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Preface

Evolutionary computation techniques have attracted increasing atten-
tions in recent years for solving complex optimization problems. They
are more robust than traditional methods based on formal logics or
mathematical programming for many real world OR/MS problems. Evo-
lutionary computation techniques can deal with complex optimization
problems better than traditional optimization techniques. However,
most papers on the application of evolutionary computation techniques
to Operations Research /Management Science (OR/MS) problems have
scattered around in different journals and conference proceedings. They
also tend to focus on a very special and narrow topic. It is the right
time that an archival book series publishes a special volume which in-
cludes critical reviews of the state-of-art of those evolutionary compu-
tation techniques which have been found particularly useful for OR/MS
problems, and a collection of papers which represent the latest develop-
ment in tackling various OR/MS problems by evolutionary computation
techniques. This special volume of the book series on Evolutionary Op-
timization aims at filling in this gap in the current literature.

The special volume consists of invited papers written by leading re-
searchers in the field. All papers were peer reviewed by at least two
recognised reviewers. The book covers the foundation as well as the
practical side of evolutionary optimization.

This book contains 17 chapters which can be categorized into the
following seven parts:

1 Introduction
2 Single Objective Optimization
3 Multiobjective Optimization

4 Hybrid Algorithms
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5 Parameter Selection
6 Application of EAs to Practical Problems

7 Application of EAs to Theoretical Problems

This book will be useful to postgraduate course work students, re-
searchers, doctoral students, instructors and practitioners in OR/MS,
computer science, industrial engineering, business, and applied mathe-
matics. We expect that the promising opportunities illustrated by the
case studies and the tools and techniques described in the book will help
to expand the horizons of evolutionary optimization and disseminate
knowledge to both the research and the practice communities.

We would like to thank Prof. Fred Hillier of Standford University
(series editor for International Series in Operations Research and Man-
agement Science for Kluwer Academic Publishers) and Prof. Fred Glover
of University of Colorado, USA, for their advice in preparing the pro-
posal of the book. We are grateful to the unknown reviewers for the
book proposal for their constructive and useful suggestions.

We would like to acknowledge the help of all involved in the collation
and the review process of the book, without whose support the project
could not have been satisfactorily completed. Most of the authors of
chapters included in this volume also served as referees for articles writ-
ten by other authors. Thanks also to several other referees who have
kindly refereed chapters accepted for in this book. Thanks go to all
those who provided constructive and comprehensive reviews and com-
ments. A further special note of thanks goes to all the staff at Kluwer
Academic Publisher, whose contribution throughout the whole process
from inception to final publication have been invaluable. Ruhul Sarker
also likes to thank Dr W. Zhu and Dr H. Abbass for their help in initial
formatting using LaTex.

In closing, we wish to thank all the authors for their insight and ex-
cellent contributions to this book. In addition, this book would not
have been possible without the ongoing professional support from Mr.
Gary Folven, Publisher in OR/MS and Ms. Deborah Doherty, Electronic
Production Manager, Kluwer Academic Publishers. Finally, we want to
thank our families for their love and support throughout this project.

R. SARKER, M. MOHAMMADIAN AND X. YAO
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Chapter 1

CONVENTIONAL OPTIMIZATION
TECHNIQUES

Mark S. Hillier and
Frederick S. Hillier

Operations research (OR) and management science (MS) are disci-
plines that attempt to aid managerial decision making by developing
mathematical models that describe the essence of a problem and then
applying mathematical procedures to solve the models. The purpose
of this chapter is to present an overview of conventional OR/MS tech-
niques in optimization. This will include discussion of the various types
of models that are used and the approaches that are used to solve them.

We first explore the nature of optimization models in general. The
mathematical model of a business problem is a system of equations and
mathematical expressions that describe the essence of the problem. If
there are n quantifiable decisions to be made, they are represented by de-
cision variables (say, x1,Z2,...,Tn). An appropriate performance mea-
sure (e.g., profit) is then defined as a function of the decision variables
(e.g., Profit = 2x1 + 5x2). This function is called the objective function.
If there are restrictions on the values that the decision variables can take,
these are expressed mathematically. These restrictions are typically ex-
pressed as inequalities (e.g., 1 4+ 2z2 < 3) or equations (e.g., z1z2 = 7),
and are called constraints. The goal is then to choose the values of the
decision variables that achieve the best value of the objective function
subject to satisfying each of the constraints.

For example, consider the problem of choosing the production level of
n different products so as to maximize profit, subject to m restrictions
on the production levels (e.g., due to limited resources). The model then
is to choose 1, Z2,...,%y, SO as to
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Maximize  f(z1,22,...,2n)
subject to
g1($1,$2, ce ,:I?n) < b1
ga(x1, 22,y ) < by (1.1)
gm(ml, Loy vy :L'n) S bm
and

21 20,2020,...,2, > 0.

In this model, the decision variables (1, %2, ...,%,) represent the pro-
duction levels, the objective function f(z1, s, ..., Tn) measures the profit,
and the inxconstraints are represented by the inequalities g;(z1, 22, ...,
ZTp) <bjfori=1,...,m.

Any choice of values of (x1,z2,...,2,) is called a solution, whereas
a solution satisfying all the constraints is a feasible solution. The set
of all feasible solutions is called the feasible region. A solution in the
feasible region that maximizes the objective function is called an optimal
solution.

Other optimization models may have the goal of minimizing the objec-
tive function (e.g., minimizing cost). Also, models may have a mixture
of constraints, some with < signs, some with > signs, and some with =
signs, or some may have no constraints at all.

1. Classifying Optimization Models

Before solving an optimization model, it is important to consider the
form and mathematical properties of the objective function, constraints,
and decision variables. For example, the objective function might be lin-
ear or nonlinear, differentiable or nondifferentiable, concave or convex,
etc. The decision variables might be continuous or discrete. The feasi-
ble region might be convex or nonconvex. These differences each impact
how the model can be solved, and thus optimization models are classified
according to these differences. This section defines a number of mathe-
matical properties, and then classifies optimization models according to
these properties.

Many optimization solution techniques depend upon the objective
function and/or the functions in the constraints being linear functions.
A function is linear if it can be expressed in the form f(zy,zg,...,2y) =
€121 + caxg + -+ - + cpxy, Where the ¢; are constants. If the objective



Conventional Optimization Techniques 5

function and all the constraint functions are linear functions, then the
model is called a linear programming model.

In (1.1), there was a single goal—to maximize profit. Sometimes,
however, it is not possible to include all the managerial objectives within
a single overriding objective, such as maximizing profit or minimizing
cost. For these reasons, models may include multiple objective functions
and analysis of the problem may require individual consideration of the
separate objectives. Goal programming provides a way of striving toward
several objectives simultaneously.

Linear programming and nonlinear programming techniques conven-
tionally assume that the decision variables are continuous. That is, the
decision variables are allowed to have any value that satisfies the con-
straints, including noninteger values. In many applications, however, the
decision variables make sense only if they have integer values. For exam-
ple, it is often necessary to assign people or equipment in integer quanti-
ties. Thus, some optimization models include discrete decision variables,
usually restricting some or all of the decision variables to integer values.
A model where all the variables are required to be integer is called an
integer programming model. 1f some of the variables are continuous, but
others are required to be integer, it is called a mixed-integer program-
ming model. An integer programming model can be further categorized
as either an integer linear programming model (if all the functions in the
model are linear) or an integer nonlinear programming model (if any of
the functions are nonlinear). It is common when identifying an integer
linear programming model to drop the adjective linear.

A model where either the objective function or any of the constraints
includes a nonlinear function is called a nonlinear programming model.
Nonlinear programming problems come in many different shapes and
forms. No single algorithm can solve all these different types of prob-
lems. Instead, algorithms have been developed to solve various indi-
vidual classes (special types) of nonlinear programming problems. For
example, the objective function can be concave, convex, or neither, dif-
ferentiable or nondifferentiable, quadratic or not, and so on. The con-
straints can be linear or nonlinear, or the problem can be unconstrained.
The feasible region can be a convex set or a nonconvex set. Many of these
terms and classifications are defined in Section 5, and various algorithms
that are used to solve these different classes of nonlinear programming
models will be discussed.

In the following sections, we discuss linear programming, goal pro-
gramming, integer programming, nonlinear programming, and simula-
tion. This encompasses most of the important types of optimization
models (or at least those types where evolutionary optimization algo-
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rithms might be applicable). We conclude with suggestions for further
reading if more detailed information about conventional optimization
techniques is desired.

2. Linear Programming

Linear programming is one of the most widely used techniques of oper-
ations research and management science. Its name means that planning
(’ programming”) is being done with a mathematical model (called a lin-
ear programming model) where all the functions in the model are linear
functions.

Consider the example that resulted in (1.1). If the contribution of
each product to profit is proportional to the level of production z;, then
each product contributes ¢;jz; to profit (where ¢; is a constant). Further
suppose that b; is the available quantity of resource %, and that the usage
of each resource i is proportional to the level of production z; and equal
to a;jz; (where a;; is a constant). The resulting linear programming
model is then to choose z1, 29, ...,Zn SO as to

Maximize C1Z1 + X2+« + CnZy

subject to
01171 + 61222 + -+ + 1Ty S b1
a91%1 + agexe + - -+ + a2pxn < by (1.2)
Om1Z1 + amax2 + Ay < by
and

x120,x220,...,xn_>_0.

Another common form for a linear programming model is to minimize
the objective function, subject to functional constraints with > signs and
nonnegativity constraints. A typical interpretation then is that the ob-
jective function represents the total cost for the chosen mix of activities
and the functional constraints involve different kinds of benefits. In par-
ticular, the function on the left-hand side of each functional constraint
gives the level of a particular kind of benefit that is obtained from the
mix of activities, and the constant on the right-hand side represents the
minimum acceptable level of the benefit. Still other linear programming
models have an equality instead of inequality sign in some or all of the
functional constraints. Such constraints represent fixed requirements for
the value of the function on the left-hand side. It is also fairly common
for large linear programming models to include a mixture of functional
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constraints—some with < signs, some with > signs, and some with =
signs.

2.1 Some Applications of Linear Programming

Linear programming has been applied to a wide variety of problems.
These applications include determining the best mix of products to pro-
duce given a limited set of resources, personnel scheduling to minimize
cost while meeting service requirements, mixing a blend of raw materials
to meet various requirements, and many, many more.

A number of important applications fit a special type of linear pro-
gramming model called the minimum-cost flow problem. A typical ap-
plication of this type involves shipping goods through a distribution
network from certain supply points to certain demand points. Given
the supply available from each supply point, the amount needed at each
demand point, and the maximum amount that can be shipped through
each branch of the distribution network, the objective is to determine
how to route the goods so as to minimize the total shipping cost.

Some other important applications of linear programming are special
cases of the minimum-cost flow problem. One special case, called the
transportation problem, involves direct shipments from the supply points
to the demand points (where the only limits on shipment amounts are the
supplies and demands at these points), so the only decisions to be made
are how much to ship from each supply point to each demand point.
A second special case, called the assignment problem, involves assigning
people (or machines or vehicles or plants) to tasks so as to minimize the
total cost or time for performing these tasks. The shortest path problem,
which involves finding the shortest route (in distance, cost, or time)
through a network from an origin to a destination, also is a special case.
Still another special case, called the maximum flow problem, is concerned
with how to route goods through a distribution network from a single
supply point to a single demand point so as to maximize the flow of goods
without exceeding the maximum amount that can be shipped through
each branch of the network.

2.2 Solving Linear Programming Models

In 1947, George Dantzig developed a remarkably efficient algorithm,
called the simplex method, for finding an optimal solution for a linear
programming model. The simplex method exploits some basic proper-
ties of optimal solutions for linear programming models. Because all the
functions in the model are linear functions, the set of feasible solutions
(the feasible region) is a convex set, as defined in Section 5. The vertices
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of the feasible region play a special role in finding an optimal solution.
A model will have an optimal solution if it has any feasible solutions
and the constraints prevent improving the value of the objective func-
tion indefinitely. Any such model must have either exactly one optimal
solution or an infinite number of them. In the former case, the one op-
timal solution must be a vertex of the feasible region. In the latter case,
at least two vertices must be optimal solutions, and all the convex linear
combinations of these vertices also are optimal. Therefore, it is suffi-
cient to find the vertices with the most favorable value of the objective
function in order to identify all optimal solutions.

Based on these facts, the simplex method is an iterative algorithm
that only examines vertices of the feasible region. At each iteration, it
uses algebraic procedures to move along an outside edge of the feasible
region from the current vertex to an “adjacent” vertex that is better.
The algorithm terminates when a vertex is reached that has no bet-
ter adjacent vertices, because the convexity of the feasible region then
implies that this vertex is optimal.

The simplex method is an exponential-time algorithm. That is, the
solution time can theoretically grow exponentially in the number of vari-
ables and constraints. However, it consistently has proven to be very ef-
ficient in practice. Running time tends to grow approximately with the
cube of the number of functional constraints, and less than linearly in
the number of variables. Problems with many thousands of functional
constraints and decision variables are routinely solved. Furthermore,
continuing improvements in the computer implementation of the simplex
method and its variants (particularly the dual simplex method) now are
sometimes making it possible to solve massive problems ranging into the
hundreds of thousands of functional constraints and millions of decision
variables. One key to its efficiency on such large problems is that the
path followed generally passes through only a tiny fraction of all vertices
before reaching an optimal solution. The number of iterations (vertices
traversed) generally is the same order of magnitude as the number of
functional constraints.

Highly streamlined versions of the simplex method also are available
to solve certain special types of linear programming problems in only
a tiny fraction of the time that would be required by the general sim-
plex method. For example, one such streamlined version is the network
simplex method, which is widely used to solve minimum-cost flow prob-
lems. In addition, even more specialized algorithms are available to solve
the special cases of the minimum-cost flow problem mentioned earlier,
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namely, the transportation problem, the assignment problem, the short-
est path problem, and the maximum flow problem.

In recent years, there has been a flurry of research to develop interior-
point methods. The application of these methods to linear programming
now has reached a high level of sophistication. These algorithms move
through the interior of the feasible region until they converge to an op-
timal solution. A key feature of this approach is that both the number
of iterations (trial solutions) and total running time tend to grow very
slowly (even more slowly than for the simplex method) as the problem
size is increased. Therefore, the best implementations tend to become
faster than the simplex method for relatively large problems. However,
this is not always true, because the efficiency of each approach depends
greatly in different ways on the special structure in each individual prob-
lem.

3. Goal Programming

The models described in the other sections of this chapter assume
that the objectives of the organization conducting the study can be en-
compassed within a single overriding objective, such as maximizing total
profit or minimizing total cost, so that this overriding objective can be
expressed in a single objective function for the model. However, this
assumption is not always realistic. The management of some organiza-
tions frequently focus simultaneously on a wide variety of rather differ-
ent objectives. In this case, a multicriteria decision making approach is
needed.

A considerable number of multicriteria decision making techniques
have been developed. We will briefly describe only one of these here,
namely, a popular technique called goal programming.

The goal programming approach is to establish a specific numeric goal
for each of the objectives, formulate an objective function for each objec-
tive, and then seek a solution that minimizes the total penalty assessed
for missing these goals. This total penalty is expressed as a weighted
sum of deviations of these objective functions from their respective goals.
There are three possible types of goals. One is a lower, one-sided goal
that sets a lower limit that we do not want to fall under (but exceeding
the limit is fine), so a penalty is assessed only if the corresponding objec-
tive function falls below the goal. A second type is an upper, one-sided
goal that sets an upper limit that we do not want to exceed (but falling
under the limit is fine), so a penalty is assessed only if the corresponding
objective function exceeds the goal. The third type is a two-sided goal
that sets a specific target that we do not want to miss on either side,
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so a penalty is assessed if the corresponding objective function deviates
from the goal in either direction.

Goal programming problems can be categorized according to the con-
ventional type of optimization model that it fits except for having multi-
ple goals instead of a single objective. The most important case is linear
goal programming, where all the objective functions and constraint func-
tions are linear functions. In this case, it is possible to reformulate the
linear goal programming model into a conventional linear programming
model, so that the extremely efficient simplex method can be used to
solve the model. One key to this reformulation is that the total penalty
to be minimized can be expressed as a linear function of new variables
that represent the relevant deviations from the respective goals.

Another categorization is according to how the goals compare in im-
portance. In one case, called nonpreemptive goal programming, all the
goals are of roughly comparable importance. In this case, when evalu-
ating the total penalty for missing goals, the weights on the respective
deviations are of the same order of magnitude. In another case, called
preemptive goal programming, there is a hierarchy of priority levels for
the goals, so that the goals of primary importance receive first-priority
attention, those of secondary importance receive second-priority atten-
tion, and so forth (if there are more than two priority levels).

4. Integer Programming

One of the key assumptions of linear programming is that all the
decision variables are continuous variables, so that either integer or non-
integer values are allowed for these variables. However, many problems
arise in practice where some or all of the decision variables need to be
restricted to integer values. Integer programming is designed to deal
with such problems.

The form of an integer (linear) programming model is identical to
that shown in Section 2 for a linear programming model except that it
has additional constraints specifying that certain decision variables must
have an integer value. If every decision variable has such a constraint,
the model is said to be a pure integer programming model, whereas it is a
mixed integer programming model if only some of the decision variables
have this constraint.

4.1 The Role of Binary Integer Programming
Models

There have been numerous applications of integer programming that
involve a direct extension of linear programming where the assumption of
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continuous decision variables must be dropped. However, another area
of application may be of even greater importance, namely, problems
involving “yes-or-no decisions.” In such decisions, the only two possible
choices are yes and no. For example, should we undertake a particular
fixed project? Should we make a particular fixed investment? Should
we locate a facility on a particular site?

With just two choices, we can represent such decisions by decision
variables that are restricted to just two values, say O and 1. Thus, the
Jth yes-or-no decision would be represented by, say, z; such that

S 1, if decision j is yes
771 0, if decision j is no.

Such variables are called binary variables. Consequently, integer pro-
gramming models where all the integer-restricted variables are further
restricted to be binary variables commonly are referred to as binary in-
teger programming models (or BIP models for short). Such a model is a
pure BIP model if all the variables are binary variables, whereas it is a
mixed BIP model if only some of the variables are binary variables and
the rest are continuous variables.

BIP models (either pure or mixed) are among the most widely used
optimization models. We list below some examples of important types
of BIP models, where the yes-or-no decisions represented by binary vari-
ables for each example are identified in parentheses.

m  Capital budgeting with fixed investment proposals. (For each pro-
posed investment, should it be made?)

m Site selection. (For each possible location of the sites for new
facilities, should it be selected?)

m Designing a distribution network. (For each combination of a dis-
tribution center and a market area, should that distribution center
be assigned to serve that market area?)

a  Scheduling interrelated activities. (For each combination of an
activity and a time period, should that activity begin in that time
period?)

m» Scheduling asset divestitures. (For each combination of an asset
and a time period, should that asset be sold in that time period?)

w The fleet assignment problem. (For each combination of a type of
airplane and a flight leg in the airline schedule, should that airplane
type be assigned to that flight leg?)
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m  The crew scheduling problem. (For each combination of an airline
crew and a flight leg in the airline schedule, should that crew be
assigned to that flight leg?)

Such applications of BIP models often have provided very substantial
savings for the companies involved. For example, annual savings of hun-
dreds of millions of dollars have been achieved in the airline industry by
applying BIP models to fleet assignment and crew scheduling problems.

4.2 Solving Integer Programming Models

The traditional approach that has been used to solve integer program-
ming models with either general integer variables or binary variables is
to apply an algorithm that is based on the branch-and-bound technique.
The basic concept underlying this technique is to divide and conquer.
Since the original ”large” problem is too difficult to be solved directly, it
is divided into smaller and smaller subproblems until these subproblems
can be conquered. The dividing (branching) is done by partitioning the
entire set of feasible solutions into smaller and smaller subsets. The
conquering (fathoming) is done partially by bounding how good the best
solution in the subset can be and then discarding the subset if its bound
indicates that it cannot possibly contain an optimal solution for the
original problem. This bounding commonly is done by using the sim-
plex method or dual simplex method to solve the current subproblem’s
LP-relaxation (the linear programming model obtained by deleting the
integer constraints from the subproblem).

The computational efficiency of branch-and-bound algorithms for in-
teger programming is quite limited, and so is not at all comparable to
the efficiency of the simplex method for linear programming. Such al-
gorithms frequently fail to solve integer programming models with more
than a hundred integer or binary variables.

Because many integer programming models arising in practice are
too large to be solved by a branch-and-bound algorithm, research in
recent years has focused on developing more efficient branch-and-cut al-
gorithms. This kind of algorithm combines clever branch-and-bound
techniques with two other kinds of techniques: automatic problem pre-
processing and the generation of cutting planes. Automatic problem pre-
processing involves a ’computer inspection” of the user-supplied formu-
lation of the integer programming model in order to spot reformulations
that make the model quicker to solve without eliminating any feasible
solutions. This involves identifying variables that can be fixed at one of
their possible values, identifying and eliminating redundant constraints,
and tightening some constraints without eliminating any feasible solu-
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tions. Generating cutting planes involves introducing new functional
constraints that reduce the feasible region for the LP-relaxation without
eliminating any feasible solutions for the integer programming model.
This is very helpful in providing tighter bounds when solving the LP-
relaxation of either the original problem or any of its subproblems.

The new branch-and-cut algorithms have provided a rather dramatic
improvement in computational efficiency for solving integer program-
ming models. For example, they now are sometimes succeeding in solv-
ing BIP problems with many thousands of binary variables.

A significant amount of research is being conducted to develop al-
gorithms for integer nonlinear programming. However, this is a very
difficult problem and progress to date has been quite limited. No such
algorithms have yet been adopted for widespread use in practice. There
appears to be considerable potential for the application of evolutionary
optimization algorithms in this area.

S. Nonlinear Programming

For most of the models in the preceding sections, it is assumed that
all its functions (objective function and constraint functions) are linear.
However, there are many practical problems for which this assumption
does not hold. For instance, when there are economies of scale, the pro-
duction function is nonlinear. In transportation problems, if there are
volume discounts on shipping costs, then the shipping costs are nonlin-
ear with respect to shipping volume. In portfolio selection problems,
correlation between the performance of various securities causes the risk
function to be nonlinear. For many problems the nonlinearities are small
enough that it is reasonable to approximate them with linear functions.
However, when the nonlinearities are not small, we often must deal di-
rectly with nonlinear programming models.

A general form for a nonlinear programming problem is to find x =
(21, 22,...,Zp) SO as to

Maximize  f(x)
subject to
gi(x)<b; fori=1,2,...,m (1.3)
and
x> 0.

Other forms are possible (e.g., minimization or > constraints), but they
can all be converted to (1.3), and for simplicity, we will assume this form
in this section.
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There are several complications that arise in nonlinear programming
that do not arise in linear programming. First, unlike linear program-
ming models, the optimal solution is not necessarily on the boundary
of the feasible region. Therefore, a general algorithm for solving nonlin-
ear programming models needs to consider all solutions in the feasible
region, not just those on the boundary.

A second complication of nonlinear programming is that a local max-
imum (or minimum) need not be a global maximum (or minimum).
Consider, for example, the single-variable function f(z) plotted in Fig-
ure 1.1. This function has three local maxima (at z = 1,z = 2, and
x = 4), but only one (z = 4) is a global maximum.

A

fix)

Figure 1.1. A function with several local maxima.

Most nonlinear programming algorithms search locally for improved
solutions and hence can get “trapped” at a local maximum, with no
way to guarantee that it is the global maximum. However, under some
conditions, a local maximum is guaranteed to be a global maximum.

In a model that has no constraints, the objective function being con-
cave guarantees that a local maximum is a global maximum. Similarly,
the objective function being convex guarantees that a local minimum
is a global minimum. A concave function is a function that is always
”curving downward” (or not curving at all). A convex function is one
that is always “curving upward” (or not curving at all). More specifi-
cally, f(x) is a convex function if for each pair of points on the graph of
the function, the line segment joining the two points lies on or above the
graph. It is a concave function if for each pair of points on the graph
of the function, the line segment joining the two points lies on or below
the graph. Examples of both a concave function and a convex function
are shown in Figure 1.2. A linear function is both concave and convex.
The function shown in Figure 1.1 is neither concave nor convex.
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Figure 1.2. A concave function and a convex function.

However, if there are constraints, then even a model with a concave
objective function can have a local maximum that is not a global maxi-
mum (or a convex objective function can have a local minimum that is
not a global minimum). Consider a two-variable problem where the ob-
jective function is to maximize 5z1 + 3xg, with the feasible region shown
in Figure 1.3. This problem has local maxima at both (3, 4) and (7, 0),
but only (7, 0) is a global maximum.

x & \Z=27=5x +3x)
AY
‘e (3,4) = local maximum

Z=35=5x) +3x9

A
v
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VX
Figure 1.3. A nonconvex feasible region with multiple local optima.

For a constrained optimization problem, more is needed to guarantee
that a local maximum is a global maximum. In particular, the feasible
region must be a convex set. A convex set is a set of points such that the
line segment connecting any pair of points in the set lies entirely within
the set. Examples of both a convex set and a nonconvex set are shown
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in Figure 14. If f(x) is concave and the feasible region forms a convex
set, then any local maxima must also be a global maximum.

If all the functions g;(x) [for the constraints g;(x) < b;] are convex
functions, then the resulting feasible region will be a convex set. Thus, a
linearly constrained model will have a convex feasible region. However,
the feasible region in Figure 1.3 is clearly nonconvex.

£ X2

Cirves ek Nonconvex set

Figure 1.4. A convex set and a nonconvex set.

5.1 Types of Nonlinear Programming Models

Nonlinear programming problems come in many different shapes and
forms. No single algorithm can solve all these different types of problems.
Therefore, nonlinear programming problems are classified according to
the properties of the objective function and constraints (if any).

An unconstrained nonlinear programming model has no constraints.
Thus, the goal is simply to maximize f(x) over all values of the decision
variables x = (1, Zg,...,Zn)-

Linearly constrained nonlinear programming models have linear con-
straints, but the objective function is nonlinear. A number of special
algorithms have been developed for this case, including a few that extend
the simplex method to consider the nonlinear objective function.

An important special type of linearly constrained nonlinear model is
a quadratic programming model. Quadratic programming models again
have linear constraints, but are characterized by an objective function
that is quadratic. That is, each term in the objective function consists
of a constant times either a single decision variable, the square of a
single decision variable, or a product of two decision variables (e.g.,
5z1,22%, or 3z122). Many algorithms have been developed for quadratic
programming with the further assumption that the objective function is
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concave. One applicable approach in this case is to use a direct extension
of the simplex method to find the global maximum.

Convex programming covers a broad class of problems which include
the assumptions that the objective function f(x) is concave and all the
functions gi(x) [for the constraints g;(x) < b;] are convex functions, so
that the feasible region is a convex set. These assumptions are enough
to ensure that any local maximum is a global maximum.

Nonconvex programming includes all nonlinear programming models
that do not satisfy the assumptions of convex programming. For these
models, even if a local maximum is found, there is no guarantee that
it will also be a global maximum. Except for a few special cases, there
is no algorithm that will guarantee finding an optimal solution for such
problems. A common approach for these problems is to apply an al-
gorithm for finding a local maximum, and then restart it a number of
times from a variety of initial trial solutions in order to find as many
distinct local maxima as possible. The final step is to choose the best
local maximum.

5.2 Solving Unconstrained Nonlinear
Programming Models

Consider the problem of maximizing the objective function f(x) over
all possible values of x. If the objective function is differentiable, then
a necessary condition that a particular solution x = x* is optimal is

%jj):Oatx:x*forj:l,Z...,n. (1.4)
If the objective function is also concave, then this is also a sufficient
condition for optimality.

For these problems, one approach for finding an optimal solution is to
apply a gradient search procedure. The gradient of f(x), denoted V f(x),
is the vector whose elements are the respective partial derivativesof f(x).
That is,

_ (9f(x) 9f(x)  Of(x)

The significance of the gradient is that the (infinitesimal) change in
x that maximizes the rate at which f(x) increases is a move in the “di-
rection” of the gradient V f(x). The gradient search procedure exploits
this property. Each iteration involves changing the current trial solution
x’ as follows:
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Reset x' = x' + t*V f(x'), (1.6)

where t* is the positive value of ¢ that maximizes f(x' + ¢tV f(x')). The
iterations of the gradient search procedure continue until Vf(x) = 0
within a small tolerance.

If f(x) is not a concave function, the gradient search procedure would
converge to a local maximum, but not necessarily the global maximum.
Several starting points can be tried in an attempt to find better local
maxima.

Although the gradient search procedure is one popular (and particu-
larly straightforward) search technique for unconstrained optimization,
it is only a special case of a general class of such techniques called iz-
erative ascent methods (or iterative descent methods when minimizing
instead of maximizing). Each iteration of such a method begins by iden-
tifying a direction of ascent (called the search direction) from the current
trial solution. A step is then taken in this direction from the current trial
solution in order to find a new improved trial solution. These iterations
are repeated until a test for convergence is satisfied.

The search direction for these methods typically is identified by ob-
taining a first- or second-order Taylor series expansion of the objective
function around the current trial solution and then computing the direc-
tion that maximizes (or approximately maximizes) the expansion. The
gradient search procedure uses a first-order expansion whereas Newton’s
method employs a second-order expansion. Although Newton’s method
thereby requires computing second derivatives, this provides a more
rapid (quadratic) rate of convergence under favorable conditions. Quasi-
Newton methods only compute approximations of the second derivatives.

For Newton-type methods, the length of the step to be taken in the
search direction typically is determined in one of two ways. A line search
method finds the steplength that maximizes (or at least approximately
maximizes) the second-order Taylor series expansion along the line that
leads from the current trial solution in the search direction. A trust
region method only considers steplengths that are small enough that
the second-order Taylor series expansion can be trusted to provide a
reasonable approximation of the objective function.

5.3 Solving Constrained Nonlinear
Programming Models

Now consider constrained optimization problems, as represented by
(1.3). Necessary conditions for a given solution to be optimal are given
by the Karush-Kuhn-Tucker conditions (also called KKT conditions).
Assume that f(x), g1(x), g2(%),...,gm(x) are differentiable functions
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satisfying certain regularity conditions. Then x* can be an optimal
solution if there exist numbers %1, ug, ..., 4y such that all the following
KKT conditions are satisfied:

0160 _ ™, 20i(x

< — * ; —
oz . Bz, <0 atx=x"forj=12...,n
i=1
af() . 39()
) ok .
gi(x*)—b; <0, fori=1,2,...,m. (1.7)

ui[gi(x*) — b} = 0, fori=1,2,...,m.
z; >0, forj=1,2,...,n
u; > 0, fori=1,2,...,m

If the objective function is also concave and the feasible region forms a
convex set (i.e. the model is a convex programming model), then this is
also a sufficient condition for optimality.

There is no single standard algorithm that always is used to solve con-
vex programming models. Many algorithms have been developed, each
with its own advantages and disadvantages. These algorithms typically
fall into one of three categories.

The first category is gradient algorithms, where the gradient search
procedure is modified in some way to keep the search path from pen-
etrating any constraint boundary. For example, one popular gradient
method is the generalized reduced gradient (GRG) method.

The second category is sequential unconstrained algorithms. These al-
gorithms often incorporate the constraints into either a penalty or barrier
function that is subtracted from the objective function. When using a
penalty function, the role of this function is to impose a penalty for vi-
olating constraints. With a barrier function, only feasible solutions are
considered and then this function is used to impose a large penalty for
approaching constraint boundaries. By subtracting a sequence of posi-
tive multiples of either kind of function from the objective function, the
original constrained optimization problem is converted into a sequence
of unconstrained optimization problems that can be solved by an un-
constrained optimization algorithm, e.g., the gradient search procedure,
inxxsequential unconstrained algorithms

For example, to solve (1.3), we can solve for x so as to

Maximize h(x;7) = f(x) — rB(x) (1.8)

where 7 is a positive constant and B(x) is a positive barrier function
that has the property that it is small when x1is far from the boundary
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of the feasible region, large when x is close to the boundary of the
feasible region, and goes to infinity in the limit as the distance from
the boundary of the feasible region approaches zero. The most common
choice for B(x) is

B(x) = —_— — 1.
=25 T )
By starting with a feasible initial trial solution that does not lie on
the boundary of the feasible region and then applying an iterative ascent
method that finds a series of improving trial solutions for (1.8), this bar-
rier function forces all the trial solutions to remain within the interior of
the feasible region for (1.3). However, an optimal solution for (1.3) might
lie on or near the very boundary that the barrier function is preventing
the search from approaching too closely. To alleviate this difficulty, a
sequence of problems given by (1.8) are solved for successively smaller
values of r, approaching zero, where the optimal solution obtained for
each problem (or at least its approximation) is used as the initial trial
solution for the next problem. The sequence of optimal solutions for
the unconstrained problem (1.8) will converge to an optimal solution for
the constrained problem (1.3) in the limit as r goes to zero, even if this
latter solution lies on the boundary of the feasible region.
If a sequential unconstrained algorithm uses a penalty function instead
of a barrier function, each of the unconstrained optimization problems
considered has the form

Maximize h(x;p) = f(x) — pP(x) (1.10)
where p is a positive constant and P(x) is a penalty function that penal-
izes constraint violations. Typically, P(x) is an additive function with
one nonnegative term for each of the constraints in the original nonlin-
ear programming problem, where this term is zero if the corresponding
constraint is satisfied, small if the constraint is violated but barely so,
large if the constraint is substantially violated, and grows without bound
as the size of the violation increases. For example, consider the case of
a nonlinear programming problem where the only constraints are func-
tional constraints in equality form,

gi(x)=b;, fori=1,2,...,m. (1.11)
A commonly used penalty function for this case is the quadratic function

m

P(x) =Y (b — gi(x))*. (1.12)

i=1
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With a functional constraint in inequality form, g;(x) < b;, the same
quadratic term would be included in P(x) if the constraint is violated,
so that the term would be set to zero if b; — g;(x) > 0. Similarly, with
nonnegativity constraints, ; > 0 for j = 1,2,...,n, quadratic terms z2
would be included in P(x) if z; > 0 is violated, so that the term would
be set to zero if €; > 0. Starting with a trial solution that violates one
or more of the constraints, an iterative ascent method is used to solve
a sequence of unconstrained optimization problems of the form (1.10)
for successively larger values of p (where the final trial solution from
each problem becomes the initial trial solution for the next one). By
using a sequence of values of p that would go to infinity in the limit,
the sequence of optimal solutions for the unconstrained optimization
problems converges to a solution that is both feasible and optimal for
the original nonlinear programming problem.

The third category of algorithms for convex programming is sequential
approximation algorithms, including linear approximation and quadratic
approximation methods. These algorithms replace a nonlinear objective
function by a sequence of linear or quadratic approximations. These
algorithms are particularly well suited to linearly constrained nonlin-
ear programming models, where these approximations allow repeated
application of efficient linear programming or quadratic programming
algorithms.

For example, consider a linearly constrained nonlinear programming
model. At any given trial solution x’, the objective function can be
approximated by the first-order Taylor series expansion of f(x) around
x = x'. That is,

7o) 7o)+ 3 2D (. (1.13)

=1 aiL'j

Using this linear approximation of the objective function, a linear pro-
gramming algorithm can be used to find an optimal solution for the
resulting linear programming model. By considering the line segment
between x’ and this optimal solution, a line search can be conducted to
maximize the original objective function f(x) over this line segment to
find a new trial solution. A new approximation for the objective func-
tion is then derived at the new trial solution. The procedure is repeated
until it converges to a solution.

Algorithms for nonconvex nonlinear programming models and for non-
linear programming models with nondifferentiable functions are an area
of ongoing research. However, these are very difficult problems. These
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appear to be promising areas for the application of evolutionary opti-
mization algorithms.

6. Simulation

The preceding sections have focused on decision making when the
consequences of alternative decisions are known with a reasonable de-
gree of certainty. This decision-making environment enabled formulating
helpful models with objective functions that specify the estimated con-
sequences of any combination of decisions. Although these consequences
usually cannot be predicted with complete certainty, they could at least
be estimated with enough accuracy to justify using such models (along
with sensitivity analysis, etc.).

However, decisions often must be made in environments that are much
more fraught with uncertainty. Furthermore, the decisions may need to
take into account uncertainty about many future events. This is the
case when making decisions about how to design and operate stochastic
systems (systems that evolve over time in a probabilistic manner) so as
to optimize their performance.

Simulation is a widely used technique for analyzing stochastic sys-
tems in preparation for making these kinds of decisions. This technique
involves using a computer to imitate (simulate) the operation of an en-
tire process or system. For example, simulation is frequently used to
perform risk analysis on financial processes by repeatedly imitating the
evolution of the transactions involved to generate a profile of the pos-
sible outcomes. Simulation also is widely used to analyze stochastic
systems that will continue operating indefinitely. For such systems, the
computer randomly generates and records the occurrences of the various
events that drive the system just as if it were physically operating. Be-
cause of its speed, the computer can simulate even years of operations
in a matter of seconds. Recording the performance of the simulated
operation of the system for a number of alternative designs or operat-
ing procedures then enables evaluating and comparing these alternatives
before choosing one.

The technique of simulation has long been an important tool of the
designer. For example, simulating airplane flight in a wind tunnel is
standard practice when a new airplane is designed. Theoretically, the
laws of physics could be used to obtain the same information about
how the performance of the airplane changes as design parameters are
altered. However, as a practical matter, the analysis would be too com-
plicated to do it all. Another alternative would be to build real airplanes
with alternative designs and test them in actual flight to choose the final
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design, but this would be far too expensive (as well as unsafe). There-
fore, after some preliminary theoretical analysis is performed to develop
a rough design, simulating flight in a wind tunnel is a vital tool for ex-
perimenting with specific designs. This simulation amounts to imitating
the performance of a real airplane in a controlled environment in order
to estimate what its actual performance will be. After a detailed design
is developed in this way, a prototype model can be built and tested in
actual flight to fine-tune the final design.

Simulation plays essentially this same role in many OR/MS studies.
However, rather than designing an airplane, the OR/MS team is con-
cerned with developing a design or operating procedure for some stochas-
tic system. Rather than use a wind tunnel, the performance of the real
system is imitated by using probability distributions to randomly gen-
erate various events that occur in the system. Therefore, a simulation
model synthesizes the system by building it up component by compo-
nent and event by event. Then the model runs the simulated system
to obtain statistical observations of the performance of the system that
result from various randomly generated events. Because the simulation
runs typically require generating and processing a vast amount of data,
these simulated statistical experiments are inevitably performed on a
computer.

When simulation is used as part of an OR/MS study, commonly it is
preceded and followed by the same steps described earlier for the design
of an airplane. In particular, some preliminary analysis is done first (per-
haps with approximate mathematical models) to develop a rough design
of the system (including its operating procedures). Then simulation is
used to experiment with specific designs to estimate how well each will
perform. After a detailed design is developed and selected in this way,
the system probably is tested in actual use to fine-tune the final design.

To prepare for simulating a complex system, a detailed simulation
model needs to be formulated to describe the operation of the system
and how it is to be simulated. A simulation model has several basic
building blocks:

= A definition of the state of the system.
= A list of the possible states of the system that can occur.

m A list of the possible events that would change the state of the
system.

® A provision for a simulation clock, located at some address in the
simulation program, that will record the passage of (simulated)
time.
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A method for randomly generating the events of the various kinds.

» A formula for identifying state transitions that are generated by
the various kinds of events.

Great progress is being made in developing special software for effi-
ciently integrating the simulation model into a computer program. This
software includes general-purpose simulation languages, applications-
oriented simulators for simulating specific types of systems, and ani-
mation software for displaying computer simulations in action, as well
as software for performing simulations on spreadsheets.

Two broad categories of simulations are discrete-event and continuous
simulations. A discrete-event simulation is one where changes in the
state of the system occur instantaneously at random points in time as
a result of the occurrence of discrete events. A continuous simulation
is one where changes in the state of the system occur continuously over
time.

Simulation now is one of the most widely used OR/MS techniques,
and it is continuing to grow in popularity because of its great versatil-
ity. We list below some examples of important types of applications of
simulation.

m Design and operation of queueing systems

= Managing inventory systems

m  Estimating the probability of completing a project by the deadline
m Design and operation of manufacturing systems

s Design and operation of distribution systems

m Financial risk analysis

m Health care applications

m  Applications to other service industries

Simulation is a powerful tool for analyzing stochastic systems such
as these by providing estimates of how the system would perform with
various alternative designs and operating procedures. However, simu-
lation does not determine by itself how to optimize the performance of
the system. A supplementary technique is needed to use the estimates
provided by simulation to search for the optimal values (or at least the
approximately optimal values) of the decision variables involving the de-
sign and operating procedure for the system. Evolutionary optimization
algorithms (and other metaheuristics) have a strong potential for being
used in conjunction with simulation in this way.
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7. Further Reading

All the topics covered in this chapter are developed in much greater
detail in Hillier and Lieberman (2001). Hillier et al. (2000) also expand
on these topics with a relatively applied orientation.

In addition, Hillier and Lieberman (2001) provide a number of selected
references for each of these topics. We will mention here just one book
that is devoted to each topic.

Vanderbei (2001) focuses on linear programming. Schneiderjans (1995)
deals with goal programming. Nemhauser and Wolsey (1988) provide a
treatise on integer programming. Bertsekas (1995) focuses on nonlinear
programming. Fishman (1996) provides a leading reference on simula-
tion.
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Chapter 2

EVOLUTIONARY COMPUTATION
A Gentle Introduction

Xin Yao

Abstract  This chapter gives a gentle introduction to evolutionary computation,
a field in which evolutionary optimisation is one of the most important
research areas. Unlike most introductions to evolutionary computation
which are based on its simplified biological link, this chapter emphasises
the link between evolutionary computation and artificial intelligence and
computer science. In fact, this whole book is centred around problem-
solving, e.g., optimisation, using evolutionary computation techniques.
It does not deal with the issue of biological modelling.

Keywords: Evolutionary computation, global optimisation, combinatorial optimi-
sation, evolutionary learning, evolutionary design.

1. What Is Evolutionary Computation

Evolutionary computation is the study of computational systems which
use ideas and get inspirations from natural evolution and adaptation. It
aims at understanding such computational systems and developing more
robust and efficient ones for solving complex real-world problems. The
problems dealt with by such computational systems are usually highly
nonlinear and contain inaccurate and noisy data.

Traditional computational systems are good at accurate and exact
computation but brittle. They are not designed for processing inac-
curate, noisy and complex data although they might excel at dealing
with complicated data. For example, the classical simplex method is
an invaluable mathematical programming technique which has been ap-
plied to numerous practical problems successfully. However, it requires
a problem to be formulated in exact and accurate mathematical forms.
It does not work well for problems where the objective function cannot
be expressed mathematically, is noisy, and changes with time. Evolu-



28 EVOLUTIONARY OPTIMIZATION

tionary computation is a field where such problems will be studied in
depth. It complements the study of traditional computational systems.

Many evolutionary computation techniques get their ideas and inspi-
rations from molecular evolution, population genetics, immunology, etc.
Some of the terminologies used in evolutionary computation have been
borrowed from these fields to reflect their connections, such as genetic
algorithms, genotypes, phenotypes, species, etc. Although the research
in evolutionary computation could help us understand some biological
phenomena better, its primary aim is not to build biologically plausible
models. There is no requirement in evolutionary computation that a
technique developed must be biologically plausible. The primary aim
is to study and develop robust and efficient computational systems for
solving complex real-world problems.

Evolutionary computation is an emerging field which has grown rapidly
in recent years. There are at least two international journals which are
dedicated to this field: IEEE Transactions on Evolutionary Computa-
tion and Evolutionary Computation (MIT Press). Other journals which
have a large evolutionary computation component include IEEE Trans-
actions on Systems, Man, and Cybernetics and BioSystems (Elsevier).
There are also many international conferences on evolutionary compu-
tation held each year, such as the annual IEEE International Confer-
ence on Evolutionary Computation, Evolutionary Programming Confer-
ence and Genetic Programming Conference, and bi-annual International
Conference on Genetic Algorithms, International Conference on Parallel
Problem Solving from Nature, and Asia-Pacific Conference on Simulated
Evolution and Learning.

1.1 A Brief History

Evolutionary computation encompasses several major branches, i.e.,
evolution strategies, evolutionary programming, genetic algorithms and
genetic programming, due largely to historical reasons. At the philo-
sophical level, they differ mainly in the level at which they simulate
evolution. At the algorithmic level, they differ mainly in their represen-
tations of potential solutions and their operators used to modify the so-
lutions. From a computational point of view, representation and search
are two key issues. This book will look at their differences more at the
algorithmic level than at the philosophical level.

Evolution strategies were first proposed by Rechenberg and Schwefel
in 1965 as a numerical optimisation technique. The original evolution
strategy did not use populations. A population was introduced into
evolution strategies later (Schwefel, 1981; Schwefel, 1995).
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Evolutionary programming was first proposed by Fogel et al. in mid
1960’s as one way to achieve artificial intelligence (Fogel et al., 1966).
Several examples of evolving finite state machines were demonstrated
(Fogel et al.,, 1966). Since late 1980’s, evolutionary programming was
also applied to various combinatorial and numerical optimisation prob-
lems.

The current framework of genetic algorithms was first proposed by
Holland (Holland, 1975) and his students (Jong, 1975) in 1975 although
some of the ideas appeared as early as 1957 in the context of simulating
genetic systems (Fraser, 1957). Genetic algorithms were first proposed
as adaptive search algorithms, although they have mostly been used as
a global optimisation algorithm for either combinatorial or numerical
problems. They are probably the most well-known branch of evolution-
ary computation.

A special sub-branch of genetic algorithms is . Genetic program-
ming can be regarded as an application of genetic algorithms to evolve
tree-structured chromosomes. Historically, those trees represent LISP
programs. The term of genetic programming was first used by Koza in
the above sense (Koza, 1989; Koza, 1990). de Garis used the term of
genetic programming to mean a quite different thing. He regarded ge-
netic programming as the genetic evolution of artificial neural networks
(de Garis, 1990). This book will follow Koza’s explanation of genetic
programming since de Garis is no longer using the term.

In recent years, a general term of evolutionary algorithms has been
used by more and more researchers to include all three major algorithms,
i.e., evolution strategies, evolutionary programming and genetic algo-
rithms, since they use almost the same computational framework. This
is the view taken by this book.

1.2 A General Framework of Evolutionary
Algorithms

All evolutionary algorithms have two prominent features which dis-
tinguish themselves from other search algorithms. First, they are all
population-based. Second, there is communications and information ex-
change among individuals in a population. Such communications and
information exchange are the result of selection and/or recombination
in evolutionary algorithms. A general framework of evolutionary algo-
rithms can be summarised by Figure 2.1, where the search operators are
also called genetic operators for genetic algorithms. They are used to
generate offspring (new individuals) from parents (existing individuals).
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1 Set i = 0;
2 Generate the initial population P(i) at random;
3 REPEAT
(a) Evaluate the fitness of each individual in P(i);

(b) Select parents from P(i) based on their fitness;

(c) Apply search operators to the parents and produce gen-
eration P(i + 1);

4 UNTIL the population converges or the maximum time is
reached

Figure 2.1. A General Framework of Evolutionary Algorithms.

Obviously Figure 2.1 specifies a whole class of algorithms, not any
particular ones. Different representations of individuals and different
schemes for implementing fitness evaluation, selection and search oper-
ators define different algorithms.

1.3 Evolution Strategies

For evolution strategies (Schwefel, 1995; Bick, 1996), the representa-
tion of individuals is often very close to a problem’s natural representa-
tion. It does not emphasise the genetic representation of individuals. For
example, an individual is represented as a vector of real numbers rather
than a binary string for numerical optimisation problems. Evolution
strategies usually use a deterministic selection scheme, Gaussian muta-
tion, and discrete or intermediate recombination. The term crossover
is seldom used in the context of evolution strategies because evolution
strategies do not simulate evolution at the genetic level.

There are two major deterministic selection schemes in evolution
strategies (Schwefel, 1981; Schwefel, 1995), i.e., (A+u) and (A, #) where
i is the population size (which is the same as the number of parents)
and A the number of offspring generated from all p parents. In (A + )
evolution strategies, A offspring will be generated from y parents. The
p fittest individuals from A 4+ p candidates will be selected to form the
next generation. In (), u) evolution strategies, the p fittest individuals
from A offspring only will be selected to form the next generation. As a
result, A > u is required.
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Mutation in evolution strategies is often implemented by adding a
Gaussian random number to a parent. Assume x = (z1,22,...,Zy) iSa
parent (individual), then an offspring will be generated by mutation as
follows:

i = z; + N;(0, 0;) (2.1)

where N;(0,0;) is a normally distributed random number with mean
0 and standard deviation ¢;. The n random numbers are generated
independently.

One important parameter in the Gaussian mutation is the standard
deviation, ;. Its selection is quite important in determining the per-
formance of evolution strategies. Unfortunately, its optimal value is
problem dependent as well as dimension dependent. Schwefel (Schwefel,
1981) proposed to include o;’s as part of an individual so that it can be
evolved automatically. This is often called self-adaptation in evolution
strategies. It is one of the major differences between evolution strategies
and genetic algorithms. In many implementations, ¢;’s will be mutated
first, and then z; is mutated using the new a{.

Mutating different components of an vector independently may not
be appropriate for some problems because those components may not
be independent at all. To address this issue, co-variance has been intro-
duced as another additional part of an individual. It is unclear at this
stage whether such self-adaptation is beneficial for most problem as the
search space will be increased exponentially as we triple (at least) the
individual size. Further work will be necessary in this area.

Recombination in evolution strategies takes two major forms, i.e.,
discrete and intermediate recombinations. Discrete recombination mixes
components of two parent vectors. For example, given two parents x =
(x1,%2,...,2n) and ¥ = (y1,¥2,...,¥Yn). The offspring x’ = (z},},...,
zp) and y’' = (¥}, 5, .-.,¥,) can be generated as follows:

/
1

) T with probability precombination
y; otherwise

y’ will be the complement of x’.

Intermediate recombination is usually based on some kind of aver-
aging. For example, given two parents x = (z1,Z2,...,Zp) and y =
(y1,92,..-,Yn). The offspring x' = (x},25,...,2;,) and y' = (v}, ¥4, - .-,
¥y) can be generated as follows:

z; = z; + oy — ;)

where «is a weighting parameter in (0,1). It is traditionally set to 0.5.
It can also be generated at random. y’can be generated similarly.
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According to the description by Béck and Schwefel (Bédck and Schwe-
fel, 1993), a (14, A) evolution strategy can be implemented as follows:

1 Generate the initial population of p individuals, and set k = 1.
Each individual is taken as a pair of real-valued vectors, (x;,7:),
Vi € {1,---,u}, where 5 plays the role of ¢ (i.e., the standard
deviation).

2 Evaluate the fitness value for each individual (x;, 7;), Vie{1, - - ,u},
of the population.

3 Each parent (x;,7;),%=1,---,pu, creates A\/u offspring on average,

so that a total of A offspring are generated: for i = 1,---,pu,
j=1,---,nyand k=1, )
m'(7) = m(j)exp(7'N(0,1) + 7N;(0,1)) (2.2)
xi'(7) = xi(5) +nd (F)N;(0,1) (2.3)

where x;(j), xx'(5), mi(5) and m'(j) denote the j-th component
of the vectors x;, Xi', m; and %', respectively. N(0,1) denotes a
normally distributed one-dimensional random number with mean
zero and standard deviation one. N;(0,1) indicates that the ran-
dom number is generated anew for each value of j. The factors

—1 _
7 and 7' are usually set to (\/2\/ﬁ> and (v2n) ' (Bick and
Schwefel, 1993).

4 Evaluate the fitness of each offspring (x;, n/’), Vie{1, - ,A}.

5 Sort offspring (x;/,m:'), Vi € {1,--- , A} into a non-descending order
according to their fitness values, and select the p best offspring out
of A to be parents of the next generation.

6 Stop if the stopping criterion is satisfied; otherwise, k¥ = k+ 1 and
go to Step 3.

14 Evolutionary Programming

When used for numerical optimisation, evolutionary programming
(Fogel et al., 1966; Fogel, 1991; Fogel, 1995) is very similar to evolu-
tion strategies in terms of algorithm. It uses vectors of real numbers as
individuals, Gaussian mutation and self-adaptation as described above.
The most noticeable differences between evolutionary programming and
evolution strategies are recombination and selection. Evolutionary pro-
gramming does not use any recombination or crossover, but uses a proba-
bilistic competition (i.e., a kind of tournament selection) as the selection
mechanism. Of course, there is no reason why evolutionary programming
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cannot have recombination and why evolution strategies cannot have a
probabilistic selection scheme from the algorithmic point of view.

The origins of evolutionary programming and evolution strategies are
quite different. Evolutionary programming was first proposed to simu-
late intelligence by evolving finite state machines, while evolution strate-
gies were proposed to optimise numerical parameters. It was unclear how
recombination could be usefully applied to finite state machines.

According to the description by Béck and Schwefel (Bick and Schwe-
fel, 1993), evolutionary programming can be implemented as follows:

1 Generate the initial population of g individuals, and set k = 1.
Each individual is taken as a pair of real-valued vectors, (x;,7;),
Vi € {1,---,u}, where x;’s are objective variables and 7;’s are
standard deviations for Gaussian mutations.

2 Evaluate the fitness score for each individual (x;,7;), Vie{1, - - ,u},
of the population.

3 Each parent (x;,7:),% =1, -+ , u, creates a single offspring (x;’, ;")
by: forj=1,---,mn,

n'(7) = m(7)exp(r'N(0,1) + TN;(0,1)) (2.4)
z'(7) = =(7)+n'()N5(0,1), (2.5)

where zi(j), zi'(5), n:(j) and n;’(j) denote the j-th component
of the vectors x;, Xi', 7; and 7', respectively. N(0,1) denotes a
normally distributed one-dimensional random number with mean
0 and standard deviation 1. N;(0,1) indicates that the random
number is generated anew for each value of j. The factors 7 and 7/

—1 _
have commonly set to (\/2\/5) and (\/ 2n) ' (Bick and Schwe-
fel, 1993; Fogel, 1994).

4 Calculate the fitness of each offspring (xi,m:'), Vi € {1,--- ,u}.

5 Conduct pairwise comparison over the union of parents (x;,7;)
and offspring (x;',n:'), V¢ € {l1,---,u}. For each individual, q
opponents are chosen uniformly at random from all the parents
and offspring. For each comparison, if the individual’s fitness is no
smaller than the opponent’s, it receives a “win.”

6 Select the g individuals out of (x;,7;) and (x;',n’), Vi € {1,--- , i},
that have the most wins to be parents of the next generation.

7 Stop if the halting criterion is satisfied; otherwise, £k = k+ 1 and
go to Step 3.
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1.5 Genetic Algorithms

Genetic algorithms (Holland, 1975; Goldberg, 1989; Michalewicz, 1996)
are quite different from evolution strategies and evolutionary program-
ming in terms of individual representation and search operators. Genetic
algorithms emphasise genetic encoding of potential solutions into chro-
mosomes and apply genetic operators to these chromosomes. This is
equivalent to transforming the original problem from one space to an-
other space. It is obvious that the genetic representation will be crucial
to the success of genetic algorithms. A good representation will make
a problem easier to solve. A poor representation will do the opposite.
The issues faced by genetic algorithms in general are the same as those
which have haunted many artificial intelligence problems for years, i.e.,
representation and search. In other words, a crucial issue in applying
genetic algorithms to a problem is how to find a representation which
can be searched efficiently.

A canonical genetic algorithm (also called simple genetic algorithm
sometimes) (Goldberg, 1989) is the one which uses binary representation,
one point crossover and bit-flipping mutation. Binary representation
means that each individual will be represented by a number of binary
bits, 0 or 1. One point crossover is carried out as follows: Given two
binary strings, £ and ¥, of length n. Generate a crossover point between
1 and n — 1 (inclusively) uniformly at random, sayr. Then the first
offspring consists of the first r bits of z and the last n — r bits of y. The
second offspring consists of the first 7 bits of y and the last n — r bits of
. Mutation is carried out bit-wise. That is, every bit of an individual
has certain probability of being flipped from O to 1 or from 1 to 0. A
canonical genetic algorithm can be implemented as follows:

1 Generate the initial population P(0) at random and set ¢ = 0;

2 REPEAT

(a) Evaluate the fitness of each individual in P(3).

(b) Select parents from P(i) based on their fitness as follows:
Given the fitness of n individuals as fi, fa,..., fn. Then select
individual 4 with probability

fi

=7
=1 fj

This is often called roulette wheel selection of fitness propor-
tional selection.

(c) Apply crossover to selected parents;
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(d) Apply mutation to crossed-over new individuals;

(e) Replace parents by the offspring to produce generation P(i+
1);

3 UNTIL the halting criterion is satisfied

1.6 Other Topics in Evolutionary Computation

There are numerous variants of classical evolution strategies, evolu-
tionary programming and genetic algorithms described above. Some of
the evolutionary algorithms can hardly be classified into any of these
three categories. Evolutionary computation includes much more than
just three kinds of algorithms. It also covers topics such as artificial
immune systems, artificial ecological systems, co-evolutionary systems,
evolvable hardware, self-adaptive systems, etc.

2. A Brief Overview of Evolutionary
Computation

The current research and development in evolutionary computation
can be classified into three major areas, i.e., evolutionary computation
theory, evolutionary optimisation and evolutionary learning. There are,
of course, overlaps among these areas.

2.1 Evolutionary Computation Theory

The theoretical work in evolutionary computation has concentrated on
three main topics. The first one is the theoretical analysis of convergence
and convergence rate of evolutionary algorithms. There has been some
work on the convergence and convergence rate of evolution strategies
(Schwefel, 1981; Schwefel, 1995; Beyer, 1994), evolutionary programming
(Fogel, 1992; Fogel, 1995) and genetic algorithms (Eiben et al., 1991;
Rudolph, 1994; Rudolph, 1996; Reynolds and Gomatam, 1996; Suzuki,
1993; Suzuki, 1995; Rudolph, 1994a). They are very general results
which describe the asymptotic behaviour of certain class of evolutionary
algorithms under different conditions. However, few of them studied the
relationship between the convergence rate and the problem size.

The second main topic in evolutionary computation theory is the
study of problem hardness with respect to evolutionary algorithms. That
is, the aim is to investigate what kind of problems is hard for evolution-
ary algorithms and what is easy for them. If we knew the characteristics
of a problem which make evolutionary algorithms hard or easy to solve,
we would be able to better understand how and when evolutionary algo-
rithms would work. This will be of enormous practical value in addition
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to of theoretical interest. Centered around this topic, there was some
work on genetic algorithm deceptive problems (Goldberg, 1989; Liepins
and Vose, 1991; Deb and Goldberg, 1993). Such work tried to charac-
terise problems that are hard for genetic algorithms to solve as deceptive.
It has been pointed out that this approach is rather problematic (Grefen-
stette, 1993). There have been other approaches to the understanding
of what make a problem hard for genetic algorithms, such as building
block and schema analysis (Holland, 1975; Goldberg, 1989; Davidor,
1991), Walsh analysi based on Walsh functions (Heckendorn and Whit-
ley, 1997), fitness landscape analysis (Manderick et al., 1991; Hordijk,
1996) and fitness distance correlation (Jones, 1995), etc. All these ap-
proaches have made certain progress towards a better understanding of
how genetic algorithms work, but there is still a long way to go to gain
a full understanding of how and when a genetic algorithm would work.

The third main topic in evolutionary computation theory is compu-
tational complexity of evolutionary algorithms. This is one of the most
important research topics where little progress has been made. Evolu-
tionary algorithms have been used extensively in both combinatorial and
numerical optimisation in spite of the original emphasis on search and
adaptation (Fogel et al., 1966; Holland, 1975; Holland, 1992; DelJong,
1993). There are established algorithms and their complexity results for
many of these optimisation problems. However, it is unclear whether
evolutionary algorithms can perform any better than other approximate
or heuristic algorithms in terms of worst or average time complexity.
There has not been any concrete result on the computational complex-
ity of an evolutionary algorithm on a nontrivial problem, especially a
combinatorial problem, although the complexity theory is well estab-
lished for combinatorial decision and optimisation problems (Garey and
Johnson, 1979).

2.2 Evolutionary Optimisation

Evolutionary optimisation is probably the most active and productive
area in evolutionary computation measured by the number of papers
published and the number of successful applications reported. Although
neither evolutionary programming nor genetic algorithms were first pro-
posed as optimisation algorithms, people had quickly realised they could
adapt these algorithms to carry out combinatorial and function optimi-
sation. Hence a flood of variants of classical algorithms were proposed
and applied to different optimisation problems.

So far most of the evolutionary optimisation work belongs to nu-
merical optimisation. Both constrained (Michalewicz and Schoenauer,
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1996; Kim and Myung, 1997) and unconstrained (Yao and Liu, 1996; Yao
and Liu, 1997) numerical optimisation has been studied. There has also
been research on multiobjective optimisation by evolutionary algorithms
(Fonseca and Fleming, 1995; Fonseca and Fleming, 1998; Fonseca and
Fleming, 1998a).

When genetic algorithms are applied to numerical function optimisa-
tion, vectors of real numbers are usually encoded into binary bit strings.
Different binary encoding methods have been proposed, such as Gray
coding (Goldberg, 1989) and delta coding (Mathias and Whitley, 1994).
Delta coding actually changes the representation during search. In spite
of all these efforts in finding the best encoding method for real numbers,
it is still unclear whether it is necessary to transform real numbers into
binery strings.

Evolution strategies and evolutionary programming use vectors of real
numbers directly as individuals and thus avoid the burden of finding a
suitable encoding method for individuals. There have been some com-
parative studies between the binary representation used by genetic al-
gorithms and the real representation used by evolutionary programming
(Fogel and Atmar, 1990; Fogel, 1995a). However, more extensive com-
parisons need to be carried out to test the performance of different al-
gorithms and find out why an algorithm performs well (or poorly) for
certain problems.

In addition to numerical optimisation, evolutionary algorithms have
also been used to tackle various combinatorial optimisation problems,
such as the travelling salesman problem (Grefenstette et al., 1985; Fogel,
1988; Yao, 1993), transportation problem (Michalewicz, 1992; Vignaux
and Michalewicz, 1991), switchbox routing in integrated circuits (Lienig
and Thulasiraman, 1995), cutting stock problem (Hinterding and Khan,
1995; Liang et al., 1998), lecture room assignment problem (Luan and
Yao, 1994), etc. Some of these results are quite competitive in compar-
ison with more traditional approaches. In particular, hybrid algorithms
which combine evolutionary algorithms with others (such as simulated
annealing (Yao, 1991) and local search methods (Kido et al., 1994)) have
shown a lot of promises in dealing with hard combinatorial optimisation
problems.

23 Evolutionary Learning

Evolutionary learning includes many topics, such as learning clas-
sifier systems, evolutionary artificial neural networks, co-evolutionary
learning, self-adaptive systems, etc. The primary goal of evolutionary
learning is the same as that of machine learning in general. Evolution-
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ary learning can be regarded as the evolutionary approach to machine
learning. It has been used in the framework of supervised learning, re-
inforcement learning and unsupervised learning, although it appears to
be most promising as a reinforcement learning method.

2.3.1 Learning Classifier Systems. Learning classifier sys-
tems (Holland, 1986; Holland, 1988), also known as classifier systems,
are probably the oldest and best known evolutionary learning systems,
although they did not work very well in their classical form (Westerdale,
1997). Some of the recent systems have improved this situation (Wilson,
1995; Colombetti and Dorigo, 1998). Due to its historical importance,
a brief introduction to the classical learning classifier system (Holland,
1986; Holland, 1988) will be presented here.

Learning classifier systems are a particular class of message-passing,
rule-based systems (Holland, 1988). They can also be regarded as a type
of adaptive expert system that uses a knowledge base of production rules
in a low-level syntax that can be manipulated by a genetic algorithm
(Smith and Goldberg, 1992). In a classifier system, each low-level rule
is called a classifier.

A genetic algorithm is used in classifier systems to discover new clas-
sifiers by crossover and mutation. The strength of a classifier is used as
its fitness. The genetic algorithm is only applied to the classifiers after
certain number of operational cycles in order to approximate strengths
better. There are two approaches to classifier systems; the Michigan
approach and the Pitts approach. For the Michigan approach, each indi-
vidual in a population is a classifier. The whole population represents a
complete classifier system. For the Pitts approach, each individual in a
population represents a complete classifier system. The whole popula-
tion includes a number of competing classifier systems.

2.3.2 Evolutionary Artificial Neural Networks. Evolu-
tionary artificial neural networks can be considered as a combination of
artificial neural networks and evolutionary algorithms (Yao, 1991b; Yao,
1993a; Yao, 1995a). Evolutionary algorithms have been introduced into
artificial neural networks at three different levels: the evolution of con-
nection weights, architectures, and learning rules (Yao, 1993a; Yao,
1995a). At present, most work on evolutionary artificial neural net-
works concentrates on the evolution of architectures, i.e., connectivities
of ANNSs (Yao and Shi, 1995; Liu and Yao, 1996; Yao and Liu, 1997a; Yao
and Liu, 1998). Very good results have been achieved for some artificial
and real-world benchmark problems.
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One of the most important benefits of evolutionary artificial neural
networks is that a near optimal (in terms of generalisation) artificial neu-
ral network with both structure and weights can be evolve automatically
without going through a tedious trial-and-error manual design process.
The results obtained so far have demonstrated that very compact arti-
ficial neural networks with good generalisation can be evolved (Yao and
Liu, 1997a).

233 Co-evolutionary Learning. “Coevolution refers to
the simultaneous evolution of two or more species with coupled fit-
ness.” (Rosin and Belew, 1997) Co-evolutionary learning has two differ-
ent forms. In the first form, two or more populations are evolved at the
same time (Hillis, 1991). The fitness of an individual in one population
depends on the individuals in another population. There is no crossover
or other information exchange between two populations. This can be
regarded as co-evolution at the population level.

The second form of co-evolution is at the individual level. There is
only one population involved. The fitness of an individual in the pop-
ulation depends on other individuals in the same population (Axelrod,
1987; Yao and Darwen, 1994; Darwen and Yao, 1995; Darwen and Yao,
1996; Darwen and Yao, 1997). For example, the same strategy for play-
ing an iterated prisoner’s dilemma game may get quite different fitness
values depending on what other strategies are in the same population.
Both forms of co-evolution have a dynamic environment and a dynamic
fitness function. This is an active area of research.

3. Evolutionary Algorithm and
Generate-and-Test Search Algorithm

Although evolutionary algorithms are often introduced from the point
of view of survival of the fittest and from the analogy to natural evolution,
they can also be understood through the framework of generate-and-
test search. The advantage of introducing evolutionary algorithms as a
type of generate-and-test search algorithms is that the relationships be-
tween evolutionary algorithms and other search algorithms, such as sim-
ulated annealing (Kirkpatrick et al., 1983; Szu and Hartley, 1987; Yao,
1991a; Yao, 1995), tabu search (Glover, 1989; Glover, 1990), etc., can
be made clearer and thus easier to explore. Under the framework of
generate-and-test search, different search algorithms investigated in ar-
tificial intelligence, operations research, computer science, and evolution-
ary computation can be unified together. Such interdisciplinary studies
are expected to generate more insights into search algorithms in general.
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A general framework of generate-and-test search can be described by
Figure 2.2.

1 Generate the initial solution at random and denote it as the
current solution;

2 Generate the next solution from the current one by perturba-
tion;

3 Test whether the newly generated solution is acceptable;

(a) Accepted it as the current solution if yes;

(b) Keep the current solution unchanged otherwise.

4 Goto Step 2 if the current solution is not satisfactory, stop oth-
erwise.

Figure 2.2. A General Framework of Generate-and-Test.

It is quite clear that various hill-climbing algorithms can be described
by Figure 2.2 with different strategies for perturbation. They all require
the new solution to be no worse than the current one to be acceptable.
simulated annealing does not have such a requirement. It regards a worse
solution to be acceptable with certain probability. The difference among
classical simulated annealing (Kirkpatrick et al., 1983), fast simulated
annealing (Szu and Hartley, 1987), very fast simulated annealing (Ingber,
1989), and a new simulated annealing (Yao, 1995) lies in the difference
in their perturbations, i.e., methods of generating the next solution.

Evolutionary algorithms can be regarded as a population-based ver-
sion of generate-and-test search. They use search operators like crossover
and mutation to generate new solutions, and use selection to test which
solutions are fitter than others. From this point of view, it is clear that
we do not have to limit ourselves to crossover and mutation in an evo-
lutionary algorithm. In principle, we can use any search operators to
generate new solutions (i.e., offspring). A good search operator should
always increase the probability of finding a global optimum. This is also
true for selection.

4. Search Operators

There are many search operators that have been used in various evolu-
tionary algorithms. Some of them are specialised in solving a particular
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class of problems. This section describes some search operators and se-
lection schemes' commonly used. They do not represent a complete set
of all search operators.

4.1 Recombination Operators

The essence of any recombination (crossover) operator is the inher-
itance of information (genes) from two or more parents by offspring.
Although most recombination operator uses two parents, multiple par-
ents may be useful in some cases. Two offspring are often produced by a
recombination operator, but, again, other numbers might be appropriate
for some problems.

4.1.1 Recombination for Real-Valued Vectors. These
operators are mostly proposed for evolution strategies. They are used to
process vectors of real numbers. In evolution strategies, recombination is
done independently for objective variables and strategy parameters (i.e.,
variance, etc.). It can be different for objective variables and strategy
parameters.

Discrete Recombination In this case, an offspring vector will have
components coming from two or more parent vectors. There is
no change to any component itself. For example, given two par-
ents x = (x1,22,...,2Zn) and ¥ = (¥1,Y2,...,Yn). The offspring
x' = (z},25,...,2}) and y' = (¥],¥5,...,¥,) can be generated as
follows:

x

o

1) T with probability precombination
y;  otherwise

y’ will be the complement of x’. A global version of this recom-
bination is that y; will be taken from a randomly generated y for
each 7 value. That is, for each ¢ value, a y is generated uniformly
at random in the whole population. Then its ith component will
be used for recombination. Basically the number of parents is the
same as the population size.

Intermediate Recombination In this case, a component of an off-
spring vector is a linear combination (average) of parent’s corre-
sponding components. For example, given two parents x = (z1,
Toy ..., Zn) and y = (Y1, ¥2, .-, Yn). The offspring x' = (), x5,

1Usually selection is not regarded as a search operator. It is included in this section for ease
of discussions.
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oy @) and Y = (Y4, Y5, -+ ., Y,) can be generated as follows:
:L‘; =x;+ a(yi - wl)

where « is a weighting parameter in (0,1). It is traditionally set
to 0.5. It can also be generated at random. y’ can be generated
similarly. A global version of this recombination is that y; will be
taken from a randomly generated y for each 7 value. « can also be
different for each 1.

4.1.2 Recombination for Binary Strings. Common recom-
bination operators for binary strings include k-point crossover (k > 1)
and uniform crossover, although there are many other variants.

k-point crossover This crossover can actually be applied to strings of
any alphabet. Given two parents of length n. k¥ random numbers,

T1,72,...,Tk, between 1 and n — 1 will be generated uniformly
(without repetition). Then an offspring is produced by taking
segments (separated by 71,72, ...,7% ) of parent strings alternately,

i.e., the first segment from the first parent, the second from the
second parent, the third from the first parent, and so on. For
example, a 3-point crossover at 1,4,6 of two parents 00000000 and
11111111 will produce two offspring 01110011 and 10001100.

uniform crossover This crossover is also applicable to strings of any
alphabet. An offspring is generated by taking its each bit or char-
acter from the corresponding bit or character in one of the two
parents. The parent that the bit or character is to be taken from
is chosen uniformly at random.

Other crossover operators include segmented crossover and shuffle
crossover (Eshelman et al., 1989). They are not widely used in genetic
algorithm applications.

4.1.3 Specialised Recombination. There are numerous
recombination operators which have been proposed for different prob-
lems, especially combinatorial optimisation problems, such as matrix-
based crossover (Vignaux and Michalewicz, 1991; Luan and Yao, 1994),
permutation-based crossover (Whitley et al., 1991; Yao, 1993), tree-
based crossover (Koza, 1992; Koza and Andre, 1998), etc.

4.2 Mutation Operators

Mutation operators used for vectors of real values are usually based
on certain probability distributions, such as uniform, lognormal, Gauss
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(normal) and Cauchy distributions. Mutation for binary strings is a lot
simpler. It is usually a bit-fliping operation.

4.2.1 Mutation for Real-Valued Vectors.

Gaussian Mutation In this case, an offspring is produced by adding
a Gaussian random number with mean 0 and standard deviation
o to the parent. For example, given x = (z1,xe,...,Z,) as the
parent, an offspring is produced as follows:

z; = z; + N;(0,0;)

where N;(0,0;) is a normally distributed random number with
mean 0 and standard deviation o;. The n random numbers are
generated independently for each dimension (thus the subscription
i in N;(0,0;). For self-adaptive evolutionary algorithms, such as
evolution strategies and evolutionary programming, o;’s are usu-
ally mutated independently using a lognormal distribution. More
details are given by Eqgs. 2.2 and 2.3 in Section 1.3.

Cauchy Mutation Cauchy mutation differs from Gaussian mutation
in the probability distribution used to generate the random num-
ber. The use of Cauchy mutation in evolutionary algorithms was
inspired by fast simulated annealing (Szu and Hartley, 1987; Yao,
1995) and proposed indepedently by several researchers (Yao and
Liu, 1996; Kappler, 1996). A detailed study of Cauchy mutation
will be presented later in this chapter.

Other Mutations Mutations based on other probability distributions,
such as the z-distribution, may be introduced into evolutionary
algorithms. An important question to ask when introducing a new
operator is when the new operator will be most efficient for what
kind of problems.

4.2.2 Mutation for Binary Strings.

Bit-Fliping Bit-flipping mutation simply flips a bit from 0 to 1 or from
1 to 0 with certain probability. This probability is often called the
mutation probability or mutation rate. Bit-flipping mutation can
be generalised to mutate strings of any alphabet. The generalised
mutation works as follows: for each character (allele) in a string,
replace it with another randomly chosen character (not the same
as the one to be replaced) in the alphabet with certain mutation
probability.
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Random Bit This mutation does not flip a bit. It replaces a bit by 0
or 1 with equal probability (i.e., 0.5 respectively). The generalised
version of this mutation works as follows: for each character (allele)
in a string, replace it with a randomly chosen character (could be
the same as the one to be replaced) in the alphabet with certain
mutation probability.

Specialised Mutations Similar to the situation for crossover, there
are many other specialised mutation operators designed for various
combinatorial problems, such as the operators for mutate finite
state machines (Fogel et al., 1966), artificial neural networks (Yao
and Liu, 1997a) and cutting stock problems (Liang et al., 1998).

4.3 Selection

A selection scheme determines the probability of an individual be-
ing selected for producing offspring by recombination and/or mutation.
In order to search for increasingly better individuals, fitter individuals
should have higher probabilities of being selected while unfit individu-
als should be selected only with small probabilities. Different selection
schemes have different methods of calculating selection probability. The
selection pressure has sometimes been used to indicate how large the
selection probability should be for a fit individual in comparison with
that for an unfit individual. The larger the probability, the stronger the
selection pressure.

There are three major types of selection schemes, roulette wheel se-
lection (also known as the fitness proportional selection), rank-based
selection and tournament selection.

4.3.1 Roulette Wheel Selection. Let fi1, fo,..., fn be fit-
ness values of individuals 1,2, ---, n. Then the selection probability for
individual i is
b= fi
z — —1 .
?:1 f b

Roulette wheel selection calculates the selection probability directly from
individual’s fitness values.

This method may cause problems in some cases. For example, if an
initial population contains one or two very fit but not the best individ-
uals and the rest of the population are not good, then these fit indi-
viduals will quickly dominate the whole population (due to their very
large selection probabilities) and prevent the population from exploring
other potentially better individuals. On the other hand, if individuals
in a population have very similar fitness values, it will be very difficult
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for the population to move towards a better one since selection prob-
abilities for fit and unfit individuals are very similar. To get around
these two problems, various fitness scaling methods have been proposed
(Goldberg, 1989). These fitness scaling methods are used to scale fitness
values before they are used in calculating selection probabilities.

4.3.2 Rank-Based Selection. Rank-based selection does not
calculate selection probabilities from fitness values directly. It sorts all
individuals according to their fitness values first and then computes se-
lection probabilities according to their ranks rather than their fitness
values. Hence rank-based selection can maintain a constant selection
pressure in the evolutionary search and avoid some of the problems en-
countered by roulette wheel selection.

There are many different rank-based selection schemes. Two are in-
troduced here. Assume the best individual in a population ranks the
first. The probability of selecting individual % can be calculated linearly
as follows (Baker, 1985):

1 1—1
pi = E Nmaz — (Mmaz — nmin)

n—1

where n is the population size, 7ye, and 7y, are two parameters.

Nmaz = Nmin = 0
Mmaz + Mmin = 2

The recommended value for 7,4, 1s 1.1.
A rank-based selection scheme with a stronger selection pressure is
the following nonlinear ranking scheme (Yao, 1993):
i
Pi = "n o
j=1J7

4.3.3 Tournament Selection. Both roulette wheel selection
and rank-based selection are based on the global information in the whole
population. This increases communications overheads if we want to par-
allelise an evolutionary algorithms on a parallel machine. Tournament
selection only needs part of the whole population to calculate an individ-
ual’s selection probability. Different individuals can also calculate their
selection probabilities in parallel.

One of the often used tournament selection schemes is that used in
evolutionary programming, which was described in Section 1.4. Another
one is Boltzmann tournament selection (Goldberg, 1990), described as
follows:
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1 For tournament size 3, first select anindividual 47 at random. Then
select ¢z also at random but must differfrom ¢; by a fitness amount
of ©. Randomly selected %3 must also differ from 1, and half the
time differ from ig as well, all by ©.

2 ipcompetes with 43 first. Then the winner competes with 3. The
winner is identified by the Boltzmann acceptance probability. The
probability of individual £ winingover y is:

1
Pley) = T, = 7D

where T is the temperature. (Note that we are maximising fitness.)

4.3.4 Elitist Selection. Elitist selection is also known as
elitism and elitist strategy. It always copy the best individual to the
next generation without any modification. More than one individual
may be copied, i.e., the best, second best, etc., may be copied to the
next generation without any modification. Elitism is usually used in
addition to other selection schemes.

S. Summary

This chapter introduces the basic concept and major areas of evolu-
tionary computation. It presents a brief history of three major types of
evolutionary algorithms, i.e., evolution strategies, evolutionary program-
ming and genetic algorithms, and points out similarities and differences
among them. It is also pointed out that the field of evolutionary com-
putation is much more than just three types of algorithms. The field
includes many other topics.

The chapter gives a quick overview of evolutionary computation with-
out diving into too much detail. Three main areas of the field have been
discussed: evolutionary computation theory, evolutionary optimisation
and evolutionary learning. It is argued that much work on the compu-
tational complexity of evolutionary algorithms is needed among other
things in order to better understand the computational power of these
algorithms.
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Martin Schmidt

Abstract

Evolutionary computation techniques have received a lot of attention re-
garding their potential as optimization techniques for complex numerical
functions. However, they have not produced a significant breakthrough
in the area of nonlinear programming due to the fact that they have not
addressed the issue of constraints in a systematic way. Only during the
last decade several methods have been proposed for handling nonlin-
ear constraints by evolutionary algorithms for numerical optimization
problems; however, these methods give different performance on differ-
ent test cases.

In this chapter we (1) present some issues which should be addressed
while solving the general nonlinear programming problem, (2) survey
several approaches which have emerged in the evolutionary computation
community, and (3) discuss briefly a methodology, which may serve as
a handy reference for future methods.

1. Introduction

Every real-world problem poses constraints. You can’t get away from
them. It’s only the textbooks that allow you solve problems in the
absence of constraints. Dhar and Ranganathan (1990) wrote:

Virtually all decision making situations involve constraints. What dis-
tinguishes various types of problems is the form of these constraints.
Depending on how the problem is visualized, they can arise as rules,
data dependencies, algebraic expressions, or other forms.

We would only amend this by removing the word “virtually!” As we
can face problems with very pesky constraints, in this chapter we con-
centrate on a variety of constraint-handling techniques that might be
incorporated into evolutionary algorithms. In this case we have the po-
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tential of treating both feasible and infeasible solutions simultaneously
within a single evolving population.

In evolutionary computation methods the evaluation function serves
as the main link between the problem and the algorithm by rating indi-
vidual solutions in the population. Superior individuals are usually given
higher probabilities for survival and reproduction. It’s crucial that we
define the evaluation function to capture and characterize the problem
in a reasonable way. This can be a significant challenge when facing
the possibility of having infeasible solutions. Our final answer must be
a feasible solution, otherwise it’s really no solution at all. It might be
useful, however, to operate on infeasible solutions while searching for
better feasible solutions. Finding a proper evaluation measure for feasi-
ble and infeasible individuals is of paramount importance. It can mean
the difference between success or failure.

Usually constraints cause some difficulties in most problem-solving
strategies, but it needn’t always be the case. Sometimes constraints are
helpful and can guide you in the right direction. We’ll explore some pos-
sibilities for taking advantage of constraints later in the chapter. First,
let’s tackle some of the general issues that are connected with handling
constraints in evolutionary algorithms. Later we illustrate many of these
issues in the domain of nonlinear programming problems (NLPs). Fi-
nally, we discuss briefly a new tool for evaluating all existing constraint-
handling methods: a test case generator.

2. General considerations

When facing constrained optimization problems using evolutionary al-
gorithms, it’s very important to process infeasible individuals (Michalew-
icz, 1995). Particularly in real-world problems, you’ll find it difficult to
design operators that avoid them entirely while still being effective in
locating useful feasible solutions. In general, a search space & consists
of two disjoint subsets of feasible and infeasible subspaces, F and U,
respectively (see figure 3.1). Here, we’re not making any assumptions
about these subspaces. In particular, they don’t have to be convex or
even connected (e.g., as shown in figure 3.1 where the feasible part F
of the search space consists of four disjoint subsets). In solving opti-
mization problems we search for a feasible optimum. During the search
process we have to deal with various feasible and infeasible individuals.
For example (see figure 3.1), at some stage of the evolution, a popula-
tion might contain some feasible individuals (b,c,d, e, j) and infeasible
individuals (e, f, g, h, i, k, I, m, n, 0), while the (global) optimum solution
is marked by “X”.
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Figure 83.1. A search space and its feasible and infeasible parts with a population of
15 individuals, a — o

Having to operate on both feasible and infeasible solutions can affect
how we design various aspects of an evolutionary algorithm. Suppose
we were using some form of elitist selection. Should we simply maintain
the best feasible individual, or should we perhaps maintain an infeasi-
ble individual that happens to score better by our evaluation function?
Questions sometimes arise in designing variation operators as well. Some
operators might only be applicable to feasible individuals. But without
a doubt, the major concern is the design of a suitable evaluation function
to treat both feasible and infeasible solutions. This is far from trivial.

In general, we’ll have to design two evaluation functions, evaly and
evaly, for the feasible and infeasible domains, respectively. There are
many important questions to be addressed:

1. How should we compare two feasible individuals, e.g., “c” and “j”
from figure 3.1? In other words, how should we design the function
evaly?

2. How should we compare two infeasible individuals, e.g., “@” and “n”?
In other words, how should we design the function eval,?

3. How are the functions evaly and eval, related? Should we assume,
for example, that evals(s) > evaly(r) forany s € F and any r € U?
(The symbol & is interpreted as “is better than,” i.e., “greater than” for
maximization and “less than” for minimization problems.)

4. Should we consider infeasible individuals harmful and eliminate them
from the population?
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5. Should we “repair” infeasible solutions by moving them into the
closest point of the feasible space (e.g., the repaired version of “m”
might be the optimum “X,” figure 3.1)?

6. If we repair infeasible individuals, should we replace an infeasible
individual by its repaired version in the population or should we instead
only use a repair procedure for evaluations?

7. Since our aim is to find a feasible optimum solution, should we choose
to penalize infeasible individuals?

8. Should we start with an initial population of feasible individuals and
maintain the feasibility of their offspring by using specialized operators?

9. Should we change the topology of the search space by using decoders
that might translate infeasible solutions into feasible solutions?

10. Should we extract a set of constraints that define the feasible search
space and process individuals and constraints separately?

11. Should we concentrate on searching a boundary between feasible
and infeasible parts of the search space?

12. How should we go about finding a feasible solution?

Several trends for handling infeasible solutions have emerged in evolu-
tionary computation; most of these have only come about quite recently,
making efforts from a decade or more ago almost obsolete (e.g., Richard-
son et al., 1989). Even when using penalty functions to degrade the qual-
ity of infeasible solutions, this area of application now consists of several
methods that differ in many important respects. Other newer methods
maintain the feasibility of the individuals in the population by means of
specialized operators or decoders, impose a restriction that any feasible
solution is “better” than any infeasible solution, consider constraints one
at the time in a particular order, repair infeasible solutions, use inxmul-
tiobjective optimization techniques, are based on cultural algorithms, or
rate solutions using a particular co-evolutionary model. We’ll discuss
briefly these techniques by addressing issues 1 — 12 in turn.

2.1 Feasible solutions

For textbook problems, designing the evaluation function f is usually
easy: it’s usually given to you. For example, when treating most op-
erations research problems, such as inxknapsack problems, the inxTSP,
inxset covering, and so forth, the evaluation function comes part-and-
parcel along with the problem. But when dealing with the real world,
things aren’t always so obvious. For example, in many design problems
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there are no clear formulas for comparing two feasible designs. Some
problem-dependent heuristics are necessary in these cases, which should
provide a numerical measure evals(z) of the quality of a feasible indi-
vidual z.

Even in classic combinatorial optimization problems such as bin pack-
ing, we can encounter some difficulties. As noted in Falkenauer (1994),
where the task was to pack some maximum number of potentially dif-
ferent items into bins of various size, the obvious evaluation function
of counting the number of bins that suffices to pack all of the items is
insufficient. The reason it’s insufficient is that the resulting “landscape”
to be searched isn’t very friendly. There is a relatively small number of
optimum solutions and a very large number of solutions that evaluate
to just one higher number (i.e., they require just one more bin). All
of these suboptimal solutions have the same perceived quality, so how
can we traverse the space when there’s no guidance from the evaluation
function on which directions to go? Clearly, the problem of designing a
“perfect” evaly is far from trivial.

Actually, there’s an entirely different possibility, because in many
cases we don’t have to define the evaluation function evals to be a map-
ping to the real numbers. In a sense, we don’t have to define it at all!
It’s really only mandatory if we’re using a selection method that acts on
the solutions’ values, such as proportional selection. For other types of
selection, however, all that might be required is an ordering relation that
says that one solution is better than another. If an ordering relation >
handles decisions of the type ‘“is a feasible individual z better than a
feasible individual y?” then such a relation > is sufficient for tourna-
ment and ranking selection methods, which require either selecting the
best individual out of some number of individuals, or a rank ordering of
all individuals, respectively.

2.2 Infeasible solutions

Designing the evaluation function for treating infeasible individuals is
quite difficult. It’s tempting to avoid it altogether by simply rejecting
infeasible solutions (see section 2.4). Alternatively, we can extend the
domain of the function evaly in order to handle infeasible individuals,
ie., evaly(z) = evals(z) = Q(x), where Q(x) represents either a penalty
for the infeasible individual z, or a cost for repairing such an individual
(i.e., converting it to a feasible solution, see section 2.7). Another option
is to design a separate evaluation function eval, that’s independent of
evaly; however, we then have to establish some relationship between
these two functions (see section 2.3).
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Evaluating infeasible individuals presents quite a challenge. Consider
a knapsack problem, where your goal is to get as many items as possible
into a knapsack of some particular size. The amount by which you
violate the capacity of the knapsack might not be a very good measure
of that particular solution’s “fitness.” This also holds true for many
scheduling, timetabling, and planning problem:s.

As with feasible solutions, it’s possible to develop an ordering relation
for infeasible individuals (as opposed to constructing ewval,). In both
cases it’s necessary to establish a relationship between the evaluations
of feasible and infeasible individuals.

2.3 Feasible vs. infeasible solutions

Let’s say that we’ve decided to treat both feasible and infeasible in-
dividuals and evaluate them using two evaluation functions, eval; and
evaly, respectively. That is, a feasible individual z is evaluated using
evaly(z) and an infeasible individual y is evaluated using evaly(y). Now
we have to establish a relationship between these two evaluation func-
tions.

As mentioned previously, one possibility is to design eval, based on
evaly, evaly(y) = evalf(y)£Q(y), where Q(y) represents either a penalty
for the infeasible individual y, or a cost for repairing such an individual

(see section 2.7). Alternatively, we could construct a global evaluation
function eval as

- @-evas(p) if peF
eval(p) = { g2 - evaly(p) if peU.

In other words, we have two weights, g1 and ¢z, that are used to scale
the relative importance of evaly and evaly,.

Note that both of the methods provide the possibility for an infeasi-
ble solution to be “better” than a feasible solution. That is, it’s possible
to have a feasible individual x and an infeasible individual ¢ such that
eval(y) > eval(z). This may lead the algorithm to converge to an in-
feasible solution. This phenomenon has led many researchers to exper-
iment with dynamic penalty functions @ (see section 2.7) that increase
the pressure on infeasible solutions as the evolutionary search proceeds.
The problem of selecting Q(x) (or weights g; and ¢2), however, can be
as difficult as solving the original problem itself.

24 Rejecting infeasible solutions

The “death penalty” heuristic is a popular option in many evolution-
ary algorithms. Simply kill off all infeasible solutions at every step. Note
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that rejecting infeasible individuals does simplify things. For example,
there’s no need to design eval, and to compare it with evaly.

Eliminating infeasible solutions may work well when the feasible search
space is convex and constitutes a reasonable part of the whole search
space. Otherwise this approach has serious limitations. For example,
there are many search problems where a random sampling of solutions
may generate an initial population that’s entirely infeasible. It would
therefore be essential to improve these solutions instead of reject them
outright. Wiping the slate clean doesn’t help here because you’re right
back where you started. Moreover, for many variation operators, it’s
quite often the case that the evolutionary algorithm can reach the opti-
mum solution more quickly if it can “cross” an infeasible region (this is
especially true in nonconvex feasible search spaces).

2.5 Repairing infeasible solutions

The idea of repairing infeasible solutions enjoys a particular popular-
ity in the evolutionary computation community, and especially so for
certain combinatorial optimization problems (e.g., TSP, knapsack prob-
lem, set covering problem). In these cases, it’s relatively easy to repair
an infeasible solution and make it feasible. Such a repaired version can
be used either for evaluation, i.e., evaly(y) = evalf(z), where z is a
repaired (i.e., feasible) version of y, or it can replace the original in-
dividual in the population (perhaps with some probability, see section
2.6). Note that the repaired version of solution “m” (figure 3.1) might
be the optimum “X”.

The process of repairing infeasible individuals is related to a combi-
nation of learning and evolution (the so-called Baldwin effect (Whitely
et al., 1996)). Learning (as local search in general, and local search for
the closest feasible solution, in particular) and evolution interact with
each other. The fitness value of the local improvement is transferred to
the individual. In that way a local search is analogous to the learning
that occurs during a single generation.

The weakness of these methods lies in their problem dependence. Dif-
ferent repair procedures have to be designed for each particular problem.
There are no standard heuristics for accomplishing this. It’s sometimes
possible to use a greedy method for repairing solutions, and at other
times you might use some random procedure, or a variety of alternative
choices. And then sometimes repairing infeasible solutions might become
as complex a task as solving the original problem. This is often the case
in nonlinear transportation problems, scheduling, and timetabling.
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2.6 Replacement of solutions

The idea of replacing repaired individuals is related to what’s called
Lamarckian evolution (Whitely et al., 1996), which assumes that an
individual improves during its lifetime and that the resulting improve-
ments are coded back into the genetics of that individual. This is, of
course, not the way nature works, but remember that we’re designing
evolutionary algorithms as computational procedures for solving prob-
lems, and we don’t have to be constrained by the way nature works.

Orvosh and Davis (1993) reported a so-called 5-percent-rule, which
states that in many combinatorial optimization problems, when coupling
a repair procedure with an evolutionary algorithm, the best results are
achieved when 5 percent of repaired individuals replace their infeasible
original versions. We know that this rule can’t work in all problem
domains, but this is at least a starting point to try when facing some
new problem. In continuous domains, a new replacement rule emerged:
The GENOCOP III system (Michalewicz and Nazhiyath, 1995) that
uses a repair function appears to work well on certain problems when
repairing 15 percent of the individuals. Higher and lower percentages
have yielded inferior performance. Again, these types of settings are
problem dependent and might even vary while a problem is being solved.

2.7 Penalizing infeasible solutions

The most common approach to handling infeasible solutions is to pro-
vide a penalty for their infeasibility by extending the domain of evaly,
and assuming that evaly(p) = evals(p) = Q(p), where Q(p) represents
either a penalty for an infeasible individual p, or a cost for repairing such
an individual. The primary question then concerns how we should design
such a penalty function Q(p). Intuition suggests that the penalty should
be kept as low as possible, just above the threshold below which infea-
sible solutions are optimal (the so-called minimal penalty rule (Leriche
et al., 1995), But it’s often difficult to implement this rule effectively.

The relationship between an infeasible individual “p” and the feasible
part F of the search space S plays a significant role in penalizing such
individuals. An individual might be penalized just for being infeasible,
for the “amount” of its infeasibility, or for the effort required to repair
the individual. For example, for a knapsack problem with a weight
capacity of 99 kilograms we may have two infeasible solutions that yield
the same profit (which is calculated based on the items you can fit in
the knapsack), where the total weight of all items taken is 100 and 105
kilograms, respectively. It’s difficult to argue that the first individual
with the total weight of 100 is better than the other one with a total



Evolutionary Algorithms and Constrained Optimization 65

weight of 105, despite the fact that for this individual the violation of
the capacity constraint is much smaller than for the other one. The
reason is that the first solution may involve five items each weighing 20
kilograms, and the second solution may contain (among other items) an
item of low profit and a weight of six kilograms: Removing this item
would yield a feasible solution, one that might be much better than any
repaired version of the first individual. In these cases, the appropriate
penalty function should consider the ease of repairing an individual,
as well as the quality of the repaired version. Again, this is problem
dependent.

2.8 Maintaining feasibility

It seems that one of the most reasonable heuristics for dealing with
the issue of feasibility is to use specialized representations and variation
operators to maintain the feasibility of individuals in the population.

Several specialized systems have been developed for particular opti-
mization problems. These evolutionary algorithms rely on unique rep-
resentations and specialized variation operators. Some examples were
described in (Davis, 1991) and many others are described here. For
example, GENOCOP (Michalewicz and Janikow, 1996) assumes that
the problem you face has only linear constraints and a feasible starting
point (or a feasible initial population). A closed set of variation opera-
tors maintains the feasibility of solutions. There’s no need to ever treat
infeasible solutions when these conditions hold.

Very often such systems are much more reliable than other evolution-
ary techniques based on a penalty approach. Many practitioners have
used problem-specific representations and specialized variation opera-
tors in numerical optimization, machine learning, optimal control, cog-
nitive modeling, classical operation research problems (TSP, knapsack
problems, transportation problems, assignment problems, bin packing,
scheduling, partitioning, etc.), engineering design, system integration,
iterated games, robotics, signal processing, and many others. The varia-
tion operators are often tailored to the representation (e.g., Fogel et al.,
1966, Koza, 1992).

2.9 Using decoders

Using some form of decoder offers an interesting option when design-
ing an evolutionary algorithm. In these methods, the data structure
that represents an individual doesn’t encode for a solution directly, but
instead provides the instruction for how to build a feasible solution.



66 EVOLUTIONARY OPTIMIZATION

It’s important to point out several factors that should be taken into
account while using decoders. Each decoder imposes a relationship T°
between a feasible solution and a decoded solution. It’s important that
several conditions are satisfied: (1) for each solution s € F there is an
encoded solution d, (2) each encoded solution d corresponds to a feasible
solution s, and (3) all solutions in F should be represented by the same
number of encodings d.! Additionally, it’s reasonable to request that (4)
the transformation 7 is computationally fast and (5) it has a locality
feature in the sense that small changes in the encoded solution result in
small changes in the solution itself. An interesting study on coding trees
in evolutionary algorithms was reported by Palmer and Kershenbaum
(1994), where the above conditions were formulated.

2.10 Separating solutions and constraints

Separating out individuals and constraints is a general and interesting
heuristic. The first possibility includes the use of multiobjective opti-
mization methods, where the evaluation function f and constraint vio-
lation measures f; (for m constraints) constitute an (m -+ 1)-dimensional
vector v = (f, f1,..., fm). Using some multiobjective optimization
method, we can attempt to minimize its components. An ideal solu-
tion z would have f;(z) = 0for 1 < i < m and f(z) < f(y) for all
feasible y (minimization problems). Surry et al. (1995) presented a
successful implementation of this approach.

Another heuristic is based on the idea of handling constraints in a
particular order. Schoenauer and Xanthakis (1993) called this method
a “behavioral memory” approach.

211 Exploring boundaries

A special approach was proposed in evolutionary algorithms where
variation operators can be designed to search the boundary (and only
the boundary) between feasible and infeasible solutions (Michalewicz et
al.,, 1996). The general concept for boundary operators is that all indi-
viduals of the initial population lie on the boundary between feasible and

'As observed by Davis (1995), however, the requirement that all solutionsin F should be rep-
resented by the same number of decodings seems overly strong. There are cases in which this
requirement might be suboptimal. For example, suppose we have a decoding and encoding
procedure that makes it impossible to represent suboptimal solutions, and which encodes the
optimal one. This might be a good thing. An example would be a graph coloring order-based
structure with a decoding procedure that gives each node its first legal color. This repre-
sentation couldn’t encode solutions where some nodes that could be colored in fact weren’t
colored, but this is a good thing!
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infeasible areas of the search space and the operators are closed with re-
spect to the boundary. Then all the offspring are at the boundary points
as well. As these operators were proposed in the context of constrained
parameter optimization, we discuss this approach in the next section.

2.12 Finding feasible solutions

There are problems for which any feasible solution would be of value.
These are tough problems! Here, we really aren’t concerned with any
optimization issues (finding the best feasible solution) but instead we
have to find any point in the feasible search space F. These problems
are called constraint satisfaction problems.

Some evolutionary algorithms have been designed to tackle these prob-
lems. Paredis experimented with two different approaches to constraint
satisfaction problems. The first approach (Paredis, 1992 and 1993) was
based on a clever representation of individuals where each component
was allowed to take on values from the search domain, as well as an
additional value of ‘?,” which represented choices that remained unde-
cided. The initial population consisted of strings that possessed all 7s.
A selection-assignment-propagation cycle then replaced some ? sym-
bols by values from the appropriate domain (the assignment is checked
for consistency with the component in question). The quality of such
partially-defined individuals was defined as the value of the evaluation
function of the best complete solution found when starting the search
from a given partial individual. Variation operators were extended to
incorporate a repair process (a constraint-checking step). This system
was implemented and executed on several N-queens problems (Paredis,
1993) as well as some scheduling problems (Paredis, 1992).

In the second approach, Paredis (1994) investigated a co-evolutionary
model, where a population of potential solutions co-evolves with a pop-
ulation of constraints. Fitter solutions satisfy more constraints, whereas
fitter constraints are violated by more solutions. This means that indi-
viduals from the population of solutions are considered from the whole
search space, and that there’s no distinction between feasible and in-
feasible individuals. The evaluation of an individual is determined on
the basis of constraint violation measures f;s; however, better f;s (e.g.,
active constraints) contribute more towards the evaluation of solutions.
The approach was tested on the N-queens problem and compared with
other single-population approaches (Paredis, 1994 and 1995).
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3. Numerical optimization

Let us concentrate now on one particular area of applications of evo-
lutionary algorithms: numerical optimization. There have been many
efforts to use evolutionary algorithms for constrained numerical opti-
mization problems (Michalewicz, 1994). In this section we survey some
approaches of addressing constraints; these approaches would illustrate
some points raised in the previous section of this chapter and would
provide more concrete examples.

In general, constraint-handling techniques which have been incorpo-
rated in evolutionary algorithms can be grouped into five basic cate-
gories:

1 Methods based on preserving the feasibility of solutions.
2 Methods based on penalty functions.

3 Methods that make a clear distinction between feasible and infea-
sible solutions.

4 Methods based on decoders.
5 Other hybrid methods.

We’ve just explored many of the issues involved in each of these cat-
egories. Now let’s revisit and take a look at methods in more detail.
Furthermore, for most of the methods enumerated here, we’ll provide a
test case and the result of the method on that case.

3.1 Preserving the feasibility

There are two methods that fall in this category. Let’s discuss them
in turn.

Use of specialized operators. The idea behind the GENOCOP sys-
tem? (Michalewicz, 1996; Michalewicz and Janikow, 1996) is based on
specialized variation operators that transform feasible individuals into
other feasible individuals. These operators are closed on the feasible
part F of the search space. As noted earlier, the method assumes that
we are facing only linear constraints and that we have a feasible start-
ing point (or population). Linear equations are used to eliminate some
variables, which are replaced as a linear combination of the remaining

2GENOCOP stands for GEnetic algorithm for Numerical Optimization of COnstrained Prob-
lems and was developed before the different branches of evolutionary algorithms became
functionally similar.
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variables. Linear inequalities are updated accordingly. For example,
when a particular component z; of a solution vector x is varied, the
evolutionary algorithm determines its current domain dom(z;) (which is
a function of linear constraints and the remaining values of the solution
vector X) and the new value of z; is taken from this domain (either with
a uniform probability distribution or other probability distributions for
nonuniform and boundary-type variations). Regardless of the specific
distribution, it’s chosen such that the offspring solution vector is always
feasible. Similarly, arithmetic crossover, ax + (1 — a)y, on two feasible
solution vectors x andy always yields a feasible solution (for 0 < a < 1)
in convex search spaces. Since this evolutionary system assumes only

linear constraints, this implies the convexity of the feasible search space
F.

Searching the boundary of the feasible region. Searching along
the boundaries of the feasible-infeasible regions can be very important
when facing optimization problems with nonlinear equality constraints
or with active nonlinear constraints at the target optimum. Within
evolutionary algorithms, there’s a significant potential for incorporating
specialized operators that can search such boundaries efficiently. We
provide one example of such an approach; for more details see (Schoe-
nauer and Michalewicz, 1996).

Consider the following numerical optimization problem: maximize the
function

G(x) = |Z?=1 cos* (@) — 2[Ti; cos®(w:) |

Y11 > 2
D ie1 1
subject to

[T 2 >0.75, 30 @ < 7.5n, and bounds 0 < z; <10 for
1<i<n.

Function G is nonlinear and its global maximum is unknown, lying
somewhere near the origin. The problem has one nonlinear constraint
and one linear constraint. The latter is inactive around the origin and
will be omitted. So the boundary between feasible and infeasible re-
gions is defined by the equation []z; = 0.75. The problem is difficult
and no standard methods gave satisfactory results. This function was
the first for which the idea of searching only the boundary was tested
(Michalewicz et al., 1996). Specific initialization procedures and vari-
ation operators could be tailored to the problem owing to the simple
analytical formulation of the constraint.
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s Initialization. Randomly choose a positive variable for z;, and
use its inverse as a variable for x;41. The last variable is either
0.75 (when 7 is odd), or is multiplied by 0.75 (if n is even), so that
the point lies on the boundary surface.

m Crossover. The variation operator of geometrical crossover is
defined by (z;)(y;) — (m‘z?‘yil_o‘), with & randomly chosen in [0,1].

w  Mutation. Pick two variables randomly, multiply one by a ran-
dom factor ¢ > 0 and the other by -;— (restrict g to respect the
bounds on the variables). AMutation

3.2 Penalty functions

The main efforts to treat constrained evolutionary optimization have
involved the use of (extrinsic) penalty functions that degrade the quality
of an infeasible solution. In this manner, the constrained problem is
made unconstrained by using the modified evaluation function

B f(x), if xeF
eval(x) = { f(x) + penalty(x), otherwise,

where penalty(x) is zero if no violation occurs, and is positive, otherwise
(assuming the goal is minimization). The penalty function is usually
based on some form of distance that measures how far the infeasible
solution is from the feasible region F, or on the effort to “repair” the
solution, i.e., to transform it into . Many methods rely on a set of
functions f; (1 € j £ m) to construct the penalty, where the function
fj measures the violation of the j-th constraint:

fi) = { mex{0,g5(x)}, i 1<j<q
’ A ()1, ifg+1<j<m.

But these methods differ in many important details with respect to how
the penalty function is designed and applied to infeasible solutions. Some
more details on the specifics is provided below.

Method of static penalties. Homaifar et al. (1994) proposed that
a family of intervals be constructed for every constraint that we face,
where the intervals determine the appropriate penalty coefficient. The
idea works as follows:

(1) For each constraint, create several (£) levels of violation.
(2) For each level of violation and for each constraint, create a penalty
coefficient Rij (1 = 1,2,...,¢, 7 =1,2,...,m). Higher levels of
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violation require larger values of this coefficient (again, we assume
minimization).

(3) Start with a random population of individuals (feasible or
infeasible).

(4) Evolve the population. Evaluate individuals using

eval(x) = f(x) + 372, Ri; f7(x).

The weakness of the method arises in the number of parameters. For
m constraints the method requires m(2¢ + 1) parameters in total: m
parameters to establish the number of intervals for each constraint, ¢
parameters for each constraint thereby defning the boundaries of the
intervals (the levels of violation), and ¢ parameters for each constraint
representing the penaltycoefficients R;;. In particular, for m = 5 con-
straints and ¢ = 4 levels of violation, we need to set 45 parameters!
And the results are certainly parameter dependent. For any particular
problem, there might exist an optimal set of parameters for which we’d
generate feasible near-optimum solutions, but this set might be very
difficult to find.

Method of dynamic penalties. In contrast to Homaifar et al. (1994),
Joines and Houck (1994) applied a method that used dynamic penalties.
Individuals are evaluated at each iteration (generation) ¢, by the formula

eval(x) = f(x) + (C x t)* 377, ff(x),

where C, a, and 8 are constants. A reasonable choice for these param-
eters is C = 0.5, a = § = 2 (Joines. and Houck, 1994). This method
doesn’t require as many parameters as the static method described ear-
lier, and instead of defining several violation levels, the selection pressure
on infeasible solutions increases due to the (C x t)® component of the
penalty term: as ¢ grows larger, this component also grows larger.

Method of annealing penalties. A different means for dynamically
adjusting penalties can take a clue from the annealing algorithm: Per-
haps we can anneal the penalty values using a parameter that is analo-
gous to “temperature.” This procedure was incorporated into the second
version of GENOCOP (GENOCOP II) (Michalewicz. and Attia, 1994):
(1) Divide all the constraints into four subsets: linear equations, linear
inequalities, nonlinear equations, and nonlinear inequalities.

(2) Select a random single point as a starting point. (The initial pop-
ulation consists of copies of this single individual.) This initial point
satisfies the linear constraints.

(3) Set the initial temperature 7 = 7o.

(4) Evolve the population using eval(x,7) = f(x) + % ;-n:l fj?“(x),
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(5) If T < 1y, stop; otherwise,

— Decrease the temperature 7.

- Use the best available solution to serve as a starting point for the next
iteration.

— Repeat the previous step of the algorithm.

This method distinguishes between linear and nonlinear constraints.
The algorithm maintains the feasibility of all linear constraints using a
set of closed operators that convert a feasible solution (feasible, that is,
only in terms of linear constraints) into another feasible solution. The
algorithm only considers active constraints at every generation and the
selective pressure on infeasible solutions increases due to the decreasing
values of the temperature 7.

Methods of adaptive penalties. Instead of relying on a fixed de-
creasing temperature schedule, it’s possible to incorporate feedback from
the search into a means for adjusting the penalties. Let’s discuss two
possibilities.

Bean and Hadj-Alouane (Bean and Hadj-Alouane, 1992, Hadj-Alouane
and Bean, 1992) developed a method where the penalty function takes
feedback from the search. Each individual is evaluated by the formula

eval(x) = f(x) + A(t) X]L, f7(x),

where A(t) is updated at every generation ¢:

(1/B81) - A(t), ifbteFforallt—k+1<i<t
At+1) =1 B2 A(D), ifbteS—Fforallt—k+1<i<t
A(t), otherwise,

where b? denotes the best individual in terms of function eval at gen-
eration i, £1,082 > 1 and B # B2 to avoid cycling. In other words, (1)
if all of the best individuals in the last k generations were feasible the
method decreases the penalty component A(¢ + 1) for generation ¢ + 1,
and (2) if all of the best individuals in the last k generations were infea-
sible then the method increases the penalties. If there are some feasible
and infeasible individuals as best individuals in the last k£ generations,
A(t + 1) remains without change.

A different method was offered by Smith and Tate (1993) that uses
a “near-feasible” threshold ¢; for each constraint 1 < j < m. These
thresholds indicate the distances from the feasible region J that are
considered “reasonable” (or, in other words, that qualify as “interesting”
infeasible solutions because they are close to the feasible region). Thus
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the evaluation function is defined as
m
eval(x,t) = f(x) + Freas(t) — Fau(t Z Fi(x)/g5( t))¥,
j=1

where Fyy(t) denotes the unpenalized value of the best solution found
so far (up to generation t), Feqs(t) denotes the value of the best feasible
solution found so far, and & is a constant. Note, that the near-feasible
thresholds ¢;(t) are dynamic. They are adjusted during the search based
on feedback from the search. For example, it’s possible to define g;(t) =
g;(0)/(1 + B;t) thus increasing the penalty component over time. To
the best of our knowledge, neither of the adaptive methods described in
this subsection has been applied to continuous nonlinear programming
problems.

Death penalty method. The death penalty method simply rejects
infeasible solutions, killing them immediately (see above). This simple
method can provide quality results for some problems. This method
requires initialization with feasible solutions so comparisons to other
methods can be tricky, but an interesting pattern emerged from the
experiments analyzed in Michalewicz (1995). Simply rejecting infeasible
methods performed quite poorly and wasn’t as robust as other techniques
(i.e., the standard deviation of the solution values was relatively high).

Segregated evolutionary algorithms. When tuning penalty coef-
ficients, too small a penalty level leads to solutions that are infeasible
because some penalized solutions will still exhibit an apparently higher
quality than some feasible solutions. On the other hand, too high a
penalty level restricts the search to the feasible region and thereby fore-
goes any short cut across the infeasible region. This often leads to pre-
mature stagnation at viable solutions of lesser value. One method for
overcoming this concern was offered in Leriche et al. (1995).

The idea is to design two different penalized evaluation functions with
static penalty terms p1 and p2. Penalty p; is purposely too small, while
penalty ps is hopefully too high. Every individual in the current popula-
tion undergoes recombination and mutation (or some form of variation).
The values of the two evaluation functions fi(x) = f(x)+pi(x), i = 1,2,
are computed for each resulting offspring (at no extra cost in terms of
evaluation function calls), and two ranked lists are created according
to the evaluated worth of all parents and offspring for each evaluation
function.
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33 Search for feasible solutions

Some evolutionary methods emphasize a distinction between feasible
and infeasible solutions. One method considers the problem constraints
in sequence. Once a sufficient number of feasible solutions is found in the
presence of one constraint, the next constraint is considered. Another
method assumes that any feasible solution is better than any infeasible
solution (as we discussed above). Yet another method repairs infeasible
individuals. Let’s take each of these examples in turn.

Behavioral memory method. Schoenauer and Xanthakis (1993)
proposed what they call a “behavioral memory” approach:

(1) Start with arandom population of individuals (feasible or infeasible).
(2) Set j =1 (j is a constraint counter).

(3) Evolve this population with eval(x) = f;(x) until a given percent-
age of the population (a so-called flip threshold ¢) is feasible for this
constraint.

(4) Set j =7+ 1.

(5) The current population is the starting point for the next phase of the
evolution, where eval(x) = f;j(x) (defined in the section 3.2). During
this phase, points that don’t satisfy one of the first, second, ..., or (j—1)-
th constraints are eliminated from the population. The halting criterion
is again the satisfaction of the j-th constraint using the flip threshold
percentage ¢ of the population.

(6) If 7 < m, repeat the last two steps, otherwise (j = m) optimize
the evaluation function, i.e., eval(x) = f(x), while rejecting infeasible
individuals.

The method requires a sequential ordering of all constraints that are
processed in turn. The influence of the order of constraints on the end
results isn’t very clear, and different orderings can generate different re-
sults both in the sense of total running time and accuracy. In all, the
method requires three parameters: the sharing factor o, the flip thresh-
old ¢, and a particular order of constraints. The method’s very different
from many others, and really is quite different from other penalty ap-
proaches since it only considers one constraint at a time. Also, the
method concludes by optimizing using the “death penalty” approach, so
it can’t be neatly parceled into one or another category.

*The method suggests using a so-called sharing scheme to maintain population diversity.
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Method of superiority of feasible points. Powell and Skolnick
(1993) used a method that’s based on a classic penalty approach, but
with one notable exception. Each individual is evaluated by the formula

eval(x) = f(x) + 7307, fi(x) +0(t, %),

where 7 is a constant; however, the original component H(t,x) is an
additional iteration-dependent function that influences the evaluations of
infeasible solutions. The point is that the method distinguishes between
feasible and infeasible individuals by adopting an additional heuristic
(suggested earlier Richardson et al., 1989). For any feasible individual
x and any infeasible individual y: eval(x) < eval(y), i.e., any feasible
solution is better than any infeasible one. This can be achieved in many
ways. One possibility is to set

0, if xeF
0(t,x) = ¢ max{0, maxxer{f(x)}
—minxes—F{f(x) +r 371 fi(x)}}, otherwise.

Infeasible individuals are penalized such that they can’t be better than

the worst feasible individual (i.e., maxxer{f(x)}).*
In a recent study (Deb, 1999), this approach was modified using tour-
nament selection coupled with the evaluation function

F{x), if x is feasible,

eval(x) = { fmax + 372, fi(x), otherwise,
where fmax is the function value of the worst feasible solution in the
population. The main difference between this approach and Powell and
Skolnick’s approach is that here the evaluation function value is not
considered in evaluating an infeasible solution. Additionally, a niching
scheme might be introduced to maintain diversity among feasible solu-
tions. Thus, the search focuses initially on finding feasible solutions and
then, when an adequate sampling of feasible solutions have been found,
the algorithm finds better feasible solutions by maintaining a diverse set
of solutions in the feasible region. There’s no need for penalty coefficients
here because the feasible solutions are always evaluated to be better than
infeasible solutions, and infeasible solutions are compared purely on the
basis of their constraint violations. Normalizing the constraints f;(x) is
suggested.

Repairing infeasible individuals. GENOCOP III (the successor
to the previous GENOCOP systems), incorporates the ability to re-
pair infeasible solutions, as well as some of the concepts of co-evolution

“Powell and Skolnick (1993) achieved the same result by mapping evaluations of feasible
solutions into the interval (—oo,1) and infeasible solutions into the interval (1,00). This
difference in implementation isn’t important for ranking and tournament selection methods.
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(Michalewicz and Nazhiyath, 1995). As with the original GENOCOP,
linear equations are eliminated, the number of variables is reduced, and
linear inequalities are modified accordingly. All points included in the
initial population satisfy linear constraints. Specialized operators main-
tain their feasibility in the sense of linear constraints from one generation
to the next. We denote the set of points that satisfy the linear constraints
by F1 CS.

Nonlinear equations require an additional parameter (7y) to define the
precision of the system. All nonlinear equations h;(x) = 0 (for j =
g+1,...,m) are replaced by a pair of inequalities —y < h;(x) <. Thus,
we only deal with nonlinear inequalities. These nonlinear inequalities
further restrict the set ;. They define the fully feasible part F C Fj of
the search space S.

GENOCOP III extends GENOCOP by maintaining two separate pop-
ulations where a development in one population influences the evalua-
tions of individuals in the other. The first population P consists of
so-called search points from Fj that satisfy the linear constraints of the
problem. As mentioned earlier, the feasibility of these points, in the
sense of linear constraints, is maintained by specialized operators.

The second population P, consists of so-called reference points from
F; these points are fully feasible, i.e., they satisfy all the constraints.’
Reference points r from P, being feasible, are evaluated directly by
the evaluation function, i.e., eval(r) = f(r). On the other hand, search
points from Py are “repaired” for evaluation and the repair process works
as follows. Assume there’s a search point s € F;. Ifs € F, then
eval(s) = f(s), since s is fully feasible. Otherwise (i.e., s € F), the
system selects® one of the reference points, say r from P, and creates
a sequence of random points z from a segment between s and r by
generating random numbers @ from the range (0,1): z = as+ (1 —a)r.”
Once a fully feasible z is found, eval(s) = eval(z) = f(z).®

Additionally, if f(z) is better than f(r), then the point z replaces r
as a new reference point in the population of reference points F,. Also,
z replaces s in the population of search points Py with some probability
of replacement py.

>If GENOCOP III has difficulties in locating such a reference point for the purpose of ini-
tialization, it prompts the user for it. In cases where the ratio |F|/|S| of feasible points in
the search space is very small, it may happen that the initial set of reference points consists
of multiple copies of a single feasible point.
®Better reference points have greater chances of being selected. A nonlinear ranking selection
method was used.
"Note that all such generated points z belong to Fj.

The same search point & can evaluate to different values in different generations due to the
random nature of the repair process.



Evolutionary Algorithms and Constrained Optimization 77

34 Decoders

Decoders offer an interesting alternative for designing evolutionary
algorithms, but they’ve only been applied in continuous domains recently
(Koziel and Michalewicz, 1998 and 1999). It’s relatively easy to establish
a one-to-one mapping between an arbitrarily convex feasible search space
F and the n-dimensional cube [—1,1]" (see figure 3.2).

Figure 8.2. A mapping T from a space F into a cube {—1,1]" (two-dinensional case)

Note that an arbitrary point (other than 0) yo = (Y¥0,1,-..,%0,n) €
[~1, 1] defines a line segment from the 0 to the boundary of the cube.
This segment is described by ¥ = yo; - t, for ¢ = 1,...,n, where ¢
varies from 0 t0 tmae = 1/ max{|yo,1|,...,|%0n|}. For t =0,y = 0, and
for t = tmaz, ¥ = (Yo,1tmazs--- ,yo,ntmam)— a boundary point of the
[~1,1]" cube. Consequently, the corresponding feasible point (to yo €
[~1,1]*) %o € F (with respect to some reference point’ rg) is defined
as Xg = rg + Yo * 7, where 7 = Tmaz/tmaz, and Tmaz is determined with
arbitrary precision by a binary search procedure such that rg+ygo - Tmes
is a boundary point of the feasible search space F.

The above mapping satisfies all the requirements of a “good” decoder.
Apart from being one-to-one, the transformation is fast and has a “lo-
cality” feature (i.e., points that are close before being mapped are close
after being mapped).

°A reference point rg is an arbitrary internal point of the convex set F. Note, that it’s
not necessary for the feasible search space F to be convex. Assuming the existence of the
reference point rg, such that every line segment originating in ro intersects the boundary of
F in precisely one point, is sufficient. This requirement is satisfied, of course, for any convex
set F.
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3.5 Hybrid methods

It’s easy to develop hybrid methods that combine evolutionary algo-
rithms with deterministic procedures for numerical optimization prob-
lems. For example, Waagen et al. (1992) combined a floating-point
representation and Gaussian variation with the direction set method of
Hooke-Jeeves. This hybrid was tested on three unconstrained continuous-
valued test functions. Myung et al. (1995) considered a similar approach
but experimented with constrained problems in the continuous domain.
Again, they used floating-point representations and Gaussian variation,
but combined this with a Lagrange method developed by Maa and Shan-
blatt (1992) into a two-phased search. During the first phase, the evo-
lutionary algorithm optimizes the function

eval(x) = f(x)+ 5 (Z;r;l ff(x)) !

where s is a constant. After this phase terminates, the second phase
applies the Maa and Shanblatt procedure to the best solution found
during the first phase. This second phase iterates until the system

X' = = v f(0) = [T, V650 + )]

is in equilibrium, where the Lagrange multipliers are updated as /\; =
esfj for a small positive constant e.

Several other constraint-handling methods also deserve attention. For
example, some methods use the values of the evaluation function f and
penalties f; (j = 1,...,m) as elements of a vector and apply multiob-
jective techniques to minimize all the components of the vector. For
example, Schaffer (1984) selects 1/(m + 1) of the population based on
each of the objectives. Such an approach was incorporated by Parmee
and Purchase (1994) in the development of techniques for constrained
design spaces. On the other hand, Surry et al. (1995), ranked all the
individuals in the population on the basis of their constraint violations.
This rank, r, together with the value of the evaluation function f,leads
to the two-objective optimization problem. This approach gave a good
performance on optimization of gas supply networks (Surry et al., 1995).

Hinterding and Michalewicz (1998) used a vector of constraint viola-
tions, to assist in the process of parent selection, where the length of
the vector corresponded to the number of constraints. For example, if
the first parent satisfies constraints 1, 2, and 4 (say out of 5), it’s mated
preferably with an individual that satisfies constraints 3 and 5. It’s also
possible to incorporate knowledge of the problem constraints into the
belief space of cultural algorithms (Reynolds, 1994). These algorithms
provide a possibility for conducting an efficient search of the feasible
search space (Reynolds et al., 1995).
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4. Final Remarks

We’ve covered a great many facets of constrained optimization prob-
lems and provided a survey of some of the attempts to treat these prob-
lems. Even though it might seem that this survey was lengthy, in fact, it
was overly brief. It only skimmed the surface of what has been done with
evolutionary algorithms and what remains to be done. Nevertheless, we
have to admit that the characteristics that make a constrained problem
difficult for an evolutionary algorithm (or for that matter, other meth-
ods) aren’t clear. Problems can be characterized by various parameters:
the number of linear constraints, the number of nonlinear constraints,
the number of equality constraints, the number of active constraints, the
ratio p = |F|/|S} of the size of feasible search space to the whole, and
the type of evaluation function in terms of the number of variables, the
number of local optima, the existence of derivatives, and so forth.

In Michalewicz and Schoenauer (1996), 11 test cases (G1-G11) for
constrained numerical optimization problems were proposed. These test
cases include evaluation functions of various types (linear, quadratic,
cubic, polynomial, nonlinear) with various numbers of variables and dif-
ferent types (linear inequalities, nonlinear equalities and inequalities)
and numbers of constraints. The ratio p between the size of the feasible
search space F and the size of the whole search space S for these test
cases varies from zero to almost 100 percent. The topologies of feasible
search spaces are also quite different.

Even though many constraint-handling methods reported successes on
particular test cases, the results of many tests haven’t provided meaning-
ful patterns to predict the difficulty of problems. No single parameter,
such as the number of linear, nonlinear, active constraints, and so forth,
can suffice to describe the problem difficulty. Several methods were also
quite sensitive to the presence of a feasible solution in the initial pop-
ulation. There’s no doubt that more extensive testing and analysis is
required. The question of how to make an appropriate choice of an evo-
lutionary method for a nonlinear optimization problem a priori remains
open. It seems that more complex properties of the problem (e.g., the
characteristic of the evaluation function together with the topology of
the feasible region) may constitute quite significant measures of the dif-
ficulty of the problem. Also, some additional measures of the problem
characteristics due to the constraints might be helpful. So far, we don’t

have this sort of information at hand.
Michalewicz and Schoenauer (1996) offered:

It seems that the most promising approach at this stage of research is
experimental, involving the design of a scalable test suite of constrained
optimization problems, in which many [..] features could be easily
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tuned. Then it should be possible to test new methods with respect to
the corpus of all available methods.

There’s a clear need for a parameterized test-case generator that can
be used for analyzing various methods in a systematic way instead of
testing them on a few selected cases. Furthermore, it’s not clear if the
addition of a few extra specific test cases is really of any help. A few
test-case generators have been just constructed.

There have been some attempts to propose a test case generator for
unconstrained parameter optimization (Whitley et al., 1995, 1996). We
are also aware of some attempts to do so for constrained cases. In Van
Kemenade (1998) the author proposed so-called stepping-stones problem
defined as:

maximize Y 5, (z:/m + 1),
where -7 < z; < wfor ¢ = 1,...,n and the following constraints are
satisfied:

e/ 4 cos(2z;) < lfori=1,...,n.

Note that the evaluation function is linear and that the feasible region
is split into 2™ disjoint parts (called stepping-stones). As the number of
dimensions n grows, the problem becomes more complex. However, as
the stepping-stones problem has only one parameter, it can not be used
to investigate some aspects of a constraint-handling method.

In Michalewicz (1999) a test-case generator for constrained parame-
ter optimization techniques was proposed. This generator is capable of
creating various test cases with different characteristics:

®  problems with different value of p: the relative size of the feasible
region in the search space

m problems with different number and types of constraints

® problems with convex or non-convex evaluation function, possibly
with multiple optima

» problems with highly non-convex constraints consisting of (possi-
bly) disjoint regions.

All this can be achieved by setting a few parameters that influence
different characteristics of the optimization problem. Such a test-case
generator should be very useful for analyzing and comparing different
constraint-handling techniques.

However, this test case generator is far from perfect. It defines a
landscape which is a collection of site-wise optimizable functions, each
defined on different subspaces of equal sizes. Because of that all basins
of attractions have the same size, moreover, all points at the boundary
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between two basins of attraction have the same value. The local optima
are located in centers of the hypercubes; all feasible regions are centered
around the local optima. Note also, that while we can change the num-
ber of constraints, there is precisely one active constraint at the global
optimum.

In Schmidt and Michalewicz (2000) a new version of the test case
generator was defined to overcome the limitations of the previous one.
Here it is possible to control dimensionality, multimodality, ruggedness
of the landscape, the number of feasible components, and the size of the
feasible search space. With the gradual and intuitive control over its
parameters, the proposed test case generator is a significant improve-
ment over earlier versions. It should be very useful in evaluating (in a
systematic way) various constraints handling methods; it should allow
to understand their merits and drawbacks.
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Chapter 4

CONSTRAINED
EVOLUTIONARY OPTIMIZATION

— the penalty function approach

Thomas Runarsson and

Xin Yao

Abstract

Keywords:

The penalty function method has been used widely in constrained evo-
lutionary optimization (CEO). This chapter provides an in-depth anal-
ysis of the penalty function method from the point of view of search
landscape transformation. The analysis leads to the insight that apply-
ing different penalty function methods in evolutionary optimization is
equivalent to using different selection schemes. Based on this insight,
two constraint handling techniques, i.e., stochastic ranking and global
competitive ranking, are proposed as selection schemes in CEO. Our
experimental results have shown that both techniques performed very
well on a set of benchmark functions. Further analysis of the two tech-
niques explains why they are effective: they introduce few local optima
except for those defined by the objective functions.

Constrained evolutionary optimization (CEO), penalty function method,
ranking.

1. Introduction

The general nonlinear programming problem can be formulated as

minimize f(x), x=(z1,...,2,) ER" (4.1)

where f(x) is the objective function, x € SNF, § & R" defines the
search space which is an n-dimensional space bounded by the parametric

constraints

z, < z; < T, jE{l,...,n}, (4.2)
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and the feasible region F is defined by
F={xeR"|g(x)<0Vkell,..,m}} (4.3)

where gr(x),k € {1,...,m}, are inequality constraints. Equality con-
straints h(x)can be approximated by inequality constraints using |h(x)|—
0 < 0, where ¢ is a small positive number that indicates the degree of
constraint violation. Only minimization problems are considered in this
chapter without loss of generality since max{f(x)} = —min{—f(x)}.

The penalty function methods considered in this chapter belong to the
exterior penalty approach. They are used widely in evolutionary con-
strained optimization (ECO), although some of the methods are equally
applicable to non-evolutionary optimization algorithms. In contrast to
numerous penalty function methods proposed for ECO (Michalewicz and
Schoenauer, 1996), few theoretical analysis are available to explain how
and why a penalty function method works. This chapter fills in this
gap by providing an in-depth analysis of penalty function methods and
their relationship to search landscape transformation. Such analysis has
led to the development of new constraint handling techniques for CEO.
In essence, a penalty function method transforms the search landscape
by adding a penalty term to the objective function. Such transforma-
tion influences the relative fitness of individuals in a population. It also
alters the characteristics of the search landscape, e.g., ruggedness. A
previously fit individual according to the objective function might not
be fit anymore on the transformed search landscape. Since the primary,
if not the only, place in an evolutionary algorithm that fitness is used is
selection, it is easy to see that an effective approach to “implementing” a
penalty function method is to design a new selection scheme. Two rank-
based selection schemes are described in this chapter to illustrate how
penalty function methods can be “implemented” effectively by designing
new ranking schemes in ECO.

The rest of this chapter is organized as follows. Section 2 analysis the
penalty function method in CEO and discusses how different penalty
function methods influence evolutionary search. In particular, the re-
lationship between different penalty function methods and the ranking
of individuals in a population is discussed in detail. Sections 3 and 4
present the ideas and algorithms of two constraint handling techniques
based on ranking, i.e., stochastic ranking (Runarsson and Yao, 2000)
and global competitive ranking. Section 5 provides further analysis of
penalty function methods and shows how the penalty function method
works through two detailed examples. Section 6 gives our experimental
results on the two constraint handling techniques. Finally, Section 7
gives a brief summary of this chapter.



Constrained Evolutionary Optimization 89

2. The Penalty Function Method

Constrained optimization problems have often been transformed into
unconstrained ones by adding a measure of the constraint violation to
the objective function (Fiacco and McCormick, 1968). This constrained
handling technique is known as the penalty function method.

The introduction of the penalty term enables the transformation of
a constrained optimization problem into a series of unconstrained ones,
e.g.,

Y(x) = f(x) + 79 $lg;(x);j=1,...,m) (44)
where ¢ > 0 isa real valued function which imposes a penalty, ¢(g;(x),
controlled by a sequence of penalty coefficients {r(9}§. G indicates the
maximum number of generations used in CEO. The general form of func-
tion ¢ includes both the generation counter g (for dynamic penalty) and
the population (for adaptive penalty). In our current notation, this is
reflected in the penalty coefficient #(9). This transformation, i.e. equa-
tion (4.4), has been used widely in CEO (Kazarlis and Petridis, 1998;
Siedlecki and Sklansky, 1989). In particular, the following quadratic
loss function (Fiacco and McCormick, 1968), whose decrease in value
represents an approach to the feasible region, has often been used as the
penalty function (Michalewicz and Attia, 1994; Joines and Houck, 1994):

¢(gi(x);5 =1,...,m) = Y _ max{0,g(x)}". (4.5)
=1

However, any other penalty function is equally valid. Different penalty
functions characterize different problems. It is unlikely that a generic
penalty function exists which is optimal for all problems. The intro-
duction of penalties may transform a smooth objective function into a
rugged one. The search may then become more easily trapped in local
minima. For this reason, it is necessary to develop a penalty function
method which attempts to preserve the topology of the objective func-
tion and yet enables a CEO algorithm to locate the optimal feasible
solution.

The penalty function method may work quite well for some problems.
However, deciding an optimal (or near-optimal) value for 9 turns out
to be a difficult optimization problem itself! If 79 is too small, an
infeasible solution may not be penalized enough. Hence an infeasible
solution may be evolved by an evolutionary algorithm. If (9 is too
large, then a feasible solution is very likely to be found but could be of
very poor quality. A large +(9) discourages the exploration of infeasible
regions even in the early stages of evolution. This is particularly inef-
fective for problems where feasible regions in the whole search space are
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disjoint. In this case, it may be difficult for an evolutionary algorithm
to move from one feasible region to another unless they are very close
to each other. Reasonable exploration of infeasible regions may act as
bridges connecting two or more different feasible regions. The critical
issue here is how much exploration of infeasible regions (i.e., how large
(9} is) should be considered as reasonable. The answer to this question
is problem dependent. Even for the same problem, different stages of
evolutionary search may requiredifferent (9 values.

There has been some work on the dynamic setting of r(9) values in
CEO (Joines and Houck, 1994; Kazarlis and Petridis, 1998; Michalewicz
and Attia, 1994). Such work usually relies on a predefined monotoni-
cally nondecreasing sequence of 79) values. This approach worked well
for some simple problems but failed for more difficult ones because the
optimal setting of (@) values is problem dependent (Reeves, 1997). A
fixed and predefined sequence cannot solve a variety of different problems
satisfactorily. A trial-and-error process has to be used in this situation
in order to find a proper function for {9 for each problem, as is done
in (Joines and Houck, 1994; Kazarlis and Petridis, 1998).

An adaptive approach, where (9 values are adjusted dynamically
and automatically by an evolutionary algorithm itself, appears to be
most promising in tackling different constrained optimization problems.
For example, population information can be used to adjust r(9 values
adaptively (Smith and Coit, 1997). Different problems lead to different
populations in evolutionary search and thus lead todifferent r(9) values.
The advantage of such an adaptive approach is that it can be applied
to problems where little prior knowledge is available because there is no
need to find a predefined r@ value, or a sequence of (9 values.

According to (4.4), different r(9) values lead to different fitness func-
tions. A fit individual under one fitness function may not be fit under
a different fitness function. When rank-based selection is used in CEO,
finding a near optimal r(9), adaptively, is equivalent to ranking individu-
als in a population adaptively. Hence, the issue of setting r(9) adaptively
becomes how to rank individuals according to their objective and penalty
values.

To facilitate later discussion, some notations are first introduced here.
The individuals being ranked will be arbitrarily assigned some numerical
labels. Then for any ranking of individuals, the corresponding permuta-
tion m € P* will be a function from {1,..., A} onto itself, whose argu-
ments are the individuals and whose values are the ranks. The following
notation is used: (i) is the rank given to individual 5 and 7~1(j) is the
individual assigned the rank j. Since 7~(j) is the individual assigned
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the rank j, the bracket notation
= <7T_1(1)’ 7"—1(2)a e ,W—I(A))

corresponds to listing all individuals in their ranked order.
For a given penalty coefficient (%) > 0 let the ranking of A individuals
be

Y(Xr1(1)) S P(Xpr(2)) < - S P(Xpr(yy) (4.6)

where 9 is the transformation function given by equation (4.4). Now
examine the adjacent pair 7~(i) and 7~(i + 1) in the ranked order:

fitr9¢ < fia 49,  ie{l,...,A-1},  (47)

where notations f; = f(Xz1(;)) and ¢; = ¢(gj(Xz1(),4 = 1,...,m)) are
used for convenience.

Define a parameter, 7;, which will be referred to as the critical penalty
coefficient for the adjacent pair ¢ and ¢4 1, as

7 = (fix1 — fi) /(b5 — big1), for ¢; # ¢iy1. (4.8)

For a given choice of r(9) > 0, there are three different cases which may
give rise to Inequality (4.7):

1 f; < fi+1 and ¢; > ¢iy1: the comparison is said to be dominated
by the objective function and 0 < 79) < #; because the objective
function f plays the dominant role in determining the inequality.

When individuals are feasible, ¢; = ¢;4.1 = 0 and 7; — co.

2 fi 2 fiy1 and ¢; < ¢i41: the comparison is said to be dominated
by the penalty function and 0 < 7 < r{9 because the penalty
function ¢ plays the dominant role in determining the inequality.

3 fi < fiy1 and ¢; < ¢;4+1: the comparison is said to be nondomi-
nated and 7; < 0.

When comparing nondominated and feasible individuals, the value
of 7(9) has no impact on Inequality (4.7). In other words, it does not
change the order of ranking of the two individuals. However, the value
of 7(9) is critical in the first two cases as 7; is the flipping point that
will determine whether the comparison is objective or penalty function
dominated. For example, if r(9) is increased to a value greater than 7; in
the first case, individual 7=*(i+1) would change from a fitter individual
into a less fit one. For the entire population, the chosen value of 7(9) used
for comparisons will determine the fraction of individuals dominated by
the objective and penalty functions.
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Not all possible (9 values can influence the ranking of individuals.
They have to be within a certain range, i.e. r, < rl9) < T4, to influence
the ranking, where the lower bound r, is the minimum critical penalty
coefficient computed from adjacent individuals ranked only according to
the objective function and the upper bound 7, is the maximum criti-
cal penalty coefficient computed from adjacent individuals ranked only
according to the penalty function. In general, there are three different

categories of 7@ values (Runarsson and Yao, 2000):

170 <. Al comparisons are based only on the objective func-
tion. 7(9) is too small to influence the ranking of individuals. This
is called under-penalization.

2 9 > 79): All comparisons are based only on the penalty func-
tion. 7(9) is so large that the impact of the objective function can
be ignored. This is called over-penalization.

3 rl9) < 79 < 79: All comparisons are based on a combination of
objective and penalty functions.

Penalty function methods can be classified into one of the above three
categories. Some methods may fall into different categories during dif-
ferent stages in evolutionary search. It is important to understand the
difference among these three categories because they indicate which func-
tion (or combination of functions) is driving the search process and how
search progresses. For example, most dynamic penalty methods start
with alow (@ value (i.e., r(® < z(g)) in order to find a good region that
may contain both feasible and infeasible individuals. Towards the end of
search, a high r(@ value (i.e., 79 > 7(9)) is often used in order to locate
a good feasible individual. Such a dynamic penalty method would work
well for problems for which the unconstrained global optimum is close to
the constrained global optimum. It is unlikely to work well for problems
for which the constrained global optimum is far away from the uncon-
strained one, because the initial low 7@ value would drive the search
towards the unconstrained global optimum and thus further away from
the constrained one.

The traditional constraint handling technique used in evolution strate-
gies (ESs) falls roughly into the category of over-penalization since all
infeasible individuals are regarded as worse than feasible ones (Schwefel,
1995; Hoffmeister and Sprave, 1996; Deb, 1999; Jiménez and Verdegay,
1999). In fact, canonical evolution strategies allow only feasible indi-
viduals in the initial population. To perform constrained optimization,
an ES is first used to find a feasible initial population by minimizing
the penalty function (Schwefel, 1995, p. 115). Once a feasible initial
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population is found, the ES algorithm will then minimize the objective
function and reject all infeasible solutions generated.

It has been widely recognized that neither under- nor over-penalization
is a good constraint handling technique and there should be a balance be-
tween preserving feasible individuals and rejecting infeasible ones (Gen
and Cheng, 1997; Runarsson and Yao, 2000). Such a balance can be
achieved by adjusting our measure of how fit an individual should be in
comparison with others. The adjustment can be done explicitly through
ranking individuals in evolutionary algorithms. In order to strike the
right balance, ranking should be dominated by a mixture of objective
and penalty functions. That is, the penalty coefficient 7(9) should be
within the bounds: 7@ < r(¥) < 7). It is worth noting that the two
bounds are not fixed. They are problem dependent and may change
from generation to generation as they are also influenced by the current
population.

One way to measure the balance of dominance of objective and penalty
functions is to count how many comparisons of adjacent individual pairs
are dominated by the objective and penalty functions respectively. Such
a number of comparisons can be computed for any given (¥ by count-
ing the number of critical penalty coefficients given by (4.8) which are
greater than r(9. If there is a predetermined preference for the num-
ber of adjacent comparisons that should be dominated by the penalty
function then a corresponding penalty coefficient can be determined.

It is clear from the analysis in this section that all a penalty function
method tries to do is to obtain the right balance between objective and
penalty functions so that the search moves towards the optimal feasible
solution rather than the optimum in the combined feasible and infea-
sible space. One way to achieve such balance effectively and efficiently
is to adjust such balance directly and explicitly. Possible methods of
achieving this will be presented in the following two sections.

3. Stochastic Ranking

The ranking procedure introduced in this section is stochastic ranking
(Runarsson and Yao, 2000) where ranking is achieved by a bubble-sort-
like procedure. In this approach a probability Py of using only the ob-
jective function for comparing individuals in the infeasible region of the
search space is introduced. That is, given any pair of two adjacent indi-
viduals, the probability of comparing them (in order to determine which
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one is fitter) according to the objective function is 1 if both individuals
are feasible, otherwise it is Py.

The procedure provides a convenient way of balancing the dominance
in a ranked set. In the bubble-sort-like procedure, A individuals are
ranked by comparing adjacent individuals in at least A sweeps'. The
procedure is halted when no change in the rank ordering occurs within a
complete sweep. Figure 4.1 shows the stochastic bubble sort procedure
used to rank individuals in a population (Runarsson and Yao, 2000).

If at least one individual is infeasible in an adjacent pair, the prob-
ability of an individual winning a comparison, i.e., holding the higher
rank, in the ranking procedure is

Py = Ppy Py + P¢w(1 — Pf) (4.9)

where Py, is the probability of the individual winning according to the
objective function and Pp,, is the probability of the individual winning

"It would be exactly A sweeps if the comparisons were not made stochastic.

Stochastic bubble sort (Pf, f, ¢):
() =jVie{l,..., A}
fori=1to N do
forj=1toA—1 do
sample u € U(0, 1);
if ((ﬁ(xﬂ-l(j)) = ¢(xw.1{j+1)) = U) or (u < Pf) then
if (f(%z1(j)) > f(Xz 1(j+1))) then
swap(n~1(5), 771 (5 + 1));
fi
else
if (#(xy 1) > 6(Xr 1(541)) then
swap(7~1(5), 771 (j +1));
fi
fi
od
if no swap done break; fi
od
return (7)

Figure 4.1, Stochastic ranking procedure, where U(0, 1) is a uniform random number
generator and N is the number of sweeps going through the whole population. When
Py = 0 the ranking is equivalent to over-penalization. When P; = 1 the ranking is
equivalent to under-penalization. The initial ranking is generated at random.
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according to the penalty function. In the case where adjacent individuals
are both feasible Py = Py, the probability of winning ¥ more compar-
isons than losses can be computed. The total number of wins will be
k' = (N +k)/2 where N is the total number of comparisons made. The
probability of winning &’ comparisons out of N is given by the binomial
distribution

N / e
Py = k) = () P (L= P, (@10
The probability of winning at least k' comparisons is
Kol '
roz=1-% (V)pa-rr
§=0

Equations (4.10) and (4.11) show that the greater the number of com-
parisons (N) the less influence the initial ranking will have. It is worth
noting that the probability P, usually varies for different individuals
in different stages of ranking. Now consider the case where P, is con-
stant during the entire ranking procedure, which will be trueif f; < f;,
¢; > (/)j; j#FLI=1,...,\ Thenwa =1 and P¢w = 0. IfPf =0.51s
chosen then P, = 0.5. There will be an equal chance for a comparison
to be made based on the objective or penalty function. Because we are
interested in feasible solutions as the final solution, Py should be less
than 0.5 such that there is a pressure against infeasible solutions. The
strength of the pressure can be adjusted easily by adjusting only Fy.
When parameter N, the number of sweeps, approaches oo, the rank-
ing will be determined by Py. That is, if Py > 0.5, the ranking will be
based on the objective function. If Py < 0.5, the ranking is equivalent to
over-penalization. Hence, an increase in the number of ranking sweeps
is effectively equivalent to changing parameter P;. Hence, N = A can
be fixed and Py adjusted to achieve the best performance.

The effectiveness and efficiency of stochastic ranking will be evaluated
in Section 6 through experimental studies.

4. Global Competitive Ranking

A different method of ranking individuals in a population, in order
to strike the right balance between objective and penalty functions, is
the deterministic global competitive ranking scheme. In this scheme,
an individual % is ranked by comparing it against all other members of
the population. This is different from the stochastic ranking approach
where only adjacent individuals compete for a given rank. In the global
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competitive ranking method, special consideration is given to tied ranks.
In the case of tied ranks the same lower rank will be used. For example,
for ranking 7 = (1, 3, (2,6), 7,(4,5)), we should have 7(1) = 1, #(3) = 2,
7(2) = 7(6) = 3, 7(7) = 5 and 7(4) = w(5) = 6.

Similar to the stochastic ranking approach, it is assumed that either
the objective or the penalty function will be used in deciding an individ-
ual’s rank. Py indicates the probability that a comparison is done based
on the objective function only. The probability that individual ¢ holds
its rank 7(¢) when challenged by any other member of the population is,

A —7s(d)
A—1

A~ 7y 4)

P(r(i)) = Py 1

+ (1 — Py) (4.12)

where the permutations 7; and 7y correspond to the ranking of individ-
uals based on the objective and penalty functions, respectively. Equa-
tion (4.12) can be used to determine the final ranking. That is, the
fitness function for the minimization problem becomes:

wie) = L g pyT ol gy

It is clear from the above that Py can be used easily to bias ranking
according to the objective or penalty function. In practice, the prob-
ability should take a value 0 < Py < 0.5 in order to guarantee that a
feasible solution may be found. The close the probability is to 0.5, the
greater the emphasis will be on minimizing the objective function. As
the Py approaches 0, not equal to zero, the ranking corresponds an over-
penalization. The global competitive ranking scheme, unlike stochastic
ranking, is deterministic. It can be summarized by Figure 4.2.

Global competitive ranking (Py, f, ¢):

Step 1: Determine the ranking, mz, 74:
Fxapy) < f(xrp@) <00 < F(xr )
(}5()(,-;&1(1)) < gf)(xﬂ.;(g)) Sune s (;b(x,ré-l(,\))

Step 2. Compute competitive fitness:

P(x;) = sz%(?—l_—l +(1- Pf)%.

Step 3. Determine final ranking, =:

V(Xr-1(1)) S P(Xra(2)) £ oo S P(Xpa(y))

Figure 4.2. Global competitive ranking method for constraint handling,
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S. How Penalty Methods Work

Convergence and convergence rate are two important issues in stochas-
tic optimization and search algorithms, such as EAs. For a stochastic
search procedure, average positive progress towards the global optimum,
x*, is necessary in order to find the optimum efficiently. One approach
of measuring progress is to compute the distance travelled between suc-
cessive generations (Schwefel, 1995) towards x*. The distance from the
best individual in generation (g) to the optimum x* should be on aver-
age greater than that of the best individual at generation (g + 1). That
is, the following ¢x should be greater than O:

(9) (9)

Xyt (1y -+ ,xr_,(u)], (4.14)

o = Bl %) = i )

where the distance metric d(x,x*) =[| x — x* ||. A similar progress
definition is given by (Rudolph, 1997, p. 207) in terms of fitness for the
unconstrained problem:

wr =Blfx%) - £

(9) (9)
xw"{l(l), .. .,xﬁl(“)]. (4.15)

However, the progress rate computed from fitness values, as the one
given by (4.15), indicates the progress towards a local unconstrained
minimum only. Progress towards the global minimum in a multimodal
landscape can only be computed in terms of the distance and when the
global minimum is known (Yao et al., 1999). Computing ¢ analytically
is a difficult theoretical problem although there has been some published
work on drift analysis (He and Yao, 2001).

If positive progress towards the global optimum is to be maintained,
there must exist at least one parent x) which produces at least one
offspring that is closer than itself to the optimum x* on average. Con-
sider a simple (1, A) EA where there is only one parent (i = 1) at each
generation producing A offspring. The offspring are produced using the
following mutation operator:

x = x + N(0,0) =1, (4.16)

where N;(0,02) is a normally distributed random variable with zero
mean and variance o2. We can now use two examples to illustrate how a
penalty function method works by investigating the relationship between
different penalty function methods and progress rates. In particular, we
will examine how the progress in terms of fitness corresponds to that in
terms of the distance to the global optimum.
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—ferz(x)
3 T

—0.92} over-penalization

—0.941
= objective function
T
- R
8,
« —0.96 g
= stochastic ranking

—0.98 competitive ranking

“ig 3 i ' 5

29 2 = 29 = 5 (parent)

Figure 4.3. Expected fitness of the best offspring as a function of parent position for
test function fi2. The curves lying below the dashed one (parent fitness) corresponds
to positive progress towards the global optimum.

The first example is a the benchmark test function, fi2 in (Koziel and
Michalewicz, 1999):

maximize: fia(x) = (100 — (zq1 — 5)2 — (2 — 5)% — (23 — 5)2) /100
subject to:
g(x) = (z1 — p) + (w2 — 9)* + (x3 — )2 — 0.0625 < 0,

where 0 < z; < 10 (i = 1,2,3) and p,q,7 = 1,2,...,9. The feasible
region of the search space consists of 9% disjointed spheres. A point
(21,22, x3) is feasible if and only if there exist p, q,r such that the above
inequality holds. Hence, the g(x) returned corresponds to its lowest
value for given p, q,r values. The feasible global optimum is located at
x* = (5,5,5) where fia(x*) = 1.

Figure 4.3 shows the results of 10,000 one-generational experiments
for a number of different parent values. In Figure 4.3, variables g and
x3 were fixed at 5 and only z; was adjusted between values 2 and 5.
The mean search step size used was ¢ = 0.2 and the number of offspring
A = 10. This simulation was conducted using three different ranking
strategies: over-penalization, stochastic ranking, and global competitive
ranking. In both the stochastic and global competitive ranking, the value
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of Py is 0.45. Over-penalization corresponds to a ranking with Py = 0.
The problem was treated as a minimization one.

In Figure 4.3, the expected objective function value of the highest
ranked offspring is plotted versus the parent value of ;. The dashed
line corresponds to the objective function value of the parent. Hence,
positive progress toward the global optimum will be achieved when the
expected objective function value of the best offspring lies beneath the
dashed line. The figure illustrates how the over-penalization approach
has effectively transformed the original unimodal objective function to
a multimodal fitness function. There existed large regions of negative
progress when the over-penalization approach was used. The stochas-
tic and global competitive ranking, however, maintained their positive
progress towards the global feasible optimum even in infeasible regions,
although the rate of progress is slower. This example shows that the
penalty function method works by transforming the search landscape
(Runarsson, 2000). Inappropriate penalty functions may make the opti-
mization task more difficult than it should be.

Figure 4{.4. Fitness landscape for test function f11. The curve represents the region
of feasibility.

The second example is also a well known benchmark test function in
(Koziel and Michalewicz, 1999):

minimize: fi1(x) = z3 + (xg — 1)2
subject to:

h(x) = 2o — 22 =0,
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where —1 < 21 £ 1 and —1 < z3 < 1. The global feasible optimum is at
x* = (£1/+/2,1/2) where f11(x*) = 0.75. Figure 4.4 shows the objective
function, f11(x), and the constraint curve h(x).

In this example both parent variables x; and zy were varied in our
experimental study. Stochastic ranking (Py = 0.45) was compared with
over-penalization (Py = 0). Since there exist two optima for this ex-
ample, the progress was computed in terms of the maximum distance
covered towards one of the optima:

¢ = B| min {d(x¥),),y*), d(x9 ), 2)} (4.17)
. * 1 *
~min {d(x%), ¥), 4= 1), 7))

where z* and y* are the optima (1/v/2,1/2).

Two different mean step sizes were used in our experiments: o = 0.05
and o = 0.1. The number of offspring generated was again A = 10.
The progress rate given by Equation 4.17 is illustrated by contour plots
shown in Figure 4.5, where regions of negative progress are outlined with
contour lines.

It is clear from Figure 4.5 that negative regions of progress were lo-
cated around the global optima. This is not surprising since the mean
search step size used was too large in these regions. A decreasing mean
search step size should be used. For the over-penalization approach,
however, there existed additional regions of negative progress which were
not in the global optimum regions. These regions formed additional lo-
cal attractors and would trap individuals as the mean search step size
decreased. Stochastic ranking did not create any local attractors in this
case. This is also true for global competitive ranking, as will be seen in
the following section.

In summary, the introduction of constraints may produce additional
local optima in the search landscape. A well designed constraint han-
dling technique can minimize the number of such misleading local op-
tima. This is the primary reason why our ranking methods worked so
well on many test functions. Our ranking methods also make it easy to
control constrained search by adjusting Py for different problems.

6. Experimental Study
6.1 Evolutionary Optimization Algorithm

The evolutionary optimization algorithm described in this section is
based on the evolution strategy (ES) (Schwefel, 1995). One reason for
choosing ES is that it does not introduce any specialized constraint-
handling variation operators. It will be shown that specialized and
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0.1, P, =

Figure 4.5. The figures show the progress rate in terms of the distance metric, i.e.
@z where = 1 and A = 10, for test function fi1. The drawn contours mark regions
of negative progress (darker regions). When Py = 0 (over-penalization), there exists
a region where no progress is maintained towards either global optima, and thus
the search will get stuck in this region. This figure explains the poor performance
observed in Table 4.1 for this function.

complex variation operators for constrained optimization problems are
unnecessary although they may be quite useful for particular types of
problems (see for example (Michalewicz et al., 1996)). A simple ex-
tension to the ES, i.e., the use of the ranking schemes proposed in the
previous sections, can achieve significantly better results than other more
complicated techniques.

In a (u, A)-ES algorithm, an individual ¢ is a pair of real-valued vec-
tors, (x;,0i), Vi € {1,...,A}. The initial population of x is generated
according to a uniform n-dimensional probability distribution over the
search space 8. Let dx be an approximate measure of the expected dis-
tance to the global optimum, then the initial setting for the ‘mean step
sizes’ should be (Schwefel, 1995, p. 117):

0{) = 8uj/ v~ @ —z)/vn, i€{l,...,Ahi€{L,...,n}, (418)
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where o0;; denotes the j-th component of the vector o;. These initial
values will also be used as upper bounds on o.

Following the ranking schemes presented, the evaluated objective f(x)
and penalty function ¢(gi(x); k¥ = 1,...,m) for eachindividual (x;, 0;),
Vi€ {1,...,A} is used to rank individuals in a population and the
best (highest-ranked) u individuals out of A are selected for the next
generation. The truncation level is set at /X ~ 1/7 (Bick, 1996, p. 79).

Variation of strategy parameters is performed before the modification
of objective variables. New A strategy parameters are produced from
the p highest ranked individuals and then applied later for generating
A offspring. The ‘mean step sizes’ are updated according to the log-
normal update rule (Schwefel, 1995): + = 1,...,4, h = 1,..., A, and
j = 1) (T

oI = 619 exp(r'N(0,1) + 7N;(0, 1)), (4.19)

where N(0, 1) is a normally distributed one-dimensional random vari-
able with an expectation of zero and variance one. The subscript j in
N;(0, 1) indicates that the random number is generated anew for each
value of j. The ‘learning rates’ 7 and 7' are set equal to ¢*/+/2\/n
and ¢*/ V2n respectively where ¢* is the expected rate of convergence
(Schwefel, 1995, p. 144) and is set to one (Bick, 1996, p. 72). Recombi-
nation is performed on the self-adaptive parameters before applying the
update rule given by (4.19). In particular, global intermediate recom-
bination (the average) between two parents (Schwefel, 1995, p. 148) is
implemented as

50 =0 +af)/2 Ke{l,....uh, (4.20)

where k; is an index generated at random and anew for each j.

Having varied the strategy parameters, each individual (x;,0;), Vi €
{1, ..., u}, creates A/p offspring on average, so that a total of X offspring
are generated:

2 = 2l + 6N, (0, 1) (4.21)

Recombination is not used in the variation of objective variables.
When an offspring is generated outside the parametric bounds defined
by the problem, the mutation (variation) of the objective variable will be
retried until the variable is within its bounds. In order to save computa-
tion time the mutation is retried only 10 times and then ignored, leaving
the object variable in its original state within the parameter bounds.
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Table 4.1. Over-penalization.

fen | optimal | best median st. dev. |  Gn
fi —15.000 —15.000 —15.000  0.0E4+00 697
fo —0.803619 —0.803578 —0.785253 1.56E—02 1259
f3 —1.000 —0.327 —-0.090 7.2E-02 61
fa —30665.539 —30665.539 —30665.538  3.8E+00 632
fs 5126.498 5126.945 5225.100  2.7E+402 213
fe —6961.814 —6961.814 —6961.814 1.9E-12 946
fr 24.306 24.322 24.367 5.9E—02 546
fs —0.095825 —0.095825 —-0.095825 2.7TE—17 647
fo 680.630 680.632 680.657 3.8E—-02 414
fio 7049.331 7117.416 7336.280 3.4E4+02 530
fm 0.750 0.750 0.953 5.4E—-02 1750
fi2 —1.000000 —0.999972 —0.999758 1.4E-04 90
f13 0.053950 0.919042 0.997912 1.56E—-02 1750
6.2 Experimental Results and Discussion

Thirteen benchmark functions are studied. The first 12 are taken from
(Koziel and Michalewicz, 1999) and the 13th from (Michalewicz, 1995).
The details, including the original sources, of these functions are listed in
appendix 4.A. Functions fs, f3, fs, and fi2 are maximization problems.
They are transformed to minimization problems using — f(x). For each
of the benchmark problems 30 independent runs are performed using a
(30, 200)-ES and the ranking procedures described in the previous sec-
tions. All runs are terminated after G = 1750 generations except for fi2,
which was run for 175 generations. The experimental results using the
stochastic and global competitive ranking, with Py = 0.45, are given in
Tables 4.2 to 4.3. The results are compared against the over-penalization
approach (Table 4.1) used in ES (Hoffmeister and Sprave, 1996). The
over-penalization approach corresponds to the ranking schemes discussed
for Py — 0. In the tables the best feasible objective value, median, stan-
dard deviation, and median number of generations (G,) needed to find
the best individual are given.

As can be seen from Tables 4.1 to 4.3, both stochastic ranking and
global competitive ranking performed very well for most test functions,
especially for functions fs, fi1, f12, and fi3, for the reasons given in Sec-
tion 5. They are also much faster than the over-penalization approach for
most test functions. There are, however, two test functions that stand
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Table 4.2. Stochastic ranking (Py = 0.45).

fen | optimal | best median st. dev. | Gm
fi —15.000 —15.000 —15.000  0.0E4-00 741
fa —0.803619 —0.803515 —0.785800 2.0E-02 1086
fa —1.000 —1.000 —-1.000 1.9E-04 1146
fa —30665.539 —30665.539  —30665.539  2.0E—05 441
fs 5126.498 5126.497 5127.372  3.5E+00 258
fe —6961.814 —-6961.814 —6961.814 1.6E+402 590
fa 24.306 24.307 24.357 6.6E—02 715
fs —0.095825 —0.095825 —0.095825 2.6E—17 381
fo 680.630 680.630 680.641  3.4E—02 557
Jio 7049.331 7054.316 7372.613  5.3E+02 642
fm 0.750 0.750 0.750 8.0E-05 57
fi2 —1.000000 —1.000000 —1.000000  0.0E+00 82
f13 0.053950 0.053957 0.057006 3.1E-02 349
Table 4.3. Global competitive ranking (P = 0.45).

fen | optimal | best median st. dev. | Gm
fi —15.000 —15.000 —15.000 0.0E4-00 692
fa —0.803619 —0.803591 —0.792805 1.7E-02 1335
f3 —1.000 —1.000 —-1.000 2.6E—-05 1725
fa —-30665.539 | —30665.539 —30665.538 5.4E—01 731
fs2 5126.498 5126.497 5126.721 1.1E+00 319
fe —6961.814 —6943.560 —6579.214 2.9E402 13
fr 24.306 24.308 24.361 1.1IE-01 517
fs —0.095825 —0.095825 —0.095825 2.6E—17 398
fo 680.630 680.631 680.657 5.8E—02 396
fio 7049.331 - - - -
fi1 0.750 0.750 0.750 7.2E-05 76
2 —1.000000 —1.000000 —1.000000  0.0E+-00 63
f13 0.053950 0.053943 0.053987 1.3E-04 247

out: fio and fg. It is difficult to determine whether it is the constraint
handling technique or the underlying search method which is contribut-
ing to the success or failure in locating the optimum. In (Runarsson and
Yao, 2000) the importance of the search method was illustrated on test
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Taoble 4.4. Over-penalization versus stochastic ranking for test function f1p and ¢ =
1/4.

P; | optimal | best ~median st. dev. | Gp

0.45 | 7049.331 | 7049.852 7054.111 5.7E+400 | 1733
0.00 | 7049.331 | 7049.955 7062.673 3.1E+401 | 1745

function f1o by setting ¢ = 1/4. This results is given in table 4.4 and
illustrates how significant the search method is.

Test function fg is the only test function solved more effectively using
over-penalization. For this reason it is interesting to plot its progress
rate landscape. The test function has two variables. The progress rate
is simulated as before using 10.000 one generational experiments in the
region where suboptimal solutions are found. The result is depicted in
figure 4.6. Progress landscapes for the step sizes ¢ = 0.05 (dotted) and
o = 0.01 (dashed) are plotted as contours. Negative progress is main-
tained to the right of the last of the three contour lines plotted. The
solid lines in the figure are the constraint curves and the circle marks the
location of x*. The feasible region is the top narrow band formed by the
two constraint curves. From the figure it becomes clear that in this case
over-penalization guides the search directly to the optimal feasible solu-
tions from the infeasible region. However, stochastic ranking approaches
the optimal solution from the combined feasible and infeasible region.
The progress contours are simply rotated. In this test case no additional
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Figure 4.6. Progress landscape for test function fg for step sizes o = 0.05 (dotted)
and ¢ = 0.01 (dashed). Negative progress is to the right of the last of the three
contour lines. The solid lines are the constraint curves and the circle the location of
x*. The feasible region is the top narrow band formed by the two constraint curves.
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attractors are created by the over-penalization method and therefore
the two approaches should yield similar performance. This leads one to
speculate whether the performance difference may be due to the lack of
rotational invariance of the search method. To test this the coordinate
system is rotated by #/4 and the experiment is re-run. The results are
given in table 4.5. This simple experiment supports our prediction that
the performance difference is due to the lack of rotational invariance of
the search method.

Table 4.5. Over-penalization versus stochastic ranking for test function fs and co-
ordinate system rotated by /4.

P | best  median mean st. dev. worst | G,

0.45 | —6954.352 —6913.419 —6909.142 2.7TE4+01 —6842.484 | 957
0.00 | —6942.806 —6903.223 —6887.683 4.2E401 —6782.945 | 864

7. Conclusion

The penalty function method is widely used in constrained optimiza-
tion. It is emphasized in this chapter that the penalty function method
transforms a constrained problem into an unconstrained one by modify-
ing the search landscape. Different modifications lead to different search
landscapes and thus different difficulties of optimization. We have given
two concrete examples to illustrate how additional local optima could be
introduced through inappropriate penalty methods and how such local
optima could mislead search.

Selection in an EA depends primarily on fitness values of individuals.
Modifications to a search (fitness) landscape can be achieved through
modifications to the selection scheme, rather than to the fitness function.
Ranking is a simple yet effective selection method that can be used
to indicate which individuals are fitter than others and thus achieve
the goal of modifying the fitness landscape. Two ranking schemes have
been introduced in this paper to show how they can be used to handle
constraints effectively and efficiently without adding a penalty term in
the fitness function. Experimental results on a set of benchmark test
functions are given in this chapter to support our analysis.
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Appendix: Test Function Suite
Minimize (Floundas and Pardalos, 1987):

4 4 13
filx) =53 jwi =53 2l -3 a
i=1 i=1

i=5

subject to:

g1(x) =221+ 2z + 210+ 211 — 10K 0
g2(x) = 221 + 2x3 + 210+ 12 — 10< 0
g3(x) = 2z2 + 223 + 211+ 212 — 100
ga(x) = —8x1 + 21050

gs(x) = ~8r2+ 211 <0

ge(x) = —8ra+ 21250

g7(x) = —2x4 — x5 + 210 < 0

gs(x) = —2z¢ —x7 + 711 < 0

go(x) = -2z — o+ 212 < 0

where the bounds are 0 < z; <1 (¢ =1,...,9), 0 < & < 100 ( = 10,11,12) and
0 < z13 £ 1. The global minimum is at x"=(1,1,1,1,1,1,1,1,1,3,3,3,1) where six
constraints are active (g1,82,83,87,8s and go) and fi(x*) = —15.

Maximize (Koziel and Michalewicz, 1999):

_ '22;1 cos (2;) — 2 [T1 cos?(w:)
\/E?:l Z‘T?

f2(x)

subject to:

g1(x) =075 - [[ = <0

i=1
n

ga2(x) = Z z; ~7.5n <0
i=1
where n =20 and 0 < z; £ 10 (¢ = 1,...,n). The global maximum is unknown, the
best we found is fa(x*) = 0.803619 (which, to the best of our knowledge, is better

than any reported value), constraint g;is close to being active (g1 = —1078).

Maximize (Michalewicz et al., 1996):

fa) = (V)" []

h;(x)=2w?—1=0

i=1
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where n = 10and 0 < 2; €1 (¢ =1,...,n). The global maximum is at =} = 1/\/n
(i=1,...,n) where f3(x") = 1.

Minimize (Himmelblau, 1972):
fa(x) = 5.3578547x5 + 0.8356891z1 25 + 37.293239x1 — 40792.141

subject to:

g1(x) = 85.334407 + 0.0056858z2x5 + 0.0006262z1x4 — 0.0022053z325 — 92 < 0
g2(x) = —85.334407 — 0.0056858z,x5 — 0.0006262x124 + 0.0022053z325 < 0
ga(x) = 80.51249 + 0.0071317x225 + 0.0029955z1x2 + 0.0021813z3 — 110 < 0
ga(x) = —80.51249 — 0.0071317z225 — 0.0029955x1 22 — 0.0021813z3 + 90 < 0
gs(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x 123 + 0.00190852314 — 25 < 0
ge(x) = —9.300961 — 0.0047026x325 — 0.0012547xz123 — 0.0019085x324 + 20 < 0

where 78 < z1 < 102, 33 € z2 < 45 and 27 € z; < 45 (1 = 3,4,5). The

optimum solution is x* =(78, 33, 29.995256025682, 45, 36.775812905788) where
fa(x*) = —30665.539. Two constraints are active (g1 and ge).

Minimize (Hock and Schittkowski, 1981):
f5(x) = 3z1 + 0.00000123 + 222 + (0.000002/3)z}
subject to:

g1{x) = —z4 + 23 — 0.55 <0

ga(x) = —z3+ x4 —0.55<0

hz(x) = 1000sin(—xz3 — 0.25) + 1000sin(—z4 — 0.25) + 894.8 —z; =0
hy(x) = 1000 sin(zs — 0.25) + 1000 sin({xs — x4 — 0.25) + 894.8 ~ 3 =0
hs(x) = 1000sin(z4 — 0.25) + 1000sin(zs — zs — 0.25) + 1294.8 = 0

where 0 < 1 < 1200, 0 < 22 < 1200, —0.55 < 23 < 0.55 and —0.55 < z4 < 0.55.
The best known solution (Koziel and Michalewicz, 1999) x* = (679.9453,1026.067,
0.1188764, —0.3962336) where f5(x*) = 5126.4981.

Minimize (Floundas and Pardalos, 1987):
fo(x) = (w1 — 10)°® + (z2 — 20)°
subject to:

g1(x) = —(21 - 5)* — (22 — 5)* +100 < 0
g2(x) = (21 — 6) + (z2 — 5)° — 82.81 <0

where 13 < z3 < 100 and 0 < 25 < 100. The optimum solution is x* = (14.095, 0.8429)
where fg(x*) = —6961.81388. Both constraints are active.
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Minimize (Hock and Schittkowski, 1981):

fr(x) = 2%+ 23 + 22 — 1421 — 1622 + (23 — 10)% + 4(m4 — 5)° + (x5 — 3)% +
2(xe — 1)* + 522 + T(zs — 11)% + 2(wg — 10)* + (x10 — 7)% + 45

subject to:

gi(x) = —105 + 4z1 + 5z2 — 327 + 915 < 0

ga(x) = 10z, — 822 — 1727 + 225 < 0

gs(x) = —8z; + 222 + 520 ~ 2210~ 12<0

ga(x) = 3(z1 — 2)2 + 4(x2 — 3)% + 202 ~ T2y — 120 <0
gs(x) = 522 + 8xa + (3 —6)° — 224 ~40< 0

ge(x) = 3 + 2(x2 — 2)° — 2w122 + 1425 — 626 < 0
g7(x) = 0.5(x1 — 8)° + 2(w2 —4)* + 322 — 26— 30 <0
ga(x) = —3x1 + 622 + 12(xo — 8)% — 710 <0

where =10 < #; < 10 (¢ = 1,...,10). The optimum solution is x* = (2.171996,
2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726, 8.280092,
8.375927) where f7(x*) = 24.3062091. Six constraints are active (g1, g2, £3, 84,
gs and ge).

Maximize (Koziel and Michalewicz, 1999):

sin® (272 ) sin(27x2)
3z + x2)

fa(x) =

subject to:

gi(x)=af —x2+1<0
gg(x)zl—:c1+(x2—4)250

where 0 < x1 € 10 and 0 < 22 £ 10. The optimum is located at x* = (1.2279713,
4.2453733) where fs(x*) = 0.095825. The solution lies within the feasible region.

Minimize (Hock and Schittkowski, 1981):
fo(x) = (x1 — 10)% + 5(x2 — 12)® + 5§ + 3(za — 11)* +
10z§ + 7x2 + 2 — dzgxr — 1026 — 87
subject to:
g1(x) = =127 + 227 + 323 + 23 + 425 + 525 < 0
g2(X) = —282 + Tx1 + 3o + 1023 + 24 — 05 < O

g3(x) = —196 + 23z1 + x5 + 625 — 87 < 0
ga(x) = 423 + 2% — 32125 + 233 + 526 — 1127 <0
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where ~10 < z; < 10 for (i = 1,...,7). The optimum solution is x* = (2.330499,
1951372, —0.4775414, 4.365726, —0.6244870, 1.038131, 1.594227) where fo(x*) =
680.6300573. Two constraints are active (g1 and gq).

Minimize (Hock and Schittkowski, 1981):
fro{x) =1 + z2 + 23
subject to:

gi1(x) = —1 +0.0025(z4 + z6) < 0

g2(x) = —1 4 0.0025(zs + x7 — 24) < 0

ga(x) = —1+0.01(zs —25) <0

ga(x) = —x176 + 833.33252x4 + 10021 — 83333.333 < 0
gs5(x) = —zaw7 + 1250x5 + zaq — 125024 < 0

ge(x) = —x3xs + 1250000 + x3xs — 2500x5 < O

where 100 < z; < 10000, 1000 < z; < 10000 (i = 2,3) and 10 £ z; < 1000
(i =4,...,8). The optimum solution is x* = (579.3167, 1359.943, 5110.071, 182.0174,

295.5985, 217.9799, 286.4162, 395.5979) where fio(x*) = 7049.3307. Three con-
straints are active (g1, gz and g3).

Minimize (Koziel and Michalewicz, 1999):
fu(x) = 2t + (w2 — 1)°
subject to:

h(x) =z -2} =0

where =1 < 21 <1 and —1 < z2 £ 1. The optimum solution is x* = (il/\/Q_,l/Z)
where fi1(x*) = 0.75.

Maximize (Koziel and Michalewicz, 1999):
Fr2(x) = (100 — (z1 ~ 5)° — (x2 — 5)* — (w3 — 5)%)/100
subject to:

g(x) = (@1 — p)* + (22 — )% + (m3 — r)? — 0.0625 < 0

where 0 < #; £ 10 (¢ = 1,2,3) and p,q,r = 1,2,...,9. The feasible region of the
search space consists of 9% disjointed spheres. A point (z1,2,x3) is feasible if and
only if there exist p, ¢, such that the above inequality holds. The optimum is located
at x* = (5,5,5) where fi12(x*) = 1. The solution lies within the feasible region.
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Minimize (Hock and Schittkowski, 1981):
fls(x) — ewlwzrsm«:ms
subject to:

mx)=22+22+22+22+22-10=0
hz(x) = X2X3 — 5:1:4:175 =0
ha(x)=ai+23+1=0

where —2.3 < 2; < 23 (1 = 1,2) and —8.2 < x; £ 3.2 (2 = 3,4,5). The op-
timum solution is x* = (—1.717143, 1.595709, 1.827247, —0.7636413, —0.763645)
where fiz(x*) = 0.0539498.
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Chapter 5

EVOLUTIONARY MULTI-OBJECTIVE
OPTIMIZATION: A CRITICAL REVIEW

Carlos A. Coello Coello

“We will say that members of a collectivity enjoy maximum ophelimity in a
certain position when it is impossible to find a way of moving from that po-
sition very slightly in such a manner that the ophelimity enjoyed by each of
the individuals in the collectivity increases or decreases. That is to say, any
small displacement in departing from that position necessarily has the effect of
increasing the ophelimity which certain individuals enjoy, and decreasing that
which others enjoy, of being agreeable to some and disagreeable to others”
—Vilfredo Pareto, Manual of Political Economy, 189%

Abstract In this chapter, we will review some of the most representative research
in the field of evolutionary multiobjective optimization. We will disc