Yt)

−Vxx(t�X∗
t � Yt)

= −Et

[ T∫
t

ξt�vZ1(y
∗ξv� v)Φt�v dv

+ ξt�TZ2(y
∗ξT � T)Φt�T

]
�

This relation captures the intuitive notion that the hedging coefficient is related
to the impact of a perturbation in the state variables at date t on the optimal
wealth. This effect is precisely the expectation on the right-hand side of (2.37).

3 Simulation methods for portfolio computation

This section reviews various Monte Carlo methods that have been proposed
for the computation of asset allocation rules.

3.1 Monte Carlo Malliavin derivatives (Detemple et al., 2003)

This simulation approach, developed by Detemple et al. (2003), is directly
based on the formulas described in Section 2.7. Suppose that we are in the
general context of Proposition 1 where the multiplier y∗ for the static budget
constraint cannot be solved explicitly from (2.10). Consider first the case where
y∗ has already been calculated by solving (2.10) numerically. In that case the
method proceeds by rewriting the hedging demand in Proposition 1 as

(3.1)X∗
t π

∗
2t = −(σ ′

t )
−1Et[Gt�T ]

where Gt�T ≡ Gc
t�T +Gx

t�T , with

Gc
t�s ≡

s∫
t

ξt�vZ1(y
∗ξv� v)Ht�v dv and

(3.2)Gx
t�T ≡ ξt�TZ2(y

∗ξT � T)Ht�T �

To calculate X∗
t π

∗
2t write the random variables in the hedges in the form of a

joint system V ′
t�s ≡ (Y ′

s� vec(DtYs)
′�Kt�s�H

′
t�s� (G

c
t�s)

′), where vec(·) denotes
the operator stacking the columns of a matrix one below the other, and where

Kt�v ≡
v∫
t

(
rs + 1

2
θ′sθs

)
ds +

v∫
t

θ′s dWs�
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H ′
t�v ≡

v∫
t

∂r(s� Ys)DtYs ds +
v∫
t

θ′s∂θ(s� Ys)DtYs ds

+
v∫
t

dW ′
s · ∂θ(s� Ys)DtYs

and ξt�v = exp(−Kt�v). An application of Itô’s lemma shows that

(3.3)dKt�s =
(
rs + 1

2
θ′sθs

)
ds + θ′s dWs�

(3.4)dH ′
t�s = ∂r(s� Ys)DtYs ds + (

dWs + θ(s� Ys) ds
)′
∂θ(s� Ys)DtYs�

(3.5)dGc
t�s = ξt�sZ1(y

∗ξs� s)Ht�s ds�

where (Ys�DtYs) satisfy (2.2), (2.17). Initial conditions are Ht�t = 0d,
Gc
t�t = 0d, where 0d denotes the d-dimensional null vector, and Kt�t = 0.
Next, simulate M trajectories of V using (3.3)–(3.5), (2.2) and (2.17). To

do this select a discretization scheme, such as the Euler scheme, the Mil-
shtein scheme or any other higher order procedure and let N be the number
of discretization points of the time interval [0� T ] chosen. This simulation
produces M estimates {V N�i

t�s : s ∈ [t� T ]}, i = 1� � � � �M , of the trajectories
{Vt�s: s ∈ [t� T ]}. Given that y∗ is already known (through prior computation)
the terminal values of the simulated processes can be used to construct M esti-
mates of the random variables Gt�T . Averaging over these M values yields the
estimate

X̂∗
t π

∗
2t = −(σ ′

t )
−1 1
M

M∑
i=1

GN�i
t�T

of the hedging demand.3
Suppose now that the multiplier y∗ is unknown. In this case a two-stage

simulation procedure can be employed to calculate the hedging demands. The
first stage mixes iteration and simulation to calculate y∗. Fix a candidate mul-
tiplier y. Based on this choice simulate (K0�s� F

c
0�s) where

Fc0�s =
s∫

0

ξvI(yξv� v)
+ dv

in order to estimate the cost of consumption (the left-hand side of (2.10)).
If the value obtained exceeds resources (initial wealth x) raise the candidate y

3 The computation of the mean–variance component X∗
t π

∗
1t is carried out along the same lines. The

evaluation of this demand component is straightforward due to the simple structure of the term
Et [Dt�T ].
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and repeat the calculation. In the opposite case reduce the candidate y. Repeat
until the difference falls below some preselected threshold. The second stage
parallels the procedure outlined above for the case of a known y∗.

Various procedures can be employed to accelerate the iterative search in
stage 1. Schemes available include the Newton–Raphson procedure, the brack-
eting method, the bisection method, the secant method, the false position
method, Ridder’s method and the method of van Wijngaarden–Dekker–Brent
(see Press et al., 1992 for details).

3.2 The Doss transformation (Detemple et al., 2003, 2005a)

The computation of the Malliavin derivatives in the portfolio formula can
also be performed using a change of variables, commonly called a “Doss
transformation.” This change of variables, examined in Detemple et al. (2003,
2005a), leads to a characterization of Malliavin derivatives involving the solu-
tion of an ordinary differential equation (ODE). To simplify matters we assume
k = d (for more general cases see Detemple et al., 2005a).

Consider now a multivariate diffusion satisfying the restrictions

Condition 1. The coefficients of the diffusion (2.2) have the following properties:

1. Differentiability: μY ∈ C([0� T ] × Rd), σYj ∈ C([0� T ] × Rd),

2. Boundedness: μY(t� 0) and σYj (t� 0) are bounded for all t ∈ [0� T ], and
3. Invertibility:

(a) ∂2σ
Y
j σ

Y
i = ∂2σ

Y
i σ

Y
j (i.e. the vector field generated by the columns of

σ is abelian),
(b) rank(σ) = d, a.e.

Under the provisions of Condition 1 there exists an invertible function
% : [0� T ] × Rd (→ Rd solving the total differential equation

(3.6)∂2%(t� z) = σ
(
t� %(t� z)

); %(t� 0) = 0 for all t ∈ [0� T ]
and a d-dimensional process Z satisfying

(3.7)dZv = A(v�Zv) dv + dWv; %(0� Z0) = Y0

where

(3.8)

A(t� z) ≡ σ
(
t� %(t� z)

)−1

×
[
μY(t� y)− 1

2

d∑
j=1

∂yσ
Y
j (t� y)σj(t� y)

]
|y=%(t�z)

− ∂1%(t� z)�

such that

(3.9)DtYv = σ
(
v� %(v�Zv)

)
DtZv for all v � t�
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(3.10)dDtZv = ∂2A(v�Zv)DtZv dv; lim
v→t

DtZv = Id�

This final expression (3.9)–(3.10) for the Malliavin derivative DtYv does not
involve stochastic integrals. An Euler approximation based on (3.6)–(3.10) will
therefore converge faster (see Detemple et al., 2005a, 2005c).

Property 3(a) of Condition 1 is always satisfied for univariate diffusions. For
multivariate diffusions, it represents a commutativity condition. It is, in fact,
the same commutativity condition that is needed to implement the Milshtein
scheme in the case of multivariate diffusions, without resorting to further sub-
discretizations of the time interval (see Detemple et al., 2005c for details).

The MCMD-Doss estimator for the optimal portfolio, is obtained by using
(3.6)–(3.10) to calculate the components of the portfolio policy.

3.3 Monte Carlo covariation (Cvitanic et al., 2003)

Another simulation-based approach, proposed by Cvitanic et al. (2003), is
based on an approximation of the volatility coefficient of the optimal wealth
process. The optimal portfolio, being a linear transformation of the volatility
of the wealth process, can be estimated from this approximation.

The limits

(3.11)X∗
t π

∗ ′
t σt = lim

h→0

1
h

Et
[
Ft+h�T (Wt+h −Wt)

′]�
(3.12)X∗

t π
∗ ′
t σt = lim

h→0

1
h

Et

[
Ft�T

(Wt+h −Wt)
′

ξt�t+h

]
�

(3.13)X∗
t π

∗ ′
t σt = X∗

t θ
′
t + lim

h→0

1
h

Et
[
Ft�T (Wt+h −Wt)

′]
with Ft�T as defined in (2.11), can serve as foundations for the approach (see
Appendix B for derivations). Approximations of the optimal portfolio are ob-
tained by fixing a discretization h and setting

(3.14)X∗
t π

∗ ′
t σt �

1
h

Et
[
Ft+h�T (Wt+h −Wt)

′]�
(3.15)X∗

t π
∗ ′
t σt �

1
h

Et

[
Ft�T

(Wt+h −Wt)
′

ξt�t+h

]
�

(3.16)X∗
t π

∗ ′
t σt � X∗

t θ
′
t +

1
h

Et
[
Ft�T (Wt+h −Wt)

′]�
The conditional expectations on the right-hand sides of (3.14), (3.15) and

(3.16) are then computed by simulation of the relevant processes and averaging
over independent replications. The procedure originally developed by CGZ re-
lies on (3.14) or (3.15). It is based on models with constant relative risk aversion
and either terminal wealth [estimator (3.15)] or intermediate consumption [es-
timator (3.14)], but not both. These are subcases of the setting in Corollary 1
for which the multiplier can be eliminated, resulting in (2.24). Formula (3.16)



882 J. Detemple, R. Garcia and M. Rindisbacher

is an alternative approximation that isolates the volatility of discounted wealth
related to the volatility of the state price density. Implementation of these ap-
proximations for general preferences requires a preliminary stage to compute
y∗.4

The procedure is easy to implement, as it does not require the simulation
of auxiliary processes such as Malliavin derivatives. Nevertheless, it is based
on an approximation (as h is fixed) of the optimal policy, and this will affect
the convergence properties of the method. We refer to this method as MCC
(Monte Carlo covariation). MCC estimators based on (3.14), (3.15) or (3.16)
are numerically different. This difference only disappears in the limit as h van-
ishes.

3.4 Monte Carlo finite difference (MCFD)

The Monte Carlo finite difference (MCFD) method computes the hedg-
ing terms based on a version of the formulas (2.33)–(2.35) involving tangent
processes. In essence the method calculates a tangent process by simulating
the underlying process using perturbed initial values and then taking a finite
difference approximation of the relevant derivative. This computation can be
performed path-by-path. Conditional expectations involving tangent processes
can then be calculated by averaging the random variables of interest over all
the trajectories.5

Three versions of the formula involving tangent processes can serve as start-
ing points for implementation. The first one consists of Equations (2.33)–(2.35)
where Φt�v is expressed in terms of the tangent process ∇t�yY of the state vari-
ables. The second version consists of Equations (2.33)–(2.34) where Φt�v =
−∇t�y log(ξt�v) is expressed in terms of the variation of the log-RSPD. The last
one is the general representation (2.36) based on the variation ∇t�yFt�T of the
functional Ft�T .

Finite difference approximations of the relevant tangent processes are

∇τj�αj
t�yj

Yv = 1
τj

(
Yv(Yt + αjτjej)− Yv

(
Yt − (1 − αj)τjej

))
�

Φ
τj�αj
t�v ≡ −∇τj�αj

t�yj
log

(
ξt�v(Y)

) = − 1
τj

(
log

(
ξt�T (Yt + αjτjej)

)
− log

(
ξt�T

(
Yt − (1 − αj)τjej

)))
�

4 Models with constant relative risk averse utility functions, but different risk aversion coefficients for
the utility of terminal wealth and the utility of intermediate consumption, fall outside the scope of
Corollary 1. For those settings a preliminary stage is also needed to compute the budget constraint
multiplier y∗.
5 Finite difference methods have been used extensively to solve PDEs or ODEs in applications such
as option pricing and asset allocation. The interest of combining these methods with Monte Carlo
simulation, to handle certain financial applications, has only been noted recently.
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∇τj�αj
t�yj

Ft�T = 1
τj

(
Ft�T (Yt + αjτjej)− Ft�T

(
Yt − (1 − αj)τjej

))
�

where αj ∈ [0� 1], τj > 0, and ej ≡ [0� � � � � 0� 1� 0� � � � � 0] is the jth unit vector.
Different choices of αj result in different types of finite difference approxima-
tions. The selection αj = 1 corresponds to a single forward difference, αj = 0
to a single backward difference and αj = 1/2 to a central difference approxi-
mation of the tangent process of interest.

To simplify notation we write ∇τ�α
t�y Yv�Φ

τ�α
t�v �∇τ�α

t�y Ft�T for the vectors of tan-
gent processes, where τ = (τ1� � � � � τk) and α = (α1� � � � � αk). As τ → 0 the
limits

∇τ�α
t�y Yv → ∇t�yYv�

Φτ�α
t�v = −∇τ�α

t�y log
(
ξt�v(Y)

) → Φt�v = −∇t�y log
(
ξt�v(Y)

)
�

∇τ�α
t�y Ft�T → ∇t�yFt�T

hold (P-a.s.). Under regularity conditions permitting the exchange of limits and
conditional expectations we can write

X∗
t π

∗
2t = −(

σt(t� Yt)
′)−1

σY (t� Yt)
′Et

[
Gt�T (Φ)

]
with

(3.17)Et
[
Gt�T (Φ)

] = lim
τ→0

Et
[
Gt�T

(
Φτ�α
t�v

)]
or

(3.18)Et
[
Gt�T (Φ)

] = Et[∇t�yFt�T ] = lim
τ→0

Et
[∇τ�α

t�y Ft�T
]
�

Writing Φ′
t�v(∇t�yYv) for the left-hand side of (2.35) to emphasize the depen-

dence on the tangent process ∇t�yYv we also have

Φt�v = lim
τ→0

Φt�v
(∇τ�α

t�y Yv
)

P-a�s�, leading to

(3.19)Et
[
Gt�T (Φ)

] = lim
τ→0

Et
[
Gt�T

(
Φt�v

(∇τ�α
t�y Yv

))]
�

Finite difference approximations of the hedging term are obtained by fixing τ
and approximating the conditional expectation Et[Gt�T (Φ)] by

(3.20)Et
[
Gt�T (Φ)

] � Et
[
Gt�T

(
Φt�v

(∇τ�α
t�y Yv

))]
�

(3.21)Et
[
Gt�T (Φ)

] � Et
[
Gt�T

(
Φτ�α
t�v

)]
�

(3.22)Et
[
Gt�T (Φ)

] � Et
[∇τ�α

t�y Ft�T
]
�

The difference between these approximations is that (3.20) calculates explicitly
the derivative of the inverse marginal utilities, the interest rate and the market
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price of risk and approximates the tangent process of the state variables by a
finite difference, (3.21) calculates explicitly the derivative of the inverse mar-
ginal utilities and approximates the tangent process of the logarithmic state
price density by a finite difference, while (3.22) approximates the whole func-
tional in the conditional expectation, including the marginal utilities, by a finite
difference.

The numerical implementation of MCFD estimators, such as (3.20)–(3.22),
is similar to the implementation of MCMD estimators. The procedure esti-
mates conditional expectations by first simulating M replications of the ran-
dom variable within the expectation and then averaging over these replications.
In most parametric examples the conditional distribution of the random vari-
able of interest is unknown. A numerical discretization scheme, such as the
Euler or the Milshtein schemes, based on N discretization points can never-
theless be used to obtain a convergent approximation. The MCFD estimator
is then calculated by averaging independent replications of these simulated
random variables. The choice of αj gives different types of finite difference
approximations. The estimator obtained from forward differences (αj = 1)
is the MCFFD estimator, the estimator obtained from backward differences
(αj = 0) is the MCBFD estimator, and the estimator based on central dif-
ferences (αj = 1/2) the MCCFD estimator. As in the case of deterministic
finite difference methods (i.e. finite difference methods for ODEs or PDEs)
the computational cost is greater for MCCFD than for MCFFD or MCBFD
estimators. This stems from the need to simulate two auxiliary processes with
forward and backward perturbed initial values for MCCFD estimators. In con-
trast, MCFFD and MCBFD estimators only require the simulation of one
auxiliary process with either forward, or backward perturbed initial value.
A subsequent section will show the effect on the convergence properties of
the methods.

Like MCC estimators, MCFD estimators are based on approximations of
the conditional expectation in the hedging terms. Note, in particular, that
MCFD estimators can be viewed as approximate MCMD estimators where the
tangent process and therefore the Malliavin derivative has been approximated
by a finite difference. The quality of the approximation will therefore depend
on the additional convergence parameter τ. This additional structure will also
affect the asymptotic error distribution of an MCFD estimator.

The finite difference methods described above are used to compute port-
folio hedging components that depend on tangent processes. Although the
mean–variance portfolio component also takes the form of an expectation, it
does not involve Malliavin derivatives or tangent processes. It can therefore be
calculated in a standard manner by simulating the underlying processes (using
some suitable discretization scheme) and computing the relevant expectation
using an average over independent replications.
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3.5 Monte Carlo regression (Brandt et al., 2005)

The last method surveyed is an approximation method developed to solve
discrete time portfolio choice problems. This approach, proposed by Brandt et
al. (2005), is based on the standard recursive dynamic programming algorithm.
It combines Monte Carlo simulation with a Taylor series approximation of the
value function and a regression-based computation of conditional expectations
in order to calculate approximate “optimal” policies. The methodology applies
to large-scale problems with path-dependent and nonstationary dynamics as
well as arbitrary utility functions. We summarize the main steps in the context
of a pure portfolio problem (without intermediate utility).

The procedure is recursive in nature. It is based on the (discrete time) Bell-
man equation for the value function V of the dynamic portfolio problem,

(3.23)Vt(Xt�Zt) = max
πt

Et
[
Vt+1

(
Xt

(
π′
tR

e
t+1 + Rf

)
� Zt+1

)]
�

where Xt , is the endogenous wealth at time t, Zt , is a vector of exogenous state
variables at t, Re

t+1 the vector of risky assets’ excess returns from t to t + 1,
Rf the return on the risk-free asset and πt is the portfolio. To keep matters
simple we follow Brandt et al. (2005) and assume a constant interest rate Rf .
The first-order conditions (FOC) for the portfolio choice problem are

(3.24)Et
[
∂1Vt+1

(
Xt

(
π′
tR

e
t+1 +Rf

)
� Zt+1

)
Re
t+1

] = 0�

where ∂1Vt+1 is the derivative of the value function with respect to future
wealth.

There are three steps which are as follows:

Step 1: Simplify the initial problem (3.23) by expanding the value function
in a Taylor series around XtR

f , the value at t + 1 of current wealth.
To account for skewness and kurtosis effects Brandt et al. (2005)
propose the fourth-order expansion6

V a
t (Xt�Zt) = max

πt
Et

[
V a
t+1

(
XtR

f �Zt+1
)]

+ Et
[
∂1V

a
t+1

(
XtR

f �Zt+1
)(
Xtπ

′
tR

e
t+1

)]
+ 1

2
Et

[
∂2

1V
a
t+1

(
XtR

f �Zt+1
)(
Xtπ

′
tR

e
t+1

)2]
+ 1

6
Et

[
∂3

1V
a
t+1

(
XtR

f �Zt+1
)(
Xtπ

′
tR

e
t+1

)3]
+ 1

24
Et

[
∂4

1V
a
t+1

(
XtR

f �Zt+1
)(
Xtπ

′
tR

e
t+1

)4]
6 Brandt et al. (2005) report that a fourth-order expansion around XtR

f gives very accurate results for
the particular problems that they considered.
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where V a is the value function for this new (approximate) problem.
Let πa

t be the solution of the approximate problem. The FOC leads
to the following implicit expression for πa,

πa
t = −{

Et
[
∂2

1V
a
t+1

(
XtR

f �Zt+1
)
Re
t+1

(
Re
t+1

)′]
X2
t

}−1

×
{

Et
[
∂1V

a
t+1

(
XtR

f �Zt+1
)
Re
t+1

]
Xt

+ 1
2

Et
[
∂3

1V
a
t+1

(
XtR

f �Zt+1
)((

πa
t

)′
Re
t+1

)2
Re
t+1

]
X3
t

+ 1
6

Et
[
∂4

1V
a
t+1

(
XtR

f �Zt+1
)((

πa
t

)′
Re
t+1

)3
Re
t+1

]
X4
t

}
≡ −{

Et[Bt+1]Xt
}−1{Et[At+1] + Et

[
Ct+1

(
πa
t

)]
X2
t

(3.25)+ Et
[
Dt+1

(
πa
t

)]
X3
t

}
�

The structure of (3.25) shows that the solution depends on condi-
tional moments involving the derivatives of the approximate value
function and powers of the returns. Assume for now that these mo-
ments can be calculated by some procedure. The solution of (3.25)
is then computed as follows:
(a) calculate the solution of the quadratic problem corresponding

to the second-order expansion of the value function. This gives
an explicit expression which can be used as an initial guess for
solving (3.25),

(b) substitute this initial guess into the right-hand side of (3.25) to
produce a new estimate of πa on the left-hand side,

(c) iterate by repeating the previous step until consecutive estimates
become close enough, i.e. the distance between consecutive es-
timates falls below some pre-selected tolerance level.

Step 2: Simulate a large number of sample paths of the vectorYt = [Re
t �Zt].

This set of paths serves as the underlying tree for the application of
a recursive procedure where the portfolio is approximated at each
step, along each trajectory, by the solution of (3.25).

Step 3: Proceed recursively, along each trajectory, starting from the termi-
nal date. To compute the approximate portfolio at date t proceed
in the following manner. Suppose that approximate weights πa

s for
s = t+1� � � � � T −1 have been found. Terminal wealth starting from
Xa
t R

f at t + 1 is

(3.26)Xa
T = Xa

t R
f

T−1∏
s=t+1

(
πa
s R

e
s+1 + Rf

)
�
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The coefficients in (3.25) can then be approximated by

(3.27)At+1 ≈ Et+1

[
∂u

(
Xa
T

) T−1∏
s=t+1

(
πa
s R

e
s+1 +Rf

)]
Re
t+1

in the case of At+1, and similar expressions for Bt+1, Ct+1 and Dt+1.
Let at+1 ≡ ∂u(Xa

T )
∏T−1

s=t+1(π
a
s R

e
s+1 +Rf )Re

t+1 be the random vari-
able inside the expectation in (3.27) and define bt+1, ct+1 and dt+1
in a similar manner. Then

(3.28)

πa
t ≈ −{

Et[bt+1]Xa
t

}−1{Et[at+1] + Et
[
ct+1

(
πa
t

)](
Xa
t

)2

+ Et
[
dt+1

(
πa
t

)](
Xa
t

)3}
�

This approximation is treated as an exact equality to find πa
t (in

fact this construction produces an approximation of the approxi-
mate policy πa

t ). To calculate the conditional expectations of a, b� c,
d the regression method of Longstaff and Schwartz (2001) is used.
This simple approach uses regressions across the simulated paths to
evaluate conditional expectations. Let y be a typical element of the
vector [a� b� c� d]. The expectation of yt+1 is computed by regressing
yt+1 on a vector of polynomial bases in the state variables Zt so that,

Et[yt+1] = ϕ(Zt)
′kt�

where kt is the vector of regression parameters, and the ith ele-
ment of ϕ(Zt) corresponds to the ith term of a polynomial in Zt

of order K. The fitted values of this regression are used to construct
estimates of the time t-conditional expectations of at+1, bt+1, ct+1
and dt+1, along each path m. Solving (3.28) produces an approxi-
mate portfolio πa�m

t .

4 Asymptotic properties of portfolio estimators

This section describes the asymptotic error distributions of MCMD, MCC
and MCFD portfolio estimators and discusses convergence issues for MCR.
The results provided extend Detemple et al. (2005b, 2005c, 2005d) to settings
with both running utility and utility of terminal wealth and to smooth utility
functions outside the power (constant relative risk averse) class.

4.1 Notation and assumptions

Throughout the section utility functions are assumed to be smooth in the
sense that u�U ∈ C5, the space of five-times continuously differentiable func-
tions. In addition, marginal utilities satisfy the Inada conditions

(4.1)lim
x→0

u′(x� t) = +∞ and lim
x→0

U ′(x� T) = +∞�
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Let {tn: n = 0� � � � �N − 1} be an equidistant discretization of the time in-
terval [t� T ], with � ≡ tn+1 − tn = (T − t)/N . To state some of the results it
proves useful to introduce the notation ηNv ≡ [Nv]/N for v ∈ [0� T ] if Nv /∈ N
and ηNv = v − 1/N otherwise, where [Nv] is the integer part of Nv. With this
definition sums can be written as integrals, e.g.

N−1∑
n=0

ftn� ≡
T∫
t

fηNv dv�

For empirical means write EM [U] ≡ (
∑M

i=1 U
i)/M , where the random vari-

ables Ui are i.i.d. replications of U .
Given that analytic formulas for the distributions associated with diffusions

are usually unknown, a numerical scheme is required in order to approximate
the solutions of SDEs. Let Xi be a random variable associated with the solu-
tion of an SDE and Xi�N an approximation based on N discretization points.
The notion of weak convergence is employed to assess the behavior of the ap-
proximation: the sequence Xi�N is said to converge weakly to Xi as the number
of discretization pointsN goes to infinity if and only if E[f (Xi�N)] → E[f (Xi)]
for all continuous, bounded functions f ∈ Cb.

For a parsimonious representation of portfolios it also proves useful to de-
fine the shadow price of optimal wealth. This is the function y∗t ≡ y∗(t�X∗

t � Yt)
that is the unique solution of the nonlinear equation

(4.2)X∗
t = Et

[ T∫
t

ξt�vI(y
∗
t ξt�v� v) dv + ξt�T J(y

∗
t ξt�T � T )

]
�

The right-hand side of this equation is the present value of optimal consump-
tion, post date t. Decreasing marginal utility and the Inada conditions (4.1)
ensure that the shadow price y∗t exists and is unique for all X∗

t > 0. Further,
note that y∗t = y∗ξt where y∗ corresponds to the initial shadow price of wealth
defined previously.

4.2 Expected approximation errors

Let us now record a general result for expected approximation errors. Sup-
pose the dz-dimensional process Z satisfies the SDE

(4.3)dZt = a(Zt) dt +
d∑
j=1

bj(Zt) dW j
t ; Z0 given�

whose coefficients a� b satisfy Lipschitz and growth conditions so as to guar-
antee the existence and uniqueness of a solution. Let ZN be the numerical
solution of (4.3) based on the Euler scheme with N discretization points.
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To describe the expected approximation error it is convenient to define the
tangent process of the diffusion Z (see Section A.8), as

∇t�zZv = ER
( ·∫

t

∂a(Zs) ds +
d∑
j=1

·∫
t

∂bj(Zs) dW j
s

)
v

�

where ER(·) is the right stochastic exponential (i.e. the solution of dER(M)v =
dMvER(M)v). Also for a function f ∈ C3(Rdz) define the random variables

V1(t� v) ≡ −∇t�zZv

v∫
t

(∇t�zZs)
−1

(
∂a(Zs) dZs

+
d∑
j=1

[
∂bja−

d∑
i=1

(∂bj)(∂bj)bi

]
(Zs) dW j

s

)

+ ∇t�zZv

v∫
t

(∇t�zZs)
−1

×
d∑
j=1

[
∂bj∂bja−

d∑
k�l=1

∂k(∂labl�j)bk�j

]
(Zs) ds

+ ∇t�zZv

v∫
t

(∇t�zZs)
−1

(4.4)×
d∑

i�j=1

[
∂(∂bj∂bjbi)bi − ∂bi∂bj∂bjbi

]
(Zs) ds

and

(4.5)V2(t� v) ≡ −
v∫
t

d∑
i�j=1

νi�j(s� v) ds�

where

νi�j(s� v) ≡
[
hi�j(∇t�zZ)

−1[(∂bj)bi](Z)�W i
]
s

with

(4.6)h
i�j
t ≡ Et

[
Djt

(
∂f (ZT )∇t�zZT ei

)]
and ei is the ith unit vector. A more explicit expression for νi�j(s� v) is given in
Detemple et al. (2005c). Finally, for v ∈ [t� T ], define the conditional expecta-
tions

(4.7)Kt�v(Zt) ≡ 1
2

Et
[
∂f (Zv)V1(t� v)+ V2(t� v)

]
�
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(4.8)

kt�v(Zt) ≡ −Et

[ v∫
t

(
∂f (Zs)

[
a+

d∑
j=1

(∂bj)bj

]
(Zs)

+
d∑
j=1

[
b′j∂

2fbj
]
(Zs)

)
ds

]

and set

(4.9)κt�v(Zt) ≡ Kt�v(Zt)+ kt�v(Zt)�

With this notation we can state the following

Proposition 3. Let f ∈ C3(Rdz) be such that the uniform integrability conditions

(4.10)
lim
r→∞ lim sup

N
Et

[
1{‖N(f(ZN

T )−f (ZT ))‖>r}N
∥∥f (ZN

T

) − f (ZT )
∥∥] = 0�

(4.11)

lim
r→∞ lim sup

N
Et

[
1{‖N ∫ T

t (f (Z
N

ηNv
)−f (Zv)) dv‖>r}N

×
∥∥∥∥∥
∫ T

t

(
f
(
ZN
ηNv

) − f (Zv)
)

dv

∥∥∥∥∥
]

= 0

hold (P-a.s.). Then, as N → ∞,

(4.12)NEt
[
f
(
ZN
T

) − f (ZT )
] → 1

2
Kt�T (Zt)�

(4.13)NEt

[ T∫
t

f
(
ZN
ηNv

)
dv −

T∫
t

f (Zv) dv

]
→ 1

2

T∫
t

κt�v(Zt) dv

with Kt�·(Zt)� κt�·(Zt) as defined in (4.7), (4.9).

This proposition provides formulas for the expected errors in the approx-
imation of functions (or functionals) evaluated at solutions of stochastic dif-
ferential equations. The expressions obtained can be viewed as probabilistic
representations of the formulas in Talay and Tubaro (1990) that give the errors
in terms of conditional expectations of functions solving PDEs. As will become
clear below expected approximation errors appear in the second-order bias
terms associated with the efficient Monte Carlo estimators of conditional ex-
pectations of functions of diffusions. The formulas in Proposition 3 can be used
to estimate second-order biases and infer second-order bias corrected estima-
tors.
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4.3 Asymptotic error distribution of MCMD estimators

With y∗t as the solution of (4.2), the MCMD portfolio estimator can be writ-
ten as

X̂∗
t π

∗
t

N�M = −(σ ′
t )

−1θt

(
EM
t

[
gMV

1
(
ZN
t�T ; y∗t

)]

+ EM
t

[ T∫
t

gMV
2

(
ZN
t�ηNv

; y∗t
)

dv

])

− (σ ′
t )

−1

(
EM
t

[
gH1

(
ZN
t�T ; y∗t

)]

(4.14)+ EM
t

[ T∫
t

gH2
(
ZN
t�ηNv

; y∗t
)

dv

])
�

In this expression {ZN
t�v: v ∈ [t� T ]} is a numerical approximation of the dz-

dimensional process {Z′
t�v ≡ [ξt�v�H ′

t�v� vec(DtYv)
′� Y ′

v� v]: v ∈ [t� T ]}, with
dz = 2 + d(k+ 1)+ k and H as defined in (2.16). The process Zt�v solves

dZt�v = a(Zt�v) dv +
d∑
j=1

bj(Zt�v) dW j
v ; Zt�t given�

The functions gMV
1 � gH1 � g

MV
2 � gH2 are C3-functions that determine various

portfolio components and are defined by

gMV
1 (z; y) ≡ z1J

′(yz1� z5); gH1 (z; y) ≡ z1J
′(yz1� z5)z2�

gMV
2 (z; y) ≡ z1I

′(yz1� z5); gH2 (z; y) ≡ z1I
′(yz1� z5)z2�

Close inspection reveals that gMV
1 � gH1 are portfolio demand components as-

sociated with terminal wealth, while gMV
2 � gH2 relate to intermediate consump-

tion.
Each portfolio component gives rise to an error term. To study the conver-

gence properties of the joint error define

(4.15)
eMV �M�N

1�t�T ≡ −(
EM
t

[
gMV

1
(
ZN
t�T ; y∗t

)] − Et
[
gMV

1 (Zt�T ; y∗t )
])
(σ ′

t )
−1θt�

(4.16)eH�M�N
1�t�T ≡ −(σ ′

t )
−1(EM

t

[
gH1

(
ZN
t�T ; y∗t

)] − Et
[
gH1 (Zt�T ; y∗t )

])
�
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(4.17)

eMV �M�N
2�t�T ≡ −

(
EM
t

[ T∫
t

gMV
2

(
ZN
t�ηNv

; y∗t
)

dv

]

− Et

[ T∫
t

gMV
2 (Zt�v; y∗t ) dv

])
(σ ′

t )
−1θt�

(4.18)

eH�M�N
2�t�T ≡ −(σ ′

t )
−1

(
EM
t

[ T∫
t

gH2
(
ZN
t�ηNv

; y∗t
)

dv

]

− Et

[ T∫
t

gH2 (Zt�v; y∗t ) dv

])
�

For j ∈ {1� 2}, let (eM�N
j�t�T )

′ = [(eMV �M�N
j�t�T )′� (eH�M�N

j�t�T )′] be the 1 × 2d random
vector of approximation errors associated with the mean–variance and hedging
demands for terminal wealth (j = 1) and intermediate consumption (j = 2).
Finally, let (eM�N

t�T )′ = [(eM�N
1�t�T )

′� (eM�N
2�t�T )

′] be the 1×4d vector that incorporates
all the portfolio components. Similarly, define the 1×4d random vector C ′

t�T ≡
[C ′

1�t�T � C
′
2�t�T ] where

C ′
1�t�T ≡ [−gMV

1 (Zt�T ; y∗t )θ′tσ−1
t �−gH1 (Zt�T ; y∗t )′σ−1

t

]
�

C ′
2�t�T ≡

[
−

∫ T

t
gMV

2 (Zt�v; y∗t ) dv θ′tσ−1
t �−

∫ T

t
gH2 (Zt�v; y∗t )′ dv σ−1

t

]

are random variables involved in the various portfolio components. The ran-
dom variable Ct�T plays a critical role for the joint variance of the asymptotic
error distribution.

Let D1�2 be the space of random variables for which Malliavin derivatives
are defined (see Section A.3). Our next proposition describes the asymptotic
behavior of the estimation error.

Proposition 4. Suppose g ∈ C3(Rdz) and g(Zt�v; y∗t ) ∈ D1�2 for all v ∈ [t� T ].
Also suppose that the assumptions of Proposition 3 hold, and that

(4.19)

lim
r→∞ Et

[
1{‖gαj (Zt�v;y∗t )−Et [gαj (Zt�v;y∗t )]‖>r}

× ∥∥gαj (Zt�v; y∗t )− Et
[
gαj (Zt�v; y∗t )

]∥∥2] = 0
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for all j ∈ {1� 2} and α ∈ {MV �H}. Then, as M → ∞,

√
Me

M�NM
t�T ⇒ εmd

1
2

⎡⎢⎢⎢⎢⎢⎣
−KMV

1�t�T (Yt; y∗t )(σ ′
t )

−1θt

−(σ ′
t )

−1[KH
i�1�t�T (Yt; y∗t )]i=1�����d

− ∫ T
t κMV

2�t�v(Yt; y∗t ) dv(σ ′
t )

−1θt

−(σ ′
t )

−1 ∫ T
t [κHi�2�t�v(Yt; y∗t )]i=1�����d dv

⎤⎥⎥⎥⎥⎥⎦

(4.20)+

⎡⎢⎢⎢⎢⎣
LMV

1�t�T (Yt; y∗t )
LH1�t�T (Yt; y∗t )
LMV

2�t�T (Yt; y∗t )
LH2�t�T (Yt; y∗t )

⎤⎥⎥⎥⎥⎦ �

where NM → ∞, as M → ∞, εmd = limM→∞
√
M/NM and

(4.21)

Lt�T (Yt; y∗t )′ ≡
[
LMV

1�t�T (Yt; y∗t )′� LH1�t�T (Yt; y∗t )′�
LMV

2�t�T (Yt; y∗t )′� LH2�t�T (Yt; y∗t )′
]

is the terminal value of a Gaussian martingale with (deterministic) quadratic vari-
ation and conditional variance given by

(4.22)[L�L]t�T (Yt; y∗t ) =
T∫
t

Et
[
Ns(Ns)

′] ds = VARt[Ct�T ]�

(4.23)Ns = Es[DsCt�T ]�
The mean–variance component associated with terminal wealth gMV

1 (z; y∗t ) in-
duces the second-order bias function KMV

1�t�T (Yt; y∗t ) as defined in (4.7). The
components of the d-dimensional vector of hedging terms for terminal wealth
[gH1 (z; y∗t )]i induce the second-order bias functions KH

i�1�t�T (Yt; y∗t ) as given
in (4.7). In contrast, the mean–variance component for running consump-
tion gMV

2 (z; y∗t ) induces two second-order biases embedded in the function
κMV

2�t�v(Yt; y∗t ) as given in (4.9). Similarly, the components of the d-dimensional
vector of hedging terms for running consumption [gH2 (z; y∗t )]i induce the second-
order bias functions κHi�2�t�v(Yt; y∗t ) defined in (4.9).

The expression for the asymptotic error distribution (4.20) has two compo-
nents. The first one depends on the expected approximation error and corre-
sponds to the second-order bias of the estimator. To illustrate the role of the
parameter εmd, and the second-order bias, note that for i = 1� � � � � d confi-
dence intervals with coverage probability 1 − α, calculated on the basis of the
Gaussian process L, are[

ψ−
i (M�NM�α)�ψ

+
i (M�NM�α)

]
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where

ψ±
i (M�NM�α) ≡

√
Mπ̂∗

itX
∗
t

M�NM ±Φ−1(α/2)
σ
M�NM
ii√
M

with Φ the cumulative Gaussian distribution function and σ
M�NM
ii a conver-

gent estimator of the variance of the Gaussian martingale [Lt�T ]i in (4.21). As
M → ∞ the true coverage probability of this interval converges to

(4.24)P
(
π∗
itX

∗
t ∈ [

ψ−
i (M�NM�α)�ψ

+
i (M�NM�α)

]) → Ψ
(
α� δmdi

)
�

with

(4.25)Ψ(α� x) ≡ Φ
(
Φ−1((1 − α)/2

) − x
) −Φ

(
Φ−1(α/2)− x

)
�

(4.26)δmdi ≡ 1
2
εmd

[
VARt[Lt�T ]− 1

2Kt�T (Yt; y∗t )
]
i

and

Kt�T (Yt; y∗t ) ≡ −KMV
1�t�T (Yt; y∗t )(σ ′

t )
−1θt − (σ ′

t )
−1KH

1�t�T (Yt; y∗t )

−
T∫
t

κMV
2�t�v(Yt; y∗t ) dv(σ ′

t )
−1θt

(4.27)− (σ ′
t )

−1

T∫
t

κH2�t�v(Yt; y∗t ) dv�

where the d× 1 vectors of second-order biases associated with the hedging de-
mands for terminal wealth KH

1�t�v and running consumption κH2�t�v are given by
KH

1�t�v(Yt; y∗t )′ ≡ [KH
1�1�t�v(Yt; y∗t )� � � � �KH

d�1�t�v(Yt; y∗t )] and κH2�t�v(Yt; y∗t )′ ≡
[κH1�2�t�v(Yt; y∗t )� � � � � κHd�2�t�v(Yt; y∗t )].

The limit (4.24) shows that a confidence interval of nominal size α, based
on L, will suffer from size distortion as it will in fact cover the true value π∗

itX
∗
t

only with probability Ψ(α� δmdi ) and not 1 − α, as initially prescribed. The de-
gree of size distortion is measured by the distance

s
(
δmdi

) ≡ 1 − α−Ψ
(
α� δmdi

)
�

Given thatΨ(α� ·) is strictly monotone andΨ(α� 0) = 1−α, a confidence inter-
val has the requested nominal size if and only if there is no second-order bias,
i.e. δmdi = 0. In the univariate case d = 1, the degree of size distortion s(δmd1 )
is negatively related to VARt[Lt�T ], the asymptotic variance implied by the
Monte Carlo averaging procedure and positively related to εmd

2 Kt�T (Yt; y∗t ),
the second-order bias implied by the discretization scheme used for the reso-
lution of SDEs.
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When δmdi �= 0 efficiency comparisons based on the length of asymptotic
confidence intervals ψ+

i (M�NM�α)−ψ−
i (M�NM�α) are invalid, because the

asymptotic coverage probability is less than the requested nominal size. Con-
clusions pertaining to the effects of various parameters should also be drawn
with care. For instance in the univariate case, note that a reduction in the vari-
ance of an estimator has two effects. On the one hand, it reduces the length
of a confidence interval. On the other hand, it also, if a second-order bias ex-
ists, increases the size distortion and therefore reduces the effective coverage
probability. This trade-off also appears when the numbers of replications M
and discretization points N are modified. If the variance of an estimator is
reduced by increasing M , leaving N unchanged, efficiency may appear to im-
prove when in fact the effective coverage probability decreases. Alternatively,
if for a fixed budget of computation time, the number of discretization points
N becomes large (thus, the number of replications M goes to zero), the re-
sulting confidence interval of the estimator becomes free of size distortion (as
εmd = limM→∞

√
M/NM = 0) but its length explodes (as σM�NM

ii /
√
M → ∞).

The trade-off between the effects of M and N implies that the efficient
scheme is such that the number of Monte Carlo replications must be quadru-
pled whenever the number of discretization points is doubled (because εmd =
limM→∞

√
M/NM). In addition, the asymptotic second-order bias has to be

taken into account in order to draw valid efficiency comparisons. Methods to
correct for the second-order bias require the calculation of the function K. Ex-
pressions for bias corrected estimators are provided in Detemple et al. (2005c).

A similar result applies to MCMD estimators based on the Doss transfor-
mation (see Section 3.2). The use of the Doss transformation increases the
rate of convergence of the Euler scheme, but not the rate of convergence
of the expected approximation error. The associated portfolio estimator con-
verges at the same speed as the estimator based on the Euler scheme without
Doss transformation, has the same asymptotic covariance matrix but a differ-
ent second-order bias. Likewise, using the Milshtein scheme does not improve
the rate of convergence and produces an asymptotic error distribution with
the same covariance matrix. The sole modification is the expression for the
second-order bias (see Detemple et al., 2005c for details).

4.4 Asymptotic properties of MCC estimators

MCC estimators are described in (3.14)–(3.16). In what follows we examine
the error behavior for (3.16). Similar convergence results hold for estimators
based on (3.14) and (3.15). With the definitions

(4.28)Ft�T ≡ f1(Zt�T ; y∗t )+
∫ T

t
f2(Zt�v; y∗t ) dv

where

(4.29)f1(z; y) = z1J(yz1� z5)�
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(4.30)f2(z; y) = z1I(yz1� z5)

the estimation error is (eM�N�h
t�T )′ = [(eM�N�h

1�t�T )′� (eM�N�h
2�t�T )′] with

(4.31)

eM�N�h
1�t�T ≡ (σ ′

t )
−1

(
1
h

EM
t

[
f1

(
ZN
t�T ; y∗t

)
�hWt

]
− (

Et
[
Dtf1(Zt�T ; y)

]
|y=y∗t

)′)
�

(4.32)

eM�N�h
2�t�T ≡ (σ ′

t )
−1

(
1
h

EM
t

[ T∫
t

f2
(
ZN
t�ηNv

; y∗t
)

dv �hWt

]

−
(

Et

[
Dt

T∫
t

f2(Zt�v; y) dv

]
|y=y∗t

)′ )
�

and �hWt ≡ Wt+h − Wt . The asymptotic behavior of the error is described in
the next proposition.

Proposition 5. Assume that f1� f2 ∈ C3(Rdz) and suppose that fi(Zt�v; y∗t ) ∈
D1�2 for i = 1� 2. LetK1�t�v(Yt; y∗t ) be defined for f1 as in (4.7) and κ2�t�v(Yt; y∗t )
for f2 as in (4.9). Define the events

F1(N� h� r) =
{∥∥∥∥QN�h

1�t�T (y
∗
t )−

1
2

Et
[
QN�h

1�t�T (y
∗
t )

]∥∥∥∥ > r

}
�

F2(N� h� r) =
{∥∥∥∥∥

T∫
t

(
QN�h

2�t�ηNv
(y∗t )−

1
2

Et
[
QN�h

2�t�ηNv
(y∗t )

])
dv

∥∥∥∥∥ > r

}
�

G1(h� r) =
{∥∥∥∥f1(Zt�T ; y∗t )

�hWt

h
− Et

[
f1(Zt�T ; y∗t )

�hWt

h

]∥∥∥∥ > r

}
�

G2(h� r) =
{∥∥∥∥∥

T∫
t

f2(Zt�v; y∗t ) dv
�hWt

h

− Et

[ T∫
t

f2(Zt�v; y∗t ) dv
�hWt

h

]∥∥∥∥∥ > r

}

where, for j = 1� 2, the processes QN�h
j�t�· are given by

(4.33)QN�h
j�t�v(y

∗
t ) ≡ N

(
fj

(
ZN
t�v; y∗t

) − fj(Zt�v; y∗t )
)�hWt

h
�
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Suppose that the conditions

(4.34)

lim
r→∞ lim sup

h�N

Et

[
1F1(N�h�r)

∥∥∥∥QN�h
1�t�T (y

∗
t )−

1
2

Et
[
QN�h

1�t�T (y
∗
t )

]∥∥∥∥] = 0�

(4.35)

lim
r→∞ lim sup

h�N

Et

[
1F2(N�h�r)

∥∥∥∥∥
T∫
t

(
QN�h

2�t�ηNv
(y∗t )

− 1
2

Et
[
QN�h

2�t�ηNv
(y∗t )

])
dv

∥∥∥∥∥
]

= 0�

(4.36)

lim
r→∞ lim sup

h

Et

[
1G1(h�r)

∥∥∥∥f1(Zt�T ; y∗t )
�hWt

h

− Et

[
f1(Zt�T ; y∗t )

�hWt

h

]∥∥∥∥2]
= 0�

(4.37)

lim
r→∞ lim sup

h

Et

[
1G2(h�r)

∥∥∥∥∥
T∫
t

f2(Zt�v; y∗t ) dv
�hWt

h

− Et

[ T∫
t

f2(Zt�v; y∗t ) dv
�hWt

h

]∥∥∥∥∥
2]

= 0

hold. Then, as M → ∞,

M1/3e
M�NM�hM
t�T ⇒ εc1(σ

′
t )

−1
(
∂sEs

[ Dsf1(Zt�T ; y∗t )
Ds

∫ T
t f2(Zt�v; y∗t ) dv

])′

|s=t

+ εc2
1
2
(σ ′

t )
−1

(
Dt

[
K1�t�T (Yt; y)∫ T

t κ2�t�v(Yt; y) dv

])′

|y=y∗t
(4.38)+ (

I2 ⊗ (σ ′
t )

−1)Ot�T (Yt; y∗t )�
where ⊗ denotes the Kronecker product.7 In (4.38) the convergence parame-
ters satisfy NM� 1/hM → ∞ when M → ∞, and the constants are εc1 =
limM→∞M1/3hM and εc2 = limM→∞M1/3/NM . The 2d-dimensional Gaussian
martingale Ot�T has (deterministic) quadratic variation

[O�O]t�T (Yt; y∗t )
= Et

[
f1(Zt�T ; y∗t )2Id f1(Zt�T ; y∗t )

∫ T
t f2(Zt�v; y∗t ) dv Id

f1(Zt�T ; y∗t )
∫ T
t f2(Zt�v; y∗t ) dv Id (

∫ T
t f2(Zt�v; y∗t ) dv)2Id

]
�

7 The Kronecker product of an m×n matrix A and a p×q matrix B corresponds to the mp×nq matrix

A⊗ B ≡ [AijB]j=1�����n
i=1�����m.
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The asymptotic error distribution has three components. The first two lines
on the right-hand side of (4.38) are second-order bias terms: the first line is
due to the approximation of the Brownian increment by the discrete difference
�hWt , the second line to the approximation of the diffusion by the solution of
the discretized SDE. The last line on the right-hand side of (4.38) is a martin-
gale component associated with the estimation of the mean by an average over
independent replications.

4.5 Asymptotic properties of MCFD estimators

Recall that Z4�t�v ≡ Yv and, for any functional Ht�v of Y , let ∇t�zj�4Ht�v

denote the jth element of the tangent process associated with an infinites-
imal perturbation of the state variable Yj�t . To simplify the notation define
the d × k matrix process γ′

t ≡ γ(t� Yt)
′ ≡ [(σ ′)−1(σY )′](t� Z4�t�t). With

these definitions, the approximation error for MCFD estimators is given by
(eM�N�τ�α
t�T )′ = [(eM�N�τ�α

1�t�T )′� (eM�N�τ�α
2�t�T )′] with

(4.39)eM�N�τ�α
1�t�T ≡ eMV �M�N

1�t�T + eH�M�N�τ�α
1�t�T �

(4.40)eM�N�τ�α
2�t�T ≡ eMV �M�N

2�t�T + eH�M�N�τ�α
2�t�T �

where eMV �M�N
1�t�T is given by (4.15), eMV �M�N

2�t�T by (4.17), and the hedging term
approximation errors by

(4.41)

eH�M�N�τ�α
1�t�T ≡ γ′

t

[
EM
t

[∇τ�α
t�zj�4

f1
(
ZN
t�T ; y∗t

)]
− Et

[∇t�zj�4f1(Zt�T ; y∗t )
]]
j=1�����k�

(4.42)

eH�M�N�τ�α
2�t�T ≡ γ′

t

[
EM
t

[
∇τ�α
t�zj�4

T∫
t

f2
(
ZN
t�ηNv

; y∗t
)

dv

]

− Et

[
∇t�zj�4

T∫
t

f2(Zt�v; y∗t ) dv

]]
j=1�����k

�

For MCFD estimators, the estimators of the mean–variance components are
identical to those of MCMD: their convergence properties are as described
in Proposition 4. The asymptotic error behavior of the hedging component is
as follows. To simplify matters, we assume that (τj� αj) = (τ� α) for all j =
1� � � � � k.

Proposition 6. Assume that the functions f1� f2 ∈ C3(Rdz) and suppose that
fi(Zt�T ; y∗t ) ∈ D1�2 for i = 1� 2. Let K1�t�v(Yt; y∗t ) be defined for f1 as in (4.7)
and κ2�t�v(Yt; y∗t ) for f2 as in (4.9). Define the events

F
j
1(N� τ� r) =

{∣∣∣∣N∇τ�α
t�zj�4

f1
(
ZN
t�T ; y∗t

) − 1
2
∂yjK1�t�T (Yt; y∗t )

∣∣∣∣ > r

}
�
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F
j
2(N� τ� r) =

{∣∣∣∣∣N∇τ�α
t�zj�4

T∫
t

f2
(
ZN
t�ηNv

; y∗t
)

dv

− 1
2

T∫
t

∂yjκ2�t�ηNv
(Yt; y∗t ) dv

∣∣∣∣∣ > r

}
�

G
j
1(τ� r) =

{∣∣∇τ�α
t�zj�4

f1(Zt�T ; y∗t )− Et
[∇τ�α

t�zj�4
f1(Zt�T ; y∗t )

]∣∣ > r
}
�

G
j
2(τ� r) =

{∣∣∣∣∣∇τ�α
t�zj�4

T∫
t

f2(Zt�v; y∗t ) dv

− Et

[
∇τ�α
t�zj�4

T∫
t

f2(Zt�v; y∗t ) dv

]∣∣∣∣∣ > r

}
�

Suppose that the conditions

(4.43)

lim
r→∞ lim sup

1/τ�N
Et

[
1
F
j
1(N�τ�r)

∣∣∣∣N∇τ�α
t�zj�4

f1
(
ZN
t�T ; y∗t

)
− 1

2
∂yjK1�t�T (Yt; y∗t )

∣∣∣∣] = 0�

(4.44)

lim
r→∞ lim sup

1/τ�N
Et

[
1
F
j
2(N�τ�r)

∣∣∣∣∣N∇τ�α
t�zj�4

T∫
t

(
f2

(
ZN
t�ηNv

; y∗t
)

− 1
2
∂yjκ2�t�ηNv

(Yt; y∗t )
)

dv

∣∣∣∣∣
]

= 0�

(4.45)

lim
r→∞ lim sup

1/τ
Et

[
1
G
j
1(τ�r)

∣∣∇τ�α
t�zj�4

f1(Zt�T ; y∗t )

− Et
[∇τ�α

t�zj�4
f1(Zt�T ; y∗t )

]∣∣2] = 0�

(4.46)

lim
r→∞ lim sup

1/τ
Et

[
1
G
j
2(τ�r)

∣∣∣∣∣∇τ�α
t�zj�4

T∫
t

f2(Zt�v; y∗t ) dv

− Et

[
∇τ�α
t�zj�4

T∫
t

f2(Zt�v; y∗t ) dv

]∣∣∣∣∣
2]

= 0

hold, for all j = 1� � � � � k. Then, as M → ∞,
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(i) if α = 1/2 (MCCFD) we have

M1/2e
H�M�NM�τM�α
t�T

⇒ ε
fcd
1
24

[
γ′
tEt[∇3

t�zj�4
f1(Zt�T ; y∗t )]j=1�����k

γ′
tEt[∇3

t�zj�4

∫ T
t f2(Zt�v; y∗t ) dv]j=1�����k

]

+ ε
fcd
2
2

[
γ′
t[∂yjK1�t�T (Yt; y∗t )]j=1�����k

γ′
t[∂yj

∫ T
t κ2�t�ηNv

(Yt; y∗t ) dv]j=1�����k

]
(4.47)+ (I2 ⊗ γ′

t)Pt�T (Yt; y∗t )�
where NM� 1/τM → ∞ when M → ∞, and where ε

fcd
1 =

limM→∞M1/4τM and εfcd2 = limM→∞M1/2/NM ,
(ii) if α �= 1/2 (MCBFD and MCFFD)

M1/2e
H�M�NM�τM�α
t�T

⇒ ε
fd
1 δ(α)

[
γ′
tEt[∇2

t�zj�4
f1(Zt�T ; y∗t )]j=1�����k

γ′
tEt[∇2

t�zj�4

∫ T
t f2(Zt�v; y∗t ) dv]j=1�����k

]

+ ε
fd
2
2

[
γ′
t[∂yjK1�t�T (Yt; y∗t )]j=1�����k

γ′
t[∂yj

∫ T
t κ2�t�ηNv

(Yt; y∗t ) dv]j=1�����k

]
(4.48)+ (I2 ⊗ γ′

t)Pt�T (Yt; y∗t )�
where NM� 1/τM → ∞ when M → ∞, with δ(α) = (2α − 1)/2, and
where εfd1 = limM→∞M1/2τM and εfd2 = limM→∞M1/2/NM . The ran-
dom variable Pt�T (Yt; y∗t ) is the terminal point of a 2d × 1 dimensional
Gaussian martingale with quadratic variation

[P� P]t�T (Yt; y) = Et�Yt

[ T∫
t

L(v�Zt�v; y)L(v�Zt�v; y)′ dv

]
�

where

L(v�Zt�v; y) = Ev�Zt�v

[
Dv

[
(∇v�Zt�vf1(Zt�T ; y))′

(∇v�Zt�v

∫ T
t f2(Zt�s; y) ds)′

]]
�

As for MCC estimators the asymptotic error distribution has three compo-
nents. The first two are second-order bias terms due to the finite difference
approximation of the tangent process and to the numerical approximation
of SDEs characterizing the underlying diffusions. As for MCMD and MCC
estimators there is a trade-off between these error components. Also, it is
apparent that the convergence rate of MCFD estimators is better than that
of MCC estimators. But, the nature of the differencing scheme (i.e. forward,
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backward or central) only affects the second-order bias. The last component,
Pt�T , is the terminal point of a Gaussian martingale. It describes the asymptotic
distribution of the normalized difference between the empirical mean based on
random variables drawn from the true distribution of the state variables and
the true conditional expectation. This component is present even if simulation
from the true distribution of the state variables is feasible.

For continuous functions the speeds of convergence of MCFD and MCMD
estimators are identical. But even if sampling from the true distribution is pos-
sible, MCFD estimators will suffer from an additional second-order bias term
due to the finite difference approximation of the tangent process. For dis-
continuous functions MCFD estimators converge more slowly than MCMD
estimators (see Detemple et al., 2005d): MCCFD converges at the rate M−2/5,
whereas MCFFD and MCBFD converge at the same rate as MCC, M−1/3.

4.6 Remarks and interpretations

The asymptotic MCMD error distribution depends on the number of Monte
Carlo replications M used to approximate the conditional expectation and the
number of discretization points N used to approximate the random variables
in the expectation. As shown by Duffie and Glynn (1995) efficient Monte Carlo
estimators of conditional expectations are obtained if the parametersM�N are
chosen along the diagonal

√
M/N = constant of the space of convergence pa-

rameters. Efficient Monte Carlo estimators, unfortunately, have noncentered
error distributions, therefore suffer from a second-order bias. As discussed in
Section 4.3, second-order biases cannot be ignored when the relative efficien-
cies of different Monte Carlo estimators are compared. For MCMD estimators
Detemple et al. (2005c) provide analytic formulas for the second-order bias
and second-order bias corrected estimators. They show that second-order bias
corrected estimators are asymptotically equivalent to (generally) infeasible es-
timators that sample from the unknown true distribution of the state variables.
Propositions 5 and 6 reveal that second-order biases are even more important
for MCC and MCFD, as they both depend on an additional perturbation para-
meter. This dependence implies additional second-order bias components that
appear difficult to correct for.

It should also be noted that the analysis above treats the shadow price of
wealth y∗t as a known quantity. This is clearly not the case when preferences
are nonhomothetic. In this situation a Monte Carlo method (with discretized
diffusion) can be combined with a numerical fixed point scheme to estimate
the shadow price. The results of Proposition 3 show that the error associated
with the estimation of y∗t is of order 1/

√
M as long as limM→∞

√
M/NM = ε

for some ε ∈ (0�∞). As MCC estimators converge at the slower rate 1/M1/3

(see Proposition 5) the asymptotic error distribution is the same for known and
estimated y∗t . In contrast, because MCMD and MCFD estimators with known
y∗t converge at the faster rate 1/

√
M (see Propositions 4 and 6), the approxi-

mation error due to the estimation of y∗t will not be asymptotically negligible.
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An additional second-order bias term due to the approximation error of the
shadow price of wealth will appear and affect the lengths of asymptotic con-
fidence intervals. A detailed analysis of the error distribution is beyond the
scope of this review article.

4.7 Asymptotic properties of MCR estimators

The portfolio estimator of Brandt et al. (2005) induces three error terms:
the remainder of the Taylor approximation of the value function, the error due
to the projections of conditional expectations on a polynomial basis and the
Monte Carlo error introduced by the need to simulate random variables in
order to perform these projections.

The convergence behavior of the MCR portfolio estimator has yet to be
studied. In contrast, convergence results for Monte Carlo methods involving
projections on basis functions are available for optimal stopping problems aris-
ing in the valuation of American contingent claims (see Tsitsiklis and van Roy,
2001; Clément et al., 2002; Egloff, 2005; and Glasserman and Yu, 2004). Al-
though related, these convergence studies do not apply directly to the setting
of Brandt et al. (2005): the control in the portfolio choice problem is not a bi-
nary variable and therefore has a more complex structure than the control of
an optimal stopping problem. In addition, the papers of Tsitsiklis and van Roy
(2001) and Clément et al. (2002) prove convergence but do not provide a con-
vergence rate. Like the trade-off between the number of discretization points
and the number of Monte Carlo replications described in Proposition 3, there
is an optimal trade-off between the number of independent replications and
the number of elements in the projection basis for the polynomial estimators
of Brandt et al. (2005) and Longstaff and Schwartz (2001). Glasserman and
Yu (2004) provide results for optimal stopping problems involving Brownian
motion and geometric Brownian motion processes. In that context they show
that the number of basis functions has to grow surprisingly fast to obtain con-
vergence. For Brownian motion the number of polynomials K = KM for which
accurate estimation is possible fromM replications is O(logM). For geometric
Brownian motion this growth rate is O(

√
logM): the number of paths has to

grow (faster than) exponentially with the number of polynomials.
All these results are derived in the context of American option pricing mod-

els. There are no reasons to expect better convergence results for the more
complicated asset allocation problems. Egloff (2005) shows that results can
be improved when bounded basis functions are used.8 He also shows that the
approximation error scales exponentially with the number of time steps. This

8 A similar result is obtained by Gobet et al. (2005) for regression-based Monte Carlo methods used to
solve backward stochastic differential equations. They provide a full convergence analysis in terms of
L2 errors and a central limit theorem.
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suggests that the MCR error will be large even for a moderate number of re-
balancing times. This conjecture appears to be supported by the simulation
evidence in Detemple et al. (2005b).

5 Performance evaluation: a numerical study

5.1 Experimental setting

In order to compare the different methods we use a model with an explicit
solution. In this model the investor has constant relative risk aversion R (hence
Corollary 1 applies) and operates in a market with a single risky stock and
the riskless asset. There is a single Brownian motion W . The interest rate r is
constant and the market price of risk θ follows the Ornstein–Uhlenbeck (OU)
process

(5.1)dθt = A(θ− θt) dt + Σ dWt; θ0 given�

whereA�θ�Σ are positive constants. The stock return has constant volatility σ .
The investor cares about the expected utility of terminal wealth (there is no
intermediate consumption).

The closed form solution for the optimal portfolio policy can be found in
Wachter (2002).9 Assume that the determinant condition

(5.2)Σ−2A2 + ρ
(
1 + 2Σ−1A

)
� 0�

holds, where ρ = 1 − 1/R, and define the constants

G = −Σ−1A−
√
Σ−2A2 + ρ

(
1 + 2Σ−1A

)
and α = 2(A + ΣG). The optimal stock demand is π∗

t = π∗
1t + π∗

2t where the
mean–variance demand is π∗

1t = (1/R)(σt)−1θt and the intertemporal hedging
demand is

π∗
2t = − ρ

R

[
B(t� T)+ C(t� T)θt

]
Σσ−1�

with

(5.3)B(t� T) = 2(1 − exp(−1
2α(T − t)))2

α(α+ (ρ−G)Σ(1 − exp(−α(T − t))))
Aθ�

(5.4)C(t� T) = 1 − exp(−α(T − t))

α+ (ρ−G)Σ(1 − exp(−α(T − t)))
�

9 Wachter shows that the problem reduces to a system of Riccatti ordinary differential equations. Liu
(1998) and Schroder and Skiadas (1999) show that the same reduction applies when state variables
follow affine processes.
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5.2 Numerical results

This section reports comparison results for MCMD, MCC, MCFD and
MCR. Three versions of MCFD, with forward finite differences (MCFFD),
backward finite differences (MCBFD) and central finite differences (MCCFD)
are tested. Three versions of MCR are also evaluated. The first one regresses
on the excess returns for the last period (MCR-lin-1), the second on the excess
returns for the last two periods (MCR-lin-2), the last one on the excess returns
for the last four periods (MCR-lin-3).

In order to provide conclusive evidence about the efficiency of the differ-
ent Monte Carlo methods, we draw 10,000 configurations of the parameters
(R� T� θ0� r) from independent uniform distributions. For each draw and each
method, relative errors and execution times are recorded. A measure of ac-
curacy, root mean square relative error (RMSRE), and a measure of speed,
inverse average time (IAT), are computed from this sample, again for each
method.10 This experiment is repeated for different discretization values N
and different numbers of trajectories M . The speed-accuracy trade-off can
then be graphed to evaluate the relative performances of the candidate meth-
ods.

In order to use an Euler scheme that guarantees positive state price density
we discretize log ξ and calculate the SPD ξ as the exponential of the discretized
logarithmic SPD. Given the difficulties encountered in implementations of
higher order polynomial-regression methods (see Detemple et al., 2005b) we
only focus on the linear approximations MCR-lin-1, MCR-lin-2, MCR-lin-3.

The simulation experiment is designed in the following manner. The
risk aversion parameter R is drawn from a uniform distribution with do-
main [0�5� 5], the investment horizon T from a uniform distribution over
the discrete set {1� 2� � � � � 5}, the initial MPR θ from a uniform distrib-
ution over [0�30� 1�50] and the constant interest rate r from a uniform
distribution over [0�01� 0�10]. These distributions are assumed to be in-
dependent. Each draw consists of a vector [R�T� θ� r]. Errors and com-
putation times are recorded, for each method, for the pairs (M�N) =
{(1000� 10)� (4000� 20)� (9000� 30)� (16000� 40)}. These combinations of M�N
are chosen so as to quadruple M when N is doubled, leaving the ratio

√
M/N

constant.11 For MCC and MCFD an auxiliary parameter has to be selected.
For MCC the time step h for the initial increment of the Brownian motion is
set equal to the time step 1/N , as in Cvitanic et al. (2003). Initial MPRs for
MCFD methods are perturbed by setting τ = 0�1. As is the case for M and
N these auxiliary parameters decrease along the efficient path, in the manner

10 IAT is measured by the number of portfolios computed per second.
11 The ratio

√
M/N is the efficiency ratio for MCMD. Increasing M and N while maintaining this ratio

constant ensures convergence to the true value without modifying the structure of the second-order
bias (see Detemple et al., 2005c).
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Fig. 1. This figure shows the speed-accuracy trade-off for MCMD, MCFD, MCC and MCR meth-
ods. MCCO corresponds to (3.15) and MCCN implements (3.16). All MCFD estimators are based
on (3.22). Speed is measured by the inverse of the average computation time over the sample. Ac-
curacy is measured by root mean square relative error. Four points, corresponding to the pairs
(M�N) = {(1000� 10)� (4000� 20)� (9000� 30)� (16000� 40)}, are graphed for each method. The auxil-
iary parameter for MCC is h = 1/N and the initial auxiliary parameter for MCFD is τ = 0�1. Both

parameters decrease for efficient estimators as described in Propositions 5 and 6.

prescribed by the asymptotic convergence results in Propositions 5 and 6. For
MCC the parameter h is cut in half if N doubles and M is multiplied by eight.
For MCFD the parameter τ is cut in half if N doubles and M quadruples.

Sample statistics for RMSRE and IAT are based on 6415 “good” draws, i.e.
draws for which all methods provide real results, out of the 10,000 replications.
To provide perspective it is useful to note that all the “bad draws” are recorded
when one of the three MCR methods fails to produce a result. Eliminating bad
draws therefore advantages MCR.

Figure 1 displays the results from this experiment. The first observation
is that MCMD dominates MCR, MCC and MCFD. At the same time MCR
weakly dominates MCC, whereas MCC fares better than MCFD. MCMD im-
proves on MCR by a factor in excess of 10. For a speed in the neighborhood
of 10 the RMSRE of MCMD nears 10−2 while that of MCR is about 3 × 10−1.
Given the slopes of these trade-offs along MCMD and MCR this gap is ex-
pected to widen if M and N are further increased.

Next, we compare different versions of Monte Carlo estimators within each
class.
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Fig. 2. This figure shows the speed-accuracy trade-off for three MCR-lin methods. Speed
is measured by the inverse of the average computation time over the sample. Accuracy
is measured by root mean square relative error. Four points, corresponding to the pairs

(M�N) = {(1000� 10)� (4000� 20)� (9000� 30)� (16000� 40)}, are graphed for each method.

Figure 2 illustrates that the three regression methods have a very similar
performance: regressing on additional lagged returns does not improve perfor-
mance. As a matter of fact it turns out that adding lagged regressors may cause
the fixed point algorithm proposed by Brandt et al. (2005) to fail more fre-
quently. Among the 10,000 configurations of [R�T� θ� r], MCR-lin-1 produced
7229 and MCR-lin-2 6984 good draws. But, in accordance with the results for
American option pricing in Longstaff and Schwartz (2001), when MCR-lin pro-
vides results, the performance does not seem to depend on the choice of the
orthonormal basis. This, however, is not a general property. In the present ex-
ample this finding may simply be due to the fact that the true policy is linear
in the MPR. MCR-lin-1 is therefore closest to the functional form of the true
portfolio weight.

A similar comparison for MCC methods in Figure 3 reveals that the per-
formance of both MCC methods is similar. Close inspection indicates that the
MCC method based on (3.16) performs slightly better than the original method
proposed by Cvitanic et al. (2003), based on (3.15). The RMSRE of the mod-
ified MCC method may be smaller because it estimates the hedging demand
directly. In contrast, the original MCC method calculates the total portfolio
weight but does not exploit the fact that for CRRA preferences the mean–
variance component is known in closed form. The small size of the hedging
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Fig. 3. This figure shows the speed-accuracy trade-off for two MCC methods. MCCO corre-
sponds to (3.15) and MCCN implements (3.16). Speed is measured by the inverse of the aver-
age computation time over the sample. Accuracy is measured by root mean square relative er-
ror. Four points, corresponding to the triplets (M�N�h) = {(1000� 10� 1/10)� (4000� 20� 1/20)�
(9000� 30� 1/30)� (16000� 40� 1/40)}, are graphed for each method. The auxiliary time step for the initial

Brownian increment h is chosen equal to the discretization step 1/N .

demand for horizons between one and five years may be the source of the
smaller relative error produced by the modified MCC method.

Finally we compare three different MCFD methods. The results in Figure 4
show that MCBFD estimators outperform both MCFFD and MCCFD estima-
tors. MCCFD estimators are least efficient. This may be due to the fact that
these estimators require the simulation of two additional perturbed processes,
whereas MCFFD and MCBFD are based on a one-sided perturbation of the
MPR diffusion. Hence, the computational effort to calculate MCCFD estima-
tors is greater. At the same time Proposition 6 establishes that the speed of
convergence for all methods is the same. The three MCFD estimators only
differ in the second-order bias for which a ranking based on the theoretical
results does not appear possible. The simulation in Figure 4 suggests that the
second-order bias is larger for MCCFD than MCBFD and MCFFD.

6 Conclusion

Monte Carlo simulation is the approach of choice for high dimensional
problems with large numbers of underlying variables. In contrast to alterna-
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Fig. 4. This figure shows the speed-accuracy trade-off for three MCFD methods based on (3.22).
Speed is measured by the inverse of the average computation time over the sample. Accu-
racy is measured by root mean square relative error. Four points, corresponding to the triples
(M�N� τ) = {(1000� 10� 1/10)� (4000� 20� 1/20)� (9000� 30� 1/30)� (16000� 40� 1/40)}, are graphed for

each method.

tives such as lattice methods (finite difference and finite element schemes,
Markov chain approximations, quantization and quadrature schemes, etc.),
simulation methods do not suffer from the well-known curse of dimensionality.
As a result they emerge as natural candidates for the numerical implementa-
tion of optimal portfolio rules in high dimensional portfolio choice models.
MCMD, MCC, MCFD and MCR, are various simulation schemes that have
been proposed and studied during the past few years with this particular ap-
plication in mind. Among these candidates, MCMD has shown a number of
attractive features. One important consideration is that it is the only simula-
tion method that attains the optimal convergence rate implied by the central
limit theorem. In numerical experiments conducted it also showed superior
efficiency, as measured by the trade-off between speed of computation and
accuracy.

Asset allocation models with complete markets and diffusion state variables
are natural candidates for the application of MCMD. In these settings the op-
timal portfolios can be expressed as conditional expectations of functionals
of the state variables and their Malliavin derivatives, and these can be cal-
culated numerically using Monte Carlo simulation. Settings with incomplete
markets and more general forms of portfolio constraints prove more challeng-
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ing. MCMD extends to these models as well, when the dual problem has an
explicit solution. Constrained problems, embedding affine models, for which
this can be achieved are described in Detemple and Rindisbacher (2005). Ex-
tensions of the method to more general settings, where an explicit solution to
the dual is not available, remain to be carried out.
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Appendix A. An introduction to Malliavin calculus

The Malliavin calculus is a calculus of variations for stochastic processes.
It applies to Wiener (or Brownian) functionals, i.e. random variables and sto-
chastic processes that depend on the trajectories of Brownian motions. The
Malliavin derivative, which is one element of this calculus of variations, mea-
sures the effect of a small variation in the trajectory of an underlying Brownian
motion on the value of a Wiener functional.

A.1 Smooth Brownian functionals

To set the stage consider a Wiener space generated by the d-dimensional
Brownian motion process W = (W1� � � � �Wd)

′. As is well known we can asso-
ciate each state of nature with a trajectory of the Brownian motion (the set of
states of nature is the space of trajectories). Let (t1� � � � � tn) be a partition of
the time interval [0� T ] and let F(W ) be a random variable of the form

F(W ) ≡ f (Wt1� � � � �Wtn)�

where f is a continuously differentiable function. The random variable F(W )
depends (smoothly) on the d-dimensional Brownian motionW at a finite num-
ber of points along its trajectory; it is called a smooth Brownian functional.

A.2 The Malliavin derivative of a smooth Brownian functional

The Malliavin derivative of F is the change in F due to a change in the
path of W . To simplify matters assume first that d = 1, i.e. there is a unique
Brownian motion. Consider shifting the trajectory of W by ε starting at time t.
Suppose tk � t < tk+1 for some k = 1� � � � � n− 1. The Malliavin derivative of
F at t is defined by

DtF(W ) ≡ ∂f (Wt1 + ε1[t�∞[(t1)� � � � �Wtn + ε1[t�∞[(tn))
∂ε

∣∣∣∣
ε=0



910 J. Detemple, R. Garcia and M. Rindisbacher

(A.1)= lim
ε→0

F(W + ε1[t�∞[)− F(W )

ε
�

where 1[t�∞[ is the indicator process of the set [t�∞) (that is 1[t�∞[(s) = 1 for
s ∈ [t�∞); = 0 otherwise). In more compact form we can write

(A.2)DtF(ω) =
n∑

j=k
∂jf (Wt1� � � � �Wtk� � � � �Wtn)1[t�∞[(tj)�

where ∂jf is the derivative with respect to the jth argument of f .
A simple example will illustrate the notion. Consider the price of the stock

in the Black–Scholes model. Its value at date T is given by

ST = S0 exp
((

μ− 1
2
σ2

)
T + σWT

)
�

where WT is the terminal value of the univariate Brownian motion process
defining the uncertainty in this model. Since ST = f (WT ) with f (x) =
S0 exp((μ − 1

2σ
2)T + σx) it is clear that ST is a smooth Brownian functional.

A direct application of the definition gives

DtST = ∂f (WT )1[t�∞[(T) = σS0 exp
((

μ− 1
2
σ2

)
T + σWT

)
= σST �

In this example the stock price depends only on the Brownian motion at
time T . The Malliavin derivative is then the derivative with respect to WT . This
reflects the fact that a perturbation of the path of the Brownian motion from t
onward, affects ST only through the terminal value WT .

Suppose next that d > 1, i.e. the underlying Brownian motion is multi-
dimensional. The Malliavin derivative of F at t is now a 1 × d-dimensional
vector denoted by DtF = (D1tF� � � � �DdtF). The ith coordinate of this vector,
DitF , captures the impact of a perturbation in Wi by ε starting at some time t.
If tk � t < tk+1 we have

(A.3)DitF =
n∑

j=k

∂f

∂xij
(Wt1� � � � �Wtk� � � � �Wtn)1[t�∞[(tj)�

where ∂f/∂xij is the derivative with respect to the ith component of the jth
argument of f (i.e. the derivative with respect to Witj ).

A.3 The domain of the Malliavin derivative operator

The definition above can be extended to random variables that depend on
the path of the Brownian motion over a continuous interval [0� T ]. This ex-
tension uses the fact that a path-dependent functional can be approximated
by a suitable sequence of smooth Brownian functionals. The Malliavin deriva-
tive of the path-dependent functional is then given by the limit of the Malliavin
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derivatives of the smooth Brownian functionals in the approximating sequence.
The space of random variables for which Malliavin derivatives are defined is
called D1�2. This space is the completion of the set of smooth Brownian func-
tional with respect to the norm ‖F‖1�2 = (E[F2] + E[∫ T0 ‖DtF‖2 dt]) 1

2 where
‖DtF‖2 = ∑

i(DitF)
2.

A.4 Malliavin derivatives of Riemann, Wiener and Itô integrals

This extension enables us to handle stochastic integrals, which depend on
the path of the Brownian motion over a continuous interval, in a very nat-
ural manner. Consider, for instance, the stochastic Wiener integral F(W ) =∫ T

0 h(t) dWt , where h(t) is a function of time and W is one-dimensional. Inte-
gration by parts shows that F(W ) = h(T)WT − ∫ T

0 Ws dh(s). Straightforward
calculations give

F(W + ε1[t�∞[)− F(W ) = h(T)
(
WT + ε1[t�∞[(T)

)
−

T∫
0

(
Ws + ε1[t�∞[(s)

)
dh(s)

−
(
h(T)WT −

T∫
0

Ws dh(s)

)

= h(T)ε−
T∫

0

ε1[t�∞[(s) dh(s) = εh(t)�

It then follows, from the definition (A.1), that DtF = h(t). The Malliavin
derivative of F at t is the volatility h(t) of the stochastic integral at t: this
volatility measures the sensitivity of the random variable F to the Brownian
innovation at t.

Next, let us consider a random Riemann integral with integrand that de-
pends on the path of the Brownian motion. This Brownian functional takes
the form F(W ) ≡ ∫ T

0 hs ds where hs is a progressively measurable process (i.e.
a process that depends on time and the past trajectory of the Brownian mo-
tion) such that the integral exists (i.e.

∫ T
0 |hs| ds < ∞ with probability one).

We now have

F
(
W + ε1[t�∞[) − F(W ) =

T∫
0

(
hs

(
W + ε1[t�∞[) − hs(W )

)
ds�

Since limε→0(hs(W + ε1[t�∞[ − hs(W ))/ε = Dths(W ) it follows that DtF =∫ T
t Dths ds.
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Finally, consider the Itô integral F(ω) = ∫ T
0 hs(W ) dWs. To simplify the

notation write hε ≡ h(W + ε1[t�∞[) and W ε ≡ W + ε1[t�∞[. Integration by
parts then gives

Fε − F =
T∫

0

(
hεs − hs

)
dWs +

T∫
0

hεs d
(
W ε
s −Ws

)

=
T∫
t

(
hεs − hs

)
dWs + hεT

(
W ε
T −WT

) − ∫ T

0

(
W ε
s −Ws

)
dhεs

−
T∫

0

d
[
W ε −W�hε

]
s

=
T∫
t

(
hεs − hs

)
dWs + hεTε− ε

T∫
t

dhεs

=
T∫
t

(
hεs − hs

)
dWs + εhεt �

The second equality above uses hεs = hs for s < t to simplify the first in-
tegral and the integration by parts formula to expand the second integral.
The third equality is based on the fact that the cross-variation is null (i.e.
[W ε−W�hε]T = 0) because W ε

s −Ws = ε1[t�∞[(s) and 1[t�∞[(s) is of bounded
total variation.12 The last equality uses, again, the integration by parts for-
mula to simplify the last two terms. As limε→0(h

ε
s − hs)/ε = Dths we obtain

DtF = ht +
∫ T
t Dths dWs.

Malliavin derivatives of Wiener, Riemann and Itô integrals depending on
multidimensional Brownian motions can be defined in a similar manner. As in
Section A.2 the Malliavin derivative is a d-dimensional process which can be
defined component-by-component, by the operations described above.

A.5 Martingale representation and the Clark–Ocone formula

In Wiener spaces martingales with finite variances can be written as sums of
Brownian increments.13 That is, Mt = M0 + ∫ t

0 φs dWs for some progressively

12 The total variation of a function f is limN→∞
∑

tn∈ΠN([0�t]) |f (tn+1)− f (tn)| where ΠN([0� t]) is a
partition with N points of the interval [0� t].
13 A Wiener space is the canonical probability space (C0(R+;Rd)�B(C0(R+;Rd))�P) of nowhere dif-
ferentiable functions C0, endowed with its Borel sigma field and the Wiener measure. The Wiener
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measurable process φ, which represents the volatility coefficient of the mar-
tingale. This result is known as the martingale representation theorem. One of
the most important benefits of Malliavin calculus is to identify the integrand φ
in this representation. This is the content of the Clark–Ocone formula.

The Clark–Ocone formula states that any random variable F ∈ D1�2 can be
decomposed as

(A.4)F = E[F] +
∫ T

0
Et[DtF] dWt�

where Et[·] is the conditional expectation at t given the information generated
by the Brownian motion W . For a martingale closed by F ∈ D1�2 (i.e. Mt =
Et[F]) conditional expectations can be applied to (A.4) to obtain Mt = E[F]+∫ t

0 Es[DsF] dWs.
An intuitive derivation of this formula can be provided along the follow-

ing lines. Assume that F ∈ D1�2. From the martingale representation the-
orem we have F = E[F] + ∫ T

0 φs dWs. Taking the Malliavin derivative on
each side, and applying the rules of Malliavin calculus described above, gives
DtF = φt +

∫ T
t Dtφs dWs. Taking conditional expectations on each side now

produces Et[DtF] = φt (given that Et[
∫ T
t Dtφs dWs] = 0 and φt is known

at t). Substituting this expression in the representation of F leads to (A.4).
The results above also show that the Malliavin derivative and the conditional

expectation operator commute. Indeed, let v � t and consider the martingale
M closed by F ∈ D1�2. From the representations for M and F above we ob-
tain DtMv = ∫ v

t DtEs[DsF] dWs + Et[DtF] and DtF = ∫ T
t DtEs[DsF] dWs +

Et[DtF]. Taking the conditional expectation at time v of the second expres-
sion gives Ev[DtF] = ∫ v

t DtEs[DsF] dWs + Et[DtF]. As the formulas on the
right-hand sides of these two equalities are the same we conclude that DtMv =
Ev[DtF]. Using the definition of Mv we can also write DtEv[F] = Ev[DtF]: the
Malliavin derivative operator and the conditional expectation operator com-
mute.

A.6 The chain rule of Malliavin calculus

In applications one often needs to compute the Malliavin derivative of a
function of a path-dependent random variable. As in ordinary calculus, a chain
rule also applies in the Malliavin calculus. Let F = (F1� � � � � Fn) be a vector of
random variables in D1�2 and suppose that φ is a differentiable function of F

measure is the measure such that the d-dimensional coordinate mapping process is a Brownian mo-
tion.
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with bounded derivatives. The Malliavin derivative of φ(F) is then,

Dtφ(F) =
n∑
i=1

∂φ

∂xi
(F)DtFi

where ∂φ
∂xi
(F) represents the derivative relative to the ith argument of φ.

A.7 Malliavin derivatives of stochastic differential equations

For applications to portfolio allocation it is essential to be able to calculate
the Malliavin derivative of the solution of a stochastic differential equation
(SDE) (i.e. the Malliavin derivative of a diffusion process). The rules of Mallia-
vin calculus presented above can be used to that effect.

Suppose that a state variable Yt follows the diffusion process dYt =
μY(Yt) dt + σY (Yt) dWt where Y0 is given and σY (Yt) is a scalar (W is single
dimensional). Equivalently, we can write the process Y in integral form as

Yt = Y0 +
t∫

0

μY(Ys) ds +
t∫

0

σY (Ys) dWs�

Using the results presented above, it is easy to verify that the Malliavin deriva-
tive DtYs satisfies

DtYs = DtY0 +
s∫
t

∂μY (Yv)DtYv dv

+
s∫
t

∂σY (Yv)DtYv dWv + σ(Yt)�

As DtY0 = 0, the Malliavin derivative obeys the following linear SDE

(A.5)d(DtYs) =
[
∂μY (Ys) ds + ∂σY (Ys) dWs

]
(DtYs)

subject to the initial condition lims→t DtYs = σY (Yt).
If σY (Yt) is a 1×d vector (W is a d-dimensional Brownian motion) the same

arguments apply to yield (A.5) subject to the initial condition lims→t DtYs =
σ(Yt). In this multi-dimensional setting ∂σY (Ys) ≡ (∂σY1 (Ys)� � � � � ∂σ

Y
d (Ys))

is the row vector composed of the derivatives of the components of σY (Ys).
The Malliavin derivative DtYs is the 1 × d row vector DtYs = (D1tYs� � � � �
DdtYs).

A.8 Stochastic flows and tangent processes

For implementation purposes it is useful to relate the Malliavin derivative
to the notion of stochastic flow of a stochastic differential equation and the
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associated concept of a tangent process. These notions have been explored by
various authors including Kunita (1986) and Malliavin (1997).

A stochastic flow of homeomorphisms (or stochastic flow for short) is an
Rd-valued random field {ψt�v(y�ω): 0 � t � v � T� y ∈ Rd} such that for
almost all ω

(a) ψt�v(y) is continuous in t� v� y,
(b) ψv�u(ψt�v(y)) = ψt�u(y) for all t � v � u and y ∈ Rd,
(c) ψt�t(y) = y for any t � T ,
(d) the map: ψt�v : Rd (→ Rd is a homeomorphism for any t� v.14

An important class of stochastic flows is given by the solutions of SDEs of
the form

dYv = μY(Yv) dv + σY (Yv) dWv� v ∈ [t� T ]; Yt = y�

The stochastic flow ψt�v(y�ω) is the position of the diffusion Y at time v, in
state ω, given an initial position Yt = y at time t. A subclass of stochastic
flows of homeomorphisms is obtained if ψt�v : Rd (→ Rd is also required to be
a diffeomorphism.15 A element of this subclass is called a stochastic flow of
diffeomorphism. For a stochastic flow of diffeomorphism determined by the
solutions of an SDE, the derivative ∇t�yψt�·(y) with respect to the initial con-
dition satisfies

(A.6)

d
(∇t�yψt�v(y)

) =
(
∂μY (Yv) dv +

d∑
j=1

∂σYj (Yv) dW j
v

)
∇t�yψt�v�

v ∈ [t� T ]�
subject to the initial condition ∇t�yψt�t(y) = Id . The process ∇t�yψt�·(y) is
called the first variation process or the tangent process.

A comparison of (A.5) and (A.6) shows that

DtYt = Dtψt�v(y) = ∇t�yψt�v(y)σ
Y (y)�

The Malliavin derivative is therefore a linear transformation of the tangent
process.

Appendix B. Proofs

Proof of Proposition 1. Recall that the deflated optimal wealth process is given
by ξtX∗

t = Et[
∫ T
t ξvI(y

∗ξv� v)+ dv + ξT J(y
∗ξT � T)+]. Applying Itô’s lemma

14 A function is a homeomorphism if it is bijective, continuous and its inverse is also continuous.
15 A diffeomorphism is a map between manifolds that is differentiable and has a differentiable inverse.
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and the Clark–Ocone formula to this expression shows that

ξtX
∗
t π

∗ ′
t σt − ξtX

∗
t θ

′
t

= −Et

[ T∫
t

ξvZ1(y
∗ξv� v) dv + ξTZ2(y

∗ξT � T)
]
θ′t

− Et

[ T∫
t

ξvZ1(y
∗ξv� v)H ′

t�v dv + ξTZ2(y
∗ξT � T)H ′

t�T

]

where

Z1(y
∗ξv� v) = I(y∗ξv� v)+ + y∗ξvI ′(y∗ξv� v)1{I(y∗ξv�v)�0}�

Z2(y
∗ξT � T) = J(y∗ξT � T)+ + y∗ξT J′(y∗ξT � T)1{J(y∗ξT �T)�0}�

H ′
t�v =

v∫
t

(Dt rs + θ′sDtθs) ds +
v∫
t

dW ′
s ·Dtθs

and Dt rs�Dtθs are the Malliavin derivatives of the interest rate and the market
price of risk. The chain rule of Malliavin calculus (Section A.6), along with the
results for Malliavin derivatives of SDEs (Section A.7) now lead to (2.16) and
(2.17).

From the definition of optimal wealth X∗, it also follows that

X∗
t − Et

[ T∫
t

ξt�vZ1(y
∗ξv� v) dv + ξt�TZ2(y

∗ξT � T)
]

= −Et[Dt�T ]

where

Dt�T =
T∫
t

ξt�v(y
∗ξv)I ′(y∗ξv� v)1{I(y∗ξv�v)�0} dv

+ ξt�T (y
∗ξT )J′(y∗ξT � T)1{J(y∗ξT �T)�0}

so that,

X∗
t π

∗ ′
t σt = −Et[Dt�T ]θ′t

− Et

[ T∫
t

ξt�vZ1(y
∗ξv� v)H ′

t�v dv + ξt�TZ2(y
∗ξT � T)H ′

t�T

]
�

Transposing this formula and identifying the first term with π∗
1 and the second

with π∗
2 leads to the formulae in the proposition. �
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Proof of Corollary 1. For constant relative risk aversion u(c� t) = ηtc
1−R/

(1 − R) and U(X�T) = ηTX
1−R/(1−R), with ηt ≡ exp(−βt), we obtain the

functions,

I(yξv� v) = (yξv/ηv)
−1/R� J(yξT � T) = (yξT /ηT )

−1/R�

yξvI
′(yξv� v) = −(1/R)(yξv/ηv)−1/R = −(1/R)I(yξv� v)�

yξT J
′(yξT � T) = −(1/R)(yξT /ηT )−1/R = −(1/R)J(yξT � T)�

Z1(yξv� v) = (1 − 1/R)I(yξv� v)�

Z2(yξT � T) = (1 − 1/R)J(yξT � T)�

The formulas in the corollary follow by substituting these expressions in the
policies of Proposition 1. �

Proof of Proposition 2. Note that the optimal consumption policy (2.18) satis-
fies the budget constraint

(B.1)Et

[ T∫
t

ξt�vI(y
∗ξtξt�v� v)+ dv + ξt�T J(y

∗ξtξt�T � T )+
]

= X∗
t �

Given the regularity conditions on preferences, the function I(t� y� Yt) defined
for y > 0 as

(B.2)I(t� y� Yt) ≡ Et

[ T∫
t

ξt�vI(yξt�v� v)
+ dv + ξt�T J(yξt�T � T )

+
]

has an inverse y∗(t�Xt� Yt) that is unique and satisfies

(B.3)

Et

[ T∫
t

ξt�vI
(
y∗(t�X∗

t � Yt)ξt�v� v
)+ dv + ξt�T J

(
y∗(t�X∗

t � Yt)ξt�T � T
)+]

= X∗
t �

We conclude that y∗ξt = y∗(t�X∗
t � Yt) P-a.s. Substituting the shadow price of

wealth at time t, i.e. y∗(t�X∗
t � Yt), and the optimal consumption policy (2.18)

in the objective function yields

(B.4)

V (t�X∗
t � Yt) = Et

[ T∫
t

[u ◦ I+](y∗(t�X∗
t � Yt)ξt�v� v

)
dv

+ [U ◦ J+](y∗(t�X∗
t � Yt)ξt�T � T

)]
�
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Taking derivatives with respect to X∗
t in (B.4) and using y∗ξt = y∗(t�X∗

t � Yt)
gives

(B.5)Vx(t�X
∗
t � Yt) = Et[Dt�T ]∂xy∗(t�X∗

t � Yt)�

where Dt�T is defined in (2.21). Differentiating both sides of (B.3) with respect
to wealth produces

(B.6)Et[Dt�T ]∂xy
∗(t�X∗

t � Yt)

y∗(t�X∗
t � Yt)

= 1�

so that

(B.7)Vx(t�X
∗
t � Yt) = y∗(t�X∗

t � Yt)�

This establishes (2.28). Furthermore, taking logarithmic derivatives on both
sides of (B.7) and using (B.6), establishes (2.29).

Finally, differentiating (B.3) with respect to the state variables and using
y∗ξt = y∗(t�X∗

t � Yt) gives

Et

[ T∫
t

Z1(y
∗ξv� v)∇t�yξt�v dv + Z2(y

∗ξT � T)∇t�yξt�T

]

+ Et[Dt�T ]∂yy
∗(t�X∗

t � Yt)

y∗(t�X∗
t � Yt)

= 0�

and, as [Vxy/Vxx](t�X∗
t � Yt) = [∂yy∗/∂xy∗](t�X∗

t � Yt), with the aid of (2.29)
and (B.7), we obtain

(B.8)

Vxy(t�X
∗
t � Yt)

−Vxx(t�X∗
t � Yt)

= Et

[ T∫
t

ξt�vZ1(y
∗ξv� v)∇t�y log ξt�v dv

+ ξt�TZ2(y
∗ξT � T)∇t�y log ξt�T

]
�

where ∇t�y log ξt�· is the tangent process of log ξt�· (see Appendix A). In a
Markovian setting the first variation process and the Malliavin derivative are
linked by ∇t�y log ξt�vσY (t� Yt) = Dt log ξt�v and Dt log ξt�· = −H ′

t�· The rela-
tion (2.30) follows. �
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Proof of (3.12)–(3.13). The limits of interest are found as follows. The defini-
tion of the optimal wealth process

X∗
t+h −X∗

t +
t+h∫
t

c∗v dv =
t+h∫
t

rvX
∗
v dv

+
t+h∫
t

X∗
v (π

∗
v )

′[(μv − rv1d) dv + σv dWv
]

and the Itô formula

(
X∗
t+h −X∗

t +
t+h∫
t

c∗v dv

)
(Wt+h −Wt)

′

=
t+h∫
t

(Wv −Wt)
′(dX∗

v + c∗v dv)

+
t+h∫
t

(
X∗
v −X∗

t +
v∫
t

c∗s ds

)
dW ′

v

+
t+h∫
t

X∗
v (π

∗
v )

′σv dv

lead to

Et

[(
X∗
t+h −X∗

t +
∫ t+h

t
c∗v dv

)
(Wt+h −Wt)

′
]

= Et

[ t+h∫
t

(Wv −Wt)
′(dX∗

v + c∗v dv)+
∫ t+h

t
X∗
v (π

∗
v )

′σv dv

]

= Et

[ t+h∫
t

(
(Wv −Wt)

′(rvX∗
v +X∗

v (π
∗
v )

′(μv − rv1d)
)

+X∗
v (π

∗
v )

′σv
)

dv

]
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and the limit

(B.9)

lim
h→0

1
h

Et

[(
X∗
t+h −X∗

t +
t+h∫
t

c∗v dv

)
(Wt+h −Wt)

′
]

= X∗
t (π

∗
t )

′σt�

Using Et[X∗
t (Wt+h −Wt)

′] = 0,

lim
h→0

1
h

Et

[( t+h∫
t

c∗v dv

)
(Wt+h −Wt)

′
]

= 0

and

Et
[
X∗
t+h(Wt+h −Wt)

′] = Et
[
Et+h[Ft+h�T ](Wt+h −Wt)

′]
= Et

[
Et+h

[
Ft+h�T (Wt+h −Wt)

′]]
= Et

[
Ft+h�T (Wt+h −Wt)

′]�
with Ft+h�T ≡ ∫ T

t+h ξt+h�vc
∗
v dv + ξt+h�TX∗

T , enables us to rewrite (B.9) as

(B.10)Xt(π
∗
t )

′σt = lim
h→0

1
h

Et
[
Ft+h�T (Wt+h −Wt)

′]�
This establishes (3.14). To get (3.15) expand the coefficient Ft+h�T as

Ft+h�T ≡
T∫

t+h
ξt+h�vc∗v dv + ξt+h�TX∗

T

=
( T∫
t+h

ξt�vc
∗
v dv + ξt�TX

∗
T

)
ξt+h�t

=
(
Ft�T −

t+h∫
t

ξt�vc
∗
v dv

)
ξt+h�t

and substitute in (B.10) to write

Xt(π
∗
t )

′σt = lim
h→0

1
h

Et
[
Ft+h�T (Wt+h −Wt)

′]
= lim

h→0

1
h

Et

[ (
Ft�T −

t+h∫
t

ξt�vc
∗
v dv

)
ξt+h�t(Wt+h −Wt)

′
]

= lim
h→0

1
h

Et
[
Ft�T ξt+h�t(Wt+h −Wt)

′]
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(B.11)− lim
h→0

1
h

Et

[( t+h∫
t

ξt�vc
∗
v dv

)
ξt+h�t(Wt+h −Wt)

′
]
�

Another application of the integration by parts formula

Et

[( t+h∫
t

ξt�vc
∗
v dv

)
ξt+h�t(Wt+h −Wt)

′
]

= Et

[( t+h∫
t

ξt�vc
∗
v dv

)( t+h∫
t

ξv�t dWv +
t+h∫
t

(Wv −Wt)
′ dξv�t

+
t+h∫
t

d[W ′
v� ξv�t]

)]
shows that

lim
h→0

1
h

Et

[( t+h∫
t

ξt�vc
∗
v dv

)
ξt+h�t(Wt+h −Wt)

′
]

= 0

and (B.11), therefore, becomes

Xt(π
∗
t )

′σt = lim
h→0

1
h

Et
[
Ft�T ξt+h�t(Wt+h −Wt)

′]
which corresponds to (3.15).

For the third expression (3.16) use the forward and backward representa-
tions of optimal wealth

ξtX
∗
t +

∫ t

0
ξvc

∗
v dv = X0 +

∫ t

0
ξvX

∗
v

(
(π∗

v )
′σv − θ′v

)
dWv = Et[F0�T ]

to derive

Et
[
Et+h[F0�T ](Wt+h −Wt)

′]
= Et

[(
X0 +

t+h∫
0

ξvX
∗
v

(
(π∗

v )
′σv − θ′v

)
dWv

)
(Wt+h −Wt)

′
]

= Et

[( t+h∫
0

ξvX
∗
v

(
(π∗

v )
′σv − θ′v

)
dWv

)
(Wt+h −Wt)

′
]

= Et

[ t+h∫
t

ξvX
∗
v

(
(π∗

v )
′σv − θ′v

)′ dv

]
�
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From this equality and Et[Et+h[F0�T ](Wt+h − Wt)] = Et[F0�T (Wt+h − Wt)], it
follows that

lim
h→0

1
h

Et
[
F0�T (Wt+h −Wt)

] = ξtX
∗
t

(
σ ′
t (π

∗
t )− θt

)
�

Substituting Et[F0�T (Wt+h − Wt)] = ξtEt[Ft�T (Wt+h − Wt)] on the left-hand
side we conclude that

(B.12)X∗
t π

∗
t = (σ ′

t )
−1

(
X∗
t θt + lim

h→0

1
h

Et
[
Ft�T (Wt+h −Wt)

])
thereby establishing (3.16). �

Proof of Proposition 3. See Theorem 4 and Corollary 2 in Detemple et al.
(2005c). �

Proof of Proposition 4. The functions gαi where (i� α) ∈ {1� 2} × {MV �H}
satisfy the conditions of Theorem 1 in Detemple et al. (2005d). The result fol-
lows. �

Proof of Proposition 5. The introduction of functions fi� i ∈ {1� 2}, puts the
problem into the setting of Theorem 2 in Detemple et al. (2005d). The propo-
sition follows from their result. �

Proof of Proposition 6. The portfolio allocation problem is formulated so as
to permit the application of Theorem 3 in Detemple et al. (2005d). The result
of the proposition follows immediately. �
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Abstract

This chapter describes how duality and approximate dynamic programming (ADP)
methods can be used in financial engineering. It focuses on American option pric-
ing and portfolio optimization problems when the underlying state space is high-
dimensional. In general, it is not possible to solve these problems exactly due to the
so-called “curse of dimensionality” and as a result, approximate solution techniques
are required. ADP and dual-based methods have been proposed for constructing and
evaluating good approximate solutions to these problems. In this chapter we describe
these methods. Some directions for future research are also outlined.

1 Introduction

Portfolio optimization and American option pricing problems are among
the most important problems in financial engineering. Portfolio optimization
problems occur throughout the financial services as pension funds, mutual
funds, insurance companies, endowments and other financial entities all face
the fundamental problem of dynamically allocating their resources across dif-
ferent securities in order to achieve a particular goal. These problems are often

1 This chapter is a revised and extended version of Haugh [Haugh, M.B. (2003). Duality theory and sim-
ulation in financial engineering. In: Chick, S., Sánchez, P.J., Ferrin, D., Morrice, D.J. (Eds.), Proceedings
of the 2003 Winter Simulation Conference, IEEE Press, Piscataway, NJ, pp. 327–334].

925
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very complex owing to their dynamic and stochastic nature, their high dimen-
sionality and the complexity of real-world constraints. While researchers have
developed a number of sophisticated models for addressing these problems,
the current state-of-the-art is such that explicit solutions are available only in
very special circumstances. (See, for example, Merton, 1990; Cox and Huang
1989; Karatzas and Shreve, 1997; Liu, 1998.)

American option pricing has also presented several challenges to the field
of financial engineering. Even in the simple Black–Scholes framework (Black
and Scholes, 1973), a closed form expression for the price of an American
put option is not available and so it must therefore be computed numerically.
This does not present a challenge when there is just one or two underlying
securities. However, as pricing an American option amounts to solving an
optimal stopping problem, Bellman’s curse of dimensionality implies that pric-
ing high-dimensional American options using standard numerical techniques
is not practically feasible. Unfortunately, the same conclusion also applies to
solving general high-dimensional portfolio optimization problems.

Because these high-dimensional problems occur frequently in practice, they
are of considerable interest to both researchers and practitioners. In recent
years there has been some success in tackling these problems using approx-
imate dynamic programming (ADP) and dual-based methods. ADP methods
(see, for example, Bertsekas and Tsitsiklis, 1996) have had considerable success
in tackling large-scale complex problems and have recently been applied suc-
cessfully to problems in financial engineering (Brandt et al., 2005; Longstaff
and Schwartz, 2001; Tsitsiklis and Van Roy, 2001). One difficulty with ADP,
however, is in establishing how far the sub-optimal ADP solution to a given
problem is from optimality. In the context of optimal stopping problems and
pricing American options, Haugh and Kogan (2004) and Rogers (2002) de-
veloped dual formulations2 which allows one to evaluate sub-optimal strate-
gies, including those obtained from ADP methods (see, for example, Haugh
and Kogan, 2004; Anderson and Broadie, 2004; Glasserman and Yu, 2004;
Chen and Glasserman, 2007). A stochastic duality theory also exists for portfo-
lio optimization problems and this has been developed by many researchers in
recent years (see, for example, Shreve and Xu, 1992a, 1992b; He and Pearson,
1991; Cvitanic and Karatzas, 1992; Karatzas and Shreve, 1997). While this the-
ory has had considerable success in characterizing optimal solutions, explicit
solutions are still rare (see Rogers, 2003). Recently Haugh et al. (2003) have
shown how some of these dual formulations can be used to evaluate subopti-
mal policies by constructing lower and upper bounds on the true optimal value
function. These suboptimal policies could be simple heuristic policies or poli-
cies resulting from some approximation techniques such as ADP.

2 The dual formulation in these papers relies on an alternative characterization of an optimal stopping
problem, which can be traced back to Davis and Karatzas (1994).
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Another promising approach to approximate solution of dynamic portfolio
choice problems is based on the equivalent linear programming formulation of
the dynamic program (see, for example, de Farias and Van Roy, 2003, 2004).
The approximate linear programming formulation provides an approximation
to the portfolio policy as well as an upper bound on the value function. This
approach is computationally intensive and its ability to handle large-scale prac-
tical problems still needs to be evaluated. Some encouraging results in this
direction are obtained by Han (2005).

Simulation techniques play a key role in both the ADP and dual-based eval-
uation methods that have been used to construct and evaluate solutions to
these problems. While it has long been recognized that simulation is an indis-
pensable tool for financial engineering (see the surveys of Boyle et al., 1997;
Staum, 2002), it is only recently that simulation has begun to play an important
role in solving control problems in financial engineering. These control prob-
lems include portfolio optimization and the pricing of American options, and
they are the focus of this paper.

The remainder of the paper is outlined as follows. Section 2 describes the
American option pricing problem. We briefly describe the ADP methods in
Section 2.1 after which we will focus on the duality theory for optimal stop-
ping in Section 2.2. Section 2.3 discusses extensions and other applications of
these dual-based ideas. We then conclude Section 2 by outlining some direc-
tions for future research in Section 2.4. Section 3 concentrates on portfolio
optimization. In Sections 3.1 and 3.2, respectively, we describe the portfo-
lio optimization framework and review the corresponding duality theory. In
Section 3.3 we show how an upper bound on the portfolio optimization prob-
lem can be obtained and we summarize the algorithm for obtaining lower and
upper bounds in Section 3.4. We conclude by outlining directions for future
research in Section 3.5. Results will not be presented in their full generality,
and technical details will often be omitted as we choose to focus instead on the
underlying concepts and intuition.

2 Pricing American options

The financial market. We assume there exists a dynamically complete fi-
nancial market that is driven by a vector-valued Markov process, Xt =
(X1

t � � � � �X
n
t ). In words, we say a financial market is dynamically complete

if any random variable, WT , representing a terminal cash-flow can be attained
by using a self-financing trading strategy. (A self-financing trading strategy is a
strategy where changes in the value of the portfolio are only due to accumu-
lation of dividends and capital gains or losses. In particular, no net addition
or withdrawal of funds is allowed after date t = 0 and any new purchases of
securities must be financed by the sale of other securities.) Xt represents the
time t vector of risky asset prices as well as the values of any relevant state
variables in the market. We also assume there exists a risk-free security whose



928 M.B. Haugh and L. Kogan

time t price is Bt = ert , where r is the continuously compounded risk-free rate
of interest.3 Finally, since markets are assumed to be dynamically complete,
there exists (see Duffie, 1996) a unique risk-neutral valuation measure, Q.

Option payoff. Let ht = h(Xt) be a nonnegative adapted process representing
the payoff of the option so that if it is exercised at time t the holder of the
option will then receive ht .

Exercise dates. The American feature of the option allows the holder of
the option to exercise it at any of the pre-specified exercise dates in T =
{0� 1� � � � � T }.4

Option price. The value process of the American option, Vt , is the price
process of the option conditional on it not having been exercised before t. It
satisfies

(1)Vt = sup
τ�t

EQ
t

[
Bthτ

Bτ

]
�

where τ is any stopping time with values in the set T ∩ [t� T ].

If Xt is high-dimensional, then standard solution techniques such as dy-
namic programming become impractical and we cannot hope to solve the
optimal stopping problem (1) exactly. Fortunately, efficient ADP algorithms
for addressing this problem have recently been developed independently by
Longstaff and Schwartz (2001) and Tsitsiklis and Van Roy (2001).5 We now
briefly describe the main ideas behind these algorithms, both of which rely on
the ability to simulate paths of the underlying state vectors.

2.1 ADP for pricing American options

Once again, the pricing problem at time t = 0 is to compute

V0 = sup
τ∈T

EQ
0

[
hτ

Bτ

]

3 Note that we can easily handle the case where rt = r(Xt) is stochastic.
4 Strictly speaking, we consider Bermudan options that may only be exercised at one of a finite number
of possible dates. While American options can be exercised at any time in a continuum of dates, in prac-
tice it is necessary to discretize time when pricing them numerically. As a result, we do not distinguish
between Bermudan and American options in this chapter.
5 See also Carriére (1996) for the original introduction of regression-based ideas for pricing American
options.
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and in theory this problem is easily solved using value iteration. In particular,
a standard recursive argument implies

VT = h(XT ) and Vt = max
(
h(Xt)�EQ

t

[
Bt

Bt+1
Vt+1(Xt+1)

])
�

The price of the option is then given by V0(X0) where X0 is the initial state of
the economy. As an alternative to value iteration we could use Q-value itera-
tion. If the Q-value function is defined to be the value of the option conditional
on it not being exercised today, i.e. the continuation value of the option, then
we also have

Qt(Xt) = EQ
t

[
Bt

Bt+1
Vt+1(Xt+1)

]
�

The value of the option at time t + 1 is then

Vt+1(Xt+1) = max
(
h(Xt+1)�Qt+1(Xt+1)

)
so that we can also write

(2)Qt(Xt) = EQ
t

[
Bt

Bt+1
max

(
h(Xt+1)�Qt+1(Xt+1)

)]
�

Equation (2) clearly gives a natural analog to value iteration, namely Q-value
iteration. As stated earlier, if n is large so Xt is high-dimensional, then both
value iteration and Q-value iteration are not feasible in practice. However, we
could perform an approximate and efficient version of Q-value iteration, and
this is precisely what the ADP algorithms of Longstaff and Schwartz (2001)
and Tsitsiklis and Van Roy (2001) do. We now describe their main contribu-
tion, omitting some of the more specific details that can nevertheless have a
significant impact on performance.

The first step is to choose a set of basis functions, φ1(·)� � � � � φm(·). These
basis functions define the linear architecture that will be used to approximate
the Q-value functions. In particular, we will approximate Qt(Xt) with

Q̃t(Xt) = r1
t φ1(Xt)+ · · · + rmt φm(Xt)�

where rt := (r1
t � � � � � r

m
t ) is a vector of time t parameters that is determined by

the algorithm which proceeds as follows:

Approximate Q-value iteration

generate N paths of state vector, X, conditional on initial state, X0
set Q̃T (X

i
T ) = 0 for all i = 1 to N

for t = T − 1 downto 1
regress BtṼt+1(X

i
t+1)/Bt+1 on (φ1(X

i
t )� � � � � φm(X

i
t )) where

Ṽt+1
(
Xi
t+1

) := max
(
h
(
Xi
t+1

)
� Q̃

(
Xi
t+1

))
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set Q̃t(X
i
t ) = ∑

k r
k
t φk(X

i
t ) where the rkt s are the estimated regression

coefficients
end for
generate M samples of state vector, X1, conditional on initial state, X0

set Ṽ0(X0) = (
∑M

j=1 max(h(Xj
1)� Q̃1(X

j
1)))/MB1.

The key idea in this algorithm is the use of regression methods to estimate
Q̃t(X

i
t ). In practice, standard least squares regression is used and because this

technique is so fast the resulting Q-value iteration algorithm is also very fast.
For typical problems that arise in practice, N is often taken to be on the order
of 10,000 to 50,000. Obviously, many more details are required to fully specify
the algorithm. In particular, parameter values and basis functions need to be
chosen. It is generally a good idea to use problem-specific information when
choosing the basis functions. For example, if the value of the corresponding
European option is available in closed form then that would typically be an
ideal candidate for a basis function. Other commonly used basis functions are
the intrinsic value of the option and the prices of other related derivative secu-
rities that are available in closed from.

Specific implementation details can also vary. While the algorithm described
above is that of Tsitsiklis and Van Roy (2001), Longstaff and Schwartz (2001)
omit states Xi

t where h(Xi
t ) = 0 when estimating the regression coefficients,

rkt for k = 1� � � � �m. They also define Ṽt+1(X
i
t+1) so that

Ṽt+1(X
i
t+1) =

{
h(Xi

t+1)� h(Xi
t+1) � Q̃(Xi

t+1)�

Ṽt+2(X
i
t+2)Bt+1/Bt+2� h(Xi

t+1) < Q̃(Xi
t+1)�

In particular, they take Ṽt+1(X
i
t+1) to be the realized discounted payoff on the

ith path as determined by the exercise policy, τ̃, implicitly defined by Q̃l(·), for
l = t + 1� � � � � T .

In practice, it is quite common for an alternative estimate, V 0, of V0 to be
obtained by simulating the exercise strategy that is defined by τ̃. Formally, we
define τ̃ = min{t ∈ T : Q̃t � ht} and

V 0 = EQ
0

[
hτ̃
Bτ̃

]
�

V 0 is then an unbiased lower bound on the true value of the option. That
the estimator is a lower bound follows from the fact τ̃ is a feasible adapted
exercise strategy. Typically, V 0 is a much better estimator of the true price
than Ṽ0(X0) as the latter often displays a significant upwards bias. Glasserman
(2004, Section 8.7) provides a very nice intuition for determining when Ṽ0(X0)
performs poorly as an estimator and, using the duality ideas of Section 2.2, he
relates the quality of Ṽ0(X0) to the quality of the chosen basis functions.
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These ADP algorithms have performed surprisingly well on realistic high-
dimensional problems (see Longstaff and Schwartz, 2001 for numerical exam-
ples) and there has also been considerable theoretical work (e.g. Tsitsiklis and
Van Roy, 2001; Clemént et al., 2002) justifying this. Clemént et al. (2002), for
example, show that the Longstaff and Schwartz algorithm converges as the
number of paths, N , goes to infinity and that the limiting price, Ṽ0(X0), equals
the true price, V0, if Qt can be written as a linear combination of the chosen
basis functions.

Haugh and Kogan (2004) also show that for any approximation, Q̃t , the
quality of the lower bound, V 0, satisfies

V0 − V 0 � EQ
0

[ T∑
t=0

|Q̃t −Qt |
Bt

]
�

While this may suggest that the quality of the lower bound deteriorates linearly
in the number of exercise periods, in practice this is not the case. The quality
of V 0, for example, can be explained in part by noting that exercise errors
are never made as long as Qt(·) and Q̃t(·) lie on the same side of the optimal
exercise boundary. This means in particular, that it is possible to have large
errors in Q̃t(·) that do not impact the quality of V 0.

More recently, it has been shown (see Glasserman, 2004; Glasserman and
Yu, 2004) how the ADP – regression methods relate to the stochastic mesh
method of Broadie and Glasserman (1997). In addition, Glasserman and Yu
(2004) also study the trade-off between the number of paths, N , and the num-
ber of basis functions,m, when there is a finite computational budget available.

To complete this section, it is worth mentioning that there is an alternative to
approximating the value function or Q-value function when using ADP meth-
ods (or indeed any other approximation methods). That is, we could choose
instead to approximate the optimal exercise frontier. The exercise frontier is
the boundary in X-space whereby it is optimal to exercise on one side of the
boundary and to continue on the other side. It is possible to construct ADP
methods that directly approximate this exercise boundary without directly ap-
proximating the value function. These methods often require work that is
quadratic in the number of exercise periods. That said, in general it is very
difficult to conduct a formal comparison between methods that approximate
the exercise frontier and methods that approximate the value function.

2.2 Duality theory for American options

While ADP methods have been very successful, a notable weakness is their
inability to determine how far the ADP solution is from optimality in any given
problem. Haugh and Kogan (2004) and Rogers (2002) independently devel-
oped duality-based methods that can be used for constructing upper bounds
on the true value function. Haugh and Kogan showed that any approximate
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solution, arising from ADP or other6 methods, could be evaluated by using it
to construct an upper7 bound on the true value function. We also remark that
Broadie and Glasserman (1997) were the first to demonstrate that tight lower
and upper bounds could be constructed using simulation techniques. Their
method, however, does not work with arbitrary approximations to the value
function and does not appear to be as efficient as the dual-ADP techniques.
We now describe these duality-based methods.

For an arbitrary adapted supermartingale, πt , the value of an American op-
tion, V0, satisfies

V0 = sup
τ∈T

EQ
0

[
hτ

Bτ

]
= sup

τ∈T
EQ

0

[
hτ

Bτ
− πτ + πτ

]
(3)� sup

τ∈T
EQ

0

[
hτ

Bτ
− πτ

]
+ π0 � EQ

0

[
max
t∈T

(
ht

Bt
− πt

)]
+ π0�

where the first inequality follows from the optional sampling theorem for su-
permartingales. Taking the infimum over all supermartingales, πt , on the right-
hand side of (3) implies

(4)V0 � U0 := inf
π

EQ
0

[
max
t∈T

(
ht

Bt
− πt

)]
+ π0�

On the other hand, it is known (see e.g. Duffie, 1996) that the process Vt/Bt is
itself a supermartingale, which implies

U0 � EQ
0

[
max
t∈T

(
ht

Bt
− Vt

Bt

)]
+ V0�

Since Vt � ht for all t, we conclude that U0 � V0. Therefore, V0 = U0, and
equality is attained when πt = Vt/Bt .

It is of interest to note that we could have restricted ourselves to the case
where πt is a strict martingale, as was the case with Rogers (2002). In that case,
the Doob–Meyer decomposition theorem and the supermartingale property of
Vt/Bt imply the existence of a martingale, Mt , and an increasing, predictable
process, At , satisfying A0 = 0 and

Vt

Bt
= Mt −At�

Taking πt = Mt in (4) we again obtain U0 � V0 implying once again that
V0 = U0. These results demonstrate that an upper bound on the price of the
American option can be constructed simply by evaluating the right-hand side

6 See, for example, the iterative technique of Kolodko and Schoenmakers (2006) who construct upper
as well as lower bounds on the true option price using the dual formulations we describe in this section.
7 As we saw in Section 2.1, a lower bound is easy to compute given an approximation to the value
function.
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of (3) for a given supermartingale, πt . In particular, if such a supermartingale
satisfies πt � ht/Bt , the option price V0 is bounded above by π0.

When the supermartingale πt in (3) coincides with the discounted option
value process, Vt/Bt , the upper bound on the right-hand side of (3) equals
the true price of the American option. This suggests that a tight upper bound
can be obtained by using an accurate approximation, Ṽt , to define πt . One
possibility8 is to define πt as the following martingale9

(5)π0 = Ṽ0�

(6)πt+1 = πt + Ṽt+1

Bt+1
− Ṽt

Bt
− Et

[
Ṽt+1

Bt+1
− Ṽt

Bt

]
�

Let V 0 denote the upper bound we obtain from (3) corresponding to our
choice of supermartingale in (5) and (6). Then it is easy to see that the up-
per bound is explicitly given by

(7)V 0 = Ṽ0 + EQ
0

[
max
t∈T

(
ht

Bt
− Ṽt

Bt
+

t∑
j=1

EQ
j−1

[
Ṽj

Bj
− Ṽj−1

Bj−1

])]
�

As may be seen from (7), obtaining an accurate estimate of V 0 can be com-
putationally demanding. First, a number of sample paths must be simulated to
estimate the outermost expectation on the right-hand side of (7). While this
number can be quite small in practice, we also need to accurately estimate a
conditional expectation at each time period along each simulated path. This
requires some effort and clearly variance reduction methods would be useful
in this context. Alternatively, if the initial value function approximation comes
from ADP methods then, as suggested by Glasserman and Yu (2004), it might
be possible to choose the basis functions in such a way that the conditional
expectations in (7) can be computed analytically. In that case the need for con-
ducting nested simulations would not arise.

2.3 Extensions

A number of variations and extensions of these algorithms have also been
developed recently and are a subject of ongoing research. Andersen and
Broadie (2004), for example, construct upper bounds by using an approxi-
mation to the optimal exercise frontier instead of an approximation to the
Q-value function, while Meinshausen and Hambly (2004) use similar ideas to
price options that may be exercised on multiple occasions. Jamshidan (2003)

8 See Haugh and Kogan (2004) and Andersen and Broadie (2004) for further comments relating to the
superiority of taking πt to be a strict martingale.
9 Haugh and Kogan (2004) also propose an alternative where πt is constructed from Ṽt in a multiplica-
tive manner.
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developed a multiplicative dual approach for constructing upper bounds and
Chen and Glasserman (2007) compare this multiplicative dual approach with
the additive approach of Haugh and Kogan (2004) and Rogers (2002). In this
section we briefly describe these extensions. All of them, with the exception
of Meinshausen and Hambly (2004), deal with pricing American options, or
equivalently, optimal stopping problems. Brandt et al. (2005) extended the
ADP ideas for optimal stopping to portfolio optimization problems. Haugh
et al. (2003) showed how a duality theory that had already existed for port-
folio optimization problems could be used in practice to create upper bounds
on the solutions to these problems. These extensions to portfolio optimization
problems will be described in Section 3.

2.3.1 Upper bounds from stopping rules
Approximations to the optimal exercise frontier can also be used to con-

struct upper bounds. For example, suppose τi for i = 1� � � � � T is a sequence of
stopping times with the property τi � i for all i. We interpret τi as the time at
which the American option should be exercised (under some policy) given that
it has not already been exercised before time i. These stopping times might, for
example, be constructed from an approximation, Q̃t , to the Q-value function
so that τi := min{t ∈ T � t � i: Q̃t � ht}. Alternatively, τi may derive from a
direct approximation to the exercise frontier. In this case,

(8)τi := min{t ∈ T � t � i: gt = 1}�
where gt = 1 if the policy says “exercise” and gt = 0 if the policy says “con-
tinue.” Note that it is not necessary to have an approximation to the value
function available when τi is defined in this manner.

Regardless of how τi is defined we can use it to construct martingales by
setting M̃t := ∑t

j �j where

(9)�j := EQ
j [hτj ] − EQ

j−1[hτj ] = Vj −Qj−1�

We can then take πt := M̃t in (4) to construct upper bounds as before. It is
necessary to simulate the stopping time τi as defined by (8) to estimate the
�js. This additional or nested simulation is required at each point along each
simulated path when estimating the upper bound. This therefore suggests that
the computational effort required to compute V 0 when a stopping time is used
is quadratic in the number of time periods. In contrast, it appears that the
computational effort is linear when Q̃t is used to construct the upper bound
of Section 2.2. However, an approximation to the optimal exercise frontier is
likely to be more ‘accurate’ than an approximation to the Q-value function and
so a more thorough analysis would be required before the superiority of one
approach over the other could be established.

The stopping rule approach was proposed by Andersen and Broadie (2004)
but see also Glasserman (2004) for further details. It is also worth mention-
ing that it is straightforward to combine the two approaches. In particular, an
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explicit approximation, Q̃t , could be used in some regions of the state space
to estimate M̃t while a nested simulation to estimate the �js could be used in
other regions.

2.3.2 The multiplicative dual approach
An alternative dual formulation, the multiplicative dual, was recently formu-

lated by Jamshidian (2003) for pricing American options. Using the multiplica-
tive Doob–Meyer decomposition for supermartingales, Jamshidan showed that
the American option price, V0, could be represented as

(10)V0 = inf
M∈M+ EM

0

[
max

0�t�T

ht

Mt

]
:= inf

M∈M+ EQ
0

[
max

0�t�T

ht

Mt
MT

]
�

where M+ is the set of all positive martingales, Mt , with M0 = 1. Equa-
tion (10) suggests that if we choose a ‘good’ martingale, M̃t ∈ M+ with
M̃0 = 1, then

V 0 := EQ
0

[
max

0�t�T

ht

M̃t

M̃T

]
should provide a good upper bound on V0. As was the case with the additive
approaches of Section 2.2, it is possible to construct a candidate martingale,
M̃t , using an approximation, Ṽt , to the true value function, Vt . As usual, this
upper bound can be estimated using Monte Carlo methods.

Chen and Glasserman (2007) compare this multiplicative dual formulation
with the additive-dual formulations of Rogers (2002) and Haugh and Kogan
(2004). They show that neither formulation dominates the other in the sense
that any multiplicative dual can be improved by an additive dual and that any
additive dual can be improved by a multiplicative dual. They also compare the
bias and variance of the two formulations and show that either method may
have a smaller bias. The multiplicative method, however, typically has a vari-
ance that grows much faster than the additive method. While the multiplicative
formulation is certainly of theoretical interest, in practice it is likely to be dom-
inated by the additive approach.

Bolia et al. (2004) show that the dual formulation of Jamshidian may be in-
terpreted using an importance sampling formulation of the problem. They then
use importance sampling techniques and nonnegative least square methods for
function approximation in order to estimate the upper bound associated with
a given approximation to the value function. Results are given for pricing an
American put option on a single stock that follows a geometric Brownian mo-
tion. While they report some success, considerable work remains before these
ideas can be applied successfully to high-dimensional problems. In addition,
since the multiplicative dual formulation tends to have a much higher vari-
ance than the additive formulation, importance sampling methods might have
more of an impact if they could be successfully applied to additive formula-
tions. More generally, importance sampling methods should also be of interest
when constructing value function approximations in the first place.
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2.3.3 Multiple exercise opportunities
In an interesting extension, Meinshausen and Hambly (2004), extend the

ADP-dual techniques to multiple exercise options. If T = {0� 1� � � � � T } are the
possible exercise dates, then a multiple exercise option with n exercise oppor-
tunities may be exercised at any of n dates in T . Clearly n � T +1 and the case
where n = 1 corresponds to a standard American option. The standard exam-
ples of a multiple exercise option is a swing option that is traded in the energy
derivatives industry. A swing option gives the holder a fixed number of exercise
opportunities when electricity may be purchased at a given price. Meinshausen
and Hambly (2004) apply ADP methods to construct an approximation to (and
lower bound on) the price of swing options.10 They then use this approximation
and a dual formulation to construct an upper bound on the true price of the op-
tion. This is completely analogous to the methods for pricing high-dimensional
American options though the computational requirements appear to be much
greater.

2.4 Directions for future research

There are many possible directions for future research. First, it should be
possible to employ ADP and duality ideas to other classes of problems. There
has of course already been some success in this direction. As described in
Section 2.3.2, Meinshausen and Hambly (2004) have extended these results
to option pricing problems where multiple exercises are permitted. Haugh et
al. (2003) also developed analogous results for dynamic portfolio optimiza-
tion problems.11 It should therefore be possible to extend and develop these
techniques for solving other classes of control problems. Of particular interest
are real options problems, which typically embed American-style or multiple-
exercise features.

Because ADP-dual techniques require simulation methods and therefore
often demand considerable computational effort, it is clear that variance re-
duction techniques should be of value, particularly as ever more complex
problems are solved. We expect importance sampling to be especially useful
in this regard. First, it may be used for estimating the value associated with a
given approximately optimal policy.12 Second, and perhaps more interesting,
it should prove especially valuable in actually constructing the approximately
optimal policy itself. This is because importance sampling ideas can be used
to focus the computational effort on the more ‘important’ regions of the state
space when approximating the value function. While these ideas are not new,
they have certainly not been fully explored within the ADP literature.

10 They also price chooser flexible caps, fixed income derivative securities that give the holder the right
to exercise a given number of caplets over a given horizon.
11 See Section 3.
12 See Bolia et al. (2004) and Section 2.3.2.
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Estimating the so-called ‘greeks’ is also a particularly interesting prob-
lem. While ADP-dual ideas have now been very successful for pricing high-
dimensional American options, efficiently computing the greeks for these
problems remains a difficult13 task.

Another future research direction is to use the dual formulation, possibly
in conjunction with the primal formulation, to construct approximate value
functions or exercise frontiers. The resulting ‘dual’ or ‘primal–dual’ algorithms
would be of theoretical interest and we expect they would, in some instances,
be superior to ‘primal’ algorithms that have already been developed. While it
is straightforward to design admittedly simple primal–dual style algorithms,14

there appears to have been little work done on this topic. This, presumably, is
due to the great success that ADP-regression algorithms have had in quickly
generating good approximations to the true option price. It is possible, how-
ever, that this will become a more active research area as more challenging
classes of problems are tackled with ADP techniques.

3 Portfolio optimization

Motivated by the success of ADP methods for pricing American options,
Brandt et al. (2005) apply similar ideas to approximately solve a class of high-
dimensional portfolio optimization problems. In particular, they simulate a
large number of sample paths of the underlying state variables and then work-
ing backwards in time, they use cross path regressions (as we described in the
approximate Q-value iteration algorithm) to efficiently compute an approxi-
mately optimal strategy. Propagation of errors is largely avoided, and though
the price for this is an algorithm that is quadratic in the number of time peri-
ods, their methodology can comfortably handle problems with a large number
of time periods. Their specific algorithm does not handle portfolio constraints
and certain other complicating features, but it should be possible to tackle
these extensions using the ADP methods that they and others have developed.

As was the case with ADP solutions to optimal stopping problems, a prin-
cipal weakness of ADP solutions to portfolio optimization problems is the
difficulty in determining how far a given solution to a given problem is from
optimality. This issue has motivated in part the research of Haugh et al. (2005)
who use portfolio duality theory to evaluate the quality of suboptimal solutions
to portfolio optimization problems by constructing lower and upper bounds on
the optimal value function. These bounds are evaluated by simulating the sto-
chastic differential equations (see Kloeden and Platen, 1992) that describe the
evolution of the state variables in the model in question. In Section 3.2 we

13 See Kaniel et al. (2006) for an application where dual methods are employed to estimate the greeks
of Bermudan-style options.
14 See, for example, Haugh and Kogan (2004).
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describe the particular portfolio duality theory that was used in Haugh et al.
(2005) and that was developed by Xu (1990), Shreve and Xu (1992a, 1992b),
Karatzas et al. (1991), and Cvitanic and Karatzas (1992).

Before doing so, we remark that the duality theory of Section 3.2 applies
mainly to problems in continuous time. ADP techniques, on the other hand,
are generally more suited to a discrete time framework. This inconsistency
can be overcome by extrapolating discrete-time ADP solutions to construct
continuous-time solutions.

3.1 The model

We now state a portfolio choice problem under incomplete markets and
portfolio constraints. The problem is formulated in continuous time and stock
prices follow diffusion processes.

The investment opportunity set. There are N stocks and an instantaneously
riskfree bond. The vector of stock prices is denoted by Pt = (P1t � � � � � PNt)
and the instantaneously riskfree rate of return on the bond is denoted by rt .
Without loss of generality, stocks are assumed to pay no dividends. The in-
stantaneous moments of asset returns depend on the M-dimensional vector of
state variables Xt :

(11a)rt = r(Xt)�

(11b)dPt = Pt
[
μP(Xt) dt + ΣP(Xt) dBt

]
�

(11c)dXt = μX(Xt) dt + ΣX(Xt) dBt�

where P0 = 1, X0 = 0, Bt = (B1t � � � � � BNt) is a vector of N independent
Brownian motions,μP andμX areN- andM-dimensional drift vectors, andΣP
and ΣX are diffusion matrices of dimension N by N and M by N , respectively.
The diffusion matrix of the stock return process ΣP is lower-triangular and
nondegenerate: x�ΣPΣ�

P x � ε‖x‖2 for all x and some ε > 0. Then, one can
define a process ηt , given by

ηt = Σ−1
Pt (μPt − rt)�

In a market without portfolio constraints, ηt corresponds to the vector of
instantaneous market prices of risk of the N stocks (see, e.g., Duffie, 1996,
Section 6.G). The process ηt is assumed to be square-integrable so that

E0

[ T∫
0

‖ηt‖2 dt

]
< ∞�

Portfolio constraints. A portfolio consists of positions in the N stocks and the
riskfree bond. The proportional holdings of risky assets in the total portfolio
value are denoted by θt = (θ1t � � � � � θNt). The portfolio policy is assumed to
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satisfy a square integrability condition:
∫ T

0 ‖θt‖2 dt < ∞ almost surely. The
value of the portfolio changes according to

(12)dWt = Wt
{[
rt + θ�t (μPt − rt)

]
dt + θ�t ΣPt dBt

}
�

The portfolio weights are restricted to lie in a closed convex set, K, containing
the zero vector:

(13)θt ∈ K�

For example, if short sales are not allowed, then the constraint set takes the
form K = {θ: θ � 0}. If in addition to prohibiting short sales, borrowing is not
allowed, then K = {θ: θ � 0� 1�θ � 1} where 1� = (1� � � � � 1). The set K can
be constant, or it can depend on time and the values of the exogenous state
variables.

The objective function. For simplicity, the portfolio policy is chosen to maxi-
mize the expected utility of wealth at the terminal date T , E0[U(WT )]. Pref-
erences over intermediate consumption would be easy to incorporate. The
function U(W ) is assumed to be strictly monotone with positive slope, con-
cave, and smooth. Moreover, it is assumed to satisfy the Inada conditions at
zero and infinity: limW→0 U

′(W ) = ∞ and limW→∞U ′(W ) = 0. For instance,
a common choice is a constant relative risk aversion (CRRA) utility function
U(W ) = W 1−γ/(1 − γ).

In summary, the portfolio choice problem is to solve for

(P)V0 := sup
{θt }

E0
[
U(WT )

]
subject to (11), (12) and (13)�

where V0 denotes the value function at 0.

3.2 Review of the duality theory

In this section we review the duality theory for the constrained portfolio
optimization problem. In particular, the version of duality used in Haugh et al.
(2005) is based on the work of Cvitanic and Karatzas (1992).

Starting with the portfolio choice problem (P), one can define a fictitious
problem (P(ν)), based on a different financial market and without the portfolio
constraints. First, define the support function of K, δ(·) : RN → R ∪ ∞, by

(14)δ(ν) := sup
x∈K

(−ν�x)�
The effective domain of the support function is given by

(15)K̃ := {
ν: δ(ν) < ∞}

�

Because the constraint set K is convex and contains zero, the support function
is continuous and bounded from below on its effective domain K̃. Then, one
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can define the set D of Ft-adapted RN valued processes to be

(16)

D :=
{
νt� 0 � t � T : νt ∈ K̃� E0

[ T∫
0

δ(νt) dt

]

+ E0

[ T∫
0

‖νt‖2 dt

]
< ∞

}
�

For each process, ν ∈ D, consider a fictitious market, M(ν), in which the N
stocks and the riskfree bond are traded. There are no constraints in the ficti-
tious market. The diffusion matrix of stock returns in M(ν) is the same as in the
original market. However, the riskfree rate and the vector of expected stock re-
turns are different. In particular, the riskfree rate process and the market price
of risk in the fictitious market are defined respectively by

(17a)r(ν)t = rt + δ(νt)�

(17b)η(ν)t = ηt + Σ−1
Pt νt�

where δ(ν) is the support function defined in (14). Assume that η(ν)t is square-
integrable.

Because the number of Brownian motions, N , is equal to the number of
stocks in the financial market described by (11) and the diffusion matrix is
nondegenerate, it can be shown that the unconstrained fictitious market is
dynamically complete. Dynamic completeness would imply the existence of a
unique market-price-of-risk process, ηt and a unique state-price-density (SPD)
process, πt . πt(ω) may be interpreted as the price per-unit-probability of $1 at
time t in the event ω occurs. (See Duffie, 1996 for further details.) It so hap-
pens that a portfolio optimization problem in complete markets is particularly
easy to solve using martingale methods. Following Cox and Huang (1989), the
state-price density process π(ν)

t in the fictitious market is given by

(18)π(ν)
t = exp

(
−

t∫
0

r(ν)s ds − 1
2

t∫
0

η(ν)s
�
η(ν)s ds −

∫ t

0
η(ν)s

�
dBs

)
�

and the vector of expected returns is given by

μ(ν)Pt = r(ν)t + ΣPt η
(ν)
t �

The dynamic portfolio choice problem in the fictitious market without posi-
tion constraints can be equivalently formulated in a static form (e.g., Cox and
Huang, 1989; Karatzas and Shreve, 1997, Section 3):

(P(ν))V (ν) := sup
{WT }

E0
[
U(WT )

]
subject to E0

[
π(ν)
T WT

]
� W0�
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Once the optimal terminal wealth is computed, it can then be supported by a
dynamic trading strategy. Due to its static nature, the problem (P(ν)) is easy
to solve. For example, when the utility function is of the CRRA type with rel-
ative risk aversion γ so that U(W ) = W 1−γ/(1 − γ), the corresponding value
function in the fictitious market is given explicitly by

(19)V (ν)
0 = W

1−γ
0

1 − γ
E0

[
π(ν)
T

γ−1
γ

]γ
�

It is easy to see that for any admissible choice of ν ∈ D, the value function in
(19) gives an upper bound for the optimal value function of the original prob-
lem. In the fictitious market, the wealth dynamics of the portfolio are given
by

(20)dW (ν)
t = W (ν)

t

[(
r(ν)t + θ�t ΣPtη

(ν)
t

)
dt + θ�t ΣPt dBt

]
�

so that

dW (ν)
t

W (ν)
t

− dWt

Wt
= [(

r(ν)t − rt
) + θ�t ΣPt

(
η(ν)t − ηt

)]
dt

= [
δ(νt)+ θ�t νt

]
dt�

The last expression is nonnegative according to (14) since θt ∈ K. Thus,
W (ν)
t � Wt ∀t ∈ [0� T ] and

(21)V (ν)
0 � V0�

Results in Cvitanic and Karatzas (1992) and Schroder and Skiadas (2003)
imply that if the original optimization problem has a solution, then the up-
per bound is “tight,” i.e., the value function of the fictitious problem (P(ν))
coincides with the value function of the original problem (P) at an optimally
chosen ν∗:

(22)V (ν∗)
0 := inf{ν} V

(ν) = V0

(see Schroder and Skiadas, 2003, Proposition 3(b) and Theorems 7 and 9). The
above equality holds for all times, and not just at time 0, i.e., V (ν∗)

t = Vt . Cvi-
tanic and Karatzas (1992) have shown that the solution to the original problem
exists under additional restrictions on the utility function, most importantly
that the relative risk aversion does not exceed one. Cuoco (1997) proves a more
general existence result, imposing minimal restrictions on the utility function.

3.3 The performance bound

The theoretical duality results of Section 3.2 suggest that one can construct
an upper bound on the value function of the portfolio choice problem (P) by
computing the value function of any fictitious problem (P(ν)). The fictitious
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market is defined by the process νt as in (17). Of course, one can pick any
fictitious market from the admissible set D to compute an upper bound. Such
a bound is uninformative if it is too loose. Since the objective is to evaluate a
particular candidate policy, one should construct a process ν̂t based on such a
policy to obtain tighter bounds. The solution to the portfolio choice problem
under the fictitious market defined by ν̂t then provides a performance bound
on the candidate policy.

In order to construct the fictitious market as defined by ν̂t , Haugh et al.
(2005) first use the solution to the dual problem to establish the link between
the optimal policy, θ∗, and value function, V0 = V (ν∗)

0 , and the correspond-
ing fictitious asset price processes, as defined by ν∗. Not knowing the optimal
portfolio policy and value function, they instead use approximations to obtain
the candidate process for ν∗, which is denoted by ν̃. This candidate process in
general does not belong to D and cannot be used to define a fictitious prob-
lem. Instead, one must search for a qualified process ν̂ ∈ D, which is close to ν̃.
Haugh et al. (2005) then use ν̂ as an approximation to ν∗ to define the fictitious
problem (P(ν̂)). Since ν̂ ∈ D, the solution to the corresponding unconstrained
problem in M(ν̂) provides a valid performance bound for the candidate policy.

The state-price density process is related via an envelope theorem to the
value function by

(23)d lnπ(ν∗)
t = d ln

∂Vt

∂Wt
�

In particular, the stochastic part of d lnπ(ν∗)
t is equal to the stochastic part of

d ln ∂Vt/∂Wt . If Vt is smooth, Itô’s lemma and Equations (18) and (12) imply
that

(24)

η∗
t := η(ν

∗)
t = −Wt

(
∂2Vt/∂W

2
t

∂Vt/∂Wt

)
Σ�
Ptθ

∗
t −

(
∂Vt

∂Wt

)−1
Σ�
Xt

(
∂2Vt

∂Wt∂Xt

)
�

where θ∗t denotes the optimal portfolio policy for the original problem. In the
special but important case of a CRRA utility function the expression for η(ν

∗)
t

simplifies. In particular, the first term in (24) simplifies to γΣ�
Ptθ

∗
t , where γ is

the relative risk aversion coefficient of the utility function, and one only needs
to compute the first derivative of the value function with respect to the state
variables Xt to evaluate the second term in (24). This simplifies the numerical
implementation, since it is generally easier to estimate first-order than second-
order partial derivatives of the value function.

Given an approximation to the optimal portfolio policy θ̃t , one can com-
pute the corresponding approximation to the value function, Ṽt , defined as
the conditional expectation of the utility of terminal wealth, under the port-
folio policy θ̃t . One can then construct a process ν̂ as an approximation to ν∗,
using (24). Approximations to the portfolio policy and value function can be
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obtained using a variety of methods, e.g., the ADP method (see Brandt et al.,
2005). Haugh et al. (2005) take θ̃t as given and use it to construct an upper
bound on the unknown true value function V0.

Assuming that the approximate value function Ṽ is sufficiently smooth, one
can replace Vt and θ∗t in (24) with Ṽt and θ̃t and obtain

(25)

η̃t := η(ν̃)t = −Wt

(
∂2Ṽt/∂W

2
t

∂Ṽt/∂Wt

)
Σ�
Pt θ̃t −

(
∂Ṽt

∂Wt

)−1

Σ�
Xt

(
∂2Ṽt

∂Wt∂Xt

)
�

ν̃t is then defined as a solution to (17b).
Obviously, η̃t is a candidate for the market price of risk in the fictitious mar-

ket. However, there is no guarantee that η̃t and the corresponding process ν̃t
belong to the feasible set D defined by (16). In fact, for many important classes
of problems the support function δ(νt) may be infinite for some values of its
argument. Haugh et al. (2005) look for a price-of-risk process η̂t ∈ D that is
close to η̃t . They choose a Euclidian norm as the measure of distance between
the two processes to make the resulting optimization problem tractable.

The requirement that η̂t ∈ D is not straightforward to implement computa-
tionally. Instead, Haugh et al. (2005) impose a set of tighter uniform bounds,

(26a)‖η̂− η‖ � A1�

(26b)δ(ν̂) � A2�

where A1 and A2 are positive constants that can be taken to be arbitrarily
large. The condition (26a) implies that the process ν̂t is square-integrable, since
ηt is square integrable and ‖η̂ − η‖2 = ν̂�(ΣP−1)�ΣP−1ν̂ � A‖ν̂‖2 for some
A > 0. Haugh et al. (2005) provide a discussion on the choice of constants A1
and A2.

In summary, η̂t and ν̂t are defined as a solution of the following problem:

(27)min
ν̂�η̂

‖η̂− η̃‖2�

subject to

(28a)η̂ = η+ Σ−1
P ν̂�

(28b)δ(ν) < ∞�

(28c)‖η̂− η‖ � A1�

(28d)δ(ν̂) � A2�

The value of η̂t and ν̂ can be computed quite easily for many important
classes of portfolio choice problems. The following two examples are taken
from Haugh et al. (2005).
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Incomplete markets. Assume that only the first L stocks are traded so that the
positions in the remaining N −L stocks are restricted to the zero level. In this
case the set of feasible portfolio policies is given by

(29)K = {θ | θi = 0 for L < i � N}
and hence the support function δ(ν) is equal to zero if νi = 0, 1 � i � L and is
infinite otherwise. Thus, as long as νi = 0, 1 � i � L, the constraint (26b) does
not need to be imposed explicitly. To find η̂ and ν̂, one must solve

(30)min
η̂�ν̂

‖η̂− η̃‖2�

subject to

η̂ = η+ ΣP
−1ν̂�

ν̂i = 0� 1 � i � L�

‖η̂− η‖2 � A2
1�

The diffusion matrix ΣP is lower triangular and so is its inverse. Using this, the
solution can be expressed explicitly as

η̂i = ηi� 1 � i � L�

η̂j = ηj + a(η̃j − ηj)� L < j � N�

ν̂ = ΣP(η̂− η)�

where

a = min
[

1�
(

A2
1 − ‖η̃− η‖2

(L)

‖η̃− η‖2 − ‖η̃− η‖2
(L)

)1/2]
� ‖η̃‖2

(L) =
L∑
i=1

η̃2
i �

Incomplete markets, no short sales, and no borrowing. The market is the
same as in the previous case, but no short sales and borrowing are allowed.
Then the set of admissible portfolios is given by

(31)K = {
θ | θ � 0� 1�θ � 1� θi = 0 for L < i � N

}
�

The support function is given by δ(ν) = max(0�−ν1� � � � �−νL), which is finite
for any vector ν. Because in this case δ(ν) � ‖ν‖, the relation ‖ν‖ = ‖ΣP(η̂−
η)‖ � ‖ΣP‖A1 implies that as long as A2 is sufficiently large compared to A1,
one only needs to impose (26a) and (26b) is redundant. We therefore need to
solve the following problem:

(32)min
η̂�ν̂

‖η̂− η̃‖2�

subject to

η̂ = η+ ΣP
−1ν̂�

‖η̂− η‖2 � A2
1�
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Then the fictitious market is described by

η̂ = η+ min
(

1�
A1

‖η̃− η‖
)
(η̃− η)�

ν̂ = ΣP(η̂− η)�

3.4 Summary of the algorithm

Bounds on the optimal value function can be computed by simulation in
several steps.

1. Start with an approximation to the optimal portfolio policy of the origi-
nal problem and the corresponding approximation to the value function.
Both can be obtained using an ADP algorithm, as in Brandt et al. (2005)
or Haugh et al. (2005). Alternatively, one may start with an approximate
portfolio policy and then estimate the corresponding value function by
simulation.

2. Use the approximate portfolio policy and partial derivatives of the ap-
proximate value function to construct a process η̃t according to the ex-
plicit formula (25). The process η̃t is a candidate for the market price of
risk in the fictitious market.

3. Construct a process η̂t that is close to η̃t and satisfies the conditions for
the market price risk of a fictitious market in the dual problem. This in-
volves solving the quadratic optimization problem (27).

4. Compute the value function from the static problem (P(ν)) in the result-
ing fictitious market defined by the market price of risk process η̂t . This
can be accomplished efficiently using Monte Carlo simulation. This re-
sults in an upper bound on the value function of the original problem.

The lower bound on the value function is obtained by simulating the termi-
nal wealth distribution under the approximate portfolio strategy.

Successful practical implementation of the above algorithm depends on ef-
ficient use of simulation methods. For instance, the expectation in (19) cannot
be evaluated explicitly and so it has to be estimated by simulating the underly-
ing SDE’s. This is a computationally intensive task, particularly when ν̃t cannot
be guaranteed in advance to be well-behaved. In such circumstances it is neces-
sary to solve a quadratic optimization problem at each discretization point on
each simulated path in order to convert η(ν̃)t and ν̃t into well-behaved versions
that can then be used to construct an upper bound on V0. (See Haugh et al.,
2005 for further details.)

Besides the actual ADP implementation that constructs the initial approx-
imate solution, simulation is also often necessary to approximate the value
function and its partial derivatives in (25). This occurs when we wish to eval-
uate a given portfolio policy, θ̃t , but do not know the corresponding value
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function, Ṽt . In such circumstances, it seems that it is necessary to simulate
the policy, θ̃t , in order to approximate the required functions. Once again, this
is computationally demanding and seeking efficient simulation techniques for
all of these tasks will be an important challenge as we seek to solve ever more
complex problems.

Haugh, Kogan and Wu (2005) present several numerical examples illustrat-
ing how approximate portfolio policies can be evaluated using duality tech-
niques. While relatively simple, these examples illustrate the potential useful-
ness of the approach. Haugh et al. (2005) apply the above algorithm to evaluate
an ADP solution of the portfolio choice problem in incomplete markets with
no-borrowing constraints. Haugh and Jain (2006) use these duality techniques
to evaluate other classes of portfolio strategies and to study in further detail
the strategies studied by Haugh et al. (2005). Finally, Haugh and Jain (2007)
show how path-wise Monte Carlo estimators can be used with the cross-path
regression approach to estimate a given portfolio policy’s value function as well
as its partial derivatives.

3.5 Directions for further research

There are several remaining problems related to the use of duality-based
methods in portfolio choice. On the theoretical side, there is room for devel-
oping new algorithms designed to tackle more complex and realistic problems.
For example, the results summarized above apply to portfolio choice with
constraints on proportions of risky assets. However, some important finance
problems, such as asset allocation with illiquid/nontradable assets do not fit in
this framework. Additional work is required to tackle such problems.

Another important class of problems involve a different kind of market fric-
tions: transaction costs and taxes. Problems of this type are inherently difficult,
since the nature of frictions often makes the problem path-dependent and
leads to a high-dimensional state space. Some duality results are known for
problems with transaction costs (see Rogers, 2003 for a review), while prob-
lems with capital gains taxes still pose a challenge. However, note that it is not
sufficient to have a dual formulation in order to derive a useful algorithm for
computing solution bounds. It is necessary that a high-quality approximation
to the optimal dual solution can be recovered easily from an approximate value
function. Not all existing dual formulations have such a property and further
theoretical developments are necessary to address a broader class of problems.

On the computational side, there is a need for efficient simulation algo-
rithms at various stages of practical implementation of the duality-based al-
gorithms. For instance, motivated by the promising application of importance
sampling methods to pricing American options, one could conceivably develop
similar techniques to improve performance of portfolio choice algorithms.
In particular, in a problem with dynamically complete financial markets and
position constraints, approximation errors would tend to accumulate when
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portfolio constraints are binding. By sampling more frequently from the “prob-
lematic” areas in the state space, one could achieve superior approximation
quality.

The above discussion has been centered around the problem of evaluat-
ing the quality of approximate solutions. A major open problem both on the
theoretical and computational fronts is how to use dual formulations to di-
rect the search for an approximate solution. While a few particularly tractable
problems have been tackled by duality methods, there are no efficient general
algorithms that could handle multi-dimensional problems with nontrivial dy-
namics and constraints or frictions. Progress on this front may be challenging,
but would significantly expand our ability to address outstanding problems in
financial engineering theory and practice.
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Abstract

We apply a signal processing technique known as independent component analysis
(ICA) to multivariate financial time series. The main idea of ICA is to decompose
the observed time series into statistically independent components (ICs). We further
assume that the ICs follow the variance gamma (VG) process. The VG process is
Brownian motion with drift evaluated at a random time given by a gamma process.
We build a portfolio, using closed form expressions, that maximizes expected expo-
nential utility when returns are driven by a mixture of independent factors with VG
returns. The performance of this investment is compared with the Markowitz model
as a benchmark.

1 Introduction

The relevance of higher moments for investment design has long been
recognized in the finance literature and we cite Rubinstein (1973), and Krauss
and Litzenberger (1976) from the earlier literature investigating the asset pric-
ing implications of higher moments. More recently we refer to Harvey and
Siddique (2000) for the investigation of coskewness in asset pricing. Addition-
ally we note that there appear to be many investment opportunities yielding
non-Gaussian returns in the shorter term. This is evidenced, as we will observe,
by the ability to construct portfolios with return distributions that in fact dis-
play very high levels of kurtosis, a typical measure of non-Gaussianity (Cover
and Thomas, 1991). The shorter term perspective is also appropriate for pro-
fessional investors who can rebalance positions with a greater frequency. Fur-
thermore, we also recognize that there are many ways to construct return
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possibilities with the same mean and variance but differing levels of skewness
and kurtosis. Investment analysis based on traditional mean–variance prefer-
ences (Markowitz, 1952) will not vary the investment across these alternatives,
but the presence of skewness preference and kurtosis aversion suggests that
the optimal levels of investment should vary across these alternatives.

Apart from these considerations from the economic side, there are impli-
cations for asset returns from an information theoretic or signal processing
point of view. In this regard we note, importantly, that after centering and
scaling a random variable, the shape of its density reflects information con-
tent. The Gaussian density among zero mean unit variance densities has the
highest uncertainty and least information in the sense of entropy. This leads
us to suspect that an inappropriate use of the Gaussian density for designing
investment portfolios should result in suboptimal investments. We therefore
wish to consider accounting for higher moments in the design of investment
portfolios.

The theoretical advantages of accounting for higher moments notwithstand-
ing, we note that the computational burdens of portfolio theory using multi-
variate distributions with long-tailed marginals are extensive in both the di-
mensions of model estimation and the subsequent portfolio design. This lies in
sharp contrast to the relative ease with which mean–variance analysis may be
executed for large portfolios.

Our primary contribution here is to enhance the computational aspects of
such a higher moment exposure portfolio theory. In doing this we begin by
recognizing that multivariate Gaussian returns with a nonsingular covariance
matrix may be viewed as a linear combination of an equal number of inde-
pendent standard Gaussian random variables. We generalize this perspective
and view the vector of asset returns now as a linear combination of an equal
number of independent but possibly non-Gaussian random variables.

One may alternatively adopt a factor structure whereby one would allow
for fewer non-Gaussian factors and then permit Gaussian idiosyncratic distur-
bances as well. However, if one permits correlation among the Gaussian idio-
syncratic components then the specification is more involved with the number
of random variables describing returns now exceeding the number of assets.
We leave generalizations in these directions to future research, focusing here
on the initial case, that is in keeping with the original Markowitz formulation
of keeping the number of independent component random variables equal to
the number of assets. Our reformulation relative to Markowitz is therefore,
simply, just to permit the independent components to be non-Gaussian.

For the identification of the independent components we recognize from the
recent signal processing literature that procedures like principal components
are ill-suited in recovering signals when they are present. We have already com-
mented that the presence of signals or informative components presumes the
existence of non-Gaussian distributions that when mixed approach Gaussian-
ity. The procedures of independent components analysis (ICA) developed in
the signal processing literature seek to maximize metrics of non-Gaussianity
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with a view to detecting the original signal or independent random variables.
To construct the data on the components we therefore adopt the methods of
independent components analysis (ICA) (Hyvärinen et al., 2001) and in par-
ticular the fast ICA algorithm (Hyvärinen, 1999).

To describe the probability law of the independent components we use dis-
tributions that have proved successful in the derivative pricing literature and
work in particular with the variance gamma family introduced by Madan and
Seneta (1990) and developed further in Madan et al. (1998). For the estima-
tion we employ the fast Fourier transform methods of Carr et al. (2002). The
combined use of fast ICA and the fast Fourier transform renders a fast and
efficiently estimable characterization of the multivariate distribution of asset
returns. It remains to construct the optimal portfolio.

Given analytically tractable characteristic functions for our independent
components makes the use of exponential utility particularly efficient. In this
regard we note that with multivariate Gaussian returns it is exponential util-
ity that supports mean variance analysis. Hence, staying close to the support
structure of the Markowitz theory suggests that a first analysis should naturally
proceed under exponential utility. For exponential utility the tractability of the
final portfolio design is accomplished by reduction to univariate investment
problems for the optimal investment in each of the independent components.
These univariate investment problems are solved for in closed form. The final
structure, though computationally more extensive than Markowitz investment,
is nonetheless capable of a reasonably rapid execution and we illustrate our
methods by a back test comparison with Markowitz investment.

The outline of the paper is as follows. Section 2 briefly presents results for
skewness preference and kurtosis aversion in investment design. The distribu-
tional models used for the independent components are described in Section 3.
In Section 4, we first solve the univariate component investment problem in
closed form and then we reduce the multiasset allocation problem to these
univariate problems. Section 5 briefly describes the procedures of ICA for
identifying the independent components. The results of our illustrative back
test are provided in Section 6. Section 7 concludes.

2 Non-Gaussian investment

We begin with fourth-order approximations to a general utility function. The
reason for going up to the fourth order is that for investments which agree on
mean and variance, the third order recognizes a higher order reward statistic
for utilities displaying skewness preference, but no risk statistic is then ac-
counted for once we have conditioned on common variances. The next higher
order risk statistic is kurtosis, and to account for both reward and risk we con-
sider fourth-order approximations to utility. Furthermore, we also note that it
is the fourth moment or approximations to it that constitute the fundamental
measures of non-Gaussianity in the presence of signals or information.
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We further emphasize that the primary focus of our study is on shorter hori-
zon returns for which fourth-order approximations are even more appropriate,
though analytical tractability is enhanced in our exponential utility by simulta-
neously considering all the reward (odd) and risk (even) moments. For a more
intuitive understanding of the role of higher moments at the risk and reward
level we briefly consider just the fourth-order approximation here. The main
purpose of this section is to develop a better understanding of the role of skew-
ness preference and kurtosis aversion on investment.

We therefore write for utility U(x) the approximation

U(x) ≈ U(μ)+U ′(μ)(x− μ)+ 1
2
U ′′(μ)(x− μ)2

+ 1
6
U ′′′(μ)(x− μ)3 + 1

24
U ′′′′(μ)(x− μ)4�

Define the skewness s and the kurtosis k (Karr, 1993) by

s = E[(x− μ)3]
σ3 � k = E[(x− μ)4]

σ4

and write an approximation for the expected utility as

E
[
U(x)

] ≈ U(μ)+ 1
2
U ′′(μ)σ2 + 1

6
U ′′′(μ)sσ3 + 1

24
U ′′′′(μ)kσ4�

We also further approximate

U(μ) ≈ U(0)+U ′(0)μ
and assume that U(0) = 0 and U ′(0) = 1. We may therefore write

E
[
U(x)

] ≈ μ+ 1
2
U ′′(μ)σ2 + 1

6
U ′′′(μ)sσ3 + 1

24
U ′′′′(μ)kσ4�

For an approximation to exponential utility with risk aversion parameter η, we
get

E
[
U(x)

] ≈ μ− η

2
σ2 + η2

6
sσ3 − η3

24
kσ4�

Now consider the question of investing y dollars in a non-Gaussian return with
mean μ, variance σ2, skewness s, and kurtosis k. The expected utility from this
investment on a financed basis with interest rate r is approximately

(μ− r)y − η

2
σ2y2 + η2

6
sσ3y3 − η3

24
kσ4y4�

The first-order condition for the optimal level of investment is

(2.1)μ− r − ησ2y + η2

2
sσ3y2 − η3

6
kσ4y3 = 0�
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We may rewrite Equation (2.1) as

(2.2)
μ− r

y∗
= ησ2 − η2

2
sσ3y∗ + η3

6
kσ4(y∗)2�

We can now see that for a positive excess return the optimal y is given by the
intersection of a parabola and a hyperbola. This will occur at some positive
level for y∗. We also observe the Gaussian or Markowitz result to first order in
y∗ when skewness is zero.

We may observe that increased excess returns raise the hyperbola and so
raise the level of y∗. Also an increase in σ raises the parabola and so leads to a
decrease in y∗. An increase in skewness decreases the slope of the parabola at 0
and shifts the intersection with the hyperbola out further thus increasing y∗,
while an increase in kurtosis has the opposite effect. For a formal comparative
static analysis of these effects we refer the reader to Appendix A.

By way of a comparison to Gaussian investment we note that for distribu-
tions with zero skewness, the parabola in y on the right-hand side of (2.2) has
a zero slope at zero but then increases in y at a rate dependent of the level of
η3kσ4. As a result the optimal investment is consistently below the Gaussian
level. With a negative skewness the slope of the parabola is positive at zero
and this reduces the investment even further below the Gaussian level. It is
only when skewness is positive and the slope of the parabola at zero is negative
that investment rises above the Gaussian level. These observations reflect the
levels of misinvestment made by Gaussian methods when taking positions in
portfolios whose returns have a signal or information theoretic component.

3 Modeling distributions

We need to select models of the distribution of our non-Gaussian com-
ponent random variables. For this we turn to distributions that have been
successfully employed in recent years in modeling risk neutral and statistical
asset returns. These distributions are associated with the unit time densities of
Lévy processes and we mention the variance gamma (Madan and Seneta, 1990;
Madan et al., 1998), the normal inverse Gaussian (Barndorff-Nielsen, 1998),
and the generalized hyperbolic model (Eberlein et al., 1998; Eberlein and
Prause, 1998). The resulting densities all have analytical characteristic func-
tions and sufficient parametric flexibility to describe varying levels of skewness
and kurtosis in addition to the mean and variance. We shall focus attention
here on the variance gamma that is particularly tractable in both its character-
istic function and the associated Lévy measure.

First we briefly define the variance gamma Lévy process and its use in mod-
eling the stock price distribution at various horizons. The variance gamma
process (XVG(t)� t � 0) evaluates Brownian motion with drift at a random
time change given by a gamma process (G(t)� t � 0). Let the Brownian mo-
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tion with drift θ and volatility σ be (Y(t;σ� θ)� t > 0), where

Y(t;σ� θ) = θt + σW (t)

and (W (t)� t > 0) is a standard Brownian motion.
The time change gamma process (G(t; ν)� t > 0) is a Lévy process whose

increments G(t + h; ν) − G(t; ν) = g have the gamma density with mean h
and variance νh (Rohatgi, 2003) and density fh(g):

fh(g) = gh/ν−1 exp(−g/ν)
νh/ν%(h/ν)

�

Its characteristic function is (Billingsley, 1955):

φG(u) = E
[
eiug

] =
(

1
1 − iuν

)h/ν

�

and for x > 0� its Lévy density is

kG(x) = exp(−x/ν)
νx

�

The variance gamma process XVG(t;σ� ν� θ) is defined by

XVG(t;σ� ν� θ) = Y
(
G(t; ν);σ� θ) = θG(t; ν)+ σW

(
G(t; ν))�

The characteristic function of the VG process may be evaluated by condition-
ing on the gamma process. This is because, given G(t; ν), XVG(t) is Gaussian.
A simple calculation shows that the characteristic function of the variance
gamma is

(3.1)φXVG(t;u) = E
[
exp(iuXVG)

] =
(

1
1 − iuθν + σ2νu2/2

)t/ν

�

The variance gamma process is a Lévy process with infinitely divisible dis-
tributions. Thus the characteristic function of the process may be written in
the Lévy–Khintchine form (Sato, 1999), and the Lévy measure KVG is given by
(Carr et al., 2002)

(3.2)KVG(x) = C

|x| exp
(
G−M

2
x− G+M

2
|x|

)
�

where

C = 1
ν
�

G =
√

2
σ2ν

+ θ2

σ4 + θ

σ2 �

M =
√

2
σ2ν

+ θ2

σ4 − θ

σ2 �
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The density for the variance gamma process can display both skewness and
excess kurtosis. The density is symmetric when θ = 0 and G = M , and the
kurtosis is s(1 + ν) in this case. The parameter θ generates skewness and we
have a negatively skewed density for θ < 0 and a positively skewed one when
θ > 0.

We may accommodate a separate mean by considering the process

H(t) = μt + θ
(
G(t)− t

) + σW
(
G(t)

) = (μ− θ)t +XVG(t)

with the characteristic function

φH(t)(u) = E
[
eiuH(t)

] = eiu(μ−θ)tφXVG(t)(u)�

This gives us a four parameter process capturing the first four moments of the
density.

A particularly instructive economic interpretation of the parameters, valid
for all three parameter Lévy processes, is obtained by a reparameterization in
terms of realized quadratic variation or volatility, a directional premium, and a
size premium. One may view the height of the Lévy measure at negative 2% to
its height at 2% as a measure of the premium for negative moves over positive
ones, either in likelihood or price, depending on whether one is considering
the statistical or risk neutral measure. For the variance gamma this is given
essentially by D = (G−M). The size premium is the premium of a 2% move
over a 4% move and this is given here by S = (G +M). Finally the quadratic
variation V is captured by the parameter C� given G and M and is

V = C

(
1
G2 + 1

M2

)
�

One may therefore work equivalently with D, S, and V the direction and size
premia and the quadratic variation.

We note furthermore that the Gaussian model is a special case that results
on letting the variance of the gamma process approach zero or equivalently by
letting the level of kurtosis approach 3.

4 Exponential utility and investment in zero cost VG cash flows

We present in two subsections, first the results for investment in a single
risky asset and then the generalization to asset allocation across portfolios.

4.1 A single risky asset

Suppose we invest y dollars in a zero cost cash flow with a VG distribution
for the investment horizon of length h with mean (μ − r)h. We may write the
zero cost cash flow accessed as X

(4.1)X = (μ− r)h+ θ(g − 1)+ σW (g)�
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where g is gamma distributed with unit mean and variance ν, and W (g) is
Gaussian with zero mean and variance g. We suppose the VG parameters are
for the holding period h as the unit period. We also suppose that μ and r have
been adjusted for the length of the period and take this to be unity in what
follows.

The final period wealth is

W = yX�

We employ exponential utility and write

(4.2)U(W ) = 1 − exp(−ηW )�

where η is the coefficient of risk aversion. The certainty equivalent CE solves

E
(
U(W )

) = 1 − exp(−ηCE)�

The goal of the investment design is the maximization of this expected utility
function. The expected utility is

(4.3)E
(
U(W )

) = E
(
1 − exp(−ηW )

) = 1 − E
(
exp(−yηX))�

To determine the risky asset investment level y it is equivalent to minimize the
following expression with respect to y:

E
(
exp(−yηX))�

Theorem 4.1. Suppose we invest y dollars in a zero cost cash flow with a VG
distribution described in Equation (4.1) for the investment horizon of length h.
And suppose that we employ the exponential utility function as in Equation (4.2).
The optimal solution for the investment is

ỹ =
(
θ

σ2 − 1
(μ− r − θ)ν

)

+ sign(μ− r)

√(
θ

σ2 − 1
(μ− r − θ)ν

)2
+ 2(μ− r)

(μ− r − θ)νσ2 �

where ỹ = ηy and η is the risk aversion coefficient.

Proof. See Appendix B. �

When μ > r, y is positive and we have a long position. Likewise for μ < r,
y is negative and we have a short position.

4.2 Asset allocation in returns driven by VG components

We take an investment horizon of length h and wish to study the construc-
tion of optimal portfolios for investment in a vector of assets whose zero cost
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excess returns or financed returns over this period are R − rh. Once again we
suppose all parameters are adjusted for the time horizon and take this to be
unity in what follows.

Let the vector y denote the dollar investment in the collection of assets. We
suppose the mean excess return is μ− r and hence that

R− r = μ− r + x�

where x is the zero mean random asset return vector.
Our structural assumption is that there exist a vector of independent zero

mean VG random variables s of the same dimension as x and a matrix A such
that

(4.4)x = As�

We noted in the Introduction the reasons for supposing that the number of
independent components matches the number of assets. Essentially this is a
simplification in keeping with multivariate Markowitz theory where for a full
rank covariance matrix the number of independent random variables driving
the asset returns matches the number of assets. A factor model specification
with a few independent systematic factors and idiosyncratic components in-
creases the number of random variables driving returns to one that is greater
than the number of assets. When working with infinitely many assets one may
attempt to reduce the exposure to the smaller number of factors as in the Ross
(1976) arbitrage pricing theory, but here the focus is on a relatively small num-
ber of assets with exposure to all the random variables involved. We proceed, in
the first instance here, with as many independent random variables as there are
assets. For the interested reader we mention that the factor model approach is
studied further for its equilibrium implications in Madan (2005). Procedures
for identifying the matrix A will be discussed later when we introduce the
methods of independent components analysis.

The probability law of the components si is that of

si = θi(gi − 1)+ σiWi(gi)�

where the Wis are independent Brownian motions, and the gi are gamma vari-
ates with unit mean and variance νi.

Theorem 4.2 below identifies the optimal investment in all the assets for an
investor with exponential utility.

Theorem 4.2. Let the vector y denote the dollar investment in the collection of
assets. We suppose the mean excess return is μ− r and the zero cost excess return
is R− r, hence that

R− r = μ− r + x�

where x is the zero mean random asset return vector and assume that E[xx′] = I.
Let

x = As
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and assume the law of si is

si = θi(gi − 1)+ σiWi(gi)�

where A is the mixing matrix, the Wis are independent Brownian motions, and the
gi are gamma variates with unit mean and variance νi. Denote

ζ = A−1μ− r

η
− θ

η

and

y = 1
η
A−1ỹ�

where y = (y1� y2� � � � � yn)
′, ỹ = (ỹ1� ỹ2� � � � � ỹn)

′, and η is the risk aversion
coefficient. Then the solution of ỹi, for i = 1� 2� � � � � n, is given by

ỹi =
|ζi|θiνi − sign(ζi)

σ2
i
η

|ζi|σ2
i νi

±

√
(|ζi|θiνi − sign(ζi)

σ2
i
η )

2 + 2(|ζi| + sign(ζi)
θi
η )|ζi|σ2

i νi

|ζi|σ2
i νi

(4.5)= θi

σ2
i

− 1
ηζiνi

±
√√√√(

θi

σ2
i

− 1
ηζiνi

)2
+ 2

ζi + θi
η

ζiσ
2
i νi

�

and we take the positive or the negative root depending on the sign of (ζi + θi
η )

mean of the implied component exposure.

Proof. See Appendix C. �

5 Identifying the joint distribution of returns

The joint distribution of returns is identified on finding the mixing matrix
A and the parameters of the distributions for the independent components.
Assuming we have the matrix A we may obtain data on a time series of the
independent factors by

st = A−1xt�

where xt is the mean corrected series of asset returns. The probability law
of the independent components may then be estimated by maximum likeli-
hood applied to the unconditional distribution of the component data sit . We
construct a histogram of these observations and then apply the fast Fourier
transform to the characteristic function of the variance gamma law to compute
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the theoretical probability f (s) of s by

f (s) = 1
2π

∫ ∞

−∞
e−iux e−iuθ

(1 − iuθν + σ2ν
2 u2)

1
ν

du�

The log likelihood of the binned data is then computed using nk observations
at the midpoint sk of the kth interval of the histogram by

L(σ� ν� θ) =
∑
k

nk log
(
f (sk);σ� ν� θ

)
�

This likelihood is maximized to get estimates of the parameters σi� νi� θi for
each component on performing N separate univariate estimations.

The identification of the matrix A is done via an application of independent
components analysis. One may first perform on the demeaned data for the as-
set returns a principal components analysis or prewhitening step and construct
zero mean, unit variance and uncorrelated random variables x̃t . For this we
construct the covariance matrix C of the demeaned asset returns and write it
as

C = V DV ′�

where V is the orthogonal matrix of the eigenvectors of C, and D is the diago-
nal matrix of the corresponding eigenvalues (see Anderson, 1958). We denote

D = diag(d1� � � � � dn), and let D− 1
2 = diag(d

− 1
2

1 � � � � � d
− 1

2
n ). Whitening gives us

(5.1)x̃t = V D− 1
2V ′xt

(5.2)= Uxt�

It follows that

E(x̃x̃′) = I�

From Equations (4.4) and (5.1), we then have

x̃ = V D− 1
2V ′x = V D− 1

2V ′As = Ãs�

The literature on independent components analysis has observed that this
whitening procedure is not a good way to recover the original signals of the
vector s when there are true signals with non-Gaussian distributions display-
ing positive information theoretic content. It is observed that in the presence
of signals, inherently non-Gaussian, the acting of mixing them via a mixing
matrix A takes their distributions via central limit considerations towards the
Gaussian density. It is further noted that the whitening step, useful as it is,
only determines variables up to a rotation. Any orthonormal transformation
of the x̃ is another set of zero mean, unit variance and uncorrelated random
variables.
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These two observations lead to the formulation of the ICA procedure. This
is the identification of the right rotation matrix. This is done with a view to
undoing the transition to Gaussianity by successively choosing the elements or
columns of the rotation matrix W by maximizing a metric of non-Gaussianity
and keeping the column on the N dimensional unit sphere and orthogonal
to the previous columns. A variety of metrics are suggested and have been
studied. These include, excess kurtosis, negentropy, and the expected log cosh
of the transformed data. It is suggested that the maximization of expected log
cosh is particularly robust and we implemented fast ICA that employs this met-
ric.

We then obtain

s = W x̃ = WUx�

The matrix A is then constructed as

A = (W U)−1�

The procedure is described in greater detail in Amari et al. (1996) and Cardoso
(1998). For a textbook presentation of independent components analysis the
reader is referred to Hyvärinen et al. (2001).

6 Non-Gaussian and Gaussian investment compared

For a back test of the performance of non-Gaussian investment in a set of
stocks with Gaussian investment we take daily closing prices on five stocks from
January 1990 to May 2004. The five stocks chosen are 3M Company, Boeing
Company, IBM, Johnson & Johnson, McDonald’s Corp., and Merck & Co.
From the time series of prices p(t) for these stocks we construct daily returns

Rt = pt − pt−1

pt−1
�

We take the returns for the first 1000 days since January 1990 to determine
our first positions to be taken in a portfolio of these five stocks. We then move
forward one month at a time to get a set of rolling 1000 day time series data for
our subsequent positioning that are unwound at month end. This investment is
repeated for 125 monthly time periods from January 1990 to May 2004. Thus,
we have 125 different 5 by 1000 matrices Ym, m = 1� 2� � � � � 125 of the set of 5
daily returns.

Performing an ICA analysis on the demeaned data of these matrices yields
125 sets of 5 non-Gaussian independent components on which we estimate
the VG process by 5 univariate applications done 125 times. To appreciate the
degree of non-Gaussianity attained by the ICA we present a table with the av-
erage level of kurtosis attained for each of the five independent components.
We observe that the average kurtosis level for the first factor is five times the
Gaussian level and even for the third factor it is double the Gaussian level. It
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Table 1.
Performance measures

VG Gauss

Sharpe ratio 0�2548 0�2127
CE (η = 0�0005) 47�6883 0�0230
Gain–loss ratio 2�3909 1�4536

Table 2.
Summary of the kurtosis for the five ICs

Mean Minimum Maximum

1st IC 15�3388 4�2466 54�1112
2nd IC 12�9027 3�9871 49�4759
3rd IC 8�6070 3�9973 41�8942
4th IC 6�3648 3�7159 18�5333
5th IC 5�4536 3�5134 12�0329

can get on occasion to well over 15 times the Gaussian level using just portfo-
lios of five stocks. With more stocks we have obtained much higher levels. We
also did such an ICA analysis on a Monte Carlo vector of truly Gaussian re-
turns and found no ability to generate any excess kurtosis at all. We therefore
conjecture that actual investment returns provide considerable access to infor-
mative or kurtotic return scenarios that would be of interest to preferences
reflecting a concern for these higher moments.

We study investment design by using Equation (4.5) to compute the vector
of dollars, y, invested in each stock under the hypothesis of returns being a lin-
ear mixture of independent VG processes. We also compute dollar amounts
invested for the Gaussian process for comparison (see Elton and Gruber,
1991). At the end of each investment time period, we invest an amount of
money y according to our analysis. We look forward in the time series by one
month and calculate the cash flow CF at the end of the month for each time
period. The formula is as follows:

CF = y ·
(
pt+21 − pt

pt
− rt

12

)
�

where pt is the initial price of the investment, pt+21 is the price at the month
end unwind, and rt is the interest rate on the 3-month treasury bill. Note that
we use pt+21 as the month end, as there are 21 trading days in a month on
average. Table 1 presents the three performance measures, the Sharpe ratio,
the certainty equivalent (CE), and the gain–loss ratio of both the VG and the
Gaussian processes (Farrell, 1997). Table 2 displays the summary of the kurto-
sis of the five independent components.
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Fig. 1. Cumulative distribution function for Gaussian investment returns.

Figures 1 and 2 plot the cumulated cash flows through the 125 investment
time periods of our analysis for the VG and the Gaussian processes.

7 Conclusion

We present and back test an asset allocation procedure that accounts for
higher moments in investment returns. The allocation procedure is made com-
putationally efficient by employing independent components analysis and in
particular the fast ICA algorithm to identify long-tailed independent com-
ponents in the vector of asset returns. Univariate methods based on the fast
Fourier transform then analyze these components using models popularized in
the literature on derivative pricing. The multivariate portfolio allocation prob-
lem is then reduced to univariate problems of component investment and the
latter are solved for in closed form for exponential utility.

The back test shows that the resulting allocations are substantially differ-
ent from the Gaussian approach with an associated cumulated cash flow that
can outperform Gaussian investment. The combination of fast ICA, the fast
Fourier transform and the wide class of Lévy process models now available
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Fig. 2. Cumulative distribution function for non-Gaussian investment returns.

make higher moment asset allocation a particularly attractive area of invest-
ment design and future research.

Appendix A. Formal analysis of skewness preference and kurtosis aversion

For a formal analysis of the comparative statistics, we evaluate the differ-
ential of the first-order condition with respect to y∗, s, and k as our particular
interest. This yields the following equation:(

μ− r

(y∗)2 − η2

2
sσ3 + η3

3
kσ4y∗

)
dy∗ = η2

2
σ3y∗ ds − η3

6
σ4(y∗)2 dk�

We then have

dy∗

ds
= η2σ3y∗

2

(
μ− r

(y∗)2 − η2

2
sσ3 + η3

3
kσ4y∗

)−1
�

dy∗

dk
= −η3σ4(y∗)2

6

(
μ− r

(y∗)2 − η2

2
sσ3 + η3

3
kσ4y∗

)−1
�
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The effects of skewness and kurtosis on investment are, respectively, posi-
tive and negative, provided the term in the denominator is positive. We may
also write that

(A.1)
dy∗

ds
= η2σ3(y∗)2

2

(
μ− r

y∗
− η2

2
sσ3y∗ + η3

3
kσ4(y∗)2

)−1
�

(A.2)
dy∗

dk
= −η3σ4(y∗)3

6

(
μ− r

y∗
− η2

2
sσ3y∗ + η3

3
kσ4(y∗)2

)−1
�

Substituting Equation (2.2) into Equations (A.1) and (A.2), we obtain:

(A.3)
dy∗

ds
= η2σ3(y∗)2

2

(
ησ2 − η2sσ3y∗ + η3

2
kσ4(y∗)2

)−1
�

(A.4)
dy∗

dk
= −η3σ4(y∗)3

6

(
ησ2 − η2sσ3y∗ + η3

2
kσ4(y∗)2

)−1
�

Hence for the signs of Equations (A.3) and (A.4) to be positive and negative,
respectively, we need that

1 − ηsσy∗ + η2

2
kσ2(y∗)2 > 0�

The second derivative of expected utility evaluated at the optimum is

−ησ2 + η2sσ3y∗ − η3

2
kσ4(y∗)2�

For a maximum, the above expression must be negative. This gives us

ηsσy∗ < 1 + η2

2
kσ2(y∗)2

or equivalently,

1 − ηsσy∗ + η2

2
kσ2(y∗)2 > 0�

Hence we observe that investment is positively responsive to skewness and neg-
atively responsive to kurtosis.

Appendix B. Proof of Theorem 4.1

Proof. To find the optimal solution for the investment, our goal is to maximize
the expected utility function as in Equation (4.3). It is equivalent to minimizing

E
(
exp(−yηX))

over y.
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E
(
exp(−yηX))
= exp

(−yη(μ− r − θ)
)
E

(
exp

(
−
(
yηθ− y2η2σ2

2

)
g

))
= exp

(
−yη(μ− r − θ)− 1

ν
ln

(
1 + ν

(
yηθ− y2η2σ2

2

)))
�

Minimizing the above expression is equivalent to maximizing

z(y) = yη(μ− r − θ)+ 1
ν

ln
(

1 + ν

(
yηθ− y2η2σ2

2

))
�

Suppose α�β ∈ R and α < 0 < β. Let

q(y) = 1 + ν

(
yηθ− y2η2σ2

2

)
�

and q(α) = q(β) = 0. The function q(y) > 0 for y ∈ (α�β) and q is differen-
tiable on (α�β) and continuous on [α�β]. We have

z(0) = 0�

lim
y→α+ z(y) = −∞�

lim
y→β− z(y) = −∞�

so that a maximum of z(y) exists on the interval (α�β). The first-order condi-
tion with respect to y leads to

z′(y) = η(μ− r − θ)+ ηθ− η2σ2y

1 + νηθy − νη2σ2y2/2
�

Furthermore, assume y1 and y2 are two roots for z′(y) = 0, and y1 < 0, y2 > 0.
That is, z′(y1) = z′(y2) = 0. Setting z′(y) = 0, we obtain

(μ− r − θ)

(
1 + νηθy − νη2σ2

2
y2

)
+ θ− ησ2y

(B.1)= μ− r + (
(μ− r − θ)νθ− σ2)ηy − (μ− r − θ)

νη2σ2

2
y2�

Observe that z′(0) > 0 if μ > r. We have z(y1) < 0 and z(y2) > 0. According
to the mean value theorem, y2 is the root which gives the optimal solution.
Similarly, if μ < r, then z′(0) < 0. We have z(y1) > 0 and z(y2) < 0 so that
y1 gives the optimal solution in this condition. Let ỹ = yη and solve for this
magnitude, noting that y is then ỹ/η. Hence we rewrite Equation (B.1) as
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ỹ2 − 2
(μ− r − θ)νθ− σ2

(μ− r − θ)νσ2 ỹ − 2(μ− r)

(μ− r − θ)νσ2

= ỹ2 − 2
(
θ

σ2 − 1
(μ− r − θ)ν

)
ỹ − 2(μ− r)

(μ− r − θ)νσ2

= 0�

Hence we have

ỹ =
(
θ

σ2 − 1
(μ− r − θ)ν

)

+ sign(μ− r)

√(
θ

σ2 − 1
(μ− r − θ)ν

)2
+ 2(μ− r)

(μ− r − θ)νσ2 � �

Appendix C. Proof of Theorem 4.2

Proof. We choose the investment vector y to maximize expected exponential
utility for a risk aversion coefficient η. The objective is therefore that of maxi-
mizing

1 − e−ηy ′(μ−r)E
[
e−ηy ′x

] = 1 − e−ηy ′(μ−r)E
[
e−ηy ′As

]
�

The expectation is then given by

E
[
e−ηy ′As

] = exp

(
n∑
i=1

η(y ′A)iθi

− 1
νi

ln
(

1 + θiνiη(y
′A)i − σ2

i νi

2
η2(y ′A)2

i

))
�

It follows that the certainty equivalent is

CE = y ′(μ− r)+
n∑
i=1

(−y ′A)iθi

+ 1
ηνi

ln
(

1 + θiνiη(y
′A)i − σ2

i νi

2
η2(y ′A)2

i

)
�

We may write equivalently

CE = η(y ′A)
(
A−1μ− r

η
− θ

η

)
+

n∑
i=1

1
ηνi

ln
(

1 + θiνiη(y
′A)i − σ2

i νi

2
η2(y ′A)2

i

)
�
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Now define

ỹ ′ = ηy ′A�

ζ = A−1μ− r

η
− θ

η
�

and write

CE =
n∑
i=1

[
ζiỹi + 1

ηνi
ln

(
1 + θiνiỹi − σ2

i νi

2
ỹi

2
)]

=
n∑
i=1

ψ(ỹi)�

We have additive functions in the vector ỹi and these may be solved for using
univariate methods in closed form. We then determine

y = 1
η
A−1ỹ�

First observe that the argument of the logarithm is positive only in a finite
interval for ỹi. Hence the CE maximization problem has an interior solution
for ỹi.

The first-order condition yields

ψ′(ỹi) = ζi +
θi
η − σ2

i
η ỹi

1 + θiνiỹi − σ2
i νi
2 ỹi

2
= 0�

It is clear that

ψ′(0) = ζi + θi
η

and the optimal value for ỹi is positive when ψ′(0) > 0 and negative otherwise.
We may write the condition as

|ζi| +
sign(ζi)(

θi
η − σ2

i
η ỹi)

1 + θiνiỹi − σ2
i νi
2 ỹi

2
= 0�

The argument of the logarithm must be positive and so we write

|ζi|
(

1 + θiνiỹi − σ2
i νi

2
ỹi

2
)

+ sign(ζi)
(
θi
η

− σ2
i

η
ỹi

)
= 0�

We may rewrite this expression as the quadratic(
|ζi| + sign(ζi)

θi
η

)
+

(
|ζi|θiνi − sign(ζi)

σ2
i

η

)
ỹi − |ζi|σ2

i νi

2
ỹi

2 = 0�

or equivalently that

|ζi|σ2
i νi

2
ỹi

2 −
(
|ζi|θiνi − sign(ζi)

σ2
i

η

)
ỹi −

(
|ζi| + sign(ζi)

θi
η

)
= 0�
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The solution for ỹi is given by

ỹi =
|ζi|θiνi − sign(ζi)

σ2
i
η

|ζi|σ2
i νi

±

√
(|ζi|θiνi − sign(ζi)

σ2
i
η )

2 + 2(|ζi| + sign(ζi)
θi
η )|ζi|σ2

i νi

|ζi|σ2
i νi

= θi

σ2
i

− 1
ηζiνi

±
√√√√(

θi

σ2
i

− 1
ηζiνi

)2
+ 2

ζi + θi
η

ζiσ
2
i νi

� �

References

Amari, S.-I., Cichocki, A., Yang, H.H. (1996). A new learning algorithm for blind source separation.
Advances in Neural Information Processing 8, 757–763.

Anderson, T.W. (1958). An Introduction to Multivariate Statistical Analysis. John Wiley & Sons Inc., New
York.

Barndorff-Nielsen, O.E. (1998). Processes of normal inverse Gaussian type. Finance and Stochastics 2,
41–68.

Billingsley, P. (1955). Probability and Measure, third ed. John Wiley & Sons Inc., New York.
Cardoso, J.-F. (1998). Blind signal separation: Statistical principles. Proceedings of the IEEE 9, 2009–

2025.
Carr, P., Geman, H., Madan, D., Yor, M. (2002). The fine structure of asset returns: An empirical

investigation. Journal of Business 75 (2), 305–332.
Cover, T.M., Thomas, J.A. (1991). Elements of Information Theory. John Wiley & Sons Inc., New York.
Eberlein, E., Keller, U., Prause, K. (1998). New insights into smile, mispricing and value at risk. Journal

of Business 71, 371–406.
Eberlein, E., Prause, K. (1998). The generalized hyperbolic model: Financial derivatives and risk mea-

sures. FDM Reprint 56.
Elton, E., Gruber, M. (1991). Modern Portfolio Theory and Investment Analysis, fourth ed. John Wiley

& Sons Inc., New York.
Farrell Jr., J.L. (1997). Portfolio Management: Theory and Application, second ed. McGraw-Hill, New

York.
Harvey, C., Siddique, A. (2000). Conditional skewness in asset pricing tests. Journal of Finance 55,

1263–1295.
Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis.

IEEE Transaction on Neural Networks 10, 626–634.
Hyvärinen, A., Karhunen, J., Oja, E. (2001). Independent Component Analysis. John Wiley & Sons Inc.,

New York.
Karr, A.F. (1993). Probability. Springer-Verlag, Berlin.
Krauss, A., Litzenberger, R. (1976). Skewness preference and the valuation of risk assets. Journal of

Finance 31, 1085–1100.
Madan D. (2005). Equilibrium asset pricing: With non-Gaussian factors and exponential utility. Working

paper, Robert H. Smith School of Business, University of Maryland.
Madan, D., Seneta, E. (1990). The variance gamma (VG) model for share market returns. Journal of

Business 63, 511–524.
Madan, D., Carr, P., Chang, E. (1998). The variance gamma process and option pricing. European

Finance Review 2, 79–105.



Ch. 23. Asset Allocation with Multivariate Non-Gaussian Returns 969

Markowitz, H.M. (1952). Portfolio selection. Journal of Finance 7, 77–91.
Rohatgi, V.K. (2003). Statistical Inference. Dover Publications Inc., New York.
Ross, S.A. (1976). The arbitrage theory of capital asset pricing. The Journal of Economic Theory 13,

341–360.
Rubinstein, M. (1973). The fundamental theorem of parameter-preference security valuation. Journal

of Financial and Quantitative Analysis 8, 61–69.
Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cam-

bridge.



This page intentionally left blank



J.R. Birge and V. Linetsky (Eds.), Handbooks in OR & MS, Vol. 15
Copyright © 2008 Elsevier B.V. All rights reserved
DOI: 10.1016/S0927-0507(07)15024-6

Chapter 24

Large Deviation Techniques and Financial
Applications

Phelim Boyle
School of Accountancy, University of Waterloo, Ontario, Canada N2L 3G1
E-mail: pboyle@uwaterloo.ca

Shui Feng
Department of Mathematics and Statistics, McMaster University, Ontario, Canada L8S 4K1
E-mail: shuifeng@mcmaster.ca

Weidong Tian
Department of Statistics and Actuarial Science, University of Waterloo,
Ontario, Canada N2L 3G1
E-mail: wdtian@uwaterloo.ca

Abstract

This chapter introduces large deviation techniques and surveys recent applications
in finance. Large deviations deal with the theory of rare events and can be used to
establish exponential bounds on the probability of such events. If we can establish
a so-called large deviation principle for a family of random variables this provides
information not only on convergence but also on the speed of convergence. We begin
with an introduction to large deviations and outline some of the major results. We
discuss a number of applications in finance. These include applications in portfolio
management, risk management and Monte Carlo simulations. We also describe some
recent work which uses concepts from large deviations to analyze incomplete markets
and we illustrate this application with stochastic volatility models.

1 Introduction

The early foundations of mathematical finance were laid down over one
hundred years ago by Louis Bachelier in his doctoral thesis. Bachelier created
an intuitive model of stochastic processes to represent stock price movements.
Over sixty years later Robert Merton used the more formal models of con-
tinuous time stochastic processes in his seminal papers on portfolio selection
and option pricing. Since then probability theory and stochastic processes have

971
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emerged as essential tools in the study of mathematical finance. Many of the
most beautiful and powerful ideas in probability have found natural appli-
cations in the field of finance. Large deviation techniques provide a recent
example. These techniques have been used in portfolio optimization, large risk
estimation and Monte Carlo simulation. In this chapter, we give a brief sum-
mary of the large deviation theory and survey some recent applications to the
finance discipline. The survey is intended to be representative rather than ex-
haustive.

The remainder of this chapter is organized as follows. Section 2 introduces
the basic ideas of large deviation theory and discusses large deviation princi-
ples (LDP). Section 3 examines the application of LDP to portfolio selection
and portfolio measurement. Section 4 discusses the application to the tail risk
of portfolios. Section 5 deals with applications to Monte Carlo simulation. Sec-
tion 6 summarizes a recent application of large deviation techniques to pricing
in an incomplete market. Section 7 concludes this chapter, and suggests some
possible directions where large deviation techniques may prove useful.

2 Large deviation techniques

This section introduces some of the main concepts of large deviation theory.
We start with some well-known results in probability and then use these as a
reference point. Many probability distributions are characterized by a few pa-
rameters that are related to moments of different orders. If the values of these
parameters are fixed, then the distribution is completely determined. Thus
the study of a probability distribution can sometimes be reduced to the esti-
mation of several parameters. Various approximation mechanisms have been
devised to develop estimations of unknown parameters. The law of large num-
bers (LLN), the central limit theorem (CLT), and the large deviation principle
(LDP) are the classical trio of limiting theorems in probability theory that pro-
vide the theoretical framework for statistical estimation. The LLN describes
the average or mean behavior of a random population. The fluctuation around
the average is characterized by the CLT. The theory of large deviations is con-
cerned with the likelihood of unlikely1 deviations from the average.

We recall that many financial models often involve the solutions of certain
stochastic differential equations. Looking at a stochastic differential equation,
the drift term corresponds to the average while the random term describes the
fluctuation. If the stochastic differential equation represents the dynamics of
an asset price, the mean rate of return is related to the LLN while the volatility
term is connected to the CLT.

What is LDP then? How can it be used in mathematical finance? Before we
answer this it is useful to discuss a simple example.

1 Hence the name large deviations.
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Example 1. Let Z be a standard normal random variable and for n � 1, we
define Zn = 1√

n
Z. Then it is clear that for any δ > 0

(2.1)lim
n→∞P

{|Zn| � δ
} = 0�

and
√
nZn converges (actually they are equal in this case) to Z. These cor-

respond to the weak LLN and the CLT, respectively. By l’Hospital’s rule, we
get

lim
n→∞P

{|Zn| � δ
}
e
δ2
2 n = 2 lim

n→∞ e
δ2
2 n

∞∫
√
nδ

1√
2π

e−
x2
2 dx

= 2 lim
n→∞

1√
2π
e−

δ2
2 n

δ2

2 e
− δ2

2 n
=

√
2
π

2
δ2 �

Equivalently, we have shown that for large n, P{|Zn| � δ} ≈
√

2
π

2
δ2 e

− δ2
2 n,

i.e., P{|Zn| � δ} approaches zero at an exponential decay rate. Clearly this
provides more information than the weak LLN and leads to the establishment
of the strong LLN. This type of result dealing with the rate of convergence
belongs to the subject of large deviations.

We will introduce several general LDP results and illustrate their useful-
ness through examples. All results will be stated in a form that will be suf-
ficient for our purposes. For more general versions of these and other re-
sults on LDP, we recommend (Varadhan, 1984; Freidlin and Wentzell, 1998;
Dembo and Zeitouni, 1998) and the references therein.

We now give the formal definition of a large deviation principle. Let E be a
complete, separable metric space with metric ρ.

Definition 2.1. A family of probability measures {Pε: ε > 0} defined on the
Borel σ-algebra B of E is said to satisfy a large deviation principle (LDP) with
speed 1/ε and rate function I(·) if

(2.2)for any closed set F� lim sup
ε→0

ε logPε{F} � − inf
x∈F

I(x)�

(2.3)for any open set G� lim inf
ε→0

ε logPε{G} � − inf
x∈G

I(x)�

(2.4)for any c � 0� Φ(c) = {
x ∈ E: I(x) � c

}
is compact�

where Φ(c) is called the level set at level c.
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The first two conditions are equivalent to the following statement: for all
A ∈ B,

(2.5)

− inf
x∈A0

I(x) � lim inf
ε→0

ε logPε{A} � lim sup
ε→0

ε logPε{A} � − inf
x∈A

I(x)�

In many applications, A ∈ B satisfies infx∈A0 I(x) = infx∈A I(x). Such an
event A is called an I-continuity set. Thus for an I-continuity set A, we have
that limε→0 ε logPε{A} = − infx∈A I(x).

The definition will be the same if the set for ε is {1/n: n � 1}. The only
difference is that we will write Pn instead of P1/n for ε = 1/n. Going back to
Example 1, we have E = (−∞�+∞) = R, Pn is the law of Zn, and {Pn: n � 1}
satisfies a LDP with rate function I(x) = x2

2 .
If the closed set in (2.2) is replaced by a compact set, then we say the family

{Pε: ε > 0} satisfies a weak LDP. To establish a LDP from a weak LDP, one
needs to check the following condition which is known as exponential tightness:
For any M > 0, there is a compact set K such that on the complement Kc of
K we have

(2.6)lim sup
ε→0

ε logPε
{
Kc

}
� −M�

The relation between weak convergence of probability measures and tight-
ness, is described in Pukhalskii (1991) where a similar relation between LDP
and exponential tightness is investigated.

It is clear from the definition that establishing a LDP directly might not
be straightforward. Fortunately several general principles (results) have been
established, and in many cases the establishment of a LDP is equivalent to
verifying the assumptions which lead to these results.

At this stage it is convenient to introduce two important concepts. Given
a probability law μ over B and a random variable Y with distribution law μ,
E = Rd , then the logarithmic moment generating function of law μ is defined as

(2.7)Λ(θ) = logE
[
e〈θ�Y 〉] for all θ ∈ E�

where 〈�〉 denotes the usual scalar product in Rd . Λ(�) is also called the cumu-
lant generating function. The Fenchel–Legendre transformation of Λ(θ) is

(2.8)Λ∗(x) := sup
θ∈E

{〈θ� x〉 −Λ(θ)
}
�

The first principle is Cramér’s theorem. We now describe it in the context of
Euclidean space.

Theorem 2.1 (Cramér). Let E = Rd be the d-dimensional Euclidean space,
and {Yn: n � 1} be a sequence of i.i.d. random variables. Denote the law of
1
n

∑n
k=1 Yk by Pn. Assume that

Λ(θ) = logE
[
e〈θ�Y1〉] < ∞ for all θ ∈ Rd�
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Then the family {Pn: n � 1} satisfies a LDP with speed n and rate function
I(x) = Λ∗(x).

Thus, when dealing with i.i.d. random variables the calculation of the log-
arithmic moment generating functions is the key in establishing LDP, and its
Fenchel–Legendre transformation is the rate function.

Example 2. Let {Xn: n � 1} be i.i.d. Bernoulli trials with parameterp ∈ (0� 1).
Set Yk = Xk−p√

p(1−p)

Sn = 1
n

n∑
k=1

Yk�

Then LLN and CLT imply that Sn converges to zero,
√
nSn converges to a

standard normal random variable when n becomes large. Let E = R, Pn be the
law of Sn. The conditions of Cramér’s theorem are clearly satisfied. By direct
calculation, we have

Λ(θ) = logE
[
eθY1

] = log
[
(1 − p)+ pe

θ√
p(1−p)

]
− θ

√
p

1 − p
�

Hence {Pn: n � 1} satisfies a LDP with rate function

I(x) =

⎧⎪⎪⎨⎪⎪⎩
√
p(1 − p)

[(√ p
1−p + y

)
log

(
1 +

√
1−p
p y

) + (√ 1−p
p − y

)
× log

(
1 −

√
p

1−py
)]
� x ∈ [−√

p
1−p�

√
1−p
p

]
∞� otherwise�

An infinite dimensional generalization of Cramér’s theorem is also avail-
able. Here we only mention one particular case – Sanov’s theorem.

Let {Xk: k � 1} be a sequence of i.i.d. random variables inRd with common
distribution μ. For any n � 1, define

ηn = 1
n

n∑
k=1

δXk
�

where δX is the Dirac measure concentrated at X. The sequence of ηn is
in the space M1(R

d) of all probability measures on Rd equipped with the
weak topology. It is the empirical distribution of a random sampleX1� � � � �Xn.
A well-known result from statistics says that when n becomes large one will
recover the true distribution μ from ηn. Clearly M1(R

d) is an infinite dimen-
sional space. Denote the law of ηn by Pn. Then we have
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Theorem 2.2 (Sanov). The family {Pn: n � 1} satisfies a LDP with speed n and
rate function

H(ν|μ) =
{ ∫

Rd log dν
dμ dν� if ν � μ�

∞� otherwise�

The rate function in Sanov’s theorem is also called the relative entropy of ν
with respect to μ.

Example 3. Let {Xk: k � 1} be a sequence of i.i.d. Poisson random variables
with parameter 1. Then ηn converges to the Poisson law as n approaches infin-
ity. From Sanov’s theorem ηn will stay close only to those probabilities that are
supported on nonnegative integers. If ν is supported on nonnegative integers,
then

H(ν|μ) =
∞∑
i=0

ν(i)
[
log ν(i)+ log(i!)] + 1�

The assumption of i.i.d. plays a crucial role in Cramér’s theorem. For more
general situations one has the following Gärtner–Ellis theorem.

Theorem 2.3 (Gärtner–Ellis). Let E = Rd, and {Yn: n � 1} be a sequence of
random variables. Denoting the law of 1

n

∑n
k=1 Yk by Pn. Define

Λn(θ) = logE
[
e〈θ�Yn〉

]
�

Λ(θ) = lim
n→∞

1
n
Λn(nθ)�

D = {
θ ∈ Rd: Λ(θ) < ∞}

�

where in the second equation we assume that the limit exists. Assume further that
D has a nonempty interior on which Λ is differentiable. Also the gradient of Λ ap-
proaches infinity when θ approaches the boundary from the interior. (Λ satisfying
these conditions is said to be essentially smooth.) Then the family {Pn: n � 1}
satisfies a LDP with speed n and rate function

I(x) = sup
θ∈Rd

{〈θ� x〉 −Λ(θ)
}
�

Example 4. For any n � 1, let Yn be a Beta random variable with parameters 1
and n. Then by direct calculation, we have

Λn(θ) = log

1∫
0

eθxn(1 − x)n−1 dx�
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and

Λ(θ) = lim
n→∞

1
n
Λn(nθ) =

{
θ− 1 − log θ� if θ > 1�
∞� otherwise�

Clearly D = R and Λ is differentiable. Hence by the Gärtner–Ellis theorem,
the law of Yn satisfies a LDP with speed n and rate function

I(x) =
{− log(1 − x)� if x ∈ [0� 1]�
∞� else�

From all these results, we can see the importance of the form of the rate
function. If one knows the candidate for the rate function, then what is re-
quired is to verify the related inequalities. A well-known result of Varadhan
provides a method to guess the rate function.

Theorem 2.4 (Varadhan’s lemma). Let E = Rd, and {Pn: n � 1} be a family
of probabilities satisfying a LDP with speed n and rate function I. Then for any
bounded continuous function f on Rd,

lim
n→∞

1
n

logEPn
[
enf(x)

] = sup
x∈Rd

{
f (x)− I(x)

}
�

Hence by calculating the left-hand side in the above equation, we will get an
idea of the form of the rate function.

Another important large deviation technique is the following so-called con-
traction principle.

Theorem 2.5 (Contraction principle). Let E�F be complete, separable spaces,
and h be a continuous function from E to F . For a family of probability measures
{Pn: n � 1} on E, we denote {Qn: n � 1} the family of probability measures on
F such that Qn = Pn ◦ h−1. If {Pn: n � 1} satisfies a LDP with speed n and rate
function I, then {Qn: n � 1} also satisfies a LDP with speed n and rate function

I ′(y) = inf
{
I(x): y = h(x)

}
�

As one important implication of this “Contraction Principle,” a LDP can be
transformed by a continuous function from one space to another.

If the random variables are replaced by stochastic processes, we are then
dealing with large deviations at the path level. The stochastic processes could
be an independent system, a weakly interacting system (McKean–Vlasov limit),
a strongly interacting system (hydrodynamic limit), measure-valued process,
or a random perturbation of a deterministic dynamical system. In this section
we focus on the last class: random perturbation of a deterministic dynam-
ical system. These types of large deviations are considered in the so-called
Freidlin–Wentzell theory (Freidlin and Wentzell, 1998).
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For any fixed T > 0, let E = C([0� T ]� Rd) be the collection of all Rd valued
continuous functions on [0� T ]. The topology on E generated by the following
metric:

ρ
(
φ(·)� ϕ(·)) = sup

t∈[0�T ]

∣∣φ(t)− ϕ(t)
∣∣

is complete and separable.
Consider the ordinary differential equation (ODE)

(2.9)
dX(t)

dt
= b

(
X(t)

)
� X(0) = x ∈ Rd�

For any ε > 0, a random perturbation of the ODE (2.9) is the following
stochastic differential equation:

(2.10)dXε(t) = b
(
Xε(t)

)
dt + √

εσ
(
Xε(t)

)
dB(t)� Xε(0) = x�

where B(t) is a d-dimensional Brownian motion, σ(X) is a nonnegative defi-
nite d × d matrix.

Let Pε denote the law of the process Xε(·) on E. Then we have

Theorem 2.6 (Freidlin–Wentzell). Assume that all elements of b(X) and σ(X)
are bounded, Lipschitz continuous, and σ(X) is positive definite. Then the family
{Pε: ε > 0} satisfies a LDP with speed 1/ε and rate function (or action func-
tional)

I
(
φ(·)) =

⎧⎨⎩
1
2

∫ T
0 〈(φ̇(t)− b(φ(t)))�D−1(φ(t))(φ̇(t)− b(φ(t)))〉 dt�
if φ ∈ Hx�

∞� elsewhere�

where D(X) = σ(X)σ∗(X), and Hx is a subset of C([0� T ]� Rd) containing all
absolutely continuous functions starting at x.

Example 5. For any ε > 0, let d = 1 and Xε(t) be the solution of the SDE

dXε(t) = √
ε dB(t)� Xε(0) = x�

Thus we have b(X) = 1, σ(X) = 1, and all conditions in Theorem 2.6 are
satisfied. Therefore, the law of Xε(·) satisfies a LDP with speed ε and rate
function

I
(
φ(·)) =

{
1
2

∫ T
0 |φ̇(t)|2 dt� if φ ∈ Hx�

∞� elsewhere�

The result in this example is called one-dimensional Schilder theorem (Schilder,
1966). Historically, the Schilder theorem was established earlier than the
Freidlin–Wentzell theory even though we derive it as an application of the
latter.

Next we present an example that is popular in mathematical finance.
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Example 6. Let Bt be a standard one-dimensional Brownian motion, and
Yε(t) = e

√
εBt . In other words, Yε(t) is a geometric Brownian motion. If we

write f (X) = eX , then clearly Yε(t) = f (Xε(t)) where Xε(t) is the process in
Example 5 with starting point 0. Then the contraction principle combined with
Example 5 implies that the law of Yε(t) satisfies a LDP with speed ε and rate
function

I ′
(
ϕ(·)) = I

(
log

(
ϕ(·)))�

In the above Theorem 2.6, the positive definite requirement of σ(X) can be
relaxed (see Dembo and Zeitouni, 1998). But in some financial models such as
the Cox–Ingersoll–Ross (CIR) model the Lipschitz condition does not hold.

Recently in the study of the large deviations for Fleming–Viot process, Daw-
son and Feng (1998, 2001), Feng and Xiong (2002) established LDPs for the
following processes.

Let

(2.11)dxεt = (
a+ bxεt

)
dt + √

εxεt dBt� xε0 = c � 0� a � 0�

(2.12)

dyεt = θ
(
p− yεt

)
dt +

√
εyεt

(
1 − yεt

)
dBt�

yε0 = d� θ > 0� p� d ∈ [0� 1]�
and Pε, Qε be the laws of xεt and yεt , respectively. Here is their result.

Theorem 2.7. The families {Pε: ε > 0} and {Qε: ε > 0} satisfy LDPs with speed
1/ε and respective rate function I1(·) and I2(·). For any absolutely continuous
path φ(·) satisfying inf{φ(t): t ∈ [0� T ]} > 0 and φ(0) = c we have

I1
(
φ(·)) = 1

2

∫ T

0

(φ̇(t)− a− bφ(t))2

φ(t)
dt�

For any absolutely continuous path φ(·) satisfying

0 < inf
{
φ(t): t ∈ [0� T ]} � sup

{
φ(t): t ∈ [0� T ]} < 1� φ(0) = d�

we have

I2
(
φ(·)) = 1

2

∫ T

0

(φ̇(t)− θ(p− bφ(t)))2

φ(t)(1 −φ(t))
dt�

This completes our brief overview of large deviations theory. We are now
ready to discuss applications in mathematical finance.

3 Applications to portfolio management

The first application deals with the problem of portfolio management. We
start with some of the institutional background. Portfolio fund managers need
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clear objectives and scientific procedures to manage their portfolios to attain
them. Both managers and investors also need measures of portfolio perfor-
mance. In investment history, the growth-maximum or Kelly investment strat-
egy might be the first strategy. (It dates back to Bernoulli in 17th century.)
In modern times, the Markowitz–Sharpe’s approach2 provides optimal port-
folios in a mean–variance framework. Merton extended this static framework
to a continuous-time dynamic framework. More recently large deviation tech-
niques have been employed to provide an alternative approach both for port-
folio selection and the measurement of portfolio performance.

3.1 Portfolio selection criterion

First we consider the portfolio selection problem. Let (Ω�F� P) denote an
underlying probability space with information structure F = (Ft)t�0. For sim-
plicity we consider a market with just two assets: a risky asset S and a riskless
asset B. We assume a constant interest rate r. [For a discussion on a more gen-
eral framework we refer to Stutzer (2003), and Pham (2003).] The price of S
follows a diffusion process

(3.1)
dS
S

= μ(S� t) dt + σ(S� t) dWt�

Let Xπ
t be the fund manager’s wealth at time t and πt the proportion of wealth

invested in the risky asset. From the self-financing condition, we have

dXπ
t = Xπ

t

[(
r + (μ− r)πt

)
dt + πtσ dWt

]
�

We consider those admissible strategies (πt) such that Xπ
t � 0 to get rid of

doubling arbitrage strategies. Given an admissible strategy (πt), the log rate of
return over the period [0� T ] is

(3.2)Rπ
T = log(Xπ

T /x)

T
�

where x = X0 is the initial amount.
Shortfall probability strategies have been proposed in Browne (1999) and

Föllmer and Leukert (1999). In this case the criterion is to maximize the
probability of beating some benchmark return, say c, over a fixed investment
horizon T . To illustrate how LDP can be applied to this problem we consider
first a very simple special case and then deal with more general situations.

We first assume that πt is a constant percentage strategy for all t. It means that
πt = π, a constant percentage, for all t. The investment period [0� T ] is divided
into discrete periods (such as annual, monthly or daily) and Rπ�t denotes the

2 It can be formulated as maximizing the Sharpe ratio.
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log gross rate of return between times t − 1 and t. Then

Rπ
T =

∑T
t=1 Rπ�t

T
� Rπ�t = log

(
Xπ
t /X

π
t−1

)
�

To simplify the problem further we first assume that both μ� r are constants.
In this case, the Rπ�t have an independent identical distribution (i.i.d.). Fur-
thermore this distribution is normal distribution with

Rπ�t ∼ N
(
E[Rπ�t]�Var[Rπ�t]

)
�

where

E[Rπ�t] = r + π(μ− r)− π2σ2

2
�

and Var[Rπ�t] = π2σ2. Hence by the LLN,

(3.3)Rπ
T → r + π(μ− r)− π2σ2

2
�

We see that

(3.4)Λ(θ) := logE
[
eθRπ�t

] = θ

[
r + π(μ− r)− π2σ2

2

]
+ 1

2
θ2π2σ2�

Thus by Cramér theorem,

(3.5)lim inf
T→∞

1
T

logP
(
Xπ
T � xecT

) = − inf
x�c

I(x;π)�

where

I(x;π) = (x− (r + π(μ− r)− π2σ2

2 ))2

2θ2π2σ2 �

Hence

(3.6)

lim inf
T→∞

1
T

logP
(
Xπ
T � xecT

) = −I(c)

:= −(c − (r + π(μ− r)− π2σ2

2 ))2

2θ2π2σ2 �

Therefore

(3.7)P
(
Xπ
T � xecT

) � exp
(
−(c − (r + π(μ− r)− π2σ2

2 ))2

2θ2π2σ2 T

)
where the decay rate of the probability P(Xπ

T � xecT ) is I(c� π).
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The criterion proposed by LDP is to find the admissible strategy (πt) to max-
imize (the probability of beating the benchmark in an asymptotic sense)

lim inf
T→∞

1
T

logP
(
Xπ
T � xecT

)
or equivalently, to minimize the decay rate. One justification for this selection
criterion is that the investment horizon can be uncertain and quite long for
mutual funds and pension funds.

If we focus on all constant percentage strategies when dealing with this cri-
terion, we can verify that the optimal constant percentage strategy πLDP with
minimal decay rate is independent of T , by using last formula. This strategy
provides an optimal constant percentage strategy with an optimal asymptotic
growth rate. Moreover

(3.8)πLDP =
√

2(c − r)

σ2 �

Let us consider all possible admissible strategies. We will see very shortly
how LDP is a powerful tool to deal with some technical problems. Suppose the
investment horizon T is fixed and we want to maximize (shortfall strategy)

MaxP
(
Xπ
T � xecT

)
over all admissible strategies. The optimal percentage πt�T is (see Browne,
1999 for details)

(3.9)πt�T = 1
σ
√
T − t

n(vt)

N(vt)
�

where

vt = log(St/K)+ (r − 1
2σ

2)(T − t)

σ
√
T − t

and K is given implicitly by

log(S0/K)+ (r − 1
2σ

2)T

σ
√
T

= N−1(e−(c−r)T )
�

where N(�) is the cumulative normal probability function. However, for gen-
eral asset price processes it is difficult to obtain explicit expressions for the
shortfall probability. But LDP, especially the Gärtner–Ellis theorem is power-
ful enough to handle the maximum asymptotic probability strategy.

Actually, a remarkable result, due to Pham (2003), implies that, the above
constant percentage strategy πLDP is the optimal strategy based on the follow-
ing criterion:

Max lim inf
T→∞

1
T

logP
(
Xπ
T � xecT

)
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over all admissible strategies (πt).
We now state a result in a more general continuous-time framework.
Define

(3.10)Λ(λ�π) = lim inf
T→∞

1
T

logE
[
eλTR

π
T
]

and

(3.11)Λ(λ) = Maxπ Λ(λ�π)

over all possible admissible strategies. Define

(3.12)J(c) = Supπ lim inf
T→∞

1
T

logP
[
Rπ
T � c

]
�

The next theorem of Pham (2003) express the dual-relationship between the
maximum asymptotic strategy and the ergodic risk-sensitive control problem
for Λ(λ) for any fixed λ.

Theorem 3.1. Suppose that there exists λ � 0 such that for all λ ∈ [0� λ), there
exists a solution π(λ) to the optimal problem Λ(λ) where the appropriate limit
exists, i.e.,

(3.13)Λ(λ) = lim inf
T→∞

1
T

logE
[
eλTR

π(λ)
T

]
�

Suppose also that Λ(λ) is continuously differential on [0� λ) with limit
limλ→λ Λ

′(λ) = ∞. Then we have

(3.14)J(c) = −Supλ∈[0�λ)
[
λc −Λ(λ)

]
� ∀c ∈ R�

The optimal logarithmic moment generating function Λ(λ) is easy to obtain
explicitly. For instance, assume that log S satisfies a mean reversion process as
follows:

(3.15)
dS
S

= [a− κ log S] dt + σ dW �

Then

(3.16)Λ(λ) = κ

2
[
1 −

√
1 − λ

] + λ

2

(
a− r

σ

)2
�

Write c = λ
2 (

a−r
σ )2 + κ

4 . By straightforward calculation,

J(c) =
{
− (c−c)2

c−c+ κ
4
� if c � c�

0� if c < c�

The sequence of nearly optimal portfolios for c � c is

(3.17)πn
t = −

[
4
(
c + 1

n
− c

)
+ κ

]
log St + a− r

σ
�
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The optimal portfolio for c < c is explicitly given by

(3.18)πt = −κ log St + a− r

σ
�

Remark. It is interesting to compare this portfolio selection criterion with
other portfolio selection criteria. Given a constant percentage strategy π, Rπ�t

is not i.i.d., in general. The log moment generating function of the time average
of partial sums is

(3.19)

Λ(λ;π) = lim inf
T→∞

1
T

logE
[
eλTR

π
T
]

= lim inf
T→∞

1
T

logE
[(

Xπ
T

x

)λ]
�

Assuming standard technical assumptions in the Gärtner–Ellis theorem, we
have

(3.20)P
(
Xπ
T � xecT

) � exp
(−I(c;π)T )

�

where I(x;π) is the Fenchel–Legendre transform of Λ(λ;π). Therefore, the
maximum asymptotic strategy is to find the constant percentage π to maximize
I(c;π) which is equivalent to maximizing

Maxπ I(c;π) = Maxπ Maxλ

{
λc − lim

T→∞
1
T

logE
[(

Xπ
T

x

)λ]}
= Maxπ Maxλ lim

T→∞
1
T

logE
[
−
(
Xπ
T

xecT

)λ]
�

There are both similarities and differences between this objective and a
conventional power utility criterion. In the power utility case the relative risk
aversion parameter is given. But in this asymptotic strategy, both the optimal
strategy and the relative risk aversion parameter are determined simultane-
ously. Another difference is that the ratio of wealth to the benchmark xecT is
involved. This feature appears in the shortfall probability strategy as well, be-
cause the probability measure P(Xπ

T � xecT ) is involved as well. Fortunately,
unlike the maximum shortfall probability strategy, the optimal strategy is much
easier to compute in this framework.

3.2 Portfolio performance index

We now turn to a discussion of the construction of performance indices.
As Roll (1992) puts it, today’s professional money manager is often judged by
total return performance relative to a prespecified benchmark. Therefore, the
design of a suitable portfolio performance index is important from a practical
viewpoint. We now explain how Large Deviation theory can assist us in this
task.
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Let Rp − Rb denote a portfolio p′’s return over and above a benchmark, b.
The natural generalization of mean–variance efficiency relative to a bench-
mark is Roll’s tracking error variance (TEV )-efficiency, resulting from minimiza-
tion of the tracking error variance Var[Rp −Rb] subject to a constraint on the
desired size of E[Rp − Rb] > 0. Specifically, the most common scalar perfor-
mance measure consistent with TEV efficiency is the information ratio, defined
as

(3.21)
E[Rp −Rb]√
Var[Rp −Rb]

�

IfRb has the riskfree return, the information ratio becomes well-known Sharpe
ratio (Sharpe, 1966). This information ratio is only defined in a single-period.
Here we provide a natural generalization of this concept to the multi-period
setting (or even the continuous-time framework).

Given a benchmark portfolio b, assume the time periods are {0� 1� � � � � T }.
Write

W
p
T = W0

T∏
t=1

Rpt�

where Rpt denotes the random gross return from the strategy p between times
t − 1 and time t. Similarly we define

W b
T = W0

T∏
t=1

Rbt�

The outperformance event is the event such that

(3.22)
logW p

T − logW b
T

T
≡ 1
T

T∑
t=1

(logRpt − logRbt) > 0�

A natural measure is to employ a rank ordering of the probabilities

(3.23)Prob

[
1
T

T∑
t=1

(logRpt − logRbt) > 0

]
�

In this ranking, the investment horizon T is involved. Because of the dif-
ficulty in determining the precise length of an investor’s horizon (when one
exists), and because short horizon investors may have different portfolio rank-
ings than the long horizon investors, one can use the asymptotic approach that
T → ∞. That is rank the portfolio strategies p for which

(3.24)lim
T→∞

1
T

T∑
t=1

(logRpt − logRbt) > 0�
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As an example, let c denote the (constant) return for the benchmark Rb.
Then it suffices to rank the probability limT→∞ P( 1

T

∑T
t=1 logRpt � c). By

the discussion in the previous section, limT→∞ P( 1
T

∑T
t=1 logRpt � c) can be

estimated via the rate function I(c;p) of LDP. Thus, the under performance
probability rate, I(c;p), of decay to zero as T → ∞ is the proposed ranking
index for portfolios. A portfolio whose under performance probability decays to
zero at a higher rate will be ranked higher than a portfolio with a lower decay
rate. See Stutzer (2000) for details.

Similar ideas can be used to study diagnosis of asset pricing models. We
refer to Stutzer (1995), Glasserman and Jin (1999), and Kitamura and Stutzer
(2002) for details.

4 Tail risk of portfolios

Modern risk management is often concerned with low probability events in
the tail of the distribution of the future profit and loss. Since LDP deals with
the probability of rare events, it is not surprising that it has a natural application
to risk management and the estimation of large losses which occur in the tail
of the distribution. In this section we explain how LDP can be used in portfolio
risk management. We confine ourselves to the risk management of a credit
portfolio. [See Dembo et al. (2004), Glasserman (2005) and Gordy (2002) for
more complete details.]

Assume we are dealing with a credit portfolio. There arem obligors to which
the portfolio is exposed. Assume Yk is default indicator for kth obligor; Uk is
the loss resulting from the default of kth obligor. Hence the total loss exposure
is

(4.1)L =
m∑
i=1

YiUi�

We assume the credit risk is modeled by some risk factors Z1� Z2� � � � � Zd,
and Y1� � � � � Ym are independent conditional on Z = (Z1� Z2� � � � � Zd). For
simplicity U1� � � � � Um are constants. These risk factors Z could be some
macro-economic factors. The default indicator Yi can be chosen as

(4.2)Yi = 1{Xi>xi}� i = 1� 2� � � � �m�

where we assume Xi is a standard normal distribution and the threshold xi de-
notes the default boundary as in the Merton model. Letpi denote the marginal
probability that ith obligor defaults. Then pi and xi are related to one another
as follows:

(4.3)xi = −N−1(pi)� pi = N(−xi)� i = 1� 2� � � � �m�
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For a given x > 0, our objective is to estimate the large loss probability
P(L � x). Conditional on Z, the cumulant generating function Λ(θ; z) is de-
fined by

(4.4)Λ(θ; z) = logE
[
eθL|Z = z

]; z ∈ Rd�

Clearly,

(4.5)P(L > x|Z) � eΛ(θ;Z)−θx�

Hence Λ(θ;Z) contains information about the tail risk of the conditional loss
distribution.

Write

(4.6)F(x; z) :≡ −Supθ�0
{
θx−Λ(θ; z)}

which is obtained at unique θx(z). Actually

θx(z) =
{

unique θ such that ∂Λ(θ;z)
∂θ = x� if x > E[L|Z = z]�

0� if x � E[L|Z = z]�
Thus one is able to estimate the large loss probability, as presented in the

following result of Glasserman (2005).

Theorem 4.1. (i) For every x > 0,

P(L > x) � E
[
eF(x;Z)

]
�

(ii) F(x; z) = 0 if and only if E[L|Z = z] � x.
(iii) If the function F(x� �) is concave for x > 0, then

P(L > x) � e−J(x)

where

J(x) = −max
z

{
F(x; z)− 1

2
zT z

}
�

5 Application to simulation

In this section we explain how we can use large deviations to better simu-
late rare events in financial engineering. As we have seen in previous sections,
rare events are of increasing interest in different areas of financial engineering
e.g. credit risk applications. We first explain the use of importance sampling in
simulating rare events. Then we describe applications of LDP in this context.
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5.1 Importance sampling

Importance sampling is a useful technique for simulating rare events. The
idea is to change the probability measure so that more weight is shifted to the
region of interest. If we are interested in simulating a given (rare) event A
under the P-probability, the idea in importance sampling is to sample from a
different distribution, say Q, under which A has a larger chance of occurring.
This is done by specifying the Radon–Nikodym derivative dQ

dP . Given a Radon–
Nikodym derivative, set dP

dQ := (dQ
dP )

−1 and we have

(5.1)P(A) =
∫

1A
dP
dQ

dQ�

where qA denotes the indicator function of the event A. The importance
sampling estimator of P(A) is founded by drawing N independent samples
X1� � � � �XN from Q:

(5.2)P(A;Q�N) := 1
N

N∑
i=1

1{Xi∈A}
dP
dQ

(Xi)�

It is clear that P(A;Q�N) is an unbiased estimator, i.e., EQ[P(A;Q�N)] =
P(A). However, to reduce the effects of noise, one should choose an efficient
distribution Q in the sense that the variance of the estimator P(A;Q�N) is as
small as possible. In particular, we wish to find Q to minimize (the variance)∫

1A( dP
dQ)

2 dQ. It is well known that the zero-variance estimator is possible by
setting Q corresponding to the conditional distribution of P givenA. However,
since P(A) is unknown, such a zero-variance estimator is not useful in practice.

An alternative criterion is to consider the so-called relative error as

(5.3)ηN(A;Q/P) := EQ[P(A;Q�N)2]
P(A)2 − 1�

This “relative error” concept measures the variability of P(A;Q�N) because
that the square root of the relative error is proportional to the width of a con-
fidence interval relative to the expected estimate itself. The idea is choose the
smallest sample required to obtain a fixed confidence level. In other words,
choose a fixed maximum relative error 0 < ηmax < ∞, and define

(5.4)N(Q/P) := inf
{
N: ηN(A;Q/P) � ηmax

}
�

Large deviation principles can be used to find the following asymptotic effi-
ciency estimator. Consider a sequence of measure {Pε} and P = Pε0 for some
ε0 > 0. Given a continuous linear functional η :Ω → R, and assume that

(5.5)lim
M→0

lim sup
ε→0

ε log
∫

{η−1([M�∞))}
exp

[
η(ω)/ε

]
Pε (dω) = −∞
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and similarly for ζ replaced by −ζ. Such a ζ is said to be exponentially twisting.
Define a new family of probability measures {Qζ

ε} as follows:

(5.6)
dQζ

ε

dPε
(x) := exp

{
ζ(x)

ε
− log

∫
exp

[
ζ(y)

ε

]
Pε (dy)

}
�

The measures {Qζ
ε} are said to be exponentially twisted with twist ζ. ζ is asymp-

totically efficient if

(5.7)lim sup
ε→0

ε logN(Qε/Pε) = 0�

So the criterion is to find an asymptotically efficient exponential twist η such
that the family Qε can be used to estimate P(A) in the importance sam-
pling. Recall A is an I-continuity set, where I :Ω → R is a functional, if
limε→0 ε logPε(A) = − infx∈A I(x). We have the following see Sadowsky
(1996) and Dieker and Mandjes (2005).

Theorem 5.1. Assume that {Pε} satisfies the LDP with a rate function I, and A
is both an I-continuity set and an (I + ζ)-continuity set. Then an exponentially
twisting ζ is asymptotically efficient if and only if

inf
x∈Ω

[
I(x)− ζ(x)

] + inf
x∈A

[
I(x)+ ζ(x)

] = 2 inf
x∈A

I(x)�

The asymptotically efficient twist is useful in practice. For example, under
some technical conditions, there exists a unique asymptotically efficient twist.
So the best possible choice for simulation is to check whether it is asymptoti-
cally efficient. However, this is not always the best choice. See Glasserman and
Wang (1997) for a counterexample.

5.2 Sharp large deviations

Monte Carlo simulation is a very powerful tool for pricing complicated
path-dependent options [such as in Boyle (1977) and Boyle et al. (1997)]. For
example under discrete monitoring, there is no analytical expression for the
price of a knock-and-out call option. The payoff resembles that of the corre-
sponding standard call, provided that the underlying asset price does not hit the
barrier prior to option maturity. Otherwise its payoff is equal to zero. Thus, in
the simulation of the underlying, we have to simulate the underlying path and
the first hitting time.

The knock-and-out call option formula is

(5.8)C(0) = e−rTE0
[
max(ST −K� 0)1{τ�T }

]
�

where τ denotes the first time the asset price St hits the barrier. To simulate
the path of the underlying asset price, consider a partition t0 = 0 < t1 < · · · <
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tn = T of the time period [0� T ] with ti+1 − ti = ε := T
n for each i = 0� 1�

� � � � n− 1. At each step the asset price Sti is simulated and the standard proce-
dure sets the hitting time equal to the first time ti in which Sti crosses a bound-
ary. However, this procedure provides an overestimate of the first hitting time
since Sti and Sti+1 might not have breached the barriers while St� t ∈ (ti� ti+1)
had. To account for this, we can estimate the probability pεi that St hits the
barrier during the time interval [ti� ti+1), given the observations Sti and Sti+1 .

In this section we provide an approximation, using LDP and its refined ver-
sion (called sharp LDP), of pεi by studying its asymptotic behavior as ε → 0.
Suppose we have two barriers an upper barrier denoted by U(�) and a lower
barrier defined by L(�). We fix a time period [T0� T0+ε], and let pεU�L(T0� ζ� y)

the probability that the process S hits either barrier during the time interval,
given the observations log ST0 = ζ and log ST0+ε = y. The following result was
derived by Baldi et al. (1999). To simplify notations we only state the result for
the upper single-barrier case (L = −∞).

Theorem 5.2. Suppose U is continuous with Lipschitz continuous derivatives.
Then for every ζ� y < U(T0),

(5.9)pεU(T0� ζ� y) = exp
{
−QU(T0� ζ� y)

ε
− RU(T0� ζ� y)

}(
1 + 0(ε)

)
�

where

QU(T0� ζ� y) = 2
σ2

(
U(T0)− ζ

)(
U(T0)− y

)
�

(5.10)RU(T0� ζ� y) = 2
σ2

(
U(T0)− ζ

)
U ′(T0)�

Therefore, the Corrected Monte Carlo Simulation Procedure is as follows:
During the simulation from ti to ti + ε, with probability

(5.11)

pεi = exp
{
−QU�L(ti� log Sti � log Sti+1)

ε

− RU�L(ti� log Sti � log Sti+1)

}
we stop the simulation and set ti as the hitting time τ. With probability 1 − pεi
we carry on the simulation.

In its implementation, this Corrected Monte Carlo Simulation Procedure
does not add to the complexity of the work thanks to the simple analytical
expression for pεi . Thus this correction procedure can be used in any situation
where first hitting time probability is involved, such as barrier options, and
credit products in a structural credit model.

We now briefly explain how this result is derived using LDP and sharp LDP.
Write

(5.12)Wt = ζ + ρ(t − T0)+ σ(Bt − BT0)� t ∈ [T0� T0 + ε]�
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During the time period [T0� T0+ε] we study the probability of (W�) of hitting
the upper barrier U(�), namely

(5.13)pεU(T0� ζ� y) = P(τU � ε | WT0 = ζ� WT0+ε = y)

where τU is the stopping time

τU = inf
{
t > 0: WT0+t � U(T0 + t)

}
�

Note that the law of (WT0+t) over t ∈ [0� ε] conditional on {WT0 = ζ�
WT0+ε = y}, coincides with the probability on C([0� ε]� R) induced by the
Brownian bridge:

(5.14)W ε
t = ζ + t

ε
(y − ζ)+ σ

(
Bt − t

ε
Bε

)
� t ∈ [0� ε]�

Introduce the time change t → t
ε . Then the process Zε

t = W ε
t/ε is given by

(5.15)Zε
t = ζ + t(y − ζ)+ σ

√
ε(Bt − tB1)�

Zε
t can be seen to be a diffusion process with a small parameter

√
ε, a typically

setting of the large deviation theory in Freidlin–Wentzell theory. For any s < 1
consider the following stochastic differential equation

(5.16)dZε
t = −Zε

t − y

1 − t
dt + σ

√
ε dBt� Zε

0 = ζ�

then up to time s, Zε
t coincides with the law of Zε

t . Define Xε
t = Zε

t −U(T0 +
εt), then

(5.17)

dXε
t = −

[
εU ′(T0 + εt)+ Xε

t − y +U(T0 + εt)

1 − t

]
dt

+ σ
√
ε dBt� Xε

0 = ζ −U(T0)�

Let Pεx�s denotes the law of Zε with the initial condition Xε
s = x, and τ0

denote the hitting time of 0 for Xε. Then it can be proved that the family {Xε
ε }

satisfies a LDP (the LDP of Brownian bridges) on the space C([s� 1]� R) with
rate function [see Baldi (1995) for details]

J(h) =
{

1
2σ2

[∫ 1
s h

′
r
2 dr − (y−x−U(T0))

2

1−s
]
� if h ∈ �x�s�

∞� otherwise�

where �x�s is the set of absolutely continuous paths on [s� 1], starting at x at
time s and reaching y −U(T0) at time 1. Therefore,

(5.18)lim
ε→0

ε logPεx�s(τ0 < 1) = −u(x� s) = inf
h∈�x�s

J(h)�

By standard variational calculus, it can be proved that, if x < 0, then

(5.19)u(x� s) = 2
σ2(1 − s)

x
(
y −U(T0)

)
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and otherwise u(x� s) = 0. Hence, since ζ < U(T0), we see that

(5.20)pεU(T0� ζ� y) ∼ exp
{
−2(ζ −U(T0))(y −U(T0))

εσ2

}
�

A refined LDP, namely sharp LDP which is proved in Fleming and James
(1992), states that, under some fairly general technical assumptions

(5.21)Pεx�s(τ0 � 1) ∼ exp
{
−u(x� s)

ε
− w(x� s)

}
�

wherew(x� s) only depends on x and s. Thus the above theorem can be derived
by straightforward verification for Xε. This sharp LDP provides a refined esti-
mation of the probability PεU(T0� ζ� y).

6 Incomplete markets

Asset pricing in incomplete financial markets is an important topic in fi-
nance. Market incompleteness means that there are infinitely many equivalent
martingale measures. One important issue concerns the indeterminacy of the
equivalent martingale measures (or market price of risk), and another con-
cerns the effect of misspecification errors. In this section we briefly discuss a
recent application of LDP to address these issues, and refer to Boyle et al.
(2007) for further discussions and details.

In the incomplete markets literature, different approaches have been pro-
posed to either select a particular equivalent martingale measure or restrict
the range of equivalent martingale measures. For example one approach is
to postulate a benchmark investor and value the security from the perspec-
tive of this investor. We use this investor’s preferences to identify a particular
equivalent martingale measure. Another approach is to construct a distance
metric to facilitate a comparison between two equivalent martingale measures
or stochastic discount factors. Then the range of stochastic discount factors can
be reduced by imposing some suitable criterion. These criteria can be derived
from economic considerations and several such criteria have been proposed in
the literature.

In much of the literature on incomplete model asset pricing, model spec-
ification is often given exogenously. There is usually not much discussion on
stochastic discount factor (SDF) misspecification and its effect on asset pricing
apart from a few notable exceptions. These include Hensen and Jagannathan
(1997), Hodrick and Zhou (2001) who studied SDF misspecification errors.
Given a “reference SDF,” the agent under consideration might suspect it to
be misspecified and she behaves conservatively. She therefore wishes to con-
sider the worst-case misspecification of alternative choices of models or pricing
kernels. In dual terms, they defined a “quadratic distance” between two SDFs,
and this quadratic distance captures the “maximum pricing errors” across all
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contingent claims. Cochrane and Saa-Requejo (2000) discussed a similar con-
cept. Bernardo and Ledoit (2000) presented a (relative) distance between two
SDFs in terms of the extreme values of the ratios of these SDFs across different
states. According to their duality result, this distance concept also character-
izes the worse-case error across the contingent claims in some sense. While
the worst-case misspecification is robust, these distance concepts cannot cap-
ture the misspecification error for one particular contingent claim.

Boyle et al. (2007) use LDP ideas to propose a framework to address the
model misspecification and SDF misspecification together. In this analysis the
agent has model misspecification concerns when she estimates the SDF. Her
decision rule regarding the SDF depends on the sensitivity, of asset pricing with
respect to some form of model misspecification. The robust SDF has the least
impact with respect to some forms of model misspecification in asset pricing. In
this analysis, the effect of model misspecification is explained by pricing under
SDF. Therefore, this analysis works for any given contingent claim, not for the
worst-case error on a large class of contingent claim.

As an example to illustrate this approach, we consider a the Stein and Stein
stochastic volatility model see Stein and Stein (1991). The risky asset dynamics
are given by

(6.1)
dS(t)
S(t)

= √|vt | dW1(t)�

where vt satisfies

(6.2)dvt = (κ1 − κ2vt) dt + σ dW2(t)�

Here κ1� κ2 and σ > 0 are model parameters, v0 = σ2
0 , and (W1(t)�W2(t))

is a two-dimensional Brownian motion. The instantaneous variance and the
instantaneous volatility are |vt | and

√|vt |, respectively. In this model the risk-
free asset is used as a numéraire. When σ ≡ 0, this model reverts to a standard
Black–Scholes complete market model since in this case vt > 0 is determin-
istic function of time. One might wonder if σ small enough, will this model
be close to a complete model. However, for any small positive σ , the model is
still incomplete, and its no-arbitrage bound (for a vanilla call option as above)
is Merton’s bound. This was proved by Frey and Sin. (1999). Hence making
σ smaller does not reduce the “incompleteness” of the model. On the other
hand, if we fix an equivalent martingale measure, the smaller σ , the smaller
the price (expectation) under this measure. When σ → 0, the expectation un-
der this measure approaches to Black–Scholes value. Hence, making σ smaller
does reduce the incompleteness of the model in some sense. This seems to be
something of a paradox.

The paradox can be resolved by a robust approach which we will describe
shortly. It turns out that the rate function from the appropriate large deviation
principle provides a measurement of distance between the case when σ > 0
and the limit case when σ = 0 under each equivalent martingale measure. It is
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convenient to restrict ourselves to linear-type market prices of risk of the form

λ(a�b) ≡ λ = a+ bvt�

where both a� b are real numbers. The corresponding pricing kernel (or SDF)
is determined by

ηλT = exp

[
−

T∫
0

(a+ bvt) dW2(t)− 1
2

T∫
0

(a+ bvt)
2 dt

]
�

The corresponding equivalent martingale measure Pλ is determined by dPλ
dP =

ηλT . There exists a Brownian motion W λ(t) ≡ (W λ
1 (t)�W

λ
2 (t)) such that the

risky asset’s dynamics under this measure Pλ satisfies the following stochastic
differential equation:

dS(t)
S(t)

= √|vt | dW λ
1 (t)�

(6.3)dvt =
[
κ1 − κ2vt − σ(a+ bvt)

]
dt + σ dW λ

2 (t)�

The relationship between the two Brownian motions comes from the Girsanov
transformation

(6.4)W λ
1 = W1(t); W λ

2 (t) = W2(t)+
t∫

0

(a+ bvs) ds�

Consider a sequence of models of this risky asset, under the fixed measure
Pλ, for every ε ∈ [0� 1], as follows:

dS(t)
S(t)

=
√∣∣vλ�εt

∣∣ dW λ
1 (t)�

(6.5)dvλ�εt = [
κ1 − κ2v

λ�ε
t − σ

(
a+ bvλ�εt

)]
dt + εσ dW λ

2 (t)�

For every ε ∈ (0� 1], this is an incomplete model under measure Pλ. Each
model gives a different process for the risky asset dynamics, under which the
volatility of volatility is εσ . In particular when ε = 1 we recover the original
model with market price of risk λ. The difference between the models come
from the variations in the process for the instantaneous variance |vεt |. In the
limit case ε = 0, vλ�εt = V λ

t , and the model becomes a complete Black–Scholes
model.

The limit model, when ε = 0, is known as the “benchmark complete
model” for the given market price of risk λ. We denote it by Bλ� λ =
λ(a�b)� (a� b) ∈ R2. Specifically, in this model Bλ, the risky asset satisfies
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dS(t)
S(t)

=
√
vλt dW λ

1 (t)�

(6.6)dvλt = [
κ1 − κ2v

λ
t − σ

(
a+ bvλt

)]
dt� vλ0 = σ2

0 �

The market price of risk is chosen so that the process vλt is positive. Write

(6.7)κλ1 = κ1 − σa; κλ2 = κ2 + σb�

Thus the market price of risk λ corresponds to an affine transformation of the
parameters {κ1� κ2� σ}:

(6.8)κ1 → κλ1 ; κ2 → κλ2 �

To analyze the prices in both the incomplete model and the complete
model it is convenient to define V λ�ε = V λ�ε(κ1� κ2) = ∫ T

0 |vλ�εt | dt, and
V λ = V λ(κ1� κ2) = ∫ T

0 vλt dt. These two quantities correspond to the inte-
grated variance terms which play a critical role in pricing options. Using this
notation we let H0 = CBS(S0�

√
V λ) be the value of the call option in the

benchmark (complete market) model. Similarly we let CBS(S0�
√
V λ�ε ) be the

value of the option with random volatility
√
V λ�ε in the incomplete market.

Moreover, the option price in the original incomplete model, under the choice
of market price of risk λ, equals to conditional expectation of CBS(S0�

√
V λ�ε)

under the path vλ�εt . We now explain briefly how a large deviation principle can
be used to study the distance between incomplete and complete markets.

For any δ > 0, let Bδ(H0) be the collection of all bounded continuous func-
tions φ(t) on [0� T ] such that

(6.9)

∣∣∣∣∣CBS

(
S0�

√∫ T

0

∣∣φ(t)∣∣ dt

)
−H0

∣∣∣∣∣ � δ�

The LDP for the process (vλ�εt ) implies that for a given δ > 0, we can make
the following probability statement:

(6.10)Pλ
(
vλ�εt ∈ Bδ(H0)

) < e
− 1
ε2 infBδ(H0) I(φ)�

The function I(·) is the action functional or rate function. For this case it can be
shown that the action functional has an explicit functional expression given by

I(φ) = 1
2

T∫
0

(φt − κλ1 + κλ2φ)
2

σ2 dt

when φ is absolutely continuous on [0� T ] and φ(0) = σ2
0 . Given any δ > 0,

the quantity infBδ(H0) I(φ) is known as the decay rate for deviations of no less
than δ from H0.
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Let Aδ be the set of all continuous functions φ(t) on [0� T ] satisfying∣∣∣∣∣
√∫ T

0

∣∣φ(t)∣∣ dt −
√
V λ

∣∣∣∣∣ � δ�

By using the large deviation principle on Aδ, we have

(6.11)Pλ
(
vλ�εt ∈ Bδ1(H0)

) < e
− 1
ε2 infAδ I(φ)�

The infimum in the exponent is a critical component of the large deviations
approach. The use of the infimum means that the probability of a deviation
greater than δ satisfies the bound for all functions φ in the set Aδ. Write

(6.12)R(λ� δ) = inf
Aδ

I(φ)�

In our case R(λ� δ) will depend on the model parameters κ1� κ2� σ and the
selected market price of risk λ. The R(λ� δ) term represents the convergence
speed for this case. The higher R(λ� δ) is, the faster the convergence from

CBS(S0�
√∫ T

0 |vλ�εt | dt) to H0. We define the function R(λ� δ) as measure of
the proximity.

In our case vλ�εt follows an Ornstein–Uhlenbeck process and we are able
to obtain an explicit formula for R(λ� δ). It turns out that the functional de-
pendence of R on the underlying parameters, (κλ1 � κ

λ
2) is different for three

different ranges. For our purpose here, we just present the explicit expression
of R(λ� δ) when δ is sufficiently small. In this case the functional from is

(6.13)R(λ� δ) = 1
σ2 J(λ� δ)�

where

(6.14)J(λ� δ) = J1
(
κλ2

)(
2
√
V

(
κλ1 � κ

λ
2

)
δ− δ2

)2
�

(6.15)J1(x) := x3(e2xT − 1)

(e
x
2T − e−

x
2T )4

�

The corresponding expressions for the case when κλ2 = 0 is also available.
To summarize, the connection between the incomplete market and the com-

plete market can be formalized as follows. We have established the probability
bound (for small η):

(6.16)Pλ

[∣∣∣∣∣CBS

(
S0�

√∫ T

0

∣∣vεt ∣∣ dt

)
−H0

∣∣∣∣∣ � ηH0

]
< e

− 1
σ2ε2 J(λ�

ηH0
S0

)
�

The rate function R(λ� δ) (or J(���)) provides a rich setting to investigate
the effects of the choice of market price of risk on a given contingent claim.
For example, given a δ, the above estimate can be used to study the effects
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of moneyness. It is shown that, for any given λ, the larger the moneyness, the

larger J(λ; ηH0
S0

). If we choose a special δ = δ∗ =
√
V (κλ1 � κ

λ
2), the maximum

point of function J(�), the rate function can be used to define

(6.17)d(λ;x) ≡ 1
σ2 J1

(
κλ2

)
V

(
κλ1 � κ

λ
2
)2
�

where x denotes the option used in the computations. The function d(λ;x)
captures the decay rate information, namely the proximity between the incom-
plete market and the complete market in our framework. Note that if the decay
rate is high the convergence speed is fast so the function d defined here is in-
versely related to the usual notion of distance.

An examination of the dependence of d(λ;x) on λ is important for under-
standing the effect on the decay rate function. For example, it can be shown
that, d(λ;x) is increasing with respect to both κλ1 and κλ2 . It turns out that
higher the parameters κ2, and κ1 leads to the price in incomplete market be-
ing closer to the corresponding complete market price. If we assume that all
possible market prices of risk λ(a�b) on the following rectangle:

0 < Amin � κλ1 � Amax� 0 < Bmin � κλ2 � Bmax�

Therefore d(κλ1 � κ
λ
2) reaches its maximum at the top right-hand corner of the

rectangle when κλ1 = Amax and κλ2 = Bmax. In this case the market price of risk

(6.18)λ∗ = κ1 −Amax

σ
+ Bmax − κ2

σ
vt

makes the stochastic volatility model most closely resemble a complete model.
In other words, λ∗ is the most robust market price of risk for the call option
in the sense that its pricing under the corresponding SDF is most resistant to
model misspecification. Other choices of the market price of risk choices make
the incompleteness of the SV model more pronounced. This result makes intu-
itive sense since it is not surprising that the optimal choice lies on the boundary.
In addition the fact that it corresponds to the highest possible value of κλ2 is in-
tuitive. The κλ2 parameter captures the speed of mean reversion and measures
how quickly v returns to its mean value. A high value of mean reversion indi-
cates that the price in the incomplete market is more likely to converge more
quickly to its complete market benchmark.

7 Conclusions and potential topics for future research

Large deviation principles deal with the probability of rare events. We have
shown that LDP has several applications in mathematical finance including
asset pricing, risk management and financial engineering. We should stress that
there are other applications are not covered here because of space limitations.
Interested readers should consult the literatures at the end of this chapter. See
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Callen et al. (2000), Foster and Stutzer (2002), Glasserman and Jin (1999),
Nummelin (2000), Sornette (1998), and Williams (2004).

We suggest there are other potential further applications of LDP. First, LDP
provides an alternative criterion for portfolio selection. One possible extension
is to consider more realistic processes for asset price dynamics such as a sto-
chastic volatility model or a jump-diffusion model. Another possible topic is
to use LDP to analyze portfolio selection with constraints. Under some con-
straints such as the credit limit as in Grossman and Vila (1992), closed form
solutions are impossible to obtain. But from an asymptotic perspective these
constraints are equivalent to some simpler constraints. LDP can provide the
quantitative framework to deal with problems of this nature.

To cite another possible application, we can consider risk measures. Risk
managers are increasingly interested in risk measures. For example, VaR is just
one popular risk measure for the maximum loss with some confidence level.
LDP enables us to discuss other risk measures. For instance, given one level
of possible loss, it is also interesting to estimate the probability of the portfolio
value meeting this threshold in a short time period. This turns out to be an exit
time probability problem as we have discussed before.

The LDP approach can be used in conjunction with Monte Carlo simulation
to estimate large portfolio risk and pricing of credit derivatives such as credit
default obligations.

In the previous section we outlined briefly how LDP can be used to study the
relationship between the market price of risk and security prices in an incom-
plete market. We did this by setting up a benchmark complete market model
and analyzing the behavior of a sequence of incomplete markets that con-
verge in the limit to a complete model. We used a large deviations approach to
analyze this convergence. Large deviations techniques provide a powerful an-
alytical tool that is well suited for this application. This approach was applied
to a stochastic volatility model. However it may prove useful in the analysis of
other types of incomplete markets. To fully apply this theory we need an LDP
for the relevant stochastic process. In some cases establishing the appropriate
LDP is a challenging technical exercise. Hence mathematical finance gives a
further impetus for theoretical research in this important area of probability
theory.
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potential 419, 421
power (constant relative risk averse) class

887
power-type distributions 73, 92
power-type right tail 77
power-type tails 73, 77
predictable σ-algebra 23
predictable process 872
predictable representation property 37
prediction intervals 539
preference function 522
preferences 876, 882, 901, 917
premium 765
premium payment leg 494
premium principles 765
price system 870
price takers 727
pricing error 212
pricing kernel 515, 540–542, 552, 555, 565,

566
pricing operator 223
pricing semigroup 223, 225
probabilistic representation 875, 876, 890
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probability 972
probability of ruin 768
probability space 21, 729
programming effort 366
progressive hedging algorithm 859
progressively measurable 24
projection basis 902
projections 902
proportional aggregator 813, 829
proportional hazard risk 770
proportionate transaction costs 745
prospect theory 79
protection buyer 442
protection seller 442
proximity 997
put 74
put option 15, 781
put–call parity 15, 83

quadratic 132, 145
– approximation 104
– BSDE 828
– hedging 533
– model 257
– problem 886
– variation 893, 897, 900
quadrature method 347
quadrature schemes 908
quantile 78, 79
– estimation 463
– hedging 539
– principle 769
quantization 908
quartic equation 93
quasi-exponential 415
quasi-Monte Carlo methods 850
quasi-quadratic absolute aggregator 836
quasi-quadratic proportional aggregator 825
queuing models of investor behavior 638

Radon–Nikodym derivative 51, 988
random Riemann integral 911
random walk 356
random walk hypothesis 81
rare events 986
rare-event simulation 462
rate function 976, 977
rate of convergence 895
ratings transitions 440
rational expectations 74, 89
real options 516, 551
real probability measure 566
real-world models 771
realized covariance 206

realized volatility 183
reasonable price process 51
recovery 224
recovery rate 180
recursive convolution 452
recursive utility 790, 804
redundant derivative 34–36
reflection principle 96, 97, 357
regime switching lognormal 774
regression 869, 887
– based computation 885
– based Monte Carlo methods 902
– method 869, 887, 906
– parameters 887
– simulation method 869
relative efficiencies 901
relative errors 904
relative risk aversion 828, 868, 876
relative risk aversion coefficients 873
relative risk-aversion process 823
relative state price density (RSPD) 870
renewal 74
renewal arguments 99
renewal equation 100
renewal-type integral equation 100
replication strategy 45
reservation prices 519
reset option 776
resolvent 428
retirement 838
return volatilities 870
returns 886
reversionary bonuses 766
Riccati equations 171
Riccatti ordinary differential equations 903
Ridder’s method 880
Riemann and Itô integrals 912
Riemann zeta function 355, 359
Riesz decomposition 426
right stochastic exponential 889
risk
– aversion 789, 814, 904
– aversion coefficients 882
– contributions 438, 441, 462
– factors 172
– management 79, 206, 764
– management problems 869
– measures 79, 765
– neutral probability 30
risk-free asset 885
risk-neutral distribution 566
risk-neutral pricing measure 74
risk-neutral probability 565
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riskfree rate 870
riskless asset 870, 903
riskless interest rates 378
risky asset returns 870
risky assets 869, 870, 885
risky stock 903
RMSRE 905, 906
robust 79, 546, 549, 551, 552
– estimation 860
– risk measures 74, 79
– utility 545, 548, 549, 552, 553
robustness 79, 528, 544, 545, 553, 789
root mean square relative error (RMSRE)

904–908
roots 93
running consumption 893, 894
running utility 887

σ martingale 29
saddlepoint 455, 464
saddlepoint approximation 455
sample sizes 79
Sanov’s theorem 975
scale invariance 821
scale-invariant 813
scenario 848
scenario generation 853
scenario reduction 853
Schilder 978
scores 166
secant method 880
second fundamental theorem of asset pricing

39, 555, 728, 735
second-order
– approximation 662, 663
– bias 890, 893–895, 901, 902, 904, 907
– bias corrected estimators 890, 901
– bias function 893
– bias term 898, 900, 901
segregated funds 767
self-financing 26, 599
self-financing trading strategy 731
semi-Markov process 639, 651
semi-martingale 21, 650
sequential analysis 356
shadow price 888
shadow price of optimal wealth 888
shadow price of wealth 901, 902, 917
Shareownership2000 647
sharp large deviations 989
Sharpe ratio 541, 544, 795, 824, 961, 980, 985
short rate 379
short term investors 868
shortfall 537

shortfall risk 593, 598, 625
shortfall strategy 982
sigma martingale 32
signal processing 950
simple forward rate 379
simple spot rate 379
simulation 868, 869, 879, 881, 882, 884, 901,

903
– approach 878, 881
– method 868, 869, 908
– schemes 908
single backward difference 883
single forward difference 883
size distortion 894, 895
skewness 76, 614, 953
small investors 647, 648
smooth Brownian functional 909–911
Snell Envelopes 61
solvency 764
source-dependent first-order risk aversion

831
source-dependent risk aversion 818, 836
sovereign default 123
S&P 500 index 648
special semimartingale 55
spectral representation 228
Spectral Theorem 242
speed of computation 908
speed of convergence 907
speed-accuracy trade-off 904–908
speeds of convergence 901
Spitzer function 348, 359, 362
Spitzer’s identity 346, 347, 364, 366
spline approximation 853
spot rate of interest 21
spot volatilities 392
standard deviation principle 769
state dependent Markovian service networks

655
state dependent queuing networks 639
state price density process 420
state price density (SPD) 566, 798, 870, 876,

882, 904
state variables 868–870, 874, 876–878, 882,

884, 885, 887, 898, 901, 903, 908, 918
state-dependent queuing networks 646
static budget constraint 872, 878
static consistency 157
statically hedge 596
stationary on/off process 669
step-up corporate bonds 474
Stirling’s formula 368
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stochastic
– central tendency 132, 147
– correlation 180
– covolatility 166, 180
– differential equation 44, 870, 873, 874, 877,

888, 890, 894, 900, 914–916, 972
– discount factor 172–174, 419, 420, 567, 870,

873
– discounting 801
– dominance 543, 544
– dominance bounds 566
– dynamic programs 845
– elasticity 650
– exponential 42
– flow 914, 915
– flow of diffeomorphisms 915
– flow of homeomorphisms 915
– game 673
– integral 881, 911
– intensity 439
– investment opportunity set 824
– process limit theorems 638
– processes 971
– risk aversion 824
– simulation 775
– skewness 128, 130
– time changes 128
– volatility 82, 84, 128, 164, 166, 334, 516,

593, 993
– volatility model 164, 177
– volatility model of Heston (1993) 135
– Wiener integral 911
stock price 910
stock return 903
stocks 869
stopping rule 17
Stratonovich integral 404
strong approximation 657
strong Markov process 45
structural model 179
structural model of default 445
structured product 784
Sturm–Liouville problem 242
sub-discretizations 881
subadditivity 79
subgradient method 859
subjective discount factor 874
subsistence consumption 871
sum assured 765
sunspot equilibrium 557
super-replicating trading strategy 61
super-replication 594, 744
supergradient density 798
superreplication 522, 539

supply curve 728, 729, 747
surplus 766
survival claims 492
survival function 769
swaptions 784
symmetric Markov process 223
synthetic CDO 444

t-copula 449
t-distribution 92
tail conditional expectations 79
tail conditional median 79
tail distributions 79
– distinguishing 79
tail risk 972
tailweight 73
tangent process 869, 876, 877, 882–884, 889,

898, 900, 901, 915, 918
Taylor approximation 902
Taylor series 885
Taylor series approximation 885
t distribution 77
temporal utility 847
term insurance 765
term structure density 432
term structure models 75
terminal measure 395
terminal wealth 875, 876, 881, 886, 891–894,

903
Theta 96
thin-tailed 774
time changed Brownian motions 85
time discretization 850
time-additive utility 802
time-changed Lévy process 82, 85
time-separable von Neumann–Morgenstern

representation 871
total cost 605
total risk 606
total risk minimization 593, 601
total variation 912
totally inaccessible stopping time 23
tracking error variance 985
trading
– activity 650
– constraints 833
– costs 565
– strategy 22, 26, 599, 728, 731
tranches 444
transaction costs 183, 516, 517, 565, 566, 728,

743, 745, 838
transaction time sampling 195
transactions 773
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transform analysis 178
transform inversion 453
translation invariance 835
transportation metric 853
trinomial tree 347
true coverage probability 894
truncation function 121
two-dimensional barrier options 108, 344,

356
two-dimensional Laplace inversion 102
two-dimensional Laplace transform 102
two-stage simulation procedure 879

uncertainty 544
underreaction 87
unhedged liability 779
uniform integrability conditions 890
unit linked 783
unit linked contracts 767
univariate diffusions 881
unobservable factors 165
unscented Kalman filter 157, 159
up-and-in put 356
up-and-out call 344, 348
up-and-out put 356
upcrossing 356
upper bounds 937
usual hypotheses 21
utility 813
– function 90, 871, 876, 885, 887
– maximization 89
– of intermediate consumption 882
– of terminal wealth 882, 887
– supergradient density 810

vague convergence 664
valuation measures 488
valuation of American contingent claims 902
value function 301, 875, 876, 885, 886, 902
value-at-risk (VaR) 74, 79, 438, 441, 682
Varadhan 977
variable 892
variable annuities 765

variance 894, 895, 912
– gamma (VG) model 124, 951, 953
– principle 769
– reduction techniques 706
– optimal martingale measure 534
variational inequality 315
variational methods 74, 301
Vasicek model 257
Vega 96
volatility 870, 881, 882, 903, 911, 913
– allocation 691
– clustering effect 81, 84
– coefficient 881
– risk 216
– smile 257, 566
– term 972
von Neumann–Morgenstern preferences

869

Walrasian auctioneer 646, 650
weak convergence 653, 888, 974
weakly stationary 79
wealth 867, 868, 870, 872, 885, 918
– derivative 876
– process 872, 881
– proportions 870
whole life 765
Wiener 912
– functional 909
– measure 912, 913
– (or Brownian) functionals 909
– space 909, 912
Wiener–Hopf equation 348, 359, 362
Wiener–Hopf factorization 97
Wilkie model 771
Wishart
– factor models 165
– process 168, 169, 174
– quadratic term structure 176
– risk factor models 175

zero coupon bond 90, 378
zero utility principle 769
zonal polynomial 169


