
DYNAMIC ANALYSIS
OF ROBOT MANIPULATORS

A Cartesian Tensor Approach

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

ROBOTICS: VISION, MANIPULATION AND SENSORS

Consulting Editor: Takeo Kanade

ROBOTIC GRASPING AND FINE MANIPULATION, M. Cutkosky
ISBN: 0-89838-200-9

SHADOWS AND SILHOUETTES IN COMPUTER VISION, S. Shafer
ISBN: 0-89838-167-3

PERCEPTUAL ORGANIZATION AND VISUAL RECOGNITION, D. Lowe
ISBN: 0-89838-172-X

ROBOT DYNAMICS ALGORITHMS, F. Featherstone
ISBN: 0-89838-230-0

THREE- DIMENSIONAL MACHINE VISION, T. Kanade (editor)
ISBN: 0-89838-188-6

KINEMATIC MODELING, IDENTIFICATION AND CONTROL OF
ROBOT MANIPULATORS, H.W. Stone

ISBN: 0-89838-237-8

OBJECT RECOGNITION USING VISION AND TOUCH, P. Allen
ISBN: 0-89838-245-9

INTEGRATION, COORDINATION AND CONTROL OF MULTI-SENSOR ROBOT
SYSTEMS, H.F. Durrant-Whyte

ISBN: 0-89838-247-5

MOTION UNDERSTANDING: Robot and Human Vision, W.N. Martin
and J. K. Aggrawal (editors)

ISBN: 0-89838-258-0

BAYESIAN MODELING OF UNCERTAINTY IN LOW-LEVEL VISION,
R. Szeliski

ISBN 0-7923-9039-3

VISION AND NAVIGATION: THE CMU NA VLAB, C. Thorpe (editor)
ISBN 0-7923-9068-7

TASK-DIRECTED SENSOR FUSION AND PLANNING: A Computational
Approach, G. D. Hager

ISBN: 0-7923-9108-X

COMPUTER ANALYSIS OF VISUAL TEXTURES, F. Tomita and S. Tsuji
ISBN: 0-7923-9114-4

DATA FUSION FOR SENSORY INFORMATION PROCESSING
SYSTEMS, J. Clark and A. Yuille

ISBN: 0-7923-9120-9

PARALLEL ARCHITECTURES AND PARALLEL ALGORITHMS FOR INTE­
GRATED VISION SYSTEMS, A.N. Choudhary, J. H. Patel

ISBN: 0-7923-9078-4

ROBOT MOTION PLANNING, J. Latombe
ISBN: 0-7923-9129-2

DYNAMIC ANALYSIS
OF ROBOT MANIPULATORS

A Cartesian Tensor Approach

C.A. Balafoutis and R.V. Patel

Concordia University
Montreal, Canada

....
" Springer-Science+Business Media, LLC

Library of Congress Cataloging-in-Publication Data

Balafoutis, C. A. (Constantin os A.)
Dynamic analysis of robot manipulators : a Cartesian tensor

approach / C.A. Balafoutis and R.V. Patel.
p. em. - (The Kluwer international series in engineering and

computer science ; SECS 131)
Includes bibhographical referenees and index.
ISBN 978-1-4613-6764-2 ISBN 978-1-4615-3952-0 (eBook)
DOI 10.1007/978-1-4615-3952-0
l. Manipulator (Meehanism) 2. Robotics. I. Patel, Rajnikant V.

II. Title III. Series.
TJ21l.B335 1991
629.8'92-dc20

Copyright © 1991 by Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers in 1991
Softeover reprint of the hardcover 1 st edition 1991

90-27818
CIP

Ali rights reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form orby any means, mechanical, photo-copying, recording,
or otherwise, without the prior written permission of the publisher, Springer-Scienee+
Business Media, LLC.

Printed an acid-free paper.

Contents

List of Figures .. Vill

List of Tables .. ix

Preface .. xi

1 Introduction ... 1

1.1 Basic Problems in Robot Manipulator Dynamics 3

1.2 General Remarks on Robot Manipulator Dynamics 7

1.3 Objectives and Motivation ... 10

1.4 Preview .. 12
1.5 References .. 15

2 Notation, Terminology and Background Material........................... 19

2.1 Notation .. 19

2.2 Rigid Bodies and their Finite Displacement 20

2.3 Robot Manipulators ... 32

2.4 References .. 43

3 Cartesian Tensor Analysis .. , 47
3.1 Introduction .. 47
3.2 Second Order Cartesian Tensors ... 49

3.3 Properties of Second Order Cartesian Tensors 60

vi

3.4 Cartesian Tensor Algebraic Identities .. 72

3.5 References .. 81

4 Cartesian Tensors and Rigid Body Motion ... 85

4.1 Introduction .. 85
4.2 On Kinematic Analysis of Rigid Body Motion 88

4.3 On Dynamic Analysis of Rigid Body Motion 97

4.4 References .. 114

5 Manipulator Inverse Dynamics .. 117

5.1 Introduction .. 117

5.2 Previous Results and General Observations on
Manipulator Inverse Dynamics ... 120

5.3 A Cartesian Tensor Approach for Solving the IDP 144
5.4 The Use of Euler-Lagrange and Kane's Fonnulations

in Deriving Algorithm 5.7 .. 168

5.5 Concluding Remarks ... 174

5.6 References .. 175

6 Manipulator Forward Dynamics .. 183

6.1 Introduction .. 183

6.2 Previous Results on Manipulator Forward Dynamics 185

6.3 The Generalized Manipulator Inertia Tensor 197

6.4 Implementation and Computational Considerations 210

6.5 Concluding Remarks ... 216

6.6 References .. 216

7 Linearized Dynamic Robot Models ... 219

7.1 Introduction .. 219

7.2 Linearization Techniques ... ~ :... 221

7.3 Joint Space Linearized Dynamic Robot Models 226

7.4 Cartesian Space Robot Dynamic Models and their
Linearization .. 241

vii

7.5 Concluding Remarlcs ... 246

7.6 References .. 247

A Recursive Lagrangian Formulation ... 251

B On Moment Vectors and Generalized Forces 257

C On Partial Difterentiation .. 261

D List of Symbols and Abbreviations ... 283

Index ... 287

Vlll

List of Figures

Figure 2.1 Link parameters and link coordinate systems 39

Figure 4.1 Position vectors and coordinate systems in rigid
body motion ... 94

Figure 5.1 (a) The i -th generalized link
(b) The i -th augmented link ... 150

Figure 6.1 The i -th composite rigid body link .. 188

lX

List of Tables

Table 5.1 Operations counts for implementing Algorithm 5.7 164

Table 5.2 Operations counts for implementing Algorithm 5.7
(valid for n ~ 2) .. 165

Table 5.3 Comparison of operations counts for solving
the IDP .. 166

Table 6.1 Operations counts for implementing Algorithm 6.2 212

Table 6.2 Comparison of computational complexities
of several algorithms for computing the joint-space
inertia matrix ... 213

Table 6.3 Computational cost for solving steps (i)-(iii)
of the forward dynamics problem for n = 6 215

Table 7.1 Operations counts for implementing Step 1
of Algorithm 7.1 ... 239

Table 7.2 Operations counts for implementing Step 2
of Algorithm 7.1 ... 240

xi

Preface

The purpose of this monograph is to present computationally efficient

algorithms for solving basic problems in robot manipulator dynamics. In par­

ticular, the following problems of rigid-link open-chain manipulator dynam­

ics are considered : i) computation of inverse dynamics, ii) computation of

forward dynamics, and iii) generation of linearized dynamic models. Com­

putationally efficient solutions of these problems are prerequisites for real­

time robot applications and simulations.

Cartesian tensor analysis is the mathematical foundation on which the

above mentioned computational algorithms are based. In particular, it is

shown in this monograph that by exploiting the relationships between second

order Cartesian tensors and their vector invariants, a number of new tensor­

vector identities can be obtained. These identities enrich the theory of Carte­

sian tensors and allow us to manipulate complex Cartesian tensor equations

effuctively. Moreover, based on these identities the classical vector descrip­

tion for the Newton-Euler equations of rigid body motion are rewritten in an

equivalent tensor formulation which is shown to have computational advan­

tages over the classical vector formulation. Thus, based on Cartesian tensor

analysis, a conceptually simple, easy to implement and computationally

efficient tensor methodology is presented in this monograph for studying

classical rigid body dynamics.

XlI

Application of this tensor methodology to the dynamic analysis of

rigid-link open-chain robot manipulators is simple and leads to an efficient

fonnulation of the dynamic equations of motion. Moreover, the use of gen­

eralized and augmented links enables us to devise modeling schemes which

are very much suited for the dynamic analysis of the aforementioned class of

robot manipulators, since they allow us to compute off-line as many as possi­

ble of the configuration independent dynamic parameters of a manipulator.

The resulting algorithms are recursive in nature. This is in line with other

computationally efficient methods appearing in the literature, the most recent

of which have been listed in the references at the end of the chapters.

In this monograph it is assumed that the reader is familiar with basic

vector analysis and introductory (undergraduate) statics and dynamics.

Knowledge of Cartesian tensor analysis, robot or rigid-body dynamics would

be helpful, but is not a prerequisite for following the material in this mono­

graph.

Montreal, Canada CONSTANTINOS A. BALAFOUTIS

RAINIKANT V. PATEL

Chapter 1

Introduction

The science of robotics began less than thirty years ago, when the first

computer-controlled manipulator was demonstrated by Unimation Inc. Since

that time, scientists and engineers have designed hundreds of different mani­

pulators and the study of robotics has become a highly complex and interdis­

ciplinary field which encompasses a number of topics taken from other

"classical" fields such as: mathematics, mechanical and electrical engineer­

ing, computer science, etc. Today, with the advances made over the last

decade, robots have come to symbolize high-level automation in almost

every aspect of human activity. Applications of robots can be found almost

everywhere: from hazardous environments such as in space and oceans, to

more pleasant home environments [1-7]. However, by far the majority of

applications of robots to date has been in the automotive manufacturing and

metalworking industries [8,9]. A few typical applications of the so called

industrial robots include spray painting, welding, material handling,

machine loading, assembly.

Exactly what constitutes an industrial robot is still debatable not only

from the view point of social science experts, but also from that of robotics

specialists. For example, the Robot Institute of America defines [9] an

2 Dynamic Analysis of Robot Manipulators

industrial robot as:

itA reprogrammable multifunctional manipulator designed to

move materials, parts, tools or specialized devices through vari­

able programmed motions for the performance of a variety of

tasks".

On the other hand, the Japan Industrial Robot Industry Association uses a

broader definition of an industrial robot:

ItAn all-purpose machine equipped with a memory device and a

terminal, and capable of rotation and of replacing human labor by

automatic performance of movements."

This debate on the definition of an industrial robot simply indicates the con­

tinuous evolution which the field of robotics is undergoing year after year.

Independent of any specific definition, robotics specialists agree that a

robot manipulator, which is the most important form of industrial robots,

consists of the following physical components: a mechanical system, sensors

and a controller. In the mechanical system the basic components are the

arm, the end-effector and the actuating mechanisms. The arm usually con­

sists of six rigid-links connected together in an open kinematic chain by

revolute or prismatic joints, and allows the robot to position the end-effector

in different locations in the worlcspace. The end-effector (gripper, welding

torch, electro-magnet, etc.) provides the means of manipulating objects or

performing various other tasks in the workspace. The actuating mechanisms

consist of power source(s), actuators (electric, hydraulic, pneumatic) and

drive mechanisms (chains, gears, etc.). The sensors (visual, acoustic, force)

measure and determine the state (positions, orientations, velocities) of the

manipulator links and the end-effector. Furthermore, sensors measure and

determine forces and moments exerted by the manipulated object on the

manipulator. Finally, the controller is the device which supervises and regu­

lates the programmed motion.

Chapter 1: Introduction 3

From a mathematical point of view, the study of robot manipulators

includes topics such as: modeling and design; robot arm kinematics, dynam­

ics and control; trajectory planning; sensors; robot vision; robot control

languages; etc. Each of these topics can be studied on its own in great depth,

as paIt of the education of a robotics specialist, or as an application area in

difierent aspects of engineering. However, although each one of these topics
is very important in robotics applications, a deep study of manipulator

kinematics and dynamics is the cornerstone of successful utilization of
today's robots and those which are going to be used in the future.

Robot manipulator kinematics deal with the geometry and the time­

dependent manipulator motion without consideration of forces and/or

moments that cause the motion. In other words, they deal with the spatial

configuration of the manipulator in physical space. In particular, kinematic

analysis of robot manipulators is concerned with configuration and motion

analysis. Configuration analysis deals with possible mathematical descrip­
tions of the manipulator'S spatial configuration as a function of time, and

motion analysis deals with the first and second time derivatives of these

configuration functions. The dynamics of a robot manipulator deal with the
relation between actuator torques or forces and the manipulator's motion,

considering its mass and inertial properties. These relations define the

dynamic equations of motion of a robot manipulator which are fundamental

to any robotic application. In particular, in the dynamic analysis of robot

manipulators, we deal with the following basic problems.

1.1 Basic Problems in Robot Manipulator Dynamics

As is well known, the dynamical performance of an n degrees-of­

freedom system of rigid bodies can generally be described by n second

order, usually coupled, nonlinear difierential equations which can be

represented by a second order n -dimensional coupled nonlinear vector

4 Dynamic Analysis of Robot Manipulators

difIerential equation. These difIerential equations are known as the dynamic
equations of motion of the system and denote its dynamic model.

In a dynamic model of a system there are two main aspects with which

one is concerned: motion andforces. The motion of a system is called its tra­
jectory and consists of a sequence of desired positions, velocities, and

accelerations of some point or points in the system. Forces are usually

characterized as internal (or constraint) forces and external (or applied)

forces. The external forces are the ones which cause motion.

In robotics, a dynamic robot model usually describes relationships

between robot motion and forces causing that motion, so that given one of

these quantities, we can determine the other. There are, therefore, the follow­

ing problems to be considered.

iJ Forward Dynamics: The Forward or direct dynamics problem (FOP) is

one where the forces which act on a robot are given and we wish to solve for

the resulting motion. In its simplest form, the forward dynamics problem can

be expressed symbolically as a vector difIerential equation of the form

q = h (q, q, 't, manipulator parameters) (1.1.1)

where, q is the vector of generalized coordinates Goint variables), q and q
are its derivatives with respect to time, 't is the (input) generalized force vec­

tor, i.e., the vector of joint torques and/or joint forces and the "manipulator

parameters" are all those parameters which characterize the particular

geometry and dynamics of a robot manipulator.

The importance of forward dynamics in robotics stems mainly from its

use in simulation [10]. Simulation of robot motion is a way of testing control

strategies or manipulator designs prior to the expensive task of working with

the actual manipulator. In general, as we shall see later, equation (1.1.1) is

not a simple equation for which an analytic solution can be provided easily.

For a general robot manipulator, equation (1.1.1) is very complex since it is

highly nonlinear with strong coupling between the joint variables. Hence, the

Chapter 1: Introduction 5

solution of (1.1.1) for q requires complex procedures for evaluating h and

for performing numerical integration. Fortunately, a solution for equation

(1.1.1) is rarely required in practical applications. More often, we are

interested in the following "inverse" problem.

ii) Inverse Dynamics: The inverse dynamics problem (lDP) is one in which

we need to determine the generalized forces that will produce a speci fied

motion trajectory. The inverse dynamics problem can be described

mathematically by an equation of the form

1: = f (q, ci, q, manipulator parameters) (1.1.2)

where, as in (1.1.1), the manipulator parameters describe the particular robot

manipulator, 1: is the vector of the unknown generalized forces and (q, ci, q)
is the given manipulator trajectory.

Inverse dynamics is very important in practical robot applications

because it enables us to determine the profile of the generalized forces

necessary to achieve a desired robot trajectory. Efficient computation of the

inverse dynamics becomes particularly important when 1: has to be evaluated

online. This can arise in several practical situations, e.g., when the robot pay­

load varies, or when the desired trajectory has to be modified online (e.g. for

collision avoidance). Also, inverse dynamics plays an important role in

many advanced robot control strategies where the inverse dynamics are used

in the feedforward or feedback paths and may need to be computed online

[11]. Moreover, to ensure convergence of the control scheme, the inverse

dynamics computations may have to be performed very frequently. Conse­

quently, the formulation and evaluation of these equations of motion affect

the servo rate of the robot controller and partially determine the feasibility of

implementing many control schemes online.

The forward and inverse dynamics problems are two problems which

constitute what is usually known as robot manipulator dynamics [12,13].

However, since both problems are described by highly nonlinear and

6 Dynamic Analysis of Robot Manipulators

dynamically coupled equations, it can be of great assistance in many robotic

applications if we have available the linearized dynamic equations of a robot

manipulator. Thus, besides forward and inverse dynamics, we may also

include the following problem in robot manipulator dynamics.

iii) Linearized Robot Dynamics: As is well known, the linearized dynam­

ics of a nonlinear system can be described by the following first order vector

differential equation (in state-space form)

Ox = A (t)Ox + B (t)ou (1.1.3)

where, the matrices A (t) and B (t) are functions of time and ou and Ox

denote small perturbations in the input u and state x, respectively, about

some nominal (given) trajectory. Equation (1.1.3) describes the perturbed

motion (for sufficiently small perturbations) of a dynamical system and is

usually derived from the actual nonlinear dynamic equation (1.1.2) by using

a Taylor series expansion about a nominal trajectory [14-16]. The Taylor

series expansion is applicable to nonlinear robot dynamics because, as can

be easily shown, the nonlinearities in robot dynamics are analytic functions

of their arguments. Therefore, the derivation of (1.1.3) from a nonlinear

dynamic robot model, at least in principle, does not present any problems.

However, applying the Taylor series expansion to a nonlinear system which

has the complexity of a general robot manipulator dynamics is a challenging

problem, especially if one attempts to derive efficient computational algo­

rithms for determining the coefficient matrices of the linearized model.

Linearized robot dynamics may be used in manipulator control [17].

This is best illustrated by the following example. In ideal situations, equation

(1.1.2) provides the generalized forces which will drive a manipulator along

a desired trajectory. However, in practice, because of perturbations resulting

from modeling errors, unpredicted working conditions or payload variations,

this cannot be achieved without the application of some control strategies,

which are designed to compensate against these perturbations. Currently,

Chapter 1: Introduction 7

there are many well established control strategies in the linear systems area.

However, direct application of these linear control strategies to robotics is

not possible, since, as we have already mentioned, the dynamic models

defined by equation (1.1.2) are dynamically coupled and highly nonlinear.

Therefore, one way in which these linear control schemes can be used is by

obtaining linearized robot dynamic models derived from equation (1.1.2).

Another application of linearized robot dynamic models is in carrying out

parameter sensitivity analysis of robot manipulator dynamics for the purpose

of efficient manipulator design [14].

1.2 General Remarks on Robot Manipulator Dynamics

In principle, solving forward or inverse dynamics for rigid-link robot

manipulators presents no difficulty. A robot manipulator is just a system of

rigid bodies, and the equations of motion of such systems have been known

for a long time. The real problem in robot dynamics is a practical one,

namely, that of finding formulations for the equations of motion that lead to

efficient computational algorithms. To derive these equations, we can use

well established procedures from classical mechanics [18,19] such as those

based on the equations of Newton and Euler, Euler and Lagrange, Kane, etc.

The choice of a particular procedure determines the nature of the analysis

and the amount of effort needed to state the equations of motion in the form

of a computational algorithm. For example, in the Newton-Euler approach,

the derivation of the equations of motion is based on direct application of

Newton's and Euler's laws, while in the Lagrangian approach, the equations

of motion are derived from two scalar quantities, namely, the kinetic and

potential energy. Also, in the Newton-Euler approach, physical coordinate

systems (usually Cartesian) are employed to express the equations of motion.

Some of the coordinates may not be independent but may be related to others

by kinematic constraints which are employed simultaneously with the

8 Dynamic Analysis of Robot Manipulators

equations of motion. In contrast, the Lagrangian approach usually employs

linearly independent generalized coordinates. Therefore, the analysis and

consequently the effurt needed to derive the equations varies. However,

irrespective of the approach, the equations of motion for rigid-link open­

chain robot manipulators can be stated in the following forms:

In a closedjorm formulation, the equations of motion are usually

described by the equation

't = D(q)q + C(q, q) + G(q) (1.2.1)

where 't is the vector of generalized forces, (q, q, q) denotes the joint trajec­

tories, D (q) is the generalized inertia tensor of the manipulator, and C (q, q)
and G (q) are the Corlolis and centrifugal, and gravitational vectors respec­

tively. A closed-form representation, such as (1.2.1), can be used directly for

solving the lOP, or it can be adapted easily for the FOP by solving for q.
This is probably the most attractive feature of closed-form formulations for

the equations of motion of a robot manipulator. But since these formulations

are computationally inefficient it is preferable to use more efficient recursive

formulations for the equations of motion in practical real-time robot applica­

tions.

In a recursive formulation, the equations of motion of a robot manipu­

lator are expressed implicitly in terms of recurrence relations between quan­

tities describing various properties of the robotic system [13]. Recursive for­

mulations do not have the compact representation of the closed-form one but

they too solve the lOP directly and, what is more important, they can be

implemented in a very efficient manner. However, it is not possible to solve

the FOP with the same recursive equations without major modifications. But

this is not a drawback because, even with major modifications, we can solve

the FOP efficiently. From the foregoing, it is not surprising that most of the

research effurt for solving manipulator dynamics has been directed at deriv­

ing efficient recursive formulations.

Chapter 1: Introduction 9

From the WOtK that has been done to date on developing algorithms for

computing manipulator dynamics, it appears that there is a general miscon­

ception that the computational efficiency of the algorithms depends on the

fonnulations used for their derivation. Thus for example, it has been believed

for some time that the algorithms derived from the Newton-Euler fonnula­

tion are computationally more efficient than those derived using the Lagran­

gian fonnulation. It seems that this confusion results from a lack of deeper

understanding of the mathematical representations used to describe the equa­

tions of motion. For example, in the Newton-Euler approach, the time varia­

tion in the orientation is generally described by using the angular velocity
vector, and in the Lagrangian approach it is described by using the time

derivative of a rotation tensor. But it can be shown [20], that the Lagrangian

fonnulation will yield a similar algorithm to that obtained using the

Newton-Euler fonnulation, if an equivalent representation of angular velo­

city is employed. Obviously, this result should be expected because the

Lagrange equations can be derived from the Newton-Euler equations based

on arguments of virtual WOtK.

Therefore, in computing efficient robot manipulator dynamics, the issue

is not which procedure from classical mechanics to use in the analysis. With

proper analysis we can derive [21] exactly the same computational algo­

rithms for solving manipulator dynamics. The real issue, in tenns of compu­

tational efficiency, is which mathematical representation to use for express­

ing various physical quantities when the nature of the quantities allows us to

use more than one representation. Obviously, a particular representation dic­

tates a certain mathematical analysis which leads to descriptions of the basic

dynamic equations whose structure corresponds to that particular analysis.

Then, since the implementation of an algorithm depends on such structure, it

follows that the computational efficiency of a particular algorithm. will

depend on the mathematical representation used to describe these physical

quantities. Therefore, in searching for efficient computational algorithms to

solve problems in robot manipulator dynamics, we have to search for a

10 Dynamic Analysis of Robot Manipulators

mathematical representation of the basic physical quantities of motion which

will allow us to describe rigid body motion more efficiently.

1.3 Objectives and Motivation

Among the problems of robot manipulator dynamics, the IDP is the

more important one. An efficient solution of this problem is a prerequisite for

real-time robot applications, which in tum is necessary for flexible automa­

tion in a dynamically changing environment. Therefore, the main objectives

of this monograph are the analysis of the computational cost of solving the

inverse dynamics problem and the development of algorithms with

significantly reduced computational complexity.

In the last decade, a large number of algorithms has been proposed for

solving the inverse dynamics problem. The emphasis in most of these algo­

rithms is placed on reducing their computational complexity by using analyt­

ical organization procedures and customization [22,23]. However, particular

analytical organization procedures and customization are generally used in

implementing the set of equations of an algorithm and not for deriving them.

Moreover, in many cases, analytic procedures and customization are res­

tricted to robot manipulators with a specific geometry. In this monograph,

the emphasis is placed on improving the computational efficiency of the

algorithms through a more efficient fonnulation of the dynamic equations of

motion and not through better implementation of existing fonnulations.

Thus, our intention is to devise a methodology for analysis and fonnulation

of the dynamic equations of rigid body motion which has to be conceptually

simple, easy to implement, and computationally efficient. To this end, we

shall apply this methodology for solving in a computationally efficient

manner the problems of inverse and forward dynamics of rigid-link, open­

chain robot manipulators. Also, the methodology will be used for the deriva­

tion of linearized robot dynamic models in a computationally efficient

manner.

Chapter 1: Introduction 11

As we mentioned above, the representation of the physical quantities

which are involved in the formulation of the equations of motion of a rigid

body system determines the kind of mathematical analysis that will be used

in deriving these equations. Therefore, a better understanding of the

mathematical representations used to describe basic physical quantities is

essential for the analysis of the equations of motion.

For example, in the classical Newtonian formulation of rigid body

dynamics (which has been applied successfully in deriving computational

algorithms for solving inverse dynamics [24]), vectors are normally used to

represent most of the physical quantities and, therefore, vector analysis is

used for deriving the equations of rigid body motion. In particular, vector

analysis is imposed on classical Newtonian dynamics from the consideration

that angular rates (Le., linearly independent rates of change of rigid body

orientation) constitute the components of a vector quantity, the angular velo­
city vector. This consideration also assigns a vector character to other physi­

cal quantities which are defined in terms of the angular velocity vector such

as: angular acceleration, angular momentum, external torque, etc. However,

as is well known [20-21,25-27], angular velocity can also be described by a

second order skew-symmetric Cartesian tensor, the angular velocity tensor.
Obviously then, the tensor representation of angular velocity calls for Carte­

sian tensor analysis to be applied in rigid body dynamics. Application of

Cartesian tensor analysis (within the framework of the Newtonian approach)

in rigid body dynamics requires that all the other physical quantities which

are defined in terms of the angular velocity be treated as Cartesian tensors

instead of vectors. Thus, we have to examine if a Cartesian tensor represen­

tation of basic physical quantities such as: angular acceleration, angular

momentum, external torque, etc., simplifies the equations of rigid body

motion and leads to more efficient computational algorithms.

The use of tensor analysis is obviously known in rigid body dynamics.

However, most of the time the analysis is performed in the configuration

12 Dynamic Analysis of Robot Manipulators

space of the rigid body system which is generally a Riemanian space, i.e., a

non-Euclidean manifold [28,29]. In this monograph, we shall use tensors to

analyze the motion of a system of rigid bodies, but the analysis will be car­

ried out in Euclidean space instead of on nonlinear manifolds, i.e., we shall

use Cartesian tensor analysis [26,27]. To do this, we shall need to review

basic results from Cartesian tensor analysis and, in particular, we shall need

to understand the relations between three dimensional vectors and second

order skew-symmetric Cartesian tensors.

Finally, almost all existing algorithms which solve forward or inverse

manipulator dynamics have a structure which requires that all quantities

involved in these algorithms be computed online (except the configuration

independent geometric and dynamic parameters of the individual links). This

obviously is a consequence of the underlying modeling schemes which have

been used to derive the algorithms, because the structure of an algorithm

depends on the underlying scheme. However, from a computational point of

view it is desirable to devise algorithms which allow us to compute off-line
as many quantities as possible and at the same time, to keep the online com­

putations as simple as possible. Therefore, in order to derive computation­

ally efficient algorithms for solving the inverse and forward manipulator

dynamics problems, we have to examine if it is possible to devise a modeling

scheme for the robot manipulators which allows us to compute off-line as

many as possible of the configuration independent kinematic or dynamic

parameters of the robot manipulator.

1.4 Preview

This monograph presents a new methodology for the analysis ~d for­

mulation of computationally efficient algorithms for solving basic problems

of robot manipulator dynamics. The layout of the monograph is as follows:

Chapter 2 contains a brief review of some basic manipulator tenninology

Chapter 1: Introduction 13

and concepts. Chapter 3 is concerned with Cartesian tensor analysis based

on which the new methodology is devised, and Chapter 4 demonstrates how

this theory can be applied to rigid body motion. New algorithms for solving

the problems of inverse and forward dynamics of rigid-link open-chain robot

manipulators are proposed in Chapters 5 and 6 respectively, while Chapter 7

deals with linearized dynamic robot models. The main contents of each

chapter are as follows:

Chapter 2: This chapter introduces the notation to be used throughout the

monograph. The configuration analysis of rigid bodies is briefly reviewed.

Also, this chapter presents some relevant robot manipulator terminology as

well as a configuration analysis of rigid-link open-chain robot manipulators.

Chapter 3: This chapter introduces relevant definitions, some basic alge­

braic Cartesian tensor operations and outlines the structural symmetries of

second order Cartesian tensors. Also, based on tensor-vector invariants, 1-1

operators between vectors and second order skew-symmetric Cartesian ten­

sors are defined and important propositions are stated which establish some

basic tensor identities.

Chapter 4: Based on Cartesian tensor analysis, kinematic and dynamic

aspects of rigid body motion are considered in this chapter. In particular, the

angular velocity and acceleration tensors are shown to be very powerful

tools for describing the motion of a rigid body since, by using these two ten­

sors, a tensor representation for the angular momentum and external torque

surfaces naturally and leads to a Cartesian tensor description for the

Newtonian formulation of rigid body motion. This Cartesian tensor formula­

tion of rigid body motion has the same simplicity as the classical vector for­

mulation but (as shown in the chapter) can be implemented far more

efficiently.

14 Dynamic Analysis of Robot Manipulators

Chapter 5: A brief survey of existing methods for solving the inverse

dynamics problem for rigid-link open-chain manipulators is followed by

some observations and remarks on various issues concerning the computa­

tional efficiency of some' 'classical" algorithms for solving the problem. It is

then shown that by using the Cartesian tensor description of the Newtonian

formulation of rigid body motion and utilizing two difrerent modeling

schemes, computationally efficient algorithms for solving the lOP can be

devised. The computational complexity of these algorithms is shown to be

significantly less than that of other algorithms which are based on the classi­

cal vector formulation of rigid body motion. Also, it is demonstrated that

these algorithms can be cast in a form where their computational efficiency is

actually independent of the particular procedure of classical mechanics

which has been used for their derivation.

Chapter 6: The Cartesian tensor analysis and the modeling scheme which

have been proven successful in solving the lOP efficiently are used in this

chapter to facilitate the solution of the FOP for rigid-link open-chain mani­

pulators. After a brief review of the composite rigid body method, we intro­

duce a new algorithm for computing the generalized inertia tensor of rigid­

link open-chain robot manipulators. By combining this algorithm with

efficient algorithms for solving the lOP, we improve significantly the com­

putational efficiency of solving the problem of forward dynamics.

Chapter 7: This chapter is concerned with the linearization of the dynamic

equations of motion for rigid-link open-chain manipulators. Using a Taylor

series expansion, we derive the associated linearized dynamic models of the

nonlinear models presented in Chapter 5. It is then shown that the coefficient

sensitivity matrices of these linearized models can be computed efficiently

using appropriate Cartesian tensor formulations. Also, in this chapter Carte­

sian space descriptions of the equations of motion for rigid-link open-chain

manipulators are reviewed and a method for deriving their associated Carte­

sian space linearized dynamic models is proposed.

Chapter 1: Introduction 15

1.5 References

[1] A. Cohen, and 1. D. Erickson, "Future Uses of Machine Intelligence

and Robotics for the Space Station and Implications for the U.S. Econ­

omy", IEEE J. Robotics and Automation, RA-l, No.3, pp. 117-123,

1985.

[2] A. K. Bejczy, and Z. Szakaly, "Universal Computer Control System

(UCCS) for Space Telerobots", in Proc. IEEE Int. Conf on Robotics

and Automation, pp. 318-125, Raleigh, NC, March 31-ApriI3, 1987.

[3] J. H. Smith, 1. Estus, C. Heneghan, and C. Nainan, "The Space Station

Freedom Evolution-Phase: Crew-EVA Demand for Robotic Substitu­

tion by Task Primitive", in Proc. IEEE Int. Conf on Robotics and

Automation, pp. 1478-1485, Scottsdale, AR, May 14-19, 1989.

[4] K. Edahiro, "Development of Underwater Robot Cleaner for Marine

Live Growth in Power Station", in Proc. '83 ICAR Int. Conf on

Advanced Robotics, pp. 99-106, Tokyo, Japan, Sept. 1983.

[5] R. C. Mann, W. R. Hamel, and C. R. Weisbin, "The Development of

an Intelligent Nuclear Maintenance Robot", in Proc. IEEE Int. Conf

on Robotics and Automation, pp. 621-623, Philadelphia, PA, April 24-

29,1988.

[6] K. G. Engelhardt, "Applications of Robots to Health and Human Ser­

vices", in Proc. Robots 9: Current Issues, Future Concerns, pp. 14-48

to 14-65, Detroit, Michigan, June, 1985.

[7] G. N. Saridis, "Robotic Control to Help the Disabled" in Recent

Advances in Robotics, C. Ben and S. Hackwood, Eds., John Wiley,

New York, 1985.

[8] V. Shimon, Eds., Handbook of Industrial Robotics, John Wiley, New

York,1985.

16 Dynamic Analysis of Robot Manipulators

[9] R. K. Miller, Industrial Robot Handbook, Fainnont Press, Indian Trail,

NY,1987.

[10] M. W. Walker, and D. E. Orin, "Efficient Dynamic Computer Simula­

tion of Robotic Mechanisms", ASME J. Dynamic Systems, Measure­

ment and Control, Vol. 104, pp. 205-211, 1982.

[11] J.Y.S. Luh, M.W. Walker, and R. P. Paul, "Resolved Acceleration

Control for Mechanical Manipulators", ASME J. Dyn., Sys., M eas. and

Contr., Vol. 102. pp. 69-76,1980.

[12] M. Brady et al., (Eds.), Robot Motion: Planning and Control, MIT

Press, Cambridge, MA, 1982.

[13] R. Featherstone, Robot Dynamics Algorithms, Kluwer Academic Pub­

lishers, Boston MA, 1987.

[14] C. P. Neuman, and J. J. Murray, "Linearization and Sensitivity Func­

tions of Dynamic Robot Models", IEEE Trans. Systems, Man, and

Cybernetics, Vol. SMC-14, no. 6, pp. 805-818,1984.

[17] c. A. Balafoutis, P. Misra, and R. V. Patel, "Recursive Evaluation of

Linearized Dynamic Robot Models", IEEE J. Robotics and Automa­

tion, RA-2, pp. 146-155, 1986.

[16] C. A. Balafoutis, and R. V. Patel, "Linearized Robot Models in Joint

and Cartesian Spaces", CSME Transactions, Vol. 13, No.4, pp. 103-

112, 1989; also presented at the 9th-Symposium on Engineering Appli­

cations oj Mechanics, pp. 587-594, London, Ontario, May 27-31,

1988.

[17] P. Misra, R. V. Patel, and C. A. Balafoutis, "Robust Control of Linear­

ized Dynamic Robot Models", in Robot Manipulators: Modeling,

Control and Education, M. Jamshidi, J. Y. S. Luh, and M. Sh~npur,

Eds., North-Holland Publishing Co., Inc., New York, 1986.

[18] H. Goldstein, Classical Mechanics 2nd ed., Addison-Wesley, Reading,

MA,1980.

Chapter 1: Introduction 17

[19] T. R. Kane, P. W. Likins, and D. A. Levinson, Spacecraft Dynamics,

McGraw-Hill, New York, 1983.

[20] W. M. Silver, "On the Equivalence of Lagrangian and Newton-Euler

Dynamics for Manipulators", Int. J. Robotics Research, Vol. 1, No.2,

pp. 60-70, 1982.

[21] C. A. Balafoutis, R. V. Patel, and J. Angeles, "A Comparative Study

of Lagrange, Newton-Euler and Kane's Fonnulation for Robot Mani­

pulator Dynamics" in Robotics and Manufacturing: Recent Trends in

Research, Education, and Applications, M. Jamshidi, J. Y. S. Luh, H.

Seraji, and G. P. Starr, Eds., ASME Press, New York, 1988.

[22] J. W. Burdick, "An Algorithm for Generation of Efficient Manipulator

Dynamic Equations", in Proc. 1986 IEEE Int. Con/. Robotics and

Automation, pp. 212-218, San Francisco, CA, Apr. 1986.

[23] J. J. Murray, and C. P. Neuman, "Organizing Customized Robot

Dynamics Algorithms for Efficient Numerical Evaluation", IEEE

Trans. on Systems, Man, and Cybernetics, Vol. SMC-18, No.1, pp.

115-125, 1988.

[24] J. Y. S. Luh, M. W. Walker, and R. P. Paul, "On-Line Computational

Scheme for Mechanical Manipulators", ASME J. Dynamic Systems,

Measurement and Control, Vol. 102, pp. 69-79,1980.

[25] O. Bottema, and B. Roth, Theoretical Kinematics, North-Holland Pub­

lishing Co., Amsterdam, 1978.

[26] H. Jeffi"eys, Cartesian Tensors, Cambridge University press, Cam­

bridge, 1961.

[27] A. M. Goodbody, Cartesian Tensors: With Applications to Mechanics,

Fluid Mechanics and Elasticity, Ellis Horwood, England, 1982.

[28] L. Brillouin, Tensors in Mechanics and Elasticity, Academic Press,

New York, 1964.

18 Dynamic Analysis of Robot Manipulators

[29] I. S. Sokolnikoff, Tensor Analysis: Theory and Applications to

Geometry and Mechanics of Continua, John Wiley & sons, New York,

1965.

Chapter 2

Notation, Terminology and Background

Material

This chapter introduces the notation, presents some basic concepts

from rigid body kinematics, defines relevant robot tenninology, and deals

with the configuration analysis of rigid-link, open-chain robot manipulators.

The chapter has two main sections: Section 2.2 contains results from rigid

body kinematics. In particular, the configuration of a rigid body in the real

world or physical space is defined and its finite displacement in this space is

reviewed. Section 2.3 is concerned with the geometric description of rigid­

link open-chain robot manipulators and defines the joint and Cartesian space

descriptions for their configurations.

2.1 Notation

Throughout the text, boldface lower case roman letters are used to

denote position vectors. Subscripts indicate, in order, the tail and the head of

a position vector, and a superscript indicates the coordinate system with

20 Dynamic Analysis of Robot Manipulators

respect to which the position vector is expressed. Upper case boldface roman

letters are used to denote second order tensors or vectors of forces and

moments. From the context it will be clear if a tenror or a vector is con­

sidered. A second order skew-symmetric Cartesian te,nsor associated with a

vector will be denoted with a tilde (~) above the boldface lower or upper

case roman letter denoting this vector. Subscripts denote a point on a link

with respect to which the tensors (or the force and moment vectors) are

defined, and superscripts denote the coordinate system with respect to which

the tensors (or the force and moment vectors) are expressed. The superscript

for tensors or vectors expressed in the base frame (inertial frame) is omitted.

The coordinate matrix, associated with a tensor or a vector, will be denoted

by the corresponding lower or upper case italic letter or by including the

quantity in question in square brackets ([D.

2.2 Rigid Bodies and their Finite Displacement

The main objective in robotics is to manipulate objects in a static or

dynamically changing environment, and one of the basic requirements for

achieving this goal is to describe effuctively, i.e., simply and accurately,

objects such as points and rigid bodies relative to some coordinate system. In

this section, we deal with the configuration analysis of points and rigid

bodies. In particular, we review some of the possible approaches for describ­

ing the location and displacement of points and rigid bodies in physical

space.

2.2.1 The Configuration of Points and Rigid Bodies in Physical
Space

A description of the static or instantaneous location of an object in a

space relative to a reference coordinate system is referred to as the

configuration of the object [1-4]. The configuration is usually expressed as a

Chapter 2: Notation, Tenninology and Background Material 21

function of a number of linearly independent variables which are known as

generalized coordinates. The number of linearly independent generalized

coordinates defines he N many degrees-oj-freedom the object has relative to

the reference coordinate system.

In general, the complexity of the function, which defines the

configuration of an object in tenns of the generalized coordinates, depends

on the reference coordinate system. The reference coordinate system charac­

terizes the space where the object belongs and can be linear or curvilinear.

Usually, the configuration of an object, in a curvilinear reference coordinate

system is very complex, as opposed to a linear or Cartesian reference coordi­

nate system where its configuration usually has a simple fonn. In robotics, it

is of prime concern to describe the configuration of objects in the real world

and, to our advantage, the real world or physical space can be modeled as a

three dimensional Euclidean space. This allows us to consider a Cartesian

coordinate system as a reference system relative to which, as we shall

demonstrate later, the configuration of points or rigid bodies assumes rela­

tively simple fonns.

The configuration of a point in a general space is completely specified

by its point-coordinates relative to a reference coordinate system. For points

in three dimensional physical space, their point-coordinates are functions of

three generalized coordinates. Moreover, in physical space which is a

Euclidean space, we can identify points with vectors, since in this space,

transfonnations of point-coordinates are identical to transfonnations of vec­

tor components [5]. This identification allows us to specify the configuration

(Le., the location) of a point in physical space by using the components of a

vector. This vector is referred to as the position vector of the point under

consideration. Therefore, the configuration of a point in physical space can

be described, in an orthonormal Cartesian coordinate system, by a three

dimensional vector, its position vector.

22 Dynamic Analysis of Robot Manipulators

A description for the configuration of a rigid body in physical space is

more involved, compared to that of a point. As is well known [1-4,10-14], a

rigid body in physical space possesses six degrees-of-freedom. This implies

that its configuration will be described in a reference coordinate system in

terms of six generalized coordinates. Now, if we consider the configuration

of a rigid body to be described by a vector (as we did in the case of a point),

this vector must have six independent components. It is obvious then, that

this six dimensional vector does not belong to physical space. It belongs to a

six dimensional space which is not Euclidean and is known as the

configuration space. Therefore, by assuming a vector description for the

configuration of a rigid body we have to use a non-Euclidean space and

hence curvilinear reference coordinate systems. This approach of describing

the configuration of a rigid body leads us, in general, to very complex func­

tional expressions.

Conventionally, we overcome these difficulties by grouping the six

generalized coordinates, which describe the configuration of a rigid body

into two sets. One set contains the generalized coordinates which describe

the orientation of the rigid body. The other set contains the remaining three

generalized coordinates and they describe the configuration (position) of a

point on the rigid body.

To implement this scheme, we first associate a frame with the rigid

body. A frame is a representation for a coordinate system so that the

representation includes the possibility that the coordinate system may be dis­

placed (translated) and/or rotated with respect to another coordinate system.

In other words a frame contains a coordinate system whose orientation

defines the "frame orientation" and is known as the frame coordinate sys­
tem, and a position vector, which defines the origin of the frame coordinate

system. The frame coordinate system is assumed to have a fixed relation­

ship with the rigid body. Therefore, the frame coordinate system is some­

times referred to as the body coordinate system. This allows us to identify

Chapter 2: Notation, Terminology and Background Material 23

the orientation of the rigid body with that of the frame. Moreover, to simplify

the description, we consider the frame coordinate system to be an orthonor­
mal Cartesian system. Therefore, it is obvious that the configuration of the

rigid body will be completely specified, relative to a reference coordinate

system, if we specify the orientation of an orthonormal Cartesian coordinate

system (the frame coordinate system) and its position vector.

As we noted above, position vectors can be described easily. There­

fore, to complete the description for the configuration of a rigid body, we

need to describe the orientation of a frame coordinate system relative to a

reference one. This can be easily accomplished by considering an intermedi­

ate coordinate system which has the same orientation as the reference sys­

tem, but whose origin is the same as that of the frame coordinate system.

Then, we need only to describe the orientation of the frame coordinate sys­

tem relative to the intermediate one, Le., we need to describe the relative

orientation of two Cartesian coordinate systems with a common origin

There are many ways of specifying the orientation of a Cartesian coor­

dinate system relative to another one with a common origin. As is well

known [1-4], the orientation of two Cartesian coordinate systems with a

common origin is described by a linear transformation. Here, since the coor­

dinate systems are orthonormal, the linear transformation will be an orthogo­

nal one. Moreover, from physical considerations (-coordinate systems

represent orientations of rigid bodies), the linear transformation is proper
(Le., it has determinant equal to one) and so it represents a rotation. There­

fore, this results in the problem of how to describe a rotation.

One of the most common methods to be found in the literature [1-4,6-

7,10-14] which describes a rotation, is that of using a second order rotation

tensor which relative to a basis has a real orthonormal 3x3 matrix represen­

tation. The entries of this matrix are the direction cosines which relate' the

axes of the two coordinate systems -the reference and the rotated one. A set

of nine direction cosines completely specify the rotation between any two

24 Dynamic Analysis of Robot Manipulators

Cartesian systems. Of course, the set of the nine direction cosines does not

form a set of independent generalized coordinates, since as is well known

[1-4], they satisfy six orthogonality relationships. However, the use of direc­

tion cosines to describe the orientation of one Cartesian coordinate system

with respect to another has a number of important advantages. The most

obvious is that they permit the use of Cartesian coordinate systems in

describing the orientation of a rigid body, thereby avoiding the need for a

curvilinear coordinate system for describing the configuration of a rigid

body.

As mentioned above, the nine direction cosines of a 3x3 real orthonor­

mal matrix have only three degrees-of-freedom which may be specified in

terms of three linearly independent parameters. However, it is a well known

fact [6], that there is no 1-1 global representation for a rotation matrix in

terms of three independent variables (generalized coordinates). Neverthe­

less, in many practical applications and for a restricted domain it is possible

to find three linearly independent variables, which can serve as generalized

coordinates to describe a rotation. These generalized coordinates can be

chosen in a number of ways. A common approach is to choose a particular

sequence of rotation angles (a, 13, y) about the axes of an orthonormal coordi­

nate system. The roll, pitch and yaw or the z-y-x Euler angles are exam­

ples of this approach. Finally, an alternative way of describing rotations is to

use more than three variables, which obviously will not be linearly indepen­

dent, and the description will not be 1-1. For example, we can use quatern­

ions, spinors, Pauli spin matrices, special unity 2x2 and 3x3 matrices [1-

4,6-9,11-14], geometric or/rame invariants [to], etc.

When we use generalized coordinates to describe the configuration of a

rigid body, for notational convenience, we sometimes consider the three

"generalized" angles a ,13 ,y which describe a rotation (over a restricted

domain) as the components of an "orientation vector". This "orientation

vector" is then combined with the position vector of a point to produce a six

Chapter 2: Notation, Tenninology and Background Material 25

dimensional "vector" X (with coordinate matrix X = [x y z a ~ y {) which

describes the configuration of a rigid body. We usually refer to X as the

Cartesian space configuration vector for the rigid body. The set of all Carte­

sian configuration vectors then defines the Cartesian (configuration) space
for the rigid body.

Remark 2.1: As mentioned above, the "orientation vector" is created

merely for notational convenience. It is not a valid representation for a rota­

tion. Mathematically, a rotation is a second order tensor which is not a

skew-symmetric tensor. Therefore, it cannot be represented by a vector,

which is a first order tensor (see Chapter III). Another, probably simpler way

to see that the "generalized" angles (a ~ ,y) do not fonn the components of

a vector is the following. The composition (multiplication) of finite rotations

is known to be associative but not commutative. Now, the only vector opera­

tions which produce a vector are addition and vector cross product. But vec­

tor addition is commutative and the vector cross product is not associative.

Therefore, it is obvious that vectors do not represent finite rotations, because

neither vector addition nor vector cross product is compatible with the com­

position of rotations. Hence, the "orientation vector" does not exist. There­

fore, the Cartesian configuration vectors are not "real" vectors. This implies

that the tenninology "Cartesian space" or "Cartesian vector" is used in

robotics in a broader sense than that used in linear algebra.

In the following section, we shall analyze briefly the relationships

between the configurations of the same rigid body in two diffurent locations

in physical space.

2.2.2 On Finite Displacement of a Rigid Body

As is well known, the diffurence between position vectors for the ~ame

point on a rigid body at two diffurent locations of this body in physical space

is referred to as the displacement of that point in space. In this monograph,

we shall define displacement in a broader sense to also include the diffurence

26 Dynamic Analysis of Robot Manipulators

between two orientations of the same rigid body.

A finite displacement in physical space is expressed mathematically as

a transfonnation of the 3-D Euclidean space E3 into itself, with the property

that it preserves the Euclidean distance. To elaborate, if W : E3 ~ E3 is a

transfonnation and

p' =Wp (2.2.1)

denotes the action of W on a point p in E3, then W defines a displacement

if (p' - r,)2 = (p - r / for all p and r in E3. Clearly, W has been defined as

a point-transfonnation, but since in Euclidean space points are identified by

their position vectors, we can view W as a vector transfonnation of E3 into

itself.

It can be shown [3] that displacements fonn a group. It is a subgroup of

the group of transfonnations and it consists of those transfonnations which

leave the distance of any two points invariant. It can also be shown [3] that

displacements are angle-preserving transfonnations. In particular, right

angles correspond to right angles. This implies that not only is the distance

between two points invariant but also that the distance between a point and a

linear subspace, and the distance between two parallel subspaces are invari­

ant under displacement. Finally, if for a certain displacement W, a point p

coincides with its image p', this point is called ajixedpoint ofW.

The concept of displacement is fundamental to rigid body kinematics.

It provides the mathematical apparatus for the study of rigid body motion. To

see this, we note that a rigid body is defined as a system of mass points sub­

ject to the holonomic constraints that the distances between all pairs of

points remain constant throughout any motion. Now, since displacement is a

distance and angle preserving transfonnation, it is obvious that rigid body

motion can be described mathematically as a displacement between two dis­

tinct configurations of the rigid body.

Chapter 2: Notation, Tenninology and Background Material 27

A general displacement or motion of a rigid body is best analyzed by

considering the following two special displacements.

Translation: The transfonnation T d' which is defined by the equation

(2.2.2)

where d is a fixed vector, is obviously a displacement. It is the simplest dis­

placement and is called a translation. The vector d in (2.2.2) is called the

vector of translation. As we can see from (2.2.2), if P and r are two points,

then the vector w' = p' - r' not only has the same length as w = p - r but
is also parallel to it. Also, it is obvious from (2.2.2) that translations fonn a

commutative group, which is a subgroup of the group of displacements.

Moreover, from equation (2.2.2) it can also be seen that a translation is not a

linear transfonnation (it does not map the origin of the space into itself) and

has no fixed points.

The second special displacement is the familiar rotation which can be

defined as follows.

Rotation: A displacement A for which a point 0 is a fixed point is called a

rotation about o.

It is well known [3], that rotations about a point 0 constitute a sub­

group of the displacement group. The rotation group is not commutative.

Also, in contrast with translations, rotations are linear transfonnations.

A rotation, in general, can be interpreted in two ways. First, we con­

sider a rotation A as an operator which acts on a vector p and produces

another vector p , . This is an active point of view. In this approach the space

is described in an invariant coordinate system, relative to which all vectors

are rotated. So, p and p' are two different vectors, expressed in the same

coordinate system. In the second approach, we consider the same rotation A

as a transfonnation which acts on a reference coordinate system {e } and

produces a new reference coordinate system { e' }. This is a passive point of

28 Dynamic Analysis of Robot Manipulators

view. In this approach, the actual vector remains invariant and only the refer­

ence coordinate system is rotated. An invariant vector is represented by p

relative to the old coordinate system, and by p' relative to the new one. Both

interpretations of a rotation define the same action on a vector and both

intelpretations are described mathematically using the same algebra. We

express the action of a rotation A by writing

p' =Ap (2.2.3)

Rotations can be defined on any n -dimensional Euclidean space En.

However, it should be notice that the dimension n of the Euclidean space

where a rotation is defined is fundamental to the analysis of rotations. Thus

for n even there are, in general, no fixed points different from o. For n odd

(n = 2m + 1, m = 0, 1, ...), we always have at least one line of fixed points,

the axis of the rotation. Therefore, a consequence of the general theory of

rotations in odd dimensional Euclidean spaces is the following Theorem.

Theorem 2.1 (Euler): If a rigid body undergoes a displacement, leaving

fixed one of its points 0, then a set of points of the body lying on a line that

passes through 0 remains fixed as well.

A corollary to Euler's theorem, sometimes called Chasles' theorem, states

the following result.

Theorem 2.2 (Chasles): The most general displacement of a rigid body is a

translation plus a rotation.

Proofs for these theorems can be found in any book on classical

mechanics, e.g. see [1-4,10]. An important consequence of Chasles'

Theorem is that a general displacement of a rigid body can be written as

p' =Ap +d (2.2.4)

where A is a pure rotation and d is the translation vector of a pure transla­

tion. Equation (2.2.4) is very important in rigid body kinematics. It
expresses a general displacement explicitly in tenns of a rotation A about a

Chapter 2: Notation, Tenninology and Background Material 29

point 0 and a translation of 0 by d. However, a compact representation for

a general displacement, as that in equation (2.2.1), is more appealing, espe­

cially when one deals with a series of displacements, as is often the case in

robotics. To achieve a compact representation for a general displacement, in

tenns of a rotation and a translation, we proceed as follows.

Let W be a general displacement, 0 an arbitrary point and 0' its image

under W . Now, if T d is a translation with a vector d which transfers 0 into
-I -I

0', then T d W is clearly a rotation A about o. Here, T d denotes the

inverse translation ofTd • Now, if we write T;IW = A it follows that

(2.2.5)

i.e., a general displacement can be written as the product of a rotation and a

translation. We usually refer to a transfonnation which may not only change

the orientation but also the origin of a coordinate system as a homogeneous
transformation. From the foregoing, equation (2.2.5) defines a homogeneous

transfonnation. Obviously, the homogeneous transfonnation W, as a pro­

duct of a nonlinear and a linear transfonnation, is a nonlinear transfonnation.

Homogeneous transfonnations are best analyzed in tenns of homo­
geneous coordinates [11-14]. The coordinates of a point, line or plane are

called homogeneous if the entity they detennine is not altered when the

coordinates are multiplied by the same scalar. As is well known, a three

dimensional vector p in a coordinate system has a (3xl) column matrix

representation. In a homogeneous coordinate system a three dimensional

vector has a (4xl) column matrix representation. The last entry of the

column contains a scaling factor which can be chosen to be equal to 1. With

the scaling factor equal to 1, the homogeneous coordinate matrix of p is

given by [12]

T
Ph = [PJ: Py Pz 1]

=[pT ll{ (2.2.6)

30 Dynamic Analysis of Robot Manipulators

where P = [Px Py Pz { is the coordinate matrix of p in three dimensional

Euclidean space.

A translation homogeneous transformation T d with a vector of transla­

tion d has a (4x4) matrix representation in homogeneous coordinates given

by [12]

1 0 0 I dx

o 1 0 I d
Y

Td = 0 0 1 I dz

o 0 0 I 1

(2.2.7)

where d = [dx dy dz { is the coordinate matrix of d in three dimensional

Euclidean space.

Similarly, a rotation homogeneous transformation A has a (4x4) matrix

representation in homogeneous coordinates given by

A= [~:~l
OT I 1

(2.2.8)

where, A is the usual (3x3) matrix representation (via direction cosines) of a

rotation, and 0 is the three dimensional zero vector. Note that we use the

same notation for the (3x3) matrix and the homogeneous matrix representa­

tions of a rotation. We shall rely on the context to distinguish between the

two representations.

Now, as we can see by using equation (2.2.7) and (2.2.8), the homo­

geneous transformation W defined by (2.2.5) has a (4x4) homogeneous

matrix representation given by

Chapter 2: Notation, Terminology and Background Material 31

w = [~:~l
OT I 1

(2.2.9)

Equation (2.2.9) allows us to express the general displacement of a vector

(Le., equation (2.2.1)) in homogeneous coordinates as follows.

Equation (2.2.10) is equivalent to the two equations

p' =Ap +d

1 = 1

(2.2.10)

(2.2. 11 a)

(2.2.11b)

where obviously (2.2.11a) gives the matrix representation in the three dimen­

sional space of equation (2.2.4).

From the foregoing, we have two ways of analyzing a general rigid

body displacement transformation. Either equation (2.2.4) or equation (2.2.1)

can be used.

As we shall see in later chapters, equation (2.2.4), with a matrix

representation given by equation (2.2.11 a), is suitable for kinematic analysis

of rigid body motion when computational issues are of main concern. Equa­

tion (2.2.1), with a matrix representation given by (2.2.10), leads to compact

representations, but with significantly higher computational complexity. The

two representations are, of course, equivalent and equations (2.2.10) and

(2.2.11) provide the bridge between them.

Remark 2.2: Besides describing general displacements, homogeneous

transformations are often used in robotics [12] to represent coordinate

frames, Le., relative configurations of rigid bodies. Thus, for example, equa­

tion (2.2.9) can be used to define the homogeneous coordinate matrix

32 Dynamic Analysis of Robot Manipulators

representation for the configuration of a rigid body relative to another refer­

ence coordinate system.

Based on these preliminaries, we can now introduce the physical sys­

tem on whose dynamic analysis this monograph is focused.

2.3 Robot Manipulators

As we mentioned in Chapter 1, robot manipulators or robot arms are

the most important form of robotic systems in use today. The dynamic

analysis of such robots is therefore of practical importance. A general

description for the physical components of a robot manipulator has been

given in Chapter 1. In this section, we provide in more details, a

"geometric" description for the arm of a robot manipulator and introduce

some relevant terminology.

2.3.1 Description of Robot Manipulators

A robot manipulator is essentially a mechanical device that can be pro­

grammed to automatically manipulate objects in physical space (the real

world). The arm or articulate portion of a robot is usually constructed as a
series of coupled bodies, known as links, which together constitute what is

called a kinematic chain. If every link is connected to at least two other

links, the kinematic chain is said to be closed, and such a mechanism is

called a linkage. If, however, some of the links are connected to only one

other link, then the kinematic chain is said to be open or serial-type and such

a mechanism is called a manipulator. Therefore, depending on their articu­

late portion, we can have robots with closed or open kinematic chains. How­

ever, since the kinematic and dynamic analyses of closed kinematic ch~ins is

more involved [15-19], most industrial robots have open kinematic chains

i.e., a manipulator, with some form of end-effector attached to the final link.

Depending on the intended applications, the end-effuctor can be a gripper, a

Chapter 2: Notation, Tenninology and Background Material 33

welding torch or other device. We usually refer to this class of industrial

robots as robot manipulators.

Although, in reality, all mechanical devices are flexible to a degree, the

links of present day industrial robot manipulators are made of quite heavy

and rigid material and are usually modeled as rigid bodies. This provides a

realistic approximation which allows us to simplify considerably their

kinematic and dynamic analyses. However, in recent years, some research

has been directed towards modeling and analysis of robot manipulators with

flexible links [20-23]. Flexible link manipulators are made of light weight

material and may be useful for space applications but have not yet become

popular in industry.

A kinematic pair is the coupling of two adjacent links. In current

industrial manipulators the most frequently encountered kinematic pairs (and

the simplest ones) are the revolute pair, which allows only relative rota­

tional motion about a single axis (the joint), and the prismatic pair, which

allows only relative translational motion along a single axis (the joint). For

these kinematic pairs, since motion is allowed in a single direction only, one

parameter (variable) is sufficient for specifying the relative motion between

two adjacent links. This implies that revolute or prismatic pairs are charac­

terized by one degree of freedom. The corresponding variable which meas­

ures the linear or rotational relative motion of a kinematic pair is referred to

as the generalized coordinate of that kinematic pair or joint.

As we saw in Section 2.2, there are six degrees-of-freedom associated

with the configuration of a rigid object. Therefore, if the links of a manipula­

tor are connected by only revolute and/or prismatic joints (as is the case with

most current industrial manipulators), then there must be at least six such

links (and hence joints) if the manipulator is to be capable of arbitrarily posi­

tioning objects in a three dimensional space. Otherwise stated, any mahipu­

lator must have at least six degrees-of-freedom (links and/or joints) in order

for it to achieve arbitrary real world configurations. There are, however,

34 Dynamic Analysis of Robot Manipulators

many manipulators that have fewer than six degrees-of-freedom because

they are designed to perfonn tasks which do not require such freedom. Also,

there are robot manipulators which have been designed to have more than

six degrees-of-freedom. Such manipulators are called redundant arm mani­

pulators [24-28]. These manipulators are particularly useful in environments

where collision avoidance [24,25] is important. However, in this monograph

we shall be concerned only with the kinematic and dynamic analyses of

non-redundant robot manipulators with rigid links.

To be able to identify the links and the joints of a robot manipulator,

we number the links (and implicitly the joints) from zero to n successively -

zero being the first link, which is known as the base, and is fixed, and n the

last one which corresponds to the free end. With this scheme, the joint which

connects the (i -l)-th and the i -th links is referred to as the i -th joint. The

end-effector (if it exists) is usually considered as the (n + l)-th link which is

rigidly attached to the n -th link with no joint between them.

Also, to be able to specify the configuration, of each link relative to an

inertial or any other coordinate system, we associate with each link a frame

which we denote by {ej } == {Xj Yj Zj OJ } i = 0,1,2 ... n, and refer to as the

i -th link frame. The i -th frame is composed of the frame coordinate system

(which we denote by { ej }== {Xj Yj Zj } and refer to as the i -th link coordi­

nate system) and the position vector of the origin of this coordinate system

relative to the inertial or any other coordinate system. The i -th link coordi­

nate system is rigidly attached to the i -th link, and so the i -th frame defines

the configuration of the i -link relative to the inertial or any other reference

system. The frame which is associated with link 0 is often referred to as the

base frame. When the base frame is considered as an inertial reference frame

(which is often the case) it selVes as a universal frame relative to which

everything we discuss can be referred. On the end-effector, we attach a frame

to which we assign the number n + 1 and which we call the tool frame. Note

that the tool frame has a constant configuration relative to the n -th frame.

Chapter 2: Notation, Terminology and Background Material 35

The configuration of the tool frame, relative to an inertial frame, is usually

considered as the configuration of the robot manipulator. This is justified,

since the end-effuctor is that part of a robot which is designed to make con­

tact with the environment for the purpose of executing some task. However,

in the actual kinematic and dynamic analyses of a robot manipulator, we

consider the configuration of its last link as the configuration of the robot

manipulator. This is acceptable for two reasons: First, the end-effuctor is

always attached rigidly to the last link, and thus has a constant configuration

relative to that of the last link; and second, we want the analysis to be gen­

eral and not specific to a particular end-effuctor. Moreover, to make the

analysis independent of a particular environment where the robot may be

used, we choose the inertial or reference coordinate system to be attached to

the base of the robot. Thus, we usually choose the basis frame { eo } to be the

inertial or universal reference frame. Therefore, in this monograph, unless

indicated otherwise, we shall take the configuration of a robot manipulator to

mean the configuration of its last link relative to the base coordinate frame

{ eo }. Also, when a quantity such as a position or a velocity vector is

defined relative to the inertial reference frame, the term absolute will be

used. When the reference frame is another link frame, we shall use the term

relative.

2.3.2 Geometric Description of a Link

To obtain the proper kinematic and dynamic equations for a robot

manipulator, it is important to know the exact geometric characteristic of

each link. This will enable us to define the absolute or relative configuration

of any link in the articulated portion of a robot manipulator.

A geometric description of a link is mainly concerned with what rela­

tionship exists between two neighboring joint axes of a manipUlator.

Mathematically, joint axes are defined by lines in three dimensional space.

Thus the joint axis i is defined to be the line or vector direction in space

36 Dynamic Analysis of Robot Manipulators

about which the i -th link rotates or translates relative to the (i-l)-th link.

Note that this definition for the joint axes implies that link i (i '* n) connects

two joint axes, the i -th and the (i + I)-th. In particular, the joint axis i about

or along which link i moves is called the proximal joint, and the joint axis

(i + 1) which connects link i with link (i + 1) is the distal joint associated with

the i -th link.

The relative location (configuration) of two axes in three dimensional

space is defined by specifying the following two quantities:

Link length: For any two axes in three dimensional space, there exists a

well-defined distance between them. This distance is measured along a line

which is mutually perpendicular to both axes. This distance always exists

and is unique except when the two axes are parallel, in which case there are

many mutually perpendicular lines of equal length.

As we have mentioned, the i -th link is associated with the i -th and the

(i + l)-th joints. Therefore, the mutually perpendicular line between the i-th

and the (i + I)-th joints allows us to define what is called the length of the i­

thlink.

Link twist: Between two axes in three dimensional space, we can always

define an angle. There are two cases to examine. In the first case, the axes

are assumed to be parallel, and we consider that a zero angle exists between

them. In the second case, we assume that the axes are not parallel and we

define an angle between them as follows: We consider a plane normal to the

mutually perpendicular line which exists between the two non-parallel axes.

Now, by considering the projection of these two axes on the normal plane,

we obtain two non-parallel lines on the plane. At the point of their intersec­

tion we can choose one of the four angles to be the twist angle of the two

axes. Based on this angle, we shall define the twist angle of a link in the

next section.

Chapter 2: Notation, Tenninology and Background Material 37

2.3.3 Description of Link Connections and the Configuration of a
Robot Manipulator

The primary purpose of this section is to describe the "configuration"

transfonnation, which defines the relative displacement of two neighboring

links of a robot manipulator, as well as to derive a matrix representation for

it

A special description for the configuration transfonnation of two neigh­

boring members of a spatial kinematic chain has been established over the

years and is known as the Denavit-Hartenberg (D-H) description or conven­

tion. The D-H convention has proven to be very practical in robotics

because it allows for a systematic description of a spatial kinematic chain, in

particular when it is of an open-loop structure. The D-H convention was first

introduced by Denavit and Hartenberg [29] in 1955 for the purpose of

analyzing spatial linkages, and was specialized to open-loop spatial

kinematic chains by Kahn [30] in 1969. The usual D-H convention, as origi­

nally designed for kinematic analysis, has some disadvantages and can lead

to ambiguities when it is used in robots with links having more than two

joints [18]. The scheme which we describe here is well suited for open loop

spatial kinematic chains and can be easily adapted for spatial kinematic

chains with tree or closed-loop structures [18].

The D-H convention associates a frame rigidly with every link (or

joint). In particular, the i -th frame is associated with the i -th link and its

coordinate system defines the orientation of the i -th link (frame) relative to

the (i-l)-th link (frame). Also its position vector defines the origin displace­

ment of the i -th coordinate system relative to the (i -1)-th coordinate system.

In the D-H convention, to assign the i -th coordinate frame on the i -th link,

we use the following two basic assumptions:

i) The Zj basis unit vector of the i-th frame coordinate system is always

parallel to either the proximal or the distal axis of the i -th link.

38 Dynamic Analysis of Robot Manipulators

ii) The xi basis unit vector of the i -th frame coordinate system is always

parallel to the mutual perpendicular between the i -th and the (i + 1)­

th joint axes

Based on these assumptions we define the i -th link coordinate system.

We assume that the zi basis vector is parallel to the proximal joint of the

link, i.e., it is parallel to the i -th joint axis. The origin 0i of the i -th frame

coordinate system is located at the intersection of the i -th joint axis and the

mutual perpendicular between the i -th and the (i + 1)-th joint axes. When this

point is not unique (in the case of parallel joint axes) we choose the one

which minimizes the relative distance between the origin of the (i-I) and i­

th coordinate systems. The Xi basis unit vector is on the mutual perpendicu­

lar to the axis zi and Z i + I directed from the fonner to the latter. The Yi basis

unit vector of the i -th frame coordinate system is chosen as the unique per­

pendicular to both zi' and Xi at the point 0i' which defines a right-hand

oriented coordinate system.

In the D-H convention four parameters are needed to specify com­

pletely the relative configuration of two neighboring frames. As is shown in

Figure 2.1, the D-H parameters for the i -th frame are defined as follows:

Cli : The angle about Xi-I' between zi-I and Zi'

a i : The distance along Xi-I' between zi-I and zi'

di : The distance along zi' between xi - I and xi'

9i : The angle about Zi' between xi - I and xi'

Remark 2.3: The angle Cli and the distance ai' are associated with the

(i-l)-th link, and can be used to define the twist angle and the length,

respectively, of this link. Since these two quantities are associated with the

(i-l)-th link, some authors [13] use the notation Cli - I and ai_I instead of Cli

and ai • We prefer to use Cli and a j , because, as we shall see later, it leads to

Chapter 2: Notation, Terminology and Background Material 39

a uniform notation for the matrix representation of the configuration transfor­
mation between two neighboring links.

Link i-I

a. ,

Figure 2.1 : Link parameters and link coordinate systems

Each of the parameters defined above, can be used to define a pure
translation or a pure rotation displacement. We shall call these displacements
elementary displacements, since they occur along or about a coordinate ,axis,
and we denote them by Trans (axis, var) and Rot (axis, var) respectively,
where "axis" is the coordinate axis of the displacement and "var" denotes
the variable of the displacement.

40 Dynamic Analysis of Robot Manipulators

Now, using elementary displacement operations, we can describe [12-

14] the displacement of the i -th link relative to the (i -1)-th link, which we
j-I

denote by Aj == Aj, as follows

Aj = Rot(xj_l,aj)Trans(xj_l,aj)Rot(zj,Oj)Trans(zj,dj) (2.3.1)

Since the displacement Aj also defines the configuration of the i -th frame

relative to the (i -1)-th frame, we refer to it as the i -th homogeneous

(configuration) coordinate transformation. Using equations (2.2.7) and

(2.2.8), it is easy to see that the matrix representation for the homogeneous

transformation defined by (2.3.1), in terms of direction cosines, is given by

cos OJ - sinO.
I

0 a· I

cos ajsinOj cos ajcos OJ - sinaj - d.sina.
I I

A.=
I

sin ajsin OJ sina.cos 0.
I I

cosaj djcos a j (2.3.2)

0 0 0 1

and we refer to Aj as the i -th homogeneous coordinate transformation

matrix.

It is clear that, since the i -th joint has one degree of freedom, three of

the four parameters defined above will be constant and only one will be vari­

able. The variable parameter of the i -th joint is known as the i -th joint coor­

dinate and is usually denoted by qj. From the definition of the four parame­

ters, it is obvious, that qj ~ OJ, when the i -th joint is revolute and qj ~ dj ,

when the i -th joint is prismatic. Therefore, with the appropriate definition for

the joint variable qj' the transformation Aj ~ Aj (qj)' defined by ~2.3.1),
describes completely the one degree-of-freedom displacement (motion) of

the i -th link relative to the (i -l)-th link.

Chapter 2: Notation, Tenninology and Background Material 41

As we mentioned in Section 2.2, a general displacement can be

expressed as a pure rotation and a pure translation. Thus, by comparing

equations (2.2.9) and (2.3.2), we can see that the rotation Aj of the i -th link

coordinate system relative to the (i-I)-th, has a (3x3) matrix representation,

in tenns of direction cosines, which is given by

[

COS a. - sin a. 0 1
A. = cosa.s~na. cosa.CC:sa. - sina.

I I I I I I

sina.sina. sina.cosa. cosa·
I I I I I

(2.3.3)

Similarly, the origin displacement or position vector of the i -th coordinate

system relative to the (i-l)-th coordinate system, has a (3xl) matrix

representation which is given by

[
aj 1 j-l .

s· l' = ·-d.sma. 1- ,I I I

d.cosa.
I I

(2.3.4)

Therefore, the homogeneous transfonnation Aj , or the rotation Aj together

with the translation T s ' completely describes the configuration of the i-th
i-I,;

link relative to the (i -I)-th link.

Now, we can use the relative configuration between two neighboring

links to define the absolute configuration of any link of a robot manipulator.

We do that here in tenns of homogeneous transfonnations since this leads to

a compact description.

It is well known [12] that, in general, if we postmultiply a homogene­

ous transfonnation representing a frame by a second homogeneous transfor­

mation describing a rotation and/or a translation, we make that rot~tion

and/or translation with respect to the frame which is described by the first

transfonnation. Thus, the homogeneous transfonnation

(2.3.5)

42 Dynamic Analysis of Robot Manipulators

describes the configuration of the (i + 1)-th frame (link) relative to the (i -1)­

th frame. Therefore, the absolute configuration of the i -th link is described

by the transfonnation,

\V; =~ = A 1A2 .. • Aj

=W IA. 1- I
i= 1,2, ... , n (2.3.6)

and obviously the absolute configuration of the manipulator (i.e., the

configuration of the n -th link) is given by w,. .
As can be seen from equation (2.3.6), the homogeneous transfonnation

w,. is a function of the joint coordinates q j' i = 1, 2, n. The joint coordi­

nates qj are linearly independent, and this allows us to view them as the

components of an n dimensional vector q, relative to some curvilinear coor­

dinate system which describes the joint space of the robot manipulator. The

vector q is referred to as the joint space vector and since w,. §} w,. (q), w,.
provides a joint space description for the configuration of a robot manipula­

tor.

The joint space description for the configuration of a robot manipulator

provided by w,. can be viewed as an "internal" description, since implicitly

it contains the configuration of all the individual links of the manipulator.

Now, from section 2.2, we recall that the configuration of a rigid body (and

therefore that of the last link or the end-e:trector of a robot manipulator) can

be described in Cartesian space in tenns of a "Cartesian vector" xt . The

Cartesian space description for the configuration of a robot manipulator can

be viewed as an "external" description, since it does not take into account

the configuration of the individual links in the manipulator chain.

t Note that sometimes in robotics, more general spaces (e.g. the operational space
[31]) are used to describe the configuration of a robot manipulator.

Chapter 2: Notation, Terminology and Background Material 43

Both, the joint and Cartesian space descriptions for the configuration of

a robot manipulator are fundamental in robotics. The Cartesian space

description is useful, mainly to human operators, since it allows for an easy

description of the motion of the end-efIector between two diffurent locations

in space. However, the motion of a robot manipulator is realized in joint

space and therefore a joint space description is necessary for the robot con­

troller. Hence, some of the basic kinematic problems in robotics (eg. for­

ward and inverse kinematics) deal with transformations between joint space

and Cartesian space descriptions for the configuration of a robot manipula­

tor.

Besides configuration analysis, "motion" kinematic analysis is also

needed for the dynamic analysis of any mechanical system. However, before

we deal with motion kinematics of robot manipulators we need first to

develop a methodology which will allow us to study kinematics and dynam­

ics in a simple and efficient manner. Since this methodology will be based on

Cartesian tensors, the next chapter is devoted to Cartesian tensor analysis.

2.4 References

[1] H. Goldstein, Classical Mechanics, 2nd ed. Reading, MA:, Addison

Wesley, 1980.

[2] J. L. Synge, "Classical Dynamics", in Encyclopedia of Physics, S.

Flugge Ed., Vol. III, Springer-Verlag, Berlin-Gottingen-Heidelberg,

1960.

[3] O. Bottema and B. Roth, Theoretical Kinematics, North-Holland Pub­
lishing Co., Amsterdam, 1978.

[4] J. Angeles, Spatial Kinematics Chains: Analysis, Synthesis, Optuniza­
tion, Springer-Verlag, New Yorlc, 1982.

44 Dynamic Analysis of Robot Manipulators

[5] D. Lovelock and H. Rund, Tensors, Differential Forms and Variational

Principles, John Wiley & Sons, New York, 1965.

[6] J. Stuelpnagel, "On the Parametrization of the Three-Dimensional

Rotation Group" ,SIAM REVIEW, Vol. 6, No.4, pp. 422-430, October

1964.

[7] J. Rooney, "A Survey of Representations of Spatial Rotations About a

Fixed Point", Environment and Planning B, Vol. 4, pp. 185-210, 1977.

[8] D. Hestenes, "Vectors, Spinors, and Complex Numbers in Classical

and Quantum Physics", J. Math. Phys. Vol. 39, pp 1013-1027, 1971.

[9] R. A. Wehage, "Quatemions and Euler Parameters - A Brief Exposi­

tion", in Computer Aided Analysis and Optimization of Mechanical

System Dynamics, E. J. Haug, Ed., Springer-Verlag, New York, 1984.

[10] J. Angeles, Rational Kinematics, Springer-Verlag, New York, 1988.

[11] L. Brand, Vector and Tensor Analysis, John Wiley & Sons, New York,

1947.

[12] R. P. Paul, Robot Manipulator: Mathematics, Programming and Con­

trol, MIT Press, Cambridge, MA, 1981.

[13] J.J. Craig, Introduction to Robotics: Mechanics & Control, Addison­

Wesley, Reading, MA: 1986.

[14] W. A. Wolovich, Robotics: Basic Analysis and Design, Holt, Rinehart

and Winston, New York, 1987.

[15] B. Paul, "Analytical Dynamics of Mechanisms: A Computer Oriented

Overview", Mechanism and Machine Theory, Vol. 10, pp. 481-507,

1975.

[16] J.Y.S. Luh and Y.F. Zheng, "Computation of Input Generalized Forces

for Robots with Closed Kinematic Chain Mechanisms", IEEE J.

Robotics and Automation, RA-l, No 2, pp 95-103,1985.

Chapter 2: Notation, Terminology and Background Material 45

[17] T.R. Kane and H. Faessler, "Dynamics of Robots and Manipulators

Involving Closed Loops", in Theory and Practice of Robots and Mani­

pulators , A. Morecki, G. Bianchi and K. Kedzior, Eds., MIT Press,

Cambridge, MA, 1985.

[18] W. Khalil and J. F. Kleinfinger, "A New Geometric Notation for Open

and Closed-Loop Robots", in Proc. IEEE Int. Con! on Robotics and

Automation, pp. 1174-1179, San Francisco, CA, 1986.

[19] Y. Nakamura and M. Ghodoussi, "A Computational Scheme of Closed

Link Robot Dynamics Derived by D'Alembert's Principle", in Proc.

IEEE Int. Con! on Robotics and Automation, pp. 1353-1360, Philadel­

phia PA, 1988.

[20] W.J. Book, "Recursive Lagrangian Dynamics of Flexible Manipula­

tors", The Int. J. Robotics Research, vol. 3, no. 3, pp. 87-101, 1984.

[21] M. Geradin, G. Robert and C. Bernardin, "Dynamic Modeling of

Manipulators with Flexible Members", in Advanced Software in

Robotics , A. Danthine and M. Geradin, Eds., Elsevier Science Pub.

Co., New York, 1984.

[22] G. B. Yang and M. Donath, "Dynamic Model of a One-Link Robot

Manipulator with Both Structural and Joint Flexibility", in Proc.

IEEE Int. Con! on Robotics and Automation, pp. 476-481, Philadel­

phia PA, 1988.

[23] W. J. Book and S. Cetinkunt, "Performance Limitations of Joint

Variable-Feedback Controllers Due to Manipulator Structural Flexibil­

ity", IEEE Trans. on Robotics and Automation, Vol. 6, No.2, pp. 219-

231,1990.

[24] A. Maciejewski and C. A. Klein, "Obstacle Avoidance for Kinemati­

cally Redundant Manipulators in Dynamically Varying Environments",

The Int. J. of Robotics Research, Vol. 4, No.3, pp 109-117,1985.

46 Dynamic Analysis of Robot Manipulators

[25] J. Baillieul, "Avoiding Obstacles and Resolving Kinematic Redun­

dancy", in Proc. IEEE Int. Corif. on Robotics and Automation, pp.

1698-1704, San Francisco, CA, 1986.

[26] C. A. Klein and A. I. Chirco, "Dynamic Simulation of a Kinematically

Redundant Manipulator System", Journal of Robotic Systems, Vol. 4,

No. I, pp. 5-23, 1987.

[27] P. Hsu, J. Hauser, and S. Sastry, "Dynamic Control of Redundant

Manipulators", In Proc.IEEE Int. Corif. on Robotics and Automation,

pp. 183-187, Philadelphia PA, 1988.

[28] H. Seraji, "Configuration Control of Redundant Manipulators; Theory

and Implementation", IEEE Trans. on Robotics and Automation, Vol.

5, No.4, pp. 472490, 1989.

[29] J. Denavit and R. S. Hartenberg, "A Kinematic Notation for Lower­

Pair Mechanisms Based on Matrices", ASME J. of Appl. Mechanics,

Vol. 23, pp. 215-221, 1955.

[30] M. E. Kahn, "The Near-Minimum-Time Control of Open-Loop Arti­

culated Kinematic Chains", Stanford Artificial Intelligence Project,

Memo. A1M-106, Dec. 1969.

[31] O. Khatib, "A Unified Approach for Motion and Force Control of

Robot Manipulators: The Operational Space Fonnulation", IEEE J.
Robotics and Automation, Vol. RA-3, No. I, pp. 43-53,1987.

Chapter 3

Cartesian Tensor Analysis

3.1 Introduction

As we mentioned in Chapter 1, our intention is to describe the dynamic

equations of rigid body motion by using Cartesian tensors. Cartesian tensor

analysis, being more general than vector analysis, is powerful and, if prop­

erly used, can result in a tensor formulation for the equations of general

motion of a dynamic system. As we shall show in Chapter 5, such a formula­

tion will enable us to derive computationally efficient algorithms for the

dynamic equations of motion of rigid-link open-chain robot manipulators. In

this chapter, we provide an introduction to the theory of Cartesian tensors.

Moreover, based on 1-1 operators between three dimensional vectors and

second order skew-symmetric Cartesian tensors, this theory is extended here

by establishing a number of tensor-vector identities. These identities, as we

shall see in the following chapters, will allow for easy algebraic manipula­

tions of the equations of motion of a complex dynamic system such as those

of a robotic system.

48 Dynamic Analysis of Robot Manipulators

Historically, the ideas and symbolism of tensor calculus originated in

diffurential geometry, and were invented by the Italian mathematicians Ricci

and Levi-Civita [1]. Gradual introduction and assimilation of these ideas and

symbols were greatly accelerated by their use by Einstein in his general

theory of relativity; and today tensor analysis forms a well established field

which provides the only appropriate language for studying diffurential

geometry and related topics such as the theory of general relativity [2-5].

But if tensor calculus is a necessity for studying diffurential geometry,

for applications in continuum and classical mechanics [6-26] it is a great

convenience, because it enables one to express geometrical or physical rela­

tionships of tensor entities in a concise manner which does not depend on the

introduction of a coordinate system. Moreover, even in cases where we have

to introduce coordinate systems, because measurements are required or for

other reasons, tensor equations are formally the same in all admissible coor­

dinate systems. This fact will help us later when tensor equations have to be

written in the various coordinate systems used to derive dynamic models for

robot manipulators.

In the general theory of tensor analysis, the space or environment

where a tensor is defined is a manifold [3] which is characterized in terms of

curvilinear coordinate systems. But, since the environment or physical space

for physical systems is a Euclidean point space which can be associated with

a three dimensional Euclidean vector space (the translation space [8]), we

restrict our attention to the study of tensors in Euclidean vector spaces. In a

Euclidean vector space, orthogonal Cartesian coordinate systems are

sufficient for tensor analysis. Tensors analyzed in orthogonal Cartesian coor­

dinate systems are referred to as Cartesian tensors [7-10,20-25]. Therefore,

since in our analysis we shall use orthonormal Cartesian coordinate systems,

when we write tensors we shall mean (second order) Cartesian tensors. The

use of orthonormal Cartesian coordinate systems will simplify our analysis,

since the distinction between covariant and contravariant components,

Chapter 3: Cartesian Tensor Analysis 49

which is necessary in curvilinear coordinate systems, disappears in orthonor­

mal Cartesian coordinates. Moreover, since the Euclidean vector space is a

flat space, terms arising from curvature are zero in the theory of Cartesian

tensors.

The outline of this chapter is as follows: In Section 3.2 second order

tensors are defined and basic algebraic tensor operations are introduced. Sec­

tion 3.3 outlines the structural symmetries of second order tensors based on

Cartesian and Spectral decompositions, and an important 1-1 operator

between three dimensional vectors and second order skew-symmetric Carte­

sian tensors is defined. Finally, based on the said operator, we state and

prove a number of propositions which establish some basic tensor-vector

identities.

3.2 Second Order Cartesian Tensors

In this section, we define Cartesian tensors of order 2. We also intro­

duce basic tensor algebraic operations which will be used later in algebraic

manipulations. Here, we restrict our attention to Cartesian tensor analysis in

three dimensional (3-D) Euclidean vector spaces. However, this theory can

be extented to Euclidean vector spaces of higher dimensions in a straightfor­

ward manner.

3.2.1 On The Definition of the Second Order Cartesian Tensors.

Tensor analysis, in general, is concerned with mathematical or physical

entities which although of different nature have common characteristics and

properties. These common properties allow us to classify them into common

classes and to refer to them with such names as scalars, vectors or in general

tensors of certain order.

50 Dynamic Analysis of Robot Manipulators

There are two basic approaches which one can take to define a Carte­

sian tensor, or the class where a particular physical entity belongs.

In the first approach, which is usually used to define tensors in general

(Le., not necessary Cartesian), we analyze a physical quantity from· an

"external" point of view and define its tensor character based on their

observed properties. These properties are determined by considering how a

physical quantity is related to some environment and how this relationship

changes under controlled changes of this environment. In this approach, we

may proceed as follows.

We can introduce first a frame of reference, Le., a coordinate system,

which describes the environment and expresses (by considering a set of

ordered numbers or functions, known as components) the quantity at hand

relative to that coordinate system. Then we make a change (by considering a

map) in the coordinate system and analyze how the components of this quan­

tity are related relative to the old and new coordinate system. If the changes

in the components follow a definite law, we define the quantity under con­

sideration to be a tensor (of certain order). This is a passive approach, since

the tensor quantities are actually independent of the coordinate systems used

to describe the environment and represent them. Under a change of coordi­

nate systems it is their components that change, not they themselves. Based

on what we have said, we can give the following definition:

Definition 3.1: Suppose that the abstract object T when it is associated with

an orthonormal Cartesian coordinate system { e}, of a 3-D Euclidean space,

can be represented by the set of components Tij , where the subscripts i ,j are

ordered and can take the values 1,2,3. Let Tij be the corresponding set of

components representing T when it is associated with another orthonormal

Cartesian coordinate system { e '}, which is related to the coordinate system

{ e} by an orthogonal transformation A, Le., the unit vectors of the Coordi­

nate system { e '} satisfy the equations

CelT = A .. [e l]. J JI I
1= 1,2,3 (3.2.1)

Chapter 3: Cartesian Tensor Analysis 51

where Aj ; are the entries (direction cosines) of the coordinate matrix A

which represents the transformation A relative to the two coordinate systems

{ e'} and { e}. Then if the equation

T~s = Ar;AsjT;j (3.2.2)

is valid, we say that T is a second order Cartesian tensor.

Remark 3.1: Sometimes in tensor analysis the nomenclatures "order" or

"rank" are used to denote the exponent (r) to which the dimension (n) of

the space, on which the tensor is defined, must be raised to give the number

of components (coefficients) of a tensor. To put it another way, the order of a

tensor denotes how many copies of the original Euclidean space we need to

consider for producing the environment (a tensor product space) where the

tensor is defined. In the case of the second order tensor T defined on a 3-

dimensional Euclidean space, we consider two copies of the original

Euclidean space. Therefore, for any tensor in this space we must have 32 = 9

components and this is the case as (3.2.2) indicates. We shall continue to use

the word order with this meaning. With the word rank, we shall associate an

intrinsic property of a tensor, which we shall define later.

In the second approach, which is commonly used to define Cartesian

tensors, we define the tensor character of a physical quantity by considering

its action on some environment, i.e., we treat, in this approach, the physical

quantity as an operator. If the operator has certain properties, then we are

able to say that the quantity under consideration is a tensor. From this point

of view we can give the following definition:

Definition 3.2: We say that the linear vector transformation T is a second

order tensor if we can compute the action of T on any vector r and denote

that action of T on r by writing T (r) or T . r or simple T r .

Definition 3.2 is not complete as stated, since we have not mentioned

explicitly the domain and range of the linear vector transformation. The

domain and range of a second order tensor are obvious from the context. For

52 Dynamic Analysis of Robot Manipulators

example, in the equation Le = lew the domain of the inertia tensor (Ie) is

the space of angular velocities (Ol) and its range is the space of angular

momentum (Le).

Remark 3.2: Although the tenns "linear transfonnation" and "tensor" in

Definition 3.2 refer to mathematical functions of the same kind they are not

completely synonymous, because they have diffurent connotations in appli­

cations. The tenn "tensor" is always used when describing certain physical

quantities. Thus, we often say a rotation tensor or a rotation transfonnation,

but we never call the inertia tensor, Ie' "inertia linear transfonnation",

although it defines the linear transfonnation Le = leOl.

As an example, of how we can use Definition 3.2 to define a tensor, let

us consider the following vector equation,

u® vCr) = u(v· r). (3.2.3)

It is clear that u ® v (r) is linear in r since

(3.2.4)

Therefore, the quantity T = u ® v is said to be a second order tensor. Since

the tensor u® v is defined by using a "kind of product" between the two

vectors u and v it is called the tensor product of u and v. Many authors

prefer to write equation (3.2.3) as

(uv)·r =u(v·r). (3.2.5)

In this case the tensor u v is called a dyad of u and v. According to Gibbs

[17], who developed the theory of dyadics (a dyadic is a sum of dyads), a

dyad or indetenninate product is a purely symbolic quantity which requires a

detenninate physical meaning only when used as a linear operator. There­

fore, by Definition (3.2), dyads are second order tensors. In [17], Gibbs has

also shown that in a 3-D Euclidean space any linear vector transfonnation

can be written as the sum of at most three dyads of which either the first or

the second vector, but not both, may be arbitrarily chosen provided they are

Chapter 3: Cartesian Tensor Analysis 53

linearly independent. This implies that to· each tensor we can associate k

(k ~ 3) linearly independent vectors (or directions). Or, to use the approach

of Hestenes' [31], to each second order tensor in a 3-D Euclidean space we

can associate a direction of k dimensions (k ~ 3). Based on this, we can

give the following definition for the term "rank".

Definition 3.3: We define the rank of a tensor to be the number of linearly

independent directions which a tensor possesses.

The definition of rank as given here, coincides with what we call rank

in linear algebra. In particular, the rank of a second order tensor (or a linear

transformation) T coincides with the rank of the matrix T which represents

T in some coordinate system. This uniformity in the meaning of the term

"rank" is not possible if we identify rank with order as is often done in text­

books on tensor analysis.

Remark 3.3: Although in the general theory of tensor analysis, scalars and

vectors are treated as tensors of order zero and one respectively, we continue

to refer to them as scalars and vectors and reserve the word "tensor" for ten­

sors of second and higher order.

3.2.2 The Linear Space Structure for Second Order Cartesian
Tensors

In order to use tensors in an efficient manner, we have to define alge­

braic structures on them by introducing basic algebraic operations. Thus,

based on Definition 3.2, we can see that the following tensors and algebraic

operations are well defined.

The zero and unity (identity) tensors are denoted and defined, respec­

tively, by

Ov=O , 'fIv

Iv=v , 'fIv

(3.2.6)

(3.2.7)

54 Dynamic Analysis of Robot Manipulators

The algebraic operations of addition and scalar multiplication can be
defined as usual. Thus the addition of two second order tensors T and S is

defined by

(T +S)v =Tv +Sv ,Vv

and the multiplication of T by a scalar A is defined by

(AT)v = A.(Tv) , V A

Also, we say that two second order tensors T and S are equal if

T =S <=> Tv =Sv Vv

or equivalently

T =S <=> v'Tu =v·Su V u,V

(3.2.8)

(3.2.9)

(3.2.10)

(3.2.11)

It is now easy to see that the set of all tensors of second order, together
with the two algebraic operations of addition and scalar multiplication, con­
stitutes a linear space over a scalar field, which is assumed here to be the

field of real numbers. To find a basis for the linear space of second order ten­
sors, defined on a 3-D Euclidean space and the components of a tensor T

relative to it, let us consider an orthonormal basis {e} = {e l' e 2' e 3} of a 3-
D Euclidean space. Then for any vector r we can write

T r = T (r 1 e 1 + r 2e 2 + r 3e 3)

(3.2.12)

But Tel' T e 2 and T e 3 are vectors and therefore may be expressed in terms

of the Cartesian components as follows:

Te 1 = Tue 1 + T21e 2 + T31e 3

Te 2 = T 12e I + T 22e 2 + T 32e 3

Te 3 = T 13e 1 + T 23e 2 + T 33e3

(3.2. 13 a)

(3.2.13b)

(3.2.13c)

where the coefficients T 11'T 21' .. ,T 33 can be computed by using the equation

Chapter 3: Cartesian Tensor Analysis

T..=e.·Te·
I) 1)

Now, using (3.2.13) in (3.2.12) and the equations

e·r. =e.(e.·r)=e.®e.(r),
1 1 1 1 1 1

for i = 1, 2, 3 , we get after a few manipulations

55

(3.2.14)

Tr = (Tlle1®e 1 + T12e 1®e 2 + ... + T33e 3®e 3)r. (3.2.15)

Therefore, since the vector r is arbitrary, we have from (3.2.15) that

T =Tlle1®e 1 +T12el®e2+T13el®e3

+ T21e 2®e 1 + T 22e 2®e 2 + T 23e 2®e 3

+ T31e 3®e 1 + T 32e 3®e 2 + T 33e 3®e 3· (3.2.16)

or, if we use Einstein'st notation for the summation, we can write

T = T .. e.® e . , i,j = 1,2,3.
I) 1)

(3.2.17)

Now, it can be shown [15], that this representation of T is unique and

that the set of second order tensors {e 1 ® e l' e 1 ® e 2 ,e 3® e 3} forms a

basis for the aforementioned tensor linear space. From the foregoing, this

linear space has dimension 32. We shall denote this linear space by

~® ~ == Ej2) and we may call it the second tensorial power of~. Relative

to the basis {el®el,el®e2,"',e3®e3} the components ofT E Ej2) are the

coefficients T ll ,T33 defined by (3.2.14). These coefficients can be put in

the matrix form

Tll T12 T13

T = T21 T22 T 23

T31 T32 T33

(3.2.18)

t In Einstein's notation any expression in which two or more indices i ,j ... are each

56 Dynamic Analysis of Robot Manipulators

and we call T the coordinate matrix of T relative to the basis defined by the

set {e 1® e l' e 1® e 2 .. ··,e 3® e 3}. Now, it is easy to see that there is a one-to­

one correspondence between the orthonormal basis {e} = {e l'e 2,e 3} and

the basis of the tensor linear space Ej2) which is defined by the set

{e 1 ® e l' e 1 ® e 2" .. ,e 3® e 3}' Therefore, by slightly abusing the notation,

we shall refer to (3.2.18) as the coordinate matrix of the tensor T relative to

the Cartesian basis {e} = {e l' e 2' e 3} . With this in mind, we shall say that

a second order tensor is defined in a 3-D Euclidean vector space E:J instead

of the 9-D linear space Ej2).

3.2.3 More Algebraic Operations.

Besides the addition (or subtraction) and scalar multiplication defined

above, there are two other algebraic operations which one can define on ten­

sors, namely, the tensor product and contraction. These operations are

defined [12,16-21] as follows:

Tensor product: Let T and S be two second order tensors whose com­

ponents, referred to a coordinate system {e}, are tij and S /d' Then it can be

shown that the 34 scalars

U"/d = t"s/d I] I]
(3.2.19)

form the components of a tensor U, say, of order 4. We call U the tensor pro­

duct ofT and S and we write U = T® S.

Contraction: Given a tensor of order r ~ 2, we may select a pair of indices

and replace them by two identical indices. This action by virtue of Einstein's

convention implies summation over the possible values of the identical

repeated is to be interpreted as the sum of all the values which it can take, as i ,j , ...
take the values 1,2,3.

Chapter 3: Cartesian Tensor Analysis 57

indices. This process is known as contraction and the quantities obtained by

contraction constitute the components of a tensor of order r - 2.

Note: In the special case where r = 2, the contraction operator is

synonymous with the familiar trace operator since, as we can see, the con­

traction of the two indices produces a tensor of order zero, i.e., a scalar.

Note, also, that the algebraic operations of tensor product and contraction

can be performed on any tensor not necessarily Cartesian.

Some other important algebraic operations which may be termed as

contracted multiplications, and which are applicable to second order Carte­

sian tensors, are defined [22] as follows.

The left and right dot products: Let T be a second order tensor and v be a

vector, with coordinate matrices T and v respectively relative to the same

coordinate system. Then the equation

(3.2.20)

which is computed by considering first the tensor product of T and v and

then contracting the second index for the components of T and the index for

the components of v , defines the right dot product or post-multiplication of

T and v . Similarly using the equation:

(3.2.21)

we can define the vector w. Equation (3.2.21) defines the left dot product or

pre-multiplication of v and T . In tensor form, equations (3.2.20) and (3.2.21)

are written as

u=T'v=Tv

w=v·T=vT

(3.2.22)

(3.2.23)

respectively. Note that we can use the transpose operation to reorder the fac­

tors in the dot products defined above. Thus, for example, we can write

T
w =v·T =T ·V (3.2.24)

58 Dynamic Analysis of Robot Manipulators

In tenus of their coordinate matrices, equations (3.2.22) and (3.2.23) are

written as

and

u = Tv

T
W =v T

(3.2.25)

(3.2.26)

and they define the familiar post- and pre- multiplication in matrix theory.

Finally, we can define two products between two second order tensors

T and S as follows:

The dot product: Let T and S be the coordinate matrices, relative to the

same coordinate system, of second order tensors T and S, respectively. Then

the equation

u·· = TilS/. IJ J
(3.2.27)

defines the components of the second order tensor U which we call the dot

product or multiplication of T and S, and we write

U=T·S=TS (3.2.28)

In tenus of their coordinate matrices equation, (3.2.28) is written as

U =TS (3.2.29)

and agrees with the usual matrix multiplication.

The double dot or inner product: The double dot product of two tensors T

and S is given by

T: S = tr(T· S) (3.2.30)

where tr denotes the trace operator and produces a scalar.

Remark 3.4: Strictly speaking some operations introduced above are

defined by using coordinate matrix representations of second order tensors

and vectors. However, once these operations have been established, the

Chapter 3: Cartesian Tensor Analysis 59

actual coordinate matrices used to represent the tensors or vectors are of no

consequence and we can speak. of these operations as being defined on the

tensors themselves without any ambiguity.

The double dot product is a generalization of the familiar vector dot

product, and this allows us to define a nonn for a tensor and the "angle"

between two tensors. In particular, we can define the nonn of a tensor T as

follows

liT lip ~ "T: TT (3.2.31)

and we may call this nonn the Frobenius norm since, when we use a coordi­

nate matrix T of a tensor T to evaluate equation (3.2.31), we end up with the

familiar Frobenius matrix nonn [30]

IITI~ ~ "tr(IT). (3.2.32)

With this definition for the nonn of a tensor the set of all second order Carte­

sian tensors, regarded as a linear space of dimension 32, becomes an inner­

product space. Now, using the double dot product and the Frobenius nOnn'

we can define the cosine of the "angle" 0 between two non-zero tensors T

and S as follows

cos(O)=--­

liT "F"S "F
0:5; 0:5;1t (3.2.33)

Equation (3.2.33) is a generalization of the following familiar definition for

the cosine of the angle 0 between two non-zero vectors t and s

t·s
cos(O) =--

lit IlIIs II
(3.2.34)

Actually, based on dual (or axial) vectors (see Section 3.3) and using Propo­

sition 3.6, it can be shown that equation (3.2.33) is essentially identIcal to

equation (3.2.34) when it is applied to skew-symmetric tensors. Based on

this definition for the angle between two tensors, we shall say that two

60 Dynamic Analysis of Robot Manipulators

tensors T and S are orthogonal to each other if and only if their double dot

product is zero.

As we have mentioned above, the double dot product (and not the dot

product) between two Cartesian tensors is the generalization of the familiar

dot product between two vectors. The dot product between two second order

tensors is not commutative as is the case with the familiar dot product

between vectors, but it is associative and distributive over addition. This

allows us to view the linear space of second order Cartesian tensors, when

supplied with this dot product, as a linear algebra. (This also follows from

Definition 3.2 which identifies second order tensors with linear transfonna­

tions. With this identification the tensor dot product is equivalent to the com­

position of linear transfonnations). This algebra is isomorphic to the matrix

algebra. Thus we can use the well-established matrix algebra to carry out

calculations for various operations with tensors. Since the matrix elements

are scalars (real numbers), matrix algebra has the advantage of reducing all

such calculations to addition and multiplication of real numbers. However, it

has the disadvantage of requiring that a basis be introduced (which defines

an isomorphism between tensors and matrices) and which may be quite

irrelevant to the problem at hand and this often obscures the physical or

geometrical meaning of the tensor involved. Moreover, this matrix represen­

tation may lead us to perfonn irrelevant and unnecessary calculations.

In the next sections, we analyze some basic properties of second order

Cartesian tensors which will allow us to perfonn algebraic manipulations

with tensors without resorting to their matrix representations.

3.3 Properties of Second Order Cartesian Tensors

In this section we analyze the structural symmetries of second order

Cartesian tensors by considering their Cartesian and Spectral decomposi­
tions and define their scalar and vector invariants. Also, we introduce very

Chapter 3: Cartesian Tensor Analysis 61

important dual correspondences between second order skew symmetric (or

pseudo) tensors and vectors defined on a 3-D Euclidean space.

3.3.1 Isotropic Cartesian Tensors.

As we mentioned in section 3.2.1, tensors themselves are independent

of coordinate systems; but the numerical values for the components of a ten­

sor, in general, depend on coordinate systems. Therefore, if we use an

orthogonal transformation A to change the basis from {e } to {e '}, i.e., if

(3.3.1)

then the coordinate matrices T and T' of a tensor T , relative to the old and

new Cartesian bases respectively, are difIerent. By Definition 3.1, they are
related and this relationship is given by

T':;: ATAT. (3.3.2)

A tensor which has the same coordinate matrix in all Cartesian coordi­

nate systems, or that is invariant under orthogonal transformations is called

an isotropic tensor. An example of an isotropic tensor is the Kronecker or

delta tensor l), with components

l) _ (1 ifi:;:j
ij - 0 if i "" j

(3.3.3)

relative to any orthonormal Cartesian coordinate system. Actually it can be

shown [23] that the Kronecker tensor is the only isotropic tensor of order 2

(apart from a scalar multiple). Since the Kronecker tensor l) is equivalent to

the unit tensor, in many cases we shall use the symbol 1 to denote it.

Although we are concerned with second order tensors, we m,ention

here a 3rd-order tensor which is also isotropic and which we shall use on

some occasions. This is the Levi-Civita or alternating tensor E. The com­

ponents of E in any Cartesian basis are defined by

62 Dynamic Analysis of Robot Manipulators

I + 1 if (i,j ,k) is an even pennutation of (1,2,3)

£ijk = -1 if (i,j,k) is an odd pennutation of (1,2,3).

o if (i,j ,k) has any other set of values

With this definition the non-zero components of E are the following,

£123 = ~31 = ~12 = 1

~21 = ~13 = £132 = - 1

(3.3.4)

Moreover, as we can see from the above discussion, the Levi-Civita tensor is

skew-symmetric (or anti symmetric) with respect to any two of its indices.

A number of important relationships between the two isotropic tensors

E and ~ can be stated. However, here we shall consider only the following.

(3.3.5)

The truth of (3.3.5) may be established as follows [21].

If i = j or r = s, the right-hand side of (3.3.5) is zero and the left-hand

side also vanishes by the definition of the Levi-Civita tensor. Consider the

case when i '* j and r '* s. Without loss of generality we may choose i = 1

and j = 2. Using the definition of the Levi-Civita tensor, the left-hand side of

(3.3.5) then becomes

The right-hand side of (3.3.5) becomes

~lr 028 - 018 02r = k.

where, k is a scalar. As r '* s, there are just the following possibilities to

consider:

r = 3 in which case k = 0 for all s ;

s = 3 in which case k = 0 for all r ;

Chapter 3: Cartesian Tensor Analysis 63

r = 3, s = 2, giving k = 1 ;

r = 2, s = 1, giving k = -1 ;

Hence k = Ers3 ' and (3.3.5) is proved.

Furthennore, using equation (3.3.5) we can also show that

E··kE ·k = 20· I} r} Ir
(3.3.6)

3.3.2 Cartesian and Spectral Decomposition of Second Order
Tensors.

An arbitrary Cartesian tensor T defined on an n-dimensional Euclidean

space may always be decomposed into the sum of a symmetric and a skew­

symmetric tensor, as follows

(3.3.7)

where T+ is symmetric and T_ is skew-symmetric. This equation is usually

referred to as the Cartesian decomposition of a second order tensor. The

symmetric and the skew-symmetric parts of equation (3.3.7) are defined as

follows:

1 TIT
T+ = -[T + T], 't = -[T - T].

2 2
(3.3.8)

As we saw earlier, second order Cartesian tensors, defined on a 3-D

Euclidean space, constitute a linear space of dimension 32. It is easy to see
1

now that the set of all symmetric Cartesian tensors fonn a -3(3+1) = 6
2

dimensional subspace and the set of all skew-symmetric Cartesian tensors
1

fonn a -3(3-1) = 3 dimensional subspace of the linear space of second
2 '

order Cartesian tensors. Also, it is easy to see that bases for these two sub­

spaces can be fonned by considering the following tensor and wedge

64 Dynamic Analysis of Robot Manipulators

products of the vectors of a basis { e l' e 2' e 3 }.

e.®e. +e.®e., is-j
I J J I

and

i<j

respectively. Note that the wedge or exterior (or outer) product of two vec­

tors u and v , which is defined by the equation

u "V =u®v -v®u (3.3.9)

produces a skew-symmetric tensor.

From the foregoing, we can view the tensor vector space as a direct

sum of two subspaces, namely, the subspace of symmetric and skew­

symmetric tensors. Moreover, Proposition 3.7 (see Section 3.4) reveals that

these two subspaces are also orthogonal, relative to the double dot product,

and so one is the orthogonal complement of the other.

An important class of tensors is that of projection tensors. A tensor T

is called a projection if it is idempotent, i.e., if T 2 = T. Moreover, a projec­

tion is called a perpendicular (orthogonal) projection if it is also symmetric,

i.e., if TT = T. A projection tensor is the simplest nontrivial example of a

second order tensor which we can construct from the tensor product of two

vectors. In particular, given two vectors e and v, where e is a unit direction

vector, the orthogonal projection of v on e is denoted and defined by

Pe V =e® e· v = e(e· v). (3.3.10)

The tensor

(3.3.11)

which is defined as the tensor product of the unit vector e, is the ortho'gonal

projection tensor along the direction of e. Moreover, as we can see (from

the theory of projections or by direct verification), the tensor

Chapter 3: Cartesian Tensor Analysis

pe = I-p
e

65

(3.3.12)

is also an orthogonal projection tensor which projects any vector v onto a

plane perpendicular to e. From the foregoing, it is obvious that a vector v

can be decomposed into the following orthogonal components with respect

to e

e
v.L=P 'v

(3.3.13)

(3.3.14)

Now, given an orthonormal Cartesian coordinate system with basis

vectors e i' we can define the orthogonal projection tensors Pi == P e. ' .
i = 1, 2, 3. It is easy to see that these projection tensors, besides being sym-

metric and idempotent, also satisfy the following properties.

(a) orthogonality: Pi: Pj = 0 if i "* j (3.3.15)

and

(b) completeness: PI + P2 + P3 = 1. (3.3.16)

Based on orthogonal projections, we can define an important decompo­

sition for symmetric tensors. As is well known [7,8], any symmetric tensor T

has real eigenvalues (A'i) with a complete set of orthonormal eigenvectors.

Therefore, if Pk is the orthogonal projection tensor along the unit direction

of the k -th eigenvector, we can write for T the following canonical form or

spectral decomposition [7]

(3.3.17)

The spectral decomposition of a symmetric tensor, will allow us to give sim­

ple proofs for some basic propositions in Section 3.4.

66 Dynamic Analysis of Robot Manipulators

3.3.3 Tensor Invariants

Scalar Invariants: As we saw in section 3.3.1, except for isotropic tensors,

the individual components of a tensor are not invariant. They depend on the

coordinate systems. There are, however, a number of scalar invariants asso­

ciated with every second order tensor, i.e., scalars which depend on the ten­

sor itself, and not on the matrix representing it or its individual components.

These numbers are known as scalar invariants.

Functional expressions for the scalar invariants of a tensor can be writ­

ten in diffurent fonns. Thus, for example, for a general second order tensor

T , which has matrix representation T relative to some basis, we can define

[21] the following scalar invariants:

i) 11 = tjj

ii) 12 = t 22t 33 - t 23t 32 + t 33t 11 - t 13t 31 + t 11 t 22 - t d 21

iii) 13 = t11t22t 33 + t12t23t 31 + tnt21t32

- t 11t23t 32 - t22t 13t 31 - t33t 12t21

iv) 14 = tile tile

(3.3.18)

(3.3.19)

(3.3.20)

(3.3.21)

where, obviously, 11 is the trace of T, 12 is the sum of its principal minors,

and 13 is its detenninant.

In the case of symmetric tensors, 14 is not independent of 11' 12, 13.

The three independent scalar invariants of a symmetric tensor are also

known as principal invariants and in tenns of the eigenvalues (Aj) of the

symmetric tensor are given by

11 = Al + ~ + ~ = tr (T)

12 = Al~ + ~~ + ~Al

13 = Al~~

(3.3.22)

(3.3.23)

(3.3.24)

Chapter 3: Cartesian Tensor Analysis 67

Remark 3.5: For a symmetric tensor T, we can define the scalar invariants

without resorting to the components of a matrix representation of T . It can
2 3

be shown [21,27] that the scalars F I = tr (T), F 2 = tr (T), F 3 = tr (T) are

invariant. Obviously, these scalar invariants are not independent of the prin­

cipal invariants. It can be verified that

1 2
II =Fl' 12 = -(F I -F~

2

Vector Invariants: Besides scalar invariants, we can associate to any

second order tensor defined on a 3-D Euclidean space, a vector which

belongs to the 3-D Euclidean space and is defined as follows.

Let tkj be the components of a tensor T relative to a Cartesian ortho­

nonnal basis {e}. By considering the tensor product of the Levi-Civita ten­

sor E and the tensor T and contracting twice over two common indices we

have

which, by using equation (3.3.4) for i = 1,2,3 gives

tl = t 32 -t23

t2=tI3-t31

t 3 = t 21 - t 12'

(3.3.25)

(3.3.26a)

(3.3.26b)

(3.3.26c)

Equation (3.3.26) implies that t = 0, if T is symmetric, and t has com­

ponents which are numerically twice those of T if T is skew-symmetric.

Therefore, the vector

(3.3.27)

is uniquely defined when the tensor T is given. We denote this vector by

writing

68 Dynamic Analysis of Robot Manipulators

t = vect (T) = vect (T.J (3.3.28)

where, vect (.) denotes the tensor valued vector operator which is defined by

equation (3.3.27). The vector t is referred to as the vector (geometric) invari­
ant of T [27].

Dual Vectors and Dual tensors: As we can see from equation (3.3.26), the

kernel (or null space) of the veet operator is the subspace of the symmetric

tensors, and therefore is a non-empty set. Hence, the veet operator in not a

1-1 operator. Therefore, if we are seeking a 1-1 correspondence between

tensors and their vector invariants, we have to consider the restriction of the

vect operator onto the subspace of the skew-symmetric tensors. To do this,

we shall restrict our attention to the subspace of skew-symmetric tensors.

As we saw above, to each skew-symmetric tensor there corresponds a

vector - its vector invariant. Conversely, as we shall show, to any vector t in

a 3-D Euclidean space, there corresponds a skew-symmetric tensor, which

we shall denote by i. Moreover, the skew-symmetric tensor i has the impor­

tant property that its vector invariant is the vector t, from which the tensor i
has been generated. To see this, given a vector t, we define the tensor i by

considering the tensor product of the Levi-Civita tensor E with the vector t

and contract the first index of E with that of t , i.e., we consider the equation

(3.3.29)

The tensor i is skew-symmetric, since the Levi-Civita tensor is antisym­

metric with respect to the indices j and k. Moreover, if we multiply equa­

tion (3.3.29) by £rjk and use equation (3.3.6) we get

£rjk tkj = 25ri tj ,

which, by using the definition of the Kroneker tensor Sri' can also be written

as

Chapter 3: Cartesian Tensor Analysis 69

This equation is equivalent to equation (3.3.27) and therefore, t is indeed the

vector invariant of the skew-symmetric tensor i.
From the foregoing, by considering the restriction of the vect operator

onto the subspace of skew-symmetric tensors, we can see that equation

(3.3.27) (together with equation (3.3.29» defines a 1-1 correspondence

between skew-symmetric tensors and vectors. To express this 1-1 correspon­

dence between skew-symmetric tensors and vectors, we introduce the fol­

lowing tensor-valued tensor operator,

dual(')~ vect(')1

{second order skew-symmetric tensors }

(3.3.30)

which is a 1-1 operator, as can be seen from equation (3.3.26).

The dual operator can also be defined (simultaneously with its inverse)

in a component-wise manner, as follows:

Definition 3.4: The dual operator is a 1-1 tensor-valued tensor operator

which has the following property. When this operator is evaluated at a tensor

of order one (Le., a vector) we get a skew-symmetric tensor of order two, and

when it is evaluated at a second order skew-symmetric tensor, we get a ten­

sor of order one. We define the action of the dual operator on a vector or a

skew-symmetric tensor, component-wise, using the following 1-1 correspon­

dence

(3.3.31)

Symbolically, we denote the action of the dual operator on a vector !l by

writing

Ii ~ dual(u), (3.3.32)

70 Dynamic Analysis of Robot Manipulators

Similarly

u ~ dual(o) (3.3.33)

denotes the action of the dual operator on a skew-symmetric tensor 0 .

It is important to note here that, for simplicity, we write dual (.) to

denote both, the vector-valued and the tensor-valued dual operators. We

shall rely on the argument to distinguish between the two cases (Le., the

"direct" or the "inverse" operator), and we shall refer to the tensor 0,

defined by (3.3.32), as the dual tensor of the vector u. Similarly, we shall

refer to the vector u, defined by equation (3.3.33), as the dual vectorf of the

tensor 0.

It can be verified that the dual vector u of the skew-symmetric tensor 0

is simply its vector invariant as defined by equation (3.3.27). Therefore,

Definition 3.4 and equation (3.3.30), both introduce the same tensor-valued

tensor operator.

In associating a skew-symmetric tensor of order 2 with a vector, a sign

convention or a relative orientation clearly arises. Therefore, the 1-1

correspondence which has been established above is not the only possible

1-1 correspondence between vectors and skew-symmetric tensors in a 3-D

Euclidean space. For example, if instead of equation (3.3.31), we consider

the following correspondence

(3.3.34)

t The terminology "dual vector" or "dual tensor" is not standard in the literature.
For example, to define the same idea, the term dual vector has been used in [9] and
the older terminology "axial vector" has been used in [7,8,10]. Here this
terminology has been introduced to express the particular 1{~ relationship which
exists between vectors in ~ and skew-symmetric tensors in E3 .

Chapter 3: Cartesian Tensor Analysis 71

which assigns the opposite relative orientation to the components of the

skew-symmetric tensor, we can define, as in Definition 3.4, another operator

which also establishes a 1-1 correspondence between vectors and skew­

symmetric tensors in 3-D Euclidean space.

The tensor-valued tensor operator which describes this new 1-1

correspondence between vectors and skew-symmetric tensors will again be

referred to as a dual operator. But, to express it symbolically, we can use a

difrerent notation from that used for the dual operator given by Definition

3.4. In particular, to denote the action of the dual operator, which is intro­

duced here by the correspondence (3.3.34), on a vector or a skew-symmetric

tensor, we shall write

IT ~ (u)dual, (3.3.35)

and

u ~ (IT)dual , (3.3.36)

respectively. In the following, we shall rely on the notation or the context to

make clear which correspondence, i.e., (3.3.31) or (3.3.34), has to be used for

the dual operator. However, in either case, we can say that the corresponding

skew-symmetric tensor is oriented relative to its dual vector, or simply, that

the skew-symmetric tensor is a relatively oriented tensor.

Remark 3.6: As is well known [16,22], the components of a skew­

symmetric tensor change sign when the "handedness" of the coordinate sys­

tem is changed, from right-handed to left-handed, say. This is also true for

quantities whose orientation or sense is established by convention, such as

the familiar axial vectors. From the foregoing, it is easy to see that a dual

vector is actually an axial vector and this implies that the axial vector of

classical vector analysis is nothing more than a second order skew­

symmetric tensor disguised (based on a dual correspondence) as an axial

vector. Therefore, physical quantities which in classical mechanics are

72 Dynamic Analysis of Robot Manipulators

described by axial vectors can be described equally well by using second

order skew-symmetric Cartesian tensors.

3.4 Cartesian Tensor Algebraic Identities

In this section we shall prove a number of propositions which define

important tensor equations. These equations will allow us to manipulate

second order tensors very efficiently as abstract objects, without the need to

resort to coordinate bases. Moreover, if needed, the transition from these ten­

sor equations to the corresponding coordinate matrix equations is effortless.

This is because the basic tensor algebraic operations, as defined in section

3.2.3, are formally the same as the basic algebraic operations in matrix

theory.

In the following, unless mentioned otherwise, by a dual operator, we

mean the dual operator which is defined by the correspondence (3.3.31).

Based on this dual operator, we shall state a number of propositions which

define important tensor-vector identities. Obviously, similar propositions can

be stated also in terms of the dual operator which is defined by the

correspondence (3.3.34). To prove most of the propositions, which are

presented in this section, we shall use the following well known equation
[7-26]

uxv=ii·v (3.4.1)

which expresses the vector cross product of two vectors u and vasa right

dot product between the dual tensor ii and the vector v.

Proposition 3.1: The dual operator is linear, i.e., it satisfies the following

relations:

dual(ku) = kii

dual(u +v)=ii +v

where, k is a scalar and u, v are vectors.

'(3.4.2)

(3.4.3)

Chapter 3: Cartesian Tensor Analysis 73

Proof: The result follows from the correspondence (3.3.31). o
Proposition 3.2: The vector u provides a basis for the null space of its dual

tensor U , i.e.,

U'u =0

U'v=O<=>u IIv

(3.4.4)

(3.4.5)

Proof: Equation (3.4.4) follows from the fact that u xu = O. Equation (3.4.5)

follows from equation (3.4.4) which implies that the one dimensional null

space of U is spanned by the vector u. 0

The following proposition defines some equations which allow us to reorder

the factors of a left or right dot product between dual tensors and vectors.

This is often desirable when algebraic manipulations are needed for simpli­

fying other complex tensor equations.

Proposition 3.3: The right or left dot product of a dual tensor and a vector

satisfies the following equations

U'v =-v'u

v'U =-u'v

v'U=V'u

(3.4.6)

(3.4.7)

(3.4.8)

Proof: Equation (3.4.6) follows from equation (3.4.1) and the anticommuta­

tivity of the vector cross product. Equation (3.4.7) follows from equation

(3.2.24) and the fact that a dual tensor is skew-symmetric. Finally, equation

(3.4.8) follows from equations (3.4.6) and (3.4.7). 0

Proposition 3.4: The dot product of a x u and v x b can be computed by

using the following identity:

(a xU)'(v xb)=a'uv'b (3.'4.9)

Proof: Equation (3.4.9) follows from equations (3.4.1) and (3.4.8). 0

74 Dynamic Analysis of Robot Manipulators

Proposition 3.5: The dot product of two skew-symmetric tensors can be

written in tenns of the tensor and dot product of their dual vectors, as fol­

lows:

uv =v®u-u·vl. (3.4.10)

Proof: Using equation (3.4.1) we can write the double vector cross product

u x (v x r) as

u x (v x r) = u· (v· r) = u v· r

Also, the same double vector cross product can be written [17,18] as

u x (v x r) = v (u· r) - (u· v)r

=(v®u -u·vl)·r

Therefore, equating (3.4.11) with (3.4.12) we have

uv·r =(v®u -u·vl)-r

(3.4.11)

(3.4.12)

(3.4.13)

from where the identity (3.4.10) follows, since (3.4.13) is true for every vec­

torr. 0

Another useful fonn of equation (3.4.10) is the following

v®u =uv +(v·u)l (3.4.14)

which expresses the tensor product of two vectors in tenns of their dot pro­

duct and the dot product of their dual tensors.

Proposition 3.6: The double dot product of two skew-symmetric tensors u
and v is related to the dot product of their dual vectors u and v by the equa­

tion

u: v = -2u· v

Proof: From the definition of the double dot product we have

u: v = tr[uv].

Therefore, using equation (3.4.10) we can write,

(3.4.15)

Chapter 3: Cartesian Tensor Analysis 75

u:v =tr[v®u-u·vl]

= tr[v® u] -u· vtr[1]

= u· v -3u· v

= -2u· v o

Another usuful identity, which follows from the proof of Proposition (3.6), is

the following

1
u·v =--tr[uv] (3.4.16)

2

Proposition (3.6) implies that two skew-symmetric tensors are orthogonal

(with respect to the double dot or inner product) if and only if their dual vec­

tors are orthogonal.

Proposition 3.7: Symmetric and a skew-symmetric second order Cartesian

tensors are always orthogonal. In other words, the double dot product of a

symmetric tensor I and a skew-symmetric tensor S is always zero, i.e.,

I:S =tr[IS]=O (3.4.17)

Proof: It is well known [28] that tr [A B] = tr [B A] and tr [A] = tr [A T] for

any tensor A and B . Then, for I symmetric and S skew-symmetric, we have

tr[IS] = tr[(IS{]

= tr[S TIT]

= - tr[SI]

=-tr[IS]

which implies that tr [I S] = 0, and thus equation (3.4.17) is valid. 0

Proposition 3.8: The dual tensors u and v satisfy the following equations.

vuu +uuv =-(u·u)v-(v·u)u (3.4.18)

76 Dynamic Analysis of Robot Manipulators

uvii =-(v·u)ii (3.4. 19a)

1
= vii ii + ii ii v - -tr [Ii ii]v (3.4. 19b)

2

vviiii -iiiivv = (u· v)[ii ,v] (3.4.20)

where [Ii ,v] is the Ue bracket or commutator of two skew-symmetric ten­

sors and is defined [29] as follows

[ii, v] = iiv -vii (3.4.21)

Proof: Using equations (3.4.6) and (3.4.10), the left-hand side of equation

(3.4.18) can be simplified as follows:

viiii +iiiiv =v(u®u-u·ul)+ii(v®u-v·ul)

= (vu) ® u-(u· u)v+(iiv) ® u-(v· u)ii

= -(Ii v) ® u-(u· u)v +(ii v) ® u-(v· u)ii

=-(u·u)v -(v·u)ii

and this gives equation (3.4.18). Equation (3.4.19a) results from the follow­

ing manipulations

iivii =ii(u®v -(v·u)l)

=(iiu)®v -(v·u)ii

= -(v· u)ii.

Equation (3.4.19b) follows from equations (3.4.16), (3.4.18) and (3.4. 19a).

Finally, to prove equation (3.4.20), we pre- and post-multiply equation

(3.4.18) by v and subtract the resulting equations. Then, after cancelling

some terms we derive equation (3.4.20). 0

When the vectors u and v are perpendicular, since v· u = 0, equations

(3.4.18), (3.4. 19a) and (3.4.20) are simplified to

vii ii + ii ii v = - (u· u)v (3.4.22)

Chapter 3: Cartesian Tensor Analysis 77

uvu =0 (3.4.23)

and

vvuu -uuvv = 0 (3.4.24)

respectively. Also, when the vectors u and v are parallel (Le., u = kv,

where k is a scalar) equations (3.4.18) and (3.4.19a) become

u u u = - (u· u)u (3.4.25)

and equation (3.4.20) equals zero. Therefore, when the vectors u and v are

either parallel or orthogonal than the symmetric tensors u u and v v com­

mute.

Proposition 3.9: The dual tensor dual (u v) can be written in one of the fol­

lowing equivalent fonns:

dual(u·v)=v®u -u®v

=uv -vu

=[u,v]

= v "U

(3.4.26a)

(3.4.26b)

(3.4.26c)

(3.4.26d)

where [u , v] is the Lie bracket of u and v and v "U is the exterior or outer

product of v and u.

Proof: To prove (3.4.26a), we shall use the double vector cross product

(u x v) x r . From vector analysis it is known [17] that

(u x v) x r = v (u· r) - u (v· r)

=v®u·r -u®v·r (by (3.2.3»

= (v ® u - u ® v)· r (3.4.27)

Moreover, by using equation (3.4.1), the tenn (u x v) x r can also be written

as

(u x v) x r = dual (u· v)· r (3.4.28)

78 Dynamic Analysis of Robot Manipulators

Then, since (3.4.27) and (3.4.28) are true for every vector r we can state that

dual (Ii· v) = v ® u - u ® v

which implies that equation (3.4.26a) is true. Equation (3.4.26b) follows

from equations (3.4.26a) by using equation (3.4.14). Equation (3.4.26c) fol­

lows from equation (3.4.26b) and the definition of the Lie bracket, i.e., equa­

tion (3.4.21). Finally, equation (3.4.26d) follows from equation (3.4.26a) and

the definition of the outer product of two vectors i.e., equation (3.3.9). 0

Proposition (3.9) is important because it allows us to derive relation­

ships between the cross product of two vectors and the Lie bracket of two

skew-symmetric t~nsors, as well as between the vector cross product and the

outer and the tensor product of two vectors. Thus, for example, from equa­

tion (3.4.26c), it is obvious that

u x v = dual [Ii , v]

and from equation (3.4.26d) it follows that

uxv = dual (v "u)

Also, since for any second order Cartesian tensor A we have

T veet (A) = - veet (A),

it is easy to see that from equations (3.4.26a) and (3.4.26b) we have

u Xv = - 2veet (u ® v)

and

UXv = 2veet (Ii v)

respectively.

(3.4.29)

(3.4.30)

(3.4.31)

(3.4.32)

(3.4.33)

Proposition 3.10: The dual tensor dual (w Ii v) satisfies the followi!Ig equa­

tions.

dual (w Ii v) = Ii(w' v) -yew' u) (3.4.34)

Chapter 3: Cartesian Tensor Analysis

Proof: Equation (3.4.34) follows from the equation

wuv =w x(u xv)

= u(w· v)-v(w· u)

and the linearity of the dual operator.

79

o
Equation (3.4.34), for w =u, becomes dual(uuv)=u(u·v)-v(u·u)

which can be further manipulated to give

dual(uuv) = u(u· v) + v(u· u)-2v(u· u)

= - [vuu + uuv] -2v(u· u)

= - [vuu + uuv] + tr[uu]v

[by (3.4.18)]

[by (3.4.16)]

Now, based on equation (3.4.35), we can show the following:

(3.4.35)

Proposition 3.11: Let I be a symmetric tensor. Then the dual tensor

dual(l· v), where v is any vector, satisfies the following equation

dual(l· v) = - [Iv + vI] + tr[I]v (3.4.36)

Proof: Since I is a symmetric tensor, let

(3.4.37)

be its spectral decomposition, where Ai' i = 1, 2, 3, are the eigenvalues of I

and x, y and z are its nonnalized eigenvectors. Now, using equations

(3.4.14), we can write the spectral decomposition of I in tenns of the dual

tensor of its eigenvectors, i.e., we can write

I = Alii + ~yy + ~ii + tr[I]1

Then, the right dot product I . v becomes

I . v = Alii· v + ~Y Y . v + ~i i . v + tr [I]v

(3.4.38)

Now, based on the linearity of the dual operator and using equation (3.4.35),

we can write

80 Dynamic Analysis of Robot Manipulators

duaI(I· v) = - Iv [",ii + 1.."H + A-,Ul+[",ii + 1.."H + A-,Ulv I
+ [A1tr[X.X] + ~tr[j·j] + ~tr[i.i]]V + tr[l]v

Moreover, since for unit vectors we have

tr[xx] = tr[jj] = tr[ii] = -2,

we can write

dual(l· v) = - Iv [A,ii + 1.."H + A-,U + tr[l]l]

+ [",Xi + 1.."H + A-,U + tr[l]I]V I + tr [llv

from where using (3.4.38) we get (3.4.36). o
Proposition 3.12: Let 1 be a symmetric tensor, and let ii and v be skew­
symmetric tensors. Then, the following equation holds:

u·l·v =-tr[iiJv]

1
where J = -I + -tr[I]1.

2

(3.4.39)

Proof: Using equation (3.4.16), we can write the left-hand side of equation
(3.4.39) as follows

u· I· v = - "!"tr [ii. dual (I. v)]
2

= - ..!.. tr [ii [- 1 v - vI + tr [I]v]]
2

= - "!"tr [-iilv -iivl + tr[l]iiv]
2

Chapter 3: Cartesian Tensor Analysis 81

Moreover, since tr [S] = tr [S T] and tr [S T] = tr [T S] for any tensors S and

T, we have

tr[Ii(yI)] = tr[(yI)Ii]

= tr [(VI lil].

= tr[liIY].

Therefore, we can write

u' I· v = -IT [-ult + : IT[I]uv 1

= - tr[liJy]

1
where J = - I + - tr [I] 1, completing the proof.

2
o

With these tensor-vector identities at our disposal, we proceed in the

next chapter to rewrite the classical vector equations of the Newtonian rigid

body dynamics in a Cartesian tensor fonnulation. Moreover, in the next

chapter we shall show that the Cartesian tensor fonnulation of the equations

of motion can be implemented in a computationally efficient manner.

3.5 References

[1] G. Ricci and T. Levi-Civita, Methodes de calcul dijferentiel absolu et

leurs applications, (Paris, 1923). (Reprinted from Mathematische

Annalen, tome 54,19(0).

[2] D. Lovelock and H. Rund, Tensors, Dijferential Forms and Varia­

tional Principles, John Wiley & Sons, New York, 1965.

82 Dynamic Analysis of Robot Manipulators

[3] R. L. Bishop and S. I. Goldberg Tensor Analysis on Manifolds, The

Macmillan Company, New York, 1968.

[4] E. A. Lord, Tensors, Relativity and Cosmology, Tata McGraw-Hill

Publishing Co. Ltd., New Delhi, 1976.

[5] I. S. Sokolnikoff: Tensor Analysis: Theory and Applications to

Geometry and Mechanics of Continua, John Wiley & Sons, New York,

1965.

[6] S. F. Borg, Matrix-Tensor Methods in Continuum Mechanics, D. Van

Nostrand Company, Princeton, New Jersey, 1963.

[7] P. Chadwick, Continuum Mechanics: Concise Theory and Problems,

George Allen & Unwin Ltd., London, 1976.

[8] C. Truesdell, A First Course in Rational Continuum Mechanics, Vol. 1,

Academic Press, New York, 1977.

[9] W. M. Lai, D. Rubin and E. Krempl, Introduction to Continuum

Mechanics, Pergamon Press, New York, 1978.

[10] M. E. Gurtin, An Introduction to Continuum Mechanics, Academic

Press, New York, 1981.

[11] A. J. McConnell, Applications of Tensor Analysis, Dover Publications,

New York, 1947.

[12] J. L. Synge and A. Schild, Tensor Calculus, University of Toronto

Press, Toronto, 1949.

[13] M. S. Smith, Principles & Applications of Tensor Analysis, Howard W.

Sams & Co., New York, 1963.

[14] J. L. Mercier, An Introduction to Tensor Calculus, Wolters-Noordhoff

Publishing, Groningen, 1971.

[15] J. G. Simmonds, A Brief on Tensor Analysis, Springer-Verlag, New

York,1982.

Chapter 3: Cartesian Tensor Analysis 83

[16] L. Brillouin, Tensors in Mechanics and Elasticity, Academic Press,

New York, 1964.

[17] W. Gibbs Vector Analysis, Dover Publications, New York, 1960.

[18] L. Brand, Vector and Tensor Analysis, John Wiley & Sons, New York,

1947.

[19] W. G. Bickley and R. E. Gibson, Via Vector to Tensor, The English

Universities Press, London, 1962.

[20] A. I. Borisenko and I. E. Tarapov, Vector and Tensor Analysis With

Applications, Prentice-Hall, Englewood CllflS, New Jersey, 1968.

[21] D. E. Bourne and P. C. Kendall, Vector Analysis and Cartesian Ten­

sors, Thomas Nelson & Sons, England, 1977.

[22] A. Lichnerowicz, Elements of Tensor Calculus, Methuen, London,

1962.

[23] G. Temple, Cartesian Tensors: An Introduction, John Wiley & Sons,

New York, 1960.

[24] H. Jeffreys, Cartesian Tensors, Cambridge University Press, Cam­

bridge, 1961.

[25] A. M. Goodbody, Cartesian Tensors: With Applications to Mechanics,

Fluid Mechanics and Elasticity, Ellis Horwood, England, 1982.

[26] I. J. Wittenburg, Dynamics of Systems of Rigid Bodies, B. G. Teubner,

Stuttgart, 1977.

[27] J. Angeles, Rational Kinematics, Springer-Verlag, New York, 1988.

[28] A. Graham, Kronecker Products and Matrix Calculus with Applica­

tions, Ellis Horwood. London, 1981.

[29] R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applica­

tions, John Wiley & Sons, New York, 1974.

[30] G. W. Stewart, Introduction to Matrix Computations, Academic Press,

New York, 1973.

84 Dynamic Analysis of Robot Manipulators

[31] D. Hestenes, New Foundations o/Classical Mechanics, D. Reidel Pub­

lishing Company, Dordrecht, Holland, 1986.

Chapter 4

Cartesian Tensors and Rigid Body

Motion

4.1 Introduction

As we have mentioned in Chapter 1, the representation of the physical

quantities involved in the fonnulation of the equations of motion of a rigid

body system detennines the kind of mathematical analysis that will be used

in deriving these equations. In the classical Newtonian fonnulation of rigid

body dynamics, vectors are usually used [1-5] to represent basic physical

quantities and therefore vector analysis is used for deriving the equations of

rigid body motion. Vector analysis is usually imposed on classical

Newtonian dynamics by the consideration that angular rates (Le., linearly

independent rates of change of a rigid body orientation) constitute the com­

ponents of a vector quantity, the angular velocity vector. This consideration

also assigns a vector character to other physical quantities which are defined

in tenns of the angular velocity vector such as angular acceleration, angular
momentum and external torque. However, as is well known [9], basic physi­

cal quantities in rigid body motion such as angular velocity, angular

86 Dynamic Analysis of Robot Manipulators

acceleration, angular or rotational momentum and resultant torque can be

described by using second order Cartesian tensors. Therefore, based on the

Cartesian tensor representation of these quantities, we can use Cartesian ten­

sor analysis for the study of rigid body motion.

Applications of Cartesian tensor analysis to rigid body dynamics can

be usually found within the framework of continuum mechanics. This is

natural since, as is well known [8-12], tensor analysis has been universally

adopted as the mathematical system upon which continuum mechanics is

built. Thus, within the framework of continuum mechanics, an elegant

theoretical treatment of rigid body motion based on Cartesian tensor analysis

has been given by Truesdell [9]. Following an abstract axiomatic approach in

his analysis, Truesdell treated all physical quantities involved in rigid body

dynamics as second order Cartesian tensors rather than vectors. Without con­

sidering 3-dimensional vector analysis and based only on the tensor

representation of the quantities involved in rigid body dynamics, Truesdell

derived a very simple Cartesian tensor formulation for the equations of rigid

body motion. Therefore, as shown by Truesdell, Cartesian tensor analysis

alone suffices for a comprehensive study of rigid body dynamics.

However, in continuum mechanics most of the time attention is cen­

tered on rigorous theoretical foundations and concise formulations for the

equations of motion. Thus, important aspects concerning the various formu­

lations of the equations of motion (such as their computational efficiency) are

often overlooked and not properly addressed. This is in particular true in [9]

where, since Truesdell is not concerned with applications, he does not pro­

vide any computational complexity analysis for the tensor formulation of the

equations of rigid body motion. Thus, although this tensor formulation for

the equations of rigid body motion is conceptually simple and, as we shall

see later, has computational advantages over the classical vector formula­

tion, to our knowleage, it has not been used in practical applications where

the vector formulation is still much more popular.

Chapter 4: Cartesian Tensors and Rigid Body Motion 87

In this chapter, we shall not be concerned with the rigorous theoretical

foundations of the tensor fonnulation of the equations of rigid body motion.

This, has been done already by Truesdell in [9]. Here, we shall consider

some practical aspects of these equations. In particular, first, starting from

the classical vector description for the equations of rigid body motion and

using the tensor-vector identities developed in Chapter 3, we shall provide

an equivalent tensor fonnulation for these vector equations. This tensor for­

mulation is obviously similar to that used by Truesdell [9]. However, the

approach is diffurent and, we believe, easier to follow for students or

engineers who are familiar with the classical vector fonnulation of the equa­

tions of rigid body motion. Then, we shall examine the important issue (in

practical applications) of computational complexity in implementing the

equations of rigid body motion. In particular, we shall examine the computa­

tional complexity of implementing the vector and the tensor fonnulations of

these equations. It will then became clear that the tensor fonnulation of these

equations can be implemented far more efficiently. Therefore, in practical

applications (e.g., in robotics) where computational efficiency is of impor­

tance, the tensor fonnulation of the equations of rigid body motion is to be

preferred over the classical vector fonnulation.

The outline of this chapter is as follows: Section 4.2 deals with

kinematic aspects of rigid body motion. In particular, we show that by using

the angular velocity and angular acceleration tensors, the velocity and

acceleration of any point on the rigid body can by computed very easily.

Section 4.3 deals with dynamic aspects of rigid body motion. In particular,

an analysis of the rigid body inertia tensor is given and the vector fonnula­

tion of rigid body motion is reviewed. From this, the angular momentum and

torque tensors surface naturally and they lead to a tensor fonnulation for

Euler's equation of rotational rigid body motion.

88 Dynamic Analysis of Robot Manipulators

4.2 On Kinematic Analysis of Rigid Body Motion

Kinematic analysis of rigid body motion deals with motion without

regard to forces or moments that cause that motion. In particular, kinematic

analysis of rigid body motion is concerned with the body's configuration and

motion analysis. Configuration kinematic analysis deals with possible

descriptions of the rigid body spatial configuration as a function of time, and

motion kinematic analysis deals with the first and second time derivatives of

these configuration functions. We dealt with configuration kinematic

analysis in Chapter II. In this section, we shall be concerned mainly with the

kinematic analysis of rigid body rotational motion.

As we have outlined in section 2.2, the spatial configuration of a rigid

body, relative to a Cartesian orthogonal coordinate system, is defined by

considering a position vector and a rotation tensor which defines the orienta­

tion of the rigid body. Moreover, as is welllmown (Theorem 2.2) a general

rigid body motion can be considered as the superposition of a purely transla­

tional and a purely rotational rigid body motion. Therefore, the decomposi­

tion of the rigid body spatial configuration, as outlined above, implies that

the position vector and its time derivatives describe purely translational rigid

body motion and, similarly, the rotation tensor and its time derivatives

describe purely rotational rigid body motion about a fixed point. The latter

follows also from the fact that a rotation tensor can be used to describe a

finite displacement about a fixed point (see Chapter II), which in the 3-D

physical space is equivalent to finite rigid body displacement about a fixed

axis. Hence, a rotation tensor in the 3-D physical space, when it is con­

sidered to be a continuous function of time, and its time derivatives are

sufficient to study pure rotational rigid body motion about a fixed point.

Therefore, for the kinematic analysis of a rigid body pure ro~tional

motion we need only to consider a rotation tensor R = R (t), which defines

the rigid body orientation as a function of time, and its first and second time

derivatives. For the absolute time derivatives (Le., the time derivatives

Chapter 4: Cartesian Tensors and Rigid Body Motion 89

relative to an inertia frame) of R we shall use the classical Newtonian nota-
2 dR. dR ••

tion, i.e., we shall write -- == R and -- == R .
dt dt2

4.2.1 The Angular Velocity Tensor

Perhaps the easiest way to introduce the angular velocity tensor is by

using a corollary of the following theorem [13].

Theorem 4.1 : Any differentiable orthogonal t tensor Q == Q (t) satisfies the

following first order differential equation
.
Q = 4I>Q (4.2.1)

where, 41> is a second order skew-symmetric tensor.

Proof: Since for any orthogonal tensor we have Q T Q = 1, we can write

(4.2.2)

Now, let

(4.2.3)

Then, (4.2.2) can be written as (4.2.1). Therefore, Q satisfies a first order

differential equation. Now, we shall show that 41>, as defined by (4.2.3), is

skew-symmetric. It follows from the orthogonality of Q that

or

i.e.,

QQT+QQT=O

T
41>+41> =0

t A tensor Q, defined in an inner-product space, is orthogonal if it preserves the
inner product, i.e., if Q (u)· Q (v) = U· v for all vector u and v.

90

T
4» = - 4»

and this completes the proof.

Dynamic Analysis of Robot Manipulators

o

Now, since a rotation tensor is an orthogonal tensor, it satisfies Theorem 4.1

and we can state the following corollary.

Corollary 4.1 : A rotation tensor R satisfies a first order differential equation

given by
.
R = 4»R (4.2.4)

where, 4» is a second order skew-symmetric tensor.

From this Corollary we can derive the definition of the angular velocity

tensor as follows: When the rotation tensor R is defined in a 3-D Euclidean

space, it describes the orientation of a rigid body. In this case, we denote the

skew-symmetric tensor 4» by m, i.e., we write equation (4.2.4) as
.
R =mR. (4.2.5)

and refer to m as the angular velocity tensor (or spin tensor [9]).. Equation

(4.2.5), which is sometimes referred [9] to as Poisson's equation, can also be

written in the form

(4.2.6)

and can be used as the definition of the angular velocity tensor. Moreover,

since the skew-symmetric tensor m is defined in a 3-D Euclidean space, it

has a unique dual (or axial) vector The dual vector CAl, of m, is the familiar

angular velocity vector. Therefore, equation (4.2.6) and the dual operator

provide a simple definition for the angular velocity vector.

A tensor representation for angular velocity has many advantages over

the classical vector representation (which, however, may claim superiority

over a tensor representation when pictures are to be drawn). First' of all,

from a practical point of view, a tensor treatment for angular rates allows us

to relate the angular velocity to the derivative of another tensor quantity,

Chapter 4: Cartesian Tensors and Rigid Body Motion 91

namely, the derivative of the orientation tensor R as expressed by equation

(4.2.5). This is not possible when we describe the angular rates with the

angular velocity vector co, since it is well known [2,3] that there is no vector

quantity whose derivative is related to the angular velocity vector. Also from

a theoretical point of view, the tensor representation for angular rates is to be

preferred as is obvious from the WOIK of Truesdell on continuum mechanics

[9]. Finally, the angular velocity tensor is not restricted to a 3-D Euclidean

space. As we can see, by generalizing equation (4.2.5) from a 3-D to an n-D

Euclidean space, the tensor eli becomes Ct. Therefore, by analogy, we can

refer to the skew-symmetric tensor Ct as the angular velocity tensor in an

n-D Euclidean space. From the foregoing, the angular velocity tensor Ct is

well defined in any n-D Euclidean space. This unfortunately is not true for

the angular velocity vector which exists only in a 3-D Euclidean space.

4.2.2 The Angular Acceleration Tensor
..

Let us consider now the second time derivative R, relative to an iner-..
tial frame, of a rotation tensor R. The functional relationship between R
and R follows from the following theorem.

Theorem 4.2 : Any differentiable orthogonal tensor Q == Q (t) satisfies the

following second order differential equation
00

Q = 'I'Q (4.2.7)

where, 'I' is a second order tensor defined by
• 2

'I'=Ct+Ct , (4.2.8)

with Ct the angular velocity tensor defined by (4.2.3) and Ct2 = Ct·Ct == CtCt.

Proof: Differentiation of (4.2.1) gives
... .
Q=CtQ+CtQ

o

and substituting for Q we get

92 Dynamic Analysis of Robot Manipulators

00 0

Q = «() + ()(»Q

= 'I'Q
o 2

where 'I' = () + () . This complete the proof. o
Corollary 4.2 : A second order rotation tensor R satisfies the following

second order differential equation
00

R = 'fIR (4.2.9)

where 'I' is a second order tensor defined by
o 2

'I'=()+() , (4.2.10)

with () the angular velocity tensor which corresponds to R and ()2 = ()().
Theorem 4.2 and its Corollary are obviously valid for orthogonal ten­

sors defined in an n-D Euclidean space, but here we shall be concerned only

with the particular case where n = 3. In this case, we introduce the notation

o to denote the tensor 'I' and write equation (4.2.9) as
00

R =nR. (4.2.11)

Also, using the corresponding notation for the tensor (), we write equation

(4.2.10) as

(4.2.12)

and we refer to the tensor 0 as the angular acceleration tensor. Obviously,

using equation (4.2.9), we can also define the angular acceleration tensor 0

by the equation

0= RRT (4.2.13)

where R is a rotation tensor in a 3-D Euclidean space.

The tensor 0 is neither symmetric nor skew-symmetric. Actually, since - '

ril is skew-symmetric and mm is symmetric, equation (4.2.12) represents the

Cartesian decomposition of O. Moreover, since the tensor mm is symmetric

we have from equations (3.3.28) and (3.3.30) that

Chapter 4: Cartesian Tensors and Rigid Body Motion 93

- -
vect(O) = vect(m) == dual(m) = m (4.2.14)

i.e., the vector invariant of the angular acceleration tensor 0 is the familiar

angular acceleration vector. This obviously justifies the name given to the

tensor O.

As is obvious from the extensive literature on rigid bodies, the angular

acceleration tensor is rarely used in the kinematic and dynamic analysis of

rigid body motion (a few exceptions may be found in [9,16,17,21]). This is

probably due to the fact that a vector approach to analyzing rigid body

motion fails to establish a clear relationship between vector invariants and

tensors other than skew-symmetric tensors. In the case of the angular velo­

city vector and angular velocity tensor, a 1-1 relationship between them is

obvious, since the angular velocity tensor is skew-symmetric. Thus, in this

case, one representation is the dual of the other. A similar dual relationship

between the angular acceleration vector and angular acceleration tensor does

not exist because the angular acceleration tensor is not skew-symmetric. The

dual tensor of the angular acceleration vector (which is known as Euler's

acceleration [9]) defines only the skew-symmetric part of the angular

acceleration tensor and not the whole tensor. As we can see from equation

(4.2.12), to define the angular acceleration tensor we need to use not only the

angular acceleration vector but also the angular velocity vector. Therefore,

the transition from vector analysis to tensor analysis is not straightforward.

We shall conclude this section with applications of the angular velocity

and angular acceleration tensors in the computation of linear velocity and

acceleration of points on a moving rigid body.

4.2.3 Linear Velocity and Acceleration in Rigid Body Motion

The concepts of angular velocity and angular acceleration tensors pro­

vide powerful tools for describing the motion of a rigid body since they

enable us to derive equations with very simple structure. To see this, let us

consider some arbitrary vector involved in a mechanical problem, such as

94 Dynamic Analysis of Robot Manipulators

the position vector r of a point on the rigid body. Usually such a vector will
vary in time as the body moves. Therefore, it is important that its linear velo­

city and acceleration relative to an inertial coordinate system be determined

in a computationally efficient manner. To solve problems of this type, we

proceed as follows.

As is usually the practice in rigid body motion, we consider two coor­

dinate systems: an inertial coordinate system and a body coordinate system,

which we denote by {e } and {e' } respectively. The body coordinate sys­

tem is rigidly attached to the rigid body and so moves with it Suppose now

that a point p on the body has a position vector r 1 relative to the origin 0 of

the inertial coordinate system and a position vector r 2 relative to the origin

0' of the moving coordinate system. Also, let s be the vector from 0 to 0' •

Then, as we can see in Figure 4.1 the three vectors are related by the equa­

tion

Figure 4.1: Position vectors and coordinate systems in rigid body motion.

Chapter 4: Cartesian Tensors and Rigid Body Motion 95

(4.2.15)

Moreover, let R be the rotation tensor which specifies the orientation of the

moving coordinate system relative to the inertial one. Then, if r 2 denotes

the position vector of the point p relative to 0' when it is expressed in the

moving coordinate system, premultiplication by the rotation tensor R

expresses it relative to the inertial coordinate system, i.e., we can write

rz = Rr2 (4.2.16)

Therefore, equation (4.2.15) can also be written as

(4.2.17)

Now, as is well known, the vector of the absolute linear velocity of the point

p is defined to be the first time derivative of its position vector relative to the

inertial coordinate system. In other words the absolute linear velocity of the

point p is given by the vector r 1. To compute this derivative we shall use

equation (4.2.17). Thus, we have

(4.2.18)

since the vector r 2 is time independent relative to the body coordinate sys-.
tern. Now, substituting for R from equation (4.2.5) and using equation

(4.2.16), we finally have for the velocity of the point p

(4.2.19)

where m is the angular velocity tensor of the moving body. Also, the second

time derivative of equation (4.2.17) defines the vector of the absolute linear

acceleration of the point p relative to the inertial coordinate system. There­

fore, for the absolute linear acceleration of the point p we have
..

fl =8 +Rr2

which can be simplified to

fl =8 +Or2 (4.2.20)

96 Dynamic Analysis of Robot Manipulators

where 0 is the angular acceleration tensor of the moving body. Moreover, as

we can see from equation (4.2.16), the time derivatives for vectors which are

constant relative to the body coordinate system are computed by using the

simple equations

(4.2.21)

and

(4.2.22)

Let us recall at this point, that in the classical vector description of

rigid body dynamics, the vectors of the linear velocity and acceleration of

the same point p are computed from the following vector equations

(4.2.23)

and

(4.2.24)

respectively. Obviously, equations (4.2.19) and (4.2.20) are equivalent to

equations (4.2.23) and (4.2.24) respectively. However, as we can see, the

introduction of the angular velocity and angular acceleration tensors enables

us to derive a simple and compact representation for the linear velocity and

acceleration of points on a moving rigid body. In particular, equations

(4.2.20) and (4.2.22) enable us to manipulate very efiectively, equations

involving the linear acceleration of various position vectors on the same

rigid body. From the foregoing, we see that the introduction of the angular

velocity and angular acceleration tensors provides a more efficient means for

the analysis of motion kinematics. Moreover, as we shall see in the following

section, the angular velocity and angular acceleration tensors can be used to

simplify motion dynamics as well.

Chapter 4: Cartesian Tensors and Rigid Body Motion 97

4.3 On Dynamic Analysis of Rigid Body Motion

In the dynamic analysis of motion, we deal with relationships between

the motion of a body and the forces and/or torques which cause or result

from that motion. As is well known from classical dynamics [1-5], a number

of schemes have been developed over the years for the dynamic analysis of

rigid body motion such as those based on the equations of d' Alembert,

Newton-Euler, Euler-Lagrange and Hamilton. In this section we shall be

concerned with the Newtonian formulation of the equations of rigid body

motion.

As we have mentioned before, a general motion of a rigid body can be

considered as resulting from the superposition of two independent motions:

a pure translational motion of a point (usually its center of mass) and a pure

rotational motion about that point. The Newton-Euler procedure uses exactly

this decomposition. In particular, in the Newtonian formulation of the equa­

tions of rigid body motion, the translational motion is described by Newton's

equation (or Newton's second law) which symbolically is stated as follows

(4.3.1)

where Fe is the total external (or resultant) force acting on the rigid body, m

is the mass of the rigid body and Fe is the absolute linear acceleration of its

center of mass. The rotational motion is described by Euler's equation which

is symbolically stated as

M =1 ·eil+mxl·m e e e (4.3.2)

where Me is the total external (or resultant) torque about the center of mass,

Ie is the inertia tensor of the body about its center of mass and m (eil) is the

vector of angular velocity (acceleration) of the body.

Equations (4.3.1) and (4.3.2) are the fundamental equations which

describe the rigid body motion in the classical Newtonian formulation. As

we can see, these two vector equations provide six differential scalar

98 Dynamic Analysis of Robot Manipulators

equations which, when the external force and torque (with appropriate initial

conditions) are given, can be solved to detennine the six degrees of freedom

of a rigid body in three dimensional physical space, i.e., the position of its

center of mass and its orientation.

It is obvious from equations (4.3.1) and (4.3.2) that the dynamic

analysis of rigid body motion in the classical Newtonian fonnulation, for

both translational and rotational rigid body motion, is based on vector

analysis. In this section, as an alternative to vector analysis, we shall use

Cartesian tensors to analyze the rotational rigid body motion. Since, in rigid

body rotational motion, the inertia tensor of the body plays an important role,

we first review some relevant facts about the rigid body inertia tensor.

4.3.1 The Rigid Body Inertia Tensor

As is well known (e.g., see [1]), the inertia tensor of a rigid body

characterizes the mass distribution of the body relative to a point, and is usu­

ally defined by the equation

10 = J (r· r 1 - r ® r)dm (4.3.3)
m

where 0 denotes a point of the body and r denotes the position vector of a

point mass relative to the point o.

The rigid body inertia tensor, as defined by equation (4.3.3), is used

extensively in the dynamic analysis of rigid body motion. Actually, it is

often the only definition provided for the inertia tensor, especially when a

vector treatment of the Newtonian dynamic analysis of rigid body motion is

used. In order to treat the dynamic analysis of rigid body motion based on

Cartesian tensors, this definition of the inertia tensor needs to be modified.

As we shall see later, the proper definition for a Cartesian tensor fonnulation

of rigid body rotational dynamics is provided by the equation

Jo = J r® rdm (4.3.4)
m

Chapter 4: Cartesian Tensors and Rigid Body Motion 99

where 0 is a point on the rigid body and r is the position vector of a point

mass relative to point o. We shall refer to the inertia tensor Jo as the Euler

tensor of a rigid body [9].

Obviously, the two inertia tensors 10 and Jo describe the same physical

property of a rigid body, and thus they have to be equivalent. To see this, we

proceed as follows [24]. First we note that equation (4.3.3) can be written in

the form

10 = - J ttdm (4.3.5)
m

if one uses the tensor equation (3.4.10). Then, starting from equation (4.3.4)

and using the tensor equation (3.4.14) we can write:

Jo = J (t t + r· r l)dm
m

=J ttdm + tf -.!.tr[tt]dm
m m 2

= J ttdm + .!.tr[-J ttdm]l
m 2 m

[by (4.3.5)]

i.e., we have

[by (3.4.16)]

(4.3.6)

Therefore, equation (4.3.6) provides the equivalence relationship between

the two tensors, Jo and 10 • Similarly, it can be shown that the equation

(4.3.7)

is also valid.

100 Dynamic Analysis of Robot Manipulators

Now, as is often the case with most mathematical definitions, in practi­

cal applications we cannot use these definitions for the computation of the

inertia tensor. In practice, the inertia tensor of a rigid body is computed

experimentally. Moreover, even in experimental measurements, the direct

computation of the rigid body inertia tensor about any point 0 other than the

center of mass, is in general very difficult. Therefore, the body center of mass

c is used when the inertia tensor of a body is evaluated. Then, in applications

where the inertia tensor relative to points other than the center of mass is

required and the inertia tensor about the center of mass is known, the paral­
lel axis theorem is used. The parallel axis theorem for the inertia tensor

which is defined by equation (4.3.3) is usually stated in the following fonn

(4.3.8)

where Ie is the rigid body inertia tensor about its center of mass, r c is the

position vector of the center of mass relative to point 0, and m is the mass of

the body. Equation (4.3.8) can also be written in a compact tensor fonn as

follows:

(4.3.9)

where equation (4.3.9) is derived from (4.3.8) using equation (3.4.10).

The parallel axis theorem for the inertia tensor 10 is a basic theorem in

rigid body dynamics and its proof can be found in any book on classical

dynamics (e.g. [1]). Obviously, the parallel axis theorem is also valid for the

Euler tensor Jo ' which is defined by (4.3.5). Since the application of the

parallel axis theorem for the tensor Jo is not well known, we provide here a

fonnulation and a proof for it.

Theorem 4.3 (parallel axis theorem) : When the Euler tensor Jc of a rigid

body about its center of mass is known, then the Euler tensor, Jo ' about any

other point 0, is given by

(4.3.10)

Chapter 4: Cartesian Tensors and Rigid Body Motion 101

where r c is the position vector of the center of mass relative to point 0 and

m is the total mass of the body.

Proof: From the fonnulation of the parallel axis theorem in tenns of the

inertia tensor Ie' i.e., from equation (4.3.8), we have

tr[lo] = tr[le] + (3rc' rc - rc' rc)m

or

tr [10] = tr [Ie] + 2r c' r cm.

Now, using (4.3.8) and (4.3.11) we can rewrite (4.3.6) as follows

Jo = ~ (tr[le] + 2rc' rcm] I-Ie -(rc' rcI-rc® rc)m

1
= -tr[le]1-le + mrc® rc'

2

(4.3.11)

Further, since equation (4.3.6) is valid for any point 0, it is valid for the

center of mass, i.e., we have

(4.3.12)

Therefore, by substituting equation (4.3.12) into the last expression for Jo '

we get equation (4.3.10). 0

The inertia tensor, like any other tensor, is described relative to a coor­

dinate system by a set of components which are known as the moments of

inertia and products of inertia. These components define the coordinate

matrix 10 for the tensor 10 , If 10 is the coordinate matrix of the Euler tensor

Jo relative to the same coordinate system { e }, then the equivalence which

is established above by equation (4.3.6) or equation (4.3.7) between Jo ' and

10 leads us to a component-wise relationship between the coordinate

matrices 10 and 10, This component-wise relationship is expressed as fol­

lows:

102 Dynamic Analysis of Robot Manipulators

111 112 1 13

10 = 112 122 1 23

113 1 23 133

=

or

- III + 122 + 133 -/12

2

III - 122 + 133
-/12

2

-/13 -/23

III /12 / 13

10 = /12 122 123

113 123 133

122 + 133 - 1 12

= - 1 12 111 + 133

-/13

-/23 (4.3.13)

III + 122 - 133

2

(4.3.14)

Chapter 4: Cartesian Tensors and Rigid Body Motion 103

Now, depending on the coordinate system, the components of the iner­

tia tensor can be time-dependent or time-independent. In particular, relative

to a coordinate system which is rigidly attached to the rigid body, the com­

ponents of the inertia tensor are always time independent. However, when

the rigid body is moving in space, the components of the inertia tensor rela­

tive to an inertial coordinate system will be time-dependent, and in this case,

calculation of their time derivatives may be required. For example, in practi­

cal applications it is usually necessary to know the first time derivative of the

inertia tensor Ie (or Je) relative to an inertial coordinate system. Therefore,

in the following, we provide a simple formulation for this derivative.

Let us consider the coordinate system {e } to be an inertial coordinate

system. Also, let us consider a body coordinate system { e' } whose orienta­

tion relative to the inertial coordinate system is described by the rotation ten­

sor R which is assumed to be a continuous di1:rerentiable function of time. ,

Moreover, let us denote by Ie and I e the rigid body inertia tensors relative to

the inertial and body coordinate sy~tems respectively. From the foregoing, it

is obvious that the inertia tensor I e is time independent whereas the inertia

tensor Ie is time dependent. We express the time dependence of Ie by writ­

ing

(4.3.15)

Equation (4.3.15) allows us to derive the time derivative (Le., the time

derivative in an inertial reference frame) of the inertia tensor Ie of a rigid

body in a simple and concise manner as follows:
•• ' T 'eT
Ie = RleR + RleR

or, since W is skew-symmetric, we can write

Ie = wle -leW.

[by (4.2.5)]

(4.3.16)

104 Dynamic Analysis of Robot Manipulators

Equation (4.3.16) is also valid if we consider the inertia tensor of the rigid

body about any other point 0 instead of that about the center of mass c. We

can show this as follows:

Using the parallel axis theorem (equation (4.3.9)), we have

io = ie - m [.: i e + fie]
which, by equation (4.2.21), can be written as

io = ie - m [dual (ei>r e)f e + f edual (ei>r e).

Now, using equation (3.4.26b), after a few manipulations we get
. .
10 = Ie - ei>[mf i e1 + [mf i e1ei>

= ei>[1 - m f f 1 - [I - m f f 1ei> e ee e ee

or, finally

(4.3.17)

Equations (4.3.16) and (4.3.17) are also valid if we use the Euler tensor

Jo instead ofIo . To see this, we need only to notice that
. .
I =-J o 0 (4.3.18)

for any point o. Equation (4.3.18) follows from either (4.3.6) or (4.3.7), since

the trace of a tensor is a scalar invariant (see section 3.3.3) and thus is time

independent. Then a simple substitution in equation (4.3.17) shows that the

derivative of Jo is given by

(4.3.19)

In the following, we shall use the two inertia tensors I and J to com­

pute other basic physical quantities in rigid body motion such as the angular

momentum and the external (or resultant) torque.

Chapter 4: Cartesian Tensors and Rigid Body Motion 105

4.3.2 The Angular Momentum Tensor

One of the most important physical quantities in rigid body dynamics is

angular (or rotational) momentum or moment of momentum. In the classical

vectorial treatment of rigid body dynamics, angular momentum is

represented by a vector which is defined [1] by the equation

(4.3.20)

where 0 is the origin of the inertial coordinate system, 0' is a point fixed on

the rigid body, s is the position vector of 0' relative to 0, r c is the position

vector of the center of mass relative to 0' ,I is the rigid body inertia tensor
o·

about the point 0' and CD is the vector of the angular velocity. The expression

for Lo in equation (4.3.20) becomes particularly simple if either the body

fixed point 0' is also fixed in inertial space (8 = 0) or the center of mass is

used as the reference point 0' (r c = 0). In both cases the tenn rex 8 m van­

ishes. The first tenn then represents the angular momentum with respect to

0, due to the translation of the center of mass, and the last tenn represents

the angular momentum caused by the rotation of the rigid body. In the fol­

lowing, we shall assume that there is no translational motion (8 = 0) and so

equation (4.3.20) takes the fonn

(4.3.21)

Moreover, we shall assume that the inertial coordinate system has its origin

at the point 0' (s = 0) and in this case we shall write

(4.3.22)

Obviously, when the center of rotation is at the center of mass, equation

(4.3.22) becomes

(4.3.23)

However, even when the center of rotation is different from the center of

mass, it is useful to write Lo in tenns of Lc. An expression for Lo in tenns of

106 Dynamic Analysis of Robot Manipulators

Le can be easily derived by using Cartesian tensor analysis as follows.

Using the parallel axis theorem, equation (4.3.22) can be modified as

shown

Lo = [Ie - m f i e]m

=L -mffm e e e

In a pure vector notation, equation (4.3.24) takes the fonn

(4.3.24)

(4.3.25)

Angular momentum can also be defined in tenns of the Euler tensor Jo •

To see this we need only to substitute 10 in equation (4.3.22) by Jo . For this,

we use equation (4.3.7) and get

(4.3.26)

In addition to its vector description, the angular momentum can also be

described [6,9] by a second order skew-symmetric Cartesian tensor. To see

this, we need only apply the dual operator on the angular momentum vector

Lo. This gives a dual skew-symmetric tensor Lo which we express by writ­

ing

(4.3.27)

We refer to the dual skew-symmetric tensor Lo as the angular momentum
tensor about the point o.

The dual operator provides an indirect definition for the angular

momentum tensor. However, as the following theorem shows, it is possible

to define the angular momentum tensor Lo directly in tenns of the inertia

tensor 10 and the angular velocity tensor m, i.e., without the need to first

compute the angular momentum vector.

Chapter 4: Cartesian Tensors and Rigid Body Motion 107

Theorem 4.4: The angular momentum tensor of a rotating rigid body about

a point 0, satisfies the equation

Lo = [cillo{ - [cillo] + tr[lo]m (4.3.28)

where 10 is the inertia tensor of the rigid body about the center of rotation 0

and cil is the angular velocity tensor.

Proof: Using equation (4.3.22) we can write equation (4.3.27) as

Lo = dual(locil).

Further, since the inertia tensor 10 is symmetric, by using Proposition (3.11)

we get

Lo = - [10m + cillol + tr[lolm

= 10mT -mlo + tr[lolm

= [cillo{ - mlo + tr[lolm

and this completes the proof. o

Theorem 4.4 can also be written in tenns of the Euler tensor Jo . First

we notice that from equation (4.3.7) we have

(4.3.29)

Therefore, if we substitute equation (4.3.7) and (4.3.29) into equation

(4.3.28) we have
T

Lo = [tr [Jolcil - cilJo] - [tr [Jolcil - mJo] + 2tr [Jolcil

= - tr [Jolcil + Jocil - tr [Jolcil + cilJo + 2tr [Jolcil

= Jom + cilJo

or, finally

(4.3.30)

108 Dynamic Analysis of Robot Manipulators

Obviously, when the rigid body is rotating about its center of mass, the

angular momentum tensor is defined by the equation

i.e = [cille{ - [cillel + tr[lelcil (4.3.31)

or the equation

i.e = Jem - [Jem{. (4.3.32)

As we can see from equations (4.3.22) and (4.3.26), the angular

momentum vector has a simpler expression when it is written in terms of the

inertia tensor 10 • But this is not true for the angular momentum tensor. Equa­

tions (4.3.28) and (4.3.30) show that the angular momentum tensor has a

simpler expression when it is expressed in terms of the Euler tensor Jo .

In the following, we shall use angular momentum in its vector or tensor

representation to describe the dynamic behavior of a rotating rigid body.

4.3.3 The Torque Tensor

As is well known (e.g., [1]), the time derivative of angular momentum

equals the resultant torque or moment offorce. This derivative expresses the

basic axiom (Euler's axiom) governing the rotational motion of a rigid body

and in vector form is written as

(4.3.33)

When the point of rotation is the center of mass of the rigid body, equation

(4.3.33) takes the form

(4.3.34)

To show that equation (4.3.34) is equivalent to equation (4.3.2), we proceed

as follows

Chapter 4: Cartesian Tensors and Rigid Body Motion 109

= ieOl + leW)

= [Olle - leOl]Ol + lew [by (4.3.16)]

= lew + OlleOl [by (3.4.4)]

= lem + Olxlem

Sometimes, in the literature on classical dynamics, equation (4.3.2) or equa­

tion (4.3.34) is referred to as the generalized Euler equation for rigid body

rotational motion. Here, we shall refer to equation (4.3.2) as the vector for­

mulation of the generalized Euler equation.

Now, as in the case of Me' it can be shown that the vector Mo satisfies

the equation

(4.3.35)

when the center of rotation, i.e., point 0, is any point other than the center of

mass. Moreover, the torque vector Mo can be written in terms of the torque

vector Me as follows

(4.3.36)

where Fe is the total force caused at the center of the mass of the rigid body

due to its rotational motion. To see that equation (4.3.36) is equivalent to

equation (4.3.35), we write from equation (4.3.36),

Mo =Me +mfie

= Me + mfeOre
-

= Me + m [f e(m + OlOl)r e]

= Me - m [f i em + f ecilf em] (4.3.37)

where equation (3.4.6) has been used in the last step. Now, from equation

(3.4.19b) we have

110 Dynamic Analysis of Robot Manipulators

and since mOl = 0, equation (4.3.37) becomes

Mo = Me -m[fiem + mfieOl]

= [Ie -mf i e]m + m[le -mf i e]Ol. (by (4.3.2»

Finally, using the parallel axis theorem, we can see that the last equation is

equivalent to equation (4.3.35).

Equation (4.3.35) has been stated in tenns of the inertia tensor 10 • If we

use equation (4.3.7) to substitute for 10 in tenns of Jo ' equation (4.3.35)

becomes

(4.3.38)

Similarly, for Me we can write

Me = - [Jem + mJeOl] + tr [Je]m. (4.3.39)

Now, as with angular momentum, the torque can be described by a

second order skew-symmetric Cartesian tensor, which we shall refer to as the

torque tensor. Using the dual operator we define the torque tensor as follows

(4.3.40)

This definition of the torque tensor requires the computation of the torque

vector Mo. Another definition of the torque tensor in tenns of the inertia and

the angular acceleration tensors is given by the following theorem.

Theorem 4.5 : The torque tensor about the center of rotation 0, is defined as

the time derivative of the angular momentum tensor about the point 0 and

satisfies the equation

- T :
Mo = [mol - mo + tr [10]01 (4.3.41)

where n is the angular acceleration tensor of rotation and 10 is the rigid

body inertia tensor about the point o.

Chapter 4: Cartesian Tensors and Rigid Body Motion

Proof: From Euler's axiom, we have

~ d ~
Mo = -Lo·

dt

Further, using equation (4.3.28), we get
T

Mo = [chlo + ci>io] - [chlo + ci>io] + tr [Io]~

111

since the time derivative of the scalar invariant tr [10] is zero. Now, using

equation (4.3.17), we have
T

Mo = [chlo + ci>cblo - cblocb] - [chlo + cbcblo - cbloci>] + tr[lo]c1

T

= [chlo + ci>ci>lo] - [chlo + ci>ci>lo] + tr [lo]c1

T : = [ilio] - ilio + tr[lo]m 0

The torque tensor Mo can also be defined in tenns of the Euler tensor Jo and

the angular acceleration tensor O. To see this, we can consider the time

derivative of equation (4.3.30) or use equation (4.3.7) to substitute for 10 in

equation (4.3.41). In both cases after a few manipulations we arrive at the

following equation
~ T

Mo = OJo - [mol . (4.3.42)

Obviously, when the rigid body is rotated about its center of mass equations

(4.3.41) and (4.3.42) are written as

(4.3.43)

and

(4.~.44)

respectively. We shall refer to equation (4.3.44) as the tensor fonnulation of

the generalized Euler equation of a rigid body rotational motion.

112 Dynamic Analysis of Robot Manipulators

As we can see from equations (4.3.2) and (4.3.39) the torque vector Mc

has a simpler expression when it is defined in tenns of the inertia tensor Ic.

But, as in the case of the angular momentum tensor, the Euler tensor Jo leads

to a simpler equation for the definition of the torque tensor Mc. This implies

that for a vector fonnulation of the equations of rotational rigid body motion,

the proper definition of the inertia tensor is given by equation (4.3.3). But,

when a tensor fonnulation for the equations of rotational rigid body motion

is required, then the proper definition of the inertia tensor is given by equa­

tion (4.3.4).

From the foregoing, to describe rotational rigid body motion within the

Newtonian fonnulation, we can use either vector analysis or Cartesian tensor

analysis. The two approaches are equivalent in the sense that the torque vec­

tor Mc is the dual vector or vector invariant of the torque tensor Mc. There­

fore, we can use either approach for describing the resultant (or external)

torque of rigid body motion. But as we shall see in the following, in practical

applications a tensor description of the resultant torque is to be preferred

since it is computationally more efficient.

4.3.4 Computational Considerations

In the following, we shall assume that the angular velocity vector, m,

the angular acceleration vector, ro, and the angular acceleration tensor 0 are

available (their computation will be consider in Chapter 5) and we shall

examine the computational cost of evaluating the vectors F c and Mc which

describe rigid body motion.

To compute the vector F c we need to evaluate equation (4.3.1). It is

obvious that the computational burden of evaluating this equation results

mainly from the computation of the vector rc. From a computational point of

view, in general computing the vector rc is similar to computing the vector

r 1 which is defined by either equation (4.2.20) or equation (4.2.24). Thus, to

Chapter 4: Cartesian Tensors and Rigid Body Motion 113

compute the vector Fe we can use equation (4.2.20) or equation (4.2.24). In

the latter case we need to perform three vector cross product operations and

two vector additions and this requires a total of 18 scalar multiplications and

15 scalar additions. In the former case we need to perform a matrix-vector

multiplication and a vector addition requiring a total of 9 scalar multiplica­

tions and 9 scalar additions. To compute the torque vector Me we can use

equation (4.3.2), or equation (4.3.44) which computes the torque tensor Me
and then from that skew-symmetric tensor we can extract the vector Me by

using the correspondence (3.3.31). In the first approach, i.e., using equation

(4.3.2), we need to perform two matrix-vector multiplications, a vector cross

product operation and a vector addition requiring a total of 24 scalar multi­

plications and 18 scalar additions~ In the second approach, we can evaluate

the torque vector Me with only 18 scalar multiplications (which can be

reduced to 15, if the symmetry of Je is taken into account) and 15 scalar

additions. This is so, because there is no need to compute the complete

matrix-matrix multiplication, which is involved in equation (4.3.44), since

the tensor Me is skew-symmetric, and the extraction of its dual vector

requires no computations.

From the foregoing, when vectors are used to describe the Newtonian

formulation of rigid body motion, i.e., the vectors Fe and Me are computed

using equations (4.3.1), (4.2.24) and (4.3.2), we require a total of 45 scalar

multiplications and 33 scalar additions. On the other hand, when Cartesian

tensors are used to describe the Newtonian formulation of rigid body motion,

i.e., equations (4.3.1), (4.2.20), (4.3.44) and (3.3.31) are used, a total of only

30 (or even 27) scalar multiplications and 24 scalar additions are need to

evaluate the same vectors. Therefore, the tensor treatment of rigid body

motion which is presented in this chapter reduces the computational cost of

evaluating the equations of rigid body motion. This, obviously, has very

important consequences for many practical problems of mechanics where the

equations of rigid body motion is needed to be computed a number of times.

114 Dynamic Analysis of Robot Manipulators

In the following chapters, we shall use this tensor treabnent of rigid

body motion to solve, in a computationally efficient manner, the three prob­

lems of robot dynamics: the problem of inverse dynamics, the problem of

forward dynamics, and the linearization of the equations of motion of rigid­

link open-chain robot manipulators.

4.4 References

[I] I. 1. Wittenburg, Dynamics of Systems of Rigid Bodies, B. G. Teubner,

Stuttgart, 1977.

[2] H. Goldstein, Classical Mechanics. 2nd Ed., Addison-Wesley, Read­

ing, MA : 1980.

[3] J. B. Marion, Classical Dynamics of Particles and Systems, 2nd Ed.,

Academic Press, New York, 1970.

[4] S. N. Rasband, Dynamics, John Wiley & Sons, New York, 1983.

[5] L. A. Pars, A Treatise on Analytical Dynamics, Heinemann, London,

1965.

[6] H. Jeffreys, Cartesian Tensors, Cambridge University Press, Cam­

bridge, 1961.

[7] J. Casey, "A Treabnent of Rigid Body Dynamics", J. Appl. Mech., pp.

905-907, Vol. 50, 1983.

[8] C. Truesdell and R. Toupin, "The Classical Field Theories", Encyclo­

pedia of Physics, Voll. III/I, (S. Flugge Ed.), Springer-Verlag, Berlin,

1960.

[9] C. Truesdell, A First Course in Rational Continuum Mechanics, Vol. 1,

Academic Press, New York, 1977.

[10] P. Chadwick, Continuum Mechanics: Concise Theory and Problems,

George Allen & Unwin Ltd., London, 1976.

Chapter 4: Cartesian Tensors and Rigid Body Motion 115

[11] W. M. Lai, D. Rubin and E. Krempl, Introduction to Continuum

Mechanics, Pergamon Press, New York, 1978.

[12] M. E. Gurtin, An Introduction to Continuum Mechanics, Academic

Press, New York, 1981.

[13] O. Bottema and B. Roth, Theoretical Kinematics, North-Holland Pub­

lishing Co., Amsterdam, 1978.

[14] E. J. Konopinski, Classical Descriptions of Motion, W. H. Freeman

and Company, San Francisco, 1969.

[15] J. Angeles, Spatial Kinematic Chains: Analysis, Synthesis, Optimiza­

tion, Springer-Verlag, New York, 1982.

[16] J. Casey and V. C. Lam, "A Tensor Method for the Kinematical

Analysis of Systems of Rigid Bodies", Mechanism and Machine

Theory, pp 87-97, Vol. 21, No.1, 1986.

[17] J. Angeles, Rational Kinematics, Springer-Verlag, New York, 1989.

[18] J. S. Beggs, Kinematics, Hemisphere Publishing Corporation, Wash­

ington, 1983.

[19] T. Crouch, Matrix Methods Applied to Engineering Rigid Body

Mechanics, Pergamon Press, Oxford, 1981.

[20] S. F. Borg, Matrix-Tensor Methods in Continuum Mechanics, D. Van

Nostrand Company, Princeton, New Jersey, 1963.

[21] C. A. Balafoutis, R. V. Patel and P. Misra, "Efficient Modeling and

Computation of Manipulator Dynamics Using Orthogonal Cartesian

Tensors" IEEE J. Robotics and Automation, pp 665-676, Vol. 4, No.6,

1988.

[22] C. G. Atkeson, C. H. An and J. M. Hollerbach, "Rigid Body Load

Identification for Manipulators", 24th IEEE Con/. on Decision. and

Control, pp. 996-1002, December 1985.

116 Dynamic Analysis of Robot Manipulators

[23] W. M. Silver, "On the Equivalence of Lagrangian and Newton-Euler

Dynamics for Manipulators", Int. Journal of Robotics Research, pp.

60-70, Vol. 1, No.2, 1982.

[24] C. A. Balafoutis, R. V. Patel and J. Angeles, "A Comparative Study of

Newton-Euler, Euler-Lagrange and Kane's Fonnulation for Robot

Manipulator Dynamics", Robotics and Manufacturing: Recent Trends
in Research, Education and Applications, M. Jamsidi, J. Y. S. Luh, H.

Seraji, and G. P. Starr, Eds ... ASME Press, New YOtX, 1988.

Chapter 5

Manipulator Inverse Dynamics

5.1 Introduction

Manipulator inverse dynamics, or simply inverse dynamics, is the cal­

culation of the forces and/or torques required at a robot's joints in order to

produce a given motion trajectory consisting of a set of joint positions, velo­

cities and accelerations. The principal uses of inverse dynamics are in robot

control and trajectory planning. In control applications computation of

inverse dynamics is usually incorporated as an element of the feedback or

feedfOlward path to convert positions, velocities and accelerations, com­

puted according to some desired trajectory, into the joint generalized forces

which will achieve those accelerations (e.g. see [1-4]). In trajectory plan­

ning, inverse dynamics can be used to check or ensure that a proposed trajec­

tory can be executed without exceeding the actuators' limits [5-7]. Also,

using certain time-scaling properties of inverse dynamics, we can facilitate

minimum-time (or near minimum-time) trajectory planning [8]. Moreover,

inverse dynamics are also taken into consideration in defining manipulability

measures of robot arms. (Manipulability is usually expressed as a quantita­

tive measure of a robot arm's manipulating ability in positioning and

118 Dynamic Analysis of Robot Manipulators

orienting its end-efIector [9]). Finally, as we shall see in the next chapter,

computation of inverse dynamics is also used as a building block for con­

structing forward dynamics algorithms which are useful in perfonning

dynamic simulations of robot arms.

Mathematically, the inverse dynamics problem (IDP) can be described

by a vector equation of the fonn

't = f (q, q, ij, manipulator parameters) (5.1.1)

where 't is the vector of the unknown generalized forces, (q, q, ij) denotes a

given manipulator trajectory and the "manipulator parameters" are all those

parameters which characterize the particular geometry and dynamics of a

robot manipulator. Equation (5.1.1) is referred to as the dynamic model or the

dynamic equation of a robot manipulator.

To derive equation (5.1.1), we can use well-established procedures

from classical mechanics such as those based on the equations of Newton
and Euler, Euler and Lagrange, Kane, etc. Intuitively, one would expect that

all the difIerent approaches of fonnulating this dynamic model should result

in the same or equivalent equations. This, is in fact true. However, it is

understandable that the choice of a particular procedure is important because

it detennines the nature of the analysis and the amount of effort needed to

obtain these equations. But, otherwise, it is not important which procedure

we choose because, as we shall see in this Chapter, difIerent procedures can

be fonnulated to lead to the same algorithm for solving the IDP.

It is known (from experience) that independent of which procedure we

use to derive the dynamic model of a simple mechanical system, the vector

function f is usually simple and thus it is possible to express it explicitly in

tenns of the system kinematic parameters (generalized positions, velocities

and accelerations). But, unfortunately, this is extremely difficult for mechani­

cal systems of the complexity of a robot manipulator for which the vector

function f is known to be highly nonlinear and coupled. Although, based on

symbolic manipulations, some explicit fonnulations for the function f have

Chapter 5: Manipulator Inverse Oynamics 119

been proposed [10,11], usually the function f is obtained via a structured

algorithm, i.e., the dynamic model of a robot manipulator is usually

evaluated in stages. The results of each stage are a set of values for inter­

mediate variables which are used in subsequent stages to evaluate other vari­

ables (or expressions). Depending on what we consider as intennediate vari­

ables and how we represent them, we can derive different algorithms for

evaluating the dynamic model of a robot manipulator.

The computational complexity of different algorithms varies enor­

mously and these differences are accounted for by the amount of calculation

involved in evaluating the equations of motion via a prescribed set of inter­

mediate variables. The key to efficient dynamics calculation is to find a set of

common SUb-expressions which will effectively be the intennediate variables

to be calculated by the algorithm. This eliminates most of the repetition

inherent in the equations of motion. Also, the representation (and thus the

description) of the intennediate variables is important because, based on

their representation other subsequent intennediate quantities may be fonnu­

lated more efficiently. Furthennore, the structure of the computations is an

other important factor, since they can lead us to closed-form or recursive
algorithms. Finally, particular implementations (e.g., tabularization or cus­

tomization) can be used to improve the computational efficiency of an algo­

rithm which solves the lOP for a certain class of robotic manipulators.

In this Chapter, after a review of some basic methods proposed so far

for solving the lOP, we shall apply Cartesian tensor theory for obtaining

more efficient solutions for this fundamental problem of robotics. In particu­

lar, the outline of this Chapter is as follows: Section 5.2 contains a review of

existing methods for solving the lOP; some "classical" algorithms which

have been derived from these methods are presented. Also, some observa­

tions are made about various issues concerning the computational efficiency

of these algorithms. Section 5.3, presents two new algorithms for solving the

lOP which are based on Cartesian tensors and use two different modeling

120 Dynamic Analysis of Robot Manipulators

schemes. The computational complexity of these algorithms is analyzed and

compared with that of other algorithms in the literature. In Section 5.4 it is

demonstrated that the computational efficiency of an algorithm which solves

the IDP is actually independent of the particular formulation from classical

mechanics that is used for its derivation. Finally, Section 5.5 concludes this

chapter.

5.2 Previous Results and General Observations on
Manipulator Inverse Dynamics

An extensive literature exists on the subject of rigid-link manipulator

dynamics in general and on manipulator inverse dynamics in particular. In

this section, basic contributions on this subject will be mentioned and the

"classical" computational algorithms for solving inverse dynamics will be

presented.

The methods for computing inverse dynamics are usually classified

with respect to the laws of mechanics on the basis of which the equations of

motion are formed. Thus, one may distinguish methods based on the Euler­

Lagrange, Newton-Euler, Kane's, d'Alembert's, and other equations. Among

them, methods based on the Euler-Lagrange and Newton-Euler equations

have gained popularity and, as a consequence, there are many algorithms

available today that have been derived using these equations to obtain

inverse dynamics. The Euler-Lagrange equations are popular because they

are conceptually simple and the methods based on them can lead easily to

closed-form algorithms which are attractive from both the dynamic modeling

and control points of view. On the other hand, the Newton-Euler equations

became popular because they led to computationally efficient recursive algo­

rithms which could be used for real-time control applications and simulation.

Besides these two commonly used formulations, in the past few years,

researchers have also successfully used Kane's dynamical equations in

Chapter 5: Manipulator Inverse Dynamics 121

deriving efficient recursive algorithms for computing inverse dynamics.

In the following, we present a brief survey of the methods for solving

the IDP based on the Euler-Lagrange, Newton-Euler and Kane's equations.

5.2.1 Formulations Based on Euler-Lagrange Equations

In the Lagrangian approach, to derive the dynamic equations of motion

of a robot manipulator we first express the Lagrangian

L =W-P, (5.2.1)

where W is the kinetic and P is the potential energy of the robot manipulator,

in tenns of the joint positions qj and velocities 4j (which are the generalized

coordinates and their derivatives). In the early fonnulations, this was usually

done in tenns of homogeneous coordinates and the analysis was based on the

following modeling scheme: The robot manipulator is considered to be an

ideally connected, open-loop, serial-chain of rigid bodies. When frictional

forces at the joints are to be considered, we compute them based on the joint

velocities and add them directly to the joint generalized forces. Based on this

modeling scheme and using the principle of superposition, the kinetic energy

of a robotic manipulator can be computed as follows:.

The kinetic energy Wj of the i -th link of a manipulator, is written in

the fonn
. . T

1 I I [aW j . aW j 1
Wj = - L L tr --J;--4j 4/c

2 j=1k=l aqj aq/c

(5.2.2)

where J; is the pseudo-inertia tensor of the i -th link with respect to the ori­

gin of the i -th link coordinate system expressed in i -th coordinates. The

pseudo-tensor J; is defined by the equation

j J j jT
Jj = rjrj dm

linlc j

[== J r;® r;dm]
linlc i

(5.2.3a)

122 Dynamic Analysis of Robot Manipulators

where r: is a four dimensional homogeneous vector (see Chapter 2) which

denotes the position of a point mass dm relative to the origin of the i -th link

coordinate system expressed in i -th coordinates. In terms of three dimen­

sional vectors equation (5.2.3a) can be written as

i
J. =

I

Ji i
0; 1 miri.j

--I

jT 1
mjrj •i m· I

= ------1--
iT

m·r· .
I '.'

where J~. is the Euler inertia tensor (see Chapter 4) of the i -th link.
o

(5.2.3b)

Using the above formulation for the kinetic energy of the i -th link and

the principle of superposition, the total kinetic energy of a manipulator is

computed by using the equation

1 n i i [aWi . aWr 1
tf) = -:ft:ft :fttr --J;--4j4k •

2 i=lj=lk=l aqj aqk

(5.2.4)

The potential energy P of a manipulator, which is equal to the work required

to transport the mass center of each link from a reference plane to a given

position, can be written as
n

T
P = constant - :ftmjg rOj (5.2.5a)

j=l

or
n

T .
P = constant - ~ m.g W.r~.

~ J J JJ
(5.2.5b)

j=l

where g, Wj and rJ j are all expressed in homogeneous coordinates.' Now,

based on these expressions for the kinetic and potential energy, we can

define the Lagrangian L of a robot manipulator in terms of the generalized

Chapter 5: Manipulator Inverse Dynamics 123

coordinates. Then, the Lagrangian is substituted into the Euler-Lagrange

equation

d dL dL
tj =-----

dt d4j dqj
(5.2.6)

which is expanded by symbolic differentiation to give the generalized forces

Goint forces and torques) t j , i = 1, 2, ... , n, in terms of the generalized joint

positions, velocities and accelerations.

The first results on dynamic analysis of robotic mechanisms based on

the Lagrangian formulation were reported by J. 1. Uicker [12]. He was con­

cerned with the dynamic analysis of joint-connected systems of arbitrary

structure and with an arbitrary number of closed kinematic chains. Uicker's

method was later modified by Kahn [13] to include open-loop mechanisms.

The Uicker/Kahn method leads to the following set of equations

tj = i If [tr [dWj JJdWJ]]iik
j=j k=1 dqj dqj

+ f f [tr [dWj JJ iwJ]4k41]-mjgT dWj rJJ)
k=1I=1 dqj dqkdql dqj

(5.2.7)

where i = 1, 2,. .. ,n. These equations can be put into a more compact

vector-tensor notation as

t = D(q)ij + C(q, ci) + G(q) (5.2.8)

where

t is the vector of generalized forces

q (ci ,ij) is the vector of joint positions (velocities, accelerations)

D(q) is the generalized inertia tensor of the manipulator

124 Dynamic Analysis of Robot Manipulators

C (q, q) is a vector containing the Coriolis and centrifugal forces, and

G(q) is the gravity force vector

Equation (5.2.8) is obviously non-recursive and is referred to as the closed­
form dynamic robot model. As has been estimated in [14], equation (5.2.7)

(or equation (5.2.8» has o(n 4) computational complexity, where n is the

number of links or the number of degrees-of-freedom for a serial-type mani­

pulator to which the algorithm is applied. In particular, for a 6 degrees-of­

freedom manipulator the evaluation of the generalized forces at a trajectory

point using the Uicker/Kahn algorithm requires 66,271 scalar multiplications

and 51,548 scalar additions. This led some researchers to consider

simplifications in the dynamical equations, namely, ignoring the Coriolis and

centrifugal forces (paul [15], Bejczy [16]). However, since simplifications of

this nature are justifiable only for slow movements of the manipulator [17],

this approach was soon abandoned. Another approach for reducing the com­

putational complexity was considered by Albus [18] and Raibert [19]. They

proposed a table look-up method, whereby all the configuration dependent

tenns in the dynamical equations were computed in advance and tabulated

for discrete points on the trajectory. Because of the large memory require­

ments involved in this approach, Horn and Raibert [20] proposed yet another

method in which only the position dependent tenns where tabulated. How­

ever, besides memory requirements, tabular methods have other serious limi­

tations such as poor accuracy of the trajectory, due to interpolation between

the stored discrete points. Moreover, the requirement that the trajectory has

to be known in advance makes such methods unattractive because this obvi­

ously prevents their applicability to robots working in a dynamically chang­

ing environment.

Soon it was realized that inverse dynamics for open-loop manipUlators

with a simple kinematic chain structure, could be analyzed more effectively

using recursive methods. In this approach, the task is first broken down into a

Chapter 5: Manipulator Inverse Dynamics 125

number of partially ordered steps. In each step a number of intermediate

variables are evaluated. The value of each variable is determined by the

application of a formula to each link in tum. Where possible and appropriate,

the formula defines the quantity of interest for the link in question in terms of

that quantity for one or more of the link's immediate neighbors, and in this

case the formula is known [36] as a recurrence relation. At the end, these

steps are stated in the form of a recursive algorithm which solves the prob­

lem of inverse dynamics.

Waters [21] was the first to notice that the equation (5.2.7) of the gen­

eralized forces could be written in the following form

11 [[dWj j •• T] T dWj j 1 'to = L tr --J.W. -m·g --r·.
I d J J J d JJ

j~ ~ ~

, i = 1,··· ,no (5.2.9)

where
. . . 2

J dW. J J d W .
•• '" J •• "'''' J •• Wj = ~--qk + ~ ~ qkq/·

k=l dqk k=ll=1 dqkdq/

Equation (5.2.9) allows one to take advantage of the following kinematic

recurrence relations

(5.2. lOa)

dA.
•• I

W. = W. IA. + W. l--q··
I 1- I 1- I

dqj
(S.2.10b)

2
..•• . dA j • d Aj .2 dAj ••

W. = W. IA. + 2 W. I --q. + W. I --q. + W. l-q· (S.2.lOc)
I 1- I 1- I 1- 2 I 1- I

dqj dqj dqj

for efficiently computing the homogeneous transformations and their time

derivatives. Therefore, based on these equations, Waters proposed a recur­

sive algorithm for solving inverse dynamics which has computational

126 Dynamic Analysis of Robot Manipulators

complexity 0 (n). In tenns of scalar multiplications and additions, for n = 6,

Waters' algorithm [14] requires 70S1 multiplications and S6S2 additions.

Later on, by introducing the following dynamic recurrence relations,

(S.2.11a)

and

[= imj ~jrJj 1
j=i

(S.2.11b)

Hollerbach [14] proposed modifications to Water's algorithm which led to a

complete recursive algorithm for implementing equation (S.2.9).

Hollerbach's algorithm, fonnulated in the notation of this monograph, can be

stated as follows:

ALGORITHM 5.1

Step 0: Initialization

. ..
Wo=I, Wo=O, Wo=O, AII+I =0

Step 1: Outward Recursion:- i = 1, n

W. =W. IA.
I 1- I

(S.2.12a)

dA.
•• I

W. = W. IA. + W. l--q··
I 1- I 1- I

dqi
(S.2.12b)

Chapter 5: Manipulator Inverse Dynamics

Step 2: Inward Recursion :- i =n ,1

end

127

(5.2.13a)

(5.2.13b)

(5.2.13c)

For its implementation, Algorithm 5.1 requires 830n - 592 scalar multiplica­

tions and 675n -464 scalar additions. Hence, Algorithm 5.1 has o(n) com­

putational complexity, but is still computationally inefficient for real-time

applications, since, for n = 6 it requires 4388 multiplications and 3586 addi­

tions. However, it was noticed by Hollerbach that the computational

inefficiency of this algorithm resulted from the fact that homogeneous

transformations are used to describe general rigid body motion. Therefore,

using rotation tensors and three dimensional vectors to describe rigid body

displacements, equation (5.2.9) can be written as followst :

n 1 [i)So . i)So . i)W . J •• T J jT··T J j .. T
'ti = L tr mj --SOj + --en) Wj + --nj SOj

. . i)q. i)q. i)q.
J=l I I I

i = 1,'" ,n (5.2.14)

t This form is different from equation (15) in Hollerbach's formulation [14]
and leads to a slightly modified analysis which is given in Appendix A. A
consequence of this is that equation (5.2.16c) in Algorithm 5.2 is di'fferent
from the corresponding equation (equation (13)) in Ref. [14].

128 Dynamic Analysis of Robot Manipulators

where nJ = mjrJj and Wj now denotes a rotational tensor and not a homo­

geneous transformation. Based on this equation, Hollerbach proposed

another algorithm which has basically the same recursive structure as Algo­

rithm 5.1 and can be stated as follows:

ALGORITHM 5.2

Step 0: Initialization

••• i i
Wo=I, \\i =0, \\i =0, sO.j =0, nj =mjrj,i' An+1 =0, en +1 =0

Step 1: Outward Recursion:- i=l, n

W. = W. IA. (5.2. 15a)
1 1- 1

dA.
•• 1

W. = W. IA. + W. I-q·· (5.2. 15b)
1 1- 1 1- 1

dqj
2

•••• • dAj • d Aj . 2 dAj ..
W. = W. IA . + 2 W. I -q. + W. I --q. + W. I-q· (5.2. 15c)

1 1- 1 1- 1 1- 2 1 1- 1

dqj dqj dqj

•• •• - i-I
so' = so' I + W. IS' l' (S.2.15d) " ,'- ,- 1- ,I

Step 2: Inward Recursion :- i =n, 1

end

(5.2.16a)

(5.2.16b)

(5.2.16c)

(5.2.16d)

Chapter 5: Manipulator Inverse Dynamics 129

For its implementationt , Algorithm 5.2 requires 412n -277 scalar

multiplications and 675n ...; 201 scalar additions, which for n = 6 gives 2195

scalar multiplications and 1719 scalar additions, and this is a significant

improvement over Algorithm 5.1.

Besides the effects of homogeneous descriptions, it was soon realized

that the structure of the kinematic and dynamic recurrence relations have a

direct effect on the computational complexity of recursive as well as closed­

form manipulator dynamics algorithms. In particular, it was realized that the

structure of the kinematic and dynamic recurrence relations depends on the

particular modeling scheme which is used for deriving the equations of

motion. As result of this, modeling schemes which are based on the ideas of

augmented and generalized links [22,23] were proposed. The ideas of gen­

eralized and augmented links surface quite naturally in the modeling

schemes of joint connected mechanisms and were first introduced (in 1906)

in the underlying modeling scheme of mechanical systems with a tree topol­

ogy [22].

One of the advantages of using the concepts of augmented and general­

ized links in robotics is that they lead to efficient recurrent relations for com­

puting the coefficients of the generalized inertia tensor D (q) of a robot mani­

pulator. Therefore, in solving the lOP of a robot manipulator based on the

Lagrangian approach, the concepts of augmented and generalized links are
best utilized when the equations of motion are described by the closed-form

equation
II II II

'ti(t) = L diiij + L L qjCj,lc(i)qk + Gi i = 1,2, ... , n (5.2.17)

j=l j=lk=l

t Note that the difference in equation (5.2.16c) does not change the
computational requirements of the original equation (equation (13) in Ref.
[14]) when the (i + 1)-th joint is revolute. When the (i + 1)-th joint is prismatic
the implementation of equation (5.2. 16c) requires a few extra computations.

130 Dynamic Analysis of Robot Manipulators

where di j are the coefficients of the generalized inertia tensor,

1 [adi j adi,le adj,le 1
cj,le(i) = - -- + -----

2 aqk aqj aqi
(5.2.18)

are the centrifugal and Coriolis coefficients, defined using Christoffel sym­

bols, and Gi are the gravitational coefficients. Renaud [24] was among the

first to use these ideas for solving the lOP. In particular, he proposed [24] an

iterative analytical procedure for computing the generalized inertia tensor

D (q) but, he did not work out the partial derivatives which are involved in

the Christoffel symbols for the case of general manipulators. Instead, to

demonstrate his approach, Renaud proposed a customized algorithm for

computing the lOP for a simple 6 degrees-of-freedom revolute joint manipu­

lator. Following Renaud's approach, Vukobratovic et al., [25] proposed the

following analytical expressions for computing the coefficients of equation

(5.2.17)

T T
d .. =z.E z.+z.(U x(z.xs .. » (5.2.19a)

IJ I o;} I 0; } },I

G. = z:(r .. x (m.g» (5.2.19c)
I I 1,1 I

where, Eo. denotes the inertia tensor of the i -th generalized link and is com-
I

puted recursively using the equation

T T T
E = E + (2U s·· 1) 1 - s.. U - U s·· 1

0i 0i+l 0i+l 1,1+ .,,+1 0i+l 0i+l 1,1+

i = n-l,. .. ,1 (5.2.20a)

and Uo. is the first moment of the i -th generalized link and is defined recur-
I

sively by the equation

(5.2.20b)

Chapter 5: Manipulator Inverse Dynamics 131

Based on these equations, they proposed a recursive algorithm for solving

the lOP of a robot manipulator with all joints of revolute type which for its

evaluation requires 3/2n 3 + 35/2n 2 + 9n - 36 scalar multiplications and

7/6n 3 + 23/2n 2 + 64/2n - 28 scalar additions. However, for its implementa­

tion when n =6, this algorithm requires 992 scalar multiplications and 776

scalar additions, and thus it is more efficient that Hollerbach's algorithms.

5.2.2 Formulations Based on Newton-Euler Equations

In the Newton-Euler approach, a general motion of a rigid body is con­

sidered to result from the superposition of two independent motions; namely

a pure translational motion of a point (usually its center of mass) and a pure

rotational motion about that point. The translational motion is then described

by Newton's equation (or Newton's second law) which is symbolically stated

as

(5.2.21)

where Fe is the total external (or resultant) force acting on the rigid body, m

is the mass of the rigid body and Fe is the absolute linear acceleration of its

center of mass. The rotational motion is described by Euler's equation which

is symbolically stated as

M =1 ·cO+coxl·m c e e (5.2.22)

where Me is the total external (or resultant) torque about the center of mass,

Ie is the inertia tensor of the body about its center of mass and m (eil) is the

angular velocity (acceleration) of the body. Therefore, in solving the lOP for

rigid-link robot manipulators following the Newton-Euler approach, these

two equations are applied to each link and the resulting equations are com­

bined with constraint equations from the joints in such a way as to gi:ve the

joint generalized forces in tenns of the joint acceleration. Methods based on

this approach were originally developed to describe multi-body satellite and

spacecraft dynamics [27]. One of the earliest applications of the Newton-

132 Dynamic Analysis of Robot Manipulators

Euler dynamic equations to robotic systems may be found, among others, in

the work of Stepanenko and Vucobratovic [28], Vucobratovic [29], Ho [30]

and Hughes [31]. However, algorithms based on these methods, as in the

case of the Uicker/Kahn method of the Lagrangian formulation, are compu­

tationally very inefficient. These early formulations led to closed-form algo­

rithms which have computational complexity 0 (n 3) or in some cases even
o(n 4) [14,25].

A more efficient method was proposed by Orin et al. [32] by introduc­

ing link coordinate systems. Using relationships between moving coordinate

systems, they were able to achieve more efficient kinematic recurrence rela­

tions for computing velocities and accelerations and dynamic recurrence

relations for computing forces and torques. Based on these relations, they

derived an algorithm which has computational complexity o(n\ However,

in this method, the basic equations of motion for each link are expressed in

the inertial coordinate system and this involves unnecessary coordinate

transformations. Luh, Walker and Paul [33], modified this method by

expressing the equations of motion in link coordinate systems instead of the

inertial coordinate system. The approach proposed by Luh, Walker and Paul

is probably the best one for deriving recursive algorithms to compute mani­

pulator inverse dynamics. This approach can be outlined as follows: Based

on moving coordinate systems, kinematic recurrence relations are used to

compute velocities and accelerations from the base of the manipulator to the

end-effector, link-by-link. Then dynamic recurrence relations are used to

compute forces and torques from the end-effector back to the base of the

manipulator. In this process, because of the nature of these recurrence rela­

tions, the generalized forces are computed by simple projections of vector

quantities onto the joint axes. From this outline, it is obvious that only the

information needed to characterize rigid-body movements are computed and

many duplications in the computations are avoided. Based on this approach,

Luh, Walker and Paul proposed a recursive algorithm which for its imple­

mentation requires 150n - 48 scalar multiplications and 131 n - 48 scalar

Chapter 5: Manipulator Inverse Dynamics 133

additions, so that for n = 6 this algorithm requires 852 scalar multiplications

and 738 scalar additions [14]. A modified version of this algorithm is as fol­

lows:

ALGORITHM S.3

Step 0: Initialization

(J. = (1 revolute i -th joint
I 0 prismatic i -th joint '

(
9 j revolute i -th joint

qj = dj prismatic i-th joint

o 0 .0 •• 0 j T
mo = ,mo = 0, so,o = - g, Aut = 0, Zj = [0 0 1]

Step 1 : Forward recursion :- For i = 0, n-J do

Step 2 : Backward recursion :- For i = n, J do

end

(5.2.23a)

(5.2.23b)

(5.2.23c)

(5.2.23d)

(5.2.23e)

(5.2.23f)

(5.2.24a)

(5.2·f4b)

(5.2.24c)

134 Dynamic Analysis of Robot Manipulators

The algorithm by Luh,Walker and Paul has o(n) computational com­

plexity and is far more efficient than Algorithm 5.2 which also has 0 (n) com­

putational complexity, but is derived using the Lagrangian formulation. The

diffurence in the computational complexity of these two algorithms sparked a

debate about which of the two formulations, i.e., the Lagrangian or the

Newton-Euler, leads to more efficient computational algorithms for solving

the lOP. For some time it was believed, due to a lack of deeper understand­

ing of the mathematical representations used to describe the equations of

motion, that the algorithms derived from the Newton-Euler formulation were

computationally more efficient than those derived using the Lagrangian for­

mulation. Finally, Silver [35] resolved the issue by showing that both formu­

lations are equivalent, in the sense that the Lagrangian formulation will yield

a similar algorithm to that obtained using the Newton-Euler formulation, if

an equivalent representation of angular velocity is employed.

In the following, we shall briefly review two other methods which are

based on Newton-Euler equations but are somehow diffurent from those

reviewed so far. The main diffurences in these two methods, which have

been proposed by Featherstone [36] and Rodriguez [37], are that in the

kinematic and dynamic analysis of the equations of motion, spatial notation

and spatial algebra have been used. The spatial notation is based on the use

of 6-dimensional vectors, called spatial vectors, to represent the combined

linear and angular components of physical quantities involved in rigid body

dynamics, and 6 x 6 matrices to represent the inertia tensors of rigid bodies.

The basic advantage of using spatial notation in the dynamic analysis of

rigid body systems is that it reduces the number of quantities and the

number of equations required to express and solve various problems associ­

ated with the motion of such systems. In the following (and only for this sec­

tion), symbols with a hat (A) over them denote spatial quantities.· Spatial

algebra is based on spatial operations (defined on spatial quantities) which

are usually implemented using operations of standard vector and matrix

algebra.

Chapter 5: Manipulator Inverse Dynamics 135

In Featherstone's analysis [36], spatial vectors are defined in tenns of

Plucker coordinates and thus spatial algebra is similar to that of screw and

motors. Also, spatial tensors, say the spatial tensor of the i -th link about the

origin OJ of the i -th coordinate system, are defined by an equation of the

fonn

[
-m.t.. m.l 1 rm.r .. m.l] " , It I , "". ,

I = -
0; I - m.t .. t .. m.t.. - 10 m.r ..

Ci "t' 't' 'ttl " ',I.

(5.2.25)

Based on Newton-Euler equations, and using spatial quantities, Featherstone

proposed [36] the following algorithm for computing the IDP which has the

same structure as that of the ones mentioned so far.

ALGORITHM 5.4

Step 0: Initialization

Step 1 : Forward recursion :- For i = 1, n do

A i X'" i "i-l Ai.
V· = . IV. I + S .q. 1 1- 1- 1 1

A i X" i "i-l " i ~/ "i. "i ..
a· = . la. 1 + V· A S .q. + S .q.

1 1- 1- 1 1 1 1 1

Step 2 : Backward recursion :- For i = n, 1 do

end

(5.2.26a)

(5.2.26b)

(5.2.26c)

(5.2.27a)

(5.2.27b)

136 Dynamic Analysis of Robot Manipulators

The spatial operations which are involved in this algorithm are defined

as follows. The spatial dot and cross product operations are defined by the

equations

[:H:l =a·d +b·c

[: 1 h [: :l
(5.2.28)

(5.2.29)

respectively, and the spatial rotational transformation X: + 1 is defined by the

equation

(5.2.30)

To implement this algorithm, Featherstone used a special spatial arithmetic

package and, according to his estimates [36], this algorithm requires

130n - 68 scalar multiplications and lOIn - 56 scalar additions, so that, for

n = 6 it requires 712 scalar multiplications and 550 scalar additions.

In the approach by Rodriguez [37], spatial vectors are defined from 3-

dimensional vectors. For example, a spatial acceleration is defined to be a

six-dimensional vector formed by an angular acceleration and a linear

acceleration. Also, the spatial inertia tensor of the i -th link about the origin

of the i -th coordinate system is defined by the equation

[
lo(i) m(i)r(i) 1

I(i) =
-m(i)r(i) m(i)l

(5.2.31)

The diffurences from Featherstone's definitions have been introduced' to sim­

plify the operations of spatial algebra. Note that the diffurences have been

incorporated in the notation. To transfer the new notation to the notation

Chapter 5: Manipulator Inverse Dynamics 137

used so far, one needs to write m (i) = m j , r (i) = rj j' Ie (i) = Ie. and so on. . .
However, besides the diffurences in the definitions of spatial quantities and

in the spatial notation, the main diffurence in Rodriguez's approach is to be

found in the analysis of the equations of motion. Basic to this analysis, is a

spatial quantity of the fonn

.. [lS(i J)]
ff)(iJ)= 0 1 (5.2.32)

where S (i J) = Sj j. As can be seen, the spatial quantity «f,(i ,j) satisfies the

properties

«f,(i J) = «f,(i ,k)«f,(k J)

«f,(i ,i) = 1

«f,-l(iJ) = «f,U,i)

(5.2.33a)

(5.2.33b)

(5.2.33c)

which are usually associated with a transition matrix of a (discrete) linear

state space system. The idea of the "transition matrix" «f,(i ,j) in

Rodriguez's approach is not the only one which is associated with the linear

system theory. There are other ideas too which are obvious from the follow­

ing outline.

The equations of translational and rotational motion (derived from

Newton and Euler's equations) for each link are written as linear diffurence

equations that allow the spatial force at the proximal joint to be computed

from the spatial force at the distal joint and the spatial acceleration of the

link. These diffurence equations are similar to those describing the evolution

of the state of a discrete-time state space system. Here the state is defined by

the vector of spatial force which is "propagated" in space (instead of time)

from link to link. Thus, in this state-space equation, the role of the time inter­

val between discrete-time samples is played by the spatial interval which is

defined as the vector from the proximal to the distal joint. An "output"

138 Dynamic Analysis of Robot Manipulators

equation is also associated with this "state" equation in order to generate

the scalar joint moments/forces which form the output vector. Also, in

Rodriguez's approach, complementary to the state equation is another

difference equation which propagates spatial acceleration within the link and

across the joint and plays the role of the co-states in his analysis. From the

foregoing, in Rodriguez's approach the lOP is formulated as a two-point

boundary-value problem, with boundary conditions ensuring that the state

(spatial force) vanishes at the tip of the manipulator and the co-state (spatial

acceleration) vanishes at the base. These boundary conditions reflect the

assumptions that the tip of a manipulator is free while the base is immobile.

Obviously, different boundary conditions may also be considered.

Based on these ideas, the following algorithm has been proposed in

[38].

ALGORITHM 5.5

Step 0: Initialization

v (0) = a (0) = f (n)= 6

Step 1 : Forward recursion :- For i = 0, n-J do

v(i+l) = cil(i,i+l)v(i) + i T(i+l)qi+l

a(i +1) = ci>T (i ,i +1)a(i) + iT (i +1)iii+l + a(i +1)

Step 2 : Backward recursion :- For i = n, J do

A

f(i) = ci>(i,i+l)f(i+l) + I(i)a(i) + f}(i)

,;(i) = iT (i)f (i)

end

(S.2.34a)

(S.2.34b)

(S.2.3Sa)

(5.2.3Sb)

Chapter 5: Manipulator Inverse Dynamics 139

A

In this algorithm, the spatial vectors 6.(i) and P(i), which are not

defined here, are "bias" quantities which in the i -th iteration can be com­

puted (see [38]) from other known quantities. For the implementation of this

algorithm, a computational complexity analysis has not been given in [38].

However, since the spatial algebra used in [38] can be implemented based on

straightforward vector-matrix algebra and the structure of Algorithm 5.5 is

similar to that of Algorithm 5.4 it should be expected that these two algo­

rithms have similar computational complexity.

5.2.3 Formulations Based on Kane's Equations

In Kane's approach, one first describes the generalized active force and

the generalized inertia force of a system in terms of generalized coordinates,

generalized speeds, partial linear velocities, and partial angular velocities.

Then, the dynamic equations of motion (Kane's equations) are obtained by

setting the sum of these two forces equal to zero according to the d' Alembert

principle. Kane's equations were first introduced for general nonholonomic

mechanical systems [39] and were used, as were the Newton-Euler and

Euler-Lagrange equations, in rigid multi-body satellite and spacecraft

dynamic analysis [40,41]. Huston and Kelly [42], were among the first to

apply Kane's equations to robotics. However, they presented neither an

explicit algorithm for inverse dynamics nor a complexity analysis of their

method. Kane's equations were also used by Faessler [43], who presented a

method which led to a closed-form algorithm for evaluating inverse dynam­

ics. Using analytical procedures, Faessler expressed the entries of the

coefficient matrices in symbolic form, but did not provide a complexity

analysis of his method. Kane and Levinson [44] also presented a customized

algorithm for solving inverse dynamics for the Stanford arm. But, although

their procedure is conceptually simple, it requires considerable experience

with handling complex dynamical systems and involves an extensive manual

140 Dynamic Analysis of Robot Manipulators

analysis for setting up a large number of intennediate variables, which are

not defined via recurrence relations.

A recursive algorithm for computing inverse dynamics, based on

Kane's equations has been proposed by Angeles, Ma and Rojas [45]. Using

analytical procedures, they were able to derive from Kane's equations the

following equations for the i -th component (i = 1, 2, ... , n) of the general­

ized force 't:

i) When the i -thjoint is revolute,

[
n 1 iii •• i

't·=z·· L[M +m.r .. xro ·] " cj } 'J J
j=i

(5.2.36)

ii) When the i -th joint is prismatic,

(5.2.37)

Equations (5.2.36) and (5.2.37) are identical to the equations derived by

Silver [35] using the Euler-Lagrange equations and therefore, as Silver has

shown, they can also be derived from the Newton-Euler fonnulation. Based

on equations (5.2.36) and (5.2.37) and kinematic and dynamic recurrence

relations, like those introduced by Luh, Walker and Paul [33], Angeles, Ma

and Rojas proposed a recursive algorithm which is similar in structure to

Algorithm 5.4. For a "semi-customized" implementation, this algorithm

requires 105n - 109 scalar multiplications and 90n - 105 scalar additions

(where n ~ 2).

Finally, we conclude this survey on inverse manipulator dynamics with

the following note. In an effort to reduce further the computational 'cost for

solving the lOP the particular kinematic and dynamic structures of the mani­

pulator were taken into consideration by some researchers. This effort

Chapter 5: Manipulator Inverse Dynamics 141

resulted in a class of dynamic algorithms which are referred to in the litera­

ture as customized algorithms. Customized robot dynamics algorithms,

which can be derived based on any formulation (the Lagrangian, the

Newton-Euler or Kane's) are usually based on mathematical models of indi­

vidual manipulators. Hence, customized algorithms can be systematically

organized [46-53] and therefore such algorithms exhibit a significant

increase in computational efficiency over general-purpose algorithms. Also,

some aspects of better manipulator designs for reduced dynamic complexity

have been considered [54,55]. In this approach, the kinematic structure and

mass distribution of a manipulator arm are designed so that the inertia matrix

of the manipulator becomes diagonal and/or invariant for an arbitrary arm

configuration. However, this approach leads to algorithms which are applica­

ble to particular classes of manipulators with two and three degrees of free­

dom only. Finally, to facilitate real-time implementation of advanced robot

control strategies, parallel processing techniques have been used [56-60] to

implement many of the existing algorithms which compute inverse dynam­

ics.

5.2.4 Observations Concerning Computational Issues in the IDP

Based on this brief survey, we can make the following observations

concerning various computational issues in evaluating manipulator inverse

dynamics.

It is clear that for solving manipulator inverse dynamics, recursive

algorithms are computationally more efficient than closed-form ones, since in

recursive algorithms unnecessary computations (usually duplications) are

avoided. Also, it can be shown that the computational efficiency of an algo­

rithm for solving the lOP is independent of the particular equatio~s of

motion (Newton-Euler, Euler-Lagrange or Kane's) used to derive it. The

computational efficiency of these recursive algorithms, as Silver [35] has

pointed out, depends mainly on "the structure of the computation and choice

142 Dynamic Analysis of Robot Manipulators

of representation" and this survey on inverse dynamics confinns Silver's

remark. To emphasize this important remark, we restate it as follows: The

computational efficiency of a recursive algorithm for evaluating inverse

dynamics depends mainly on the following factors:

(a) the particular representation of various physical quantities appearing

in the equations of motion;

(b) the underlying modeling scheme used for the manipulator;

(c) the organization of the computations and the degree of customization

involved in its numerical or symbolic implementation.

From the brief survey presented above, one can see that the organiza­

tion of the computations and the degree of customization is actually the point
on which most of the existing recursive algorithms difrer. The large number

of these algorithms reveals that many alternatives have been considered in

reducing the computational cost. However, particular analytical organization

procedures and customization are usually used for the implementation of an

algorithm and not for deriving it. Our basic objective in this monograph is to

improve the computatio'nal efficiency of algorithms for solving the lOP

through a better understanding of the mathematical representations used to

describe the equations of motion and not through better implementations of

existing fonnulatiollS. Therefore, we shall not consider the latter aspect here.

More infonnation on organization procedures and customization can be

found, for instance, in [47] and in the extensive list of references cited

therein.

For the class of robot manipulators we are dealing with, namely, rigid­

link, open-chain manipulators, the modeling scheme is simple and common

to most of the existing algorithms. Usually, each link is considered,to be a

rigid body and the manipulator is modeled as an ideally connected (Le,

without friction or any backlash) open-chain of rigid bodies. This chain is

assumed to be a rigid structure when static force analysis is required, as in

Chapter 5: Manipulator Inverse Dynamics 143

the case of the Newton-Euler fonnulation. This modeling scheme, as well as

another one which utilizes the ideas of augmented and generalized links, will

be used in the next section to demonstrate the effects of the underlying

modeling scheme on the structure of a recursive algorithm. In particular, we

shall show that the modeling scheme which is based on augmented and gen­

eralized links leads to algorithms which have computational advantages,

because they allow for some quantities to be computed off-line.

Finally, the choice of representation is the most important factor

affecting the computational efficiency of the algorithms we are dealing with.

From the survey, it is clear that the debate about the Euler-Lagrange and

Newton-Euler fonnulations, mentioned above, was actually an indirect

debate about the proper representation (as far as computational efficiency is

concerned) of angular velocity. Theoretically, it is known that the two for­

mulations are equivalent. Therefore, the real question, although never stated

explicitly as such, was which representation for angular velocity describes

the angular motion of a rigid body more efficiently. As noted by Silver [35],

the angular motion of a rigid body can be described equally well by either

angular velocity vector, which is used in the Newton-Euler fonnulation, or

the derivative of a rotation tensor which is used in the Lagrangian fonnula­

tion. At the time that Silver's work was published, the algorithm by Luh,

Walker and Paul clearly indicated that the angular motion of a rigid body

was described more efficiently by angular velocity vector. Thus, the vector

representation of angular velocity became standard in the dynamic analysis

of robotic systems. Following the vector representation of angular velocity,

all the other quantities which are defined in tenns of angular velocity were

also represented by vectors. Thus, vector representations and vector analysis

have been used almost exclusively for deriving computationally efficient

algorithms for solving the IDP.

However, as we have shown in Chapter 4, the angular motion of a rigid

body is described more efficiently by using a Cartesian tensor representation

144 Dynamic Analysis of Robot Manipulators

for the angular velocity. Obviously, this provides another possibility for

describing efficiently the dynamic equations of a system of rigid bodies, in

general, and solving the manipulator IDP in particular. Therefore, the ques­

tion which arises at this point is the following: Does the tensor representa­

tion of the angular velocity lead us to recursive algorithms which compute

inverse dynamics more efficiently than those algorithms which are derived

using the traditional vector representation of angular velocity?

The answer to this question is in the affirmative as will be shown in the

next section.

5.3 A Cartesian Tensor Approach for Solving the IDP

As we mentioned in the previous section, the method proposed by Luh,

Walker and Paul is the most suitable one for deriving computationally

efficient recursive algorithms for solving the IDP. In this section, following

this method and using Cartesian tensor analysis, we shall derive recursive

algorithms for computing inverse dynamics, which are computationally far

more efficient than similar algorithms derived using vector analysis. In par­

ticular, employing the methodology and basic theorems introduced in

Chapter 4, we shall reformulate Algorithm 5.3, which was presented in Sec­

tion 5.2. We shall do this by rewriting the basic vector equations of this algo­

rithm in an equivalent, but computationally more efficient, tensor formula­

tion. Moreover, to increase the computational efficiency of this algorithm

further, we shall examine the underlying modeling scheme for the class of

robot manipulators that we are dealing with. To this end, we shall derive a

second algorithm by using a modeling scheme which employs the ideas of

augmented and generalized links. Finally, the numerical implementation and

computational complexity of these algorithms are considered and compared

with similar algorithms that can be found in the literature.

Chapter 5: Manipulator Inverse Dynamics 145

5.3.1 New Algorithms for Solving the IDP

In the Newton-Euler fonnulation, the dynamic equations for robot

manipulators are obtained by evaluating recursively the velocities and

accelerations for each link and then applying Newton's and Euler's equa­

tions to each link. In the first step, the recursions are perfonned from link 1

to link n. Then, in the second step, using static force and torque analysis, the

joint actuator forces/torques are computed with the recursions applied from

joint n to joint 1. These recursions can be stated in an algorithmic fonn as

was done for Algorithm 5.3.

In Algorithm 5.3, the absolute linear acceleration of the center of mass

of each link is computed following the classical vector approach in which

the absolute angular velocity and acceleration are represented by vectors.

Also, in this algorithm, the generalized Euler equation is stated in its classi­

cal vector fonnulation in tenns of the vector angular velocity and vector

angular acceleration. However, as we have seen in Chapter 4, the absolute

linear acceleration of a point on a moving rigid body as well as the Euler

equation can be described by using the angular acceleration tensor instead of

using the vectors of angular velocity and acceleration. Therefore, in an effurt

to improve the computational efficiency of Algorithm 5.3, we shall use

Cartesian tensor analysis to refonnulate most of the recurrence relations in

this algorithm. The basic tensor-vector identities, proven in Chapters 3 and 4,

will make the process here straightforward and simple. We need only to note

that the equations of motion in Algorithm 5.3 are written with reference to

link coordinate systems as opposed to Chapter 4 where the equations of

motion are written with reference to an inertial coordinate system. However,

as we mentioned in Chapter 3, Cartesian tensor equations are invariant under

orthogonal coordinate transformations. Therefore, all the equations which

describe the rigid body motion and which, in Chapter 4, are written relative

to an inertial coordinate system, will be written here relative to link coordi­

nate systems by using appropriate orthogonal coordinate transformations.

146 Dynamic Analysis of Robot Manipulators

To derive a tensor fonnulation for Algorithm S.3, we obviously have to

abandon Gibb's classical vector cross product ope,!'ltion. As was shown in

Chapter 4, we have to use the tensors cO and 0 = cal + mti) written here with

reference to appropriate link coordinate systems. Using these two tensors,

the equations of Algorithm S.3 can be modified as follows:

Equation (S.2.23b) can be expressed as

(S.3.1)

Also, equation (S.2.23c) can be written as

•• i+l T •• i i i i+l i+l. i+l ..
SO,i+l = Ai+1[SO,i + Cisi,i+l] + (l-Oi+l)[2cOi zi+1Qi+l + zi+1Qi+l] (S.3.2)

and equation (S.2.23d) can be written as

(S.3.3)

Newton's equation, i.e., equation (S.2.23e) is very simple in its vector fonn

and therefore we do not modify it. However, Euler's equation, i.e., equation

(S.2.23t), assumes a simpler structure when it is written in tensor fonn and,

in particular, when it is expressed in tenns of the Euler tensor J~ +1. There-
i+l

fore, using equation (4.3.6) to translate the inertia tensor I~+1 to the Euler
1+1

tensor J ~ + 1 ,we first write equation (S .2.23t) in the following tensor fonn
i+l

(S.3.4)

i+l . -i+l
and then we recover the vector Me. from the skew-symmetric tensor Me

.+1 ;+1

by using the dual operator. The dual operator has been introduced in Chapter

3 by equation (3.3.31). Thus,in a tensor fonnulation the vector M~+1 is com-
i+l

puted by the following equations,

Ji+l = ...!..tr[I i+1]1_I i+1
Ci+1 2 Ci +1 '1+1

(S.3.Sa)

(S.3.Sb)

Chapter 5: Manipulator Inverse Dynamics 147

(5.3.5c)

In the second step of Algorithm 5.3, we need only to refonnulate equation

(5.2.24b) which can be written in the fonn

(5.3.6)

Now, using equations (5.3.1)-(5.3.6), we can state Algorithm 5.3 in a new

fonnulation as follows:

ALGORITHM 5.6

Step 0: Initialization

OJ = [1 revolute i-th joint

o prismatic i -th joint

[
OJ revolute i-th joint

qj=

dj prismatic i -th joint

o • 0 0 •• 0 j T
010 = 0, 010 = 0, no = 0, so,o = - g, AUI = 0, Zj = [0 0 I]

I . 1 . 1
J j +1 = -tr[I~+]1- I~+

Ci +1 2 .+1 1+1

Step 1: Forward recursion :- For i = 0, n-l do

(5.3.7a)

(5.3.7b)

(5.3.7c)

(5.3.7e)

(5.3.7f)

148 Dynamic Analysis of Robot Manipulators

Mi+l = O~+IJi+l _ [n~+IJi+l{ (5.3.7g)
'1+1 --;+1 '1+1 1+1 '1+1

Mi+l = dual(M i +1) (5.3.7h)
'1+1 ChI

Step 2 : Backward recursion :- For i = n, 1 do

end

(5.3.8a)

(5.3.8b)

(5.3.8c)

We shall be concerned with the numerical implementation of Algo­

rithm 5.6 in the next section. However, as we can notice here, the structure

of this algorithm reveals that for its implementation all the quantities (with

the exception of the Euler tensors) have to be computed on-line. Obviously,

from a computational point of view it is desirable to devise algorithms which

allow us to compute off-line as many quantities as possible and at the same

time, to keep the on-line computations as simple as possible. To see if this is

feasible, we have to examine the underlying modeling scheme for the class

of robot manipulators we are dealing with, since the structure of an algorithm

obviously depends on it

As we mentioned in Section 5.2, the robot manipulator is modeled, in

general, as an ideally connected, open-loop, serial-chain of rigid bodies.

When frictional forces at the joints are to be considered we compute them

based on the joint velocities and add them directly to the joint generalized

forces. This clearly justifies the idealization in the connections of the rigid

links. Now, utilizing this modeling scheme, kinematic and 4ynamic

recurrence relations are defined, based on which the recursive Algorithm 5.3

(or Algorithm 5.6) has been derived. As is well known [34], the kinematic

recurrence relations are defined by analyzing the velocity "propagation"

Chapter 5: Manipulator Inverse Dynamics 149

from link to link starting from the base of the manipulator to the end-effector.

The dynamic recurrence relations are defined based on a static force and

moment analysis. In particular, in deriving the dynamic recurrence relations

in Algorithm 5.3, or in Algorithm 5.6, it has been assumed that the manipula­

tor is locked at the joints so that it becomes a structure which is "rigid" in

static eqUilibrium, and that static force and moment analysis has been per­

fonned for each link. However, in defining these dynamic recurrence rela­

tions, the analysis for the static forces and moments can be modified. For the

static analysis, as long as we do not disturb the static equilibrium position of

the manipulator, we are free to merge links and thus to generate hypothetical

"generalized" links or even to assume the presence of "fictitious" links. In

the following, using this "unconventional" static analysis, we shall modify

the dynamic recurrence relations of Algorithm 5.6. Then, based on these

modified dynamic recurrence relations, we shall state a new algorithm

which, when applied to most industrial robot manipulators in use today,

allows us to compute some quantities off-line.

To proceed, we first need to introduce the concepts of augmented and

generalized links, which are shown in Figure 5.1.

Definition 5.1 : An augmented link i is a fictitious link composed of link i
and the mass oflinks i + I,i +2, ... ,n, attached to the origin of the (i + I)-th

coordinate system.

This definition, which can be applied regardless of the type of joint

(Le., revolute or prismatic), is slightly different from the one presented in

[23] in that the mass of the augmented link is not the total mass of the system

(here the robot manipulator). Note that an augmented link is "rigid" (Le.,

has fixed geometry) if and only if the (i+ I)th joint is revolute because, when

the (i + I)-th joint is prismatic, the position vector of the origin of the (i + 1)­

th coordinate system relative to the origin of the i -th coordinate system, Le.,

the vector Sf,i +1' is not constant.

150 Dynamic Analysis of Robot Manipulators

Definition 5.2: A generalized link i is a composite link, consisting of links

i through n treated as a single rigid body structure.

In order to modify the dynamic recurrence relations of Algorithm 5.6,

we need to define the following moments :

(a) The O-th moment or mass of the i -th augmented or the i -th generalized

link :

;n. =m· +;n. 1
1 1 1+

where mj is the mass of the i -th link.

Link i + I

(j + l)-tb r'7--: I

q+1

Linki

j-tb frarn~~_
(a)

~

(5.3.9)

Link(f?

j

rj.i+l

Ii
Ii
m· 1

Ei
Q .

(b)

Figure 5.1: (a) The i -th generalized link, (b) The i -th augmented link .

Chapter 5: Manipulator Inverse Dynamics 151

Also, the first and second moments of the augmented link i with respect to

the origin of the i -th coordinate system, expressed in the i -th link frame, are

defined as follows:

(b) First moment of the augmented link i :

(5.3.10)

(c) Second moment or inertia tensor of the augmented link i :

K i Ii .i.i _ .i .i
0= c. -miriirii-mi+lsii+1Sii+l i • t.

(5.3.11)

where I~ is the inertia tensor of link i with respect to its center of mass .
expressed in the i -th coordinate frame. Note that when the (i + l)-th joint is

revolute, the first and second moments are independent of the configuration

of the manipulator and can be computed off-line. We also need the first

moment about the origin of the i -th coordinate frame of the generalized link

i. This is obtained as

(d) First moment of the generalized link i :
n

(5.3.12)

j=i

In the equation above, U~., expressed in the i -th link frame, is configuration
•

dependent, and therefore must be calculated on-line. However, we can com­

pute U~. recursively as the following lemma shows: .
Lemma 5.1 : The first moment of the i -th generalized link satisfies the fol­

lowing recursive equation

(5.3.13)

Proof: From equation (5.3.12) we have
n

i i
Uo; = Lmjrij

j=i

152 Dynamic Analysis of Robot Manipulators

n
i

=m·r·· + ~ 't,l ~

j=i +1

S· Ii . . i i A i + 1 h
mce Or}>l,rij =Si,i+l + i+l r i+lj,we ave

n n
iii i+l

Uo; = miri,i + L mj si ,i+l + L Ai+lmjri+lj

j=i+l j=i+l
i _ i i+l

= miri i + m i +1si i+l + Ai+1Uo
, t i+l

o

In the following, we shall analyze the rotational motion of an aug­

mented link, say the i -th one. For the sake of simplicity we assume first that

the i -th augmented link has rigid body characteristics, i.e., the (i + l)-th joint

is assumed to be revolute. Later we shall extend the analysis to include aug­

mented links for which the (i + l)-th joint is prismatic. We begin by review­

ing the rotational motion of the i -th link about the i -th joint since both the

i -th link and the i -th augmented link require similar dynamic analysis. In

particular, both have the same angular velocity and angular acceleration.

However, since the i -th augmented link has different mass from the i -th link,

it has obviously different dynamic characteristics.

When the i -th link experiences a rotational motion with center of rota­

tion at the origin of the i -th coordinate system and with angular velocity CIl:
and angular acceleration 00:, a resultant torque or moment of force vector

M~i is developed with respect to the center of rotation which, as shown in

Chapter 4, satisfies equation (4.3.36). This equation, expressed in link coor­

dinate system orientation, is written here as

iii i
Mo. = Me. + ri,i X Fe. .. . (5.3.14)

where

(5.3.15)

Chapter 5: Manipulator Inverse Dynamics 153

is the resultant torque with respect to the center of mass and
i .. i

F =m·r·· Ci 'ttl
(5.3.16)

is the total force caused at the center of mass of the i -th link due to its

acceleration. Using equation (5.3.16), we can write equation (5.3.14) in the

form

(5.3.17)

Equation (5.3.17) is the basic equation which describes the rotational motion

of the i -th link. Now, if instead of the i -th link, the i -th augmented link actu­

ally experiences this rotational motion, then equation (5.3.17) needs to be

changed to

(5.3.18)

where the term mi+1S;,i+1S;,i+l has been added to account for the torque

which will be caused due to the presence of a mass equal to mi+l at a point

which has position vector sf,i +1 relative to the center of rotation. Obviously,

the resultant torque vector is now denoted by a different vector, the vector

J.1;. Moreover, as we have shown in Chapter 4, equation (5.3.17), which is

actually another formulation for the generalized Euler equation, can be writ­

ten in terms of the link inertia tensor as follows

(5.3.19)

where I~. = I~. - m;f;l ;,i is the inertia tensor of the i -th link with respect to . .
the origin of the i -th link coordinate system. Therefore, by analogy, we can

say that equation (5.3.18) describes the generalized Euler equation for the i­

th augmented link, when it is written with respect to the origin of the i-th

link coordinate system. Obviously, as is the case with the i -th link, the gen­

eralized Euler equation can be written in terms of the inertia tensor K~. of .
the i -th augmented link and the vectors of the angular velocity 00; and

154 Dynamic Analysis of Robot Manipulators

angular acceleration ro:, as follows

j K j • j ·jK j j J1j = o. (OJ + (OJ o. (OJ . . (5.3.20)

where the inertia tensor K!. of the i -th augmented link is defined by equation .
(5.3.11). To see that equation (5.3.18) is indeed equivalent to equation

(5.3.20), we proceed as follows. First we need to prove the following rela­

tions

• j •• j [. j • j • j • j. j • j j]
r· ·r· . = - r· ·r· .(0. + (O·r· ·r· .(0. t.' t.t 't' '.1' "t' 't' , (5.3.21)

and

(5.3.22)

To prove (5.3.21), we note that since r:,i is a constant vector, its absolute

acceleration satisfies the equation

or

•• i i i
r·· =Q.r ..

',' , tt'

.j.j .1.1 j = - r· .(0. - (O·r· .(0.
t,l' 'ttl'

(5.3.23)

(5.3.24)

where equation (3.4.6) has been used in the last step. Therefore, we can write

• j •• j [. j • j • j • j • j. j j]
r. ·r· . = - r· ·r· .(0. + r· ·(O·r· .(0 .•
'tl ttl ttl 1,1 I ttl I ttl I

(5.3.25)

Moreover, using equation (3.4.19b) we can write

. 1 .. .
r~ .6l~r~ . = 6l~r~ .r~ . + r~ .r~ .(b~ - -tr [r~ .r~ .](O~. 'tl lIt' I ttl ttl t,l t,l I 2 ttl ttl I

(5.3.26)

Then, by substituting equation (5.3.26) into equation (5.3.25) and noting that

6l;(O: = 0, equation (5.3.25) becomes equation (5.3.21). Also, since the

Chapter 5: Manipulator Inverse Dynamics 155

(i + 1)-th joint has been assumed to be revolute, the vector Sf.i +1 is constant,

and so we have
•• iii
Si.i+l = o;Si.i+l· (5.3.27)

Equation (5.3.22) can then be proved following the same arguments as in the

proof of equation (5.3.21). Now, substituting equations (5.3.15), (5.3.21) and

(5.3.22) into equation (5.3.18) and using the definition of K!, from equation

(5.3.11), we get equation (5.3.20).

In this analysis, the generalized Euler equation for both the i -th link

and the i -th augmented link has been stated in its vector form. However, as

we have seen in Chapter 4, the generalized Euler equation can also be stated

in a tensor formulation. Moreover, the tensor formulation of the generalized

Euler equation assumes a simpler formulation when it is stated in terms of

the rigid body Euler tensor. Therefore, for a simple tensor formulation of

equation (5.3.20), we need to define the Euler tensor of the i -th generalized

link. This can be easily done if one uses equation (4.3.6) which transforms

the rigid body inertia tensor into the Euler tensor. Thus, we shall use the

symbol K!, (note: this is not a spatial quantity) to denote the Euler tensor of

the i -th augmented link and we define it as follows

(5.3.28)

where K!. is the inertia tensor of the i -th augmented link. Using this Euler .
tensor, we can state the generalized Euler equation of the i -th augmented

link in a tensor form as follows,

(5.3.29)

where of is the angular acceleration of the i -th augmented link. Obviously,

from the skew-symmetric tensor iif, we can recover the vector invariant J1;
by using the dual operator, i.e., we can write

156 Dynamic Analysis of Robot Manipulators

i i
tli = dual (iii)'

From the foregoing, when the (i + 1)-th joint is revolute, the dynamic

analysis for the i -th augmented link is very simple. However, this analysis

has to be modified when the (i + 1)-th joint is prismatic because, in this case

the i -th augmented link is not a rigid body. As we have mentioned above, the

vector Sf,i + 1. i~ not constant in this case and therefore, the v,ector i f,i + 1 is not , , . ..,
equal to Oi Si ,i + l' The correct expressIon for the vector S i ,i + 1 follows from

equation (5.3.7d) and is as follows.

or,

where

and

•• iii)r i
Si i+l = niSi i+l + (1-0i +1 ':Ii i+l " ,

11 if the (i + l)-th joint is revolute

°i+l =
o if the (i + l)-th joint is prismatic

(5.3.30)

(5.3.31)

(5.3.32)

(5.3.33)

Therefore, when the (i + 1)-th joint is prismatic we have to modify equation

(5.3.20). In this case, we denote the resultant torque by the vector vf, i.e., we

write equation (5.3.18) as

(5.3.34)

Now, following an analysis similar to that applied to equation (5.3.18) and

using equation (5.3.31) instead of equation (5.3.28), we can show that equa­

tion (5.3.34) can be written as

i Ki.i .iKi i (1)_.i yi
Vi = Ojmi + mi 0i mj + -Oi+l mi +1si ,i+l':1i,i+l'

Chapter 5: Manipulator Inverse Dynamics 157

(5.3.35)

From the foregoing, the resultant torque vector at the origin of the i-th
coordinate system, due to the rotational motion of the i -th augmented link,

can be described by a single equation as

(5.3.36)

where OJ +1 is defined by equation (5.3.33).

With this preliminary result, we now assume that the links are aug­

mented links and we proceed to modify Algorithm 5.6 so as to make it appli­

cable to manipulators whose modeling scheme utilizes the ideas of aug­

mented and generalized links. Since the kinematic analysis of an augmented

link is the same as that of the corresponding actual link, only the dynamic

recurrence relations need to be modified. Thus we proceed by reformulating

the recurrence relation for the moment vector 11:, which is exerted on link i

by link i-I. To do this, we first write (5.3.8a) in its expanded form i.e., we

write

(5.3.37)

j=j

where, from (5.3.7e), F~. = ml~j. Now, since r~j = i~,j + r:j for j ~ i, we
J

have
n

rj L .. j •• j) . = m.(so ·+r· .
1 J ,I IJ

j=j

n n

L .. i L .. i - •• i •• i
= m.so·+ m·r·· = m.so .+U J ,I J IJ 1 ,I 0.

j=j j=j

where ffij is defined by (5.3.9) and

n
iji _ 'r •• i

0. - Lmjrjj •

j=j

(5.3.38)

(5.3.39)

158 Dynamic Analysis of Robot Manipulators

Equation (5.3.39) is a consequence of (5.3.12). However, we do not need to

use equation (5.3.39) for computing the vector U! .. This vector can be com-.
puted recursively as the following lemma shows.

Lemma 5.2 : The absolute derivative of the first moment of the i -th general­

ized link. satisfies the following recursive relation

(5.3.40)

where 0i+l is defined by equation (5.3.33), mi+l is the O-th moment of the

(i + l)-th generalized link. and C:,i +1 is defined by equation (5.3.32)

Proof: From equation (5.3.12) we have
II

U ' .. 1 ~ •• 1 = m·r· . + ~ m·r· .
0; I 1,1 J IJ

j=i +1

N . fi . . •• i •• i A •• i +1 h
oW,smce orJ>I,rij =Si,i+l+ i+lri+lj,we ave

II II

•• i •. i ~ •• i ~ •• i + 1
Uo; = miri,i + ~ mj si ,i+l + Ai+l ~ mjri+lj

j =i + 1 j =i +1
•• i _ •• i ·-;+1

= miri i + mi +1si i+1 + Ai+1Uo
t • i+l

Further, using equations (5.3.23) and (5.3.31) we can write

m/:,i + mi +1S:,i+l = n:[mir:,i + mi +1S:,i+1] + (1- Oi+1)mi +1C:,i+l

= n;u!. + (1-Oi+l)mi+1C:,i+1 .

(5.3.41)

(5.3.42)

where, in the last step, equation (5.3.10) has been used. Finally, equation

(5.3.40) follows on substituting equation (5.3.42) into equation (5.3.41). 0

i
Now, for the vector 11i' we have from (5.3.8b)

Chapter 5: Manipulator Inverse Dynamics 159

Further, using (5.3.10) and (5.3.36), we can write

i i (1)_.i ri .i •• i .i V·· i A i+l
11i = l1i + -O'i+l mi+lsi,i+l~i,i+l + uo;SO,i + Si,i+l 0;+1 + i+l11i+l

i .i •• i .i [V·· i (1)- ri] A ..,i+l (5343)
= l1i + uo;SO,i + 8i ,i+l 0;+1 + -O'i+l mi+l~i,i+l + i+l'li+l •.

We can see from (5.3.43) that in computing the vector 11: we do not use the

vectors F~ and r:. Therefore, we do not need to compute equations (5.3.7e) .
and (5.3.8a). In their place, we use equation (5.3.40). Also, we do not need to

compute the vector M~, since in (5.3.43), we use the vector 11:.
We are now in a position to formally outline an algorithm which

efficiently computes the joint actuator torques for a rigid-link open-chain

robot manipulator.

ALGORITHM 5.7

Step 0: Initialization

(
1 revolute i -th joint

O'i=

o prismatic i -th joint

(
Oi revolute i-th jOint

qi =
di prismatic i -th joint

o 0 .0 0 0 0 , •• 0 A 0 i [OOI]T
Olo = , 010 = '--u so,o = - g, /I + 1 = , zi =

160 Dynamic Analysis of Robot Manipulators

Step 1 : Backward recursion :- For i = n, J do

ffij = mj + ffij +1

~ j ~j _ ~j

U o = mjrj j + mj+lsj j+l
i • •

A j 1 j j
Ko. = -tr[Ko.]l- Ko

. 2 . i

Step 2: Forward recursion :- For i = 0, n-J do

Step 3 : Backward recursion :- For i = n, J do

end

(S.3.44a)

(S.3.44b)

(S.3.44c)

(S.3.44d)

(S.3.4Sa)

(S.3.4Sb)

(S.3.4Sc)

(S.3.4Sd)

(S.3.4Se)

(S.3.4St)

(S.3.4Sg)

(S.3.46a)

(S.3.46b)

(S.3.46c)

Chapter 5: Manipulator Inverse Dynamics 161

As we can see, in Step 1 of Algorithm 5.7, we compute the dynamic

parameters for the augmented links. These parameters are configuration

independent when the augmented links have rigid body characteristics and in

this case can be computed off-line. An augmented link, say the i -th, is not a

rigid body when the (i + l)-th joint is a prismatic joint. Thus, for robot mani­

pulators which have all joints of revolute type, e.g., a PUMA type robot, Step

1 of Algorithm 5.7 can be computed off-line. Even for robot manipulators

with one prismatic joint, e.g., a Stanford-arm type robot, Step 1 of Algorithm

5.7 can almost all be computed off-line, because for this type of robot mani­

pulators only minor modifications are needed and these can be easily incor­

porated in the on-line computations. Therefore, since almost all industrial

robot manipulators are either of PUMA or of Stanford-arm type, we can say

that Step 1 of Algorithm 5.7 can be computed off-line for almost all indus­

trial robot manipulators in use today.

In the following subsection, we shall consider the numerical implemen­

tation of the algorithms derived in this section. In particular, first some obser­

vations will be made about the most computationally intensive operations

appearing in these algorithms. Then the implementation of Algorithm 5.7 for

robot manipulators which have all revolute joints will be examined in more

detail. We examine this case in more detail since, as is well known, solving

inverse dynamics for robot manipulators of this type is computationally more

intensive than for robot manipulators which have some prismatic joints.

5.3.2 Implementation and Computational Considerations

In this section, we shall demonstrate how the algorithms developed

earlier can be implemented efficiently. We consider two cases; robot manipu­

lators with a general geometric structure and those for which the twist angle

is, by design, either 0 or 90 degrees. We consider the latter case since' most

industrial robots manipulators have this characteristic.

162 Dynamic Analysis of Robot Manipulators

In the following, we are concerned with the numerical implementation

of Algorithms.5.6 and 5.7. Therefore, to be technically correct we have to

rewrite these Algorithms in terms of the corresponding coordinate matrix

equations. However, as we mentioned in Chapter 3, a tensor equation and its

corresponding coordinate matrix equation (with respect to a Cartesian coor­

dinate system) are formally the same. Therefore, in a coordinate matrix form

these two algorithms have the same structure and appearance and therefore

there is no need to actually rewrite these algorithms in a coordinate matrix

form. Based on this observation, by a slight abuse of the notation, we shall

refer to the computation of the coordinate matrix nf of the tensor of relative

to the i -th link coordinate system as the computation of the matrix of.
It is clear from Algorithms 5.6 and 5.7 that the maximum number of

operations required to implement them results from various matrix-vector or

matrix-matrix multiplications. These matrix operations can be implemented

in a straightforward manner by using general purpose standard subroutines.

However, the structure of these matrices (e.g., symmetric or skew­

symmetric) are standard and common to all robot manipulators that we are

concerned with. Therefore, for efficient implementation, the structure of the

matrices involved should be taken into account. This approach does not, of

course, restrict the applicability of the algorithms to a general robot manipu­

lator.

The matrix-vector multiplications which are involved in Algorithms

5.6 and 5.7 can be categorized as follows:

Class (a) : consists of those operations in which the matrix under considera­

tion is a coordinate transformation matrix;

Class (b) : consists of those operations in which the matrix involved is a

skew-symmetric matrix; and

Class (c) : consists of those operations in which the matrix involved is the

matrix O.

Chapter 5: Manipulator Inverse Dynamics 163

For a general manipulator, in order to implement a matrix-vector multi­

plication of class (a), we need 8 scalar multiplications and 4 scalar additions.

For the case of manipulators with twist angle ex equal to 0 or 90 degrees, we

need only 4 multiplications and 2 additions. A matrix-vector multiplication

of class (b) can be implemented in 6 scalar multiplications and 3 scalar addi­

tions; and finally, for the multiplications in class (c), we need 9 scalar multi­

plications and 6 scalar additions. Also, the following observations are

important for an efficient implementation. To compute the matrix n:::, we

require a matrix-matrix multiplication. Moreover, since the product
J.!I,.i+IJ.!I,.i+l. • d th . J.!I,.i+1 d -:i+1 k .
wi+1 wi+1 IS symmetric, an e matrices wi+1 an fIl+1 are sew-symmetric,

we can do this with 6 scalar multiplications and 9 scalar additions. Simi-
I 1 . th ·.1 i +1 (M- i +1). k . nl three f· ar y, smce e matnx "'i+1 or c. IS sew-symmetric, 0 y 0 Its

. .+1

elements need to be computed. Thus, by taking into account the symmetry
f K" i+1 th k .. _i+1 ·th nl 15 o 0' we can compute e s ew-symmetnc matrix J1i+1 WI 0 Y

i+l

scalar multiplications and 15 scalar additions. Moreover, for implementing

the dual operator, we do not need any computations because of the one-to­

one correspondence between a skew-symmetric matrix and its dual vector or

vector invariant. Finally, since z: = [00 1{, evaluating the scalar torque (or

force) 'ti does not require any operations in Algorithm 5.6. In Algorithm 5.7

we need only 1 multiplication and 1 addition if the joint is prismatic.

Besides these general observations, for an even more efficient imple­

mentation of these algorithms we note the following: For most of the equa­

tions, the initial conditions are zero. Therefore, the first cycle (iteration) in

Steps 2 and 3 can be computed at almost no computational cost. For exam­

ple, since og = 0, the functional expression for the vector S~.I can be easily

defined, especially when the gravity vector has only one non-zero com­

ponent. Thus, with the proper initial conditions for the recursive equations,

the computational cost of implementing these algorithms is reduced consid­

erably. This is obviously also true for other algorithms for solving the

inverse dynamics problem. However, for the algorithms proposed here, the

164 Dynamic Analysis of Robot Manipulators

effort for performing the first cycle (or even the second) by hand is tolerable.

Also, as we have mentioned above, the general organization of the computa­

tions is important for an efficient implementation. Thus, for example in Step

3, when evaluating 11: for i = 1, only the last component of that vector needs

to be evaluated. Finally, knowledge of the geometry (zero components of

various vectors or matrices) of a particular class of robot manipulators can

considerably reduce the cost of computation.

Steps General manipulator General manipulator with

2& 3 with revolute joints revolute joints & a=Oo or 900

Equation Multipl. Additions Multipl. Additions

5.3.45a 8(n-l) 5(n-l) 4(n-l) 3(n-l)

5.3.45b 10(n-l) 7(n-l) 6(n-l) 5(n-l)

5.3.45c 6(n-l)+1 9(n-l) 6(n-l)+1 9(n-l)

5.3.45e 17(n-l)+3 13(n-l) 13(n-l)+2 lI(n-l)

5.3.45f l5(n-l)+5 l5(n-l)+3 l5(n-l)+5 l5(n-l)+3

5.3.45g 0 0 0 0

5.3.46a 17(n-l)+9 13(n-l)+6 l3(n-l)+9 lI(n-l)+6

5.3.46b 20(n-l)+6 19(n-l)+6 l6(n-l)+6 l7(n-l)+6

5.3.46c 0 0 0 0

Total 93(n-l)+24 81(n-l)+15 73(n-l)+23 7l(n-l)+15

n=6 489 420 388 370

Table 5.1: Operations counts for implementing Algorithm 5.7 ..

A breakdown of the number of scalar multiplications and additions

required by each equation of Algorithm 5.7, when this algorithm is applied to

Chapter 5: Manipulator Inverse Dynamics 165

a robot manipulator which has all joints of revolute type, is given in Table

5.1. For this implementation of Algorithm 5.7 we have assumed, as is usu­

ally the practice, that the equations in the forward and backward recursions

for i = 0 and i = n, respectively, are computed outside the main loops.

Therefore, there are only n - 1 cycles to be perfonned in the actual imple­

mentation. For these iterations no effort has been made to reduce further the

computations, since we wish to keep customization at a minimum. However,

Steps General manipulator General manipulator with

2 & 3 with revolute joints revolute joints & 0.=00 or 900

Equation Multi pI. Additions Multipl. Additions

5.3.45a 8n-12 5n-9 4n-7 3n-5
5.3.45b IOn-15 7n-ll 6n-l0 5n-8
5.3.45c 6n-5 9n-9 6n-5 9n-9
5.3.45e 17n-19 13n-16 13n-16 lln-14

5.3.45f 15n-13 15n-14 l5n-13 15n-14
5.3.45g 0 0 0 0

5.3.46a 17n-17 13n-16 13n-13 Iln-3
5.3.46b 20n-27 19n-25 16n-20 l7n-22

5.3.46c 0 0 0 0

Total 93n-108 81n-l00 73n-84 71n-75

n=6 450 386 354 351

Table 5.2: Operations counts for implementing Algorithm 5.7

(Valid for n ;;:: 2).

some saving in computation is obvious (e.g., when i = 2 in Step 2 or when

i = 1 in Step 3) and can be easily taken into account for a more efficient

166 Dynamic Analysis of Robot Manipulators

implementation as is shown in Table 5.2.

Algorithm Multiplications Additions

Hollerbach (4x4) [14] 830n-592 (4388)t 675n-464 (3586)

Hollerbach (3x3) [14] 412n-277 (2195) 320n-201 (1719)

Luh et al. [14] 150n-48 (852) 131n-48 (738)

Craig [34] 126n-99 (657) 106n-92 (544)

Khosla and Neuman [49] 123n-60 (678) 96n-55 (521)

Li [26] 120n-104 (616) 98n-94 (494)

Khalil et al. [50] 105n-92 (538) 94n-86 (478)

Angeles et al. [45] 105n-109 (521)tt 90n-105 (435)

Alg. 5.6 in this monograph 96n-77 (499) 84n-70 (434)

Alg. 5.7 in this monograph 93n-69 (489) 81n-66 (420)

Alg. 5.7 in this monograph 93n-108 (450)tt 81n-100 (386)

t Number of Operations for n = 6 , tt Implementation Valid for n ~ 2

Table 5.3: Comparison of operations counts for solving the lOP.

Chapter 5: Manipulator Inverse Dynamics 167

For this implementation of Algorithm 5.7 we have assumed, as is usu­

ally the practice, that the equations in the forward and backward recursions

for i = 0 and i = n, respectively, are computed outside the main loops.

Therefore, there are only n - 1 cycles to be performed in the actual imple­

mentation. For these iterations no effurt has been made to reduce further the

computations, since we wish to keep customization at a minimum. However,

some saving in computation is obvious (e.g., when i = 2 in Step 2 or when

i = 1 in Step 3) and can be easily taken into account for an efficient imple­

mentation as is shown in Table 5.2.

The figures in Tables 5.1 and 5.2 represent the operations counts for

steps 2 and 3 of Algorithm 5.7 for computing all the joint actuator torques

for a particular point along a trajectory. For the sake of comparison, in Table

5.3, we have given the operations counts for a number of algorithms reported

in the literature for computing the same vector of the joint actuator torques.

The computational effurt required for a particular algorithm, shown in

Table 5.3 depends on the degree of optimization in the operations involved

in its implementation. Therefore, an accurate comparison of the relative per­

formance of these algorithms requires that they be implemented fairly. Thus,

for example, the algorithm by Khalil, Kleinfinger and Gautier which is

included in Table 5.3, is implemented using a recursive symbolic procedure

and is based on an analysis of the inertial parameters of the links. This helps

to reduce the number of operations. However, despite such specialized

features in some of the other algorithms presented in Table 5.3, the algo­

rithms described in this monograph have a significantly higher computa­

tional efficiency. It may be noted that the computational efficiency of these

algorithms results, mainly, from the use of the tensor n in evaluating linear

accelerations and Euler's equation. For example, the implementation of

Euler's equation in Algorithm 5.3, i.e., in its traditional vector formulation,

requires 24(n-l) + 8 scalar multiplications and 18(n-l) + 6 scalar addi­

tions, whereas the corresponding computations in Algorithms 5.6 and 5.7

168 Dynamic Analysis of Robot Manipulators

where Euler's equation is stated in its tensor fonnulation, require

15(n-1) + 5 scalar multiplications and 15(n-1) + 3 scalar additions. This

clearly indicates that the tensor representation for the angular velocity leads

to a description of rigid body angular motion (Euler's equation) which is

computationally far more efficient than the classical vector description.

Therefore, the question which was raised in the previous section, concerning

the computational efficiency of a tensor description of rigid body angular

motion has been answered here in the affirmative.

5.4 The Use of Euler-Lagrange and Kane's
Formulations in Deriving Algorithm 5.7

In this section, we shall demonstrate that the computationally efficient

algorithm (Algorithm 5.7) which was in the previous section derived using

the Newton-Euler equations, can also be derived using Kane's or the Euler­

Lagrange dynamic equations of motion. This demonstration will make clear

that the computational efficiency of an algorithm for solving inverse dynam­

ics is indeed completely independent of the particular procedure of classical

mechanics which has been used to derive that algorithm. For the sake of

simplicity in this demonstration we consider manipulators with revolute

joints only. However, the analysis can be easily extended to also include

prismatic joints.

5.4.1 The Euler-Lagrange Formulation

As we mentioned in Section 5.2, a number of algorithms for solving

inverse dynamics have been derived based on the Euler-Lagrange fonnula­

tion and among them is the recursive Algorithm 5.2. This algorithm h~ been

devised by Hollerbach [14] in an attempt to implement the following equa­

tion efficiently.

Chapter 5: Manipulator Inverse Dynamics 169

/I! [dSo j 00 T dSo j j T 00 T dW j j 00 T
t· = L tr m·--so · + m.--(r . .) W. + m·--r· .so·

I J d J J d JJ J J d JJ J
j=j qj qj qj

dWj j 00 T] T dW j j 1 . + --J w. -m.g --r·· , l = 1,··· ,n
:l OJ J J :l IJ aqj aqj

(5.4.1)

which has been derived from the Euler-Lagrange dynamical equations of

motion. However, if we can show that the right-hand side of the equation

(5.4.1) is exactly the same as the right-hand side of the equation
j j

tj=Z;"l1j' i=I,··· ,n, (5.4.2)

which is simply equation (5.3.46c) of Algorithm 5.7 (stated here for revolute

joints only), then it is clear that Algorithm 5.7 can also be derived from the

Euler-Lagrange equations. Therefore, our aim in this section is to show that

equation (5.4.1) can assume the same fonnulation as equation (5.4.2). We

proceed as follows:

Our first objective is to eliminate from equation (5.4.1) the tenn which

contains the effects of gravity. To achieve this, we notice that from a simple

comparison of equations (A.7) and (A. to) in Appendix A, we have

dWj j _ dSo j aWj j
rjj - + r jj .

dqj dqj dqj

Therefore, using the fact that the dot product of two vectors a and b satisfies

the equation

T
a·b=tr[ab], (5.4.3)

we can write the tenn which contains the gravitational effects in equation

(5.4.1) as follows,

T dW j j [dSo j T] [dWj j T] m·g --r·· = tr m.--g + tr m.--r .. g .
J ':.\ IJ J :l J:l JJ aqj aqj aqj

(5.4.4)

170 Dynamic Analysis of Robot Manipulators

Now, substitution of equation (5.4.4) into (5.4.1) yields

n [dSo j 00 T dSo j j T 00 T
'to = l:tr m.--(so· -g) + m.--(r ..) W.

I J d J J d JJ J
j=i qi qi

n [dSo j 00 T dSo j j T 00 T
= l:tr m.--so · + m.--(r . .) W.

J d J J d JJ J
j=i qi qi

(5.4.5)

where the initial condition so.o for the vector SOj is now equal to - g ,

instead of being zero as is usually the case in the Lagrangian fonnulation.

Furthennore, since
00 00 j
r·· =W.r ..
JJ J JJ

and ro' = so' + r. " J J JJ

equation (5.4.5) can be simplified to

n [dSo j T dWj . T dWj . 00 T]
'ti = l:tr mj--rOj + mj--rfjsoj + --J~.Wj , i = 1, .. ·,n.(5.4.6)

. . dq. dq. dq. I
J=I I I I

Moreover, as we have shown in Appendices B and C, we can write

dSo . J _
-d- = ZiSij

qi

dW.
__ J =Z.W.
d I J

qi

(5.4.7)

, (5.4.8)

(5.4.9)

Chapter 5: Manipulator Inverse Dynamics 171

Therefore. using equations (5.4.7)-(5.4.9) and equation (5.4.3). equation

(5.4.6) can be simplified further to yield

~. = i Im.i..s . . ' Fo· + m·i.·r . . ' so· + Z·· M). i = 1 ... ·.n.
I J I IJ J J I JJ J I OJ

j=i

Finally. since for any vectors a. b and c we have

ac·b = a·cb.

equation (5.4.10) can be written as

~i = Z(i. ImjSijFOj + m/jjsOj + MOj) . i = 1 •... • n.
J=I

from which we get

n I) i _i •• i _ i •• i i
~. = Z·· L m·s· .ro · + m·r· .so· + M •

I I J IJ J J JJ J OJ

j=i

i = 1.··· .n

since the dot product is invariant under coordinate transformations.

Now. for i = 1. 2.n. let us define the vectors

i ~ I _i •• i - i •• i i) ui = "'" mjsijrOj + mjrjjsOj + M Oj .
j=i

(5.4.10)

(5.4.11)

(5.4.12)

We shall show that for i =1 •... • n. the vector u: is equal to the following

vector

(5.4.13)

which results from equation (5.3.46b) of Algorithm 5.7 when the (i + 1)-th

joint is assumed to be of revolute type.

First. since for any i the vector s: i is equal to zero by definition. we

notice that the vector u: can also be writ~en as

172 Dynamic Analysis of Robot Manipulators

II

(5.4.14)

Moreover, since

II

(5.4.15)

equation (5.4.14) can be written as

i (~i _ ~i) •• i Mi _ ~i •• i ~i iji i (5416)
u i = m i f i ,i+m i+l si,i+l SO,i+ 0; +mi +1si ,i+ls i,i+l +Si,i+l 0; +Ui +1· "

Now, using equations (5.3.10), (5.3.17) and (5.3.18), we have

and

Therefore, equation (5.4.16) can be written in the following fonn

(5.4.17)

which shows that indeed u: = 11: for i = 1, ... ,no From the foregoing,

equations (5.4.1) and (5.4.2) are equivalent and this shows that AI~orithm

5.7 can also be derived using the Lagrangian fonnulation.

Chapter 5: Manipulator Inverse Dynamics 173

5.4.2 Kane's Formulation

In this section, we shall show that, as with the Lagrangian fonnulation,

Algorithm 5.7 can also be derived using Kane's equations. As we mentioned

in Section 5.2, Angeles et al. have shown [45] that, based on Kane's equa­

tions, we can detennine the actuator torques 'ti for a robot manipulator with

all revolute joints using the following equation:

'i = .;. i [M!i + m/:}:~j l' i = 1, ... ,no
}=I

(5.4.18)

To evaluate equation (5.4.18), Angeles et al. [45] proposed an algorithm

which has the same structure as Algorithm S.3. As with the Euler-Lagrange

case, we shall show that equation (5.4.18) is equivalent to equation (S.4.2).

To do this let us define the following vector for i = 1, . .. ,n.

h i ~ [M i _i •• i 1 . = £oJ + m·r· .ro . I Cj } IJ J •

j=i

(5.4.19)

As before, our aim is to show that h: = 11: for all i, i = 1, . .. ,n, where 11:

is defined by equation (S.4.l3). By expanding the summation in equation

(5.4.19), we obtain the following equation after a few manipulations:
n

h iM i - i •• i _i L .. i h i . = + m· r· . ro . + s·· 1 m . ro . + . 1 I C, 11.1.1 1.1+ } J 1+·

j=i +1

Furthennore, using equations (S.3.1O), (S.3.18) and (S.4.1S), we can simplify

the above equation to

(S.4.20)

which obviously shows that h: = 11: for all i. Thus, Algorithm 5.7 can also

be derived from Kane's equations.

174 Dynamic Analysis of Robot Manipulators

From the foregoing, starting from the Euler-Lagrange or Kane's equa­

tions and following an appropriate analysis, we can derive not only

equivalent but exactly the same fonnulations for the vector of the general­

ized forces, namely, equation (5.4.2). This equation was derived earlier (in

Section 5.3) using the Newton-Euler fonnulation. Therefore, independent of

which approach from classical mechanics is used to derive the dynamical

equations of motion, we can devise the same computational algorithm for

their implementation. This result clearly indicates that apart from personal

preference or experience there is nothing to be gained, in tenns of computa­

tional efficiency, by choosing one approach over another for solving the

manipulator lOP. However, it should be noted that the choice of a particular

approach is important because it detennines the nature of the analysis and

the amount of effort needed to devise an algorithm for solving the lOP.

5.5 Concluding Remarks

In this chapter, the Cartesian tensor methodology, developed in

Chapter 4, has been used to analyze the dynamic equations of motion of

rigid-link, open-chain robot manipulators. Also, the ideas of augmented and

generalized links have been used in the underlying modeling scheme for this

class of robot manipulators. Based on this modeling scheme, we proposed an

algorithm for computing manipulator inverse dynamics which allows us to

compute off-line several configuration independent parameters of the mani­

pulator. At the same time, the Cartesian tensor fonnulation for the quantities

to be computed on-line enables us to propose implementations for this algo­

rithm which are computationally very efficient. In fact, we have shown, by

comparing the computational complexity of this algorithm with that of other

existing ones, that the proposed algorithm is computationally the most

efficient non-customized algorithm which is available today for solving the

problem of manipulator inverse dynamics. The computational efficiency of

Chapter 5: Manipulator Inverse Dynamics 175

this algorithm has been achieved mainly because a tensor representation,

instead of a vector one, has been used for the angular velocity. Finally, in

this chapter, we have shown that the Newton-Euler, Euler-Lagrange or

Kane's formulations of robot dynamics, with appropriate analysis, can lead

us to the same computational algorithms. Thus, we have established that

from an algorithmic point of view, the solution of the inverse dynamics prob­

lem does not depend on which of these formulations is used for deriving the

equations of motion. This result clearly indicates that apart from personal

preference or experience there is nothing to be gained, in terms of computa­

tional efficiency, by choosing one approach over another for solving the

problem of inverse dynamics for rigid-link open-chain robot manipulators.

5.6 References

[1] O. Khatib, "Dynamic Control of Manipulators in Operational Space",

6th IFTOMM Congress on Theory of Machines and Mechanisms, New

Delhi, Dec. 15-20, pp. 1-10, 1983.

[2] T. Yoshikawa, "Dynamic Hybrid Position/Force Control of Robot

Manipulators, Description of Hand Constraints and Calculation of

Joint Driving Force", Proc. 1986 IEEE Int. Conf Robotics and Auto­

mation, San Francisco, CA, pp. 1393-1398, Apr. 1986.

[3] P. Misra, R. V. Patel and C. A. Balafoutis, "Robust Control of Robot

Manipulators using Linearized Dynamic Models", Recent Trends in

Robotics: Modeling, Control and Education, M. Jamshidi, J. Y. S. Luh

and M. Shahinpoor, Eds., North-Holland, Elsevier Science Publishing

Co., Inc., New York, 1986.

[4] P. Misra, R. V. Patel and C. A. Balafoutis, "Robust Control of Robot

manipulators in Cartesian Space", Proc. American Control Confer­

ence, pp. 1351-1356, Atlanta, Georgia, June 15-17, 1988.

176 Dynamic Analysis of Robot Manipulators

[5] M. W. Spong, 1. S. Thorp and J. M. Kleinwaks, "The Control of Robot

Manipulators with Bounded Input", IEEE Trans. on Automatic Con­

trol, Vol. AC-31, No.6, pp. 483-490,1986.

[6] K. O. Shin and N. D. Mckay, "A Dynamic Programming Approach to

Trajectory Planning of Robotic Manipulators", IEEE Trans. on

Automatic Control, Vol. AC-31, No.6, pp. 491-500,1986.

[7] H. H. Tan and R. B. Potts, "Minimum-Time Trajectory Planner for the

Discrete Dynamic Robot Model With Dynamic Constraints", IEEE J.

of Robotics and Automation, Vol. RA-4, No.2, pp. 174-185, 1988.

[8] J. M. Hollerbach, "Dynamic Scaling of Manipulator Trajectories",

ASME J. of Dynamic Systems, Measurement, and Control, Vol. 106,

pp. 102-106, 1984.

[9] T. Yoshikawa, "Dynamic Manipulability of Robot Manipulators", J.

of Robotic Systems, Vol. 2, No.1, pp. 113-124, 1985.

[10] 1. 1. Murray and C. P. Neuman, "ARM: An Algebraic Robot Dynamic

Modeling Program", Proc. 1st Int. IEEE Con/. on Robotics, pp. 103-

114, Atlanta, OA, Mar. 13-15,1984.

[11] A. P. Tzes, S. Yurkovich and F. D. Langer, "A Symbolic Manipulation

Package for Modeling of Rigid or Flexible Manipulators", Proc. 1986

IEEE Int. Con/. Robotics and Automation, Philadelphia, PA, pp. 1526-

1531, Apr. 1988.

[12]. J. 1. Vicker, On the Dynamic Analysis of Spatial Unkages using 4x4

Matrices, Ph.D. Dissertation, Northwestern University, August 1965.

[13] M. E. Kahn, The Near Minimum-Time Control of Open Articulated

Kinematic Chains, Ph.D. Thesis, Stanford University, 1969.

[14] 1. M. Hollerbach, "A Recursive Lagrangian Formulation of Manipula­

tor Dynamics and a Comparative Study of Dynamics Formulation

Complexity", IEEE Trans. on Systems, Man, and Cybernetics, Vol.

SMC-IO, no. 11, pp. 730-736,1980.

Chapter 5: Manipulator Inverse Dynamics 177

[15] R. Paul, "Modeling, Trajectory Calculation, and Servoing of a Com­

puter Controlled Ann", A. I. Memo. 177, Stanford Artificial Intelli­

gence Lab., Sept 1972.

[16] A. K. Bejczy, "Robot Ann Dynamics and Control", Memo. 33-669,

Jet Propulsion Labs. Tech. Feb. 1974.

[17] M. Brady et al., Eds., Robot Motion : Planning and Control, MIT

Press, Cambridge, MA, 1982.

[18] J. S. Albus, "A New Approach to Manipulator Control: The Cerebel­

lar Model Articulation Controller (CMAC)", ASME J. Dynamics Sys­

tems, Measurement, Control, Vol. 97, pp. 270-277, 1975.

[19] M. H. Raibert, "Analytical Equations vs. Table Look-up for Manipu­

lation : A Unifying Concept", Proc IEEE Con! Decision and Control,

New Orleans, pp. 576-579, Dec. 1977.

[20] B. K. P. Hom and M. H. Raibert, "Configuration Space Control", The

Industrial Robot, pp. 69-73, June, 1978.

[21] R. C. Waters, "Mechanical Ann Control", M.I.T. Artificial Intelli­

gence Lab. Memo. 549, Oct. 1979.

[22] D. Fischer, Theoretical Foundation for the Mechanics of Living

Mechanisms (in Gennan), Teubner, Leipzig, 1906.

[23] I. J. Wittenburg, Dynamics of Systems of Rigid Bodies, B. G. Teubner,

Stuttgart, 1977.

[24] M. Renaud, "An Efficient Iterative Analytical Procedure for Obtaining

a Robot Manipulator Dynamic Model", Proc. 1st International Symp.

on Robotics Research, Bretton Woods, New Hampshire, pp. 749-762,

1983.

[25] M. Vucobratovic, S. Li and N. Kircanski, "An Efficient Procedure' for

Generating Dynamic Manipulator Models", Robotica, Vol. 3, No.3,

pp. 147-152, 1985.

178 Dynamic Analysis of Robot Manipulators

[26] C. J. Li, "A New Method of Dynamics for Robot Manipulators",

IEEE Trans. on Systems, Man and Cybernatics, Vol. 18, No.1, pp.

105-114, 1988.

[27] W. W. Hooker and G. Margulies, "The Dynamical Attitude Equations

for an n-Body Satellite", J. Astronautical Sciences; Vol. 12, No.4, pp.

123-128, 1965.

[28] Y. Stepanenko and M. Vucobratovic, "Dynamics of Articulated

Open-Chain Active Mechanisms", Mathematical Biosciences, Vol. 28,

pp. 137-170, 1976.

[29] M. Vucobratovic, "Dynamics of Active Articulated Mechanisms and

Synthesis of Artificial Motion",Mechanism and Machine Theory, Vol.

13, pp. 1-56, 1978.

[30] J. Y. L. Ho, "Direct Path Method for Flexible Multibody Spacecraft

Dynamics", AIAA J. Spacecraft and Rockets, Vol. 14, No.2, pp. 102-

110,1977.

[31] P. C. Hughes, "Dynamics of a Chain of Flexible bodies", J.

Astronautical Sciences, Vol. 27, No.4, pp. 359-380, 1979.

[32] D. E. Orin, R. B. McGhee, M. Vucobratovic, and G. Hartoch,

"Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing

Newton-Euler Methods", Mathematical Biosciences, Vol. 43, No. 1/2,

pp. 107-130, 1979.

[33] J. Y. S. Luh, M. W. Walker, and R. P. Paul, "On-Line Computational

Scheme for Mechanical Manipulators", ASME J. Dyn. Syst. Meas. and

Contr., Vol. 102, pp. 69-79, 1980.

[34] J. J. Craig, Introduction to Robotics: Mechanics & Control, 2nd ed.

Addison-Wesley, Reading, MA, 1989.

[35] W. M. Silver, "On the Equivalence of Lagrangian and Newton-Euler

Dynamics for Manipulators", Int. J. Robotics Research, Vol. 1, pp.

60-70, 1982.

Chapter 5: Manipulator Inverse Dynamics 179

[36] R. Featherstone, Robot Dynamics Algorithms, Kluwer Academic Pub­

lishers, Boston, MA, 1987.

[37] G. Rodriguez, "Kalman Filtering, Smoothing and Recu,rsive Robot

Arm Forward and Inverse Dynamics", IEEE J. of Robotics and Auto­

mation, Vol. RA-3, No.6, pp. 624-639, 1987.

[38] G. Rodriguez and K. Kreutz, "Recursive Mass Matrix Factorization

and Inversion : An Operator Approach to Open- and Closed-Chain

Multibody Dynamics", JPL Publication 88-11, March 15, 1988.

[39] T. R. Kane, "Dynamics of Holonomic Systems", ASME J. Applied

Mechanics, Vol. 28, pp. 574-578, 1961.

[40] T. R. Kane and C. F. Wang, "On the Derivation of Equations of

Motion", J. Soc.jor Ind. and Appl. Math., Vol. 13, pp. 487-492, 1965.

[41] R. L. Huston, C. E. Passerello and M. W. Harlow, "Dynamics of

Multirigid-Body Systems", ASME J. Applied Mechanics, Vol. 45, pp.

889-894,.1978.

[42] R. L. Huston and F. A. Kelly, "The Development of Equations of

Motion of Single-Arm Robots", IEEE Trans. Systems, Man and

Cybernetics, Vol. SMC-12, No.3. pp. 259-266,1982.

[43] H. Faessler, "Computer-Assisted Generation of Dynamical Equations

for Multi-Body systems", Int. J. of Robotics Research, Vol. 5, No.3,

pp. 129-141, 1986.

[44] T. R. Kane and D. A. Levinson, "The Use of Kane's Dynamical Equa­

tions in Robotics", Int. J. of Robotics Research, Vol. 2, No.3, pp. 3-21,

1983.

[45] 1. Angeles, O. Ma and A. Rojas, "An Algorithm for the Inverse

Dynamics of n-Axis General Manipulators Using Kane's Equatious",

Computers Math. Applic., Vol. 17, No. 12, pp. 1545-1561, 1989.

[46] C. P. Neuman and 1. 1. Murray, "The Complete Dynamic Model and

Customized Algorithms of the Puma Robot", IEEE Trans. on Systems,

180 Dynamic Analysis of Robot Manipulators

Man, and Cybernetics, Vol. SMC-17, No.4, pp. 635-644,1987.

[47] J. J. Murray and C. P. Neuman, "Organizing Customized Robot

Dynamics Algorithms for Efficient Numerical Evaluation", IEEE

Trans. on Systems, Man, and Cybernetics, Vol. SMC-18, No.1, pp.

115-125, 1988.

[48] P. K. Khosla and C. P. Neuman, "Computational Requirements of

Customized Newton-Euler Algorithms", J. of Robotic Systems, Vol. 2,

No.3, pp. 309-327, 1985.

[49] M. Renaud, "Quasi-Minimal Computation of the Dynamic Model of a

Robot Manipulator Utilizing the Newton-Euler Formalism and the

Notion of Augmented Body", Proc. 1987 IEEE Int. Con! on Robotics

and Automation, Raleigh, NC, pp. 1677-1682, Apr. 1987.

[50] W. Khalil and J. F. Kleinfinger, and M. Gautier, "Reducing the Com­

putational Burden of the Dynamic Models of Robots", Proc. 1986

IEEE Int. Con! on Robotics and Automation, San Francisco, CA, pp.

525-531, Apr. 1986.

[51] W. Khalil and J. F. Kleinfinger, "Minimum Operations and Minimum

Parameters of the Dynamic Models of Tree Structure Robots", IEEE J.

Robotics and Automation, Vol. RA-3, No.6, pp. 517-526,1987.

[52] J. W. Burdick, "An Algorithm for Generation of Efficient Manipulator

Dynamic Equations, Proc. 1986 IEEE Int. Con! on Robotics and Auto­

mation, San Francisco, CA, pp. 212-218, Apr. 1986.

[53] B. Armstrong, O. Khatib, and J. Burdick, "The Explicit Dynamic

Model and Inertia Parameters of the PUMA 560 Arm", Proc. 1986

IEEE Int. Con! on Robotics and Automation, San Francisco, CA, pp.

510-518, Apr. 1986.

[54] K. Youcef-Toumi and H. Asada, "The Design of Open-Loop Manipu­

lator Arms With Decoupled and Configuration-Invariant Inertia Ten­

sors", Proc. 1986 IEEE Int. Con! on Robotics and Automation, San

Chapter 5: Manipulator Inverse Dynamics 181

Francisco, CA, pp. 2018-2026, Apr. 1986.

[55] D. C. H. Yang and S. W. Tzeng, "Simplification and Linearization of

Manipulator Dynamics by the Design of Inertia Distribution", Int. J. of
Robotics Research, Vol. 5, No.3, pp. 120-128, 1986.

[56] S. Ramos and P. K. Khosla, "Scheduling Parallel Computation of

Inverse Dynamics Fonnulation" Robotics and Manufacturing: Recent
Trends in Research, Education, and Applications, M. Jamshidi, J. Y. S.

Luh, H. Seraji and G. P. Starr, Eds., ASME Press, New YOtX, 1988.

[57] H. Kasahara and S. Narita, "Parallel Processing of Robot-Ann Control

Computation on a Multi-microprocessor System", IEEE J. Robotics
and Automation, Vol. RA-1, No.2, pp. 104-11~, 1985.

[58] R. Nigam and C. S. G. Lee, "A Multiprocessor-Based Controller for

the Control of Mechanical Manipulators", IEEE J. Robotics and Auto­
mation, Vol. RA-1, No.4, pp. 173-182, 1985.

[59] C. S. G. Lee and P. R. Chang, "Efficient Parallel Algorithm for Robot

IIiverse Dynamics Computation", IEEE Trans. on Systems, Man and
Cybernetics, Vol. SMC-16, No.4, pp. 532-542,1986.

[60] M. Vucobratovic, N. Kircanski and S. G. Li, "An Approach to Parallel

Processing of Dynamic Robot Models", Int. J. of Robotics Research,
Vol. 7, No.2, pp. 64-71,1988.

[61] K. Kazerounian and K. C. Gupta, "Manipulator Dynamics Using the

Extended Zero Reference Position Description", IEEE J. Robotics

and Automation, Vol. RA-2, No.4, pp. 221-224,1986.

[62] L. T. Wang and B. Ravani, "Recursive Computations of Kinematics

and Dynamics Equations for Mechanical Manipulators", IEEE J.

Robotics and Automation, Vol. RA-1, No.3, pp. 124-131, 1985.

[63] C. A. Balafoutis, R. V. Patel and P. Misra, "Efficient Modeling and

Computation of Manipulator Dynamics Using Orthogonal Cartesian

Tensors", IEEE J. of Robotics and Automation, Vol. 4, No.6, pp. 665-

182 Dynamic Analysis of Robot Manipulators

676,1988.

[64] C. A. Balafoutis, R. V. Patel and J. Angeles, "A Comparative Study of

Lagrange, Newton-Euler and Kane's Formulations for Robot Manipu­

lator Dynamics" Robotics and Manufacturing : Recent Trends in
Research, Education, and Applications, M. Jamshidi, J. Y. S. Luh, H.

Seraji and G. P. Starr, Eds., ASME Press, New YOtX, 1988.

Chapter 6

Manipulator Forward Dynamics

6.1 Introduction

The problem of evaluating forward or direct dynamics involves the

calculation of joint accelerations (and through integration, joint velocities

and positions) given the actuator torques/forces and any external

torques/forces exerted on the last link of the manipulator. Forward dynamics

computation is used primarily in simulation, so that, it is not so important for

this computation to meet the stringent speed requirements of inverse dynam­

ics applications unless real-time simulation is required in which case compu­

tational efficiency is an important issue. Real-time simulation is often desir­

able since it provides more powerful, flexible, and economic ways of

developing new robot designs and new control algorithms. Also, as fast 3-D

computer graphics is becoming more easily available, robot kinematic

motions have begun to be displayed on graphic work stations. However, to

study dynamic robot motions completely, real-time dynamics of robot Jilani­

pulators need to be included in computer simulation of robotic systems.

184 Dynamic Analysis of Robot Manipulators

Mathematically, forward dynamics can be described by a vector

differential equation of the form

ij (t) = h (q (t), it (t), t(t), manipulator parameters, f (t» (6.1.1)

where, q (t) is the vector of generalized coordinates (joint variables), it (t)

and ij (t) are its derivatives with respect to time, t(t) is the (input) general­

ized force vector, i.e., the vector of joint torques and/or joint forces, "mani­

pulator parameters" are all those parameters which characterize the particu­

lar geometry and dynamics of a robot manipulator, and f (t) is the vector of

the external torques/forces. In general, equation (6.1.1) is not a simple equa­

tion for which an analytic solution can be provided easily. For a general

robot manipulator equation (6.1.1) is very complex since it is highly non­

linear with strong coupling between the joint variables. Hence, to solve

equation (6.1.1) for q, requires complicated procedures for evaluating h and

for performing numerical integration. These procedures, as in the case of

inverse dynamics, are defined by structured algorithms which are evaluated

in stages.

In this chapter, we shall review the basic approaches taken to solve the

forward dynamics problem (FOP). By introducing a new algorithm, we shall

improve upon the computational efficiency of one of these methods, namely,

the composite rigid body method which is currently the most efficient one

available for computing forward dynamics. The outline of this chapter is as

follows: Section 6.2 contains a review of existing methods for solving the

forward dynamics problem. In Section 6.3, a new algorithm is devised for

computing efficiently the generalized inertia tensor of a robot manipulator,

which is a basic ingredient of the composite rigid body method. In Section

6.4 the computational complexity of this algorithm is analyzed. The compu­

tational cost of the composite rigid body method is examined when algo­

rithms derived in this and the previous chapter are used to solve basic sub­

problems associated with this method. Finally, Section 6.S concludes this

chapter.

Chapter 6: Manipulator Forward Dynamics

6.2 Previous Results on Manipulator Forward
Dynamics

185

In the past few years, two basic approaches have been taken for solving

the FOP, which may be outlined as follow:

a) Obtain and solve a set of simultaneous equations in the unknown

joint accelerations.

b) Calculate, recursively, the coefficients which propagate motion and

force constraints along the mechanism allowing the problem to be

solved directly.

Most of the published algorithms for solving the FOP adopt the first

approach which involves the composite rigid body method. Algorithms

which are derived based on this approach may have 0 (n 3) computational

complexity, as oppose to 0 (n) which results from the second approach. This

is so, since in the first approach, a set of n simultaneous equations has to be

solved. However, these algorithms can be computationally very efficient for

small values of n , since the coefficient of n 3 in the measure of complexity is

very small.

In the framework of the first approach, a well defined scheme for deriv­

ing algorithms for computing forward dynamics has been proposed by

Walker and Orin [1]. To define the algorithms, the dynamic equations of

motion of a robot manipulator are written in a vector form as

t = D(q)q + C(q,cjJ + G(q) + J(q{ f (6.2.1)

where t is the vector of the applied joint torques/forces, D (q) is the n xn
positive definite generalized inertia tensor of the robot manipulator, q (q ,q)
is the vector of the joint positions (velocities, accelerations), C (q ,q) is the

vector of Coriolis and centrifugal forces, G(q) is the vector of the gravita­

tional etrects, J(q) is the nxn Jacobian tensor and f is a vector of external

forces. Equation (6.2.1) can be written in a more compact form as

186 Dynamic Analysis of Robot Manipulators

't = D(q)i:i + b(q,cj,g,f) (6.2.2)

where b is a bias vector containing the gravity, centrifugal, Coriolis and

external forces, Le.,

b = C(q,cj) + G(q) + J(q{ f. (6.2.3)

Now, based on equation (6.2.2), the solution of the FDP can be derived by

solving the following subproblems:

(i) Computation of the generalized inertia tensor: D (q).

(ii) Computation of the bias vector: b(q, cj, g, f)

(iii) Solution of the linear system of equations: D (q)i:i = ('t - b)

(iv) Solution of a set of ordinary differential equations.

From the foregoing, for the dynamic simulation of a robot manipulator one

has to solve problems directly related to manipulator dynamics (steps (i) and

(ii» and problems of numerical analysis (steps (iii) and (iv». Therefore,

since from a dynamic analysis point of view, one is concerned with the prob­

lems in steps (i) and (ii), we shall review methods for solving these two prob­

lems only. The problems of the type (iii) and (iv) have been extensively stu­

died in the numerical analysis literature and efficient methods of solving

them exist, e.g. see [18-21].

To solve part (ii), one can use non-recursive inverse dynamics algo­

rithms, which explicitly calculate the tenns of the bias vector b as is shown

in equation (6.2.3). However, as it turns out, this approach is not computa­

tionallyefficient. Walker and Orin [1], have proposed another more efficient

method for computing the bias vector b. In this method, a recursive inverse

dynamics algorithm is used to solve for the actuator torques/forces, assuming

that the accelerations are zero, Le., i:i = O. As is obvious from equation

(6.2.2), since the vector of the generalized forces 't is equal to the biaS vector

b, an inverse dynamics algorithm suffices for solving problem (ii). More­

over, with significant improvements in the computational efficiency of

Chapter 6: Manipulator Forward Dynamics 187

algorithms for solving the inverse dynamics problem (see Chapter 5), the

solution for the bias vector b by this method, can be computed very

efficiently. Furthennore, to improve the computational efficiency of this

method, we can fonnulate a specialized version of an inverse dynamics algo­

rithm, with the assumption q = 0 built in. Therefore, using inverse dynamics

algorithms, this subproblem of forward dynamics can be solved in an

efficient manner.

Solving the first problem, i.e., computing the manipulator inertia tensor

D (q) is the point where most of the existing algorithms for solving the FOP

using the first approach really differ. Walker and Orin [1] considered three

methods for computing the inertia tensor D(q). The first two methods are

based on an algorithm which solves the inverse dynamics problem from

which all the velocity tenns, the gravitational effects and the effects due to

the external forces and torques have been eliminated. In this approach, as we

can see from equation (6.2.2), the columns of the inertia matrix D, which

represent the generalized inertia tensor D in joint space coordinates, are

computed by applying a unit vector acceleration to the joints. That is, for the

i -th column of D we have

(6.2.4)

where the 1 is the i -th component of q. By repeating the above process n

times (not necessarily recursively), all the components of D may be com­

puted. The first two methods are basically the same, with the exception that

in the second method, since D is symmetric, only the diagonal and the bot­

tom half of the off-diagonal elements of D are computed. However, as

Walker and Orin have shown in their computational complexity analysis, this

approach for computing the manipulator joint space inertia matrix is compu­

tational expensive. The third method by Walker and Orin is known I1-S the

composite rigid body method and is computationally more efficient than their

previous two methods. The basic idea in the composite rigid body method is

as follows:

188 Dynamic Analysis of Robot Manipulators

As in the first two methods, we assume that unit acceleration is applied

to a joint (for instance at joint i, i.e., iii = 1 at joint i) with all joint velocities

and other joint accelerations equal to zero. Under this action the manipulator

chain is divided into two sets of composite rigid bodies with one degree of

freedom between them. The lower composite body, i.e., links 1 to i-I, is sta­

tionary.

.'
.'

Link i +1

(j + l)-th fr~
mi+l

Linki

j-thfram~

Figure 6.1: The i -th composite rigid body link.

Chapter 6: Manipulator Forward Dynamics 189

The upper composite body, which is shown in Figure 6.1, is composed of

links i through n and moves as a single rigid body with a composite mass

(mi), composite center of mass (R: i)' relative to the origin of the i -th coordi­

nate system, and composite mom;nt of inertia or inertia tensor (E~), with
i

respect to the composite center of mass.

Due to the motion of the i -th composite rigid body, forces and

moments will be developed at the joints 1 .. ·· ,i, which can be computed as

follows: The force and moment at the i-thjoint can be computed by applying

Newton's and Euler's equations to the i -th composite rigid body. Moreover,

since the acceleration at the joints 1 .. ·· ,i -1, is assumed to be zero, the forces

and moments at these joints result only from the propagation down the chain

of the forces and moments of the i -th joint. Now, having compute these

forces or moments, to define the elements of the joint space inertia matrix D,

we simply need to consider their projections onto the appropriate joint axes

of the manipulator.

From this computational scheme, it is obvious that the computation of

mi , R:,i and E~. is important (as far as computational efficiency is concerned) .
for the determination of the generalized inertia tensor D. To achieve compu­

tational efficiency for these quantities, Walker and Orin proposed linear

recurrence relations. These relations, formulated in the notation of this

monograph, can be stated as follows:

m i =mi+l + mi

i 1 i _ i i +1
Ri,i =-[miri,i + mi +1(si.i+l + Ai+1Ri+l.i+l)]

mi

i i [i iii iii i T] E =1 + m· (r .. - R ..) . (r .. - R ..)1 - (r .. - R ..)(r .. - R ..)
C. Ci I 1.1 It I '.' 1.1 1,1 1.1 '.' '.'

(6.2.5)

(6.2.6)

190 Dynamic Analysis of Robot Manipulators

Based on these equations and using the Newton-Euler equations to analyze

the composite rigid body dynamics, Walker and Orin proposed an algorithm

for computing the upper triangular part of the symmetric joint space inertia

matrix D which, in the notation of this monograph, can be stated as follows:

ALGORITHM 6.1

Step 0: Initialization

_ n n+l j T
mn+l = 0, Rn+l.n+l = 0, Ec = 0, An+l = 0, Zj = [001]

.. 1

(Ji ~ [I revolute i -th joint

o prismatic i -th joint

Step 1: For i = n, 1 do

fiij = fiij+l + mj

j 1 j _ j j +1
Rj,j = -[miri,i + m i +1(si,i+1 + Ai+IRi+l,i+I)]

fiii

i i [i iii i j j j T] E = I + m· (r .. - R. .) . (r .. - R ..)1 - (r .. - R ..)(r .. - R ..)
Ci C i I 1,1 1,1 t,l 1,1 t,l 'tl 1,1 1,1

Fi = cr.(z~ x fii.R~.) + (1- cr.)(fii.z~)
C i " I ttl I I I

i i j
M = cr.(E . z.)

C. I C. I , ,
i i

f. . = F
1,1 C.

(6.2.8a)

(6.2.8b)

(6.2.8d)

(6.2.8e)

(6.2.8f)

Chapter 6: Manipulator Forward Dynamics

iii i
11··=M +R .. xF 't' c i ttt c i

iii i
d . . = (J·(11· .. z.) + (1- (J.)(f ... z.) ',' "t" t 1.1 ,

For j = i-I, 1 do

j j+l
fj,i = Aj+l fj+l,i

j j+l j j
11j,i = A j +l11j+l,i + Sjj+l X fj+l,i

j i j i
d . . = (J·(11· .. z.) + (1 - (J.)(f ... z.) i,l I i,l I I i,l I

end

191

(6.2.8g)

(6.2.8h)

(6.2.9a)

(6.2.9b)

(6.2.9c)

For its implementation, Algorithm 6.1 requires 12n2 + 26n + 27 scalar

multiplications and 7n 2 + 67n -56 scalar additions (see Table 6.2), which

for n = 6 amounts to 741 scalar multiplications and 601 scalar additions,

respectively. Featherstone has shown [2] that based on the composite rigid

body method and using a spatial notation to combine the representation of

rotational and translational quantities, and spatial algebra to manipulate

these quantities efficiently, another more efficient algorithm can be devised

which requires lOn 2 + 3In -41 scalar multiplications and 6n 2 + 40n -46

scalar additions. For n = 6, this involves 505 scalar multiplications and 410

scalar additions. However, the computational efficiency of Featherstone's

algorithm results from the special purpose spatial arithmetic package which

he developed to handle spatial operations efficiently.

Walker and Orin also describe another method for calculating ij which

by-passes the need to calculate D explicitly (Method 4 in [1]). This method

uses an iterative technique, namely, the conjugate gradient technique for

solving the linear system of equations in step (iii). Based on an initial esti­

mate for the joint acceleration the method uses successive adjustmerits to

these variables until they converge to the correct solution. If there are no

round-off errors, the solution for ij can be achieved in a maximum of n

192 Dynamic Analysis of Robot Manipulators

iterations. The complexity of this method is 0 (n 2), but the coefficient of n 2

is large enough to make it less efficient for all but very large values of n
(n ~ 12) than the composite rigid body method, which has o(n 3) computa­

tional complexity.

Following a similar decomposition of forward dynamics into sub­

problems, as suggested by Walker and Orin, Angeles and Ma [3] have pro­

posed a method for computing the generalized inertia tensor D which in

tenns of computational efficiency is comparable to the composite rigid body

method. The basic idea in Angeles and Ma's approach is as follows:

First the 6n -dimensional vector of generalized twist

T TT
t == [tl'· .. til]

and the 6n x6n block diagonal tensor of generalized extended mass

M ==diag (M l ,· .. Mil)'

(6.2.10)

(6.2.11)

are defined, where t i is a 6-dimensional vector representing the twist of the

i -th link, namely,

ti == [~i 1
rO,i

(6.2.12)

and M i is a 6x6 tensor defined as

(6.2.13)

in which 1 is the 3x3 identity tensor and 0 is the 3x3 zero tensor. Then, from

the linear transfonnation

t = Tq (6.2.14)

the 6n xn tensor T is defined. (The tensor T is referred to as the natural

orthogonal complement since, as shown in [4], it is an orthogonal

Chapter 6: Manipulator Forward Dynamics 193

complement of the tensor which defines the kinematic constraints of the

manipulator). Moreover, from kinetic energy considerations the generalized

inertia tensor D may be defined as

D(q)=TTMT .

Furthennore, the tensor M can be factored as M = NT N since it is sym­

metric and pesitive definite. From the foregoing, the generalized inertia ten­

sor D can be decomposed as

D = pT P (6.2.15)

where P == NTis a lower block triangular tensor. Based on this analysis,

Angeles and Ma [3] proposed an algorithm for computing the generalized

inertia tensor D which, as we mentioned above, (see also Table 6.2) has

almost the same computational complexity as Algorithm 6.1. Angeles and

Ma also proposed another method which avoids the detennination of the

generalized inertia tensor D. In this method, based on (6.2.15), the linear

system of equations

Dij='t-b

is decomposed as follows,

pTx ='t-b

Pij =x

(6.2.16)

(6.2. 17a)

(6.2. 17b)

where x is a 6n-dimensional vector. Equation (6.2.17a) represents an under­

detennined system (n equations with 6n unknowns) and equation (6.2.17b)

represents an overdetennined system (6n equations with n unknowns).

Based on these equations, Angeles and Ma have shown that the vector ij can

be computed as the least squares approximation to equation (6.2.17b), if x is

first computed as the minimum nonn solution of equation (6.2.17a).' The

computational efficiency of this second method of Angeles and Ma is com­

parable (see [3]) to that of their first method.

194 Dynamic Analysis of Robot Manipulators

As we have mentioned above, an approach for solving the forward

dynamics problem is to calculate recursively the coefficients which pro­

pagate motion and force constraints along the mechanism allowing the prob­

lem to be solved directly. However, although it is theoretically more sound,

currently few methods adopt this approach. This is because first, it requires

an extensive analysis and second, and more important, algorithms derived

from this approach are computationally expensive despite the fact that one

can usually achieve 0 (n) computational complexity. This is so, since the

coefficient of n in the measure of complexity is quite large.

Probably, the best known method in this approach is the articulated­
body method proposed by Featherstone [2]. The basic idea in this method is

to regard the robot as consisting of a base member (whose motion is known),

a single joint, and a single moving link which is in fact an articulated body

(Le., a collection of rigid bodies connected by joints) representing the rest of

the robot. The forward dynamics problem for this one-joint robot is easily

solved once the apparent inertia of the moving link is known. Having found

the acceleration of the first joint, the articulated body itself can be treated as

a robot and the same process applied to obtain the acceleration of the next

joint, and so on. So the articulated-body method consists of the calculation

of a series of articulated-body inertias which are used to solve the forward

dynamics problem one joint at a time. Thus, this approach leads to algo­

rithms which have o(n) computational complexity. To facilitate the analysis

of his method, Featherstone introduced a spatial notation which provides a

uniform combined representation of rotational and translational quantities,

and he developed a spatial algebra for manipulating these spatial quantities.

Also, to implement his algorithm efficiently (see Table 6.3), Featherstone

developed a spatial arithmetic package with special-purpose arithmetic func­

tions to operate on these compact spatial representations.

Other examples of methods which solve the PDP by the constraint pro­

pagation approach are described by Armstrong [5], Rodriguez [7] and

Chapter 6: Manipulator Forward Dynamics 195

Rodriguez and Kreutz [8]. In particular, Annstrong's method also achieves

o(n) complexity, and uses recursion coefficients playing a similar role to

articulated-body inertias. This method, in its basic fOlm, is applicable to

robots with spherical joints but a modification applicable for revolute joints

is outlined in one of the appendixes in Annstrong's paper. However, this

modification increases the computational requirement significantly, although

the complexity remains o(n). Rodriguez and Kreutz [8] have developed a

two-step algorithm for computing forward dynamics which has 0 (n) compu­

tational complexity. Based on a linear operator approach for fonnulating and

analyzing the manipulator dynamics developed by Rodriguez [6,7], the two­

step algorithm by Rodriguez and Kreutz first computes and subtracts out the

Coriolis, centrifugal, gravity and contact force bias tenns, exactly as in

Walker and Orin's approach, to obtain a "bias-free" robot dynamic equation.

Then, in the second step, using techniques for solving linear operator equa­

tions by operator factorization, the joint space accelerations are obtained in

o (n) iterations. Also, using certain operator identities, they propose alterna­

tive algorithms for which the need for a preliminary bias vector computation

and subtraction is avoided. The dynamic analysis of these algorithms, as in

Featherstone's approach, is based on spatial notation and spatial algebra.

The approach by Rodriguez and Kreutz is important because it provides a

method to fonnulate, analyze and understand spatial recursions in multi body

dynamics. This analysis leads them to a simple factorization of the general­

ized inertia tensor D from which an immediate inversion of D is readily

available. In particular, they established the following factorization for the

generalized inertia tensor D and its inverse:

D = [1 +H'I'L)D [1 +H'I'L t (6.2.18)

and

D -1 = [1 _ H «IlL] T D -1 [1 -H «IlL] (6.2.19)

where H and 'I' are given by known geometric link parameters, and L, «Il

196 Dynamic Analysis of Robot Manipulators

and D are obtained recursively by a spatial discrete-step Kalman filter and

by the corresponding Riccati equation associated with this filter. The factors

(1 + H 'I'L) and (1 - H tl>L) are lower triangular tensors which are

inverses of each other, and D is a diagonal tensor. This analytic factoriza­

tion and inversion is obviously important because it avoids numerical tri­

angular decomposition and inversion, and consequently the problems associ­

ated with build-up to numerical round-off errors in such computations. How­

ever, a computational complexity analysis of these algorithms has not been

included in [8] and this makes a fair comparison of their method with others

difficult.

finally, an approach for solving the PDP which is quite difIerent from

those presented above has been proposed by Chou, Baciu and Kesavan

[9,10]. Their fonnulation uses graph-theoretic models for the joints and the

open-loop kinematic chains of rigid bodies. Euler parameters are used

instead of the conventional direction cosines to describe relative orienta­

tions. The final mathematical model derived by this fonnulation is a large

system (20n scalar equations with 20n unknowns) of difIerential and alge­

braic equations. A complete computational complexity analysis has not been

provided for the method. However, because of the large system of equations

that has to be solved, the approach is almost certainly very expensive com­

putationall y.

Concluding this review on forward dynamics computation, it is worth

mentioning that, as with inverse dynamics computation, to improve compu­

tational efficiency parallel algorithms and special architectures have been

proposed. For example, parallel processing techniques have been proposed

by Lee and Chang [11] and systolic architectures have been used by Amin­

lavaheri and Orin [12]. Also in [13], Han has examined possible applications

of parallel and pipeline processing as well as VLSI systolic array proCessors

for computing forward dynamics in real-time.

Chapter 6: Manipulator Forward Dynamics 197

6.3 The Generalized Manipulator Inertia Tensor

As we mentioned in section 6.2, one of the methods which may be used

for computation of the generalized inertia tensor D is the composite rigid

body method. This method leads to algorithms (e.g., Algorithm 6.1) which

compute efficiently the manipulator inertia tensor D by utilizing recurrence

relations for some of its basic equations. However, a drawback of this

method is that it leads to algorithms which require all the quantities to be

computed online. Moreover, as we shall see in this section, the recurrence

relations on which these algorithms are based can be stated in computation­

ally more efficient fonnulations.

In order to reduce the computational complexity of the above men­

tioned algorithm, two other methods are proposed in this section. The first

method is similar to the third method proposed by Walker and Orin [1]. In

particular, a similar decomposition, i.e., a set of stationary and moving links,

is used as the underlying modeling scheme and the dynamic analysis is

based on the Newton-Euler equations. However, the dynamic analysis of the

moving set of links in this method uses the concepts of generalized and aug­

mented links instead of that of the composite rigid body alone. The concepts

of augmented and generalized links have been introduced in Chapter 5 to

facilitate more efficient solutions of the inverse dynamics problem. Here, as

in the case of inverse dynamics, these concepts will allow us to devise an

algorithm which is applicable to general robot manipulators and, in almost

all cases, its computational burden may be split into computations which can

be perfonned off-line and computations which have to be perfonned online.
Moreover, based on these concepts and using Cartesian tensor analysis, com­

putationally more efficient recurrence relations will be devised to facilitate

the online computations. The second method also uses the concepts o~ aug­

mented and generalized links and Cartesian tensor analysis, but the dynamic

analysis is based now on the Euler-Lagrange equations instead of the

Newton-Euler ones.

198 Dynamic Analysis of Robot Manipulators

As we shall see, both methods lead to the same algorithm for comput­

ing the generalized inertia tensor D of a robot manipulator. Thus, from an

algorithmic point of view, it may seem that this duplication in the analysis is

unnecessary, and this is definitely true. However, the main reason for the

duplication is to show, as we did with inverse dynamics, that apart from per­

sonal preference or experience there is nothing to be gained, in terms of

computational efficiency, by choosing one or the other set of dynamic equa­

tions in our analysis.

6.3.1 Generalized Links and their Inertia Tensor

A generalized link has been defined in Chapter 5 (see Definition 5.2). It

is obvious from this definition that a generalized link is simply a composite

rigid body as defined by Walker and Orin. However, since the analysis to fol­

low is different from that presented by Walker and Orin, we shall continue to

refer to the set of moving links as a generalized link. Basically, the analysis

here is difrerent from that of Walker and Orin in that all moments concerning

a generalized link are considered about the origin of one of the link coordi­

nate systems instead of its center of mass. This modification allows us to use

the inertia tensor of an augmented link (which, can be computed off-line for

most industrial robots) for a computationally more efficient formulation of

the inertia tensor of a generalized link.

The definition of an augmented link has been given in Chapter 5 (see

Definition 5.1). Also, in Chapter 5, the definitions of the first and second

moments of an augmented link, as well as, the definition of the first moment

of a generalized link have been given. Here these definitions are repeated for

quick reference and the list of these definitions is completed with the

definition of the second moment (inertia tensor) of a generalized link. ,These

definitions for the i -th augmented and the i -th generalized link may be

stated as follows:

Chapter 6: Manipulator Forward Dynamics 199

(l) First moment of the i -th augmented link about the origin q. of the i-th

link coordinate system:

(6.3.1)

(2) Second moment (inertia matrix) of the i -th augmented link about q. :

(6.3.2)

(3) First moment of the i -th generalized link about q. :
n

i i
Uo; = ~mjrij·

j=i

i i+l
=~. + Ai +1Uo ..

I .+1
(6.3.3)

where the last step follows from Lemma 5.1, and

(4) Second moment (inertia matrix) about 0i of the i -th generalized link:

n

(6.3.4)

Also, as we may recall from Chapter 5, the zero-th moment or mass of the i­

th augmented link which is equal to the zero-th moment of the i -th general­

ized link is defined as

(6.3.5)

The fonnulation of equation (6.3.4), which defines the inertia tensor of

the i -th generalized link, is important because it provides physical insight

into the structure of this inertia tensor. However, this fonnulation is obvi­

ously computationally very expensive for any use in practical applications.

Therefore, to be able to use generalized links effectively, we have to define

their inertia tensor by using a computationally more efficient equation. This

equation is provided by the following lemma [17].

200 Dynamic Analysis of Robot Manipulators

Lemma 6.1: The inertia tensor of the i -th generalized link with respect to

the origin <>; of the i -th link coordinate system may be defined by the follow­

ing recurrence relation:

(6.3.6)

where K~. is the inertia tensor of the i -th augmented link with respect to the .
origin <>;, sf i + 1 is the dual tensor of the position vector of <>; + 1 relative to 0i

and iJ~. is fue dual tensor of the first moment about <>; + 1 of the (i + l)-th gen-
0+1

eralized link.

Proof: Since, for k>i ,rf,k = S:'i+l + rf+l,k' we have
.i.i .i.i .i.i .i.i .i.i
ri,kri,k = Si,i+1Si,i+l + Si,i+l r i+l,k + r i +1,k si,i+l + r i +U r i +1,k'

Equation (6.3.4) can be written as
n

Ei Ii .i.i ~ .i .i
0; = c; -miri,iri,i - ~ m k si ,i+1Si,i+l

k=i +1

n n

k=i+l

- s· . + s· . +. . _ Ki _ [.i u· i u· i.i] A Ei+1AT
0; 1,1+1 0;+1 0;+1 1,1+1 1+1 0;'1 1+1

where the definitions of the inertia tensors for the i -th augmented and i-th

generalized links have been used in the last step. Thus, equation (6;3.6) is

valid and this completes the proof. 0

Chapter 6: Manipulator Forward Dynamics 201

As we mentioned above, a generalized link is another name for the

concept of a composite rigid body. Therefore, it is obvious that equations

(6.2.6) and (6.2.7) which define the composite center of mass and the compo­

site inertia tensor, respectively, of the i -th composite rigid body are closely

related to equations (6.3.3) and (6.3.6) which define the first and second

moments, respectively, of the i -th generalized link. To see this, by substitut­

ing u:, from equation (6.3.1) into equation (6.3.3), and using equation (6.2.6),
1

we can write the first moment of the i -th generalized link as follows:

U j - R j
o. = mj j,j • . (6.3.7)

where R:,j is the position vector of the center of mass of the i -th composite

rigid body (or the i -th generalized link) with respect to the origin 0; of the i -
th link coordinate system. Note that, based on physical considerations, we

could use equation (6.3.7) instead of equation (6.3.3) as the definition of the

first moment of the i -th generalized link with respect to the origin OJ of the

i -th link coordinate system. However, the chosen definition provides physi­

cal insight which facilitates the analysis of the dynamic equations of motion.

Similarly, using the parallel axis theorem, the inertia tensor of the i -th gen­

eralized link E!. with respect to the origin 0; can be defined by the equation .
j j --j-j

E =E -m·R .. R ..
0 1 G I 1,1 1,1

(6.3.8)

where E~ (see equation (6.2.7» is the inertia tensor of the i -th generalized .
link with respect to its center of mass, and R: j is the dual tensor of the posi-

tion vector R:,j. '
Now, using these moments of the augmented and generalized links, we

can proceed to derive an algorithm for computing efficiently the joint-space

matrix D of the generalized inertia tensor D of a rigid-link open-Chain robot

manipulator.

202 Dynamic Analysis of Robot Manipulators

6.3.2 The Use of Newton-Euler Equations in Computing
the Manipulator Inertia Tensor

To simplify the analysis, we shall assume that all joints are of revolute

type. However, the final equations in Algorithm 6.2 have been modified to

make the algorithm applicable to both revolute and prismatic joints. These

modifications are simple and self explanatory.

Following the approach by Walker and Orin, let us assume that unit

acceleration is applied at the i -th joint of a robot manipulator with all joint

velocities and other joint accelerations equal to zero. Under these assump­

tions only the i -th generalized link moves. To describe the motion of the i -th

generalized link, we shall use Newton's and Euler's equations.

As is well known, Newton's and Euler's equations describe the motion

of a rigid body relative to an inertia frame and' are given [14] by

M =1 'm+ml'm e e e

(6.3.9)

(6.3.10)

respectively, where m is the mass, r e is the absolute acceleration of the

center of mass, Ie is the inertia tensor of the, rigid body about its center of

mass and m (m) is the absolute angular velocity (acceleration) of the motion.

In the case of the i -th composite link , equations (6.3.9) and (6.3.10)

take the form
..

F = fii,Ro ,
C i '.'

(6.3.11)

and

(6.3.12)

Note that, (6.3.11) and (6.3.12) are expressed in the base frame orientation.

However, since by assumption links 1 to i-I are stationary, we can assume

that the origin of the inertia frame is at the same position as the origin OJ of

Chapter 6: Manipulator Forward Dynamics 203

.. ..
the i -th link coordinate frame. This implies that RO•i = R i •i • Therefore,

using equations (6.3.7) and (6.3.8) we can rewrite equations (6.3.11) and

(6.3.12) in the following fonn
00

Fe =Uo
I I

(6.3.13)

and

(6.3.14)

Moreover, under the assumptions made above, we have

co· = 0 and I

o

Wi = Zi· (6.3.15)

which implies that OJ = zi for all j ~ i. Therefore, using Lemma 5.2, we can

show that

(6.3.16)

From the foregoing, equations (6.3.13) and (6.3.14) can be written as

Fe. = zi Uo. (6.3.17) . .
and

(6.3.18)

respectively. Moreover, equations (6.3.17) and (6.3.18) as tensor equations

are invariant under coordinate transfonnations. Therefore, following the

usual approach in the Newton-Euler fonnulation of robot dynamics, we

express them in the i -th frame orientation as

and

F i __ iUi
- z· e i I 0i

(6.9.19)

(6.3.20)

204 Dynamic Analysis of Robot Manipulators

respectively.

. Now, due to the motion of the i -th joint, forces (r}) and moments

(Tlj) will be developed at all joints j for j ~ i . These forces and moments

are the inter-link constraints which keep the links in the lower part of the

manipulator fixed with respect to each other. Projections of these forces or

moments onto the joint axes are just the elements of the desired joint-space

inertia matrix D of the generalized inertia tensor D. To determine these

constraint forces and moments we use a backward recursion from joint i

through to joint 1. At the initial step of this recursion, i.e., for j =i, r: i and

TI:,i can be determined by simply resolving F~. and M~. to the origin ~f the . .
i -th coordinates. Thus, we have

i i r .. =F
1,1 C j

(6.3.21)

and

(6.3.22)

Further, by using (6.3.19) and (6.3.20), we can write equation (6.3.22) as

d fi all . - iU i U-i i d R- i 1 U-i h an n y, SInce zi o. = - o.zi an i,i = - 0.' we ave
• I _ •

iii
Tli,i = Eo.· zi· .

mi

(6.3.23)

(6.3.24)

In the rest of the recursion, i.e., for j < i , the constraint forces and

moments are computed using the equations

(6.3.25)

and

(6.3.26)

Chapter 6: Manipulator Forward Dynamics 205

Note that these equations can also be derived from a compatible inverse

dynamics algorithm, say Algorithm 5.4, when the accelerations at all joints

j, for j *' i, are assumed to be zero. Finally, the elements of the symmetric

joint-space inertia matrix D of the generalized inertia tensor D are deter­

mined by using the following equation

d .. = 11(' z~.
i.1 i.1 i

(6.3.27)

Based on the above equations, we can state the following algorithm for

computing the elements of the joint-space inertia matrix D.

ALGORITHM 6.2

Step 0: Initialization:

A,,+l =0,

", = {I revolute i -th joint

o prismatic i -th joint

Step 1: For i = n, 1, do

Step 2: For i = n, 1, do

i T
Zj = [001]

(6.3.28a)

(6.3.28b)

(6.3.28c)

(6.3.29a)

(6.3.29b)

(6.3.29c)

206 Dynamic Analysis of Robot Manipulators

f i ~ iU i (1) - i .. = a·z· + - a· m·z.
1,1 I I 0; I I I

iii
11· . = a.E ·Z·

ttl I OJ I

iii i
d . . = a·(l1· .·Z.) + (1- a·)(f. "z,)

l,t ",t I I I ,I I

Step 3: For j = i-1, 1, do

d .. =a·(l1(· z~)+(1-a.)(f(· z~)
} ,I } } ,I } } } ,I }

end

(6.3.29d)

(6.3.2ge)

(6.3.291)

(6.3.30a)

(6.3.30b)

(6.3.3Oc)

Note that since the joint-space inertia matrix D is symmetric, Algorithm 6.2

computes only the upper triangular part of it. Also, as we have mentioned

above, certain equations of this algorithm have been modified to allow for

both revolute and prismatic joints.

6.3.3 The Use of Euler-Lagrange Equations in Computing
the Manipulator Inertia Tensor

In this section we demonstrate how the Euler-Lagrange equations can

be used to derive Algorithm 6.2. To simplify the derivation, we consider

revolute joints only. However, with slight modifications the analysis can be

extended to include prismatic joints as well.

In the Euler-Lagrange approach, we first compute the Lagrangian of

the manipulator, which is defined by

L =cI>-P (6.3.31)

where cI> is the kinetic energy and P is the potential energy of the manipula­

tor. Then to derive the generalized torques (Le., forces and torques acting at

Chapter 6: Manipulator Forward Dynamics 207

the joints), we use the Euler-Lagrange equations

d aL aL
'tj = -----

dt aqj aqj
i = 1,2, ... , n (6.3.32)

where, qj (qj) are the generalized coordinates (velocities) of the manipula­

tor. Perfonning the diffurentiation involved in (6.3.32), we can write the

equation for the generalized torques (when there are no external forces act­

ing on the manipulator) in vector fonn as

't = D(q)q + C(q,cj) + G(q) (6.3.33)

where D (q) is the generalized inertia tensor of the manipulator, C (q ,cj) is a

vector which contains Coriolis and centrifugal forces and G(q) is the vector

of gravitational forces.

Since potential energy is independent of the joint velocities, it is obvi­

ous that the generalized inertia tensor D (q) results from kinetic energy only.

Actually, if we write the kinetic energy of the manipulator in the fonn

1 • T •
fIl = -q H(q)q (6.3.34)

2

where H(q) is the kinetic energy tensor, we can compute the generalized

inertia tensor D (q) directly by setting

D(q) = H(q) (6.3.35)

i.e., the generalized inertia tensor of a manipulator is simply the kinetic

energy tensor. Therefore, to compute the tensor D (q), we have to derive the

kinetic energy of the manipulator in the fonn given by equation (6.3.34).

Kinetic energy is one of the most important physical quantities in rigid

body dynamics and is defined by a number of equivalent equations [14].

Here, to define the kinetic energy of the k-th link of a robot manipulato'r, we

use the following equation [14]

1 • • 1
fIlk = -mkrO" . r Ok + -(Ok' Ie . Q)k

2 ... '2 1

(6.3.36)

208 Dynamic Analysis of Robot Manipulators

where the first tenn defines the translational kinetic energy and the second

tenn defines the rotational kinetic energy of the k-th link. Now, using the

superposition theorem, we get the total kinetic energy of a robot manipulator

as
/I

I ..
4» = - ~ [mkrO,k • rO,k + (Ok . Ict ' (Ok]'

2 k=1

(6.3.37)

The absolute linear and angular velocities of the k-th link can be defined

explicitly by the following equations
k

fO,k = ~ (zi x r i,k)4i
i=1

k

Olk = ~zi4i'
i=1

(6.3.38)

(6.3.39)

Now, by substituting (6.3.38) and (6.3.39) into (6.3.37) and noticing that

from equation (3.4.9) we have

(Zj x rj,k)' (zi x ri,k) = - Zj • fj,kfi,k • zi'

we can write (6.3.39) as

1 /I k

4»=-~ ~ [Zj' (lct -mkfj,kfi,k)' zi]4i4j •

2 k =lij=1

(6.3.40)

Finally, the pennutation of the two summation symbols in (6.3.40) gives

Therefore, from (6.3.34), (6.3.35) and (6.3.41), we have that the elem~nts of

the joint -space inertia matrix D of the generalized inertia tensor D (q) satisfy

the following equation,

d .. =Z·· [i (I -mkf',kf.,k)]'Z, J,I J C t J I I

k=mIlX(ij)

(6.3.42)

Chapter 6: Manipulator Forward Dynamics 209

Equation (6.3.42) can be simplified if one uses equations (6.3.3) and (6.3.4)

and Lemma 6.1. To see this, let us assume that j S i, then since by definition

r. I. = s· . + r· I., we have }.... i,l I

n n n

~ [I - mkr. lor. I.] = ~ [I - mkr. lor. ,.1- ~ mks . . r. I.
""" C A } I.... """ C A I I.... """ i,l I

k=i k=i

Therefore, we can write equation (6.3.42) as

dj,i = Z{ [Eo; -Sj,i '00;], zi

k=i

(6.3.43)

(6.3.44)

Moreover, equation (6.3.44) as a tensor equation is invariant under coordi­

nate transformations. Therefore, it can be written in the j -th frame orienta­

tion as

(6.3.45)

Now, we shall show that (6.3.45) is equivalent to (6.3.27). First we note that

the vector 111,i' defined by (6.3.26), can·also be written as

j [E j • j u· j] j 11··= -s·· ·z· },I 0; i,l 0; I
(6.3.46)

To see this, we write equation (6.3.26) in its expanded form as

j j +1 .j j
11j ,i = Aj +111j +I,i + Sj j +1 rj,i

.j rj .j rj .j rj E j j = Sjj+l j,i + Sj+lj+2 j,i + ... + Si-l,i j,i + o;Zi

= s(r(+ Ej Z!
i,l },I 0; I

and since, rl,i = if u~. = -v~. zf ' we get equation (6.3.46). . .
From the foregoing, equations (6.3.26) and (6.3.46) are equivalent.

Moreover, since sf i = 0 for all i, it is obvious that equation (6.3.46) contains ,

210 Dynamic Analysis of Robot Manipulators

equation (6.3.24). Thus the joint-space inertia matrix of a robot manipulator
can be computed using either (6.3.27) or (6.3.45). Therefore, Newton-Euler
and Euler-Lagrange formulations both lead to the same equations for obtain­
ing the generalized inertia tensor of a robot manipulator.

6.4 Implementation and Computational Considerations

In this section, we shall demonstrate how Algorithm 6.2, can be imple­

mented numerically in an efficient manner. Similar obselVations to those
made in the numerical implementation of Algorithms 5.6 and 5.7 in Chapter
5, can be made here. Thus, for example, when we talk about the computation
of the matrix E~. we actually mean the computation of the coordinate matrix .
E~ of the tensor E~.. Moreover, since most robot manipulators have usually . .
one prismatic joint, we shall assume that the moments of an augmented link,
Le., Step 1 of Algorithm 6.2, can be computed off-line. Therefore, in the fol­
lowing, we shall be concerned with the numerical implementation of the
second and third steps of Algorithm 6.2, and we shall consider two cases:
robot manipulators with a general geometric structure and robot manipula­
tors for which the twist angle is, by design, either 0 or 90 degrees.

From the structure of the equations in these two steps, it is clear that
the maximum number of operations required for implementing Algorithm 6.2
results from various matrix-vector and matrix-matrix multiplications. As we
mentioned in Section 5.3.2, for a matrix-vector multiplication where the
matrix under consideration is a coordinate transformation matrix, we need 8
scalar multiplications and 4 scalar additions. When the twist angle a in the
transformation matrix, is either 0 or 90 degrees, we need only 4 scalar multi­
plications and 2 scalar additions. For a matrix-vector multiplication' where
the matrix under consideration is a skew-symmetric matrix, we need 6 scalar
multiplications and 3 scalar additions. Finally, the implementation of the
product of two skew-symmetric matrices requires 9 scalar multiplications

Chapter 6: Manipulator Forward Dynamics 211

and 3 scalar additions.

Now, as we can see from Algorithm 6.2, the most computationally

intensive equation is equation (6.3.29c) which computes the inertia tensor of

a generalized link. For a computationally efficient implementation of this

equation we notice the following: The symmetric matrix

[(_i+l u· i+l (_i+l u-i+l)T] be' 1 d'th nl 9 al l'
Si,i+l 0;+1 + Si,i+l 0;+1 can Imp emente WI 0 Y sc ar mu tI-

plications and 9 scalar additions. Moreover, it can be shown that by using the

following trigonometric identities

a) sin (29) = 2sin (9)cos (9)

b)
2

cos (9) =
1 + cos (29)

2

c) sin\9) =
1 - cos (29)

2

the transformation of a symmetric matrix from one coordinate system to

another can be implemented very efficiently. Thus, it can be shown that when

the twist angle of the transformation matrix Ai is different from 0 or 90

degrees, for the transformation of a symmetric matrix we require 21 scalar

multiplications and 18 scalar additions. When the twist angle of Ai is equal

to 0 or 90 degrees, we need 11 scalar multiplications and 11 scalar additions.

Thus, to implement equation (6.3.29c), in the general case, we need 30 scalar

multiplications and 39 scalar additions.

Based on these general remarks, we shall now analyze the implementa­

tion of Algorithm 6.2, when it is applied to a robot with all revolute joints.

We first notice that since z: = [0 0 1 {, equations (6.3.29d)-(6.3.29f) and

(6.3.3Oc) do not require any computations for their implementation. To

implement equation (6.3.29b) we can avoid the matrix-vector multiplication,

since, as we can see from equations (2.3.3) and (2.3.4), the vector s:.:~1 can

be defined as

212 Dynamic Analysis of Robot Manipulators

[
ajCOS(Qj+l)]

j +1 .
Sj,j+l = - ajSl;.(Qj+l)

I

where aj and d j are known link parameters. Thus, we can implement equa­

tion (6.3.29b) with only 2 scalar multiplications. Moreover, for i = n, since
n n n n

An+l = 0, we have Uo = Uo and Eo = Ko .
II ,. II II

Steps General manipulator General manipulator with

2& 3 with revolute joints revolute joints & a=O° or 900

Equation Multipl. Additions Multipl. Additions

6.3.29a 8n- 16 7n- 10 4n- 8 5n- 10

6.3.29b 2n- 2 0 2n- 2 0

6.3.29c 30n- 42 39n- 52 20n- 25 32n- 42

6.3.29d 0 0 0 0

6.3.2ge 0 0 0 0

6.3.29f 0 0 0 0

6.3.30a
2

4n -12n+8
2

2n - 6n+4
2

2n - 6n +4
2

n - 3n+2

6.3.30b
2

7n -17n+1O
2

3.5n -7.5n +4
2

5n -13n+8
2

2.5n -5.5n +3

6.3.3Oc 0 0 0 0

Total
2

lln +lln-42
2

5.5n + 32.5n -54
2

7n +7n-23
2

3.5n +28.5n-47

n=6 420 339 271 250

Table 6.1: Operations counts for implementing Algorithm 6.2.

Chapter 6: Manipulator Forward Dynamics 213

From the foregoing, no computations are involved in Step 2, when

i = n. Also, since d 1 1 is the (3,3) element of the matrix E~ , we need to
• I

compute only the (3,3) element of E~ and not the complete matrix when
I

i = 1. This also implies that U~ need not be computed. In Step 3, equations
I

(6.3.30a) and (6.3.30b) each need to be evaluated n(n-l)/2 times, since there

Authors Remarks Multiplications Additions

Walker and Orin Composite
2

12n +S6n-27
2

7n +67n-S6

rigid bodies (741)t (601)

Angeles and Ma Natural Orthogonal
3 2

n +17n -ISn+8
3 2

n +14n -16n+S

Complement (746) (629)

2 • 2 • Featherstone Composite IOn +31n-41 6n +40n-46

rigid bodies (SOS) (410)

Algorithm 6.2 Generalized and
2

lIn +lIn-42
2

S.Sn +32.5n-S4

in this monograph augmented links (420) (339)

t Number of operations for n = 6.

* A spatial arithmetic package has been used for this implementation.

Table 6.2: Comparison of computational complexities of several

algorithms for computing the joint-space inertia matrix.

214 Dynamic Analysis of Robot Manipulators

are n(n-l)/2 off-diagonal elements in the upper triangular part of the joint

space inertia matrix D. However, when j = 1, there is no need to compute

the vector rL (since it is not used anywhere) and from the vector Tl:.i we

need only compute its last entry. Thus, some saving can be made in comput­

ing the n-l elements d 1•i ofD in Step 3 of the algorithm if these considera­

tions are taken into account.

Following the observations made above, a breakdown of the number of

scalar multiplications and additions required for the online implementation

of each equation of Algorithm 6.2 is given in Table 6.1. The total figure

represents the operations count for computing the inertia matrix (upper tri­

angular part) of a robot manipulator with all joints of revolute type, and is

valid for n ~ 2. Also, for the sake of comparison, the operations counts for a

number of algorithms reported in the literature for computing the inertia

matrix of a robot manipulator are given in Table 6.2. From Table 6.2, it is

obvious that the proposed algorithm is computationally more efficient than

other well known algorithms reported in the literature. The significantly

higher computational efficiency of Algorithm 6.2 is obtained primarily

through appropriate modeling and use of tensor analysis in the formulation

of its basic equations.

As we mentioned in Section 6.2, one of the basic approaches for solv­

ing the forward dynamics problem is to obtain and solve a set of simultane­

ous equations in the unknown joint accelerations, Le., steps (i)-(iii) in

Walker and Orin's approach. Following this approach, one can use Algo­

rithm 6.2 for computing the joint space inertia matrix D in step (i), Algo­

rithm 5.7 for computing the bias vector b in step (ii) and any standard

method [18-21] for solving the system of linear equations in step (iii). The

total computational cost for solving these three subproblems of forward

dynamics is given in Table 6.3. Also, for the sake of comparison, Table 6.3

contains the computational cost of computing the joint accelerations by other

Chapter 6: Manipulator Forward Dynamics 215

similar methods reported in the literature.

Authors Remarks Multipl. Additions

Kazerounian and Gupta Zero reference 2468 1879

positions

Walker and Orin Composite bodies 1627 1261

Wang and Ravani Modified Walker 1659 1252

and Orin method

Featherstone Articulated bodies 1533 1415

Featherstone Composite bodies 1303 1019

Angeles and Ma Natural orthogonal 1353 1165

complement

(i) Algorithm 6.2 Generalized and

(ii) Algorithm 5.7 augmented links 956 790

(iii) Soln. of linear eq. [19]

Table 6.3: Computational cost for solving steps (i)-(iii) of the forward

dynamics problem for n = 6.

216 Dynamic Analysis of Robot Manipulators

6.5 Concluding Remarks

In this chapter, we have presented a new algorithm for computing the

joint space inertia matrix D of the generalized inertia tensor D of a robot

manipulator. We have shown that this algorithm can be derived using either

Newton-Euler or Euler-Lagrange formulations of robot dynamics. Thus, we

have established that from an algorithmic point of view, the solution of the

forward dynamics problem does not depend on which of these formulations

is used. A comparison of the computational complexity of this algorithm

with that of other existing ones shows that the proposed algorithm is

significantly more efficient. This efficiency is achieved mainly because the

underlying modeling scheme used here for the dynamic analysis allows us to

compute several quantities off-line. Moreover, the computational efficiency

is improved since the tensor formulation for the equations to be computed

online is computationally more efficient than the traditional vector formula­

tion. Finally, we have shown that by using inverse dynamics algorithms from

Chapter 5 to evaluate the bias vector b, and the proposed algorithm to evalu­

ate the generalized inertia tensor D, the computational cost for solving the

forward dynamics problem can be reduced considerably.

6.6 References

[1] M. W. Walker and D. E. Orin, "Efficient Dynamic Computer Simula­

tion of Robotic Mechanisms", ASME J. Dynamic Systems, Measure­
ment and Control, Vol. 104, pp. 205-211, 1982.

[2] R. Featherstone, Robot Dynamics Algorithms, Kluwer Academic Pub­

lishers, Boston, MA, 1987.

[3] J. Angeles and O. Ma, "Dynamic Simulation of n-Axis Serial Robotic

Manipulators Using a Natural Orthogonal Complement", Int. J. of
Robotics Research, Vol. 7, No.5, pp. 3245,1988.

Chapter 6: Manipulator Forward Dynamics 217

[4] 1. Angeles and S. K. Lee, "The Fonnulation of Dynamical Equations

of Holonomic Mechanical Systems Using a Natural Orthogonal Com­

plement", ASME J. of Applied Mechanics, Vol. 55, pp. 243-244, 1988.

[5] W. W. Ann strong , "Recursive Solution to the Equations of Motion of

an n-Link Manipulator", Proc. 5th World Congress on the Theory of

Machines and Mechanisms, Vol. 2, pp. 1343-1346, Montreal, July,

1979.

[6] G. Rodriguez, "Kalman Filtering, Smoothing and Recursive Robot

Ann Forward and Inverse Dynamics", IEEE J. of Robotics and Auto­

mation, Vol. RA-3, No.6, pp. 624-639, 1987.

[7] G. Rodriguez, "Recursive Forward Dynamics for Multiple Robot

Anns Moving a Common Task Object" Robotics and Manufacturing:

Recent Trends in Research, Education, and Applications, M. Jamshidi,

J. Y. S. Luh, H. Seraji and G. P. Starr, Eds., ASME Press, New York,

1988.

[8] G. Rodriguez and K. Kreutz, "Recursive and Mass Matrix Factoriza­

tion and Inversion : An Operator Approach to Manipulator Forward

Dynamics",JPL Publication 88-11, March 1988.

[9] J. C. K. Chou, G. Baciu and H. K. Kesavan, "Graph-Theoretic Models

for Simulating Robot Manipulators", Proc. IEEE Int. Con! on Robot­

ics and Automation, Raleigh, NC, pp 953-959, 1987.

[10] J. C. K. Chou, G. Baciu and H. K. Kesavan, "Computational Scheme

for Simulating Robot Manipulators", Proc. IEEE Int. Con! on Robot­

ics and Automation, Raleigh, NC, pp 961-966, 1987.

[11] C. S. G. Lee and P. R. Chang, "Efficient Parallel Algorithms For Robot

Forward Dynamics Computation", Proc. IEEE Int. Con! on Robotics

and Automation, Raleigh, NC, pp 654-659, 1987.

[12] M. Amin-Javaheri and D. E. Orin, "A Systolic Architecture for Com­

putation of the Manipulator Inertia Matrix", Proc. IEEE Int. Con! on

218 Dynamic Analysis of Robot Manipulators

Robotics and Automation, Raleigh, NC, pp 647-653, 1987.

[13] J. Y. Han, "Computational Aspects of Real-Time Simulation of

Robotic Systems", Proc.IEEE Int. Conf on Robotics and Automation,

Raleigh, NC, pp 967-972,1987.

[14] J. Wittenburg, Dynamics of Systems of Rigid Bodies, Stuttgart: B. G.

Teubner, 1977.

[15] K. Kazerounian and K. C. Gupta, "Manipulator Dynamics Using the

Extended Zero Reference Position Description", IEEE J. of Robotics

and Automation, Vol. RA-2, pp 221-224,1986.

[16] L. T. Wang and B. Ravani, "Recursive Computations of Kinematic

and Dynamic Equations for Mechanical Manipulators", IEEE J. of

Robotics and Automation, Vol. RA-l, pp 124-131, 1985.

[17] C. A. Balafoutis and R. V. Patel, "Efficient Computation of Manipula­

tor Inertia Matrices and the Direct Dynamics Problem", IEEE Trans.

on Systems, Man, and Cybernetics, Vol. SMC-19, No.5, pp. 1313-

1321, 1989.

[18] G. W. Stewart, Introduction to Matrix Computations, Academic Press,

N.Y.,1973.

[19] J. J. Dongarra et al., UNPACK: user's guide, SIAM, Philadelphia, PA,

1973.

[20] G. Golub and C. Van Loan, Matrix Computations, 2nd Edition, Johns

Hopkins Univ. Press, Baltimore, MD, 1989.

[21] R. L. Burden, J. D. Faires and A. C. Reynolds, Numerical Analysis,

Prindle, Weder & Schmidt, Boston, MA, 1978.

Chapter 7

Linearized Dynamic Robot Models

7.1 Introduction

As is well known, our modeling approach to the real world is based on

idealizations, and usually the working conditions are not the predicted ones.

Therefore, in practice, one has to take into account the effucts of perturba­
tions on the applications being considered. For example, in the trajectory

tracking problem, an important objective is to ensure that the end-effuctor of
a manipulator tracks a desired "nominal" trajectory as closely as possible.

Under ideal conditions a dynamic robot model, such as that presented in

Chapter 5, will provide the generalized force 't which will drive the end­

effuctor of a robot manipulator along the desired trajectory. However, in

practice, if only feedforward control signals (calculated from a nonlinear

dynamic model) are applied, the end-effector will not necessarily track the

nominal trajectory. This is due to factors such as modeling uncertainties,

gear backlash and friction, actuator and sensor errors, and payload variations

which are not taken into account in the dynamic model. Therefore, a

feedback/feedforward control system is needed to remedy this situation.

220 Dynamic Analysis of Robot Manipulators

In general, manipulator control is a challenging problem since, as we

showed in Chapter 5, a dynamic robot model is described by equations

which are highly nonlinear and dynamically coupled. Obviously, for these

inherently nonlinear dynamical systems, much of the well established linear

control theory is not directly applicable. However, many proposed solutions

to the manipulator control problem [1-6] involve the use of methods from

linear control theory. For example, in the aforementioned trajectory tracking

problem, a control strategy which allows linear control methods to be used

can be outlined as follows: First, feedforward control signals are applied to

drive the manipulator along a desired nominal trajectory. Then, a correction

tenn for the feedforward signals is generated by feedback of the perturba­

tions (errors) in the physical state-variables (positions and velocities) from

their nominal values. This is done using a control algorithm designed for the

linearized dynamic equations of the manipulator -henceforth called the

linearized dynamic robot model. Thus, linearized dynamic robot models

which can be obtained in a computationally efficient manner are important in

manipulator control. Furthennore, linearized dynamic robot models may be

used in other aspects of robotics as well. For example, linearized robot

models lead naturally to trajectory sensitivity functions [7-9] which charac­

terize the sensitivity of the manipulator motion (along a nominal path) to

fixed kinematic or dynamic parameters. Among other applications, these

functions can be used [9,10] to describe the variations in a manipulator's tra­

jectory introduced by an unknown payload.

The outline of this chapter is as follows: In Section 7.2 we briefly dis­

cuss some basic approaches taken to linearize the dynamic equations of

robot manipulators. In Section 7.3 we present a procedure for deriving joint

space linearized robot models in a computationally efficient manner. In Sec­

tion 7.4, we introduce the Cartesian configuration space description for the

dynamic equations of robot manipulators and propose a method for their

linearization.

Chapter 7: Linearized Dynamic Robot Models 221

7.2 Linearization Techniques

In this section, we briefly discuss various linearization techniques that

have been employed to linearize the dynamic equations of a robot manipula­

tor. Broadly, these techniques may be categorized as global linearization

techniques and local linearization techniques. As the name suggests, in glo­

bal linearization the resulting linearized dynamic robot model is valid over

the whole domain where the nonlinear model itself is valid. In locallineari­

zation the resulting linearized dynamic robot model is valid only at a particu­

lar point of a given trajectory which is known as the nominal trajectory. In

local linearization, if the manipulator does not operate over a small range of

its variables, then as the manipulator moves, the operating point changes.

Therefore, at each new operating point a new (local) linearization has to be

perfonned. Briefly, global and local linearization can be achieved by using

the following methods.

7.2.1 Global Linearization

Global linearization resulted from effurts to control nonlinear systems,

and can be achieved by using either feedback action alone or feedback

action combined with coordinate transfonnations.

In the first approach, i.e., when feedback action alone is used, the main

idea is to "cancel" the nonlinearities in the nonlinear system by using an

appropriate feedback law which makes the overall closed-loop system

behave as a linear system. The resolved acceleration technique [5] is prob­

ably the simplest and most common technique used f9r achieving "feedback

linearization" of a robotic system. Also, another interesting feedback linear­

ization technique is described in [6]. In these methods, under the feedback

action, the closed-loop response of the system (which may be in tenns of

error signals or end-effector position variables) is described by a linear

second order differential equation which is viewed as the linearized dynamic

robot model. The computational complexity in this "linearizing control"

222 Dynamic Analysis of Robot Manipulators

approach varies with the method and the particular feedback law. However,

in general a large amount of computation is required which in some cases

includes matrix inversion in real-time [5]. Moreover, besides the complex­

ity, a practical difficulty with this approach is that inexact cancellation of the

nonlinearities can result in a 'linearized' model which gives very poor stabil­

ity performance for the closed-loop system.

The feedback and coordinate transformation approach for linearizing

robot manipulators resulted from advances made in the past few decades in

differential geometric system theory. The main idea in this approach, is to

use a diffeomorphict feedback-transformation (which includes a state-space

change of coordinates, additive feedback and input space change of coordi­

nates) and transfer the nonlinear dynamic robot model to an equivalent linear

and output decoupled system. In general, a diffeomorphic feedback transfor­

mation of this type exists under certain necessary and sufficient conditions

for a class of nonlinear systems [11-12]. Necessary and sufficient conditions

for the existence of a diffeomorphic feedback-transformation applicable to

dynamic robot models and a method for constructing it have been given in

[13]. At first, this method of linearization is attractive because it guarantees

exact linearization. However, it requires an extensive analysis and the feed­

back transformation law is quite complex. Thus, the algorithms which com­

pute this control law are computationally expensive and, in practical applica­

tions, this ofiSets the advantages gained from the exact linearization.

7.2.2 Local Linearization

In this approach, fundamental to linearizing a nonlinear system is the

concept of a nominal trajectory which will be denoted here by

t A diffeomorphic transformation is a one-to-one onto COO transformation .,etween
two manifolds such that its inverse exists and is also Coo.

Chapter 7: Linearized Dynamic Robot Models 223

(qO (t), ci° (0, it (t». Also, corresponding to the nominal trajectory, there is

a nominal generalized force vector 'to (t) which can be computed by using

any of the nonlinear dynamic robot models of Clu!pter 5. In the following,

for the sake of notational simplicity, we shall drop the time parameter t from

all the time dependent terms.

Locallin~arization is based on the Taylor series expansion of the non­

linear dynamic equations about a nominal trajectory. The Taylor series

expansion is applicable to these equations since they are analytic functions

of their arguments. The approach is conceptually simple. We assume that the

perturbations are small and we consider a first order approximation to this

expansion. The nominal portion of this expansion is cancelled algebraically

and the terms which are linear in the perturbation quantities are retained and

define the linearized dynamic equations. Following this procedure, we can

express the linearized dynamic equations of a robot manipulator by a

closed-form linear vector equation or by a recursive algorithm which has the

same structure as the recursive algorithms which solve the inverse dynamics

problem.

A closed-form lineariZed dynamic robot model, which can be derived

by applying the Taylor series expansion to one of the recursive dynamic

robot models of Chapter 5, can be written in the form

(7.2.1)

where M, &t ,aq,~ E R PI are small deviations about some nominal torque

and nominal joint space trajectory. The coefficients in equation (7.2.1) are

known as the (coefficient) sensitivity matrices of the linearized model. These

are functions of the nominal trajectory (qO ,ci° ,it) and are independent of

the perturbations. Here, following established terminology, we call the

coefficients in equation (7.2.1) "matrices", although actually they are 2nd

order tensors. The tensor character of these quantities is obvious from their

definitions which are presented next:

224 Dynamic Analysis of Robot Manipulators

n° The inertial force-acceleration sensitivity matrix is the Jacobian

of the generalized force vector 'I: with respect to ij evaluated

about the nominal trajectory i.e., nO:: V .. 'I: I (0 • 0 "0)'
q q ,q ,q

VO The centrifugal and Corio Us force-velocity sensitivity matrix is

the Jacobian of 'I: with respect to q evaluated about the nominal

trajectory i.e., Vo:: V. 'I: I (•.• "')' q q ,q ,q

pO The force-position sensitivity matrix is the Jacobian of 'I: with

respect to q evaluated about the nominal trajectory i.e.,

pO::Vq'l: 1(......).
q ,q ,q

To derive a recursive linearized dynamic robot model we again apply

the Taylor series expansion to a nonlinear recursive dynamic robot model.

But in this case, the joint space perturbations &t of the generalized force vec­

tor 'I: are computed component-wise by a recursive algorithm which has the

same structure as the recursive algorithm which computes the nonlinear

manipulator dynamics. The only difference is that now instead of propagat­

ing the actual velocities, accelerations, forces, etc. from link to link we pro­

pagate the perturbations of these quantities about the operating point of a

nominal trajectory. Thus it can be shown [9] that recursive linearized

dynamic robot models retain the 0 (n) computational complexity of a recur­

sive nonlinear dynamic robot model. However, recursive linearization has

limited applications in manipulator control, since it is difficult to derive a

state-space representation (which is used for time domain analysis and con­

trol) of the linearized dynamics directly from a recursive model. On the other

hand, the state-space representation of the linearized dynamics can be

derived ea,sily from a closed-form linearized dynamic robot model.

Thus, for example, since the force acceleration matrix n° E IR nxn is

positive definite [14], its inverse always exists and this allows us to write

equation (7.2.1) as

Chapter 7: Linearized Dynamic Robot Models 225

where 0/1 and 1/1 are the zero and unity nxn matrices, respectively. Equa­

tion (7.2.2) is in the standard state-space form

x(t) = Ax(t) + B u(t) (7.2.3)

where x(t) (= [Oq T(t) &i T(t){) E R 2n, and u (t) (= O1;(t» E IR n.

To compute the coefficient sensitivity matrices of a closed-form linear­

ized dynamic robot model, we can use one of the following methods.

a) Parameter identification techniques: In this method, a discrete-time

version of the linearized model is considered first and then an iterative

scheme, such as the least-squares parameter identification algorithm, is used

to evaluate the unknown parameters in the sensitivity matrices. This

approach has been used in [4] to calculate directly the coefficient matrices A

and B of the state space linearized robot model (7.2.3). However, it should

be noted that identification schemes can be used effuctively only when the

parameters of the system are slowly time-varying. Also, even in slowly

time-varying systems, the convergence of the iterative algorithm may

present a problem.

b) Analytic or recursive formulations: In this approach we first obtain ana­
lytic or recursive expressions for the elements of the Jacobians, and then

devise algorithms which evaluate them numerically or symbolically along

points on the nominal trajectory. In this approach, we do not face the

aforementioned restrictions of the parameter identification techniques, but

this method can lead to computationally expensive algorithms. Linearized

robot models based on this approach have been proposed in [8,15]. In both

cases, the 4x4 Lagrangian formulation of robot dynamics has been used, and

this results in linearized robot models which are computationally inefficient

since they inherit the computational complexity associated with the 4x4

226 Dynamic Analysis of Robot Manipulators

formulation of the Lagrangian dynamic robot model. Also, in [14] the linear­

ization of the Newton-Euler formulation of robot dynamic models has been

derived in parallel with the nonlinear dynamic equations. This approach is

also computationally inefficient since, as has been estimated in [14], one has

to evaluate n 3 + 2n 2 terms in order to obtain the coefficient sensitivity

matrices.

In the following, using recursive formulations, we propose a new

method for deriving the Jacobians which define the coefficient sensitivity

matrices of a linearized dynamic robot model, and devise algorithms for

evaluating these Jacobians in a computationally efficient manner.

7.3 Joint Space Linearized Dynamic Robot Models

Application of the Taylor series expansion to the joint space nonlinear

dynamic equations of a robot manipulator, at least in principle, does not

present any problems. However, the complexity of these nonlinear equations

makes the task challenging, especially if one attempts to derive efficient

computational algorithms for determining the coefficient sensitivity matrices

of the closed-form linearized dynamic robot model given by equation (7.2.1).

In this section we shall address this problem and demonstrate how the vari­

ous coefficient sensitivity matrices in equation (7.2.1) can be evaluated in a

computationally efficient manner.

7.3.1 Joint Space Coefficient Sensitivity Matrices

By definition, the coefficient sensitivity matrices DO, VO and pO of a

joint space linearized dynamic robot model are the Jacobians of the general­

ized force vector 1: with respect to the generalized coordinates ij, 4 'and q

respectively, evaluated at a point of a nominal trajectory (qO ,4° ,ijo). Thus,

for example, if the generalized force vector 1: is defined component-wise by

equation (5.3.46c) of Algorithm 5.7 in Chapter 5, we can compute the

Chapter 7: Linearized Dynamic Robot Models

elements of the sensitivity matrix n° by using the following equation,

th,
° I

dij = -I(0 '0 "0) ':\" q ,q ,q
uqj

[em: 'J [ar: 'J = csi --·z; I(0 '0 00 0) + (l-ai) -·z; I(0 '0 -0)
':\" q ,q ,q ':\" q ,q ,q
uqj uqj

227

(7.3.1)

where csi is equal to one when the i -th joint is revolute and zero when the i­

th joint is prismatic. The elements of the sensitivity matrices VO and pO are

defined in an analogous manner. Therefore, it is obvious that if we have

available the various partial derivatives of the vector functions 11: and r:, we

can easily compute the joint space sensitivity matrices n°, V O and pO for

robot manipulators with revolute and/or prismatic joints. In this section, in

order to derive a procedure for computing the coefficient sensitivity matrices,

we shall consider manipulators with revolute joints only. In the case ofmani­

pulators with some prismatic joints, the equations are valid with minor

modifications. Moreover, for the sake of continuity, only the main results

will be presented in this section. The intennediate steps (such as partial

differentiation of various vector functions) for arriving at these results are

outlined in Appendix C.

In the following, we shall assume that the generalized force vector 1: is

defined by equation (5.3.46c) of Algorithm 5.7, and that this algorithm is

applied to manipulators with revolute joints only. As we have shown in

Chapter 5, the tensor fonnulation of Algorithm 5.7 makes its implementation

computationally very efficient. Therefore, Cartesian tensor analysis will be

used here as well and the basic equations will be stated in a tensor fonnula­

tion.

Based on the definition of the appropriate Jacobians, the expressions

for the elements of the sensitivity matrices n°, VO and pO may be deter­

mined as given below:

228 Dynamic Analysis of Robot Manipulators

iJ Inertial jorce-acceleration coefficient sensitivity matrix DO: By

definition, we can write the (i ,j)-th element of DO as

(n.
° I dij = - It 0 • 0 "0)

:"\" ,q.q ,q
uqj

[. dtt: 1 = z;'-- I(0 '0 "0)'
:"\00 q ,q ,q
uqj

which may be simplified (see Appendix C) to

. <. J _l

j > i

j Si

(7.3.2)

j > i

where the last step follows from the fact that the dot product is invariant
under coordinate transformations.

ii) Centrifugal and CorioUs jorce-velocity coefficient sensitivity matrix Vo:

The elements of the sensitivity matrix VO are defined by considering the fol­

lowing Jacobian:

(n.
° I vij = --I(0'0 "0)

:"\' q ,q ,q
uqj

Chapter 7: Linearized Dynamic Robot Models 229

[. dTt: 1 = z;'-- I(0 '0 "0) :\ . q .q .q
uqj

which on simplification (see Appendix C) gives

j ~i

(7.3.3)

j > i

where

and 'k.!. is the Euler tensor of the i -th augmented link which is defined by .
equation (S.3.44d).

iii) Force-position coefficient sensitivity matrix pO: As in the case of the

elements of n° and VO • we can write

d't. ° I
Pij = -Ie 0'0 "0) dq. q.q.q

J

[. dTt; 1 = z;'-- I(0 '0 "0) dq. q .q .q
J

which may be simplified (see Appendix C) to

230 Dynamic Analysis of Robot Manipulators

i [i - i _ i] •• i i [i - i -: i] • i i [u- i:'i] i p .. = z·· E -U s·· ·z· -2z.· L.+U s·· ·z·+z.· so· ·z.
I) 1 0; 0;) ,I) 1 1 0;) ,I) 1 0; J)

= z·· E -U s·· ·z· - 2z.· L.+U s·· ·z·+z·· U so· ·z· j [j - j - j] •• j j [j - j -: j] • j j [- j:'j] j
1 0; 0;),1) 1 1 0;),1) 1 0; J) (7.3.4a)

when j ~ i, and

. . [. . .]. . [.] .)) -) -) ..))) -)) .)
p .. = z·· E - s· . U ·z· - 2z.· L. + s· . U ·z·

I) 1 OJ 1 J OJ) 1) 1 J OJ)

j [_j:'j _j Aj j] j + z·· U so· - s· . U - 1\. ·z .
1 OJ J IJ OJ))

+ z·· U so· - s· . U - 1\. ·z . i [-i:'i _i Ai i] i
1 OJ J IJ OJ))

(7.3.4b)

when j > i. Note that for notational convenience, the explicit dependence

on the nominal variables has not been shown in equations (7.3.2), (7.3.3) and

(7.3.4).

At a first glance, these equations look very complex. However, as we

shall show later in this section, all basic tenns in equations (7.3.2)-(7.3.4)

can be computed recursively. Before we derive the recursive fonnulations, it

is worth examining the above fonnulations because they provide valuable

insight into the structural characteristics and properties of the coefficient sen­
sitivity matrices DO, VO and pO.

We notice first that at a point on the nominal trajectory, equation

(7.3.2) is equivalent to equation (6.3.45) which defines the joint space gen­

eralized inertia tensor of a robot manipulator. This is to be expected, ~ince in

a closed fonn representation of a nonlinear dynamic robot model (such as

that in equation (5.2.8)), the generalized force vector 't is linear in the joint

acceleration ii, with the generalized inertia tensor D as the coefficient of

Chapter 7: Linearized Dynamic Robot Models 231

linearity. Therefore, the force-acceleration sensitivity matrix DO exhibits the

properties of the generalized inertia tensor D, Le., it is symmetric (which can

also be seen from equation (7.3.2» and positive definite. The former pro­

perty of DO is obviously important in computational considerations. The

latter is important in controller design since it implies that DO is nonsingular

and thus its inverse exists for all the points along a nominal trajectory.

Unfortunately, symmetry is not preserved in the coefficient sensitivity

matrices VO and pO. However, they have other important characteristics

which may be used to simplify their evaluation at points along a nominal tra­

jectory. For example, in [8] it has been shown (following a different

analysis) that the element vn,n of VO is zero for any configuration of the

manipulator. This also follows from equation (7.3.3), if we note the follow­

ing: When i = j = n, we have,

En =K n
o 0 . .

and

Therefore, for i = j = n equation (7.3.3) implies that

which, by using the tensor equation (3.4.26), can be simplified to

232 Dynamic Analysis of Robot Manipulators

= Z ·z . K co = 0 n_n[n n) n n 0. n (7.3.5)

where the first equality follows from equation (3.4.4) and the last has been

derived by applying equation (3.4.7).

Another important observation, concerning the formulation of the ele­

ments of the first columns of the sensitivity matrices V O and pO, is the fol­

lowing: Since the angular velocity vector is always parallel to the first revo­

lute joint of the manipulator, i.e., the vector cof is parallel to ZII (as is usu­

ally the case in practice, we take the first joint to be revolute), then according

to equation (3.4.5) we have

which implies that
• I
zl = 0

(7.3.6)

Furthermore, since equation (7.3.6) is invariant under coordinate transforma­

tions, we can write

(7.3.7)

for all i. Also, using the same arguments, it can be shown that the vector z:
is zero for all i, i.e., we have

(7.3.8)

Therefore, by using equations (7.3.7) and (7.3.8) in equations (7.3.3) and

(7.3.4), we can simplify the formulations for the elements of the first columns

of VO and pO. Moreover, in the case where the first joint of the manipulator

rotates about an axis which is parallel to the gravity field, the first column of

the sensitivity matrix pO becomes zero. This is true since, by assumiJ;1g that

the vector zf is parallel to the gravity vector g = S~,I' it follows from equa­

tion (3.4.5) that

Chapter 7: Linearized Dynamic Robot Models

:'1 I
SO.(ZI = 0

233

(7.3.9)

Now, as with equation (7.3.6), in the i -th coordinate system we have

(7.3.l0)

and this, together with equation (7.3.6), implies that the first column of the

coefficient sensitivity matrix pO is zero in the case where the first revolute

joint of the manipulator is parallel to the gravity field. An alternative proof

of this result can be found in [8].

Based on these observations on the structure of the coefficient sensi­

tivity matrices DO, VO and pO, an implementation of equations (7.3.2)­

(7.3.4) has been proposed in [16] which requires 2186 scalar multiplications

and 2040 scalar additions. For more efficient computation of the coefficient

sensitivity matrices DO, VO and pO, we can modify equations (7.3.2)-(7.3.4)

so that the basic terms of these equations take on recursive formulations.

These recursive formulations are derived as follows:

Let

j ~ i (7.3.l1a)

Then, using equations (3.4.6)-(3.4.8), we can write

B j jEj -ju j - j
j,i=z;, o;-zi o;'Sj,i

(7.3. 11 b)

h f j -juj N . Ii .<. h -j -j -j (I'f were i =zi 0;' ow, SInce or j _z we ave Sj,i =Sjj+1 +Sj+I,i

j = i , S:,i = 0), we can write (7.3.l1b) recursively as

B j A B j +1 fj-j j'<z'
j,i = j+1 j+I,i - ;,S jj+1 (7.3.l1c)

iii
where B i i = Z(Eo' Also, let , ;

(7.3.l2a)

234 Dynamic Analysis of Robot Manipulators

Then, as equation (7.3.11a) was written in the recursive form (7.3.11c), this

equation can be written as

j j+l r:j
Cj,i = A j +1C j +1,i + f(Sjj+l j < i (7.3. 12b)

where, C:,i = z:. L:. Moreover, if

(7.3.13a)

. .i .i i .
SInce Zj = rDjZj' we can wnte

i i.i i i .i ·i i ~i i
Hij = [EOmj -Lj]zj -si)Uo.mj + Uo]Zj

I I I

[E i • i L i] i • i fA i = rD·- ·Z·-S·· .
OJ J J J IJ J

(7.3.13b)

Ai -i .. i Wi i
where f j = [UOmj + Uo.1Zj. Further, since for j > i we have

I I

S:j = S:,i+l + S:+lj' this can be written in the recursive form

i i +1 • i A i
Hij = Ai+1Hi+lj -Si,i+l f j i <j (17.3.13c)

with initialization HJj = [E~.mJ -LJ]. zJ. Finally, forj > i,let
I

G .. = E -s .. U z.-2 L.+s .. U z· i [i _ i - i] •• i [i _ i .. i] • i
IJ OJ IJ OJ J J IJ OJ J

[
••• • A' .]. - , •• 1 _ , , , ,

+ U so' -s .. U -1'\. z.
OJ J IJ OJ J J

(7.3. 14a)

. •• iii
or, sInce Z· = C.z.,

J J J

(7.3.14b)

where fJ = [iJ~j cJ + 2U~j mJ + U~j] zJ. Then, as before, we can write

Chapter 7: Linearized Dynamic Robot Models 235

(7.3.14c)

where

From the foregoing, we can simplify equations (7.3.2), (7.3.3) and (7.3.4) to

get

and

!B~ "z~),1)

d .. =
I)

j j
z(Bjj

. <. J _l

j > i

),1)),1)
j ~i

Vjj = 2 ! [B !..(b~ -C!.] ·z~

Pjj =

j j
z.·H ..

I IJ j > i

! [j j C j j f j:'j] j B .. ·0. - 2 ... (b. + . ·so· . z·
),1 J),1) I J)

j j
Z(G jj

(7.3.15)

(7.3.16)

j ~ i

(7.3.17)

j > i

In the following, for the implementation of equations (7.3.15)-(7.3.17),

we shall assume that the nonlinear dynamic robot model which is described

by Algorithm 5.7 is available. This assumption is justified since in control

applications, the generalized force vector 1: is an integral part of most control

laws. Thus, quantities such as: u~., (b:, oj, S~j' K~. and K~. are assum~d to
. . ..

be available from Algorithm 5.7. Also, to simplify the structure of Algorithm

236 Dynamic Analysis of Robot Manipulators

7.1, we shall assume that the simple equation s: i +1 = m:s: i +1 has been

included in Algorithm 5.7, and thus the vectors i:.i+l are ~sumed to be

available. From the foregoing, to compute the elements of the joint space

coefficient sensitivity matrices n°, VO and pO of a linearized robot dynamic

model, we can use the following algorithm.

ALGORITHM 7.1

Step 0: Initialization

Step 1: Backward Recursion :- i =n, 1

f i_~iUi . - z.
I I 0;

iii B .. =z.·E
I,' I 0;

iii C .. =z.·L.
l,t , I

(7.3.18a)

(7.3. 18b)

(7.3.18c)

(7.3.18d)

(7.3.18e)

(7.3.18f)

(7.3.18g)

(7.3.18h)

q.3.18i)

(7.3. 18j)

(7.3.18k)

Chapter 7: Linearized Dynamic Robot Models

i i
d .. =B. ··z.

II 1,1 I

v·· = 2 B .. · (.tl. - C.. . z· [i _ i i) j

U 1,1 I 1,1 I

[i i C i - i f i:'i) i p .. = B .. ' O. - 2 .. ' (.tl. + .·so· . z.
" l,t I t ,t I I ,t I

Step 2: Backward Recursion :- j =i -1, 1

j j+l
f. =A. If.

I)+ I

A j A j +1
f.=A· 1f. I)+ I

-j -j+l
f.=A· 1f. I)+ I

j j+l j.j
B j,i = Aj+lB j+l,j - f;" S jJ+l

j j+l j :j
Cj,i = Aj+lC j+l,i + f;" SjJ+l

j j+l.j Aj
Hj,i = Aj+lHj+l,j-SjJ+lfj

j j+l. j -j
G .. = A. IG. l' - s·· If.

),1)+)+ ,I)J+ I

d .. =B(·z~
I)),1)

d .. =d ..
)1 I)

v·· =2(B('(o~-C(]'z!
I)) ,I)) ,I)

v·· = 2z!. H(
)1)) ,I

P·· = [B~ .. O~ -2C~., (o! + fl. ~oj·]· z!
I)) ,I J) ,I) I J)

P ·· =z!'G(
)1)),1

end

237

(7.3.181)

(7.3.18m)

(7.3.18n)

(7.3.19a)

(7.3.19b)

(7.3.19c)

(7.3.19d)

(7.3. 1ge)

(7.3.19f)

(7.3.19g)

(7.3.19h)

(7.3.19i)

(7.3.19j)

(7.3.19k)

(7.3.191)

(7.3.19m)

238 Dynamic Analysis of Robot Manipulators

7.3.2 Implementation and Computational Considerations

The computational complexity of Algorithm 7.1 is of course o(n2)

since many of its equations need to be evaluated n(n-l)/2 times. However,

the total number of scalar operations which are required for its numerical

implementation can be reduced considerably with proper organization. As

we can see, the structure of the equations in Algorithm 7.1 is the same as that

of the equations in Algorithm 6.2. Therefore, observations made in Section

6.4 can also be used here. For example, since z: is a unit coordinate vector,

all the dot product operations with the vector z: (or zf) can be implemented

with no computational cost. Also, in Step 1, for i = 1 most equations either

need not be computed or only certain of their entries are needed for evaluat­

ing the quantities dIP vll and Pll' Moreover, in Step 2, for j = 1 only the

last entry of the vectors C f,i' H f,i and G f,i needs to be computed since, this

is the only entry in these vectors which is actually used in the evaluation of

the first column and the first row of the sensitivity matrices D, V and P.

Therefore, these vectors need to be evaluated completely (Le., all three com­

ponents) (n -1)(n - 2)/2 times. Obviously, all the other equations in Step 2

need to be evaluated n(n -1)/2 times.

Following the observations made above, a breakdown of the number of

scalar multiplications and additions required for the implementation of each

equation in Step 1 of Algorithm 7.1 is given in Table 7.1 and of each equa­

tion in Step 2 is given in Table 7.2. The total figure in each table represents

the operations count for computing the corresponding equations when all the

joints of a robot manipulator are of revolute type. Thus, based on these

figures, to implement Algorithm 7.1 for a general 6 degrees-of-freedom revo­

lute joint manipulator, one needs approximately 2056 scalar multiplications

and 1762 scalar additions. When the twist angles of the manipulator- are 0 or

90 degrees, the above numbers reduce to 1516 scalar multiplications and

1472 scalar additions, since in this case the coordinate transformations Ai

are simpler. Note that these figures can be reduced further when the

Chapter 7: Linearized Dynamic Robot Models 239

transfonnation matrix An+l is equal to I (as is usually the case in practice)

or when the first revolute joint of the manipulator is assumed to be parallel to

the gravity field.

Step 1 General manipulator General manipulator with

with revolute joints revolute joints & 0.=00 or 900

Equation Multipl. Additions Multipl. Additions

7.3.18a 8(n-l) 7(n-l) 4(n-l) S(n-l)

7.3.18b 14(n-l) lO(n -1) lO(n -1) 8(n-l)

7.3.18c 30(n-l)+18 39(n-l)+8 20(n-l)+18 32(n-l)+8

7.3.18d 69(n-l)+18 74(n-l)+14 SI(n-l)+18 63(n-l)+14

7.3.18e 0 0 0 0
7.3.18f 4(n-l) n-l 4(n-l) n-l

7.3.18g 9(n-l) 12(n-l) 9(n-l) 12(n-l)

7.3.18h 0 0 0 0
7.3.18i 0 0 0 0
7.3.18j 6(n-l) 6(n-l) 6(n-l) 6(n-l)

7.3.18k 18(n-l) 21(n-l) 18(n -1) 21(n-l)

7.3.181 0 0 0 0
7.3.18m 2(n-l) 3(n-l) 2(n-l) 3(n-l)

7.3.18n 7(n-l) 7n-l) 7(n-l) 7(n-l)

Total 167n-131 180n-lS8 131n-9S 158n-136

n=6 871 922 691 812

Table 7.1: Operations counts for implementing Step 1 of Algorithm 7.1.

240 Dynamic Analysis of Robot Manipulators

It is worth noting that the procedure which is proposed here for obtain­

ing the coefficient sensitivity matrices of a joint space linearized dynamic

robot model has significantly higher computational efficiency than most

approaches available today.

Step 2 General manipulator General manipulator with

with revolute joints revolute joints & 0.=00 or 900

Equation Multipl. Additions Multipl. Additions

7.3.19a 4n(n-l) 2n(n-l) 2n(n-l) n(n-l)

7.3.19b 4n(n-l) 2n(n-l) 2n(n-l) n(n-l)

7.3.19c 4n(n-l) 2n(n-l) 2n(n-l) n(n-l)

7.3.19d 7n(n-l) 5n(n-l) 5n(n-l) 4n(n-l)

7.3.1ge
2

7n -16n+9
2

5n -11n+6
2

5n -10+5
2

4n -8n+4

7.3.19f
2

7n -16n+9
2

5n -11n +6
2

5n -10+5
2

4n -8n+4

7.3.19g
2

7n -16n+9
2

5n -11n +6
2

5n -10+5
2

4n -8n+4

7.3.19h 0 0 0 0

7.3.19i 0 0 0 0

7.3.19j n(n-l) 1.5n(n-l) n(n-l) 1.5n(n-l)

7.3.19k 0 0.5n(n-l) 0 0.5n(n-l)

7.3.191 3n(n-l) 3n(n-l) 3n(n-l) 3n(n-l)

7.3.19m 0 0 0 0

Total
2

44n -71n +27
2

31n -49n+18
2

30n -45n+15
2

24n -36n+12

n=6 1185 840 825 660

Table 7.2; Operations counts for implementing Step 2 of Algorithm 7.1.

Chapter 7: Linearized Dynamic Robot Models 241

7.4 Cartesian Space Robot Dynamic Models and their
Linearization

As is well known [18], it is possible to describe the dynamics of a robot

manipulator by using other sets of variables besides joint space variables.

These variables are known as operational space variables, and among them,

the Cartesian configuration space variables or simply Cartesian space vari­
ables are probably the most important. For example, in many cases, such as

for end-effector motion and force control it may be desirable to express the

dynamics of a manipulator in terms of "external" variables for direct, and

thus better, measurements. In these cases, Cartesian space variables are obvi­

ously appropriate. Briefly, dynamic robot models described in terms of

Cartesian space variables - henceforth called Cartesian space dynamic robot
models can be introduced as follows.

7.4.1 Cartesian Space Dynamic Robot Models

As we mentioned in Chapter 2, the Cartesian space variables X are

defined to be the independent configuration parameters which specify the

position and orientation of the end-effector relative to the inertia coordinate

system. These Cartesian variables are functions of the joint space coordi­

nates and this relationship is usually expressed by a "geometric" equation

of the form

1= h(q). (7.4.1)

In general, the vector function h is not one-to-one. However, for nonredun­

dant manipulators in a restricted domain of the joint space, h can be

assumed to be one-to-one. In this case the Cartesian space dynamic model

of a manipulator can be defined [1,18] by the following equation

(7.4.2)

where f is an n xl force-torque vector acting on the end-effector of the

242 Dynamic Analysis of Robot Manipulators

robot, and X is a Cartesian space vector which describes the position and the

orientation of the end-effector. The other terms in equation (7.4.2) are

defined as follows: DX(q) is the nxn Cartesian space generalized inertia

tensor, CX<q, «iJ is the nxl Cartesian space vector of centrifugal and

Coriolis terms, and GX<q) is the nxl Cartesian space vector of gravity

terms. Obviously, all these Cartesian terms are implicit functions of the joint

space coordinates. Actually, it can be shown [18] that if a closed-form joint

space dynamic robot model is given by the equation

't = D(q)q + C(q, q) + G(q) (7.4.3)

where D(q) is the n xn joint space generalized inertia tensor of the manipu­

lator, C(q, q) is the nxl joint space vector of centrifugal and Coriolis terms,

and G(q) is the nxl joint space vector of gravity terms, then the aforemen­

tioned Cartesian space quantities are related to their joint space countetparts

by the following equations:
-T -1

Dx(q) = J (q)D(q)J (q) (7.4.4a)

Cx(q, q) = J-T (q) [C(q, q) - D(q)J-1(q)j(q)q]

-T
GX<q) = J (q)G(q)

f = J-T (q)'t

(7.4.4b)

(7.4.4c)

(7.4.4d)

where J(q) is the manipulator Jacobian which has been assumed here to be

nonsingular. When the Jacobian is locally singular, it is still possible [18] to

define equation (7.4.2) by considering the manipulator to be a redundant

manipulator locally. However, since in this monograph we are dealing with

nonredundant manipulators, we shall assume that the manipulator Jacobian

is nonsingular.

Now, since in practical applications we cannot actually cause a Carte­

sian force to be applied ,to the end-effector of a manipulator, we use equation

(7.4.4d) to transfer the Cartesian force vector f to an equivalent joint torque

Chapter 7: Linearized Dynamic Robot Models 243

vector 't which effectively will cause the end-effector to follow the required
motion. Therefore, instead of first computing the force vector f and then
transferring it to 't, we can compute directly the joint torque vector 'to To
achieve this, we combine equations (7.4.2) and (7.4.4d) and write the follow­
ing Cartesian configuration space torque equation.

(7.4.5)

which defines directly the vector of the joint torques 't when the dynamics of
a robot are expressed in tenns of the Cartesian space variables X.

From the foregoing, it is possible to define the generalized force vector
't in tenns of either joint or Cartesian space variables. Therefore, it may be
required in practice (e.g., for Cartesian based control applications) to define
the perturbations &t of 't in tenns of perturbations of the Cartesian space
variables, i.e., to define Cartesian (configuration) space linearized dynamic
robot models.

7.4.2 Cartesian Space Linearized Dynamic Robot Models

Direct application of the Taylor series expansion to the nonlinear equa­
tions of a robot manipulator written in tenns of the Cartesian space variables,
as in equations (7.4.2) or (7.4.5), is rather difficult because it involves impli­
cit differentiation in tenns of the joint space variables. To avoid this complex
differentiation, we can follow a similar approach to that used to derive Carte­
si!ID space nonlinear dynamic models from the joint space ones. In particular,
in this approach, to define Cartesian space linearized dynamic robot models
we first define a joint space linearized dynamic robot model and then, by
expressing the joint space perturbations in tenns of the Cartesian space per­

turbations, we algebraically manipulate the joint space linearized dyn~ic
robot model to a Cartesian space one. Therefore, in order to derive a Carte­
sian space linearized dynamic robot model, we shall assume that the joint
space linearized dynamic robot model of equation (7.2.1) is available.

244 Dynamic Analysis of Robot Manipulators

As we mentioned in Section 7.4.1, the end-effector Cartesian space

coordinates X of a nonredundant manipulator can be considered as (Carte­

sian space) generalized coordinates which are related to the joint space gen­

eralized coordinates q by the nonlinear equation (7.4.1). As is well known,

the time derivatives of these two sets of generalized coordinates are related

by the equation

x = J(q)ci (7.4.6)

where J(q) is the manipulator Jacobian. For general operational spaces, the

manipulator Jacobian is defined by the equation

J(q) = dh(q)

dq
(7.4.7)

where h is defined by equation (7.4.2). Unfortunately, this is not true for the

Cartesian space variables (Le., the linear and angular velocities) since there

is no 3xl orientation vector whose derivative is the vector of the angular

velocity. However, in the case of Cartesian space variables, the manipulator

Jacobian can be easily extracted from the equations which define the linear

and angular velocity of the end-effector. Based on these equations, several

methods for defining the manipulator Jacobian have been proposed in [19].

Equation (7.4.6) implies that infinitesimal Cartesian displacements or

small perturbations of the end-effector Cartesian vector X are related to the

joint space perturbations oq by the equation

OX = J(q)oq.

Furthennore, by differentiating equation (7.4.8), we get

oX = j(q)oq + J(q)oq

and

(7.4.8)

(7.4.9)

(7.4.10)

Now, since in the definition of the Cartesian space nonlinear dynamic

Chapter 7: Linearized Dynamic Robot Models 245

equations, we have assumed J(q) to be nonsingular, J-1 exists and therefore

we can solve equations (7.4.8)-(7.4.10) for oq ,oq and Oii to get

-1
Oq = J OX (7.4.11)

oq =J-10X-J-1jJ-10X

Oii = J-I0X - 2J-1 j J-I0X - [J-1:; J-1 - 2J-1j J-lj J-1] oX.

Expressions (7.4.11)-(7.4.13) can be used in (7.2.1) to yield

&t = [D° J-1 lox + [vo J-I -200 r 1jJ-l]ox

(7.4.12)

(7.4.13)

+ [po J-1 _ VO J-1 j J-1 _ D° [J-1:; rl _ 2J-1 j J-lj rl]] oX. (7.4.14)

or, if we define

and

6° = D° J-1
X

V;= [vo-26;j]J-1

equation (7.4.14) can be written in a compact fonn as

&t = 6;ox + V;OX + P;OX.

(7.4.15)

(7.4.16)

(7.4.17)

(7.4.18)

Equation (7.4.18) defines the perturbation in the vector of joint torques 't as a

result of perturbations in the vectors of Cartesian space positions, velocities

and accelerations, i.e., it defines a Cartesian space linearized dynamic robot

model. Moreover, by analogy with joint space linearized dynamic robot

models, we may refer to the matrix coefficients of equations (7.4.18) as the

Cartesian space coefficient sensitivity matrices.

246 Dynamic Analysis of Robot Manipulators

Now, as we can see from equations (7.4.15)-(7.4.17), most of the quan­

tities which are involved in the definitions of the Cartesian space coefficient

sensitivity matrices i>;, v; and P; may be considered to be known, since

they are available either from the joint space linearized dynamic robot model

or from the Cartesian space nonlinear dynamic equations (e.g., see equation

(7.4.4». Therefore, the implementation of equation (7.4.18) is similar to that

of equation (7.4.2).

7.5 Concluding Remarks

In this chapter, the linearization of the dynamic equations of rigid-link

serial-type robot manipulators has been considered. Based on the Taylor

series expansion and using Cartesian tensor analysis, we have proposed a

procedure for obtaining the elements of the joint space coefficient sensitivity

matrices. Also, we have shown that this procedure leads to a recursive algo­

rithm which can be implemented numerically more efficiently than other

similar algorithms existing in the literature.

The problem of obtaining Cartesian space linearized dynamic robot

models has also been addressed in this chapter and, to the best of our

knowledge, this is the first time where Cartesian space linearized dynamic

robot models have been considered. To simplify our analysis, we have

assumed that the manipulator is operating in a region of the work space

where the Jacobian is nonsingular. We have shown that in these singularity

free Cartesian configuration space, linearized dynamic robot models can be

readily obtained using the joint space linearized models and the manipulator

Jacobian.

Chapter 7: Linearized Dynamic Robot Models 247

7.6 References

[1] J. J. Craig, Introduction to Robotics: Mechanics & Control, Addison­

Wesley, Reading. MA 1986.

[2] P. Misra, R. V. Patel, and C. A. Balafoutis, "Robust Control of Linear­

ized Dynamic Robot Models", in 'Robot Manipulators: Modeling.

Control and Education', M. Jamshidi, J.Y.S. Luh and M. Shahinpur,

Eds .• 1986.

[3] P. Misra, R. V. Patel and C. A. Balafoutis, "Robust Control of Robot

Manipulators in Cartesian Space", in Proc. American Control Conj.,

pp. 1351-1356, Atlanta, Georgia, June 15-17, 1988.

[4] C. S. G. Lee and M. J. Chung, "An Adaptive Control Strategy for

Mechanical Manipulators", in Tutorial on Robotics, C. S. G. Lee, R.

C. Gonzales and K. S. Fu, Eds., IEEE Computer Society, 1983.

[5] J. Y. S. Luh, M. W. Walker and R. P. Paul, "Resolved-Acceleration

Control for Mechanical Manipulators", J. Dyn. Sys .• Meas., & Cont .•

Vol. 102, pp. 69-76, 1980.

[6] E. Freund, "Fast Nonlinear Control with Arbitrary Pole-Placement for

Industrial Robots and Manipulators", Int. J. Robotics Research, pp.

65-78, Vol. 1, 1982.

[7] P. M. Frank, Introduction to System Sensitivity Theory, Academic

Press, New York, 1978.

[8] C. P. Neuman and J. J. Murray, "Linearization and Sensitivity Func­

tions of Dynamic Robot Models", IEEE Trans. Syst. Man and Cyber.,

SMC-14, pp. 805-818,1984.

[9] J. J. Murray and C. P. Neuman, "Linearization and Sensitivity Models

of the Newton-Euler Dynamic Robot Models", J. Dyn. Sys. Meas. &

Contr., Vol. 108, pp. 272-276,1986.

248 Dynamic Analysis of Robot Manipulators

[10] C. P. Neuman, and P. K. Khosla, "Identification of Robot Dynamics:

An Application of Recursive Estimation," in Adaptive and Learning

Systems: Theory and Applications, K. S. Narendra, Eds., Plenum Pub­

lishing Corporation, New York, 1986.

[11] R. Su, "On the Linear Equivalents of Nonlinear Systems" Systems

and Control LetterS, Vol. 2, No. I, pp. 48-52,1982.

[12] L. R. Hunt, R. Su, and G. Meyer, "Global Transfonnations of Non­

linear Systems", IEEE Trans. on Automatic Control, Vol. AC-28, No.

1, pp.24-31, 1983.

[13] Y. Chen, Nonlinear Feedback and Computer Control of Robot Arms,

Ph. D. Thesis, Washington University, S1. Louis, MO, 1984.

[14] M. Vukobratovic, and N. Kircanski, Scientific Fundamentals of Robot­

ics 4 : Real-Time Dynamics of Manipulation Robots, Springer-Verlag,

Berlin, 1985.

[15] C. A. Balafoutis, P. Misra, and R. V. Patel, "Recursive Evaluation of

Linearized Dynamic Robot Models", IEEE J. Robotics and Automa­

tion, RA-2, pp. 146-155, 1986.

[16] C. A. Balafoutis and R. V. Patel, "Linearized Robot Models in Joint

and Cartesian Spaces", Trans. of the Canadian Society of Mechanical

Engineering, Vol. 13, No.4, pp. 103-112, 1989; also in Proc. 9th

Symposium on Engineering Applications of Mechanics: Current and

Emerging Technologies, London, Ontario, May 29-31, pp. 587-594,

1988.

[17] 1. J. Murray and C. P. Neuman, "ARM: An Algebraic Robot Dynamic

Modeling Program", in Proc. IEEE Conf on Robotics, pp. 103-114,

Atlanta, CA, Mar. 13-15, 1984.

[18] O. Khatib, "A Unified Approach for Motion and Force Control of

Robot Manipulators : The Operational Space Fonnulation", IEEE

Journal of Robotics and Automation, Vol. 3, No.1, pp. 43-53,1987.

Chapter 7: Linearized Dynamic Robot Models 249

[19] D. E. Orin and W. W. Schrader, "Efficient Computation of the Jaco­

bian for Robot Manipulators", Int. 1. Robotics Research, Vol. 3, pp.

66-75, 1984.

Appendix A

Recursive Lagrangian Formulation

In a dynamical system, the Lagrangian L is defined as the diffurence

between the total kinetic energy of the system, cI>, and the total potential

energy of the system, P, assuming no dissipation of energy, i.e.,

L=cI>-P (A. 1)

The corresponding Euler-Lagrange equations are written as

i = 1, "', n , (A. 2)

where't j are the generalized forces, qj are the generalized coordinates, and

ilj is the generalized velocity.

Now, following an analysis similar to that used by Hollerbach in [14]

(see references in Chapter 5), we can show that the total kinetic energy of

the manipulator is given by the equation

n I) 1 TO' To' °T ° ° J ° J cI> = - ~ tr m·~·~· + 2(W.n .)so· + W.J W. 2 ~ J \JJ \JJ J J J J OJ J

j=l

(A.3)

252 Dynamic Analysis of Robot Manipulators

where mj is the mass of the j -th link, Soj is ~e abs~lute velocity of the ori­

gin OJ of the j -th link coordinate system, n J = mj rJ j is the first moment ~f
the j -th link about OJ expressed in the link coordinate system orientation, Wj

is the absolute derivative of the orientation tensor of the j -th link coordinate

system and J!. is the Euler tensor of the j -th link about OJ' expressed in the
J

link coordinate system orientation.

The total potential energy P is equal to the sum of the work required to

transport the mass center of each link from a reference plane, i.e.,
n

T
P = constant - 1:mjg rOj

j=l

n

= constant - 1:mjgT (Soj + ~rJj], (A.4)

j=l

where g is the acceleration due to gravity with reference to the base coordi­

nate system. This fonn for potential energy is ditIerent from equation (A,6)

in [14] and leads to the modified analysis which is presented in this appen­

dix. Since potential energy is only position dependent, equation (A,2) can be

written as

t -- -- --+-d [i)W 1 i)w i)p

i - dt i)qi - i)qi i)qi '
i = 1, "', n . (A,5)

Moreover, as in [14], we can write

(A, 6)

Appendix A: Recursive Lagrangian Fonnulation 253

For the partial derivative of the potential energy we have from equation

(AA)

(A.7)

Moreover, since for j ~ i we have

dSo j d~ j

--=--Sjj

dqj dqj
(A. 8)

and

d"} d~ j

--=--"},
dqj dqj

(A.9)

equation (A.7) can be written as

dP T d~" . . .
- = - g --l:m.(s~. + IWr~ .)
d d J IJ J JJ

qj qj j=l

T d~" j

=-g --l:mjrjj .

dqj j=l

(A. 10)

Now, using (A.6) and (A. to) we can write equation (A.5) as follows:

"I [dSo j •• T dSo j j T •• T d"} j •• T
tj = l: tr mj --Soj + --en j) Wj + --OJ Soj

. 1 dq. dq. dq.
J= I I I

i = 1, ... , n . (A. 11)

254 Dynamic Analysis of Robot Manipulators

Moreover, if we use equations (A8) and (A9), we can simplify equation

(All) as follows

I d~ n [. T . . T T' . T I •• , J.. , Je.
'to = tr --~ m·s··~· + s· .(n.) W. + Wo. ~-.

I d ~ J I J '1JJ I J J J J J \1J
qi j=1

i j •• T]) T d~ n i
+ ")JOjWj -g --Lmjrij ,

dqi j=1

i = 1, "', n . (A.12)

Now, following Hollerbach's approach [14], the first summation term on the

right-hand side of (A12) can be computed by the recurrence relations
n

D. = L m·s··So· + s· .(0.) W. + Wo. So . + WJ W. [
i •• T i j T •• T i j •• T i j •• T]

I J I J J I J J J J J J J OJ J
j=1

(A13)

where
n

[•• T j T .. T]
ei = L mjSoj + (OJ) Wj

j=1
•• T iT·· T

= miSo,i + (n i) Wi + ei +1· (A 14)

Similarly, the second summation term can also be computed by a recurrence

relation. However, the recurrence relation presented here is different from

equation (13) derived by Hollerbach in [14]. We proceed as follows:
n

i i
c· = ~m.r ..

I ~ J IJ

j=1
n

= mir;,i + L mj [S;'i+l + Ai +1r;:;j)
j=I+1

n
i i

= miri,i + Si,i+l L

j=I+1

n
i+l

L mjri+lj

j=I+1

Appendix A: Recursive Lagrangian Formulation 255

(A. 15)

Substituting equations (A. 13) and (A. 15) into equation (A. 12), we finally get

Hollerbach's recurrence equation

i = 1, ... , n . (A.16)

Appendix B

On Moment Vectors and Generalized

Forces

As is well known, due to the rotational motion of a manipulator link,

say the j -th one, forces and moments will be developed at all joints i for

i ~ j . In this appendix we analyze the contribution of these moment vectors

on the generalized force vector 'to

From the Newton-Euler formulation of the equations of motion of a

robot manipulator, it is known that when the j -th joint is of revolute type,

then as a result of the rotation of the j -th link, a moment vector Mo. is
J

developed with respect to the center of rotation. This vector is defined by the

equation

(B.1)

where 10 . is the inertia tensor of the j -th link with respect to the origin OJ'
J

expressed in base frame orientation, and IDj (c.i>j) is the angular velocity

(acceleration) of the j -th link. The contribution of this vector on the j-th

component of the generalized force vector is defined by the equation

258 Dynamic Analysis of Robot Manipulators

(B.2)

where Z j is the unit vector which is parallel to the j -th axis of rotation.

Moreover, from the structure of the recurrence equation (5.3.8b) of Algo­

rithm 504 (or equation (5.3A6b) of Algorithm 5.5), the moment vector Mo.
i

will also contribute to all components 'ti , for i ~ j , of the generalized force

vector 't and this contribution is given by

(B.3)

From the foregoing, in the Newton-Euler fonnulation, the contribution

of the moment vector Mo. on the generalized force vector 't is explicitly
I

defined by equations (B.2) and (B.3). However, this is not explicit or obvi-

ous, in the Lagrangian fonnulation of the dynamic equations of motion of a

robot manipulator. In the following we shall show that

(BA)

where "i is the rotation tensor which spec~fies the orientation of the j-th

link with reference to the base frame and J~. is the pseudo-inertia tensor of
I

the j-th link with reference to OJ' Equation (BA) is important since, by using

the physical interpretation of the left-hand side of equation (BA), we can

gain valuable insight into the structure of the Lagrangian fonnulation. To

derive equation (BA) we proceed as follows.

First we notice from equation (4.2.11) that the rotation tensor "i
satisfies the equation

w = n.w
J J J

= [ei>. + ro. ro.] w
J J J J'

(B.5)

Moreover, for the partial derivative of the rotation tensor "i, we can write

Appendix B: On Moment Vectors and Generalized Forces 259

aw
, - W --=Z· . :\ I,

uqj

(B.6)

Now, using equations (B.5) and (B.6) we can manipulate the right-hand side
of equation (BA) as follows

[a,,} . T] [. aWf] tr --J' W. = tr WJ'--
:\ OJ' , oJ :\
uqj uqj

= tr [[ciJ. + cii·cO·]WJj w!z!]
, " ,OJ , I

Furthennore, since the inertia and the pseudo-inertia tensors of a link satisfy
equation (4.3.6), i.e., they satisfy the equation

1
Jo . =-10 . + -tr[lo .]1,

J J 2 J

we can use Proposition 3.12 of Chapter 3 to write

(B.8)

Also, since from equation (4.3.19) we can write

the second tenn on the right-hand side of (B.7) becomes

tr [WjWjJOj zr] = tr [cii)oj zr] + tr [ciijJoj Wjz?}

However, the tensor cOjJo.cOj is a symmetric tensor and therefore, by Propo-
J '

sition 3.17 we have

tr [WjJOj wjzr] = O.

260 Dynamic Analysis of Robot Manipulators

Thus, we can write

which, on using Proposition 3.12, may be simplified to yield

(B.9)

Therefore, by substituting equations (B.8) and (B.9) into (B.7), we get

(B.lO)

Moreover, since 10 . and 10 . are symmetric, by using equations (3.2.24) and
J J

(4.3.17) we can write equation (B.lO) as follows

= [Ioj . cOj + [IDjlOj -IOjIDj) . IDj] . zi

= [Ioj . cOj + IDjloj . IDj] . zi

which is equation (BA).

Appendix C

On Partial Differentiation

To derive the Jacobians which define the joint space coefficient sensi­

tivity matrices DO, VO and pO of a linearized robot model, we need to com­

pute the partial derivatives of a number of tensor and vector functions

involved in the definition of the nonlinear robot model. In this appendix, the

partial derivatives of the tensor and vector functions appearing in Algorithm

5.5 are defined and some important lemmas are proved.

First to compute the partial derivatives of the angular velocity and

angular acceleration tensors ooj and oj, we can use either the recursive equa­

tions (5.3.45a)-(S.3.4Sc) or the following equations
. T •

oo~ = W. W.
I I I

(C.I)

and
iT··

O·=W. W.
I I I

(C.2)

which define these tensors (see Chapter IV) in terms of the orientation

(transformation) tensor ~ = AIA2 ... Ai' Here we shall use equations

(C.l) and (C.2). Before we proceed to define these partial derivatives we

need to state the following simple facts. First, for j ~ i , the following

262 Dynamic Analysis of Robot Manipulators

equations are obviously true:

W =WjW.
I J I

(C.3)

w. = W. jW. + W jW. (C.4)
I J I J I

W. = W. jW. + 2W. jW. + W jW. (C.5)
I J I J I J I

wherejWi = Aj+lAj+2 ... Ai. Furthennore, from (C.I), (C.3) and (C.4) we

have

.i T·j j.
co· =W.(W. W. +W W.)

I I J I J I

jT T·j jTj·
= W.(W. W.)W. + W. W.

I J J I I I

.i j Tj·
=co·+ W. W. J I I

which implies that for j ::;; i we can write

jwTjw • i . i
i i=COi-COj .

Similarly, from (C.2), (C.3) and (C.5), for j ::;; i , we have

i T··j .j. j •• n. =W.(W. W. +2W. W. +W. W.)
I I J I J I J I

j T T·· j j T T· j j T j • j T r·
= W.(W. W.) W. +2W.(W. W.) W.(W. W.)+ W. W.

I J J I I J J I I I I I

-; i • i • i 2 • i(• i • i) jwT jW··
= co· + CO·CO· + co· co· - co· + . . J JJ J I J I I

-;i .i.i 2· i • i jwTjW··
= co· - co·co· + co·co· + . . J J J J I I ,

iT • i • i j T j ••
=- n. +2co.co· + W. W.,

J J' , I

which finally gives,

j T j •• i iT • i _ i
W. W. = n. + n. -2co.co.

, , I J J "

(C.6)

(C.7)

Appendix C: On Partial Differentiation 263

Furthermore, since zJ is constant relative to the j-th frame, its absolute

derivative satisfies the equation

.j - j j
Zj = O)jzj'

which in the i -th frame orientation is simply written as

.i .i i (
Zj = O)jZj' C.S)

Similarly, the absolute acceleration zJ of zJ, written in the i -th frame orien­

tation, satisfies the following equation
•• iii
Z· =O.z.] J]

":11 _i_ii = O)jZj + O)jO)jZj'

Moreover, the dual tensors ij and ij can be computed from

and

": i _ i i
Zj = dua/(O)jzj)

,r.,i_i _i,r.,i
= WjZj - ZjWj (C.9)

(C.lO)

Now, using equation (3.4.15) and (3.4.25) and some algebraic manipulations,
equation (C.lO) can be simplified as follows:

;;i [":i _i_i]_i _i[":i _i_i] [_i_i]_i
z· = 0). - 0).0). z· - z· 0). + 0).0). + tr 0).0). z·

] J]]]] J]]]]]

niT _ i _ ini [ni]- i = - A,£. z· -Z·A,£. + tr A,£. z·
J]] J J]

since tr[oj] = tr[ciijmj].

(C.II)

After these preliminaries, we are in a position to prove the following

lemmas. First, due to the nature of the transformation tensors Ai and ~,the

following two results can be easily shown: '

Lemma C-l: The partial derivatives of Ai' Ai and Ai' with respect to the

generalized coordinate qi and its time derivatives iii' iii satisfy the following

264

equations:

aAi • _ i
ii) -- = A.z. ,

:"I I I

oqi

aAi aAi
iii) -- = 2--.

a4i aqi

Dynamic Analysis of Robot Manipulators

aAi .• _ i
-- =A.z.

:"I I I

oqi

Lemma C-2: The partial derivatives of ~ and its time derivatives Wi and ..
Wi' with respect to the generalized coordinate qj and its time derivatives

4j , qj satisfy the following equations:

aw aw aw.
I I I

i) -=-=--=0
aq. aq. aq.

1 1 1

aw aw. aw.
I I I

ii) --= -- = --
aq.

1 a4· 1

aw. aw.
I I

iii) --= 2--.
a4j aqj

aq.
1

The proofs of these two lemmas are straightforward and are therefore

omitted.

Lemma C-3 The partial derivatives of the transformation matrix ~ and its

time derivatives Wi and Wi' with respect to the generalized coordiriate qj'

satisfy the following tensor equations:

Appendix C: On Partial Differentiation

rZ! j <'
dW

_I

I

i) -=
dqj 0 j > i

j Si

j > i

[
w [i~ + 2i~m~ + i~O~]

•• I J J I J-""j
dWi

iii) --=
dqj 0

j S i

j > i

Proof:

i) For j S i ,since W; = "} jWi and jWi is independent of qj' we have

dW; d"}.
-----JW - i
dq. dq.

J J

dA.
J j

=W l--W, J- I

dqj

265

266 Dynamic Analysis of Robot Manipulators

we have

Now since Wj = "i tbJ ' using (C.6) we can write

dWi [. .J
-- = Wtb~ JW.z~ + WZ~ tb~ - tb~
d J J 'J 'J ' J
qj

W [_Li _i_i _i_i] = . CJ)·Z·-Z·CJ)·+Z·CJ)·
, JJJJ J'

= W [dual(tb ~z~) + z ~tb~]
, J J J'

dWj •• _j
--=W.z.,
d J J qj

Appendix C: On Partial Differentiation 267

we have

aw. I •• .. •. . • . .••

W ·JJW 2W ·JJW W ·JJW -"1-= jZj i + jZj i + jZj i·
vqj

Also, since Wj = "i o.J and Wj = "i mJ ' the above expression becomes

aw. I• . .••

--= W[o.~z~JW. + 2m~z~JW. + z~JW.]
"I J JJ I JJ I J I
vqj

W [ni. i 2· i. i jwT jW· • i jwT jW·· J = . u·Z· + CJ)·z· . . + z· . . I JJ JJ I I J I I·

Moreover, using (C.6) , (C.7), we have

[
•• ··T •••J
1.1 .1 I .1.1.1 .1.1 .1.1.1 .1 I =W o..z. +z.o.. -2CJ).z.CJ). +2[CJ).z.-z.CJ).]CJ). +Z.O: I J J J J J J J J J J J I J-"'j. (C.12)

•• ··T •••

N th n'·' ·'n' 2. 1 • 1 • 1 be· l·fled ~ll ow, e term Uj~j + ~Uj ~ f!1j ZjCJ)j may sImp I as 10 ows:

Using the relation 0.; = fil; + m;m; and equation (3.4.19b), we have

i. i • i iT • i. i • i ; i _ i • i • i. i • i ; i • i • i • i • i • i • i
o..z. + z.o.. - 2CJ).Z.CJ). = CJ)·z· - CJ)·CJ)·z· - z·CJ)· - z·CJ)·CJ)· + tr[CJ).CJ).]z.
JJ JJ JJJ JJ JJJ JJ JJI JJJ

·T· •• ••
0.' • 1 .10.' [0.'].' = - j Zj - Zj j + tr j Zj

(C.13)

where the last step follows from (C.11). Therefore, using (C.9) and (C.13),

equation (C.12) can be written as

aWi
W .-:I ;,., .1 I

--= .[z. + 2z.CJ). + z.o..] a I J J I J I
qj

268 Dynamic Analysis of Robot Manipulators

and this completes the proof.

Lemma C-4

TaWj
ii) W--. -

I

aq.
J

TaWj
iii) Wj --=

aq.
J

[

-j
z·

J

o

j $; i

j > i

r -,-, z. +z·oo· J J I

0

j <' _I

j >i

[
'~ i : j _ i _ j i
z· + 2z.oo. + z.o: J J I J~"'i

o

Proof: Follows from Lemma C-3,

o

j > i

o
Now, we can evaluate the partial derivatives of the angular velocity

and angular acceleration tensors 00: and 0.: with respect to the generalized

coordinates,

Lemma C-5 The partial derivatives of the angular velocity tensor 00:, with

respect to the generalized coordinates qj' ilj and iij , are given by

r
j <' a - i z· _I

00· J
I

i) -
aq. 0 j >i J

Appendix C: On Partial Differentiation

Proof:

:'l. i aIDi
iii) --= 0

aqj

j Si

j > i

for all j

i) For j S i ,since m; = Wr ~ ,we have
. T •

am; [aw; l. Tawi
- -- Wi+Wi --aq,. aq. aq. , ,

ii) For j S (, we have

T •

[Taw; 1 T· T aWi
= w. -- w. w. +W.--

1 :'l 1 1 l:'l

aqj aqj

.1.1 -:i .i.i
= - Z·ID· + Z· + Z·ID· ,I , ,I

am; TaWi
--=Wi --

aqj aqj

Taw;
=W.-

1 aq. ,

269

o

270 Dynamic Analysis of Robot Manipulators

Lemma C-6: The partial derivatives of the angular acceleration tensor 0.:
with respect to the generalized coordinates qj' qj and qj are given by r 2,i. i j <' an~ z·+ Z·Ol· _I

J J 1
1

i) -
aqj 0 j >i

an~ t" .i.i] j <' Zj + ZjOli _I

I

ii) -
aq. 0 j >i J

r
j <' an~ z· _I

J
1

iii) -
aq. 0 j >i J

Proof:

i) for j ~ i ,since
iT·· n.. = w. W. , we have
1 1 1

an: [a~]T.. TaWi
- -- W. +W.--

1 1 aq. aq. aq.
J J J

T ••

[Ta~ 1 T •• Tawi = W.-- w. w. +W.--
1 a" 1 a qj qj

- in.i ;;i 2~i - i - in,i = - z·"",. + z· + Z·Ol· + Z·"",· JI J JI JI
~i :i _ i

= Zj + 2Zj Oli'

ii) for j ~ i , we have

Appendix C: On Partial Differentiation 271

iii) for j :5; i ,we have

an! aw.
__ '_WT __ '

- i
aq. aq.

J J

Ta~
=Wi --

aq.
J

o

Furthennore, by using Lemma C-6, we can derive fonnu1as for computing

the partial derivatives of the dual tensor of the angular acceleration vector 00:
with respect to the generalized coordinates.

Lemma C-7

i)

ii)

.... -: i
aro·

I

aq.
J

.... -: i
aro· I

aq.
J

j :5; i

j > i

[

2i ~ + dual (z ~ro!)
J J I

o

j :5; i

j > i

272 Dynamic Analysis of Robot Manipulators

r
j <. a": i Zj _l

(0.
I

iii) -
aq. 0 j >i)

Proof: Follows from the equation

": i

. ·T

n~ -n~
I I

(Oi= ---

2

and Lemma C-6. o

Note that the partial derivatives with respect to the generalized coordi­

nates of the angular velocity and angular acceleration vectors are readily

available from Lemmas C-5 and C-7.

Now, from Algorithm 5.5, it is obvious that to compute the Jacobians

which define the coefficient sensitivity matrices DO, VO and pO, we need to

compute the partial derivatives (with respect to the generalized coordinates

qj' qj and qj) of the vectors 11: (for revolute joints) which are defined by

(5.3.46b). Equation (5.3.46b), for i ~j ~ n ,can also be written as
j-l

i ~ iW k - k •• k _ k u·· k i j
11i = £.J k[JI.k + Uo SDk + Sk k+l 0] + W)'11)"

l' , 1+1
(C.14)

k=i

Therefore, to compute the partial derivatives of the vectors 11:' we need to

compute the partial derivatives of various vector functions which appear in

equation (C.l4). These partial derivatives are obtained as follows.

Lemma C-S: The partial derivatives, with respect to the generalized coordi­

nates, of the vector function JI.: are given by:

Appendix C: On Partial Differentiation 273

[ii j K:Zj
j <.

dJl.j
_I

i) -
dq. j >i J

[i.i·ii . 2[K z· -lbz.] j <.
dJl.; OJ J j J

_I

ii)

dqj 0 j >i

r··i 2~·i . z. - z· j <.
dJl.; OJ J j J

_I

iii)
dqj 0 j >i

where K~. is the inertia tensor of the i -th augmented link, .
A j 1 j j

Ko. = -tr [Ko.]1 - Ko.'
I 2 . .

Proof: As we have shown in Chapter 4, the vector function JI.: may be

defined by the equation

Now, since the inertia tensor of the i -th augmented link K~j is independent

of the generalized coordinates, for the case of revolute joints we have that

i) follows from Lemmas (C-5) and (C-7).

ii) is obvious for j > i. For j :s; i, by using Lemmas (C-5), (C-7) and the ten­

sor equations (3.4.4) and (3.4.25), we get

dJl.:
K 1 [2· 1 (- 1 ')] - '(K 1 ') - 1 K 1 1 -- = o. Zj + Z/ilj + Zj o.C1)j + C1)j o.Zj

dq.· •.
]

274 Dynamic Analysis of Robot Manipulators

by (3.4.4)

2K ; • ; 2 • ; K ; (K ;) .;J ; = o.z,. + [co; o. - tr o. co; Zj , "
by (3.4.25)

Ai ,..i"i "i 1 i i
where, lb. = co; Ko. and Ko. = -tr(Ko)l - Ko.·

I • • 2 . •

iii) the proof is similar to that of ii). o
Lemma C-9: The partial derivatives with respect to the generalized coordi­

nates of the vector function U~. are given by:

i) ---

au;
0;

ii) ---
aq. ,

au;
0;

iii) ---
aq. ,

,

, ,
[

;;;V; 2°;V';
z,. o. + Zj o.

~J V~ + 2iJ U~ + zJ u~

ri; u~, + z; u~,l j <. _l

., I _,. ,

j >i 2[zj Vo + Zj Vo)
} }

rVi

j <.
, 0; _l

.i Vi j >i Zj o.
}

n

j ::; i

j > i

.. i i k k .
Proof: From equation (5.3.46a), we have Vo = L WkOk Uo ' WhICh, for

; .
k=i

Appendix C: On Partial Differentiation 275

j-l

i < j , can be written as
""j i k k i "j
U o. = L Wk nk uo• + Wj U 0 .• Then, we proceed as . . }

k=i

follows:

i) From Lemma C-6 and the fact that u!. is independent of the generalized

coordinates (for revolute joints), we have

aq.
J

n ian: k
L Wk-·-Uo
k=i aqj l

k=i

j ~ i

j > i

ii) and iii) can be proved in a similar manner.

j ~ i

D

To compute the partial derivatives of SOi . , we need the following results.
,I

Lemma C-IO:

i)
a·· i

S j,i +1 r
.O: i i ': j • i
Zj Si,i+l + 2Zj Si,i+l

=
o

j ~ i

j > i

276 Dynamic Analysis of Robot Manipulators

["i .i.i j <' a .. i 2[zj 'i;'I: Zj 'i.i,11 _l
S i ,i +1

ii) =
aq. j >i J

["Ii j <' a .. i
Zj '~.i'l

_l
S i,i +1

iii) =
aej. j >i J

Proof: The results follow from the relation S :,i + 1 = n: S :,i + 1 and the partial

derivatives of n:, 0

Lemma C-ll: The partial derivatives with respect to the generalized coordi­

nates of the vector function S ~,i are given by: r i 'i.i .i .. i j <' a .. i z· S . . + 2z. S . . - z· so'
J J ,I J J ,I J J

_l
SO,i

i) ---
aq. 0 j >i J

["i .i.i j <' a .. i 2[z. S .. + z· S ..] _l
J J ,I J J ,I

ii)
SO,i

aq. 0 j >i J

["Ii j <' a·· i z·s· . _l
SO,i

J J,I

iii) ---
aej. 0 j >i J

Proof: For j ::;; i we can write

Appendix C: On Partial Differentiation 277

i-I
•• i •• i •• i (j-I\v T •• j-I ~ kW T •• k
S O,i = S OJ + S j ,i = i S OJ +.t.J i S k ,k + I

k=j

i) From Lemmas C-l and C-8, we get

iF i i-I
SO,i j T_jT T •• j-I k T.-:k k :k.k -- = W. z· A. SO· + ~ W. [z. Sk k 1+ 2z. Sk k I] a 'J J J .t.J , J ,+ J ,+

~ k~
_i •• i :i.i o:i i

= - Z· SO· + 2z. S .. + Z· S ..
J J J J,' J J,l

ii) and iii) can be proved similarly. o

Now, we are in a position to derive the partial derivatives with respect

to the generalized coordinates of the vector 11: defined by equation (C.l4).

Lemma C-12: The partial derivatives with respect to the generalized coordi­

nates of the vector function 11: are given by:

i
alli

i)-=
aq.

J

and iii)

. <. J _l

j > i

j ~ i

j > i

278 Dynamic Analysis of Robot Manipulators

where E~_ (U~) is the second (first) moment of the i -th generalized link. and , ,
the tensor L; satisfies the equation

(C.I5)

Proof: Using Lemmas C-8, C-9 and C-II, the partial derivatives of 11: can

be derived as follows:

i) There are two cases:

a) For j :5; i , we have

all; n _

-= L'Wk

aqj hi

n

"" k a k a"" k au
J.lk _ k S O,k _ k 0, +1

-- + Uo -- + Skk+l---

aq- ' aq. ' aq. , , ,

~ iW [K k k - k - k k - k - kU k] = ~ k Z. + U Z· S . k + S k k lZ'
0, J 0, J " ,+, 0'+1

k=i

n

~ iW [K k - k - k - k u- k] iWT i = ~ k 0 - Uo SJ' k - S k k+l 0 k Z,'
" 4: t t 4:+1

k=i

by (C-3),

N fi '<'<k _k _k _k Th fi h ow, or J-l- ,Sj,k=Sj,i+Si,k' ereore,we ave

a inn

lli ~ iW (K k - k - k - k U- k) iWT i ~ iW (_ k - k) iWT i
--=~ k o-Uo Sik-Skk+l 0 kZ,.-~ k UoS,'i k Z,-a .. , . .t l' , l+l . l'

~ k~ k~

i - i _ i i
= [E - US, .]z. 0, 0, "I ,

where

Appendix C: On Partial Differentiation 279

(C.16)

is the inertia tensor of the i -th generalized link and
n

iJi = ~iW uk iWT
0; ~ ko. k (C.17)

k=i

is the dual tensor of the first moment of the i -th generalized link. To see that

E~. is the inertia tensor of the i -th generalized link, we shall show that equa-.
tion (C.16) is equivalent to equation (6.3.6). Since S :.i = 0 , we have

E i _ K i - i iJi
0; - 0; - Si,i+l 0;+1

n
i _ i - i i _ k _ kiT i +1 T

=Ko; -Si.i+1UO;+I- :E WkUo.Si,i+l W k + Ai+lEo;+IAi+l

k=i +1

which implies that indeed equation (C.16) is equivalent to equation (6.3.6).

Thus case a) of part i) has been proved.

b) For j > i ,we have

280 Dynamic Analysis of Robot Manipulators

i _j -j j i j -j_j j
=w.[-s .. Uz·l+W.[E -Usoolz.

) IJ OJ)) OJ OJ)J)
(by part a)

iW [E j - j U- j 1 j . - j 0 = j o. - S i J o. Z j , SInce s j J =
J J

ii) As in part i), we have two cases:

where

2- k [:k...k _kU·k 1)
+ s k k+l z)' uo +z). °

, 1+1 1:+1

n

2 ~ iW [K k - k - k - k U- k liWT• i
= ~ k ° -uo S)'k-Skk+l ° k Z)'

I: l:' , 1+1

k=i

k=i

[i -i_i.i i -io;i i)
= 2 [E - Us .. lz. - [L. + Us .. lz .

0; 0;),1) I 0;),1)

k=i

k=i

Appendix C: On Partial Differentiation

To see that L: satisfies equation (C.15) we proceed as follows:

Since i:; = 0, we have .

n
"; _ ; ~ ; ; _ k ': k ; T ; +1 T

= lb. +S;;+IUo. + ~ WkUoS;;+1 Wk +A;+IL;+IA;+1
• t .+1 I; t

k=; +1

Therefore, case a) of part ii) has been proved.
b) For j > i ,using (C. 14) we get

a; '-1 a j
11; J. k -14.k C.k . 11j
-- = 2~IWkSk,k+l(ZjUO. + zjUo) + I~_-
a· J J a· qj k=; qj

; -j-j.j-j~jj ; j.j jj
=2W.[-s .. U z.-s .. U z.]+2W.[E z.-L.z.]

} IJ OJ } IJ OJ } } OJ } } }

=2W. [E -s·.U]z.-[L.+s .. U]z. ; [j -j -j.j j -j ~j j]
} OJ IJ OJ } } IJ OJ }

which completes the proof of part ii).

iii) As before using Lemmas C-8, C-9 and C-11, we have

281

282 Dynamic Analysis of Robot Manipulators

a) for j ~ i ,

[
•• k 1 i II k •• k au al1i i aJik • k as 0,1 • k 0&+1

-- = r, Wk -- + llo --, + Sk,k+l--
aq. k' aq. l aq. aq.) =,)))

II

~ iW [K k • k • k • k u· k]iWT •• i
= LI k 0 - llo S)',k - S k k+l 0 k z).

I: I: '1:+1

k=i

k=i k=i

b) for j > i ,

a i j-l a k a·· k auk aiw a j l1i . Jik k SO,k k 0&+1 j.. l1j
-- = r,'Wk [-- + fio -- + 8k,k+l--] + --l1J + 'Wj --
aq. k' aq. l aq. aq. aq. aq.) =,)))))

and this complete the proof of Lemma C-12. o

Appendix D

List of Symbols and Abbreviations

n Number of degrees-of-freedom of a manipulator

mi Mass of the i -th link

fiii Composite mass oflinks i to n

~ Point denoting the origin of the i -th link coordinate system

q Point denoting the center of mass (c.m.) of the i -th link

1 The unity (identity) tensor

I k The inertia tensor of the i -th link about c,' expressed in the k-th c,
coordinate system orientation

J k Euler's inertia tensor of the i -th link about c,' expressed in the k-c,
th coordinate system orientation

K~ The inertia tensor of the i -th augmented link about ~ expressed

in the k -th coordinate system orientation

K~ Euler's inertia tensor of the i -th augmented link about 0i

expressed in the k -th coordinate system orientation

284 Dynamic Analysis of Robot Manipulators

E~ The inertia tensor of the i -th generalized link about <>; expressed

in the k -th coordinate system orientation

D The joint space generalized inertia tensor of a robot manipulator
i

uo. The first moment of the i -th augmented link about 0i' expressed .
in the i -th coordinate system orientation

U! The first moment of the i -th generalized link about <>;, expressed .
in the i -th coordinate system orientation

F i Force vector acting on cl· expressed in the i -th coordinate system
'i

orientation

M i Moment vector about ci. expressed in the i -th coordinate system
'i

i
r· . IJ

i
s· . IJ

_ i
(0.

I

q (q ,ij)

X (i,x)

A-
I

orientation

Position vector from 0i to cj expressed in the i -th coordinate sys­
tem orientation

Position vector from 0i to OJ expressed in the i -th coordinate sys­
tem orientation

The absolute velocity (acceleration) of vector r

Absolute angular velocity (acceleration) of the i -th coordinate
system expressed in the i -th coordinate system orientation

The angular velocity tensor of the i -th link, expressed in the i-th
coordinate system orientation

The angular acceleration tensor of the i -th link, expressed in the
i -th coordinate system orientation

Joint space position (velocity, acceleration) vector

Cartesian space position (velocity, acceleration) vector

Joint space generalized force vector

The 3x3 coordinate (or the 4x4 homogeneous) transformation
matrix relating the i -th frame to the (i - l)-th frame

Appendix D: List of Symbols and Abbreviations 285

Wi The 3x3 coordinate (or the 4x4 homogeneous) transformation
matrix relating the i -th frame to the base frame

dual (.) A tensor-valued vector operator (or a vector-valued tensor opera­
tor)

v Skew-symmetric tensor which denotes the action of the dual
operator on a vector v

DO The inertia force-acceleration sensitivity tensor of a linearized
robot dynamic model

VO The centrifugal and Coriolis force-velocity sensitivity tensor of a
linearized robot dynamic model

pO The force-position sensitivity tensor of a linearized robot
dynamic model

o Denotes the end of a proof

lOP The Inverse Dynamics Problem

FOP The Forward Dynamics Problem

Index

A
absolute

configuration of a link 41
configuration of a manipulator 42
linear acceleration 95
linear velocity 95
time derivative 88

actuating mechanisms 2
algorithms

closed-form 119
customized 140
recursive 119

alternating tensor 61
angle of a tensor 59
angular

acceleration tensor 92,93
acceleration vector 85,93
momentum tensor 106
momentum vector 85,105
rates 11,85,90
velocity tensor 11,89,90
velocity vector 9,85,90

articulated-body 194
articulated-body method 194

augmented link 129,149
axial vector 59,71
axis of rotation 28

B
base frame 34
bias vector 186
body coordinate system 22,94

C
canonical form 65
Cartesian space

coefficient sensitivity matrices 246
configuration vector 25
description 42
dynamic robot model 241
linearized robot model 243,246
torque equation 243
variables 241

Cartesian
configuration space 25,220
configuration space variables 241
decomposition 63,92
tensor analysis 12,47

288

tensors 11,47,48
vector 25,42

centrifugal vector 8
Chasles' theorem 28
Christoffel symbols 130
closed-form

algorithms 119
dynamic robot model 124
formulation 8
linearized robot model 223

coefficient sensitivity matrices 223
coefficient sensitivity matrix

force-acceleration 224,228
force-position 224,229
force-velocity 224,228

commutator 76
composite

body 188
center of mass 189
inertia tensor 189
mass 189
moment of inertia 189
rigid body 198
rigid body method 184,185,187

configuration
analysis 3
kinematic analysis 88
ofapoint 21
of a rigid body 19,22
of a robot manipulator 35
of an object 20
space 11,22
transformation 39

contracted multiplications 57
contraction 56
control

feedback 220
feedforward 219

Dynamic Analysis of Robot Manipulators

manipulator 220
controller 2
coordinates

generalized 21
homogeneous 29,121

Coriolis 8
customized algorithms 140

D
D-H

convention 37
description 37
parameters 38

decomposition
Cartesian 63
spectral 65

degrees-of-freedom 21
delta tensor 61
description

external 42
internal 42

diffeomorphic transformation 222
direct dynamics 4,183
direction cosines 23,51
displacement

elementary 39
general 27

distal joint 36
dot product 58

left 57
right 57
double 58

dual
operator 69
tensor 68,70
vector 59,68,70

Index

dyad 52
dynamics

E

direct 4,183
forward 4,183
inverse 5,117

elementary displacements 39
end-effector 2
Euler's

acceleration 93
axiom 108
equation 97

Euler
angles 24
generalized equation 109,111
tensor 99

Euler-Lagrange
equations 97,121,206
formulation 168

exterior product 64

F
feedback control 220
feedforward control 219
finite

displacement 25
rotation 25

forward
dynamics (PDP) 4,183
kinematics 43

frame 34
Frobenius norm 59

G
generalized

coordinates 4,21,33
extended mass 192
force vector 4
inertia tensor 8,184,187,197
link 129,149,198
twist 192

geometric invariant 68
global linearization 221

H
homogeneous

I

coordinate matrix 29,40
coordinate transformation 40
coordinates 29,121
transformation 29,41
vector 122

industrial robots 1,2,33
inertia tensor 98
inner product 58
innerproductspace 59
invariant

geometric 68
principal 66
scalar 66
vector 68

inverse
dynamics 5,117
dynamics problem (IDP) 118
kinematics 43

isotropic tensor 61

289

290

J
Jacobian 224,228
joint space

description 42
linearized robot model 226
vector 42

joint
axis 35
coordinates 40

K
Kane's

approach 139
equations 139,173

kinematic analysis
of rigid body motion 88

kinematic
chain 32
pair 33

kinematics
forward 43
inverse 43

kinetic energy
of a manipulator 122,206

Kronecker tensor 61

L
Lagrangian 121,206
Lagrangian approach 7,121
Levi-Civita tensor 61
Lie bracket 76
linear

algebra 60
space 54
transformation 51,52,60

Dynamic Analysis of Robot Manipulators

linearization
global 221
local 221,222
techniques 221

linearized dynamic robot models
Cartesian space 243,246
joint space 7,220,226

link
augmented 129,149
composite 149
coordinate system 34
fictitious 149
frame 34
generalized 129,149,198
length 36

linkage 32

M
manifold 12,48
manipulability measures 117
moment of force 108
moment of momentum 105
moments of inertia 101
motion analysis 3
motion kinematic analysis 88
motion

N

rotational 33
translational 33

natural orthogonal complement 192
Newton's second law 97
Newton-Euler

approach 7,131
equations 97,131,202
formulation 134

Index

procedure 97
nominal

generalized force 223
trajectory 6,221,223

norm

o

Frobenius 59
of a tensor 59

operational space variables 241
operator

dual 69
vect 68

order of a tensor 51
orientation vector 24
orthogonal complement 64
outer product 64

P
pair

kinematic 33
prismatic 33
revolute 33

parallel axis theorem 100
physical space 21
Poisson's equation 90
potential energy

of a manipulator 122,206
principal invariants 66
prismatic pair 33
product

dot 58
double dot 58
exterior 64
inner 58
left dot 57

outer 64
right dot 57
wedge 64

products of inertia 101
projection tensor 64
proximal joint 36
pseudo tensors 61
pseudo-inertia tensor 121

R
rank of a tensor 51,53
recurrence relations 8,125
recursive

algorithms 119,125
formulation 8

redundant arm 34
relative configuration of a link 41
relatively oriented tensors 71
resultant torque 108
revolute pair 33
Riemanian space 12
right dot product 57
rotation tensor 9,27,88
rotational momentum 105
rotational motion 33

S
scalar invariant 66
sensors 2
simulation 4,183
space

Cartesian configuration 25
Euclidean 48
inner product 59
joint 42
linear 54

291

292

spatial
algebra 134
notation 134
vectors 134,136

spectral decomposition 65
spin tensor 90
static force analysis 142

T
Taylor series expansion 6,223
tensor

alternating 61
angular acceleration 92
angular momentum 106
angular velocity 11,90
Cartesian 47,49,51
delta 61
dual 68,70
Euler 99
generalized inertia 8,184,197
inertia 98
invariants 66
isotropic 61
Kronecker 61
Levi-Civita 61
order one 53

Dynamic Analysis of Robot Manipulators

order zero 53
orthogonal 89
product 52,56
product space 51
projection 64
pseudo 61
pseudo-inertia 121
relatively oriented 71
rotation 9,88
second order 48,49,51,86
spin 90
torque 110

tool frame 34
torque tensor 110
trajectory sensitivity functions 220
translation 27
translational motion 33
twist angle 36

V
vect operator 68
vector

axial 71
bias 186
dual 68,70
invariant 68

