

Lecture Notes in Computer Science 3270
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

This page intentionally left blank

Mario Jeckle Ryszard Kowalczyk
Peter Braun (Eds.)

Grid Services
Engineering
and Management

First International Conference, GSEM 2004
Erfurt, Germany, September 27-30, 2004
Proceedings

Springer

eBook ISBN: 3-540-30190-9
Print ISBN: 3-540-23301-6

©2005 Springer Science + Business Media, Inc.

Print ©2004 Springer-Verlag

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

Berlin Heidelberg

Preface

This volume consists of the proceedings of the 1st International Conference on
Grid Services Engineering and Management (GSEM 2004) that was held in con-
junction with the 5th International Conference Net.ObjectDays 2004 (NODE
2004) and the European Conference on Web Services 2004 (ECOWS 2004) in
Erfurt, Germany on 27–30 September 2004.

The Grid has emerged as a global platform to support on-demand virtual
organizations for coordinated sharing of distributed data, applications and pro-
cesses. Service orientation of the Grid also makes it a promising platform for
seamless and dynamic development, integration and deployment of service-orien-
ted applications. The application components can be discovered, composed and
delivered within a Grid of services, which are loosely coupled to create dynamic
business processes and agile applications spanning organizations and comput-
ing platforms. The technologies contributing to such grids of services include
Web services, the semantic Web, grid computing, component software and agent
technologies.

The GSEM 2004 conference provided an international forum for presenting
the latest theoretical and practical results in technology solutions for engineering
and management of Grid services and service-oriented applications. The confer-
ence aimed at bringing together researchers and practitioners from diverse fields
and interests, including Web services, the semantic Web, Grid infrastructures,
software components, workflows, agent technologies and service management,
and those looking for new business and research cooperation opportunities in
the area of Grid services and service-oriented applications.

These proceedings present the 11 best papers accepted at GSEM 2004 as
a result of the thorough peer-review process. More than 21 submissions were
reviewed by at least three members of the international program committee and
assessed by the conference chairs. The final acceptance decisions were based
on the technical merits and quality of the submissions. The papers selected
for presentation at the conference represent some of the most interesting latest
developments in the areas of architecture, composition, security and management
of Grid services.

We would like to take this opportunity to thank all the members of the
International Program Committee for their excellent work, effort and support
in ensuring the high-quality program and successful outcome of the GSEM 2004
conference. We would also like to thank the organizers of Net.ObjectDays in
Erfurt, and especially its chair, Prof. Rainer Unland, for their help and the
support provided to GSEM 2004. Finally, our thanks go to Springer for its
cooperation and help in putting this volume together.

Mario Jeckle
Ryszard Kowalczyk

Peter Braun

VI Preface

On behalf of the Organizing and Program Committees of the GSEM 2004 con-
ference we would like to dedicate this conference to the memory of its co-chair
and our dear colleague Prof. Mario Jeckle, who prematurely died in a tragic car
accident before the conference.

September 2004 Ryszard Kowalczyk
Peter Braun

Organization

Conference Chairs

Mario Jeckle

Ryszard Kowalczyk

University of Applied Sciences Furtwangen,
Germany
Swinburne University of Technology, Australia

Organizing Committee

Peter Braun
Bogdan Franczyk
Holger Krause

Swinburne University of Technology, Australia
Leipzig University, Germany
tranSIT GmbH, Germany

International Program Committee

S. Ambroszkiewicz (Polish Academy of Sciences, Poland)
P. Braun (Swinburne University of Technology, Australia)
J. de Bruijn (University of Innsbruck, Austria)
B. Burg (HP, USA)
R. Buyya (University of Melbourne, Australia)
F. Casati (HP Labs, USA)
J. Debenham (University of Technology, Sydney, Australia)
F. Dignum (Utrecht University, Netherlands)
D. Fensel (DERI, Austria)
I. Foster (Argonne National Laboratory, USA)
B. Franczyk (Leipzig University, Germany)
M. Grigg (DSTO, Australia)
J. Han (Swinburne University of Technology, Australia)
Y. Han (Chinese Academy of Sciences, China)
M. Himsolt (DaimlerChrysler Research, Germany)
Y. Huang (IBM T.J. Watson Research Center, USA)
M. Jeckle (University of Applied Sciences Furtwangen, Germany)
C. Kesselman (University of Southern California, USA)
R. Kowalczyk (Swinburne University of Technology, Australia)
J.P. Martin-Flatin (CERN, Switzerland)
J. Noll (Telenor, Norway)
A. Polze (HPI, Germany)
C. Preist (HP Labs, UK)
J. Rodriguez-Aguilar (iSOCO Lab, Spain)
M.-C. Shan (HP Labs, USA)
K.M. Sim (Chinese University of Hong Kong, P.R. China)
B. Spencer (NRC, Canada)

VIII Organization

S. Staab (University of Karlsruhe, Germany)
M. Stroebel (BMW, Germany)
H. Tianfield (Glasgow Caledonian University, UK)
R. Unland (University of Duisburg-Essen, Germany)
T. van Do (Telenor, Norway)
J. Veijalainen (University of Jyväskylä, Finland)
M. Weske (Hasso-Plattner-Institut/Potsdam University, Germany)
J. Yang (Swinburne University of Technology, Australia)
Y. Yang (Swinburne University of Technology, Australia)
L.J. Zhang (IBM, USA)

Table of Contents

Architecture

Using Web Services Architecture in a Grid Infrastructure:

Programming a Grid Application to Access Astronomical Databases
Serena Pastore

A Scalable Entry-Level Architecture
for Computational Grids Based on Web Services

Mario Jeckle, Ingo Melzer, and Jens Peter

Enhancing Java Grid Computing Security with Resource Control
Jarle Hulaas, Walter Binder, and Giovanna Di Marzo Serugendo

Composition

An Approach to Flexible Application Composition
in a Diverse Software Landscape

Roy Oberhauser

An Ontology-Based Framework for Semantic Grid Service Composition

Towards a Metamodeling Based Method
for Representing and Selecting Grid Services

Sergio Andreozzi, Paolo Ciancarini, Danilo Montesi, and Rocco Moretti

Security

Towards a Flexible Trust Model for Grid Environments
Elvis Papalilo and Bernd Freisleben

Decentralized, Adaptive Services:
The AspectIX Approach for a Flexible and Secure Grid Environment

Rüdiger Kapitza, Franz J. Hauck, and Hans Reiser

A Specification for Security Services on Computational Grids
Franco Arcieri, Fabio Fioravanti, Enrico Nardelli,
and Maurizio Talamo

1

15

30

48

63

78

94

107

119

An Early Implementation of Web Services Actors,

Claus Pahl

X Table of Contents

Management

Grid Service Management by Using Remote Maintenance Shell
Gordan Jezic, Mario Kusek, Tomislav Marenic, Ignac Lovrek,
Sasa Desic, Krunoslav Trzec, and Bjorn Dellas

The Grid-Occam Project
Peter Tröger, Martin von Löwis, and Andreas Polze

Author Index

136

151

165

Using Web Services Architecture
in a Grid Infrastructure: An Early Implementation

of Web Services Actors, Programming a Grid
Application to Access Astronomical Databases

Serena Pastore

INAF, National Institute for Astrophysics, Astronomical Observatory of Padova
Vicolo Osservatorio 5, 35122, Padova, Italy

pastore@pd.astro.it

Abstract. The grid paradigm is an useful technique in the astronomical com-
munity to enable the information discovery with a very large amount of massive
and complex data. Astronomical datasets are essentially structured in catalogs
and archives managed by several database management systems. Porting these
data in a grid environment has twofold aspects according to put or not the entire
management system on grid: this paper presents an approach of a grid applica-
tion deploy based on web services technology to access an existing astronomi-
cal database. The framework hosting the application consists of the grid infra-
structure provided by the Italian INFN Institute [1]: this middleware affects
both technological choices than current and further develops in order to main-
tain the compatibility. The document covers the implementation design in this
context of all the actors involved in the web service architecture (service re-
questor, service provider and service broker) and the mapping with their corre-
sponding grid components. This relation gives the interoperability of web ser-
vices within the existing grid architecture. It is detailed point out the open
problem of service discovery in this grid environment: the current implementa-
tion of service registry through WS-Inspection documents [2] and/or Universal
Description, Discovery and Integration [3] registry could be adopted in a local
grid infrastructure, but should be progressively integrated with the main grid in-
formation system up to now implemented as Globus Monitoring and Discovery
Service (MDS2) [4].

1 Astronomical Data Resources
in a Virtual Organization Environment

According to the definition of the grid concept [5], a grid solution is created to allows
applications to share data and resources as well to access them across multiple organi-
zations in an efficient way. Each solution can be configured as a physical grid refer-
ring to hardware resources shared over a distributed network or as a logical grid refer-
ring to software and application sharing. In a research environment such as the
astronomical community, one of the key concerns is to find more standard and scal-
able way to integrate massive and complex data coming from digital survey in a dis-
tributed environment.

This data has an exponential growth that causes the problem of information dis-
covery with such amount of data. In this context the grid paradigm is a technique able

M. Jeckle, R. Kowalczyk, and P. Braun (Eds.): GSEM 2004, LNCS 3270, pp. 1–14, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 Serena Pastore

to share and access the existing data resources (the astronomical datasets) located
worldwide representing any kind of astronomical data available such as catalogues,
archives, images, spectra, etc. Specifically archives and catalogues must be integrated
in grid, since they represent two approaches to store information: archives contain
collection of observational data (i.e. images from which data are extracted for further
elaboration), while catalogues contain observational results (specific information
about objects in the sky). Each dataset has its own set of metadata stored in a custom
format and related to the original data in several ways. In general, each data source
uses a different database management system paradigm (RDBMS, ODBMS,
ORDBMS): querying this aggregation of data sources should be easier if the systems
could be accessed through a common standard interface.

In grid view the data are located on several Virtual Organizations [5] in which the
distributed researchers could be structured to better share the information. The con-
cept to do “data-intensive” science is do not move data over the net, but bring the
compilation to data.

The problem of enabling the porting in grid of astronomical data resources could
be view from twofold sides relating to the need to put or not catalogues or archives
systems on grid:

the first solution aims at the porting on the grid of the data source containers: this
implies to model the entire database management system and so the engine below
as grid resource (such as the other modelled resources of computing and storage);

the second solution leaves the DBMS outside the grid and aims to develop web
services to connect to the database, making a sets of complex queries to data
stored on them

The first solution is strictly linked to the entire grid infrastructure and the standards
adopted; using some existent project of integrating databases in a grid environment,
such as those provided by the GGF DAIS [6] working group is unluckily premature.

This paper reports the work done examining the second approach: programming a
grid application able to do queries to a catalogue managed by a database system and
located outside the production grid. The queries results to be retrieved could be stored
in a grid machine for further elaboration.

The two solutions are yet not exclusive, since they are two different ways to offer
shared services to the astronomical virtual organizations.

After a brief description of the grid infrastructure on which the grid application has
been developed (section 2), and the relationships between web services model and
grid computing (section 3), the document presents an approach to mapping the web
services actors - service providers, service requestor and service registry - to their
corresponding grid components (section 4) in the context of accessing astronomical
databases. The paper finally deals with the open problem of service discovery (section
5): the use of current web service specification of this component (using WS-
Inspection documents or UDDI registry) could be necessary integrated with the exis-
tent grid information system based on Globus MDS2 [4]. This is the only way with
which grid users could discover these data like the other shared resources.

2 Framework of the Grid Application

The design of this grid application aims, as first step, at providing in a grid environ-
ment some “query facilities” on existing large catalogues managed by RDBMS. The

Using Web Services Architecture in a Grid Infrastructure 3

goal is to create a building block for a more complex application. The overall system
is strictly tied to the grid infrastructure in which the application has to be deployed
and should be perfectly integrated in future. The running environment consists of the
Italian prototypal INFN production grid [1], a testbed that up to now comprises 18
sites connected using the GARR networks [7] and joins 13 different Virtual Organiza-
tions gathering collections of individuals and institutions of several research fields
sharing resources.

The framework is based upon the INFN-GRID release 2.0.0 [8], a customized
software by INFN within the Italian grid project. The infrastructure is built on top of
the LHC Common environment (LCG-2) [9] and the European Data Grid (EDG2)
middleware [10]. LCG-2 itself is a selection of services derived from Globus [11] and
Condor [12] projects and a collections of packages from the European DataTag
(EDT) [13] and Virtual Data Toolkit [14] projects.

As far as software implementation is concerned, this middleware uses an “adapted”
version of the Globus Toolkit 2.4 provided by VTD; this version of the Globus Tool-
kit is not based upon grid services and the implementation of an Open Grid Service
Architecture (OGSA) [15] model. INFN-GRID by its VOs offers the main grid func-
tionalities ranging from security to data and resource management, information ser-
vice, monitoring and logging and a collections of grid resources (computation and
storage). In the analyzed context, the grid information service is based upon Globus
MDS [4] and an information index provided by the Berkely Database Information
Index (BDII) [16] to guarantee the dynamic nature of the grid. Both job management
through the EDG-WMS (Workload Management System) [17] and data management
services through EDG-RMS (Replica Management System) [18] are derived from the
EDG project.

The technological choice, according to the constraints originated by this frame-
work, is based on web services architecture. This essentially because web services are
one of the most widely adopted and stable architecture for developing distributed
applications. Programming plain web services for the application in this environment
is mandatory, since the used INFN-GRID infrastructure does not still support grid
services: but this solution theoretically maintains the possibility to follow OGSA
evolution with the current definition of grid services as an extension for web services
specified by OGSI [19] or applying the new WS-Resource framework [20] proposed
by Globus and IBM.

3 Integrate Web Services Models and the Grid Computing

Since a web service is a service available over a network as a software system de-
signed to support interoperable machine-to-machine interaction, its technology is
suitable to build distributed application such as whose ones running in a grid envi-
ronment.

The known advantages to choose web services against other technologies are their
platform and language independency due to the use of XML based information inter-
change which gives the interoperability with several systems; on the other hand, over-
head and lack of versatility can represent a source of troubles. Generally the key char-
acteristic is that web services are suitable for loosely coupled distributed systems
where a client may have no prior knowledge of a web service until it actually invokes

4 Serena Pastore

it and they could be implemented with several programming languages. The web
service shows an interface described in a machine-processable format (specifically the
Web Service Description Language (WSDL) [21]) that is network-addressable: the
other systems interact with it in a manner shown in its description via standard proto-
cols and data formats with SOAP-messages [22].

The service should be deployed in an runtime environment, such as the application
container, that provides a message processing facility and could receive messages
from requestors.The web service architecture, specified by W3C consortium as a
service oriented ones [23], permits the interaction of three entity:

1.

2.

3.

a service provider that offers its web services described in a standard way (such as
WSDL).
a service requestor that requests a service through SOAP messages (over HTTP/
HTTPS).
a service broker that registers and publishes the list of services (through standards
like WSIL [2] or UDDI [3]).

The three primary roles of the web service architecture interact using publish, find
and bind operations: in a grid infrastructure they should be mapped to their corre-
sponding grid components in order to permit the use of grid application based on this
technology.

Fig. 1. Web services components and grid actors within a “site grid environment”.

Web services and grid actors involved in the integration are described in figure 1:
the shown components are the ones representing the minimum set of resources (the
so-called “Quantum Grid”) required to a site to be attached to the production grid
according to its architecture [24].

The building blocks of a typical grid site are four elements: a User Interface (UI), a
Computing Element (CE), a Worker Node (WN) and a Storage Element (SE).

Essentially while UI is the access point for a user to the grid, CE and SE are the
main site grid resources: CE provides both an interface to an homogeneous farm of

Using Web Services Architecture in a Grid Infrastructure 5

computing nodes called WNs as a jobs management and scheduling component, while
SE offers an uniform access and services to the storage.

In all these machines the module-specific grid middleware software is installed to
guarantee their functionality as grid nodes.

These are the only grid actors with which a grid application developer could di-
rectly interact, since they are deployed in the site grid infrastructure of the VO.

All high-level grid services such as the resource broker and the other general com-
ponents (GSI [25] security, data and resource management and the grid information,
monitoring and logging services) are directly provided in a centralized manner and
managed by the INFN grid middleware developers. So analyzing the site web services
actors, their roles are carry out by UI, WN and CE grid nodes.

The service requestor is essentially a grid client using a UI to access the grid and
its resources: the client authenticates itself with a X.509 certificate and it is authorized
to use the resources as affiliated to a specified VO.

The service provider is located on the WN, the grid node that actually execute the
code, while the service broker is, up to now, located on the CE. The application out-
put could be store on a SE and further replicated (through the Replica Manager Sys-
tem [18]) on other grid nodes to guarantee the reliability.

In this environment the CE together with the SE are the only site components that
are visible by the whole grid: even if the web services are actually deployed on one or
more WNs, it is the CE that has to execute the client application and knows where to
locate the endpoints of the web service.

The binding between UI and WN in this context could be effectively realized, since
as far as the WMS is designed, the client query application should be sent as job to
the central resource broker: this grid component queries the Information system to
find the most suitable CE where to execute the job and the Replica Manager for the
management of the input/output file required by the job (as the figure 2 shown).

Fig. 2. The main relationships between main grid services provided by INFN site and a specific
grid site.

The CE, in turn, dispatches job on the WNs it controls. From a grid client point of
view CE is the real service provider. This approach could be overridden using a web
browser instead of the command line language to access the application as better
explained in section 4.2.

In the same way, the CE should initially be modelled as entry point of web services
discovery: the implementation in this node of any type of web service discovery
(through WS-Inspection documents or UDDI registry) is mandatory until the main
grid information systems will be able to provide such a mechanism for the grid users.

6 Serena Pastore

4 Deployment of the Application in the Site Grid Environment

The detailed implementation of the three components of web services model in this
site grid environment are explain below. Considering the constraints due to grid mid-
dleware and the need to use software packages totally compliant with it to avoid con-
flicts, the query services have been developed as java web services. It has been used
all the available toolkits for develop web service with the java programming language
such as those provided by Apache Software Foundation [26].

4.1 The Service Provider:
The Web Services Offering “Query Services” Through the Grid

The grid application prototype provides a set of basic services roughly classified as
“query services” to the retrieval of data sets from a specific catalogue matching fixed
query parameters. The catalogues are stored in MySQL [27] database management
system in order to allow the use of available connector drivers to integrate and cus-
tomize database applications.

The client application should permit the user to select the data source where the in-
formation needed is presumably stored, to make a detailed query based on the data
source type and to retrieve the results in a format based on XML for further analysis
or elaboration. According to the method used by grid client to interact with the web
services, the output could be store on a selected storage element.

The web services, as the figure 3 shown, offered by the “service provider” are
structured to accept:

as input a SQL query or the request of the service description as standard WSDL
interface;
as output a file in XML format according to the request or the service description
as WSDL.

Fig. 3. Input and output of the web services deployed in the WN node and accessed through the
other grid components within the main grid.

Using Web Services Architecture in a Grid Infrastructure 7

Since the web service is a software component that performs some functions, it has
been deployed within the runtime environment hosted in the WN provided by the
Apache Tomcat 4 [28] web application server.

The runtime environment is responsible for executing the code of the web services
and for dispatching messages to them: it also provides other quality of services such
as security. The connection to the database is provided by the use of MySQL Connec-
tor/J driver [29] that is able to convert JDBC (Java Database Connectivity) calls into
the network protocol used by MySQL database.

Interacting with a database management system, Tomcat 4 engine guarantees also
the efficiency of database connections, by the use of the connection pooling for JDBC
provided by the Jakarta-Common DBCP [30]. These components are customized to
prevent database connection pool leaks configuring the JNDI DataSource in Tomcat
configuration file and in the description file of the web services deployed.

The tools used to develop the java web service available in the INFN-GRID mid-
dleware as rpm packages include:

as deployed environment: Apache Tomcat as the container to provide web services
and Apache Axis [31] both as SOAP implementation then as a server which plugs
into Tomcat Container.
as programming tools: Apache Ant [32] to automate all the steps involved in build-
ing the executables and packaging them as a Web ARchive file suitable to grid and
Axis itself with its tools.

The resultant web application is structured as a WAR file containing files and li-
braries required to its execution with the SOAP engine embedded. Moreover the web
services is secured by means of the EDG security [33] that provides access to these
resources only to authorized grid clients. The security process is performed by the
authentication of the grid client owning a X.509 certificate, and by the authorization
to execute web services through an AXIS handler inserted in the request flow in front
of the SOAP endpoint. In this way only VO’s authorized users could access these
catalogs.

4.2 Service Requestor: Grid Client Accessing to the Web Services

The application client used by a grid user contacts the service provider through a
SOAP request addressing the service in two ways:

from the UI submitting a job to the grid: to run an application on grid resources in
INFN production grid, a user has to use the edg-job-submit command with,
as argument, a simple text files written in JDL (Job Description Language) format
[34] a language based on Condor ClassAds library [35]. This file contains the name
of the executable, all input/output parameters and the requirements needed by the
job to be executed.
from a client web browser by an HTTP connection over SSL/TLS: the user re-
quests directly the services (knowing its location) making a secure connection to
the nodes hosting the services or interacts with a service registry (a WSIL docu-
ment or UDDI registry) hosted in a web server on the CE.

In both cases the request flow is intercepted by the grid security mechanism that
verifies user’s credentials and, if the user is authorized, allows for the connection to

8 Serena Pastore

the database management system to retrieve query results. The grid client owns a
GSI-style (X.509) certificate: the true authentication process is performed by the web
browser on which the client has installed its certificate or by the grid-proxy-
init command launched from the UI. By both these methods, the user receives a
proxy certificate, derived from its identity certificate, with which it could work.

In the first access method, the job is send to the resource broker in order to select
the CE where the client application able to contact the web service is stored: the CE in
turn dispatches it to the WN for the true computation, while the output is normally
stored on a SE in a custom format (XML-like).

In the second method the user accesses the catalog through JSP pages specifically
written to use the application by a web browser or makes a direct connection to the
implemented service registry. A screenshot of the prototypal implementation of the
JSP pages is shown in figure 4: from a web form the user can specify authorization
parameters and can submit its specific query to the database.

Fig. 4. Screenshot of the online access to the catalog trough JSP pages.

4.3 Service Broker: Deployment in the Site Grid Environment

The service broker is a fundamental part of web service architecture, since it facili-
tates the process of performing discovery between the requestor and the provider. Up
to now, according to W3C definition, there are three leading viewpoints on how to
discovery service should be conceived [23]:

as a registry in an authoritative, centrally controlled store of information;
as an index with a simple compilation or guide to show there the information ex-
ists;
as peer-to-peer (P2P) discovery without centralized registries, letting the web ser-
vices to discover each other dynamically.

At the present time the implemented solution are a UDDI Registry and a WS-
Inspection (WSIL) document. Since similar in scope they are complementary means
rather than competitive model of service discovery and so they could be integrated

Using Web Services Architecture in a Grid Infrastructure 9

themselves. WSIL and UDDI assist in the publishing and discovery of services with
two distinctly different models: UDDI uses a centralized model of one or more reposi-
tories containing information on entities and the services they provide, WSIL uses a
decentralized approach where service description information can be distributed to
any location using a simple XML document format relying on other description
mechanism.

It may be advantageous to use both the methods since they could be integrated to
offer better service discovery (as shown in figure 5). The WSIL solution, suitable for
small-scale integration, has been adopted as a first step at site level; then it is on a test
phase the implementation of a UDDI registry in order to permits the scalability of the
solution, the compatibility with the middleware and the possible integration with the
main grid information services.

Fig. 5. Integration of the two implementation of service discovery specification

4.3.1 The WSIL Solution
The WSIL (web service inspection language) offers an XML document format for the
discovery and aggregation of web services descriptions in a simple and extensible
fashion.

It allows publisher to advertise their services defining how a service requestor can
discover an XML web service description on a web server. WSIL documents are
located using simple conventions over the web infrastructure: the document which
has a fixed name tagged as inspection. wsil, will contain the web services cor-
responding HTTP accessible WSDL document which describes their interface.
It should be placed at common entry points for a web site (such as
http://gridit001.pd.astro.it/inspection.wsil). However this is a top level document, and
the WSIL documents can be linked in order to allow service providers to organize
their services listing in a hierarchical manner.

To implement such a solution, the WS-inspection file contained the requested in-
formation is stored in the CE web server through the Apache HTTP web server.

The service discovery could be provided using an Apache WSIL project called
WSIL4J (web service inspection language for Java API) [36]. This consists in a java
class library that provides an API to locate and process WS-Inspection documents.

10 Serena Pastore

The library can be used both to read and parse WS-Inspection document as generate
new ones. It requires some libraries (such as JAXP compliant XML parser, WSDL
for Java API (WSDL4J) included in the Apache Axis libraries and UDDI for Java
API (UDDI4J [37]). The latter library is required only if WSIL document is used in
conjunction with a UDDI registry: it generates and parses messages sent to and re-
ceived from a UDDI server. A java program is on develop using all these libraries to
reference WSIL4J and discovery the documents.

4.3.2 The UDDI Solution
The UDDI is the most widely used mechanism: there are different implementation of
this standard on study phase such as the Apache jUDDI [38] or the project UDDIe
[39] an extension of UDDI developed by the School of Computer Science at Cardiff
University.

Fig. 6. An example of a web page listing the available discovery methods.

jUDDI is an open source Java implementation of UDDI specification on develop-
ment. It comes as a web application to be deployed in the Apache Tomcat container
and uses MySQL server to registry the information, so it should be complaint with the
Italian grid infrastructure. Also UDDIe comes as web application deployed in the
Tomcat container and uses relational databases such as the recommended Oracle
Server to store data.

This solution permits to develop a private UDDI registry in a CE in order to be
view by the whole grid environment: the likely adoption of a such implementation in
the grid infrastructure is strictly tied to the future development of the information
services provided by the Italian production grid. Up to now the developed grid appli-
cation is used by grid clients connecting directly to a web page containing a reference
to all of the described discovery methods as shown in figure 6.

The integration of these methods in the main grid information system is related to
its structure.

Using Web Services Architecture in a Grid Infrastructure 11

5 Integration with the Information Services
of the Production Grid

The Information system of the INFN production grid [40], as seen in figure 7, is based
on Globus MDS 2.x [4] and the BDII information index.

Fig. 7. The INFN production grid information hierarchical system.

MDS provides a single standard interface and schema for the information services
used within a VO. It uses the LDAP protocol (implemented as OpenLDAP [41]) and a
defined schema (the Glue schema [42]) as uniform means of querying system infor-
mation offering a directory service infrastructure for computational grid.

MDS defines an hierarchical approach presented to users through three types of
servers: Grid Information Index Server (GIIS), Grid Resource Information Server
(GRIS) and Information Providers (IPs).

The default configuration of MDS in INFN shows a local GRIS running on each
functional node (CE, SE) at the different sites reporting on the characteristics and
status of the services and a single-site GIIS running by default on the CE combining
the various GRISes.

At each site a GIIS collects information about all resources in a site. The BDII
(Berkeley Database Information Index), a specialized GIIS, interacts not only with the
information system, but also with the WMS components and in particular with the
Resource Broker (RB). The BDII collects all information coming from the site GIISes
and stores them in a permanent database: the GIISes themselves register to the BDII.
Up to now a single Resource Broker is implemented in the INFN testbed and a unique
central BDII is configured to get publish information from resources in all sites.

In this environment is on study phase how and where to implement a UDDI regis-
try: the possibility to use a different version of MDS and its directory server (such as
the MDS 3 knows as Index Service [43]) could give a chance to move the service
registry to a higher level, but this is for now premature.

The proposed solution is oriented, as figure 8 shown, to integrate the service broker
implemented as a UDDI registry into a site GRIS server in order that it could register
to the GIIS and then to the central BDII.

12 Serena Pastore

Fig. 8. The proposed solution to integrate site service discovery into main grid information
system.

In this schema the grid client or the grid application could use several ways to get
the needed information using the main grid components or directly the UDDI registry.

This could guarantee the discovery of a specific application by the main grid in-
formation system and so by the Resource broker, but necessary means the integration
of UDDI specification into an LDAP schema. The feasibility of this mapping in on
study phase.

6 Conclusions

The first test of these java web services has shown the robustness of the technology
adopted and their compatibility with the overall production grid. Knowing the loca-
tion of the services directly or through WS-Inspection documents, a grid user could
query the database searching the data both through UI as the a web browser.

It’s on study the feasibility to adopt the private UDDI registry in this environment
as automatic web services discover mechanism at site level eventually linked with the
WSIL solution. But the open problem remains the implementation of a “web services
broker” at the high-level of the grid information services in order to let grid users and
particular astronomical VO users, to automatically discover and use the services in the
framework of the production grid.

Also the work regarding the web services programming is on progress with further
developments such as the eventually transformation of our web services in grid ser-
vices to advantage of their enhancements. This is yet heavily influenced both of the
needs of do not loosing compatibility with the Italian production grid, as by the future
directions of OGSA since it’s not be clear if its specification will be towards WS-
Framework rather than OGSI [44].

Using Web Services Architecture in a Grid Infrastructure 13

References

1.
2.

3.

4.
5.

6.

7.
8.
9.

10.
11.
12.
13.
14.
15.

16.

17.
18.

19.
20.
21.

22.

23.

24.
25.

26.
27.
28.

29.
30.

31.
32.
33.

34.

The INFN Production Grid for Scientific Applications, http://grid-it.cnaf.infn.it
WS-Inspection: Web Service Inspection Language (WSIL),

UDDI, Universal Description, Discovery and Integration of Web Services,
http://www.uddi.org
MDS The Monitoring and Discovery Service version 2, http://www.globus.org/mds/mds2/
Foster I., Kesselman C., Tuecke “S. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations”, 2001
GGF DAIS-WG (Database Access and Integration Services),
http://www.gridforum.org/6_DATA/dais.htm
GARR Italian Scientific research and University Network, http://www.garr.it
INFN-GRID release, http://grid-it.cnaf.infh.it/index.php?packages&type=1
LHC Computing Grid (LGC), http://cern.ch/lcg
EDG – European Data Grid, http://www.eu-datagrid.org/
The Globus Toolkit, http://www-unix.globus.org/toolkit/
The Condor project, http://www.cs.wisc.edu/condor
The European Data Tag project (EDT), http://datatag.web.cern.ch/datatag
The Virtual Data Toolkit (VDT), http://www.lsc-group.phys.uwm.edu/vdt/
I. Foster, C. Kesselman, J. Nick and S. Tuecke, The Physiology of the Grid: An Open Ser-
vices Architecture for Distributed System Integration”, 2001,
http://www.globus.org/research/papers/ogsa.pdf
Berkeley Database Information Index,
http://www-it.desy.de/physics/projects/grid/testbed/EDG/BDII.html
EDG Workload Management Software (WMS), http://server11.infn.it/workload-grid/
EDG Replica Management System (RMS),
http://edg-wp2.web.cern.ch/edg-wp2/replication/index.html
Open Grid Service Infrastructure (OGSI), http://www.ggf.org/ogsi-wg
The WS-Resource Framework, http://www.globus.org/wsrf/
WSDL, Web Services Description Language (WSDL) 1.1, W3C Note 15 March 2001,
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
SOAP, Simple Object Access Protocol, W3C recommendation,
http://www.w3.org/TR/2003/REC-soap12-part0-20030624/
Web Services Architecture, W3C Working Group Note 11 February 2004,
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
“Software architecture models”, DataGrid-12-Note-0.6
GSI – Grid security Infrastructure: an overview,
http://www.globus.org/security/overview.html
The Apache Software Foundation projects, http://www.apache.org
MySQL database server, http://www.mysql.com
Apache Tomcat 4, the servlet container used in the implementation of Java servlet and JSP
technologies, http://jakarta.apache.org/tomcat/tomcat-4.1-doc/index.html
MySQL Connector/J a native Java driver, http://www.mysql.com/products/connector/j/
DBCP (database connection pool): JNDI datasource howto,
http://jakarta.apache.org/tomcat/tomcat-4.1-doc/jndi-datasource-examples-howto.html
Apache Axis, a SOAP engine http://ws.apache.org/axis/
Apache Ant a Java-based build tool, http://ant.apache.org/
EDG Security and Transparent Access,
http://edg-wp2.web.cern.ch/edg-wp2/security/index.html
The JDL (Job description language) tutorial,
http://grid-it.cnaf.infn.it/fileadmin/users/job-submission/job_submission.html

14 Serena Pastore

35.

36.

37.

38.

39.

40.

41.

42.
43.
44.

Condor ClassAds library: classified advertisement home page,
http://www.cs.wisc.edu/condor/classad
Apache WSIL4J Web Services Inspection Language for Java API,

UDDI4J (http://www-124.ibm.com/developerworks/oss/uddi4j/) the java class library that
provides an API to interact with a UDDI registry.
jUDDI – an open source java implementation of the UDDI specification for web services,
http://ws.apache.org/juddi/
The UDDIe, Universal Description, Discovery and Integration Extension project
http://www.wesc.ac.uk/projects/uddie/uddie/index.htm
F. Donno, L. Gaido, A. Ghiselli, F. Prelz, M. Sgaravatto, DataGrid Prototype 1, EU-
DataGrid Collaboration
LDAP, Lightweight Directory Access Protocol and its implementation OpenLDAP soft-
ware, http://www.openldap.org/
GLUE Schema Official documents, http://www.cnaf.infn.it/~sergio/datatag/glue
MDS/Index Service, http://www-unix.globus.org/toolkit/docs/3.2/infosvcs/
Czajkowski K. Ferguson D., Foster I., Graham S., Maguire T., Snelling D., Tuecke S.:
From Open Grid Services Infrastructure to WS-Resource Framework: Refactoring & Evo-
lution, 3/05/2004

A Scalable Entry-Level Architecture
for Computational Grids Based on Web Services

Mario Jeckle, Ingo Melzer, and Jens Peter

University of Applied Sciences Furtwangen
Robert-Gerwig-Platz 1, D-78120 Furtwangen, Germany

mario@jeckle.de, paper@ingo-melzer.de, info@jens-peter.com

http://www.jeckle.de/

http://www.ingo-melzer.de/

Abstract. Grid computing has recently become very popular and this
development deserves to be called a hype. To benefit from the techniques
of Grid computing, it is not necessary to invest a lot in software for
smaller solutions. Simple Grids sized at entry-level can be implemented
using some ideas of service-oriented architectures. Especially when build-
ing such a new system, it is interesting to know, how the result will most
likely perform and how big the benefits will be.
This paper gives an approach to implement such an entry-level Grid
solution for computational tasks and introduces a computational model
to estimate the performance of these solutions.

1 Introduction

At the latest, since the Grid project SETI@home [7] became well known, Grid
computing can be called a hype and many software companies try to benefit
from this development. However, for smaller system a Grid solution can easily be
implemented from scratch, and platform independent solutions can be applied
in most system environments. Based on the idea of service-oriented architec-
tures, a simple and flexible approach is presented in this paper for implementing
computational Grids. Also a computational model is introduced to estimate the
performance of Grid solutions.

The remainder of this paper is structured as follows. First, the young history
of Grid applications is explored and different instances of Grids are sketched.
Based on this, the paradigm of Service-oriented architectures which is increas-
ingly confluent with Grid-based techniques is introduced. Additionally, inter-
preted programming languages with platform independent execution environ-
ments are discussed since these languages seem to be well suited for implement-
ing Grid contributing nodes.

Based on this, section three introduces a new computational model which
allows the estimation of expected performance for Grid applications relying on
the techniques introduced before. The computational model refactors proven
heuristics well-known in the field of parallel processing. As a foundation of our
proposed formula two prototypical Grid implementations sketching edge cases
are discussed.

M. Jeckle, R. Kowalczyk, and P. Braun (Eds.): GSEM 2004, LNCS 3270, pp. 15–29, 2004.
© Springer-Verlag Berlin Heidelberg 2004

16 Mario Jeckle, Ingo Melzer, and Jens Peter

2 Technologies Involved

2.1 Grid Computing

The Grid – A Brief History. Historically, the name Grid was chosen by
virture of the analogy to the power grid, which distributes electrical power to
each citizens power outlet, without knowledge where the electricity came from.
Likewise, the vision of applying the grid idea to computing is that computing
power (i.e., the ability to store or process data) will be available also through an
outlet. When aranging the evolution of Grid into generations, the focus can be
set on the standardization of the technology involved.

The pre-history of applying the grid idea to computing is based on technolo-
gies for distributed computing like the COMMON OBJECT REQUEST BROKER
ARCHITECTURE (CORBA), which is standardized by the OBJECT MANAGE-
MENT GROUP [8]. Also techniques like REMOTE METHOD INVOCATION (RMI)
and JINI [9] from Sun were launched to provide a software infrastructure for
distributed computing. And also DCE and DCOM are proposed as solutions for
Grid-computing.

All these technical approaches share the characteristc of beeing a point so-
lution to the issues to be addressed when stiving a solution for interconnecting
various resources. The term point solution (which was initially coined by [5])
here referes to techniques which may contribute to solve certain aspects of the
main problem but which fail in addressing all issues at one time.

In the early 1990s some research projects focused on distributed computing
were founded. The publication of early results to the I-WAY [5] project which
were presented at the 1995 Super Computer conference represent the first true
Grid and thus mark the first generation of such approaches. The I-WAY im-
plementation connected 17 high-end computers over high-performance networks
to one metacomputer, which runs 60 different applications. The success of this
demonstration led the DARPA fund a new research project titled GLOBUS [4]
under the lead of FOSTER and KESSELMANN.

Another project which fits in the first generation of Grid computing is FAC-
TORING VIA NETWORK-ENABLED RECURSION (FAFNER for short) [6], which
was launched in context of the RSA Factoring Challenge. FAFNER creates a
metacomputer which was deployed to attack content that is cryptographically
secured by using the RSA algorithm. In detail FAFNER strives to attack the
basic idea of the RSA algorithm, which is the usage of large composite numbers
for securing arbitrary content. Since fast factorization or large composite num-
bers is a challenge which still lacks an efficient mathematical algorithm, attacks
require enormous amounts CPU time. Technically speaking, FAFNER provides
a Web interface for a factoring method which is well suited for parallel and
distributed execution, the number field sieve [19]. The project implemented a
software daemon which is based on the PERL scripting language which are ac-
cessed through the Common Gateway Interface protocol. The daemon handles
the retrieval of input values to the local system and the submission of results via
HTTP’s well-known GET and POST methods. This approach proved to be suc-

A Scalable Entry-Level Architecture 17

cessful and paved the way of other Web-based projects. Other, mostly scientific
based projects, like SETI@HOME [7], GENOME@HOME, or FIGHTAIDS@HOME

were launched. Also some mathematic based problems gained help from concen-
trated computing power like the GREAT INTERNET MERSENNE PRIME SEARCH
or the GENERALIZED FERMAT PRIME SEARCH. The still increasing number of
computers connected to the internet via its access to the World Wide Web widens
the amount of potential contributors to these projects.

With the current, i.e. the second, generation of the Grid, three main issues
have to be focused. These were heterogeneity, scalability and adaptability. In
this context answers to the following questions have to be found:

Identity and Authentication: How should machines which are authorized
to participate within the Grid be uniquely identified and authenticated?
Authorization and Policy: How is decentralized authorization handled
and how are certain policies (like Quality of Service) guaranteed?
Resource Discovery: How are resources which are offered by the Grid
discovered?
Resource Allocation: How is handling of exclusive or shared resource al-
location handled?
Resource Management and Security: How are the distributed resources
managed in an uniform way, esp. how can a certain level of security be
provided for all nodes participating within the Grid?

Today there are enormous efforts of companies like IBM, Sun, and HP to
advance the Grid idea to a next evolutionary step. The main focus here is the
service-oriented architecture approach on which the next generation of Grids
will be based. In essence the idea of distributed processing and data storage
underlying the Grid idea is increasingly merged with the technical infrastructure
summarized as WEB SERVICE. By doing so the level of standardization reached
by virtue of widely accepted Grid infrastructures such as the GLOBUS toolkit
is leveraged by the ubiquitous technical infrastrucutre of Web-based services.

Data Grid vs. Computational Grid. The current state of applying the Grid
idea is summarized by [4] as:

“Grid computing enables virtual organizations to share geographi-
cally distributed resources as they pursue common goals, assuming the
absence of central location, central control, omniscience, and existing
trust relationship”

The absence of such a central control means, that there is no centralized
instance acting like an operating system which is in power to manage execution
characteristics (e.g. scheduling, memory management, interrupt handling). But,
for ease of management purposes some Grid implementations of major software
vendors deploy a centralized control in terms of a dedicated node offering the
tasks to be computed to the participating Grid nodes.

18 Mario Jeckle, Ingo Melzer, and Jens Peter

The abstract notion of Grid is differentiated further by companies providing
software and hardware infrastructure for Grids like IBM and Sun. In detail Sun
refers to CampusGrid while IBM chooses the term IntraGrid when addressing
Grids which are deployed company internal only. Consequentially, company-
spanning Grids are termed ExtraGrids and Grid-based solutions relying on the
Internet’s technology are named InterGrids. Since the latter ones are potentially
distributed globally Sun introduced the additional term GlobalGrid [11].

Further, often Grids are distinguished from an operational point of view.
Here two major directions have emerged. First, data-centric Grids which focus
on the transparent access to data distributed geographically. In essence these
“Grids should provide transparent, secure, high-performance access to federated
data sets across administrative domains and organizations” [10].

An example for a data Grid is the European DataGrid Initiative [12], a project
under the lead of the European nuclear research center. CERN’s data Grid ini-
tiative which also involves IBM should manage and provide access from any
location worldwide to the unpresented torrent of data, billions of gigabyte a
year, that CERN’s Large Hadron Collider is expected to produce when it goes
online in 2007 [13]. The second mainstream of Grid computing is the compu-
tational Grid. In this approach, the idle time of network detached machines is
shared and used by other Grid-enabled applications. A computational Grid can
be based on an IntraGrid, which uses the spare CPU-time of desktop comput-
ers for compute intensive tasks. Such a systems is used by the swiss company
NOVARTIS for solving problems in the medical research. The systems uses 2700
desktop computers to provide a computing power from about 5 terra FLOPS
[14].

In this paper we describe an architecture which combines the technical as-
pects (i.e., the deployment of Web-based service-oriented technology) of Inter-
Grids with the application area of IntraGrids. In detail this means benefiting
from the transfer of techniques typically found in InterGrids to closed organiza-
tions which deploy IntraGrids to Grids which are deployed accross organizational
boundaries. The advantage by doing so lies in lowered costs of infrastructure and
an increased amount of standardized components. Additionally, our approach
takes this further and establishes the notion of an entry-level Grid which adds
ease of deployment and operation.

2.2 Service-Oriented Architectures

Some of the latest Internet-related developments share the idea of utilizing differ-
ent functionalities over the net without the requirement of using a browser. The
most general and to some degree visionary version is termed SERVICE-ORIENTED
ARCHITECTURE, or for short SOA.

The basic idea of a SOA is quite simple. A developer implements a service,
which can be any functionality made available to others, and registers his service
in some global registry like some yellow pages for services. A user, which is most
often some other service, is thereafter able to find the registered service, retrieve
all information about invoking the just found service, and call the service. In the

A Scalable Entry-Level Architecture 19

end, all this should happen without human involvement. This last step is called
loosely coupled, because the connection or coupling is made at run-time when
needed, in other words just in time.

2.3 Web Services

Today, the most advanced instance of a SOA is called Web services. The technical
basis of the Web service philosophy is grounded on the idea of enabling various
systems to exchange structured information in a decentralized, distributed en-
vironment dynamically forming a extremely loosely coupled system. In essence
this lead to the definition of lightweight platform-independent protocols for syn-
chronous remote procedure calls as well as asynchronous document exchange
using XML encoding via well-known Internet protocols such as HTTP.

After some introductory approaches which were popularized under the name
XML-RPC [22] the SOAP1 protocol which has been standardized by the World
Wide Web Consortium [1, 2] establishes a transport-protocol agnostic framework
for Web services that can be extended by users on the basis of XML techniques.

The SOAP protocol consists of two integral parts: A messaging framework
defining how to encode and send messages. And an extensibility model for ex-
tending this framework by its user. Firstly, a brief introduction of the messaging
framework is given before showing value of the extensibility mechanisms to ac-
complish the goals defined above. Technically speaking, SOAP resides in the
protocol stack above a physical wire protocol such as HTTP, FTP, or TCP.
Although the specification does not limit SOAP to HTTP-based transfers, this
protocol binding is currently the most prominent one and is widely used for Web
service access. But it should be noted that the approach introduced by this paper
is designed to operate completely independent of the chosen transport protocol
and resides solely on the SOAP layer.

All application data intended to be sent over a network using the SOAP pro-
tocol must be transferred into an XML representation. To accomplish this, SOAP
defines two message encoding styles. Therefore, the specification introduces rules
for encoding arbitrary graphs into XML. Most prominent specialization of this
approach is the RPC style introduced by the specification itself which allows
the exchange of messages that map conveniently to definitions and invocations
of method and procedure calls in commonly used programming languages. As
introduced before SOAP is by nature protocol agnostic and can be deployed for
message exchange using a variety of underlying protocols. Therefore a formal set
of rules for carrying a SOAP message within or on top of another protocol needs
to be defined for every respective transport protocol. This is done by the official
SOAP specification for HTTP as well as SMTP.

Inside the SOAP protocol, the classical pattern of a message body carry-
ing the payload and an encapsulating envelope containing some descriptive data
and metainformation is retained. Additionally, SOAP allows the extension of

1 At the time of its definition the acronym stood for Simple Object Access Protocol.
In the standardized version SOAP is no longer an acronym.

20 Mario Jeckle, Ingo Melzer, and Jens Peter

the header content by the use of XML elements not defined by the SOAP spec-
ification itself. For distinguishing these elements from those predefined by the
specification the user has to take care that they are located in a different XML
namespace. The example below shows a complete SOAP message accompanied
with the transport protocol specific data necessary when using the HTTP bind-
ing. Additionally a user defined header residing in a non-W3C and thus non
normative namespace is shown as part of the SOAP Header element.

In contrast to the payload which is intended to be sent to the receiver of the
SOAP message clearly identified by HTTP’s Host header, SOAP headers may
or may not be created for processing by the ultimate receiver. Specifically, they
are only processed by machines identified by the predefined role attribute. By
doing so, the extension framework offers the possibility of partly processing a
message along its path from the sender to the ultimate receiver. These interme-
diate processing steps could fulfill arbitrary task ranging from problem oriented
ones like reformatting, preprocessing, or even fulfilling parts of the requests to
more infrastructural services such as filtering, caching, or transaction handling.
In all cases the presence of a node capable of (specification compliant) processing
of a SOAP message is prescribed. This is especially true since an intermediary
addressed by the role attribute is required to remove the processed header after
executing the requested task. Additionally, the specification distinguishes be-
tween headers optionally to be processed (e. g. caching) and those which are
interspersed to trigger necessary message behavior. The latter ones must addi-
tionally be equipped with the attribute mustUnderstand. If a header addressed
to an intermediary flagged by this attribute cannot be processed, the SOAP
node is forced to raise an exception and resubmit the message to the sender.
Thus it is ensured that all headers mandatory to be processed are consumed by
the respective addressees and removed afterwards.

Loosely Coupled: An important property of a SOA and Web services it the
fact that they are loosely coupled. This means that they are not statically liked

A Scalable Entry-Level Architecture 21

and binding does not happen at compile time. During its execution, a service
can search for some other services, which might at this moment in time still
be unknown, retrieve information about the search results, and invoke one of
the just found services. This allows to move services to different machines and
simple change the information in one of the registries. No other service has to
be changed or re-compiled. A promising starting point for a highly flexible in-
frastructure.

WS-Notification: Later specifications such as WS-NOTIFICATION [24] allow
the implementation of the publish/subscribe pattern. This allows to automat-
ically trigger certain action as soon as certain criteria have been met. WS-
Notification allows the implementation of Grid infrastructures and Grid based
applications. The OPEN GRID SERVICES ARCHITECTURE, short OGSA, moves
very close to the Web services world and the latest version is based on Web
services standards. If this development continues, it will soon be very difficult or
even impossible to tell Web services and Grid services apart. This development
became obvious one year ago in the OPEN GRID SERVICES INFRASTRUCTURE,
short OGSI, definition 1.0 which has been released in April 2003. It states in this
context “a Grid service is a Web service that conforms to a set of conventions
(interfaces and behaviors) that define how a client interacts with a Grid service”.

There are a number of alternatives to WS-Notification. Some features can be
implemented using WS-Eventing [23] and part 2 of WSDL 2.0 offers a message
exchange pattern, too.

2.4 Interpreted Languages

One of the main challenges for Grid application frameworks such as the OGSA-
OGSI approach is multi-platform support. That is for avoiding prescriptions
concerning platform details such as the deployed operating system running ma-
chines participating the Grid. Also the infrastructure should not set out limits
regarding the programming language chosen for implementing machine’s code
locally executed but contributing to the Grid. In general, these challenges can
be tackled by providing portable implementations as well as by specifying solely
interfaces whose description do not reveal details of the programing language
specific manifestation. Classically, the required interfaces descriptions are pro-
vided by using standardized paradigm neutral approaches such as CORBA’s
Interface Definition Language (IDL) or WSDL, the in some sense comparable
approach introduced by Web service technology.

Unfortunately, description mechanisms which concentrate solely on callable
interface do specifiy wire representations of the data to be exchanged between
communicating nodes. Therefore typically extra agreements have to be settled.
In CORBA’s case this is the Common Data Representation resp. the XML for
Web service deployment.

Besides this the internal implementation of nodes participating the Grid may
vary vastly. In general this is rather a blessing than a cure. But, especially for en-
try level Grids the costly creation or even adaptation of code to deploy on single

22 Mario Jeckle, Ingo Melzer, and Jens Peter

nodes should be as lightweight as possible. Likewise, the potential requirement
to port applications to other platforms curbs the amount of specialities of the
respective language platform which can be used to an absolute minimum. There-
fore the reliance on the lowest common denominator, i.e. basic functionality
known to be supported by various plattforms is an archetypical design decision
to ensure widest possible portability.

Our approach for supporting entry-level Grids therefore introduces the us-
age of a portable implementation and execution plattform as third cornerstone
(besides basic Grid ideas and reliance on standardized Web service technology)
of the proposed architecture. It should be emphasized that this does not tie the
approach to a single specific platform. But it has not escapted our notice thas
this founds a clear preference for interpreted or at least hybrid (i.e. approaches
which incorporate a compile cycle which produces a result which is interpreted
at runtime) languages such as formed by the JAVA or Microsoft .NET platform.

As a result of this architectural constraint we are able to interconect vari-
ous physical platforms on short notice to a metacomputer. The computational
nodes constituting the metacomputer will be able to offer current programing
paradigms such as object orientation and concurrency without additional adap-
tation effors. Additionally, basing Grid applications on current programming ap-
proaches bears twofolded benefits for both, the Grid and the deployed software
execution environment. On the one hand deployment of Grid-based technology
is leveraged by the level of additional standardization. On the the other hand
the installation basis of the respective language environments is additionally
widened.

3 Performance Estimation

3.1 Computation Model

The architecture presented in this paper is based on a Web service enabled
server using the standardized SOAP communication protocol. The server hosts
the main controlling service and a Web service toolkit. Due to the usage of
standards it is technically feasible to add additional Grid nodes on short notice.
These nodes share their local resources for processing by using the same software
implementation available for different platforms and operating systems.

The main advantage of such an architecture is that the creation of a Grid is a
lightweight process. In essence it simply requires the distribution of the software
and its install on the participating machines. At runtime these machines will
act as clients requesting computational tasks fromt he node acting as server. At
development time the application implementing the problem to be solved has to
be transfered in an Grid-enabled application, so it is necessary to identify the
code needed to build a job list which contains the amounts of work which should
be distributed to the clients. Technically, one Grid node provide a job queue as
a central service. The next step is to wrap a Web service around the processing
code of the application and deploy the service, which is an Web service RPC,
on the server. To add new nodes to the Grid, solely the Web service has to be

A Scalable Entry-Level Architecture 23

deployed to a network attached computer. Additionally, the new node has to be
announced to the queue holding serving. This could be done by simply adding its
network address to a configuration file or online by sending a predefined message.

This Grid is build up as a logical star topology, a single computer, the con-
troller, coordinates the available resources. This controller has to fulfill different
tasks in the Grid, for example he has to build the list of jobs, what means that
the original task the Grid-enabled application has to process must be split in
smaller pieces, the jobs, for parallel execution. The controller has to distribute
these jobs to the available nodes, the computers which share their computing
resources to the Grid and receive the processed results from the nodes. Com-
munication with the participating nodes is operated in an asynchronous mode.
Thus either asynchronous Web service calls have to be used or asynchronous
communication has to be emulated on-top of synchronous communication. One
way to achieve the latter ist to deploy multithreading within the controller.

On the node, there is also a Web service deployed which receives and process
a job. The controller and the nodes are connected through a network, no matter
if it is a local departemental network or the internet.

Fig. 1. Architecture

Fig. 1 is a schematically presentation of the architecture including the em-
ulation of asynchronous communication by multithreaded synchronous commu-
nication.

1.
2.
3.
4.

The primary task is split into a number of single jobs by the JobScheduler.
The controller invoke for every active node an own ServiceThread.
Every thread grabs a jobs from the JobQueue.
The job is send to the nodes for processing and the ServiceThread wait for
the result. When an error occurs, for example the Grid node is temporarily
not available, the job is republished to the JobQueue and the ServiceThread
will wait for an estimated time to send a new job to the node.

24 Mario Jeckle, Ingo Melzer, and Jens Peter

5. After the successful processing of a job, the node sends back the result to
his ServiceThread and it is stored by the controller.

Based on that architecture, the following answers for the basic questions in
Chapter 2.1 can be presented:

Identity and Authentication: Solely the controller initiates connections
to the nodes. The participating nodes can register themselves actively to
take part within a computation task. For authenticating nodes the initiating
SOAP requests can be signed digitally.
Authorization and Policy: Based on a validated digital signature nodes
are authorized to receive data for fulfilling the computation tasks. Policies
concerning aspects of Quality of Service are ensured by the controller. If a
node does not send back its computed result in a certain amount of time the
node is marked inactive and the data is distributed to another node.
Resource Allocation: Grid nodes can determine the share of processing
time they devote to the computation of received tasks independent from
the controller. In case of high node utilization the nodes are also allowed
to withdraw from the Grid without requiring them to signal this to the
controller.
Resource Management and Security: Due to the usage of an interpreted
language which can be executed on various platforms all resources can be
handled in a uniform manner by utilizing the abstraction introduced by the
execution platform. Security concerns can be addressed by deploying XML
and Web service security mechanisms.

Within this model the following issues take influence to the over all perfor-
mance of such a Grid:

Implementation of the Grid-Enabled Application: How much time is
needed by the application to process the code which is not influenced by the
parallel processing? Is there a JobQueue which contains the jobs prepared
by a JobScheduler or must the controller extract every single job from the
originally task at runtime? What happens with the results? What amount of
data need to be transfered for one job? How many jobs need to be processed
in a second?

Performance of the Controller Computer: Because the controller has to
coordinate every job and result, the performance of the controller can be a
key indicator for the performance of the whole Grid. How many jobs per
second can be transfered? Is there a local database the results where stored
in? Must the controller host other applications than the Grid?

Networkperformance: With what type of network are the nodes connected
to the controller? What is the maximal bandwidth of the network? Is every
node in the same subnet? What is about the other traffic on the network?

Processingroutines on the Grid Node: How much time need a node to pro-
cess a job?

It is very interesting to forecast the performance benefit before transferring
an application in a Grid-enabled application. There were some efforts to forecast

A Scalable Entry-Level Architecture 25

the speedup of an application when running it on a parallel processor system. One
of the formulas to forecast the speedup is the GUSTAFSON-BARSIS (1) approach:

But this could not easy be transfered to a Grid where the parallel processors are
connected via a network and the application and not the operating system need
to handle the distribution of the processes to the additional computing power.
In this case, not only the sequential (code which could not processed parallel)
part of the application is an indicator for the speedup. Other parameters are the
network latency, the time need to transmit the application parameters to process
to the nodes, and the overhead the application produce to prepare sending and
receiving of the parameters. By now, there is no approach to forecast such a
speed up for Grid services.

In consideration of this issues the following formula (2) can give a forecast
on the speedup of an entry-level Grid:

The maximal speedup must be less than the number of processors so there
are some other parameter we have to look at. The factor represents the
sequential part of the application and will influence the maximum speedup be-
cause this factor will rise when the over all time the application need to process
will decrease when it is processed by more computers. The network latency, or
NL, is not static, it represents a range between 0 and 1 and has to be explored
by a statistical review based on network performance tests.

A significant factor is the overhead of performance of the application.
This overhead and the number of used CPUs or Grid nodes is the so called
GridFactor. This GridFactor is a key performance indicator for the Grid. Some
problems can be easy adapted for parallel processing but there is an immense
overhead when there are more processing units involved. For example the pro-
cessing time for a job is under 1 ms but the time needed to prepare the parameter
for this job is about 100 times higher, there is no sense to process this kind of
problem in a parallel way. With every additional Grid node the performance will
go from bad to worse and with such a bad GridFactor there will be no speedup
at all. The value of has also be explored by statistical review based on
tests with a prototype of the Grid-enabled application.

3.2 Validation

The results with a huge and therefrom a high GridFactor can be shown with
the Grid-enabled example application for matrices multiplication. The results of
the time measurement tests with this application shows, that the processing time
is stable, no matter if we have one node or ten nodes connected to the Grid. One
handicap was that this application has had no JobScheduler to prepare the jobs

26 Mario Jeckle, Ingo Melzer, and Jens Peter

and the other handicap was that the processing time on a nodes was approximate
zero. The missing JobScheduler results in that the controller must prepare every
job at runtime. And it take more time to prepare a job for a node than the
node need to process it (about 1 nanosecond). The GridFactor for this kind of
application is to high that there is no speedup at all.

Fig. 2. Sequence Diagram

The second application was implemented based on a thesis at the Fraunhofer
Institute for Manufacturing Engineering and Automation IPA in Stuttgart [16].
It is a tool for analyzing networks, in this case specially to identify the leaks in
the waver transport network of a computerchip fab. To enable the stand alone
application for the Grid, the processing unit with the algorithms was extracted
and the JobScheduler was modified. A Web service with the processing routine
was deployed on the nodes and the amount of data was about 4kB for each job.
Fig. 2 shows a sequence diagram of that application.

Fig. 3 shows the speedup reached with this application. Two different sce-
narios were tested with the application. The test were based on a sample net-
work model with 31 nodes and 72 edges. Two different analyses were run on the
model. The first test scenario was to analyze the network with one component to

A Scalable Entry-Level Architecture 27

Fig. 3. SpeedUp

fail(fault:1-test). For this simulation 103 calculations have to be done. The sec-
ond analyze simulates two defect components(fault:2-test) what results in 5253
calculations. The different speedups of the tests caused on the different and
NL parts. In the fault: 1-test, the ratio of and NL to the application time over
all was higher. And the processing time on the clients a bit lower because the
need to calculate only with one parameter. The fault:2-test shows a much better
speed up. Within this test the ratio of and NL to the application time over
all was lower, the time the nodes need to process a little bit higher.

With the Grid-enabled version of this software the time needed to analyze
this small network with about 103 components shrink from over 80 minutes with
a single slave to 6 minutes with 20 slaves. With the distributed computing it is
now possible to analyze a network in a manageable timeframe. The tests were
executed on computers with a Athlon© 1100 MHz processor connected with a
switched 100Mbit Ethernet. The Grid was based on a Tomcat server and the
Web service framework Axis, both from the Apache Software Foundation [18].

The GridFactor for this application was better because the speedup is rising
with the number of nodes. In Fig. 3 is shown that the speedup is rising slower
with additional Grid nodes which is a result of the rising GridFactor. The tested
application caused a processing time on the Grid nodes between 700 and 1100
milliseconds, so there was a average load from one call for every Grid node per
second. Fig. 4 shows that there can be about 60 to 100 calls per second with a
payload of 4kByte so NL is small and probably has not influenced the speedup
stagnation happend by about 20 nodes.

The maximum number of calls depending to the size of data (Fig. 4) was
measured with the SOAPing-Tool [17], which can be used for testing the an-
swer/reply behavior for a SOAP call in the tradition of the ICMP Echo ser-
vice, better known as PING. The role of the controller fulfill a computer with
a Pentium©-III Mobile processor with 1100 MHz and there was a computersys-
tem based on an Athlon© XP 3000+ as a Grid node. The measured data is the
average value from about 50000 SOAPings for each payload.

28 Mario Jeckle, Ingo Melzer, and Jens Peter

Fig. 4. SOAP-Calls per second

4 Related Work

Confluence of Web service technology and Grid applications are currently part
of the next release of the OGSA/OGSI toolkit. It is expected by virtue of pub-
lications available from the GLOBAL GRID FORUM that in future all nodes par-
ticipating in a Grid (regardless is speaking of data or computational Grids) will
be accessible by using Web service interfaces. As a consequence the seminal
standards WSDL and SOAP will widen its position as ubiquitous infrastructure
based on the Web’s base technology such as HTTP.

Concerning performance estimation of computational Grids only heuristics
[20] and models with limited applicability [21] have been published so far. Both
approaches addtionally lack consideration of entry-level technology such as in-
terpreted languages and Web services.

5 Summary

It is not very difficult to implement platform independent solutions for compu-
tational Grids from scratch as it has been done for this paper. However, it is
interesting to know how such solutions scale given the specific problem to be
calculated. For this purpose, this paper has introduced a simple model includ-
ing two formulas to estimate the performance of a computational Grid solution.
This allows judge the potential benefit of an implementation before starting the
real implementation and also helps to evaluate scenarios which might be used
for Grid computing.

References

1. M. Gudgin, M. Hadley, J.-J. Moreau, H. F, Nielsen: W3C Candidate Recommen-
dation: SOAP 1.2 Part 1: Messaging Framework, 20 December 2002
http://www.w3.org/TR/soap12-part1/

A Scalable Entry-Level Architecture 29

2.

3.

4.
5.

6.
7.
8.
9.

10.

11.

12.
13.

14.

15.

16.

17.
18.
19.

20.

21.

22.

23.

24.

25.

M. Gudgin, M. Hadley, J.-J. Moreau, H. F. Nielsen: W3C Candidate Recommen-
dation: SOAP 1.2 Part 2: Adjuncts, 20 December 2002
http://www.w3.org/TR/soap12-part2/
R. Fielding, et al: Hypertext Transfer Protocol – HTTP/1.1, RFC2616, June 1999
http://www.ietf.org/rfc/rfc2616.txt
Globus http://www.globus.org
T. DeFanti, I. Foster, M. Papka, R. Stevens, T. Kuhfuss: Overview of the I-
Way. International Journal of Supercomputer Applications, 10(2):123-130, 1996.
http://www.globus.org/research/papers.html
FAFNER http://www.npac.syr.edu/factoring.html
SETI@home http://setiathome.ssl.berkeley.edu/
OMG http://www.omg.org
JINI http://www.jini.org/
A. Grimshaw: Data Grids in Ahmar Abbas, Grid Computing: A Practical Guide to
Technology and Applications, 2004 Charles River Media, Hingham
A. Abbas: Grid Computing Technology – An Overview in Ahmar Abbas, Grid
Computing: A Practical Guide to Technology and Applications, 2004 Charles River
Media, Hingham
The DataGrid Project http://eu-datagrid.web.cern.ch
D. De Roure et al: The evolution of the Grid in Fran Berman, Geoffrey C. Fox,
Anthony J. G. Hey: Grid Computing, 2003 John Wiley and Sons, West Sussex
Schlafende PC mutieren zum Supercomputer, Neue Zürcher Zeitung, 7.11.2003
http://www.nzz.ch/netzstoff/2003/2003.11.07-em-article97JEJ.html
A Future e-Science Infrastructure http://www.nesc.ac.uk/technical_papers/
DavidDeRoure.etal.SemanticGrid.pdf
T. Geldner, Graphenbasierte Layoutplanung von Transportnetzwerken in Halbleit-
erfabriken, Konstanz/Stuttgart 2004
SOAPing http://www.jeckle.de/freeStuff/soaping/index.html
The Apache Software Foundation http://www.apache.org/
A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, J. M. Pollard: The Number
Field Sieve, ACM Symposium on Theory of Computing, 1990.
S. Sodhi: Automatically Constructing Performance Skeletons for use in Grid Re-
source Selection and Performance Estimation Frameworks, Proceedings of the 15th
ACM/IEEE Supercomputing Conference, 2003.
C. Lee, J. Stephanek: On Future Global Grid Communication Performance, Global
Grid Forum, 1999.
D. Winer: XML-RPC Specification, available electronically, 1999.
http://www.xmlrpc.com/spec
L. F. Cabrera, C. Critchley, G. Kakivaya et al.: WS-Eventing, available electroni-
cally, 2004. http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
S. Graham, P. Niblett, D. Chappell et al.: Web Service Base Notification, 2004.
ftp://www6.software.ibm.com/software/developer/library/
ws-notification/WS-BaseN.pdf
M. Gudgin, A. Lewis, J. Schlimmer (eds.): Web Services Description Language
(WSDL) Version 2.0 Part 2: Message Exchange Patterns, W3C Working Draft,
World Wide Web Consortium, available electronically, 2004.
http://www.w3.org/TR/2004/WD-wsdl20-patterns-20040326

Enhancing Java Grid Computing Security
with Resource Control

Jarle Hulaas1, Walter Binder1, and Giovanna Di Marzo Serugendo2

1 School of Computer and Communication Sciences
Swiss Federal Institute of Technology Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
{jarle.hulaas,walter.binder}@epfl.ch

2 Computer Science Department, University of Geneva
CH-1211 Geneva 4, Switzerland
Giovanna.Dimarzo@cui.unige.ch

Abstract. This paper outlines an original Computational Grid deploy-
ment protocol which is entirely based on Java, leveraging the portability
of this language for distributing customized computations throughout
large-scale heterogeneous networks. It describes practical solutions to
the current weaknesses of Java in the fields of security and resource con-
trol. In particular, it shows how resource control can be put to work not
only as basis for load balancing, but also to increase the security and
general attractiveness of the underlying economic model1.

Keywords: Grid Computing, Resource Control, Mobile Code.

1 Introduction

Grid computing enables worldwide distributed computations involving multi-
site collaboration, in order to benefit from the combined computing and stor-
age power offered by large-scale networks. The way an application shall be dis-
tributed on a set of computers connected by a network depends on several factors.

First, it depends on the application itself, which may be not naturally dis-
tributed or on the contrary may have been engineered for Grid computing. A
single run of the application may require a lot of computing power. The appli-
cation is intended to run several times on different input data, or few times, but
an a huge amount of data. The application has at its disposal computational,
storage and network resources. They form a dynamic set of CPUs of different
computing power, of memory stores (RAM and disks) of different sizes, and of
bandwidths of different capacities. In addition, the basic characteristics of the
available CPUs, memory stores and bandwidth are not granted during the whole
computation (a disk with an initial capacity of 512MBytes when empty, cannot
be considered having this capacity when it is half full). Code and data may be
stored at different locations, and may be distributed across several databases.

1 This work was partly financed by the Swiss National Science Foundation.

M. Jeckle, R. Kowalczyk, and P. Braun (Eds.): GSEM 2004, LNCS 3270, pp. 30–47, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Enhancing Java Grid Computing Security with Resource Control 31

Computation itself may occur at one or more locations. Results of the compu-
tation have to be collected and combined into a coherent output, before being
delivered to the client, who may wait for it at still another location. The network
topology has also an influence on the feasibility of the distribution. Centralized
topologies offer data consistency and coherence by centralizing the data at one
place, security is more easily achieved since one host needs to be protected. How-
ever, these systems are exposed to lack of extensibility and fault-tolerance, due
to the concentration of data and code to one location. On the contrary, a fully
decentralized system will be easily extensible and fault-tolerant, but security and
data coherence will be more difficult to achieve. A hybrid approach combining a
set of servers, centralizing each several peers, but organized themselves in a de-
centralized network, provides the advantages of both topologies. Finally, policies
have to be taken into account. They include clients and donators (providers)
requirements, access control, accounting, and resource reservations.

Mobile agents constitute an appealing concept for deploying computations,
since the responsibility for dispatching the program or for managing run-time
tasks may be more efficiently performed by a mobile entity that rapidly places
itself at strategic locations. However, relying completely on mobile agents for
realizing the distribution complicates security tasks, and may incur additional
network traffic.

This paper proposes a theoretical model combining the use of a trusted, sta-
tionary operator with mobile agents, running inside a secure Java-based kernel.
The operator is responsible for centralizing client requests for customized com-
putations, as well as security and billing tasks, and for dispatching the code on
the Grid. We exploit the portability and networking capabilities of Java for pro-
viding simple mobile software packets, which are composed of a set of bytecode
packages along with a configurable and serializable data object. We thus propose
to use what is sometimes called single – hop mobile agents, which, compared
to fully-fledged mobile agents, do not require heavy run-time support. These
agents prevent the operator from becoming a bottleneck, by forwarding input
code and data to computation locations and performing some management tasks.
They start the different parts of the computations, ensure the management and
monitoring of the distributed computations, and eventually collect and combine
intermediate and final results.

The objective of this model is to propose a realistic deployment scenario, both
from an economic and technical point of view, since we describe a setting where
providers of computing resources (individuals or enterprises) may receive rewards
in proportion to their service, and where issues like performance and security
are addressed extensively, relying on actual tools and environments. While we
put emphasis on being able to support embarassingly parallel computations,
the model is sufficiently general to enable the distribution of many other kinds
of applications.

Section 2 reviews distributed computations, Section 3 presents the model,
Section 4 advocates the application of Java in Grid computing, whereas Section 5
describes the design and implementation of a secure execution environment,

32 Jarle Hulaas, Walter Binder, and Giovanna Di Marzo Serugendo

which constitutes a first necessary step towards the full realization of the model.
Finally, Section 6 summarizes some related approaches, before concluding.

2 Distributed Computations

Worldwide distributed computations range from parallelization of applications
to more general Grid distributions.

2.1 Parallelization

Distribution of computing across multiple environments shares similarities with
the parallelization of code on a multi-processor computer. We distinguish two
cases, the first one corresponds to single instruction, multiple data (SIMD),
while the second one corresponds to multiple instruction, multiple data (MIMD).
Figure 1 shows both cases.

In case (a), the client’s host ships the same code, but with a different ac-
companying data to multiple locations. After computation, the different results
are sent back to the client’s host. The final result is simply the collection of the
different results. This kind of distribution is appropriate for intensive computing
on a huge amount of the same type of data. It corresponds to the distribution
realized by the SETI@home2 experiment that uses Internet connected computers
in the Search for Extraterrestrial Intelligence (SETI). Donators first download a
free program. The execution of the program then downloads and analyzes radio
telescope data. Note that in this case, the downloaded data may come from a
different source.

In case (b), code and data are split into several parts, then pairs of code and
data are sent to several locations. The result is obtained by a combination (some
function) of the different results.

Such a distribution is suitable for applications that can be divided into several
pieces. This scheme fits the case of Parabon3. The client defines jobs to be
performed. Transparently, the API divides the job into several tasks, on the
client side; a task is made of a code, data, and some control messages. Tasks are
sent to the Parabon server, which then forwards each task to a donator, using
the donator’s CPU idle time for computing the task. Once the task is achieved,
the server sends back the result to the client, where the API then combines all
results together, before presenting them to the client.

As a particular case of the MIMD example, code and data may be divided into
several sequential parts. Computation would occur then in a pipeline-like style,
where the next piece of code runs on the result of the previous computation.

These examples all exploit idle CPU time of the computer participating in
the computations. The execution of the code on the data will ideally occur inside
a secure “envelope”, which ensures, on one hand, that the donator cannot exploit
the code, the data and the results of the client; on the other hand, that the client

2

3
http://setiathome.ssl.berkeley.edu/
http://www.parabon.com

Enhancing Java Grid Computing Security with Resource Control 33

Fig. 1. Parallelisation

does not execute malicious code in the donator’s host. This is however not the
case in practice, since current environments cannot provide such guarantees. The
model proposed here at least partly addresses this issue (see Section 4).

2.2 Grid

The more general case of distributed computing is provided by the Grid com-
puting concept which enables collaborative multi-site computation [11]. Grid
computing goes beyond traditional examples of peer-to-peer computing, since
there is a concern of proposing a shared infrastructure for direct access to stor-
age and computing resources.

Figure 2 shows a generic Grid computation, encompassing the different
classes of Grid applications [10]. The client, requesting the computation, the
software to run, the data, and the results may be located at different sites. The
data is even distributed across two databases. In this example, the code and the
two pieces of data are moved to the donator’s location, where the computation
takes place. The result is then shipped to the client.

The CERN DataGrid [7] provides an example where physicists are geograph-
ically dispersed, and the huge amount of data they want to analyze are located
worldwide.

3 Proposed Model

In this section we give an overview of our overall architecture, we outline our
business model, and describe the different roles of participants in our Grid com-
puting infrastructure, as well as their interactions.

3.1 Participating Parties in the Grid Computing Model

Our model involves 3 distinct parties: the operator of the Grid, resource donators,
and clients. The operator is in charge of maintaining the Grid. With the aid of

34 Jarle Hulaas, Walter Binder, and Giovanna Di Marzo Serugendo

Fig. 2. Grid

a mobile deployment agent, he coordinates the distribution of applications and
of input data, as well as the collection and integration of computed results. The
operator downloads the applications, and distributes them to resource donators
that perform the actual computation.

Clients wishing to exploit the Grid for their applications have to register at
a server of the operator before they are allowed to start computations. During
the registration step, the necessary information for billing is transmitted to the
operator. Afterwards the client is able to send a deployment descriptor to the
operator.

The deployment descriptor comprises the necessary information allowing the
operator to download the application, to prepare it for billing and accounting,
and to distribute the application and its streams of input data to different ac-
tive resource donators, taking into consideration their current load. The mobile
deployment agent, which is created by the operator based on the contents of
the client’s deployment descriptor and coordinates the distributed client appli-
cation, is not bound to a server of the operator; the client may specify the server
to host the deployment agent, or decide to let the agent roam the Grid according
to its own parameters. This approach improves scalability and ensures that the
operator does not become a bottleneck, because the operator is able to offload
deployment agents from his own computers.

Resource donators are users connected to the same network as the operator
(e.g., the Internet) who offer their idle computing resources for the execution of
parts of large-scale scientific applications. They may receive small payments for
the utilization of their systems, or they may donate resources to certain kinds
of applications (e.g., applications that are beneficial for the general public). Re-
source donators register at the Grid operator, too. They receive a dedicated
execution environment to host uploaded applications. Portability, high perfor-
mance, and security are key requirements for this execution platform. Section 4
gives detailed information on our platform, which is completely based on the
Java language. The operator dispatches downloaded applications to active re-
source donators. The deployment agent is in charge of supervising the flows of
initial and intermediate data to and from the resource donators, as well as the
final results, which are passed back to the destination designated by the client.

Enhancing Java Grid Computing Security with Resource Control 35

Allowing the deployment agent to be moved to any machine on the Grid im-
proves efficiency, as the deployment agent may locally access the required data
there. As explained later, the deployment agent, or its clones, is also responsible
for minimizing the flows of Grid management data between the donators and
the operator.

3.2 Business Model

In our model the operator of the Grid acts as a trusted party, since he is re-
sponsible of all billing tasks4. On the one hand, clients pay the operator for the
distributed execution of their application. On the other hand, the operator pays
the resource donators for offering their idle computing resources.

The client buys execution tickets (special tokens) from the operator, which
the deployment agent passes to the resource donators for their services. The
resource donators redeem the received execution tickets at the operator. The
execution tickets resemble a sort of currency valid only within the Grid, where
the operator is the exclusive currency issuer. They enable micro-payments for
the consumption of computing resources. There are 3 types of execution tickets:
tickets for CPU utilization, for memory allocation, and for data transfer over
the network. The coordinating deployment agent has to pass execution tickets
of all types to a resource donator for exploiting his computing resources.

Execution tickets have to be protected from faking, e.g., by cryptographic
means, and from duplication, as the operator keeps track of all tickets actually
issued. Execution tickets can be distributed at a fine granularity. Hence, the
loss of a single execution ticket (e.g., due to the crash of a resource donator)
is not a significant problem. In case the deployment agent does not receive the
desired service from a resource donator for a given execution ticket, it will report
to the operator. If it turns out that a resource donator collects tickets without
delivering the appropriate service, the operator may decide to remove him from
the Grid. The detection of such malicious donators is possible by correlating the
amount of requested tickets with the work actually performed, which is measured
by CPU monitoring inside the dedicated execution environment.

3.3 Deployment of Applications

In order to start an application, the client transmits a deployment descriptor
to the operator, who will retrieve and dispatch the application to different re-
source donators and also create a deployment agent for the coordination of the
distributed execution of the application.

The deployment descriptor, sent by the client, consists of the following ele-
ments:

A description of the application’s code location and structure. The client
informs the operator of the application he wants to run. The operator will

4 The operator may also be responsible for guaranteeing that only applications corre-
sponding to the legal or moral standards fixed by the donators are deployed.

36 Jarle Hulaas, Walter Binder, and Giovanna Di Marzo Serugendo

then download the application, and prepare it for resource control, before
dispatching it to the donators. The application’s structure establishes cut
points and defines the different parts of the application that can run concur-
rently, as well as possible computational sequences. The client may specify
himself the composition of computations, which reflects the calculus he de-
sires to achieve (SIMD, MIMD, other). However, he does not customize the
part of the description related to cut points, since it is tightly dependent on
the application;
A description of the source for input data. Usually, scientific applications
have to process large streams of input data, which can be accessed e.g. from a
web service provided by the client. The interface of this service is predefined
by the operator and may support various communication protocols (e.g.,
RMI, CORBA, SOAP, etc.);
A descriptor of the destination for output results. Again, this element des-
ignates the location of an appropriate service that can receive the results;
Quality-of-service (QoS) parameters. The client may indicate the priority of
the application, the desired execution rate, the number of redundant compu-
tations for each element of input data (to ensure the correctness of results),
whether results have to be collected in-order or may be forwarded out-of-
order to the client, etc. The QoS parameters allow the client to select an
appropriate tradeoff between execution performance, costs, and reliability.
The QoS parameters are essential to select the algorithms to be used by the
deployment agent. For instance, if the client wishes in-order results, the de-
ployment agent may have to buffer result data, in order to ensure the correct
order.

In the following we summarize the various steps required to deploy a client
application in the Grid. Figure 3 illustrates some of them.

1.

2.

3.

4.

Prospective resource donators and clients download and install the mobile
code environment employed by the chosen operator, in order to be able to
run the computations and/or to allow the execution of deployment agents.
Donators register with the operator and periodically renew their registration
by telling how much they are willing to give in the immediate future; a
calibration phase is initially run at each donator site to determine the local
configuration (processor speed, available memory and disk space, quality and
quantity of network access, etc.).
A client registers with the operator and sends the deployment descriptor
(steps 1 and 2 of Figure 3).
The operator reads the deployment descriptor and:
(a) Chooses an appropriate set of donators according to the required service

level and to actually available resources; a micro-payment scheme is ini-
tiated, where fictive money is generated by the operator and will serve as
authorization tokens for the client to ask donators for resources; a first
wave of credit is transferred to the donator set, thus signifying that the
corresponding amount of resources are reserved.

Enhancing Java Grid Computing Security with Resource Control 37

(b)

(c)

(d)

Creates a mobile agent, the deployment agent, for coordinating the dis-
tribution, execution and termination of the client application (step 3);
this deployment agent will shift the corresponding load from the operator
to the place designated by the client, or to a donator chosen according
to load balancing principles; the deployment agent may clone itself or
move to the appropriate places for ensuring that input and output data is
transferred optimally, thus avoiding useless bottlenecks at central places
like the operator server.
Downloads the client application (step 4) and rewrites it (reification of
resources, step 5); the resulting code is signed to prevent tampering with
it, and deployed directly from the operator’s server (step 6).
Dispatches the deployment agent to the appropriate initial place for ex-
ecution (step 7).

5.

6.

7.

The deployment agent launches the distributed computation by indicating
(step 8) to each donator-side task where to locate its respective share of
input data (step 9), and starts monitoring the computation.
The deployment agent acts as a relay between the operator and the dona-
tors. The agent receives regular status reports from the various locations of
the resource-reified application (step 10); this enables him to monitor the
progress of the computations, and to detect problems like crashes and to
assist in the recovery (e.g., by preparing a fresh copy of the appropriate in-
put data, or by finding a new donator to take over the corresponding task);
the status reports are filtered and forwarded to the operator (step 11) in or-
der to help maintaining a reasonably good view of the global situation (the
operator might decide to schedule a second application on under-utilized do-
nators); when necessary, the operator will ask the client for more credit (step
12), who will then buy more authorization tokens from the operator (step
13). The deployment agent then passes the execution tickets to the donators
(steps 14 and 15)
When results have to be collected, the deployment agent may clone or mi-
grate to the destination (step 16) and coordinate the incoming flows of data
(step 17). He may perform a last filtering and integrity control of data before
it is definitely stored.

We favored this model over a completely decentralized peer-to-peer setting,
since it simplifies the implementation of a global strategy for load balancing and
ensures that some trusted party – the operator – can control the computations
as they progress. In this approach, the operator also is in a natural position
for managing all operations related to the validation of client-side payments
and corresponding authorizations. Using mobile code for the deployment agent
ensures that the server of the operator does not become a bottleneck and a
single point of failure. In the current model, the application code has to be
transferred to the operator’s computer, since it needs to be checked for security
purposes (e.g., by code inspection), to be prepared for billing and accounting
(using resource reification), and to be partitioned according to the deployment
descriptor.

38 Jarle Hulaas, Walter Binder, and Giovanna Di Marzo Serugendo

Currently, in order to simplify the deployment of the dedicated execution
environment, resource reification is performed at the operator’s site. However,
this might also occur at the donator sites, at the expense of possibly transforming
the same application in the same way on sites, hence a waste of resources.
Another disadvantage is that the donators would be in direct contact with the
end-client: this hampers the transparency of our current proposal, and might
have practical inconveniences by short-circuiting the trusted third-party that
the operator implements (e.g., the application could no longer be verified and
digitally signed by the operator, which has a recognized certificate).

Fig. 3. Application Distribution

4 Using Java for the Distribution of Computations

Here we motivate the use of Java for the implementation of distributed compu-
tations and their distribution within a network. In our model we use Java-based
mobile agents for the distribution of deployment agents (to a server specified by
the client) and of computational tasks (to resource donators). A secure Java-
based kernel, the JavaGridKernel, serves as execution platform for deployed
components in both cases. In that way, we leverage the benefits of Java and of

Enhancing Java Grid Computing Security with Resource Control 39

mobile code, while at the same time offering enhanced security to protect hosts
from faulty applications.

4.1 Why Java?

Recently, platforms for Grid computing have emerged that are implemented in
Java. For instance, Parabon offers an infrastructure for Grid computing which
is based completely on Java. In fact, the Java language offers several features
that ease the development and deployment of a software environment for Grid
computing. Its network-centric approach and its built-in support for mobile code
enable the distribution of computational tasks to different computer platforms.

Java runtime systems are available for most hardware platforms and oper-
ating systems. Because of the heterogeneity of the hardware and of operating
systems employed by Internet users, it is crucial that a platform for large-scale
Grid computing be available for a large variety of different computer systems.
Consequently, a Java-based platform potentially allows every computer in the
Internet to be exploited for distributed, large-scale computations, while at the
same time the maintenance costs for the platform are minimal (“write once, run
everywhere”).

Apart from its portability and compatibility, language safety and a sophis-
ticated security model with flexible access control are further frequently cited
advantages of Java. As security is of paramount importance for the acceptance
of a platform for Grid computing, the security and safety features of Java are
highly appreciated in this context.

4.2 Performance Issues

Java has its origins in the development of portable Internet applications. The
first implementations of Java runtime systems were interpreters that inefficiently
executed Java Virtual Machine (JVM) bytecode [16] on client machines. Also,
several features of the Java programming language impact performance: the fact
that it is a type safe, object-oriented, general-purpose programming language,
with automatic memory management, and that its implementation does not
directly support arrays of rank greater than one, means that its execution may
be less efficient compared to more primitive or specialized languages like C and
Fortran.

However, optimizations performed by current state-of-the-art Java runtime
systems include the removal of array bounds checking, efficient runtime type
checking, method inlining, improved register allocation, and the removal of un-
necessary synchronization code. See [15] for a survey of current compilation
and optimization techniques that may boost the performance of Java runtime
systems for scientific computing. In [17] the authors report that some Java appli-
cations already achieve 90% of the performance of equivalent compiled Fortran
programs.

Considering the advantages of Java for the development and deployment
of platforms for Grid computing, we think that a minor loss of performance

40 Jarle Hulaas, Walter Binder, and Giovanna Di Marzo Serugendo

can be accepted. Furthermore, the availability of more nodes where distributed
computations can be carried out may often outweigh minor performance losses
on each node. Ultimately, we are confident that maturing Java runtime systems
will offer continuous performance improvements in the future.

4.3 Security Considerations

A high level of security is crucial for the acceptance of a platform for Grid
computing. At first glance, Java runtime systems seem to offer comprehensive
security features that meet the requirements of an execution environment for
Grid computing: language safety, classloader namespaces, and access control
based on dynamic stack introspection. Despite these advantages, current Java
runtime systems are not able to protect the host from faulty (i.e., malicious or
simply bugged) applications.

In the following we point out serious deficiencies of Java that may be exploited
by malicious code to compromise the security and integrity of the platform (for
further details, see [6]). Above all, Java is lacking a task model that could be used
to completely isolate software components (applications and system services)
from each other. A related problem is that, unfortunately, thread termination in
Java is an inherently unsafe operation, which may e.g. leave shared objects, such
as certain internals of the JVM, in an inconsistent state. Also related to the lack
of task model is the absence of accounting and control of resource consumption
(including but not limited to memory, CPU, threads, and network bandwidth).
Concerning the implementation of current standard Java implementations, an
issue is that several bytecode verifiers sometimes accept bytecode that does not
represent a valid Java program: the result of the execution of such bytecode
is undefined, and it may even compromise the integrity of the Java runtime
system. Finally, while the security model of Java offers great flexibility in terms of
implementing access control, it lacks central control: security checks are scattered
throughout the classes, and it is next to impossible to determine with certainty
whether a given application actually enforces a particular security policy.

All these shortcomings have to be considered in the design and implemen-
tation of Java-based platforms for Grid computing. Therefore, massive re-engi-
neering efforts are needed to create sufficiently secure and reliable platforms.

5 The JavaGridKernel for the Secure Execution
of Mobile Code

We have designed JavaGridKernel, a Java-based middleware that provides solu-
tions to the security problems mentioned before and, hence, represents a state-
of-the-art platform for the creation of secure environments for Grid computing.
Several researchers have stressed the importance of multi-tasking features for
Java-based middleware [2]. An abstraction similar to the process concept in op-
erating systems is necessary in order to create secure execution environments

Enhancing Java Grid Computing Security with Resource Control 41

for mobile code. However, many proposed solutions were either incomplete or
required modifications of the Java runtime system.

In contrast, the JavaGridKernel has been designed to ensure important se-
curity guarantees without requiring any native code or modifications of the un-
derlying Java implementation. The JavaGridKernel builds on the recent Java
Isolation API [13], which offers the abstraction of Isolates, which fulfill a similar
purpose as processes in operating systems and can be used to strongly protect
Java components from each other, even within the same JVM. The Isolation
API ensures that there is no sharing between different Isolates. Even static vari-
ables and class locks of system classes are not shared between Isolates in order
to prevent unwanted side effects. Isolates cannot directly communicate object
references by calling methods in each other, but have to resort to special com-
munication links which allow to pass objects by deep copy. An Isolate can be
terminated in a safe way, releasing all its resources without hampering any other
isolate in the system. The Java Isolation API is supposed to be supported by
future versions of the JDK. For the moment, it is necessary to resort to research
JVMs that already provide the Isolation API, such as the MVM [8].

One crucial feature missing in Java is resource management, i.e., accounting
and limiting the resource consumption (e.g., CPU and memory) of Java com-
ponents. In the context of the JavaGridKernel, resource management is needed
to prevent malicious or erroneous code from overusing the resources of the host
where it has been deployed (e.g., denial-of-service attacks). Moreover, it enables
the charging of clients for the consumption of their deployed applications. To ad-
dress these issues, we have developed J-RAF25, The Java Resource Accounting
Framework, Second Edition, which enables fully portable resource management
in standard Java environments [5]. J-RAF2 transforms application classes and
libraries, including the Java Development Kit, in order to expose details concern-
ing their resource consumption during execution. J-RAF2 rewrites the bytecode
of Java classes before they are loaded by the JVM. Currently, J-RAF2 addresses
CPU, memory and network bandwidth control. For memory control, object al-
locations are intercepted in order to verify that no memory limit is exceeded.
For CPU control, the number of executed bytecode instructions are counted and
periodically the system checks whether a running thread exceeds its granted
CPU quota. This implements a rate-based control policy; an additional upper
hard limit on the total CPU consumed by any given computation can also be
set and an associated overuse handler would then send an appropriate message
to the deployment agent, to displace the task and hopefully prevent the loss
of intermediate results. Control of network bandwidth is achieved by wrapping
the standard input-output libraries of the JDK inside our own classes. J-RAF2
has been successfully tested in standard J2SE, J2ME, and J2EE environments.
Due to special implementation techniques, execution time overhead for resource
management is reasonably small, about 20–30%.

The Java Isolation API and J-RAF2 together provide the basis for the Jav-
aGridKernel, which offers operating system-like features: Protection of compo-

5 http://www.jraf2.org/

42 Jarle Hulaas, Walter Binder, and Giovanna Di Marzo Serugendo

nents, safe communication, safe termination of components, and resource man-
agement. The JavaGridKernel extends these features with mechanisms to dy-
namically deploy, install, and monitor Java components. It should be noted that
these mechanisms apply to the Java Virtual Machine and the associated ex-
ecutable bytecode representation: this approach is therefore in reality not re-
stricted to programs written in the Java source language, but extends to all
languages implemented on the JVM.

In the past we used the J-SEAL2 mobile object kernel [4] to implement an in-
frastructure for Grid computing. J-SEAL2 severely restricted the programming
model of Java in order to enforce protection, safe communication, and termi-
nation of components. As the Java Isolation API provides these features in a
standardized way without restricting the programming model, it is better suited
for a Grid environment where also components designed without these J-SEAL2
specific restrictions in mind should be deployed.

The JavaGridKernel is perfectly suited for the development of platforms for
Grid computing: It is small in size (only a few additional classes are required at
run-time) and compatible with the Java 2 platform (but requires the Java Isola-
tion API). Therefore, the distribution and installation of the kernel itself incurs
only minimal overhead. The JavaGridKernel supports mobile code, which en-
ables the distribution and remote maintenance of scientific applications. Finally,
whereas scientific applications make heavy use of CPU and memory resources,
the resource control features provided by J-RAF2 ensure a fair distribution of
computational resources among multiple applications and prohibit an overload-
ing of host machines. As explained below, resource control also provides ad-
ditional security by thwarting dishonest behaviours on the donator side, thus
making the model more attractive from an economic perspective.

The JavaGridKernel provides five special components: A mediator compo-
nent to control the execution of uploaded applications, a network service to
receive application code (Net-App service), a second network service allowing ap-
plications to receive input data and to transmit their results (Net-Data service),
a system monitor to prevent an overloading of the machine, as well as a mon-
itor window that displays information regarding the running applications, the
elapsed time, etc. to the resource donator. In the following we give an overview
of these components:

The mediator is responsible for the installation and termination of appli-
cations, as well as for access and resource control. It utilizes the Net-App
service to receive control messages from the deployment agents that coor-
dinate the distributed applications. It receives application archives, which
contain the application code as well as a deployment descriptor. The deploy-
ment descriptor comprises a unique identifier of the application, as well as
information concerning the resource limits and the priority of the applica-
tion. The unique application identifier is needed for dispatching messages to
the appropriate application. Requests to terminate an application are also
received from the Net-App service. The mediator component ensures that
applications employ only the Net-Data service and guarantees that an ap-

Enhancing Java Grid Computing Security with Resource Control 43

plication only receives its own input data and that its output data is tagged
by the application identifier. The mediator uses the system monitor in order
to detect when the machine is busy; in this case, applications are suspended
until the system monitor reports idle resources.
The Net-App service is responsible for exchanging system messages with
the coordinating deployment agent. When the platform is started, the Net-
App service contacts the operator’s server, which may transfer application
archives to the platform. Optionally, a persistency service can be used to
cache the code of applications that shall be executed for a longer period of
time. The Net-App service also receives requests to terminate applications
that are not needed anymore.
The Net-Data service enables applications to receive input data and to de-
liver the results of their computation to the coordinating server. Messages
are always tagged by an application identifier in order to associate them with
an application. Access to the Net-Data service is verified by the mediator
component. Frequently, continuous streams of data have to be processed by
applications. The Net-Data service supports (limited) buffering of data to
ensure that enough input data is available to running applications.
The system monitor has to detect whether the machine is busy or idle. If
the computer is busy, applications shall be suspended in order to avoid an
overloading of the machine. If the computer is idle, applications shall be
started or resumed. An implementation of the system monitor may employ
information provided by the underlying operating system. However, such
an approach compromises the full portability of all other components, since
it relies on system-dependent information. Therefore, we follow a different
approach: J-RAF2 enables the reification of the CPU consumption of ap-
plications [5], which allows to monitor the progress of applications. If the
number of executed instructions is low (compared to the capacity of the
hosting computer), even though applications are ready to run, the system
monitor assumes that the computer is busy. Therefore, it contacts the me-
diator component in order to suspend computations. If, on the other hand,
at the same time, requests for tickets originate from the same donator, it
may be interpreted as malicious behaviour. Periodically, the system monitor
resumes its activity in order to notice idle computing resources. When the
computer becomes idle, all applications are resumed.
The monitoring window presents information about the past and current
work load of the system to the resource donator. It shows detailed status in-
formation of the running applications, the time elapsed for the computations,
the estimated time until completion, if available, as well as some general in-
formation regarding the purpose of the computation. As the resource donator
is in control of his system, it is important to show him detailed information
of the utilization of his machine.

The mobile code execution environment for the deployment agents is based
on the JavaGridKernel as well. But as the deployment agents stems from the
operator, a trusted party, the security settings are relaxed. There are a few

44 Jarle Hulaas, Walter Binder, and Giovanna Di Marzo Serugendo

mandatory services needed by the deployment agent: access to the client web
services that provide the input data and consume the output results, as well as
network access for the communication with resource donators and the operator.
Communication with the resource donators is necessary for the transmission of
the application data, while communication with the operator is essential for the
implementation of a global strategy for load balancing and for payment issues.

Regarding mobile code security, let us recall that the research community
has not yet found a complete and general solution to the problem of malicious
(donator) hosts, thus low-level tampering with Java bytecode (even cryptograph-
ically signed) or with the JVM is always possible if the attacker is sufficiently
motivated, e.g., if a donator wants to steal results belonging to the client, or to
hack the resource consumption mechanism in order to artificially increase his in-
come. Our portable resource control mechanisms can nevertheless be exploited
in several ways to detect such behaviours. First, if it is possible to determine
statically the amount of resources required to achieve the given task, this detec-
tion will be trivial even across heterogenous machines, since J-RAF2 expresses
CPU resource quantities in a portable unit of measurement (the bytecode). Sec-
ond, it will always be possible to compare total consumptions at various donator
machines and to correlate them with the size of the requested computations.
The malicious host problem is however present in grid computing in general, not
only with the mobile code approach proposed here.

6 Related Work

The primary purpose of mobile code is to distribute applications and services on
heterogeneous networks. Many authors relate mobile code, and more often mobile
agents as a practical technology for implementing load-balancing in wide-area
networks like the Internet. Load-balancing can be either static (with single-hop
agents, in the sense that once a task is assigned to a host, it does not move
anymore) or dynamic (with multi-hop mobile agents enabling process migra-
tion). A survey of load-balancing systems with mobile agents is presented in
[12]. Security and efficiency have immediately been recognized as crucial by the
research community, but it was necessary to wait for technology to mature. Re-
source monitoring and control is needed for implementing load-balancing, and
more generally for realizing secure and efficient systems, but is unavailable in
standard Java, and particularly difficult to implement in a portable way. For
instance, Sumatra [1] is a distributed resource monitoring system based on a
modified JVM called Komodo. See [5] for a further study on the portability of
resource monitoring and control systems in Java.

According to [20], almost all Grid resource allocation and scheduling research
follows one of two paradigms: centralized omnipotent resource control – which is
not a scalable solution – or localized application control, which can lead to un-
stable resource assignments as “Grid-aware” applications adapt to compete for
resources. Our primary goal is however not to pursue research on G-Commerce
[20], even though we sketch an economical model based on virtual currency. For

Enhancing Java Grid Computing Security with Resource Control 45

these reasons, our approach is hybrid. We relax the conservative, centralized re-
source control model by proposing an intermediary level with our deployment
agents, designed to make the architecture more scalable. We have identified a
similar notion of mobile coordination agent in [9], with the difference that our
agents do not only implement application-level coordination (synchronization,
collection of intermediate results), but also management-level activities (local
collection and filtering of load-balancing data), following the general approach
we exposed in [19]. As described in [18], control data generated by distributed
resource control systems may be huge – and even higher in G-commerce sys-
tems, because of bidding and auctioning messages – and mobile agents may thus
profitably be dispatched at the worker nodes for filtering the data flows at their
source. We propose a further level of filtering to be accomplished by the de-
ployment agents; this is even more necessary as we intend to control all three
resources (CPU, memory and network). CPU is widely regarded as the most im-
portant factor. In [14] the authors propose to place worker agents within a Grid
according not only to CPU load, but also to network bandwidth requirements;
they relate a speed improvement of up to 40%, but the measurements were made
in local-area clusters instead of dynamic sets of Internet hosts. Finally, memory
control is usually ignored, but we contend that it has to be implemented in order
to support typical scientific Grid computations, since they often imply storing
and processing huge amounts of data.

Among the approaches that are not agent-based, the Globus initiative pro-
vides a complete toolkit addressing, among others, issues such as security, in-
formation discovery, resource management and portability. The Globus toolkit
is being adopted as a standard by most multi-organisational Grids [10, 11]. The
latest major version, Globus Toolkit 3, allows for the execution of Java code; it
has a resource management facility, which is partly based on native code, and is
thus not entirely portable. Resource management in Globus is not designed to
be as accurate as provided by J-RAF2, and more specifically, resource account-
ing is not provided, which prohibits our fine-grained monitoring and incentive
of usage-based payment for offered computing resources. As several aspects in
Globus 3, the protection between jobs is biased towards the availability of the
Unix kind of processes; this provides for good security, but is more expensive in
memory space than Java isolates, which are designed for security without com-
promising the possibility of sharing Java bytecode between protection domains.
Finally, the basic job deployment and coordination mechanisms of Globus are
not as flexible as the one permitted by the presently proposed mobile-agent based
approach. These are a few aspects where we can propose some enhancements,
but one should not be mistaken about the fact that Globus is an accomplished
framework, whereas this paper essentially represents a theoretical work, based
on a set of concrete building blocks.

Compared to a previous workshop position paper of ours [3] the model pre-
sented here relies on concepts and tools that are more mature and provide bet-
ter guarantees of security and portability, while enabling a much more natural

46 Jarle Hulaas, Walter Binder, and Giovanna Di Marzo Serugendo

programming model than the one imposed by the J-SEAL2 mobile agent plat-
form [4].

7 Conclusion

Our goal is to customize computations on open Internet Grids. To this end, we
believe that a Grid environment should provide high-level primitives enabling the
reuse and combination of existing programs and distributed collections of data,
without forcing the client to dive into low-level programming details; the Unix
scripting approach is our model, and this translates into our abstract deployment
descriptor proposal. From the implementation point of view, this translates into
a mobile deployment agent, which synthesizes and enhances the benefits of sev-
eral previous approaches: the deployment agent optimizes its own placement on
the Grid, and consequently it reduces the overall load by minimizing the commu-
nications needed for application-level as well as management-level coordination.
There are of course still some open questions. The first pertains to the actual
efficiency of the proposed model, which cannot be entirely determined before the
complete implementation of the distributed control mechanisms. We have how-
ever tried to address the performance issue both at the host level, by proposing
a solution which tries to minimize the management overhead, and at the global
level, with a mobile agent-based approach which makes the whole system more
scalable. The second concerns human factors such as validating the economical
model (will it be attractive enough to generate real revenues?), or enabling the
donator to decide on the lawfulness or ethics of computations submitted to him.
This paper however concentrates on technological aspects, and claims that the
comprehensive combination of a pure Java implementation enhanced with a se-
cure, resource controlled execution platform is a unique asset for the portability,
security and efficiency required for the success of Internet-based Grid computing.

References

1.

2.

3.

4.

5.

A. Acharya, M. Ranganathan, and J. Saltz. Sumatra: A language for Resource-
Aware mobile programs. In J. Vitek and C. Tschudin, editors, Mobile Object Sys-
tems: Towards the Programmable Internet, Second International Workshop, volume
1222 of LNCS. Springer, July 1996.
G. Back and W. Hsieh. Drawing the red line in Java. In Seventh IEEE Workshop
on Hot Topics in Operating Systems, Rio Rico, AZ, USA, March 1999.
W. Binder, G. Di Marzo Serugendo, and J. Hulaas. Towards a Secure and Efficient
Model for Grid Computing using Mobile Code. In 8th ECOOP Workshop on Mobile
Object Systems, Malaga, Spain, June 10, 2002.
Walter Binder. Design and implementation of the J-SEAL2 mobile agent kernel. In
The 2001 Symposium on Applications and the Internet (SAINT-2001), San Diego,
CA, USA, January 2001.
Walter Binder, Jarle Hulaas, Alex Villazón, and Rory Vidal. Portable resource con-
trol in Java: The J-SEAL2 approach. In ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA-2001), Tampa Bay,
Florida, USA, October 2001.

Enhancing Java Grid Computing Security with Resource Control 47

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Walter Binder and Volker Roth. Secure mobile agent systems using Java: Where are
we heading? In Seventeenth ACM Symposium on Applied Computing (SAC-2002),
Madrid, Spain, March 2002.
P. Cerello and al. Grid Activities in Alice. In International Conference on Com-
puting in High Energy Physics 2001 (CHEP’01), 2001.
Grzegorz Czajkowski and Laurent Daynes. Multitasking without compromise: A
virtual machine evolution. In ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’01), USA, October 2001.
P. Evripidou, C. Panayiotou, G. Samaras, and E. Pitoura. The pacman meta-
computer: Parallel computing with Java mobile agents. Future Generation Com-
puter Systems Journal, Special Issue on Java in High Performance Computing,
18(2):265–280, October 2001.
I. Foster and C. Kesselman. Computational Grids. In The Grid: Blueprint for a
Future Computing Infrastructure, chapter 2. Morgan Kaufmann, 1999.
I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid – Enabling Scal-
able Virtual Organizations. International Journal of Supercomputer Applications,
15(3), 2001.
J. Gomoluch and M. Schroeder. Information agents on the move: A survey on
load-balancing with mobile agents. Software Focus, 2(2), 2001.
Java Community Process. JSR 121 – Application Isolation API Specification. Web
pages at http://jcp.org/jsr/detail/121.jsp.
A. Keren and A. Barak. Adaptive placement of parallel Java agents in a scalable
computer cluster. In Workshop on Java for High-Performance Network Computing,
Stanford University, Palo Alto, CA, USA, February 1998. ACM Press.
Andreas Krall and Philipp Tomsich. Java for large-scale scientific computations? In
Third International Conference on Large-Scale Scientific Computations (SCICOM-
2001), Sozopol, Bulgaria, June 2001.
Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addi-
son-Wesley, Reading, MA, USA, second edition, 1999.
J. E. Moreira, S. P. Midkoff, M. Gupta, P. V. Artigas, M. Snir, and R. D. Lawrence.
Java programming for high-performance numerical computing. IBM Systems Jour-
nal, 39(1):21–56, 2000.
O. Tomarchio, L. Vita, and A. Puliafito. Active monitoring in grid environments
using mobile agent technology. In 2nd Workshop on Active Middleware Services
(AMS’00) in HPDC-9, August 2000.
A. Villazón and J. Hulaas. Active network service management based on meta-level
architectures. In Reflection and Software Engineering, volume 1826 of LNCS, June
2000.
R. Wolski, S. Plank, T. Bryan, and J. Brevik. Analyzing Market-based Resource
Allocation Strategies for the Computational Grid. International Journal of High
Performance Computing Applications, 15(3), 2001.

An Approach to Flexible Application Composition
in a Diverse Software Landscape

Roy Oberhauser

Corporate Technology, Siemens AG
Otto-Hahn-Ring 6, 81730 Munich, Germany
roy.oberhauser@siemens.com

Abstract. With the escalating complexity, aggregation, and integration of soft-
ware in enterprise, mobile, and pervasive arenas, it becomes increasingly diffi-
cult to compose, deploy, and operate applications that span a distributed and di-
verse software landscape. Furthermore, the increasing aggregation of software
artifacts, including platforms, frameworks, components, services, and tools,
lack a standard metadata description capability that hinders rapid and flexible
distribution, deployment, and operation. This paper presents a general ap-
proach, realized with the FAST Framework, to improving the development, de-
ployment, and operation of distributed applications that consist of diverse soft-
ware artifacts. Application specification and composition is based on
configuration queries that flexibly combine modules and a container that non-
intrusively manages module lifecycles. The results show benefits with regard to
simplified configurability, enhanced reuse via XML-based description propaga-
tion, improved distributed-application-provisioning intervals vs. local configu-
rations, as well as applicability to Grid, Web Services, and MDA.

1 Introduction

As a trend, the complexity of software applications is escalating, where complexity is
a function of the types and number of relationships among the software elements.
This escalation is especially true of distributed applications in areas such as enterprise
and pervasive infrastructures and applications. Increasing software integration as well
as the aggregation of software artifacts, e.g. as shown in the tendency to utilize stan-
dardized platforms and API providers (e.g. J2EE, .NET), open source software
frameworks, etc., contribute to the overall underlying complexity of an application.

Simultaneously, competitive pressures compel developers to more rapidly produce
software that is parameterized to fit various predefined and hard-to-predict post-
defined operational contexts and configurations. As these pressures in turn cause
developers and maintainers to handle multiple projects simultaneously, when consid-
ered in conjunction with geographically distributed teams, the rapid reuse and propa-
gation of deployment configurations will become a growing necessity.

Conversely, software operators (a set that includes developers) are faced with a
daunting set of amassed choices with regard to both the parameterization and (repro-
ducible) configuration of aggregated, distributed, and legacy software. This is exac-

M. Jeckle, R. Kowalczyk, and P. Braun (Eds.): GSEM 2004, LNCS 3270, pp. 48–62, 2004.

© Springer-Verlag Berlin Heidelberg 2004

An Approach to Flexible Application Composition in a Diverse Software Landscape 49

erbated by the inherent variability of software, as in versioning of any of the constitu-
ent parts of a distributed application. This has given rise to the adage “Never touch a
running system,” and the problems in this area are described with case studies in [1].
While a myriad of configuration and deployment mechanisms exists, no unifying,
widely adopted, practical, and economic solution in this diverse, heterogeneous soft-
ware landscape is available.

Considering these aforementioned challenges, the primary objective is to support
distributed application configurations (especially with regard to composability, flexi-
bility, manageability, and reuse) by means of a non-intrusive infrastructure with mini-
mal requirements for describing and provisioning the involved software artifacts. An
artifact can be a piece of software or anything associated with it (e.g., tools, docu-
mentation). A solution that comprehensively addresses all possible software configu-
rations and artifacts is beyond scope; rather, the contribution of this paper is a
practical and economic approach that deals with various basic issues in the current
gap in distribution, deployment, and operation, thereby drawing attention to this area.

The paper is organized as follows: Section 2 reviews related work to elucidate the
current gap. In Section 3, the solution approach and constraints are presented. This is
followed in Section 4 by a description of the solution realization, referred to in this
paper as the FAST Framework. At the core of the framework is a container that man-
ages modules and configurations and communicates with other containers. Section 5
discusses the results, and in Section 6, a conclusion is drawn.

2 Related Work

Because the focus of this paper touches such a universal aspect of software, it can
easily be related in some way to a range of other efforts and work. Since not all re-
lated work and aspects can necessarily be addressed, only primary and/or key compa-
rable work will be mentioned.

In the area of composition and integration, the VCF [2] approach to component
composition relies on a Java API and requires component model plugins. Its focus is
limited to components, and thus cannot provide a unifying approach that includes
preexisting and non-component-oriented artifacts. FUJABA [3], a meta-model ap-
proach to tool integration, requires plug-ins and does not address distributed applica-
tions. [4] provides a survey of various composition environments, all of which cannot
provide a unifying approach due to constraints, platform-dependencies, or a composi-
tion focus at the more intrusive communication or interaction level, resulting in de-
velopment phase dependencies or runtime impacts. As to composability in Web Ser-
vices (e.g., BPEL4WS, WSCI), its focus is the interaction abstraction level, leaving
the infrastructural aspects of aggregation, configurability, distribution, provisioning,
deployment, and manageability for a diverse software environment unaddressed.

As to platform-specific provisioning frameworks, SmartFrog [5] is a flexible, ob-
ject-oriented framework for the deployment and configuration of remote Java objects.
It has a security concept and its own declarative non-XML language includes param-
eterized and inheritable templates. However, its component model requires inheri-

50 Roy Oberhauser

tance from Java objects - thus requiring a Java wrapper class for each external soft-
ware artifact it manages, and the more flexible concept of queries for application
composition does not appear to be supported. Jini’s Rio [6] provides dynamic provi-
sioning capabilities, policies, and telemetry using an agent-based Dynamic Container.
Service components are described using XML-based metadata (an Operational-
String). A component model (Jini Service Beans) is provided and, for managing ex-
ternal services, Service Control Adapters must be written. Its model is platform-
dependent and its reliance on Jini’s RMI mechanism makes infrastructural interop-
erability in diverse landscapes problematic.

Common configuration management tools, such as HP’s OpenView, IBM’s Tivoli,
etc., address various enterprise deployment and operation issues, yet they do not nec-
essarily scale down for small projects, devices, or budgets, and various other tools are
often tied to operating systems. Management standards activities, such as the Open
Management Interface and OASIS Web Services Distributed Managmement Techni-
cal Committee, address management interfaces for Web Services (WS), but will
likely not be able to manage all related and legacy artifacts. Platform-specific man-
agement initiatives, such as Java Management Extensions (JMX), will necessarily be
limited to their platform, and have typically neglected the aspect of metadata.

Metadata initiatives, such as the WS-MetadataExchange, may allow WS to ex-
change metadata with one another, but first the WS must be operational, and no
metadata standard exists for describing basic operational aspects of software artifacts.
Platform-specific metadata such as contained in Java JAR files, in .NET, and in JSR
175 “A Metadata Facility for the Java Programming Language,” are not easily acces-
sible or modifiable by operators, especially for diverse environments. Where tooling
creates the metadata, it tends to become so complex and all encompassing that man-
ual creation for incorporation of other artifacts is avoided.

Model-Driven Architecture (MDA) [7] is primarily a development-centric para-
digm and depends on the existence of models for the involved artifacts. While
[8][9][10] describe the combination of Model-Integrated Computing (MIC) with
middleware, the approach to distributed configuration and parameterization appears
to be application synthesis, close integration with the CCM container CIAO, and in
the future advanced meta-programming with reflection [11] and AOP [12]. How
these distributed applications and each (non-modeled-)artifact are managed and con-
figured in each operational environment variant over their lifetime, in conjunction
with potential overlapping integration that occurs in SOA environments, is not de-
tailed. While beyond the scope of this paper, in a model-centric environment a unify-
ing approach for artifact metadata could conceptually, via XML Metadata Inter-
change (XMI) and the Meta-Object Facility (MOF), be integrated into such a tool
chain to address various deployment, configuration, and parameterization aspects for
artifacts at development-, initialization-, and run-time.

While viewpoints differ, Grid initiatives such as the Globus Alliance are primarily
focused on resource sharing, security, performance, QoS, and the larger provisioning
problem [13] with runtime interoperability protocols and toolkit APIs in view. Many
(legacy) software artifacts are and will remain outside of this scope, yet the Grid
resources being shared, e.g. via WSRF [14], may well be dependent on these hidden

An Approach to Flexible Application Composition in a Diverse Software Landscape 51

artifacts and their proper distributed configuration, management, and parameteriza-
tion. A unified and cost efficient approach to these challenges is needed.

3 Solution Approach

To discuss the solution approach, it is helpful to work with an example that also illus-
trates the various challenges when different inter-related and inter-dependent software
components, services, applications, frameworks, and infrastructures are combined.
Although this illustration was realized for test purposes, the intent of this illustration
is not to show an ideal distributed application, but rather to bring to the forefront the
issues diverse artifacts and infrastructures can create.

As to solution constraints, no interference in the interfaces, installation, communi-
cation, and interactions between or within a module should necessarily occur, nor
should changes be required to a module. Thus, encapsulation is not to be enforced,
but rather a mechanism for developers to manually supply the relevant and missing
metadata is provided, which may be partial but sufficient for the operational tasks.
The relative simplicity and ubiquity of XML is a desirable quality to further adoption
and standardization efforts, supports the rapid creation of missing module descrip-
tions, and avoids coupling to the artifact itself (in contrast to JMX). Reuse of speci-
fied configurations and module descriptions as well as a lifecycle management
mechanism shall be supported. Emphasis should be given to enhanced support for an
operational view, benefiting operators, developers, and testers. Due to a lack of im-
plementations and tools to realize this approach, a framework is necessary to interpret
the configuration and module descriptions and manage the modules.

Fig. 1. Problem view showing sample distributed application interactions using diverse soft-
ware artifacts

In Fig. 1 the problem view is presented using an illustration. Given a JBoss-ported
reference J2EE PetStore enterprise application (PetStoreEAR) that is dependent on a
J2EE application server JBossto become operational, this grouping of software arti-
facts can be considered a configuration PetStore. Another grouping, called the Persis-
tenceService, consists of an XML persistence Web Service (PersistenceAxisWS) that
abstracts XML Native Database (XND) differences, is based on the Apache Axis WS
framework, is deployed as a web application (WAR) within a web server (Apache
Tomcat), and uses Apache Xindice as an XND. Now hypothetically, without modify-
ing either of these configurations, a PetStoreSupplier distributed application configu-
ration would like to intercept all placed orders to the PetStore configuration, e.g. via

52 Roy Oberhauser

an HTTP Proxy with interception capability (called WSBroker), persist these orders
as XML via the PersistenceService configuration, and provide tracing data to a trac-
ing Web Service implemented with the webmethods GLUE WS toolkit (Tracing-
GlueWS). Note that the problem space could involve non-Java software.

To converge on a solution, the problem domain was partitioned into three separate
areas:

1.

2.

3.

The first area dealt with module description: what are the common attributes of
software artifacts or modules that should typically be described, how should they
be described, and what strategies can be used to reduce redundancy, manage
change, and keep the involved effort and maintenance low?
The second area dealt with configuration description: how should modules best be
flexibly aggregated into a grouping, how can redundancy be reduced, and how can
the reuse or propagation of configurations be supported?
The third area consisted of the distributed software infrastructure necessary for
supporting the lifecycle of modules and configurations with minimal intrusion and
constraints in a diverse software landscape.

As a starting point, the FAST Framework will provide the overall structure neces-
sary for lifecycle management, configuration support, and any common and shared
modules and tools, shown in Fig. 2 using the problem example from Fig. 1. Discus-
sion of modules, configurations, and containers follows.

Fig. 2. Sample distributed application with the FAST Framework, showing containners, mod-
ules, configurations, and sub-configurations

3.1 Modules

As modularity plays a key role in dealing with complexity, for this paper, a module is
an abstraction for the partitioning of a (semi-)independent unit of software (software
artifact) required by an application, at any desired abstraction level, and can include
frameworks, services, components, packaged applications, web and application serv-
ers, documentation, etc. For reuse, extensibility, and flexibility, a module is described

An Approach to Flexible Application Composition in a Diverse Software Landscape 53

via an XML-based Module Descriptor File (MDF), as seen in Fig. 2. This MDF sup-
plies the necessary and desired metadata, typically the information required for its
lifecycle management along with any additional information, as shown in the exam-
ple in Listing 1. Note that an XML Schema definition specifies the allowable values,
and is not shown due to space constraints.

Listing 1. Module Descriptor File (MDF) example

54 Roy Oberhauser

Each module is given a name and a uid attribute that allows the unique identifi-
cation of an MDF. Various options can be used to generate the uid, such as tools or
the use of a central uid provider. Digital signatures could be included to permit crea-
tor verification and detect content tampering. Under description, information
about the MDF itself is included. The element dependencies specifies modules
necessary for this module to function properly. Hereby dependencies use query,
which allow constraints to be specified (name, version, location, etc.) and are re-
solved at runtime to find a matching candidate, e.g., the best, a range, or exactly one
required candidate of the available modules known to the Container.

Under management, the number of instances of this module that can be
started as well as any instance-specific parameters can be specified. The module life-
cycle transitions can be associated with actions to be performed, and are specified
under lifecycle with task (see Fig. 3). Because all module types should be
supportable and creating multiple processes is not always desirable for resource-
constrained contexts, different external process (e.g. Apache Ant) and internal proc-
ess (e.g., same Java Virtual Machine) cmd (command) types, including parameters,
are supported for lifecycle management. One feature (not shown) is the ability to
specify a pattern for lifecycle progress and error checking in the output files of exter-
nal modules.

Fig. 3. Module and configuration typical lifecycle state diagram (additional states supported)

A template, defined in an XML Schema definition (not shown), allows the in-
clusion of pre-specified XML, and is a contract in the sense that a module that incor-
porates template indicates that it fulfills its requirements, e.g. requirements for
interfaces or protocols that must be supported, pre-configuration of parameters, valid
parameter ranges, etc. Templates are analogous in some ways to a class; they can be
instantiated with parameters and support inheritance, thus hierarchies of templates are
possible as well as overriding of default settings. The template contract in a mod-
ule can be validated against the template’s XML Schema definition. In this case, the
axis_webservice template schema (not shown) includes the AXIS template

An Approach to Flexible Application Composition in a Diverse Software Landscape 55

schema (not shown) which specifies the HTTP, SOAP, and WSDL versions that are
supported, and specifies the ws_uri value. Note that setting is used to set pa-
rameters for a software artifact; for artifact configuration settings in text files, scripts
(e.g. sed, python) are supported, for XML files XSLT, and JMX is used for runtime
(re-)configuration support. While templates are optional, for maximum reuse effec-
tiveness, they should be specified and propagated, e.g. via a central repository. This
specification could be done in both general and domain-specific areas via standards
bodies, consisting of software vendors, research institutes, etc.

Under tools, any tools associated with this module can be included, while
documentation provides the queries (e.g. commands) or links to retrieve the
documentation associated with this module.

MDFs allow the information for a module to be described and associated once, and
then reused in many different configurations.

3.2 Configurations

Configurations are a hierarchical composition of modules or sub-configurations and
described in a Configuration Descriptor File (CDF), as seen in Fig. 2. A set of queries
is used to allow maximum flexibility in specifying and resolving the actual modules
or configurations, while minimizing redundant information. Sub-configurations allow
a hierarchical reuse in the specification of configurations, e.g. in Fig. 2 both the Per-
sistenceService and the PetStore are sub-configurations of the PetstoreSupplier con-
figuration.

Listing 2. Configuration Descriptor File (CDF) example

56 Roy Oberhauser

An example of a CDF is shown in Listing 2. The name and uid attribute are
equivalent to that described for MDFs, as are the description, dependencies,
management, etc. The number of instances allowed of this configuration among a
set of containers may be specified by instances if it does not conflict with the sum
of the underlying MDFs and CDFs constraints.

As to startup ordering, by default parallel or independent lifecycles are assumed
unless the startuporder attribute is included as an attribute specifying a sequen-
tial list of one or more queries that must first be successfully started. Different strate-
gies for the distribution of a configuration can be used. The location attribute in a
query is optional, and allows either an IP address to be specified, the name of a strat-
egy, e.g. strategy_best, or a DNS hostname. If no location is specified, then the
Container will decide based on its default strategy. For distributed configurations
with unspecified location attributes, the master or hosting Container (the first to start
the “init” transition) annotates the location information before distributing the con-
figuration, thus ensuring that other Containers can determine their responsibilities.

The lifecycle of configurations are equivalent to those of modules (see Fig. 3).

3.3 Containers

A Container non-intrusively manages the lifecycle its software modules or configura-
tions. As a form of bootstrapping, its CDF specifies its own core modules. It also
supplies its own MDF, as shown in Fig. 2, to describe its capabilities and states. Any
extensions to the Container are done as modules via MDFs, providing a plug-in capa-
bility. At a minimum (equivalent to an empty Container CDF), the Container contains
the software for parsing MDF/CDFs and lifecycle management, allowing it to be
lightweight for resource-constrained contexts. Containers can optionally interact via
the Container Discovery and related modules to support the distribution of metadata
and the discovery of remote configurations and modules. Any inter-Container interac-
tion is done via XML-based protocols to better support interoperability with hetero-
geneous Container implementations.

4 Solution Realization

While the reference implementation is Java-based, the solution approach can be im-
plemented for a wide variety of platforms and languages while supporting interopera-
bility, due to the reliance on XML for metadata (MDFs and CDFs) and inter-
Container protocols (SOAP and JXTA [15]). The following provides insight into the
realization while elaborating the potential of this approach. The inclusion of various
modules listed below supports basic to enhanced framework configurations depend-
ing on the requirements.

An Approach to Flexible Application Composition in a Diverse Software Landscape 57

4.1 Container

For each module that the Container manages, a Module Manager is allocated, shown
as MMn in Fig. 2. Likewise, for each configuration being managed, a Configuration
Manager (CCn in Fig. 2) is allocated. DOM4J was used to parse the needed MDF and
CDF information into Java objects. Dependencies are resolved to determine lifecycle
sequencing. Support for Apache Ant was integrated as a task type. A Container shell
allows command control of the container.

4.2 Modules

Over 50 module descriptions for various software artifacts were created in the current
FAST distribution, verifying that it can support many different types of modules.
Below are some examples of infrastructural modules, which can be viewed as a Con-
tainer extensibility mechanism:

Container Discovery Module. Responsible for advertising the existence or
change of its modules and configurations to other Containers and detecting other
Containers and their state changes. Currently JXTA advertisements are used, how-
ever other discovery mechanisms, including registries, can be supported.
Container Management Web Service Module. This optional module supports
remote management via SOAP, providing module and configuration descriptor re-
trieval.
Deployer Service Module. This module supports the deployment of software as a
container-independent, distributed, transactional, discoverable deployment service
with adapters for various containers (JBoss, OSGi Oscar, Java VM, etc.). A GUI,
as shown in Fig. 4, provides operators insight into the location and dependencies
within deployment units.
Web Services Broker (WSBroker) Module. An optional module that contains an
HTTP Proxy combined with an interception framework that includes the Apache
Bean Scripting Framework, allowing Java- or script-based interceptors that pro-
vide a variation point for technically trained operators to perform routing, logging,
or other functions.
Web Services Registry (WSRegistry) Module. This optional module contains a
UDDI-protocol-compliant mechanism to access Web Services.
Tracing Web Service (TWS) Module. This optional module enables the monitor-
ing of operational interactions between modules via built-in or interception (e.g.,
WSBroker) mechanisms, and made available to tooling for the operational view.
Persistence Web Service Module. This optional module provides a generic Web
Service interface to persist data in different XML storage mechanisms.

5 Solution Results

While many possible criteria could be used to evaluate the solution, tests were chosen
that would answer the following questions regarding practical suitability: Does dis-

58 Roy Oberhauser

Fig. 4. Screenshot of the FAST Deployer GUI

tributed provisioning show significant performance advantages over local provision-
ing? How does the amount of time for software (re-)deployment (transfer) compare
to any potential gain via distribution? How fast does the infrastructure react to faults?
What is the memory footprint and scalability profile? How usable was the solution in
practice?

The hardware consisted of two Fujitsu Siemens Scenic W600, i8656 (model MTR-
D1567) PCs with dual 3GHz CPUs connected by a 100MBit Ethernet LAN and a
hub. PC100 had 512MB and PC101 768MB RAM. The software configuration was
Windows XP SP1, JXTA 2.2, WebMethods Glue 4.1.2, and Java JDK 1.4.2. Note
that no performance or memory tuning was done to the implementation, and for re-
source-constrained scenarios another XML-based discovery mechanism could be
used.

The Distributed Application Provisioning Test (Table 1) used 13 modules in a
Configuration as shown in Table 1, first measuring their local startup times and then
the time when the configuration was distributed across both machines, showing
nearly a factor 2 improvement for the application to become ready. By making the
distribution of module locations easy, performance gains for startup and shutdown
can be reached (due to parallelism). This could improve development cycle efficien-
cies and application testing realism.

An Approach to Flexible Application Composition in a Diverse Software Landscape 59

The Deployment Unit Transfer Test determines the amount of time needed to
transfer a file by the FAST Deployer into a remote EJB container. The time to re-
motely deploy from PC100 to PC101 a new 1236KB petstore.ear (modified to run on
JBoss) was measured to be 3.4 seconds. While this shows a need for improvement, it
does not invalidate the case for distributed provisioning when compared to the shown
performance gains for typical software artifacts.

The Failure Reconfiguration Test shows the reaction time of the infrastructure to a
module failure in a distributed configuration. The James Email Server process was
killed on PC100. The reaction time was 200ms from detection of a state change on
PC100 through sending of a state-changed advertisement, to receipt on PC101 to the
point where it begins to start its local James Email Server module. Thus the infra-
structure reaction time would not typically be the primary factor, but rather module
startup time.

60 Roy Oberhauser

Fig. 5. The FAST Cockpit showing a graphical representation of a configuration of modules (as
spheres) with directed lines of interactions and dependencies

In the Memory Footprint Test (Table 2), the heap space of the Container on PC100
was measured under various circumstances as shown in Table 2. The difference be-
tween condition B and A shows that under most expected scenarios, managing even a
large number of modules does not affect the memory footprint significantly. Thus the
solution could potentially be applied to resource-constrained contexts.

Other criteria include the experience with usage of the solution realization within
the organization. A GUI tool, the FAST Cockpit (see Fig. 5), was developed to dem-
onstrate the operator-friendly possibilities once MDFs, CDFs, and Containers are
available. Configurations with their associated modules are listed in the top-left box
and can be created by drag-and-drop of installed modules - categorized both in the
bottom-left and with sphere colors. Animated tracing with playback is operated with
buttons on the top menu and the event slider at the bottom of the configuration. The
status of modules is represented with colored fonts and icons and module outputs are
available in separate windows.

An internal distribution among colleagues in the organization has enabled the op-
eration of complex configurations of distributed applications without the operator
necessarily being aware of the infrastructural issues and dependencies involved.
Based on feedback, a significant improvement in the time required to specify, com-
pose, and instantiate distributed applications has been observed as well as compre-

An Approach to Flexible Application Composition in a Diverse Software Landscape 61

hension benefits. Note that the amount of time needed to create an MDF depends on
the person’s skills and the familiarity with the software being described and MDF
concepts, but times of less than 15 minutes have been measured. The time to create a
CDF using the Cockpit is a matter of drag-and-drop of modules and any startup se-
quence dependency specification. Thus, the investment in the one-time MDF creation
typically pays off quickly, analogous to the investment in a makefile.

The feasibility, suitability, and advantages of this approach were hereby validated,
and future work will continue to improve these results.

6 Conclusion

Despite the growing marketplace competitiveness and pressure for faster software
delivery schedules, the challenges with regard to composing, configuring, deploying,
and operating distributed applications in a diverse software landscape have not re-
ceived adequate attention. There remains no unifying, widely adopted, practical, and
economic solution.

While the current FAST realization has shown good results, ongoing and future
work includes determining to what degree the security, policies, QoS and Service-
Level-Agreements can be addressed without annulling the current simplicity and
interoperability; correctness; concurrent configuration conflict checking; addressing
any single-points-of-failure; performance and memory tuning; a repository for MDF
and CDF propagation; a wizard for MDF creation; evaluating the issue of semantics
in MDFs and CDFs; and efforts towards more prevalent, standard, or unified software
artifact metadata.

FAST presents a practical solution to the current gap with regard to both the goal
of distributed application composition in this diverse landscape and given constraints
such as effort, cost, and others. A comprehensive solution could be realized by uni-
versal software standardization efforts for flexible-granularity and flexible-aspect
(e.g. operational) software metadata, in combination with platform, development
environment, and tool vendor support for utilizing this metadata.

Acknowledgements

The author would like to thank the following individuals for their efforts with regard
to various aspects of FAST: Ulrich Dinger, Emmanuel Gabbud, Christoph Huter,
Klaus Jank, Josef Pichler, Christian Reichel, and Martin Saler.

References

1. Anderson, P., Beckett, G., Kavoussanakis, K., Mecheneau, G., Toft, P.: Experiences and
Challenges of Large-Scale System Configuration. (2003)
http://www.epcc.ed.ac.uk/gridweaver/

62 Roy Oberhauser

2.

3.

4.

5.

6.
7.

8.

9.

10.

11.

12.

13.

14.
15.

Oberleitner, J., Gschwind, T., Jazayeri, M.: The Vienna Component Framework: Enabling
Composition Across Component Models. Proceedings of the 25th International Conference
on Software Engineering (ICSE). IEEE Press (2003)
Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J., Wagner, R., Wendehals, L.,
Zuendorf, A.: Tool Integration at the Meta-Model Level within the FUJABA Tool Suite. In
Proc. of the Workshop on Tool-Integration in System Development (TIS), ESEC/FSE 2003
Workshop 3. Helsinki, Finland (2003)
Lüer, C., van der Hoek, A.: Composition Environments for Deployable Software Compo-
nents. Technical Report 02-18. Department of Information and Computer Science, Univer-
sity of California, Irvine (2002)
Goldsack, P., Guijarro, J., Lain, A., Mecheneau, G., Murray, P., Toft, P.: SmartFrog: Con-
figuration and Automatic Ignition of Distributed Applications. HP OVUA (2003)
Jini Rio: http://rio.jini.org/
Object Management Group: Model-Driven Architecture (MDA) - A Technical Perspective,
ormsc/2001-07-01 edition (2001)
Gokhale, A., Schmidt, D., Natarajan, B., Wang, N.: Applying Model-Integrated Computing
to Component Middleware and Enterprise Applications. Special issue of Communications
of ACM on Enterprise Components, Services, and Business Rules, Vol 45, No 10, Oct
(2002)
Wang, N., Natarajan, B., Schmidt, D., Gokhale, A.: Using Model-Integrated Computing to
Compose Web Services for Distributed Real-time and Embedded Applications.
www.cs.wustl.edu/~schmidt/PDF/webservices.pdf
Gokhale, A., Natarjan, B., Schmidt, D., Wang, N., Neema, S., Bapty, T., Parsons, J., Gray,
J., Nechypurenko, A.: CoSMIC: An MDA Generative Tool for Distributed Real-time and
Embdedded Component Middleware and Applications. In Proceedings of the OOPSLA
2002 Workshop on Generative Techniques in the Context of Model Driven Architecture.
ACM, Nov. (2002)
Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T., Magalhaes, L., Campbell, R.: Monitor-
ing, Security, and Dynamic Configuration with the dynamicTAO Reflective ORB. In Pro-
ceedings of the Middleware 2000 Conference. ACM/IFIP, Apr. (2000)
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. In Proceedings of the 11th European Conference on Ob-
ject-Oriented Programming, June (1997)
Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International Journal of Supercomputer Applications and High Performance
Computing, 15(3) (2001)
WS-Resource Framework (WSRF) http://www.globus.org/wsrf/
JXTA: http://www.jxta.org

An Ontology-Based Framework
for Semantic Grid Service Composition

Claus Pahl

Dublin City University, School of Computing
Dublin 9, Ireland
Claus.Pahl@dcu.ie

Abstract. The Semantic Grid aims at enhancing Grid architectures by
knowledge engineering techniques. The service notion is central in this
approach. Service-level agreements, called contracts, are formed to define
the service usage conditions. Ontology technology can form the frame-
work to capture semantical conditions for contracts. Often, applications
of Grid services involve a combination of several services. We present
an ontology-based framework for service composition for the Semantic
Grid. We take a process-oriented view of services, achieving an intrinsic
representation of services and their composition in an ontology.

Keywords: Semantic Grid, Service composition, Ontology, Service pro-
cesses.

1 Introduction

Knowledge is expected to become more central in Grid architectures [1, 2]. The
Semantic Grid aims at enhancing Grid architectures by knowledge engineering
techniques. Semantic Web ontologies can support this endeavour [3, 4].

The service notion is central in this approach. We view Grid architectures as
sets of services [1, 5–7]. Services are provided to Grid users. Service-level agree-
ments, called contracts, define the service usage conditions. Ontology technology
can form a marketplace framework to capture semantical conditions for contracts
in a common, shared format. Grid service applications are often complex. Ser-
vices need to be composed to achieve a complex goal. Two aspects characterise
our approach. Firstly, services shall be considered as processes – services can be
viewed from an external perspective as interacting agents in a distributed Grid
environment [8]. Secondly, a composition language based on this process view
can enable service interoperability for the Grid.

Our aim here is to develop a Semantic Web-based Grid service ontology that
acts as service composition framework. An ontology framework can enable knowl-
edge representation for the Grid, for instance for the representation of service
contract agreements between provider and user of services. We will introduce a
composition language integrated with a knowledge representation framework.

Reasoning about service descriptions and service matching to identify suit-
able services in marketplace and to define consistent service compositions is an

M. Jeckle, R. Kowalczyk, and P. Braun (Eds.): GSEM 2004, LNCS 3270, pp. 63–77, 2004.
© Springer-Verlag Berlin Heidelberg 2004

64 Claus Pahl

important activity. We will present here a services development ontology that
provides matching support [9]. Ontologies are knowledge representation frame-
works defining concepts of a domain and their properties; they provide the vo-
cabulary and facilities to reason about these. Ontologies provide a shared and
agreed knowledge infrastructure. Two types of ontologies are important for the
Grid services context. Application domain ontologies describe the domain of
the grid software under development. Software ontologies describe the service
entities and aspects of the development and deployment life cycle.

Formality in the Semantic Web framework facilitates machine understanding
and automated reasoning – automation is essential for the future Grid. The
ontology language OWL is equivalent to a very expressive description logic [10],
which provides well-defined semantics and reasoning systems. It has already been
applied to Grids [2].

The need to create a shared understanding for an application domain is long
recognised. Client, user, and developer of a software system need to agree on
concepts for the domain and their properties. However, with the emergence of
distributed software development such as Grids and service-oriented architec-
tures also the need to create a shared understanding of software entities and
development processes arises.

We introduce the background including Grid architectures, services, and on-
tologies in Section 2. In Section 3, we define a simple ontology language for
Semantic Grid service description. The description of composed services is sub-
sect of Section 4. In Section 5, we address matching of service processes. We
discuss the wider context of semantic services for the Grid and related work in
Section 6. We end with some conclusions.

2 Semantic Grid Services and Architectures

2.1 Grid Architectures

Grid technology aims at supporting sharing and coordinated use of resources
in dynamic, distributed virtual organisations [5]. In the Open Grid Service Ar-
chitecture [5], a Grid service is defined as a Web service that provides a set of
well-defined interfaces and that follows specific conventions. Aspects that are
Grid-specific in the Web services context are:

statefulness – services often encapsulate a hidden state,
dynamic assembly and transient character,
upgradeability – due to the dynamic nature, change management is essential.

Grids can be described as layered architectures with three conceptual layers [1]:

Data and computation: This layer deals with the allocation, scheduling, and
execution of computational resources.
Information: This layer deals with representation, storage, access, sharing,
and maintenance of information, i.e. data associated with its semantics.

An Ontology-Based Framework for Semantic Grid Service Composition 65

Knowledge: This layer deals with the acquisition, usage, retrieval, publica-
tion, and maintenance of knowledge, i.e. information capturing goals, prob-
lems, and decisions.

We will demonstrate that ontologies not only support the information and knowl-
edge layer, but that ontologies can also help to integrate the computational
aspects of the lower data and computation layer.

It is important to note that our ontological framework is not specific to any of
the layers or specific services. We will introduce an abstract framework suitable
for the composition of any services – no matter on which layer.

2.2 A Basic Services Model and Service-Related Activities

The composition of Grid services to address complex goals and to form higher-
level applications requires a service model that captures the essential charac-
teristics of services for this context. Descriptions, contracts, and compositions
determine the requirements for such a service model [11]:

Explicit export and import interfaces. In particular explicit and formal import
interfaces make services more context independent. Only the properties of
required and provided services are specified.
Contractual (semantic) description of services. In addition to syntactical
information such as service signatures, the abstract specification of behaviour
(a contract) is a necessity for reusable services.
Service protocol. An interaction protocol describes the ordering of service
activations that a user of a service has to follow in order to use the service
in a meaningful and consistent way.

Our aim is to capture composition in form of processes – expressions that
describe business processes and workflows through ordering dependencies and
invocations of services. The consistency of a process would depend on individual
service descriptions based on the service model.

Three development activities are essential in this context – which we will
address in the subsequent three sections:

Description. An ontology language will allow us to describe individual ser-
vices in a Semantic Web-compatible framework.
Composition. An extension of the ontology will allow composition of services
to higher-level services to be expressed.
Matching. Inference capabilities of the ontological framework will be used to
reason about matching between provided and required service processes.

The activities are essential parts of the lifecyle of a Grid service [1].

2.3 Ontology Technology

Ontologies are means of knowledge representation, defining so-called shared con-
ceptualisations. Ontologies are frameworks for terminological definitions that can

66 Claus Pahl

Fig. 1. A Sample Application: a Document Storage Service.

be used to organise and classify concepts in a domain. Combined with a symbolic
logic, we obtain a framework for specification, classification, and reasoning in an
application domain. Terminological logics such as description logics [10] are an
example of symbolic logics.

The Semantic Web is an initiative for the Web that builts up on ontology
technology [3]. XML is the syntactical format. RDF – the Resource Description
Framework – is a triple-based formalism (subject, property, object) to describe
entities. OWL – the Web Ontology Language – provides additional logic-based
reasoning based on RDF.

We will use Semantic Web-based ontology concepts to formalise and axioma-
tise Grid service processes, i.e. to make statements about services and to reason
about them. We will base our ontology on Description logic [10]. Description
logic, which is used to define OWL, is based on concept and role descriptions.
Concepts represent classes of objects; roles represent relationships between con-
cepts; and individuals are named objects. Concept descriptions are based on
primitive logical combinators (negation, conjunction) and hyprid combinators
(universal and existential quantification). Expressions of a description logic are
interpreted through sets (concepts) and relations (roles).

Description logic is particularly interesting for the software development con-
text due to a correspondence between description logics and modal logic [12, 13].
This will allows us to embed modal reasoning about processes in a description
logic context – achieving an intrinsic specification of processes.

2.4 An Example

An example shall illustrate our service ontology – see Fig. 1. It describes a
document storage and access service. The service is an example for a data and
computational layer Grid service. The DocumentStorageServer service allows
users to create, retrieve, update, and delete documents.

An Ontology-Based Framework for Semantic Grid Service Composition 67

An empty document can be created using crtDoc. The service rtrDoc re-
trieves a document, but does not change the state of the server component,
whereas the update service updDoc updates a stored document without re-
turning a value. Documents can also be deleted.
We have illustrated contract-related information by specifying one of the
operations by pre- and postcondition. If documents are XML-documents,
these can be well-formed (correct tag nesting) or valid (well-formed and
conform to a schema definition).
The interaction protocol defines an ordering constraint that has to be obeyed
if the service is to be used.

A service user might need the following services to assemble a higher-level service:

create(id:ID),retrieve(id:ID):Doc, and update(id:ID,upd:Doc)

The user might require create;!(retrieve+update) to implement a goal or
business process. The create service is expected to be executed first, followed
by a repeated invocation of either retrieve orupdate.

3 Description of Semantic Grid Services

Dynamic assembly and management of Grid services rely on a high degree of
automation. Semantical information about services can support automation. Se-
mantics equally support upgradeability. Backward compatibility is required for
Grid Service architectures. A semantical framework can capture explicit con-
straints to maintain integrity during change management.

3.1 An Ontology for Service Description

The starting point in defining an ontology is to decide what the basic ontology
elements – concepts and roles – represent. An intuitive idea would be to represent
services as concepts. Our key idea, however, is that the ontology formalises a
software system and its specification, see Fig. 2.

Concepts – circles in the diagram – shall represent static Grid system de-
scriptions such as invariants and/or other syntactical and semantical aspects.
Importantly, systems are dynamic, i.e. the descriptions of properties are in-
herently based on an underlying notion of state and state change.
Roles – rectangles in the diagram – shall represent two different kinds of re-
lations. Transitional roles represent accessibility relations, i.e. they represent
processes resulting in state changes. Descriptional roles represent properties
in a given state, i.e. static relations.

A language based on these constructs introduces a general terminological frame-
work. Central here is the notion of states that capture properties of a system
and a service. We will focus on functional properties here; non-functional aspects
could be integrated as invariant (inv, see Fig. 2) properties1.

1 Ontological frameworks for semantic Web services such as OWL-S [9] provide this
type of support.

68 Claus Pahl

Fig. 2. Semantic Grid Services Ontology.

3.2 A Basic Ontology Language – Syntax

We develop a description logic to define our service description, composition,
and matching ontology. A description logic consists of three types of entities.
Individuals can be thought of as constants, concepts as unary predicates, and
roles as binary predicates.

Concepts are the central entities. They can represent anything from concrete
objects of the real world to abstract ideas. Constructors are part of ontology lan-
guages that allow more complex concepts (and roles) to be constructed. Classical
constructors include conjunction and negation. Hybrid constructors are based on
a concept and a role – we present these in a description logic notation.

Concepts are collections or classes of objects with the same properties.
Concepts are interpreted by sets of objects.
Roles are relations between concepts.
Individuals are named objects.
Concept descriptions are formed according to the following rules: A is an
atomic concept, and if C and D are concepts, then so are ¬C and C D.
Combinators such as C D or C D are defined as usual.

Roles allow us to describe a concept through its relationship to other concepts.
Two basic forms of role applications are important for our context. These will be
made available in form of concept descriptions. Value restriction and existential
quantification extend the set of concept descriptions.

A value restriction restricts the value of role R to elements that
satisfy concept C.
An existential quantification requires the existence of a role value.

Quantified roles can be composed. Since is a concept description, the
expression is also a concept description.

The constructor is interpreted as either an accessibility relation R to a
new state C for transitional roles such as update, or as a property R satisfying
a constraint C for descriptional roles such as postCond.

An Ontology-Based Framework for Semantic Grid Service Composition 69

3.3 A Basic Ontology Language – Interpretation

We interpret concepts and roles in Kripke transition systems [13]. Kripke tran-
sition systems are semantical structures used to interpret modal logics that are
also suitable to interpret description logics [10]. A Kripke transition system
(KTS) consists of a set of states a set of role labels a
transition relation and an interpretation I.

We use Kripke transition systems to facilitate the transitional character of
service-based Grid systems. Concepts are interpreted as states. Transitional roles
are interpreted as accessibility relations. The set interprets the state domains
pre, post, and inv – see Fig. 2. We can extend the set of states by several
auxiliary domains such as Cond, Sign or Literal or other aspects that cap-
ture contract-specific properties. Cond represents conditions or formulas, Sign
denotes a domain of service signatures and Literal denotes string literals.

For a given Kripke transition system M with interpretation I, we define the
model-based semantics of concept descriptions2:

Expressive role constructs are essential for our application. We distinguish

transitional roles that represent component services:
They are interpreted as accessibility relations on states.
descriptional roles that are used to describe properties of services
dependant on the state: for some auxiliary domain These
are interpreted as relations between states and property domains.

Some predefined roles, e.g. the identity role id interpreted as
shall be introduced. The predefined descriptional roles are defined as follows:

Note, that these descriptional roles are part of the wider ontology framework –
for the remainder of the paper, we will concentrate on transitional roles.

4 Composition of Grid Services

Composition of services to higher-level services becomes a central activity in
distributed computational environments, if reuse and sharing is an objective
[14]. We introduce a notion of service processes for two reasons:
2 The semantics of description logics is usually given by interpretation in models.

However, it can also be defined by translation into first-order logic [10]. Concepts C
can be thought of as unary predicates Roles R can be thought of as binary
relations Then, corresponds to

70 Claus Pahl

Provider side: Services are sets of operations. An ordering of these operations,
specified through an interaction protocol, is often necessary to guarantee
a coherent usage of the service. Grid services are often stateful. Lifecycle
constraints do often apply, e.g. a create-operation might need to be invoked
before any other functionality can be used.
Client side: Service usage is not restricted to request-response interactions.
Service usage can be based on a composition of individual services or ser-
vice operations to complex higher-level processes to satisfy user needs. Grid
service architectures are often based on a factory service that might cre-
ate multiple service instances and combine these to a higher-level service. A
process-style description can define higher-level services.

Providing a framework that represents these service processes is required.

4.1 Service Process Expressions

An ontology supporting service composition requires an extension of basic de-
scription logics by composite roles that can represent service processes [10]. These
are necessary to express interaction protocols for a single service and to define
composed higher-level services.

The following role constructors shall be introduced for service process
composition:

Q ; R sequential composition with
often we use instead of ; for functional composition

!R iteration with i.e. the transitive closure of
Q + R non-deterministic choice with

Each service process is assumed to be sequential; concurrently executed services
are, however, possible. This language, which defines role expressions, is a regular
language. This property might be useful if finite state machine or automata-
based approaches for analysis are used. Two additional constructs:

Often, we want to express the sequential composition of functional roles. A
role chain is a sequential composition of functional roles (roles
that are interpreted by functions).

is an abstraction refering to a composite role A based on
the roles

Expressions constructed from role names and role constructors are composite
roles. For example, the value restriction

is based on the composite role create;!(retrieve+update).
Axioms in this description logic allow us to reason about service behaviour.

Questions concerning the consistency and role composition with respect to be-
haviour protocols can be addressed. For instance [13]

An Ontology-Based Framework for Semantic Grid Service Composition 71

are two axioms that describe logical properties of the two role combinators se-
quence (;) and choice (+). The equivalence

is a pure logical axiom that describes a property of the
A special form of a role constructor are quantified constructors:

The role expression is an existential predicate restric-
tion, if P is an predicate of a concrete domain – concepts can only be
unary – and are role chains.
Analogously, we define a universal predicate restriction

For example, expresses that there are role values (sometimes called
role fillers) for the two roles and that are equal. The expression
requires all role values to be equal.

4.2 Names and Parameterisation

The ontology language that we have defined by introducing role constructors for
service composition is not yet complete. We can formulate process expressions
in terms of service names, but we cannot refer to data and we cannot express
service parameters, cf. Section 2.1.

In ontology languages, individuals are introduced in form of assertions. For
instance, Doc(D) says that individual D is a document Doc and length(D,100)
says that the length of D is 100.

An individual with is interpreted by with
The set constructor, written introduces the individual names

The role filler is defined by i.e. the
set of objects that have as a filler for R.

This allows us to introduce individuals on the level of concepts and roles. The
fills constructor for a role stands for all objects that have as a filler of
role R.

The essential difference between classical description logic and our variant
here is that we need names to occur in role and concept descriptions. A descrip-
tion logic expression usually means that valid is a concept, or
predicate, that can be applied to some individual object; it can be thought of as

for an individual x. If roles are services, then x should not
represent a concrete individual, but rather a name or a variable. For instance
the creation service create has a parameter id. Our objective is to introduce
names into the description language. We extend the language defined earlier on
by parameterised roles.

We denote a name by a role defined by

72 Claus Pahl

A parameterised role is a transitional (functional) role R applied to a
name i.e.

The name definition is derived from the role filler and the identity role
definition, i.e.

With names and parameters our Grid service composition language is now
complete. We can define process expressions consisting of services that achieve
some defined goals. We can now express a parameterised role

for our example document storage and access services, defined by

which is equal to where is a postState element that could be
further described by roles such as With
names and role composition parameterised role chains can be expressed:

The expression is another example3.
The tractability of reasoning about descriptions is a central issue for descrip-

tion logic. The richness of our description logic has some negative implications
for the complexity of reasoning. However, some aspects help to reduce the com-
plexity. We can restrict roles to functional roles. Another beneficial factor is that
for composite roles negation is not required. The defined language is therefore
decidable, i.e. the satisfiability problem is decidable. It is based on the language

introduced in [10]. It introduces additionally name and parameterisation
constructs based on functional roles, avoiding negation – which preserves the
decidability in our extension.

5 Matching of Semantic Grid Service Processes

Dynamic assembly of services, for instance to higher-level services, is a cen-
tral feature of Grid service architectures. The virtualisation of services through
the Web Services Framework enables composition; specific semantic support for
matching is, however, desirable.

The activities that we are concerned with are service description, composition
and matching. Central reasoning constructs of description logics to support these
are equivalence and subsumption. In this section, we look at service matching
based on interaction protocols and how it relates to subsumption reasoning.

3 We often drop the if it is clear that a name is under consideration.

An Ontology-Based Framework for Semantic Grid Service Composition 73

5.1 Subsumption

Subsumption is the central inference construct in description logics [10]. Sub-
sumption is the subclass relationship. It is often used to describe classification
hierarchies. Axioms based on subsumption and equivalence are introduced into
description logics to reason about concept and role descriptions.

Concepts: subconcept concept equality
Roles: subrole role equality
Individuals: individual equality

The semantics of these axioms is defined based on set inclusion of interpreta-
tions for the subsumption and equality for equivalence for Therefore,

iff is a consequence of the axiom definitions. Sub-
sumption is not implication. Structural subsumption (subclass) is weaker than
logical subsumption (implication). Subsumption is defined by subset inclusions
for concepts and roles:

A subsumption between two concepts and is defined
through set inclusion for the interpretations
A subsumption between two roles and holds, if

We can embed these axioms into the reasoning framework. For instance
or implies holds for concepts and We can

use subsumption to reason about matching of two service process descriptions
(defined as transitional roles).

5.2 Matching of Service Process Descriptions

A notion of consistency of composite roles that define interaction protocols or
higher-level services through process expressions relates to the underlying ser-
vice properties, which could be based on semantical contract-related properties.
Often, states or state transitions are constrained through invariants and pre-
and postconditions4.

A concept description with composite transitional role
P is reachable if is not empty. A composite role

is consistent, if the last state is reachable.
For instance, in the presence of pre- and postconditions, a composite transi-

tional role P is consistent if the following (sufficient) conditions are satisfied:

for each sequence R; S in P :
for each iteration !R in P :
for each choice R + S in P : and

4 Even though we do not fully formalise a framework for pre- and postconditions, we
consider these to be of importance for the Semantic Grid [1,2]. Consequently, we
prepare our ontology for future extensions in this direction; see also Section 6.

74 Claus Pahl

We can now define consistent services processes. A service process is a consis-
tent composite role expression constructed from transitional role
names and connectors ; , ! , and + 5. The specification of service
processes describes the ordering of observable activities of the service process
that implements the process expression.

A protocol transition graph G = (N, E) for composite transitional roles
is a graph that represents all possible process executions. A transition graph
G = (N, E) can be constructed inductively over the syntactical structure of
a composite role expression. This transition graph can be related to Kripke
transition systems in which we interpret expressions: is a subset of
states; is a subset of relations for a KTS M with states S and roles R.

The next step is to define matching of consistent service processes. The match-
ing approach here serves two purposes:

Does an existing process that realises some goal matches some given require-
ments? Can this process be selected from a repository?
What is the relation between two given process expressions? Can one be
considered as a refinement of an other?

Process calculi suggest simulations and bisimulations as constructs to address
the subsumption and equivalence of service processes [15]. We will use a notion
of simulation between processes to define service process matching.

A provider service process simulates a requested service pro-
cess if there exists a homomorphism from the transition

graph of R to the transition graph of P, i.e. if for each there is a

such that and
We say that a provided service process matches a requested
service process if simulates

The form of this definition originates from the simulation definition of the
[15]. The provider needs to be able to simulate the request, i.e. needs

to meet the expected behaviour of the requested process. The problem with this
definition is that it involves a semantical structure. We can, however, construct
a transition graph based on the syntactical representation.

In our document service example, the provider might require the interaction
protocolcrtDoc;!(rtrDoc+updDoc);delDoc and the requestor might formulate
a higher-level service create;!(retrieve+update). Assuming that the opera-
tion pairs crtDoc/create,rtrDoc/retrieve, and updDoc/update match based
on their contract-relevant descriptions, we can see that the provider matches (i.e.
simulates) the required server interaction protocols. delDoc is not requested.

We can expect service process matching not to be the same as subsumption.
Subsumption on roles is input/output-oriented, whereas the simulation needs to
consider internal states of the composite role execution. For each request in a

5 We often drop service parameters in expressions if only the ordering is relevant.

An Ontology-Based Framework for Semantic Grid Service Composition 75

process expression, there needs to be a corresponding provided service. However,
matching is a sufficient condition for subsumption.

If service process simulates service process then
If simulates then for each there

is a pair Therefore, and consequently follow.

6 Semantics – The Wider Picture

Supporting the Semantic Grid [1,2] is one of your key objectives. In this section,
we will briefly address wider implications of semantics in the Grid context. We
will also discuss related work in this context.

6.1 The Semantic Web

The Semantic Web initiative [4] bases the formulation of ontologies on two Web
technologies for content description: XML and RDF/RDF Schema. RDF Schema
is an ontology language providing classes and properties, range and domain no-
tions, and a sub/superclass relationship. Web ontologies can be defined in OWL
– an ontology language whose primitives are based on XML and RDF/RDF
Schema, which provides a much richer set of description primitives. OWL can
be defined in terms of description logics. However, OWL uses a different termi-
nology; corresponding notions are class/concept or property/role.

With the current wide acceptance of the Web and the potential of the Se-
mantic Web as an ontology framework, the combination of Semantic Web and
Grids to the Semantic Grid [1] is the obvious choice. We have developed our
ontology within this context.

6.2 Semantic Service Contracts

Service level agreements are called contracts. We have already mentioned pre-
and postconditions as possible, behaviourally oriented properties that form part
of a contract between service provider and service user. For instance, our match-
ing notion depends on a consistency notion capturing these types of descriptions.

We could add pre/postcondition specifications to our basic ontology language
– as indicated in Fig. 2, see [16] for details. Then, the formula

in our description logic corresponds to

in a dynamic (modal) logic. Schild [12] points out that some description logics are
notational variants of modal logics. This correspondence allows us to integrate
modal axioms and inference rules about processes into description logics.

76 Claus Pahl

6.3 Semantic Services Ontologies

Some effort has already been made to exploit ontology technology for the soft-
ware domain [9, 17], mainly for the Web Services Framework [18]. Composition-
ality has, however, often not been at the centre of these investigations.

OWL-S [9] (aka DAML-S) is an OWL ontology for describing properties and
capabilities of Web services. OWL-S represents services as concepts. Knowledge
about a service is divided into two parts. A service profile is a class that describes
what a service requires and what it provides, i.e. external properties. A service
model is a class that describes workflows and possible execution paths of a
service, i.e. properties that concern the implementation. OWL-S provides to
some extend what we aim at for Semantic Grid services. However, our reasoning
and ontology support is not possible in OWL-S, since services are modelled as
concepts and not rules in the OWL-S ontology. Only considering services as roles
makes modal reasoning about process behaviour possible.

7 Conclusions

Grids are services-based infrastructures. In order to make full use of this infras-
tructure, services need to be composable. Users of a Grid infrastructure need to
be able to compose services, i.e. define processes that specify the execution of a
composed higher-level service process based on a number of individual services.
These processes implement more comprehensive goals and business processes.
We have defined a service composition language for Grid services.

Our aim is to support the Semantic Grid – knowledge and semantics are
expected to be of importance in the future. Consequently, we have embedded
our service composition language into a process-oriented ontological framework
that allows the intrinsic description of and reasoning about Semantic Grid ser-
vices. This ontological framework enables the integration with other semantical
aspects, e.g. property descriptions that are relevant for contract formulations in
Grid marketplaces. With Grid service technology moving towards Web services,
in particular semantic Web service techniques can provide solutions.

We have focused our investigation on an abstract service composition frame-
work, neglecting detailed explorations of different types of concrete services of
the individual Grid architecture layers. Addressing these different service types
is an issue that we will look at in the future. Equally important is the further
study of a variety of Grid application domains. So far, we have combined a case
study with experience in other service-oriented architectures.

References

1. D. De Roure, N. Jennings, and N. Shadbolt. The Semantic Grid: A Future e-Science
Infrastructure. International Journal of Concurrency and Computation: Practice
and Experience, 2003.

An Ontology-Based Framework for Semantic Grid Service Composition 77

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

H. Tangmunarunkit, S. Decker, and C. Kesselman. Ontology-Based Resource
Matching in the Grid - The Grid Meets the Semantic Web. In D. Fensel, K.P.
Sycara, and J. Mylopoulos, editors, Proc. International Semantic Web Conference
ISWC’2003, pages 706–737. Springer-Verlag, LNCS 2870, 2003.
T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5), May 2001.
W3C Semantic Web Activity. Semantic Web Activity Statement, 2002.
http://www.w3.org/sw.
I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The Physiology of the Grid: Open
Grid Services Architecture for Distribution Systems Integration. In Proceedings
GGF4 Conference, February 2002.
http://www.globus.og/research/papers/ogsa.pdf, 2002.
F. Bonnassieux, R. Harakaly, and P. Primet. Automatic Services Discovery, Moni-
toring and Visualisation of Grid Environments: The MapCenter Approach. In Proc.
European Across Grids Conference 2003, pages 222–229. Springer-Verlag, LNCS
2970, 2004.
W. Poompatanapong and B. Piyatamrong. A Web Service Approach to Grid In-
formation Service. In Proc. Int. Conference in Web Services ICWS’2003. 2003.
N. Jennings. An Agent-based Approach for Building Complex Software Systems.
Communications of the ACM, 44(4), 2001.
DAML-S Coalition. DAML-S: Web Services Description for the Semantic Web.
In I. Horrocks and J. Hendler, editors, Proc. First International Semantic Web
Conference ISWC 2002, LNCS 2342, pages 279–291. Springer-Verlag, 2002.
F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The Description
Logic Handbook. Cambridge University Press, 2003.
C. Pahl. Components, Contracts and Connectors for the Unified Modelling Lan-
guage. In Proc. Symposium Formal Methods Europe 2001, Berlin, Germany.
Springer-Verlag, LNCS-Series, 2001.
K. Schild. A Correspondence Theory for Terminological Logics: Preliminary Re-
port. In Proc. 12th Int. Joint Conference on Artificial Intelligence. 1991.
Dexter Kozen and Jerzy Tiuryn. Logics of programs. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pages 789–840. Elsevier, 1990.
V. Issamy and C. Kloukinas. Automating the Composition of Middleware Con-
figurations. In 15th International Conference on Automated Software Engineering
ASE’00. IEEE, 2000.
D. Sangiorgi and D. Walker. The - A Theory of Mobile Processes. Cam-
bridge University Press, 2001.
C. Pahl. An Ontology for Software Component Matching. In Proc. Fundamental
Approaches to Software Engineering FASE’2003. Springer-Verlag, LNCS Series,
2003.
A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker. Semantic Configuration
Web Services in the CAWICOMS Project. In I. Horrocks and J. Hendler, editors,
Proc. First International Semantic Web Conference ISWC 2002, LNCS 2342, pages
279–291. Springer-Verlag, 2002.
World Wide Web Consortium. Web Services Framework.
http://www.w3.org/2002/ws, 2003.

Towards a Metamodeling Based Method
for Representing and Selecting Grid Services

Sergio Andreozzi1,2, Paolo Ciancarini1, Danilo Montesi3, and Rocco Moretti1

1 University of Bologna, Department of Computer Science, 40127 Bologna, Italy*
{cianca,moretti}@cs.unibo.it

2 Istituto Nazionale di Fisica Nucleare-CNAF, 40127 Bologna, Italy**
sergio.andreozzi@cnaf.infn.it

3 University of Camerino, Department of Mathematics and Informatics
62032 Camerino (MC), Italy***
danilo.montesi@unicam.it

Abstract. The service oriented model is the emerging approach adopted
by Web and Grid services where parties act as service requestors and
service providers. A meaningful aspect to consider consists in improv-
ing machine-to-machine interaction by enabling an automatic evaluation
and selection of available services with respect to a set of expectations.
In this context, it can be useful to raise the modeling abstraction level
by considering the metamodeling theory principles by which to enhance
the modeling constructs. The goal of this paper is to present a method
for the rigorous representation and selection of service characteristics in
the area of Grid computing. Such a method relies on the measurement
theory and the Logic Scoring of Preferences (LSP). Moreover, relying on
the metamodeling theory provided by the OMG Model Driven Archi-
tecture (MDA), a prototype tool for mapping MOF based Grid services
metamodels in domain specific textual languages is presented.

1 Introduction

The service oriented model is the emerging approach adopted by Web and Grid
services where parties act as service requestors and service providers. A meaning-
ful aspect to consider consists in improving machine-to-machine interaction by
enabling an automatic evaluation and selection of available services with respect
to a set of expectations. In this context, it can be useful to raise the modeling
abstraction level by considering the metamodeling theory principles by which to
enhance the modeling constructs. The goal of this paper is to present a method
for the rigorous representation and selection of service characteristics in the area
of Grid computing. Such a method relies on the measurement theory [1] and

*

**

This research was partially funded by the SAHARA project.
This research was partially funded by the IST Programme of the European Union
under grant IST-2001-32459 (DataTAG project).
This research was partially funded by the projects ‘GERONACCESS’, ‘Implement-
ing background for innovation Technology’ and ‘ISPI’.

M. Jeckle, R. Kowalczyk, and P. Braun (Eds.): GSEM 2004, LNCS 3270, pp. 78–93, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Towards a Metamodeling Based Method 79

on the Logic Scoring of Preferences (LSP) [2, 3]. We start by considering the
systems that are involved in our study.

Web services are software systems having interfaces described in a machine
processable format designed to support message based interoperable interactions
over a network. The World Wide Web Consortium (W3C) is defining the Web
Service Architecture (WSA) [4], consisting of a conceptual stack of interrelated
standard protocols where upper layers rely on the capabilities provided by the
lower layers. The downmost layer is the ‘message’ concerning mechanisms for
communicating document-centric messages that are based on the Simple Object
Access Protocol (SOAP) [5]. The ‘description’ layer allows to define a set of de-
scription documents using the Web Services Description Language (WSDL) [6].
Finally, the ‘process’ layer concerns process descriptions like, for instance, the
discovery of service descriptions satisfying specified criteria.

Grid services consist in coordinating services not subject to centralized con-
trol within multi-institutional Virtual Organizations (VO) spanning locations,
machine architectures and software boundaries [7]. The current production sys-
tems (e.g., LHC Computing Grid [8], INFN-GRID [9]) are based on the de-facto
standard Globus Toolkit 2. It relies on a layered architecture where the down-
most layer is the ‘Fabric’ providing shared access mediated by Grid protocols to
operations on local resources. The ‘Connectivity’ layer defines core communica-
tion protocols to enable the exchange of data between resources of the Fabric
layer. The ‘Resource’ layer defines protocols for the secure negotiation, initiation,
monitoring, control, accounting and payment of sharing operations on individual
resources. The ‘Collection’ layer contains global protocols and services captur-
ing interactions among collections of resources. Finally, the ‘Application’ layer
involves user applications operating within a VO environment [7].

The new emerging Grid infrastructure is the Open Grid Services Architec-
ture (OGSA) [10] where the basic layer is provided by Web services standards.
They have been recently extended by a set of specifications globally called Web
Services Resource Framework (WSRF) [11] supporting the capability of rep-
resenting stateful resources and managing resource lifetime. It also provides a
common notification model. Preliminary implementations supporting the new
standards are already available (e.g., Globus Toolkit 3.9.1 Java WSRF Core [12],
WSRF.NET [13]).

In the infrastructures given above, the concept of ‘quality’ can be consid-
ered from different perspectives. The approach presented in this paper considers
quality as an aggregation of satisfactions associated to the values returned by
measurements of the attributes under investigation. Among the multi-criteria
evaluation methods present in the literature [14, 15], the Logic Scoring of Prefer-
ences (LSP) has been selected. It is a quantitative decision method for evaluation,
comparison and selection of hardware and software systems. LSP can be enriched
by the measurement theory, meant as the set of concepts and rules by which to
define a mapping between empirical and formal systems, thus enabling a ma-
chine evaluation of quality. Relying on such an approach, we present the current
status of a method for the representation and selection of Grid services consid-

80 Sergio Andreozzi et al.

ered from a satisfaction perspective. Moreover, we present the architecture of a
prototype tool for mapping Grid services metamodels in domain specific textual
languages is presented.

In Section 2, a scenario motivating the work presented in this paper is con-
sidered. Section 3 introduces a method for satisfaction based quality evaluation.
Section 4 explains how metamodeling principles can be considered in the context
of our method and present the prototype tool. Finally, in Section 5 conclusions
and ongoing activities are summarized.

2 Discovery for Selection of Grid Services

In a Grid environment, resources are dynamically contributed by different owner
institutions to VOs, thus forming virtual pools to be assigned to VO users.
The key functionality of providing information about the structure and state
of available resources is provided by the Grid Information Service (GIS) [16].
Available resources can be dynamically selected and composed on the basis of
user requirements to set up and provide complex and on-demand services.

Due to the open nature of the Grid (e.g., resources can dynamically join or
leave) and due to the virtual nature of services (e.g., users are not aware of
which resources will be assigned to their applications), it is a vital determinant
the capability of describing both user requirements and service properties in
order to decide if a profitable interaction can take place. Further, the possibility
that parties can be unknown to each other implies a more stringent need for
representing not only functional, but also non-functional properties.

As an example, we select the simple use case of a user asking to the Grid
the execution of a single application by means of a ‘Computing Service’ (i.e., a
uniquely identified Grid service that can provide a user software application for
computing power in a certain execution environment). Concerning the execution
environment, the user can require a specific operating system type. Moreover,
it is desirable that the application is assigned to the less loaded resource among
those available.

The operation of selection and brokering is typically provided by a Grid
collective service called ‘Broker Service’. Using it, a Grid user can submit a
document called ‘Job Submission Description’ (JSD) describing the expected
complex Grid service. Based on the available Grid services and on the JSD, the
broker service executes a matchmaking phase during which suitable solutions
are prepared. Then, it executes a brokering phase where one solution is selected.
This decision can take into account not only the user requirements, but also
general aspects related to the Grid behavior. The main objective of a broker
service is both to fulfill user requests and balance the workload of the system.
The service selection requires the ability of aggregating the satisfaction degree
concerning a set of attributes of interest. The final decision can take into account
a combined satisfaction degree. For instance, if several solutions satisfying the
user expectations exist, the broker can use a further satisfaction criterion favoring
the less loaded services.

Towards a Metamodeling Based Method 81

In order to provide a practical example, we refer to a language that has
been widely used in the area of Grid computing [17] for describing both ser-
vices and service agreement proposals: the Classified Advertisement (ClassAd)
language [18]. It has been designed in the context of the Condor distributed com-
puting system [19], where it is used for discovery and allocation of resources. Its
usage consists of the following phases: (1) providers of computing resources sub-
mit advertisements describing their capabilities and declaring constraints and
preferences for jobs that they are willing to run; (2) consumers submit adver-
tisements describing their jobs and constraints or preferences regarding execution
sites; (3) a matchmaker process matches the resource and consumer request ad-
vertisements. Recently, a mechanism called gang-matching has been added to
the ClassAd language [20]. It extends the bilateral matchmaking approach to a
multilateral model that allows the description of the relations holding between
several participants in the match. Both a computing service and a JSD can be
represented using the ClassAd language as follows:

As regards the ClassAd CL.1, a computing service can be expressed by its
category (Type), a unique identifier (URI), the operating system type of the
offered execution environment (OSType), the processor family of the underly-
ing system (ProcessorFamily), the number of free slots that can accommodate
new running jobs (FreeJobSlots), the number of jobs that are being executed
(RunningJobs) and the number of jobs that have been queued and whose exe-
cution is not yet started (WaitingJobs). As regards the ClassAd Cl.2, the JSD
is characterized by the full path name of the user job (Executable), the set of
arguments (Arguments) for the user job, the set of inputfiles (FileStageIn) for
the user job, the set of outputfiles (FileStageOut) for the user job. The basic
assumption is that the file expressed in FileStageIn will be copied in the same
execution directory of the job. Moreover, the name of output file generated in
the execution directory of the job is expressed by the FileStageOut.

Constraints are boolean expressions involving constants and ClassAd at-
tributes of the service of interest. The rank consists in defining an arithmetic
expression synthesizing values used for sorting the services satisfying the con-
straints. In the JSD given above, the Constraint expression contains the op-
erating system requirements. Further matching CSs are ranked considering the
amount ofFreeJobSlots. The JSD is written using a set of attributes that are
unambiguously shared between the service requestor and the service provider
and it represents an agreement proposal. This document is sent to the broker

82 Sergio Andreozzi et al.

service. The task of the broker is to control whether, among the set of available
services, there is a suitable solution that can satisfy the service request.

3 Satisfaction Based Service Evaluation

In this section, we present the model for the representation and evaluation of
quality in Web and Grid services. It relies on the measurement theory and the
LSP method. The fundamental assumption consists in considering the concept of
quality of a service in terms of the ‘satisfaction degree’ concerning the admissible
measurement values of its attributes of interest.

3.1 Measurement Theory Background

We start by introducing the concepts of ‘entity’ and ‘attribute’. The former is
an object or event of the real world, whereas the latter is a feature of this object
or event. For each attribute, a ‘measurement’ can be defined as the process by
which numbers or symbols are assigned to attributes of entities in the real world
in such a way as to describe them according to clearly defined rules [1]. It is
important to clearly define the boundaries of the reality under investigation. For
this purpose, we introduce the concept of ‘empirical relational system’.

Definition 1 (Empirical Relational System). An empirical relational sys-
tem is an ordered tuple where is a set
of empirical objects, are empirical relationships
defined in are binary closed operations between empirical
objects in

An empirical relational system describes the objects of the real world that
must be measured and our empirical knowledge of their attributes (the
empirical relationships For instance, if we are interested in the ‘availability’
attribute of the ‘service’ entity, we will use the ‘more available than’ empirical
relationship (i.e., ‘the service is more available than the service Binary
operations can be considered as particular ternary relationships among objects.
For instance, if is the operation of sequential composition of services, we can
consider the following ternary relationship among them:
where is the result of the sequential composition of and (i.e.,

In order to carry out meaningful analyses, the empirical relational
system given above must be mapped onto a ‘formal relational system’.

Definition 2 (Formal Relational System). A formal relational system is an
ordered tuple where is a set of formal
objects, are formal relationships defined in

are binary closed operations between formal objects in

In the formal relational system, empirical objects are mapped in the set
of formal objects empirical relationships are modeled by the respective

Towards a Metamodeling Based Method 83

formal relationships and operations between empirical objects are mapped
in the formal operations It is important to remark that the same objects
can be intended as empirical or formal depending on the entities and attributes
they relate to. The link between the empirical relational system and the formal
relational system is represented by the concepts of ‘measure’ and ‘measurement
scale’ that we are going to introduce.

Definition 3 (Measure Let and be a set of empirical objects and a
set of formal objects respectively. A measure is a function mapping
each empirical object in a formal object (the measurement
value).

The measure enables to define the measurement scale expressing a mapping
between the empirical and the formal relational system.

Definition 4 (Measurement Scale). Let
and be an empirical relational system

and a formal relational system respectively. Let be a measure.
is a measurement scale if and only if

and

1.
2.

If the measurement scale is a real measurement scale.

Each empirical object is associated with a formal object
and each empirical relationship is associated with a formal relationship
Five measurement scales are reputed to be particularly meaningful [1]: (1) the
‘Nominal Scale’ is used when the measured objects need to be partitioned in
classes; (2) the ‘Ordinal Scale’ is a nominal scale with an order relation among
the classes; (3) the ‘Interval Scale’ is an ordinal scale that preserves the difference
among the values associated to the measured objects; (4) the ‘Ratio Scale’ is an
interval scale that maintain constant the ratio of the values associated to the
measured objects; (5) the Absolute Scale’ is a ratio scale representing the only
possible scale suitable to measure the attribute under investigation.

3.2 Logic Scoring of Preferences

We present two steps included in the Logic Scoring of Preferences (LSP) method
[2, 3]. The first step consists in defining the elementary criteria of satisfaction that
are specific functions associated to the values of measurements concerning the
attributes of the entities to examine. These functions must map each possible
value in a number (i.e., means ‘no satisfaction’, whereas

means ‘full satisfaction’) expressing the satisfaction for each possible
value. Therefore, the elementary criteria of satisfaction are defined depending
on the set of possible measurement values.

84 Sergio Andreozzi et al.

The main problem in the definition of these functions is related to the kind of
the measurement under investigation. For instance, let us consider the attribute

‘supported OSType’ of a computing service and let us suppose that its pos-
sible values are ‘RedHat Linux’, ‘Debian Linux’ and ‘Microsoft Windows XP’.
If the user expectation is to run its job on a RedHat Linux environment, then
its elementary criterion of satisfaction can be expressed as follows: if the
supported OSType’ is ‘RedHat Linux’, if the supported OSType’ is ‘Debian
Linux’ or ‘Microsoft Windows XP’. It must be remarked that all possible values
returned by a measurement of this attribute can be listed. This is a required
feature for using this type of elementary criterion of satisfaction. Examining the
attribute ‘average response time’ of a service, if the average response time
is less or equal than the time a full satisfaction can be expected; if
the average response time is more or equal than the time a satisfaction of
no value will be defined finally, if the average response time is between

and a partial satisfaction can be defined by a linear interpolation. In
this case, two values have been used in order to evaluate the average response
times: and introducing an absolute classification. The third alterative
elementary criterion of satisfaction is exemplified on the attribute ‘Number
of job slots FreeJobSlots that can accommodate new running jobs’. In this
case, user expectations are fully satisfied (i.e., when its job is assigned
to the computing service with the highest number of free job slots. Let be
the number of free job slots of the computing service and let be the
maximum among the services under examination, if
the number of free job slots is 0, then no satisfaction is associated to the value
(i.e., In the other cases, a partial satisfaction is defined by the following
function: The examples given above
represent the three main ways to define an elementary criterion of satisfaction:
an enumeration of all possible values returned by a measurement of an attribute,
an absolute classification of these values and their relative classification.

The second step of the LSP method consists in synthesizing the satisfac-
tion concerning a feature that can be modelled only by a set of measurements.
The method suggested in [2] prescribes the definition of functions returning a
global satisfaction They are based on the satisfactions
defined by elementary criteria to aggregate and by their respective weights

These weights can be selected in order to reflect the relevance
of the attribute that the satisfaction refers to. Besides, they must be posi-
tive (i.e., > 0 and normalized (i.e., For instance, a
possible function to aggregate the satisfactions can be their arithmetic mean

In [2] it is outlined that this function cannot assure
that the global satisfaction E will be positive if and only if a certain satisfaction

is more than a fixed threshold. Besides, in this function if the global
satisfaction E will decrease in value by This decrease could be inadequate to
model the effective relevance of that is the insufficient presence of a specific at-
tribute can always be compensated by sufficient presence of any other attribute.
Therefore, a wider spectrum of nonlinear multi-criteria scoring functions has

Towards a Metamodeling Based Method 85

Fig. 1. Aggregation functions (based on [3]): (a) Notation to represent the aggregation
functions, (b) The conjunctive partial absorption function.

been defined in order to model ‘simultaneity’, ‘neutrality’, ‘replaceability’ and
other input relationships:

where Only certain functions among all possible ones are use-
ful to solve the problems presented above. Therefore, nine basic aggregation func-
tions have been considered [2]: the conjunction (C), the strong quasi-conjunction

the medium quasi-conjunction (CA), the weak quasi-conjunction
the arithmetic mean (A), the weak quasi-disjunction the medium quasi-
disjunction (DA), the strong quasi-disjunction and the disjunction (D).
The calculation of the parameter is based on the number of satisfactions
to aggregate and on the expected degree of conjunction [3, 21]. It enables the
expression of the desired logical relationship and intensity of polarization of the
aggregation function. If the formula models the disjunction or replace-
ability of inputs; if the formula models the conjunction or simultaneity
of inputs; if the formula is neutral in the aggregation. Besides, the aggre-
gation functions can be composed in order to produce other functions enabling
to define aggregation criteria based on a particular logic. For instance, if we
aggregate a satisfaction that must cross a fixed threshold so that E > 0 and
a satisfaction for which we admit E > 0 even if we will resort to a
particular composition: the ‘conjunctive partial absorption function’ (see Fig. 1).

A useful notation based on [3] is presented in Figure 1a. An aggregation
function is represented by a circle; for each satisfaction a
weighted entry arc is defined; finally, for each circle we have a
single exit arc (the synthesized global satisfaction). We introduce the mentioned
conjunctive partial absorption function by this notation (Fig. 1b). The arithmetic
mean function (A) is the input of the average quasi-conjunction function (CA)
and the weights follow the distribution in figure. We have E = 0, apart from the

86 Sergio Andreozzi et al.

Fig. 2. General pattern for defining the aggregation functions.

value of the secondary satisfaction if the principal satisfaction is equal to
0. On the contrary, if the global satisfaction E is positive. Finally, we
have the largest global satisfaction (E = 1) if

3.3 Service Quality Model

The service quality model is presented in this section. Firstly, we define the
set A whose elements are all attributes of entities involved in the quality eval-
uation. Then, we introduce the set AM of pairs where and

is a measurement scale. In the empirical and formal
relational systems involved, empirical operations may need to be considered for
defining measures and elementary criteria, while their respective formal opera-
tions are not defined because they are not used.

By these concepts, we are able to map attributes under evaluation and their
values in a formal relational system, that is an important step for the auto-
matic evaluation of services. In this context, the set of elementary criteria
of satisfaction for each must be considered. It enables the expression of
satisfactions for the evaluation. These satisfactions can be categorized by defin-
ing an equivalent relevance relation that is a collection of pairs

where means: ‘the satisfaction concerning the values of
is as relevant as the satisfaction concerning the values of
Given these categories of satisfaction, they must be aggregated in an overall

score by defining a proper ‘Aggregation Functions Set’ enabling the
expression of a specific aggregation logic. Therefore, the service quality model
can be summarized by the following function:

Considering the following scheme from the left to the right, in the part preceding
the measurement scales for the attributes under investigation are defined

and the satisfaction concerning the value of each attribute is produced by the
elementary criteria of satisfaction.

Towards a Metamodeling Based Method 87

In the part of the scheme following the satisfactions reputed to be
of the same relevance are grouped together to start the aggregation for obtain-
ing the global satisfaction. To carry out this phase, the pattern exemplified in
Figure 2 is adopted. As discussed in [3], the first step consists in aggregating
the satisfactions belonging to the same category. It can be done by defining the
equivalence relevance relation partitioning the set of satisfactions involved
in the evaluation. The number and the type of such categories is not constrained
by the model. In order to perform the aggregation of the satisfactions synthe-
sized for each category, intermediate aggregation steps are needed. They must
start from the satisfactions concerning the two less relevant categories and arrive
to the global satisfaction E.

The proposed model affects the Grid architecture in the following parts: (1)
Grid services should be able to measure the attributes meaningful for their eval-
uation and they should publish their values (for instance, by using the GIS [16]);
(2) the user interface should support the selection of the attributes of interest
for the user, then it should enable the association of the user satisfaction to
the attributes values, after that it should support the creation of the overall
aggregation pattern; (3) the broker service should be extended to evaluate the
user request translated in a machine-processable language against the service
description accessible by the GIS.

As an example, let us consider a user requiring the execution of a job by
means of a computing service available in the Grid and selected from a virtual
pool on the base of a set of constraints. The aim is to show how the model
can be applied to the selection use case and to present the benefits of its us-
age. The first step is to identify the set of entities and their related attributes
that are meaningful for a service requestor in order to evaluate the global sat-
isfaction as regards a service offering. The meaningful attributes of the entities
involved in the scenario under investigation are identifiable in the JSD. Consid-
ering the computing service entity, the relevant attributes are: ‘Supported
OSType’ and ‘Number of job slots that can accommodate new running jobs
FreeJobSlots’. The second step is the definition of a measurement scale for
each attribute. In the empirical and formal relational systems presented below,

88 Sergio Andreozzi et al.

empirical operations are considered only when they are needed for the definition
of measures and elementary criteria, while formal operations are not considered.

‘Supported OSType’
is {RedHat Linux, Debian Linux, Microsoft Windows

XP}; (2) ‘is equal to’.
(1) (2)

The measure is:

‘Number of job slots FreeJobSlots that can accommodate new running jobs’
(1) (2) ‘is greater than’.
(1) (2)

The measure is

The third step is the association of a satisfaction degree to each formal object
using the elementary criteria of satisfaction. For the attribute a meaningful
elementary criteria is defined as follows:

while for the attribute a meaningful elementary criteria of satisfaction is
defined as follows:

where is the maximum number of free job slots among the
available computing services.

The last step is the aggregation of satisfactions by defining aggregation func-
tions expressing the selected logic of aggregation. For the equivalence relevance
relation we identify two satisfaction categories: (1) ‘essential’, that is if a
not satisfying value is offered by the service provider, then the global satisfaction
will be insufficient and no agreement can be reached and (2) ‘desired’, that is if a
not satisfying value is offered by the service provider, then the global satisfaction
can still be sufficient and the agreement can be reached, even if the global sat-
isfaction decreases. In our example, the essential attribute is OSType, while
the desired attribute is FreeJobSlots. Summarizing the foregoing list, the
adopted equivalence relevance relation induces the following partition:
(1) ‘essential’ (2) ‘desired’ The adopted aggregation
function is the conjunctive partial absorbtion function presented in Figure 1 and
instantiated below:

Towards a Metamodeling Based Method 89

The weights are selected as follows: for A,
for CA. In this paper, we do not consider how to determine values for

the weights and the parameter (see [2]). Finally, it must be remarked that the
proposed model allows the representation of both constraints and preferences in
a single framework. Given the possibility of defining attributes categories and
given the aggregation pattern, we are able to express constraints in terms of
‘essential’ attributes. Moreover, it is possible to compute the minimum value of
the overall satisfaction E for which the ‘essential’ attributes (i.e., the constraints)
are satisfied.

4 MOF Based Models of Grid Services

Grid services enhanced by the measurement theory and the LSP method can
be defined by means of the OMG Model Driven Architecture (MDA) [22]. The
MDA Meta-Object Facility (MOF) [23] is a specification for expressing concepts
useful for defining metamodels (e.g., Unified Modeling Language [24]) that can
be stored in repositories where they can be created, read, updated and deleted.
In this way, a better expression of systems and requirements can be defined,
an easier analysis of the properties under investigation is possible, the porting
to different platforms is enabled and technological changes are supported by
testing techniques. MOF based metamodels can be associated with Grid services
features in order to consider mapping techniques for expressing properties and
constraints of interest in Grid architectures. It enables to study the enactment of
such features in Grid services languages and technologies. This approach can be
applied in order to define MOF based metamodels including the measurement
theory and the LSP method for representing and selecting Grid services. Such
metamodels can then be mapped in target technologies, like, for instance, services
and service requests expressed using the ClassAd language.

Tools supporting such an approach must enable the expression in Grid archi-
tectures of properties and constraints of interest. In this context, we are devel-
oping a prototype that relies on dMOF [25], TokTok [26] and ModFact [27] (see
Figure 3). The dMOF tool provides a MOF implementation by which it is pos-
sible to create repositories of MOF based metamodels using the Meta-Object
Definition Language (MODL) [28] that is defined by the Distributed Systems
Technology Centre (DSTC). TokTok is a DSTC implementation of the OMG
Human-Usable Textual Notation (HUTN) [29,30]. It specifies a standard map-
ping from a MOF based metamodel expressed by MODL to a textual notation for
representing models corresponding to that metamodel. Such a mapping is based
on a number of usability principles enabling to produce languages that can be
customized in order to better represent specific application domains. Finally,
ModFact [27] is a software library developed by the ‘Laboratoire d’Informatique
Paris 6’ (LIP6) that provides a rule based model transformation tool.

Our prototype includes several components. The sourcemetamodel can be
expressed by the MODL model definition language or other proprietary lan-
guages like the Rational Rose Model Definition Language (MDL) [31]. The

90 Sergio Andreozzi et al.

Fig. 3. The metamodeling framework prototype.

sourcemetamodel.xmi is the source metamodel in XMI format. Depending on
the adopted model definition language (e.g., MODL or MDL), the transfor-
mation can be done by different tools like, for instance, dMOF or Rational
Rose (in Figure 3 we consider dMOF). The sourcemetamodelmoflet is the
moflet of the source metamodel (a moflet is the implementation of the reposi-
tory meta-objects representing a user metamodel). It enables to manage models
complying with the source metamodel. The sourcemodel.xmi is the model pro-
duced by the moflet in XMI format. The sourcemodelhutnparser is the parser
whose source code is generated by TokTok enabling to load the source mod-
els complying with the source metamodel in the moflet. The targetmetamodel
is the target metamodel expressed by MODL to which models produced by
the transformation must comply with. The targetmetamodel.xmi is the tar-
get metamodel in XMI format produced by the dMOF tool. The QVTengine
(Query View Transformation engine) is the ModFact transformation tool. It has
four inputs: (1) the sourcemetamodel.xmi, (2) the sourcemodel.xmi, (3) the
targetmetamodel.xmi and (4) the transformation rules. Such transformation
rules are written in the Simple Transformation Rule Language (Simple TRL)
that is a contribution of the ModFact project [27]. By this language, it is pos-
sible to specify the mappings between concepts of the source metamodel and
those of the target metamodel. The output of the transformation is one or more
XMI models complying with the target metamodel. The targetmodel. xmi is
the target model in XMI format complying with the target metamodel produced
by the transformation. Thetargetmetamodelstylesheet.xsl is the stylesheet
produced by TokTok enabling to transform the target XMI model in textual
form. Finally, the targetmodel.hutn is the target model in textual form.

The metamodel specification language that we use is MODL with the Object
Constraint Language (OCL) [24] for representing constraints that apply to the

Towards a Metamodeling Based Method 91

modeled entities. The direct correspondence of MODL with MOF metamodel-
ing constructs enables to specify metamodels regulating models of the entities
involved in the Grid services scenario and models of concepts involved in the
LSP method for Grid services ranking. In order to exemplify this approach, we
present two fragments that are part of the sourcemetamodel:

InMODL.1, the class Resource defines a conceptual mapping to an entity
or set of entities that have an identity [32]. The class GridService is a spe-
cialization of Resource defining the Type of Grid services. Finally, the class
ComputingService specializing GridService introduces a set of attributes of
interest for a computing service. Such classes and attributes have a direct cor-
respondence with the ClassAd representation presented in Section 2 adding the
modeling of attributes types. In the same way, entities involved in the LSP
method can be modeled by MODL. According to the principles for express-
ing elementary criteria of satisfaction (see Section 3.2), the fragment MODL.2
captures the rules for defining an elementary criterion enabling to express an
absolute classification of a finite set of measurement values. MeasurementValue
is an abstract class presenting the result returned by the application of a mea-
surement process. The class Satisfaction expresses the concept of satisfaction
as a value ElementaryCriterion defines the general concept of
an elementary criterion that should be specialized in more specific criteria, like
theDiscreteAbsoluteElementaryCriterion where the possible measurement
values are finite and for each of them a certain satisfaction is given.

5 Conclusions

In this paper we have presented a method dealing with the representation and
selection of Grid services based on quality aspects. Quality has been defined in
terms of the user satisfaction measurement by means of the measurement theory
and the LSP method.

Relying on the metamodeling theory provided by the OMG Model Driven
Architecture (MDA), a prototype tool for mapping MOF based Grid services
metamodels in domain specific textual languages like the ClassAd language has
been presented.

92 Sergio Andreozzi et al.

Ongoing work aims at fully including the measurement theory and the LSP
method in the Grid services metamodel enabling rigorous analyses of Grid ser-
vices properties. Further work is also targeted at adapting the method to the
evaluation of services defined in terms of other services. This process requires
the ability of capturing not only component services properties, but also their
inter-relationships that affect the global satisfaction.

References

1.

2.

3.

4.

5.

6.

7.

8.
9.

10.

11.

12.

13.

14.

15.

16.

17.

Fenton N. E., Pfleeger S. L.: Software Metrics: A Rigorous and Practical Approach.
edn. PWS Publishing Company, Los Alamitos (California) (1997)

Dujmovic J. J.: A Method for Evaluation and Selection of Complex Hardware
and Software Systems. In: Intenational Conference for the Resource Management
and Performance Evaluation of Enterprise Computing Systems. Volume 1. (1996)
368–378
Su S. W., Dujmovic J. J., Batory D. S., Navathe S. B., Elnicki R.: A Cost-Benefit
Decision Model: Analysis, Comparison, and Selection of Data Management Sys-
tems. ACM Transaction on Database Systems 12 (1987) 472–520
Booth, D., Champion M., Ferris, C., Haas, H., McCabe, F., Newcomer E., Orchard
D.: Web Services Architecture (2004) W3C Working Group Note 11 February 2004.
W3C XML Protocol Working Group: SOAP Version 1.2 Part 0: Primer (2003)
W3C Recommendation.
Chinnici R., Gudgina M., Moreau J. J., Weerawarana S.: Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language (2003) Working Draft.
Foster I., Kesselman C., Tuecke S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. In: International J. Supercomputer Applications. Volume
15(3). (2001)
Large Hadron Collider Computing Grid: (http://www.cern.ch/lcg)
Italian National Institute for Nuclear Physics Computing Grid:
(http://grid.infn.it/)
Foster, I., Kishimoto, H.: The Open Grid Services Architecture - Version 1.0 (2004)
GGF Draft.
Czajkowski K., Ferguson D., Foster I., Frey J., Graham S., Sedukhin I., Snelling
D., Tuecke S., Vambenepe W.: Web Services Resource Framework (2004) White
Paper - Version 1.0.
The Globus Alliance: (Globus Toolkit Development Homepage)
http://www-unix.globus.org/toolkit/downloads/development/.
University of Virginia Grid Computing Group: (WSRF.NET Project)
http://www.ws-rf.net/.
Fagin R.: Combining fuzzy information from multiple systems. Journal of Com-
puter and Systems Sciences (1999)
Triantaphyllou, E.: Multi-Criteria Decision Making Methods: A Comparative
Study. Kluwer Academic Publishers (2002)
Czajkowski K., Fitzgerald S., Foster I., Kesselman C.: Grid Information Services
for Distributed Resource Sharing. In: Proceedings of the Tenth IEEE International
Symposium on High-Performance Distributed Computing (HPDC-10), IEEE Press
(2001)
Prelz F. et Al.: The EU DataGrid Workload Management System: towards the
second major release. In: Computing in High Energy and Nuclear Physics, 24-28
March 2003, La Jolla, California. (2003)

Towards a Metamodeling Based Method 93

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.
29.

30.

31.
32.

Solomon M.: The ClassAd Language Reference Manual. Computer Sciences De-
partment, University of Wisconsin, Madison. (2003)
Litzkow, M., Livny, M., Mutka, M.: Condor - A Hunter of Idle Workstations.
In: Proceedings of the 8th International Conference of Distributed Computing
Systems. (1988)
Litzkow M. J., Livny M., Mutka M. W.: Policy Driven Heterogeneous Resource Co-
Allocation with Gangmatching. In: Proceedings of the Twelfth IEEE International
Symposium on High-Performance Distributed Computing, Seattle, WA. (2003)
Dujmovic J. J., Erdeljan A.: A Comparison of Training Methods for Preferential
Neural Networks. In Press, I.A., ed.: IASTED International Conference on Artifi-
cial Intelligence, Expert Systems and Neural Networks. Volume 2. (1996) 924–935
Object Management Group: Model Driven Architecture (MDA). Technical report
(2003) ver. 1.0.
Object Management Group: Meta Object Facility (MOF) specification (2002)
Rev. 1.4.
Object Management Group: Unified Modeling Language (UML) Specification
(2003) Version 1.5.
Distributed Systems Technology Group (DSTC): DSTC’s MOF product suite
(dMOF). Technical report, DSTC (2001) ver. 1.1.
PEGAMENTO Project: TokTok. (http://www.dstc.edu.au/TokTok)
Laboratoire d’Informatique Paris 6 (LIP6): The ModFact project.
(http://modfact.lip6.fr/ModFactWeb)
Distributed Systems Technology Centre: dMOF User Guide - version 1.1. (2002)
Object Management Group: Human Usable Textual Notation (HUTN) (2002)
ver. 1.4.
Raymond K., Stee J.: Generating Human-Usable Textual Notations for Informa-
tion Models. In: Fifth IEEE International Enterprise Distributed Object Comput-
ing Conference, Seattle, Washington. (2001) 250–261
IBM: Rational Software. (http://www.rational.com)
Berners-Lee T., Fielding R., Irvine U. C., Masinter L.: Uniform Resource Identifiers
(URI): Generic Syntax (1998) Internet RFC 2396.

Towards a Flexible Trust Model for Grid Environments

Elvis Papalilo1 and Bernd Freisleben1,2

1 SFB/FK 615, University of Siegen, D-57068 Siegen, Germany
2 Dept. of Mathematics and Computer Science, University of Marburg

Hans-Meerwein-Str., D-35032 Marburg, Germany
{elvis,freisleb}@informatik.uni-marburg.de

Abstract. An important problem in Grid computing is the management of trust
among the entities (e.g. users, resources) involved in a collaboration or compu-
tation. In this paper, we present a trust model for Grid environments where trust
is calculated based on the trust of the entity itself, its trust towards other entities
and the trust of others towards the entity. The proposed approach uses the func-
tionalities of Bayesian networks to be able to dynamically calculate and assign
trust values to entities and also to evaluate their capabilities in different scenar-
ios. An implementation of our approach using the GridSim toolkit is presented,
and experimental results are shown to illustrate how Grid entities build up their
trust values in selected interaction scenarios.

Keywords: Grid Computing, Trust, Bayesian Networks.

1 Introduction

According to [1, 2], the Grid computing paradigm is aimed at (a) providing flexible,
secure, coordinated resource sharing among dynamic collections of individuals, insti-
tutions and resources, and (b) enabling communities (“virtual organizations” (VOs))
to share geographically distributed resources as they pursue common goals, assuming
the absence of central location, central control, omniscience, and existing trust rela-
tionships.

This paper deals with the problem of managing trust relationships in Grid envi-
ronments. Trust is a complex issue in a Grid, because there are many uncertainties
with respect to the level of reliability that the participants should assign to each other.
In practice, it is not possible to know in advance whether a certain entity can be
trusted or not. To illustrate the issues involved, consider two VOs with a certain num-
ber of participants. Some of them offer various services and resources with different
quality, processing speeds, cost etc. Some others want to take advantage of these
facilities and use services or processing resources offered by the providers. At the
base of every decision for an interaction between the two parties, trust considerations
should reside. The level of trust represents the level of intention of computational
entities or participants to collaborate. These trust values can be accumulated and cal-
culated based on past direct reciprocal interactions or indirect interactions.

In this paper, we present an approach to manage trust in Grid environments that not
only is based on the past behavior of entities, but also on the uncertainties of future
actions. The basic idea of our proposal is to make use of Bayesian networks [3] which
offer the possibility to construct and continuously update tables with values that rep-

M. Jeckle, R. Kowalczyk, and P. Braun (Eds.): GSEM 2004, LNCS 3270, pp. 94–106, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Towards a Flexible Trust Model for Grid Environments 95

resent the success or non-success of an interaction regarding specific requirements
such as service quality, processing speed, processing cost etc. In this way, each of the
entities is able to predict the percentage of having a successful collaboration and thus
determine the most suitable partner in an interaction through specific scheduling poli-
cies. The proposed approach is illustrated by presenting examples of simulated trust
management scenarios using the GridSim toolkit [4].

The paper is organized as follows. In section 2, related work is discussed. Section 3
presents the proposed trust model based on functionalities of Bayesian networks. In
section 4, several examples are presented to show how an entity can build up its trust
values. Section 5 concludes the paper and outlines areas for future research.

2 Related Work

The problems of managing trust in Grid environments are discussed by Azzedin and
Maheswaran [5, 6, 7] who define the notion of trust as consisting of identity trust and
behavior trust. They separate the “Grid domain” into a “client domain” and a “re-
source domain”, and the way they calculate trust is limited in terms of computational
scalability, because they try to consider all domains in the network; as the number of
domains grows, the computational overhead grows as well. Hwang and Tanachaiwi-
wat [8] and Goel and Sobolewski [9] try to build trust and security models for Grid
environments, using trust metrics based on e-business criteria. Alunkal et al. [10]
propose to build an infrastructure called “Grid Eigentrust” using a hierarchical model
in which entities are connected to institutions which then form a VO. They conclude
with the realization of a “Reputation Service”, however, without providing mecha-
nisms that automatically can update trust values.

Apart from the Grid domain, there are several proposals for managing trust and
reputation in peer-to-peer (P2P) systems which are likely to converge with Grid com-
puting systems. For example, Aberer and Despotovic [11] try to build a trust and
reputation system based on complaints or “negative feedbacks” against peers in cases
where something went wrong, resulting in the lack of possibilities for a positive peer
to improve its social position through propagation of its good name. Kamvar et al.
[12] present the “EigenTrust” algorithm which evaluates the trust information pro-
vided by the peers according to their trustworthiness, using trust ratings for credibil-
ity. Damiani et al. [13] propose the idea of maintaining reputations for resources as
well as for peers, but their developed system is vulnerable to active attacks and there
is no possibility to authenticate the identity of participants. The work done by Xiong
and Liu [14, 15] is concerned with the evaluation of the identity and the reputation of
the peer that gives trust information about the other peers. Finally, Wang and Vas-
sileva [16, 17] use “Bayesian Networks” for enabling peers to develop trust and repu-
tation, especially with respect to the competence and capability of peers to offer high-
quality files and valuable recommendations in a P2P file sharing application.

3 A Grid Trust Model Based on Bayesian Networks

Trust is a complex subject relating to belief in the honesty, truthfulness, competence,
reliability, etc., of the trusted person or service. In the literature there is no consensus

96 Elvis Papalilo and Bernd Freisleben

on the definition of trust, though its importance is widely recognized. According to
[18], in information technology, trust can be defined as “the firm belief in the compe-
tence of an entity to act dependably, securely, and reliably within a specified con-
text”. Trust is usually specified in terms of a relationship between a “trustor”, the
subject that trusts a target entity, and a “trustee” (i.e., the entity that is trusted). Trust
forms the basis for allowing a trustee to use or manipulate resources owned by a trus-
tor or may influence a trustor’s decision to use a service provided by a trustee.

Socially inspired trust models are useful for Grid environments, especially for the
ease of efficiency in supporting the management of trust requirements. An important
step to be taken in a Grid environment deals with the “decentralization” and “gener-
alization” of the notion of trust. Each of the entities should be able to decide on its
own regarding to its policies. Although in this case more responsibility and expertise
is assigned to an entity, at least each of them has a chance to manage their own trust
relationships.

In today’s Grids, two types of participants can be identified: clients and providers
of services and resources for storage or computational purposes. It is in best interest
of all participants that both clients and providers know that they are dealing with
single identities in the Grid. Individual actions performed under a particular identity
influence the “good name” of the identity itself and as a result the relationships of this
identity with others in the community. Each participant can identify itself as a client,
as a provider or as both (if services or resources can be offered by clients).

For each of the participants, their identity and their behavior must be considered to
establish trust among them. When trusting an entity, it is important to know which
aspect we are referring to. There are instances where one entity is trusted more than
the others regarding to different levels of trust. There must be the possibility to spec-
ify in which aspect of trust entities are interested in and at which level. Trust towards
a participant should be handled in different contexts. These contexts should be used to
decide whether a participant is eligible for a certain activity and the overall value of
trust of a participant should interfere with the decision of improving the social posi-
tion among the others. Thus, trust is a social value that pushes entities to collaborate
with each other, assuming that their identities are already verified and that the kind of
offered goods are of sufficient quality. There is the need to separate different activi-
ties in which a participant is involved, and the need to consider not only the behavior
of the participant in offering and requesting services or resources but the quality of
goods as well. Two participants continue to collaborate or set collaboration with each
other thanks to direct or indirect good experiences they formerly had. The bigger the
level of accumulated trust of a participant, the better will be its social value and posi-
tion in the system. Thus, for each entity its social position in the community is impor-
tant and must be determined upon the calculated level of trust that this entity acquired
in the community. The importance of a “good” or “bad name” is crucial in further
decisions about the interactions with the entities involved. However, apart from giv-
ing the possibility to an entity to gain a better social position and the possibility to be
decorated according to the level of trust, such a system should also include sanctions
to entities or even entire VOs in case of misconduct or a lower level of participation
and interest in the community.

It is also important to underline that just like in our society it is good to have a per-
centage of risk involved which is derived from some useful social aspects such as
reciprocity and altruism. In general, Grid systems can be seen as uncertain environ-

Towards a Flexible Trust Model for Grid Environments 97

ments with casual relationships based on the “good name” of entities at the moment of
collaboration.

3.1 Bayesian Trust Model

Apart from the past behavior of entities, there are several uncertainties and thus every
future action can be subject to probability theory. Values assigned and accumulated
can express the ratio of success or failure of the interaction that is going to take place
in a certain moment of time.

The idea of using Bayesian networks [3] for managing trust in an uncertain Grid
environment as explained above is motivated by the fact that Bayesian networks al-
low decisions to be taken based on the accumulated and processed experience
through:

interpreting situations through observations and continuous gathering of informa-
tion
handling future actions through recommendations and interventions
adaptation to changing environments, and
possibly learning from past experience.

The main advantage is that Bayesian Networks offer the possibility to construct
and continuously update tables with values that represent the success or failure of an
interaction regarding specific requests, such as service quality (high, medium or low),
processing speed (fast, medium, low), processing cost (high, acceptable, low), etc.
according to the needs. In this way, each of the entities is able to predict the percent-
age of having a successful collaboration and also trying to decide by itself about the
most suitable partner in an interaction through specific scheduling policies.

A Bayesian network can be defined as follows:

Given is a set of variables and a set of directed edges between the variables.
Each variable has a finite set of mutually exclusive states.
The variables together with the directed edges form a directed acyclic graph
(DAG).
To each variable A with parents the potential table

is attached. If A has no parents, then the table reduces to unconditional

probabilities P(A).

Our Bayesian network Grid trust model is based on the Bayes rule:

where P(a) and P(b) are the probabilities of the events (e.g. successful interaction) a
and b, P(a b) is the probability of event a given event b and P(b a) is the probability
of event b given event a.

As mentioned above, trust is a property that consists of identity and behavior trust.
Using a Bayesian network, the trust value of an entity can thus be modeled as shown

98 Elvis Papalilo and Bernd Freisleben

in Fig. 1, where the node “Trust” represents the general trust of an entity, the node
“Identity Trust” represents the trust on the identity of a certain entity (user or process-
ing entity) and node “Behavior Trust” represents the overall trust value of the com-
pound behavior trust. The arrows indicate that the trust values e.g. of “Behavior
Trust” are influenced by the trust values of “Identity Trust”.

Fig. 1. Bayesian network model for the overall trust value of an entity

Although identity trust is part of the Grid authentication and authorization process,
its value is nevertheless related to the overall trust value. Behavior trust depends on
different aspects, such as type of connection, type and quality of services offered,
computing power, quality of resources etc. In different situations, users can have
different needs with respect to the overall capabilities of an entity, e.g.:

the user may want to use some computing power in the shortest time possibly at
the lowest cost,
the user may want to take advantage of any special service with a certain quality of
service offered by one or more entities,
the user may want to save critical data at some entity and in this case is more inter-
ested in the overall trust value of the entity regarding identity and behavior trust.

In Fig. 2, a simplified model of behavior trust using selected aspects and con-
straints is presented:

In Fig. 2, nodes with the names “Processing Speed”, “Processing Cost”, “Service
i”, “Service Quality”, “....” represent some of the “constraints” or “contexts”. Node
“Service i” represents a normal service, e.g. math service, or a system properties ser-

Fig. 2. Bayesian network model for behavior trust

Towards a Flexible Trust Model for Grid Environments 99

vice in a service-oriented grid environment, where i serves as an identifier for that
particular service. The last node “ ” shows that other elements can be added to the
network.

Apart from identity and behavior trust, we consider two additional types of trust.
The first one is the direct trust that each entity has built up for other entities it has
collaborated with in different contexts. The second one is the indirect trust that other
entities have built up for some specific entities the entity in question wants to collabo-
rate with at a certain moment of time in a particular context.

In our approach, each of the entities builds up a Bayesian network for every other
entity it has previously collaborated with in a certain scenario. Each of the Bayesian
networks has a root node with two values 0 and 1 which represent the success (S = 1)
or not (S = 0) of the specific collaboration with the other entity. Clearly,

If an entity needs to be used in a certain context (Cx) within some constraints (Cn),
such as e.g. using a “Math service” offered by an entity within the “smallest amount
of time”, the trust that the chosen entity can complete this task successfully (S = 1)
can be calculated as:

Every time an entity wants to set up a direct collaboration with another entity, the
contexts and constraints can be set to the specific need using formula (3).

Additionally, an entity can ask other entities about their level of trust related to the
entity it wants to collaborate with. Each of the entities then offers its Bayesian net-
work values about the “target” entity regarding the context and constraints required.

The level of trust of a successful collaboration with an entity can be calculated as
the product of the probabilities of the direct trust between two entities and indirect
trust values offered by the other entities which have previously had a similar collabo-
ration with the “target” entity, as expressed with (3).

After each collaboration, the entities update their corresponding Bayesian net-
works. These values can be used in case of further direct collaborations or can be
offered to the other entities that search for previous similar collaborations between
entities.

Fig. 2 shows that the “Behavior Trust” (BT) is the result of the trust value of its
components. According to the chain rule for Bayesian networks if

where U is a universe of variables then

where is the parent set of in our case “Behavior Trust” and its compo-

nents, whose values affect the “Behavior Trust”.
According to (4), the joint probability distribution of BT of an entity is the product

of all conditional probabilities specified in its Bayesian network.
Fig. 1 shows that the general “Trust” (T) value of an entity consists of “Identity

Trust” (IT) and “Behavior Trust” (BT). According to the Bayes rule (1):

100 Elvis Papalilo and Bernd Freisleben

By specifying prior probabilities and conditional probabilities of the Bayesian net-
work, we can model every joint probability distribution of the three variables. For
each of the entities, according to specific capabilities, a Bayesian network can be built
and will be updated after a collaboration has taken place.

3.2 Discussion

Compared to other proposals [5, 6, 7, 10], our model is more fine-grained, because we
consider different aspects of trust, especially the elements that constitute behavior
trust. In this way, we offer a flexible way to rate the entities according to their specific
capabilities. Our model is easily extensible if further aspects of behavior trust need to
be considered.

The work done in the P2P domain [16, 17] is also based on using Bayesian net-
works for enabling peers to develop trust and reputation among them. Apart from
considering Grid environments, the difference to our work is that we calculate the
entity trust as the joint probability of the identity and behavior trust, where behavior
trust of the entities includes more aspects in Grid environments than in P2P networks.

In Grid environments with continuous interaction among participants, as well as
continuous requests for services, computational power and storage, there is the possi-
bility for each of the entities to build up a personal trust value according to its capa-
bilities. The overall trust value of the entity and the values of its elements are easy
identifiable. After each interaction, there is also the possibility to update the trust
values for the entities involved in an interaction. Thus, we consider the proposed
model as very suitable for a Grid environment regarding its flexibility.

4 Implementation

An initial implementation of the proposed approach has been performed using the
GridSim toolkit [4]. GridSim simulates real heterogeneous resources and as a result
can be used for modeling and simulation of application scheduling on various classes
of parallel and distributed computing systems like a Grid. GridSim already offers the
possibility to create “processing” entities with different processing speed and cost and
also “user” entities with a certain number of jobs and certain constraints regarding the
desired deadline and amount of budget that the user assigns for his or her jobs to be
completed. The GridSim toolkit provides facilities for modeling and simulating re-
sources and network connectivity with different capabilities, configurations and do-
mains. It supports primitives for application composition, information services for
resource discovery and interfaces for assigning application tasks to resources and
managing their execution. These features can be used to simulate parallel and distrib-
uted scheduling systems such as resource brokers or Grid schedulers for evaluating
the performance of scheduling algorithms or heuristics. The GridSim toolkit is part of
the Gridbus Project [19], engaged in the design and development of service-oriented
cluster and grid middleware technologies to support eScience and eBusiness applica-
tions.

Towards a Flexible Trust Model for Grid Environments 101

All users need to submit their jobs to a central scheduler, which can be targeted to
perform global optimization such as higher system utilization and overall user satis-
faction. For each of the entities (“user” entity and “resource” entity) hash tables are
built for storing the trust values of the entities. Trust values assigned to the entities
reflect their level of trust in others. Jobs are assigned to the “processing” entities pri-
marily after sorting them according to the trust values that this entity was able to build
on the others. The ratio of the successfully completed jobs and the total number of
jobs assigned to that resource is the new trust value that is going to update the old
trust value in the “user” entity trust table. This is considered as direct trust among the
“user” entity and the specified “processing” entity.

The initial trust values of the entity “user i” and the entity “resource i” towards
other entities in the system is assigned as 0.33 in order to treat all participants as
equal. This value is used because it results from the probability table built for a cer-
tain trust component that we have chosen, such as processing speed or processing
cost. Although they quite often change from one interaction to another, the values for
these elements can be categorized as follows:

Processing Speed (PSi): with values “Fast”, “Medium” and “Low”.
Processing Cost (PCi): with values “High”, “Acceptable” and “Low”.

where the i-factor represents the entity we are dealing with.
For ease of use, this initial value and its later updates are seen as the probability ra-

tio that collaboration among parties was successful (Tab. 1).

In this way, none of the participants is underestimated compared to the others. The
“user” entity is the one that requests a collaboration with “processing” entities. Each
of the users creates a list of jobs that are distributed to the “processing” entities ac-
cording to the selected scheduling policy. For each of the users, a hash table named
“usertrust_i”, where i represents the user identity, is created. All the “processing”
entities are organized under another hash table named “resourcetrust” where as values
serve the probability tables (hashtables) that each “processing” entity has build toward
other “processing” entities. As constraints for an entity, we currently use processing
cost and processing speed, since GridSim is primarily selects entities based on their
processing power (Million Instructions Per Second) and their cost (Grid$ per Million
Instructions). Once the tables with trust values for “user” entities and “resource” enti-
ties are defined, we implemented a comparator which sorts the entities that a user is
going to assign jobs to according to the trust values in the hash tables. This compara-
tor serves as the basic object of the scheduling policies offered by the simulator:

Cost optimization - the cheapest entity is seen as the most suitable one for finishing
a job within a certain budget offered
Deadline optimization - the most powerful entity is seen as the most suitable one
for finishing a job within a certain interval of time

102 Elvis Papalilo and Bernd Freisleben

In our implementation, we assume that all the participants know their identities
among each other. After ordering the trust values of the entities with which the user is
going to collaborate, cost and time factors are considered. If the trust values calcu-
lated for two entities are the same, then the entities are going to be sorted according to
their speed and/or processing cost. After the entities for collaboration are chosen in
this way and the simulator has distributed the jobs to them, for each of the entities
involved we count the number of jobs assigned and control their status. The ratio of
successful jobs executed by an entity and the total number of jobs assigned to that
entity is considered as the trust value that the user puts on that entity. If all the jobs
are successfully completed, then the trust value of that entity is 1, otherwise if none of
the jobs assigned is successfully completed, then the direct trust that a user puts on
this entity is 0, The trust value calculated in this way replaces the old trust value that
the “user” entity has previously placed for that particular entity. In this phase of our
implementation, we have not dealt with the update of the trust values that the entity
itself puts on the “user” entity that collaborated with it. In this way, we can always
have an updated trust values table for the “user” entity. Similarly, we plan to also
update the trust values that the entities place on the user they have collaborated with.

5 Experimental Results

To test our approach, we have modeled a set of resources using GridSim with differ-
ent characteristics of resources and the respective costs per time unit G$ (Grid Dollar;
the chosen currency) of their processing elements created for simulation purposes.
These simulated resources with their names and characteristics are shown in Table 2.
All values are generated by the Visual Modeler [20]. The brokers translate the cost

Towards a Flexible Trust Model for Grid Environments 103

into Grid currency (G$) per million instructions (MI) for each resource. Such a trans-
lation helps in identifying the relative cost of resources for processing the jobs as-
signed to them.

In the experiments, the GridSim scheduling strategy applied for a single modeled
user is “scheduleWithDBC_CostOptimization()”. The idea behind this scheduling
strategy is that the “processing” entities are sorted according to the price they charge
for their service.

For the user, a different number of jobs varying from 3 to 100 are created and.
deadline and budget values are assigned. The starting values for the deadline is 674.0
(in terms of simulation time) and for the budget 6552.0 (in terms of G$). These values
are modified in steps of 500 and 1000 for the time and budget factors, respectively.
We are not trying to show what the impact of budget and time constraints on the se-
lection of the entities is, but rather to show how each entity, in our case “processing”
entities, according to their capabilities (processing power and cost), can build their
trust values on the trust values of their collaborators (in our case the “user” entity as a
requestor for a collaboration).

Inside this scheduling strategy, we have applied our “comparator”. This means that
at the moment when “processing” entities are created, the trust tables for the “user”
entity and for each of the “processing” entities are created (Fig. 3).

Fig. 3. Initial trust values for the “user” entity; each “processing” entity builds similar tables

The simulation shows that for a small number of assigned jobs (e.g. 3 jobs) the
jobs are processed only in a particular entity, the one that offers the best price accord-
ing to the “cost-optimization” strategy, since the trust values in the tables of the enti-
ties “user” and “resource” are the same (the initially assigned value of 0.33). In our
case, the “processing” entity “Resource5” offers the best price. After a successful
interaction, the trust values for this entity are going to be updated in the “usertrust”
table and the other values remain unchanged since there was no interaction between
them and the user (see Fig. 4).

Increasing the number of jobs that the “user” entity creates and needs to process,
there is also the need to increase the budget and/or deadline values that the “user”
entity places for the completion of the jobs. In this moment, according to the output
file generated by GridSim, a lot of collaboration takes place. In order to finish the task

104 Elvis Papalilo and Bernd Freisleben

Fig. 4. Updated trust values for the “user” entity; “R5” has a greater probability value than the
others, thanks to a successful interaction

Fig. 5. Accumulated trust values for the “processing” entities in the “user” entity trust table

within the assigned budget and deadline, the scheduler invokes more “processing”
entities. Initially, since the trust values in the corresponding tables are the same (as-
signed by us), the jobs are assigned to cheaper “processing” entities. In order to meet
the deadline constraint, the scheduler also invokes more expensive “processing” enti-
ties. Once a certain job is completed by an entity, we check its status, and if it is suc-
cessful, the ratio of the successful jobs executed on that resource grows. We use this
value as the trust value that the “user” entity places for that entity in his or her table of
direct trusts. After executing all the jobs, in our experiment with 100 jobs and an
assigned deadline value of 1800 and a budget value of 18000, the updated “user”
entity trust table (“usertrust” hash table) is as shown in Fig. 5.

From Fig. 5 we can see that the “user” entity has not placed a collaboration with
the “processing” entities R2 and R6, it has successfully collaborated with R3, R4, R5,
R7, R8 and for some reasons the collaboration with R1 was not completely success-

Towards a Flexible Trust Model for Grid Environments 105

fill, but this result has influenced the trust value that the “user” entity places on the
entity.

The results have shown that the so called “direct” trust values that the “user” entity
places on the entities it has previously collaborated with changes conform the success
ratio of the collaboration. In this way, we have presented an initial implementation of
how the entity, in our case a “processing” entity, can build its trust value to another
entity that had previously interacted or needs at a certain moment to interact with it.

6 Conclusions

In this paper, we have presented a Bayesian network approach to manage trust in Grid
environments. The proposed trust model separates each of the participants based on
the role they are playing at a certain moment of time. The functionalities offered by
Bayesian networks were used to calculate trust of the entities in different scenarios in
a fine-grained way, according to the collaboration between the entities. Using the
GridSim toolkit, we have demonstrated how the trust of the elements that constitute
the overall trust of the entities and the trust of the entities itself changes according to
simulated “past interactions”, offering possibilities for the entities to choose the most
suitable ones according to specific needs.

There are several areas for future work. For example, we plan to conduct further
experiments using more complex test cases, involving multiple users and a greater
number of “processing” entities. Furthermore, an implementation of the proposed
model in real scenarios other than in a simulated Grid environment is an interesting
issue. This could be also used as the basis for building a “recommender system” based
on the calculated trust values of the entities. By comparing the values of their Bayes-
ian networks, each of the entities, except of contributing to the calculation of the trust
that a certain task is going to be successfully completed, can contribute also to choose
or recommend the most suitable of the entities for a certain action as well. Finally,
another issue is to investigate whether our Bayesian network approach can contribute
to identifying possible malicious behavior of the entities.

Acknowledgements

This work is financially supported by the Deutsche Forschungsgemeinschaft (SFB/FK
615, Teilprojekt MT) and by Deutscher Akademischer Austauschdienst (DAAD,
Stability Pact South-Eastern Europe). The authors would like to thank M. Gollnick,
M. Grauer, F. Mansouri, E. Papalilo, R. Sennert and J. Wagner for their valuable
support.

References

1.

2.

Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. In: International J. Supercomputer Applications (2001)
Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: The Physiology of the Grid: An Open
Grid Services Architecture for Distributed Systems Integration. In: Open Grid Service In-
frastructure WG, Global Grid Forum (2002)

106 Elvis Papalilo and Bernd Freisleben

3.
4.
5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer-Verlag (2001)
http://www.gridbus.org/gridsim
Azzedin, F., Maheswaran, M.: Evolving and Managing Trust in Grid Computing Systems.
In: Conference on Electrical and Computer Engineering, Canada. IEEE Computer Society
Press (2002) 1424–1429
Azzedin, F., Maheswaran, M.: Towards Trust-Aware Resource Management in Grid Com-
puting Systems. In: Second IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGRID), Berlin, Germany. IEEE Computer Society (2002) 452–457
Azzedin, F., Maheswaran, M.: Integrating Trust into Grid Resource Management Systems.
In: International Conference on Parallel Processing, Vancouver, B.C., Canada. The Interna-
tional Association for Computers and Communications. IEEE Computer Society Press
(2002) 47–54
Hwang, K., Tanachaiwiwat, S.: Trust Models and NetShield Architecture for Securing Grid
Computing. In: Journal of Grid Computing (2003)
Goel, S., Sobolewski, M.: Trust and Security in Enterprise Grid Computing Environment.
In: Proceedings of the IASTED International Conference on Communication, Network and
Information Security, New York, USA (2003)
Alunkal, B., Veljkovic, I., von Laszewski, G.: Reputation-Based Grid Resource Selection.
In: Workshop on Adaptive Grid Middleware (AgridM), New Orleans, Louisiana, USA
(2003)
Aberer, K., Despotovic, Z.: Managing Trust in a Peer-2-Peer Information System. In: Ninth
International Conference on Information and Knowledge Management (CIKM), Atlanta,
Georgia, USA (2001) 310-317
Kamvar, S.D., Schlosser M.T., Garcia-Molina, H.: The Eigentrust Algorithm for Reputa-
tion Management in P2P Networks. In: Proceedings of the Twelfth International World
Wide Web Conference (WWW), Budapest, Hungary (2003) 640-651
Damiani, E., di Vimercati, S.D.C., Paraboschi, S., Samarati, P., Violante, F.: Reputation-
Based Approach for Choosing Reliable Resources in Peer-to-Peer Networks. In: Proceed-
ings of the Ninth ACM Conference on Computer and Communications Security, Washing-
ton, DC, USA (2002) 207-216
Xiong, L., Liu, L.: A Reputation-Based Trust Model for Peer-to-Peer eCommerce
Communities. In: IEEE Conference on E-Commerce (CEC), Newport Beach, California,
USA. IEEE Press (2003) 275-284
Xiong, L., Liu, L.: Building Trust in Decentralized Peer-to-Peer Electronic Communities.
In: Fifth International Conference on Electronic Commerce Research (ICECR-5), Montreal,
Canada. ACM Press (2002)
Wang, Y., Vassileva, J.: Trust and Reputation Model in Peer-to-Peer Networks. In: Peer-to-
Peer Computing, Linköping, Sweden (2003) 150-
Wang, Y., Vassileva, J.: Bayesian Network-Based Trust Model. In: Web Intelligence, Hali-
fax, Canada (2003) 372-378
Grandison, T., Sloman, M.: A Survey of Trust in Internet Applications. In: Vol. 3, Number
4 of IEEE Communications Surveys & Tutorials (2000)
Buyya, R., Venugopal, S.: The Gridbus Toolkit for Service-Oriented Grid and Utility Com-
puting: An Overview and Status Report. In: Proceedings of the First IEEE International
Workshop on Grid Economics and Business Models (GECON), Seoul, Korea. IEEE Press
(2004) 19-36
Sulistio, A., Yeo, C.S., Buyya, R.: Visual Modeler for Grid Modeling and Simulation
(GridSim) Toolkit. In: Proceedings of Third International Conference on Computational
Science (ICCS), Saint Petersburg, Russia / Melbourne, Australia. Springer-Verlag (2003)
1123-1132

Decentralized, Adaptive Services: The AspectIX
Approach for a Flexible and Secure Grid Environment

Rüdiger Kapitza1, Franz J. Hauck2, and Hans Reiser1

1 Dept. of Comp. Sciences 4, University of Erlangen-Nürnberg, Germany
{rrkapitz,reiser}@cs.fau.de

2 Distributed Systems Lab, University of Ulm, Germany
hauck@informatik.uni-ulm.de

Abstract. In this paper we present EDAS, an environment for decentralized,
adaptive services. This environment offers flexible service models based on dis-
tributed mobile objects ranging from a traditional client-server scenario to a
fully peer-to-peer based approach. Automatic, dynamic resource management
allows optimized use of available resources while minimizing the administra-
tive complexity. Furthermore the environment supports a trust-based distinction
of peers and enables a trust-based usage of resources.

1 Introduction

In the past few years, many research activities have been initiated to create new infra-
structures for distributed applications. The primary goals are to overcome limitations
of traditional client/server-structured systems, to increase flexibility, to reduce admin-
istrative cost, and to enable a better utilization of all available resources, possibly
distributed world-wide.

The utilization of client-side resources is specifically addressed by the increasingly
popular peer-to-peer systems. In such systems every peer has similar responsibilities
and provides resources for the whole system. Frequent changes of participating nodes
are supported by the protocols. However, severe degradation of the overall system
performance or even a collapse of the system may happen if too many nodes partici-
pate only for very short periods of time. More severely, using all available peer re-
sources means that all peers have the potential of attacking the system. In many sys-
tems, a single attacker may even counterfeit multiple identities in the system and thus
control a significant part of the whole system. As a result, the advantage of using peer
resources easily is being paid for with severe difficulties in controlling security and
privacy concerns.

Infrastructures for grid computing aim at virtualizing a group of computers, serv-
ers, and storage as one large computing system. Resource management is a key issue
in such systems, needed for an efficient and automated distribution of tasks on the
grid. Such grid infrastructures are often deployed at enterprise level, but projects like
SETI@home [1] have demonstrated the feasibility of more decentralized grids as
well. Research on ubiquitous computing, autonomous computing, or spontaneous
networks concentrates more on problems caused by the dynamicity in a network with
a large number of devices, many of them mobile, and with huge differences in net-
working facilities, architecture and computational resources.

M. Jeckle, R. Kowalczyk, and P. Braun (Eds.): GSEM 2004, LNCS 3270, pp. 107–118, 2004.
© Springer-Verlag Berlin Heidelberg 2004

108 Rüdiger Kapitza, Franz J. Hauck, and Hans Reiser

There is a tendency towards growing overlaps between all these different areas.
Consequently future systems will demand a generic infrastructure that is able to fulfill
the requirements of all such application types. Such next generation infrastructure will
be confronted with the following challenges:

First of all, faced with large systems with constantly growing complexity, it must
keep the administrative complexity at an easily manageable level. A high degree of
automation of management tasks is necessary, without loosing controllability of
the system.
Second, it has to provide mechanisms for a controlled usage of resources. On the
one hand, it should be possible to make use of all peer resources available any-
where the distributed system. On the other hand, security and confidentiality con-
cerns must be respected.
Furthermore, it should allow easy and flexible adaptation to changing circum-
stances. One example of such dynamic reconfigurations is migration of service
provision between rapidly changing participants (e.g., mobile devices). Similarly
one can consider compensating reactions to failures, changes in available re-
sources, or varying utilization of a service. The aspects of adaptation and resource
control cannot be solved each on its own, but influence each other mutually.

In this paper, we present our Environment for Distributed, Adaptive Services
(EDAS). This environment allows the usage of client-side resources in a controlled,
secure fashion. It supports dynamic adaptation at run-time, provides a management
infrastructure, and offers system-level support for scalability and fault tolerance. The
environment is built upon our AspectIX middleware infrastructure, which directly
supports QoS-based, dynamic reconfiguration of services. It supports flexible service
models, including a fully centralized client/server structure, completely peer-to-peer
based systems, and various configurations “in between” that allow a controlled use of
peer resources. The overall goal is do provide a generic service architecture that al-
lows to implement the service functionality once, and then, ideally, run this service
with different service models and adapt it at run-time.

We support explicit management of available resources via a home service. Using
this home service, domain administrators can provide resources for application ser-
vices or service classes. For simplicity of administration, a set of nodes within one
administrative domain is managed jointly. Furthermore, the home service is responsi-
ble for local resource monitoring (e.g., currently available memory, CPU resources,
and network bandwidth) and notification about resource-specific events (e.g., addition
or removal of resources, node shutdown).

The second key component is the service environment. Its task is to provide the
environment in which services can be hosted. It manages the available execution
locations, depending on resource offers by home services and trust specifications of
the administrator of the service environment. It also reacts to notification from the
home services, and suggests, for instance, that a service should be migrated to another
available node as a reaction to a shutdown notification. The service environment is
also able to consider different trust levels for the service. For example, the core of a
service (e.g., all of its primary data replicas) might be located at highly trusted nodes
only, whereas some caching or secondary read-only replicas might be placed on other
available nodes as well.

Decentralized, Adaptive Services 109

This paper is structured as follows: The next section gives a short overview over
the AspectIX middleware infrastructure. Section 3 presents the core architecture of
EDAS. Section 4 illustrates the structure and properties of the environment with a
sample service. Section 5 surveys related work. Section 6 summarizes our contribu-
tion and gives some concluding remarks on the status of our prototype implementa-
tion.

2 Basics Middleware Infrastructure

The EDAS environment is based on our AspectIX middleware [2]. At its core, it pro-
vides a CORBA-compliant ORB and, as such, supports heterogeneous distributed
systems. There are extensions which allow direct interoperation with Java RMI or
.NET applications. These extensions may be encapsulated in a transparent way for
any client or service implementation. Our fragmented object model, which we will
explain in the next subsection, provides a generic abstraction for services with arbi-
trary internal structure. Furthermore, AspectIX provides useful basic mechanisms for
distributed adaptive services. A dynamic loading service (DLS) allows loading of
service-specific code at the client side respecting local platform dependencies [3]. A
generic architecture with state transfer mechanisms supports migration and replication
of service fragments. These will be explained afterwards.

2.1 The Fragmented Object Model

In a traditional, RPC-based client-server structure, the complete functionality of an
object resides on a single node. For transparent access to an object, a client instanti-
ates a stub that handles remote invocations (Fig. 2.1 A). The stub code is usually
generated automatically from an interface specification.

In the fragmented object model, the distinction between client stubs and the server
object is no longer present. From an abstract point of view, a fragmented object is a
unit with unique identity, interface, behavior, and state, like in classic object-oriented
design. The implementation of these properties however is not bound to a specific
location, but may be distributed arbitrarily on various fragments (Fig. 2.1 B). Any
client that wants to access the fragmented object needs a local fragment, which pro-
vides an interface identical to that of a traditional stub. However the local fragment
may be specific for exactly that object. Two objects with the same interface may lead
to completely different local fragments. This internal structure allows a high degree of
freedom on where the state and functionality is provided, and how the interaction
between fragments is done. The internal distribution and interaction is not only trans-
parent on the outer interface of the distributed object, but may even change dynami-
cally at runtime. This allows the fragmented object model to adapt to changing envi-
ronment conditions or quality of service requirements.

In the context of EDAS a decentralized, adaptive service is modeled as fragmented
object. This offers the possibility to change the service model on demand from tradi-
tional client-server to a peer-to-peer based approach and all kind of intermediate
stages by migrating and exchanging fragments.

110 Rüdiger Kapitza, Franz J. Hauck, and Hans Reiser

Fig. 2.1. RPC-based Client-Server Interaction vs. Fragmented Object

Fig. 2.2. Checkpointable Interface

2.2 AspectIX Services for Migration and Replication

The migration and replication of fragments or fragment implementations can be di-
vided into three steps: First of all, an appropriate target system has to be found. After
that, unless the necessary code is already available at the target system, it has to be
loaded on demand. Finally, the corresponding fragment has to be instantiated and the
state has to be transferred to the new location.

To solve these tasks the AspectIX middleware provides an extended version of the
CORBA lifecycle service [4]. If a fragment has to be replicated or migrated a factory
finder is consulted. Such a factory finder is responsible for locating factories within a
defined scope. In the context of the AspectIX middleware, this factory finder consults
special factory finder objects that reside on each node of the scope. These factory
finders cooperate with the Dynamic Loading Service (DLS) to instantiate a factory for
the needed fragment on demand, provided that the requirements of the fragment are
met and the fragment code could be loaded and executed in the context of the target
system. To achieve this, the DLS queries an implementation repository for all avail-
able implementations of the needed fragment. Then, the DLS checks the requirements
of each implementation and selects the implementation that fits best to the local node.
With the help of the factory a new fragment is instantiated.

After creation, the new fragment needs to be informed about its state. Our state
transfer mechanism adheres to the according elements in the FT-CORBA standard
[5]. That is, any service object that can be relocated or replicated has to implement a
Checkpointable interface (see Fig. 2.2).

This interface is used for all kinds of state transfer, both for exchanging the local
fragment implementation with a different one, and for remote state transfer for migra-
tion or replication. Special care has to be taken about concurrency between method
invocations at the service and state transfer actions. Appropriate synchronization
mechanisms are provided at the middleware level.

Decentralized, Adaptive Services 111

In the simplest case, the state is completely encoded into an octet sequence with
get_state and decoded with set_state. Please note, however, that more sophisti-
cated models are possible. get_state might, e.g., simply return a FTP address where
to get the state, and set_state could use this address for the actual state transfer. For
an exchange of the local implementation, get_state might simply encode the loca-
tion on the local disk where the state resides, and set_state just feeds this informa-
tion to the new local implementation.

3 Architecture of EDAS

Our environment for decentralized, adaptive services (EDAS) aims at providing a
generic platform for services in a distributed system. Any EDAS-based services may
be spread over a set of peers and combines available resources for service provision.
Administrative complexity is minimized by automation of management tasks, like
reconfiguration in reaction to failures, high load, or system policy modifications.
Mechanisms for migration and replication of service components are available. The
process of selecting execution locations considers trust metrics of peers that offer
resources, to fulfill reliability requirements of a service.

The EDAS platform has three major components (Fig. 3.1): The home service is
provided by every peer that actively supports decentralized, adaptive services. It basi-
cally manages resources of one or more peers belonging to the same administrative
domain. The service environment is spread over a set of domains that support a group
of decentralized, adaptive services run by one organization or community. Finally, the
decentralized, adaptive service is dynamically distributed within the scope of an asso-
ciated service environment.

Fig. 3.1. Core Components

3.1 Home Service

The home service represents a mediator between the peers of an administrative do-
main and one or more service environments, each running a set of decentralized,
adaptive services (Fig. 3.1). Fig. 3.2 shows three domains each running a home ser-
vice which spans all peers of the respective domains. Every peer provides a set of
resources. These resources are combined and monitored by the associated home ser-
vice. Each domain has a manager who can use that home service to assign resources
to service environments and to revoke them. Furthermore, the home service provides
system information about each peer to the involved service environments and to the
domain manager. This includes system load and all kinds of resource usage informa-
tion but also the notification about important system events. For example, if a peer is
shut down all affected service environments are notified and can migrate affected
service components as needed.

112 Rüdiger Kapitza, Franz J. Hauck, and Hans Reiser

3.2 Service Environment

A service environment represents a scope of distribution for one or more decentral-
ized, adaptive services. Usually, a service environment is owned by one organization
or community and managed by an individual called service manager. Such a manager
can start, stop, and configure services through the interface of the service environment
and decides which resources provided by home services are accepted (Fig 3.3). The
main goal of the service environment is to support the seamless and easy distribution
and management of distributed, adaptive services.

In most cases a service environment is spread over more than one administrative
domain as shown in Fig. 3.2. One task of the service environment is to collect the
system and resource information of the supporting home services. Another task is to
manage the migration of services or service components, based on available re-
sources, the needs of the services, and the policies provided by the service manager.
The migration of service components can be necessary for various reasons, like peer
shutdown, load balancing, or the growth or shrinkage of a service environment. For
this purpose the service environment implements a generic factory for service compo-
nents. If a new replica has to be created or a service component needs to be migrated,
the service asks the service environment for a new service component instance. The
service environment now has to determine which node provides sufficient resources
and fulfills the system requirements of the service component. Further basic require-
ments have to be taken into account, like not to place replicas of the same component
on the same node. To achieve this, a component specific factory has to be instantiated
on all suitable hosts. The factory provides information about the resource require-
ments of the service component and checks in co-operation with the service environ-
ment if additional runtime requirements are fulfilled.

The expansion or shrinkage of a service environment depends on the offered re-
sources and trustworthiness of the resource provider. Each domain manager has the
possibility to offer resources to a service environment. The service manager can ac-
cept the offer and instruct the service environment to expand and use the offered re-
sources. Furthermore, the service manager can assign a trust level to the administra-
tive domain. This rating of the resource provider allows an explicit resource usage
based on the trustworthiness. Up to now the rating is based on the knowledge of the
service provider but we currently evaluate how and based on what information this
could be done automatically. The shrinkage of a domain can be caused by an adminis-
trative domain revoking the usage permission or simply by decision of the service
administrator. If a service component is migrated or a new replicate is instantiated,
this is done in a trust-level conform way. A new component will always be placed on
nodes with the same or higher trust level.

It is obvious that there could be situations where the available resources are not
sufficient or severe problems occur like a network partition. In these cases, where the
service environment cannot autonomously solve the problem, the service environment
notifies the service administrator. The service administrator can now fix the problem
manually (e.g., accept resource offers by other domains). The service environment
also detects failures like a crashed node. In such a case the affected services are noti-
fied. Then it is up to the service to cope with the situation; for example, a service
could request a new replicate.

Decentralized, Adaptive Services 113

Fig. 3.2. EDAS Scenario

Fig. 3.3. Interfaces

3.3 Decentralized, Adaptive Services

In EDAS a decentralized, adaptive service normally matches a traditional service
accessed by users like a web server, an instant messaging server or a source code
repository. Such a service is represented by a fragmented object. This object expands
or shrinks in the scope spanned by the associated service environment depending on
the service demands and for fault-tolerance reasons. Usually every part of the object
is mobile and is migrated if necessary. Each service has at least two interfaces: one
for management tasks and another service specific for the end user. The management
interface offers methods to start, stop, and configure service instances.

In the preceding section we already mentioned that each supporting domain has an
assigned trust level. This level is used for a secure and fault tolerant distribution of a

114 Rüdiger Kapitza, Franz J. Hauck, and Hans Reiser

service. As mentioned above a decentralized, adaptive service consists of different
parts. In a typical service implementation each part of a service has equal security
requirements. However, if parts of the fragmented object are replicated and the
changes to the replication group and the replicated data are managed by a fault toler-
ant algorithm, the usage of only partial trustworthy peers is possible. The service has
only to ensure that the maximum number of permitted faults is never exceeded.

Another possibility is the usage of something that we call verifiable operations.
For example, a service provides a set of files. These files can be placed on a number
of less trustworthy hosts. If a client requests a file from the service, it is transferred to
the client and a signed checksum is provided by a part of the service residing on a
fully trusted host. The client can now verify the integrity of the file with the check-
sum.

A third possibility is the distribution based on the self-interest of the resource pro-
vider. If the service can be structured in a way that parts of the service are only re-
sponsible for request issued by clients within a domain, then these parts should be
hosted by peers of the associated domain whether they are trustworthy or not.

4 Sample Application

4.1 Overview

For illustrating how our environment for distributed, adaptive services works in prac-
tice, we use a CVS-like data repository as a sample application. Methods are available
for adding new files or directories, committing changes, etc. We will show how this
sample service can be deployed in different environment configurations. In the sim-
plest case, one central server hosts the repository. Optionally, transparent service
migration to a different host may be supported. For higher availability, the repository
service could be replicated on a fixed set of nodes within one administrative domain.
Automatic relocation or recreation of replicas in reaction to, e.g., failures may be
considered as well. You might even want to distribute the repository over a less ho-
mogeneous set of individual nodes. For example, all developers using the repository
might offer resources for the repository service, possibly distributed world-wide.
Furthermore, available resources could be divided into different roles: Fully trusted
nodes are allowed to host primary replicas, and other nodes are available for “mir-
rors”, i.e., secondary read-only replicas which simply copy the state of the primary
ones. In the ultimate case, you might want to use the data storage of a peer-to-peer
network for hosting the repository.

4.2 Central Repository Implementation

For a central client-server implementation, only a very simple variant of the home
service and service environment are needed: The home service is a simple, local
fragment that allows the use of the local resources (disk, network) to a local service
environment, which in turn hosts the repository service locally. No interaction with
other nodes is necessary. The repository service itself is implemented in exactly the
same way as one would do with traditional client/server middleware infrastructures.

Decentralized, Adaptive Services 115

If such basic service implementation additionally implements our standard inter-
face for state transfer (see Section 2.2), migration is automatically supported in
EDAS, without any modifications to the service implementation. Figure 4.2 illustrates
the steps necessary for a service migration.

First of all (step 1), a second node has to offer resources for the service. This might
be the case automatically, if Node 2 is managed via the same home service. Other-
wise, the administrator of the home service of the second node has to offer its re-
sources explicitly.

As a second step, the service environment needs to be expanded to the second
node. This may happen automatically as soon as the service environment is notified of
the resource offer, provided that the home service is sufficiently trusted. Otherwise,
an explicit administrator action of the service environment can accept the new home
service as a potential execution location for its services.

In a third step, the migration itself has to be triggered. This is either done explicitly
by an administrator, or it is initiated automatically based on notifications (“Node 1
will be shut down for maintenance”) or policies (“Trigger migration if load on Node 1
exceed limits and another Node with significantly less load is available”). The migra-
tion itself is done by accessing a factory on Node 2, which will use the DLS to load
the repository service implementation on that node. After that, the service environ-
ment controls the state transfer using the mechanisms described in Section 2.2.

Fig. 4.1. Migration of a Central Repository Service

4.3 Replicated Service

It might be desirable to replicate the repository service for fault-tolerance or perform-
ance reasons. The AspectIX middleware provides basic services for passive or active
replication strategies. These again relay on the Checkpointable interface described
above. The EDAS environment is responsible for the management of the replication.

A sufficient number of nodes have to offer resources to the service environment of
the repository service. The administrator of a service environment has to decide,
which home services are to be considered when locating resources for service frag-
ments. Furthermore, he may express policies for preferred locations and can define a
desired degree of replication for a specific service.

Based in this information, the service environment is able to select execution loca-
tions for the service automatically. Using the factory and state transfer mechanisms
already described before, the necessary number of replicas will be created. In contrast

116 Rüdiger Kapitza, Franz J. Hauck, and Hans Reiser

to the migration example in 4.2, the DLS needs to load enhanced fragment code that
uses some consistency protocol to ensure replica consistency. Such protocols are
provided in the fault tolerance framework of the AspectIX middleware.

The service environment may perform dynamic reconfigurations – like migration
or creation of replica – automatically. Such actions are initiated by notifications about
shutdown or crash of a node, by overload of nodes, or when the service administrator
adjusts the desired number of replicas.

An extension to such basic replication infrastructure is the introduction of a second
trust level. In such a scenario, the service environment will always place the core
parts of the repository service at fully trusted nodes. In addition, secondary replicas or
caches might be created automatically in the system for load balancing reasons.

4.4 Peer-to-Peer-Based Repository

A general peer-to-peer based data store might be used for storing the repository. This
implies all the security and confidentiality problems outlined in the introduction. To
some extent, these may be overcome with adequate cryptographic mechanisms and
massive replication. We are working on a Byzantine fault tolerant replication service
that might be used in such situations. From an EDAS point of view, this is a rather
simple variant: No state transfer is required as all data is available anywhere in the
peer-to-peer network, and the resource usage is also fully under control of the P2P
network, so that each node can act on its own (local home service and service envi-
ronment on each node without interaction with other nodes).

5 Related Work

Grid infrastructures like the Globus-Toolkit [6] provide services and mechanisms for
distributed heterogeneous environments to combine resources on demand to solve
resource consuming, computation intensive tasks. Due to this orientation, grid infra-
structures lack techniques for using resources of partially trustworthy peers and the
usage of client-side resources in general. These systems also do not provide support
for mobile objects or mobile agents. JavaSymphony [7] and Ibis [8] provide object
mobility but are limited to the Java programming language and provide no distributed
object model.

The CORBA middleware offers the interaction of objects across heterogeneous en-
vironments via generated stubs. The CORBA Life-Cycle Service [4] and the Fault
Tolerant CORBA [5] extension provide a basic support for decentralized, adaptive
services, but CORBA also lacks a distributed object model which enables the usage of
client-side resources.

Previous mobile agent systems like Aglets [9] , Moa [10] or Mole [11] offer state
and code migration of objects and special communication mechanisms for agent in-
teraction. To support the implementation of distributed adaptive services, these sys-
tems lack a distributed object model and also flexible mechanisms for the utilization
of client-side resources provided by partially trusted peers.

Peer-to-peer systems like CAN [12], Chord [13], or Pastry [14] construct an over-
lay topology and force each peer to collaborate if using the system. This has certain
drawbacks if many peers participate only a short period of time or don’t behave well.

Decentralized, Adaptive Services 117

The proposed concept of distributed, adaptive services offers each peer the possibility
to provide resources or not. Moreover the participation of peers is controlled by a
service manager. The peer-to-peer infrastructure JXTA [15] partly addresses this
necessity through membership protected peer-groups. This offers the possibility to
control participation, but also strongly limits the usage because only group members
can use the services of a peer-group. Furthermore JXTA lacks any mechanisms for
mobile objects.

6 Conclusions

We presented the architecture of EDAS, an environment for decentralized, adaptive
services. This environment makes the following contributions. It provides a generic
platform that allows using flexible service models ranging from a traditional client-
server scenario to a fully peer-to-peer based approach. Based on the fragmented ob-
ject model, it supports scalable services and mobility of service fragments. The ad-
ministrative complexity of EDAS-based applications is minimized by its management
infrastructure. It allows domain-based joint management of resource offers, supports
an inter-domain resource selection taking into account assigned trust levels, and
automates reconfigurations in reaction to events like failures, resource shortages, or
explicit policy changes.

The EDAS prototype is based on our AspectIX middleware, which has been pub-
lished under the LGPL licenses. It is available for download, together with further
information, at http://www.aspectix.org. We plan to make the EDAS system
software available as well. A first public release is scheduled for the end of 2004 after
internal verification. Further steps will a better notion of trust and to provide mecha-
nisms for trust aware distribution at the middleware level.

References

1.

2.

3.

4.

5.

6.

7.

8.

W. T. Sullivan, III, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, D. Anderson: “A new
major SETI project based on Project Serendip data and 100,000 personal computers.” In
Proc. of the Fifth Intl. Conf. on Bioastronomy,1997.
H. Reiser, F. J. Hauck, R. Kapitza, A. I. Schmied: “Integrating Fragmented Objects into a
CORBA Environment.” In Proceedings of the Net.Object Days, Erfurt, 2003
R. Kapitza, F. J. Hauck: “DLS: a CORBA service for dynamic loading of code.” In Proc. of
the OTM Confederated International Conferences, Sicily, Italy,2003
Object Management Group: Life Cycle Service Specification. Ver. 1.1, OMG Doc, formal/
00-06-18, Framingham, MA, April 2002.
Object Management Group: The Common Object Request Broker Architectur and Specifi-
cation. Ver. 2.6, OMG Doc. formal/01-12-35, Framingham, MA, Dec. 2001.
I. Foster, C. Kesselman, S. Tuecke: “The Anatomy of the Grid: Enabling Scalable Virtual
Organizations.” In International J. Supercomputer Applications, 15(3), 2001
T. Fahringer: “JavaSymphony: A System for Development of Locality-Oriented Distributed
and Parallel Java Applications.” In Proceedings of the IEEE International Conference on
Cluster Computing CLUSTER 2000, Chemnitz, Germany, Dec. 2000.
R. V. van Nieuwpoort, J. Maassen, R. Hofman, T. Kielmann, H. E. Bal: “Ibis: an efficient
Java-based grid programming environment.” In Proceedings of the 2002 joint ACM-
ISCOPE conference on Java Grand, Washington, USA, 2002.

118 Rüdiger Kapitza, Franz J. Hauck, and Hans Reiser

9.

10.

11.

12.

13.

14.

15.

D. Lange, M. Oshima: “Programming and Deploying Java? Mobile Agents with Aglets.”
Addison Wesley, 1999
D. Milojicic, W. LaForge, D. Chauhan: “Mobile Objects and Agents (MOA).” In Proc. of
USENIX COOTS ’98, Santa Fe, 1998
M. Strasser, J. Baumann, F. Hohl: “Mole - A Java based Mobile Agent System.” In: M.
Mühlhäuser: (ed.), Special Issues in Object Oriented Programming, dpunkt-Verlag 1997
S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker: “A Scalable Content-
Addressable Network.” In Proceedings of the ACM SIGCOMM ’01 Conference, San Diego,
August 2001
I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan: “Chord: A Scalable Peer-
to-peer Lookup Service for Internet Applications.” In Proceedings of the ACM SIGCOMM
’01 Conference, San Diego, August2001
A. Rowstron, P. Druschel, “Pastry: Scalable, distributed object location and routing for
large-scale peer-to-peer systems.” In IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware), Heidelberg, Germany, November, 2001.
L. Gong. “JXTA: A network programming environment.” In IEEE Internet Computing, v.
5, 2001

A Specification for Security Services
on Computational Grids

Franco Arcieri1, Fabio Fioravanti2, Enrico Nardelli1, and Maurizio Talamo1

1 NESTOR - Laboratorio Sperimentale per la Sicurezza e la Certificazione di Servizi Telematici
Multimediali - Univ. of Roma “Tor Vergata”, Roma, Italia

2 Dipartimento di Informatica, Univ. of L’Aquila, L’Aquila, Italia

Abstract. In this paper we present a computational infrastructure, the Security
Backbone, which is able to satisfy security requirements arising from resource
sharing and services interoperability in Grid-like environments, without having
to rely on a Public-Key Infrastructure (PKI). Motivation of our approach is rooted
in the well-known difficulties encountered to show that interoperability of PKIs
is effective or efficient in real-world environments.
The proposed solution uses a security layer, lying between the communication
and the application level, which provides confidentiality, integrity and authen-
tication services in a fully transparent way from the application point of view,
thus enabling the deployment of distributed network applications satisfying the
highest security constraints, at a very low organizational and financial cost.
Moreover, we have designed a service for scalable and flexible management of
authorization policies governing access to resources shared by members of a Vir-
tual Organization, by improving on the Community Authorization Service dis-
tributed with the Globus Toolkit1.

Computational resources sharing between different organizations in an untrusted en-
vironment arises several issues related to information security. This is especially true
on computational grids [26] where members of different organizations join a Virtual
Organization (VO) for performing collaborative tasks, and users and resources can be
dynamically added to or removed from a VO.

In this paper we address the problem of managing certification and security-related
operations on grid infrastructures, with a particular focus on specific needs arising from
inter-organizational cooperation.

We have studied how to protect interactions between computational entities belong-
ing to different organizations when such interactions take place over unsecure public
networks. Typical examples of critical interaction where security is a primary concern
are: (i) transactions involving transfer of funds, (ii) transactions where parties commit
to action or contracts that may give rise to financial or legal liability, and (iii) trans-
actions involving information protected under privacy regulations, or information with
national security sensitivity.

1 This work has been partially supported by the Grant MIUR L.449/97, CNR Project “P1 - IN-
TERNET networks: efficiency, integration and security”, Research Action “Security Services”
and by the Grant MIUR PNR 2001-2003, FIRB Project RBNE01KNFP “GRID.IT: Enabling
Platforms for High-Performance Computational Grids Oriented to Scalable Virtual Organiza-
tions”.

M. Jeckle, R. Kowalczyk, and P. Braun (Eds.): GSEM 2004, LNCS 3270, pp. 119–135, 2004.
© Springer-Verlag Berlin Heidelberg 2004

120 Franco Arcieri et al.

In order to enable secure interactions between network applications in multi-orga-
nizational environments with large and rapidly evolving communities, the following
standard requirements have to be met:

Confidentiality: nobody but the intended recipient can read the content of a mes-
sage travelling over an insecure communication network. Integrity: unauthorized alter-
ation of messages must be detected and traced. Authentication: subjects (i.e. persons
or processes) participating in a communication must be sure about the identity of all
involved parties. Authorization: resources and services can only be accessed by autho-
rized subjects. Auditing: the information flow associated with an interaction must be
audited either for certifying correct service provision or for identifying who is respon-
sible for failure. Timestamped audits can also be used for a-posteriori monitoring the
performance of service provision. Single sign-on: users should be able to authenticate
themselves only once, at the beginning of the work session. Notice that this behavior
may require a mechanism for delegating credentials to remote processes running on
behalf of the user.

In this paper we present an architecture which is able to satisfy security require-
ments arising from resource sharing and service interoperability in inter-organizational
cooperation, without having to rely on the existence of a Public Key Infrastructure (PKI)
shared by all involved organizations. Indeed, the adoption of a single PKI by different
and autonomous organizations would be the source for many technical and organiza-
tional difficulties, like certificate usage and management of certificate validity (see Sec-
tion 1 for details).

The proposed solution uses an infrastructural layer (called Security Backbone) for
managing security-related functions. The Security Backbone provides services which
are needed for secure service interoperability in a completely transparent way from the
application point of view, thus allowing for deployment of network applications which
satisfy strict security requirements with very low financial and organizational costs.

Moreover, we propose a scalable and flexible system for the management of au-
thorization policies governing coordinated resource sharing in Virtual Organizations,
which allows one to specify authorization rights granted by Virtual Organizations to
their members, as well as authorization rights granted by resource owners to Virtual
Organizations. The proposed solution does not depend on the existence of a PKI shared
by all “real world” organizations for performing the signing of authorization creden-
tials or for verifying the identity of a subject. Instead, the system for authorization
management we have devised leverages the security services provided by the Security
Backbone, thereby avoiding the PKI-specific problems which are present in the Globus
Toolkit [25] version of the Community Authorization Service [36].

The Globus Toolkit (GT), by relying on a general-purpose security API (GSS-
API) [29], allows security services to be implemented by using different security proto-
cols (like Kerberos, for example). However, in its current implementation, GT’s security
services heavily rely on the availability of PKIs and using different security mechanisms
still requires huge implementation efforts [30,3]. Moreover, GSSAPI does not remove
the need for credential translation when enabling interoperability between subjects us-
ing different security technologies.

In Section 1 we survey on PKI features and shortcomings. In Section 2 we present
our solution for infrastructural security services provision. In Section 3 we describe

A Specification for Security Services on Computational Grids 121

the authorization model used by the Security Backbone and we present some example
scenarios. Moreover, we give a description of the authorization service as a Web Ser-
vice by using WSDL [18]. We designed our solution dealing with security issues in
grids within a very large (8.1 milion Euro) Italian national research project on High-
Performance Computational Grids [1] involving the Italian National Research Coun-
cil (CNR), the Italian Institute for Nuclear Physics (INFN), the Italian Space Agency
(ASI), the Photonic Networks Laboratory (CNIT) and many Italian universities. Our
group is responsible for research related to grid security issues.

1 Problems with Current PKI Technology

The PKI-based approach is suitable for use in well-structured and trusted environments
like scientific communities, but it has demonstrated to be unable to effectively or effi-
ciently support secure interactions when deployed in an open and dynamic environment
like the Internet, both for technical and organizational reasons. For a detailed survey on
the shortcomings of current PKI technology we refer the interested reader to [28].

1.1 PKI Technical Problems
The most important technical obstacles to the success of the PKI approach in real-world
inter-organizational environments are the following:

(i)

(ii)

(iii)

there are still several open issues about interoperability between PKIs operated by
different organizations, and
the predominant use of Certificate Revocation Lists (CRLs) for handling the
(in)validity of certificates makes the PKI not scalable,
PKI technology is too hard for end-users [27].

In the real world, when members of different organizations join to form a Virtual
Organization, they establish a network of relations enjoying a structure which is much
richer than the tree-like schema of hierarchical PKI. In this scenario mesh PKIs seem
to be more appropriate, but their adoption dramatically increases the complexity of
certificate path discovery (the process of constructing the chain of certificates leading to
a subject) and path validation (the process of checking the validity of each certificate in
the path). It is also natural to assume that if a PKI-based grid is to be deployed in a large,
world-wide scale, there can be no single top-level CA. Instead several independently
managed PKIs will be created, just like it has happened on the Internet for many other
services.

In this more general and realistic setting, interoperability can only be enabled by
using cross-certification techniques between independent PKIs. However, achieving
cross-certification is very hard because of (i) the organizational obstacles deriving from
the fact that two or more organizations are forced to trust each other, (ii) the increased
computational effort needed for verifying longer chains of certificates, and (iii) the lack
of scalability of this approach which requires each CA to recognize each CA it wants
to interoperate with.

We want to remark the problems and the risks associated with the existence of a
single PKI by quoting P. Alterman, member of the U.S. Federal PKI Steering Com-

122 Franco Arcieri et al.

mittee and Federal Bridge Certification Authority: “There are strong arguments against
fielding a U.S. Federal PKI, especially under a single root”.

The most relevant of these problems is that a single nation-wide Certification Au-
thority represents an actual threat to individual privacy, as it will enable the government
and security agencies to collect personal information of any kind.

Such a single CA would also violate organizational autonomy, as most organizations
are reluctant to participate in a single PKI run by an entity other than themselves.

Moreover, the existence of a single supplier of PKI services would generate disas-
trous consequences to other suppliers: it is easy to imagine the lobbying activity which
will be performed by suppliers for winning such a competition.

Also, the overall deployment and operational cost of this approach would be an ob-
stacle to the wide adoption of security services in inter-organizational cooperation. The
cheapest solution will be the most popular, and PKI is not by any means the cheapest
solution.

We should not forget that “The purpose of deploying a PKI is to provide a secure
electronic government utilizing Internet technology, not only to satisfy the little hearts
of a dedicated cadre of techno-nerds and paranoiac security gurus but to serve the citi-
zenry”, as Alterman states.

Recently proposed solutions try to mitigate scalability and interoperability issues of
PKIs by using bridge certification authorities [16,37] and validation authorities [38].
Bridge CAs do not issue certificates to users, but they are used for creating bridges
of trust between PKIs operated by different organizations and for translating between
different security policies. Validation authorities are entities which are responsible for
performing resource consuming tasks like path construction and path validation on be-
half of users, possibly by interacting with PKIs using different technologies. Although
use of the above solutions can enable better interoperability of PKIs on a large scale,
they are currently supported only by very few applications, thus the benefits which
can be obtained in the short term by following this approach are minimal. Moreover,
the feasability of the approach based on Bridge CAs is currently being tested by the
U.S. Federal Bridge Certification Authority [11], but it is still not clear which would be
its performance when deployed to support applications’ needs on a large scale.

In a PKI each Certification Authority (CA) manages the validity of certificates it
releases by making Certificate Revocation Lists (CRLs) available for download on the
network. CRLs are large documents signed by the issuing CA containing a list of cer-
tificates released by the CA itself which are not to be considered valid anymore. Un-
fortunately, CRLs suffer from the following serious problems: (i) they do not provide
real-time information about the validity of certificates, (ii) their distribution and check-
ing is expensive, and (iii) they are extremely vulnerable to denial-of-service attacks.

The intrinsic problem with the CRL-based approach is that only negative informa-
tion is provided: if a certificate is in the CRL then it must not be considered valid, but
if it is not listed therein then no warranty is given about its validity as, for example,
the list may simply be not recent enough. However maintaining CRLs fresh generates
very high loads for servers distributing them, due to the simultaneous requests for CRL
update by PKI-enabled clients.

A Specification for Security Services on Computational Grids 123

Since there is no real economic advantage for CAs which update their CRLs most
frequently (except for having a good reputation, of course), currently deployed attempts
to solve this problem try to reduce the size of CRLs by grouping certificates in classes
or by publishing only changes with respect to previously issued CRLs. However, in the
real-world scenario many high-value transactions rely on the validity of certificates and
the need for real-time validity assertions is ever increasing.

The CRL-based approach is also exposed to paradoxical situations like the existence
of a CRL containing the certificate which was used to sign the CRL itself. Moreover,
non-standard situations like this are not handled uniformly by applications.

A more radical solution to manage certificate validity would be not to use CRLs
at all, and adopt a protocol which can provide real-time information about the validity
of a certificate, like the Online Certificate Status Protocol (OCSP) [23]. This approach,
which is encountering an increasing support by vendors, is anyhow not yet a standard
component of certificate validation client software installed in the more common ap-
plications. Also, OCSP server may be subject to “denial of service” attacks and must
satisfy the same strict security requirements of a Certification Authority.

Another obstacle to the adoption of PKI technology is that it is too complex for use
by average end-users [27]. Indeed, for example, there is no procedure which allows the
end-user to obtain a PKI certificate in an automated, transparent way, like DHCP does
for configuration of networking parameters on workstations.

1.2 PKI Organizational Problems

A pure PKI-based approach also suffers from an important organizational problem
which is rarely addressed in the literature but is often the culprit of unsuccessful se-
cure service interoperability: Trust in a CA can be established unilaterally.

Any entity in an organization can indeed decide to trust any CA, independently of
the organization security policies and without necessarily asking for authorization (see
Figure 1).

This behavior is clearly only acceptable in no-profit scientific communities where
reliance on security service is non-critical. Indeed, when we focus on the reality of
business cooperation it becomes evident that security services can be established only
after some kind of agreement among involved organizations is formally in place, that is,
trust between members of different institutions always requires a bilateral agreement at
the organizational level.

This aspect was a further motivation for our choice of putting security services in a
layer fully independent from the application one.

A notable exemplification of this organizational requirement is mobile phone roam-
ing in a foreign country, where access to local resources is granted only if an agreement
exists between the local company and the home-base one, and it becomes impossible
for the user to by-pass the local infrastructure.

In conclusion, PKI technology, despite of considerable recent developments, is not
yet to be considered mature for deployment in large and dynamic environments like the
grids. An alternative solution to PKI infrastructures for providing security services on a
grid is presented in Section 2.

124 Franco Arcieri et al.

Fig. 1. Organizational and individual trust: (1) the reality of business cooperation, and (2) the
approach allowed by PKIs.

Fig. 2. Provision of security services: the standard approach (A) and the Security Backbone ap-
proach (B).

2 The Security Backbone

In this section we present the Security Backbone, an alternative approach for easy and
transparent provision of security services at the infrastructure level, independently from
locally deployed network technology and topology. In the proposed architecture secu-
rity services are provided by a layer lying between the application and the communi-
cation layers (see Figure 2.B), which is in charge of monitoring network connections
directed to or originating from the application level and securing them according to the
policies of the Security Backbone.

In our view security is an infrastructural service of inter-organizational communi-
cation, not an add-on service. Notice how our position is similar to the requirement
expressed in the WS-Security roadmap document [19]: “What is needed in a compre-
hensive Web service security architecture is a mechanism that provides end-to-end se-
curity”.

Our approach, by making security services readily available to applications in a
completely transparent, infrastructural way, allows for separation of issues related to
security services and business logic, relieving developers of the burden of managing
security-related mechanisms and thereby reducing the risks of introducing security
flaws. This is in contrast with the standard approach, where security services are usually
provided at different levels in the protocol stack (see Figure 2.A).

Moreover, our approach also solves the organizational problems of PKIs by allow-
ing cooperation between members of different organizations only on top of the Se-

A Specification for Security Services on Computational Grids 125

curity Backbone layer, which is set up only after a bilateral agreement is formally in
place between their organizations. This represents a reasonable trade-off between free-
dom granted to users by PKI technology and the functionalities needed by business-to-
business cooperation.

The Security Backbone also provides auditing services, thus making it possible to
certify successful e-services interaction and composition, to identify culprits of bad ser-
vice provision, as well as monitoring the actual performance of the service as perceived
by end-users. There is an increasing interest in techniques which are able to certify
correct service execution [31] and this is especially important for composite services,
which result from the composition of simpler subservices provided by different organi-
zations [17].

We also want to point out that our solution for security services provision is cur-
rently in use within large Italian e-government projects [6,4].

2.1 The Security Backbone Technical Details

The Security Backbone contains the following functional subsystems: (i) confidentiality
and integrity services, (ii) authorization service, (iii) authentication service, (iv) docu-
mentation subsystem, (v) access policy management, (vi) quality of service monitoring.

We now give some detail on the functions executed by the subsystems and how they
have been realized.

Confidentiality and Integrity Services. A mechanism similar to SSL/TLS is used for
guaranteeing integrity and confidentiality of exchanged messages: before being
transmitted over an insecure communication channel, TCP packets are encrypted
by using symmetric cryptography based on session keys which are generated anew
for each session and exchanged between communicating parties using asymmetric
cryptography.
A part of each subject’s private key is distributed by out-of-band methods. Once this
part of a subject’s private key is arrived at the destination site, the confidentiality
and integrity subsystem at the site has to be activated, as described in the paragraph
below on the authorization subsystem. After activation, local and remote modules
of the confidentiality and integrity subsystem are fully operational.

Authorization Service. This subsystem takes care of the initial set-up of functions in
the security layer. On the basis of the part of the private key obtained by out-of-
band methods, an exchange of encrypted messages between the local subsystem
and a central control server happens, aiming at registering the local subsystem at
the central control server. Hardware identifiers of the communicating machines are
exchanged during this phase, so that it is possible to uniquely identify physical sites
having the right to access the communication network. After successful completion
of this registration procedure the site is activated, its private key is complete and
bound both to registered end-user(s) and registered machine(s), and the client is
authorized to securely exchange messages.

Authentication Service. Guarantee of the identification of message source and des-
tination is implemented by having local and remote modules of the authentication
subsystem exchange messages over an encrypted tunnel: TCP packets are encrypted

126 Franco Arcieri et al.

and transmitted as payload of IP packets addressed to the other endpoint of the
tunnel. Again, encryption uses symmetric cryptography based on session keys, se-
curely exchanged using private keys. In this way, whenever IP packets arrive at
the destination endpoint, only those originating from authenticated sources are ac-
cepted, while the other ones get discarded.

Documentation Subsystem. A dedicated subsystem of the Security Backbone records
application-level messages exchanged between authorized access points of the
communication network, so that documentation can be produced on actually ex-
changed data. In fact, since service provision is often bound to contractual or le-
gal obligations, it becomes extremely important to certify, when a problem is later
found, if and when data were sent and received.
The documentation subsystem is based on an architecture using network probes
at network access points for recording exchanged application-level messages. This
solution has been extensively described elsewhere [8,9,10]. Here we just want to re-
call that it works without any change to existing applications, it performs filtering of
selected IP packets and reconstructs messages exchanged at the application-level,
using highly efficient algorithmic solutions [32], which make the solution scalable
and with a very low overhead.

Access Policy Management. It is also possible to define and enforce the desired policy
for access management at a central control point. In fact, both authorization and
documentation services are fully parameterized, making it possible to implement
various access control policies.
For example, users or groups of users can be given different rights (e.g. read-only,
write, publish, query) to different resources in a dynamic and flexible way, with-
out requiring any modifications at the application level. After the initial set-up and
registration phase of the access point, end-users’ access rights can be dynamically
established by means of a communication between the local and the central mod-
ules of the access policy management subsystem.

Quality of Service Monitoring. Quality of service measuring and monitoring in a
business cooperation scenario needs techniques which measure and certify actual
application level performance of service flows spreading on a network in conse-
quence of a service request. To obtain precise measurements, it is then needed to
record the actual behaviour in the network of IP packets corresponding to service
flows, while it is not possible to use estimation based approaches, where sophisti-
cate techniques have been proposed for accounting and billing [21,22]. The same
reasons prevent the use of flow statistics like those being provided by Cisco Net-
Flow [40].
To the best of our knowledge no solution for the problem of actual performance
measurement of distributed e-services is known in the literature beyond ours: our
solution is based on the same technique used to provide documentation services
(see paragraph above) and is described in more detail in [7,5].

A Specification for Security Services on Computational Grids 127

3 Authorization Management on a Computational Grid
with the Security Backbone

The Security Backbone can be easily deployed for creating a computational grid which
allows secure utilization of resources shared by members of a Virtual Organization. In
this scenario, the configuration of the Security Bacbone is managed by the VO admin-
istrator and each non-virtual organization which wants to allow access to the grid to
some of its members, or make some of its resources available, will have to join the
Security Backbone infrastructure which transparently provides, among other services,
mutual authentication, integrity and confidentiality for network communication.

In this section we present a model for authorization management and we show it
in action in two different usage scenarios: in the first scenario, the set of authorization
rights granted to VO users does not change over time, while in the second authorization
rights can be dynamically managed.

3.1 An Authorization Model

In the following we use a simple yet flexible authorization model, inspired by the re-
quirements which led to the development of languages [34,33,24] and models [39,2]
for management of authorization rights in distributed network environments.

In the considered authorization model we can identify three main entities: subjects,
resources and actions. Entities are specified by a set of attributes of the form
where is the attribute name and is the attribute value.

A subject is an entity which wants to perform an action on a resource. It can be spec-
ified by using a name and, optionally, a host or a role. For example, a valid subject may
be the attribute “name”, “John Smith” and “host”, “jsmith.employees.mycompany
.com”

A resource is a computational entity which is available for use to members of a VO.
A resource is typically specified by using the following information: the name of the
resource, the host where it is located, and the application protocol and the network port
which must be used for performing actions on the resource. Example of resources are
FTP directories, filesystems and web applications.

An action is an operation which a subject wants to perform on a resource. Ac-
tions can be specific to a particular application protocol and thus, not all actions can be
performed on a given resource. The complete set of actions which can potentially be
performed on a resource must be explicitly agreed upon by the organizations involved
and stated in formal agreement documents. Example of actions are the following: read,
write, execute, HTTP GET, HTTP POST.

Authorization policies are sets of authorization rules which specify if and how sub-
jects can perform actions on resources by using constraints on resource and action at-
tributes (f.e. “read-write access is granted to FTP directories below /pub/incoming on
host A”), or time related constraints (f.e. “access is only granted between 9 AM and 7
PM”, or “access is granted for a maximum time period of two hours”).

In order to ease the definition of authorization policies, authorization rules need not
refer to every particular instance of subjects, resources or actions but can refer to classes
of subjects. When evaluating an authorization policy, rules can be combined in different

128 Franco Arcieri et al.

ways. We assume that the authorization rights granted by an authorization policy con-
sists of the union of the authorization rights granted by each applicable authorization
rule herein contained.

We now illustrate two different usage scenarios: a scenario where authorization
rights are statically defined and cannot be changed, and a scenario where authoriza-
tion rights can be dynamically modified. In both cases, users are authenticated by the
Security Backbone at the beginning of the session, by performing the single sign-on
procedure described above. Notice that, by following this approach, each organization
still retains full control of the hosts operating on the grid, and, as already mentioned, no
changes to applications or to intra-organizational architectures are required.

3.2 A Static Authorization Scenario

In a simple scenario, the set of authorization rights owned by users of a VO is stati-
cally determined by the configuration of the Security Backbone, and does not change
during the lifecycle of a VO unless the Backbone is externally reconfigured by manual
intervention.

The authorization rights owned by the user are not limited to those which are explic-
itly created according to the Backbone configuration. Indeed, a user process running at
a remote site can access resources located at other sites if the configuration of the Se-
curity Backbone which controls communication between the host where the process is
running and the host where the resource is located permits so. The newly requested re-
source can be a process itself which may require access to further resources, and so on
(see Figure 3).

From a mathematical model point of view we can represent this authorization rela-
tion as a labeled directed graph where nodes can be labeled by subjects and resources
and edeges are labeled by actions. Then, the set of authorization rights owned by each

Fig. 3. A Static Authorization Scenario: although there is no direct agreement between Org1 and
Org3, can leverage authorization rights owned by for accessing

A Specification for Security Services on Computational Grids 129

subject can be thought of as the transitive closure of the peer-to-peer authorization re-
lation constructed by starting with the authorizations for the resources which can be
directly accessed by the subject: a subject can perform an action on a resource iff
there exists a path from to labeled where, for all if action

is performed then action can also be performed.
In this scenario, differently from what happens on Globus grids, requests for ac-

cess to resources are not mediated by a user-proxy. This enables enhanced scalability,
as there is no single point of failure, while retaining control of authorization policies.
Moreover, interactions between hosts can be audited and documented by the Security
Backbone in real-time, thus providing a useful tool for detecting possible anomalies
and for providing legal evidence in case of judicial dispute.

3.3 A Dynamic Authorization Scenario

In this section we illustrate a scenario where authorization rights can be dynamically
managed by interacting with the Security Backbone.

Fig. 4. The configuration of the Security Backbone in the initial state of the Virtual Organization.

In the initial state of the considered scenario, i.e. when a Virtual Organization is cre-
ated, the only interactions allowed by the Security Backbone are authorization requests
from members of the VO to the VO’s authorization server, also referred to as the Policy
Decision Point (PDP), that is the machine which accepts authorization requests, evalu-
ates authorization policies and replies with authorization decisions (see Figure 4). The
VO’s administrator is the unique responsible for management of the VO’s authorization
server.

For issues of reliability, the VO authorization server may be replicated on different
machines. In this case, members should be allowed to send authorization requests to
all authorization servers used by the VO and standard replication techniques should be
used for ensuring overall consistency of the authorization servers.

130 Franco Arcieri et al.

Notice that the set-up phase of a Virtual Organization, which involves configuring
the PDP as well as user and resource sites, cannot be completely automated as it re-
lies on the existence of credentials which must be obtained by out-of-band methods
(see Section 2.1). Offline procedures must also be performed when users or resources
belonging to new organizations want to join an existing VO. However, apart from the
cases mentioned above, by following our approach one can dynamically modify the set
of authorization rights granted to users of a VO, as described below.

When a subject (a member, or a process running on a member’s behalf) wants to
perform an action on a resource, it sends an authorization request containing attributes
of the resource, action, and other relevant information to the authorization server. The
authorization server, upon receiving the request for authorization, examines it and re-
trieves policies which are relevant for determining whether and how to satisfy the re-
quest.

As a result of the decision process, the authorization server sends back to the re-
questing subject a response containing the authorization decision (which f.e. can be one
of Permit, Deny, Don’t Know, Error). If the authorization request is accepted the au-
thorization server proceeds in activating a procedure which reconfigures some software
components affecting the behavior of the Security Backbone. Only after this reconfig-
uration process, the subject is allowed to establish a secure channel with the resource
over the Security Backbone and to perform operations which are compliant with the
authorization policies defined by the VO and the resource provider (see Figure 5). The
secure channel is then destroyed at the end of the work session or after a timeout occurs.

Fig. 5. The configuration of the Security Backbone after creation of a secure FTP channel between
member and resource

Notice that in our framework it is not needed to include information about the re-
quester’s identity as this can be obtained by the Security Backbone itself when the
request is evaluated (recall that authorization requests are performed over secure chan-
nels). In some cases however, in order to manage requests performed by processes with
delegated rights, it might also be useful to specify the identity of the requesting subject.

A Specification for Security Services on Computational Grids 131

Our authorization model enjoys the same flexibility of the CAS system [35,36],
while allowing non grid-aware applications to securely access and share resources on
the grid.

Indeed, management of a VO authorization policies can be performed at the autho-
rization server by extending the model described above to consider management ser-
vices as resources. Thus, in the initial state of the VO, the VO administrator is granted
access to the services for managing the VO itself (adding, removing users and groups)
and its authorization policies. On the other hand, each resource owner must only rec-
ognize those VO’s which will be using its resources and need not be concerned about
their dynamics.

Moreover, by following our approach, security services can be provided both to
applications which are able to interact with the Security Backbone, as well as to ap-
plications which were not developed to manage security related issues. In the former
case, for example, applications can perform authorization requests by interacting with
the authorization server as a Web Service (see Section 4 for details), while in the latter
case authorization requests can be performed by using special purpose client application
similar in concept to those distributed with the CAS system.

The architectural solution we propose uses techniques and technologies which are
well-known in network security, but is novel as it makes security services available at
the infrastructure level, thus enabling secure interoperability between legacy network
applications in a non-intrusive and cost-effective manner.

Other systems provide security services at the network level (like IPSec or IPv6)
or at the transport level (like TLS [20]) but they require changes at the application
level. Thus, they do not represent an effective solution for providing security to existing
applications which are expensive, and often impossible, to modify. On the contrary, the
Security Backbone, does not require any change to existing applications and can coexist
with locally deployed security solutions.

4 Specification of the Authorization Service as a Web Service

In this Section we introduce some basic concepts about web services and we present a
simple WSDL document describing the authorization service used for creating a secure
channel for accessing a resource by using the FTP protocol.

The problem of enabling interoperability between e-business applications on the
World Wide Web is currently being addressed by using XML-based [15] standards like
the Web Service Definition Language (WSDL) [18] and the Simple Object Access Pro-
tocol (SOAP) [14]. These technologies provide a framework within which it is possible
to expose existing network applications in a uniform and abstract manner.

A WSDL document contains the definition of the message exchange pattern be-
tween a service requester and a service provider (one-way, request/response, or pub-
lish/subscribe), together with the definition of the structure of the messages, the mes-
sage data types and the bindings to concrete network protocols (HTTP GET/POST,
SOAP, MIME) to be used for communication of messages. Messages exchanged by
the service requester and provider are typically formatted according to the SOAP pro-
tocol. SOAP messages are XML documents consisting of three parts: (i) an envelope

132 Franco Arcieri et al.

describing the message content and the rules for processing it, (ii) an optional header
for extending a message with new features like authentication and transaction manage-
ment, and (iii) a body containing data related to service requests or responses. Although
HTTP is used as the main network protocol, SOAP can potentially be used in combina-
tion with a variety of other protocols, like FTP, SMTP or RPC.

In a Web Service architecture [13], if a service requester wants to use a web service,
it must first obtain the WSDL document containing the service description, either from
the service provider itself or from a network-accessible catalog where service providers
publish their service descriptions, like UDDI [12]. In order to successfully complete the
service invocation, interaction between requester and provider must adhere to the ser-
vice specifications contained in the WSDL document. As long as the parties involved
in service provision adhere to the same service description, the software systems actu-
ally providing the Web services can be implemented by using any technical solution,
ranging from Java Servlets to legacy applications.

In the case of the FTP protocol, resources can be described by using the name or the
address of a host and the path of a file or directory on the host filesystem, while actions
are described by a single attribute which can take one of the following values: READ,
STOR, WRITE, MKD, DELE.

Below, we present a simple WSDL document describing how interaction takes place
between a subject requesting access to a FTP resource and the FTP authorization ser-
vice.

A Specification for Security Services on Computational Grids 133

134 Franco Arcieri et al.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.
12.

13.

14.

15.

Grid.it: Enabling platforms for high-performance computational grids oriented to scalable
virtual organizations. http://grid.it:8080/InFlow.
Gail-Joon Ahn. Specification and Classification of Role-based Authorization Policies. In
Twelfth International Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises June 09 - 11, 2003 Linz, Austria, 2003.
Edgardo Ambrosi. Creazione di un sistema plug-in di AA in Globus ed aggregazione di-
namica di porzioni di griglie computazionali attraverso CAS: Analisi di fattibilita’. Master’s
thesis, Advanced Master Thesis in Network Security, Univ. Roma “Tor Vergata” and INFN -
Frascati, 2004. submitted for partial fullfilment of the Master Degree.
F. Arcieri, F. Fioravanti, E. Nardelli, and M. Talamo. The italian electronic identity card: a
short introduction. In The National Conference on Digital Government Research (dg.o2004),
May 24-26, 2004, Seattle, Washington, USA.
F. Arcieri, F. Fioravanti, E. Nardelli, and M. Talamo. Inter-organizational e-services account-
ing management. In 3rd IFIP conference on e-Commerce, e-Business, and e-Government
(I3E-03) Sao Paolo, Brasil. Kluwer Academic Publishers, September 2003.
F. Arcieri, F. Fioravanti, E. Nardelli, and M. Talamo. A layered it infrastructure for secure
interoperability in personal data registry digital government services. In 14th Int. Workshop
on Research Issues on Data Engineering: Web Servicesfor E-Commerce and E-Government
Applications(RIDE’04),March 28-29, 2004, Boston, USA. IEEE Computer Society, 2004.
Fabio Arcieri, Fabio Fioravanti, Enrico Nardelli, and Maurizio Talamo. Certifying perfor-
mance of cooperative services in a digital government framework. In 3rd International
Symposium on Applications and the Internet (SAINT’03), pages 249–256, Orlando, Florida,
USA, January 2003. IEEE Computer Society Press.
Franco Arcieri, Elettra Cappadozzi, Enrico Nardelli, and Maurizio Talamo. SIM: a working
example of an e-government service infrastructure for mountain communities. In Workshop
Electronic Government(DEXA-eGov’01),associated to the 2001 Conference on Databases
and Expert System Applications (DEXA ’01), pages 407–411, Munich, Germany, September
2001. IEEE Computer Society Press.
Franco Arcieri, Giovanna Melideo, Enrico Nardelli, and Maurizio Talamo. Experiences and
issues in the realization of e-government services. In 12th Int. Workshop on Research Issues
on Data Engineering: Engineering E-Commerce/E-Business Systems (RIDE’02), pages 143–
150, San Jose, California, USA, February 2002. IEEE Computer Society Press. An extended
version is published in the journal “Distributed and Parallel Databases”.
Franco Arcieri, Giovanna Melideo, Enrico Nardelli, and Maurizio Talamo. A reference archi-
tecture for the certification of e-services in a digital government infrastructure. Distributed
and Parallel Databases, 12:217–234, 2002. A preliminary version was published in the
proceedings of the 12th Int. Workshop on Research Issues on Data Engineering (RIDE’02).
U.S. Federal Bridge Certification Authority. http://csrc.nist.gov/pki/fbca/welcome.html.
T. Bellwood, L. Clement, D. Ehnebuske, A. Hately, M. Hondo, Y. Husband, K. Januszewski,
S. Lee, B. McKee, J. Munter, and C. von Riegen. Universal description, discovery and
integration of web services (UDDI) version 3. http://uddi.org/pubs/uddi_v3.htm, 2002.
D. Boot, M. Champion, C. Ferris, F. McCabe, E. Newcomer, and D. Orchard. Web services
architecture. http://www.w3.org/TR/ws-arch, 2002.
D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Frystyk Nielsen,
S.Thatte, and D.Winer. Simple object access protocol (soap) 1.1.
http://www.w3.org/TR/SOAP, 2000.
T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. eXtensible Markup Language
(XML) 1.0 (Second Edition). http://www.w3.org/TR/REC-xml, 2000.

A Specification for Security Services on Computational Grids 135

16.

17.

18.

19.

20.
21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

W. E. Burr. Public key infrastructure (PKI) technical specifications: Part a - technical con-
cepts of operations. US Federal Public Key Infrastructure Tech. working group, September
1998.
Fabio Casati, Mehmet Sayal, and Ming-Chien Shan. Developing e-services for composing
e-services. In Proceedings of CAISE 2001, Interlaken, Switzerland, June 2001, 2001.
E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.
IBM Corporation and Microsoft Corporation. Security in a web services world: A proposed
architecture and roadmap. ftp://www6.software.ibm.com/software/developer/library/ws-
secmap.pdf, 2002.
T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246, January 1999.
N. Duffield, C. Lund, and M. Thorup. Charging from sampled network usage. In ACM-
SIGCOMM Internet Measurement Workshop (IMW’01), San Francisco, Ca., USA, Nov.01.
C. Estan and G. Varghese. New directions in traffic measurement and accounting. In ACM-
SIGCOMM Internet Measurement Workshop (IMW’01), San Francisco, Ca., USA, Nov.01.
M. Myers et al. Online Certificate Status Protocol (OCSP). RFC 2560, June 1999.
P. Ashley et al. Enterprise Privacy Authorization Language (EPAL).
http://www.zurich.ibm.com/security/enterprise-privacy/epal/.
Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit. Interna-
tional Journal of Supercomputer Applications, 2(11): 115–129, 1998.
Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling scalable
virtual organization. International Journal of Supercomputer Applications, 15(3):200–222,
2001.
Peter Gutmann. Plug-and-Play PKI: A PKI your Mother can Use. In Proceedings of the 12th
USENIX Security Symposium, pages 45–58, 2003.
Peter Guttman. PKI: It’s Not Dead, Just Resting. IEEE Computer, pages 41–49, August
2002.
J. Linn. Generic Security Service Application Programming Interface (GSSAPI). RFC 2743,
January 2000.
Patrick Moore, wilbur Johnson, and Richard Detry. Adapting Globus and Kerberos for a
Secure ASCI Grid. In Proceedings of the 2001 ACM/IEEE conference on Supercomputing
Denver, Colorado, 2001.
E. Nardelli and M. Talamo editors. Proceedings of the First International Workshop on Cer-
tification and Security in E-Services (CSES 2002), August 28-29, 2002, Montreal, Canada.
Kluwer Academic.
Enrico Nardelli, Maurizio Talamo, and Paola Vocca. Efficient searching for multidimen-
sional data made simple. In editor, 7th Annual European Symposium on
Algorithms (ESA’99), pages 339–353, Prague, Czech Republic, July 1999. Lecture Notes in
Computer Science vol.1643, Springer-Verlag.
OASIS. eXtensible Access Control Markup Language (XACML). http://www.oasis-
open.org/committees/xacml/.
OASIS. Security Assertion Markup Language (SAML). http://www.oasis-open.org/.
L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A community authorization
service for group collaboration. 2002.
L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. The community authorization
service: Status and future. In CHEP03, La Jolla, California, March 24-28 2003.
William Polk and Nelson Hastings. Bridge certification authorities: Connecting b2b public
key infrastructures. US National Institute of Standards and Technology, 2001.
William Polk, Nelson Hastings, and Ambarish Malpani. Public key infrastructures that sat-
isfy security goals. IEEE Internet Computing, pages 60–67, August 2003.
Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-Based
Access Control Models. IEEE Computer, 29(2):38–47, 1996.
Cisco Systems. Netflow. http://www.cisco.com/warp/public/732/Tech/nmp/netflow/.

Grid Service Management
by Using Remote Maintenance Shell

Gordan Jezic1, Mario Kusek1, Tomislav Marenic1, Ignac Lovrek1,
Sasa Desic2, Krunoslav Trzec2, and Bjorn Dellas2

1 University of Zagreb, Faculty of Electrical Engineering and Computing
Department of Telecommunications
Unska 3, HR-10000 Zagreb, Croatia

{gordan.jezic,mario.kusek,tomislav.marenic,ignac.lovrek}@fer.hr
2 Ericsson Nikola Tesla d.d.

Krapinska 45, Zagreb, Croatia
{sasa.desic,krunoslav.trzec}@ericsson.com

Abstract. This paper presents a method called Remote Maintenance Shell
(RMS) developed for Grid service management. It allows service management
and maintenance of several versions without suspending its regular operation.
The method is based on the remote operations performed by mobile agents. The
RMS prototype implemented as a multi-agent system with stationary and mo-
bile multi-operation agents is elaborated. A case study of monitoring service
managing in the Grid system is included.

Keywords: mobile agents, service management, Grid, multi-agent systems,
monitoring service.

1 Introduction

The problem of service management is complex in the Grid environment where ser-
vice is shared and distributed across the dynamic, heterogeneous and geographically
dispersed networks. Therefore, service installation, starting and testing on a large-
scale system with many nodes has become the serious problem. The situation is wors-
ened if the shared service malfunctions. Then, more complex operations, e.g. remote
service testing or tracing, possibly on every system, are required.

We propose the approach that uses mobile agents for performance of service man-
agement in the Grid system. Mobile agent is a program that can autonomously mi-
grate from node to node during execution. Mobile agents are incorporated in a
framework we have developed, called Remote Maintenance Shell (RMS). RMS
represents a protected environment and supports service migration, remote installa-
tion, starting, stopping, tracing, maintenance of several versions of service, selective
or parallel execution of two versions and version replacement [1-3].

This paper describes a RMS prototype organized as a team-oriented multi-agent
system (MA-RMS), comprising a master agent and a team of cooperative agents. The
team agents are implemented as multi-operation agents that mutually communicate
using the standardized FIPA ACL language. Our proposal has been verified in a case
study for managing of monitoring service in the Grid. RMS is used to manage Mon-

M. Jeckle, R. Kowalczyk, and P. Braun (Eds.): GSEM 2004, LNCS 3270, pp. 136–150, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Grid Service Management by Using Remote Maintenance Shell 137

ALISA service [4] for monitoring large distributed systems employed in the test Grid
environments in CERN.

The paper is organized as follows. Section 2 deals with the agent-based service
management; it identifies general requirements for service management in the Grid
and describes the related work in the area. Also, it shows the central idea behind RMS
and describes the RMS architecture. The RMS prototype, its basic and advanced fea-
tures, agent coordination and distribution in the Grid environment are elaborated in
Section 3. Case study, in Grid monitoring service is installed, started and replaced by
a more recent version, is given in Section 4. The achieved results are summarized and
plans for future work are given in Section 5.

2 Agent-Based Grid Service Management

Grid infrastructure is a large-scale distributed system that provides high-end computa-
tional and storage capabilities to differentiated users [5]. Open Grid Service Architec-
ture (OGSA) [6] defines a Grid service [7] that comprises a set of interfaces and con-
ventions. The interfaces address service discovery, dynamic creation and mana-
geability. The conventions address service naming and upgradeability. Instead of a
static set of persistent services we have to handle the complex activity requests from
the clients and dynamic creation of new services.

Grid service integrates distributed resources that include hardware and software
components. From software viewpoint, service creation includes the actions for soft-
ware installation and starting. Service manageability and upgradeability support the
actions for service tracing, maintenance of several service versions, selective or paral-
lel execution of two versions and version replacement. One and the same service can
be installed in several hosting environments where it will be running. Therefore, dif-
ferent users can use the same service.

We have identified several requirements for service management in Grid:

a complex Grid service must be upgraded independently,
Grid service must be managed without disrupting regular operation of the hosting
environment and other clients,
an administrator should not be physically present at the location of the managed
hosting environment,
simultaneous management of multiple hosting environments without handling each
individually (easy configuration copying) should be enabled,
Grid service execution should be controlled (service starling and stopping at will),
Grid service tracing and testing should be performed in the given hosting environ-
ment.

2.1 Remote Maintenance Shell Architecture

Basic RMS concept is shown in Figure 1. RMS comprises a management station and
remote systems distributed over a network. The management station is responsible for
service delivery to remote systems and for remote operations on them. The service
under maintenance must be adapted for RMS. Service Testbed, a service-dependent

138 Gordan Jezic et al.

part that has to be created along with service, provides the design for remote mainte-
nance. When service is ready for delivery, it migrates together with Service Testbed
to the remote system [1-3].

The Maintenance Environment is a common RMS part, pre-installed on the target
remote system(s) in order to enable management actions. It is service independent.
The Maintenance Environment is responsible for communication with the manage-
ment station. Its main tasks are enabling remote operations and storing data about the
installed service.

Fig. 1. RMS concept

All of the operations in RMS are executed by mobile agents. The most important
characteristic of mobile agents is that they have the ability to autonomously migrate
between Grid nodes during execution [8]. Once the Grid administrator defines the
operations to be performed on the Grid node(s) they are given to one or several mo-
bile agent, which then migrate to the Grid node(s), cooperate with each other, and
perform the operations at the actual target system.

Mobile agents are used because they have some important advantages that make
them especially suitable for implementation in the distributed systems. Actually, the
use of mobile agents brings the following benefits: completely decentralized opera-
tion execution, increased asynchrony, reduced sensibility to the network latency and
flexible configuration of the remote testing procedures.

RMS Console is installed on the management station, which serves as a centralized
management location. It contains one stationary agent, Management Console agent.
RMS Maintenance Environment is the part that must be preinstalled on the remote
systems in order for them to be managed by RMS. All service management operations
are performed by mobile agents, called multi-operation agents, which migrate from
console to the remote system.

Multi-operation Agents. Multi-operation agents are capable of executing multiple
operations. Grid administrator inputs the desired end state through the GUI. This end
state is passed over to the Management Console agent, which generates necessary
operations and assigns them to the cooperative multi-operation agent(s). Each multi-
operation agent is assigned one or several operations.

Grid administrator only gives a desired end state of service, without specifying par-
ticular operations to be performed. The RMS system automatically determines the
operations needed for such transition in service state, as well as the order in which the
operations will be executed by the agents performing these operations. Each operation
contains the input and output variables. The input variables specify necessary precon-
ditions for the operation execution to begin. The output variables specify the opera-

Grid Service Management by Using Remote Maintenance Shell 139

tions that depend on this one, i.e. the operations that have to be notified when this one
completes its execution. In this way a net of interdependencies is created between the
operations. The operations do not communicate directly, but through their enclosing
agents [9].

Besides the input and output variables each operation has a variable defining the
Grid node on which it has to be executed. When the input data for that operation are
available (i.e. when all preconditions are satisfied), the agent migrates to the node
where it must execute the operation and initiates its execution there. When the opera-
tion is completed, the system notifies of all the operations defined by the output vari-
ables and announces to the agent that the execution is completed. Then the agent
checks if there is any other operation ready for execution. If affirmative, the whole
process is repeated. If some operation is next in line for execution but its precondi-
tions are not satisfied yet, the agent simply waits for any incoming messages (there is
no timeout mechanisms implemented jet). When a message arrives, the agent dis-
patches it to the appropriate operation and tries to execute it again. In case of multiple
unsatisfied preconditions this process may have to be repeated. When all operations
are completed, the agent destroys itself.

Maintenance Environment Agents. Maintenance Environment is implemented as an
RMS server located on the Grid node (hosting environment, HE). Its main task is to
enable service operations on the node. It also handles local database that stores data
about the installed service and its status. Remote operations in the Maintenance Envi-
ronment are provided by stationary agents and two non-agent parts [2,3].

Management Console Agent. RMS Console contains one stationary agent – the
Management Console agent. Its responsibility is to act as an intermediary between the
GUI (i.e. the user using that GUI) and multi-operation agents that manage the HE.

The RMS user uses RMS GUI to define desired end state of service, without speci-
fying particular operations to be performed, or the sequence of their occurrence.
Based on the differences between current and desired service state, Management Con-
sole agent generates a set of operations to be executed in order to bring the system to
a desired end state. After generating the operations, it distributes them to a set of
multi-operation agents, according to the predefined algorithm.

The choice of the algorithm used depends on the number of HEs and the type of
operations to be performed. Different distribution strategies can result in significant
performance gains. The used algorithm in our prototype assigns all migrate operations
to a single agent, while the other operations are assigned according to the HE they
relate to – one agent for each HE. The reason for treating migrate operations differ-
ently from all the others is the fact that they can cause heavy memory load on the
console when transferring large data.

2.2 Related Work

There are several projects and systems that use mobile agents in the Grid environ-
ment. Echelon is an agent-based Grid infrastructure where a user can state complex
problems and computations, allocate all resources needed to solve them and analyze
the results [10]. Echelon project defines the agent-based Grid computing architecture
in which the agents are used for remote file transfer, superscheduling, distributed

140 Gordan Jezic et al.

visualizations and composition of resources in Grid. A4 (Agile Architectures for
Autonomous Agents) system is a distributed software system based on the idea of
federating agents, which can provide services to a large-scale, dynamic multi-agent
system [11]. The A4 model comprises a hierarchical model, a discovery model and a
coordination model. ARMS is an agent-based resource management system for grid
computing. Each agent is able to cooperate with others in the provision of service
advertisement and discovery for scheduling of applications requiring grid resources
[12]. Agentscape project provides a multi-agent infrastructure that can be employed to
integrate and coordinate distributed resources in a computational Grid environment
[13]. None of them uses mobile agents for management in the Grid environment.

Several commercial products for software management in the large distributed en-
vironments are available as well. The examples of such products are IBM Tivoli Con-
figuration Manager (part of a larger IBM Tivoli framework) [14], Novadigm Radia
[15] and Marimba [16]. None of them uses mobile agents, nor are we aware of any
such commercial product that does it. For that reason, we have undertaken a research
project to investigate how some generic advantages offered by the mobile agent para-
digm can be applied in software management in the large distributed systems. RMS is
a prototype implementation developed to validate project results in the real world.

3 Remote Maintenance Shell Prototype

3.1 RMS Features

Basic features of the RMS are service migration, installation, starting, stopping and
basic version handling. They include the mechanisms required to bring service to all
targeted HEs, configure it properly on each of them, start and stop it. When a new
service version is released, it can be installed on the HEs without removal of the old
ones. Thus, it is possible to maintain several versions of the same service on each of
the HEs, and control which one of them is currently active, i.e. which one gets started.
Service must be correctly adapted to allow concomitant existence of multiple ver-
sions.

Advanced features of the RMS are tracing, testing and advanced version handling.
The important thing about tracing and testing is that they are done on the actual target
system. It is of great importance to verify that some service product will function
correctly on the target system before it is actually put to work. An appropriate verifi-
cation environment is often a serious problem, because it is expensive to maintain the
test systems capable of defining the required operating environment for all possible
target systems.

Experience is a motivation for introduction of these features; it is possible that the
same service run on a target node gives the results different from those obtained on
the test system. The reasons are mostly in the structural and/or functional differences
between both systems. Therefore, actual hosting environment should be verified when
new service is being introduced, as well as when introducing new versions of the
existing service [17].

The advanced version handling mechanisms aim to provide the support in gradual
introduction of new versions, so that the HE can remain operational during testing
phase. Besides normal execution mode, where only one version is active, RMS also

Grid Service Management by Using Remote Maintenance Shell 141

provides parallel and selective execution modes. In a parallel mode, both versions are
executed with the same inputs. The old version is designated as the main version. The
output messages from it are sent to the environment, but the outputs from both ver-
sions are collected and compared. This enables verification of the correct functioning
of the new version. Figure 2 demonstrates service execution in a parallel mode.

The selective mode allows simultaneous execution of two versions with predefined
distribution of the incoming requests, as shown in Figure 2. Each input request is sent
to only one version that sends the resulting output message back to the environment.

Fig. 2. Parallel and selective execution

These two modes combined allow gradual introduction of new service versions
without stronger influence on regular operations. In a typical version replacement
scenario [3], a new version is run in the parallel mode with the old one first, so as to
verify its correct functioning. Then the versions are switched to the selective mode, in
which the execution probability for the new service must be kept low in order to
monitor its behavior in real environment. Once the expected results are obtained, the
execution probability can be gradually increased, until the complete load is finally
turned to the new service.

To use it with the RMS basic features, service itself does not require modifications.
Instead, the service developers have to create service testbed, an adaptation layer
between RMS and service. The advanced features, however, require service modifica-
tions along with writing of the testbed. It should be pointed out that we have devel-
oped several demo applications that use the advanced features. One of them is de-
scribed in [18].

3.2 Prototype Description

Registration of Multiple HEs. RMS Console has to register at the HEs before man-
aging service in it. In order to register, an RMS user has to enter the exact address of
the HE. This is time-consuming when a large number of systems have to be con-
tacted, especially if this has to be done each time the console is turned on. Therefore,
RMS Console GUI offers the possibility of saving the list of all HEs at which it is
currently registered to a configuration file. This file can later be easily loaded, which
causes automatic registration in all HEs specified in it. Since this file contains only a
plain text, it is possible to manually (or by some other program) edit the list of HEs to
be managed.

142 Gordan Jezic et al.

Configuration Copying. RMS Console GUI offers a dialog in which an RMS user
can define a desired end-state (e.g. running or stopped) of the service at the specified
location. Bringing service to a desired state does not require specifying the exact list
of necessary operations.

Flexible Installation Procedures. One of the main problems that had to be solved in
the RMS is providing flexible support to installations. Every service has different
configuration requirements, i.e. every service has to be configured differently during
installation. It is unfeasible to design a system that knows how to configure literally
every service. Therefore, the responsibility for defining what has to be configured
during installation must be transferred back to service developers.

Each service version must be packed in an installation archive, which contains a
special installation script. The whole installation archive is usually referred to simply
as “version”. This installation script describes configuration details that have to be
changed when installing service. During installation, the archived script is extracted
and loaded with specific local parameters that initiate its execution. After that, the
installation script takes over and performs all the work. The parameters passed to the
script include the things such as local host name, the exact path of service installation,
etc.

Writing the installation script is a typical responsibility of those who write service
testbed. It is envisaged, as well as with the testbed, that the installation script is writ-
ten by the service developers, although it is not a firm requirement. Since the installa-
tion script describes the parameters to be configured during service installation, its
content can be easily extracted from the service documentation, which must specify
these details for human users. The format chosen for installation scripts is Ant.
Apache Ant [20] is a Java-based build tool, designed for the needs of cross-platform
application development.

Both parts of RMS are developed in the Java programming language and use
Grasshopper as the underlying agent platform with integrated internal and external
security mechanisms [19]. The format chosen for installation scripts is Ant. Apache
Ant [20] is a Java-based build tool, designed for the needs of cross-platform applica-
tion development.

3.3 Agent Organization

There are several basic organizational models used in the multi-agent systems. RMS
uses a combination of two basic models. A hybrid between the master/slave and agent
team models is used in RMS [9]. A Management Console agent can be viewed as the
master agent, because it intelligently decomposes a complex problem into a set of
elementary tasks and distributes them to multi-operation agents. However, from that
point on a Management Console agent does neither have the control over multi-
operation agents, nor is an intermediary for the communication between them. When
sent into the network, the multi-operation agents behave as a team with a shared plan.
They are aware of interdependencies between them, and directly communicate and
coordinate on the achievement of a common goal.

In the RMS the agents communicate in order to execute all operations requested
from them. FIPA [21] is the main standardization body which defines standards of
inter-agent communication. In the FIPA-compliant agent systems the agents commu-

Grid Service Management by Using Remote Maintenance Shell 143

nicate by sending messages. Three fundamental aspects of message communication
between the agents are message structure, message representation and message trans-
port.

Message structure is written using the Agent Communication Language (ACL).
Message content is expressed in the content language, such as KIF or SL. Content
expressions can be grounded on an ontology that defines meaning of each message.
To send an ACL message it has to be encoded using the message representation ap-
propriate for the transport e.g. XML, string or bit efficient representation. Transport
message consists of the encoded ACL message plus envelope. The envelope includes
a sender’s and a receiver’s transport description with the information about how to
send the message. The envelope can also contain additional information, such as the
encoding representation, data related security and other realization-specific data that
must be visible for transport or recipient(s). A transport message can be sent over the
network by different protocols, such as CORBA IIOP or HTTP.

Agent communication in RMS is designed according to the FIPA standards. The
agents communicate by exchanging the ACL messages. Message content is expressed
in the SL content language, backed up by the RMS ontology. ACL message is repre-
sented in XML and transported via IIOP protocol. More information on ACL mes-
sages and agent communication can be found in [21]. With the use of Protégé [22]
and beangenerator the RMS ontology is defined. The created object of the RMS on-
tologies is coded by JADE’s codec [23] into String object, suitable for transmission
through ACL message. The reverse process happens on the other side.

3.4 RMS GUI

RMS GUI is logically separated into two windows, Remote Locations Status and
Changes Status List (Figure 3).

Remote Locations Status window lists the HEs available for management and ser-
vice currently available at these locations. This information is maintained automati-
cally with the use of UpdateAgent that delivers new information to all registered
nodes whenever service status changes. An Grid administrator gets a detailed infor-
mation about current service state, a tracing information and a set execution mode.
The user can at any time add a new HE or remove all nodes that are monitored. New
locations are entered into a separate dialog window and are kept in protocol://
server: port/agencyName format.

HEs can be saved in a file with the list of the registered remote locations, for later
faster connection to these systems. When a user loads the file that contains only loca-
tion addresses, the HEs send their current service status to UpdateAgent’s and current
service status of the remote locations are displayed in the Remote Locations Status
window.

Changes Status List window displays newly assigned tasks that change service
status on the remote nodes. An RMS user adds these tasks through Add/Edit Remote
Location Tasks button and specifies a desired service status. When all desired final
service statuses at all HEs are chosen, the RMS user can execute them. The Grid ad-
ministrator can also interactively track changes at remote locations, since Changes
Status List window is refreshed with green checkmarks whenever a service parameter
reaches the RMS user’s defined final status. When all tasks are completed, the Grid
administrator gets a confirmation message.

144 Gordan Jezic et al.

Fig. 3. Graphical User Interface

The Remote Location Tasks dialog enables an Grid administrator to add the ser-
voice chosen for installation at a remote location, set its final status (e.g. running), set
the execution parameters for each service managed on the HE, and copy service cur-
rent configuration on any HEs. This feature enables fast and efficient maintenance of
all services at all HEs. A user can also get an overview of the selected service’s status,
including the information as to whether it is traced or not, and the execution mode.
Through the Add Version button, in the above described way, the user can add a new
service version and manageable parameters.

Configuration Copy dialog appears if the Grid administrator wants to copy service
configuration at multiple Hes. It enables copying of the selected service configuration
on all HEs managed, or copying on some locations by simply choosing the listed
ones.

4 Case Study: Monitoring Service Managing

4.1 MonALISA Framework

The MonALISA framework [4] provides a distributed monitoring service system.
Each MonALISA server acts as a dynamic service system and provides the function-
ality to be discovered and used by any other services or clients requiring such infor-
mation. The goal is to provide the monitoring information from large and distributed
systems to a set of loosely coupled “higher level services” in a flexible, self describing
way. This is a part of a loosely coupled service architectural model, designed to en-
able perform effective resource utilization in large, heterogeneous distributed centers.
The framework can integrate existing monitoring tools and procedures to collect pa-
rameters describing computational nodes, applications and network performance.

MonALISA is currently deployed at many nodes and maintaining and updating
such an application at all of them may require a significant effort. For that reason,

Grid Service Management by Using Remote Maintenance Shell 145

MonALISA already contains a mechanism that allows automatic update of the moni-
toring service. It uses a dedicated thread that periodically checks for the updates on a
predefined server. Alternatively, a remote event notification can be used to notify
only the selected services to perform an update. When such an event is detected, the
running service triggers a restart operation, during which an automatic update is per-
formed.

The provided solution solves the basic problem of service update. However, RMS
provides some additional functionality, which allows improvements with more ad-
vanced management features:

Service update is initiated by the Grid administrator, instead of waiting for all in-
stallations to check for the updates.
It is possible to maintain several versions of the same service, instead of overrun-
ning the old version with the new one. This can be especially beneficial if the new
version does not function correctly, in which case the old one has to be restored.
RMS advanced features can help to solve the problem of service malfunction by
providing service testing and tracing on the actual target system. It is also possible
to gradually replace the old version with the new one, which allows thorough tests
in a real environment before the new version is put online.
Besides solving the installation problem, RMS can also control starting or stopping
the service on HEs.

RMS can be used as a unified solution for managing all other service installed on
that HE, not just MonALISA.

4.2 Scenario Description

In order to install MonALISA monitoring service at some HE, it is necessary to
download the current release from the web, unpack the archive file and configure
certain parameters at the target system. Configuration details are specified in the
MonALISA installation instructions. When this is done, MonALISA can be started by
running a provided script. Even though the described installation routine is not com-
plex, it can be time consuming, especially if it has to be done on a large number of
nodes.

A case study presented here attempts to show how RMS can be used to perform
Grid service management operations in multiple hosting environments. Even though
in most cases the installation of service is simple, it can be time-consuming, espe-
cially if it has to be done on a large number of systems. The goal is to install and run
MonALISA monitoring service on three HEs, and later replace it with a newer ver-
sion.

In order to use MonALISA in our case study, a testbed had to be made. Even
though we did not participate in developing MonALISA, we were able to make the
testbed for MonALISA simply by following the instructions that describe the installa-
tion and starting procedures.

The MonALISA testbed employed in this case study supports only basic RMS fea-
tures, but it can be enhanced to support the advanced features as well. Only one test-
bed needs to be made for particular service, irrespective of how many versions of that
service will be used.

146 Gordan Jezic et al.

In addition to the testbed, installation archives for both versions had to be created
too. The basic idea is the following one: each service version must be packaged in an
installation archive, which contains a special installation script. The whole installation
archive will usually be referred to simply as “version”. That installation script de-
scribes the configuration details that have to be changed when installing the service.
When an agent executes the installation it extracts the script from the archive, loads it
with local specific parameters and initiates its execution. After that the installation
script takes over and does all the work. The parameters passed to the script include
the things such as local host name, the exact path that service will be installed to etc.
The format chosen for installation scripts is Apache Ant [20].

Writing the installation script is typically the responsibility of the same people who
write the service testbed. As with the testbed, it is envisaged to be done by the service
developers, but it is not necessary. Since the installation script describes the parame-
ters to be configured when installing the service, its content can be easily extracted
from the service documentation, which obviously must specify these details for hu-
man users.

It should be noted that the installation scripts for the two versions used in this case
study are somewhat different. This is so because the configuration requirements have
changed between the versions. All the knowledge required to write these scripts
comes from the MonALISA documentation describing the “manual” installation pro-
cedure.

In addition to specifying configuration details, Ant scripts can be used for other
purposes as well. In the case study, we tested a solution that enables migration of
large service. Commonly, the agent loads the whole installation archive into the
memory and takes it to the HE. However, in case of a really large service, this can
cause heavy memory load and lead to the system instability. That is why an alterna-
tive approach has been developed, in which the agents transfer only the Ant script.
During installation, the script downloads the actual service from a HTTP server to the
HE. Both of these approaches are depicted on Figure 4.

Fig. 4. Alternative service migration scenarios

Imagine a Grid environment with three simple hosting environments, referred to as
HE1, HE2 and HE3. All of them should contain the same user application. In the first
part of the scenario, Grid administrator wants to run service in the HEs still lacking
service. It is supposed that RMS Maintenance Environment is started on all three
HEs. At the beginning of the scenario, the RMS user starts the console and registers at
all three HEs.

At the beginning of the scenario, RMS Maintenance Environment was started on
all three HEs, none containing MonALISA. Grid administrator started the RMS con-
sole and registered at all three HEs. To achieve a desired end state, a Management

Grid Service Management by Using Remote Maintenance Shell 147

Console agent generates necessary operations and establishes interdependencies be-
tween them. The operations are the following ones: service and testbed migration,
installation, setting of the execution parameters and starting.

The service containing testbed has to be picked up and set for start on one of the
HEs. After that, the configuration can be easily copied on all other systems. Each
operation has two variables, one for the input conditions and other for the output noti-
fication. Input variables define the conditions to be fulfilled so that the operation
begins execution. After completion, the operation has to notify operations that await it
to finish whether they were successful or not. The variables have two values: report
for successful completion of the operation, and abort for unsuccessful operation. Once
the operation sends the abort variable as its output, that variable propagates through
the entire operations communication tree. Thus, all remaining operations fail and the
users must be notifieded accordingly.

Figure 5 shows a dependency graph for one HE. The first operation is testbed mi-
gration (migrate TB). It is followed by testbed installation (install TB) and version
(service) migration (migrate version), which depends on testbed migration. Version
installation (install version) depends on version migration, while the operation for
setting execution parameters depends on both installation of testbed and installation of
version. The last operation is running service (run service) which is executed after
setting the execution parameters.

When the RMS user initiates task execution, four cooperative agents are created as
a team: Agent1, Agent2, Agent3 and Agent4. The operations are distributed in the
following way: a separate agent (Agent1) migrates service to all three hosting envi-
ronments (HE1, HE2, and HE3), i.e. does the following operations on each of them:
testbed migration and version migration. Agent2 migrates to HE1 and when service
has migrated to this location (Agent1 notifies it) it performs the following operations:
testbed installation, version installation, setting of the execution parameters and start-
ing of service. Similarly, Agent3 migrates to HE2 and performs the same tasks there,
while Agent4 migrates to HE3 and performs the equivalent tasks there. Version instal-
lation included unpacking of the installation archive and execution of the provided
Ant script.

In this part of the scenario, the service was transferred over the network in the
usual way – the agent loaded the whole installation archive into the memory. Since
MonALISA version 0.9 is about 5 MB in size, there were no significant problems
during service migration.

Second part of the scenario deals with service upgrading with a newer version. A
Grid administrator wants to terminate the existing user application and to install and
run a new version of service in this hosting environment. The following operations
must be executed: migrate and install the new version, stop the old one, set the new
version to be the active one and start the new version (Figure 5). Initiation of task
execution creates four agents. Agent1 carries the installation archive to HE1, HE2 and
HE3 (testbed is already migrated). After migration Agent2 performs the following
tasks at HE1: new version installation, stopping of service, setting of the execution
parameters i.e. setting of the new version to become the active one, and starting of
service (now the new version is active). Agent3 and Agent4 carry out the same tasks
at HE2 and HE3 respectively.

148 Gordan Jezic et al.

Fig. 5. Scenario graph for service starting and upgrading

This concept, in which the service is downloaded directly from the web, is particu-
larly powerful when it comes to updating multiple HEs running MonALISA as soon
as the new version gets released. The important fact to notice is that the service gets
downloaded directly from the actual MonALISA home page. That implies that the
downloaded archive file is in no way modified for RMS. It is the same publicly avail-
able archive file that can be downloaded and manually installed; only RMS does it
automatically. So when a new version of some service gets published on the web, the
only thing that has to be done is to write a relatively simple Ant script and pack it into
an RMS installation archive. Service can then be transferred to the HEs in the same
way it would have been done manually, without providing any special distribution
channels.

This case study has been implemented in managing MonALISA [4] service from
CERN, a distributed monitoring service system used in the real Grid environment.

5 Conclusion

RMS is a framework based on mobile agents, designed to support service manage-
ment in the large distributed environments. The basics of RMS architecture are pre-
sented and the prototype is elaborated. The emphasis is on the prototype that is im-
plemented in the Grid environment and in a case study that describes usage of RMS
for service upgrading in several hosting environments. In the given example, RMS
has been verified to manage real service for monitoring in Grid.

The case study clearly shows that RMS and mobile agent-based systems can be
successfully used in large-scale systems, and that RMS aids significantly in managing
service on multiple HEs in Grid. The case study employed basic RMS features, suffi-
cient to solve the commonest real-life problems.

Further research will include a case study in which real world application is
adapted to use the advanced RMS features (remote testing and tracing). Future work

Grid Service Management by Using Remote Maintenance Shell 149

on RMS will include introduction of the additional management features, such as
centralized trace collection from the multiple systems, security mechanisms and sys-
tem robustness. We are also planning to enable dynamic configuration of the algo-
rithm used for operation distribution on the management station, which would allow
testing of different distribution strategies, depending on the environmental specifici-
ties.

Acknowledgments

RMS is a result of the joint efforts of the people from Department of Telecommunica-
tions and Ericsson Nikola Tesla R&D Center [24]. Special thanks go to Iosif Legrand,
Federico Carminati and Predrag Buncic from CERN, for their suggestions about in-
corporation of RMS into Grid.

References

1.

2.

3.

4.
5.

6.

7.

8.
9.

10.
11.
12.

13.

14.
15.
16.

Lovrek, I., D. Huljenic, Remote Maintenance Shell: Software Operations Using
Mobile Agents, Proc. of the International Conference on Telecommunications 2002,
Yuan’an L.; Yunde, S. (ed.). Peking, China: Publishing House of Electronic Industry, 175-
179, 2002.
Kusek, M., G. Jezic, I. Ljubi, K. Mlinaric, I. Lovrek, S. Desic, O. Labor, A. Caric, D. Hul-
jenic, “Mobile Agent Based Software Operation and Maintenance”, Proceedings of the 7th
International Conference on Telecommunications ConTEL 2003, pp. 601-608, Zagreb,
2003.
Lovrek, I., G. Jezic, M. Kusek, I. Ljubi, A. Caric, D. Huljenic, S. Desic, O. Labor, “Im-
proving Software Maintenance by Using Agent-based Remote Maintenance Shell”, IEEE
International Conference on Software Maintenance, ICSM03, IEEE Computer Society
Press, Amsterdam, The Netherlands, 2003, pp.440-449.
http://monalisa.cacr.caltech.edu/
Cao, J., Kerbyson, D.J., Nudd, G.R. Performance evaluation of an agent-based resource
management infrastructure for grid computing, Proc. of the First IEEE/ACM International
Symposium on Cluster Computing and the Grid, Australia, 2001, pp. 311-318.
Foster, I, Keselman, C., Nick, J., Tuecke, S., Grid Services for Distributed System Integra-
tion. Computer, 35(6), 2002.
Foster, I, Keselman, C., Nick, J., Tuecke, S., The physiology of the grid: An open grid
services architecture for distributed systems integration, Technical report, Open Grid Ser-
vice Infrastructure WG, Global Grid Forum, 2002, http://www. globus.org.
Cockayne, W. R., Zyda, M., Mobile Agents, Prentice Hall, 1997.
Jezic, G., Kusek, M., Desic, S., Caric, A., Huljenic, D., Multi-Agent System for Remote
Software Operation, Lecture Notes in Computer Science, Lecture Notes in Artificial Intel-
ligence, LNAI 2774, Springer-Verlag, 2003, 675-682.
http://www.geocities.com/echelongrid/
http://www.dcs.warwick.ac.uk/research/hpsg/html/htdocs/public/a4.html
Cao, J., Jarvis, S.A, Saini, S., Kerbyson, D.J, ARMS: An agent-based resource manage-
ment infrastructure for grid computing, 2002.
http://www.dcs.warwick.ac.uk/~saj/papers/arms.pdf.
Wijngaards, N.J.E., Overeinder, B.J., van Steen, M., Brazier, F.M.T., Supporting Internet-
Scale Multi-agent Systems, Data Knowledge Engineering, 41 (2-3), 2002, pp. 229 – 245.
http://www.ibm.com/software/tivoli/products/config-mgr/
http://www.novadigm.com
http://www.marimba.com

150 Gordan Jezic et al.

17.

18.

19.
20.
21.
22.
23.
24.

Mikac, B., I. Lovrek, Ž. Car, I. Podnar, H. Pehar,
“Assessing the Process of Telecommunications

Software Maintenance”, Proceedings of the combined 10th European Software Control
and Metrics conference and 2nd SCOPE conference on Software Product Evaluation, pp.
267-275, Herstmonceux, 1999.
M. Zivic, L. Rac, A. Medar, M. Kusek, and G. Jezic, Designing of a Distributed Web Ap-
plication in the Remote Maintenance Shell Environment, accepted for publication at
MELECON 2004 (http://www.melecon2004.org/)
http://www.grasshopper.de
http://ant.apache.org
http://www.fipa.org
http://protege.stanford.edu/
http://sharon.cselt.it/projects/jade/
http://agents.tel.fer.hr/rope/index.en.shtml

The Grid-Occam Project

Peter Tröger, Martin von Löwis, and Andreas Polze

Hasso-Plattner-Institute at University of Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

{peter.troeger,martin.vonloewis,andreas.polze}@hpi.uni-potsdam.de

Abstract. We present a new implementation of the old Occam lan-
guage, using Microsoft .NET as the target platform. We show how Oc-
cam can be used to develop cluster and grid applications, and how such
applications can be deployed. In particular, we discuss automatic place-
ment of Occam processes onto processing nodes.

1 Introduction

The Occam programming language [17] was developed by INMOS, based on
Hoare’s idea of CSP [18]. Occam was originally designed for use on transputer
systems [14], and the only Occam compiler that was in wide use would generate
code only for the INMOS transputers (T222, T414, T800 etc.). Transputers are
high-performance microprocessors that support parallel processing through on-
chip hardware [28]. According to Michel J. Flynn’s taxonomy [6] a transputer
system can be declared as a multiple instruction multiple data stream (MIMD)
system, more precisely as distributed memory system. Each transputer has four
high-speed hardware links, allowing the creation of transputer networks. Com-
munication between unconnected transputers would require routing of messages
through intermediate transputers.

While Occam was primarily used on the transputers, its principles extend
beyond special-purpose hardware, and Occam programs can be written without
a specific interconnection network in mind. In principle, it is possible to execute
Occam programs on a single processor, on a multiple-processor system using
shared memory, or on a cluster of processor connected through some special-
purpose or off-the-shelf interconnection network.

One of our primary aims in the project is the introduction of Occam to
current distributed computing environments. We see Occam as a language to
describe parallel and distributed algorithms, and we like to support execution of
such algorithms in computing clusters and grids. In this context parallel algo-
rithms can either directly be expressed in Occam or consist of a mix of Occam
and a traditional sequential language. In that sense, Occam becomes a coordi-
nation language for distributed parallel algorithms.

The paper is structured the following way: Section 2 gives an overview of
the Occam language in general, while section 3 explains details of the historical
INMOS Occam compiler. Section 4 introduces our Grid-Occam concept in detail.

M. Jeckle, R. Kowalczyk, and P. Braun (Eds.): GSEM 2004, LNCS 3270, pp. 151–164, 2004.
© Springer-Verlag Berlin Heidelberg 2004

152 Peter Tröger, Martin von Löwis, and Andreas Polze

After that section 5 discusses concrete implementation details, and section 6
concludes the paper.

2 Occam Overview

The Occam language is based on the idea of communicating sequential processes.
Each process has access to a set of (private) variables, and is defined as a sequence
of primitive actions, namely

assignment to variables (variable := value),
output of a value through a channel (channel ! value),
input from a channel (channel ? variable),
SKIP, which does nothing, and
STOP, which never terminates1.

The communication through a channel uses the rendezvous style: an output
operation will block until an input operation becomes available, and an input
operation will block until the corresponding output becomes available. Then,
the data is exchanged (i.e. the value of one process is stored into the variable
of the other process), and communication succeeds. These primitive actions can
be combined through complex processes using three combinators. This is an
inductive definition of processes, where complex process can again be combined.

2.1 Sequential Combination of Processes

The keyword SEQ identifies a sequential process. The result of the entire process
is obtained by executing one of the component processes after another; the entire
sequential process terminates when the last subordinate process terminates. The
sequence of component processes is indicated with an indentation of two spaces.
As a very simple example, the following example shows a process that receives
a value from one channel, performs a computation, and outputs a new value to
another channel.

2.2 Parallel Combination of Processes

The keyword PAR indicates parallel combination of processes. Like SEQ, the
component processes are denoted by two spaces of indentation. The parallel
1 This is the formal definition of STOP. STOP indicates that a process is in error, and

the typical implementation is that the process stops working, i.e. it ceases to act.
Formally, this is the same thing as continuing to do nothing eternally.

The Grid-Occam Project 153

statements simultaneously starts execution of all component processes. The en-
tire statement is complete when the last component completes. A very simple
example shows the interaction of the sequential process from the previous ex-
ample in parallel with a process that interacts with the user:

The first of the two parallel processes is a sequential one. It interacts with
the user, through which it is connected with the channels keyboard and display.
This process reads some input from the user, and sends it to the other process.
That process performs the computation, and sends the result back to the first
process, which then forwards the result to the display.

2.3 Alternative Combination of Processes

If a process has communication channels to many other processes, it needs to
select which channel to receive data from. This is done with the ALT combinator,
which consists of a set of guard inputs and associated processes. The channels
are all watched simultaneously. Once a channel is ready, the input is performed,
and the associated process is executed. The following process simultaneously
guards a channel from the user and from another process, executing, forwarding
the data to the other communication partner:

Since the ALT statement eventually executes only a single process, it is
typically nested within a loop which repeatedly executes the ALT statement.

2.4 Repeated Combinators

Each combinator can be defined in a repetitive way. This is often combined with
arrays, so that multiple processes operate on array data in parallel. In addition,
the parallel processes have their individual channels, which is possible through
the notion of channel arrays. The declarations

154 Peter Tröger, Martin von Löwis, and Andreas Polze

introduce arrays a and b of REAL64 values, and a single array of channels
communicating REAL64 values. These structures can be used in the following
way:

In this process, 1025 parallel processes are created. 1024 of them add two
numbers and send the result to a channel. The remaining process receives one
result after another and sums them up, eventually sending the total to the dis-
play.

2.5 Further Concepts

Occam provides a lot of concepts not presented in this language overview. There
are conditional and case statements, loops (used in the previous example), con-
structed data types, protocols, timers, and many more concepts.

3 INMOS Occam

In the last section we showed that the Occam programming model includes a
concept of parallel processes that communicate through unidirectional channels.
One of Occam’s major advantages with this concept is the abstraction of the
parallel execution from the underlying hardware and software environment.

The original INMOS compiler supports the code generation for networks
of heterogeneous transputer processors. Therefore the Occam process must be
specifically placed on the correct hardware processor. Another problem is the
interconnection of processors. A transputer processor can, but need not be con-
nected to its 4 neighbors by the hardware links, which themselves can carry
multiple Occam channels. Beside the 4-link star layout, it is possible to have

The Grid-Occam Project 155

other interconnection schemes for hardware channels, for example a tree or a
pipeline scheme. In such cases, the compiler must be able to map the given set
of named Occam processes on the right processors for a successful execution of
the program. This leads to the need for custom message forwarding, performed
by special routing kernel code.

The classical Occam solved the problem of process placement by special
configuration statements PLACED PAR and PROCESSOR. Later on, INMOS
specified a separate configuration language. It supports the design of portable,
hardware-independent parallel Occam code. The first part of the configuration
(NETWORK) describes the interconnection of all available transputer proces-
sors. This includes also the specific type of hardware in terms of processor type
and memory size. Each defined processor is labeled with a custom name. The
second configuration part (CONFIG) describes the placement of named Occam
processes on virtual processors, identified by the name given in the first part.
The usage of a configuration language puts the developer in charge of the process
placement. This is uncritical in the context of transputer systems, since the hard-
ware architecture is static and well-known. The execution of such Occam code
on another transputer system requires an adaption of the network configuration
and a recompilation.

An example for the provisioning of infrastructure-independent Occam en-
vironments originates from the Esprit P2701 PUMA project at University of
Southampton. They developed a virtual channel router (VCR) software for unre-
stricted channel communication across a network of transputers [4]. The software
is able to map static virtual channels at runtime on communication resources,
using a custom kernel on the particular transputer node. The topology of the
network is described by an automatically generated network configuration file,
after that the VCR generates a set of deadlock-free routes for messages in the
system. The resulting message routing is realized during runtime, based on the
precomputed informations.

The following section shows that we extend VCR idea of infrastructure-
independent Occam execution to cluster and grid environments.

4 The Grid-Occam Approach

The last section showed that the original Occam compiler supports heterogene-
ity aspects through usage of a static configuration description. It is easy to see
that such an approach is not appropriate in heterogeneous cluster or grid envi-
ronments. Additionally the programmer wants to concentrate on the aspects of
parallelization for his algorithm, not on specific mapping issues for a particular
execution environment.

A good example of infrastructure-independent programming is the popular
MPI [7] library. It enables the programmer to use message passing facilities for
parallel program instances, while avoiding dependencies on the concrete hard-
ware infrastructure, e.g. number of processors, interconnections, or the com-
munication technology. Another advantage is an easier development process. A

156 Peter Tröger, Martin von Löwis, and Andreas Polze

programmer can test its software on a local computer without claiming expen-
sive resources like cluster time, simply by using a one-node enabled, local version
of the MPI library.

In the current approach of our Grid-Occam project, we want to achieve a
similar infrastructure independence within the concept of a .NET [20] Occam
runtime system. As a first step, we divide process-independent parts of the im-
plementation from the application-specific code. The process-independent func-
tionality is similar across all Occam programs and covers mainly the distribution
aspects. We call the result a Occam runtime library that is being responsible for
all distribution-related issues within the execution of the program. In an ideal
situation, a programmer can adopt her already existing Occam program by sim-
ply exchanging this runtime library without any need for reconfiguration or
recompilation.

In an implementation every Occam runtime has to solve several critical issues:

What is the given infrastructure in terms of virtual processors and their
interconnection?
What is the best possible placement strategy for Occam processes?
What is the precise instantiation mechanism for a PAR block on a virtual
processor?
How could global Occam variables be implemented?
What is a channel instance on this particular infrastructure?
How is such a channel being allocated and how does the addressing of an
other specific process instance work?
What are the implementation strategies for rendezvous behavior of a chan-
nel?
Which kind of networking optimization, for example with channel arrays,
can be done for the given infrastructure?

As it can be seen, in classical Occam most of these questions were solved by
manual work in the configuration file. In contrast, we have to work on best-effort
placement algorithms for Occam processes on the one side and on automated
detection of infrastructure information on the other side.

4.1 Grid Computing

Grid Computing is defined as the coordinated, transparent and secure usage of
shared IT resources, crossing geographical and organizational boundaries [9]. It
splits up into the research areas of computational grids, data grids and resource
grids [11]. The development of research and commercial usage of grid technologies
has increased heavily in the last years. The community established the Global
Grid Forum (GGF) as standardization group. Major industrial companies like
IBM, Sun or Oracle invest in the development of standardized interfaces to their
cluster software. Research groups from all kinds of nature sciences are using
collaborative grid resources for the computing-intensive applications.

The actual development shows that there is a large range of possible grid
technology users. Most of them are not professional computer scientists, therefore

The Grid-Occam Project 157

the design and usability of grid interfaces becomes an important factor. Actually
most users have the choice between basic command-line or library functions
and high-level job submission web interfaces, so-called Grid portals. There are
several approaches to make the overall usage more easier, even in the GGF
standardization process [13]. In this context we see Occam as a useful solution in
the context of scientific computing-intensive grid applications. Occam supports
parallelism as first-level language construct, which allows a very natural kind
of programming for distributed computation. Due to the nature of .NET it is
possible to combine old legacy source code (e.g. written in Fortran) with a new
Occam program for the execution.

4.2 Process Placement

In our concept we define a set of possible classes for runtime libraries. They
mainly differ in their unit of distribution. We assume in the first step that pos-
sible granularity levels could be threads, processes, cluster nodes and grid nodes.
The granularity can be defined by the ratio of communication and execution
costs. In every level of granularity, we have a different meaning for the concept
of a virtual processor - a single thread, a single process, a single cluster node or
a single grid node. The respective interconnection mechanisms for the different
distribution could be shared memory, communication pipes, cluster networking
techniques like TCP and Myrinet, and grid networking techniques, for example
TCP over multiple hops or ATM.

The LogP Model. For a classification of the described granularity levels we
make use of Culler’s LogP model [3]. It defines a model of a distributed-memory
multiprocessor system using 4 parameters:

Latency: upper bound for the network data transfer time. This parameter in-
creases linearly for the levels of threads, processes and cluster nodes. Latency
for grid environments is substantially higher in most cases.
Overhead: exclusive time needed by a processor for sending or receiving
a data packet. This parameter is usually optimized through hardware and
should be small enough in all cases to be ignored.
Gap: minimal interval between two send or received messages. The gap is
fixed for a given type of networking infrastructure and mainly influenced by
the node communication hardware. The usage of shared memory and local
communication pipes for threads and processes leads to a very small gap. The
gap for cluster architectures is typically smaller than for grid environments,
reasoned by the usage of specialized networking hardware. Grid infrastruc-
tures tend to rely on standard TCP/IP communication mechanisms.
Processors: number of processors in the system. In the case of threads and
processes, the number of virtual processors is limited by the number of phys-
ical processors in a SMP system. A cluster system could consists of a large
number of machines, up to multiple hundreds. We assume that in most prac-
tical cases the number of cluster nodes in a cluster is roughly equal or even
higher than the number of grid nodes potentially available to a programmer.

158 Peter Tröger, Martin von Löwis, and Andreas Polze

As a concretion of the model we consider the fact that most usual SMP
systems work on the scheduling granularity of threads. Since both thread and
the process granularity levels are designed for single machines, we leave out the
level of processes in our further observations.

Task Graphs. After classifying the possible execution environments we have
to think about a mapping of communicating Occam processes to a resource net-
work of a chosen granularity level. We want to represent the Occam program as
a data-flow or task graph, which is a common approach in parallel computing
programming [25]. Nodes in the graph represent a set of sequential processes,
edges the data dependencies between them during parallel execution. A data de-
pendency naturally leads to a communication channel between parallel processes
in Occam.

We plan to acquire a best possible structural information during the compi-
lation process. It could be possible that the design of a Occam program prevents
a complete static analysis, for example in presence of variable-sized channel ar-
rays. However, for the first implementations we simply ignore such information
in our architectural graph.

Mapping a task-graph to a given network of processors is a well-known prob-
lem in research. There are several approaches to solve this NP-complete problem
heuristically. However, the usual communication model in these scheduling algo-
rithms concentrates only on the latency aspect of the processor connection. Other
research uses heuristic approaches for mapping task graphs to LogP-described
networks of processors. The MSA LogP scheduling algorithm [1] even considers
the bundling of messages.

We can conclude that the existing approaches give us the relevant mecha-
nisms to map a task-graph to a graph representation of the infrastructure. Most
algorithms rely on 4 parameters: The set of tasks, their interconnection scheme,
the execution cost for a particular task (node weight) and on the amount of data
transmitted over an interconnection (edge weight).

The overall set of tasks and their interconnection scheme can be determined
by the compiler. A single task (graph node) can be seen as a set of sequential
atomic Occam instructions after reading a channel value up to the end of the
surrounding SEQ block. The node weight could be simply determined by count-
ing the number of atomic operations following the read operation. In fact several
issues (like repeated instructions) must be considered in this case, although it
should be possible to get a useful estimation. Another major factor is the edge
weight, representing the number of fixed-sized messages transmitted through a
particular channel. The compiler can analyze the write operation(s) to the typed
channel and the amount of data transmitted through this particular instance.
Again it could be possible that we have to consider non-static conditions, like
conditional or repeated code blocks. We will investigate whether the compiler
can simply leave out such information or if there is need for a restriction of the
language [21] to achieve valuable results.

Another important characteristic of the Grid-Occam approach is the nested
nature of the different granularity levels. An Occam process for a particular

The Grid-Occam Project 159

type of virtual processor, for example a cluster node, can itself be executed on
a network of higher granularity virtual processors, for example with multiple
threads. We combine this model of nested granularities with the representation
of Occam programs as unidirectional graph, simply by repartitioning a subset of
tasks for a higher granularity level. Due to the nature of the different execution
levels, the ratio of computation time to communication effort should become
higher with decreasing granularity. It must also be considered that we have a
fixed number of virtual processors for the thread level. There is no possibility,
like in the grid case, to request more processors for a successful execution. This
leads to a need for algorithms that are able to perform a partitioning for a fixed
set of processors. This could also be relevant if the number of available cluster
processors is not large enough for a particular task sub-graph. Beside classical
graph partitioning algorithms [5] there are approaches for cluster computing
environments that can consider this restriction.

5 Implementation Strategy

The following section will concentrate on specific techniques for the implemen-
tation of our Grid-Occam vision. We will explain our choice for the .NET frame-
work and give details about the implementation strategies for the different run-
time libraries.

5.1 The .NET Framework
The implementation of our Occam compiler will generate intermediate language
(IL) byte code, executable within the .NET framework. Microsoft has published
the .NET framework [20] in 2000. An explicit design goal was the support for
multiple languages. Major parts of the runtime specification were submitted to
standardization organizations like ECMA and ISO. This allows other software
vendors to re-implement .NET for other systems. The Microsoft .NET framework
product (in its current version 1.1) is only available on Win32/X86 and Windows
CE systems. Additionally Microsoft Research has published the Rotor package
for non-commercial purposes, which ports .NET to MacOS X and FreeBSD/X86
[30]. The GNU Mono project [34] allows execution of .NET applications on Linux
systems, using various processors: x86, PowerPC, Sparc, IBM S/390, and Intel
StrongARM. The upcoming next version of .NET (Whidbey) will have support
for 64bit Itanium/Opteron systems.

In the context of Grid-Occam, we see .NET as a useful runtime environ-
ment that offers execution on differing platforms and the integration of multiple
language libraries. On example could be the integration of legacy FORTRAN
code by using the commercial Lahey compiler for .NET [22]. .NET offers, in
contrast to other virtual machine implementations, an integrated code-access
security concept, which becomes relevant in the context of remote execution on
cluster grid nodes. Performance investigations for the .NET runtime [32] showed
that .NET can give an sufficient result for high-performance computing. The
.NET framework offers an integrated support of current web service technolo-
gies, which eases the use of OGSI-based grid infrastructures [19]. There also

160 Peter Tröger, Martin von Löwis, and Andreas Polze

support classes for the dynamic creation and compilation of new IL code, which
becomes important in the context of code generation for a cluster node.

It would have been possible to use a different target platform for the execu-
tion of Occam code. Indeed, the historical INMOS implementation targeted at
transputer byte code. Today implementations for processor architectures such as
Intel X86 and IBM PowerPC are available. Instead of targeting one particular
architecture we need to consider the heterogeneous nature of distributed com-
puting environments. Java would have been another obvious choice. However, we
hope that .NET allows better integration with existing algorithms and library
code.

5.2 Program Execution

The figure 1 gives a general overview of the execution environment in the grid
context.

Fig. 1. Overview of the Grid-Occam architecture

In a first step, the Occam compiler generates executable IL code, packaged
in an assembly file. All instructions relevant to parallel execution, like channel
operations or instantiation of PAR blocks, are implemented as calls to the Occam
runtime library. The compiler will generate C# code in the first version, which
can be easily compiled to IL in a post-build step. The compiler also produces a
task graph for the different PAR blocks and their regarding channels, augmented
with an estimation of the node weights (computational load) and edge weights
(channel load). This data is used by the respective runtime library to choose a
job placement, based on the detected topology of virtual processors. After that
the library initiates all planned job submission actions to execute the program.
We assume that dynamic changes in the execution environment (e.g. unavailable
nodes) are handled by the cluster or grid mechanisms.

5.3 Runtime Libraries

As defined earlier we see 3 possible kinds of runtime libraries, namely for threads,
cluster nodes and grid nodes. In figure 1 the resulting .NET executable uses the

The Grid-Occam Project 161

Occam grid runtime library. It would also be possible to exchange it with the
multi-threaded or the cluster version of the library, which enables the user to test
his development on the local computer before submission to a larger resource
network.

Multi-threading Runtime Library. The multi-threaded runtime library al-
lows the execution on a single- or multi-processor machine. The number of avail-
able physical processors on the machine must be considered in the runtime li-
brary. For .NET this information is available through the System. Diagnostics
namespace.

The realization could be improved with the upcoming new version of the
.NET framework (Whidbey). It will be possible to use the popular OpenMP
library [2] in .NET, which allows an even more direct mapping of the Occam
semantic to .NET code.

The channel communication for parallel processes will be realized by an in-
terlocked shared memory segment. The rendezvous behavior can be achieved by
the coordinated usage of multiple semaphore variables, which are available in
the .NET environment.

Cluster Runtime Library. The cluster runtime library is intented for usage in
a pure cluster environment, without using grid interfaces for the job submission.
The cluster runtime needs some kind of topology information to perform a best-
effort placement of jobs. The minimal requirements are an identifier for the
own node and the list of nodes involved, if we assume that the cluster forms a
complete graph. The communication mechanisms, for example an available MPI
installation, should be able to address a particular node.

We plan to implement a first prototype based on the Condor [23] system,
which offers all the relevant information and coordination services with Condor
DAGMan [31]. Therefore it is possible to coordinate the instantiation of parallel
jobs on the Condor cluster. Every instance in the cluster has to get informed
about its own identification number, usually with a command-line argument.
This can be specified in the Condor submit file, which has a notion of the process
id. The list of involved nodes can be distributed on a shared file system or
through the automated file transfer mechanisms. Since all Condor machines get
the same executable it must be ensured that a node instance only execute a
particular part of the Occam code. The decision for a code part is based on the
own identity in the task graph of the Occam program. The assembly itself could
also use the multi-threaded runtime library to perform a more fine-granularly
execution. This could be the case if one Condor node executes a SEQ block
with multiple PAR blocks. Condor offers information services to determine the
hardware characteristics of a node. This enables the cluster runtime to choose
whether it is appropriate to perform a more granular parallel execution on one
node.

Grid Resource Broker. Our Grid-Occam architecture has two possible sce-
narios for the usage of grid resources.

162 Peter Tröger, Martin von Löwis, and Andreas Polze

In the first case the grid acts only as source for computing resources. We
use the resource information and job submission services of a grid to utilize
a particular cluster resource for execution. Popular examples for information
services are the Globus Meta Directory Service (MDS) [8] or the upcoming WS-
Information services in WSRF [10] architectures.

The identification of an appropriate resource is followed by a job submission
to the chosen grid resource. Globus offers the job manager functionalities for this,
but there are also concurrent implementations from other projects [24]. We plan
to consider ongoing standardization efforts from the GGF for this problem. There
are promising developments in the DRMAA [27] and the JSDL [29] working
group for a standardized job submission interface. With the availability of actual
implementations we will support such interfaces in addition to existing Globus
mechanisms.

Another interesting issue is the availability of input and output files for a
job. In the cluster case we can expect a common file system like NFS, or even
a transport mechanisms from the cluster software. Similar to the INMOS hostio
library it should be possible to read and write files in jobs send to a grid node.
Most grid environments allow a specification of files to be transfered before and
after job execution, in this case standardized mechanisms like GridFTP [8] are
used.

Grid Execution Environment. The ongoing development in Grid Comput-
ing focuses more and more on an improved support for widely distributed grid
applications, called “managed shared virtual system” [26]. In this context we
see Grid-Occam as a useful approach for the development of widely-distributed
applications. From the investigation in the section 4.2 we know that inter-node
communication for grids can have unpredictable and slow behavior. Therefore it
must be ensured that the placement algorithm considers this fact carefully. Mon-
itoring services like NWS [33] offering their information through grid interfaces,
which allows the collection of all relevant data for the task of process placement.

The implementation of channels is another interesting issue for grid execu-
tion. Globus 2 introduced the MPICH-G2 library [8] for cross-node communica-
tion facilities, the latest development is Globus XIO [12]. In a service oriented
grid it could be possible to implement a channel service, both reader and writer
perform there operation against an instance of this service. The service imple-
mentation is responsible for rendezvous behavior of the channel, for example
through notification [15] of the client. More sophisticated approaches [16] use
the tuple-space approach for the implementation of a rendezvous communica-
tion model. This could also be realized with an OGSI conforming service as
front-end.

6 Conclusion

In this paper we presented our vision of an Occam implementation, capable of
being used in modern cluster and grid environments. The availability of distribu-

The Grid-Occam Project 163

tion as first-level language concept can ease the usage of complicated cluster and
grid infrastructures, which is one of the active topics in grid computing research.
Occam has a long history in distributed programming and is widely accepted in
its suitability for such environments.

We plan to automate the process placement, as far as possible, through infras-
tructure information services available in modern cluster and grid environments.
We will rely on latest developments in this area, including the standardization
efforts in the GGF.

We are actually developing an Occam compiler for .NET / Rotor in the
context of a lecture. The first version will include prototypes for all presented
types of runtime environment and will act as foundation for our further research.

Acknowledgments

This work is partially sponsored by Microsoft Research Cambridge (grant num-
ber 2004-425).

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Cristina Boeres and Vinod E. F. Rebello. A versatile cost modeling approach for
multicomputer task scheduling. Parallel Computing, 25(1):63–86, 1999.
Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror Maydan, and Jeff
McDonald. Parallel Programming in OpenMP. Morgan Kaufmann, October 2000.
David E. Culler, Richard M. Karp, David A. Patterson, Abhijit Sahay, Klaus E.
Schauser, Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. Logp:
Towards a realistic model of parallel computation. In Principles Practice of Parallel
Programming, pages 1–12, 1993.
M. Debbage, M.B. Hill, and D.A. Nicole. Towards a distributed implementation of
occam. In Proceedings of the 13th Occam Users Group. IOS Press, 1990.
Per-Olof Fjällström. Algorithms for graph partitioning: A survey. Linköping Elec-
tronic Articles in Computer and Information Science, 3(10), 1998.
M.J. Flynn. Some computer organizations and their effectiveness. IEEE Transac-
tions on Computers, 21:948–960, 1972.
MPI Forum. MPI-2: Extensions to the Message-Passing Interface. Technical report,
University of Tennessee, Knoxville, Tennessee, July 1997.
I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing, 11(2):115–128, Summer 1997.
Ian Foster. The anatomy of the Grid: Enabling scalable virtual organizations. Lec-
ture Notes in Computer Science, 2150, 2001.
Ian Foster, Jeffrey Frey, Steve Graham, Steve Tuecke, Karl Czajkowski, Don Fer-
guson, Frank Leymann, Martin Nally, Igor Sedukhin, David Snelling, Tony Storey,
William Vambenepe, and Sanjiva Weerawarana. Modeling stateful resources with
web services. IBM DeveloperWorks Whitepaper, March 2004.
Ian Foster and Carl Kesselman. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann Publishers, Inc., 1999.
The Globus Alliance. Globus XIO, 2004.

164 Peter Tröger, Martin von Löwis, and Andreas Polze

13.

14.

15.

16.

17.
18.
19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

Tom Goodale, Keith Jackson, and Stephen Pickles. Simple API for Grid Applica-
tions (SAGA) Working Group. http://forge.ggf.org/projects/gapi-wg/.
Ian Graham and Tim King. The Transputer Handbook. Prentice Hall, January
1991.
Steve Graham, Peter Niblett, Dave Chappell, Amy Lewis, Nataraj Nagaratnam,
Jay Parikh, Sanjay Patil, Shivajee Samdarshi, Igor Sedukhin, David Snelling, Steve
Tuecke, William Vambenepe, and Bill Weihl. Publish-subscribe notification for web
services. IBM DeveloperWorks Whitepaper, March 2004.
K.A. Hawick, H.A. James, and L.H. Pritchard. Tuple-space based middleware for
distributed computing. Technical Report 128, Distributed and High-Performance
Computing Group, University of Adelaide, Adelaide, Australia, October 2002.
C.A.R. Hoare. Occam 2 Reference Manual: Inmos Limited. Prentice-Hall, 1988.
C.A.R. Hoare. Communicating Sequential Processes. C.A.R. Hoare, 2004.
Marty Humphrey. From Legion to Legion-G to OGSI.NET: Object-Based Com-
puting for Grids. In Proceedings of the 17th International Parallel and Distributed
Processing Symposium (IPDPS 2003). IEEE Computer Society, April 2003.
Jeffrey Richter. Applied Microsoft .NET Framework Programming. Microsoft Press,
2002.
U. Kastens, F. Meyer auf der Heide, A. Wachsmann, and F. Wichmann. Occam-
light: A language combining shared memory and message passing (a first report).
In Proc. 3rd PASA Workshop, PARS Mitteilungen, pages 50–55, 1993.
Lahey Computer Systems Inc. LF Fortran Manual. http://www.lahey.com/.
M.J. Litzkow, M. Livny, and M.W. Mutka. Condor - A Hunter of Idle Workstations.
In Proceedings of the Eighth International Conference on Distributed Computing
Systems, pages 104–111, 1988.
Stephen McGough. A Common Job Description Markup Language written in
XML. http://www.lesc.doc.ic.ac.uk/projects/jdml.pdf.
H.E. Motteler. Occam and dataflow. Technical report, UMBC Technical Report,
September 1989.
Jarek Nabrzyski, Jennifer M. Schopf, and Jab Weglarz. Grid Resource Manage-
ment. Kluwer Academic Publishers, 2004.
Hrabri Rajic, Roger Brobst, Waiman Chan, Fritz Ferstl, Jeff Gardiner, Andreas
Haas, Bill Nitzberg, and John Tollefsrud. Distributed Resource Management Ap-
plication API Specification 1.0. http://forge.ggf.org/projects/drmaa-wg/, 2004.
Ram Meenakshisundaram. Transputer Information Home Page.
http: //www.classiccmp.org/transputer/.
Andreas Savva, Ali Anjomshoaa, Fred Brisard, R Lee Cook, Donal K. Fellows,
An Ly, Stephen McGough, and Darren Pulsipher. Job Submission Description Lan-
guage (JSDL) Specification Version 0.2. http://forge.ggf.org/projects/jsdl-wg/,
2004.
David Stutz, Ted Neward, Geoff Shilling, Ted Neward, David Stutz, and Geoff
Shilling. Shared Source CLI Essentials. O’Reilly, December 2002.
Condor Team. Condor Manual. University of Wisconsin-Madison, 2004.
Werner Vogels. HPC.NET - are CLI-based Virtual Machines Suitable for High
Performance Computing? In SC’03, Phoenix, Arizona, USA, November 2003.
Rich Wolski, Neil T. Spring, and Jim Hayes. The network weather service: a dis-
tributed resource performance forecasting service for metacomputing. Future Gen-
eration Computer Systems, 15(5–6):757–768, 1999.
Ximian Inc. Mono Framework. http://www.go-mono.org, 2004.

Author Index

Andreozzi, Sergio 78
Arcieri, Franco 119

Binder, Walter 30

Ciancarini, Paolo 78

Dellas, Bjorn 136
Desic, Sasa 136
Di Marzo Serugendo, Giovanna 30

Fioravanti, Fabio 119
Freisleben, Bernd 94

Hauck, Franz J. 107
Hulaas, Jarle 30

Jeckle, Mario 15
Jezic, Gordan 136

Kapitza, Rüdiger 107
Kusek, Mario 136

Lovrek, Ignac 136

Marenic, Tomislav 136
Melzer, Ingo 15
Montesi, Danilo 78
Moretti, Rocco 78

Nardelli, Enrico 119

Oberhauser, Roy 48

Pahl, Claus 63
Papalilo, Elvis 94
Pastore, Serena 1
Peter, Jens 15
Polze, Andreas 151

Reiser, Hans 107

Talamo, Maurizio 119
Tröger, Peter 151
Trzec, Krunoslav 136

von Löwis, Martin 151

This page intentionally left blank

This page intentionally left blank

This page intentionally left blank

Lecture Notes in Computer Science

For information about Vols. 1–3156

please contact your bookseller or Springer

Vol. 3274: R. Guerraoui (Ed.), Distributed Computing.
XIII, 465 pages. 2004.

Vol. 3273: T. Baar, A. Strohmeier, A. Moreira, S.J. Mel-
lor (Eds.), <<UML>> 2004 - The Unified Modelling
Language. XIII, 449 pages. 2004.

Vol. 3271: J. Vicente, D. Hutchison (Eds.), Management
of Multimedia Networks and Services. XIII, 335 pages.
2004.

Vol. 3270: M. Jeckle, R. Kowalczyk, P. Braun(Eds.), Grid
Services Engineering and Management. X, 165 pages.
2004.

Vol. 3266: J. Solé-Pareta, M. Smirnov, P.V. Mieghem, J.
Domingo-Pascual, E. Monteiro, P. Reichl, B. Stiller, R.J.
Gibbens (Eds.), Quality of Service in the Emerging Net-
working Panorama. XVI, 390 pages. 2004.

Vol. 3263: M. Weske, P. Liggesmeyer (Eds.), Object-
Oriented and Internet-Based Technologies. XII, 239
pages. 2004.

Vol. 3260: I. Niemegeers, S.H. de Groot (Eds.), Personal
Wireless Communications. XIV, 478 pages. 2004.

Vol. 3258: M. Wallace (Ed.), Principles and Practice of
Constraint Programming – CP 2004. XVII, 822 pages.
2004.

Vol. 3256: H. Ehrig, G. Engels, F. Parisi-Presicce (Eds.),
Graph Transformations. XII, 451 pages. 2004.

Vol. 3255: A. Benczúr, J. Demetrovics, G. Gottlob (Eds.),
Advances in Databases and Information Systems. XI, 423
pages. 2004.

Vol. 3254: E. Macii, V. Paliouras, O. Koufopavlou (Eds.),
Integrated Circuit and System Design. XVI, 910 pages.
2004.

Vol. 3253: Y. Lakhnech, S. Yovine (Eds.), Formal Tech-
niques, Modelling and Analysis of Timed and Fault-
Tolerant Systems. X, 397 pages. 2004.

Vol. 3250: L.-J. (LJ) Zhang, M. Jeckle (Eds.), Web Ser-
vices. X, 300 pages. 2004.

Vol. 3249: B. Buchberger, J.A. Campbell (Eds.), Artificial
Intelligence and Symbolic Computation. X, 285 pages.
2004. (Subseries LNAI).

Vol. 3246: A. Apostolico, M. Melucci (Eds.), String Pro-
cessing and Information Retrieval. XIV, 332 pages. 2004.

Vol. 3245: E. Suzuki, S. Arikawa (Eds.), Discovery Sci-
ence. XIV, 430 pages. 2004. (Subseries LNAI).

Vol. 3244: S. Ben-David, J. Case, A. Maruoka (Eds.), Al-
gorithmic Learning Theory. XIV, 505 pages. 2004. (Sub-
series LNAI).

Vol. 3242: X. Yao, E. Burke, J.A. Lozano, J. Smith, J.J.
Merelo-Guervós, J.A. Bullinaria, J. Rowe, A.
Kabán, H.-P. Schwefel (Eds.), Parallel Problem Solving
from Nature - PPSN VIII. XX, 1185 pages. 2004.

Vol. 3241: D. Kranzlmüller, P. Kacsuk, J.J. Dongarra
(Eds.), Recent Advances in Parallel Virtual Machine and
Message Passing Interface. XIII, 452 pages. 2004.

Vol. 3240:I. Jonassen, J. Kim (Eds.), Algorithms in Bioin-
formatics. IX, 476 pages. 2004. (Subseries LNBI).

Vol. 3239: G. Nicosia, V. Cutello, P.J. Bentley, J. Timmis
(Eds.), Artificial Immune Systems. XII, 444 pages. 2004.

Vol. 3238: S. Biundo, T. Frühwirth, G. Palm (Eds.), KI
2004: Advances in Artificial Intelligence. XI, 467 pages.
2004. (Subseries LNAI).

Vol. 3232: R. Heery, L. Lyon (Eds.), Research and Ad-
vanced Technology for Digital Libraries. XV, 528 pages.
2004.

Vol. 3229: J.J. Alferes, J. Leite (Eds.), Logics in Artificial
Intelligence. XIV, 744 pages. 2004. (Subseries LNAI).

Vol. 3225: K. Zhang, Y. Zheng (Eds.), Information Secu-
rity. XII, 442 pages. 2004.

Vol. 3224: E. Jonsson, A. Valdes, M. Almgren (Eds.), Re-
cent Advances in Intrusion Detection. XII, 315 pages.
2004.

Vol. 3223: K. Slind, A. Bunker, G. Gopalakrishnan (Eds.),
Theorem Proving in Higher Order Logics. VIII, 337 pages.
2004.

Vol. 3221: S. Albers, T. Radzik (Eds.), Algorithms – ESA
2004. XVIII, 836 pages. 2004.

Vol. 3220: J.C. Lester, R.M. Vicari, F. Paraguaçu (Eds.),
Intelligent Tutoring Systems. XXI, 920 pages. 2004.

Vol. 3219: M. Heisel, P. Liggesmeyer, S. Wittmann(Eds.),
Computer Safety, Reliability, and Security. XI, 339 pages.
2004.

Vol. 3217: C. Barillot, D.R. Haynor, P. Hellier (Eds.), Med-
ical Image Computing and Computer-Assisted Interven-
tion – MICCAI 2004. XXXVIII, 1114 pages. 2004.

Vol. 3216: C. Barillot, D.R. Haynor,P. Hellier (Eds.), Med-
ical Image Computing and Computer-Assisted Interven-
tion – MICCAI 2004. XXXVIII, 930 pages. 2004.

Vol. 3215: M.G. Negoita, R.J. Howlett, L. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVII, 906 pages. 2004. (Subseries LNAI).

Vol. 3214: M.G. Negoita, R.J. Howlett, L. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVIII, 1302 pages. 2004. (Subseries LNAI).

Vol. 3213: M.G. Negoita, R.J. Howlett, L. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems. LVIII, 1280 pages. 2004. (Subseries LNAI).

Vol. 3212: A. Campilho, M. Kamel (Eds.), Image Analysis
and Recognition. XXIX, 862 pages. 2004.

Vol. 3211: A. Campilho, M. Kamel (Eds.), Image Analysis
and Recognition. XXIX, 880 pages. 2004.

Vol. 3210: J. Marcinkowski, A. Tarlecki (Eds.), Computer
Science Logic. XI, 520 pages. 2004.

Vol. 3209: B. Berendt, A. Hotho, D. Mladenic, M. van
Someren, M. Spiliopoulou, G. Stumme (Eds.), Web Min-
ing: From Web to Semantic Web. IX, 201 pages. 2004.
(Subseries LNAI).

Vol. 3208: H.J. Ohlbach, S. Schaffert (Eds.), Principles
and Practice of Semantic Web Reasoning. VII, 165 pages.
2004.

Vol. 3207: L.T. Yang, M. Guo, G.R. Gao, N.K. Jha(Eds.),
Embedded and Ubiquitous Computing. XX, 1116 pages.
2004.

Vol. 3206: P. Sojka, I. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XIII, 667 pages. 2004. (Subseries
LNAI).

Vol. 3205: N. Davies, E. Mynatt, I. Siio (Eds.), UbiComp
2004: Ubiquitous Computing. XVI, 452 pages. 2004.

Vol. 3203: J. Becker, M. Platzner, S. Vernalde (Eds.), Field
Programmable Logic and Application. XXX, 1198 pages.
2004.

Vol. 3202: J.-F. Boulicaut, F. Esposito, F. Giannotti, D.
Pedreschi (Eds.), Knowledge Discovery in Databases:
PKDD 2004. XIX, 560 pages. 2004. (Subseries LNAI).

Vol. 3201: J.-F. Boulicaut, F. Esposito, F. Giannotti, D.
Pedreschi (Eds.), Machine Learning: ECML 2004. XVIII,
580 pages. 2004. (Subseries LNAI).

Vol. 3199: H. Schepers (Ed.), Software and Compilers for
Embedded Systems. X, 259 pages. 2004.

Vol. 3198: G.-J. de Vreede, L.A. Guerrero, G. Marín
Raventós(Eds.), Groupware: Design, Implementation and
Use. XI, 378 pages. 2004.

Vol. 3195: C.G. Puntonet, A. Prieto (Eds.), Independent
Component Analysis and Blind Signal Separation. XXIII,
1266 pages. 2004.

Vol. 3194: R. Camacho, R. King, A. Srinivasan (Eds.), In-
ductive Logic Programming. XI, 361 pages. 2004. (Sub-
series LNAI).

Vol. 3193: P. Samarati, P. Ryan, D. Gollmann, R. Molva
(Eds.), Computer Security – ESORICS 2004. X, 457
pages. 2004.

Vol. 3192: C. Bussler, D. Fensel (Eds.), Artificial Intel-
ligence: Methodology, Systems, and Applications. XIII,
522 pages. 2004. (Subseries LNAI).

Vol. 3191: M. Klusch, S. Ossowski, V. Kashyap, R. Un-
land (Eds.), Cooperative Information Agents VIII. XI, 303
pages. 2004. (Subseries LNAI).

Vol. 3190: Y Luo (Ed.), Cooperative Design, Visualiza-
tion, and Engineering. IX, 248 pages. 2004.

Vol. 3189: P.-C. Yew, J. Xue (Eds.), Advances in Computer
Systems Architecture. XVII, 598 pages. 2004.

Vol. 3188: F.S. de Boer, M.M. Bonsangue, S. Graf, W.-P.
de Roever (Eds.), Formal Methods for Components and
Objects. VIII, 373 pages. 2004.

Vol. 3187: G. Lindemann, J. Denzinger, I.J. Timm, R. Un-
land (Eds.), Multiagent System Technologies. XIII, 341
pages. 2004. (Subseries LNAI).

Vol. 3186: Z. Bellahsène, T. Milo, M. Rys, D. Suciu, R.
Unland (Eds.), Database and XML Technologies. X, 235
pages. 2004.

Vol. 3185: M. Bernardo, F. Corradini (Eds.), Formal Meth-
ods for the Design of Real-Time Systems. VII, 295 pages.
2004.

Vol. 3184: S. Katsikas, J. Lopez, G. Pernul (Eds.), Trust
and Privacy in Digital Business. XI, 299 pages. 2004.

Vol. 3183: R. Traunmüller (Ed.), Electronic Government.
XIX, 583 pages. 2004.

Vol. 3182: K. Bauknecht, M. Bichler, B. Pröll (Eds.), E-
Commerce and Web Technologies. XI, 370 pages. 2004.

Vol. 3181: Y Kambayashi, M. Mohania, W. Wöß (Eds.),
Data Warehousing and Knowledge Discovery. XIV, 412
pages. 2004.

Vol. 3180: F. Galindo, M. Takizawa, R. Traunmüller
(Eds.), Database and Expert Systems Applications. XXI,
972 pages. 2004.

Vol. 3179: F.J. Perales, B.A. Draper (Eds.), Articulated
Motion and Deformable Objects. XI, 270 pages. 2004.

Vol. 3178: W. Jonker, M. Petkovic (Eds.), Secure Data
Management. VIII, 219 pages. 2004.

Vol. 3177: Z.R. Yang, H. Yin, R. Everson (Eds.), Intelli-
gent Data Engineering and Automated Learning – IDEAL
2004. XVIII, 852 pages. 2004.

Vol. 3176: O. Bousquet, U. von Luxburg, G. Rätsch(Eds.),
Advanced Lectures on Machine Learning. IX, 241 pages.
2004. (Subseries LNAI).

Vol. 3175: C.E. Rasmussen, H.H. Bülthoff, B. Schölkopf,
M.A. Giese (Eds.), Pattern Recognition. XVIII, 581 pages.
2004.

Vol. 3174: F. Yin, J. Wang, C. Guo (Eds.), Advances in
Neural Networks - ISNN 2004. XXXV, 1021 pages. 2004.

Vol. 3173: F. Yin, J. Wang, C. Guo (Eds.), Advances in
Neural Networks – ISNN 2004. XXXV, 1041 pages. 2004.

Vol. 3172: M. Dorigo, M. Birattari, C. Blum, L. M. Gam-
bardella, F. Mondada, T. Stützle (Eds.), Ant Colony, Op-
timization and Swarm Intelligence. XII, 434 pages. 2004.

Vol. 3171: A.L.C. Bazzan, S. Labidi (Eds.), Advances in
Artificial Intelligence – SBIA 2004. XVII, 548 pages.
2004. (Subseries LNAI).

Vol. 3170: P. Gardner, N. Yoshida (Eds.), CONCUR 2004
- Concurrency Theory. XIII, 529 pages. 2004.

Vol. 3166. M. Rauterberg (Ed.), Entertainment Computing
– ICEC 2004. XXIII, 617 pages. 2004.

Vol. 3163: S. Marinai, A. Dengel (Eds.), Document Anal-
ysis Systems VI. XI, 564 pages. 2004.

Vol. 3162: R. Downey, M. Fellows, F. Dehne (Eds.), Pa-
rameterized and Exact Computation. X, 293 pages. 2004.

Vol. 3160: S. Brewster, M. Dunlop (Eds.), Mobile Human-
Computer Interaction – MobileHCI 2004. XVII, 541
pages. 2004.

Vol. 3159: U. Visser, Intelligent Information Integration
for the Semantic Web. XIV, 150 pages. 2004. (Subseries
LNAI).

Vol. 3158:I. Nikolaidis, M. Barbeau, E. Kranakis (Eds.),
Ad-Hoc, Mobile, and Wireless Networks. IX, 344 pages.
2004.

Vol. 3157: C. Zhang, H. W. Guesgen, W.K. Yeap (Eds.),
PRICAI2004: Trends in Artificial Intelligence. XX, 1023
pages. 2004. (Subseries LNAI).

