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1.1 PREAMBLE

The concept of composites has attracted the interest of both the engineers and the business
professionals. To engineers, composites are the opportunity to create designer materials with
palettes of properties that cannot be found in existing mineral materials. To the business
professional, composites offer unprecedented business growth especially in areas where
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2 Introduction  Chap. 1
unprecedented material properties are in high demand. Not surprisingly, the aerospace
market is one of the largest and arguably the most important to the composites industry.
Commercial aircraft, military aircraft, helicopters, business jets, general aviation aircraft,
and spacecraft all make substantial use of high-performance composites. The aerospace

usage of high-performance composites has experienced a continuously growing over
several decades (Figure 1).
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FIGURE 1 Increase of the weight content of composites in aircraft structures over a 30-year time span: (a) trends

in military aircraft composite usage [1]; (b) trends in civil aircraft composite usage [2]; (c) breakdown of weight con-
tent by material types in Boeing 787 and Airbus A350 XWB [3].
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Sec. 1.3 What are Aerospace Composites? 3

Composites have good tensile strength and resistance to compression, making them
suitable for use in aircraft manufacture. The tensile strength of the material comes from its
fibrous nature. When a tensile force is applied, the fibers within the composite line up
with the direction of the applied force, giving its tensile strength. The good resistance to
compression can be attributed to the adhesive and stiffness properties of the matrix which
must maintain the fibers as straight columns and prevent them from buckling.

1.2 WHY AEROSPACE COMPOSITES?

The primary needs for all the advanced composites used in aerospace applications remain
the same, i.e., lighter weight, higher operating temperatures, greater stiffness, higher
reliability, and increased affordability. Some other special needs can be also achieved only
with composites, like good radio-frequency compatibility of fiberglass radomes and low-
observability airframes for stealth aircraft.

High-performance composites were developed because no single homogeneous
structural material could be found that had all of the desired attributes for a given
application. Fiber-reinforced composites were developed in response to demands of the
aerospace community, which is under constant pressure for materials development in order
to achieve improved performance. Aluminum alloys, which provide high strength and
fairly high stiffness at low weight, have provided good performance and have been the
main materials used in aircraft structures over many years. However, both corrosion and
fatigue in aluminum alloys have produced problems that have been very costly to remedy.
Fiber-reinforced composites have been developed and widely applied in aerospace applica-
tions to satisfy requirements for enhanced performance and reduced maintenance costs.

1.3 WHAT ARE AEROSPACE COMPOSITES?

Aerospace composites are a class of engineered materials with a very demanding palette
of properties. High strength combined with low weight and also high stiffness are com-
mon themes in the aerospace composites world. Nowadays, engineers and scientists thrive
to augment these high-performance mechanical properties with other properties such as
electric and thermal conductivity, shape change, self-repair capabilities, etc.

1.3.1 Definition of Aerospace Composites

From a pure lexical point of view, “composites” seem to have a variety of definitions and
there is no completely universal accepted one. One school prefers the word composite to
include only those materials consisting of a strong structural reinforcement encapsulated
in a binding matrix, while the purists believe that the word composite should include
everything except homogeneous or single-phase materials. In a generic sense, a composite
material can be defined as a macroscopic combination of two or more distinct materials,
having a recognizable interface between them. One material acts as a supporting matrix,
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4 Introduction Chap. 1

while another material builds on this base scaffolding and reinforces the entire material.
Thus, the aerospace definition of composite materials can be restricted to include
only those engineered materials that contain a reinforcement (such as fibers or particles)
supported by a matrix material.

Fiber-reinforced composites, which dominate the aerospace applications, contain rein-
forcements having lengths much greater than their thickness or diameter. Most
continuous-fiber (or continuous-filament) composites, in fact, contain fibers that are com-
parable in length to the overall dimensions of the composite part. Composite laminates are
obtained through the superposition of several relatively thin layers having two of their
dimensions much larger than their third.

High-performance composites are composites that have superior performance com-
pared to conventional structural materials such as steel, aluminum, and titanium.
Polymer matrix composites have gained the upper hand in airframe applications,
whereas metal matrix composites, ceramic matrix composites, and carbon matrix
composites are being considered for more demanding aerospace applications such as
aero-engines, landing gear, reentry nose cones, etc. However, there are significant dis-
similarities between polymer-matrix composites and those made with metal, ceramic,
and carbon matrices. Our emphasis in this book will be on polymer matrix composites
for airframe applications.

Polymer matrix composites provide a synergistic combination of high-performance
fibers and moldable polymeric matrices. The fiber provides the high strength and modulus
while the polymeric matrix spreads the load as well as offers resistance to weathering
and corrosion. Composite tensile strength is almost directly proportional to the basic
fiber strength, whereas other properties depend on the matrix—fiber interaction. Fiber-
reinforced composites are ideally suited to anisotropic loading situations where weight is
critical. The high strengths and moduli of these composites can be tailored to the high
load direction(s), with little material wasted on needless reinforcement.

1.3.2 High-Performance Fibers for Aerospace Composites Applications

Fiber composites offer many superior properties. Almost all high-strength/high-stiffness
materials fail because of the propagation of flaws. A fiber of such a material is inherently
stronger than the bulk form because the size of a flaw is limited by the small diameter of the
fiber. In addition, if equal volumes of fibrous and bulk material are compared, it is found that
even if a flaw does produce failure in a fiber, it will not propagate to fail the entire assem-
blage of fibers, as would happen in the bulk material. Furthermore, preferred orientation
may be used to increase the lengthwise modulus, and perhaps strength, well above isotropic
values. When this material is also lightweight, there is a tremendous potential advantage
in strength-to-weight and /or stiffness-to-weight ratios over conventional materials.

Glass fibers were the first to be considered for high-performance applications because
of their high strength when drawn in very thin filaments. Considering that bulk glass is
quite brittle, the surprising high strength of these ultra-thin glass fibers gave impetus to
this line of research. Subsequently, a variety of other high-performance fibers have been
developed: S-glass fibers (which are even stronger that ordinary E glass), aramid (Kevlar)
fibers, boron fibers, Spectra fibers, etc.
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Sec. 1.3 What are Aerospace Composites? 5

The fiber that has eventually attained widespread usage in aerospace composites has been
the carbon fiber (a.k.a. graphite fiber) that is used in carbon-fiber reinforced polymer (CFRP)
composites. High-strength, high-modulus carbon fibers are about 5—6 pm in diameter and
consist of small crystallites of “turbostratic” graphite, one of the allotropic forms of carbon.
Two major carbon-fiber fabrication processes have been developed, one based on polyacrylo-
nitrile (PAN), the other based on pitch. Refinements in carbon-fiber fabrication technology
have led to considerable improvements in tensile strength (~4.5GPa) and in strain to
fracture (more than 2%) for PAN-based fibers. These can now be supplied in three basic
forms, high modulus (~380 GPa), intermediate modulus (~290 GPa), and high strength
(with a modulus of ~230 GPa and tensile strength of 4.5 GPa). The tensile stress—strain
response is elastic up to failure, and a large amount of energy is released when the fibers
break in a brittle manner. The selection of the appropriate fiber depends very much on the
application. For military aircraft, both high modulus and high strength are desirable. Satellite
applications, in contrast, benefit from the use of high-modulus fibers that improve stiffness
and stability of reflector dishes, antennas, and their supporting structures.

1.3.3 High-Performance Matrices for Aerospace Composites Applications

The desirable properties of the reinforcing fibers can be converted to practical application
when the fibers are embedded in a matrix that binds them together, transfers load to and
between the fibers, and protects them from environments and handling. The polymeric
matrices considered for composite applications include both thermosetting polymers
(epoxy, polyester, phenolic, polyimide resins) and thermoplastic polymers (polypropylene,
Nylon 6.6, polymethylmethacrylate a.k.a. PMMA, polyetheretherketone a.k.a. PEEK). In
current aerospace composites, the epoxy thermosetting resin has achieved widespread uti-
lization; however, efforts are under way toward the introduction of thermoplastic poly-
mers which may present considerable manufacturing advantages.

The polymeric matrix of aerospace composites performs a number of functions such as
(i) stabilizing the fiber in compression (providing lateral support); (ii) conveying the fiber prop-
erties into the laminate; (iii) minimizing damage due to impact by exhibiting plastic deforma-
tion and providing out-of-plane properties to the laminate. Matrix-dominated composite
properties (interlaminar strength, compressive strength) are reduced when polymer matrix is
exposed to higher temperatures or to the inevitable absorption of environmental moisture.

1.3.4 Advantages of Composites in Aerospace Usage

The primary advantage of using composite materials in aerospace applications is the weight
reduction: weight savings in the range of 20-50% are often quoted. Unitization is another
advantage: it is easy to assemble complex components as unitized composite parts
using automated layup machinery and rotational molding processes. For example, the single-
barrel fuselage concept used in Boeing 787 Dreamliner is a monocoque (“single-shell”)
molded structure that delivers higher strength at much lower weight.

Aerodynamic benefits can be achieved with composites that were impossible
with metals. The majority of aircraft control-lift surfaces have a single degree of curvature
due to limitation of metal fabrication techniques. But further improvements in aerodynamic
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6 Introduction  Chap. 1

efficiency can be obtained by adopting a double-curvature design, e.g., variable-camber
twisted wings. Composites and modern molding tools allow the shape to be tailored to
meet the required performance targets at various points in the flying envelope.

The tailoring of mechanical properties along preferential stress directions is an extraordi-
nary design advantage offered by aerospace composites that cannot be duplicated in isotro-
pic metallic airframes. Aerospace composites can be tailored by “layup” design, with
tapering thicknesses as needed to maintain optimal strength-to-weight ratio (Figure 2a). In
addition, local reinforcing layup can be placed at required orientation at design hot spots.

@

Ref. axis
T 7 (spanwise)

l\ Torque
Vertical @/P Spanwise bending moment

shear

FIGURE 2 Unique advantages of using composites in aerospace structures: (a) the concept of strength and stiff-
ness tailoring along major loading directions in an aircraft wing actual wing buildup processes [1]; (b) automated
fiber placement (AFP) [4]; (c) advanced tape laying (ATL) [5].

A further advantage of using composites in airplane design is the ability to tailor the
aeroelastic behavior to further extend the flying envelope. This tailoring can involve
adopting specialized laminate configurations that allow the cross-coupling of flexure and
torsion such that wing twist can result from bending and vice versa. Modern analysis
techniques allow this process of aeroelastic tailoring, along with strength and dynamic
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stiffness (flutter) requirements to be performed automatically with a minimum of post-
analysis testing and verification

Thermal stability of composites is another advantage that is especially relevant in CFRP
composites. The basic carbon fiber has a small negative coefficient of thermal expansion
(CTE) which, when combined with the positive CTE of the resin yields the temperature
stability of the CFRP composite. This means that CFRP composites do not expand or
contract excessively with rapid change in the environmental temperature (as, for example,
during the climb from a 90°F runway to —67°F at 35,000 ft altitude in a matter of minutes).

Another major advantage of using high-performance composites in aerospace applica-
tion is that the problems of combined fatigue/corrosion that appear in conventional air-
frames are virtually eliminated. High-performance polymeric composites do not corrode
and the fatigue life of fibrous materials is much higher than that of bulk materials.
Nonetheless, environmental effects will eventually affect the matrix polymeric material
and some form of fatigue (though different from that of metals) will develop in the com-
posite. However, fracture of composite materials seldom occurs catastrophically without
warning as it does in some metallic alloys. In composites, fatigue and fracture is a progres-
sive phenomenon with substantial damage (and the accompanying loss of stiffness) being
widely dispersed throughout the material before final failure takes place.

1.3.5 Fabrication of Aerospace Composites

Most carbon-fiber composites used in safety-critical primary structures are fabricated by
placing uncured layer upon layer of unidirectional plies to achieve the design stacking
sequence and orientation requirements. A number of techniques have been developed for
the accurate placement of the composite layers in or over a mold, ranging from labor-
intensive hand layup techniques to those requiring high capital investment such as auto-
matic fiber placement (AFP, Figure 2b) and in advanced tape laying (ATL, Figure 2c)
equipment. Large cylindrical and conical shapes can be obtained through AFP or ATL fab-
rication over rotating molding mandrels. AFP and ATL machines operate under numerical
control and significant effort is being directed laying complicated contoured surfaces.
After been laid up in the mold, the uncured composite is subjected to polymerization by
exposure to temperature and pressure. This is usually done in an autoclave, a pressure vessel
designed to contain a gas under pressures and fitted with a means of raising the internal tem-
perature to that required to cure the resin. Vacuum bagging is also generally used to assist
with removing trapped air and organic vapors from the composite. The process produces
structures of low porosity, less than 1%, and high mechanical integrity. Large autoclaves
have been installed in the aircraft industry capable of housing complete wing or tail sections.
Alternative lower-cost non-autoclave processing methods are also being investigated
such as vacuum molding (VM), resin transfer molding (RTM), vacuum-assisted RTM
(VARTM), and resin film infusion (RFI). The vacuum molding processes make use of
atmospheric pressure to consolidate the material while curing, thereby obviating the need
for an autoclave. The RTM process lays out the fiber reinforcement as a dry preform into a
mold and then lets the polymeric resin infiltrate into the preform. The composite systems
suitable for vacuum-only processing are cured at 60—120°C and then post-cured typically
at 180°C to fully develop the resin properties. The RTM process is assisted by resin
temperature fluidization, pumping pressure, and vacuum suction at specific mold vents.

STRUCTURAL HEALTH MONITORING OF AEROSPACE COMPOSITES
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1.4 EVOLUTION OF AEROSPACE COMPOSITES

Development of advanced composites for aerospace use has been both costly and poten-
tially risky; therefore, initial development was done by the military where performance is
the dominant factor. The Bell-Boeing V-22 Osprey military transport uses 50% composites,
whereas Boeing’s C-17 military transport has over 7300 kg of structural composites.
Helicopter rotor blades and the space program were among the early adopters of compo-
sites technology (Figure 3).

Spar/Root end construction details

Graphity -plied

Unidirectional glass fiber straps (4) torrzfonl Seticf?;;sef e

‘/Glass fiber cross-plied
outer torsion wrap

Glass fiber cross-plied
inner torsion wrap

Center filler\

Glass fiber thermoplastic
loop closures

Titanium cap

Graphite cross-plied
spar stiffener

Nickel erosion cap

Glass fiber
tip fittings
molded in place
Nomex honeycomb core

Replaceable nickel erosion cap
Polyurethane closure rib

Nose balance weight Glass fiber “D” spar

Titanium leading edge De-icer blanket Tip details

(a) Typical outboard airfoil section

FIGURE 3 Early usage of composites in aerospace primary structures: (a) CH-46 helicopter main rotor blade;
(b) composite bay-bay doors on the Space Shuttle [6].
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As service experience with the use of advanced composites has accumulated, they have
started to penetrate into the civilian aerospace usage. Composites have flown on commercial
aircraft safety-critical primary structures for more than 30 years, but only recently have they
conquered the fuselage, wing-box, and wings. This evolutionary process has recently culmi-
nated with the introduction of “all-composite” airliners, the Boeing 787 Dreamliner and the
Airbus A350 XWB, which have more than 80% by volume composites in their construction.

Early composite designs were replicas of the corresponding metallic parts and the
resulting high production costs jeopardized their initial acceptance. Expensive raw materi-
als (“exotic” fibers and specialty resins) as well as labor-intensive hand layup techniques
contributed to these high initial costs. The production cost was further increased by the
machining and drilling difficulties since these new fibrous materials behaved radically dif-
ferent than metals under these circumstances. Since this cost is in direct relation to the
number of assembled parts, design and manufacturing solutions were sought to reduce the
part count and the number of associated fasteners. Automated layup methods, integrally
stiffened structures, co-cured or co-bonded of substructures, and the use of honeycomb
sandwich solutions have decreased the part count by order of magnitudes while revealing
the manufacturing advantages of using composites instead of conventional metals.

1.4.1 Early Advances

World War II promoted a need for materials with improved structural properties. In
response, fiber-reinforced composites were developed. By the end of the war, fiberglass-
reinforced plastics had been used successfully in filament-wound rocket motors and in
various other structural applications. These materials were put into broader use in the 1950s,
and initially seemed to be the only viable approach available for the elimination the problems
of corrosion and crack formation observed in high-performance metallic structures.

1.4.2 Composite Growth in the 1960s and 1970s

Although developments in metallic materials have led to some solutions to the crack
and corrosion problems, fiber-reinforced composites continued to offer other benefits to
designers and manufacturers. The 1960s and 1970s have experience a flurry of research into
the development of a variety of advanced fiber for high-performance composites such as
boron, S-glass, Spectra fiber, and Kevlar fibers. But the fiber that had eventually captured
the market was the carbon fiber (a.k.a. graphite fiber) because of its excellent strength and
modulus weight ratios and relative manufacturing ease. However, early industrial imple-
mentation of carbon-fiber development was not without surprises as, for example, their
unique impact behavior, discovered by Rolls Royce in the 1960s when the innovative RB211
jet engine with carbon-fiber compressor blades failed catastrophically due to bird strikes.

In large commercial aircraft, composites have found application because of the weight
considerations that were highlighted by the energy crisis of the 1970s. Spurred by these
events, the use of composites in the aerospace industry has increased dramatically since
the 1970s. Traditional materials for aircraft construction include aluminum, steel, and tita-
nium. The primary benefits that composite components can offer are reduced weight and
assembly simplification. The performance advantages associated with reducing the weight
of aircraft structural elements has been the major impetus for military aviation composites
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development. Although commercial carriers have increasingly been concerned with fuel
economy, the potential for reduced production and maintenance costs has proven to be a
major factor in the push toward composites. Composites are also being used increasingly
as replacements for metal parts and for composite patch repairs on older aircraft.

1.4.3 Composites Growth Since the 1980s

Since 1980s, the use of high-performance polymer-matrix fiber composites in aircraft struc-
tures has grown steadily, although not as dramatically as initially predicted. This is despite
the significant weight-saving and other advantages that advanced composites could pro-
vide. One reason for the slower-than-anticipated advancement might be that the aircraft
components made of aerospace composites have a higher cost than similar structures made
from aerospace metals. Other factors include the high cost of certification of new compo-
nents and their relatively low resistance to mechanical damage, low through-thickness
strength, and (compared with titanium alloys) temperature limitations. Thus, metals have
continued to be favored for many airframe applications. CFRP composites have eventually
emerged as the most favored advanced composite for aerospace applications. Although the
raw material costs of this and similar composites are still relatively high, their advantages
over metals in both strength-to-weight ratio, tailored design, and unitized manufacturabil-
ity are increasingly recognized. Nonetheless, competition remains intense with continuing
developments in structural metals such as aluminum alloys: improved toughness and cor-
rosion resistance; new lightweight alloys (such as aluminum lithium); low-cost aerospace-
grade castings; mechanical alloying leading to high-temperature alloys; and superplastic
forming. For titanium, powder preforms, casting, and superplastic-forming/diffusion
bonding are to be mentioned. Advanced joining techniques such as laser and friction stir
welding, automated riveting techniques, and high-speed (numerically controlled) machin-
ing also make metallic structures more affordable. And the use of hybrid metal—composite
combinations (such as the GLARE' material used on Airbus A380) which seems to have the
best of both worlds also gains popularity with certain designers.

1.5 TODAY’S AEROSPACE COMPOSITES

Though the growth has not been as fast as initially predicted, the penetration of high-
performance composites into the civilian aerospace has been steady on a continuous
upward trend. The drivers for lightweight aircraft structures have continued to push engi-
neers and scientists in looking for unprecedented structural solutions and materials. These
major drivers for lightweight structures have been nicely summarized in the 2001 study of
the Advisory Council of Aeronautical Research in Europe (ACARE) which identified the
aeronautical research needs to be achieved by 2020 [7]. The ACARE goals include: (i) noise
reduction to one-half of current average levels; (ii) elimination of noise nuisance outside
the airport boundary by quieter aircraft; (iii) a 50% reduction in CO, emissions per
passenger-kilometer (which means a 50% cut in fuel consumption in the new aircraft of

!GLARE is a proprietary glass-reinforced fiber metal laminate material.
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2020); and (iv) an 80% reduction in nitrogen oxide (NOx) emissions. A more detailed
vision of the aerospace goals in the 2050 time frame is given in the report “Flightpath
2050: Europe’s Vision for Aviation” [8]. Similar requirements have been put forward in the
United States and elsewhere. As a result, the civilian aerospace industry is now producing
large almost all-composite passenger aircraft like the Boeing 787 Dreamliner and Airbus
A350 XWB airliners (Figure 4). These unprecedented engineering achievements have over
80% composites by volume.

Boeing 787 Dreamliner

Composition by major component
W Carbon laminate
[l Carbon sandwich 50% by weight
W Other composites
W Aluminum, 20%
M Titanium, 15%
M Titanium/steel/aluminum
( ) Steel. 10% COPYRIGHT 2012 THE BOEIG COMPANY
a Other, 5%

Nose section (carbonfiber or aluminum) Fin (carbonfiber)

)

18m

—16m
y

G-

Rear fuselage
Fuselage section (carbonfiber skin panels (carbonfiber, one
doublers, joints and stringers, with aluminum frames) piece section)

Four shell skin A350 XWB material breakdown
panel concept ™
0

@D Aluminum/Aluminum lithium

& ;! @& Composite
: @ Miscellaneous

Aluminum frames

(b)

Carbonfiber skin panel  Note: A350—900 shown =
FIGURE 4 Composite content of all-composite airliners: (a) Boeing 787 Dreamliner has ~80% by volume

(~50% by weight) composites [9]; (b) Airbus A350 XWB has ~83% by volume (~52% by weight) composites [10].
The lower by-weight ratio is due to the fact that other materials are much heavier than composites.
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The main features of the Boeing 787 and Airbus A350 XWB are briefly discussed in the
following sections.

1.5.1 Boeing 787 Dreamliner

The Boeing 787 Dreamliner (Figure 5) is a family of long-range, midsize wide-body, twin-
engine jet airliners that can seat 242—335 passengers in a typical three-class seating config-
uration. This aircraft, the world’s first major commercial airliner to use composite materi-
als as the primary material in its airframe, is Boeing’s most fuel-efficient airliner [11]. The
Boeing 787 maiden flight took place on December 15, 2009, and completed flight testing in
mid-2011. Final Federal Aviation Administration (FAA) and European Aviation Safety
Agency (EASA) type certification was received in August 2011 and the first 787-8 model
was delivered to All Nippon Airways in September 2011.

FIGURE 5 Boeing 787 Dreamliner [12].

The Boeing 787 aircraft is 80% composite by volume. By weight, the material contents is
50% composite, 20% aluminum, 15% titanium, 10% steel, and 5% other [11]. Aluminum is
used for the wing and tail leading edges; titanium is used mainly on engines and fasten-
ers, with steel used in various areas.

Each Boeing 787 aircraft contains approximately 32,000 kg of CFRP composites, made
with 23 tons of carbon fiber [11]. Composites are used on fuselage, wings, tail, doors, and
interior. Boeing 787 fuselage sections are laid up on huge rotating mandrels (Figure 6a).
AFP and ATL robotic heads robotically layers of carbon-fiber epoxy resin prepreg to con-
toured surfaces. Reinforcing fibers are oriented in specific directions to deliver maximum
strength along maximum load paths. The fuselage sections are cured in huge autoclaves.
The resulting monocoque shell has internal longitudinal stiffeners already built in
(Figure 6b,c). This highly integrated structure requires orders of magnitude less fasteners
than the conventional built-up airframes. Similar composite manufacturing techniques are
applied to the wings.
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FIGURE 6 Composite fuselage of the Boeing 787 Dreamliner: (a) the fuselage barrel is a continuous construc-
tion build on a rotating mandrel through automated tape laying [13]; (b) the resulting monocoque shell has inter-
nal longitudinal stiffeners already built in [12]; (c) the highly integrated internal structure of the fuselage requires
orders of magnitude less fasteners than the conventional built-up airframes [11].
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Boeing 787 has composite wings with raked wingtips where the tip of the wing has a high-
er degree of sweep than the rest of the wing. This aerodynamic design feature improves
fuel efficiency and climb performance while shortening takeoff length. It does this in
much the same way that winglets do, by increasing the effective aspect ratio of the wing
and interrupting harmful wingtip vortices thus decreasing the amount of lift-induced drag
experienced by the aircraft. This capability of applying various camber shapes along the
wing span as well as a double-curvature configuration is particular to composite wings
and cannot be efficiently achieved in metallic wings.

1.5.2 Airbus A350 XWB

The Airbus A350 XWB (Figure 7) is a family of long-range, midsize wide-body twin-
engine jet airliners that can seat 250—350 passengers in a typical three-class seating config-
uration. The Airbus A350 XWB maiden flight took place on June 14, 2013. The Airbus
A350 XWB received EASA type certification in September 2014 and FAA certification in
November 2014. The first Airbus A350 XWB was delivered to Qatar Airways in December
2014 with the first commercial flight in January 2015 [14].

FIGURE 7 Airbus A350 XWB [15].

The Airbus A350 XWB airframe includes a range of advanced materials: composites in the
fuselage, wings and tail; aluminum—lithium alloys in floor beams, frames, ribs and land-
ing gear bays; titanium alloys in main landing gear supports, engine pylons, and some
attachments. The Airbus A350 XWB fuselage section has a four-panel construction such
that the major fuselage sections are created by the assembly of four large panels which are
joined with longitudinal riveted joints (Figure 8). The fuselage composite panels are
mounted on composite fuselage frames. Airbus designers see in this approach a better
management of construction tolerances when the jetliner's composite fuselage sections
come together on the final assembly. Another perceived benefit of the four-panel concept
might be the improved reparability in operational service, as an individual panel can be
replaced in the event of significant damage—avoiding major repair work that could require
extensive composite patching.
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FIGURE 8 Airbus A350 XWB four-panel concept: (a) one of the four panels [16]; (b) fuselage assembled from
four panels [15].

The Airbus A350 XWB has composite wings with a blended tip winglets thus departing
significantly from Airbus’s traditional wingtip fences. The wings curve upward over the
final 44 m in a “sabre-like” shape. This capability of applying various camber shapes
along the wing span as well as a double-curvature configuration is particular to composite
wings and cannot be efficiently achieved in metallic wings.

1.6 CHALLENGES FOR AEROSPACE COMPOSITES

Though greatly popular and very attractive for development, the aerospace composites activ-
ity is not without challenges. Some of these challenges could be grouped in safety concerns,
not surprisingly since the commercial use of composites in flight-critical primary structures is
still at the beginning. Other challenges are related to future developments, where composites
are expected to deliver the “unobtainium” material that would make our engineering dreams
come true. Both of these challenges are briefly discussed in the following section.
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1.6.1 Concerns About the Aerospace Use of Composites

Several concerns have been voiced about the aerospace use of composites. One issue that
has been raised concerns barely visible damage (BVD), i.e., damage of the composite mate-
rial that cannot be detected by preflight visual inspection (a routine procedure that identi-
fies dents and other damages on current metallic aircraft). In fact, composite materials
may suffer internal damage due to a low-velocity impact (e.g., a tool drop during routine
maintenance) without any obvious changes to its surface.

Another often voiced concern is about the fact that the polymeric matrix constituent of
the composite materials may collect moisture and change its properties over time.
Moisture may also accumulate in matrix microcrack and minor delaminations between the
layers of the composite laminate. As the aircraft goes at altitude and temperature drops
below freezing, this trapped water would expand and promote further microcracking.
Over several flight cycles, the freezing and unfreezing phenomenon will make cracks to
expand and eventually cause delamination.

The aircraft designers are well aware of these issues and all necessary measures are
being taken to maintain the aircraft safety and integrity. These measures have included
extensive testing under accelerated climatic and environmental conditions to ensure that
the composite will maintain its integrity over the whole design life of the aircraft. In some
cases, these measures may also have included excessive design factors such that considera-
tions other than pure operational stress and strain have been dominant in sizing some
composite aircraft parts.

Recent technology has provided a variety of reinforcing fibers and matrices that can be
combined to form composites having a wide range of very exceptional properties. In
many instances, the sheer number of available material combinations can make selection
of materials for evaluation a difficult and almost overwhelming task. In addition, once a
material is selected, the choice of an optimal fabrication process can be very complex.

1.6.2 The November 2001 Accident of AA Flight 587

The Nov. 2001 Accident of AA flight 587 is one of the worst aviation accidents on US soil
resulting in the death of all 260 people aboard the aircraft and five people on the ground
[17]. On November 12, 2001, the Airbus A300-600 of American Airlines flight 587 crashed
in Queens, New York City, shortly after takeoff [18]. The aircraft vertical stabilizer (tail fin)
detached from the aircraft causing the aircraft to crash. The A300-600 vertical stabilizer is
connected to the fuselage with six attaching points (Figure 9). Each point has two sets of
attachment lugs, one made of composite material, another of aluminum, all connected by
a titanium bolt; damage analysis showed that the bolts and aluminum lugs were intact,
but not the composite lugs [18]. This, coupled with two events earlier in the life of the air-
craft, namely delamination in part of the vertical stabilizer prior to its delivery from
Airbus’s Toulouse factory and an encounter with heavy turbulence in 1994, caused investi-
gators to examine the use of composites [18].
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FIGURE 9 Composite vertical stabilizer lug (tail fin) broken during the AA flight 587 of Airbus A300-600 in
Queens, New York City, November 12, 2001: (a) vertical stabilizer (tail fin) attachment point; (b) close-up of center
vertical stabilizer attachment clevis at crash site [19].

The possibility that the composite materials might not be as strong as previously supposed
was a cause of concern because they are used in other areas of the plane, including the
engine mounting and the wings. Tests carried out on the vertical stabilizers from the accident
aircraft, and from another similar aircraft, found that the strength of the composite material
had not been compromised, and the National Transportation Safety Board (NTSB) concluded
that the material had failed because it had been stressed beyond its design limit, despite
10 previous recorded incidents where A300 tail fins had been stressed beyond their design
limitation in which none resulted in the separation of the vertical stabilizer in-flight [18,20].

1.6.3 Fatigue Behavior of Composite Materials

Whereas aerospace metals, such as aluminum, have a well-known fatigue behavior, the
composites fatigue life is much more complicated and less understood. The aerospace
metallic materials have been extensively studied and their fatigue behavior is well under-
stood by now. The situation is drastically different in the case of composites. The fatigue
life of a metallic aircraft part can be directly deduced from two basic ingredients: (i) knowl-
edge of the aluminum fatigue data and (ii) knowledge of cyclic stress distribution. In the
case of metallic materials, the ingredient (i) i.e., the material fatigue data, is well known and
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easily accessible. In the case of composites, the ingredient (i), i.e., the composite fatigue
data, is far from being universally understood. In fact, the fatigue behavior of a composite
material depends not only on that of its constituent fibers and matrix, but also on the layup
sequence and hence it may vary from part to part. This observation explains in simple
terms why the aerospace composites fatigue still remains a very fruitful research topic.

Nonetheless, the basic fatigue superiority of composites over the metals exists due to
the fact that a fibrous material is less susceptible to catastrophic failure than a conventional
metal. So far, the aircraft designers have relied on extensive certification tests and proce-
dures to ensure that the composite materials used in their designs have an adequate
fatigue behavior such that the aircraft safety is always ensured. However, these certifica-
tion procedures are lengthy and expensive; for that reason, the introduction of other com-
posite solutions is currently somehow retarded and certain conservatism exists with
the tendency of using only the solutions that have been already certified and approved.
This situation will persist until a better way of designing and in-service monitoring of
aerospace composites is implemented.

1.6.4 The Future of Composites in Aerospace

When it comes to aerospace, composite materials are here to stay. With ever increasing
fuel costs and environmental regulations, commercial flying remains under sustained pres-
sure to improve performance, and weight reduction is a key factor for achieving this goal.
With their excellent strength-to-weight ratio, advanced composites are an obvious choice.
Beyond the day-to-day operating costs, the aircraft maintenance programs are a heavy bur-
den on the airline budgets. Aircraft maintenance can be simplified by the reduction of
component count and elimination of corrosion issues. Again, composites are the obvious
choice. The competitive nature of the aircraft construction business ensures that any oppor-
tunity to reduce operating costs is explored and exploited wherever possible. Competition
also exists in the military, with continuous pressure to increase payload and range, flight
performance characteristics, and “survivability,” in both airplanes and missiles.

Composite technology continues to advance, and the advent of new fiber and matrix types
as well as new manufacturing techniques is certain to accelerate and extend composite usage.
Several research and development areas are of special interest to both scientists and engineers.

One technological shortcoming that requires a solution is the elimination of mechanical
fasteners from the composite assemblies. At present, even the Boeing 787 and the Airbus
A350 XWB still use thousands of mechanical fasteners during assembly. Why not use
adhesive bonding? Because, in order to ensure safety, current certification requirements
mandate that proof must be made that each and every adhesively bonded joint will not sepa-
rate and cause structural failure should it reach its critical design load. Using mechanical
fasteners is still the easiest and least expensive way to meet certification requirements.
However, the full realization of cost and weight savings through composite materials will
only be attained if our scientific understanding and technical trust in bonded joints reaches
the point where certification can be attained without additional fasteners.

One of the most exciting upcoming opportunities for aerospace composites is in the com-
mercial space flight arena. For example, the Virgin Galactic LLC air-launch space travel
concepts consider all-composite solutions consisting of a space vehicle (VSS Enterprise)
being launched at altitude from a carrier aircraft (the White Knight) [21].
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(b)

FIGURE 10 Composites-enabled future aircraft: (a) NASA morphing aircraft program aims at changing the
aircraft shape as needed by various flight profiles [22,23]; (b) artist rendering of Airbus future composite aircraft
concept [24].

Future composite aircraft are envisaged to be able to change their shape as required by the
flight regime in which they operate. Figure 10a shows several artist renderings resulting
from NASA morphing aircraft program [22,23]; one notices that the straight wide-span
double wings are needed for short takeoff and landing morph into a single swept-wing
required for high-speed flight, as well as the appearance of individual winglets as required
for fast maneuvers. Thus, a morphing aircraft would be able to change its shape as needed
by various flight profiles in which it has to operate.

Figure 10b presents a futuristic aircraft concept originating from one of the major
aircraft manufacturers [24]. Besides special aerodynamic contours that are only possible
through the use of composites, this aircraft concept also displays a network of sensors
and interconnects that, similar to the animal nervous system, would be able to collect
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data about the aircraft state of health, relay it to a central unit, and advise appropriate
corrective actions and/or future maintenance scheduling. Such an aircraft nervous is also
depicted in Figure 10b, with the additional proviso that self-repairing aerospace compo-
sites are being considered in order to restore the composite aircraft to its full initial
capability.

1.7 ABOUT THIS BOOK

This book addresses the field of structural health monitoring (SHM) and presents a review
of the principal means and methods for SHM of aerospace composite structures. This very
challenging issue is addressed in a step-by-step way such as the readers will become grad-
ually aware of all the aspects of the problem as they progress through the book. The pres-
ent introductory chapter has given an overview of why and how composites are used in
the aerospace industry.

The next three chapters dealt with the analysis of composite behavior and response.
Chapter 2 is dedicated to the discussion of fundamental aspect of composite materials.
Chapter 3 deals with the study of composite vibrations, which may be used for SHM
applications. Chapter 4 is dedicated to the study of wave propagation in thin-wall com-
posite structures. Attention was focused on the propagation of ultrasonic guided waves in
laminated composites which is an essential element of several SHM techniques discussed
in subsequent chapters.

Chapter 5 presents a review of damage and failure in aerospace composites. The chap-
ter starts with a discussion of basic failure mechanisms and then advances through the
treatment of various lamination and loading options. The tension damage and failure of a
unidirectional composite is discussed first. Then, tension damage and failure in a cross-
ply composite laminate is considered. Linear and nonlinear aspects are discussed starting
with the ply discount method and continuing with the discussion of matrix cracking,
interfacial stresses, local interface failure, delamination, etc. The characteristic damage
state (CDS) concept is introduced and the evolutionary decrease of stiffness with damage
accumulation is discussed. The next section of Chapter 5 deals with the analysis of fatigue
damage and the long-term behavior of aerospace composites. This is followed by the
discussion of compression fatigue and failure which is fundamentally different from the
tension behavior. The presentation of other composite damage types such as fastener hole
damage, impact damage, and damage specific to sandwich composites and adhesive
joints is done next. Chapter 5 ends with a discussion of what could and/or or should be
detected by a permanently installed SHM system and what should be expected to be
detected by the nondestructive inspection (NDI), nondestructive testing (NDT), and non-
destructive evaluation (NDE) processes during composite fabrication and during sched-
uled maintenance events.

Chapters 6—8 treat the subject of sensors that could be used for SHM of aerospace com-
posites. Chapter 6 deals with piezoelectric sensors, in particular the surface-mounted pie-
zoelectric wafer active sensors, a.k.a. PWAS. Chapter 7 covers fiber-optic sensors for SHM
of aerospace composites. The chapter starts with a cursory review of the major fiber optics
sensing principles, but attention is subsequently focused on fiber Bragg gratings (FBG)
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optical sensors, which have become the dominant fiber-optic sensing technology in SHM
applications. The fabrication of FBG sensors, the conditioning equipment used with FBG
sensors, and the FBG demodulation at ultrasonic frequencies, which is particularly impor-
tant for SHM applications, are discussed. Chapter 7 also covers other optical sensor types
with good potential for application in composite SHM system; of these, the distributed
optical fiber sensing based on optical time domain reflectometry and Rayleigh backscatter
are found of particular interest. Chapter 8 covers other sensors that could be used in aero-
space composites SHM. Of particular interest are the conventional resistance strain gages
and the electrical properties sensors.

Chapters 9 and 10 discuss methods for monitoring damage initiation and growth in
aerospace composites. Chapter 9 focuses on the detection of impact and acoustic emission
(AE) and on monitoring impact damage intensity and growth in aerospace composites.
This area of research has received extensive attention because of the drastic possible effects
of undetected BVD events. For impact monitoring, it was found that the passive sensing
diagnostics (PSD) approach can tell if an impact has taken place, locate the impact posi-
tion, and even estimate the impact intensity. Another aspect of the PSD methodology is
that AE events could also be detected with the same sensor network installation.
Simultaneous measurement of both AE and impact waves is also possible. The next part
of Chapter 9 is dedicated to the discussion of active sensing diagnostics (ASD) in which
the transducers installed on the composite structure are used to send interrogative wave
signals that interact with the damaged area and produce scatter waves that are picked up
by same and/or other transducers. The ASD methodology, which has similarities to
acousto-ultrasonics, has been used with piezo transmitters and piezo receivers, as well as
with piezo transmitters and fiber-optic receivers. Other methods for impact detection dis-
cussed in Chapter 9 include direct methods for impact damage detection, strain mapping
method for damage detection, vibration SHM methods, frequency transfer methods, and
local area sensing with the electromechanical impedance spectroscopy method. Also pre-
sented in Chapter 9 are electrical and electromagnetic methods used for impact damage
detection in aerospace composites. The detection of delaminations with the electrical resis-
tance method in CFRP composites was found to have received extensive attention in
the SHM community. This approach is specific to CFRP composites because their carbon
fibers have electrical conductivity which is imparted to the overall composite through the
fact that individual fibers embedded in the polymeric matrix make occasional contact
when bunched together in the composite system. This conductivity is changed by impact
damage and delaminations.

Chapter 10 covers the monitoring of fatigue damage of aerospace composites that may
appear during normal in-service operation of the composite aircraft or spacecraft. Such dam-
age may be due to operational loads and environmental factors and may result in a gradual
degradation of composite properties rather than the sudden changes that may appear due to
accidental events, like the impact damage discussed in the previous chapter. Chapter 10 starts
with a discussion of passive SHM methods, e.g., monitoring strain, acoustic emission, and
operational loads that were used in damage monitoring. The next major section of Chapter 10
dealt with monitoring the actual fatigue damage induced in the composite by repeated appli-
cation of service loads. Various passive SHM and active SHM methods for fatigue monitoring
are discussed including fiber-optic measurements, pitch-catch piezo measurements, and
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electrochemical impedance spectroscopy. The electrical resistance method is used to monitor
in service degradation and fatigue of CFRP composites. Early tests have shown that as
the CFRP material is fatigue loaded, its electrical resistance changes thus acting as a built-in
indicator of microcracks, delamination, and other fatigue damage taking place in the CFRP
composite. The last section of Chapter 10 covers a variety of methods used in the monitoring
of disbonds and delamination in composite patch repairs, composite adhesive joints, in
nonconductive GFRP composites, etc. Guided-wave measurements as well as dielectric
measurements are presented and briefly discussed.

A major conclusion of Chapter 10 is that monitoring of aerospace composites damage
that may appear during normal operation is possible, but this damage type has not received
as much attention as the monitoring of impact events and of resulting damage as discussed
in Chapter 9. However, this situation may change in the future as major airlines are
acquiring and entering into service new composite-intensive aircraft such as Boeing 787
Dreamliner and Airbus A350 XWB. Hence, the need for fundamental and applied research
into developing SHM methods for monitoring the in-service degradation and fatigue of
aerospace composites is likely to increase significantly. It is apparent that sustained
research programs for developing such methods and technologies should be put into place
such that the fruits of discovery are made available before dramatic events happen into
practice.

Overall, it can be said that, whereas NDE technology is a rather mature technology, the
SHM methodology and related technologies for aerospace composites have only just
started to emerge. Considerable further research is needed to mature the development of
aerospace composites SHM sensors and methods in order to achieve viable practical
implementation of this promising new technology.

The introduction of SHM systems and SHM methodology should contribute to lower
the maintenance costs of composite structures for which deterministic damage events,
types, and limit sizes are difficult to predict. SHM would also facilitate the introduction of
new composite materials and development of new composite structures by reducing the
uncertainty component of the aircraft design cycle.
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2.1 INTRODUCTION

Aerospace composite materials are made of high-strength fibers embedded in a polymeric
matrix. Glass-fiber-reinforced polymer (GFRP), carbon-fiber-reinforced polymer (CFRP),
and Kevlar-fiber-reinforced polymer (KFRP) are among the most common aerospace com-
posite materials.

Aerospace composite structures are obtained through the overlapping of several unidi-
rectional layers with various angle orientations as required by the stacking sequence.
Thus, we distinguish a stack of laminae (a.k.a. plies) bonded together to act as an integral
structural element. Each ply (a.k.a. lamina) may have its own orientation 6 with respect to
a global system of axes x —y (Figure 1). The information about the orientation of all the
plies in the laminate is contained in the stacking sequence. For example, [0/90/45/—45];
signifies a laminate made of 0°, 90°, and *45° plies placed in a sequence that is symmetric
about the laminate mid-surface, i.e., 0°, 90°, +45°, —45°, —45°, +45°, 90°, 0°. This laminate
has N = 8 plies and its stacking vector is

[0]=[0° 90° +45° —45° —45° +45° 90° 0°] 1)

The plies in the stacking sequence may be of same composite material (e.g., CFRP) or of
different materials (e.g., some CFRP, some GFRP, others KFRP, etc.).
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Sec. 2.2 Anisotropic Elasticity 27

Laminate

Laminae (Plies)

(b)

Longitudinal

FIGURE 1 Composite laminates: (a) layup made up of a stack of composite laminae (a.k.a. plies) with various
orientations 6; (b) longitudinal, transverse, and shear definitions in a lamina (ply) [1].

The question that composites lamination theory has to answer could be stated as follows:
“Given a certain stacking sequence and a set of external loads, what is the structural
response of the composite laminate?” In order to address this question, we need to
analyze the mechanics of the composite laminate: first we would analyze the local
mechanics of an individual layer (a.k.a. lamina) and then apply a stacking analysis
(lamination theory) to determine the global properties of the laminated composite and its
response under load.

2.2 ANISOTROPIC ELASTICITY

This section recalls some basic definitions and relations that are essential for the analysis
of anisotropic elastic structures such as aerospace composites.
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28 Fundamentals of Aerospace Composite Materials Chap. 2

2.2.1 Basic Notations

0 , o .
—0=(-) and Z0=(-) @
1 ifi=j
bij = { . (Kronecker delta) (3)
0 otherwise
()i =011 + (Ox + ()33 (Einstein implied summation) 4)
_00)i . -
( )i,]- = (differentiation shorthand) (5)
i

2.2.2 Stresses—The Stress Tensor
In x1x,x3 notations, the stress tensor is defined as

ajj i,j=1,2,3 (stress tensor) 6)

where the first index indicates the surface on which the stress acts and the second index
indicates the direction of the stress; thus, o;; signifies the stress on the surface of normal é;
acting in the direction ¢;. The strain tensor is symmetric, i.e.,

oji = 0jj i,j=1,2,3 (symmetry of stress tensor in x1x,x3 notations) @
The stress tensor can be represented in an array form as
011 012 013

[oi] = |o13 02 o023 ®
013 023 033

The array in Eq. (8) was written with the symmetry properties of Eq. (7) already included.
In xyz notations, Eq. (6) is written as

aij Lj=xY,z2 €)
Hence, Eq. (8) becomes
Oxx Oy Oxz
log] = | oy ow oy (10)
Oxz Oyz Oz
The stress symmetry in xyz notations is expressed as

Tyx = Oxy O = Oyz Oz = Oz (symmetry of stress tensor in xyz notations)  (11)
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2.2.3 Strain—Displacement Relations—The Strain Tensor

In x1xx3 notations, the strain tensor is defined as
Eij = %(1/[1',]' + M]",') i,j =1,2,3 (12)

where the differentiation shorthand Eq. (5) was used. In longhand, Eq. (12) is written as

1 /ou;  oup\ ..
P + =
Eij > (6xj a)q) ,j=1,2,3 (13)

It is apparent that Eqgs. (12), (13) are symmetric, i.e.,

gji=¢ij, 1,j=1,2,3 (symmetry of strain tensor in x1x,x3 notations) (14)
The strain tensor can be represented in an array form as

fe11 €12 €13 ]
[ej] = | ez en ex (15)

Leiz €23 €33
In xyz notations, Eq. (15) is written as R

Exx Exy Exz
[ei] = |ew ew e (16)

LExz €Eyz Ezz

which includes the symmetry relations in xyz notations, i.e.,

Eyx = Exys  Ezy =€y Exz = Exx  (Symmetry of strain tensor in xyz notations) 17)

The elements of Eq. (16) are obtained from the expansion of Eq. (12), i.e.,

_ Otix = 1 % + %
T ox T\ oy T ox
Ouy 1/0ou,  ou
EWZE Eyzzi(g"‘@z) (18)
_ o 1 o ou,
=T 529(‘5(&* az>

2.2.4 Stress—Strain Relations

2.2.4.1 Stiffness Tensor; Compliance Tensor
The stress—strain displacement in tensor notations are written as, i.e.,

Oij = CijkiEk ,j=1,23 19)
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30 Fundamentals of Aerospace Composite Materials Chap. 2

where the Einstein implied summation rule of Eq. (4) applies. The term c;yy is called the
stiffness tensor, i.e.,

Cijki i,j,k,1=1,2,3 (stiffness tensor) (20)

It can be shown that the stiffness tensor is symmetric, i.e.,
Cijki = Cjikl = Cijik = Cklij = Cijilk iLj,k,1=1,2,3 (21)

The symmetry properties of the stiffness tensor Eq. (21) imply that of the 81 stiffness ele-
ments only 21 are independent. (For isotropic materials, these 21 independent stiffness
constants reduce to only two that can be related to two independent elastic properties of
the isotropic material, e.g., the moduli E, G or the modulus E and the Poisson constant v.)

The inverse of the stress—strain relation given by Eq. (19) is the strain—stress relation
given by

Eij = SijkI Okl i,j=1,2,3 (22)

where the term s;j; is called the compliance tensor. The compliance tensor enjoys the same
symmetry properties as the stiffness tensor, i.e.,

Sijki = Sjikl = Sijk = Sklij = Sjilk iLj,k,1=1,2,3 (23)

2.2.4.2 From Tensor Notations to Voigt Matrix Notation

The stiffness tensor of Eq. (20) has four indices, i.e., it is a fourth order tensor and it cannot
be represented in a plane array. To overcome this difficulty, Voigt matrix notation has
been introduced to allow the stiffness tensor to be written as a matrix. This Voigt matrix
notation consists of replacing ij or kI by p or q, where 7,7,k,1=1,2,3 and p,4=1,2,3,4,5,6
according to Table 1.

TABLE 1 Conversion from tensor to matrix
indices for the Voigt notation

ij or kl porg

11 1
22
33
23 or 32
31or13

(o) NG, B BN

12 or 21

The transition from tensor notations to Voigt matrix notations is achieved as follows:
Recall Eq. (19) giving the stress—strain displacement in tensor notations, i.e.,

Tij = Cijki€ki ,j=1,2,3 (24)
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Sec. 2.2 Anisotropic Elasticity 31

Expand the implied summations in Eq. (24) to get
oij = cijinen 1 Cijia€1z + Cijiz€s
+ cip1€21 + Cia€nn t Cip3ens i,j=1,2,3 (25)
tcijzi€ar t Cijzaez + Cijz3ess
Recall Eq. (12) that expresses strains €y in terms of displacements, i.e.,
e = 3 (ugy + ugg) k1=1,2,3 (26)
Note the symmetry property of Eq. (26), i.e.,
e = S +ug) = g tug)=en k1=1,2,3 27)
Recall Eq. (21) giving the symmetry properties of the stiffness sensor, i.e.,
Cijkl = Cjiki = Cijik = Cklij = Cjilk (28)
Apply Egs. (27), (28) into Eq. (25) to get
oij = Cijien t Cijra€1z t Cijzi€st
+ cijio€12 + Cijen T Cijpacas ,j=1,2,3 (29)
+ Cij31€31 T Cijp3€as T Cij33€33
Collect on common terms and rearrange Eq. (29) as
0 = Ciji1€n T Cippexn T Cipagss T 2¢ipeas + 2cimest + 2010612 4,7 =1,2,3 (30)

The order of indices used in writing Eq. (30) has followed the common practice associated
with Voigt matrix notation. Now, let i,j = 1,2,3 and express Eq. (30) in matrix form, i.e.,

g1 [c11i11 c1i22 €133 c1i23 c131 cu2 | [ €n

022 C2211  C2222 C2233 C2223 C2231  C2212 €22

033 | _ | C3311 €332 (3333 (3323 (3331 C3312 €33 31)
023 C2311 C2322 (€2333 (C2323 (2331 C2312 2e3

031 C3111  C3122 €3133 €3123 €3131  C3112 2e31

012 LCi211 C1222 €133 C1223 €131 Cr212 ] \2¢e12

Recall Eq. (28) giving the symmetry properties of the stiffness tensor and write the matrix
in Eq. (31) as a symmetric matrix, i.e.,

011 [c1111 ciz2 c1133 1123 C1131 iz | [ €n

022 C1122  C2222  C2233 €223 C2231 C2212 €22

033 | _ | €133 C2233 (3333 (3323 (3331 (3312 €33 (32)
023 C1123  C2223 (3323 C2323 (2331 (2312 2e3

031 C1131 C2231 ©€3331 (C2331 C3131 (3112 2¢e3

012 LC1112 2212 C3312 €312 C3112 Cr212 ] \2e12
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Use Voigt notations to rename the components of the stress and strain tensor by using a
single index p =1, ..., 6 and the indexing rule of Table 1, i.e.,

o1
02
g3
04

05

O6

€1
€2
€3
€4

€5

€6

011
022
033
023

031

012

€11

€

€33
2e23

2631

2612

(stress matrix in Voigt notations)

(strain matrix in Voigt notations)

(33)

(34)

Using the indexing rule of Table 1, denote the elements of the 6 X 6 symmetric matrix of

Eq. (32) as follows:

reiinn—Cn ez —Coo

2020 = Co»

sym.

2.2.4.3 Stiffness Matrix
The 6 X 6 matrix of Eq. (35) is known as the stiffness matrix, i.e.,

Using Egs. (33), (36) into Eq. (32) yields the compact stress—strain matrix relation, i.e.,

o =Ce (compact stress—strain matrix relation)

Ci2
Ca
Cas
Cos
Cas
Cas

c1133 = Cis

2033 = Co3

3333 = Ca3

Ciz Cu
Cy Co
Csz Cag
Cas Cu
Css Cus
Cse  Cue

c1123 = Cra
2223 = Coy
3323 = Cas

2323 = Cyq

Cis Cie
Cs Coe
Css Cse
Css Cae
Css  Cse
Cse  Cop |

c1131 — Cis
2231 — Cos
c3331 = C3s
2331 — Cy5

c3131 = Css

c1112 = Ci6 ]
012 = Cop
c3312 > Cs6

2312 = Ce

cz112 = Cse

1212 = Ceg |

(stiffness matrix)
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In expanded form, the stress—strain matrix relation of Eq. (37) can be written as

o11 [Ci1 Ci2 Ci3 Ciy Ci5 Cis] (en

022 Cia Cpp Coi3 Cy Cps Cosf | 2

7Bl Cis G2 Coo Car Cos Cog = (matrix stress—strain relation)  (38)
023 Ciu Cy Ciy Cy Cys Cyp | |26

031 Cis Cps Cs5 Cg5 Cs5 Cse | | 223

o012 |Ci6 Cos Czs Css Csg Cesl 2612

2.2.4.4 Compliance Matrix

The stress—strain relation Eq. (37) can be inverted to give the strain—stress relation, i.e.,

e =So (compact strain—stress matrix relation) (39)

where S is the compliance matrix, i.e.,

Sii Si2 S13 S S5 S
Si2 S» Sx3 Swu S S
S13 S»3 Sz Sz Szs S36 , )
S= (compliance matrix) (40)
Sia Sxu Sz Su Sss Sss
Si5 S»s S35 Sss Sss5 Sse

Si6 Sz S3s Sss Sse  Ses |

The stiffness matrix C and compliance matrix S are mutually inverse, i.e.,

S=C! and C=S"' (mutually-inverse stiffness and compliance matrices) (41)

Equation (41) permits the computation of stiffness matrix from a known compliance
matrix, i.e.,

[Cii Ciz Cis Cuu Cis Cig] [Su Siz Sz Su Sis Sig]
Ciz Cp Coz Cu Cps Cye S12 S22 S Sua S5 Sz
Cis Cs Gz Ca G5 Gos | S13 S S Sa S35 Ss 2)
Cia Cu Cou Cu Cs5 Cye Sia Sa Sz Sm Sss Sse
Cis Cs Cs5 Cis Css Cse S15 S5 S35 Sa5 Sss Sse
|Ci6 Co Cs6 Cas Cs6 Ces| [Si6 So6 Sse Sac Ss6  Ses |
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In expanded form, Eqs. (39), (41) are written as

2.2.4.5 Stress—Strain Relations for an Isotropic Material

Chap. 2

€11 Si1 S12 S13 S Si5 S| (on
€2 Si2 S S S S5 Sos | |om
€33 S13 523 S33 S3s S35 Sz | | 033 ) , ,
= (matrix strain—stress relation)  (43)
2e3 Sia Sou Sz Su Sss Sss | |om
2¢e3 Si5 S»s S35 Sss Sss Sse | | o3
2e1p | S16 S26 S3s Sas Sse Ses | \o12

In the spirit of completeness, the stress—strain matrix relation for an isotropic material is
presented next; these relations are commonly known as Hooke’s law. For an isotropic
material, the stress—strain relations of Eq. (38) simplify to

011 TA+2u A A 0 0 07 €11
o2 ; A _:2” \ /\2 8 8 8 <2 Hooke's Law:
+
Z zz A A ; H 2 00 2553233 isotropic str?ss—strain (44)
. 0 0 0 0 u 0 Deq relation
J12 L 0 0 0 0 0 jon 2¢e 12
where A, u are the Lame constants given by
v
A= —————FE
1+v)1-2v)
1 (Lame constants) 45)
=G=-—"—E
=G50
The corresponding strain—stress matrix relation for an isotropic material is
€11 i 1/E _V/E _I//E 0 0 0 7 (on
€2 _V; E 1/ fE _I//I/-] E 0 0 0 022 isotropic
€33 —v —v 1 0 0 0 033 .
= train—st 46
2ens 0 0 0 1/G 0 0 |)ox strain-stress | (46)
2e3: 0 0 0 0 1/G 0 ||om relation
2e 12 L 0 0 0 0 0 1 / G J g12
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Sec. 2.2 Anisotropic Elasticity 35

where G =E/2(1 + v). In view of Eqs. (44), (46), we identify the isotropic stiffness and com-
pliance matrices as

A+20 A A0 0 0
A A+ A 0 0 0
sotropi +
Cisotropic _ ())\ 8\ A OZM 2 8 8 (isotropic stiffness matrix)  (47)
0 0 0 0 u 0
0 0 0 0 0 ul
"1)E -v/E -v/E 0 0 07
—vJE 1/E -v/E 0 0 0
) . - -v/E 1/E
gisotropic — g/ E g/ (/) 1;)G 8 8 (isotropic compliance matrix) (48)
0 0 O 0 1/G 0
L o 0 o 0 0 1/G]

The elements of the matrices in Eqs. (47), (48) are related through Eq. (45).

2.2.5 Equation of Motion in Terms of Stresses

The equation of motion in terms of stresses as obtained from the free-body analysis of an
infinitesimal element dx; dx, dx; is

O’i]"]' = pﬁ,’ l,] = 1, 2, 3 (49)
where the differentiation shorthand Eq. (5) was used. In longhand, Eq. (49) is written as

Oojj ; ..
i = pii; i,j=1,2,3 (50)

ox i

2.2.6 Equation of Motion in Terms of Displacements

Substitution of the stress—strain relation Eq. (24) into the right-hand side of the stress
equation of motion Eq. (49) yields

Tijj = Cijki€kl,j ,j=1,2,3 (51)
Recall the strain—displacement relations Eq. (12), i.e,,
ex = 5 (uiy + upg) i,j=1,2,3 (52)

where the subscripts kI are used instead of ij for convenience. Differentiation of Eq. (52)
gives

extj =5 (i + i) L,j=1,2,3 (53)
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36 Fundamentals of Aerospace Composite Materials ~ Chap. 2
Substitution of Eq. (53) into Eq. (51) yields
oijj = 3 Cia(ur + 1) ,j=1,2,3 (54)
In virtue of its symmetry properties, Eq. (54) can be further simplified to give
Tijj = CijkiUgj i,j=1,2,3 (55)
Proof of Eq. (55): Recall the right-hand side of Eq. (54) and expand it as
3 Cijpa (g + 1) = % it + 3 Cirai g (56)
Consider the second term in Eq. (56) expansion and interchange k with I to write
L cim g ot Leijcuy i (57)
Recall Eq. (21) giving the symmetry properties of the stiffness matrix, i.e., c;jix = cjju; hence,
the second part of Eq. (57) can be written as
T Ciitli; = 3 Cijkati (58)
Combining Egs. (57), (58), one gets
X Ciikili g = 3 Cijkatk (59)

Substitution of Eq. (59) into Eq. (56) yields two identical terms in the right-hand side sum-
mation which can be summed up to cancel the 1/2 factor, i.e.,

1 —1 1 —1 1 —
5 Cijk (UkJj  U1kj) = 5 Cijkathrgj + 5 Cijki Uik = 5 Cijkitkgj + 5 CijkiUklj = Cijii Uk (60)

Substitution of Eq. (60) into Eq. (54) yields Eq. (55). QED'
Now, substitution of Eq. (55) into Eq. (49) yields

Cijukj = pii; 1,j=1,2,3 (tensor equation of motion in terms of displacements) (61)

Equation (61) is the tensor equation of motion in terms of displacements.

A matrix form of the equation of motion in terms of displacements can be obtained by
expanding Eq. (61) and changing from tensor notations to Voigt notations using the rules
of Table 1. However, the resulting expressions are rather long, as illustrated below for the
first line in Eq. (61), i.e,,

Critt111 + Croup 1 + Crauzzr + Cig(ur 21 + u11) + Cra(uzzt + uzo1) + Cis(uizr + uzq1) +
Cieut1,12 + Costtn o + Caguiz 32 + Cee(tt1,20 + Uz12) + Cag(in 32 + 1z 20) + Cse(1,32 + Uz 12) +

Cisur,13 + Costtnpz + Casizaz + Csel(t23 + U 13) + Cas(u 33 + u323) + Css(u1 33 + 1313) = piiy
(62)

Yquod erat demonstrandum, http:/ /en.wikipedia.org/wiki/Q.E.D, www.merriam-webster.com /dictionary/qed.
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Equation (62) can be somehow simplified by reverting the order of differentiation in cer-
tain places and grouping by displacements, i.e.,

Criurar + Cestt1 22 + Csstg 33 + 2Ci611,12 + 2Cs611 23 + Crstig 31 +
Cietizg1 + Cogtino + Cystinzs + (Cr2 + Ces )iz 12 + (Cos + Cye)uz 23 + (Cra + Csp)uo s + (63)

Cisuz i1 + Cugtiz o + Casuzzz + (Cig + Cse)uz 12 + (Cse + Cas)uz 2z + (Ciz + Css)uz 31 = piiy

The longhand matrix notation of Eq. (61) is not recommended for use in the general case.
However, a simplified version of Eq. (63) will be used in the case of monoclinic stiffness
formulation, as shown later in Section 5.3.

2.3 UNIDIRECTIONAL COMPOSITE PROPERTIES

This section discusses the basic properties of a unidirectional lamina. These properties are
usually determined experimentally. Micromechanics models will also be used to develop
estimates of the composite elastic properties based on the elastic properties of their
constituents.

2.3.1 Elastic Constants of a Unidirectional Composite

Aerospace composites are made of high-strength fibers embedded in a polymeric matrix.
A unidirectional composite material consists of tightly packed high-stiffness fibers embed-
ded in a rigid polymeric matrix. Such unidirectional composite material has orthotropic
elastic properties: it is very stiff along the fibers and rather compliant across the fibers
(Figure 2). They are also in-plane isotropic, i.e., properties in a plane transverse to the
fibers do not depend on the direction in which they are measured. A unidirectional com-
posite is defined by five independent elastic constants:

(1) E or Eq, the longitudinal modulus measured along the fibers

(2) Eror E,, the transverse modulus measured across the fibers

(3) vir or v1y, the LT Poisson ratio measuring the transverse contraction when
longitudinal stress is applied, i.e., vir = —er/er

(4) Grr or Gyp, the shear modulus for LT shear in the plane of the lamina

(5) Ga3, a.k.a. the interlaminar shear modulus [2], corresponds to shear taking place in a
plane that is transverse to the fibers. The corresponding Poisson ratio, 123, a.k.a. the
interlaminar Poisson ratio, is related to Gy3 through the formula Gyz = E7/2(1 + v3);
hence, only one of them can be independently defined.
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(@) .

Superior

; Poor .
properties ; properties Properties
Fiber direction Transverse Tlransyerse
direction direction

(b)

Inplane shear og Interlaminar shear oy

FIGURE 2 (a) Overview of composite properties (stiff along fibers, compliant across fibers and in matrix
shear) [3]; (b) definition of in-plane shear o, and interlaminar shear o3 [2].

2.3.2 Compliance Matrix of a Unidirectional Composite
The strain—stress matrix relation for a unidirectional composite is written as

€11 [ 1/E. —wvir/EL —wvir/EL 0 0 0 o1
€22 _VLT/EL 1/ET —1/23/ET 0 0 0 022 A
strain—stress

€33 —vir/Er —vas/Er 1/Er 0 0 0 033 )

= matrix
2623 0 0 0 1/G23 0 0 023

relation

2631 0 0 0 0 1/GLT 0 031
2512 L 0 0 0 0 0 1/GLT 1 g12

(64)
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The relation described by Eq. (64) represents
tress relation. This relation is specific to unid

39

an orthotropic transversely isotropic strain—s-
irectional composites and is associated with

their physical nature. The salient features of this relation are as follows:

e Direct stresses are decoupled from shear stress (orthotropic property)
e Shear stresses are decoupled from each other (orthotropic property)

e 12 and 13 matrix elements are the same (in-
e 55 and 66 matrix elements are the same (in-

From Eq. (64), we deduce that the compliance
given by

[ 1/Ep —vir/EL —vir/EL 0

—vir/EL 1/Er —vy/Er 0

5 —vir/EL —va/Er 1/Er 0
0 0 0 1/Gos

0 0 0 0

. O 0 0 0

In generic notations, Eq. (65) can be written as

[S11 S12 S 0 0
Sz S» S» 0 0
5 Si3 S; S 0 0
Sy O
0 0 Sss
L 0 0 0
where
1
S = E,
VLT
Sp=S5i3= E,
1
Syp =833 = Er

plane isotropic property)
plane isotropic property)

matrix S for a unidirectional composite is

0 0 7
0 0 compliance matrix
0 0 of
0 0 unidirectional
1/Grr 0 composite lamina
0 1/Grr |
(65)
0
0 compliance matrix
0 of
(66)
0 unidirectional
0 composite lamina
Se6 |
__ =
Sy = E;
1
=g 67)
1
Ss5 = Se6 = Gir

Equation (66) displays the same orthotropic in-plane isotropic features as Eq. (64), i.e.,

¢ Direct stresses are decoupled from shear stresses (orthotropic property)

¢ Shear stresses are decoupled from each other (orthotropic property)

* Spp and Si3 matrix elements are the same (transversely isotropic property)
® 555 and See matrix elements are the same (transversely isotropic property)
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The corresponding strain—stress matrix relation is

e S S S 0000 an strain—stress
€22 S2. 52 S3 0 0 0 ||ox2 trix relati

6 o s o o0 o . matrix relation
€

33 _ |91 523 53 33 of ©8)
2e93 0 0 0 Sy O 0 023 i . 1
t

2oy 0 0 0 0 Su 0 oan uni 1r.ec 1onaT
21, (0 0 0 0 0 Sellon composite lamina

2.3.3 Stiffness Matrix of a Unidirectional Composite

The stiffness matrix of a unidirectional composite C is obtained by inversion of the compli-
ance matrix S, i.e.,

C=S"! (stiffness matrix = inverse of compliance matrix) (69)

The longhand expression of the stiffness matrix is

[Ci1 C2 Gz 0 0 07 [Suu Sz Suiz 0 0
Cp Cxn C3 0 0 O S12 S S» 0 0
c— Ciz G Cs 0 0 0| |Si S» Ss 0 0 70)
0 0 0 Cy4 O O Ss4¢ 0 O
0 0 0 0 Css O 0 0 0 0 Sss O
L O 0 0 0 0 Ces L O 0 0 0 0  Ses

The corresponding stress—strain matrix relation is

on [Ci1 C2 Gz 0 0 07 (en

022 Cpo Cp Cz 0 0 O €22

7Bl Cv Co Cz 0 0 0 °% (stress—strain matrix relation) (71)
ag23 0 0 0 C44 0 0 2523

031 0 0 0 0 C55 0 2631

g12 L 0 0 0 0 0 C66 i 2512

The stiffness matrix C of Eq. (70) has the same orthotropic in-plane isotropic features as the
compliance matrix S of Eq. (66), i.e.,

* Direct stresses are decoupled from shear stresses (orthotropic property)
* Shear stresses are decoupled from each other (orthotropic property)

* (2 and Cy3 matrix elements are the same (in-plane isotropic property)
* Cs5 and Cge matrix elements are the same (in-plane isotropic property)
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2.3.4 Estimation of Elastic Constants from the Constituent Properties

The elastic constants of a unidirectional composite described in Section 3.1 can be estimated
from the properties of the composite constituents, i.e., from the elastic properties of the
fiber and the matrix (Figure 3). The estimation is done through the rule of mixtures using
the contribution ratios measured as volume fractions: vy for the fibers a v;, for the matrix. In
addition, since composite manufacturing cannot be perfect, a certain amount of voids and
trapped gases are always present and represented by the void volume fraction v,. The bal-
ance equation for the volume fractions is

v+ 0, +0v,=1 (volume fraction balance equation) (72)

-— -
— 3 1 I
F A¢=v¢A | Fiber, v;, E; Lop i
-« I |— |
i _
Total Area Al l L |
| | f—ar=e

FIGURE 3 Schematic diagram for the estimation of the longitudinal modulus E;.

2.3.4.1 Estimation of the Longitudinal Modulus E;

Consider a unidirectional composite of length L under longitudinal load F applied over a
total cross-sectional area A as indicated in Figure 4. The corresponding proportional areas
of the fiber and the matrix are

A;=v;A (area of the fibers) (73)
A, =v,A (area of the matrix) (74)

The fibers and matrix stretch together with the same strain ¢;. They act as parallel springs
and their respective forces add whereas their stretch is the same. The stresses in the fibers
and matrix are

of=Esep (stress in the fibers) (75)

om = Ener  (stress in the matrix) (76)

where E¢, E;, are the fiber and matrix elastic moduli. The total force is obtained by adding
the forces from the fibers and the matrix, i.e.,

F=03As + onAp = (0§05 + 0vm)A  (total force) 77)

Substitution of Egs. (75), (76) into Eq. (77) gives
F= (Efvf + Emvm)sLA (78)
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The same force F is obtained by considering the effective modulus of the composite Ej
multiplied by the strain ¢; and by the total area A, i.e.,

F= ELELA (79)

Combining Eqs. (78), (79) yields the formula for calculating the longitudinal modulus Ep
as function of fiber and matrix moduli Ef, E,; and volume fractions vy, vy, i.e.,

Ep = Efvy + Ejyuy - (longitudinal modulus of the composite) (80)

2.3.4.2 Estimation of the Transverse Modulus Er

Consider a unidirectional composite of width I under transverse load P applied over an
area A as indicated in Figure 4. The fibers and matrix are subject to the same transverse
load P but they stretch differently according to their different compliances. They act like
series springs and their stretches add together while the force is the same in them both.
The corresponding proportional transverse width of the fiber and the matrix is

lr=vs (width of the fibers) (81)
Iy =v,l (width of the matrix) (82)
T P
L Y A—a pP
Fiber, vy, Ef lf ~ 5 ] [f
I P4 VP
Matrix, v,,, E,, Ilm =l Ly

l P \Area A p ¢

FIGURE 4 Schematic diagram for the estimation of the transverse modulus Er.

Both the fibers and the matrix share the same transverse load P applied over the same
transverse area A. Hence, the stresses in the fiber and the matrix, of, 0y, are equal and are
also equal to the overall stress o7 =P/A, i.e.,

P
Of =0m= 3 =0T (transverse stresses in fiber and matrix) (83)

The transverse strains in the fiber and matrix are obtained from the stresses upon division
by the respective elastic moduli, i.e.,

T

o

g = E_f =T (transverse strain in fiber) (84)
f f

Em = Im _ 9T (transverse strain in matrix) (85)
En En
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The total stretch Al is the sum of the individual stretches which are obtained by multipli-
cation of the strains and respective lengths, i.e.,

Al =gl + gyl (total stretch) (86)

The overall strain er is obtained by dividing the total stretch Al by the overall
length [, i.e,,

Al gflf + 5mlm _ sfvf1+ €mvm\l\

er=— = i T =0 + €mUy  (overall strain) 87)
Substitution of Eqs. (84), (85) into Eq. (87) yields
eT = &f0f + €U = ﬂvf + ﬂvm (overall strain) (88)
E¢ E.

But the overall strain et is the ratio between the overall stress or and the effective trans-
verse modulus E7, i.e.,

g .. .
er = E—; (transverse strain in matrix) (89)

Combining Egs. (88), (89) and simplifying through by o7 gives

1 1 1
— = Ut —Uy (90)

Solution of Eq. (90) yields the formula for the transverse modulus Er, i.e.,
-1
Er= (Ef_ Lo +En_1lvm) (transverse modulus of the composite) 91)

Equations (90), (91) indicate that the transverse modulus is the inverse of the transverse
compliance, which is obtained through the addition of the fiber and matrix compliances
modulated by the respective volume fractions. Another way of expressing the formula
given in Eq. (91) is [4,5]

E(Ey

E -
T Efvm + Eny

(92)

However, for numerical computation, the expression in Eq. (91) is preferred to that of
Eq. (92) because it is less prone to human typing error.

The formulae in Egs. (91), (92) combine the moduli of the fibers and the matrix like
series springs, i.e., it adds their compliances after multiplying them by the appropriate vol-
ume fractions.
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2.3.4.3 Estimation of Poisson Ratio v; 1

The Poisson ratio vyt is defined as

vir = — T (93)
er

where the strains €;, e7 are measured while loading is applied in the L direction. To calculate
an estimate for the Poisson ratio v, consider the schematic in Figure 5.

ér [T ________ 7] -
i ! o
| — Ii f, Uf ! L
1 1
i il O O ====~ .
A o
«—>

FIGURE 5 Schematic diagram for the estimation of the Poisson ratio vyr.

The loading oy in the L direction is assumed to produce the strain ¢; which applies to
both the fibers and the matrix, i.e.,

(eL)y=er o .
(same L strain in fibers and matrix) (94)

(L) =cL

The corresponding transverse strains in the fibers and matrix are calculated using their
respective Poisson ratios, i.e.,

(er)f=—vrer e :
(same L strain in fibers and matrix) (95)

(ET)m = " VméEL
The portions of the transverse width [ allocated to the fibers and the matrix are

l=v¢1 (width allocated to the fibers) 96)
I, =v, l (width allocated to the matrix) 97)

Using Egs. (95)—(97), calculate the total transverse elongation, i.e.,

Al = (e)fds + (e7)pulm

(total transverse elongation) 98)
=~V ELlf — vy el = — (Vf Of + vy Z)m)ELl

Note that the transverse elongation is negative, i.e., it is a shrinkage, as expected from the
Poisson effect. The effective transverse strain is calculated by dividing the elongation by
the nominal length, i.e,,

Al _ 7(1/)‘ Uf + U 7);11)5L\A
I X

eT = —(vf vy + vy Um)er  (effective transverse strain) (99)
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Recall the definition Eq. (93) to write

ViT = — i—T =V Uf + Uy Un (100)
L

2.3.4.4 Estimation of the LT Shear Modulus G;r

The estimation of the LT shear modulus Gy, a.k.a. longitudinal shear modulus, is done
under the assumption that the fibers and matrix undergo separate shear deformations and
their shear deformations add up to create the shear deformation of the assemblage

(Figure 6).

Uf, Gf 7
!
1
U

vm’ GI')I

FIGURE 6 Schematic diagram for the estimation of the LT shear modulus Gyr.

The fibers and the matrix are subject to the same shear stress 7, i.e.,

T =Tm =7 (common shear stress in fibers and matrix)

The corresponding shear strains are

+  (shear strains in fibers and matrix)

The corresponding sliding displacements in the fibers and matrix are
o= fyflf = ”yfvfl (sliding displacement of the fibers)
Om = Ypulm = ¥mvml  (sliding displacement of the matrix)
The total displacement 6 is

6= 6+ 6m = yyvgl + v,,oml  (overall shear strain)
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The overall shear strain v is obtained by dividing the total sliding displacement ¢ by the
width ], i.e.,
6
V=7 T +7,,Um (overall shear strain) (106)
By definition, the overall shear strain v is the ratio between the overall shear stress 7 and
the effective shear modulus G;r of the composite, i.e.,

T

= — (107)
7 Gir

Substitution of Eq. (102) into Eq. (106), followed by combination with Eq. (107) and divi-
sion by 7 gives
1 1

1
L . 108
Gur G Gy (108)

Solution of Eq. (108) yields the formula for the LT shear modulus Gy, i.e.,
-1
Gir = <ij Lop+ G;lvm) (in-plane shear modulus of the composite) (109)

Equations (108), (109) indicate that the LT shear modulus is the inverse of the LT shear compli-
ance, which is obtained through the addition of the fiber and matrix compliances modulated by
the respective volume fractions. Another way to express the formula given in Eq. (109) is [4,5]

GG

Gf?]m + GmZJf (110

Gir =

However, for numerical computation, the expression in Eq. (91) is preferred to that of
Eq. (92) because it is less prone to human typing error.

The formulae in Egs. (109), (110) combine the shear moduli of the fibers and the matrix
like series springs, i.e., it adds their compliances after multiplying them by the appropriate
volume fractions.

An improved formula for the estimation of Gir is obtained through the elasticity solu-
tion of an cylindrical assemblage model (CAM) consisting of concentric fiber and matrix
cylinders (Ref. [6] as cited in Ref. [2]) and zero void fraction (v + v, =1), i.e.,

1 + vy +( —Uf)Gm/Gf
" 1 Y +(1 +Uf)Gm/Gf

Gir =G (CAM in-plane shear modulus) (111)

2.3.4.5 Estimation of Transverse Shear Modulus G,;

A formula for the estimation of the transverse shear modulus G,3 was developed using the
semiempirical stress-partitioning parameter (SPP) method (Ref. [7] cited in Ref. [2], p. 75), i.e.,
Uf + M3V

3 —4dvy + G /Gy
vk —
4(1 —vm)

G =G

(transverse shear modulus) (112)
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2.3.4.6 Matrix-Dominated Approximations

In practical applications, the matrix modulus is orders of magnitude smaller than the cor-
responding fiber modulus, i.e.,

Em < Ef
Gm < Ef

(113)

Thus, the moduli estimation formulae of Eqs. (80), (91), (109), (111) simplify as follows:

Ep = Efy  (approx. longitudinal modulus of the composite) (114)
Er=E, /v, (approx.transverse modulus of the composite) (115)
Grr = Gp /vy (in-plane shear modulus of the composite) (116)
Gir =Gy, 1i—:{ (approx. CAM shear modulus) (117)

Other micromechanics-based derivations of composite properties are available in Refs. [8—10].

2.4 PLANE-STRESS 2D ELASTIC PROPERTIES OF A COMPOSITE
LAYER

This section presents the 2D elastic properties of a composite layer which is assumed to be
in a state of plane stress. It will discuss the 2D stiffness matrix Q which is the plane-stress
correspondent of the 3D stiffness matrix C. The procedure for evaluating the rotated 2D
stiffness matrix Q will be established. The effect of the fiber orientation angle on the 2D
stiffness matrix of a unidirectional composite layer will be studied.

In the analysis of thin-wall composite structures, it is common to assume that the
thickness-wise stress o33 is zero everywhere throughout the thickness, ie., o33 =0.
Therefore, a state of plane stress is assumed to exist, and the only stresses and strains of
interest are 011, 022, 012, €11, €22, €12. For composite laminates made up through the stack-
ing of several plies of various orientations, plane-stress conditions apply in each ply of the
composite layup.

2.4.1 Plane-Stress 2D Compliance Matrix

Consider a thin unidirectional composite lamina in plane-stress condition o33 = 0; the
stresses and strains of interest are contained in the lamina plane O x1x, i.e., 011, 02, 012
and €11, €, €12. The stresses 013, 023 and the strains €33, €13, €23 are not necessarily zero,
but they will simply not make the object of our attention which is focused on finding the
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relation between the stresses o1, 02, 012 and the corresponding strains €11, €2, €12. Recall
Eq. (68) giving the complete strain—stress matrix relation, i.e.,

€11 [S11 S12 S35 0 0 07 (on

€22 S2 S» S»s 0 0 0 022

e | _ S S» S 0 0 0 033 (118)
2e93 0 0 0 Sy O 0 023
2e31 0 0 0 0 Ss55 O 031
2n) Lo 0 0 0 0 Sellon

Retaining only the elements related to c11, €22, €12, 011, 022, 012, one gets the 2D plane-
stress compliance relation

€1 Su Sz O o1
€ p=|S12 Sn O o2 (119)
2e1n 0 0 Se] Loz

Associated with Eq. (119), define the 2D compliance matrix

Si1 S 0
S=|Sn S» 0 (2D compliance matrix) (120)
0 0 Ses

Using Eq. (64), one can write the 2D compliance matrix Eq. (120) explicitly in terms of the
engineering constants, i.e.,

1/EL _VLT/EL 0
S = _VLT/EL 1/ET 0 (121)
0 0 1/GLT

Equation (120) can be used to write Eq. (119) compactly as

e=S o (strain—stress matrix relation) (122)

where € and o are the 2D strain and stress column matrices, i.e.,

€1 o1
e=< & =< 0y (2D strain and stress column matrices) (123)
2epp o1

2.4.2 Plane-Stress 2D Stiffness Matrix

Upon inversion, Eq. (120) yields the plane-stress 2D stiffness matrix, i.e.,

Q=5"! (2D stiffness matrix) (124)

STRUCTURAL HEALTH MONITORING OF AEROSPACE COMPOSITES



Sec. 2.4 Plane-Stress 2D Elastic Properties of a Composite Layer 49

In longhand, Eq. (124) is written as

Qun Qur 0 Si1 Sip O -1
Qrn Oxn 0 [=[S2 S» 0 (2D stiffness matrix) (125)
0 0 Q66 0 0 S66

The 2D stress—strain matrix relation is written using 2D stiffness matrix as

o =0Qe (stress—strain matrix relation) (126)

In longhand, Eq. (126) is written as

o1 Qu Qi 0 €1
o2 p=1Qn Q»n O ) (127)
012 0 0 Q66 2512

The 2D compliance matrix of Eq. (120) is directly related to the complete compliance matrix
given by Eq. (66) and can be obtained from the latter by deletion of appropriate rows and
columns. It can be said that the 2D compliance matrix of Eq. (120) is a submatrix of the
complete compliance matrix of Eq. (66). In contrast, the 2D stiffness matrix of Eq. (125) is
not a submatrix of the complete stiffness matrix of Eq. (70) and bears no direct relationship
to it. For this reason, the 2D stiffness matrix is denoted differently than the complete stiff-
ness matrix, i.e., by Q instead of C. A closed-form expression of the 2D stiffness matrix can
also be obtained explicitly [1], but the use of such closed-form expression is not recom-
mended because manual coding could introduce errors which are hard to trace. For numer-
ical work, Eq. (124), which uses the inversion of the compliance matrix, is always preferred.

2.4.3 Rotated 2D Stiffness Matrix

A laminated composite is made up of several layers of unidirectional plies (laminae) of
different orientation. In order to be able to assemble the overall properties of the laminate
from the properties of the individual laminae, we need to express all properties in the
same coordinate system. Assume (Figure 7) that the local axes x|x} are rotated through the
angle 6 with respect to the global axes x1x; (The rotation takes place about the out-of-
plane axis x3, hence the local axis xj coincides with the global axis x3.)

FIGURE 7 Definition of axes rotation by angle 6; x1x, are the global axes; x{x} are the local axes aligned with
the fiber direction (note that x} is the L direction; x; is the T direction).
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Recall the matrix notations of Eq. (123), i.e.,

g1 €1
o=< oo eE=<¢ & (2D stress and strain column matrices) (128)
o1 2e1p

The effect of the rotation 6 on the stresses and strains is given by the “Mohr circle”
rotation relations ([11], pp. 44, 71):

oy cos?6 sin®6 2sinfcosd on rotation of

Oy ¢ = sin?¢ cos?0 —2sinfcosf | § 022 global stresses (129
o2 —sinfcosf  sinfcosh cos20 —sin?0 | o1z into local stresses

eh cos26 sin?6 2sinfcosf e1 rotation of

Ep = sin®6 cos’)  —2sinfcosf | 4 €2 global strains (130)
€ —sinfcosf sinfcosf cos?d —sin?0 | \en2 into local strains

We wish to write Eqgs. (129), (130) compactly using the matrix notation of Eq. (128)
together with a #-dependent rotation matrix T defined as

cos?f sin%6 2sinfcosf
T= sin®6 cos?6 —2sinfcosd (rotation matrix) (131)

—sinfcos sinfcosf cos? — sin’6

Using Eqs. (128), (131), write the stress rotation Eq. (129) as
o' =To (132)
However, the strain rotation Eq. (130) cannot be as immediately in matrix notations as the

stress rotation because the shear strain €1, of Eq. (130) appears with a factor of 2 in
Eq. (128). To resolve this issue, introduce the R matrix [12] defined as

1 0 0] 1 0 O
R=|0 1 0 R'=101 0 (133)
0 0 2] 0 0 1/2
Using Eq. (133), write

€l [1 0 0] (<}
gy p=10 1 0] €5y (134)
2¢el, 10 0 2] (¢
€1 1 0 0 €11
enp=10 1 0 £ (135)
b |10 0 1/2 21
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Substitution of Eq. (130) into Eq. (134) gives

€l 1 0 07 (e
g p=10 1 0]eny
2¢el, LO 0 2] e,
_ (136)
1 0 07 cos?0 sin’f 2sinfcosf €11
=01 0 sin%0 cos?f —2sinfcosf | { €22
L0 0 21| —sinfcosf sinfcost cos?f —sin®6 | Lep
Use of Eq. (135) into Eq. (136) yields
el 1 0 0] cos?0 sin?¢ 2sinfcosf 1.0 0 11
€y p=10 1 0 sin’6 cos?d —2sinfcosfd 01 0 ) (137)
2¢l, 0 0 2] [ —sinfcosh sinfcoshd cos*d—sin?0] [0 0 1/2] (2er;
Utilizing the matrix notations of Eqs. (128), (131), (133), write Eq. (137) compactly as
¢ =RTR e (138)

Upon evaluation (see Section 4.5), one finds that RTR! is actually T, the transpose of
the inverse of T, i.e.,

RTR™' =T~ (139)
Substitution of Eq. (139) into Eq. (138) yields
g=Te (140)

Our aim is to express the 2D stiffness matrix in global coordinates Q as function of the
2D stiffness matrix in local coordinates Q' and the rotation matrix T that depends on the
rotation angle §. We know Q' from Eqs. (124), (125), which are related to the local proper-
ties through Eq. (121). Recall Eq. (126) and write the stress—strain relation in local coordi-
nates, i.e.,

o' =Q’e’ (stress — strain matrix relation in local coordinates) (141)

where

1/EL _VLT/EL 0 -

Q=S8"'"=|-ur JEL 1/Er 0 (local stiffness matrix) (142)
0 0 1/Gir
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Use Egs. (132), (140) into Eq. (141) to write
To=Q T e (143)
Premultiplication of Eq. (143) by T™! yields
o=T!Q T (144)
Recall Eq. (126) which gives the stress—strain relation in global coordinates, i.e.,
o =Q¢e (stress—strain matrix relation in global coordinates) (145)

Comparison of Eqs. (144), (145) yields the rotated stiffness matrix as

Q=T'Q T (146)
Longhand expression of the rotated stiffness matrix is
Qu Qi Qe
Q={Qun Q»n Qx (147)
Qe Q26 Qes

The longhand expressions of the stress—strain matrix relation (145) is

o1 Qu Qu Q] (en
op =101 Qn Ox €2 (148)
o12 Qe Q26 Qosd \2e12

If the global coordinates are denoted Oxyz instead of Oxjx,x3, then Eq. (148) is written as
([4], p. 191)

Oxx Qll QlZ Qlé Exx
o= Q2 Qn Qx| (149)
Oxy Qe Qs Qssd \2exy

2.4.4 Rotated 2D Compliance Matrix

A similar argument can be employed to find the rotated 2D compliance matrix S. Recall
the strain—stress matrix relation Eq. (122) and write it in local coordinates, i.e.,

e =8 ¢’ (strain — stress matrix relation in local coordinates) (150)
where
1/EL —vrr/EL 0
S'=| —vir/EL 1/Er 0 (local compliance matrix) (151)
0 0 1/Grr
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Use Egs. (132), (140) to express o’, €’ of Eq. (150) in terms of o, € and get

T 'e=S'To (152)
Multiply Eq. (152) by T' and obtain

e=TS To (153)
Recall Eq. (122) and write the strain—stress relation in global coordinates, i.e.,

e=S o (strain—stress matrix relation in global coordinates) (154)

Comparison of Egs. (153), (154) yields the rotated compliance matrix S, i.e.,
S=TS'T (155)

Note: Closed-form expressions for the elements of the rotated stiffness and compliance
matrices, Q and S, are possible and can be found in some textbooks. However, these
closed-form expressions contain quite elaborate formulae; if manual coding of these for-
mulae is attempted, then hard-to-trace errors may be inadvertently introduced. Hence, the
use of such closed-form complicated formulae is not recommended.

2.4.5 Proof of RTR '=T"¢

In Section 4.3, Eq. (139), we cited without proof the formula RTR ' =T*. Here we are
going to prove it. It is convenient to define the following shorthand notations:

s=sinf c=cosld s>+ c*=sin%0+ cos?d=1 (156)

Use Eq. (156) to write the rotation matrix T of Eq. (131) as

> 2 2sc
T=| s2 2 —2sc| (2D rotation matrix in shorthand notations) (157)
—sc sc c?>—s?

Calculate the inverse matrix T/, i.e.,

& 2 —2sc
T!=|s 2 2sc (inverse of the rotation matrix) (158)
sc —sc ?—¢
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and verify that TI!T=11ie.,

rc? s> —2sc ¢ 2 2sc
T!T=|s2 2 2sc s> ¢ —2sc
Lsc —sc >—s*] L —sc sc ?—¢
Fet +s* 4+ 252c2 252 + s2c2 — 252c%  etc. (c? +52)2 26257 — 26°C7  etc.
= o= .| 159
1 0 0
=10 1 0] =I
L0 0 1
Calculate T}, the transpose of the inverse of the T matrix, i.e,,
2 & sc
T!=| & c2 —sc (transposed of the inverse of T) (160)
—2sc 2sc c*—¢?
Calculate RTR7}, i.e.,
1 0 07 & s 2 10 0
RTR"'=|0 1 0| & & —2s¢||0 1 0
00 2 - 2 — g2 0 0 1/2
:l 0 O: : czsc zg C ssc / & ¢ sc (16D
=0 10 & 2 —sc =1 & & -—s
L0 0 2] [ —sc sc (1/2)(c*—5?) —2sc 2sc ¢*—¢?
Comparison of Egs. (160) and (161) reveals that
RTR '=T"" (QED) (162)

2.5 FULLY 3D ELASTIC PROPERTIES OF A COMPOSITE LAYER

This section presents the 3D stiffness matrix of a composite layer. A procedure for evaluat-
ing the stiffness matrix from the orthotropic elastic properties will be given. The rotated
3D stiffness matrix will be introduced. The effect of the fiber orientation angle on the 3D
stiffness matrix of a unidirectional composite layer will be discussed.
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2.5.1 Orthotropic Stiffness Matrix

Consider a lamina of orthotropic composite material such as a unidirectional ply in laminated
composite layup. Assume a local coordinate system with the x} axis perpendicular to the lam-
ina; the Ox}x} plane is the plane of the lamina with the x| axis along the fibers and the x} axis
perpendicular to the fibers. The coordinates x}, x5, x5 are the material coordinates (a.k.a. local
coordinates). The stiffness matrix in material coordinates C’ is given by Eq. (70), i.e.,

[Chy Cp C3 0 0 0]
2 Cn G 0 0 0
Ciz Cy Ci 0 0 0

C= (163)
0O 0 0 C, 0 0

0 0 0 0 C4 0
(0 0 0 0 0 C)

As indicated by Eq. (70), the elements of C' are obtained through the inversion of the
material compliance matrix S’, which, in turn, can be expressed in terms of the engineer-
ing constants of the lamina E;, Et, Grr,vitT, Gos, V23 through Egs. (65) or (66) and (67), i.e.,

Su Si2 Si3 0 0 0
Sz Sy Syp3 0 0 0

5 S13 Sp3 S35 O 0 0 compliance matrix (164)
0 0 Sy O 0 in material coordinates
0 0 0 Ss5 O
L 0 0 0 0  Ses |
i 1/EL _VLT/EL _VLT/EL 0 0 0 i .
compliance
_VLT/EL 1/ET _V23/ET 0 0 0 .
JE JE 1/E 0 0 0 matrix
—v —v
S LT/EL 23/ ET T in (165)
0 0 0 1/Gos 0 0 )
material
0 0 0 0 1/Grr 0
coordinates
i 0 0 0 0 0 1/Grr |

Note that only five independent elastic constants are needed since v»3 and Gz are related
through the formula Gu3 = E1/2(1 + v53). Hence, recall Eq. (37) and write the stress—strain
relation in local coordinates as

o' =C' &' (stress—strain relation in local coordinates) (166)
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2.5.2 Rotated Stiffness Matrix

When included in a composite laminate, the unidirectional lamina can be oriented at vari-
ous angles. The stiffness matrix for a unidirectional layer matrix with arbitrary orientation
can be obtained through the application of a rotation about the x} axis. Recall from
Section 4.3 the local coordinate system with the x5 axis perpendicular to the lamina, the x}
axis along the fibers, and the x, axis contained in the plane of the lamina in a direction
perpendicular to the fibers. Assume a global coordinate system Ox;x,x3 which is obtained
from the Ox|x,x}; system through a rotation about the x} axis. This means that the axes x3
and x} coincide whereas the axes x; and x} as well as x; and x, make an angle 6 to each
other. The stiffness matrix in the local system C’ is given by Eq. (163). The stiffness matrix
in the global system C (i.e., the rotated stiffness matrix) is obtained from the local stiffness
matrix C’ through the application of rotation formulae as described next. The analysis of
this 3D situation is sketched in Ref. [3], pp. 473—477 but not pursued; instead, the reader
was sent to Ref. [13] for details. Reference [14] gives without proof analytical expressions
of the elements of the 3D compliance matrix. For the sake of clarity, we will pursue in this
section a complete 3D derivation and provide guidance for practical calculations. Recall
Egs. (33), (34) giving the 3D stress and strain column matrices, i.e.,

on €11
02 €2
033 €33
o= €= (167)
023 2ep3
031 2e31
o1 2e1p

Recall Eq. (37) to write the stress—strain relation in global coordinates as

o= Ce (stress—strain relation in global coordinates) (168)

To develop a relation between the global stiffness matrix and the local stiffness matrix, we
need to find a rotation matrix T that permits the expression of the stress and strain matri-
ces in local coordinates (material coordinates) o’,€’ in terms of the stress and strain matri-
ces in global coordinates o,e. Recall Eqgs. (129), (130) for the rotation of 2D stresses and
strains, 011,022,012 and €11,€22,€12, i.e.,

o cos?6 sin®6 2sinfcosf on
Thy ¢ = sin%0 cos?6 —2sinfcosf lops) (rotation of 2D stresses) (169)
oy —sinfcosf sinfcosd cos?d —sin’d | Lo
e cos?0 sin?0 2sinfcosf 1
€y p = sin?0 cos?0 —2sinfcosf | < €2 p (rotation of 2D strains)  (170)
€1n —sinfcosf sinfcosh cos?d —sin?0 | e
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We need to find similar relations for the other three stresses and strains, 033,023,031 and
€33, €23, €31. The case of out-of-plane stress and strain o33, €33 is straightforward because the
axis x3 and x5 coincide and the transformation of stresses and strains is an identity, i.e.,

0%, =033 (rotation of out-of-plane stress) (171)

€4 =¢e33 (rotation of out-of-plane strain) (172)

X

AB=1
OA =sin 6
OB =cos 6

FIGURE 8 Rotated wedge element for the analysis of shear stresses a23, 731.

The case of the shear stresses and strains oy3,031 and e23,¢31 is resolved by considering
a small wedge element as shown in Figure 8. Vertical free-body analysis of the wedge
element yields
015 = 013€050 + g235ind

0y = 013008(0 + 5 ) + oyasin(0 + 3 (173)
Using the trigonometric relations sin(f + %) = cosf), cos(f +7) = —sind, Eq. (173) becomes

07, = 013€080 + 0p38inf

1 _ (174)
05y = —o13sind + 030080

Equation (174) can be rearranged in the order of Eq. (167) and then expressed in matrix
form as
o cosf —sinf | o rotation of
BL_ " 2 (175)
o sinf  cos6 o013 023, 013 Stresses
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The rotation relation of Eq. (175) also applies to strains since the strain tensor and stress
tensor behave similarly, i.e.,

€53 cosf)  —sinf | [ex3 rotation of
= . (176)
€13 sinf  cosf 13 €23, €13 strains
Combining Egs. (169), (171), (175) into a single matrix expression yields the 3D stress
rotation relation

ol [ cos?d sinf 0 0 0 2sinfcosd 1 | M
Ohy sin%6 cos’¢ 0 0 0 —2sinfcosd | | 722
033 0 0 1 0 0 0 033 3D stress
Ohs - 0 0 0 cosf —sind 0 03 < rotation )
o3 0 0 0 sind cosd 0 o1
o | —sinflcosf sinfcosd 0 0 0 cos26 — sin’0 | o1

(177)

The expression in Eq. (177) agrees with Ref. [4], p. 477, Eq. (A.54) citing Ref. [13], p. 22,
Eq. (102). Similarly, combining Eqs. (170), (172), (176) into a single matrix expression yields
the 3D strain rotation relation

el cos?6 sinfd 0 0 0 2sinfcosf €11
€ sin%6 cos’d 0 0 0 —2sinfcosf | | €2 .
€33 _ 0 0 1 0 0 0 €33 3D strain
€53 0 0 0 cosf —sind 0 €23 rotation
€13 0 0 0 sind cosf 0 €13
€12 —sinfcosf sinfcosd 0 O 0 cos20 —sin®0 | |12
(178)
In view of Egs. (177), (178), define the #-dependent 3D rotation matrix T as
[ cos?0 sinf¢ 0 0 0 2sinfcosf
sin%0 cos’d 0 0 0 —2sinfcosf 3D
T= 0 0 1o 0 0 rotation (179)
0 0 0 cosf —sind 0 )
0 0 0 sinf  cosf 0 matrix
| —sinfcosf sinfcosd 0 0 0 cos?6 — sin0 |

The stress rotation Eq. (177) can be written directly in matrix notations using Eqs. (167),
(179), i.e., as

o =To (180)
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The strain rotation Eq. (178) cannot be written directly in matrix notations because the
shear strains €33, €31,€12 appear with a factor of 2 in Eq. (167) but without such factor in
Eq. (178). To resolve this issue, define the R matrix in 3D, i.e.,

Using Eq. (181), write

€11
€22
€33
€23
€31

€12

tn
€2

€33
7
2ep,

/
2¢l,

Substitution of Eq. (178) into Eq. (182) gives

M1

€5 1

/
&n

/
2e9,

/
2e3

2¢eq,
!

/
€33 1

0

11
€5
£33
€23
€13

/
€12

sin?f
cos?6
0
0
0

| —sinfcosf) sinfcosd

1
1
1 1
1/2
1/2
1/2
1
€
€33
2 €23
2 €13
2] \&p
1 (en
€2
€33
2623
1 /2 2831
1/2 2e12
0 0 0 2sinfcosf
0 0 0 —2sinfcosf
1 0 0 0
0 cosf —sind 0
0 sinfd cosh 0
0 0 0 cos20 — sin%6
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Use of Eq. (183) into Eq. (184) yields

€l 1 ]
€hy 1
& | 1
2¢eh, 2
2ely 2
2¢hy L 2
[ cos20 sind 0 0 0 2sinfcosf
sin?6 cos’0 0 0 0 —2sinfcosf
0 0 1 0 0 0
X (185)
0 0 0 cosf —sind 0
0 0 0 sinf cosf 0
| —sinfcosf sinfcosfd O 0 0 cos26 — sin?0 |
1 1 (en
1 )
1
% €33
1/2 2623
1/2 2e31
_ 1/2] 2=
Use of Egs. (179), (181) into Eq. (185) yields a compact matrix expression, i.e.,
¢ =RTR e (186)

Upon evaluation, one finds that RTR™! is actually T/, the transpose of the inverse of T
(see Section 5.6), i.e.,

RTR'=T"' (187)
Substitution of Eq. (187) into Eq. (186) yields
g=T"e (188)
Recall Eq. (166) which gives the stress—strain relations in local coordinates, i.e.,
o' =C'¢' (stress—strain matrix relation in local coordinates) (189)
Use Egs. (180), (186) to express o’, €’ of Eq. (189) in terms of o, € and get
To=CT e (190)
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Premultiplication of Eq. (190) by T! yields

o=T 'C'T'e (191)
Recall Eq. (168) expressing the stress—strain relation in global coordinates, i.e.,
o =Ce (stress—strain matrix relation in global coordinates) (192)
Comparison of Eqs. (191), (192) yields the rotated stiffness matrix as
c=T'CT" (193)

After performing the matrix operations, Eq. (193) yields the rotated stiffness matrix C in

the form

where Ciq = Ci5=Coy = Cp5 = C34 = C35 = C46 = C56 = 0.

Eq. (38) is written as

The stress—strain

[C1 C2 Ci3 0 0 Cy]
Cpp Cpn Csz 0 0 Gy
_ |Gz Cs Gz 0 0 G (194)
0 0 0 Cy Cgi O
0 0 0 Ci5 GCs5 O
[Cie Cs G 0 0 Cegl

relation of

o1 [Ci1 C2 Cz 0 0 Ci] (en

22 Co Cp Cs 0 0 Cxp||ex

033 Czs Cpn G 0 0 G ) e (195)
023 0 0 0 C44 C45 0 2523

031 0 0 0 Cs5 GCs5 O 2¢e31

o12 Cis C C36 O 0 Gl \2e12

A stiffness matrix of the form of Eq. (194) is also known as monoclinic stiffness matrix
because it can be shown that the general stiffness matrix of Eq. (36) reduces to the form of
Eq. (194) in the case of a material that shown monoclinic symmetry. In our case, the
rotated composite lamina shows monoclinic symmetry with the symmetry plane being the
Ox1x; plane.

2.5.3 Equations of Motion for a Monoclinic Composite Layer

The monoclinic stiffness matrix of Eq. (194) has much fewer terms than the generally ani-
sotropic stiffness matrix presented earlier in Eq. (36). As a consequence, the expanded
form of the equation of motion in terms of displacements becomes more manageable.
Recall that in the general case, the expanded form of the equation of motion in terms of
displacements had 18 terms per degree of freedom (dof), as illustrated for the ii;-dof by
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Eq. (63). However, in the case of monoclinic stiffness matrix, Ci4 =Cq5=Cos=Cps5 =
C34 = C35 = C46 = C56 =0, and Eq. (63) simplifies, i.e.,
Ciruan + Ceeli1 22 + Csstg 33 + 2Ci6t1,12 +
Creuiz 11 + Costtn 2 + Cysun 33 + (Crz + Cep)tio 12 (196)
+ (Ca6 + Cas)uzpz + (Ci3 + Css)uz 31 = pily
Similarly, the i, and ii3 equations become
Ciet1,11 + Cogtt120 + Cysttr 33 + (Cro + Cep)ttn,12 +
Cestiz 11 + Coatta 2o + Caatin 33 + 2Coslin 12 (197)
+ (Co3 + Caa)uz 3 + (Cz6 + Cas)uz 31 = piin
(Cs6 + Cas)u123 + (C13 + Css)ut1,31
+ (Cos + Cas)utz 03 + (C6 + Cus)uiz 31 (198)
+ Cssuz 11 + Cagtizpo + Castiz a3 + 2Cy51312 = piis

2.5.4 Rotated Compliance Matrix

A similar argument can be employed to find the rotated compliance matrix S. Recall the
strain—stress matrix relation Eq. (39) and write it in local coordinates, i.e.,

¢ =S o' (strain—stress matrix relation in local coordinates) (199)
Use Egs. (180), (186) to express o/, €’ of Eq. (199) in terms of o, € and get
T 'e=S'To (200)
Multiply Eq. (200) by T' and obtain
e=T'S' To (201)
Use Eq. (39) to write the strain—stress relation in global coordinates, i.e.,

e =S o (strain — stress matrix relation in global coordinates) (202)

Comparison of Egs. (201), (202) yields the rotated compliance matrix S, i.e.,
S=TS'T (203)

After performing the matrix operations, Eq. (203) yields the rotated compliance matrix S
in the form

[S11 S12 Sz 0 0 546
S S» S3 0 0 Sy
S S S 0 0 S

g_ |51 5» S 36 (204)

0 0 0 Sy Sis O

0 0 0 Sgi Ss5 O

[S16 Sz Sz3s O 0 Se
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The strain—stress relation of Eq. (43) is written as

€11 [S11 S12 Si3 0 0 S| (on
€x Si2 S» S 0 0 Sy | |ox
e | _[S13 53 S 0 0 Ss| foss (205)
2e93 0 0 0 Sy S5 O 023
2e31 0 0 0 Sgi Ss5 O 031
2¢e12 [S16 S26 Sze 0 0 Seel Loz

The compliance matrix S of Eq. (204) also displays monoclinic symmetry.

2.5.5 Note on the Use of Closed-Form Expression in the C and S matrices

Note: Closed-form expressions for the elements of the rotated stiffness and compliance
matrices, C and S, are possible and can be found in some textbooks. However, these
closed-form expressions contain quite elaborate formulae; if manual coding of these for-
mulae is attempted, then hard-to-trace errors may be inadvertently introduced. Hence, the
use of such closed-form complicated formulae is not recommended.

2.5.6 Proof of RTR '=T"!in 3D

In Section 5.2, Eq. (187), we cited without proof the formula RTR ' =T for the 3D case.
Here we will perform this proof building onto the proof given in Section 4.5 for the 2D
case. As in Section 4.5, we will use the convenient shorthand notations s and ¢, i.e.,

s=sinfd c=cosf s>+ c*=sin’0+ cos’0=1 (206)

Use Eq. (206) to write the 3D rotation matrix Eq. (179) as

2sc

—2sc

T= (3D rotation matrix) (207)

| —sc sc c

Recall the 2D rotation matrix of Eq. (156) and use the subscript 2D to differentiate it from
the 3D rotation matrix T of Eq. (207), i.e,,

2 2sc

—2sc (2D rotation matrix) (208)
2 _ 2

C Ej

2 2

Top=| s c

—sC SC C"—S
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Recall Egs. (158), (160) which give the inverse and its transpose for the 2D rotation
matrix, i.e.,

2 2 2 2

c S —2sc c S sc
Tp=|s ¢ 2sc Th=| s & —sc (209)
sc —sc (?—s? —2s¢ 2s¢c ¢ —¢?

Recall Eq. (176) which gives the rotation relations for shear stresses 0,3, 031 and denote by
Tp3-31 the corresponding 2 X 2 rotation matrix, i.e.,

c
Ty-31 =
s ¢

s
] (rotation matrix for o3, 031 shear stresses) (210)

The inverse of Eq. (210) and its transpose are

c s -5
=To-31 (211)

-Ss C c

T, . = T =
23-31 23-31 s

In view of the above, it is apparent that the 3D rotation matrix T of Eq. (207) is made up
of three independent parts: the 2D part given by Eq. (208); the 23—31 part given by
Eq. (210); and the 33 part, which is an identity. Since these three parts are decoupled and
independent, their effect on the calculation of RTR ™! can be treated independently. For
the 2D part, we have already proven in Section 4.5, Eq. (162), that

RopTopRop = Ty (212)

The 33 part of T needs no processing since it is an identity. It remains to prove the 2331
part of T; recall the 23—31 part of the R matrix as

e[z 0] o 12 0 o1
B0 2 B o 12

Hence, the RTR ™! expression for the 23—31 part of T is calculated as

Row e Toe R = 2 0| |c =s||1/2 0| |2 —=2s|(1/2 0 ||c —s T
BRI g ol s e || 0 1/2] |25 2 || 0 1/2]]s ¢ z
(214)
Substitution of Eq. (211) into Eq. (214) yields
Ros-31Tos-31Ry 5 = Tt 5, (215)
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In view of Eqgs. (212), (215) and considering that the 33 part is an identity, it is apparent
that the complete 3D rotation matrix T also satisfies the relation.

RTR '=T"* QED (216)

2.6 PROBLEMS AND EXERCISES

Problems and exercises and worked out examples are given in the Instructor Manual
posted on the publisher’s web site.
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3.1 INTRODUCTION

This chapter deals with the study of composite vibration, which may be used for structural
health monitoring (SHM) applications. We will analyze the vibration of thin laminated
composite plates (Figure 1). Though each lamina in the laminate may have different orien-
tations and hence different stiffness matrices, their mass density is assumed more or less
the same; hence the mid surface of the plate is considered to be placed centroidally. The
top and bottom faces of the plate are free, hence the surface tractions are zero. This means
that the z-direction stress and the surface shear stresses are zero at the plate surface, i.e.,
022(£h/2) =0, 0.x(*h/2) =0, 0,.(*h/2) = 0.

Because the plate is thin, the z-direction stress o, is assumed zero everywhere throughout
the thickness, i.e., 0., = 0. Plane-stress conditions apply in each ply of the composite
layup. In our analysis which follow Refs. [2—4], we are interested in the strains ey, Eyysr
Exys Exz, €yz and corresponding stresses oy, Ty, Oxy, Oxz, Oy

3.1.1 Displacements for Axial—Flexural Vibration of Composite Plates

Axial—flexural vibration occurs when the in-plane and out-of-plane motions occur simul-
taneously. Assume the x,y,z displacements of the plate mid surface are u, vy, wy,
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General laminate M N,
structure, with loads

x and y are laminate, or
] geometric directions;
Fibers 1'and 2' are principal
directions of ply fibers

o, =0
Stress field in geometric x and y directions for overall laminate

Fiber direction

Stress field in principal directions
1and 2 for each layer

L 3
o1 ayer
FIGURE 1 Stresses and loads definitions in a laminated composite plate [1].

respectively. Under the Love—Kirchhoff plate bending theory, the displacements u,v,w of
any point at location z are given by

u=uy— %
0x

U:UO—Z% (1)
oy

w = Wy

3.1.2 Stress Resultants

Integration of stresses across the thickness gives the force stress resultants
Ny, Ny, Ny, Nxz, Ny, (vertical forces per unit length, a.k.a. line forces) and moment stress resul-
tants M,, M, M, (moments per unit length, a.k.a. line moments) as shown in Figure 2, i.e.,

h/2 h/2
h/2 Ny = oxydz M, = J Oxx2dz
N, = J Oxxldz ,;/’12/2 ;//12/2
]1*/’12/2 N, = h/zcrxzdz M, = J h/Zoyyzdz )
Ny = J oyydz h/2 12
~h/2 Ny, = oydz My, = J owyzdz
~h/2 ~h/2
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N +%dyT N
y Yooy N, +—2%dy
— 3% Oy
ny+?'wdx
-— || —»N;ﬁ—*dx
N, dx :
N, —————— —_— x
I, ) My L M
o X .

y Z lW(x,ynt)
(a) (b)
N,, u
yx
N 2
o . M My L/»W Mx+ﬂdx
M. X dx ox
y > dy <«
z M +%dx
[ <d— v ox
/ My+al_)\4/ dy NL+ xz dx
P Ay
M, + My dy M
: ay aNxz
N, =4
yz ay

FIGURE 2 Infinitesimal plate element in Cartesian coordinates for the analysis of axial—flexural vibration of

rectangular plates: (a) plate coordinates; (b) definition of moments and stresses; (c) stress resultants on the infini-
tesimal element.

3.2 EQUATIONS OF MOTION IN TERMS OF STRESS RESULTANTS

3.2.1 Derivation of Equations of Motion from Free Body Diagram

Free body analysis of the infinitesimal plate element dx dy of Figure 2 yields

ON,
In-plane x-direction forces: aONxx + 5 yyx = miiy 3)
ON, ON.
In-plane y-direction forces: Ey + a;y = miy @
ON.
Out-of-plane forces: % + a_yyz = mwy )
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oM oM
M, moments: T P —N,=0
Ox oy
oM oM
M, moments: Ey + ny ~N,.=0

where m is the mass per unit area of the plate given by

h/2
m= J pdz (mass per unit area of the plate)
~h/2

71

(6)

7)

®)

Rotary inertia effects are ignored and hence no inertia terms appear in the moment relations
Egs. (6), (7); the M, moment equation about the out-of-plane axis z is not needed. Equations
(6), (7) give the shear forces N.,, Ny, in terms of the bending moments M,, My, M, M, i.e.,

OMyx
N, = oM, 4 M,
Ox oy
0 0
N, = oMy + My
oy 0x

Upon differentiation, Eqgs. (9), (10) yield

ON,,  O*M, N & Myx

ox ox? oxoy

ON,.  *M, N My
dy o2 owdy
Substitution of Egs. (11), (12) into Eq. (5) yields

82Mxy + aZMy = miy

2
O M, +2
ox? Oxoy oy?

3.2.2 Derivation of Axial—Flexural Equations from Stress
Equations of Motion

Recall the stress equations of motion with the 0., =0 assumption, i.e.,

00 yx n ao'xy n 00y,

Ox oy z

Ooyy N Ooyy N 0oy,
Ox oy 0z

00 5 4 Oozy _ i

Ox oy
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3.2.2.1 Integration of u-Equation of Motion
Integration of Eq. (14) with respect to z gives

h/2 o h/2
J (ao” + Dy aU’“)dz = J piidz 17)
~h/2 ox ay 0z ~h/2

Expansion of the integral in Eq. (17) gives

5 (2 5 (2 h2 g he o
—J Oz + —J Oxydz + J/’/U%Z J plidz (18)
ox J Y )-np 72 0z “n2

The last integral in Eq. (18) is discarded because it can be evaluated exactly and its value
is zero due to free surface conditions at the upper and lower faces of the plate, i.e.,
hy2

= axz(%) N %) =0—-0=0 (free surface conditions) (19)
~h/2

——dz=0y,

J-h/Z aaxz
~h/2 0z

Substitution of Eq. (19) into Eq. (18) and use of Egs. (1), (2), (8) yields

ON, . ONy, J"’/ 2 < 6"&)0> i J'h/ 2 oty (M2 i
+ = plilg—z——|dz=1i pdz——J pzdz = mii (20)
ox Y ~n/2 ’ ox ’ —n/2 ox )47 ‘

The second integral in Eq. (20) vanishes because it is the first moment of inertia about a
centroidal axis. Hence, Eq. (20) becomes
ONy . ON,y

ox oy
Note that Eq. (21) is identical with Eq. (3).

3.2.2.2 Integration of v-Equation of Motion
Integration of Eq. (15) with respect to z gives

J’” ? <50xy N 50’yz>dz - Jh/z pidz 2)
~h/2 ox 6]/ 0z ~h/2

Expansion of the integral in Eq. (22) gives

o (W2 o (b2 2 g 2o
— [ Oz + — [ oydz + J Z Yy = [ podz (23)
ox ) ppp Y )np _Kf2 0z J w2

The last integral in Eq. (23) is discarded because it can be evaluated exactly and its value
is zero due to free surface conditions at the upper and lower faces of the plate, i.e.,
hy2

= ayz(’%) —oy(— %) =0—0=0 (free surface conditions) (24)
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Substitution of Eq. (24) into Eq. (23) and use of Eqs. (1), (2), (8) yields

ONy,  ON, ("2 /. i (" bo [M* :
Y+ J p(vo—z%>dz=voj pdz—%W=mvo (25)
ox 6]/ .y oy ~h/2 oy Lp

The second integral in Eq. (25) vanishes because it is the first moment of inertia about a
centroidal axis. Hence, Eq. (20) becomes

ONy,  ONy ..
+ —==ph 2
3 3y phog (26)

Note that Eq. (26) is identical with Eq. (4).

3.2.2.3 Integration of w-Equation of Motion
Integration of Eq. (16) with respect to z gives

h/2 o h/2
J <a""z “ﬂ>dz = J pivdz 27)
“hj2 \ OX oy k)2
Expansion of the integral in Eq. (27) and use of Egs. (2), (8) yield
ONy, . ONy,
+ = 28
Ox oy (28)
3.2.2.3.1 Calculation of Out-of-Plane Shear Resultant N,
To get N,,, multiply Eq. (14) by z and integrate with respect to z to get
h/2 h2 o g h/2 h/2
J 00 zdz + J P iy + J 00z zdz = J pii zdz (29)
—nj2 Ox “n/2 —njp 0z “n)2
or
P P P h/2
—J Oyezdz + —J Oxy2dz + J iz = J pii zdz (30)
ox J 2 oY )2 —nj2 0z —n/2

Use of Egs. (1), (2) into Eq. (30) gives

oM h/2 h/2
ag\ix + ayxy + J ( agxz> iy = 1/[0 % Bm*i\pzzclz — (31)
~h/2

The first integral in the right-hand side of Eq. (31) vanishes because it is the first moment

of inertia about a centroidal axis. The second integral is the second moment of inertia due

to x-motion, I, and its multiplication by 0i/0x represents rotary inertia effects, which are

ignored under the Love—Kirchhoff plate bending theory. Also note the expression
0(zoy) 0Oz 00y,

- A xz+
5z &g,

(32)
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Upon rearrangement, Eq. (32) yields the term under the integral sign in the left-hand side
of Eq. (31), i.e.,

Zaaxz _ 0(z0xz) _

0z 0z 7z (53)
Substitution of Eq. (33) into Eq. (31) yields
oM h/2 .
My | My J Nz0x) _ 0y |dz=0 (34)
ox oy ~n/2 0z

The first term of the integral is zero due to free surface conditions at the upper and lower
faces of the plate, i.e.,

Jh/Z 0(z0yz)
~h/2 0z

/2

dz=z0y|_, = 0 (free surface conditions) (35)

The second term of the integral yields Ny, in virtue of Eq. (2), i.e,,

h/2

Ny, = J szdz (36)
~h/2

Substitution of Egs. (35), (36) into Eq. (34) gives

M, | OMy

— Ny, = 7
e 3 =0 (37)
Upon solution, Eq. (37) yields
oM,
N,, = My , My (38)
Ox oy
3.2.2.3.2 Calculation of Out-of-Plane Shear Resultant N,
In a similar way, multiply Eq. (15) by z and integrate with respect to zto get
h/2 a h/2 Kl h/2 00y, h/2
J T 4z + J % iz + J 9% ity = J 5 padz (39)
—n/2 ~nj2 Oy —nj2 0z —n2
or
o h/2 ! h/2 h/2 y h/2
— owzdz + —J oyzdz + J % 2dz = J 0zdz (40)
ox Jh/z Y oyl P —nj2 02 )2 P

Use Egs. (1), (2) into Eq. (40) to get

oM., oM "2 oo,
LA S A J 0 gy = szdz - %{\N pz?dz =0 41
Ox oy n2 02 Zhj2
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The first integral in the right-hand side of Eq. (41) vanishes because it is the first moment
of inertia about a centroidal axis. The second integral is the second moment of inertia due
to y-motion, I, and its multiplication by 0w, /0y represents rotary inertia effects, which are
ignored under the Love—Kirchhoff plate bending theory. Also note the expression

o(zoy,) Oz 00y,

o 42)
0z oz ¥* 0,

Upon rearrangement, Eq. (42) yields the term under the integral sign in the left-hand side
of Eq. (41), i.e.,

0oy,  O(zoy,
. Oyz _ (Zay)_

yz 4
oz oz % “3)
Substitution of Eq. (43) into Eq. (41) yields
12
My , M, J o(zoy:) o) dz=0 (44)
0x oy “n2 0z

The first term of the integral in Eq. (44) is zero due to free surface conditions at the upper
and lower faces of the plate, i.e.,

Jh/z 8(ZUyz) h/2

dz=zoy, =0 (free surfaces conditions) (45)
—h /2 62 —h /2

The second term of the integral in Eq. (44) gives Ny, in virtue of Eq. (2), i.e.,

/2
0z = Ny (46)
—h/2

Substitution of Eqs. (45), (46) into Eq. (44) gives
OM,y N oM,

—— — N, =0 47
ox dy Y @2
Upon solution, Eq. (47) yields
oM,, = oM,
= 4+ 7
Ne=Zr % (48)

3.2.2.3.3 The w-Equation of Motion in Terms of Moment Stress Resultants
Substitution of Egs. (38), (48) into the left-hand side of Eq. (28) gives

2 2
oN: | 0Ny _ @ <6Mx . 8Mxy> L0 <6Mxy s 6My> M, My, | M,

= +2——2 +
ox oy ox oy ox? oxoy oy?

(49)

ox y  ox

oy
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Substitution of Eq. (49) into Eq. (28) yields the equation of motion in terms of moments, i.e.,

*M *M,,  FM
X 40 LU v _ -
a2 ey o ¢ 0

Note that Eq. (50) is identical with Eq. (13).

3.2.3 Summary of Equations of Motion in Terms of Stress Resultants

Equations (3), (4), (13) are the equations of motion in terms of stress resultants, i.e.,

ON .
aé:]cx + 8yy =miiy (u-equation of motion) (51)
oNy, ON, .
_axy + —6yy =miy (v-equation of motion) (52)
PM, | My M, i i
7 "2, T ap ~ "M (w-equation of motion) ©3)

It is remarkable that the axial and flexural motions seem to be uncoupled since the
moment stress resultants do not appear in the # and v equations, nor the axial force resul-
tants appear in the w equation. However, it will be shown in the subsequent derivation
that coupling between in-plane and out-of-plane motions exist when the equations of
motion are expressed in terms of displacements.

Equations (51)—(53) represent the equation of motion in terms of moment stress resul-
tants. For vibration analysis, we need to obtain the equations of motion in terms of displa-
cements. In order to obtain the equation of motion in terms of displacements, we need to
express the stress resultants in terms of displacements. To do so, we will proceed in the
following steps:

(a) Calculate the strains in terms of displacements

(b) Use the stress—strain relations to express the stresses in terms of displacements

(c) Substitute the stresses into the stress resultant expressions and integrate to get the
stress resultants in terms of displacements.

Step (a) is a kinematic analysis and does not depend on the material properties. This step
will be performed up-front before getting into the specifics of composite materials. Steps
(b) and (c) are, however, dependent on the material properties. When performing these
steps, we will use the stiffness matrices of each of the layers making up the composite
laminate.
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3.2.4 Strains in Terms of Displacements

The strains of interest are

5xx:g_z
_lfou, ow
Exz 2< Z X> 54)
ngﬁ_v
% 1 /0v  ow
3% %)

Substitution of Eq. (1) into the &y, ¢y parts of Eq. (54) gives

ou 0 ( 6w0> Ouy &wy
Upg —

o T 5% T ox G Ox ox2
(55)

w0 (U Zaw0> _ v Za2w0

=P (- =P _ O

Yooy oy ay oy oy

Substitution of Eq. (1) into the ey, €x., €2 parts of Eq. (54) gives
1/6u ov 1o owy 0 owy 1/duy ovy 82w0

w5 <6y 8x> 2 [Gy (”0 z 6x> ox (vo oy )] 2 (ay ax) axay OO

1/0u ow l 8 5w0 8w0

“N= 1T = Uy — + —

2\ 0z ox 6x 57)
_ 1 0 0 0 GZZUQ 1 aZZUo

2| oz\ Sox axﬁz 2 oxoz
€ = 1 @ aw = 1 i Un — Z% + %
=2\ oz z\ " oy

1

1 6 0 aZU() () __1262100
2 