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Preface

Applied mechanics, as the foundation of various engineering disciplines, is
greatly promoted in aerospace, naval architecture, machine building, civil, power,
chemical, and material engineering etc. The texts and references of applied
mechanics have developed several series of books, such as the text books by S.P.
Timoshenco and others. Since the computer impact, the development of
computational mechanics changes the traditional methodology of problem solving.
However, the theoretical basis is still fundamentally the same as before. That is the
same PDEs to be solved, the same kind of variational principles used, etc.

Analytical dynamics is a fundamental part in applied mechanics, however in
fact, it is less taught in applied mechanics, because the curriculums such as
Structural mechanics, Theory of elasticity, Fluid dynamics, Structural vibration,
Structural stability, are not so much related to analytical dynamics. Control theory
was originated from mechanics but is less taught in applied mechanics curriculums.
The theory and methodology in these curriculums are self-contained such as in the
books about theory of elasticity, it is hardly seen to have close connections with
analytical dynamics.

The analogy between structural mechanics and optimal control manifests that
they have the same mathematical basis, i.e. the state space approach. Along this
way of consideration, the various curriculums in applied mechanics are closely
interrelated and they have a common theoretical basis, so that if one studies one
curriculum among them, then it will be easier for him to understand the others.
The common theoretical basis is the duality system theory. It is one of the purposes
of the present book, to ease the studying of applied mechanics.

Classical analytical dynamics proposes the most fundamental system in applied
mechanics. The Lagrange equation, the Least action principle, the Hamilton
canonical equations, Canonical transformation, and Hamilton-Jacobi theory, etc.,
compose a graceful theoretical system, and develops as the foundation of statistical
mechanics, electro-dynamics, quantum mechanics etc. On the contrary, its
appearance in the curriculums of applied mechanics is far from enough. The
starting point of state space method, i.e. the basis of modern control theory, should at
least trace back to the Hamilton canonical equation system. The Hamilton
canonical system is really a duality system, it is composed of dual variables, dual
equations etc. Further, the linear programming, quadratic programming and
non-linear programming theory are also closely related to the duality system. The
applied mathematics develops toward the duality system too, see [39]. Based on
the above observation, the duality system method should also be consciously and
systematically used in various parts of applied mechanics, so as to provide the
powerful mathematical methodology, and also to ease the readers with a common
mathematical foundation.

Based on the analogy relationship between structural mechanics and optimal
control, the dual variables and the related theoretical system are introduced into
theory of elasticity, which changes the traditional solution methodology. Under the
traditional approach, the solution methodology is by the try-and-error technique
called semi-inverse method. However, the duality system methodology derives the
basic equation into Hamiltonian dual variables and the respective dual equation form
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(Canonical variables and equations), and the mathematics related becomes
symplectic geometric rather than the traditional Euclidean geometric. The new
solution system for elasticity changes the traditional solution technique to become
rational, which far extends the solvable problems, that a number of problems
formerly cannot be solved by the semi-inverse method can now be solved by the
symplectic eigen-function expansion approach. The same methodology can also be
applied to vibration problems for gyroscopic system and wave propagation. The
modern control, LQG and also robust control theory, has been described by the
dual variable system, when the basic equations in applied mechanics are transformed
to duality system, then the solution methodology such as eigen-function expansion
etc. can be transplanted to the related problems in control theory. The
inter-disciplinary development is quite fruitful for both sides. The duality system
methodology is unified to various curriculums, which eases both teaching and
research.

Computational mechanics is one of the most active parts in applied mechanics,
and also is the bridge from applied mechanics toward engineering applications.
Combining with the duality system description, numerical methods and algorithms
will be emphasized in the text. The precise integration method can be used both
for initial value problems and also for two point boundary value problems (TPBVP).
For the differential equations in dynamics and the matrix Riccati differential
equations in control theory, the precise integration method can give precise solution
on the computer. The precise integration in control theory not only solves
numerical precise solution for Riccati differential equation, but also provides the
numerical precise solution for both the time-variant state and filter differential
equations, for which real-time computation is needed, that the related algorithm is
also given in the book. Various precise integration algorithms and the symplectic
eigen-solution method are the feature of this book on computations. Thus as a
preliminary step, the precise integration method is given in the introduction.

Chapter 1, Provides the preliminary of analytical dynamics, Lagrange and
Hamilton system, Legendre transformation, dual variables, canonical transformation,
symplectic system, the Hamilton-Jacobi method and separation of variables etc.,
which manifests that the common basis for the later parts of contents is
fundamentally from analytical dynamics.

Chapter 2, Heavily describes the structural vibration theory, eigen-problem
solution, especially the symplectic eigen-problem for gyroscopic system and its
algorithm. The eigenvalue count is also described.

Chapter 3, Preliminary of probability and stochastic process theory, the analysis
object of applied mechanics, its parameters, external forces and the instrument
measurements are all stochastic. Taking these stochastic factors into consideration
is a trend today.

Chapter 4, Random vibration, this is very important for structural aseismatic
design, turbulent induced vibrations etc. Although the basic theory of linear
random vibration had been established, but its application in engineering practice
still has tremendous difficulty, mainly computational. A recently proposed highly
efficient algorithm, the Pseudo-Excitation-Method is provided, which speeds up 2~5
orders in computational expense with comparison to the usual approach proposed
before.

Chapter 5, Single continuous coordinate elasticity problem, such as the
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semi-analytical method and wave propagation problems in elasticity, these problems
can be solved by the duality system theory. The analogy between structural
mechanics and optimal control is based on these developments. The precise
integration algorithm solves the Two Point Boundary Value Problem and the matrix
Riccati differential equation, which is quite useful also in optimal control problems.

Chapter 6, Optimal control theory, its derivation uses the methodology parallel
to that in applied mechanics, which is based on the analogy between structural
mechanics and optimal control. The precise integration algorithm solves various
matrix Riccati differential equations precisely, which not only solves the Riccati
equation but also both the filter and state differential equations. It is found that the
critical parameters in both robust or else in are just the
extended Rayleigh quotient in applied mechanics. The analogy relationship
between structural mechanics and optimal control can ease the reader from getting
familiar with the control subjects.

So far the above contents are for finite degrees of freedom system, which are
comparable with that in analytical dynamics. However, the duality methodology
can also be used for continuums, i.e. infinite degrees of freedom systems, such as
elasticity. Based on the analogy relationship between structural mechanics and
optimal control, the new solution system for theory of elasticity can be promoted as
follows,
1)

2)

3)

4)

State space approach is developed and the elasticity problem is derived to be in
Hamiltonian system, then
Method of separation of variables is applied, and the symplectic eigen-solution

problem follows. The eigen-solutions are mutually adjoint symplectic
orthogonal to each other, and span the whole state space.
Expansion solution method can be used to get the solutions, which can far

extend the solvable problems in elasticity.
The same methodology is further applied to plate bending, which far extends

the solvable problems too. All the above mentioned is completely a new
solution methodology for elasticity.

However, because of the limitation of size, the infinite degrees of freedom problems
will not be described in this book, a later book will provide such development.

This book is supported by the National natural science foundation of China
#19732020, the China NKBRSF project #G1999032805, the foundation for Doctoral
program of Education ministry of China, and part of the work was carried out in my
visiting to the City University of Hong Kong. My sincere gratitude is for all these
supports and the helps from my colleagues and friends.

ZHONG Wan-Xie
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Introduction

Applied mechanics, as an engineering foundation, has greatly contributed to the
progress of various engineering disciplines, such as astro/aeronautics, mechanical,
civil, material, chemical, power, electrical and electronic engineering etc.
Meanwhile, applied mechanics has also been promoted from applications, developed
various theories and methods. From mathematical point of view, when the basic
differential equations are established, the problem has been clear and remains only
how to solve the equations. The requirement from application asks numerical
results but may not cease at theoretical stage. It is quite often that the basic
equations have long been established, however, it is very difficult to solve. Such as
the theory of elasticity, its basic equation has well been established one more century
ago, but its solution is far from completed till now.

Facing with the difficulty of strict solution, various application theories were
developed, such as structural mechanics, theory of plates and shells, thin-walled
structures, engineering vibrations, structural stability, soil mechanics, fluid
mechanics etc. The system of applied mechanics is thus composed. Even though,
the differential equations for these simplified theories are still difficult to solve
analytically. Mathematicians contributed big efforts to develop mathematical
methods for solving applied mechanics problems. The typical books are such as

Methods of mathematical physics by R. Courant and D. Hilbert [1]; the series of
textbooks by S.P. Timoshenco & others: Theory of elasticity , Theory of elastic
stability , Plates and shells , Advanced strength of material , Vibration
problems in engineering [2~6], and also a number of other related books. These
analytical solution systems are quite fruitful classical methodologies, and greatly
influenced the following developments.

Since 195* computer and programming language emerged, the finite element
method (FEM) first appeared in computational structural mechanics, see [7~9], the
situation abruptly changed. Based on the established theoretical system of applied
mechanics, and also backed-up with the powerful computational technology, the
FEM program systems developed. The problems of structural mechanics, solid
mechanics, field problem etc., for which the problem can be described by the linear
algebraic simultaneous equations, can be solved very quickly, and then the computer
numerical method becomes the powerful tool on engineers' hand. The FEM
propagated very quickly to various parts of applied mechanics, scientific and
engineering computations, and have made great success.

The success of FEM does not reduce the importance of analytical approach.
The reason is, firstly FEM is a kind of approximate method and its theoretical basis
is still analytical, secondly there are a number of problems, such as the crack tip
element, infinite element etc. their features are naturally analytic. Further, for
boundary layer effect, localization, the composite material boundary effect etc., the
analytical approach will still be interested. The precise integration method maps
the influence of analytical approach in numerical method. The boundary element



2 Duality system in applied mechanics and optimal control

method also needs analytical solution.
A scan of the book Theory of elasticity by S.P. Timoshenco & J.N. Goodier

can find that the majority of the text is devoted to problem solving, and the solution
methodology applies heavily the semi-inverse approach. However, the
semi-inverse method is really of try-and-error solution approach, being problem
dependent but not a general approach. The semi-inverse method does can find
some solutions but cannot make sure that all the solutions have been found. The
readers always have the question, how to assume the appropriate form of solution so
that the problem on hand can be solved, it is quite a puzzle.

The reason for applying the semi-inverse method is the complexity of the
PDE-s. The traditional solution methodology for PDE set solving is first to
eliminate the unknown functions as possible, prefer to incur a higher order PDE but
with only one unknown function, and then try to solve this unknown function. It
often derives to a complicated high order PDE, for which the usual effective solution
method, such as the method of separation of variables and the eigen-function
expansion method etc., cannot be applied.

A question is raised now, is it the sole way to use such traditional elimination
procedure for solution? In fact, such traditional approach is not unique, the duality
methodology, state space approach is right the answer.

In analytical dynamics, after the derivation of Euler-Lagrange equation, W.R.
Hamilton proposed the canonical equation system [10~15], which is the beginning
of the state space approach. Note that the basic theory of ordinary differential
equation (ODE) is also settled on the system of first order ODEs. However, in the
classical theory of automatic control, the typical formulation was also based on high
order ODE with single-input—single-output (SISO) system description. The
control theory changed its course under the impact of computing technique, that the
modern control theory developed [16~19]. The modern control theory did not
simply extend its theory along the original theoretic frame of classical control theory,
but made dramatic changes that the fundamental theoretic system was also updated,
i.e. the state space approach is used instead of the SISO description, completely a
different consideration. Applied mechanics can share the useful experience.

The control theory updated its theoretical system description along its own
evolution, at a first glance it must be much depart from the theory in applied
mechanics. However, the situation is just the contrast, that the mathematical
problem of modern control theory is analogous to a class of problems in structural
mechanics, having a one-one correspondence relationship to each other [20~22].
This book is written based on the analogy relationship between structural mechanics
and optimal control. Looking from mathematical theory, the analogy relationship
is established based on the duality system theory. Since the control theory
constructed a completely new systematic theory based on shifting from the
traditional approach to the state space method, the applied mechanics can also
develop its state space method and duality system theory toward success. Such
development seems natural looking from the analogy theory between structural
mechanics and optimal control.

Examining the traditional solution system, the typical textbook is Theory of
Elasticity by S.P. Timoshenco & J.N. Goodier [2], all the solution methods are first
derived to the fundamental equation with one kind of variables, then looking for
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solutions. From mathematical point of view, one kind of variables solution
methodology is classified as Lagrange system theory. Hence deriving to the higher
order partial differential equation (PDE) is the definite consequence, and then the
powerful methods such as method of separation of variables cannot be applied, the
eigen-function expansion method, the canonical transformation method etc. cannot
be applied, and the semi-inverse solution method must be applied then. However,
after changing the solution methodology systematically, introducing the state space,
which is composed of the original variables and the dual variables, into theory of
elasticity, the Saint-Venant problem for prismatic domain derives to a new set of
fundamental equations, and the method of separation of variables applies smoothly.
The solutions formerly found via the semi-inverse method can be solved by the
method of separation of variables directly in the state space. And the solutions in a
prismatic domain, which relate to the boundary conditions at the two ends, were
quite difficult to solve and were covered by the Saint-Venant principle, can now be
solved by the direct method, see [23]. The direct method, contrast versus the
semi-inverse method, derives the solution rationally that the reader can follow the
typical steps to solve problems and easy to understand.

Recent information technology development stimulates intelligence, smart
material, smart structures, smart system, smart device, etc. which demonstrates the
potential of control technology. The structural control is under ever increasing
concern [24,25]. The teaching of engineering mechanics should not ignore such
trend. The combined structure-control design is appealing. The present book’s
intention is to combine the applied mechanics and control theory with a unified
systematic approach, so as to expose the intrinsic theoretic interrelationship of
applied mechanics and optimal control, which will be beneficial to the new
generation of engineers.

The transition from Lagrange to Hamilton system implies that the geometry
correspondingly shifts from Euclidean to symplectic. It breaks the traditional
consideration and brings the duality system theory into the vast areas of applied
mechanics. The present book gives a number of different fields such as vibration,
structural mechanics, wave propagation and also the LQG and control theory,

and their precise integration. All these subjects are described with the same
solution system. After the reader studied one of them, then the other fields will be
easier to understand as the mathematical methodology is the same. A unified
approach will also be beneficial to teaching.

Scientific computation combined with theory and experiment have been the
three major supports for modern sciences, which states that only describing from the
theoretical aspect is not enough. Carrying out computation giving numerical
results is necessary. Hence in this book, algorithm is also emphasized, especially
the numerical solution of differential equations. The proposed “precise integration
method” can be applied both for evolutionary time history integration and for two
point boundary value problem (TPBVP) with its induced Riccati differential
equation, the numerical results will be approaching the computer precision. In
contrast to the traditional numerical integration algorithm, which always uses finite
difference approximation, the precise integration method combines the techniques of

algorithm and keeping track of the incremental part to reach high precision.
The mathematics needed for precise integration is simple. Early understanding
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such featured new algorithm will be beneficial in future applications. Because of
the importance of numerical computations, especially after the system description
derived to state space and the fundamental equations become a system of ODEs,
numerical integration of the ODEs becomes a fundamental step toward applications.
To ease the application of duality system methodology, the precise integration
method of ODE set is introduced first here.

§0.1, Introduction to Precise Integration method

The precise integration method [22,23] applies to first order ordinary
differential equations (ODEs). In fact, the mathematical theory of ODE treats the
normal form as a set of first order equations. Both the state space method and the
Hamiltonian system theory derive the differential equations into first order ODEs to
solve. The numerical integration for ODEs can be classified into two classes of
boundary value problems:
1)

2)

Initial value problem—Dynamical systems or evolutionary type problems need
to integrate the equations with given initial state, [26,27].
Two point boundary value problem (TPBVP)—Elasticity, structural mechanics,
wave-guide, optimal control and filter problems need integration with given
boundary conditions at the two ends [23,97].
In this introductory section, the precise integration of ODEs with initial value is

introduced first. Let a set of ordinary differential equations be given in matrix/vector
form as

where a dot above means the differentiation with respect to time t , v(t) is
the n dimensional vector function to be determined, A is a n×n given
constant matrix, and f(t) is a given external force vector, n dimensional.

§0.1.1, Homogeneous equation, algorithm for exponential matrix

According to the solution theory for ODEs, the homogeneous equation should
be solved first.

Because A is a time-invariant matrix, its general solution can be given as

The exponential matrix is defined as usual, see [1], vol.I,p.9

Now the problem is its numerical computation, as precise as possible. A time step,
denoted as is necessary for numerical integration, and a series of equally
duration instants are

for which
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After the matrix T is computed, time step integration becomes the following
recurrence

i.e. a series of matrix-vector multiplications. Therefore, the problem is reduced to
the computation of exponential matrix T in equation (0.6). The precise
computation of exponential matrix has two cruxes, namely

1)

2)

The additional theorem of exponential function is used, i.e. the
algorithm [28];
Keeping track of the incremental part of the exponential matrix, rather than
the total value.

The additional theorem of exponential function gives

where m is an arbitrary integer. It is suggested to select

Because should be a small time interval, so is an extremely small
time interval. Hence for the interval, the truncated Taylor expansion can be
applied

Because is extremely small, the first five term series expansion is good enough.
The exponential matrix T departs the unit matrix also extremely small, hence
it must be disintegrated as

where the matrix is very small.
In computations, one of the most important cruxes is that only the additional

matrix of (0.11) is kept in the memory rather than the matrix

Because is extremely small, if it is added to the unit matrix will

become an appended part and its precision will be greatly dropped in the round-off
operations in computer arithmetic. In fact, is an incremental, the second crux

mentioned above.
For computing the matrix T, the equation (0.8) should be factored as

Such factorization is carried out continuously for N times. Next, for arbitrary
matrices the following identity holds

and when are extremely small, the multiplication must not be carried out

after the addition of unit matrix I . Treating the matrices as the N
times multiplication of equation (0.12) correspond to the following instruction
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After the execution of this instruction, the addition

is finally executed. After N times multiplication, is no longer an extremely
small matrix, and this addition will have no serious numerical round-off error any
more. The algorithm given above is called as the precise computation of
exponential matrix.

Exponential matrix is widely used and is one of the most frequently computed
matrix functions. Quite a number of algorithms had been proposed before,
however, still not be so satisfied. Reference [29] reviewed nineteen dubious
algorithms among them, but in their later book [30] pointed out again that the
problem needs further investigation. It should be mentioned that the eigenvector
expansion method is effective in case of no Jordan form nearly to appear. However,
the precise computation method proposed above always works perfectly even if the
Jordan form really appears for the matrix A , that it is never a dubious algorithm.

§0.1.2, Solution of inhomogeneous equation

Let us go back to the equation (0.1), the external force f(t) should be

considered now. According to the theory of linear differential equation, after found
the impulse response matrix where is an arbitrary time instant, the

external force f(t) induced response can be computed by the Duhamel’s
integration

where the matrix has the following characteristics:

In above equation, the time-variant matrix A(t) means that the equation (0.16)
applies also to time-variant system. For the special case of time-invariant system,

is an exponential matrix, and obviously

In numerical computations, the numerical results at equally distant instants are
needed only. The integration need not be carried out from the initial instant

that it can be from to Thus the equation (0.16) can be updated as

The analytical expression of the external force is required, but it is

not definitely available. If linear interpolation approximation is used in



Introduction 7

the equation (0.21) can be integrated as

However, linear interpolation is a rough approximation, but there are a number of
different approximate expressions. If is approximated by the following

functions,
1)
2)
3)
4)

Polynomials;
Exponential functions;
Trigonometric functions;
The product of the above functions, etc.

the integration in equation (0.21) can be carried out analytically, see ref.[31].
To check the effect of precise integration method, a numerical example is given

as follows:

Example 0.1, The numerical integration of the ODEs is needed up to t = 20, see
[43]

Solution: The eigenvalues of the matrix A are The

eigenvalues depart so large to each other, which means that the equation set is stiff,
and the stiff ratio is 4000. The analytical solution is

If the 4-th order Runge-Kutta algorithm is used in computation, the numerical
stability requirement confines the time step-size being smaller than 0.00138, it
requires 14493 steps to reach t = 20. A big amount of computational expense, and
also there is numerical errors accumulation. However, using the precise
integration method, no matter how many time-steps subdivided in the time interval,
it always gives the precise numerical

result, as checked by the analytical solution. ##

§0.1.3, Precision analysis

The main step in precise integration algorithm is the computation of
exponential matrix Except the round-off errors in the usual

computer arithmetic in matrix multiplication, error can only be induced from the

power series expansion truncation in equation (0.10). In the algorithm, the
main part of matrix is the first term hence the truncation error should be

compared with it. The first term truncated in equation (0.10) is so the

relative error is estimated as
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Now suppose all the eigen-solutions are solved for matrix A ,

where Y is a n×n matrix composed of all the eigenvectors of A as its
columns, and represents all the eigenvalues, diag[…] means diagonal matrix.

Then

is derived. Thus, the truncation in equation (0.11) corresponds to the truncation in

The above analysis disintegrates the errors come from each eigenvalues. The
relative errors in equation (0.10) for each eigen-solution being of the order of

the absolute value is Note the double precision of

real type number in present day computer has 16 decimal digits. Therefore within
the computer double precision, it requires

Let it derives

For natural vibration with no damping, where is the circular frequency,

which means, even the integration step size being as large as 50 cycles, the

numerical result still feels no truncation error in the expansion. Certainly,
should be the highest frequency, however, for practical problems, vibration always
accompanies with damping. After a number of cycles, the influence of high
frequency component decays to be negligible. It means that the estimation (0.26)
for high frequency tends to be quite conservative.

Based on the above analysis, the high precision of the method is
understandable. The numerical result of precise integration method reaches the
computer precision.

Discussion: The success of precise computation of the exponential matrix T
is based on further subdividing the time step into 1048576 fine steps. But

solely subdividing does not bring precise result home. The second crux of
precise computation is always keeping track of the Incremental part, so as to avoid
the numerical ill-conditioned arithmetic operations. Such as using the
Runge-Kutta integration method, subdivides one time step into 1048576 fine

steps, and integrates the dynamic equation with the initial vector the numerical

result still cannot reach the precision of the precise integration. Because the
Runge-Kutta stepwise integration algorithm uses the full value of vector in
computation, but not uses its increments.

Comparing with precise integration, the time step integration algorithm
proposed before are all finite difference approximation, so the numerical results
never approach the computer precision. Some kind of numerical problem will
appear in practical computations, such as numerical stability problem or stiff



Introduction 9

problem etc. These problems were brought with the finite difference
approximation. The finite difference method (FDM) is executed with the full
vector, so that if the step size selected too small then it may bring another kind of
numerical difficulty as mentioned before. The precise integration method truncates
as given in equation (0.10), but the truncation error has been beyond the real number
double precision, which implies that with reasonable integration step size selection
of no stability or stiff problem may appear. Certainly, this assertion applies
only to time-invariant ODEs and exponential matrix computation.

When considering the numerical integration based on precise integration
method for time-variant ODEs or non-linear dynamical system equations, some
other approximation must be introduced, for which some problems may appear, and
further investigations are needed.

§0.1.4, Discussions on time-variant system or non-linear system

The differential equations derived from application problems are usually
non-linear or time-variant. Numerical integration cannot avoid these equations.
The precise integration method proposed above is only for time-invariant ODEs,
however, it also brings a basis for these difficult equations [32~34]. The ODE can
be rewritten as

where is a time-invariant matrix, and is time-variant or is related to the

unknown vector v, i.e. non-linear equation.
The analytical solution of time-variant equation or non-linear equation is

usually very difficult. Rewriting the equation (0.27) as

the terms within the parenthesis above can be treated as some ‘external force’, then
the equation will be of the form of equation (0.1) and the precise integration method
can be applied again. The impulse response matrix for time-invariant matrix

can be computed first, Afterwards, using equation (0.21) gives

where the expression of the force vector involves the unknown vector v .

Hence, the above equation (0.28) becomes an integral equation of Volterra type.
Generally speaking, to solve the integral equation requires numerical method. One
factor should be mentioned at this point that in numerical computation, the
approximation of integration is usually better than the finite difference.

Making approximation for the integral equation has a number of approaches.
In general, making use of analytical functions such as polynomial, exponential,
trigonometric functions etc. to approximate such that the integration can be
analytically carried out. Thereafter one may select similar techniques used in finite
difference, such as single step or multiple steps, explicit or implicit,
predictor-corrector methods etc., to use for the integral equation (0.28), see
references [33,34].
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Finally, the precise integration method can not only be used for the integration
of initial value problems but also can be used for the integration of two point
boundary value problems (TPBVP), which will be given in relevant chapters later.



Chapter 1, Introduction to analytical dynamics

Sir Isaac Newton proposed the fundamental equations of dynamics, which is
considered the mile stone of sciences. With the advancement of applications, the
dynamical systems under constraints were necessary to be considered, such as in
mechanical engineering. In 1788, Lagrange published the book “Analytical
Mechanics”, the mathematical modeling for a system of bodies under constraints
was developed analytically, and the generalized displacement method was proposed.
Hamilton in 1834 introduced the dual variables from the Lagrange system, and
proposed the canonical equation system, called the Hamilton system. With the
continuous contributions from a number of brilliant great mathematicians, the whole
classical system of analytical dynamics was well established. It composes a
cornerstone for mechanics and physics. However, only some basic topics are
described here based on the requirements of applications.

The method of analytical dynamics mainly treats discrete systems, such as for
the system composed of finite number of particles or rigid bodies. The
configuration of the system can be described with finite number of independent
parameters, so that it is called discrete system. For flexible body composed system,
such as elastic body or else fluid, its configuration needs infinite degrees of freedom
to describe, so that the flexible body composed system is called as continuous
system, continuum mechanics. When using finite element method (FEM) or other
discretization approximation, it reduces to discrete system. For majority
mechanical systems in nature or in engineering, the discrete model often describes
the system dynamical behavior quite satisfactorily, such as the FEM. For ease of
mathematical theory and solution, the discrete system is first selected in the
analytical dynamics rather than the system composed of continuum, hence the
dynamics for discrete system is widely accepted.

Analytical dynamics and the respective variational principles are very
important foundation for applied mechanics. The basic part is concisely introduced
in this chapter. Interested readers can find more contents from such as the
references [10~14].

§1.1, Holonomic and nonholonomic constraints

Treating the mechanical system as a group of N particles, then the system
configuration can be described with 3N values of the coordinates. If the system
is free from constraint, then the 3N coordinate values are all independent. Now
let the system configuration be restrained with l constraints, if these constraints
can be expressed with only the functions of coordinates (but not their

time derivative)

then they are called as holonomic constraints. Note in equation (1.1.1a) there is no



12 Duality system in applied mechanics and optimal control

time t, and is called time-invariant (scleronomous) constraints, however equation
(1.1.1b) is time dependent and is called time-variant (rheonomous) constraints.
Only equality constraints are considered here.

Example 1.1, A crankshaft mechanism is shown in figure 1.1, the displacement
parameters are obviously, are not independent,

the constraint equations are

Because the two constraint equations do
not explicitly involve the time t, hence
the constraints are time-invariant and
holonomic. ##

Example 1.2, A rotating disc has a groove, in which a key slides, figure 1.2. Select
the relative sliding distance as variable. The inertia coordinate of this key
particle is the fixed frame Oxy, and the displacements of the particle are

the constraint equation is

The constraint equation for the inertia coordinates
is time variant, so that it is a rheonomous

holonomic constraint. The plays a freedom in
the relative coordinate system, that the problem has
one degree of freedom. ##

If the first partial differential of the functions
with respect to all the variables in the

equations (1.1.1a) and (1.1.1b) exist and are continuous, then the complete time
derivative gives

Obviously, the above two equations can be integrated into the form of equations
(1.1.1a) and (1.1.1b), the difference is only a constant. This is the characteristic of
holonomic constraint. Equation (1.1.2) can be written in differential form as



Analytical Dynamics 13

Integrability means that they are a complete differential. When all the constraints
of a system are holonomic, it is called a holonomic system.

In the constraint equation (1.1.1) there are only coordinate values. In
applications, however, there are constraints involving velocities of system variables.
A classical example of such non-holonomic constraint system is a vertical disc of

radius r rolling on a horizontal plane x,y , see

figure 1.3.
The center of disc is denoted as x, y and z

that z = r and where is the angle of

rotation. Let the rolling direction be denoted by the
angle and the configuration is described by

then the motion is

from which derives the constraint with
time derivatives

This constraint equation cannot be integrated as
a complete differential hence non-holonomic. A
non-holonomic constraint equation involves velocity
(time derivative), but it cannot be integrated to be a

complete differential of a displacement function. On the other hand, any given
configuration is accessible.

Let the system have m non-holonomic constraints denoted as

usually the constraint equations are linear with respect to the velocity and called the
linear non-holonomic constraints, expressed as

where and are functions of and t . These equations are often

written in Pfaff form

If the above constraint is linear homogeneous with respect to velocity,

otherwise it is non-homogeneous.
A system having one non-holonomic constraint is a non-holonomic system.

Comparing the equation (1.1.2b) with equation (1.1.6) gives

which means that the constraint equation (1.1.5) can still be holonomic. According
to equation (1.1.7)
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which gives the necessary condition of integrability as equation (1.1.8). According
to theory of differential equations [1,36], it is also the sufficient condition.

§1.2, Generalized displacement, degrees of freedom, virtual displacement

A system composed of N particles uses 3N inertial Cartesian coordinates
denoted by to describe its space configuration. If the system is

subjected to l holonomic constraints as in equation (1.1.1), then these coordinate
values are not independent. A set of independent parameters which
gives an unambiguous representation of the configuration of the system, will serve
as a system coordinates and is known as the generalized coordinates (or generalized
displacements).   It can also be written in vector form q . Obviously

n = 3N – l
Generalized coordinates usually have a readily visualized geometrical

significance, and are often chosen on this basis. If the generalized coordinates can
vary independently without violating the constraints, then the number of generalized
coordinates is equal to the number of degrees of freedom.

If except the l holonomic constraints, the system has another m
non-holonomic constraints (1.1.5). Because the non-holonomic constraints cannot
be integrated that they can only constrain velocity but cannot influence the number
of independent parameters specifying the configuration of the system. Hence the
number n of generalized coordinates is unchanged. After selected the
generalized coordinates the position vectors of various particles
can be expressed as the functions (transformation) of the generalized displacements

Using generalized displacement vector q to describe the configuration of

system, the holonomic constraints have been satisfied automatically. The another
m non-holonomic constraints can be expressed with the generalized displacement
and velocity vectors q and as

where and are the functions of generalized displacements and time t.

When then the constraint equations are homogeneous. Quite often the
equations are written in differential form

The idea of virtual displacement is introduced now. Suppose the
configuration of a system with N particles is given by the 3N Cartesian
coordinates which are measured relative to an inertia frame, but
subjected to constraints. At any given time, let us assume that the coordinates
move through infinitesimal displacements which are virtual in the

sense that they are assumed to occur without the passage of time. Such small
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change of in the configuration of the system is known as a virtual
displacement.

Note that a virtual displacement conforms to the instantaneous constraints,
that is, any moving constraints are looked stopped during the virtual displacement.
Suppose the system is subjected to l holonomic constraints of equation (1.1.1b)
then the virtual displacement should satisfy

note that the term does not present in the above equation even for holonomic
constraint.

For m non-holonomic constraints the virtual displacement should satisfy the
equation

comparing with equation (1.2.3), for which the variation exists. It means
the virtual displacements regard the time variation equals to zero. The holonomic
constraints can be considered in combination with non-holonomic constraints, i.e.
combining (1.1.3) and (1.1.6), that the virtual displacements
satisfy the set of equations

For a holonomic system the particle configuration is described by the
generalized displacements via the equation (1.2.1). The virtual displacements
in Cartesian coordinate satisfy

The various are independent, hence there are n linearly independent virtual
displacements satisfying the constraints.

However, if there are another m non-holonomic constraints

Although the generalized displacement expression (1.2.1) is used for but only
the holonomic constraints are considered. Because there are non-holonomic
constraints, so are no longer independent. Note that

are the components of position vectors Substituting expression (1.2.1) into

equation (1.2.7) gives

hence the virtual generalized displacements satisfy
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Therefore the number of variations of independent generalized displacements is
(n–m ) , i.e. the number n of generalized displacements minus number m of

non-holonomic constraints.
The degrees of freedom are defined as the number of independent variations

of displacements. Hence, for a holonomic system, degrees of freedom equal the
number of generalized displacements; however, for a non-holonomic system the
number of degrees of freedom equals the difference between the number of
generalized displacements and the number of non-holonomic constraints.

§1.3, Principle of virtual displacement and the D’Alembert principle

An equilibrium system of forces does no work on arbitrary virtual
displacements; on the contrary, if a system of forces does no work on all the virtual
displacements, then it is an equilibrium system of forces. This is the principle of
virtual displacement.

The D’Alembert principle is also called the dynamic equilibrium method.
Denoting the masses of all the particles as the inertia forces of the particles are

Imagining these inertia forces in combination with the active

forces and the constraint forces acting on these particles, compose a

system of equilibrium forces, where is the vector of the i -th particle in an

inertia frame. Therefore the principle of virtual displacement is used to the
dynamic equilibrium force system to give

where the superscript denotes transpose. The expression above transposing the
column vector of combined forces becoming a row vector then multiplying the
virtual displacement column vector gives a scalar, which equals zero. All the
constraint forces do no work on any virtual displacements, hence

Such constraints are the ideal, for example, the constraint of a rigid connection, or
smooth surface constraint and/or perfectly rolling with no friction etc. Hence

This equation is called as D’Alembert-Lagrange principle. This principle requires
only that the constraints are ideal, hence can be applied to holonomic as well as to
non-holonomic systems.

Equation (1.3.3) is given with the displacements in Cartesian coordinate.
However, using the generalized displacement description for a constraint system has
a number of conveniences. The complete time t derivative of the generalized
displacement expression (1.2.1) gives
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where are originally functions of the generalized displacements However,

its time derivative can be considered as the functions of and time t.

Temporarily, consider holonomic constraint system first, that and can be

regarded as independent variables. Taking partial derivative of equation (1.3.4)
with respect to gives

Partial differentiating the expression (1.3.4) with respect to gives

On the other hand, taking complete time derivative of gives

Comparing the two expressions gives

Let the virtual displacement in equation (1.3.3) satisfies the holonomic
constraints first

Therefore equation (1.3.3) derives

Defining the generalized forces as

and the second summation in (1.3.7) can be rewritten as

using the equations (1.3.5) and (1.3.6), where
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is the kinetic energy of the system. Then the variational equation (1.3.7) is derived
as

called the D’Alembert-Lagrange equation.

§1.4, Lagrange equation

After derived the D’Alembert-Lagrange equation (1.3.11) the dynamic
differential equations under the generalized displacements can be given as follows.

For a holonomic system, there is no other non-holonomic constraint, so that the
n variations in equation (1.3.11) are all independent, hence the dynamic

equations can easily be written as

The kinetic energy T is a function of where is the

generalized displacement vector. The generalized external forces should be

considered further, which can be distinguished according to the potential forces and
general external forces. The general external forces can be denoted as The

potential forces are written as

where is a function of potential energy. Introducing the Lagrange function as

then the dynamic equation (1.4.1) becomes

which is called the Lagrange equation or Euler-Lagrange equation. This
equation is derived for a holonomic system. This book mainly considers
holonomic system.

The composition of the Lagrange function is Kinetic energy minus Potential
energy. The derivation of Lagrange equation involves inertial and potential forces,
but has no damping force. In order to include the damping force in Lagrange
equation, Rayleigh proposed a dissipative function

Therefore, equation (1.4.4) becomes

The dissipative forces always expense energy, hence the dissipative matrix C is
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positive definite or at least non-negative definite.
However, the dynamic equation of a non-holonomic system should also be

considered. Except the holonomic constraints, which have been considered by
means of the generalized displacements, there are another m non-holonomic
constraints

and the virtual displacements should satisfy the conditions

Hence the variations                in equation (1.2.9) are not completely

independent, for which the Lagrange multiplier method can be applied.
Introducing the multipliers

which is to be determined. Multiplying to the non-holonomic variational

condition (1.4.8) and adding into the equation (1.3.7) gives

There are (n – m) independent variations of so suppose are

independent, then selecting so that the former m terms in the parenthesis are

zero. Thereafter because of the independent variations, the latter (n – m) terms in

the parenthesis should also be zero, therefore

The unknown functions are and the Lagrange multipliers

totally (n + m) variables to be solved. Corresponding equations
are (1.4.11) and constraints (1.4.7) totally also (n + m) equations, and so the
number of variables and of equations are compatible.

§1.5, Hamilton variational principle

From what follows, the description is only for holonomic systems, and the
system configuration is given with generalized displacement vector q only.

In dynamic equation (1.4.4) when the external forces are only potential forces,
then it derives the dynamic equation

However, this equation can be derived from a variational principle, which is called
the Hamilton principle
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where is the beginning time, is the finish time, given instances. The

displacement vectors and are given at the two instants and having no

variations. L is the Lagrange function and is composed of kinetic energy minus
potential energy.

There are various paths (orbits) from the generalized displacement at

initial instant to reach the finish point, but generally speaking there is only one

path, which satisfies the differential equation (1.5.1), reaching the generalized
displacement vector at the finish time which is called the real orbit. The

variational principle says that the integration S along the real orbit takes stationary
value. In other words, the real orbit in the configuration space of a holonomic
system during the fixed interval to is that the integration S is stationary

with respect to orbit variations, which vanish at the two end points. The orbit
variations are first order small values, which need not satisfy the dynamic equation
(1.5.1), but satisfy the (holonomic) constraints. Introducing the action integral

and the principle of that its variation equals zero is called the Hamilton principle.
The variable S is a function of the generalized displacement q(t), but q(t) itself

is also a function of time. Hence S is a function of functions, and is termed as a
functional. Thus the action S is a functional of generalized displacement q(t).

For a holonomic system, every component of q(t) can vary independently.

Denoting the solution (i. e. the real orbit) as nearby the solution there is

another orbit q(t) from which the functional S can also be computed which will

not coincide with the real action The difference is the variation of
the functional and is computed in first variation as

The vectorial notation is used in the derivation. A scalar function taking
derivative with respect to a vector gives a column vector, for which the geometric
meaning is the gradient. Hence is a vector. The second equal sign gives
the first variation, the third equal sign is integration by parts, and the fourth equal
sign is because of the variations of generalized displacement at two ends equal zero.
Because for a holonomic system, the variation of generalize displacement in

time interval is arbitrary, so that the term in the bracket in the last line of
(1.5.4) equals zero, from which the dynamic equation (1.5.1) is obtained in vectorial
form as
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called the Euler-Lagrange equation.
The above paragraph defines the action S and gives the Hamilton principle.

The action functional S holds a stationary value at the real orbit For

analytical dynamics, the Lagrange function in the action integration is
composed of (kinetic energy – potential energy). However, variational method,
Hamilton principle and so on are not necessarily limited to be applied only for
analytical dynamics. These methods can also be applied in eletro-dynamics, in
quantum mechanics, etc. In the present book, these methods will be applied also in
elasticity, in structural mechanics, wave propagation and optimal control problems.
In various field applications there are also the Lagrange function but the

argument vector q(t) is not necessarily generalized displacement vector, the

coordinate t is not necessarily the time, and the Lagrange function is no longer the
composition of (kinetic energy – potential energy). For all these applications, the
variational equation (1.5.3) always holds. Generally speaking, the composition rule
of the Lagrange function can be quite versatile, that it is only necessary a

function of For analytical dynamics, the dynamic equation is evolutionary,
initial value problem. But for other problems, it can also be a two point boundary
value problem (TPBVP).

The Hamilton principle does not limit the number n of degrees of freedom of
the generalized displacement q(t) (the argument function). Hence this

variational principle not only can be used to discrete system but also can be use to
continuous system. Thereafter, it can develop to discrete as well as to continuous
mixed variable systems. Such versatility is quite beneficial to theory of elasticity,
complex structures, electro-magnetic fields and wave-guide problems etc.

Example 1.3, A system composed of two masses and connected with two

thin hanging rods for which the mass is neglected, see figure 1.4(a), a given
horizontal force f(t) acts on the mass It is required to derive the dynamic

equation with the Lagrange method.
Solution: The system has two degrees of freedom, and and are selected
as the generalized displacement. The system kinetic energy is

In the external forces, the gravity and are potential forces, for which

the potential expression is

The horizontal force f(t) is non-potential. To compute the generalized forces

induced by f(t), first let the virtual generalized displacement be and

see figure 1.4(b). According to virtual work equivalence gives
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Taking and as shown in figure 1.4(c), and the virtual work

equivalence gives

According to substituting into the Euler-Lagrange equation (1.5.1)
gives

These two ODEs are the dynamic equations required. However, they are second
order non-linear differential equations, to find their analytical solution is not easy.

When the disturbance force f(t) is small, and the initial displacements and

velocities are all small, the system will vibrate slightly nearby the equilibrium
position Neglecting the higher order small quantities, let

and

the dynamic equations are simplified as

They are a set of ODEs and can be easily solved by the linear vibration theory, see
next chapter. ##

The Lagrange method is often used in the vibration analysis of discrete system.
In the above derivation, the linearization step is carried out after the dynamic
equations are derived. This linearization step can be executed in generating T
and in this linearization process the second order displacement terms must be
kept in the functional. Hence
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Afterwards, from the Euler-Lagrange equation derives

which are completely in agreement with those derived above.

The characteristic of these dynamic equations is that there is no term,
which implies that the system has neither damping nor gyroscopic term. The
pendulums are described in an inertia frame and also time invariant, hence there is
no gyroscopic term. ##

The expression of the kinetic energy T is worth to explore below. Using the
expression (1.3.4) of gives

There are second order, first order and zero order terms of in the above
expression. The condition for the first and zero order terms to exist is that, the
expression of is time variant, so that the partial derivative with respect to time t

is not zero (rheonomic system). Classifying the kinetic energy expression T as
the summation of quadratic linear and independent terms gives

where

For a time invariant system (scleronomic system), and are both zero, hence

the kinetic energy T becomes a homogeneous quadratic form of the generalized
displacement vector According to the physical meaning of kinetic energy,

is positive definite or at least non-negative definite.
There is some explanation for the generalized forces the definition of

which is

from the expression of virtual work of the external forces
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which is also the virtual work of generalized external force Hence the

equation for finding the external generalized forces is thus derived, which is again
the method of virtual displacement principle. The double pendulum example given
above uses such method.

§1.6, Hamiltonian canonical equations

The Hamiltonian system was first given systematically in 1834 (W. R.
Hamilton). Before Hamilton, the French mathematicians Poisson, Lagrange, Pfaff,
Cauchy also contributed the development as mentioned in [10], p.264. The
importance of Hamilton system lies in providing a framework for theoretical
extensions in many areas of physics. Within analytical dynamics it forms the basis
for further developments, such as the canonical transformation, the Hamilton-Jacobi
theory and perturbation approaches etc. The Hamiltonian formulation provides
much of the language with which present day statistical mechanics, quantum
mechanics are constructed.

The importance of Hamiltonian formulation in applied mechanics is not limited
only in analytical dynamics, that it also provides a foundation for optimal control,
elasticity, vibration theory, wave propagation, multi-body dynamics etc. Hence,
although the Hamiltonian formulation was introduced in the extent of analytical
dynamics, its theoretical implication is never only limited in analytical dynamics.

§1.6.1, Legendre transformation and Hamiltonian canonical equations

The unknown functions in Lagrange system formulation are expressed with the
generalized displacement vector q(t) , which describes the displacements of

particles, i.e. a point in the displacement space. Such description is termed the
configuration and the dynamic equation is

which is a second order ODE of the vector q(t). The number of boundary

conditions needed to fix the solution is 2n, which can be either giving the initial n
generalized displacements and velocities at time or giving the generalized

displacements i = 1,2,….n at and etc. In Lagrange system, the

generalized displacement vector q(t) of configuration description is the main

unknown, whereas the velocity is considered only the time derivative of q .
In Hamiltonian system formulation, the consideration is completely different.

The governing differential equations are first order, but the number of equations is
doubled becoming 2n. The number of fundamental unknowns is also 2n , which
coincides with the number of boundary conditions. In classical mechanics and in
physics it is termed as phase space, however, it is also termed as state space method.
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The first n unknowns are naturally selected as i = 1,2,…n , and the other half,
n unknowns, are selected as the dual variables—generalized momentum

The dual vector variables (q, p) are termed the canonical variables in analytical
dynamics or in physics. However, in other applications it is often termed as the
state variables. The vectors q and p are dual to each other, hence they are
often called as dual variables.

Mathematically, the partial differentials in the Lagrange equations have
practically treated the components of vectors q and as independent to each

other. Such as which means only the component varies but all the

components of and the other components of q are regarded unchanged. The
transition from Lagrange system to Hamilton system corresponds to, from the
variables transformed to the variables (q,p,t), where the relation of p

to is given by (1.6.2). Such variable transformation is described with the
Legendre transformation. The geometric interpretation of Legendre transformation
can be found from [1]-vol.2, §6.

The Hamilton description uses two kinds of variables, i.e. the dual variables of
q and p .  The corresponding variational principle is derived as follows.

Introducing the variable vector s to denote the generalized velocity the

Lagrange function becomes L(q,s,t), and becomes a prerequisite condition

of the vairational principle. Correspondingly, introducing the vector p as a
Lagrange multiplier vector of the prerequisite condition, hence the variational
principle (1.5.2) becomes

where the three kinds of variables q,p and s are considered varying
independently. Performing the variational derivation gives

Substituting (1.6.4b) into (1.6.4a) gives (1.6.2). Introducing into equation (1.6.3)
the function

where the variable s is regarded a function of q,p,t. The function H is termed
as the Hamilton function. Based on the chain rule of differentiation gives

However, from equation (1.6.5) the complete differential derives

Substituting equation (1.6.4a), the ds term is cancelled, then using equations
(1.6.4b,c) the above equation derives to
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Comparing with (1.6.6a) gives

Equations (1.6.7a,b) are called the Hamiltonian canonical equations. Then the
2n first order ODE substitutes the Lagrange equation.

The equation (1.6.7a) corresponds to the inverse of equation (1.6.2), which can
be regarded as the constitutive relation, and equation (1.6.7b) is the dynamic
equation. The formulation of Hamilton function H(q,p,t) explicitly expresses

that it is a function of the dual variables q, p and time t . Eliminating the

vector s by substituting relation (1.6.5) into the variational principle (1.6.3) gives

It is the variational principle corresponding to the set of Hamiltonian canonical
equation (1.6.7), a variational principle with two kinds of dual variables q , p .

Hamilton function is very important, that a number of basic equations and
fundamental theorems are derived from it. The main steps to derive the Hamilton
function from the Lagrange function are outlined as follows:
1)

2)

3)
4)

Select the generalized displacement q, then compose the Lagrange function

Substituting with s, introduce the generalized momentum by means of

equation (1.6.4a).
Solve s = s(q,p,t) from the equation

Substitute s into (1.6.5) to obtain the Hamilton function, which is a function

of  (q,p,t) .
The steps given above are quite general. For a dynamical system

where the kinetic energy T is composed of quadratic, linear and zero-th order
terms of see equation (1.5.7). Suppose

where a is an n-dimensional vector, M(q,t) is an n×n symmetric positive

definite matrix. Hence the dual variable vector (generalized momentum) is

Solving gives

which gives the relation between momentum and velocity and can be regarded as a
constitutive relation. Hence the Hamilton function is derived as

It is noticed, that the Hamiltonian canonical equations (1.6.7a,b) are not entirely
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symmetric with respect to the dual variable vectors q and p, because the negative

sign in equation (1.6.7b). Compose the state vector using the dual vectors q and

p as components

Hence the Hamilton function can be written as H(q,p,t) = H(v,t) and

becomes a 2n -dimensioned vector, where

For combining the two canonical equations as one, introducing a 2n×2n matrix as

then the Hamilton canonical equations are given in combined form

This form of canonical equation is called the symplectic expression of Hamilton
canonical equation. The term symplectic comes from Greek, stands for the
meaning of ‘intertwined’. H. Weyl first introduced the term in 1939, see [15].
The matrix J is of special importance in symplectic formulations. Some easily
verified properties of J are listed as follows:

thus and det(J) = 1

For arbitrary vector of 2n -dimensions, it always holds because

J is a skew-symmetric matrix.
Here, it is seen that the symplectic behaviour and Hamiltonian system are

closely interrelated. All conservative systems can be described by a Hamiltonian
formulation, hence has the symplectic property. There are quite a number of
conservative systems in applied mechanics and modern control theory. Using the
duality variable system and deriving the governing equations into Hamiltonian
system description, it is hopefully to establish the unified methodology under the
symplectic frame, which is beneficial to the exchange among various disciplines.

Go back to the equation (1.6.3), a variational principle with three kinds of
variables q,p,s. The variational principle (1.6.9) of two kinds of independent
variables corresponding to the Hamiltonian canonical equations is obtained by
eliminating s from (1.6.3). Another approach is to eliminate p but keeps the

variables q and s , so as to obtain another variational principle with two kinds of

variables. Substituting into equation (1.6.3) gives

where q and s , the generalized displacement and generalized velocity,

respectively, are the two kinds of independent variables. The differential equations
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derived from which are ([10] p.247)

Such form of variational principle (1.6.19) is sometime useful in computations.

§1.6.2, Cyclic coordinate and conservation

A generalized coordinate which does not appear in the Lagrange function

L, is called a cyclic coordinate, however, can still appear in the function L .
From equations (1.6.4c) and (1.6.7b) it derives

Therefore is a constant, and will absent in the Hamilton function. Conversely,
if a generalized coordinate does not occur in H, the dual momentum is conserved.
The cyclic coordinate is often used in solving the problem of momentum
conservation or angular momentum conservation etc.

The problem of how the Hamilton function H changing with time is also very
important. From canonical equations the complete differential of H is given as

Therefore if L is not an explicit function of time t , then the Hamilton function
H is a constant of motion.

The physical meaning of Hamilton function is of great concern. If there is

only in kinetic energy expression (1.5.7), then
which is (kinetic energy + potential energy). The equation H = constant gives the
mechanical energy conservation principle. Only when the generalized
displacement vector q is expressed in an inertia coordinate system, then

the principle of energy conservation is arrived.
Note that such interpretation applies only to analytical dynamics. In other

fields, the interpretation for conservation theorem is different, that the interpretation
is problem dependent.

A cyclic coordinate implies a conservative rule, for which the respective

dual variable takes a constant denoted as In such case the Routh method
applies. From the Lagrange function, selecting only these cyclic coordinates
introducing the dual variables for other generalized coordinates no

transformation is made. Without loss of generality, assuming the i -th coordinate
being cyclic, then the generalized coordinates with subscript 1 ~ s do

not transform, and take constant values After Legendre

transformation for these cyclic coordinates is carried out, the Routh function is
obtained as

From the Routh function derives the dynamic equations for the former s
generalized coordinates
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where R is regarded as a Lagrange function, however there are only the
generalized coordinates The values of constants can

be determined by the boundary conditions.
Using purely analytical method to find solutions, less unknown functions are

generally easier. However solution by numerical method, transforming to state
space may be easier, so that all generalized coordinate should be transformed to
Hamiltonian formulation.

§1.7, Canonical transformation

The above expression for canonical dual equations extends the variables from
generalized displacements to the state space (phase space), i.e. expressed in the
combination of q and p, which has been completely different from only the

configuration (generalized displacement) space q for Lagrange system. In

Lagrange system description, the coordinate transformation is from the original
configuration q transforming to another configuration Q , and such kind of

transformation is termed as the point transformation. Configuration is only a point
in the generalized displacement space, that each component of q or Q is only a
position parameter for this point, which is different from the state of the system.
The state of a system should also involve momentum p .

For Hamilton system, the description is the state of system. So the
transformation for Hamilton system should be about the state vectors, i.e. from q
and p to Q and P , it is a 2n dimensional state space (invertible)

transformation and is termed as the canonical transformation. An arbitrary
transformation in the 2n dimension may not be called as canonical, only when
after the transformation, the system dual equations formulated with the dual vectors
Q and P still have the canonical form then the transformation is called canonical.
Here the notation is made that the bold lowercase characters are usually regarded as
vectors, whereas the bold capital characters are matrices. However in describing
the canonical transformation, Q and P are still vectors. To formulate the
transformations

These equations are for time-variant transformations. The simpler case is
time-invariant, or termed as steady (time-invariant) transformations

In the application for vibration theory later, the usual method of eigenvector
expansion solution in the inertia coordinate (structural dynamics) belongs to the
steady point transformation, whereas the eigenvector expansion solution for
gyroscopic system belongs to the steady canonical transformation. Steady
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transformation is easier to deal with.
The canonical transformation requires that the dual differential equations under

the dual coordinates Q and P after transformation still keep the canonical
duality form. This requirement will be satisfied provided that a new function
K(Q,P,t) exists in the transformed dual coordinate system Q,P such that the

dual equations are given as

The function K(Q,P,t) plays the role of a Hamilton function in Q,P coordinate

system. Correspondingly, the variational principle appears as

At the same time, the variational principle under the original coordinate system is

The two variational principles describe the same problem, however it is by no means
to say that the integrands in both variational principles must be equal. Because at
the two ends and it is considered no variation for the state variables, hence
except a scale transformation, which is not so important [11], the difference between
the two integrands is a complete differential, i.e.

where F is any function of the state space coordinates with second order
derivatives, and is useful only when it is a function of 2n argument variables, in
which half of the arguments are the original coordinates and another half are the
transformed coordinates, termed the generating function. The first class of
generating function uses two displacement vectors q and Q as arguments

where is a function to be selected. Substituting into equation (1.7.8) derives

Note that before transformation, q,p are independent vectors, so there are totally

2n independent variables. After transformation, there are still 2n independent
variables, but there have been 4n variables namely q,p and Q,P .

Transformation means that there are 2n relations among them. Now treat q

and Q as independent vectors, so that there are still 2n independent variables.
Hence the above equation can hold identically zero only if both the coefficients of

and vanish, (which supplies 2n conditions), i.e.

where equation (1.7.10a) implies that p is a function of q,Q and t, solving it

with respect to Q derives the equation (1.7.2a). Then substituting the solved Q
into the equation (1.7.10b) gives equation (1.7.2b). The canonical transformation
(1.7.2a,b) is thus derived. This derivation explains that the canonical
transformation depends only on the generating function but not
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relates to the function H. Hence the canonical transformation (1.7.10) can be
used to arbitrary Hamilton functions. After an individual Hamilton function
H(q,p,t) is selected, the dual variables q,p are expressed as functions of the new

dual variables Q,P . Then substituting into equation (1.7.10c) gives the new

Hamilton function K(Q,P,t).

The above canonical transformation is derived from called the first

class of generating function. If does not depend on time t explicitly, the
transformation is called as a steady canonical transformation and the function K
equals to H numerically. Though K equals H numerically, but the
expression is completely different, for the arguments are different.

Next, if using the generating function (1.7.9) is inconvenient, the second class
of generating function can be applied. Let the function F in
equation (1.7.8) be

substituting into (1.7.8) gives

in which both the coefficients of variables and should be zero, hence derives

From equation (1.7.12a), P should be solved as functions of q,p,t which gives

equation (1.7.2); then substituting the solved P into (1.7.12b) and Q(q,p,t) is

obtained. Again, this canonical transformation depends only on the function
but not depends on the function H. Finally, for the given Hamilton

function H(q,p,t), the new Hamilton function K(Q,P,t) is found from equation

(1.7.12c).
The third class generating function is denoted as Let the

function F be

and substituting it into equation (1.7.8) gives

The coefficients of variables and should be zero, which derives to

The former two in the above equations are the implicit canonical transformation,
which is independent on the Hamilton function. Then, K(Q,P,t) is solved for

the selected Hamilton function H(q, p,t).

The fourth class of generating function is expressed as

similarly
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The four classes of generating function can be used interchangeably [11,12].
As an example, if select the second class of generating function as

According to equation (1.7.12b) the new displacement vector becomes

which looked like a point transformation (1.7.1). However according to (1.7.12a)

from which solves
where the differential of vector function f with respect to the argument vector q

is defined as

Here, f is written as a m -dimensioned vector for generality, as a special case it is
m = n for canonical transformation. Since an arbitrary function g(q,t) appears

in equation (1.7.19), hence it is not a point transformation, but still canonical.

§1.8, Symplectic description of the canonical transformation

In last section, the canonical transformation is derived from generating function,
however, the generating function method is not unique. The canonical
transformation can also be described by the symplectic method. The two methods
are equivalent, however, are quite different in form. For simplicity, only the time
invariant canonical transformation (1.7.4) is described.

The time-invariant canonical transformation does not change the value of
Hamilton function, i.e. H(q,p) = K(Q,P) as given in the last section. The

symplectic form of canonical equations is

and is a 2n -dimensional state vector. The time-invariant canonical transformation
(1.7.4) can be expressed as a 2n -dimensional state vector transformation

The reverse canonical transformation can be expressed as the inverse function,
which is certainly time-invariant too

Substituting the above equation into (1.6.17) gives

On the other hand, substituting the vector in (1.8.1) into equation (1.8.2) gives

identical transformation, i.e. for which taking partial differential with

respect to v gives
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and the equation (1.8.3) becomes

where the matrix S is defined as

Canonical transformation requires that after transformation, the symplectic
expression for canonical equations are still of the form (1.6.17), i.e.

From which derives the condition for canonical transformation (1.8.1)

It is defined that any matrix satisfying the condition (1.8.6) is said to be a
symplectic matrix.

The derivation above has not mentioned generating function, but directly
proposed the condition for canonical transformation that the partial differential of the
transformation matrix S in equation (1.8.4) should be a symplectic matrix. The
two methods for deriving canonical transformation, i.e. 1) deriving by generating
function or 2) using symplectic matrix, get the equivalent results in fact. However,
only time-invariant canonical transformation is derived above with the symplectic
matrix method. For time-variant canonical transformation, please confer references
[11,14] and the papers cited there. The time-invariant canonical transformation can
solve quite a number of problems.

The symplectic matrices will be used quite frequently in what follows, hence a
list of its behavior is necessary. First taking the determinant to its definition
equation (1.8.6), because the determinant value of matrix J is 1, and the
determinants of both the original and transpose matrices are equal, hence

Therefore symplectic matrices can be classified into two classes, the
first class is det(S) = 1 and the other class is -1. Recall that the orthogonal

matrices can also be classified as two classes according to the determinant being 1 or
-1, which is the similar situation. Because its determinant not equal to zero, the
symplectic matrix must have its inverse matrix.

It is easy to verify that J and are all symplectic matrices.

The transpose of a symplectic matrix is again symplectic. To prove the

statement, taking inversion for the equation (1.8.6) gives then left

multiplying with S and right multiplying with derives so is a
symplectic matrix.

The inverse matrix of a symplectic matrix is symplectic.
The product of two symplectic matrices is symplectic, and is a unit

element.
The multiplication of symplectic matrices is the usual matrix multiplication, so

the associative rule applies

Hence the symplectic matrices compose a group. All the symplectic matrices
with determinant being 1 compose a normal subgroup. Also all the symplectic
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matrices with determinant being -1 compose another normal subgroup. The
situation is very similar to the orthogonal matrices.

§1.9, Poisson bracket

Definition: for two arbitrary functions of the canonical dual vectors q and p,

i.e. and their Poisson bracket is defined as a bilinear expression

The value of a Poisson bracket is a scalar, where can also be functions of

time, the argument t here is only a parameter. Using symplectic notation is
perhaps simpler that

If the functions are selected directly from the components of the canonical

variables, it is easily verified that

These canonical variables (arguments), q and p, are all components of the state

vector v. Composing the Poisson bracket equation (1.9.3) as a 2n×2n matrix
gives

Now selecting the functions from   the components of canonical

transformed dual vectors Q and P, or  from then the Poisson

bracket matrix can be computed as

because of the equation (1.8.4) and that S is a symplectic matrix. Conversely, if
equation (1.9.4) is valid then the transformation is canonical. The Poisson bracket
matrix for the canonical variables is called as the fundamental Poisson bracket
matrix. Equation (1.9.4) explains that the fundamental Poisson bracket matrix
keeps unchanged under canonical transformations. In other words, the fundamental
Poisson brackets are invariant under canonical transformation, and the invariance is
thus in all ways equivalent to the symplectic condition for a canonical
transformation.

It is easy to show that the Poisson bracket is invariant under any canonical
transformation. Let and be two functions, because

then

Because the transformation from v to is canonical, so that S is a
symplectic matrix satisfying (1.8.6), so
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Thus the Poisson bracket has the same value when evaluated with respect to any
canonical set of variables, that all Poisson brackets are canonical invariant. Hence
the indication subscript v to of the Poisson bracket is immaterial and can be

taken off thereafter.
The essence of Hamilton canonical equations is that its form is unchanged

under canonical transformations. Similarly the Poisson bracket is also unchanged
under canonical transformation, which implies that the canonical equations can be
expressed with Poisson bracket as

where inside Poisson bracket, the former is a vector and the latter is a scalar of
Hamilton function H, and the result is again a vector. So (1.9.6) is a 2n -vector
equation. Using the symplectic expression of Poisson bracket gives

In dynamic equation (1.9.6) and (1.9.7), the time derivatives of canonical
variables are expressed using Poisson bracket. For arbitrary function u(q,p,t), its

differential with respect to time t is

which is the symplectic expression of complete time derivative. If the function
u(q, p, t) is selected as the Hamilton function H(q, p, t), it derives

Because is valid for arbitrary vector

The dual coordinates q,p are used to describe motion, whereas Hamilton

function H(q,p,t) is for an individual motion. It can be interpreted as, that the

Hamilton function H(q,p,t) generates a motion.

§1.9.1, Algebra of Poisson bracket

The importance of Poisson bracket has been shown in the previous section,
hence the algebra for Poisson bracket is very interested. First, it is skew-symmetric,
as

Next, it is linear and distributive, that

where a,b are arbitrary constants and are arbitrary functions of q,p,t.

Thirdly
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In addition, Poisson bracket has another behavior, the Jacobi identity

where a Poisson bracket appears as an argument in the Poisson bracket, a double
Poisson bracket. For functions u(q,p,t),v(q,p,t),w(q,p,t) having continuous
second derivatives, the sum of their cyclic permutations of the double Poisson
bracket is zero. This proposition is proved below.

The first term in (1.9.12) has only first-order partial derivatives for u, the
second-order partial derivatives for u only appear in the second and third terms in
equation (1.9.12). Hence in the expanded expression of (1.9.12), all terms are the
product of two first-order partial derivative factors and one second-order partial
derivative. Combining according to the second-order partial derivative, if all the
coefficients are zero then the equation equals zero.

Expanding the third term in (1.9.12) and denoting as canonical arguments,
the equation (1.9.2) becomes

again a function of The third double Poisson bracket in (1.9.12) is derived as

where only the first term in bracket appears the second-order partial derivative of u .

Note is a symmetric 2n×2n matrix. Cyclic permuting the functions
u,v,w gives

where second-order partial derivative of u has only one term, which is a scalar,
taking transpose gives

Hence in the equation (1.9.2) two terms of second-order partial derivative for u
cancelled each other. With the same reason, the second-order partial derivative
terms for v and for w cancel too. Therefore the Jacobi identity is proved.

If the Poisson bracket of two functions and is defined as a ‘product’ of

the two functions, then the Jacobi identity is the replacement for the associative law
of multiplication. It is remembered that the ordinary multiplication is associative,
such as for matrix multiplication (AB)C = A(BC), which says that the order of

multiplication is immaterial. However, if Poisson bracket operation is regarded as
the multiplication operation, the corresponding associative rule no longer applies,
that The Jacobi identity applies instead of the
associative rule.

Therefore the equations (1.9.9~12) proposed a kind of non-associative algebra,
called the Lie algebra. The Poisson bracket is not the unique Lie algebra, if the
cross multiplication of matrices A and B
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is treated as the multiplication operation, it gives another Lie algebra.

§1.10, Action

In § 1.5, the Hamilton principle is proposed based on the action integral

The Hamilton principle stated that as the configuration vector q varies nearby the

real solution  in the interval with q given at both ends the

first variation of action S being zero derives the Euler-Lagrange dynamic
equation.

However, the orbit q discussed below is a real one, i.e.  The

subscript  will be cancelled for ease of notation. Now let the displacement

vector at the end point varies, such that q(t) varies correspondingly in the

time interval the variation of S is to analyze. Further, the action of an

arbitrary interval within is to consider, that the action S is

considered as a function of the two end generalized displacements and i.e.

the function is to be analyzed.

Carrying out the variational derivation

since the real solution q(t) is used within the interval the integrand in the

above equation equals zero. If the initial displacement vector is given, only

varies, then

The action S is now a function of the end time displacement q (dropping the

subscript 2), then

The above derivation assumes unchanged and the variation applies only to the

displacement at for the action Next, let varies to

and let extends smoothly, i.e.

which implies that the orbit internal to time interval is unchanged, so or

However, if the end time varies with keeps unchanged, then the

internal orbit varies too, such variation is Combining gives
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Hence

The action S can be treated as a both ends varied function

that

The action function is very important in applications and has different terms in
different fields.

§1.11, Hamilton-Jacobi equation

The equation (1.10.6) is practically the Hamilton-Jacobi equation, where S is
a function of right end arguments q, t . However, in the Hamilton function there is
p, which is the momentum at the right end and can be substituted with equation

(1.10.3), which derives

This is a first order PDE, called the Hamilton-Jacobi equation, to be satisfied by the
action function S (q,t).

Mathematically, equation (1.11.1) has n+1 independent variables (arguments),
composed of a n -dimensional generalized displacement vector q and 1 time

variable t. The complete integral of this PDE should have n+1 independent
arbitrary constants, see [1,11~13]. Because the unknown function S appears in
equation (1.11.1) only with its partial differential, and the function S can be added
with an arbitrary constant A , so its complete integral has the following form

where are arbitrary constants (parameters). Evidently, A is

irrelevant.
After found the complete integral (1.11.2), how to derive the integration of the

dynamic equation is of concern. The canonical transformation with generating
function can serve for this purpose. The initial conditions at are and

given. The action i.e. the complete integral of

Hamilton-Jacobi equation, is regarded as the first class of generating function
where the arbitrary constants in S are treated as

Then the three transformation equations (1.7.10a~c) are applied. The first equation
(1.7.10a) is

which is valid for arbitrary time t. Based on the initial conditions at with

given, the n equations of (1.11.4a) at can solve all the parameters

Next, the equation (1.7. 10b) becomes
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As the Hamilton function K(Q,P,t) after canonical transformation, since is

selected as S, the right hand side of equation (1.7.10c) is just the Hamilton-Jacobi

equation (1.11.1), so K= 0 and then This result is due to the selection of
complete integral of Hamilton-Jacobi equation as the first class of generating
function. Hence, the generalized momentum P after transformation is also a
constant vector, denoted as

Let substituting and the constant vector just solved into

the above equation, the constant is computed as a vector function of

Thereafter, solving the vector q from equation (1.11.5) for arbitrary time t gives

the orbit Afterwards, substituting into (1.11.4a) gives

The n -dimensional constant vector which has been
expressed with the initial condition and can also be computed from the initial

condition, therefore the arbitrary vectors and can be used instead of the
initial condition. Hence, is called as a complete integral.

The above solution is based on the complete integral, however sometimes, only
incomplete integral of the Hamilton-Jacobi equation is found, i.e. the integral
involves only m < n arbitrary constants. In such case, although the general
integration of the motion cannot be found readily, but the integration problem can be
simplified. Let the integration function S involve arbitrary constants

from the equation

Both and are m -dimensional arbitrary constant vectors, and the above

relation gives the equations connecting and t . The problem is
simplified but not solved yet.

§1.11.1, A simple harmonic oscillator

A one-dimensional oscillator is used as an example. Its Hamilton function is

The time t appears only in so the solution must have the form

where is an arbitrary integration constant. The equation for W is

and is interpreted as conserved mechanical energy. Integration for W gives

where m,k are mass and spring constants respectively, and is the circular
frequency. Substituting the p with derives the Hamilton-Jacobi
equation as
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and

Then from equation (1.11.5) derives

from which, q is solved as a function of time t with integration constants

the well-known solution of simple harmonic oscillator. From equation (1.11.4)
gives the momentum

Substituting equation (1.11.11) into the above equation gives

This momentum p coincides with

The constants should be determined with the initial condition

Firstly, it derives

then gives the phase angle

One dimensional simple harmonic oscillator is a simplest problem. The
expressions for W and S looked complicated. Direct integrating the dynamic
equation is simpler. However, the Hamilton-Jacobi theory gives deeper insight.
Such canonical transformation method can be applied to the solution of non-linear
differential equations, which is given in the next chapter.

§1.11.2, Time invariant system

When the Hamilton function H(q, p) does not involve the time t explicitly,
the system is time-invariant. Quite a number of application problems are
time-invariant, for which equation (1.11.1) reduces to

The time appears explicitly only in the first term, so that the action function has the
form

Substituting into (1.11.1) derives the Hamilton-Jacobi characteristic equation

In this equation time t does not appear explicitly, which indicates conservation of
the Hamilton function. The vector is a n -dimensional constant vector and its
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first component is the conserved energy. The function W is a part of action,

termed as the Hamilton characteristic function. Let be treated as the

second class of generating function and the constant vector be
regarded as the transformed canonical momentum P .   Hence

which are just equations (1.7.12a~c). The dual equations after canonical
transformation are

The first equation coincides and the integration of the second equation gives

where is the integration constants. Therefore after transformation, except the

generalized displacement     being linear function of t , all dual variables are

constants. The original displacement function q can be solved from the equation

set (1.11.15) and p can be obtained from substituting the solved q into the

equation

The feature of characteristic function is independent on time t explicitly, its
complete differential is

But for the action function  S ,

Hence W is also called as the abbreviated action function.
The Hamilton-Jacobi theory appears quite graceful however, the difficulty is

how to find the complete integral of the action function S or the characteristic
function W . The constant valued vector in S of (1.11.2) or in W of
equation (1.11.12) is not only a given vector, but also a vector of parametric
variables that differentiation with respect of is necessary. Solving non-linear
PDE is far more difficult than solving ODE-s.

However, if the problem can separate variables, the Hamilton-Jacobi theory
will be quite helpful.

§1.11.3, Separation of variables

If in the Hamilton-Jacobi equation there is a coordinate, say and its

respective partial differential appear only with the combination form of

and in the combination function there is no other coordinate (or

time) or derivative, i.e. the Hamilton-Jacobi equation has the form:

where the means all the other coordinates except In such case, the
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coordinate is separable, [13]. The solution can be found in the form

where in the function there is only and possibly there are other integration

constants. Therefore the variable is separated with other Substituting
(1.11.18) into (1.11.17) gives

This equation is valid for arbitrary value of however when varies only the

function can be varied, hence it must be

where is an arbitrary constant. The above separated equation (1.11.20) has

been an ordinary differential equation of with respect to the argument

Solving the function excludes the argument in the partial differential
equation (1.11.21).

If all the generalized coordinates and time t are separated,
finding the complete solution for the Hamilton-Jacobi equation is reduced to solve
n separated ordinary differential equations. For a conservative system, the time
t can be separated first, that

Because the time  t  does not appear explicitly in   H , the Hamilton-Jacobi equation
becomes

Since     is independent to q so that

the time t is thus separated. Certainly, under appropriate conditions other
variables can also be separated.

After the separation of variables, the ODE (1.11.20) is obtained, however its
integration is still not easily obtained, because the n arbitrary constants must be
selected arbitrarily. The variable separation is only a rare case. Only for some
special problems, the separation of variable can be realized in the properly selected
generalized coordinates, such as for problems of cyclic coordinate, central potential
force field etc.

§1.11.4, Separation of variables for linear systems

Theoretically, Hamilton-Jacobi theory is certainly applicable both for linear and
non-linear problems. However, the solution for a PDE is very difficult. A general
non-linear problem solution is too complicated in practice. In applications, the first
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step is to solve based on the linear theory. For a non-linear problem, which is very
difficult to solve, the approximate solution is usually to find based on the respective
linearized solution. After solved the linear problem, the perturbation method,
averaging method etc. can be used to find a better approximate solution. Only for
time-invariant linear systems, the Hamilton function is quadratic, for which the
method of separation of variables always works.

Let us consider first the small vibration problem in an inertia coordinate system.
The kinetic energy is a homogeneous quadratic function of the generalized
displacement with only the time-invariant constraints that the kinetic energy is
expressed as

where M is an n×n symmetric and positive definite mass matrix. After
neglecting the higher order small terms the potential energy nearby the equilibrium
point becomes

where K is a symmetric stiffness matrix. The generalized momentum p and
the Hamilton function are

For this time-invariant system, the characteristic equation is

where E is the mechanical energy. Directly finding the W solution of
n -dimensional problem is still difficult hence a linear transformation for q is
necessary. In the present case, a point transformation is proposed as

where U is a n×n matrix. The kinetic and potential energy are transformed as

and the characteristic equation is transformed simultaneously as

Hence the problem becomes to find the transformation matrix U so as to
diagonalize both the symmetric matrices and simultaneously, so that all

the variables are separated. Such statement and its related algorithms are the main
subject in the theory of vibrations and can be found in chapter 2 and various
textbooks.

Next, the small vibration problem in a rotating coordinate system is considered.
The kinetic energy is a quadratic function of generalized velocities and
displacements and is given as

Hence the Lagrange function is
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where the matrix K has superimposed the matrix     from  T , hence K is
symmetric but cannot ensure positive definite, The mass matrix M still keeps
symmetric and positive definite, and the matrix G , termed as gyroscopic matrix, is

skew-symmetric
The generalized momentum vector is introduced as

Note, D is symmetric and positive definite, B is symmetric but not ensured
positive definite, the matrix A is n×n dimensioned, all being time-invariant
matrices. Such system is again time-invariant, the characteristic equation (1.11.13)
is

The key to the solution of this PDE is again the method of separation of variables.
A linear transformation is to look for, in order to diagonalize the Hamilton function,
which is a quadratic function presently, and its arguments are the dual vectors q,p .
A point transformation cannot diagonalize it, so that a linear canonical
transformation is looking for.

The dual canonical equations is examined first, corresponding to (1.11.33)

or combined written as

where v is the state vector and H is termed a Hamilton matrix, whose
characteristic is

The Hamilton matrix is asymmetric but instead, the matrix (JH) is symmetric.
The Hamilton matrix has the feature of symplectic behavior, which is conceivable.

In previous sections, the canonical transformation is used to transform the dual
canonical variables q,p , or to transform the state vector v .  Equation (1.8.4) and
(1.8.6) set up the condition for a canonical transformation. Such form of condition
is for general case and certainly applies to a linear system, that for a linear
time-invariant system the linear canonical transformation is expressed by a
time-invariant matrix S

where should satisfy the equation (1.8.6), thus and S are both
symplectic matrices.

In the textbooks of linear algebra, one of the main subjects is using an
orthogonal transformation to diagonalize a quadratic form. As mentioned above,
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such method and algorithm applies to Lagrange system and point transformations.
The point transformation applies to the system description with one kind of variables
and the corresponding geometry is of Euclidean type. In present case, the
transformation is a symplectic matrix S applied to two kinds of variables q and

p . The original function is a quadratic Hamiltonian H(q,p) and will be

transformed to K(Q, P) which leads the dual equations to be diagonalized. The

transformed canonical equations are

The best form is that at the right hand side of equation for there is only Q , and

the equation for there is only P , all being diagonalized. Hence it requires that
within the new Hamiltonian K(Q, P), there are only terms with and
together, expressed in matrix notation

where denotes a diagonal matrix with being its (diagonal)

elements, and the dual canonical equations are

the simplest form.
Therefore, the selection of the symplectic matrix S should transform the

quadratic form H(q, p) to that given in equation (1.11.39). According to equation

(1.11.33)

To compute K(Q,P) , substituting the transformation (1.11.38) into the above
equation gives

The right hand side is only the rewriting of equation (1.11.39). The congruent
transformation (1.11.41) with the symplectic matrix S requires bringing the
symmetric matrix JH into the form

Left multiplying the above equation with SJ and note that S is a symplectic
matrix, it gives

which is an eigen-equation for the Hamilton matrix H and each column of the
symplectic matrix S is an eigen-vector of the Hamilton matrix. The algorithm for
finding all the eigen-vectors of a Hamilton matrix will be given in chapter 2. But
some theoretical problem should be explained here. Because the matrix H itself
is asymmetric, complex valued eigen-solutions may appear and their complex
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conjugate must also be eigen-solutions. Combining these complex conjugate
eigen-solutions a real valued symplectic matrix can be composed. The

congruent transformation by the matrix carries the transformed Hamilton

function K(Q, P) being real valued. However, real valued transformation cannot

fully diagonalize K(Q, P). The numerical algorithms in later chapters require real

transformation
However, the following description still uses the fully diagonalized

transformation S .
After the diagonal transformation, in the canonical coordinate Q,P system,

the dual equation (1.11.35) is transformed as given in (1.11.40) and the system
matrix becomes

Hence the transformed characteristic equation (1.11.34) becomes

All the generalized coordinates have been separated. According to the

equations (1.11.18,20), the variable separated Hamilton-Jacobi characteristic
equation is derived to

The solution has been greatly simplified.
The canonical transformation given here is for the separation of variables,

which brings the combined n -dimensional oscillator into n one-dimensional
oscillators. However, the canonical transformation given in section 1.11.1 works
only for one-dimensional oscillator, that this one-dimensional oscillator is
transformed using the energy and phase angle as primary variables. The two
canonical transformations can be applied successively, because the combination of
two successive canonical transformations is again a canonical transformation. The
eigen-solution of a Hamilton matrix is a fundamental subject in state space
formulation, but it appears not so much in published textbooks of applied mechanics.
In next chapters this subject will appear frequently.

The above discussion is only for linear problems, which is easier to understand.
The importance of linear problem is to provide a starting point of such as
perturbation approach, iterative method etc. so as to analyze the time-variant system
and/or non-linear system problems.



Chapter 2, Vibration Theory

In mechanical, electrical and aerospace engineering and other fields, vibration
problems exist everywhere. Only fundamental theory and methods can be
presented in this book. Among various topics, some selected subjects are described
here.

The usual solution methods for vibrations are 1) Direct integration method, 2)
Eigenvector expansion method and others. Quite a number of textbooks or
monographs have been published. Hence, in addition to the fundamental theory,
the present book introduces some relatively new contents as we can. For example,
the precise integration method supplies an entirely different approach versus the
usual FDM. Also, the solution method of gyroscopic system vibrations will
introduce the state space method, the dual spaces, Hamilton system theory and
symplectic geometry applications etc., the featured methods for vibration analysis.
For gyroscopic system vibrations, the method of separation of variables and the
respective eigenvector expansion method will bring the system geometry from
Euclidean to Symplectic. Such methodology appears not so much in traditional
applied mechanics textbooks, however, as will be seen in this book, for wave
propagation, for semi-analytical method in structural mechanics, for theory of
elasticity and also for modern control theory and so on, the symplectic methodology
appears over and over again. Based on such new considerations, it is reasonable to
develop a systematic methodology in applied mechanics.

Using dual variable state-space and symplectic geometric method, a unified
approach is proposed for the solution of various field problems, which is the main
purpose of this book. The precise integration method, as a numerical integration
method, can be regarded as the algorithm back up for the duality system theory so as
to be used in practice.

§2.1, Vibration of single degree of freedom system

Vibration of single degree of freedom system is the simplest problem.
However, only linear time-invariant system vibration is simple, which provides the
foundation for the vibration analysis of multi-degrees of freedom system. The
analysis of time-variant single degrees of freedom is not so easy as compared to
time-invariant systems. The non-linear single degree of freedom system analysis is
more difficult, that there are still a number of problems to be solved.

§2.1.1, Linear vibration

Linear vibration is the simplest problem and has been studied in the
curriculums of engineering mechanics. The importance of which is that for
multi-degrees of freedom system after modal analysis, the system vibration is
reduced to be the superposition of single degree of freedom vibrations. And in
applications, a number of problems are treated as single degree of freedom vibration.
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The equation for single degree of freedom system vibration is

This equation is for forced vibration with damping. Its respective free vibration
equation with no damping is and the natural vibration circular

frequency is its period is The general

solution is

The equation for free vibration with damping is for which the
critical damping constant is

where is the damping ratio. The characteristic equation is

and its roots are

When the solution behaves only decay with time; and when the

system vibrates forth-and-back.      For case of small damping               the logarithmic

damping ratio is defined as

where represent two successive maximum displacement, which is

independent on the subscript  i . The period T and logarithmic damping ratio
of vibration are, respectively

The measurement of can use its amplitude half damped count n of reciprocate

Forced vibration under periodical force excitation is considered next

With longer time, the influence of initial condition damps out, only steady forced
vibration remains. Let X be its amplitude and be the phase lag

Substituting into (2.1.8) solves

Let static displacement, gives

Generally speaking, when the circular frequency of exciting force approaching

the damping free natural vibration frequency            resonance appears.

According to equation (2.1.10), when and phase lag

the curves are shown in figure 2.1.
For non-periodic excitations, the unit step excitation is considered first. At
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t = 0 a constant force is suddenly applied on a damped spring-mass system

originally at rest. The equation is

The solution can be written in the form where

Let then the unit step force response is just called as unit step
force response function. Based on this function the response of arbitrary external
force F(t) can be written as

called as Duhamel integration. Integration by parts gives

because always holds. The Duhamel integration in the form of (2.1.14)

appears more frequently, where is called the unit impulse response
function. Differentiating (2.1.12) with respect to time t gives

which is applied much frequently.

§2.1.2, Parametric resonance

The above analysis is only for time-invariant single degree of freedom system,
when the frequency of external force approaches the system natural frequency,
resonance happens. However, time-variant linear system vibration has another kind
of resonance, namely the parametric resonance, for which even if no external force



50 Duality system in applied mechanics and optimal control

at the right-hand side, the system still vibrates severely. Only some introductory
theory of parametric resonance can be presented here. Suppose a single pendulum
of length l in figure 2.2, for which the terminal mass m is acted on by gravity

equation (2.1.16) has two basic solutions and

which satisfy the differential equation (2.1.16)

with the initial conditions

and respectively. According to the superposition principle gives

These equations can be written in matrix form as

After the matrix K is computed, the next step is to transform from the vector
u to a vector v by a linear transformation matrix P, as follows

Substituting (2.1.20) into equation (2.1.18’) gives the matrix transformation

Because K and B are similar matrices to each other, they have the same
eigenvalue

The matrix B requires diagonalized, which means to solve the eigenvalues

and of matrix K with eigenvectors respectively. Hence

respectively. After a whole period of the coefficient
external force, the time is the differential

equation coincides with (2.1.16) at t = 0, but the value

of functions and will

no longer be (2.1.17). Let the value be denoted as

and also a vertical periodical force                The position          is obviously
an equilibrium point and the dynamic equation is given as

or
The equation (2.1.16) is called the Mathieu equation and is the simplest

periodical coefficient linear dynamic differential equation.
The analysis can be given as follows. For a linear

equation, the superposition principle applies. The
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Similar equations also hold for Therefore, if one of the eigenvalues appears

then the corresponding eigenvector increases indefinitely with time,

and the system is unstable. This theory applies to the systems of linear periodical
coefficient differential equations, called the Floquet theory [36], and K is called
the Floquet matrix.

The set of periodic coefficient linear differential equations has stability problem.
Solution composes of two steps. The first step is the computation of Floquet matrix.
The next step is to solve the eigen-problem of Floquet matrix for stability analysis.
Mathieu equation is only a second order ODE, however, Floquet theory applies to
any order ODE set.

The periodical coefficients ODE-s are not necessarily unstable. Such as for
equation (2.1.16) only when the parameters of circular frequency and the
coefficient have some combinations, then the system may fall into instability,
hence termed as parametric resonance.

Therefore, the problem requires first to find the Floquet matrix K , for which
the basic initial value problem of differential equation (2.1.17) needs to be solved.
Analytical method is usually difficult to find the solutions of a time-variant
coefficient differential equation, so that numerical integration must be used.
Fortunately, the powerful computer has been available now, numerical solution can
be found via various algorithms, especially the precise integration method. As
eigen-solutions, there are standard algorithms to invoke, see [42,43].

Numerical method for stability analysis of periodical coefficient ODEs is
general. However, such method is not enough for physical insight. Hence the
perturbation method for solving the Mathieu equation is beneficial. When is
neglected, the natural vibration of the system is Based on this

solution, when the small is taken into account, the first order approximation of
differential equation can be written as

This equation resonates when i.e. when Note that is
the circular frequency of the external force of parametric resonance. For Mathieu
equation, when is twice as the natural frequency parametric resonance

appears. Because the resonance frequency is half of the frequency of external force,
it is called as sub-harmonic resonance.

The above derivation moves the small parameter term to the right hand side of
the equation, which corresponds to the first order approximation of perturbation with
the small parameter The small parameter perturbation method is a usual
analytical approximate approach for parametric resonance or for non-linear vibration
analysis.

Perturbation method had published quite a number of papers, see [37~39],
However, it is noted that the algebraic derivation is quite cumbersome. Presently,
the complicated algebraic derivation can be carried out via the symbolic algebraic
software, for instance MATHEMATICA, MAPLE, etc.

Stable and unstable regions of Mathieu equation are sketched in figure 2.3.
The periodic solution of a non-linear differential equation proposes a limit cycle,
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and the stability analysis for the limit cycle should use the perturbation method near
by the limit cycle, which derives a set of periodical coefficient differential equation
(Hill equation). The Floquet theory can be used to solve the stability problem.

§2.1.3, Introduction to non-linear vibration

Non-linear vibration is a vast area of analysis. Even for single degree of
freedom system, the non-linear vibration has quite a number of problems to be
further investigated. Only some problems are selected here to discuss.

§2.1.3.1, Limit cycle

A limit cycle problem with non-linear damping is introduced first. After
dimensionless transformation, let m = 1,k = 1 ; suppose the non-linear damping term
gives the vibration equation as

Inspection determines that there are two damping terms, where is the

negative linear damping, whereas is the non-linear damping.

Evidently, the origin x = 0 is an equilibrium point. When the vibration amplitude
is small, the non-linear term plays a negligible role and the equation can be
approximated as

The eigenvalue of which is

The real parts take positive value, which mean that the original point is unstable.
Physically, because of the negative damping, the work done by the negative damping
is calculated as
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which always takes positive value. Hence the negative damping force
continuously supplies energy to the system, which causes the original equilibrium
point x = 0 unstable.

The effect of non-linear damping term is considered next, it does work

and always takes negative value, hence the non-linear term consumes energy for the
system. Nearby the original point, x, are small, therefore
the positive damping is far less than the negative damping, the vibration will be
increasing. On the other hand, if the vibration amplitude is large, such that

the energy consumed by the positive non-linear damping far exceeds
the work done by the negative damping, the vibration will be decreasing. The work
done by the two kinds of damping forces opposes each other, when amplitude is
small, the negative damping work dominates and the vibration amplitude

increases, whereas when the amplitude is large, dominates and the amplitude
decreases. Therefore in between, there should be appropriate amplitude such that
the vibration reaches energy balance. To express in the state space (phase plane)
(x, there is a closed curve called limiting cycle. As the vibration moved along

the limiting cycle, the negative damping work balanced with the non-linear

damping work and the vibration keeps on the limit cycle, see [35].
For the equation (2.1.23), it is easy to find the limit cycle. Substituting

x(t) = cos t into equation (2.1.23) gives

Thus the limiting cycle is a unit circle in state space. The initial state inside the
unit circle will gradually approach the limiting cycle, and the state outside the unit
circle will go back to this limit cycle, so that this limiting cycle is stable. Figure
2.4 sketches such curves of motion.

The stability problem is very important for limiting cycle. The original point
x = 0, in state space is an equilibrium point for equation (2.1.23), but it is
unstable. Even if a very small departure to the equilibrium point appears, the
motion will further depart from the equilibrium point and never return. This
equilibrium point is thus unstable. The stability problem also exists for limit cycle.
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The limit cycle of equation (2.1.23) is stable, because for any point neighbor to this
limit cycle, the successive motion will always turn back toward this limit cycle,
which verifies the stability of the limit cycle.

Let the coefficient c in equation (2.1.23) be negative, the system will have an
unstable limiting cycle. It is easy to verify that the unit cycle is still a periodic
solution of the dynamic equation, i.e. limiting cycle. However, the linear damping
term becomes positive whereas the non-linear damping term becomes negative now.
From any point inside the unit circle, the successive motion tends to the original
point and the original point is a stable equilibrium point. However, from a point
slightly apart outside from the unit circle, its successive motion will go further
depart from the unit circle and never return, hence the limit cycle is unstable.

Stability problem of motion is very important in applications. Fluid structure
interaction proposes a lot of practical problems, for which vibration instability
phenomenon will cause serious consequence. Such as the wind induced vibration
of long span bridges, the aircraft wing flutter etc.

Equation (2.1.23) is a special example just for illustration. The proposed
equation is very simple, that the limit cycle solution is easily obtained by inspection
in order to explain the nature of limit cycle and stability. For non-linear differential
equation, the superposition principle does not apply, and therefore the solution of
general non-linear vibration problem is usually very difficult. In next section, the
solution for one degree of freedom Duffing differential equation is considered, so as
to illustrate the application of canonical transformation to non-linear vibrations.

§2.1.3.2, Duffing equation

Duffing differential equation is typical to non-linear vibrations. Usually, the
solution applies the perturbation method, see [35,37]. In this section, the canonical
transformation is applied by deriving the system into duality system to solve.
Duffing equation can be given as

where b,c and f are given parameters. Because of the term it is a

non-linear differential equation, and the periodic solution (limit cycle) is to find.
Note, for the solution being nearly resonant the frequency should not be far

apart from unity. Obviously, the periodic solution must have the same frequency
as the external driven force.

The basic conservative system for the above equation can be selected as

for which the Lagrange function is

The duality system can then be introduced under the Hamilton frame, let the dual
variable be

then the Legendre transformation gives

a time invariant system. Obviously, the energy conservation gives
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where C is kept constant, the conserved energy. The canonical dual equations
are written as

Up to here, the derivation is popular as usual. Corresponding to the canonical
system, the respective Hamilton-Jacobi equation is given as

where the function  S(x,t)  is the action function and is defined as

with the initial condition

The intention now is to find a canonical transformation for equation (2.1.25),
introducing a new canonical coordinate system and solving the original problem in
the transformed coordinate system. Using the method given in section 1.11 that the
solution of the Hamilton-Jacobi equation (2.1.31) must have the form

where are arbitrary constants. Evidently, the constant A is
useless, presently n = 1 . So

Because the equation (2.1.25) is a time-invariant conservative system, that the time
t appears only in thus the solution form must be

where C is the integration constant. The equation for W is

and C is the conserved mechanical energy. Integration for W gives

where W(x,C) is an elliptic function with C being a parameter to be determined.

Substituting W(x,C) into equation (2.1.36) gives the action S. Using energy

conservation at gives

that the initial momentum can be expressed with the parameter C .

Treat the complete action integral S(x,C,t) as the first class generating

function and the integration constant C in S is regarded as the new

canonical coordinate Q

Then the three transformation equations (1.7. l0a-c) are used. The first one gives

where W(x,Q) is a known function. The next step is
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and the transformed Hamilton function K = 0 , because the complete integration of
Hamilton-Jacobi equation is used as the generating function for the canonical
transformation. The generalized momentum P becomes also a constant, denoted
as

While equations (2.1.40a,b) give  Q, P  being constants, which corresponding

to the natural vibration of the system equation (2.1.25). Now the period of
vibration is to determine. The maximum amplitude can be found from the
energy conservation as

In order to match the given frequency of external force, the period should be

, and can be computed as

which is a function of parameter C . According to equations (2.1.36), (2.1.41)

From equation (2.1.43) x is solved as a function of time t with two integration
parameters C, and the integration from x = 0 only influences the constant

value

The parameters C, are now treated as the new canonical coordinate system

according to the equations (2.1.40a,b), they are constants for the energy conservation
system of equation (2.1.25). But when the transformation applied to the original
equation (2.1.24), the coordinates Q, P will no longer be constants. That Q, P

can be treated as the unknowns to be solved for the transformed original problem.
Rewriting the parameters C, in (2.1.41), (2.1.43) as Q,P gives

which is a canonical transformation. From (2.1.44b), x is solved as

Afterwards, substituting the above equation into equation (2.1.44a) gives

Equations (2.1.45a,b) give the canonical transformation which transforms the
original variables  x, p  to be the functions of  Q, P  and  t .

Now, the dual equations of the original system is

Substituting (2.1.45a,b) into equations (2.1.46a,b), respectively, gives
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Directly differentiating equation (2,l,45b) gives so

Note that x = x(Q,P, t),p = p(Q,P,t) are the canonical transformation of the
conservative system (2.1.25), then the equations (a) and (b) are derived as

Solving (2.1.47a,b) with respect to and gives the new dual equations of

Q,P for the original system (2.1.24), which is not a conservative system.  Up to
here, the derivation has not introduced any approximation yet.

In the equations (2.1.47a,b), all the terms involving x, p should be considered
as functions of Q,P. The equations obtained are still non-linear certainly. To
solve the non-linear system, numerical integration is necessary or some approximate
analytical approaches can be used for the comparatively simple problems.

§2.1.3.3, Simplified solution method for Duffing equation

The purpose of selection of equation (2.1.25) with a conservative system is to
generate a canonical transformation. It can be further simplified as that, instead of
the non-linear equation (2.1.25) a simple harmonic oscillator can also be used, which
corresponds to the popular approach. The canonical transformation for a simple
harmonic oscillator is easy to handle

Because a periodic solution is to find, its natural frequency is selected equal to the
frequency of the external force. The Lagrange function is

The dual variables are

The Legendre transformation derives the Hamilton function as

Energy conservation gives

where C is a constant, the conserved energy of the simplified system. The dual
equations are
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Hamilton-Jacobi equation is (2.1.31), and the action S(x,t) is defined as (2.1.32)

For a time-invariant system, its solution form must be

where C is an integration constant, W is a characteristic function and the
differential equation is

The simple harmonic motion is so simple that the characteristic function W is
integrated as

It is important that

From which, x is solved as a function of time t and two parameters C,

the well-known simple harmonic vibration, and the momentum is

The physical meaning of parameters C, is conserved energy and phase angle,
respectively. All the above derivation is for the simplified conservative system
(2.1.25’). Now change the parameters C, to be the dual variables Q, P, the
transformation is still canonical

The above derivation is parallel to the previous section. Now return to the
original non-conservative system (2.1.24). The dual equations are

Substituting transformation (2.1.45’a,b) into equations (2.1.46’a,b) gives

Directly differentiate (2.1.45’b) gives

Substituting into (2.1.46’b) gives
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Solving equations (2.1.47’a,b) with respect to gives

Up to here, all the derivation is exact. However, the differential equations
(2.1.48a,b) are very complicated. Numerical integration directly can solve the
problem. However, analytical solution gives physical insight and so is still
attractive, but some approximations are necessary. Note Q(t) is the energy of the
simplified oscillator (2.1.25’), a periodic solution should not change this value after
one cycle of oscillation with time period Hence the integration of

in one cycle must be zero, which derives

Similarly, the phase angle does not change after one cycle of oscillation, it derives

The simultaneous equations (2.1.49a,b) are to be solved for the average unknown

functions and P , however they are under the integration sign. As a first

approximation, these functions are regarded as constants and within the

integration sign. Hence integration directly gives the simultaneous equations for

and as

Eliminate gives

After solving the root of the triple polynomial equation then the average phase

angle is solved. Note that the solved are the average value of one

period. Afterwards substituting into right hand side of equation

(2.1.48’a,b), then integration, the time functions are found as the first
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order approximate solution.
The higher order solution should substitute into the integration

sign of (2.1.49a,b), and carrying out the integration. The two periodic conditions
(2.1.49a,b) should still be satisfied. The average value should be updated as

and and the periodic conditions are required. Non-linear equation solution is

always cumbersome.
Non-linear vibration analysis certainly concerns multi-degrees of freedom

system and the canonical transformation method can also be used. This is quite
interested and will be considered later in this chapter, after the multi-degrees of
freedom linear system solutions have been found.

A special case is considered now, i.e. the conservative system given in (2.1.25),
for which analytical solution is available and the solution is symplectic conservative.
But the first order approximate solution by equations (2.1.49) gives

with Then the integration gives

Because of approximation, the motion can only ensure symplectic conservation after
a whole cycle of vibration, but not for any time t. Note that after transformation

where

The approximation with symplectic conservation at all the time means to find an
approximate Hamilton function such that and the

motion follows the dual canonical equations

precisely. Suppose selecting

the dual equation derived are

integration gives and from

Integration gives

That is the same as first approximation, but is different.
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The periodical solutions imply limit cycles. Limit cycle solution has the
stability problem. The stability analysis should be, first perturbs the periodical
motion to derive the time-variant linear ODEs, then using the Floquet theory analyze
the stability problem of the ODEs. In some cases, the non-linear vibration is very
sensitive with the initial values, that a very small departure of the initial value may
develope Chaos. Chaotic motion means unstable. For non-linear systems, the
stable band nearby the limit cycle may be very thin even does not exist, which
cannot bear disturbances.

For vibration problems, the integration is along the time coordinate. For wave
propagation problems in frequency domain, the time coordinate is changed to be the
longitudinal coordinate, however the system is still in duality form. For non-linear
wave propagation problems, the similar methodology can also be applied for
solution. Especially, for non-linear state space optimal control problems, based on
the analogy between structural mechanics and optimal control, the duality
methodology can be used too. Anyway, the canonical transformation method
supplies a new methodology for solving non-linear vibration problems. It requires
first solving an approximate linear system, in order to derive a canonical
transformation as described above, which can be carried out by means of the
eigen-solution expansion method. This is one of the reasons of why the
eigen-solution is heavily considered in this book.

§2.2, Vibration of multi-degrees of freedom system

Vibration of system having two or more degrees of freedom with masses is
considered multi-degrees of freedom. In various applications there are
multi-degrees of freedom vibration problems everywhere. Let us derive the
vibration equations using the analytical dynamics approach. According to equation
(1.5.7), the expression of kinetic energy is composed of the second order, first order
and zero order terms of generalized velocity In an inertia coordinate, if the

position vectors of particles relate only to the generalized vector q but not

relate to the time t explicitly, then from equation (1.5.8), the kinetic

energy remains only i.e. the kinetic energy is a homogeneous quadratic form of

the generalized velocity For small vibration problem in inertia coordinate, the

factors in equation (1.5.8) are regarded as constants. Writing in
vector/matrix form, the kinetic energy is

where denotes the n -dimensional vector of velocity, M denotes an n×n

symmetric positive definite matrix. Nearby the equilibrium point q = 0 , the

potential energy is given as

where K is a n×n symmetric stiffness matrix, usually non-negative definite.
The general form of linear vibration equation for n degrees of freedom system is
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where the subscript n denotes the degrees of freedom and is a damping

matrix, which is symmetric, usually positive definite, and f(t) is an exciting force
vector. The damping free vibration problems are considered first.

§2.2.1, Free vibration with no damping, eigen-solutions

For free vibration with no damping, using Lagrange function the
multi-degrees of freedom vibration equation is derived as

There are only two terms in the dynamic equation, so that the method of separation
of variables applies. Let where f ( t ) is a scalar function of time,

and the n -dimensional vector represents how the displacement varies with the

component number i, Substituting q into equation (2.2.3) derives

The right-hand side relates only to the subscript i but not depends on time t, so

does the left-hand side, hence it must be where is a constant.

Usually K is a non-negative definite matrix, so that writing the constant as is
appropriate. It is solved as

and the equation for the generalized eigenvector is

which is the vibration eigen-equation for multi-degrees of freedom system. The
equation for eigenvalue is therefore

which is an n -degrees polynomial equation for The algebraic equation must
have n roots, where the m -multiple root should be accounted for as m roots.

Corresponding to each eigenroot there is an eigenvector
satisfying equation (2.2.5). For two eigen-solutions i , j

To prove the orthogonality between the two eigenvectors, multiply and

from left, respectively, to the above two equations and then subtract each other.

Based on that both the matrices K,M are symmetric, so that

and similarly for K, it derives

From which, it gives the orthogonal relations

and

The eigenvectors are mutually orthogonal with respect to both the mass matrix
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and the stiffness matrix. Each eigenvector has an arbitrary constant factor to select,
and it is selected as

which is the normalization condition, i.e. normalizing with respect to the mass
matrix. Therefore, all the eigenvectors compose an ortho-normal set with respect
to the mass matrix.

To show that all the eigenvalues are real numbers. From

eigen-equation (2.2.5), that if is complex, then is also a complex vector.

Using a bar above to denote the complex conjugate value, taking complex conjugate
for both sides of equation (2.2.5) gives

Deriving as in the above proof of orthogonality relationship leads to
Triangular factorize the mass matrix

called the Cholesky factorization, the equation becomes which

is valid only for being a null vector. But is not a null vector, which

leads to a contradiction, thus should not be a complex number. Note that
equation (2.2.9) implies that M is positive definite.

Sorting the eigenvalues from smaller to larger and then making use of the
eigenvectors as columns composes a n×n matrix as

According to the ortho-normality of the eigenvectors

Let then from equation (2.2.9) determines or

which explains that S is an orthogonal matrix. The determinant of an orthogonal
matrix equals ±1. It can always select this determinant being 1.

The eigenvalue can be solved by the variational method. According to the
Hamilton variational principle, the action integration takes stationary value

where the displacements q at the two ends 0, are given n vectors, see (1.5.4).
Substituting

into the variational equation (2.2.13) and let where m is a large
integer. In this trial function, is treated as a parameter but not varies, that the
varying argument is the vector u . Carrying out the integration gives

where the variation is taken only for the vector u . Left multiplying the equation

(2.2.5) with determines that the substitution of eigenvectors into equation
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(2.2.15) gives a null value inside the bracket, therefore

called the Rayleigh quotient, and the variational equation (2.2.15) can be rewritten
in Rayleigh quotient form

For the base frequency the above equation takes a minimum

In the variational equation for natural vibrations with no damping, the argument is
only the displacement vector u that all its components vary independently. From
the variational equation all the n eigen-solutions (eigenvalue and eigenvector)

can be solved.
One of the important applications of eigenvector expansion is that an arbitrary

n -dimensional vector u can always be expanded as the linear combination of all
eigenvectors, called the eigenvector expansion (modal expansion). From equation
(2.2.11), is not a singular matrix and all its columns (eigenvectors) compose a
linearly independent basis for the n -dimensional space. An arbitrary vector u
can always be expanded as

where the coefficient is to determine. Based on the ortho-normality relations

(2.2.6), (2.2.8), left multiplying (2.2.18) with gives

or in combined form

which is the equation of eigenvector expansion. The eigenvector expansion
solution is one of the fundamental methods in vibration analysis. A simple
numerical example is used to demonstrate.

Example 2.1, Giving a two degrees of freedom n = 2 damping free vibration
system, the mass and stiffness matrices M and K are given as, respectively

The time history of vibration is required with the initial condition given as

Solution: First solving the eigen-problem, from it solves

and
After normalization it composes
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According to the expansion theorem, the displacements can be expanded as

where initial condition of has been considered. The initial displacement
conditions are

then

The curves of vibration are plotted in figure 2.5, which is typically vibration with
beating. A slowly vibrating envelope encloses a high frequency vibration. ##

The physical interpretation for beating is that at t = 0 all the mechanical
energy is preserved in the large
mass-spring system, but the small
mass-spring system having no energy.
However, the two frequencies of the
mass-spring systems are very close to each
other, that the coupling is slight between
the two mass-spring sub-systems, since

and is small.
The vibration of large mass (curve a)

excites the small mass-spring subsystem (curve b) to be almost in resonance (system
internal resonance), that the energy is transferred from the large mass to the small
mass gradually and causing the small mass vibrates severely. Afterwards, the
vibration energy of the small mass transfer back to the large mass. Such
transferring of energy is carrying on forth and back, and is called the wandering of
energy [44].

Such kind of system internal resonance should be concerned. Anyway, all
resonance should be concerned. The internal resonance can be applied to the
design of dynamic absorber [4]. The effect of resonance is the exciting of the
absorber mass (usually a small mass), and at the same time energy damping device is
used to eliminate the vibration of the structure. However, such internal resonance
may appear at different parts of a structure and may cause harmful consequence.
For instance, at the top floor of a tall building some additional part may be attached,
which composes a local vibration subsystem. Its local vibration frequency should
be designed apart from the natural frequencies of the main part of the building.
Otherwise, the whole building vibration can be imagined as a large mass and
the additional part is the small mass as described in the example. Then the
vibration of the local part may appear local resonance, which is called the “whip-tip
effect” internal resonance [45], a severe vibration for the small mass.

The coupling between two parts in a structure is not only limited in linear
systems. There are non-linear system internal couplings, which may also cause
internal resonance, or non-linear parametric resonance. The same kind of internal
wandering of energy is often appeared in practice. A simple model of internal
parametric resonance of a cable-structure system is described later in section 2.4.



66 Duality system in applied mechanics and optimal control

§2.2.2, Constraints, count of eigenvalues

The previous section describes eigen-solution, ortho-normality, expansion with
eigenvectors etc. These behaviors are derived under the assumption that the natural
vibration system (2.2.3) has no constraints. This section considers that the
vibration system is under constraint, and some important theorems will be derived.

Examine the Rayleigh quotient first, if the trial vector in equation (2.2.17) is
substituted with eigenvector expansion, i.e. the u in equation (2.2.18) is substituted
into (2.2.17). Because

it derives

Let u denote the trial vector in equation (2.2.17), if the components of u are
not all independent, i.e. if there are m linear constraints, then the system has only
n–m degrees of freedom and can have only n – m eigenvalues. The eigenvalue
behavior of this constraint system is of concern.

Let the linear constraints be expressed as

where is a given n -dimensional vector. It needs to determine the varying of

eigenvalues of the constraint system, when changes.

Using the eigenvector expansion of the unconstrained system, substituting
gives

The parameter vector a is varied instead of u in the variational principle. To

find the changing of with constraints, the equation (2.2.21) should be appended

on m conditions of (2.2.23), then taking minimization for with respect to a.

The will depend on the constraint condition expressed with

A special case is to consider, if the m constraints are selected as

then only can

be selected, then

where the n – m parameters  vary independently. Therefore,

under this special selection of m constraints, the eigenvalue does reach

Now consider the case of being arbitrary vectors. Let the

parameters be selected as

then the arbitrary selection is limited within the range of so that

there are still m +1 variables to be selected out of the m constraint conditions
(2.2.23). Limitation of the selection had been applied to the minimization, that
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from which it concludes that under m linear constraints, the minimum eigenvalue

can never exceed But it does can reach Therefore, is the

true upper bound of the minimum eigenvalue under the m linear constraints.
This is the well-known maximum-minimum principle for eigenvalues [1]. The

characteristic of the (m +1) -th eigenvalue is, selecting m -constraints so as

to maximize the lowest eigenvalue of the constrained system. Note also, the
eigenvector u selection of the system with given m -constraints is to minimize the
eigenvalue, so that

§2.2.2.1, Inclusion theorem

The maximum-minimum behavior of eigenvalue has been discussed above.
Now the eigenvalue distribution for the system under one linear constraint is
considered. The unconstrained system originally has n -degrees of freedom, then
adding on one given constraint

it becomes a system of n –1 degrees of freedom. The original unconstrained

system eigenvalues are sorted from small to large and the

constrained system eigenvalues are Then the inclusion

theorem says

which is to be proved, i.e. the constrained system eigenvalues are located in between
the two corresponding eigenvalues of the original unconstrained system.

The proof can use the maximum-minimum behavior for eigenvalues. To
prove the inequality

the m -th eigenvalue of the original system can be considered as, the system

under one given constraint (2.2.25) is further added on m –1 constraints and taking

maximization with respect to these m – 1 constraints. For it can be
considered based on the maxi-minimization principle as, the original system is added
on m constraints and taking maximization with respect to these m constraints.

Both the constraints for and for are 1 + (m –1) versus m constraints,

respectively. However, for the case of one constraint in the m constraints

is given, whereas for the case of all m constraints are selected arbitrarily

that the selection range is larger. Therefore it concludes that As the
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proof of that is obtained from the original system under m –1

arbitrary constraints however, is obtained from m –1 arbitrary constraints

and also a given constraint (2.2.25), i.e. is under one more constraints, so

Up to here, both inequalities of (2.2.26’) have been proved. Since the

m in (2.2.26’) is arbitrary, so that (2.2.26) is proved also.

§2.2.2.2, Dynamic stiffness matrix and eigenvalue count

For a given

is usually called as the dynamic stiffness matrix [46]. The dynamic stiffness
matrix is certainly dependent on and is often used in wave propagation
problems, vibration problems etc. The dynamic stiffness matrix has an important

index, the eigenvalue count, which is given as follows. For a given the n

eigenvalues of natural vibration of the given M,K system are subdivided into

two groups of and

where the number (eigenvalue count) m is needed.
The simplest consideration is, compute all the eigenvalues for the given M, K

system, then check with the condition (2.2.28), the number m is readily obtained.

However, solving the eigenvalue problem is not an easy problem.

Especially the matrices M, K may also be frequency dependent. The requirement

is that only the dynamic stiffness matrix is calculated, and the count m is

required without solving the eigen-problem for the M,K system. To find the
eigenvalue count, the Sturm sequence should be considered first.  Sturm sequence
is defined as

i.e. the sequence of determinant of diagonal block of the matrix R , see figure 2.6.
The picked up main diagonal sub-matrices
of R are still composed of the respective
sub-matrices of M,K as in (2.2.27).

Counting the sign change of the
Sturm sequence can
reply the eigenvalue count problem
(2.2.28). Because the sequence of
determinant of diagonal sub-matrices, such
as which corresponds to the
sub-system, obtained from that the last

the matrix
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(n–k) displacements of the original n -degrees of freedom system M,K being

constrained with only the first k displacements free. Note that the dynamic
stiffness matrix of this k -degrees of freedom system is just the k -th diagonal
submatrix, and is its determinant. Examining the sign of first, that

is a n -degrees polynomial of which can be factorized as

Because K is positive definite, so that all its main diagonal determinants are
positive. Hence according to (2.2.28), if m factors in (2.2.30) being negative then

the sign of is

Next examining it corresponds to the determinant of the system matrix,
whose last degree of freedom is constrained

The constrained system eigenvalue distribution is as shown in the inclusion theorem

of equation (2.2.26), where is definitely less than whereas

is definitely larger than only is uncertain. When

and have the same sign, but when and

change sign. Hence, the determinant sign change means the number of eigenvalues
less than reduced one. Then for the n –1  degrees of freedom system putting

on again one constraint, it becomes a n – 2 degrees of freedom system, the same
derivation applies again, etc., until all the degrees of freedom are constrained, then
the determinant equals Therefore, the sign change of the Sturm sequence

of the dynamic stiffness matrix equals the number m of eigenvalues

for the original system.

This proposition needs Sturm sequence computation, which means a number of
determinant computations and is quite cumbersome. Reducing the computational

expense is anticipated. Since the dynamic stiffness matrix has been

available so that the modified triangular-factorization can be executed as in [42]

which is the commonly used factorization for symmetric matrix algorithm. The

matrices L,D can be used to pick up the main diagonal matrices of
Simple verification shows that factorization (2.2.31) is still valid for the diagonal

sub-matrices of Note that hence det(R) = det(D). The
determinant of matrix D equals to the product of the diagonal elements. Hence
the number of negative elements in matrix D equals the sign change of the Sturm

sequence. Therefore, the eigenvalue count m of as defined in (2.2.28),

needs only to factorize the dynamic stiffness matrix as in (2.2.31), then

the number of negative elements in the diagonal matrix D gives the count m.
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§2.2.3, Eigenvalue count and substructure analysis

Finite element method (FEM) has been applied in almost all the structural
engineering projects. In large structural system computations, sub-structural
analysis is the commonly used approach.

The vibration eigenvalue computation for the whole structure is certainly very
concerned also in using substructure analysis. The structure is composed of a
number of substructures and/or finite elements. The pre-request is that all the
external dynamic stiffness matrices of substructures are computed and their
eigen-solutions should be analyzed. Based on which, the whole structural
eigen-solution analysis can be investigated, and there is the modal synthesis method
to solve this problem. The sub-structural eigenvalue count is considered now.
The majority FEM program systems today using the displacement method, hence the
eigenvalue count for sub-structural analysis is also based on displacement method.

Looking from the elimination process of simultaneous algebraic equation, the
sub-structural analysis is nothing but the sub-structural internal variables are
eliminated first. Hence the previous section analysis on Sturm sequence can still be
applied. In order to clarify the composition of sub-structural analysis, the case of
two substructures combined together is considered first, as sketched in figure 2.7.
The nodes of a substructure can be classified as
a) The internal nodes, which have no connection with external of the substructure,

and the displacements on these nodes (internal displacement) can be eliminated
inside the substructure;

b) The external nodes, which will further be connected to the structure, and the
displacements of these external nodes (external displacement) cannot be
eliminated on this substructure level, and the external stiffness matrix of the
substructure is defined with respect to these external displacements.

Besides the above, there can be fixed nodes for which the displacements are given as
zero (or given value), so no elimination at all for these displacements. If the

composed structure is only a
higher level substructure, then
the external node of the higher
level substructure will also be
connected to the even higher
level substructure (or structure).

Using displacement
method implies that the
dynamic stiffness matrix is used
in elimination process. Using
sub-structural analysis implies
that the internal displacements
of the substructures are

eliminated first. Then at the structure level, the displacements contributed from the
external displacements of the composed substructures and the displacements from
the structure level itself (if any) is analyzed.

Using displacement method implies that the dynamic stiffness matrix is used in
elimination process. Using sub-structural analysis implies that the internal
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displacements of the substructures are eliminated first. Then at the structure level,
the displacements contributed from the external displacements of the composed
substructures and the displacements from the structure level itself (if any) is
analyzed.

The first step is the internal displacement elimination of substructure #S1. For
this substructure, the internal displacements are sorted first, then the external
displacements. At the substructure level, the elimination is only for the internal
displacements. Let denote the given frequency for dynamic stiffness matrix

or simply written as R . Since displacements are classified as internal
and external, the stiffness matrix is block partitioned correspondingly as

where the subscript i means internal whereas the subscript o means external, the
dimension of internal displacements denotes respectively, etc. The elimination

at the substructure level is only for the internal displacements. After the
elimination of internal displacements, the external stiffness matrix of substructure is
computed as

These are well-known algorithms and are easily verified. The above equation
shows that the inverse matrix of can be executed by the modified triangular
factorization method. Such as in the program system JIGFEX in China, the
substructure elimination is carried out via the factorization.

For static analysis, the supplying of has been enough, because static
analysis does not care about natural frequency. For dynamic analysis problem,
after the dynamic stiffness is computed, there is still the problem of eigenvalue count,

i.e. the eigenvalue count of internal natural frequencies less than the given

which is denoted as

To determine this eigenvalue count the internal stiffness matrix
is modified triangular factorized as in (2.2.33), and then the number of negative
elements of the diagonal matrix D gives the This conclusion can be
seen from the sub-structural elimination of the internal variables, that all the external
displacements are treated as fixed. Hence, after composing the dynamic stiffness
matrix of the internal displacements of the substructure, which is regarded
as the dynamic stiffness matrix in (2.2.27), then the reason below (2.2.27) draws the
conclusion, that

This equation can be applied to all the substructures.
After the sub-structural internal displacement elimination, the next step is the

displacement elimination at the structural level. The sub-structural analysis means



72 Duality system in applied mechanics and optimal control

that all the elimination internal to the substructures had been performed for the

internal displacements of all the substructures, and this internal elimination gives the

internal eigenvalue count of all the substructures. All the internal

eigenvalue counts of the substructures should be accounted for, that is

where the subscript ‘subs’ represents all the substructures. Continued process is the
elimination of displacements at the structural level. This step is again a
displacement elimination (constraint release) process. The dynamic stiffness
matrix is composed of the external stiffness matrices of all the substructures and
finite elements at the structural level. Let the dynamic stiffness matrix at the

structural level be denoted as At the structural level, its dynamic stiffness

matrix can still be factorized as and the method in previous section applies,
i.e. accounting the number of negative elements for the diagonal matrix D .
Therefore the number of eigenvalue count for whole the structure (including all its
substructures) is

where the subscript subs. represents all the substructures, and s{...} means ‘Sign

count’, i.e. the matrix in the brace is factorized then the number of negative
elements of the diagonal matrix D is accounted. The meaning is the same as in
equation (2.2.35), but using a different formulation. The equation (2.2.36) is called
as W-W (Wittrick-Williams) algorithm for sub-structural analysis, using the
displacement method, see [40].

For multi-level sub-structural analysis, equation (2.2.36) can be applied for all
the substructures level by level. The above proof can be applied to all levels of
substructures.

§2.2.3.1, Mixed energy, the eigenvalue count for dual variables

The above derivation uses the displacement method. However, the
elimination in purely displacement method has a problem in computations, i.e. when
the mesh becomes extremely dense, the round off error increases very fast.
Transforming to the mixed energy and dual variables method can bypass such kind
of round off error problem. Correspondingly, the extended W-W algorithm for
dual variable system description and mixed energy must be proposed [41].

Firstly, the mixed energy and dual (mixed) variable formulation for
sub-structural analysis need to be clarified before the description of eigenvalue count.
In the displacement formulation for sub-structural analysis the external variables are
all displacements and then the external dynamic stiffness follows. However, in
the formulation of mixed energy system, the dual variables are applied, the external
nodes can be sub-divided into two classes, the first class nodes use displacements as
its variables, whereas the another class nodes use the nodal force as its variables.
The mixed energy formulated sub-structural analysis can be used in the ‘wave front’
type elimination procedure in terms of mixed variables. Formerly, the wave front
method elimination method is commonly used for chain type structure. Figure 2.8
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shows a sub-structural chain and the elimination from one end to the other end
corresponds to the wave front progressing.

Since displacement method is the widely used model and the discussion can be
led from such model. A typical #k substructure in figure.2.8 has two external
surfaces k and k +1, or denoted as end-a and end-b of the substructure. The
external displacement vector can naturally be partitioned as the composition of

and or denoted as and the respective dimensions are,

respectively, and The external dynamic stiffness matrix which

is originally of dimension should be partitioned corresponding
to the displacement partition as given in the equation (2.2.37). Correspondingly,
the sub-structural external forces should also be partitioned as and

of dimensions and respectively. The relation between external forces and

displacements are

where is the condensed dynamic stiffness matrix of (2.2.33). It is the
formulation of displacement method. The mixed formulation is a transformation
from displacement to dual variables as follows.

where is termed as the mixed energy matrix of the substructure, the

sub-matrices of which are derived as

and having respective dimensions, Q and G are symmetric. Obviously, the

matrix is derived from the dynamic stiffness matrix and the mixed

energy formulation relates to the dynamic stiffness matrix formulation by a
Legendre transformation. The theory is of great importance, so it is simply
described as follows.

The substructure potential energy is given as

The nodal forces is defined by partial differential, the Legendre transformation,
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then goes along the way that the mixed energy is also obtained from the
Legendre transformation, as follows

and the equation (2.2.38) can be expressed by

For static structural analysis, is only a usual stiffness matrix, and the

eigenvalue count is unnecessary. Dynamic stiffness matrix not only
depends on vibration frequency but also needs the eigenvalue count. Hence the

eigenvalue count of the substructure internal vibration is necessary to
express its vibration characteristics. However, in mixed variable formulation, the
dynamic stiffness matrix is transformed to the mixed energy matrix

so that the eigenvalue count should also be transformed from to

the mixed energy eigenvalue count

Transforming from to correspond to the two end conditions being that

is fixed but is released. Using the identity

At the right hand side, both the left and right factorial matrices are right triangular
and left triangular matrices, respectively, and their determinants are all unity.
Hence from (2.2.34)

Carrying out triangular factorization for the matrices Q, in the form of

from equation (2.2.42), their diagonal matrix is the same, i.e. the diagonal
matrix of is just hence their count of negative

elements have the relation

Furthermore, the matrices G and are mutually inverse to each other, hence

therefore

For the original structure (substructure is regarded as structure), the eigenvalue count
equation in the displacement method formulation is given as

When the constraints at the right end-b are released, the left end-a stiffness matrix is
Q , therefore

Comparison gives
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This is the corresponding eigenvalue sign count under the mixed energy formulation.

§2.2.3.2, Substructure combination and eigenvalue count of mixed energy

The substructure combination of the displacement method makes use of the
minimum potential energy. However, for dynamic stiffness matrix the potential
energy will no longer be positive definite so that it does not necessarily take the
minimum value, in such case minimization should be changed as taking stationary
value of potential energy. The additivity of potential energy is easily understood
for there is only one kind of variables.

In case of mixed energy formulation, there are two kinds of variables, so that
the mixed energy should not be simply added together and the variational principle
need be considered further. First, the physical background of mixed energy
sub-matrices Q,G,F should be interpreted. Since G and are inverse

matrices to each other, hence G is the dynamic flexibility (admittance, compliance)
matrix, under the condition that the end-a is considered fixed and the end-b is
released (free) with unit forces ( n unit vectors) acted on in turn. The
corresponding displacements at the end-b under these unit forces compose the
dynamic flexibility matrix. The two-end conditions are similar to a ‘cantilever
beam’and this model is used for all the submatrices Q,G,F . Matrix Q uses the
same ‘cantilever beam’ model, that the end-b is free and the end-a is given the n
unit vectors of displacements in turn, the corresponding reactionary forces at the
end-a compose a stiffness matrix. So Q is the stiffness matrix at end-a with
end-b free, that Q is a symmetric matrix, whereas G is a

symmetric matrix. The matrix is interpreted as that when end-b acted on unit

forces, the reactionary force at the end-a; and the matrix F is a matrix,

which gives the displacement at end-b when end-a is given the unit vectors of

displacement,. So, F , are displacement and force transfer matrices,
respectively.

The variational form of the mixed energy of substructure #S1 can make

useof (2.2.38’),

The variational principle is quite useful to sub-structural combination. Suppose the
end-b of substructure #S1 is a surface to combine another substructure #S2 , for
which its external surfaces are end-b and end-c. The degrees of freedom of #S2
at end-b are also for satisfying the condition of combination consistency, and

the degrees of freedom at end-c are see figure 2.9. After combination, the

end-b surface becomes internal to the higher level substructure, denoted as #Sc,
whereas the surfaces end-a and end-c are external to the composed #Sc . Both the
substructures #S1 and #S2 are expressed with mixed energy and dual variables.

The mixed energy variational equation for substructure #S1 is (2.2.45) and for
substructure #S2 is
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Then variational equation for the combined higher level substructure #Sc is

Equation (2.2.46) is the mixed energy combination rule, that the elimination of
internal dual variables and is necessary. Applying the equation (2.2.41)

to both substructures #S1 and #S2 and substituting into (2.2.46) gives

To eliminate and the partial differentials with respect to and
must be zero

Solving gives

Substituting back into equation (2.2.47) of derives

These equations are the sub-structural combination equation under mixed energy
formulation. Substituting these matrices into equation (2.2.47), the combined
mixed energy of higher level substructure #Sc is obtained.

These combination equations are found the same as discrete time optimal
control theory, see section 6.5. However in structural analysis, each combination
surface can have its own dimensions, such as respectively, and is more

general, see figure 2.9.
The matrices are symmetric originally. From (2.2.49) it is

easily seen that are again symmetric matrices. If is small (less than

the fundamental natural frequency) or for static problems then Q,G are
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non-negative matrices. The addition sign in the combination equation (2.2.49)
determines that the mixed energy elimination equation will not appear numerical
ill-conditioned problem. Such behavior is very important for localized boundary
layer analysis or very dense mesh analysis.

The combination/elimination equation (2.2.49) for dynamic problem is not
enough, for eigenvalue problem the eigenvalue count should be supplied further.
The equation (2.2.49) can be used recursively so that the eigenvalue count should
also be recursive. In addition to the equation (2.2.49), based on the known

eigenvalue counts and of substructures, the combined

eigenvalue count of #Sc should be determined.

To derive the first step is to transform back to the both ends given

displacement form. From equation (2.2.44), it derives

However the #S2 substructure is still in mixed energy formulation, i.e. given
displacement at end-b and given force at end-c. Thus at the combination surface,
end-b, both substructures #S1 and #S2 are given displacement. Then the
internal stiffness matrix at end-b must be the superposition from both the

sub-structural contributions Such kind of displacement elimination

equation can use the W-W algorithm equation (2.2.36), which derives the eigenvalue
count for the combined higher level substructure

Transforming the eigenvalue count back to gives

which is the required equation for the extended W-W algorithm [41].
Eigenvalue count is very important for substructure vibration, stability,

wave-guide and a number of other problems. For optimal control, it is again a
fundamental issue. The displacement method for solving two point boundary value
problems (TPBVP) may possibly have numerical ill-conditioning problem, the
mixed energy and dual variables method can avoid such problem and the precise
integration algorithm can effectively be used to TPBVP.

For eigenvalue problem, eigenvalue count is usually necessary.

§2.2.3.3, Essence of modal synthesis method

The generation of dynamic stiffness matrix at structural level has

various methods. One of sub-structural modal synthesis methods is simply
described here.

Suppose the structure is composed of one substructure #S1 and other finite
elements. The method is easily extended to the case of multiple substructures.
The displacements of a substructure are classified as external and internal
displacement vectors and of and respectively. In

practical applications of FEM, number is finite, however, may be very

large. Note that the dynamic stiffness matrix depends on the given
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frequency, hence solving the eigen-solution needs to compute the dynamic stiffness

matrix repeatedly for different which means tremendous

computational expense and is difficult to bear. Suppose the static stiffness and
mass matrices are computed, then corresponding to the classification of
displacements as internal and external, the submatrices of internal, external and

mutual and dynamic stiffness matrices, respectively,

are formed. The sub-structural analysis needs to eliminate the internal

displacement in order to supply the condensed external stiffness matrix
as in equation (2.2.33). However, if the condensation is executed according to the

equation (2.2.33) for all the frequencies in iteration, tremendous computational

expense is resulted. Hence it is required to avoid the modified triangular
factorization of the internal dynamic stiffness matrix for all the iterations of

In application, the required natural frequencies are usually at the low end,

hence the higher frequency vibration internal to the substructure can be neglected,
that computing some low frequency internal eigen-solutions of the internal
displacement is usually good enough.

where is the number of low frequencies of the internal eigen-solutions.

These internal eigen-solutions are obtained based on the external displacements

being treated as fixed, Usually these internal eigen-solutions

can be solved by means of various methods, such as subspace

iteration method. These eigen-solutions are unrelated to the given frequency

so once computed they can be used over and over again. After these internal
eigen-solutions are computed, the elimination of internal displacements can use the
eigen-solution expansion method. The condensation equation can be derived as

If these equations are exact. Using these condensation equations in

(2.2.33) gives the sub-structural modal synthesis approach.
However, the above equation considers only the former eigenvectors, the

effect of the latter eigenvectors are completely neglected. The reason

is because of so that the error is not large and also to save the

computational expense. In order to improve the approximation, the following
equation can be used instead

However, only the former eigen-solutions are available, therefore the latter

term in the above equation should be reformulated. That is
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where the former summation is just and this inverse matrix has been

used in finding the internal eigen-solutions and is available. The eigenvectors in
the latter summation are also available so that the above equation can be executed
effectively.

§2.2.4, Subspace iteration for the eigen-solution of symmetric matrices

The eigenvalue count is discussed in some detail in the previous sections, so as
to ensure no eigenvalue is dropped in numerical computation. However, the
eigenvector expansion (modal analysis) is one of the most popular methods used in
structural vibration analysis. Application requires numerical eigen-solutions.
Theoretically, all the eigen-solutions should be found for expansion solution. In
applications, the FEM analysis model often has degrees of freedom n = dozens of
thousands. The eigen-solutions have also same amount of n, among which the
majority is high frequency vibrations. Under damping action, the high frequency
vibration will quickly be damped out and the long time vibration is mainly
dominated by lower frequency components. Also too many eigen-solutions brings
a lot of difficulties in computation. Hence in structural engineering applications,
only the number q lowest frequency eigen-solutions need to be solved, for

example q = 50 ~ 500 for structural random vibrations. The eigen-solutions of

q dimensional subspace with lowest frequency eigenvalues for a structural system
attracted much attention, and the subspace iteration method [8] is one of the most
effective algorithms. In sub-structural internal eigen-solution analysis, the
subspace iteration method can also be used.

Selecting number q approximate eigenvectors of lowest frequency as basis, a

q dimensional subspace is composed in the n -dimensional complete space. To

find these eigen-solutions, iteration method is necessary. Suppose the first q

approximate eigenvectors have been selected, and according to the

expansion theorem these approximate vectors can be expanded with the eigenvectors
as

The purpose of subspace iteration is to improve the approximate eigenvectors
converging to the first q eigenvectors, i.e.

Note that the eigenvectors are ortho-normal to each other with respect to the mass
matrix, although are not really eigenvectors, however, they still

need to satisfy the ortho-normality condition. Below, the ortho-normalization
algorithm is proposed as the Gram-Schmidt algorithm.
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§2.2.4.1, Ortho-normalization algorithm

The ortho-normality for the eigenvectors is with respect to the mass matrix M .
The approximate vectors should also be ortho-normalized with

respect to M . The algorithm is:

for { comment: below line is orthogonalization

for

comment: normalize

} (2.2.51)

These ortho-normalized approximate vectors can be treated as the basis of subspace.
And the mass and stiffness matrices should be projected to the subspace as follows.

§2.2.4,2, Subspace projection and its eigen-solutions

In a n -dimensional space, there are n basis vectors, and are

only a part of them. The other (n – q) basis vectors should be orthogonal to the

q basis with respect to the mass matrix. Compose a n×q approximate

eigenvector matrix using as columns

For ortho-normalized basis, the projection mass matrix is then and

the projection stiffness matrix is

Evidently, it is still a symmetric matrix. Hence the eigen-problem in the
q -dimensional projected subspace is

which is a standard eigen-problem for a symmetric matrix with dimension q, and
standard algorithm is available. For example, the standard procedures given in

[42,43] can be invoked, so that all the eigen-solutions in subspace

are obtained readily. Where are eigenvalues in q -dimensional subspace.

Please do not confuse with the eigenvalues in the original n -dimensional

complete space.

§2.2.4.3, Subspace iteration

After all the q eigen-solutions are solved, these

q -dimensional subspace eigen-solutions should be transformed back to the original

n -dimensional space, i.e.
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Although is the eigenvector in the q -dimensional subspace, however, is

not an eigenvector in the original n -dimensional space but only an approximate
eigenvector. Although the eigen-solutions have been solved in the subspace and
transformed back to the original space, but the linear combination of these q

vectors is still within the same subspace spanned by the matrix i.e. the subspace
does not change. To improve the subspace, these basis vectors

should be updated in the original space via iteration, i.e. subspace rotation. The
new improved approximate basis are computed as

The iteration equation above means that the subspace basis vectors rotate in the
original n -dimensional space. This is the subspace iteration.

The effect of equation (2.2.56) is to clarify. Expanding the vectors with

all the eigenvectors gives

Substituting into equation (2.2.56) gives

These updated approximate vectors are no longer involved in the

q -dimensional subspace before updating (spanned by ), which means that the

subspace is rotated in the original n -dimensional space. Except in (2.2.58)

the higher the frequency the larger the denominator, and after the iteration step

its involvement is reduced. Therefore, the purpose of subspace rotation is to filter
out the high frequency components. After quite a number of subspace iterations,
only the first q eigenvectors will remain, i.e. will converge to

It is the essence of subspace iteration. The algorithm of one iteration step is
given as:

[The subspace’s dimension q, and are selected]

[Ortho-normalize with respect to M ]
[Compose the n×q matrix see (2.2.52)]

[Computing the projected stiffness matrix, see (2.2.53)]

[Finding the subspace eigen-solutions,

[Returning to the original space, (2.2.55)]
[Subspace rotation, (2.2.56)]

To speed up convergence, the subspace rotation (2.2.56) can execute twice in one
iteration rather than once.

(2.2.59)
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§2.2.4.4, Transition of the subspace

To find an initial approximation is always a problem for the iteration method.
The subspace dimension q can also be selected flexibly. Let the number of

eigen-solutions required be denoted as p, such as in structural random vibration

p = 50 ~ 500 is needed. However, the iterative dimension q of subspace can be

volatile, such as at the beginning q = 1 and the initiate ‘approximation’ selected as

or any, because of no effective information available originally.

After a round of iteration, the updated has filtered out much higher frequency

eigenvectors, therefore for the next round of iteration, the last can be regarded

as and the dimension of subspace is updated as q = 2 . For further iteration

steps, the dimension q of subspace can be further enlarged, and the possible
approximate vectors supplied are from the last subspace basis vectors.

The iteration needs a stop check, such as to check the current smallest
eigenvalue with the last (several) iterations, if the change is negligible, then this
eigen-solution is considered converged and can be picked up to store into the
database. Then the subspace should be shifted one eigen-solution, which has been
picked up and stored into the database, and one another new approximate
eigenvector must be supplied. There are q approximate vectors updated in one

round of iteration, one of the approximate vectors before iteration is used to
substitute the picked up one, then continue the iteration. Note, in the
ortho-normalization with respect to the mass matrix, these eigenvectors stored in the
database must be involved.

When the number of eigenvectors filled in the database exceeds or equals to the
required number p, the iteration stops.

§2.2.5, Eigen-solutions of asymmetric real matrix

The eigen-solution of an asymmetric real matrix is often encountered in
applications. To solve an eigen-problem of a n×n asymmetric matrix is a key
step for the eigen-solution of a 2n×2n Hamilton matrix as given later in section
2.3.3.3. The eigen-problem of a n -dimensional real matrix A is

Its eigenvalue

a n -degrees polynomial algebraic equation for roots It has n eigen-roots

and the m -multiple roots must be accounted as m . According to the
eigen-problem in matrix theory, an asymmetric matrix may have degenerate
(m -multiple) eigen-solutions and the Jordan normal form may appear.   A theorem
was proven as: Given an n×n matrix A, there exists a non-singular n×n
complex valued matrix  X  such that

should satisfy the equation
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where and the Jordan block matrix

(i = 1,...,t) has the form

where is the eigenvalue and there are corresponding

columns in the matrix X, and the correspondent equations are

for each Jordan block. Different Jordan blocks may possibly have the same
eigenvalue. This is the eigen-solution theorem for the general real matrix, see
[30,47,48],

For small n -dimensional matrix A , there is standard procedure to invoke for
eigen-solutions, see [42,43]. However, when Jordan form appears, the numerical
result is unstable. Although the Jordan form rarely appears in applications, but
cannot be excluded. The usual cases are that all eigenvalues are different and the
eigenvectors are not nearly parallel. Only when some eigenvalues are very close to
each other, then the corresponding eigenvectors are almost parallel.

An asymmetric matrix usually has complex conjugate eigenvalue pairs and the
corresponding eigenvectors are also complex conjugate to each other.

When the dimension n is large, finding all its eigen-solutions is unnecessary
then the dual subspace iteration method [49] can be used to find the number p

eigen-solutions with smallest absolute eigenvalues.

§2.2.5.1, Dual subspace iteration method for asymmetric matrix

In the case of no Jordan form appears, the eigen-matrix equation becomes

Its transposed matrix having the same eigenvalues as A , also has the
eigen-matrix equation

Solving the eigen-matrix X, which is composed of all the eigenvectors, implies that
the dual eigen-matrix Y is also solved, equation (2.2.65b) gives the relation
between the two matrices X and Y, the dual ortho-normality relation. However
if only number q eigenvectors are known, then from the composed

defective n×q matrix

the equation (2.2.65b) cannot be used to find the dual defective eigen-matrix which
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is composed of the dual eigenvectors Hence the two defective

eigen-matrices and can only be solved simultaneously via iteration. Let

In the iteration process, the eigenvectors have not been found yet, so that all
vectors are approximate. Dual subspaces are composed of using these approximate
vectors as basis. The subspace projection q × q matrix is defined as

the dimension has been reduced to be manageable, for q<<n. Hence all the

eigen-solutions of projection matrix can be solved via invoking the standard

procedure in [42]

where are q×q dual eigen-matrices, However, these are only

eigen-solutions in the project dual subspaces but not eigen-solutions in the original
spaces, such situation is similar to the subspace iteration for symmetric matrix.
Especially, the eigenvalues are not the eigenvalues of A either, so is

also approximate.
Having solved the dual eigen-matrices in the dual subspaces, the next

step is to transform back to the original dual subspaces

where the sign := is read as ‘substituted by’. This step is only recomposing the
dual subspaces, that the dual ortho-normality relation (2.2.67) still holds, but the
dual subspaces have not been updated. In order to improve the columns of dual
matrices approaching the dual eigenvectors, the dual subspaces must be

updated (rotated) in the original dual spaces. From equation (2.2.65a,b), the
rotations can be

After this round of dual subspace rotation, the defective dual sub-matrices

should be dual ortho-normalized again, which can be executed as

for (i = 1; i + +)

for (j = 1; j ++) {

[Orthogonalize the i -th column of       to the j -th column of ]

[Orthogonalize the i -th column of       to the j -th column of ]

}
[Normalize both the i -th columns    of and ]

} (2.2.72)

{
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It is pointed out that the eigen-solution of an asymmetric matrix possibly

has complex conjugate eigenvalues. The complex conjugate eigenvalues

appears simultaneously with the eigenvectors denoted as f ± g i . However it is

easier to compute with real arithmetic in numerical computation, for which the real
equation is

and the complex valued diagonal matrix is updated as block diagonal

matrix with 2×2 sub-blocks as in (2.2.73). The original approximate n×q dual

matrices are also real. After the above clarification, the dual subspace

iteration algorithm of a real asymmetric matrix can be given as [23,49]

1)

2)

3)

4)

5)
6)
7)

[Selecting q and the initial dual approximate n × q matrices

[Dual ortho-normalizing according to (2.2.72) for

[According to (2.2.68) compute the projection submatrix

[Solving all eigen-solutions of get and

[Returning the original dual subspaces, (2.2.70a,b)]
[If the successive iterative solutions satisfying precision condition, stop]
[Dual subspaces rotation (2.2.71a,b), then go to the step] (2.2.74)

Some improvements in the implementation, such as transition subspaces, are similar
to the symmetric matrix case and are neglected. However, asymmetric matrix may
appear complex conjugate eigen-solutions. According to the above algorithm, the
converged eigen-solutions are sorted according to the absolute eigenvalues in
ascending order. But the fixed dual subspace dimension q may possibly separate

the two complex conjugate eigen-solutions, i.e. the q-th approximate solution is

just one of the complex conjugate but the another one is the (q +1) -th, not involved
in the subspace. The effect of such separation of complex conjugate
eigen-solutions will cause eigenvalues jumping phenomenon in successive iterations.
Hence, if the case of jumping eigenvalues emerges the subspace dimension q

should increase 1 and continuing the iteration. The reasoning of convergence of
dual subspace for asymmetric matrix is similar to the case of subspace iteration
method for symmetric matrix.

§2.2.6, Singular value decomposition

For a given m × n real matrix A , the n × n product matrix

is obviously symmetric and non-negative definite, because

hence may have no negative eigenvalue. Zero eigenvalue appears only
when Ax = 0 , hence if all the column vectors of A are linearly independent, i.e.

]

]

]

]
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the rank of A equals to n, then is a positive definite matrix. Otherwise

is a singular matrix and has at least one zero eigenvalue. The matrices A

and have the same rank.

§2.2.6.1, QR decomposition

The decomposition of A = QR is introduced first, which is very important.
The m×n real matrix A is considered composed of linearly independent column
vectors , the (m×n) matrix Q is composed of

ortho-normalized column vectors i.e. and the n×n matrix

R is a right upper triangular matrix. The generation of matrix Q is step by step

column-wise. First, select the vector normalizing, then used as Next,

select orthogonalizing to the vector and then normalizing gives

Further successively selecting orthogonalizing to and then

normalizing gives and so on. Then all the following identity holds

until the vector The matrix Q is thus obtained.

As the matrix R , obviously is unrelated to the vectors hence

R is a right upper triangular matrix. From (2.2.75), the elements of matrix R
are determined easily. For example, for the case of n = 3

§2.2.6.2, Singular value decomposition

Singular value decomposition (SVD) [30,43,48,50] means to factorize a given
real matrix A as

where A is a real m×n matrix with rank r, and are, respectively,

m×m and n×n orthogonal matrices and

where are called the singular values, which are the r positive square

roots of eigenvalues of the matrix They are certainly the r square roots

of eigenvalues of the matrix The columns of matrices and are

the eigenvectors of the matrices and  respectively.
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When A is a n×n symmetric and positive definite matrix, is reduced

to be the eigen-vector matrix and

Consider from the variational principle [50]

where the inner product of the vector q (Euclidean type norm) is used to define the

norm of the matrix A , hence termed as the Induced norm. Such induced norm
has the below behavior

1,

2,

3,

The proof is

The above behavior must be fulfilled by any norm (Euclidean type), but the
induced norm further satisfies the Submultiplicative property [50]
4.

The proof is

Based on the above behavior, it is further proved that

§2.3, Small vibration of gyroscopic system

The vibration of rotating machine or vibration in moving coordinate system
often appears in applications. According to analytical dynamics, the kinetic energy
equation (1.5.7) is for non-inertia coordinate system, where not

only but also and exist. The first order term of

generalized velocity is given by

Note that G denotes the gyroscopic matrix, its meaning is entirely different to the
damping matrix C . The term can be merged into the potential function

The Lagrange function is then

where q is the n -dimensional generalized vector, from which the damping free

dynamic equation is derived as [12]
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where is the external force. Comparing with the free vibration equation in

previous section, a gyroscopic term appears, where G is a skew-symmetric

matrix. Equation (2.3.3) is still a second order ODE. According to the theory of
differential equation, the homogeneous equation should be solved first to find its
impulse response function then the Duhamel integration is used to solve the
inhomogeneous term. The homogeneous equation is

which has three terms, therefore direct use the usual method of separation of
variables does not work.

However, the method of separation of variables really works also to gyroscopic
system. The key step is transforming to the state space, for which the dual variable,
i.e. the momentum vector, is introduced as

or

and the Hamilton function is derived as

or written as

Note that the matrices D and B are symmetric, D is positive definite but B
may not be positive definite, which is because of the term has been merged into
the potential energy that the matrix K may be indefinite. The variational
principle is still read as

The dual canonical equations derived from the variational principle are

where the former equation is just (2.3.6).
Composing the state vector v( t ) by combining the dual vectors q,p

and the dual canonical equations becomes

The initial condition is

The solution methods can be classified as, 1) the direct integration method, and 2)
the eigen-solution expansion method. Direct integration can use the precise
integration method, which has been given in the introductory, so that the
eigen-solution method is described in some detail with its algorithms.
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The eigen-solutions propose the basis for the method of separation of variables
in the Hamilton-Jacobi theory, also for the canonical transformation, and thus are
very important. Even for non-linear vibration, the canonical transformation can
still be applied as seen in the solution for Duffing equation. For multi-degrees of
freedom non-linear vibration, similar methodology can be applied and the
eigen-solution is a necessary step.

§2.3.1, Method of separation of variables, eigen-problem

To solve the vibration equation, the method of separation of variables and
eigen-solution is concentrated below. The matrix K is assumed only symmetric
but not necessarily positive definite. The dynamic equation (2.3.11) in state space
has a time coordinate, and the components of the state vector can be regarded as
discrete space variables that the argument is its subscript. The intention of
separation of variables is to separate the time variable t with this subscript. Let

where is a 2n -dimensional time-invariant vector, and is a scalar
function but not related to the subscript. Substituting into (2.3.11) derives

The right hand side is independent on time t, so must be a constant and

it derives to

which lead to an eigen-problem for the matrix H .
It is easily verified that

Hence H is a Hamilton matrix. The eigen-problem of a Hamilton matrix has a
number of special features. First, both and are eigenvalues of H
simultaneously. The proof is as follows. From (2.3.13) it derives

which says that is an eigenvector of the matrix with the eigenvalue

Because the eigenvalue of is also an eigenvalue of H , so the statement

is proved. Therefore, the 2n eigenvalues of matrix H can be classified as the
two classes:

where the case of is special. The classification of eigenvalues

as belonging to the class has some consequences as shown in

section 2.4 later. The case of eigenvalue is not included in the above

classification, that is definitely a duplicate eigenvalue, for 0 = –0 , and the
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Jordan form follows. In theory of elasticity such situation appears quite frequently,
see [23]. In vibration or wave propagation problem, the eigenvalue rarely

appears. The eigen-solutions corresponding to and are termed as

mutually symplectic adjoint.
It is seen in analytical dynamics, that the appearance of matrix J implies

symplectic behavior. The symplectic orthogonal relation for eigenvectors of matrix
H is proved below. Let

adding together gives

where the two columns above are all derivations. Equation (2.3.16) explains that
except the case of symplectic adjoint, i.e. j = n + i or i = n + j , for which

otherwise the eigenvectors and must be

such orthogonal relation is termed as symplectic orthogonal, since in between the
multiplication of two eigenvectors the matrix J appears. The eigenvectors of
symmetric matrix have also orthogonal relation, however, only the unit matrix I is
in between the two vectors, or for the generalized eigen-solutions the positive
definite mass matrix M is in between the two eigenvectors. Presently, the in
between matrix J is skew-symmetric, which is the characteristic of symplectic
geometry. One must know that any state vector must be symplectic orthogonal to
itself.

Note that from the symplectic orthogonal relation of eigenvectors, it is easy to
verify that

Each eigenvector has an arbitrary multiplier, which can be selected as

and is termed as symplectic normalization. The combination is called the adjoint
symplectic ortho-normality relation. Note that both and have a

constant multiplier each, so that when one additional condition can be

added such as or other conditions.

Using all the eigenvectors as columns composes a 2n×2n matrix

Based on the adjoint symplectic ortho-normality relation, it is verified that

Hence, the eigenvector matrix of a Hamilton matrix H is a symplectic matrix.
The determinant of equals 1, therefore all the column vectors of i.e. the
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eigenvectors, span the whole 2n dimensional state space. Hence, an arbitrary
vector v in the 2n dimensional state space can always be expressed as the linear
combination of these eigenvectors

It is the expansion theorem with the eigenvectors of a Hamilton matrix.
It should be pointed out that the above derivation is based on the assumption,

that all eigenvalues are single roots. Under this assumption, a theorem should

be proved further, that the mutually symplectic adjoint eigenvectors and
are never symplectic orthogonal. Otherwise any constant multiplier will not be
able to reach the adjoint symplectic normality relation of (2.3.17). The proof needs
a fundamental algebraic theorem for linear algebraic simultaneous equations,
which is stated as:

For a set of n -dimensional algebraic simultaneous equations

where A is a n×n given matrix, y is a n-dimensional given force vector, x
is the vector to be solved. When the determinant x has unique
solution, in particular the solution x = 0 for y = 0. Otherwise, when the right
hand side vector y = 0, then the homogeneous equation must has number

linearly independent non-trivial solutions which may be assumed

normalized; and at the same time the transposed homogeneous equation
has also exactly number linearly, independent non-trivial solutions

The condition for the inhomogeneous equation (2.3.21) having

solution is that the vector y is orthogonal to all and the solution

x is composed of a special solution of the inhomogeneous equations
superimposed with an arbitrary linear combination of See for

example [1], page 6.
Based on this fundamental algebraic theorem, the proof of that      and

is not symplectic orthogonal can be as follows. According to the assumption that
they are all single roots, hence has no solution, otherwise it
becomes a Jordan form duplicate root. According to the fundamental algebraic
theorem, the right hand side vector is not orthogonal to all solutions of the

transpose equation Because H is a Hamilton matrix, according

to the equation (2.3.14) it derives just the eigen-equation of the

symplectic adjoint, hence or that the statement of is

not orthogonal to all z, turns to be i.e. not symplectic orthogonal.
The statement is proved. ##

Because H is not a symmetric matrix, so when duplicate eigen-roots appear,
the Jordan form may emergent, see [47,48]. The Jordan normal form is very
important for elasticity and structural static and will be described in some detail in
chapter 5.
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The expansion theorem is very useful for the solution of inhomogeneous
equations

the expansion expression for vector v is (2.2.30), similar expansions exist also for
f and for but the coefficients should be changed as for f and

for respectively, instead of in equation (2.2.30). The

coefficients are functions of time  t  and satisfying the equations

which are derived based on the adjoint symplectic ortho-normality relation. The
impulse response functions for the coefficient functions and are

They are only simply scalar functions, because the eigenvector expansion method
completely separates all the vibration components. Using the Duhamel integration
gives

Hence the problem is reduced to find the eigen-solutions for the Hamilton
matrix H . The way of thinking is parallel to the multi-degrees of freedom
vibration for symmetric matrices. However, the analysis should distinguish the
cases of positive definite or indefinite Hamilton function.

§2.3.2, Positive definite Hamilton function

The eigen-solution theory is applied to Hamilton matrix, however, the
definiteness of the Hamilton function should be distinguished. This section is
devoted to the case of Hamilton function H(q,p) being a positive definite
quadratic form, see (2.3.7). Although the theory is based on the form of Hamilton
function, it can also be transformed back to the representation by matrices M, K,G .
From equation (2.3.7), it is seen that the positive definiteness of Hamilton function is
ensured from the positive definiteness of the matrices M and K . The
eigen-solution algorithm given in reference [51] is for this case.

Although in some applications the matrix K cannot ensure positive
definiteness. However, for some problems the matrix K is positive definite.
For the case of vibration with no gyroscopic term, the eigen-solution theory are well
developed, however, the present case adding on a gyroscopic term, similar
methodology may also be applied. The relation between these two cases should be
clarified, so as to find successful method for the vibration problem with gyroscopic
term.

The eigen-solution of a Hamilton matrix is explored first, for which the
conclusion in previous section certainly applies. Now the assumption of Hamilton
function H(q,p) being positive definite assigns other behaviors to the eigen-

solutions, i.e. the eigenvalues of the respective Hamilton matrix (2.3.13) are all
purely imaginary valued, its proof is given below.

The simplest proof is to consider that the Hamilton function H(q, p) keeps a

constant that
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according to the dual equations (2.3.9a,b). If an eigenvalue takes a complex

value then the respective complex valued state vector solution follows.
The Hamilton function can be extended to complex valued vector as

then where the superscript H means taking
Hermite transpose, i.e. the operation of taking complex conjugate then transpose,
and the bar above means taking complex conjugate.

Thus the Hamilton function being positive definite implies the matrix (–JH)

being positive definite. Hence must have positive value. The

conservation of Hamilton function H(q,p) requires which

determines that must be purely imaginary. ##
The complex arithmetic appears here. The eigen-solutions of Hamilton

matrix cannot free from complex arithmetic. Now the statement is proved again,
and it is also useful later. That

But the two terms are complex conjugate to each other and

gives purely imaginary number. Hence the eigenvalue must be purely
imaginary to give a real number. Both the proofs are quite simple. Duplicate
eigenvalues may appear, however, which are never Jordan form eigenvalues.
Otherwise, there is the solution with multiplier which increases

indefinitely with time t and the system cannot be energy conserved.
The characteristic of purely imaginary eigenvalue is that the complex

conjugate of the eigenvalue equals the symplectic adjoint eigenvalue.
A number of theories of variational principle, Rayleigh quotient for the

eigenvalues, the maximum-minimum characteristics, the eigenvalues under linear
constraints and eigenvalue count etc. can be extended to the case of the Hamilton
function being positive definite.

§2.3.2.1, Variational principle of eigenvalues

Because the eigenvalues are purely imaginary, so the equation is written as

where is a real number, i.e. the imaginary part of the eigenvalue. The
eigenvector is complex valued, and is expressed with two real valued vectors

and both vectors are 2n dimensional.

Pure imaginary eigenvalue implies that the symplectic adjoint eigenvalue
equals its complex conjugate. Hence the complex conjugate of the eigen-equation
is just the symplectic adjoint eigen-equation
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the symplectic adjoint eigenvector is The complex conjugate

eigenvector multiplying –i gives the symplectic adjoint eigenvector. Subdividing
the complex equation into two real one

Left multiplying and to the first and second equations respectively,

then adding together derives

which expresses that the imaginary part of the eigenvalue is computed by the real
and imaginary parts of the eigenvector. The statement can be extended as a
variational principle, that let the selection of ensures the denominator positive

in above equation, then the variational principle for is given as

called as the generalized Rayleigh quotient.
Proof: This functional involves two real state vectors and but has only

one inequality condition. In fact, if then let so that the

positive condition satisfies, however, the numerator keeps unchanged. The
numerator in the functional is ensured positive definite because of the positive
definiteness of Hamilton function. Hence the fractional functional is lower
bounded, and the minimization is legitimate. Carrying out the variation gives

both the multipliers to the variations and respectively, must be zero,
which derives the two sets of real equations in (2.3.27). The variational
formulation (2.3.28’) is proved. ##

The variational principle (2.3.28’) has no unique eigenvector

because an arbitrary complex constant factor can be multiplied.
In (2.3.28) the variation is written as a minimization, hence valid only for the

minimum positive If rewritten as then the derived equation can be
applied to all the purely imaginary eigenvalues. However, the first order variation
equal to zero is not so convenient as maxi-minimum. Hence the maxi-minimum
behavior in equation (2.2.24) should be recalled. The maxi-minimum for the
present eigenvalue problem is to establish below.

Because the variational vectors and are real, hence the symplectic
orthogonal conditions (2.3.16’) and (2.3.16”) should also be expressed with real
vectors. The subscripts r and i are used to mark the real and imaginary parts,
and the subscripts j,k are used for the order of the eigenvectors. The symplectic

orthogonality is given in real form as

The present case is (–JH) being positive definite, that complex conjugate is

the symplectic adjoint. In the symplectic orthogonality relation (2.3.29), except the
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symplectic adjoint case n + j = k, otherwise the negative (–) and positive (+)
signs can all be replaced with ±. Since the symplectic adjoint eigenvectors are
the complex conjugate eigenvectors, the formulation for the symplectic
orthogonality and symplectic normality can be combined in real form

where the eigenvalues are sorted as

Expanding the trial functions in (2.3.28’) with the eigenvectors and also using
the symplectic orthogonality relation (2.3.30), the variational expression for the
imaginary part of eigenvalues is derived in expansion form

When selecting with other parameters being zero gives

Equation (2.3.32’) corresponds to equation (2.3.28), but the variation of (2.3.28’) is
necessary. The inequality condition is for the denominator in (2.3.32’). Equation
(2.3.32’) is the extension of (2.2.21).

Let the imaginary eigenvalues for be sorted as in equation (2.3.31) then

the maxi-minimum behavior for follows. It can be formulated as in equation
(2.2.24)

where is also real valued state vectors, and that

are argument vectors of the functional. If the selection is

where are given constants, then according to the symplectic orthogonality

(2.3.30), it must be

Because cannot be simultaneously zero, so the determinant is zero

which implies that the parameters having no

contribution to the denominator in (2.3.33), but adding positive value to the
numerator. Hence it must be

The proof for the maximum-minimum variational principle (2.3.33) can apply
the similar method to the variational principle (2.2.24). Transforming to
eigenvectors coordinate, the variational equation is expressed by equation (2.3.32’),
then m conditions are expressed with When selecting

the summation for the denominator of (2.3.32) begins from j = m +1, because the
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minimization gives (j = 1,2,...,m) ; and therefore the

minimization for (2.3.33) give and

also. Hence the maximization with can really reach the value

It needs to show further that the selection of other than (2.3.34) can only

make the minimization in the large parenthesis in (2.3.33) reduced. The proof is
similar to M,K system. Firstly, let that a

special selection can only increase the value of min . However, there are
4 × (m +1) parameters to be selected arbitrarily, where number m of constraints

supply 2m real conditions. There are still 2m+4

parameters to select, for which 2×(m +1) conditions can be

The remaining 2 conditions can be selected arbitrarily. In such case equation
(2.3.33) gives

Therefore the selection of other than (2.3.34) will not give the larger than

This proves that the equation (2.3.33) gives the maxi-minimum theorem for

Having established the maxi-minimum variational principle and the inclusion
theorem, the eigenvalue count theorem etc. are the natural developments, which is
the same situation as before for the case of symmetric matrices M,K . However,
the former variational principle can be described in the point transformation,
Lagrange system, whereas for gyroscopic system, it should use dual vectors, state
space, Hamilton matrix and symplectic geometry etc., quite an extension.

§2.3.2.2, Eigenvalue count and the inclusion theorem

The maxi-minimum theorem for eigenvalues supplies a foundation, from which
the inclusion theorem for the eigenvalue distribution under constraints can be
derived. The derivation given below is similar to that in section 2.2.

Let the gyroscopic system before constraint (original system) has n -degrees
of freedom. Now, one given constraint is added on

where b is a n -dimensional real vector. This is a displacement constraint.
Then the system becomes n –1 degrees of freedom. Suppose the eigenvalues of
the original system be and sorted as

The constrained system sorted eigenvalues as For a

system with positive definite Hamilton function, it needs to prove the inclusion
theorem formulated as

i.e. the eigenvalues of the constrained system are located in between the

##
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corresponding two eigenvalues of the original system.
Proof: Note first that the constraint (2.3.35) can be given as

Using the maximum-minimum behavior of the eigenvalues proves first that

The m-th eigenvalue         of the constrained system can be obtained as follows.

The original system are under m constraints, among which one constraint is the
given one, c , and the other m–1 constraints are selected according to the
maximum-minimum variational principle, i.e. the m–1 constraints are selected in
order to maximize When comparison is made with for which the

maxi-minimum principle requires that all the m constraints be selected to
maximize Hence is obtained with one more maximized constraint

selection, therefore it must be and the latter inequality in (2.3.36’) is

proved.
Next, the inequality for in (2.3.36’) is to check with. For which, the

maxi-minimum has m –1 constraint conditions. When comparing with the

m –1 arbitrary constraints to be selected is along the same way, however for

there is one more constraint, which can only increase Hence the former

inequality in (2.3.36’) is valid too. When m runs from 1 to n– 1 , the inclusion
theorem (2.3.36) is proved. ##

B.E. Yang proved the inclusion theorem for a special problem of rotating axis,
see [52].

The eigenvalue count is to consider next. For a given frequency     the
dynamic stiffness matrix is defined as

For a positive definite Hamilton function the matrix K is positive definite, and it is
proved that all the eigenvalues are purely imaginary. In the M,G,K gyroscopic

system description, which has natural vibration frequencies     according to the
condition

The number m is to be determined. It requires directly determining m with the
dynamic stiffness matrix Because G is skew-symmetric, therefore

is Hermite symmetric. The determinant of a Hermite matrix is a real

number and the main diagonal submatrices of R are all Hermite symmetric.
Computing a series of determinants of main diagonal submatrices of R , see
equation (2.2.29), constitutes the Sturm sequence.

For eigenvalue count m , one can count the sign changes of the Sturm
sequence Since the inclusion theorem is the same as in the case of
no gyroscopic term, the derivation is almost the same. The conclusion is that: the
count of sign change for the Sturm sequence gives the number m of eigenvalues
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In order to avoid computing a series of determinants of Hermite matrices, the

modified triangular factorization of the Hermite matrix can be used instead.
Counting the number of negative entries in the diagonal matrix D gives the
required eigenvalue count m .

In substructure combination for Hermite dynamic stiffness matrices, the
algorithm and eigenvalue count are similar to that for symmetric matrices, the
difference is that the real arithmetic should be changed as complex arithmetic. The
detail is neglected.

Above, the eigenvalue problem is described parallel to the gyroscopic force
free case. However, it is under the assumption that the Hamilton function is
positive definite, i.e. both M and K are positive definite.

The problem of numerical computation requires further description.

Discussion: Positive definite Hamilton function means the matrix (–JH) is

positive definite. From (2.3.27) eliminating gives the eigen-equation

which derives in turn

an eigenvalue problem with both the matrix operators (–JH) and positive

definite, since

where v is an arbitrary state vector. So the above development is conceivable.

§2.3.3, Indefinite Hamilton function

The previous section requires the positive definiteness of system Hamilton
function. But in applications, a number of engineering problems cannot fulfill this
condition. Thus the present section discusses under only the positive definiteness
of mass matrix M . The eigen-equation

is as before. However the matrix –JH is no longer positive definite although it is
still symmetric. For ease of discussion, a point transformation is carried out first,
which uses the matrix in equation (2.2.10), and is denoted as Q now, in

order to avoid confusing. Let then

After this point transformation, the mass becomes a unit matrix, and the stiffness
becomes a real diagonal matrix, for which the diagonal elements

will have some negative values because of –JH is indefinite. The gyroscopic
matrix G is transformed as and is still skew-symmetric. For convenience
below, the point transformation is considered performed and the prime sign is
removed for ease of notation.

One another form of state vector can be used in state space approach,
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The system equation expressed with is

and the corresponding eigen-equation is derived as

where is the eigenvalue and w is the correspondent eigenvector. Evidently

is the respective eigenvector of the matrix H . Theoretically no

significant difference is made, however using w would be easier for computation.
It is easy to verify the identities

then the eigen-equation (2.3.43) leads to

and in combined form

Both sides are skew-symmetric matrices.
Solving the eigen-problem (2.3.46) is an important step for solving the original

eigen-problem (2.3.43). The eigen-solution of (2.3.46) is unnecessarily the
eigen-solution of (2.3.43) however, both the eigen-vectors of (2.3.43) with
eigenvalues and respectively, are the duplicate eigen-vectors of (2.3.46)

with eigenvalue as is easily verified.
Therefore, one can first solve the eigen-equation (2.3.46), whose duplicate

eigen-vectors subdivide the whole space into a number of subspaces. These
subspaces are composed of that each eigen-solution in class is combined with
its symplectic adjoint eigen-solution in class If the eigenvalue is real then this
subspace is two dimensional, or if the eigenvalue is a complex number, then the
complex conjugate should also be included and the dimension of the subspace is four.
After finding all these subspaces, their eigen-problems should be solved in order to
find the eigen-solutions of the original equation (2.3.43). Because the equation

(2.3.46) is for eigenvalues of hence it is unable to distinguish and

solutions. Therefore, the eigen-solutions of (2.3.43) are solved after the

duplicate eigen-solutions of (2.3.46) are found. Thus solving the
eigen-problem (2.3.46) is an important intermediate step for solving the
eigen-problem of the Hamilton matrix [53].

The adjoint symplectic ortho-normality relation is now
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and the normality condition becomes

Based on such weighted symplectic ortho-normality relation, the expansion theorem
can be obtained readily.

§2.3.3.1, Effect of gyroscopic force to the stability of vibration

When there is no gyroscopic force, vibration stability is determined by the
stiffness matrix K , because the mass matrix M is positive definite. For
gyroscopic system, when K is positive definite, according to the analysis in
section 2.3.2, the eigenvalues are always purely imaginary and the system is always
stable but not asymptotically stable, disregard how large is the gyroscopic force. If
there is again damping forces, the system must be asymptotically stable, that when

the state vector tends to zero, because the Hamilton function, which is
positive definite, decreases with time and tends to zero.

But when K is indefinite, its eigenvalue appears negative number, if there
were no gyroscopic force term, the system is unstable. Now the problem is that, if
K is indefinite and there is gyroscopic force, then the stability behavior of system
vibration needs to be determined.

The theorem of Thomson and Tait determined that, if the matrix K , when
diagonalized by an orthogonal matrix, appears odd number of negative elements,
then the system is always unstable regardless of any gyroscopic force applied on.

Explain first that the gyroscopic force may stabilize a system, which is unstable
if no gyroscopic force. Certainly the diagonalized stiffness matrix K must have
even number of negative entries. A two degrees of freedom system is used as a
model problem

which is unstable if no gyroscopic force. Adding on the gyroscopic forces the
system equations become

where represents the gyroscopic term. The equation for eigenvalue is
and the expanded form is

if

then both the roots of are negative, and is purely imaginary, thus the

motion is stable, but not asymptotically stable. The conditions have
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ensured the first condition satisfied, therefore it is only necessary that

then the system is stable and it will be satisfied if the gyroscopic term is large
enough. However, it is also seen that if then the system is definitely

unstable, regardless how large is.
Proof of the Thomson-Tait theorem: The eigen-equation for is

where N , L are all real matrices. When     is an arbitrary real number,

is also real and is a continuous function of When it gives

whereas as approaches and is

definitely positive. But the sign of is determined from the number of

negative when there are odd number of negative then and when

increases from 0 to the continuous function changes from

negative to positive, hence at certain it must be It implies a

positive eigen-root exists, hence the system is unstable. The statement is
proved. ##

The damping of system needs to be considered now. The damping is usually

expressed with the Rayleigh dissipation, with the dissipation function

where C is a symmetric positive definite matrix, or at least non-negative n×n
matrix. Damping force is and the dissipation function is the work done by

the damping force.
For the system composed of M, K only, the mechanical energy is conserved.

The damping means the mechanical energy is dissipated and the dissipation function
gives the rate of dissipation. For gyroscopic system vibration, the effect of
damping force should distinguish the two cases of Hamilton function H(q,p) being

positive definite or indefinite. In treating stability of the system, if the Hamilton
function is positive definite then this Hamilton function (system mechanical energy)
can be selected as the Lyapunov function and from the dynamic equation it is seen
that the Lyapunov function is always decreasing due to dissipation. Therefore the
system is always asymptotically stable, see section 6.2.

In case of indefinite Hamilton function, which implies indefinite K , the
indefinite Hamilton function cannot be used as the Lyapunov function although it
still decreases. Chetaev [54] proved that the damping force will bring the damping
free system stabilized by the gyroscopic force (certainly with even degrees of
freedom unstable originally) back to be unstable.

According to the Thomson-Tait theorem, if the stiffness matrix K have even
number of unstable degrees of freedom, then gyroscopic force can stabilize the
system. But their analysis is based on the assumption of no damping factor. Now
if the system has damping, the system is brought back to be unstable. Section 2.5
will go back to this stability analysis again.
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§2.3.3.2, Symplectic eigenvalue problem and its algorithm

Eigen-solutions are the basis for a number of applications. Only theoretical
analysis is not enough, an algorithm is necessary for solving the application problem.
The eigen-solutions are the basis for modal analysis and canonical transformations
etc. The non-linear system equations can be numerically solved based on the
canonical transformation. The eigen-solution algorithm given in reference [51]
applies only to the case of positive definite Hamilton function. Hence a general
eigen-solution algorithm is given here, which can be used to indefinite Hamilton
function.

It has been shown at the beginning of section 2.3, that solving eigen-equation
(2.3.43) should solve the eigen-equation (2.3.46) first. The eigenvectors, say w ,
of (2.3.43) with roots and are eigenvectors of eigen-equation (2.3.46).

However, the reverse is not true, the eigenvectors of (2.3.46) must be duplicated,
denoted as and which may not be the eigenvectors of (2.3.43); but the

eigenvectors of (2.3.43) can be found from the linear combinations of and

Hence, the equation (2.3.43) or (2.3.45) should be expressed in the subspace
spanned by and The projection into subspace is a very important

technique, which can be carried out under the variational principle. Because of the
composition of state vector w(t) in (2.3.40), the variational principle (1.6.19)
should be used

where
which gives

After substituted with it becomes

Carrying out the variation derives (2.3.45). This variational principle is convenient
for subspace projection.

Since the two basis state vectors are found as and a two-dimensional

subspace of is composed as

and the variational principles for the subspace becomes

This gives the 2-D projection matrices and and the variational principle

derives
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for which, the eigenvalue problem in two dimensions is easily solved, and also gives
a check for the eigenvalue However, because and may be complex

valued vectors and the 2-D matrices are also complex valued. In such case, the
complex conjugate vectors of and can be considered simultaneously,

which corresponds to using the real and imaginary parts of the vectors and

that a 4-D subspace basis is resulted. The computation is still not difficult. Hence,
the 2-D projection subspace eigen-solution problem is regarded solved.

Therefore, the main problem is to solve equation (2.3.46), the point
transformation (2.3.39) can be regarded as a performed pre-step, and thus the
equation to be solved becomes

where the eigenvalues of matrix K can be regarded sorted as and

negative values may exist. For ease of computation, the vector can be
reordered in the form of

Correspondingly, the matrix in equation (2.3.54) should also permute its rows and
columns. The case of n = 4 is used as an example. Originally,

after reordering it gives (the sign is read as ‘derives to’)

where is a block diagonal matrix, obtained by repeating the 2×2 matrix

for n times at the diagonal, which derives a 2n×2n matrix. The matrix in
(2.3.54’) is transformed as

also
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From the above equation it is seen that the skew-symmetric matrices B, etc.
can be considered as composed of 2×2 matrices, called as cells, i. e. the 2n×2n
matrix is considered as a n × n cell matrix; and the 2×2 matrix corresponds
to a unit skew-cell. The equation (2.3.54’) of skew-symmetric matrices can be
transformed to a standard form [55], using the cell skew-symmetric modified

triangular factorization [56]. For the matrix B in (2.3.57), it is
factorized as

Substituting (2.3.60) into the equation (2.3.59) verifies directly. Similarly,

Substituting (2.3.59) back into the eigen-equation (2.3.54’) and left multiplying

with derives

For the sake of simplicity, is written as w again. The matrix A is

obviously still skew-symmetric. The eigen-equation (2.3.61) is considered the
standard form of a skew-symmetric symplectic eigen-problem. Note that the form

of eigen-problem (2.3.61) is entirely different to the usual form of
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There is at the right hand side of (2.3.61), so that it is called as symplectic
eigen-problem, whereas the usual form is an eigen-problem of a skew-symmetric
matrix, no at the right hand side.

When dimension n is large for the eigen-equation (2.3.61), the adjoint
symplectic subspace iteration method can be used to find the main eigen-solutions.
The transformation equation is similar to that given in (2.3.53) for subspace
projection. Note that (2.3.53) has only two subspace basis vectors. Similar to the
subspace iteration for symmetric matrix, the subspace rotation requires

multiplication of to the cell vectors hence the cell triangular factorization

of the skew-symmetric matrix A is very useful. In fact, the matrix
multiplication in equation (2.3.62) is unnecessary to carry out numerically, that the
matrix should also be factorized as

for n = 4 . These matrices are useful in computer programming.
The algorithm for transforming to standard form of symplectic eigen-problem

is described as:

Giving n,M,K,G
1) Solving the generalized eigen-problem of symmetric matrices M,K (2.3.39)

gives

2) Compute then compose matrix according to (2.3.58).

3) Compose according to equation (2.3.60).

4) Compute matrix A , according to equation (2.3.62).
5) Solving the symplectic eigen-solution (2.3.61) gives then compute
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6) Back transforming from (2.3.55) gives then and

composing w .

7) From and its corresponding eigenvectors according to (2.3.52)
and (2.3.53), solve the eigen-solutions of (2.3.45).

Among all of these steps, only the fifth step, the algorithm for the standard
problem of solving the symplectic eigen-solution (2.3.61), needs to be further
clarified, which is given in the next section.

§2.3.3.3, Symplectic eigen-solution of skew-symmetric matrix

where A is a given 2n×2n  skew-symmetric matrix. Treating 2×2
sub-matrix as cell, then A is a n×n cell matrix and is defined in (2.3.56).
The symplectic eigen-problem is different to the traditional eigen-problem

which has no unit symplectic matrix at the right hand side, hence
belonging to Euclidean metric, however (2.3.65) corresponds to the symplectic
metric, hence called symplectic eigen-problem. The problem now is to develop an
effective algorithm for the solution of symplectic eigen-problem.

The methodology of solution of symplectic eigen-problem can take benefit
from the algorithm for the solution of symmetric and/or general eigen-problems.
The solution usually is via a series of transformations to derive the original matrix to
some diagonal form or other standard form, and then use the iteration method. The
traditional eigen-problem uses the Euclidean metric hence the transformation matrix
should use the orthogonal matrix to keep the metric unchanged. However the
symplectic eigen-problem uses symplectic metric. For two arbitrary 2n -D state
vectors the symplectic metric is defined as

which is anti-symmetric. In mathematics, the usual definition for Euclidean
metric requires 1) positive definite; 2) symmetric; 3) the triangular inequality.
However, the symplectic metric is indefinite, skew-symmetric, nor triangular
inequality either. For a transformation matrix S

If the symplectic metric keeps unchanged under the transformation, then

is valid for arbitrary two vectors and it must be

which means that S is a symplectic matrix. Note that the symplectic matrix here
corresponds to the form of row and column permutation of the usual symplectic
matrix, see (2.3.55), so that the dual variables q,p are sorted in mixed order. The

symplectic matrices compose a group, which has been mentioned in chapter 1.

The standard form of symplectic eigen-problem of skew-symmetric matrix is
expressed as
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One of the most effective eigen-solution methods for symmetric matrix is, first
using the Householder orthogonal transformation to derive the matrix to tri-diagonal
form, then to solve by the QL iterative algorithm. For real general matrix the

method is similar, see [42] for example. For symplectic eigen-solution of
skew-symmetric matrix, similar technique can be applied, and is introduced in three
steps described below: see [56]
1) Symplectic-Householder transformation (SH transformation) and/or

orthogonal SH transformation
2) Transform to half tri-diagonal cell matrix;
3) The symplectic eigen-solution for the half tri-diagonal cell matrix.
The three steps are described successively below.

(1) The SH transformation and the orthogonal SH transformation:
The usual Householder transformation matrix is an orthogonal matrix and is

composed of a projection vector, see [30]. For symplectic Householder
transformation matrix, it is composed of a cell vector u . The cell vector u is a
n -dimensional vector with cells (2 × 2 sub-matrices) as elements. Therefore u
is really a 2n×2 matrix in the usual sense. From u , a 2n×2n transformation
matrix (n × n cell matrix) is composed as

Note that and the verification of being a

symplectic matrix is given as

In the class of SH transformation matrices, the subclass of orthogonal SH
transformation matrices are of great interest. Because, transformation with
orthogonal matrix is numerically stable. The SH transformation given in (2.3.68)
is not necessarily an orthogonal matrix. The orthogonal SH transformation
matrix is still defined as in (2.3.64), however, the cell vector u can no longer be
arbitrarily selected. The matrix is orthogonal, if it satisfies further the

condition and then is an orthogonal SH matrix. Let the selection

of the cell vector u be, that all its cells (2×2 submatrices) have the form

where are arbitrary real numbers. It needs to verify that under condition

(2.3.69) for cells, the SH transformation matrix composed in (2.3.68) is
simultaneously an orthogonal matrix. To verify, note that for an arbitrary 2×2
matrix P

Note next, that should not all be zero cells (2×2 matrices), otherwise

and the transformation is unnecessary. Hence
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and Therefore

where the identity which is easily verified, is applied. So that
is an orthogonal SH transformation matrix. Note that the multiplication of two
orthogonal SH matrices is also an orthogonal SH matrix.

(2) Transform to half tri-diagonal cell matrix
The main application of the SH transformation matrix is, transforming the

skew-symmetric matrix A to become a tri-diagonal cell matrix; and the main
application of the orthogonal SH transformation matrix is, transforming a
skew-symmetric matrix A to become a half tri-diagonal cell matrix, which has the
form

where * represents real numbers. Because the numerical stability is of great
concern, hence only the solution with half tri-diagonal cell matrix is given here.
Bringing the row-column permutation back to a half tri-diagonal cell matrix, i.e. the
reverse sorting for equation (2.3.55), (the odd rows/columns are sorted separately).
After reverse sorting, the matrix (2.3.70) becomes of the form

where the upper-left block becomes a n×n zero matrix. The lower-left block
n×n matrix has been transformed to be a n×n Hessenberg matrix.

Lower-right block matrix C is n×n skew-symmetric and upper-right block
is mutually negative transpose to the lower-left block. Transformed to the above
form is convenient to solve the symplectic eigen-solution, and which is to be
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explained in step (3). Now, it is to describe how to use the orthogonal SH matrix
to transform the matrix A into the form of (2.3.70).

It can use n –2 steps, for the cell columns of 1st,2nd,…,(n-2)-th
progressively carrying out the orthogonal SH transformations. The transformation
is similar to that of a usual matrix, which is transformed step by step toward the
Hessenberg type matrix with the Householder transformation [42]. Suppose the
cell columns of 1,…,r–1 in matrix A have been transformed to be in half
tri-diagonal cell matrix form, i.e. A had been transformed to be a matrix It

is to find an appropriate cell column u , so as to compose an orthogonal SH matrix
such that the congruent transformation by

which updates the r -th cell row and cell column in to be in the form of a
half tri-diagonal cell matrix, and at the same time the former r –1 cell columns
and rows are kept unchanged. The matrix can be composed of a Givens
rotation followed by an orthogonal SH transformation. Because, both are
orthogonal SH transformations so their product is also an orthogonal SH matrix.

The effect of the Givens rotation is to eliminate the upper-left element in

which is the cell (r +1,r) in the matrix Here the superscript (r) in the cell

is the subscript of and will be used below. Let the cell before this

round of transformation be

The Givens rotation matrix is a unit matrix except that the diagonal cell

(r + 1,r +1) is given as

After the congruent transformation with (Givens transformation), the upper-left

element in the (r + 1,r) cell of the matrix has become zero,

i.e.

the superscript denotes that the cell is after the Givens transformation.

Afterward, the orthogonal SH matrix is to be found, such that the r -th

transformation matrix is combined as

The cell vector u used to compose is selected that the cells in u are

given as
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where is a parameter to be determined. Because the selection of (2.3.73a), the
orthogonal SH transformation matrix generated by u differs from the unit

matrix only below and right to the (r + 1,r +1) cell. Hence the congruent

transformation with is written as

for the r -th cell column in matrix denoted as carrying out the

multiplication, gives

hence

as the product, the (i,r) -th cell with i> r +1 in matrix denoted as
being

In order to make the left column within be zero, the selection must be

and it is easy to see that the r -th cell column can be affected only by the left

multiplication of hence the r -th cell column in matrix is the same as

the matrix Because, the half tri-diagonalization for the r -th cell column in

the cell matrix is to be carried out, so that the left column within the r -th
cell column is of concern, it is shown as follows.

The r -th cell column in matrix is multiplied explicitly as follows.

Because in
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From equation (2.3.75) d > 0, and is ensured. After is determined,
the cell vector u is obtained. Then the orthogonal SH transformation matrix

is obtained as

which is easy to compute. From (2.3.72a), the matrix is obtained. From
(2.3.72), the r -th step of half tri-diagonalization for the cell matrix is generated.

When r runs for 1,2,…,n–2 , the cell matrix A is half tri-diagonalized.

(3) The symplectic eigen-solutions for skew-symmetric half tri-diagonalized cell
matrix

After the cell skew-symmetric matrix A half tri-diagonalized, the symplectic
eigen-solutions have been easier to solve. Equation (2.3.71) showed that the back
permutation of columns and rows brings the symplectic eigen-problem of the
skew-symmetric half tri-diagonal cell matrix (2.3.70) to the form

where q,p are n -dimensional dual vectors. After a series of symplectic
transformation (i.e. canonical transformation), they have been no longer the original
displacement and momentum vectors. The equation (2.3.77) can be disintegrated
as the composition of eigen-problems

where equation (2.3.77a) is obviously a n -dimensional eigen-problem of a real

matrix, and the matrix has been of lower Hessenberg form. The equation

(2.3.77b) is an inhomogeneous equation of vector q . The corresponding

homogeneous equation of (2.3.77b)

is just the dual to the eigen-equation (2.3.77a), which is an eigen-problem of upper
Hessenberg type matrix, and coincides completely to the condition of the algorithm
given in [42]-II-15. Hence the standard procedure HQR2 can be invoked to find

all the eigenvalues and the eigenvectors Expressed with the

matrix form as

where is the matrix compose of eigenvectors and denotes a

diagonal matrix. Thereafter all the eigen-solutions of (2.3.77a) are derived as (all
eigenvalues are single)

Next step is to find all the solutions of (2.3.77b), which is a non-homogeneous

equation for q. Because is an eigenvalue, so and the
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equation (2.3.77b) is a singular algebraic linear simultaneous equation set.
According to the fundamental theorem of linear algebraic equations, the solution
existence condition is that the solutions of its dual simultaneous equation (2.3.77a),
i.e. the eigenvectors or the columns in should all be orthogonal to the

non-homogeneous term. Left multiplying to equation (2.3.77b), based on

(2.3.77a) gives

which is the condition for the existence of solutions. But the matrix C is
skew-symmetric, hence the above equation is valid for arbitrary vector p , an

identity indeed. Hence (2.3.77b) is a consistent equation. The solution of which
is to find the inhomogeneous special solution of the equation

Using the eigenvector expansion method

where the diagonal elements is selected as zero, which is the meaning of

because is the solution of homogeneous equation. Substituting (2.3.82) into

(2.3.81) gives

To determine the coefficients left multiplying the above equation with

because is the k -th column of see (2.3.79), so when

It derives

Because the matrix C is skew-symmetric, so

Up to now the 2n symplectic eigen-solutions of (2.3.77) have all been found.

They are composed of n duplicate eigen-roots , and the
corresponding two eigenvectors are

They are obviously independent to each other when the Jordan form does not appear.
They are mutually symplectic adjoint to each other, i.e.

and the eigenvectors for different eigenvalues are definitely symplectic
orthogonal to each other mutually.

The solution algorithm of symplectic eigen-solution problem (2.3.65) for a
skew-symmetric matrix A can be described as

1) Using the orthogonal SH transformation S , the matrix A is brought to the
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form of half tri-diagonalized cell matrix, denoted as see the

paragraph between (2.3.68)~(2.3.76), with

2) Reverse permutation for rows and columns, the is brought back to the

form of (2.3.77), which gives C;
3) Invoking the procedure HQR2 solves all eigen-solutions of (2.3.78), to obtain

the matrices and

4) According to (2.3.79), compute the matrix

5) According to (2.3.83) compute and solve the eigenvectors (2.3.84),

6) Reordering the eigen-vectors:

7) Equation gives all the symplectic eigen-solutions of (2.3.65) of the
given matrix A.

§2.3.3.4, Numerical example

Example 2.2, the numerical example here is to demonstrate two facets,
1) The gyroscopic system is transformed to the standard form of symplectic

eigen-problem for a skew-symmetric matrix; and
2) Solve the symplectic eigen-problem for a skew-symmetric matrix A .

The given matrices are

Solution: From M,K the ortho-normalized matrix Q is found, and the matrix
is given as

Then according to (2.3.62) the skew-symmetric matrix A is computed as

Thus the first facet (1) is performed, i.e. transform to standard form of symplectic
eigen-problem for a skew-symmetric matrix.

Next stage is to find the solution of a symplectic eigen-problem for a
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skew-symmetric matrix A . Within which, the first step is using the Givens
rotation and orthogonal SH transformation to carry out the half tri-diagonal cell
matrix form for A. After half tri-diagonalization transformation

where the accumulated symplectic transformation matrix, certainly orthogonal
matrix S is

It can be verified that and which is checked by the

computer. Thereafter, the matrix is brought to the block matrix form or

equation (2.3.77), giving

where matrix has been in upper Hessenberg form. Invoking the procedure

HQR2 solves the eigen-solutions

and the eigenvectors respectively. There are some computations further, which are
as usual and are omitted. ##

The modal analysis for natural vibration is a fundamental stage for various
applications. Such as random vibration problems, a pre-assigned number of
modals are selected for structural response analysis. For large systems, the
symplectic subspace iteration method can be used to find these modals. The
symplectic subspace iteration method is similar to that given for symmetric matrices,
and the algorithm given above can be used in the symplectic subspace
eigen-solution.

The canonical transformation requires eigen-solutions too.
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§2.4, Non-linear vibration of multi-degrees of freedom system

The analysis for linear vibration of multi-degrees of freedom systems is
described in the previous sections, especially the eigen-solutions. However, many
applications require taking the non-linear effect of system into consideration.
Therefore non-linear vibration analysis of multi-degrees of freedom system is
necessary.

Even non-linear analysis problem of single degree of freedom is difficult. The
vibration of Duffing equation with sinusoidal excitation is discussed in previous
section, for which only the periodical solution is considered. However, the forced
vibration with arbitrary initial condition will often fall into chaotic motion, for which
time step integration is necessary. Using precise integration method for time step
integration is a good choice. But numerical integration for initial value problem
could go somewhere uncertainly. Hence analytical method is still very interesting.

The non-linear vibration analysis for multi-degrees of freedom system is
certainly much difficult than single degree of freedom system. However, the
effective analysis method in single degree of freedom can be transplanted into
multi-degrees of freedom. Such as the canonical transformation approach in single
degree of freedom can also be applied in multi-degrees of freedom system. In
present section, the canonical transformation for multi-degrees of freedom system
vibration analysis is considered. Canonical transformation needs to find the
complete analytical solutions for the fundamental system, which can be selected as a
linear system. Thus the eigen-solutions given in previous sections can be used as
the analytical solutions for the canonical transformation. For slightly non-linear
system, making use of a linear system as the fundamental one is reasonable. Let
the vibration equation of a multi-degrees of freedom non-linear system be given as

where M,G,K are mass, gyroscopic and stiffness matrices, respectively, q is the

n -dimensional generalized displacement vector to be solved, C is a symmetric
positive definite n×n dimensional damping matrix, is a slightly

non-linear n×n matrix and is a function of the displacement q and velocity

The external force term is usually a given simple harmonic excitation.

The fundamental approximate linear system for the non-linear vibration system
is selected as

for which all the eigen-solutions are regarded as solved using the algorithm given in
previous sections. These eigen-solutions are used to carry out the canonical
transformation. The equation (2.4.2) is certainly transformed into Hamilton system
that the derivations in section 1.11.3 and the derivation and computation described in
section 2.3 are regarded performed.

For a linear system, the corresponding Hamilton-Jacobi equation can separate
all its variables. Theoretically, all the eigen-solutions, which give the complete
solution, must be solved for expansion solution. However, in application, only the
low frequency components are necessary, a reasonable approximation. In what
follows, the canonical transformation of the fundamental system is regarded
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performed, that the variables are separated for the linear system, and corresponding
to the dual vectors Q,P used in equation (1.11.38), the symplectic matrix S has
been found.

The notations Q,P will be used for further canonical transformation, so that Q,P
is replaced with below. Now after transformation (1.11.38), the Hamilton

function has diagonalized and given in matrix form as

that the above canonical transformation separates the variables. However,
Hamilton matrix is asymmetric so that its eigen-solutions may appear complex
conjugate pairs, i.e. the matrix S can be complex valued and the corresponding
vectors are complex vectors, which are somewhat inconvenient to further

investigations. The real symplectic matrix is then used instead of S.

For a stable linear gyroscopic system, all its eigenvalues are
purely imaginary. Let the corresponding eigen-solutions be denoted as

Because of complex conjugate eigenvalues appearing in pairs, so that the respective
eigenvectors are also complex valued. The symplectic adjoint eigenvalue of

is which means that the complex conjugate eigenvalues

equals its symplectic adjoint, where a bar above represents the complex conjugate.
The symplectic eigen-solution can be denoted as

where is a complex constant multiplier with Because the

variables are separated, so all solutions of various subscripts i are linearly
independent. According to the adjoint symplectic ortho-normality relation, it holds

Expressed with dual vectors

where the parenthesis is the difference between two complex

conjugate numbers. Because so must be a purely imaginary

number To distinguish the two cases of and/or is very

important.
It is seen from equation (2.4.3b) that and have two real vector basis.

Since these two basis separate with other basis for the fundamental system, then the

two real vectors of and which are the real and imaginary parts of the

eigenvector respectively, are used instead of the complex basis vectors

and The normalization of these two vectors corresponds to the
transformation matrices is
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However, it should be pointed out that both and are

symplectic matrices but with determinant 1 and –1, respectively. They belong to
different subgroups, but the –1 determinant is quite inconvenient. For the

case, the symplectic adjoint eigenvectors and can be composed

of the two real vectors of and instead as

The use of real vector basis, instead of the pure eigenvector basis, composes

where is also a symplectic matrix, that can be verified. The

transformation between S and is a diagonal block matrix and the sub-blocks
have been given in equations (2.4.4a,b). Furthermore, from the congruent
transformation given as

the real form congruent transformation is derived as

where the sign selection rule of is, when it equals whereas

gives Instead of equation (1.11.38), the real canonical

transformation is

and the Hamilton function after transformation becomes

for which the canonical dual equations are

The sign ± selection is then: when it takes     and when               it

takes
After the variables separated, the Hamilton-Jacobi characteristic equation uses

as the Hamilton operator, and the characteristic equation, after the

variables separated, gives as

where is the eigenvalue and is always positive. The two cases of
± should be considered separately. The discussion below assumes first the case
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of all, which implies the case of positive definite Hamilton function. The

case of for some i will be given later in section 2.5.
Based on the assumption above, it derives

correspondingly, the action function is

which has been given in section 1.11.1 for one-dimensional vibrator. After

separation of variables, is the conservative mechanical energy of this i -th

vibrator. Treating the action function as a first class generating

function derives a further canonical transformation, where  is one of the new
canonical coordinates

Using the first transformation equation (1.7.10a) gives

This equation is valid for arbitrary time t. The second equation (1.7.10b) gives

As the Hamilton function because the generating function is

selected as S, the equation (1.7.10c) coincides with the Hamilton-Jacobi equation,
so The generalized momentum is again a constant, denoted as

Solving the above equation for arbitrary time t with respect to gives

Substituting into (2.4.13) derives

The two equations (2.4.15a,b) are the transformation required, where the new dual
variables are and all constants, because the approximate
fundamental linear system is selected as (2.4.2).

But equations (2.4.15a,b) are only a coordinate transformation, using this
canonical transformation gives constant solutions for the conservative

system (2.4.2). Under this transformation, the vibration of the original non-linear
system (2.4.1) is needed, for which the dual variables are no longer
constants. Hence the canonical transformation is rewritten as

The dual equations should be derived for the original system. The dual vector
is introduced the same as the fundamental system (2.4.2)

and the original equation (2.4.1) is transformed to the dual equations

i = 1,…,n
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For dual vectors q and p, the real form of canonical transformation (2.4.7)

is expressed as

where is a time invariant matrix and is computed by the eigen-solutions of the

fundamental system, known matrix. Substituting into (2.4.16a,b) gives

Solving the simultaneous algebraic equations of and because satisfies

(2.4.6) and is symplectic it gives

Up to here, the fundamental part has been separated the variables via the canonical
transformation and becomes a number of single degree of freedom vibrators, and
such separation of variables is usually called as modal analysis for M, K system.
It should be pointed out, that both the damping matrix C and the matrix of
non-linear term are small. In applications, how to identify the value of the

damping matrix C is somewhat vague, their determination perhaps can also be
given in the modal analysis coordinate system as usually used in the linear
engineering vibration analysis, which can also be used for non-linear case.

Based on the above canonical transformation with matrix which

corresponds to the modal analysis, the next canonical transformation (2.4.15’a,b) can
be applied further. For each vibrator, the mechanical energy and the phase

angle can be selected as the unknown dual variables, for which

which is again a canonical transformation. For positive definite Hamilton function,
the ± sign takes always positive value. Substituting into the dual equations

(2.4.18a,b) and solving with respect to and derives
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where the variables and at right hand side should be substituted with

equations (2.4.15’a,b) and then the differential equations for Q and P are

established. The damping matrix C and the matrix for non-linear term

must be given at this stage. According to the equation (2.4.1) they are defined in
the original coordinate system. However in applications, the determination of C
and should be investigated further, perhaps they should be determined in the

modal coordinate system and

The integration of equations (2.4.20a,b) should be further investigated for
non-linear system. A two-degrees of freedom system is considered in next section.

§2.4.1, Non-linear internal parametric resonance

To understand the essence of cable and beam coupled vibration for cable stayed
bridges, a simple two-degrees of freedom non-linear vibration system is investigated
as given in figure 2.10.

According to Newton’s law, the differential equations for geometrically
non-linear system vibration with two-degrees of freedom are derived as

where a large mass vibrates vertically and a

small mass vibrates horizontally. If the

non-linear terms are neglected in the equations, then
the equations are just two uncoupled single degree
of freedom vibration of and each

with natural frequencies and respectively.

However the second order and third order terms in
equation (2.4.21) claim the non-linear coupling
between the two natural vibration modes.
Although the system parameters do not explicitly
involve time t variant terms, but the vertical
vibration of large mass will cause the tension

of cable be time variant, which corresponds to the
small mass being subject to time variant

restoration stiffness. Along the horizontal
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direction, the restoration force of the small mass is

where the parenthesis factor is the stiffness of restoring force, the first term in
parenthesis is time invariant fundamental linear part of stiffness, the second term is
the non-linear coupling term between the two-degrees of freedom, and the third term
is non-linear for displacement itself. Because of the coupling term,

vibrates with frequency       which supplies a time variant term for the stiffness of

Hence is subjected to parametric resonance excitation correspondingly,

that the time variant restoring stiffness of is due to the vertical vibration of the

large mass According to the parametric resonance analysis given in section

2.1.2, the vibration of the large mass  may possibly induce parametric resonance

for which is the two-degrees of freedom system internal parametric resonance.

It is anticipated that when the natural vibration frequency        of   is close to

half the natural vibration frequency  of i.e. the vertical

vibration of will excite the mass vibrating violently along the horizontal
direction.

Rewriting the equation set (2.4.21) in the form

where This is

not a dimensionless form. The equations (2.4.22a,b) are solved below using the
canonical transformation method.

A linear fundamental system selected for the canonical transformation is

for which the variables and are separate. Let

the Hamilton function is derived as

and the corresponding Hamilton-Jacobi characteristic equation is given as

Integration of W gives

and
It is important that
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from which solves as function of t and two integration constants

the well-known equation for simple harmonic vibrator. The momentum is given as

Substituting with (2.4.27a) gives

original non-linear system (2.4.22a,b) these parameters are no longer

constants but can be treated as dual variables, and are rewritten as then the
equations (2.4.27a,b) become the canonical transformation

The unknowns are transformed to be and and the original dynamic

equations (2.4.22a,b) should also be transformed as differential equations for

and respectively.
To transform the dynamic equations (2.4.22a,b) into dual variables’ form, let

the equations become

Which can be substituted with the equations (2.4.27’a,b). Differentiating derives

Substituting into (2.4,28a,b) then solving with respect to and gives

where should be substituted with (2.4.27’a,b). The remaining problem is
the integration for these equations.

Careful analysis is necessary before integration. Assuming c = 0 , then the
system is conservative, for which the Hamilton function for (2.4.28a~d) is

For the fundamental system, i = 1,2 are constants. However, for the
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where E is the conserved energy. Substituted with the canonical transformation
of (2.4.27’a,b) derives

Substituting c = 0 into (2.4.29) and for simplicity let this term is not so
important for parametric resonance, then the differential equations become

which coincide with the dual canonical equations
derived from K(Q,P).

The parameter represents the coupling between two vibrators. When
amplitudes are small, the vibrators’ energies are small too, and the

conserved energy E in equation (2.4.31) is mainly composed of
Because the parameter is small, so that the exchange rate of energy between the
vibrators is slow, and the system vibration composes mainly from the vibrations of
each vibrator individually. However because of the parameter there is energy
exchange between and of the two vibrators. The energy exchange is

small within one period     or of vibration, hence and

can be regarded approximately as constants in one period of In equation
(2.4.32a) there is the product of two sinusoidal functions

The latter term is high frequency vibration and will be cancelled in the time
integration, but when the former term is a very low frequency vibration

and is almost a constant in a short time duration, such as within a period of or

Similarly

for the time integration of and the same analysis applies too. Anyway, the

energy and phase changes are mainly appearing nearby

If the time integration step size is taken as then in each step of

integration, and at right hand sides of equations (2.4.32a~d) can be
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treated as constants, and the increments (decrements) and of
each cycle are obtained. For each cycle of vibration the energy conservation
(2.4.31) can be checked.

This problem expresses the non-linear internal parametric resonance for
multi-degrees of freedom vibration, which may also appear in more degrees of
freedom problems, such as cable stayed bridges, etc. The precise integration
method was applied in numerical simulation for this problem [57], although the
approximate model is not so precise, however the basic picture is clear for internal
parametric resonance and energy wandering between the two parts of the system.
The computation can be carried out easily for the present case.

Numerical example can be found from [57].
The analysis of conservative c = 0 case of parametric vibration is discussed

by the canonical transformation method. For damping system, the derivation is
almost the same and more terms should be considered. The purpose of this section
is to show the application of dual system method and canonical transformation for
non-linear system vibrations. The canonical transformation can be used to develop
a featured analysis method in such kind of problems.

§2.4.2, Non-linear internal sub-harmonic resonance

Stability and resonance are very important issues for vibration problems. The
internal parametric resonance is analyzed in the last section however the internal
non-linear sub-harmonic resonance should also be discussed. Suppose a large mass

vibrates, such as a Duffing vibrator. Further, another small mass vibrator
attaches to the Duffing vibrator and the system becomes of two degrees of freedom.

For the Duffing vibrator, in addition to the basic harmonic with frequency

there is also sub-harmonic component and others. If the natural frequency

of small mass nearby the sub-harmonic frequency      of large mass, internal
resonance can also appear. Let the dynamic equations for two degrees of freedom
system be

where represents the coupling term. The non-linear system can still use the
canonical transformation method to solve. The nearly periodic vibration is
considered by selecting the fundamental linear system as

which is composed of two separately vibrating systems. Let

and denote and The Hamilton function is derived as
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where is the conserved energy of the fundamental system. The
corresponding Hamilton-Jacobi characteristic functions are, respectively

from which solves

and the important things are

from which are solved as the functions of time t with two integration

constants as

Only for the fundamental system, are constants, however when the canonical

transformation is applied to solve the original equations (2.4.33), the transformed
coordinates will no longer be constants but functions of time, hence they are

replaced with and it derives

where are dual variables, the physical meaning is that they are the energies

and phase angles of the two vibrators of the fundamental system, respectively.
Rewrite the original equation (2.4.33) as

Differentiating the equations (2.4.39a,b) gives

substituting into (2.4.40a~d) gives the simultaneous equations for
Solving gives
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which is the differential equations for where at the right hand

side should be substituted with (2.4.39a), certainly.
According to the description before, the frequency of external force is nearby

the natural linear vibration frequency, i.e. where the external force period

is If the integration is carried out directly with the given initial

condition, then the development will be easily fallen into chaotic motion. The
periodic solution is a special solution. It is similar to the 1-D Duffing equation that
the periodic conditions become

The differential equations (2.4.41a~d) are complicated, that the purely analytical
integration is hopeless, and the approximate analysis or just numerical integration
must be applied. The first approximation is to treat i = 1,2 as constants in

a period of vibration, then after integration the conditions (2.4.42a~d) become 4
equations for the 4 unknown constants. Substituting the right hand sides of
(2.4.41a~d) into (2.4.42a~d) derives

However after integration, it is found that when and are

still uncoupled to each other. It expresses that the first approximation can only get
as constants, and are the first approximate solution of Duffing

vibrator. The sub-harmonic resonance can appear only in the higher approximation.
However, this is because the fundamental system (2.4.34) selected only involve
linear terms, if the fundamental system selects
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which is still composed of two independent 1-D sub-systems, but has been taken the
non-linear effect into consideration and the higher harmonic factor appears, then
sub-harmonic resonance can appear in the first approximation.

The discussion given here is quite rough, since the purpose is only to show the
possible application of canonical transformation to non-linear vibration problems, no
details will be given further.

§2.5, Discussion on the stability of gyroscopic system

The discussion for the equations of gyroscopic system in section 2.4 is
continued here. As is found in section 2.3, the analysis of gyroscopic system must
distinguish the cases of positive definite Hamilton function with the case of
indefinite Hamilton function in the eigen-solution numerical computation. The
stability analysis for gyroscopic system must distinguish the two cases too.
Because time invariant system is considered, the Hamilton-Jacobi characteristic
equation is given as

The free vibration equation of a gyroscopic system is and

the derivation follows as

and the system equation expressed by is

The corresponding eigen-equation is

the eigenvalues can be found from The vibration stability

problem had been discussed in the previous sections.
The eigenvector of the corresponding Hamilton matrix is Two real

vectors and which are the real and imaginary parts of the complex

eigenvectors can be used instead of and When the Hamilton

function is positive definite, only the case of appears in equation (2.4.3b),
and the symplectic matrix

is composed, which is described in section 2.4. The real canonical transformation

§2.5.1, Gyroscopic system with positive definite Hamilton function
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(2.4.5) and the following derivation are preferable. The vibration computation of
the original system (2.4.1) is considered under this transformation, for which

and are no longer constant vectors. Note further that indefinite Hamilton

function is considered so that the factor must be taken into consideration now.

The first stage of canonical transformation is

and the differential equation (2.4.18) become

Following the derivation below (2.4.1), the transformation (2.4.15) is given as

where takes the same sign as and is a n -dimensional

vector, whose components are all unity.
To derive the dual equations for the original system, the vector

is introduced first, and the original equation is derived as the equation (2.4.16)

For the problem of free vibration with damping C only, and

the differential equations are derived as

Left multiplying to equation (2.4.4a) and noting that is a symplectic

matrix gives

Writing in block matrix form

where the takes positive value for positive definite Hamilton function.
Substituting into (2.5.1) and using equation (2.4.15’) derives
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Therefore

Left multiplying the equation (2.5.2a) with the right side of equation becomes

a positive definite matrix C multiplied from left and from right by the vectors of
mutually transpose to each other, which is negative definite because of the negative

sign. Therefore is negative, which can be considered as the Lyapunov
function (see chapter 6). The system is asymptotically stable. This conclusion is
drawn based on that all or the Hamilton function being positive definite.

Under such assumption the positive definite damping matrix C must derive the
system being asymptotically stable, a known conclusion. However, the equations
(2.5.2a,b) can be used for numerical computation and if there is non-linear factor to
be added on, the formulation is not difficult either.

§2.5.2, Case of indefinite Hamilton function

The description is for n -dimensional problem, and a two-degrees of freedom
system is used to illustrate. Suppose a 2-D unstable system

after applying the gyroscopic force it derives

or

When the Hamilton function is indefinite. The Hamilton matrix
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and the eigen-problem are

the equation for eigenvalues is or in expanded form

then the roots of will be negative, so that are purely imaginary numbers,

the vibration is stable (but not asymptotically stable). Because the
first condition is ensured, and if the gyroscopic term is large enough then the
system is stable. According to the derivation below (2.4.3), the values of and

require to check whether the case appears. Let

and since –JH is a real symmetric matrix so must be real. Because

Since the Hamilton function is assumed indefinite and the 2n eigenvectors

from it derives On the contrary, if all the modes of vibration are

for i = 1,…,n , then the Hamilton function is positive definite, which
contradicts to the indefinite Hamilton function assumption. The number of

can be determined from the factorization of matrix (–JH) and
checking the number of negative elements in the diagonal matrix D. Therefore
after separation of variables, the Hamilton-Jacobi characteristic equation becomes
separated too as

where the selection is always used, then However, the case of
indefinite Hamilton function is considered below, and the fundamental gyroscopic
system (2.4.2) is a conserved one, because (2.4.2) is a damping free system. The
conserved term (energy) for the fundamental system is

Because the fundamental system holds an indefinite Hamilton function, when it is
diagonalized via a real matrix it may not have all positive diagonal value. The
sign ± is thus appearing in the above equation, the selection for signs ± is that

are definitely linearly independent, so there is at least one Equation
(2.5.3a) implies
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Under this convention, always holds. This sign has been given explicitly

in (2.5.5) for the and without loss of generality, the has been given the

positive definite. Because the negative sign has been explicitly written, all
take positive value. Since the fundamental system can completely separate
variables, that all           i = 1,…, n are conservative, the vibration is stable but not
asymptotically stable. However, if some factor, such as damping, destroys the
complete separation of variables, then even E is decreasing because of positive
damping, but the system cannot ensure all the decreasing. The increasing of

anyone means unstable of the system. The case of indefinite Hamilton

function requires solving equation (2.5.4) too. Without loss of generality,
has been assumed for the fundamental system

According to the same procedure, the action function is

from (2.5.8~10) it gives

The above equations apply to the separable system. However it can be used as a
canonical transformation to the original system, which is neither separable nor
conservative. The constants of the fundamental separable system should be

updated as the dual variables of the original system, and the transformation
is rewritten as

The derivation is completely similar to that given above. The original system is
written in the dual form as

The similar transformation derives to (2.4.20’a,b), and for damping only system
gives

negative sign explicitly. Then the values of all are positive.
Note that, for the original damping system, this conserved function E of

fundamental system cannot be used as a Lyapunov function since it is no longer

when it takes positive sign, whereas when it takes negative sign.
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Left multiplying (2.4.6) with and note that is a symplectic matrix

where the sign convention for is again that, when it takes
whereas when it takes Writing the above equation in block matrix
form derives

Substituting into (2.5.13), afterwards using equations (2.5.11) and (2.4.15’a,b), it
derives

Substituting (2.5.14) into (2.5.13a,b) and using the above equations gives

The sign selection convention has been repeated several times above which is
determined from the canonical transformation but unrelated to the damping factor.
The above equation is the extension of equation (2.5.2a,b) for the indefinite
Hamilton function case.

For positive definite Hamilton function, all sign ± selection is positive so the
stability is ensured. But for indefinite Hamilton function, such as then at

right hand side of (2.5.15a) the ± selection for appears negative. In this

case may be positive in the vicinity of the original point which causes
instability at the original point. The indefinite Hamilton function determines that
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there must be a pair of eigen-solutions with and the negative sign from it
decides the instability from the damping factor, which confirms the Chetaev’s
theorem.

Example 2.3, a simple example is given as

The canonical transformation is required.
Solution: From the given matrices it derives

The Hamilton matrix and the eigen-solutions are

According to equation (2.4.3b),

and the symplectic normalizing condition gives

which ought be –1. This requires and the multiplier is applied

to the eigenvectors and respectively. Again

according to symplectic normalization it should be –1, hence and also the

multiplier should apply on the eigenvectors and respectively.

The real symplectic matrix is composed next, based on (2.4.3c,d) and (2.4.4a)

which is easily verified a symplectic matrix. Block disintegrated as
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where equation (2.5.14) can be verified by the reader. The above is the separation
of variables step for the fundamental system. Further the damping factor is added,
the equations (2.5.15a,b) can be derived, the readers are asked to do the calculation
themselves. ##

Discussion: The gyroscopic system for rotor dynamics has all eigenvalues
purely imaginary, but the corresponding Hamilton function is usually indefinite.
The symplectic subspace iteration method can be used to find the eigen-solution
composed symplectic subspace, which covers the negative part of the Hamilton
function. For rotor dynamics, there are several rotor disks installed on the rotating
axis, usually there are only limited number of deformations with negative Hamilton
function value. For high speed rotor with angular velocity the eigenvalues
solved from the symplectic eigen-problem (2.3.65), for which the Hamilton function

is negative, are nearby Then the origin shifting technique can be used
effectively for the symplectic subspace iterative eigen-solution [22,141]. After
solved these eigen-solutions the symplectic subspace, which covers the negative
Hamilton function part, the Hamilton function of the complementary symplectic
subspace becomes positive definite, then the effective algorithms can be used to find
the remaining eigen-solutions. The eigen-equation is (2.3.38) with both matrices
positive definite, for which the algorithm given in [51] is quite efficient.



Chapter 3, Probability and stochastic process

The purpose of this chapter is to provide a fundamental knowledge of
probability and stochastic process. The interested reader should read such as the
books [58~59] for more.

§3.1, Preliminary of probability theory

In nature, quite a number of events appear randomly. An event A is a result
of one experiment. The mathematics for such event description is the theory of
probability. An experiment is said to be random, if the result is not predictable in
the ordinary sense before the experiment is carried out. Let Pr(A) denote the
probability of event A to appear. Perform the experiment a large number (say

Pr(A) can be regarded as If there are totally n different events of

experiments then

These events must be mutually exclusive. There are a number of

fundamental operations in theory of probability, as listed below.
Union event: At least one of events A or B occurs denoted as A + B.
Intersection event: Both of A and B occur, denoted as A · B or AB.
Difference event: A occurs but B does not, denoted as A – B.
Inclusion: Occurrence of A implies occurrence of B , denoted as

Let denotes the complement of event A , that they are mutually exclusive,
then The probability of intersection event A · B is described

as P(AB). If the events A,B,C are mutually independent, their intersection

event probability is simply the product of the probability of individual events

The probability of union event A + B + C is P(A + B + C) , if the events A,B,C

are mutually exclusive then

However, if the events A and B are not mutually exclusive then

If events A and B are mutually exclusive, then P(AB) = 0 , (3.1.4) goes back to

(3.1.3).
A very important idea is the conditional probability for interrelated events.

The conditional probability of event A to occur under the condition of event B
occurs is defined as

M ) of times, and count the number of times that event A occurs. That
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provided that P(B)>0 . If P(B) = 0 then the conditional probability is

undefined. For the special case of events A and B are independent, then
according to (3.1.3) the conditional probability simply reduce to the individual
probability of event P(A). Because of the events A and B can be permuted

each other, so that

If for the occurrence of event B , one of the mutually exclusive events
must occur, then further consider their conditional probability

according to (3.1.6)

On the other hand then

it is known as the Bayes theorem.

§3.1.1, Probability distribution function and probability density function

The outcome of events can be discrete (such as through dice) or continuous.
The sample spaces of random variables X in the theory of random vibration or
state space approach are continuous. Let the probability distribution function of a
continuous random variable X be denoted as

Obviously is an event. For continuous real random variable X , the
bound variable x takes also real continuous value. The probability of random
variable X being located within the interval can be denoted as

where f(x) is termed as the probabilistic density function (p.d.f.) of random
variable X . The p.d.f. is never negative and

When the sample space of X is the whole real axis then according
to (3.1.2)

Duality variables and state space approach is emphasized in this book. The
basic unknowns are composed of the state vector and are multi-dimensional, (n -D).
Therefore the joint probability distribution of multi-variables must be considered.
The joint probability distribution function for the case of two random variables
X,Y is described as

Correspondingly, the joint probability density function is

If only the random variable Y is considered, its density function p(y) can be
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obtained as

Under condition of Y = y, the probability density function of random variable
X is

When X,Y are mutually independent random variables, the density function has
the form

For multi-dimensional case, the extension of these equations is straightforward.

§3.1.2, Mathematical expectation, variance and covariance

Probability distribution function or density function is the comprehensive
description for the random variable. However in applications, the determining of
these functions is difficult, therefore to determine some numerical characteristics of
the random variable is the common practice. The most frequently used
characteristics are mathematical expectation, variance and covariance etc.

For continuous random variable X, the mathematical expectation is defined
as

That is the integration of possible occurrence x of the random variable X
multiplying the probability density function. The mathematical expectation is also
termed as mean, average, mean-value or else first order moment etc. In general,
the mathematical expectation (or average) E[(g(X)] of a function of random

variable g(X) is defined as

Next, an important numerical characteristic of a random variable X is its
variance. The mean square value of X is defined as the mathematical

expectation of

or precisely the second order moment with respect to the original point. The
variance of a random variable X is defined as the mean square value with respect
to the average value, which reflect the bias with respect to the mathematical
expectation, so that it is also termed as central second moment, usually expressed as

The square-root of variance, is a measure of spread in the same unit as X and
is termed as standard deviation of the random variable X. Only for zero-mean
random variable, the second moment equals its variance.

The idea of covariance is a measure for different random variables. The
definition of covariance of two random variables X,Y is
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i.e. the expectation of product of deviation of the random variables. The
correlation coefficient between two random variables is defined as

The correlation coefficient between random variables X,Y is a proper measure of
degree of linear inter-correlation between them. If X,Y are mutually
independent then but the reverse is not true. If Y is a linear function of

X , then

It is useful to list the following behaviors of numerical characteristics as:
1) The expectation of linear combination of random variables equals the same

linear combination of expectations of the random variables. Regardless of the

variance of the sum equals the summation of variances of all the

results the variance multiplying the square of constant, i.e.

3) As a function of x , takes its minimum when x = E[X].
Etc.

§3.1.3, Expectation of a random vector and its covariance matrix

then X is a n -dimensional random vector. The mathematical expectation vector,
and its variance matrix of a random vector X can be defined as the mean-value
and (co-)variance of these component random variables. The expectation vector
(mean-value) is defined as

Interpreting the probability density function f (x) as a mass density in the

n -dimensional space with all the mass equals 1, then E(X) becomes the position

of center of mass. Therefore, it can say that E(X) is the first order moment of

random variables being linearly independent or not, it holds

2) If           are independent, then and the

random variables i.e. A constant, c , multiplication cX

A n -dimensional vector X , if all its components are random variables
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mass distribution.
The variance matrix of a random vector X is defined as

There is a column vector multiplying a row vector under the integration sign, which
gives a n × n matrix. The can be interpreted as a second moment of
distributed mass with respect to the center of mass, often called as central second
moment. The i -th diagonal element is the variance of random component

and is the covariance of the components and It is easily

proved, that the variance matrix and the second moment have the relation

The covariance matrix between a n -dimensional vector X and a
m -dimensional vector Y is defined as

where f(x,y) is the joint p.d.f. of X and Y. Obviously, is a n × m

matrix, and The expectation of a function g(X) of random vector X

is defined as

All of these are as usual.

§3.1.4, Conditional expectation and covariance of random vector

Giving the joint p.d.f. f(x,y) of random vectors X and Y, the conditional

mean-value (expectation) of X under the condition Y = y is defined as

and the corresponding conditional covariance matrix is defined as

The conditional expectation has the behavior
where A is a given matrix

where means taking the average with respect to to the conditional

expectation of
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§3.1.5, Characteristic function of random variable

The description above is based on the p.d.f. f(x) . The characteristic
function of random variable X is of same importance, and is defined as

obviously, It is easily seen that the characteristic function is just the

Fourier transform of the p.d.f. Conversely, if characteristic function is

given, then the p.d.f can be obtained by inverse Fourier transformation.

Integration by parts shows, that the k -th order moment of random variable can be
obtained from the k -th order differential of the characteristic function

Expanding the characteristic function in power series around s = 0 gives

For a n -dimensional random vector its joint
characteristic function can be defined as

It is a multi-dimensional Fourier transform equation, and correspondingly the p.d.f.
f(x) can also be obtained via the inverse Fourier transform.

i.e. the product of characteristic functions of all the components.

§3.1.6, Normal distribution

This book mainly considers the subjects of vibration problems, linear system
control and filter etc. The normal (Gauss) distribution is the main concern.
Therefore the later discussion is only limited to the case of Gauss normal
distribution. Let us begin with the one-dimensional normal distribution, for which
the p.d.f. is

The shape of function can be seen figure 3.1. The two parameters m and i.e.
the expectation (average) value and standard deviation determine the function. The
area under the curve within the interval equals 0.68, while the area

within is 0.95. This explains that the probability of the sample

value of random variable X departing to its average value m is about

If all the components of X are mutually independent, the
characteristic function can be expressed as
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0.05.
It can be shown, that the

p.d.f. of the summation of
several normally distributed
random variables is still
normal. More important,
there is the central limit
theorem in theory of
probability. Let

be a series of

independent random
variables with the same

probability density function, then the distribution function of their average value
tends to normal distribution as More

precisely, if n experiment of X are taken from the same p.d.f. with mean value

m and variance the limiting distribution of as is a

normal distribution with zero-mean and variance one. The central limit theorem
has also the version for the case of different p.d.f. functions, [58]. Practical
experience verifies also that the average of a large number of independent random
variables behaves as its distribution being nearly normal.

Assuming that a n-dimensional random vector has

the joint Gauss p.d.f. as

where is the expectation vector of X , similarly

Conversely, based on the inverse Fourier transform

The expression (3.1.40) of the joint characteristic function has no matrix inversion,
so that it is preferable using the joint characteristic function to give the Gauss
distribution, and therefore it can be used even for the covariance matrix being

semi-positive-definite (non-negative definite)..
The joint Gauss distribution for n -D and m -D random vectors X and Y,

respectively, is considered now. Using joint characteristic function gives

where is the covariance matrix of X

and the corresponding characteristic function be
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where s,r are n,m -D deterministic vectors respectively, whereas P is a

(n + m) × (n + m) symmetric matrix, which can be partitioned as

and

When P is positive-definite, the partitioned matrix inversion gives

and the joint Gauss probability density function is given as

If only the p.d.f. of Y is of concern, using the characteristic function and
performing the integration with respect to x gives

The conditional Gauss p.d.f is considered now. Using the Bayes
theorem of conditional density, after some derivations it gives

where m,Q are the conditional average and conditional covariance matrix,
respectively, and still keeps Gauss distribution. The average m depends on the
condition Y = y , but the matrix Q is independent on the condition Y = y

The corresponding characteristic function is

It is seen from the above, that one feature of the Gauss distribution is that
giving only the expectation vector and the covariance matrix, the p.d.f of the random
vector has been determined, which brings great convenience for analysis.

§3.1.7, Linear transformation and combination of Gauss random vectors

The action of a Gauss random vector to a linear system corresponds to the
system input, and the response of the system is considered the system output. The
mapping from input to output through a linear system can be considered a linear
transformation. The idea of linear transformation involves also linear combination.
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It is important to point out that: a Gauss random vector input after an arbitrary
linear transformation (linear combination) still keeps the output random vector
being Gaussian distributed.

The linear transformation is considered first. Let the n -D (n -dimensional)
random Gauss vector X has the expectation value E[X] and covariance matrix

Let A be a given deterministic m × n matrix that the linear transformation

from random vector X to the m -D random vector is Y = AX. It is to prove
that Y is a Gauss distribution random vector, and the expectation of Y is

E(Y) = AE(X) , and its covariance matrix is

Proof: The characteristic function of Y can be derived as

therefore The characteristic function form determines

that the random vector Y is Gaussian. ##
Next examine the effect of linear combination. Let X,Y be the n,m-D

Gauss random vectors, respectively, their combined vector is a
(n + m) -D Gauss random vector. Let the linear combination of X,Y be

expressed as a p -dimensional random vector Z = AX + BY , where A, B are the
deterministic p × n and p × m dimensional given matrices, respectively. It is to

prove that Z is also a Gauss random vector. The proof can be as follows.
Evidently, Z is linearly transformed from with transformation matrix being

[A, B] . Hence, the above proof determines that Z is a Gauss random vector, with
its mean-value and covariance matrix be

Because, the p.d.f. of a Gauss distribution is determined by its mean-value and
covariance matrix, so that if the mutual covariance matrix between two Gauss
random vectors X,Y is then the two Gauss random vectors are mutually

independent. This statement is valid only for Gauss distribution. For other p.d.f.,
this statement may be invalid.

§3.1.8, Least square method

Quite often, the probability theory is used to estimate a random object, for
which the least square method is the most popular one. Estimating a dynamic
object is usually termed as filtering, which is much complicated than static object.
Chapter-6 will give detail description for filtering problem. The least square
estimation for a static object is given below.

The method of least square was by Gauss. The simplest problem is to
estimate the value of one unknown object x. A static object implies that there has
no interference from dynamic procedural noise. Expressed with a differential
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equation

Suppose the object be measured q times and the results are i = 1,2,...,q.

Unavoidably there is interference of measurement noise     i = 1,2,…,q . Hence,

the measurement equations are
i = 1,2,…,q

The real value x of the object cannot be determined, so can only be the
optimal estimation.

The criterion for determining is to minimize the quadratic index

or

Carrying out the minimization with respect to i.e. derives

Obviously, the index J is the sum of square of the errors (noises), so that it is
termed as least square method. Such index corresponds to compute a length in a
q -dimensional space, so that it belongs to Euclidean metric. The above index is
proposed on the assumption that all the measurements are equally important.

If among the q times of measurement, some measurements use ordinary

instrument, however, the others use highly precise instruments. Therefore, the
average should emphasize the results measured by the precise instruments, that the

Larger weight implies much precise or smaller deviation, i.e. smaller variance

Using variance instead of weight, the index is given as

or written in matrix/vector formulation

where

Least square method is the simplest form of filtering. The diagonal matrix R
implies that the q times of measurements are independent on each other.

So far the least square method gives a static estimation. It is closely related to
static structural mechanics. Let us propose a model in applied mechanics to
compare with the least square equations. Suppose there is a point on a
one-dimensional axis x , its position is to be estimated. Each measurement

weight (credibility) of the measurements from precise instruments must be

higher. Therefore the index of least square should be updated as

spring stiffness is and the neutral point of the spring is just at figure 3.2.

where the known values are i = 1,2,…,q and the value is to determine.

can be interpreted as that: there is a spring connecting the point and the
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After q -times of measurement, which mean number q springs connected to it

requires to find the equilibrium point Obviously, is the balance point of all
the forces of springs, which can be solved by the minimum potential energy
variational principle, i.e.

to find the equilibrium point Potential energy is right away the index J. Let

which gives the same result as least square. Therefore weight is just the spring

the problem of finding the variance of is of concern. Note, is the

variables in nature, so that its average has also random nature, thus to find its
variance is necessary. As mentioned above, variance is really the inverse of
stiffness, i.e. the flexibility. The stiffness of is and the potential energy

U(x) is a quadratic function of variables x. The addition of stiffness implies

that these springs are parallel. The variance of corresponds to the flexibility,
i.e.

The correspondence between variance and the flexibility in structural mechanics is
quite useful.

The problem above is for the estimation of a single unknown but with
multiple times of measurement. Below, the problem of estimation of multiple, n ,

unknowns requires to be investigated. Each measurement is a
linear combination of x , totally q -measurements. The measurement equation is

where C is a q × n given matrix, certainly q > n and the rank of matrix C is

n . To find the estimate vector of x , select the index functional as

constant also the inverse of variance Therefore least square method

corresponds to the minimum potential energy variational principle in applied
mechanics.

Least square method is a sort of estimation, except to find its expectation value

average of all measurements however, (before measurement) are random
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where the noise vector v is zero-mean with variance matrix

a given symmetric positive definite q × q matrix. Optimal estimation should

minimize the index functional, i.e.

which derives

It solves
which gives the constraint free multi-dimensional estimation formula. The
estimation obtained from variational principle is naturally unbiased. Further, the
variance of estimation is required. Note that the potential energy U(x)
functional is quadratic, and the coefficient matrix (the stiffness matrix) of the

quadratic term of vector x is and correspondingly the external driven

force is
The above considerations are from structural mechanics. It is necessary to

verify directly that, the variance matrix of the estimated vector is
which is just the inverse of stiffness matrix, i.e. the flexibility matrix. The
verification is given as follows. From the definition of variance matrix

According to (3.1.54),

so
It is seen again that, the variance matrix is the inverse of stiffness matrix, i.e. the
flexibility matrix.

The case of being under constraints is to be considered
further. Suppose, there are g linear constraint equations, given as

where G is a g × n given constraint matrix. Without loss of generality, G
can be considered of full rank and g < n. The vector w is also a zero-mean

random vector with its variance W be a g × g symmetric positive-definite

matrix. After q -times of measurement, the measurement equation is still (3.1.51).

The g constraints in combination with the q measurements span the complete

n -dimensional space, i.e. the rank of the (g + q) × n matrix

equals n. It is required to estimate the vector x and also to find the variance
matrix P of the optimal estimate vector

The solution is as follows. The fundamental part of the index functional can
still be as given in (3.1.52). Minimization is necessary, but the constraint noise
should also join the index functional, therefore the extended index functional is
given as
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It corresponds still to an unconstrained minimization problem of x , which derives

where the n × n matrix ensures symmetry and

positive-definite because the matrix is of full rank. Therefore

as before, is considered the driven external force. Hence

is again a flexibility matrix. It is suggested to compare with the flexibility matrix
after (3.1.55). The matrix P is certainly symmetric and also ensures
non-negative. The idea of flexibility matrix is from structural mechanics, so that
one should verify directly the variance of

It derives to the same conclusion of The detail is omitted.

Therefore, one can find the flexibility matrix of the corresponding structural
mechanics problem instead of finding the covariance matrix of the system, this
analogy method brings much convenience, and will be used in solving the filtering
and smoothing problem of linear system, see chapter 6.

§3.2, Preliminary of stochastic process

A process implies that it varies with time. Analysis of stochastic process can
be regarded as dynamic probability. Generally speaking, an assembly of random
functions of a continuous coordinate is a stochastic process [60,61]. Usually the
continuous coordinate is the time t , however in other cases it can also be a space
coordinate.

The stochastic processes can be classified into two classes of discrete time
and/or continuous time that such classification is from the evaluation time. The
classification can also be distinguished from the meaning of function value.
Usually the function is continuously evaluated such as force, displacement, current,
pressure, temperature etc.; however, some stochastic process must evaluate at
discrete time, and is termed as digital signal. In computer processing it appears
quite frequently, such as the gray level of graphs usually has 256 levels, money
account has a fundamental unit, etc. Here only the continuous-time stochastic
process is considered.

Figure 3.3 plots a sample of a stochastic process, which seems no more
conclusions can be drawn from it, but only a very complicated sample. If test again,
it will give another sampling result. This is an example of a stochastic process.
Such problem can only be analyzed by statistical approach.

A stochastic process X(t) , can be described with the joint probability

distribution of random variables (function values) at different time instances, such as
using n time points
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The number of time points can be n=1,2,…. The joint distribution function
satisfies two conditions below:
a) The symmetry condition. For arbitrary permutation of

From (1,2,…,n) to

b) The consistency condition. For arbitrary m < n,

The distribution function is exact mathematically, however it is difficult to supply
for applications. In applied mechanics and/or linear control theory applications,
use is made of the Gauss distributed stochastic processes for a majority of cases.
Based on the theorem given in section 3.1.7 that after a linear transformation, the
behavior of normal distribution keeps unchanged for the response. So that
determining only the mean values and second order moment or variance matrix of
the system responses will be enough for probability analysis, which greatly
simplifies system analysis.

For a single component Gauss distribution stochastic process X(t), give n

time instants there are n random variables and

correspondingly a n -dimensional Gauss distribution. Let the mean value and
covariance be denoted as

Compose the mean values as a vector m and the covariance as a matrix P, then
the Gauss density function is

Using characteristic function

is more convenient. For a single component stochastic process, it has been so
complicated, therefore the selection of two time instants n = 2 in application is
usually adopted.
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§3.2.1, Stationary and non-stationary stochastic process

Definition: A stochastic process X(t), if its statistical behavior is independent

on the time origin, then X(t) is a stationary stochastic process. On the contrary,

if the statistical behavior depends explicitly on the time origin then X(t) is a

non-stationary stochastic function.
For a strictly stationary stochastic process the probability distribution should

keep unchanged under time coordinate shifting, i.e.

where is an arbitrary time shift. It implies that the probability distribution
depends only on the time difference but not relates to the time origin. Based on
equation (3.2.1), the first order probability density function and the expectation can
be derived as

For a quadratic correlated function, the probability density function is

That the quadratic correlated moment is only a function

of time difference and the covariance is also a function of

The stationary condition (3.2.2) and (3.2.4) is very strict. The definition of
wide sense stationary stochastic process requires only the mean value be a constant
and the covariance function be a function of but disregards the distribution
function condition (3.2.2). Wide sense stationary process is also termed as weak
stationary or quadratic stationary process. For Gauss distribution process, its
density function is completely determined by its mean value and covariance function.
If the covariance is given as (3.2.5) and the mean value m is a constant then the
process is also a strictly stationary process. Obviously, we have

Further loosen the condition, if we do not require the mean value m being a
constant, but only require the covariance function having the form of (3.2.5), then
the process is termed as covariance stationary. The disturbance vector w in
LQG optimal control theory is assumed a zero-mean white noise. However, in

robust control theory, w is regarded as a covariance stationary white noise, whose
mean-value is a non-zero function to be determined. This is the contrast for both
the theories.

These definitions can similarly be extended to discrete-time stochastic process.

§3.2.2, Ergodic stationary process

In probability theory, the definition of expectation is the mean value with
respect to a large number of samples (results of experiments) termed as assembly.
In short, the mean is assembly average. For stochastic process, it implies that the
large number of experiments is at the same time instant, it is quite difficult to do
such amount of experiments. But from the assumption of stationary process, a
legitimate assumption is that a long time duration sample can be cut off to become a
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large number of shorter time intervals of same length, then taking average value with
respect to these time intervals. In short, use time average instead of assembly
average. Such assumption is based on the consideration, that for a stationary
process, the statistical behaviors of any time interval are the same, hence the time
intervals cut off from far depart time can be regarded as another sample in the
assembly. Such consideration implies an assumption, that for an arbitrarily given
state and a given distance a stochastic process will approach to the

neighbor of the given state as the time is long enough. This is the Ergodic

assumption.
The definition of ergodic assumption is: Let f(X) be a given function of a

stochastic process X(t), if the average given below is valid with probability 1 (i.e.

almost sure, a.s.).

Stochastic sequence (discrete time):

Stochastic process:

Then the stationary stochastic process is ergodic.
An ergodic process must be stationary, but stationary process is unnecessarily

ergodic. In applications, the stochastic processes are frequently assumed stationary
and also ergodic. According to experience such assumption is almost surely valid.
Otherwise, the problem becomes complicated very much, very hard to deal with.

§3.3, Quadratic moment stochastic process (regular process )

Definition: a stochastic process X (t) if

then X(t) is a quadratic moment process, or regular process, [60].
For the solution of stochastic differential equation, the limiting operations, such

as continuous, differentiation, integration etc. should be established for stochastic
process. Therefore the quadratic moment process is introduced to establish the
mean square calculus for stochastic processes. For deterministic functions or
processes the calculus is to a single function. However, for stochastic processes its
calculus should be to an assembly.

First, a quadratic moment process exist mean-value m(t) and covariance

functions

Based on the Schwarz inequality the statement can be proved readily.
Taking limit is the foundation of differentiation and integration. Let us begin

with mean square limit. Let X(t) be a quadratic moment stochastic process and

be a given point, for a random variable such that

then X(t) converges to the random variable as in the sense of mean
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square limit

Taking mean value to both sides of the above equation gives

which implies that for a quadratic moment process taking mean-value operation can
permute with the operation of mean square limit.

The theorem below says that the covariance function converges to a finite value
is the necessary and sufficient condition of mean square convergence.

The mean square convergence theorem: Let X(t) be a quadratic moment

stochastic process, if its auto-correlation function is finite

as t, then (3.3.3) is valid. On the contrary if (3.3.3) is valid, then

is finite at t, and the limit is
Proof: Suppose (3.3.3) is valid, it is easy to verify the equality

According to the Schwarz inequality derives

hence as t,

On the contrary, if as then

The mean square convergence is reached, so that as where

is a random variable, and (3.3.3) is valid. ##

§3.3.1, Continuity and differentiability of a regular stochastic process

The mean square continuity can be defined as

Using the mean square convergence theorem derives readily the mean square
continuous theorem: the necessary and sufficient condition for a regular
stochastic process X(t) being continuous at t is that its auto-correlation

function r(t,t + h) continuous as
The mean square differentiation is defined as

The mean square differential theorem reads: the necessary and sufficient
condition for a regular stochastic process X(t) to be mean square differentiable
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at t is, its auto-correlation function being generalized quadratic
differentiable and bounded at (t,t).

Proof: Fixing t, then Y(h) = [X(t + h) – X(t)]/h becomes a stochastic process of

h. Let then according to the mean square convergence theorem, if the
limit of

exists as h, then the mean square differential (3.3.6) exists. The limit of
the above function is just the generalized quadratic differential of at the

point (t,t). ##

If the mean square differential of X(t) exists everywhere in the interval

then

It implies that the operation of taking expectation can permute with the mean square
differential operation, if the auto-correlation function and the differentials

exist. Note that the auto-correlation function relates the covariance as

so that the differential relations among them are obvious.
The derivations above have not assumed the stochastic process X(t) being

stationary. For wide sense stationary process, the covariance function holds

The differential of a wide sense stationary stochastic process is again a wide sense
stationary stochastic process. In applications, the wide sense stationary stochastic
process appears frequently.

§3.3.2, Mean square integration

The definition of integration of a stochastic process X(t) is similar to the

Riemann integration. Let

I is also a random variable. It can be proved that for a regular stochastic process
X(t) with auto-correlation function the necessary and sufficient condition

of Riemann integrability of X(t) in the interval is the existence of the
double integration
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The proof is neglected, [60]. The integration and average operations can be
permuted too

The usual operations for integration are still valid for stochastic integration, such as

However Y(t) is no longer a stationary stochastic process, even if X(t) is
stationary.

If a stochastic process X(t) is mean square integrable, and a deterministic

function f(t,s) is continuously integrable, then the process

is mean square differentiable, given as

which is the same as the usual convolution differential. The integration by part
formula is also valid

The above description is for only one stochastic process X(t) . The

applications later will be for vector stochastic processes. However, if all its
component stochastic processes are regular and mean square continuous, then the
vector stochastic process is also mean square continuous. The differentiability and
integrability can also be extended similarly.

§3.4, Normal stochastic process

Normal distribution is quadratic integrable, hence normal distributed stochastic
processes are regular. Gauss stochastic process is the most frequently used
stochastic process in applied mechanics and control theory. Previous equations for
single stochastic process can be extended to n -dimensional Gauss stochastic
process X(t) . Selecting m time-points if the joint probability

distribution of the n -dimensional stochastic vectors is Gaussian,

then X(t) is a Gauss stochastic vector process. The joint characteristic function is

where are all n -dimensional vectors and

Hence the Gauss distribution is completely determined by the m mean-value of

n -dimensional vectors and covariance matrices of

dimension n × n. Therefore, the Gauss distribution is completely determined. If,
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for two arbitrary time instants the auto-correlation matrix function

is determined. Here, is the auto-covariance matrix.
Both the auto-correlation function and the auto-covariance function of a

stationary stochastic process depend only on the time difference
and Obviously, for stationary process

A Gauss stochastic process remains Gaussian under a linear operation.
Such as, a Gauss process after mean square differentiation, mean square integration
etc., the results are still Gauss distributed, which is a very useful behavior. There is
also the central limit theorem, which implies that the combination of a large number
of random factors will derive the result toward Gauss distributed. Hence, the
Gauss distributed stochastic process is extensively used in applied mechanics and
control theory. In this book, the stochastic processes are almost all Gaussian
distributed.

The above equations are derived for real stochastic processes. For complex
valued stochastic processes, the corresponding equations are

A bar above denotes taking the complex conjugate value, while denotes Hermite
transpose.

§3.5, Markoff process

The Markoff process is very important for stochastic differential equations.
Given arbitrary m time instants there are n -D vectors

at these time instants. When time reaches the values

of the former random vectors have been given, and

if the random vector     has the conditional distribution as

then such stochastic process is a Markoff process. The characteristic is that
probability distribution of the next step depends only on the state of previous step
but not relates to all the history, such behavior is termed as Markoff behavior.
Expressed with the conditional p.d.f., gives

The above equation is only the one step conditional p.d.f. It can deduce
successively

which expresses that if the initial p.d.f. and the transfer p.d.f.
are given, then the distribution characteristics of the process are completely
determined.
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A Markoff process can have arbitrary p.d.f. If the distribution function is
Gaussian then the process is termed as Gauss-Markoff process. In applications, the
majority of Markoff processes are Gaussian, as is in this book.

§3.6, Spectral density of stationary stochastic process

The description with auto-correlation function gives the time domain
characteristics of a stationary stochastic process. In various fields of theory of
vibration or system analysis etc., linear system analysis is fundamental. For linear
system analysis, the frequency domain methodology is often preferred. The
frequency domain analysis describes how the system response changing with
frequency. Spectral density describes the characteristics of a stationary stochastic
process changing with frequency, i.e. its frequency domain characteristics. In such
description, the external inputs and the system responses are all expressed as the
functions of frequency. Hence, spectral density plays a central role in describing
the stationary stochastic processes and the system responses in frequency domain
analysis, as that the auto-covariance function played the role in time domain
analysis.

The most frequently used spectral analysis is the transformation between the
auto-covariance function and the power spectral density function, note that these
two functions are deterministic although the process is stochastic. On the other
hand, the method of direct spectral expansion for stochastic process is also of great
importance. Both methods will be described below.

§3.6.1, Wiener-Khintchin relation

Frequency domain method is closely related to Fourier transformation. Only
the absolutely integrable non-periodical function on can be expressed with

the Fourier integration. However, in general a sample function of a stationary
stochastic process can hardly be absolutely integrable, hence the stochastic Stieljes
integrals must be applied [139], which is termed as direct spectral expansion (direct
spectral analysis) method. Frequency domain analysis of stochastic process can
also use the method of power spectral density, which is seen most frequently in
practice, and is described first below. The method of power spectral density is
equivalent to the direct spectral expansion method. Both methods will be used in
random vibration analysis, in chapter 4.

The Wiener-Khintchin relation relates both the function of power spectral
density in frequency domain, and the function of auto-covariance in time domain.
That Wiener and Khintchin proposed the following transformation

independently, hence the relation (3.6.1~2) is nominated with their name.
Evidently, and are mutually Fourier and inverse Fourier transform

to each other. The auto-covariance function represents the time-domain amplitude
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statistical information, and the spectral density function        expresses the

amplitude statistical information in frequency domain for the corresponding
stationary stochastic process. The matrix function         terms also as the power

spectral density function. According to (3.4.4’),        is a Hermite symmetric

matrix, and is also positive definite.
The matrices and are different expressions to a same

information source. When system analysis uses the time-domain method, the
auto-covariance function will be adopted usually. However, if frequency domain
method is applied in system analysis, the spectral density function is preferable. In
practical measurement, the instrument responded information is often in the
frequency domain. Fast Fourier transform (FFT) was discovered in 1965 by
Cooley and Tukey that the frequency domain data is very quickly

transformed to time domain The FFT promoted the instrumentation

discipline developed quickly, which demonstrates the effect of high efficiency
algorithm.

§3.6.2, Direct spectral analysis of stationary stochastic process

The transformed function above is the auto-covariance function The

direct spectral analysis for a zero-mean stationary stochastic process X(t) is also

important. Formerly, Wiener developed a generalized harmonic analysis theory,
that an arbitrary deterministic oscillatory time function x(t) in can be

expressed as the following Fourier-Stieljes integration

where is a complex valued function uniquely determined by x(t). When

x(t) decays with fast enough, is differentiable for any

and the above integration reduces to Fourier integration. However, when x(t)

does not decay and is a non-periodical function, then        is  non-differentiable

and which means is far larger than therefore
the integration in (3.6.3) can only be of Stieljes type. The physical reason behind is
that, in the time domain the energy of non-decay signal is far larger than

decay signal. If the process x(t) is real valued, then
Now make use of Wiener’s result to stationary stochastic process. For a mean

square continuous and zero-mean stationary stochastic process X(t) , whose

spectral expansion

where is a complex valued left continuous stochastic process

of    uniquely determined by X(t) [139], and is frequency orthogonal

increment, that for arbitrary it holds the orthogonal relation
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Expressed in differential form

where a bar above means complex conjugate and is the spectral density of

the stationary stochastic process X(t). Verification is as follows

which is just the Wiener-Khintchin relation. ##
Therefore the power spectral density and the direct spectral expansion (3.6.4)

are connected to each other through (3.6.5).

§3.6.3, White noise

In the theory of stochastic process, the classification of stationary stochastic
processes is often according to the characteristics of spectral density. Among the
others, the white noise is very frequently used. A white noise is a stationary
stochastic process with zero-mean and non-zero constant spectral density

White noise is a model of stochastic excitation to a system, used quite frequently in
random vibration theory, in system analysis, signal processing, control theory etc.
White noise is only an artificial model for mathematical convenience but there is no
exact white noise in real world. However white noise is a good approximation in
many cases and mathematically simple, so that it is used extensively as a random
excitation model.

Let us begin discussion with discrete time series. A stochastic sequence
X(k),k = 0,1,2… with zero-mean

and the auto-covariance (auto-correlation) matrix of different time is zero

where Q(k) is a symmetric non-negative (semi-positive-definite) matrix. Such

stochastic sequence X(k),k = 0,1,2… is a white noise sequence, and Q(k) (or

is the intensity of white noise. For white noise is a constant and

is a stationary process, because of (3.6.6), white noise is zero-mean. But Q(k)

can also vary with the time station k , then it is no longer a stationary white noise.
Sometimes, non-zero is also termed as white noise, the drift white noise.
Drift white noise is a covariance stationary stochastic process.

The continuous-time white noise, X(t) can be defined similarly, with

zero-mean

and the auto-correlation matrix function or covariance is

where Q(t) is a symmetric semi-positive-definite matrix, which relates the
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intensity of the white noise. Written as Q(t) means the intensity is time t

variant, but it is not a stationary white noise process. A stationary stochastic
process needs its covariance time-invariant, and white noise requires the covariance
being a very narrow band function, which is represented by the
Stationary process needs Q(t) being time invariant, a constant function. Because

of the in (3.6.9), even if time difference is very small, white noise is
still uncorrelated, which means that white noise has zero inertia. Hence, its time
curve jumps arbitrary with no any rule, such as shown before in figure 3.3, even this
plot is not really white noise, that white noise does not exist in world.

The auto-covariance function has a corresponding spectral density.
Substituting (3.6.9) into (3.6.2) and regarding Q(t) as a constant matrix gives

The power spectral density function is a constant, which means that the (dynamic)
energy distributed uniformly to all frequencies! It has infinite energy and is
impossible. At extremely high frequency, the spectral density cannot keep constant
because of inertia. However, white noise is a reasonable mathematical abstraction,
which implies extremely wide spectral density function. Corresponding to the
consideration above, in equation (3.6.9) the function should not be really a

Such as band limited white noise

The ideal white noise is the limit of
The definition for white noise above relates only the auto-covariance function,

but has not mentioned the probability distribution function. In applications, normal
distribution is usually assumed.

A noise, if it is not white then it must be colored. For the convenience of
mathematical treatment, a class of rational function spectral density noise is
introduced, and the spectral density function is expressed as

Such noise can be generated (driven) by a white noise acting on a linear dynamic
system, the system output does have this kind of power spectra. In applications,
such kind of white noise driven color noise is often used as an approximate model
of real noise.

§3.6.4, Wiener process

Wiener and Poisson stochastic processes are also very popular in applications.
The description should begin with the independent incremental process (time
domain). The definition is:

Give time instants arbitrarily, such that for a

continuous-time stochastic process , if the increments

of various time intervals are independent random
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variables, i.e. when then the

stochastic process X(t) is an independent incremental process.

If for arbitrary the random variable increment

has the same probability distribution as the increment then the

process X(t) is a stationary independent incremental process. It is also a

Markoff process. If all these random increments have

zero-mean for all i , then X(t) is termed as an orthogonal independent
incremental process, the distribution function of which has the relation

Wiener process is one of the most fundamental stochastic processes. Wiener
process provides the mathematical model for such as Brownian motion,
thermo-noise in electronic circuits etc. In 1827, Brown discovered that the pollen
motion in water is quite irregular, and since then such kind of motion is call the
Brownian motion. The statistical interpretation of Brownian motion is one of the
successful demonstrations of statistical mechanics. In 1905, Albert Einstein
pointed out, that the Brownian motion can be interpreted as the particles induced
motion from continuous impacts from the molecules in the surrounding solvent.
Let X(t) be the displacement of Brownian motion particle at time t with initial

displacement X(0) = 0 . The particle motion is the effect of multiple impacts of

surrounding molecules, according to the central limit theorem, the probability of the
random variable of each step of displacement can be regarded as

normally distributed with zero-mean. It is conceivable that the increments of
motion are certainly independent and also stationary. Then the process is a
normally distributed stationary Independent incremental process. Such kind of
motion is a Wiener process, its definition is:

1)

2)

3)

X(t) is a stationary independent incremental process,

X(t) is normally distributed,

It has zero mean E[X(t)] = 0, certainly the mean value of its increments

are also zero,
4) Initial displacement is zero, X(0) = 0 .

A stochastic process satisfying the above conditions is a Wiener process.
Although its increments are stationary, the Wiener process itself is not

stationary.
Because an arbitrary increment, is normally distributed, so the

distribution function can be determined by its mean-value and variance.
is easily verified. For variance, let us select uniform time

increments where is the time step, then the probability distribution

function is

Denote and select k = 2, according to the first condition
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and so

Because the probability distribution is normal and zero-mean, so

To determine the function according to condition 4, substituting

the above equation into (3.6.14) and carrying out the integration with respect to

derives

Therefore further where k is an arbitrary

positive integer. Because the time step can be selected arbitrarily, it is derived
that

where is a constant. Its physical background is the mean square displacement
of a particle for Brownian motion, however for different problem the interpretation

should be different. Wiener process is a kind of diffusion, is proportional to
the diffusion constant. Initially t = 0 , Wiener process is determined zero
X(0) = 0, which means both mean value and variance are zero. Equation (3.6.15)

coincides with this conclusion. For arbitrary time instant t, the condition 3 gives

the mean value zero, and from (3.6.15) the mean square deviation is

After the time is discretized as the increment

of a Wiener process is also a stochastic process. is zero-mean and normally

distributed. Further, because of independent incremental so

From equation (3.6.15) it is seen that

hence is a white noise stochastic process. Therefore, Wiener

process can be considered as the integration of a stationary white noise.



Chapter 4, Random vibration of structures

Engineering structures are constantly loaded by external forces, among which
quite a large part are time-variant and behave randomly. Under the same
environment condition, various measurements of time history of dynamic loads are
different from time to time. In fact, each time history curve of various
measurements is a sample of stochastic processes. The analysis of engineering
structure responses under the random environment is naturally a heavily concerned
problem for engineers.

The investigation of structural response under random excitations is the subject
of theory of random vibration, for which the proper description of the external
random excitations is a prerequisite. However, for different structures under various
environments the random excitations are quite different from one another. The
practical problems such as
1)
2)
3)
4)
5)
6)

building under earthquake,
roughness of road surface induced vehicle vibration,
surface wave action to the ships or sea-platforms,
wind-structure interaction for the bridges and/or tall buildings,
the action of atmospheric turbulence on aircrafts,
combustion and/or jet propulsion induced turbulence excitations, etc.,

are some examples with random nature and are quite different from each other.
Hence the first step is to establish the mathematical model for various random
excitations. Evidently, all these excitations ought to be described by stochastic
processes.

Usually, the excitations are classified as stationary and non-stationary
stochastic processes. The random excitations are induced from quite a number of
uncertainties, usually from independent sources, hence the probability distribution is
usually assumed to be normal. A linear system subjected to random excitation with
normal distribution, the generated response is still normally distributed. This is a
very useful property. According to the central limit theorem, the distribution of the
summation of a large number of statistically independent variables behaves
approximately normal.

The stochastic processes discussed in the present book are all assumed normally
distributed. Note that the normally distributed wide sense stationary stochastic
process is a stationary stochastic process.

After the external excitation is determined, the problem of structural dynamic
response must be solved, which is an important subject of structural mechanics.
Similar to the structural analysis under deterministic external load, the random
vibration analysis is also classified as linear and non-linear problems. As is well
known, the linear analysis theory of random vibration is well developed, however
because of the mathematical difficulty the non-linear analysis is still very difficult
both on theory and computation. Hence this chapter concentrates to the description
of theory and computer method of random vibration for linear structural systems.

The fundamental frame of linear random vibration theory has been established
long time ago. A number of books have been published on random vibration theory,
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especially on linear theory, see [62~65]. At a first glance, it seems no more
problems remained for further investigation. However, the established random
vibration theory has not been applied so much in important engineering projects.
The reason is the computational complexity of the theory. The use of formerly given
theory and method spends tremendous computational expense, which is completely
prohibitive to be accepted by the engineers. Therefore the computational complexity
is the bottle-neck of applying the linear random vibration theory in the engineering
practice. For example, it is commonly recognized in the earthquake engineering
community, that using the random vibration method to analyze long span structures
is preferable. However, decades of year investigations have not solved this
computational problem. Kiureghian and Neuenhofer pointed out that: “While the
random vibration approach is appealing for its statistical nature, it is not yet
accepted as a method of analysis by practicing engineers”, in paper [66]. Ernesto
and Vanmarcke further pointed out that “ The theoretical framework of a
methodology for stochastic-response analysis to random-excitation fields is already
available; however, its use by the earthquake-engineering community is viewed as
impractical except for simple structures with a small number of degrees of freedom
and supports.” , see [67]. Therefore, to bypass the difficulty of computational
complexity, both of them make use of the approximate method—the spectral
response method. Even though, the approximate numerical method they use is still
very complicated with quite an amount of computational expenses. A warm
discussion for the methods and errors etc. was made on the Transactions of ASCE
[68].

The frequency domain analysis is commonly used in linear random vibrations.
The problem can be described as, given the power spectral density distribution of the
external excitation to find the power spectral density of the structural response.
Time domain analysis can also be used, see [62~65,76]. The time domain analysis
leads usually to the solution of Lyapunov differential equation, for which the
precise integration method can also be used to solve the problem highly precisely.
Multi-dimensional stochastic differential equation, such as Ornstein-Ulenbeck
process [69] also is derived to find the solution of Lyapunov differential equation.
In chapter 6, the solution of Lyapunov differential equation will be described in
detail by the precise integration method. However in engineering practice, the
external random excitations are usually supplied with given power spectral density,
so that solving in the frequency domain is natural.

The application of random vibration problem relates to a number of engineering
disciplines, among which the structural response analysis in earthquake engineering
is of great concern. Hence, the structural random response is briefly described
below, out of various theories and methods the emphasis is put on the highly
efficient pseudo-excitation method, see [70~76], proposed by professor Jia-Hao, Lin.
The pseudo excitation method can be used to the analysis of complex structures

under random excitations, and the computational efficiency will be  times
faster than the traditional approach. The pseudo excitation method has developed a
whole set of algorithm system, which can be applied not only to the solution of
stationary random responses, but also to the solution of non-stationary random
responses. The pseudo excitation method can also be used to multi-source excitation
analysis, even for the response analysis of non-uniformly modulated evolutionary
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random excitations. The CQC (Complete Quadratic Combination) results can be
obtained directly from the pseudo excitation method. The CQC method involves all
the covariance between the various vibration modes and is regarded as the exact
solution of statistical analysis. The pseudo excitation method can efficiently be
applied to the analysis of practical long span structures.

As for non-linear random vibration problems, which are certainly important,
however, even the deterministic vibration problems of a few degrees of freedom
system are so difficult that from engineers’ point of view, the problem is only at the
early research stage. Because the superposition principle no longer applies for non-
linear system, so the spectral analysis method cannot be used. Even if the input
excitation is normally distributed, the responses are no longer distributed normally.

People spend much effort to investigate various methods for the non-linear
random vibration of structures, but no method is satisfied, especially for the analysis
of multi-degrees of freedom non-linear system. Even the analysis of non-linear
system vibration under deterministic external force has been so difficult, so that the
difficulty for the non-linear system random vibration is conceivable. Theoretically,
the FPK (Fokker-Planck-Kolmogolov) PDE need to be solved, or else to solve a set
of non-linear stochastic differential equations using the Ito calculus etc., the
interested readers can read the references such as [62,69] etc.

§4.1, Models of random excitation

The differential equation for structural response under random excitation is

where x(t) is a n -dimensional displacement vector, g(t) is the n -dimensional

external random excitation vector, M,C,K are given n×n time-invariant
symmetric non-negative definite matrices of mass, damping and stiffness,
respectively. Because the excitation g(t) is a stochastic process, the induced

response vector x(t) is also a stochastic vector. The random nature is induced from

system external excitation, so that the random excitation should be investigated first.
Random excitations should be distinguished as stationary and non-stationary, and
each class has several random excitation models. The two classes of stationary and
non-stationary random excitations are discussed separately.

§4.1.1, Stationary random excitations

The external excitation g(t) is treated as a stationary stochastic process, which

has constant mean-value and the auto-covariance function depends only on the time
difference

where is a n-dimensional vector, and is a n × n covariance matrix. In

applications, the external force g(t) is often assumed as covariance stationary

stochastic process, i.e. the mean value is also a function of time t . Because
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the mean value is a deterministic function, using the superposition principle

the influence of a deterministic external force can be considered separately. Then
only the zero-mean stationary stochastic process g(t) should be considered. In this

case the auto-correlation matrix function is really the covariance matrix function.
The covariance matrix function and the power spectral density function are

interrelated with the Wiener-Khintchin relation

They constitute a Fourier transformation pair.
The usual random excitation is induced from the combination of quite a number

of unpredictable factors. Hence the probability distribution of the excitation is
assumed normal. The statistical characteristics of the random excitation can be
completely determined by the mean value and the auto-covariance or power spectral
density function. The difference between two zero-mean stationary stochastic
processes is given by the different auto-covariance or power spectral density
function of the two processes.

The above paragraph describes the time dependent variation of excitation,
which is similar to the single degree of freedom case. For multi-point excitations,
the covariance between various sources should be considered also, called space
covariance or multi-point excitation. The different space distribution of excitations
is reflected on the different matrices of or For multi-point

excitation, the following cases should be considered:
1)

2)

3)

Single source in-phase excitations. This is the simplest stationary stochastic
excitation;
Single source multi-point excitations with different phases at different points;
and
Multiple sources multi-point excitations with different phases, i.e. the
combination of arbitrary stationary stochastic excitations.
Single source multi-point excitation means that the multiple points are excited

by a single factor. Hence the excitations at the different points interrelate closely to
each other, mathematically the rank of the power spectral density matrix of these
points equals 1. For single source excitations the phase differences between
different points should also be distinguished. In-phase excitation means that all the
point excitations have exactly the same phase. For example, in the aseismic analysis
of ordinary building structures, the in-phase assumption for excitations is usually
adopted and given in the design code. Because the ground size of a building is small
that it is only a small fraction of the fundamental ground wave length, so that the in-
phase assumption is appropriate.

However, long span structures, such as bridges, pipelines and dams etc., have
far apart away ground supports. Earthquake wave speed is finite that the wave front
reaches the different ground supports at different instants, which implies that at
various ground supports the excitation phases are different, although the excitation
source is still single. Such phenomenon appears also in the cases of vehicle running
on the rough road surface, sea wave action on ships or platforms, or the case of long
span structure on homogeneous ground under earthquake loading, etc.
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The general stationary random excitations mean multi-point excitations, for
which the power spectral density matrix is general, which means that the

random excitations are induced from the combination of various factors. For
example, although earthquake is induced from one fault, however which is not a
single point, but a local fracture process. And also the wave propagation is not along
solely a homogeneous medium, that after multiple reflection or refraction along the
way of propagation, when the wave reaches various structural supports, the source is
no longer of single factor. Suppose, the rank of the power spectral density matrix

is r, the excitation phases can also be different. But in general, the matrix

is still Hermite symmetric and non-negative definite.

The above description is only from general consideration. More description
will be given when the problem of structural response is considered. The power
spectral density of external excitation is the system input. The function form

of statistical estimation of the input excitations and its quantities should be
determined based on a large number of collections of measurements and recordings.
To collect these data is a long-term fundamental task, such as earthquake records,
wind, sea wave recording spectra, etc.

§4.1.2, Non-stationary random excitations

Generally, the random excitation to engineering structures is usually non-
stationary. For quite a number of problems, the simplification as stationary
stochastic process gives good approximation to applications. However, there are
still problems that the stationary stochastic process simplification cannot model the
real situation satisfactorily, such as the structure under wind gust, the maneuver of
aircraft, etc. There are many different mathematical descriptions for the non-
stationary random excitations. The simple model of uniformly modulated
evolutionary random excitation model is quite often applied in structural engineering.
Uniform modulation requires a stationary stochastic process g(t) as the
fundamental excitation model, for which the power spectral density is denoted as

The fundamental excitation model of non-stationary stochastic process can

be selected as those stationary stochastic processes described in the last section.
Such a fundamental excitation model g(t) multiplied by a deterministic scalar

function f(t), which is an amplification factor called the excitation modulation

function, gives the uniformly modulated evolutionary random excitation model

The uniformly modulated model is the simplest non-stationary process and is
easier to deal with in applications. However, this excitation model is non-stationary
only for different time, but the space distribution of excitation is time independent.
For such an excitation model, the space distribution can be modeled as for stationary
multi-point excitation, i.e. the distribution can still be classified as
1)
2)
3)

single source in-phase non-stationary excitations;
single source multi-phase non-stationary excitations, and
multiple sources multi-point non-stationary excitation with different phases.
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For the fundamental stationary stochastic process g(t) , given the auto-

covariance function or power spectral density distribution the auto-

covariance function or power spectral density of the non-

stationary process can be extended based on or as

Therefore in applications, the first step is to determine the statistical characteristics
of the fundamental stationary stochastic process g(t), i.e. or based

on large number of records. Thereafter the slowly varying deterministic modulation
function f (t) is selected reasonably to model the non-stationary behavior.

To give the deterministic modulation function f (t) , a large number of

observations are required too. Usually in applications the respective manuals or
design codes can be referred. For aseismic structure design, the China design code
supplies a modulation curve for the method of spectral response, which is composed
of three segments reflecting three stages of random excitations, i.e. the initial stage,
the stationary stage and the decay stage. This modulation curve can be transformed
to be a modulation function f (t) used in equation (4.1.5)

The model of uniformly modulated evolutionary stochastic process is the
simplest one among various non-stationary models. The characteristic of uniform
modulation is that from begin to end the shape of power spectral density keeps
unchanged, only the amplitude is changed with time. For real excitations, the power
spectral density may also change with time, i.e. the matrix or also

change with time. Such as the earthquake excitations, at the beginning stage the
excitation is composed of the significant wave number within a wide range, however,
the high wave number components are quickly damped out and the excitation
becomes dominated by low wave number components. To model such phenomenon,
the modulation can be described by the non-uniformly modulated evolutionary
excitation model [77], as given by

where a bar in means taking its complex conjugate value.

Similarly, for the non-uniformly modulated evolutionary excitation model,
there are still cases of space distributions as before,
1)
2)

single source in-phase excitations;
single source multi-phase excitations; and

where is a deterministic non-uniform modulation function. If using the

simplification of the former uniformly modulate model is resulted.
Equation (4.1.8) uses the integration in Stieltjes sense, on which the spectral
expansion equation (3.6.4) is based. The factor is the increments in
frequency domain, representing a zero-mean complex valued orthogonal incremental
stochastic process and its correlation between two frequencies is given as
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3) multiple sources multi-point excitations with different phases;
In addition to the non-uniformly modulated evolutionary excitation model

(4.1.8), there are a number of other models. However, the model (4.1.8) is used
quite often in civil engineering.

LIN’s pseudo excitation method solves the linear response problem for all the
above-mentioned random excitations, which contributes not only the computational
but also the theoretical progress, see review [78].

§4.2, Response of structures under stationary excitations

Given the model of random excitation, the response analysis is required. The
structural response x(t) is certainly also a stochastic process. The linear governing

equation is given as

for which the superposition principle applies. Also if the input is normally
distributed, then so is the response output. Hence it is required to find the mean
value and the covariance matrix and then the probability distribution is determined
for a normally distributed process.

Let us begin with structural random response analysis of a single degree of
freedom system.

§4.2.1, Random response of single degree of freedom system

The dynamic equation of single degree of freedom structural system is

where g(t) and x(t) are both stochastic processes. For single degree of freedom

system, they are two functions, not vectors. Using the parametric form

where are the natural frequency and damping ratio,

respectively, and is still the stochastic external force, for which the

mean value and auto-correlation function are denoted as and

respectively. Using Duhamel integration for any sample external force

where the integration is in the sense of mean square, and the function h(t -s) is a
deterministic unit impulse response function, see equation (2.1.15)

In this solution there is the influence of initial condition (4.2.2), hence although the
external force is stationary, the response x(t) is still a non-stationary stochastic

process. Taking mathematical expectation gives
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where When because of the damping factor, the response

tends to be a stationary stochastic process with the mean value

The auto-correlation function can be found from equation (4.2.3) as

Given the auto-correlation function of external force this integration can be

found.
The above analysis is given in the time domain. The integration of an auto-

correlation function is not so convenient, and the frequency domain analysis can be
used instead. The frequency domain response analysis of a time invariant system
under a stationary stochastic process is simple. As the time domain analysis
gives stationary stochastic response, then if the external excitation is given in
spectral form then the response is with no
consideration of the initial condition. Substituting spectral expressions into the
equation (4.2.2) gives

Solving gives

The function is called the frequency response function of the system or simply
the transfer function. This is the monochromatic vibration response with frequency

The function can be connected with the impulse response function h(t).

The function h(t) involves the influence of initial conditions, but as the time

evolves very long, the influence of initial conditions tends to be damped out and the
response contains only the stationary part. To express in terms of the Duhamel
integration of impulse response function

when the initial term damps out, and the response reduces to the equation
(4.2.7) with no initial condition influence, and it is also for therefore

which shows that the system frequency response function is the Fourier

transformation of the impulse response function h(t) . The frequency response

function is integrated as

where the latter term in the bracket involves the initial condition influence, because
this term vanishes when
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According to the spectral expansion equation (3.6.4) of the stationary stochastic
process, that the stochastic process is expressed as the composition of various

components of multi-chromatic frequencies

where is an orthogonal incremental stochastic process excitation in the

frequency domain and the integration is in Stieltjes sense [139], which
corresponding to Corresponding to the above spectral expansion

for the excitation, the response spectral expansion is given as

When the time the influence of initial condition damps out, then

The spectrum of increment of is given as, [see equation (3.6.5)]

Suppose the mean value of the stochastic excitation then that of the

response is also zero-mean and the auto-correlation function is expressed as

Carrying out the integration gives

which explains that after a long
time the auto-correlation function

of the response depends only

on the time difference

and is also an even function of
The response spectral density is

This equation is important for
linear stationary random vibration
theory. From equation (4.2.7), it

gives

After is found, the etc. can also be found as
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The power spectral transfer factor is also very important, and its plot is

given in the figure 4.1. The transfer function is the system response under a

unit white noise. Usually is a small quantity, for example in such case

the power spectral density of the response is a narrow band stochastic process that
there is a peak nearby the natural frequency.

§4.2.2, Multi-degrees of freedom system under single source excitation

The random response of linear single degree of freedom system is well
developed and is described in a number of books. Similar methodology has been
developed for multi-degrees of freedom systems. Theory and equations have been
given for a long time, however, when using these equations in practical problems, it
faces tremendous computational expense, which causes prohibitive difficulty to
practical application and becomes a bottle-neck for using the random vibration
theory to engineering.

Prof. J.H. Lin proposed the pseudo excitation method to solve this critical
problem, which supplies a highly efficient computational algorithm for engineering
applications. The proposed algorithm of pseudo excitation method have been
applied to a number of important practical engineering structures, including
1)
2)

3)

Aseismic analysis of Feng-Man reservoir dam,
Random vibration analysis of Hong-Kong Ching-Ma suspension bridge under
random wind load and earthquake load,
Random vibration analysis of the second Nanking Yangtze river bridge and
Dong-Tin lake bridge under earthquake loads,

etc., see [79~82].
FEM model of structure is appropriate for applying the pseudo excitation

method. The algorithm of pseudo excitation method is imbedded into the FEM
program system JIGFEX/DDJ in china, which has solved a number of random
vibration problems for engineering structures, for which the number of degrees of
freedom reaches dozens of thousands. In analysis, 300 vibration modes, 1000
wind excitation points, 29 ground excitation points for bridges or 102 ground points
for dams are used, etc. The ground wave passage effect and multiple source
excitations etc. are taken into consideration.

Hence, the emphasis is put on the pseudo excitation method below in this
chapter. Physical insight is emphasized in description, rather than mathematical
strictness. The computational effectiveness and efficiency is also stressed.

The meaning of single source implies that, all the excitation points of the
structure are excited synchronously. For example, in the case of a usual building
structure excited by a stationary stochastic earthquake load, all the ground points are
assumed shaking with the same phase angle, called as in-phase synchronized. This
is the simplest external excitation. A n -degrees of freedom system under a single
source stationary excitation synchronized in-phase, has the dynamic equation

where and are n×n mass, stiffness and damping matrices,

respectively, and p , called the partition vector, is a given deterministic n -
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dimensional constant vector, and e(t) is a one dimensional normal distributed zero-

mean stationary stochastic process, of which the power spectral density is

given. Because system is linear, hence the response displacement y(t) is also a

zero-mean valued normal distributed stationary stochastic vector to be determined.
The vector y(t) itself cannot be determined but its auto-covariance matrix function

(for time domain) or the power spectral density n×n matrix (frequency

domain) is needed.

The FEM models of structures in engineering use more than n = 10000 degrees
of freedom quite frequently. The analysis for random vibration of structures can
also use such FEM model. And usually the vibration modal analysis method is used
to pick up the first q -orders of eigen-modes, so as to reduce the degrees of freedom

in the analysis, such as q = 20 ~ 500 depending on the structure and design

requirement. Hence the subspace iteration algorithm is quite frequently used to pick

up the first q eigen-solutions out of the n -degrees of freedom

eigen-solutions of structure. The eigen-modes are ortho-normalized with respect

to the mass matrix In applications, the generation of mass and stiffness

matrices is usually reliable, the estimation of the damping matrix is not so
straightforward, but its value is relatively small and will be described below. Hence

the eigen-solutions  are usually solved from the eigen-equation

where the damping term is removed. For a gyroscopic system, the gyroscopic term
should not be neglected, however in dynamic equation (4.2.17), the gyroscopic term
has not included.

After solved the first q eigen-modes the n × q modal matrix

is composed. The displacement vector y(t) is projected in the q -D subspace, i.e.

where u is a q -D vector to be solved. The eigenvectors are treated as

the basis vectors of the q -D subspace, and the vector u is the projection vector of

y in the q-D subspace. Substituting the approximation (4.2.19) into the dynamic

equation (4.2.17), and left multiplying with the matrix which means the
projection of forces on the q -D subspace, gives

As the columns of matrix are the normalized eigenvectors with respect to the
mass matrix, so that

The two reduced matrices of mass and stiffness are diagonalized in the projected
subspace. However, there is the damping matrix. It requires to distinct the so-called
consistent damping matrix from general damping matrix. The consistent damping
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matrix assumes that, the projection matrix of the original damping matrix is

also diagonalized just as for the mass and stiffness matrices, i.e.

The consistent damping matrix is often expressed in the form of (usually called

as Rayleigh damping, [8])

for which However, practical structural damping

rarely fulfills this assumption. Introducing the projection vector

then the subspace projected dynamic equation is derived as

For consistent damping, the matrix is also diagonal, so that the resulted

equations are separated

These equations have been one dimensional, where is the participation factor of

the j -th mode, so that is naturally called the mode participation vector. The

right-hand side function e(t), which characterizes the random excitation, is zero-

mean, hence the functions are also zero-mean. Therefore the analysis should

concentrate on the auto-correlated or power spectral density matrix functions of the
responses For consistent damping, equation (4.2.25) has been reduced to

number q one dimensional vibration analysis already.
The random response analysis of a time-invariant system under a stationary

excitation is easier to solve in the frequency domain. For a given frequency the
transfer (frequency response) function is

and the power spectral density of is given by

In order to solve the n×n power spectral density matrix of the response

vector y(t), the easier method of direct spectral expansion for random excitation

e(t) is used

The spectral expansion method implies using the superposition of various
monochromatic excitation induced random displacements. The displacement
response is computed by



Random vibration of structures 173

In the integration, random variable exists only in the orthogonal increments

in the frequency domain, and all the other factors are deterministic. The correlation
between the increments is given as

where a bar above represents complex conjugate.
After solved the random response of the displacement vector y(t), the auto-

correlation function is computed as

Therefore according to the transformation relation between auto-correlation function
and power spectral density, it derives

This is the well-known equation for power spectral density matrix of the structural
displacement response, the CQC (Complete Quadratic Combination) equation,
which includes the cross-correlation of all q participation modes. Therefore

equation (4.2.31) is considered exact for

The equation has been expressed clearly. At a first glance, the problem seems
completely solved. However, use of the above equation in computation for
applications encountered tremendous difficulty from the computational expense,
which is estimated now. For statistical estimation, the number of frequency
points requires at least it is necessary to compute according to the

equation (4.2.31) for all these frequency points. Suppose the degrees of freedom of
the system, say n = 1000 ~ 10000, the number of multiplication for computing the

matrix in equation (4.2.31) accounts to and to be executed for

all the pairs of The number of participant vibration modes requires

q = 50 ~ 500 . Therefore the number of multiplication is accounted.

Hence, for simplest single source random excitation analysis, the computational
expense is still very large.

For comparing purpose, note that the triangular factorization of the structural
global matrix, under the assumption that the average bandwidth is also q , requires

the computation of multiplication number estimated as Therefore the
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computational expense for the power spectral density matrix is roughly

times to the global matrix triangular factorization.
The above estimation of computational expense is only for single source

excitation, the practical excitation may be much more complicated. Because of the
computational expense, the application of response analysis to structural system
under various random excitations faces great computational difficulty. The various
problems for stationary and non-stationary structural responses can only be solved
practically based on the pseudo-excitation approach.

The computational expense of power spectral density matrix via the traditional
method is prohibitively high. Therefore, almost all the classical monographs on
random vibration, such as [63,65], recommend a simplified approximation with no
exclusion, the SRSS (Square Root of the Sum of Squares) method, for which all the

terms under the double summation in equation (4.2.31) are completely
neglected and the approximate equation

is recommended. The computational expense of the SRSS approximation is
accounted roughly 1/q to the CQC method. However, this approximation can only

be used under the prerequisites of small damping and that all participation mode
eigenvalues are sparsely spaced. Practically, the first q eigen-frequencies of a three
dimensional engineering structure is often clustered. Therefore the applicability of
the SRSS approximation to 3-D structures is questionable.

Lin’s method of pseudo excitation approach is the solution to the prohibitive
computational expense of the CQC equation. Presently, the single source stationary
stochastic excitation e(t) has the spectral density which is a positive
function. The pseudo excitation proposes to replace the random excitation e(t) in

the equation (4.2.25) with a pseudo deterministic simple harmonic function

The equation is then updated from a stochastic to a deterministic forced vibration.

To solve a 1-D deterministic equation is simply as usual, and is given as

Therefore the deterministic response of system displacement is

Form which the system spectral density matrix is computed by

where a bar above represent taking the complex conjugate. Equation (4.2.36) is
pseudo excitation approach. Substituting equation (4.2.35) into the above equation
derives the double summation form, which returns to the form of equation (4.2.31).

Algebraically, the equation (4.2.36) is identical to equation (4.2.31). Both
equations are the CQC result and are statistically the exact solutions. However the
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computational expenses are quite different from each other. The meaning of
pseudo excitation approach is firstly the high efficiency of computation. Let

the three equations of computation are listed as follows

The comparison of computational expenses is given below. The main computational
expense is the n -dimensional complex conjugate of vector z multiplying the

transpose of z , totally complex number multiplication, which is a large

computational expense. The usual CQC method has times of such vector

multiplication; for SRSS approximation it has q times of such multiplication; while
for the pseudo excitation method it has only one such multiplication.

The SRSS approximation loses precision, but still requires q times of such
multiplication, therefore which achieves nothing with comparison to the pseudo
excitation method. The usual CQC method gives exact solution of but the

computational expense is times as that the pseudo excitation method, for which

the result is exact too. But why spend times of computational expense to stay on

the traditional CQC approach. The multiplication of is the main expense of
computations. If q = 100, the difference of the computational expenses of the two
approaches will be 10000 times! Four orders of magnitude! it is too large, at the
rate of one minute versus five days.

Visually, for the algebraic identity

where the left and right hand side expressions are equal algebraically, but the
computational expense are quite different. The left-hand side expression requires
only one multiplication, but the right-hand side requires 10000 times of
multiplication. No one would like to execute according to the right-hand side
expression. However, comparing the equation (4.2.38c) and (4.2.38a) shows that the
latter is just the expanded form, and the pseudo excitation approach is the left-hand
side expression, the difference is clear.

The above comparison reveals the essence of difference, which is simply an
algebraic identity. However, it is a big problem bothering for decades of years. The
method used to solve problem is the simpler the better. The pseudo excitation
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method does solve the computational problem, however, very efficient and easy to
understand, the easier the better, so that it is a very nice method.

The SRSS approximation reduces computational expense, however incurred
losing precision of result. But the computational expense of SRSS is still q times as

much as the pseudo excitation method, so that it is a both facet lost method, so that it
should not be used any longer. Before the pseudo excitation method proposed, using
SRSS approximation is understandable, but not now.

§4.2.2.1, Case of inconsistent damping

The derivation above is based on the assumption of consistent (proportional)
damping matrix, see equation (4.2.21) and (4.2.22). The assumption is for the
mathematical convenience of separation of variables. However, the applicability of
the assumption of consistent damping is restricted. For example, for the installation
of dampers, only several devices can be installed therefore the damping matrix is
difficult to be modeled as a consistent damping matrix (4.2.22). Hence, the dynamic
equation (4.2.24) in the q -dimensional subspace cannot be decomposed and reduced

to the form of equation (4.2.25). Then traditional derivation of the CQC method
does not work now, that the equation (4.2.32) of double summation equation of CQC
is invalid, which raises a theoretical problem to be solved.

Lin’s method of pseudo excitation solves the problem easily for the case of
inconsistent damping matrix, because the separation of variables in the q -

dimensional subspace is unnecessary. As a matter of fact, the stochastic process
factor e(t) at the right-hand side of dynamic equation (4.2.24) can still be

substituted with the pseudo excitation of equation (4.2.33)

The right-hand side of the above expression has been a deterministic load.
Therefore the equation (4.2.24) becomes

where Note that (4.2.39) is a q -D dynamic

equation and its stationary solution is available, that the displacement vector is
solved in the form

where is a q × q transfer matrix to be determined. Substituting it into

(4.2.39) gives

Comparing with equation (4.2.26), the sole difference is that the matrix is

not a diagonal one. The inversion of a complex valued Hermite matrix is easy.
Hence after computed the vector
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the power spectral density matrix can still be computed by

which has the same form with comparison to equation (4.2.36). Therefore

A n -dimensional complex vector is in the bracket. Evidently the rank of the matrix
is 1 and the computational steps are given as:

Giving n × n matrices and extract the first q eigen-solutions by
means of the subspace iteration method, then compose the n × q real matrix

and compute

Matrix inversion of equation (4.2.41), and then compute the q × q complex

matrix

Compute the n -dimensional complex valued vector

Use equation (4.2.43) to find which requires     operations of complex

multiplication.

1)

2)

3)

4)

Therefore, the pseudo excitation method can readily be used to solve random
vibration with inconsistent damping matrix without difficulty, and gives again the
exact solution of Usually the damping matrix is often frequency

dependent, so that the frequency domain solution can fit such a situation.
The solution of random vibration with inconsistent damping matrix

demonstrates the versatility of pseudo excitation method, which far extends the
traditional CQC method. As a matter of fact, there have been a number of papers
published, such as [83], for extending the CQC method to the inconsistent damping
case, but these papers can find only approximate solutions with complicated
computational method with excessive expense. Clearly, the pseudo excitation
method gives exact solution by means of simple but still very efficient algorithm.

§4.2.2.2, Single source multi-point excitation with different phases

Long-span structures are constructed ever increasingly, for which the aseismic
considerations are of great importance. Obviously, regardless of the different phases
of the excitation points is inappropriate for long-span structures. Treating the
different phases of excitations at different ground support points (the wave passage
effect) is important in the random vibration analysis of long span structures. The
traditional CQC analysis requires separation of variables for the q -D reduced
subspace, so that no exact solution can be found for treating wave passage effect.
For approximate methods, the computational expense rapidly increases not only with
the number q of participation eigen-modes but also with the number of ground
supports, that the strict CQC analysis is impractical. A great deal of efforts have
been devoted to the extension of the current aseismic response spectrum method in
order to consider such kind of multi-phase excitations, see [66,67], however, it
requires to introduce a series of approximations, that the verification and validation
are difficult.



178 Duality system in applied mechanics and optimal control

Using pseudo excitation method to treat the multi-phase problem is
straightforward, because the wave passage effect of the ground multi-point
excitation is still of single source. The different phases of various earthquake
excitations can be determined with the coordinates of the ground supports, wave
speed and frequency in the spectral expansion, see [84]. The factor of different
phases can also be included in the excitation partition vector p at the right hand side

of dynamic equation (4.2.17). Therefore p is a given complex valued deterministic

vector and e(t) is again a zero mean stationary stochastic process, the same as in the

former case of in-phase excitation. The case of p is a complex valued vector has
been considered in equation (4.2.43) with (4.2.39). Therefore, by comparing with
the in-phase case, only the single source random excitation partition vector p is

updated from a real vector to a complex valued vector, the equations are completely
the same, so that the increasing of computational expense is limited. The application
of pseudo excitation method is still highly efficient as in the previous cases. The
‘wave passage effect’ problem is thus simply solved and the computational result
obtained in this way is still precise [85]. The pseudo excitation method not only
solves the problem of tremendous computational expense for traditional CQC
method but also contributes the theory to problems such as inconsistent damping
and ‘wave passage effect’ etc.

§4.2.3, Stationary response of structure to multi-source excitations

The treatment of ‘wave passage effect’ in last section solves the problem
simply and smoothly. For multi-source random excitation problems the pseudo
excitation method can still be applied smoothly to solve the structural response
problem.

Multi-sources excitation is nothing more than that the excitation should be
expressed with multiple, m , independent sources. Correspondingly, instead of
(4.2.17), the dynamic equation should be written as

where e(t) is a m -dimensional stochastic vector, and P is a given n × m matrix.
In the single source case there is only one stationary stochastic process of exciting
e(t) and the partition is expressed with a n-dimensional vector p . For case of

multi-sources excitation, the m components i = 1,···,m of the vector e(t) are

mutually independent zero-mean stationary stochastic processes and the power
spectral density matrix is denoted as a m × m positive definite Hermite

matrix. Correspondingly, the partitioning of excitations changes to m groups,
which are combined and expressed as a given partitioning matrix P of n × m
dimension. Because the elements in P can take complex values so that the ‘wave
passage effect’ is included.

The analysis of random response is again in the projected subspace spanned by
the first q eigenvectors of the original system. The dynamic equation in

the projection space is
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Because of e(t) this equation is still stochastic, where the matrix

is q × m dimensional with and is given. The stochastic equation (4.2.45) is
solved below using the pseudo excitation method.

§4.2.3.1, Spectral expansion

The stationary stochastic process e(t) can be expressed with the spectral

expansion

where

which is described in chapter 3. The frequency domain orthogonal incremental
process m -dimensioned, is stationary stochastic process e(t) related,

because of the spectral density matrix which is a given deterministic positive

definite Hermite matrix for e(t) and also for Introducing the unit
orthogonal incremental stochastic process          in frequency domain

to describe the spectral expansion of the stochastic excitation e(t). The merit of the
unit orthogonal incremental stochastic process is independent on the individual
excitation and is unified. Hence

where is a m × m matrix. The equation of auto-correlation function of e(t)

is

so that

which shows again that is a m × m Hermite matrix. The equation (4.2.48)

expresses the factorization equation for the matrix based on the given

§4.2.3.2, Response analysis

After the stationary stochastic excitation e(t) is expanded according to
equation (4.2.46), the pseudo excitation is derived and substituted into the equation
(4.2.45), which gives
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from which the response u , a q × m matrix, is solved. Then a n × m

matrix function of frequency, is computed from the equation

where the power spectral density matrix of the response is computed by

The equation is quite simple, which is obtained by the same method of pseudo
excitation method.

Substituting equation (4.2.50) into (4.2.51), using equation (4.2.48) gives

Hence directly executing the above equation, the factorization (4.2.48) can also be
bypassed. However, computing via the factorization (4.2.48) is also efficient.

§4.3, Response under excitation of non-stationary stochastic process

Stationary stochastic process is a simplification of practical excitations. Real
excitations are non-stationary. As mentioned above, the traditional CQC
computation for structures under stationary excitation has been tremendous, so that
the structure under non-stationary excitation will be more difficult. Presently, the
uniformly modulated evolutionary stochastic excitation is more acceptable in
structural engineering, and is expressed as

where e(t) is a stationary stochastic excitation, which is regarded simply as a one

dimensional zero-mean process with the power spectral density function

given, and a(t) is a deterministic amplitude modulation function which

characterizes the non-stationary behavior of the excitation. The function a(t)

should be statistically determined from the recorded data. Usually a(t) is

considered a slowly varying function, i.e. the condition is fulfilled,

where is the lower bound of significant frequencies.

§4.3.1, Response under uniformly modulated non-stationary excitation

Because e(t) is a zero mean process, so F(t) is also zero mean. The power

spectral density can be expressed approximately as

Traditional CQC analysis for non-stationary excitation is very complicated [86], that
the equation derivation and computational expense are both immense. The
application of the pseudo excitation method is still quite superior.

For non-stationary uniformly modulated excitation, there are still cases as
follows:
1) Single source with in-phase non-stationary excitation;
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Single source multi-phases non-stationary excitation;
Multiple sources multi-point partially coherent non-stationary excitations.

2)
3)
For these excitation cases, the pseudo excitation analysis can be transplanted from
the corresponding part with stationary excitations.

The solution of multi-sources excitation problems is selected to give a brief
description. The dynamic equation is again (4.2.44), the subspace projected
dynamical equation is (4.2.45). The spectral expansion of the stochastic process is
now

where the frequency domain unit orthogonal incremental stochastic process
see (4.2.46’), is the same as that described above. Therefore the equation (4.2.49)
becomes now

The solution of this equation can be computed by means of the stepwise precise
integration method and the q × m matrix function is resulted. Afterwards,

using transform back to the original n -dimensional space. The spectral
density matrix is also a function of time, i.e. it is in the time-frequency domain,

The details can be found from the series of papers [71~76].

§4.3.2, Response under evolutionary modulated non-stationary excitation

The uniformly modulated non-stationary stochastic excitation is the simplest
among the non-stationary stochastic processes. Further non-stationary stochastic
excitation problems should be considered. The non-uniform amplitude modulation
is also considered as slowly varying. For aseismic engineering, at the beginning
stage the earthquake excitation is composed of frequencies from low to high
components, a wide band stochastic process. However, the high wave-number and
also the high frequency components are gradually damped out more quickly with
time, and the stochastic excitations are then dominated by low frequency
components, i.e. the frequency band be biased to the low frequency end. To model
such a phenomenon, the non-uniformly modulated evolutionary random excitation
model [77] is used, particularly in earthquake engineering

where         is a given deterministic slowly varying non-uniform modulation
function in the frequency-time domain.  Equation (4.3.5) uses the integration in
Stieltjes sense, on which the spectral expansion equation (4.2.46’) is based. The
frequency domain unit orthogonal incremental  stochastic process is the
same as before. The deterministic dynamical equation derived by the pseudo
excitation method is
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Its solution can be obtained by the precise integration method. For each specific
value of in the frequency domain, the integration of equation (4.3.6) need be
solved. After solved the q × m matrix function          using goes back to

the original n -dimensional space. The spectral density matrix is also a function of
time, that it is in the frequency-time domain,

The details can be found from the series of papers [71~76].
The use of pseudo excitation method to the non-stationary random response

problems can be found from a series of papers given by Jia-Hao LIN and others.
The theory and computation of non-stationary random vibration of engineering
structures is a challenge. Using the traditional approach, it is very difficult to solve
practical problems. Lin’s pseudo excitation method proposes the present day best
approach for solving these problems in engineering. The review of pseudo
excitation method can be found from [78,85].



Chapter 5, Elastic system with single continuous
coordinate

Theory of elasticity usually treats plane or three dimension deformation
problems and is an indispensable foundation of applied mechanics. To solve the
problems in the frame of Hamiltonian dual system will be much rational with
compare to semi-inverse method in traditional approach. However, elasticity
problems have infinite degrees of freedom. For ease of understanding, let us begin
with the solution of single continuous coordinate system. Such problems are useful
itself, that problems in strength of materials and structural mechanics, such as the
Timoshenco’s beam theory, are under single continuous coordinate. The
semi-analytical approach [7] derived equations naturally falls into single continuous
coordinate system. Especially, such system corresponds to the analytical dynamic
system, if the single continuous coordinate is regarded as ‘time’ coordinate.
However, the difference is that the boundary condition being initial for analytical
dynamics, but being TPBVP presently for structural mechanics.

The importance of single continuous coordinate elastic system analysis is
further based on the analogy relationship between structural mechanics and optimal
control. When the Kalman filter and LQ (linear quadratic) control problems are
discussed in chapter 6, we will find that the Hamilton form dual equations in
structural mechanics of the single continuous coordinate system, and the dual
equation system in control theory are analogous to each other mathematically. The
analogy relationship between structural mechanics and optimal control is thus
established [20~22,87~91]. Especially, if the LQG theory of optimal control
analogous to structural mechanics is considered the first stage, then the robust
control theory corresponds to the eigenvalue problems in structural stability or
natural vibration frequency [92~94], such second stage analogy relationship is of
fruitful implication. Analogy is quite beneficial to both sides of structural
mechanics and optimal control.

So far, in the discussions of analytical dynamics or vibration theory, the degrees
of freedom n are limited to be finite. However, the time coordinate is continuous,
hence these systems are single continuous coordinated too. The single coordinate
is space or time for elasticity or dynamics, respectively. For space coordinate the
problem derives to TPBVP of ODE, which corresponds to elliptic type PDEs,
however, for single time coordinate, the problem derives to initial value problems
which corresponds to evolutionary PDEs. Elastic wave propagation along a strip in
frequency domain is also a two point boundary value problem (TPBVP).

For easy understanding, let us begin the discussion with Timoshenco beam
theory.

§5.1, Fundamental equations of Timoshenco beam theory

Beam theory with shearing deformation was by S.P. Timoshenco. Only the
transverse bending and shearing of plane beam is considered here. Assuming the
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coordinate z points along the beam axis before deformation, see figure 5.1. The
beam transverse cross section is assumed rigid, so that its displacements are denoted
with the line displacement along the transverse coordinate x and

rotation of the cross section, respectively. Since only transverse bending is
considered, the longitudinal displacement along the axis z is zero. Each beam
(infinitesimal) segment along z has bending and shearing deformations,

and respectively. Therefore the strain energy of the

beam is

where EJ is bending stiffness, A is the area of cross section, k is cross section
shearing mode coefficient, for rectangular cross section The beam
internal forces are

The dynamic equations of the beam are

where is the distributed transverse load, is the distributive moment load,

their positive directions coincide with and respectively. The wavy sign
above is to remain identifiers for the frequency domain description.

Eliminating the internal forces and strains, the dynamic equations expressed in
terms of displacements are obtained

The initial conditions are

Two end boundary conditions are given at z = 0 and z = L as

In the analysis of vibration or wave propagation problems, the time coordinate
is quite often transformed to the frequency domain. Let

where is the circular frequency, a parameter now. The dynamic equations
become
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These equations are expressed in displacement method. Introducing the
displacement vector

where a dot over the variable q denotes the derivative with respect to z ,

Using matrix/vector formulation will be beneficial to cover the general
problem.

§5.2, Potential energy density and mixed energy density

The variational principle corresponding to the dynamic equation (5.1.8) of
Timoshenco beam is

Because of the inertia term, the potential energy is no longer a minimum but still
takes stationary value. To express in terms of vector formulation (5.1.9), the
variational formulation becomes

For general problems of single continuous coordinate system, the Lagrange function
and variational principle can still be written as (5.2.2) and (5.2.3). Equation (5.2.4)
is only for Timoshenco beam, and needs to be updated for other problems. The
main purpose of this chapter is facing general problems, so that use will only be
made of (5.2.2~3) for further discussion. Carrying out the variational calculus,
equation (5.2.3) derives to the Lagrange equation

Comparing to analytical dynamics, the only difference is that the former continuous
coordinate time t is changed to be a space continuous coordinate z . The
quadratic Lagrange function (5.2.2) derives a linear Euler-Lagrange equation

The matrix/vector formulation can fit the general problems, but not limited only to
Timoshenco beam theory. The solution method given below can work certainly for
general case, such that the displacement vector q is n -dimensional, but not
limited two-dimensional as that for Timoshenco beam, which can be used as an
example. The semi-analytical method [7] derived equation is n -dimensional.

In the variational equation (5.2.3) and the respective dynamic equation (5.2.5),
there is only one kind of variables, i.e. the displacement. Introducing dual
variables as that in analytical dynamics
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which is considered the constitutive rule. Combining with the dynamic equation
(5.2.5) compose the dual differential equations as

(5.2.7a) is the compatibility equation, and (5.2.7b) is the dynamic equation. For
simplicity, introducing the matrices

then the dual differential equations become

where Because and are symmetric matrices,

positive definite, so D is positive definite too, and
Equations (5.2.9a,b) are non-homogeneous, its solution should first solve the

corresponding dual homogeneous equation set (the homogeneous compatibility and
dynamic equations)

Introducing the Hamilton function

The corresponding variational principle is

Performing the variational derivation gives equations (5.2.10a,b), which is a linear
Hamilton system. The present dual equations (5.2.10a,b) should also compare with
the equations (2.3.9a,b) of gyroscopic system, that they are the same equations
except the positive/negative sign before the matrix B . Presently, the continuous
coordinate is spatial, so that the boundary conditions should be assigned at the two
ends of and But for gyroscopic system, the continuous
coordinate is time, hence the boundary condition should be assigned at the initial
point The two point boundary value problem has the characteristics of
structural mechanics, elasticity etc. Mathematically, their boundary value problem
corresponds to the elliptic PDEs. However, the initial boundary condition holds the
characteristics of hyperbolic PDEs. To dig further, from analytical dynamics,

is the action function; however, from structural mechanics, it is the

deformation energy of a given interval
Compose the state vector v(z) by combining the dual vectors q,p

the dual equations are also combined in (5.2.13), where

The two end boundary conditions can be determined later for various cases of
boundary assignment. The H is a Hamilton matrix of dimension  2n × 2n , with
the characteristic of
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The corresponding Hamilton function is a homogeneous

quadratic function of q,p, the characteristic of a conservative linear system.

The Hamilton function H(q,p) is termed as density of mixed energy in

structural mechanics, and the corresponding Lagrange function is the

density of potential energy. Note, formerly in the variational principles of
elasticity, the deformation energy is either expressed all in terms of strains (and
displacements), i.e. density of strain energy or else expressed all in terms of

stresses, i.e. the density of complementary energy Both these expressions

are not mixed energy density. The expression of Hamilton function uses partially
strains and displacements and partially the dual variables, i.e. stresses. The value
of Hamilton function is neither density of strain energy nor the density of
complementary energy, but the combination of both, hence nominated the term
density of mixed energy.

The density of mixed energy can have either positive or negative value, in fact
it is indefinite. However, the density of strain energy or density of complementary
energy is positive definite usually.

In analytical dynamics, the Lagrange function is composed of (K.E–P.E),

where K.E and P.E stand for kinetic and potential energy, respectively. In
teaching, it often has the problem why the minus operation, quite a puzzle; however,
the corresponding Hamilton function is composed of (K.E+P.E), this rule is easy

to understand. Now in structural mechanics, the longitudinal coordinate z is
treated as the time coordinate t in analytical dynamics. A parallel mathematical
development with the Hamilton system theory in analytical dynamics works too, and
the situation is similar. Presently the Lagrange function is the density of strain
energy, easy to understand; however, its duality transformed Hamilton function
becomes density of mixed energy, not so easy to understand too. The situation is
just the reverse of the analytical dynamics case. The cause of such reversion
appearing in the dual differential equation is the positive/negative sign difference
before the matrix B .

The above discussion is based on linear system. However, we know from
analytical dynamics that Hamilton system theory is quite general, never limited only
in linear systems. Now the linear structural mechanics and elasticity problems are
considered, it certainly reflects the contents of linear Hamilton system. It is
emphasized here, that Hamilton system theory can also be used for non-linear
elasticity.

So far the general case of n -dimensional displacement q is considered.

The theory is now applied to the problem of Timoshenco beam, for which n = 2 ,
the dual variables are

The physical meaning is the generalized internal force, i.e. the shearing force Q

and bending moment M . The matrices are
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and the density of mixed energy or the Hamilton function is

which is an indefinite quadratic function, with the arguments being the dual
unknowns u, Q, M , but with no derivative with respect to z .

§5.3, Separation of variables, Adjoint symplectic ortho-normality

The solution of the dual equations (5.2.9a,b) can be classified into two kinds of
method, namely, 1) direct integration method and 2) method of separation of
variables. Direct integration method is popular for initial value problems, however,
for two point boundary value problem (TPBVP) presently, the direct integration
may appear serious numerical problem. When dimension n is not large, the
precise integration method can be used. Even applying precise integration method
it still needs great care.   If the TPBVP is solved as an initial value problem, a “brute
force” approach, which may appear numerical problem. In order to get highly
precise result for TPBVP, the corresponding precise integration approach should turn
to solve the Riccati differential equation. Later in section 5.7 the precise
integration method for TPBVP will be described in some detail.

Method of separation of variables in combination with the eigen-solution
expansion method is also very efficient. One may aware the importance of
eigen-solution expansion method by recalling the key-role played by modal analysis
in vibration problems. The combination of precise integration and eigen-solution
expansion methods will have good result for TPBVP. The method of separation of
variables is described first. The homogeneous differential equation is

where H is a Hamilton matrix. The method of separation of variables intends to
find the solution in the form

where Z(z) is a function of z only, but independent on the component number

of vector v, and is a 2n -dimensional vector, independent on z

which represents the variation along ‘transverse’ direction. Substituting (5.3.2) into
(5.2.13) derives

In above equation, the left hand side is independent on z , hence the factor

must be independent on z too and it is obviously independent on the component
number of the vector, hence it must be a constant then and

which is an eigenvalue problem of the Hamilton matrix.

i = 1,2,…,2n
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A 2n × 2n matrix must have 2n eigenvalues The

eigenvalues of a Hamilton matrix has the characteristics as follows. Left

multiplying equation (5.3.4) with J and note that gives

which implies that the transpose matrix of H has the eigen-solution with
eigenvalue and eigenvector Because of the transpose matrix and the

original matrix must have the same eigenvalue spectra. Hence, the matrix H
must have the eigenvalue Therefore the 2n -eigenvalues can be subdivided
into two classes:

the eigenvalues in the class are ordered according to such that the

less negative one appears first.
Hamilton matrix H is asymmetric, hence complex eigenvalues may appear

and duplicate eigenvalues should also be considered. Corresponding to the
duplicate eigenvalue the Jordan normal form eigenvector and its subsidiary
eigenvectors may appear. In structural mechanics (elasticity), Jordan normal form
cannot be avoided. However, the appearance of duplicate eigenvalue of

and the corresponding Jordan form is occasional, such as the simply
supported rectangular plate bending. In developing general theory, such occasional
situation will not be emphasized, but theoretically it is still interested.

The eigenvalue is a special case, which does not involve in the
classification (5.3.5). So the expression (5.3.5) is still not precise enough. In
structural static and in theory of elasticity the appearance of is frequent [23]
and is a simple case for solution. However, it brings complication on developing
theory. Because of so that the symplectic adjoint eigenvectors are

mixed with the Jordan normal form subsidiary eigen-solutions. The solution
methodology for such problem is as follows. The subspace corresponding to the
eigenvalue zero of the Hamilton matrix H should be found first. Then the whole
space is subdivided into zero eigenvalue subspace and its complement subspace.
The two subspaces must be symplectic orthogonal to each other. The symplectic
projection of matrix H to these two subspaces is in block diagonal form. The
submatrix of H corresponding to the complement subspace has no eigenvalue zero,
for which the classification of equation (5.3.5) is appropriate.

The eigen-solutions corresponding to zero in structural mechanics or in

elasticity is the most important part in expansion solution, because these
eigen-solutions do not decay exponentially. The eigen-solutions do

not decay exponentially either, which is quite useful in wave propagation problems
and corresponding to transmission waves. The eigen-solutions usually

represent local vibrations.

§5.3.1, Adjoint symplectic orthogonality

or
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The requirements from structural vibration and stability and other fields
promoted the eigen-problem of a real symmetric matrix undergone deep research.
All eigenvalues are real valued and its duplicate eigen-roots have no Jordan form
eigenvectors. All eigenvectors are mutually orthogonal to each other, so that they
can be ortho-normalized with respect to the mass matrix M . All the eigenvectors
span the complete vector space, any vector in this space can be expressed as the
linear combination of these eigenvectors, which is call the expansion theorem. See
chapter-2.

For Hamiltonian matrix the adjoint symplectic ortho-normality relationship
can be proved instead of the ortho-normality with respect to mass M for
symmetric matrix. For two eigen-solutions of i and j

Follow the derivation below equation (5.3.4) gives Left

multiplying this equation with and taking transpose gives (note, a scalar can be

transposed arbitrarily)

However, left multiplying to the eigen-equation of gives

Adding together with the previous equation gives

The adjoint symplectic orthogonality relationship is derived from this equation as

The case of all eigenvalues are single is considered first. The 2n
eigenvalues are classified as given in equation (5.3.5). For the eigenvector of

eigenvalue there is only one eigenvector (j = n + i) being not

symplectic orthogonal to i.e. symplectic adjoint, that the other 2n–1

eigenvectors including itself are symplectic orthogonal to It is found
that the situation for eigen-solutions parallels to the vibration of gyroscopic systems.

Recall that the orthogonality relationship between two eigenvectors of a

symmetric matrix is which can also be written as i.e. the

inner product of two vectors equals zero. Comparing with the equation of
symplectic orthogonality, the matrix I is changed as J , which corresponds to the
metric matrix changed from Euclidean to symplectic. Therefore the idea of
symplectic inner product is introduced. The symplectic inner product between two
vectors and is defined as

For single eigenvalue case, it should prove that the eigenvectors of adjoint
symplectic pair of eigenvalues must not be symplectic orthogonal, i.e.

based on which, because the eigenvector can have an arbitrary constant multiplier, it
can always reach symplectic normality as expressed in (5.3.8). The proof is based
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on the fundamental theorem of linear algebra [1] as follows.
Proof: Single root implies that the Jordan form equation has no

solution. Thus the fundamental theorem of linear algebra requires any of the

solutions  of its transpose equation are not orthogonal to

i.e. The transpose equation has eigen-solution hence

Selecting appropriate constant factors for the adjoint eigenvectors,

symplectic normalization (5.3.8) is reached. ##
The eigenvectors and have two constant factors, so that one another

condition can be selected as

The combination of equations (5.3.7) and (5.3.8) is termed as adjoint symplectic
ortho-normality relationship. Making use of the 2n vectors as columns

composes a 2n × 2n  matrix

According to the adjoint symplectic ortho-normality relationship it verifies

A matrix satisfying the above equation is called a symplectic matrix. This
equation can be used as the definition of symplectic matrix. Such term had been
seen in previous chapters. Symplectic matrices have the distinguished behaviors,
1)
2)
3)
4)

5)

The product of two symplectic matrices remains symplectic.
The inverse of a symplectic matrix is symplectic.
The transpose of a symplectic matrix is symplectic.
The unit matrix and J are symplectic matrices,
The determinant of a symplectic matrix equals ±1.
The matrix is composed of eigenvectors, evidently the below relation

holds

If the determinant of a symplectic matrix equals –1, which is another leaf other
than +1, then select a column changing its sign derives the matrix determinant to
+1.

§5.3.2, Expansion theorem

Because the 2n eigenvectors are linearly independent, so these eigenvectors
span the complete 2n -dimensional state space.   Therefore an arbitrary vector g
in the state space can be linearly combined with these eigenvectors, i.e.

where are coefficients to be determined. Based on the adjoint symplectic

ortho-normality relationship gives

which is the expansion theorem.
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Eigen-problem of a Hamilton matrix, symplectic orthogonality etc. is derived
from introducing the dual variables followed with the state space approach, etc.
These ideas do not appear in the existing textbooks, such as the series by S.P.
Timoshenco. The description given above is from the method of separation of
variables etc., not much concern on the physical background. However, the theory
is derived from applied mechanics, there must be physical meaning behind. Below
in section 5.4.2, it is proved that symplectic orthogonality closely relates to the work
reciprocal theorem (Betti) [22,95,96], which gives sound physical background.

§5.4, Multiple eigenvalues and the Jordan normal form

The derivation above is based on the assumption of single eigen-root.
However, Hamilton matrix is asymmetric, multiple roots (m -times) and the Jordan
normal form may possibly appear. The analysis should extend to such case. A
theorem for eigenvalue problem [47,48] of a n × n matrix A , as follows: Given a
general n × n matrix A, there must be an n × n non-singular matrix X ,
whose elements can be complex numbers, that

where

and is termed as Jordan block, and there are

eigenvector and subsidiary eigenvectors in X correspond to the

eigenvalue The equations are

for every Jordan block of i = 1,2,..., t . This is a theorem for a general n × n
matrix A .

Hamilton matrix has a featured structure, but the arrangement of all the Jordan
blocks with equations as given in equation (5.4.1) is inappropriate. Let be a

eigenvalue then is also a eigenvalue. In order to
keep its Hamilton matrix structure, the mutually adjoint symplectic dual blocks
should be of the forms

Hence the original form of Jordan block (5.4.1) should be revised so as to fulfill the
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Hamilton matrix form as given in equation (5.4.2a,b). Similarity transformation of
a Hamilton matrix H by means of a symplectic matrix remains Hamiltonian, that

since So

is still a Hamilton matrix.

According to the original composition rule of Jordan form, equation (5.4.1b),
the Jordan block of eigenvalue and the corresponding eigen-equations are

which obviously does not coincide with the feature of a Hamilton matrix. To
change the Jordan block to the form as given in equation (5.4.2b), the order of
(subsidiary)-eigenvectors should be changed, as follows. The subsidiary
eigenvectors should change signs alternatively, i.e. the vectors are

multiplied by –1 but keep the other vectors unchanged. Thereafter reverse their
order. Then the inappropriate Jordan block form can be changed to the form given
in (5.4.2b).

When the eigenvector corresponds to a single root, equation (5.3.2) gives the
solution of the state vector. When Jordan form appears, its class eigenvalue

corresponding state vector solutions are

where triple-multiplied eigenvalue is assumed. Correspondingly,

is also a triple-multiplied eigenvalue. If the original Jordan form solutions are
followed, then

where the order of subsidiary eigenvectors has not been changed, hence it cannot
coincide with the form of (5.4.2b). Using such (subsidiary)-eigenvectors as
columns composed matrix cannot ensure a symplectic matrix. In order to keep
the adjoint symplectic ortho-normality relationship being valid for the matrix
the Jordan block must be transformed to behave as in equation (5.4.2b). The
necessity of such transformation can be seen from the interpretation of the adjoint
symplectic ortho-normality relationship in applied mechanics, see section 5.4.2.

The above description has not mentioned the zero eigenvalue Jordan normal
form. For easily understanding of the zero eigenvalue Jordan form, let us begin
with a simple problem.
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§5.4.1, Wave propagation for Timoshenco beam and its extension

The description above is the general theory for a single continuous coordinate
system. For Timoshenco beam theory, its equation is given as

Expanding the determinant gives

Obviously, from this equation, and are simultaneously eigenvalues, which

coincides the characteristic of a Hamilton matrix. The equation is quadratic with

respect to and the condition for two real roots is always valid

hence has two real roots. However, there are two cases, let

Case-1: when has two negative roots and case 2: when

has one negative and one positive root.

Case-1: the two roots of derive to and therefore the

solutions of state vectors are

which correspond to the solutions

where Obviously, these solutions are two pairs of

transmission waves, the phase velocities of wave propagation are and

respectively, each pair traveling toward +z and –z directions, respectively.
Case-2: there are one negative root and one positive root. The negative root

of gives a pair of transmission waves traveling toward +z and –z

directions, respectively, as before; where the positive root of gives the two
solutions

Such solutions decay as hence the solution resulted behaves the

feature of local vibration, and possibly induces resonance, so that it should also be
concerned. When the transmission wave mixed with such localized vibration mode,
wave induced resonance may appear, and it will be discussed later.

For the special case of zero roots of appears, which gives two

zero root of Hence Jordan form appears and the corresponding eigenvector is
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found from the equation

Solving gives

Next expanding the first subsidiary eigenvector of Jordan form equation

gives

Solving gives

where can linearly superpose the term arbitrarily. The zero

eigenvalue is twice duplicated root, so the related eigenvectors have been exhausted.

From the eigenvector according to equation (5.3.2), the solution of

homogeneous equation (5.2.13) for the state vector is

However, the subsidiary eigenvector is not a solution of the state vector. To find
the corresponding solution of state vector, according to equation (5.4.3) the solution
of differential equation (5.2.13) for the state vector is composed as

According to the theory, and are mutually adjoint symplectic to each

other, and can be verified directly.

For there is the negative root of so

and the corresponding eigenvectors should satisfy the equations

Solving the above equations gives

These two eigenvectors are mutually symplectic adjoint to each other, as can be
verified directly. Except these two symplectic adjoint pairs, the other selection of
any two eigenvectors must be symplectic orthogonal to each other, all these can be
verified directly, although the conclusion is derived from general theory.
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The case of gives the Jordan form for Because of

phase velocity of wave propagation tends to infinity. But the phase
velocity implies monochromatic wave, which does not represent energy transfer
speed, for which the group velocity of wave should be considered. Looking from
the view-point of energy transmission, the group velocity of a wave hump is more
meaningful.

A special case of should be considered, for which the eigenvalue

equation becomes The zero eigenvalue is 4-tuple, which is a typical case
of structural static. The equations for eigenvector and its multiple subsidiary
eigenvectors of Jordan normal form can be combined as

where the first column of the right hand side is all zero (under the header of ),
for which solving the equations gives

where is the eigenvector. Then is used as the second column of right

hand side (under the header of ) to solve the first subsidiary eigenvector

Solving gives Then is used as the third column vector at the right

hand side in equation (5.4.9), (under the header of ). Because this column

vector is symplectic orthogonal to the eigenvector solving the

simultaneous equations gives the second subsidiary eigenvector Then
is used as the fourth column vector at the right hand side in equation (5.4.9), (under

the header of ). This column vector is still symplectic orthogonal to the

eigenvector solving the simultaneous equation gives the third subsidiary

eigenvector Using as the fifth column at right hand side in (5.4.9).

Because this column vector is no longer symplectic orthogonal to the eigenvector

the simultaneous equation has no solution. The Jordan chain ceases here.
Up to here, all the subsidiary Jordan eigenvectors have been found. These

vectors are not directly the solutions of the original equation (5.2.13), however the
solutions of the original equation can be composed with these vectors as follows:

The physical interpretation of these solutions is clear and typical. The relationship
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between the Jordan subsidiary eigenvectors and the solutions of the original equation
is also typical, that in plane elasticity and 3-D elasticity solution of Saint Venant
problems, such composition and physical interpretation will appear over and over
again [23].

§5.4.2, Physical meaning of symplectic orthogonality—work reciprocity

Adjoint  symplectic  ortho-normality  is  a  special  term  of  mathematics.
Interpreting with physical background is helpful for understanding. The original
equation of structural mechanics is (5.2.13). Using the method of separation of
variables, after solved the eigen-solutions and the solutions of

the original equation are composed of

Because the original equation (5.2.13) is derived from a conservative system, for
which the reciprocal theorem of work of Betti can certainly be applied.

Taking cross-sections at z = 0 and and the free body is
considered. Corresponding to the two solutions of (5.4.11), there are the dual
vectors at the cross-sections and for and also

and for respectively. Using work reciprocity needs to calculate the

work done by forces of solution i to the displacements of solution j , and the
work done by forces of solution j to the displacements of solution i , respectively.

The work done by the cross-section forces of solution i to the displacements

of solution j is

where the negative sign is because of cross-section force has reverse direction.

Such as from (5.4.11) and On the other hand, the work

done by cross-section forces of solution j to the displacements of

solution i is expressed as

According to the work reciprocal theorem, they are equal, therefore

From which it concludes that either or and must be

symplectic orthogonal. This proof is from structural mechanics, which explains the
interrelation between reciprocal theorem and adjoint symplectic orthogonality,
which gives clear physical meaning to symplectic orthogonality.

The derivation above is based on the assumption of single eigen-root. Next,
the case of duplicate eigenvalue of Jordan form is to consider. In this case,

the adjoint symplectic orthogonality relationship can also be proved by using the
equations (5.4.1~4), with clear physical meaning. The equations for

Jordan normal form of multiple eigenvalues are
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Obviously, the subsidiary eigenvectors can arbitrarily superpose on

According to (5.4.13), the original equation (5.2.13) has solutions

To verify the symplectic orthogonality with other eigen-solutions, assuming
there is eigen-solution with and the solution of original

equation is

Using work reciprocity theorem to the solutions in (5.4.14) successively, for which
the method is as before, it can be proved that is symplectic orthogonal to all the

subsidiary eigenvectors The same method proves that all the

(subsidiary) eigenvectors are mutually symplectic orthogonal, which is under

the condition of

Turn to the symplectic adjoint eigenvectors for

which the multiplicity of eigenvalue must also be According to Jordan

form equation (5.4.2)

The solutions of the original equation are

Note that the equation

has no solution exist, otherwise the Jordan chain will not cease here. Based on the

fundamental theorem of linear algebra, as before, must not be symplectic
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orthogonal to the inhomogeneous vector so that they compose a pair of

symplectic adjoint vectors. Similarly, and must also be mutually

symplectic adjoint to each other. Below, using work reciprocity proves further.

First, the work reciprocal theorem is applied to and and it proves

that symplectic orthogonality between and any vectors in

are all valid. Using the work reciprocity theorem to and proves that

are symplectic orthogonal to all the vectors The

symplectic orthogonality relations are symmetric to the adjoint Jordan form series of
subsidiary eigenvectors. Note that, if a vector in series is proved symplectic

orthogonal to the adjoint series then the reverse will also be true.

Above, it proves only the symplectic orthogonality of eigenvector to the

symplectic adjoint Jordan series eigenvectors. Then using the work reciprocity

theorem to and based on the proved symplectic orthogonality relations

and that can superpose an arbitrary it shows that is symplectic

orthogonal to all the adjoint subsidiary eigenvectors

except for which that and

are mutually symplectic adjoint pair. However, should change its sign

(multiply –1) to reach symplectic normality. Using the work reciprocal theorem

between and again verifies the symplectic adjoint relation between

and

Further, the work reciprocal theorem should be applied between and

Neglect the details, the result obtained is that and are

mutually symplectic adjoint pair, and both are symplectic orthogonal

to their other adjoint subsidiary eigenvectors, etc.

After all, the subsidiary eigenvectors are adjoint symplectic

ortho-normality groups with the subsidiary eigenvectors. However, the

order should be reversed and also alternatively multiplied with –1, as described in
section 5.4. ##

The above proof for Jordan normal form is under the condition of

However, there is the case of zero eigenvalue solutions. Zero eigenvalue is very
important as shown in the Timoshenco beam solutions. In general, zero eigenvalue
Jordan normal form definitely appears for a class of structural static problems. The
(subsidiary) eigenvectors are symplectic orthogonal to other eigenvectors of
non-zero eigenvalues. However, the set of eigenvectors with zero eigenvalue itself
composes adjoint symplectic ortho-normality group, which is quite different to the
set of eigenvectors of non-zero eigenvalue. The set of eigenvectors with zero
eigenvalue must have even number of components, i.e. is an odd number. The

equations for them are
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Correspondingly, the solutions of the original equation are

It is to explain here, that for a subsidiary eigenvector or higher order, it may

substitute

where is arbitrary constants, such that the equation set (5.4.13) is still satisfied.

In order to prove the adjoint sympectic ortho-normality relationship among
these Jordan chain subsidiary eigenvectors, the work reciprocal theorem can again
be applied, as follows. First, making use of the work reciprocal theorem to the

solutions and with two cross-sections at z = 0 and gives the

equation

the left hand side term cancels the first term at the right hand side. Because
can be selected arbitrarily, the other terms must equal to zero individually. So,

except vector the eigenvector must be symplectic orthogonal to all
other subsidiary eigenvectors in this Jordan chain.

The assertion of must be symplectic adjoint to can be proved as

follows, because after there has been no Jordan subsidiary eigenvector, so the

equation has no solution. According to the fundamental theorem of

linear algebra, the solution of equation should not orthogonal to the

vector i.e. must not be zero, i.e. symplectic adjoint.

The next step is to prove the symplectic orthogonality of vector with

others in the Jordan chain. Selecting solutions and using the work

reciprocity theorem, because the eigenvector has been proved symplectic

orthogonal to all the Jordan chain member until hence the derivation will

show that is symplectic orthogonal to all the members of

Making use again the work reciprocal theorem to solutions and verifies
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which expresses that and are mutually symplectic adjoint. The

symplectic orthogonal relation for and can be reached by selecting the

constant appropriately in the equation (5.4.19).

Thereafter, the symplectic orthogonality between the subsidiary eigenvector

and all the vectors in Jordan chain, etc. is to prove. After all, continuously
using the work reciprocal theorem in combination with the appropriate selection of

the constants in equation (5.4.19), the symplectic adjoint between and

and symplectic orthogonality between and all the other vectors in the Jordan

chain can be proved. The steps are similar, and the details are neglected [23]. ##
Zero eigenvalue appears frequently in structural static and also in elasticity,

especially the Saint Venant problem. For wave propagation, zero eigenvalue
solution appears only in some special case.

§5.5, Expansion solution of the inhomogeneous equation

The eigen-solutions described above are for the homogeneous differential
equations (5.2.10). The important application of the eigen-solutions is the
expansion solution using eigenvectors. The inhomogeneous differential equation
(5.2.9) can be solved by the precise integration method or by the eigenvector
expansion method. Rewrite the inhomogeneous differential equation (5.2.9) as

where the external force vector h(z) is given. Based on the expansion theorem,

because h(z) is a given function, so that the functions and can be
determined by the adjoint symplectic ortho-normality relationship and are known
functions. Substituting the above expansions into (5.5.1) and using the adjoint
symplectic ortho-normality relation gives

These equations are derived under the assumption of single eigen-roots, however,
even the Jordan form appears, these equations still valid. These equations have
been de-coupled as possible. The solution for these equations has standard
methods, the general solution of Duhamel integration

can be applied, where are constants to be determined, such as by means of

the two end boundary conditions. The functions and can be



202 Duality system in applied mechanics and optimal control

determined by the adjoint symplectic ortho-normality relationship

Combining eigenvector expansion and precise integration method, effective methods
can be developed for solution.

Note that the non-stationary stochastic excitation of random vibration analysis
for large-scale structural analysis system described in last chapter is based on the
expansion solution.

§5.6, Two end boundary conditions

The partial differential equations of elasticity are of elliptic type, so that the
appropriate boundary condition should be assigned along the contour surrounding
the domain. For single continuous coordinate system problem, it reduced to the
boundary conditions assigned at the two ends. In applied mathematics, it is often
called as Two Point Boundary Value Problems or abbreviated as TPBVP, especially
in optimal control theory.

The 2n first order ODEs has 2n integration constants. The two point
boundary conditions should supply 2n boundary conditions, with each end n
conditions. For Timoshenco beam theory, the usual boundary conditions are
supplied as

two conditions for each end. These are typical end conditions, and there are other
forms such as elastic supported etc.

A number of solution methods had been developed. The precise integration
method to solve the Riccati differential equation is one among them [41,97~103],
which will be given later. The precise integration gives solution up to computer
precision, and its importance is also because of the analogy to optimal control theory.
The eigenvector expansion method is another effective method. Especially, the
eigen-solution expansion method can be applied to the two or three dimensional
elasticity problems.

The TPBVP supplies n boundary conditions at each end. A popular method,
initial parameter method or shooting method had been developed for a long time and
can be described as follows. Except the given n conditions assuming another n
parameters at one ‘initial’ end, i.e. n initial parameters, solving the set of 2n
differential equations and afterwards fix the n initial parameters with the another
n end conditions given at the other end. Such initial parameter method is not
always effective, that when the real part of the eigenvalues is large, the numerical
ill-conditioning may be very serious.

Using eigenvector expansion method to solve the TPBVP should combine the
two end boundary conditions and establish 2n simultaneous algebraic equations to
solve. There are a number of methods to establish the equations. Because of the
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system is conservative, the matrix of the 2n algebraic equation has special feature,
i.e. the matrix is symmetric, which is the behavior of reciprocity of a conservative
system. A variational method is supplied here which can ensure the symmetry of
equations.

The boundary condition (5.6.1) is expressed as force equals zero or
displacement equals zero, which can also be written as given force or given
displacement, respectively, and which can be expressed as boundary conditions, on

or on in the variational principle, respectively. For two ends z = 0 and

the n boundary conditions at each end can be of the mixed type, i.e. a

part of the conditions being given force           and the other part of conditions being

given displacement         so that the boundary should be distinguished as

and for the two ends and respectively. Assuming these

conditions can be expressed as given the components of dual vectors q and p,

that means the n conditions of components

where the expressions looked like given all displacements and forces, however, the
marks and represent that it is for the appropriate components.

A mixed energy variational principle is to propose, such that the dual equations
(5.2.9a,b) and also the boundary conditions (5.6.2) are all involved. This
variational principle is

Carrying out the variational derivation, that the integration term results the dual
equations, so that only the term for two ends are remained as

Because of the arbitrariness of and on and on respectively, all
the boundary conditions of (5.6.2) are obtained. Therefore the variational equation
(5.6.4) can be used to substitute the assigned conditions of (5.6.2).

Using the eigenvector expansion method, the differential equations have all
been fulfilled, hence the variational equation (5.6.4) is remained to replace the
boundary condition (5.6.2). Note that the variational equation is for real vectors
however, the eigenvectors may be complex valued. According to that the complex
conjugate vector of the complex eigenvector is also an eigenvector, so that their

combinations are again real vectors. Let denote eigenvectors that

then at both ends
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where represents the special solution of inhomogeneous differential equation

having no arbitrary constant, and are arbitrary complex constants
to be determined. Note that the solutions used for the variational principle should
be real valued, the special solution can be considered real valued. Hence if

is a complex eigenvalue then its complex conjugate eigen-solution

must be arranged contiguously, so that where

the upper bar - represents complex conjugate. Therefore the number of arbitrary
real constants is still 2n. The case of needs special attention, that in
such case the complex conjugate is really the symplectic adjoint, hence to arrange

the complex conjugate pair contiguously is impossible. However, let the
real solution can still be achieved and the eigenvectors have the form

where is a real parameter, its physical interpretation is the wave

number of transmission wave solution. The solution corresponds to the

transmission wave towards +z axis with wave phase velocity and the

solution corresponds to the transmission wave towards –z .

For the problem of given displacements at the two ends z = 0 and

there is no boundary, hence the variational principle derives to the
boundary conditions in variational form as in equation (5.6.4)

When solving with eigenvector expansion method, the varying parameters become
and Let the unknown parameters be denoted as vectors

and the functional is a quadratic function of a and b . The equation
corresponding to the variation of is derived as

where C and D are n × n matrices, the coefficients are given by

and
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On the other hand, the equation derived from      is

where E and F are also n × n matrices, the coefficients are given by

and

Equation (5.6.8c,d) are the canonical equations for boundary problem when the ends
being given displacements. Solving the parameters solves the

problem.
Several fundamental behaviors should be explained. First the simultaneous

equations are symmetric. Examining the matrix C that its coefficients are
symmetric, such as From the above equations for the factors in the

parenthesis of and are the same, further the equation must

be verified, which is just the verified symplectic orthogonal condition.

Hence, C is a symmetric matrix. Similarly, the matrix F can be proved
symmetric too.

Next the relation should also be verified, which is again ensured by
adjoint symplectic ortho-normality. The pairs of symplectic adjoint eigenvectors
appear just at the diagonal elements of matrices D and E , however, the multiplier
in the bracket are all zero. To verify such as note that the bracket factors

in the above equations for and are the same, so that it needs only to check

that which is just the symplectic orthogonality condition

proved before.

Another problem is complex number arithmetic. The coefficients of complex
conjugate eigenvectors are also complex conjugate pair, so there are still two real
parameters to be determined. Therefore the complex conjugate pair eigenvectors

can be composed of two real vectors. The real pair of vectors (real and

imaginary parts of the eigenvector) is still symplectic orthogonal to other
eigenvectors, so that the symmetry of the canonical equation keeps unchanged.
The verification is as follows: let then where
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and denote the real and imaginary parts of the eigenvector. The symplectic

orthogonality condition between and derives i.e. the

symplectic orthogonality behaviour keeps unchanged. The complex conjugate
eigenvectors and have their symplectic adjoint eigenvectors

and note and The

vectors and are symplectic orthogonal, and using symplectic adjoint

relations

The symplectic adjoint relations of to and to are verified, all the
others are symplectic orthogonal. Hence, using real vectors (they are not
eigenvectors now) to do the computation works too.

The above example derives the canonical equations for the case of that the two
end boundary conditions are given displacements. According to practical problem
on hand, the proposition of boundary condition is different, such as given
displacements at the end z = 0 , but given forces at the end (looked like a

cantilever beam). Based on the variational equation (5.6.4) for boundary
conditions, the canonical equations for various boundary conditions can always be
proposed.

Expansion solution with eigenvectors is one of the effective solution methods,
for which the key step is to solve all the eigen-solutions of the Hamilton matrix.
However, such requirement is not always easy to achieve numerically, only when
there is no Jordan normal form appearing then the algorithm (see section 2.3.3.3) is
reliable. When the Jordan normal form appears the numerical instability may
appear, which may destroy the numerical results. The Jordan normal form itself is
numerically unstable, which comes with the theory and causes numerical difficulty.
However, there is effective method unaffected from the possible Jordan form, i. e. the
precise integration method. Even the Jordan form appears, the numerical result
computed by the precise integration method still gives numerical results up to the
computer precision, which is given in the next section.

§5.7, Interval mixed energy and precise integration method

In the previous sections the methods of separation of variables and eigenvector
expansion solution etc. are used to solve the problem, which is termed as the modal
analysis method. Although the combination of methods given above is quite
effective in the case of no Jordan form appears, however, there are other good
methods available. Such as for multiple degrees of freedom vibration system,
except the modal analysis method, the time step integration method is used quite
frequently. There have been tremendous researches on the method of direct
integration algorithms, such as the Runge-Kutta method, the Hobolt method, the
Newmark method, the method, the central difference method, etc. They
are all FDM (Finite Difference Method) approaches, but the finite difference
approximation is always accompanying with error, and has also numerical problem
such as stiff, stability etc., not so ideal.
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Therefore, the precise Integration method, which has been given for initial
value problem in the introduction, was extended to solve the TPBVP along space
coordinate. The precise integration method was first proposed for initial value
problems [22,26,27]. In contrast to the usual FDM type algorithms, for which the
numerical result is approximate, precise integration uses the full computer precision
in the algorithm, so that the accuracy of numerical results is limited only by the
precision of the host computer.

The precise integration method was subsequently extended to cover two-point
boundary value problems (TPBVP) [97~102]. The Riccati differential equation
closely relates to TPBVP and so the use of precise integration to solve the Riccati
differential equation is applied, for which the numerical solution again achieving full
computer precision, which is very attractive. Especially, the precise integration
method does not care about the possible Jordan normal form, it always gives highly
precise numerical results.

The precise computation has two cruxes, namely

1) Using algorithm to subdivide the interval length extremely small, such
that the approximation error is beyond the computer real number error

2) Keeping track of the incremental part of the related matrices or vectors,
rather than their total value, such that the round-off error is reduced to the last
digit on the host computer

The precision of numerical result obtained from the precise integration method can
approach the real value precision of the host computer, very attractive behavior.

§5.7.1, Displacement method analysis

The equation (5.2.2) and (5.2.3) give the Lagrange function and the minimum
potential energy variational principle. Since there is the Lagrange function, so that
the minimum potential energy variational principle is treated as the Hamilton
variational principle in analytical dynamics. The canonical equation form in
analytical dynamics is also used. Therefore the longitudinal coordinate z is
naturally corresponding to the time coordinate t in analytical dynamics. Let the
integration interval and the respective left and right ends in the variational functional
(5.2.3) be changed to with Now is treated as an

interval (segment), for which the left and right ends are also treated as

variables. The potential energy density in the interval is the Lagrange function and
the physical meaning of the integration

is the deformation energy of the interval, where q is a n -dimensional

displacement vector. Deformation energy interpretation is from structural
mechanics. Mathematically (analytical dynamics), the interval deformation
energy is the action function.

The action function is certainly a function of both ends and of the

interval, see section 1.10, and also relates to the end displacements at the boundaries
and As the boundary conditions are assigned as given the two end

displacements and then equation (5.7.1) gives the interval deformation
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energy If the interval is treated as a substructure, then the two

ends and are the connections to the outside. The combination of two

displacement vectors and is termed as the external displacements.

If the interval is free from external forces, the external displacement

uniquely determines the internal displacements, internal forces etc. of the interval,
especially the force vectors and at both ends and Therefore the

interval internal displacement q is expressed as a function of and

substituting q into equation (5.7.1), carrying out the integration then the interval

deformation energy is obtained, which is a quadratic function of and is

written as

where Denote for later use. These

matrices are all functions of and but for simplicity, the variables in

function formulation are often omitted. For static problems, no dynamic inertia
energy exists, and are symmetric and positive definite, and are the end

stiffness matrices at and When dynamic energy is considered, these

matrices become dynamic stiffness matrix [46], which may be indefinite but still
symmetric.

The above representations have not included the external forces; hence the
interval deformation energy is a homogeneous quadratic function. However, if
external forces are considered, then the total potential energy will involve the linear
terms of and and becomes

where and are induced from the internal distributed external forces within

the interval, or from the external forces directly acted at and respectively.

So, are independent on the end (external) displacements

Usually, the whole interval length is subdivided, by the stations

as a chain of intervals, such as

totally sub-intervals linked end to end. In principle, the lengths of various

sub-intervals can be arbitrarily selected, however, usually uniform length
subdivision is preferable,  i. e. is independent on k . Treating the

interval two end coordinates and as variables makes the interval being an

arbitrarily long contiguous interval located inside

Two adjacent intervals can be combined as a longer interval see

figure 5.2. After combination, the resulted interval has the two ends at and

and the station becomes internal and so is its displacement vector which

should be eliminated in the combination. The equations for elimination are derived
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from the minimum potential energy variational principle. Let the deformation
energy be expressed as

where the subscripts a and b represent left and right ends, respectively. Even
for the interval the same notation is still used. After combination, the

potential energy expression has still the same form as

where the subscripts a and b for the matrices K and vectors f are again
considered as the left and right ends, respectively. The superscript (c) represents

the combined interval. Using minimum potential energy variational principle
derives

where sta. abbreviates taking stationary value. Therefore the equation is given as

Solving and substituting back into the expression of gives the

deformation energy of the combined interval Comparing with the general

form of equation (5.7.4) gives

and

These are the equations for the elimination and combination of adjacent intervals in
the displacement method formulation.

These equations are fundamental in the algorithm of sub-structural analysis
program system. This algorithm uses the displacement vector as basic variables, so
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that it is compatible with the existing FEM program system, for which the
displacement method algorithm of sub-structural analysis is the most preferable
choice. However, in some special case it has serious problem. Such as for beam
element analysis, when the mesh becomes very dense, the numerical ill-conditioning
due to round-off operation will destroy the precision of numerical results required.

Because the numerical ill-conditioning problem mentioned above, the stiffness
matrix method does not fit the requirement of precise integration method. Later the
interval mixed energy will be introduced, which corresponds to the mixed variable
system. The numerical behavior will again be analyzed in detail for precise
integration method. Here, an explicit reason of ill-conditioning should be pointed
out, that in the equations (5.7.5a,b) there is the subtraction for the matrices at the
right-hand side. The potential danger of this subtraction is that the trunk part might
be cancelled, and the remaining value is only the negligible tail part, therefore the
numerical precision is seriously dropped.

§5.7.2, Mixed energy, the dual variables

Displacement method is used in the above analysis, that the two end variables
and at and respectively, are all displacement vectors. However,

similar to the configuration space in analytical dynamics, the displacement method is
not unique. The generalized momentum p was introduced in the Hamiltonian

system in analytical dynamics and it is treated equally important with the generalize
displacement q . Combining q and p together composes the state vector with

dual variables. The dual variable can also be introduced in structural mechanics
and combining with the displacement vector gives the dual variables space, and the
mixed energy is introduced correspondingly. Here again the case of no external
force is considered first, the case of external force existing can be seen later in
section 5.9 and 6.5.

According to the expression of deformation energy U , equation (5.7.2), the
internal force vector is introduced as the dual vector

Note the negative sign of which is the requirement of internal force, such that

when there is no external force, The negative sign means that the

action force and reaction must have reverse direction. Substituting the expression
of into the above equations gives

Writing as complete differential form of the interval deformation energy gives

This form uses purely displacement as arguments, so that termed as displacement
method. Let the interval mixed energy be defined as

where the vector at the right hand side is not an independent variable, which

should be considered solved from equation (5.7.8b) as
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Substituting into equation (5.7.10) eliminates then the mixed energy V of the

interval is obtained as a function of and only. It is seen that the

mixed energy formulation (5.7.10) is obtained from the deformation energy via the
Legendre transformation with respect to the variable The meaning of mixed
energy can be seen from the following partial differentials

where the last equality is from the equation (5.7.7b), and also

which uses also the equations (5.7.7a,b). Hence the complete differential of mixed
energy is

The above equation for complete differential does not limit to that U being a
quadratic form. For the special case of a linear system, U is a quadratic form.
Substituting into equation (5.7.10) gives

where

which gives the expression of mixed energy in the case of no external
forces. Substituting the mixed energy expression (5.7.12) into (5.7.11a,b) gives the
homogeneous dual equations

The above derivation is mainly from mathematical deduction. However, the
physical interpretation for these matrices will be beneficial for understanding.

Substituting into equation (5.7.14a), i.e. under the configuration of

end-a clamped, the equation reduces to the case of a force vector acted on the

end-b inducing displacement at end-b. Hence G is the flexibility matrix at

end- b under the configuration of end-a clamped while end-b free.
Secondly, substituting into equation (5.7.14b) gives the force vector

at the end-a under the configuration of given displacement at end-a with

end-b free from force. Hence Q is a stiffness matrix at the end-a under the
configuration of end-b free and end-a given displacement. The negative sign
comes from the force having reverse direction with respect to the displacement

Further, let the equation (5.7.14a) determines that F is the transfer

matrix of the displacement toward the displacement with the end-b being

free from force.
It is seen from the physical interpretation above, that the structural model is
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always given displacement at the end-a and given force at the end-b. That is a
“cantilever beam” type boundary condition. Therefore the mixed energy
expression corresponds to the “cantilever beam” model.

Go back to section 5.2, there is the mixed energy density (5.2.11) or Hamilton
function, which must have close relationship with the mixed energy (5.7.10) of an
interval. Also the interrelationship of the dual vectors q and p between the two

derivations should also be clarified. In section 5.2 the discussion is for the
continuous coordinate z , and the mixed energy density is introduced from
deformation energy density by the Legendre transformation. In the present section,
the deformation energy of the interval is obtained from integrating the deformation
energy density for the interval thereafter introducing the end dual vector

(force) by the equation (5.7.7a,b) as well as the interval mixed energy. The
interrelationship between the two similar derivations should be clarified.

The displacement vectors and should first be considered. From

definition, they are the displacement vector q(z) at the stations and

respectively,  i.e.  and

Next, the relationship between two end dual vectors and the dual

vector p(z) of continuous coordinate z , see equation (5.2.6), is to clarify. The

interval deformation energy can be calculated directly from equation (5.7.8) and

(5.7.4) as On the other hand, integrating the deformation

energy density gives

Comparison determines that and are again the dual vector p(z) at the

stations and respectively,  i.e. and

Further, the interval mixed energy should be related to the mixed energy
density. From the definition of mixed energy density equation (5.7.10),

where H is the mixed energy density as given in equation (5.2.11). The
derivation here is only for the case of no distribution force, corresponding to
homogeneous equations. For the case of external force not equal to zero, the
superposition principle can be used, and will be discussed later.

Although the equation (5.7.15) has been given, which expresses that the
interval mixed energy is obtained from the integration of Hamilton function. There
are matrices A, B and D in H, and there are matrices F , G and Q in the
quadratic form (5.7.12) of interval mixed energy, they are certainly interrelated.
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The equation (5.7.15) implies, that the matrices F, G and Q can be Integrated
from A, B and D. However, to carry out this integration, the method of
precise integration should be used. The computation of F, G and Q is
unrelated to external forces, hence the precise integration method is introduced for
no external force case first, thereafter discuss the external force issue.

§5.7.3, Riccati differential equation and its precise integration

The interval mixed energy is introduced in previous section, in order to
compute the interval mixed energy matrices and

the differential equations for these matrices must be derived first, with the matrices
A, B and D being given. In the derivation below, A, B and D can be
functions of coordinate z .

Let the interval right end coordinate be increased to in the

homogeneous dual equation (5.7.14), with infinitesimal; with and

unchanged. The right end force is simultaneously increased to

at for which the increment is compatible to the
differential equation of the continuous coordinate z . Hence inside the interval the
solution of q and p have no change (in first order). Certainly does not

change, and the displacement at has no change either. Only because

increment at the end- b, the right end displacement becomes with

So that the differential equations are derived as

Using differential equation (5.2.10) gives

But the three vectors and are not completely independent.

Eliminating by substituting with equation (5.7.14a) gives

Because the values of and correspond to assigning the two end boundary

conditions and can be given arbitrarily, hence the three simultaneous PDEs below
are resulted

The fourth equation is only the transposition of equation (5.7.16a). Because the
matrices D and B are symmetric, thus the matrices G and Q keep
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symmetric too, i.e.

The above three differential equations are derived on keeping the left

unchanged but let increase On the contrary, let keeps unchanged

but let increase after similar derivation it gives

These are the two sets of three first order simultaneous PDEs for the three
matrices and According to the theory of ODEs,
three initial conditions must be supplied. These boundary conditions can be
obtained via the limiting value of

The above derivation does not require that the given matrices A, B and D
being coordinate z independent. But when A, B and D are constant matrices,
the matrices and depend only on the interval length

and can be written simply as

similarly for G, Q . In such case, the equations (5.7.16) and (5.7.17) are reduced
to

and

and the initial conditions are

The above two sets of ODEs looked quite different to each other, but they are
really the same problem. It is seen that equations (5.7.16’b) and (5.7.17’c) are the
Riccati differential equations. The differential equation itself is really non-linear
matrix differential equation. If finite difference approximation is used to solve the
non-linear set of Riccati differential equation, then there are quite a number of
difficulties. However, the Riccati differential equation is derived from a linear
system, therefore the method of precise integration can definitely be used for
numerical solution, for which the results obtained can reach almost the host
computer precision.

From equations (5.7.16) and (5.7.17) it is further seen that when the matrices
A, B and D are coordinate z independent, then the interval matrices
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and satisfy the relations

§5.7.4, Power series expansion

After derived the set of simultaneous differential equations, how to find its
numerical solutions for the non-linear ODEs is a challenging problem. However,
when the length of interval becomes extremely small, the method of Taylor

series expansion can be applied smoothly and extremely precisely. One of the
cruxes of precise integration method is to subdivide the step size extremely small.
For the uniform subdivision of the whole interval (5.7.3), the sub-interval length

is further subdivided into extremely small interval as

Then the interval matrices are expanded into power series as

where              i=1 ~ 4, i.e. the coefficient matrices of Taylor expansion, are all

n × n matrices. Substituting equation (5.7.20a) into (5.7.16’b), and note that

in the equations should be changed as comparing the terms of various powers of
successively gives

Substituting the expansion of equation (5.7.20a) into the differential equation

(5.7.16a’), comparing the various powers of gives

Afterwards, for the power series expansion (5.7.20c) of matrix based on the

differential equation (5.7.16’c) it gives

A different set of equations can also be derived using (5.7.17’c), but they give the
same numerical results. The merit of power series expansion is that when the step
size is extremely small, the expansion up to fourth power and the term neglected

is which has been extremely small quantity. If the matrices of mixed

energy of interval length are of the order of O(1), then because of
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the relative error of expansion (5.7.20) is up to the order of
Note that the significant digits for the double precision real number are 16 decimal

digits. The neglected term of has been beyond the double precision for the
computer today.

§5.7.5, Interval combination

The interval combination and internal variable elimination are fundamental in
sub-structural combination algorithm. Equation (5.7.5) has supplied the
fundamental formulae; however it is the expressions of displacement method. The
displacement method may induce serious numerical ill-conditioning problem,
especially when the mesh subdivision becomes extremely dense as given in equation
(5.7.19). The precise integration method takes benefit from using extremely dense
meshes to reach high precision. On the basis of usual small interval length a

refined mesh is introduced by further subdividing the length into

extremely dense intervals. For such extremely dense mesh size the displacement
method cannot be applied properly. The merit of mixed energy representation is
that it is insensible to the mesh size, using dense mesh can increase the numerical
precision. Therefore the mixed energy representation is suitable to the precise
integration method.

The precise integration method needs the equations for interval combination in
terms of mixed energy representation. The mixed energy representation of an
interval is fundamentally the same algebraically to the deformation energy
representation, that the two representations can be transformed to each other. The
interval combination equations for mixed energy representation can be derived by
means of variational method.

Let the two adjacent intervals be and for which the
complete differential forms are, respectively

The combined interval is       and denoted by subscript c , for which the
complete differential form is

Therefore the mixed energy of the combined interval should be

where sta. stands for the vectors and taking stationary value.

Substituting the expression of V , i.e. the equation (5.7.12), into gives
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Hence derives the interval combination equations for mixed energy representation

It is seen from the set of equations, that the matrices and keep to be
symmetric matrices. Note also, that the addition sign appears in the right hand side
of the latter two equations. In the case of structural static problem or frequency
domain analysis with low Q and G are always positive definite matrices,
the additional sign ensures the numerical stability of the algorithm.

In displacement method when is extremely small, the matrices
and in potential energy representation are of the order of

If the computation is carried using matrices K , then initially the matrices

are of the order of With the elimination going on, the interval length will
increase to be the usual length and the matrices K will decrease to the order of
O(1). It is taken extremely small as in the precise integration method then the
significant digit will be seriously dropped. However under the mixed energy
representation, the initial value of G and Q are zero matrices, and when is
extremely small and hence it does not matter for very
small The matrices Q and G are positive definite when is not large,
which implies from the equations (5.7.23b,c) that these matrices are always
increasing and can never have the ill-conditioning problem. Even though when
is not so small, the matrices Q and G cannot ensure to be positive definite, but
they initially are of the order of and will not be dropped as in the

potential energy case from the order of
But there is still the problem of that when is very small, the matrix

tends to be a unit matrix. It has been explicitly expressed in the expansion equation
(5.7.20a). Using equation (5.7.23a) computing directly gives again
approximately a unit matrix. The unit matrix is a common part, so that the main
difference is the part of Hence, the part should be taken off from the
matrix in numerical computations, that when is extremely small the

concentration should be put on the matrix in equation (5.7.20a), rather than on
F. This step is the second crux of precise integration: extract the unit matrix
from matrix F and concentrate only on its incremental part Therefore
when the equation (5.7.23) is revised with two intervals of length are combined
to be an interval of length the following equations should be used instead of
equations (5.7.23a~c)
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This set of equations can be used for very small interval length, especially in the
algorithm to compute the fundamental interval matrices of length

§5.7.6, Precise integration for the fundamental interval

The Riccati differential equation is non-linear. The purely analytical method
can only solve one-dimensional n = 1 problem. For multi-dimensional problem
only numerical solution can be used. The eigenvector expansion method gives
analytical solution in expansion form, as given in the section 5.8, however the
eigenvectors need also to be solved numerically.

The coordinate-invariant system is to be solved first, for which the system
input are the matrices A,B and D in mixed energy representation, or the
matrices and in deformation energy representation, these input

matrices are independent on the coordinate z .
Numerical solution cannot give results at all coordinate z , but can only give at

grid points. Uniform grid point scheme is popular, for which the fundamental
length of intervals is reasonable. In precise integration, the selection of length

is quite versatile with comparison to the FEM or FDM.

After selected the fundamental interval length (step size), which is only for

supplying data of output. Similar to the case of precise integration for exponential

matrix, the real computation uses the step size as further subdividing into

extremely dense step size, which is denoted as

which has been given a number of times before. For step size, power series
expansion can reach the double precision real number representation on the host
computer. For finding the interval matrices and of

fundamental length N times interval combination performs the computation.

The algorithm is given in meta-language as:

Comment: F, G, Q return the interval mixed energy matrices

[Give dimension n and n × n matrices ]

[Compute A,B,D from (5.2.8)]
[Select step size select N , then is obtained, see (5.7.19)]

[Using (5.7.20-21), generate and keep in ]

for (iter = 0; iter < N; iter + +) {

[Using (5.7.24’) compute ]

}
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Except the power series expansion (5.7.20), all other derivations are exact.
For the power series expansion, 4-terms approximation is used with the precise step
size        for which the error has been beyond the double precision representation of
real number of the host computer. Therefore for TPBVP, the numerical results of
precise integration, with the fundamental length for Riccati differential equation
has reached the host computer precision.

Having found the mixed energy matrices of fundamental
interval then arbitrary two point boundary value problem can be solved. For

problem with finite length interval i.e. number intervals of length
being connected end to end, the simplest solution method is step by step integration

times to find the mixed energy matrices of the interval for which the
interval combination equations have been given in equation (5.7.23). It is to
mention here again, that the interval internal force has not been considered yet.

To get the solution, boundary conditions are necessary. Presently, TPBVP is
appropriate, since it gives n conditions for both the ends, totally 2n conditions.

The simplest boundary condition is, at the z = 0 end, i.e. given

for the interval while at end, i.e. given at the
right end of whole interval. In such case, the matrices F,G and Q in equations
(5.9.14a,b) for the whole length interval has been computed. There are
2n simultaneous algebraic equations for (5.9.14a,b) with the four n -dimensional
vectors of and If and are given, then direct substituting

gives and After computed two end state vectors, the state vectors of the
internal points can be computed by solving with the equations (5.7.22a,b).

The algorithm given above is based on the interval mixed energy, so as to avoid
the numerical problem. However, after the mixed energy matrices

and of the fundamental interval are computed with the precise
integration method, transforming to the deformation representation then continuing
with the displacement method is also a good choice. Because is not such a
small interval as is, so no serious numerical problem will appear.

Equation (5.7.13) gives the transformation from stiffness matrices

and of displacement method to the mixed energy matrices F,G and Q .
The reverse transformation equations are

and in equations (5.7.5) and (5.7.6) the interval combination equations have been
given there.

The displacement method is easiest to understand and to operate, and FEM
uses the displacement method in majority cases. After consummated the precise
integration computations for the fundamental interval transforming back to the
displacement method is also an effective and efficient approach. However
continuing the computation in the mixed variable space is also effective and efficient.
The description below remains in the mixed variable system.
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The boundary condition of elastic support at the end is an interested

subject to discuss. Let the elastic support condition be

where is a given n × n symmetric non-negative definite matrix, usually called
the stiffness matrix of an elastic support. The negative sign in equation (5.7.27) is
due to that the sign convention of the internal force p was defined by the negative

sign of equation in equation (5.7.8a) or Q in equation (5.7.14b).

An elastic support corresponds to a fictitious ‘interval’, for which the mixed
energy matrices can be given as and For it is an end

elastic support, so that its effect influences the stations i.e. no effect will

transfer to hence and can be selected arbitrarily. The stations of

are meaningless. The fictitious interval is introduced based on physical

reasoning, correspondingly the mathematical derivation can be found in section 6.6.
Substituting and

into the equation (5.7.23c) gives the interval mixed energy

matrices for the interval

The semi-closed interval means that the concentrated elastic support matrix

at the end is included. The matrix S(z) is the z end stiffness matrix of

the semi-closed interval
Another kind of elastic support problem is an elastic support at the end of

z = 0, that

where the given matrix is again symmetric non-negative definite, i.e. the

flexibility matrix of the elastic support. The elastic support is again corresponding
to a fictitious ‘interval-1’, whose interval mixed energy matrices can be selected as

and End elastic support implies no further transfer is

toward z < 0, hence it can select arbitrary and Whereas is the

flexibility matrix of the elastic support. The matrices are used as

and for interval-2, substituting into the equation (5.7.23b)
gives

where P(z) is the end elastic flexibility matrix at the z end of the semi-closed

interval [0, z), which means that at the z = 0 end there is an elastic support with

flexibility matrix
According to the context, the problem discussed is for structural mechanics.

However, based on the analogy relationship between structural mechanics and
optimal control to be described later, the computation is extremely important for
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optimal control theory, they are the fundamental issues both for linear quadratic
optimal control and for Kalman-Bucy filtering problems. The matrices S(z) and

P(z) satisfy the differential equations with the respective initial conditions as

Substituting the equation (5.7.28) for S(z) into the differential equation (5.7.31),

making use of the equations (5.7.16) and (5.7.17), the differential equation is
verified satisfied; then using the boundary condition (5.7.18) the boundary condition
at in (5.7.31) is again verified satisfied. According to the uniqueness theorem

of ODE, the solution is unique. Similarly for the matrix P(z), the differential

equation and the initial boundary condition (5.7.32) can also be verified satisfied.

Example 5.1, Let n = 1, a 1-D problem can be solved purely analytically. Hence
it can be used to check the numerical results of precise integration method. The
data is given as

The matrix function S(z), which is a scalar, is needed to solve from differential

equation (5.7.31).
Solution: The differential equation is written as

This equation can be solved analytically. There are two cases,

or

1) For the equation has two real roots and

The solution of equation (5.7.33) is integrated to be

then the solution function S(z) can be computed for various z .

2) For two complex conjugate roots appear for the quadratic equation.

Let then the solution is

Substituting the boundary condition, when

Presently a = –0.8, b = –0.87935, c = –0.64, i.e. case 1.

The numerical results are listed below in table 5.1, where S(z) is from

analytical solution with the value enlarged 1000 times, whereas is from

precise integration.

it determines
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The difference is extremely small, which explains that the precise integration
result is very precise. Some arithmetic round-off error is unavoidable, so that some
errors appearing at the last digit is understandable. ##

Example 5.2, Give n = 4, let the fundamental interval mixed energy

matrices and are required, the data is picked up from
[25]:p.199

Solution: Problem is clear, precise integration algorithm (5.7.25) gives the results as

After calculated the matrices for the fundamental interval the other computation
is as usual. ##

Section 5.8 below describes the analytical solution based on all the
eigen-solutions of the respective Hamiltonian matrix, the numerical results from
such analytical solution completely coincides with the numerical results given
above.

§5.7.7, Precise integration for asymmetric Riccati equations

So far all the discussed methods are based on the Hamiltonian system theory,
for which the related problems belong to a conservative system. However, quite a
number of problems are really dissipated, can these methods still be applied? The
reply is yes, as shown below in this section.

The Riccati differential equations (5.7.31~32) are called the symmetric Riccati
equation, because the solution matrices are always symmetric. These equations are
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very important for dissipation free wave propagation, optimal control Kalman-Bucy
filtering, game theory etc. However, for the problems of wave propagation in
dissipative media, radiative transfer, transport theory etc. the dual linear differential
equations are given as

where q and p are, respectively, n - and m - dimensional vectors to be solved.
The corresponding multi-dimensional general asymmetric Riccati differential
equations are derived as

where S(t) is a m × n dimensional matrix to be solved, is the time

differential of S(t), the integration domain is where is a given
finish time instant. Note that the single continuous coordinate is regarded as time
in this section, however, one can just regard it as a space coordinate as that in the
previous sections. The given time-invariant system matrices A, B, C and D
have dimensions n× n, m× n, m× m and n× m , respectively. The boundary
condition of Riccati differential equation is usually written as

such as for linear quadratic optimal control problems. The dual Riccati differential
equation is

where T(t) is a n × m dimensional matrix function to be determined with the
initial condition

where is a given n × m initial matrix.

For case of infinite time interval, i.e. the solutions and tend
to be constant matrices and satisfies the general algebraic Riccati equations

However, such a limiting result holds only when the matrices A, B, C, D
correspond to a decay system.

The solution for these Riccati differential equations has two ways, namely the
analytical solution based on the eigen-solutions and the precise integration method.
The method based on eigen-solutions has a pitfall, that when the Jordan form nearly
appears for the eigen-solutions, the numerical results may be questionable because
of ill-conditioning problem. However, even in such case the precise integration
method still gives the numerical solution up to computer precision but does not
suffer from the Jordan form, see [103].

The precise integration for asymmetric Riccati differential equation is
introduced in this section, which can follow the parallel way as that for the
symmetric Riccati differential equation solutions. In general the physical problems
give the m + n boundary conditions in TPBVP form
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where are the given n - , m - dimensional vectors, respectively. The

special cases of LQ control or Kalman-Bucy filtering correspond to the conservative

systems, respectively, having the restrictions of m = n, and B, D being
non-negative definite symmetric matrices.

To find solutions for the general asymmetric Riccati differential equations, we
need first to build up the relations connecting the state vectors at and

at If the time interval is considered as a

subinterval within the whole integration interval the relation can be

formulated as

where the n × n, n × m, m × n, m × m dimensioned interval matrices F, G, Q, E are
to be determined. For time variant linear systems, these matrices depend on both

and The two differential equation sets for F, G, Q, E can be derived as
before, the first set is

The initial conditions are

where and are unit matrices with dimensions m and n, respectively.

The second set of differential equations for F, G, Q, E is

The initial condition is similar to (5.7.43) at

For time invariant system, the matrices A, B, C, D are independent on t .
Hence the matrices F, G, Q and E will only depend on the length of the interval

Therefore the relations

hold for matrix Q , and similarly also hold for F, G, E . So that equations (5.7.42)
and (5.7.44) can be rewritten as

The dot above now means derivative with respect to The two ODE sets in

(5.7.47) appear to be quite different from each other, although they all represent the
derivatives (forward and backward) of the matrices F, G, Q and E .  Based on
the interval combination, it can be proved that the latter equal sign in equations
(5.7.47) are consistent each other, which means four identities among F, G, Q and
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E .
Note that if Q is treated as a function of then the latter part of equation

(5.7.47d) is the same as differential equation (5.7.36). If an algorithm can be
developed to calculate the matrix Q of (5.7.47d), so that as a

function of also satisfies the boundary condition (5.7.37), then Q is the
solution S of (5.7.36) and (5.7.37). The same method also applies to the
solutions of equations (5.7.38) and (5.3.39).

Equations (5.7.41a,b) connect the state vectors defined at the two ends and

of an interval. Given two contiguous intervals and as shown

in Figure 5.2, the combined interior state vectors defined at can be

eliminated, so that the new combined interval is and the corresponding
equations similar to equations (5.7.41a,b) connect state vectors defined at the two
ends and respectively.

Equations (5.7.41a,b) for the intervals and are

respectively. Combining intervals and gives the interval
for which

To eliminate the combined interior state vector solving equations
(5.7.48a) and (5.7.49b) gives

Substituting (5.7.51a,b) into (5.7.49a) and (5.7.48b), respectively, gives equations
(5.7.50a,b) with

which gives the interval matrices combination equations and can be used in stepwise
integration.

Using the interval combination equations, both solutions of the Riccati
differential equations (5.7.36) and (5.7.38) with boundary conditions (5.7.37) and
(5.7.39), respectively, can be obtained based on the interval matrices

and Note that let as a
function of t , satisfies the Riccati differential equation (5.7.36), however, the initial
condition (5.7.43) does not coincide with the boundary condition (5.7.37). To
satisfy the boundary condition, imagine a virtual interval with interval matrices

This virtual interval being used as the interval 2, to combine as the interval 1,
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gives the combined interval matrix which is treated as the matrix S(t) .
Therefore

To verify that S(t) satisfies the boundary condition, since

and as the boundary condition (5.7.37) is easily verified

by S(t) given in equation (5.7.53). To verify that S(t) satisfies equation

(5.7.36), note that so

Invoking equations (5.7.47a-d) the following derivation verifies equation (5.7.36)

The same composition method gives

The verification is similar to the above for S(t) .

It should be noted that if S(t) converges to when the matrix

satisfies the general algebraic Riccati equation (5.7.36’). For non-conservative
systems, such as the source free transport system and elastic wave propagation with
damping, the matrix can be calculated using the interval combination algorithm.
The interval combination equations (5.7.52a-d) should be executed recursively, until
the matrices E and F are nearly zero matrices, the matrices Q and G are
then and respectively.

So far, the equations (5.7.53) and (5.7.54) are analytical, thus the analytical
solutions of the two Riccati differential equations (5.7.36~39) have been reduced to
find the solutions of the interval matrices and Two
approaches can be applied, i.e. the precise integration method and the analytical
method based on eigen-solutions. The precise integration method is briefly
described first.

The sub-structuring technique is extensively used to improve computational
efficiency in structural mechanics. Only one substructure needs to be analyzed and
be used for all other identical substructures. Equation (5.7.41) corresponds to the
sub-structural equation, and (5.7.52) is the elimination equations for the combination
of two contiguous sub-structures. Two cruxes must be used in the precise
integration, namely
1)
2)

Making use the type algorithm, and
Computing only the increment parts of the matrices F and E in the
type algorithm.
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Let the typical time step length of integration domain be subdivide it

further uniformly into subintervals of length If N = 20 is selected, the
length of an extremely small subinterval is then

and is extremely small. For such a small time step, Taylor expansion gives
extremely high precision, and can be used to solve the non-linear equation set

(5.7.47) for the interval Truncating beyond the terms gives

Substituting (5.7.56a) into (5.7.47a) and comparing the coefficients of different
powers of gives

Applying similar procedures to (5.7.47b~d) gives

From these interval matrices and carrying out N = 20

interval combination steps recursively, all 1048576 subintervals are combined
together. It generates the equation system (5.7.41a,b) connecting state vectors
defined at the two ends of the original typical time step of length The basic

computation of this type algorithm is the recursive execution of

for N = 20 times. For each time of interval combination, the calculated matrices
and are substituted into the right-hand side of (5.7.61), to calculate

the new matrices of and for the larger intervals.
Note that all the mathematical formulations before equation (5.7.56a~d) are

exact. The sole approximation is truncation errors caused by disregarding the
terms of order higher than fourth in equations (5.7.56a~d), such errors cause no
effect on the computer because the major truncated terms are of the order of i.e.

of the order of times the first term in the expansion. Because

and so is beyond the double precision accuracy of
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most computers today.
Now the second crux should be emphasized, that direct use of the combination

equation (5.7.61) will induce serious round-off errors when the length of the
subintervals is very small as is. To avoid such kind of ill-conditioning,   the
matrices F and E should be rewritten as

and replace the equation (5.7.61) as

in the computation. The precise integration algorithm does not suffer from the
possible Jordan form.

With appropriate system matrices A, B, C, D, using the interval combination
equations (5.7.52a-d) iteratively, until E and F are almost null matrices, the
matrices for infinite horizon are also computed as Q, G .

A numerical example is given for demonstration. For verification purpose,
after the interval matrices of the fundamental time interval are computed, the

iteration continues until the solution matrices of the algebraic Riccati

equation (ARE) is obtained, which is easier to check by just substituting into the
equations (5.7.36’) and (5.7.38’).

Example 5.3, n = 4; m = 1; the system matrices are given as

The interval matrices for a fundamental interval of need to compute first

and then the two solutions of algebraic Riccati equations are required.
Solution: Selecting using precise integration method the interval matrices

are computed as

Based on these matrices, continuously execute the interval combination algorithm
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(5.7.52a~d), which converges quadratically to the solution matrices of the algebraic
Riccati equations as

Substituting into equation (5.7.36’), summation of the two parts

and dropping down 11 significant digits, which means that the

solution is very precise. Substituting into the equation (5.7.38’), when

summing up the two parts and the residual drops 11
digits also, which means again that the solution is highly precise. ##

The above numerical examples demonstrate that the precise integration method
is very precise and effective, and it does not suffer from the possible Jordan normal
form and so is highly reliable. However, the eigen-solution based analytical
method is still attractive, and is the subject of section 5.8.

§5.8, Eigenvector based solution of Riccati equations

The precise integration method is applied to find the interval matrices and the
solutions of two Riccati differential equations. However, the precise integration
method is not unique, the method of separation of variables, eigenvector expansion
method etc. can also be used to find the interval matrices for a fundamental interval
of length and so they are still very attractive because of their analytical nature.

After that, the same interval combination algorithm can still be applied to do the
other computations as given in the last section. As described in the last section, the
generalized two Riccati differential equations apply to the general linear systems, so
the discussion below is for general case first. However, the Hamilton system based
analytical solution has a number of features, it is still worth to have special
attentions, and will also be given later.

The eigen-solution method is numerically unstable if Jordan form appears,
hence the method described in this section is for the case of Jordan form does not
nearly to appear.

In this section, the longitudinal coordinate is denoted as
The dual linear differential equations relate to the two Riccati differential

equations, which have been given in dual equations (5.7.35a,b). Introducing the
state vector

The dual equations can be rewritten as

Using the method of separation of variables derives the eigen-problem

But, the eigen-solution will be quite ill-conditioned when the Jordan form is nearly
to appear for the eigen-problem (5.8.3), in such case the precise integration method
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should be used instead, as given in the last section.
To derive the analytical solutions for the general asymmetric Riccati equations,

building up the relationship between the state vectors at and

at is necessary, where the time interval is considered a subinterval of

the whole integration interval The relationship has been given as equations

(5.7.41a,b).
For time-invariant system, the interval matrices depend only on the length of

interval

i.e. and Finding the analytical solution for these interval

matrices should go back to the equation (5.7.41a,b), which can be expressed in
combined form

This equation gives the vectors and with the two end vectors and
Suppose all the eigen-solutions of matrix H being denoted as

If no Jordan normal form nearly to appear, the eigen-matrix composed from all the
eigenvectors

is well conditioned, and the numerical result is reliable. The eigen-equation (5.8.3)
can be rewritten as

The eigen-matrix can be partitioned as

where and are matrices of dimensions n × (n + m) and m × (n + m) ,

respectively. To compose the combined matrix in equation (5.8.5), let

The combined matrix required is composed as

From which, the interval matrices and can be picked up.

However, the differential equations (5.7.47a~d) and boundary conditions (5.7.43)
must be carefully verified satisfied.

The interval matrices composed in equation (5.8.11) are easily verified
satisfying the boundary condition (5.7.43). It is clear that when

substituting which into (5.8.11) gives
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which is the combined form of equation (5.7.43).
To verify the equations (5.7.47a~d), the combined equation should be

transformed to its sub-matrix form. Let

where

Then the interval matrices are derived as

The verification is given below. Equations (5.8.12a,b) can be rewritten as

To verify that the interval matrices (5.8.13a~d) satisfy the differential equations

(5.8.47a~d), finding the equations for and is necessary.      To find

differentiating equations (5.8.14c,d) with respect to gives

Comparing the above equations with the equations (5.8.14c,d) gives

Expanding equation (5.8.8) gives

Using equations (5.8.13a~d)

The similar procedure for derives

To verify equations (5.7.47a~d), differentiating equation (5.8.13d) with respect
to gives

Making use of equation (5.8.15) gives

Using equation (5.8.13a~d) derives the equation (5.7.47a) in the form as

Next, differentiating (5.8.13c) derives the equation (5.7.47c), as follows
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Differentiating equation (5.8.13b) derives the equation (5.7.47b)

Differentiating equation (5.8.13a) derives

Up to here, equations (5.7.47a~d) and boundary conditions (5.7.43) are all verified.
Based on the uniqueness theorem of ODE [36]-p.50, that (5.8.13a~d) do give the
analytical solutions of the interval matrices and

However, there is the second set of differential equations in (5.7.47a~d), the
verification is given as follows. Equation (5.8.11) can be rewritten as

Let

where

Afterward the second form of interval matrices are derived as

The equations (5,8,17a,b) can be rewritten as

To verify the second form of interval matrix equation (5.7.47a~d), similar
procedure is applied. The first step is to derive and Differentiate
equation (5.8.19a,b)

Comparison with (5.8.19a,b) determines

The same method derives

Then the differential equations (5.7.47a~d) can be verified as follows
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Therefore, all the differential equations for the interval matrices are verified.
Based on the uniqueness theorem of ODE, the interval matrices composed are really
the analytical solution required.

The eigen-solutions based analytical solutions are proved above, the numerical
computation algorithm and example are necessary to demonstrate its effectiveness
and are given below.

The analytical solution is based on all the eigen-solutions, which should be
solved numerically. Note that the eigen-solutions may have complex conjugate
pairs. However, the original equations are all real valued, so do the solutions of
the Riccati equations. Therefore, a real valued algorithm should be found. The
matrix H is real, so the complex eigenvectors appear in complex conjugate pairs.
The usual algorithm, such as the HQR2 given in [42]-II.15, supplies the real and
imaginary parts of the complex conjugate eigenvectors as contiguous two real
vectors. Such form of “eigenvector matrix”, denoted as corresponds to the

complex eigen-matrix multiplied by the matrix from right hand side, i. e.

The same treatment applies also to the matrix Note that equation (5.8.11)

can be rewritten as

where the sub-matrices have been all real valued.
The algorithm for analytical solution is simply given in the form

[Input n,m and A,B,C,D ; input the step size, and the finish time
[Compose the matrix H according to equation (5.8.2) ]
[Solve the eigen-matrix and the corresponding eigenvalues

[Compute and pickup the sub-matrices etc. ]

[According to equation (5.8.11) compute the interval matrices

and

[Compute the interval matrices at all the grid stations based on
(5.7.52a~d)]

[Input the boundary matrices and compute all the matrices
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With appropriate system matrices A,B,C,D , using the interval combination
equations (5.7.52a~d), the matrices for infinite horizon can also be

computed.

Example 5.4, n = 4; m = 1; the system matrices are the same as those given in
example 5.3. The solutions of two asymmetric Riccati differential equations are
required.
Solution: According to equation (5.8.2) compose the matrix H , finding the
eigen-solutions. The composed matrix H is not far apart to having Jordan
normal form. The eigenvalues are all real and computed as

9.999993 –1.999990 –0.500003 –0.499997 –3.000003

and the eigen-matrix is

It is seen that the third and fourth columns are almost parallel vectors and their
eigenvalues are –0.500003 and –0.499997 respectively, which means the Jordan
form is nearly to appear. In such case, the computer precise integration should be
executed. Selecting the interval matrices are computed as

However, the eigen-matrix based analytical solution can still be computed,
suprisingly, the same numerical result is obtained for this example, but the results
may be dangerous for other problems.

Based on these matrices, the algebraic Riccati equations are solved as

Example 5.5: n =7; m = 2; the system matrices are given as

which are the same as obtained by the precise integration method. Substituting into
the algebraic Riccati equations (5.7.36’) and (5.7.38’), the checking results is quite
satisfactory as described in the last section. ##
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The eigenvalues are computed as
13.01995 5.85708 –10.30548 –7.04055 –1.62845 –2.00943 –0.92412

±0.62496i ±0.66731i

Selecting the interval matrices are computed as

Based on these matrices, continuously execute the interval combination algorithm
(5.7.52a~d), which converges quickly to the solution matrices of the algebraic
Riccati equations as

Substituting into equation (5.7.36’), the summation of the two parts

and dropping down 12 significant digits means that

the solution is very precise. Substituting into the equation (5.7.38’),

when summing up the two parts and the residual drops
12 significant digits, which means again that the solution is highly precise.

The precise integration method gives the same numerical result with the
eigen-solutions based analytical method. Both the methods check to each other.
##

§5.8.1, Analytical solution applied to the symmetric Riccati equations

The method of analytical solution based on the eigen-solutions applies also to
the symmetric Riccati equations for conservative system, which is a special case to
the asymmetric Riccati equations. However, the eigen-solutions for a conservative
system have special features, for which the matrix H is Hamiltonian as n = m,

and B, D being non-negative symmetric matrices.
For a conservative system the 2n × 2n -dimensioned eigen-matrix defined

in (5.8.7) is a symplectic matrix, and can be block decomposed into
four n × n sub-matrices as



236 Duality system in applied mechanics and optimal control

Assuming that the eigenvalue has no Jordan normal form, then

and then

also

In a fundamental interval the solution of homogeneous equation (5.2.13)
is

or given in vector form

the coefficient vectors a, b should be determined by the end boundary conditions.
According to the physical interpretation of matrices gives the boundary
conditions of the TPBVP as, at z = 0 end, the displacement v(0) is the n

columns of a unit matrix in turn; while at it is free from force. Then
the vector a and b solutions in turn, respectively, compose two n×n matrices

and respectively. The equations for solving matrices and are

where introduced the matrix

From the solved two n × n matrices the is computed as the force at
z = 0 end

and is the displacement at as

On the other hand, based on the physical interpretation of and



Precise integration of two point boundary value problems 237

there is no displacement at the end z = 0 , but there is unit force matrix at the end
Correspondingly, the vectors a and b in equation (5.8.25b) have also

n each, their combinations are two n× n  matrices Therefore at the two

ends z = 0 and the equations establish as

From which, solves the two n × n matrices and Thereafter compute

All the equations above explains that if the eigen-matrix has been found,
solving the interval matrices needs only algebraic operations, and
no iteration is necessary. Although these equations are established by physical
reasoning, however, the proof is also available, especially the asymmetric matrix
case has been shown valid.

Therefore to find all the eigen-solutions is necessary, that its numerical solution
becomes a critical issue. For conservative system, the eigen-solution of a Hamilton
matrix is described below.

§5.8.2, Algorithm for the eigen-solutions of a Hamilton matrix

The analytical solution of Riccati differential equations explains the importance
of eigen-solutions of a Hamilton matrix H

Application needs the numerical result of the eigen-matrix which is composed
of all the eigenvectors of H . In section 5.3 it had
shown that is a symplectic matrix.

A Hamilton matrix has its special structure, hence the eigenvalue can be

classified as given by equation (5.3.5a,b), into and two groups, and the
computation for the eigenvalue problem of a Hamilton matrix can be derived to
solve an eigen-problem of a n × n matrix [55]. In solving the vibration problem
of a gyroscopic system, the eigenvalue and eigenvector computation had been
described in detail, where the key step of which is to derive a symplectic
eigen-problem of a skew-symmetric matrix, see section 2.3.3. The same strategy is
also used here, deriving the eigen-problem (5.3.4) of the Hamilton matrix H to
become a symplectic eigen-problem of a skew-symmetric matrix.

For solving the gyroscopic system, the description begins from the given
matrices M,G and K , i.e. the mass, gyroscopic and stiffness matrices.
Presently, the description can begin from the matrices and of the
displacement method, but directly from Hamilton matrix is preferred

Left multiplying equation (5.3.4) with the matrix J gives the symplectic
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eigen-problem of a symmetric matrix

then the symplectic eigen-problem of the skew-symmetric matrix is simply derived
as

Obviously, we have Hence reordering the eigenvector as

Certainly, the matrices should also be reordered correspondingly and the canonical
form of a skew-symmetric symplectic eigen-problem, as described in section 2.3.3,
is obtained, where vector in equation (2.3.61) is the vector here.

Therefore, the eigenvalue of (5.8.28) and the respective two eigenvectors

can be regarded as found. The two eigen-solutions of equation (5.3.4),

and are certainly corresponding to the duplicated

eigen-solutions of equation (5.8.28)

but the reverse is not true. Because any linear combination of the symplectic
adjoint eigenvectors and is also an eigenvector of equation (5.8.28), but

the duplicate eigenvectors, denoted as and are not necessarily the
eigenvector of the original eigen-equation (5.3.4). The two dimensional subspace
of the duplicate eigenvectors and of equation (5.8.28) is spanned by

and To find the two eigenvecrtors and of the Hamilton matrix
H, the symplectic projection matrix of H to the two dimensional subspace is
required. The problem reduced to be a 2-D symplectic eigenvalue problem and is
easy to solve. Hence the problem now is how to calculate the 2-D symplectic
projection matrix. From equation

since is a symplectic matrix, it is derived to be

Note that the skew-symmetric symplectic eigen-problem (5.8.28) corresponds to sort
the eigenvectors in and classes. Sorting in the order of equation

(5.8.29) gives the vector and the right hand side of equation (5.8.31) becomes
the form of

The reordering corresponds to a permutation, such as for n = 4, the permutation
matrix is
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Because only the two symplectic adjoint eigenvectors can be linearly composed
to be the eigenvectors of equation (5.8.28), hence in equation (5.8.32) only these
diagonal sub-block-matrices can be changed to be 2 × 2 symmetric matrices.
Evidently, the left-hand-side of equation (5.8.31) gives the fundamental rule of
adjoint symplectic subspace projection. The duplicate adjoint symplectic
eigenvectors and of equation (5.8.28) corresponding to the eigenvalue

can be used as the basis to compose the two dimensional subspace

From which the two dimensional subspace is composed, and the symplectic
projection is

Obviously, the left-hand-side is a symmetric matrix, for the matrix JH is
symmetric, and the right hand side is also a 2 × 2 symmetric matrix, so that is

a Hamilton matrix corresponding to n = 1 and is a 2 × 2 matrix. Such kind
of subspace projection, keeping the structure of a Hamilton matrix unchanged, is
called a symplectic conservative subspace. For the eigenvalue correspondent
two-dimensional subspace, the eigenvectors of the original matrix H must be
linearly composed of the vectors and as

The eigen-equation is

Multiplying from the left gives

which is an eigen-problem of n = 1 projection Hamilton matrix the solution is
easily solved as

After solved the two eigenvectors in the subspace, substituting into equation (5.8.35)
the two symplectic adjoint eigenvectors of the original matrix H are obtained.

Therefore, the algorithm for the eigen-solutions of a Hamiltonian matrix is
given as

[Given H , transforming to skew-symmetric symplectic eigen-problem, see
(5.8.28)]

[Solve all the duplicate eigen-solutions of eigen-problem

and
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(5.8.28)]
Comment: the key step, its algorithm had been given in section 2.3.3

for {

[Compose then compute the project Hamilton matrix find  its

eigen-solution]
[According to (5.8.35), compute the eigenvectors of the original

matrix H ]
} Comment: all the eigen-solutions of H are obtained, and is composed

(5.8.37)

§5.8.3, Transform to real value computation

The solution of the Riccati equation should be a real valued matrix, and the
differential equations (5.7.16) and (5.7.17) are both real equations. However, the
analytical solution needs eigen-matrix and the eigen-solutions of a Hamilton matrix
may appear complex roots and complex eigenvectors. Computing directly based
on the equations (5.8.26) and (5.8.27), the complex algebraic equations may appear.
Avoiding such complex arithmetic brings convenient for implementation.

For the case of purely imaginary eigenvalues, i.e. the real
arithmetic can also be attained. According to the classification of equation
(5.3.5a,b), both the complex conjugate pair eigenvalues locate in the same class and
can be sorted contiguously, the respective eigenvectors are also a complex conjugate
pair. The two complex conjugate eigenvectors can be transformed as the two linear
combinations of their real and imaginary vector parts. For real eigenvector no
transform is needed and correspondingly an element 1 is appeared at the diagonal of
the transformation matrix. However, complex conjugate eigenvector pair need the
transformation matrix a 2 × 2 diagonal block

where is the n×n transformation matrix composed of 1 and/or as the

diagonal blocks. Its inverse matrix is

In equations (5.8.26) and (5.8.27), the matrices are all complex

valued, whose corresponding real valued matrices can be expressed as

where the subscript r is used to distinguish with the complex valued matrices.
Transformation matrix not only applies to the matrices etc., but also

when multiplies the matrix transforms it to be a real matrix. Therefore the

equations (5.8.26a,b) become
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Denoting then the complex sub-matrix of is

Let be a negative real number, then

becomes a real matrix. Hence the equations become

where the coefficient matrices have been real matrices, hence the solution matrices
are real also. Afterwards the computation can be

Similarly

The matrices solved from which are also real matrices. Afterwards

compute as

Up to here, all the computations for the matrices and equations have been
transformed to real arithmetic. But the above transformation is under the
limitations of that the Hamilton matrix H has no purely imaginary root. In the
optimal control or Kalman-Bucy filtering problems, the controllability and
observability are their fundamental requirements, such requirements ensure the
interval index integration being positive definite, see section 6.7. From the point of
view of structural mechanics, it means the interval deformation energy being
positive definite, which corresponds to the fundamental property of material stability
in structural mechanics. These properties ensure that the Hamilton matrix H has
no purely imaginary eigen-roots. Therefore the above real arithmetic analytical
solution based on eigen-solutions for the Riccati differential equations can really be
applied.

Example 5.6: Given n = 4, and the sub-matrices of the Hamilton matrix H are
given as

Select for the fundamental interval length, the matrices
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are required numerically.
Solution: This problem can be solved by the precise integration method, but it can
also be solved by means of eigen-solutions analytically. First the eigen-solutions of
the Hamilton matrix are solved as

From the eigenvalues, the matrix is computed as

From which the matrices are computed by equations (5.8.41a,b), and the

matrices are solved using equations (5.8.40a,b). Thereafter, the matrices

are computed. The numerical results obtained in this way are

completely in agreement with those obtained with the precise integration method,
ten more decimal digit coincidences are reached. ##

Using entirely different two methods, the precise integration method and the
analytical solution method based on eigen-solutions, both methods give the same
numerical results, which mean that both are highly precise algorithms. Numerical
data of the three matrices have been listed in section 5.7.6.

In case of no purely imaginary eigen-root, the real arithmetic algorithm given
above works quite well. However, which still has a limitation of no Jordan normal
form appears and must be bore in mind. On the other hand, the precise integration
method does not care about the possible Jordan normal form appearing.

§5.8.4, Transformation for purely imaginary eigenvalues

The analytical solution equation (5.8.5) and (5.8.6) do not exclude the case of
purely imaginary roots presented. In problems of structural static and/or linear
quadratic optimal control or Kalman-Bucy filtering, the purely imaginary eigenvalue
never appears. However for the problems of elastic wave propagation,
eletro-magnetic wave-guide etc., purely imaginary eigenvalues are critical for
applications, because it represents transmission waves, that energy or signal
propagation to far away place is based on such transmission waves. The real
arithmetic computation for the solutions of Riccati equations and the fundamental
interval mixed energy matrices is described in the present section.

For purely imaginary eigen-root the complex conjugate equals to its negative
value, in other words, its symplectic adjoint value coincides with its complex
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conjugate. Therefore the complex conjugate of a class eigen-root belongs to
the class Hence when put the real part of its eigenvector in the sub-matrices

its imaginary part of eigenvector must be in the sub-matrices

with the same column number. Denoting in equations

(5.8.26a,b) for the columns corresponding to purely imaginary roots, hence

which are still in complex numerical form. It should be noted that the columns
corresponding to the purely imaginary eigenvalues, in matrices and and

in matrices and respectively, must be complex conjugate to each

other. Therefore the corresponding rows in matrices and must also be

complex conjugate to each other, and are denoted as

where the negative sign and dividing 2 are only for convenience. The matrices
and are both real valued. For corresponding columns in complex

valued matrices, denote

Therefore the equations to be solved become

where

The problem of that equations (5.8.40a,b) cannot involve purely imaginary
eigenvalues is then compensated. After solved the matrices and

(which are solved simultaneously with matrices and ), the interval

matrices are computed as

The computation for the matrices and are similar, that only the

equations are listed below. The equations for solution are

where the superscript is only a notation. After solving the matrices and

Certainly these equations are only for purely imaginary eigenvalues. As for
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non-zero real part eigenvalues, the equations have been given in equation (5.8.40)
and (5.8.41) already.

Example 5.7: Dimension n = 5 , the sub-matrices of the Hamilton matrix H are
given as

to compute the eigen-solution based interval matrices.
Solution: Solving the eigen-solutions as

Selecting computation gives

The numerical results of fundamental interval mixed energy matrices can be used for
various purposes. The precise integration method is also used to compute these
matrices, the numerical results check with those obtained by the eigenvectors based
analytical approach, still have ten more decimal digit coincidences, which expresses
again that both numerical methods are highly precise.

Such class of structural mechanic problem has analogy relationship to the
linear quadratic optimal control problems, see [20~22,87~91]. The positive
definiteness of deformation energy in structural mechanics corresponds to the
controllability and observability of state space linear control system, see section 6.7.
On the other hand, the positive definiteness of deformation energy implies that
structural system can simulate the least square method in probability application,
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because it is shown in chapter 3 that the variance matrix in least square method
corresponds to the flexibility matrix in structural analysis. The analysis of the
structural system with single continuous coordinate can be further investigated, such
as the sub-structural combination can be used to realize the stepwise integration for
strip domain structural analysis. Such kind methodology can also be used in
filtering problem.

The purely imaginary eigenvalue of a Hamilton matrix has some special feature,
it closely relates to energy transmission process, for which the complex eigenvectors
are necessary. The problems of power flow and wave scattering etc. will be
described in later sections.

§5.9, Stepwise integration by means of sub-structural combination

The main step of precise integration method for TPBVP given in the previous
sections, is the computation of interval mixed energy matrices and

for a typical fundamental interval with length A typical interval is a

substructure, so that the sub-structural combination algorithm given by equations
(5.7.5a~c) in the displacement formulation or by equations (5.7.23a~c) in mixed
variable system can be used for stepwise integration problems. Using
sub-structural combination method corresponds to the discretized structural analysis
problem. The problem can be proposed as: to find the n -dimensional
displacement vector q(z), with the boundary condition of an elastic support at the

left end of z = 0, for which the deformation energy is expressed by

where is a given displacement, the neutral point, and is the stiffness

matrix of the elastic support, and therefore is the flexibility matrix of the elastic

support. The force vector

is introduced. To analyze the structure by the sub-structural combination method, a
typical sub-structure with length is computed first, then the stepwise integration

is initiated from the elastic support at z = 0 , with each step a typical substructure
(with length ) is attached at the right-end for totally times. Therefore the
nodal points are naturally generated as

For each typical substructure of length the elastic behavior is described by the

mixed energy matrices of and These interval mixed energy
matrices represent the elastic behaviors only, but cannot represent if there were
distributed external forces acting upon within the typical substructure, such as

denoted as #k. The elastic behavior can be unified for all substructures

but the distributed external forces may be different for different substructures. The
distributed forces can also be represented by external forces at the two ends

of interval #k, which are interval dependent, since distributed forces are interval
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dependent. The computation of and can also use sub-structural

combination algorithm in precise integration method. is a n - dimensional

force vector acting on the substructure at the left-end station whereas is

also n - dimensional but acting on the substructure at the right-end station

Using energy method to solve this problem, the simplest is the minimum
potential energy variational principle. Note that

where is the deformation energy

of substructure #k, is the external force potential

energy of #k and is the total potential energy of #k

where the subscripts denote, respectively, the left- and right-end, i.e. k – 1 and

k stations, respectively. Therefore the minimum potential energy of the whole
structure is

Carrying out the variational operation derives the equilibrium equation

This equation is derived by the displacement method, hence it looks nothing related
to the mixed energy matrices and To see the relation with

mixed energy matrices, note that

and there is a transformation between mixed energy and potential energy. The
constant term is useless and can be disregarded. The interrelation between them is
the Legendre transformation

where F,Q,G are the same as in (5.7.13), but the derivation before has no external
forces. The mixed energy is obtained as

where the vector should be substituted with equation (5.9.6), and the subscript

is taken off. After some algebraic derivation gives

which explains that the non-homogeneous terms and can be mutually

transformed with the mixed energy non-homogeneous terms and
The relation between mixed energy and potential energy is given by
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Substituting the above representation into minimum potential energy principle (5.9.3)
gives

Carrying out the variational operation derives the dual equations

From the above dual equations and the variational principle (5.9.9), it is seen that
they are in the same form with comparison to the Kalman filtering problem, see
section 6.5. It gives the analogy relationship between optimal filtering and
structural mechanics.

The successive combination algorithm of typical substructures is described as
follows. The elastic support at the initial point can be regarded as an initial
substructure. Its total potential energy is expressed by equation (5.9.1). The
successive composition corresponds to mathematical induction. Suppose that the
(k –1) -th step combination of typical substructure # ( k – 1 ) has been consummated,

which gives a substructure extending from the elastic support up to

the station for which the right end displacement vector is still a variable

(external displacement) to be determined. The total potential energy of
substructure can be expressed by the right end displacement as

Note here, that denote the potential energy of the chain

Obviously, the right-end equilibrium (neutral) displacement vector is and the

flexibility matrix is that all other displacements at the inside stations including

had been eliminated as the internal variables of the substructure It

is a substructure chain, from to

The next stepwise integration is to combine the typical substructure #k to the
combined sub-structural chain that the stepwise integration process is

recursive in nature, and is the potential energy of substructure #k.
After this step of combination, the sub-structural chain extends its right end to the
station The extended substructure right end equilibrium displacement

and its flexibility matrix are to be determined. In this step, the (eliminated)

displacement vector at station and the flexibility matrix at

are also of concern. However, the station #(k–1) has been an internal station

now, therefore different notations are used. To explain clearer, the flexibility
matrix corresponds to that the sub-structural chain has extended the right end

to station so that the is the flexibility at an internal station The

displacement vector is also written as to emphasize that the

sub-structural chain has extended to the station but the displacement vector is

evaluated at the internal station
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To carry out the one step computation, the minimum potential energy principle
is used. The total potential energy of the typical substructure #k is

given in equation (5.9.2), where the subscripts a, b represent, respectively, the left
and right end, i.e. k – 1,k stations. Therefore the minimum potential energy

variational principle of the sub-structural chain extended up to the station #k is

However, the precise integration algorithm supplies mixed energy matrices, it is
much convenient using the mixed energy as given in (5.9.5) in the
computation. The transformation between mixed energy and potential energy is the
Legendre transformation (5.9.6) and their relation has been given in equation (5.9.8).
Substituting this expression into the potential energy variational principle (5.9.11)

given as

gives

Carrying out the variational operation gives

Eliminating gives

Therefore, the right-end equilibrium displacement vector of the sub-structural

chain and the respective flexibility matrix are found. Next step is from the

station forward by combining the typical substructure #(k +1) recursively.

Certainly, instead of the equation (5.9.1’) there has been the potential energy

which is derived from equation (5.9.12), keeping the variable not eliminated

and taking variational calculation. The potential energy expressed as a function of
right-end displacement is obtained as

Therefore the situation of recursive derivation becomes clearer.
Equations (5.9.14) and (5.9.15) give the formulae for computing and

they locate at the front of the combined sub-structural chain. The displacement
vector and flexibility matrix of the internal point can also be given as
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The substructure front has been at the station so that the station is one
typical substructure lagged behind. These equations apply only for one typical
substructure behind, however, because of the length can be selected arbitrarily,

so the equations are still quite general, see section 6.6.
The meaning of these equations does not limit to only structural analysis.

When Kalman filter is considered, it will be seen that the analysis is similar. Hence
the discrete-time Kalman filter problem corresponds to successive substructure
combination. The continuous-time Kalman-Bucy filtering will be shown
corresponding to the single continuous coordinate structural analysis problem. The
problem considered in this chapter is, therefore, quite analogy theory oriented.

In optimal control theory, there is linear quadratic (LQ) control problem, which
is also analogous to the sub-structural chain analysis [20~22,87~88]. Suppose that
an elastic support with stiffness matrix locates at the right end station

Therefore the whole potential energy is

Using the mixed energy variational principle similarly derives

Performing the variational operation derives the dual equations

and boundary conditions

The LQ control correspondent structural analysis problem is a special class with zero
external forces and the analogy relationship will be considered later in

dealing with the LQ control theory.

§5.10, Influence function of single continuous coordinate system

Previous sections described the algorithms for the solution of Riccati
differential equations and sub-structural combination algorithm, which provides the
basis for the computation of influence function. The influence function is quite
useful in determining the most unfavorable moving load in bridge engineering
design, which can be performed by the dynamic programming method [104].
Especially the influence function is quite useful to the inverse problem and
parameter identification etc., therefore, the precise integration computation of
influence function is important. Based on the analogy relationship between
structural mechanics and optimal control, the influence function is quite useful to
system identification and decentralized control analysis etc.

Let the domain of problem be and the two end boundary

conditions are



250 Duality system in applied mechanics and optimal control

Traditionally, the influence function is described by the displacement method. For
duality system, it turns to describe on the basis of n -dimensional dual vectors q

and p, for which the dual differential equations are given before

where and are the given distributed external force. Note, the two

differential equations are interpreted as compatibility and equilibrium, hence the
interpretations of the forces and are also different (even the units).

The traditional idea for an influence function is described as follows. The
response displacement q(z) (or other quantity) at a fixed location z is of concern,

which is induced from a unit concentrated force applied at the location As

varying in the whole interval the displacement varies too and is the

function of the force location, denoted as which is the influence function

and can also be denoted as For duality system, both the unit forces and

the response dual vectors are twice as much with comparison to the traditional
influence function.

Since it is to find the influence function, so there is unit force acting at the
point and the response dual vectors and are needed, i.e. the

following dual differential equations need to be solved

where the subscript a and b are used to distinct the two cases of the external
forces, never confusing with the interval left and right ends. For duality system,
the unit force vector turns out to be two unit external vectors denoted as and

corresponding to the two equations, respectively, where the physical meanings

are that is the external force, and is the deformation incompatibility.

Both and should be taken as the n unit vectors of columns of unit matrix

in turn, respectively, for the two equations. Therefore the two sets of dual

equations (5.10.2a,b) and (5.10.3a,b) have 2n solutions of q and p . The
traditional influence function theory in structural mechanics is based on one kind of
variables, i.e. the displacement method, however, presently the influence function is
for duality system, so that the unit forces are for two kinds of concentrated forces
and the functions are also of dual variables. To solve both the dual equations
(5.10.2a,b) and (5.10.3a,b), the precise integration can be applied effectively.

Because of the external force acting at the point the whole interval

(segment) is subdivided into two intervals and with no

external force, and can be solved separately. As in section 5.7, using precise
integration method should subdivide the whole interval into uniform intervals of
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fundamental interval length Both the influence function’s response point z

and the external force acting point are located on the grid points.

To solve the homogeneous dual differential equations for both the intervals
and the solutions of the respective Riccati differential

equations can be used. The precise integration method is selected for the solutions,
because it does not care about the possible Jordan normal form and is always reliable.
According to that given in section 5.7.6, the mixed energy matrices

of the fundamental interval can be regarded as computed.

For the interval let the displacement vector be

Substituting into equation (5.10.2a,b) derives the forward integration of Riccati ODE
(filter type) as

and the ‘cantilever’ displacement equation

Based on the mixed energy matrices of fundamental

interval the Riccati equation (5.10.5) can be solved by the interval combination
equation (5.7.23), including the initial condition.

The solution should be found from (5.10.6), which is a homogeneous

differential equation with null initial condition, so that the solution in is

and from the uniqueness theorem of ODE, it is the unique solution.

Therefore

especially, Further, from equation (5.10.2a) it can be

derived that Next, the solution in the interval

is selected as

Substituting into equation (5.10.2a,b) gives the backward integration (control type)
Riccati ODE as

After solving the matrix S(z), the differential equation for the displacement vector

is

with initial condition:

The boundary conditions uniquely determine the solution matrices S(z) and P(z),
and the Riccati differential equation (5.10.8) can be solved by precise integration,
see section 5.7. The differential equation (5.10.9) for displacement vector

can also be precisely integrated, however the initial condition at must be



given by Based on the differential equation (5.10.2b), is

continuous at After is solved, the vector in interval

is determined in principle. To determine the variational
method can be used as follows.

The variational principle of dual equations (5.2.9a,b) is

For equations (5.10.2a,b), it reduces to

where the subscript a stands for the solution of equations (5.10.2). The
integration of both intervals are computed using the solutions of Riccati equations as

Because is continuous at so that the variational principle (5.10.10)
becomes

Therefore

After solving the dual vector functions and are

determined in principle in the two intervals of and Their

numerical solutions will be given later in section 5.10.2. When is taken as the

n column vectors of unit matrix in turn, the n vectors of compose a
n × n  matrix as

where the former in the matrix function means that the value is taken

at and the latter means the point of unit force Note that

and P have different meanings. From equation (5.10.2a) gives

more precisely is discontinuous at the

discontinuity is given as It gives the initial

condition for the integration of in interval When is

selected from the n columns of a unit matrix in turn, the solved n sets of

vectors and compose the matrices and
The above procedure explains the solution steps for dual equations (5.10.2a,b) and
the corresponding numerical algorithm will be given later.

The methodology for solving the dual equations (5.2.11a,b) is parallel to the
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above, so that only the difference is explained. The subscript should be changed
from a to b for the variational principle

According to equation (5.10.3a), is continuous at From the solutions

of Riccati equations

substituting into the variational principle gives

Therefore

Solving means that the initial conditions at have been given

for the two intervals and and then the dual vectors

and can be solved for both intervals. Integrating equation

(5.10.3a) gives When turns out to be the n

column vectors of a unit matrix and the n solved vectors compose

a n×n matrix as

This equation gives response displacements at the point of unit force, which can

be used as initial condition to solve dual vectors and in the two

contiguous intervals, totally n groups. Thereafter, two n×n matrices

and are composed for both the intervals and

According to symmetry and positive definiteness of the Riccati matrices
(solutions of Riccati equations) and the symmetry and negative

definiteness of the matrices and readily follows. The

matrix-functions and are functions of single continuous

coordinate z and are continuous at but and are

discontinuous. Hence, one must distinguish

and

Equation is readily verified based on the identity

where Y = PS is selected. Similarly,

The difference between them is also as anticipated.

Wave propagation 253



254 Duality system in applied mechanics and optimal control

Having found the matrices

as well as and the influence functions

and at arbitrary coordinate z are to be found next.

The precise integration method is applied also for this purpose. Based on these
n×n matrix functions, an 2n × 2n impulse influence matrix function

is composed. The differential equation for should be clarified.

Matrices are the influence of first equation set (5.10.2a,b)

under unit concentrated force and are the

influence of second equation set (5.10.3a,b) under the action of The

combined differential equation is

where the system matrix is written as H(z ), which implies that the impulse

influence matrix function is defined for variable coefficient system.

§5.10.1, Reciprocal theorems of the impulse influence matrix functions

The sub-matrices of impulse influence matrix function hold three reciprocal
theorems. There must be two sets of forces for reciprocal theorems. Suppose the
first set of forces acts at the point and the second set of forces acts at the
point The differential equations for the sub-matrices, as functions of

coordinate z , are

and

The boundary conditions are

Writing the matrices as A(z) etc. explicitly means that the theorems are valid also

for variant coefficient system.
Carrying out the integration
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gives [comment: where (19a) represents (5.10.19a), the same below]

where the last equality is based on the boundary condition. The above equation
gives the first reciprocal theorem. Equation (5.10.12) proposing a symmetric
matrix is a special case of the theorem at

Next, the following integration is to compute

Using boundary conditions gives

which is the second reciprocal theorem. Equation (5.10.14) proposing a
symmetric matrix is a special case at of the theorem.

Computing the integration

then using the boundary conditions, it derives

which is the third reciprocal theorem. Integrating

gives the third reciprocal theorem. All these can

concisely be expressed as

To express in terms of the impulse influence matrix function, let

It is easy to verify that

or given as

The matrix will appear frequently and the equation (5.10.26)

expresses its reciprocal symmetry. The general theorem proved above is very
important however, numerical result is necessary for applications. The precise
integration numerical computation for a coordinate invariant system is given in the
next section. The impulse influence matrix function, as described in previous
section, satisfies the differential equation (5.10.18).
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The impulse influence function can be used to solve the non-homogeneous dual
differential equations (5.2.9a,b). Let the initial value be substituted by the

initial impulse and be superimposed on then

the solution of equations (5.2.9a,b) can be expressed as

The solution of non-homogeneous dual differential equation is very useful for
sub-system analysis and system identification, etc.

The positive definiteness of the diagonal matrices and/or

are clearly seen from the equations (5.10.14) and (5.10.12) based on the positive
definiteness of the solution matrices of the Riccati differential equations S(z) and

P(z).       The positive definiteness of the matrices

should be proved further, where Based on the reciprocal symmetry

theorem the symmetry of the two matrices is readily verified. To prove positive
definiteness of the matrix the positive definiteness of the strain energy is

required,

which is always valid for structural mechanics. In optimal control problem, the
combination of controllability and observability ensures the positive definiteness of
the “strain energy”, see section 6.7.

Denoting z and as and respectively, and selecting the

component numbers and compose the dual differential equations

(5.10.3a,b)as

where the arbitrary load factors and are located at and
respectively. According to (5.10.27) the solution can be given as

Substituting this solution into the integration of positive definite strain energy E .
Based on the dual equations (5.10.3a,b’) and boundary conditions, the strain energy
E is computed as



Wave propagation 257

which is a positive quadratic function of arbitrary parameters and It

implies positive definiteness of the matrix

This behavior is valid for arbitrary component numbers and arbitrary

parameters and Although the positive definiteness is proved for 3-D
subspace, but the method applies to arbitrary dimensions, so that the positive
definiteness of the matrix is proved.

The positive definiteness of the matrix can also be similarly proved.

§5.10.2, Precise Integration of impulse influence matrix function

The equations (5.10.12) and (5.10.14) presented two sub-matrices at the force
acting point but the impulse Influence matrix function needs to

compute all the sub-matrices and at any

coordinate z . Two cases of and should be computed separately.

The n×n system matrices A,B and D are assumed coordinate-invariant.

First the differential equation of the submatrix is derived as follows,
substituting the matrix form of equation (5.10.4’)

into the equation (5.10.19b), then taking transpose gives

Based on the inverse matrix derivative rule gives

Equation (5.10.12) gives i.e. the initial
condition. Equation (5.10.19) is a variant coefficient ODE. Usually a variant
coefficient differential equation is difficult to solve analytically. However, the
equation (5.10.29) is derived from a coordinate-invariant system, solving Riccati
differential equation by means of the precise integration method as given in section
5.7, the n×n matrices are computed simultaneously, where in

the interval the matrix satisfies the differential equation (5.7.16).

To express the interval of filter type, the subscript is used

This differential equation is just (5.10.29). Therefore
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And then

Next step is to solve for Differential equation

is still (5.10.29). According to equation (5.10.14), the initial condition is

Therefore it solves

It needs to find the solutions in the interval When solving the Riccati

matrix S(z) using precise integration method in section 5.7, the matrix is

obtained simultaneously, for which the differential equation is

from which, it derives the differential equation

On the other hand, writing the equation (5.10.9) in matrix form gives

and gives the initial condition

(5.10.15a). So

Similarly

Up to here, the four sub-matrices of the impulse influence matrix function have all
been solved by the precise integration method.

The three reciprocal theorems should be verified. However, only the check of
consistency of the three reciprocal theorems is verified below. Substituting
into the first reciprocal theorem, equation (5.10.22) and, noting the variable
substitution rule gives

On the other hand, the second reciprocal theorem gives

To check that the above two equations are consistent to each other, left multiplying

and right multiplying the equation of first reciprocal theorem derives

the equation of the second reciprocal theorem. The third reciprocal theorem gives

This equality should also be consistent with the previous two. Taking transpose,
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left multiplying and interchanging and the first reciprocal theorem

equation is obtained. Then the consistency is checked for the three reciprocal
theorems. ##

The above explicit computational equations are only for coordinate-invariant
systems. These reciprocal equations imply the mutual relation between the matrix

functions and Evidently, the computation of matrix functions

and is the key step. The precise integration method

proposed in section 5.7 solves the computational problem. But directly using these
equations (5.10.30~31) and (5.10.33~34) in computation has still a pitfall that the

inverse matrices and appear in the equations. When z becomes

large, both and tend to be null matrices and the inversion will cause

numerical ill-conditioning in computation. To bypass such problem, the strategy of
stepwise go forward can be used. The whole interval has been

subdivided into fundamental intervals with length Note

that the forms and always appear

simultaneously, hence the matrices and can be

computed and stored at the station z . The two matrices are interrelated to each
other, that using the first reciprocal theorem derives

The precise integration of the sub-matrices of mixed energy needs to compute
the sub-matrices for a single fundamental interval and the

matrices S and P of the Riccati differential equations. Using the interval
combination (5.7.23a) gives

which derives

Similarly

All of these equations explain that the individual matrices and are

unnecessary to compute, only after the mixed energy submatrices

of a single step size and the Riccati matrices p(z ),S(z ) are computed, then the

computation of (5.10.36a,b) is to perform. Such algorithm can be free from the
unnecessary numerical ill-conditioning mentioned above.

§5.10.3, Numerical example of impulse influence matrix function

Example 5.8: Suppose n = 4, the system matrices A,B,D are given as
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uniform fundamental intervals are selected with totally 9 stations, step size

Solution: According to these data, using the precise integration method compute the

Riccati matrices P(z),S(z), and the combined matrices and

Then according to the formulas derived above, the impulse

influence matrix functions at all stations are computed next. Both the

force acting point and response points z have all nine stations. There are too

much data, which cannot be listed exhaustively. It is checked that the reciprocal
symmetric property fulfills perfectly. Part of the numerical result is listed below.

For z = 1.8:

and for z = 1.2:

The reciprocal symmetry is checked perfectly for the two groups of data. Because
these matrices are computed by precise integration method, hence the numerical
results almost reach computer precision.

If is selected with step size the submatrices at the same

grid points give almost the same numerical results, that the precise integration
method gives certainly very precise numerical results. ##

§5.10.4, Application

Equation (5.2.9a,b) proposes the problem of structure response under external
forces and which is solved with the equation (5.10.27). However,

the structural analysis needs also to solve the eigen-problems as given by dual
equations
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where M is a non-negative symmetric n×n mass matrix and is the
eigenvalue to be determined, whose physical meaning is the natural frequency. On
the other hand, the other form of structural eigenvalue problem derives to

where is a non-negative symmetric n×n geometric matrix and is the

eigenvalue to be determined, whose physical meaning is the loading factor. These
eigenvalue problems can be reduced to an integral equation by the method of
impulse influence matrix Comparing equations (5.2.9a,b) with

(5.10.37a,b) finds the substitution of and and then the

equation (5.10.27) is reduced to

Using equation (5.10.25), the former one gives the integral equation

Because of the second reciprocal theorem (5.10.23), it can be reduced to an
eigen-problem of a symmetric kernel integral equation, the mathematical theory of

which was given perfectly, see [1]. After solving the eigen-pair the dual

vector p(z) computation is simply a quadrature of (5.10.39b).

Similarly for (5.10.38a,b), it derives the equations

where the former one can be reduced to an eigen-problem of integral equation with
symmetric kernel, which is due to the first reciprocal theorem, and the latter
equation is simply the integration computation of q(z) after the eigen-problem is

solved.
Numerical solution should first reduce the integral equation to be of symmetric

kernel. The matrix M is factorized as first, then the equation
(5.10.39’) is derived as

which has been an integration equation eigenvalue problem with symmetric kernel

and the unknown vector After solving the eigen-solution

pair the eigenvector of the equation (5.10.39’) can be found simply

from the equation

The solution of integral equation with symmetric kernel can use the numerical
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integration method. For eigenvalue problem it reduces to an eigenvalue problem
with symmetric matrix and typical solution algorithm can be invoked, see [42,43],

The conclusion is that the impulse influence matrix can be precisely

computed at the grid points, the numerical result approaches the exact solution,
which supplies good basis for further developments. Based on the analogy
between structural mechanics and optimal control, the impulse influence matrix

is also quite useful in optimal control problems.

§5.11, Power flow

Elastic wave propagation is a complex problem, for which there are a number
of monographs and papers [105~113]. The elastic wave-guide is an important part,
that its domain is a strip or a prism. Discretizing along the cross-section derives a
single continuous coordinate problem.

The displacement method is frequently used in the traditional analysis of elastic
wave-guides. From Timoshenco beam analysis, it is seen that the analysis of
wave-guide problems can also use the state space approach. Therefore, the
damping free wave propagation becomes a problem of Hamilton system theory, and
then the method of separation of variables, eigen-problem of a Hamilton matrix,
adjoint symplectic ortho-normality and expansion theorem etc. can be used for
solving the elastic wave-guide problem. Here, the problem is assumed transversely
discretized along the cross-section, and wave-guide problem is reduced to be a
multi-variable system along a single continuous coordinate [114~118]. For the
problems of theory of elasticity, the variables on the cross-section are also
continuous functions, which is in the infinite dimensional symplectic space. In
such case, the transverse discretization method (semi-analytical method) can be used,
which reduce the problem to finite dual variables transversely, then the method of
separation of variables, symplectic eigen-solution expansion, etc. can be used to find
the numerical solution.

Assuming, a wave-guide with n -displacements along the cross-section (for
Timoshence beam theory, n = 2) is analyzed by means of the frequency domain
method. Given frequency that both the displacement vector q and internal

force vector p hold a factor of and the displacement, velocity and internal

force are expressed as

Therefore the time average  power flow across the station z can be computed as

where p = p(z) etc. The above equation is general. Using the expansion
theorem

where ã(z) and are n -dimensional vectors to be solved. According to

the solution obtained from expansion method
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then

where a and b are vectors to be determined, and

where for the subscript. Substituting equation (5.11.3) into gives

where

These matrices are independent on z , and they represent energy transmission or the
characteristics of power flow. Selecting arbitrarily the constant vectors a and b ,
equation (5.11.4) can be used to compute the power flow of arbitrary wave along the
wave-guide.

The above analysis applies to constant cross-section wave-guide of single
continuous coordinate z . A related problem of which is the wave propagation
along periodical structure. For a given frequency precisely integrating the
length of a period of wave-guide obtains the respective mixed energy matrices

The continuous wave-guide can be considered as a periodical

wave-guide with the mixed energy matrices of the fundamental period substructure
being given. Hence the periodical structural wave-guide analysis can be given
similarly. However, the periodical structure wave propagation has some features,
and will be considered later in section 5.14.

§5.11.1, Algebraic Riccati equation (ARE)

The discussion of power flow can begin with the analysis of semi-infinite strip
domain The solution selected must be decayed when i.e. the

eigen-solutions. If there is no purely imaginary eigenvalue, then all the
eigen-solutions decay. It is easily recognized that such solutions will not carry
energy to infinity. Only the purely imaginary eigenvalue k > 0,

the corresponding solution has a factor

which implies that the solutions propagate along the axis z with wave speed
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toward and these solutions transmit energy.
When there is no purely imaginary eigenvalue, then only decayed solutions

exist at Taking in the interval expression (5.7.14) gives

where the subscript-a represents left-hand end of an interval, which can be an
arbitrary coordinate z , such as z = 0 . Matrix is the left end stiffness matrix

of the semi-infinitely long wave-guide, a dynamic stiffness matrix. Substituting
into the dual differential equations (5.2.10a,b) derives the equation to be

satisfied by

the ARE. The above derivation is for wave-guide theory. This equation is very
important for optimal control theory. The controllability and observability in
optimal control theory ensure that the strain energy of arbitrary interval is positive
definite, hence there is no purely imaginary eigen-root, which derives also the ARE.

From the symplectic orthogonality condition, the matrix is symmetric,

so is In fact

Substituting all the columns of matrix in turn, as the vector all the

respective columns of as vectors and into equation (5.7.14b)

gives the above equation. This equation is a special case of equation (5.8.5). The
matrices and are complex valued and are inconvenient for computation.

In case of no purely imaginary eigen-root, using (5.8.19) and (5.8.18) gives

and the computation becomes real arithmetic. When there is purely imaginary
eigen-root, the n×n matrix is not able to bring the matrices real. Such case

corresponds to wave propagation and will be considered below.
The case of semi-infinite interval is considered now. For which,

only the eigen-solutions should be selected. In case of no purely

imaginary eigen-root, only decay solutions exist for In equation
(5.7.14a) for the left end-a, then it gives

where the subscript-b means right-hand end. is the flexibility matrix of

semi-infinite strip wave-guide. From the dual differential equations (5.2.10a,b)
derives the equation for as

the ARE, which is very important in Kalman-Bucy filter. The controllability and
observability conditions (chapter 6) ensure that there is no purely imaginary
eigenvalue. However, the wave propagation solution requires purely imaginary
eigenvalue.

Having found all the eigen-solutions, the ARE solution can be computed as
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According to the adjoint symplectic ortho-normality condition, is easily

verified a symmetric matrix. Equation (5.11.8b) is obtained by substituting the

columns of in turn as the vector and the corresponding columns of

as into equation (5.7.14a). The decay condition at determines

This equation is a special case of equation (5.8.6). However, the

matrices and in the above equation are complex valued, which is

inconvenient for computations. In case of no purely imaginary eigen-root, the
equations (5.8.18~19) can be used to derive the equation

which is computed in real arithmetic.

§5.11.2, Transmission waves

The last section points out that in case of no purely imaginary eigen-root, the
two AREs (algebraic Riccati equations) can be solved within real arithmetic.
Although the complex conjugate eigenvalues may appear and correspondingly the
complex conjugate eigenvectors located both in or in hence the

solution matrices of the AREs must be symmetric and can be computed with
equations (5.11.8’a,b).

When there are purely imaginary eigenvalues, the two complex conjugate

eigenvalues locate separately in and in hence the matrix in
(5.8.18) cannot be involved in the transformation within nor within

When using the eigen-solutions only the transmission wave

toward exists but the transmission waves coming from does not exist
because the eigen-solutions are excluded. Such sort of solutions

coincides with the energy radiation condition.
The solution satisfying the radiation condition must be strictly distinguished

from the solution of perfectly reflected at The radiation condition means
that energy can only flow to with no return, it implies energy dissipation.
However, perfect reflection at means that the radiated energy will be
coming back from with no energy loss. Such solution can also be interpreted
that a wave coming from which means energy coming but the system has no
dissipation so that the energy is radiated. The energy balance solution is composed
of not only the purely imaginary eigen-solution but also the

purely imaginary eigen-solution.
The precise integration solutions described before solve the differential

equations (5.7.16) and (5.7.17) with the two point boundary conditions, for which
the condition at is This boundary condition corresponds to energy

reflected perfectly. Let at some point of very large, then the

integrated interval matrices F,G,Q are all real valued. The analytical solution
given in the previous section is also determined from such two end boundary
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conditions hence the obtained interval matrices are all real valued.
Below, consider the solution only. Let the matrix be defined

by (5.11.8a). When there is purely imaginary eigen-root, then although

satisfies the ARE (5.11.7a) but it is still complex valued. From which the power
flow of pure solution can be computed as

where is still a symmetric (but not Hermitian symmetric) matrix, complex
valued. The symmetry is ensured from symplectic orthogonality.

For two given coordinates and the power flow balance condition

requires To verify, from equation (5.11.2) derives

Using equations (5.7.14a,b) and the symmetry of the matrices Q and G gives

Because the matrix F is also real valued, so follows, which gives the
constant power flow theorem along the z axis.

The solutions is considered next. According to equation (5.11.8b),

the matrix is obtained. If the purely imaginary eigenvalue exists, then the

matrix is complex valued and is different with that obtained from the two end

boundary conditions. The matrix satisfies the ARE (5.11.7b), and then the

power flow of solution can be derived as

§5.11.3, On power flow orthogonality

Examining equation (5.11.9a), because is constant all along the

coordinate z , hence

icking up the (i, j) element from the above matrix equation gives

For non-diagonal element the factor of the

parenthesis is not zero, hence when Even for the diagonal

element if is not a purely imaginary eigen-root, still Only for

purely imaginary eigen-root, can be non-zero. Hence the power flow toward

right-hand direction is

The conclusion can be drawn as that the decay, eigen-solution has no power
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flow and there is no energy flow between two different eigen-solutions either. The
power flow exists only for purely imaginary eigenvalue solution. It is the
orthogonality relationship of power flow.

For eigen-solutions, the analysis is similar.

There remains the problem of mutual power flow between toward-left and
toward-right eigen-solutions. For which, the conclusion of that power flow is a
constant along the z axis can still be applied. From the equation (5.11.5c) and
(5.11.8) give

The above equations are valid for arbitrary vectors a and b . Two cases are
selected as

Substituting into the above equalities gives Hence

the conclusion can be drawn that the mutual power flow is zero except
It is again a power flow orthogonality theorem. It determines

that the purely imaginary eigenvalue solutions (pass-band solution) have no mutual
power flow. Only for symplectic adjoint eigen-solutions, the and

eigen-solutions can have mutual power flow, but such mutual action can be
applied only for finite length interval.

Power flow orthogonality is not enough to describe all behaviors, that there
must be power flow positive definiteness. Certainly the power flow positive
definiteness can be only for purely imaginary eigenvalue solutions, i.e. the pass-band
eigen-solutions. For transmission waves, k > 0 , the factor

implies transmission toward right, i.e. the power flow toward right

should be positive. It is expressed by the element in equation (5.11.10a), i.e.

the i -th diagonal element in the matrix of equation (5.11.9a), being positive.

On the other hand, the transmission wave of is toward left,

which implies the power flow toward right should be negative. Hence, for
wave

and the i -th diagonal element  of matrix (5.11.9b) must be positive, which

gives the positive definiteness of power flow.
The above discussion is based on the physical interpretation. Mathematical

proof is necessary which will be given in the next section. All the previous
discussions on power flow are based on eigenvector expansion method and the
wave-guide is considered invariant along the coordinate z . Practically, the strip
domain must have ends, and internal to the wave-guide there may be non-uniform
junctions. At these non-uniform parts of the wave-guide, the wave scatters. The
wave scattering analysis is very important in applications.
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§5.12, Wave scattering analysis

The eigenvector expansion method is quite effective for the analysis of wave
scattering, which appears at the ends of wave-guide or at the junctions.

The problem of an elastic body connected by two semi-infinite elastic
wave-guides is to analyze, see figure 5.3.

A problem with multiple semi-infinite wave-guides can similarly be analyzed.
The two wave-guides attached can have different properties. Let the dimensions be

and respectively, and have found the sub-matrices

of the eigen-matrix and the sub-matrices

of eigen-matrix respectively, for two wave-guides. The

elastic body is represented with a dimensioned external

dynamic stiffness matrix which should be Hermite symmetric. Given in

block matrix form

where the superscript represents Hermite transpose, i.e. transposition of its

complex conjugate,
The two wave-guides have incoming waves of the eigen-solutions

denoted as and of the two wave-guides, respectively. Only the
components corresponding to the purely imaginary eigenvalue can be non-zero.
Because of the scattering of elastic body, the various eigen-solutions will
be generated and expressed by the vectors and respectively, where the

component corresponding to the purely imaginary eigenvalue radiates power to
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infinity. To find the vectors and a set of algebraic equations must be

established. After solving the vectors and the energy balance equation

should be verified, i.e. the power flow poured in by the incoming wave vectors

and must equal to the power flow radiated by the scattering vectors and

Selecting longitudinal coordinates and for the two wave-guides,

respectively, such that the origin and locate at the attached points to

the elastic body. According to the expansion theorem, the solutions can be
expressed as

and at the two attached points and the equations of the elastic body

are

Substituting equations (5.12.3~4) into the above equations and distinguishing the
scattering and incoming terms at the two sides of equations gives

where the incoming wave vectors are given, so that the scattered waves are

Having solved the vectors and of scattering waves from the above
equation, the energy balance must be checked. Based on the proved power
orthogonality theorem, the incoming waves and have only transmission

components, the mutual power between incoming and reflected waves equal zero.
The power flow can only be carried by purely imaginary eigen-root solutions. Left

multiplying equation (5.12.6a) with and picking out the real

part, using equation (5.11.5) gives

where the last equality is because the vector b involves only the components
corresponding to the purely imaginary eigenvalue. Based on that is Hermite
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symmetry, so that

etc. Further, based on these equalities derives the equation

Left multiplying equation (5.12.6b) with and pick out the

real part gives

Because and are mutually Hermite transpose matrices, so that the

Re -part terms in the above two equations add to zero. Adding the two above
equations together gives

which explains that the total power flow of the incoming waves equals to the total
power flow of the radiative waves, which coincides with the energy conservation
principle.

For an elastic body connected with multiple wave-guides, the method of
analysis is the same. In fact, the two wave-guides can be combined together
forming a large wave-guide with and etc. So
that the problem is reduced to an elastic body connected with one wave-guide of
dimension

§5.13, Wave induced resonance

Vibration is closely related with wave propagation problems. Resonance is
extremely important phenomenon in vibration theory, so that similar phenomenon
should be considered in wave propagation. The resonance cavity in acoustic
wave-guide or in electro-magnetic wave-guide theory belongs to the problem of
same class.

It is seen from the above scattering analysis above, although there may be
multiple wave-guides connected to an elastic body, it can still be treated as a
combined large wave-guide. Hence the model used here is one semi-infinite
connected wave-guide, whose one end connects an elastic body. The equation
(5.12.7) becomes

Since there is matrix inversion, the case of singular matrix must be considered.

Because R is a Hermite matrix and is a complex valued

symmetric matrix, since there is purely imaginary eigenvalue. A complex valued
symmetric matrix is never a Hermite symmetric matrix hence the matrix

may not be a null matrix, but its determinant may be zero and then resonance
appears. In such resonance case, however, it does not mean that all the components
of the scattering vector a tend to infinity. In fact, there is the energy flow balance
condition
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hence, the reflected purely imaginary eigenvalue wave is still finite but the local
vibration components may be very large.

The resonance condition is

It is a complex matrix, hence corresponds to two real valued equations, which is
different to the usual multiple degrees of freedom vibration system, for which the
determinant is zero. Since, there exists the term radiating energy to infinity, which
means damping. Hence, the amplitude can be very large for wave induced
resonance, but it may be still finite.

A numerical example is given below to show that wave induced resonance
really exists.

Example 5.9, Suppose n = 4, which corresponds to a two degrees of freedom
system that n = 4 is the state space model. Suppose at some frequency the
system matrices are

The eigenvalues of the corresponding Hamiton matrix are computed as

and the matrices are computed as

If the stiffness matrix of the elastic body is

then according to the equation (5.13.1), when it solves

To check the balance of power flow, the input power is the reflected

(radiated) power can be computed by the wave component which gives

coincidence is very good. However, the
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numerical result reveals that the other scattered wave components are quite large,
that resonance appears. For this example, the resonance extent is very small, if
selects that the deviation is small, but when

the numerical result solves as

The power flow balance checks still OK, but the amplitude is greatly reduced. ##
Resonance may have devastating consequences; however, it can also be applied

for some purpose. Wave induced resonance should be carefully monitored. Here,
only a simple description is made for attention.

§5.14, Wave propagation along periodical structures

In aeronautical, mechanical and electrical engineering, analysis of wave
propagation along a periodical structure shows that the eigenvalues exhibit energy
band behavior similar to that in solid state physics [119]. Such that a wave with
frequency which is in a pass-band, can propagate along the periodical structure,
whereas otherwise is in a stop-band and the wave decays to zero over long
distance. The energy analysis used to find pass- and stop-bands is also important
in other practical disciplines. In particular, periodical electro-magnetic
wave-guides, e.g. gratings, behave analogously.

The basic unit in analysis of a periodical wave-guide is its fundamental period,
i.e. its shortest repeating length. For a given frequency its longitudinal wave
number analysis determines that when an eigenvalue is located on the unit circle for
a periodical structure, in which case the wave can propagate to infinity without
decay. Hence this is said to be in the pass-band, whereas when is in the
stop-band, the wave number is not on the unit circle and so the wave decays for long
distance propagation along a periodical structure. Therefore pass- or stop-band
analysis is very important, because it can be used to filter electro-magnetic (optical)
signals. Note that the energy band analysis of periodical structures and the analysis
of electro-magnetic wave-guides are analogous and so a method used in either field
can be transformed to the other. The key analysis step for a periodical structure is
to compute the dynamic stiffness matrix of its typical periodical sub-structure.
(Whereas for a periodical electro-magnetic wave-guide it is to generate the
respective ‘stiffness matrix’ related to the two end electric field vectors of a
fundamental period)

A frequency must either lie in a pass-band or in a stop-band. The
pass-band solution can be derived from a Rayleigh quotient analysis. All the
eigen-solutions of the Rayleigh quotient laying in a given frequency range can be
found by using the W-W (Wittrick-Williams) algorithm and its extension, as
described in Chapter-2, which were developed in the context of the vibration and
wave propagation problems of structural mechanics [40,41,114~117]. The W-W
algorithm is applied here in the relevant structural mechanics context.
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§5.14.1, Dynamic stiffness matrix of a fundamental substructure

The formulation is given in the frequency domain A periodical structure
is really a sub-structural chain [118], which is composed of fundamental
periodical sub-structures (fundamental segment) linked together end-to-end. The
left-hand and right-hand ends of a sub-structure are indicated by subscripts a and b
respectively.

Let the dynamic stiffness matrix corresponding to the two end displacement

Here K is a symmetric matrix, the positive definiteness of which is not assured;
and are (n × n) submatrices and, the fundamental period is the

shortest repeating length of the periodical structure. According to the dynamic
stiffness matrix theory [46], knowing only the dynamic stiffness corresponding to
the external displacements of the substructure is insufficient on its own to express

the eigenvalue behavior, because the internal eigenvalue count is also

needed [40]. The dynamic stiffness matrix is not the only available representation
of the dynamic behavior of a substructure, because the mixed energy representation
is also available [114~117] and is very important for the precise integration of the
mixed energy matrices of the substructure.

§5.14.2, Energy band and eigen-solutions of a symplectic matrix

After the 2n × 2n dynamic stiffness matrix of the fundamental
substructure has been generated, the energy band analysis for the periodical structure
or sub-structural chain [118] can be computed. The dynamic deformation energy

of a fundamental sub-structure can be expressed in terms of the

where and are its two end displacement vectors and is only a

parameter, which is sometimes not ever stated explicitly, as in equation (5.14.3)
below which is obtained by applying the variational principle to the chain of m
substructures

Introducing the dual vector

The equilibrium equation of the i -th station is derived from equation (5.14.3) as

vectors of a fundamental intervalt for a given frequency be

dynamic stiffness matrix as
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Note that equation (5.14.4) expresses the dual vectors by means of the

original displacement vectors and in the displacement method. However,

by introducing the state vector

the equilibrium equation can be transformed into the following state vector transfer
form, in which the right-hand end vectors and are expressed in terms of

the left-hand end vectors and Hence from equation (5.14.4)

i.e. for a fundamental substructure (fundamental interval)

where S is the transfer matrix, which is symplectic, i.e. it satisfies

Using the method of separation of variables to solve the transfer matrix
equation (5.14.5) yields the eigenvalue problem

After the eigen-pair has been found, the solution of the original transfer

equation (5.14.5) is where i denotes the i -th junction (station) of the

sub-structural chain. Now the symplectic eigenvalue problem has the following
characteristics.

If is an eigenvalue then so also is as follows. Left multiplying

equation (5.14.8) by and using equation (5.14.7) gives

which shows that is an eigenvalue of for which the eigenvector is

However, any eigenvalue of is also an eigenvalue of S. Hence the 2n
eigenvalues of S can be subdivided into the two classes

where and are mutually symplectic adjoint eigenvalues.

The following derivation applies for any two eigen-solutions, denoted by j

and k , of the symplectic matrix S :

Hence, subtraction of the equations in the final line gives
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Therefore either the two eigen-solutions j and k = n + j are mutually symplectic
adjoint to each other, so that two constant factors can be selected to achieve adjoint
symplectic normalization, or the eigen-solutions j and k are symplectic
orthogonal. In other words

which is called adjoint symplectic ortho-normality. Composing a 2n × 2n matrix
by using all the eigenvectors gives

and then using the adjoint symplectic ortho-normality relationship yields the matrix

identity so that is called a symplectic matrix.

When the eigenvalue is located on the unit circle the corresponding

solution of the original equation is Therefore the vector does not

decay because and so the solution gives a transmission
wave.

For the simplest case of n = 1, the eigen-equation is
Then for

a transmission wave appears, i.e. is in the pass-band. Changing the above
inequality to equality and solving with respect to gives the boundary between
the pass- and stop-bands.

The general case is multi-dimensional (n -dimensional) and so solving the
symplectic eigenvalue problem (5.14.8), requires prior solution of a skew-symmetric

symplectic eigen-problem, as follows. Left multiplying equation (5.14.8) by

to give and then using equation (5.14.6) gives
Combining this with equation (5.14.8) gives

where the skew-symmetric nature of A is readily verified from equation (5.14.7).
Solving to find the pairs of eigen-solutions of equation (5.14.13) makes solution for
the eigen-solutions of the original equation (5.14.8) easy. Moreover an algorithm
given in section 2.3.3.3 is available for solving this symplectic eigen-problem for a
skew-symmetric matrix.

§5.14.3, Pass-band analysis for periodical wave-guides

Because the electro-magnetic wave-guide analysis also generates a stiffness
matrix, an electro-magnetic stiffness matrix, the above analysis can be used in such
wave-guide problems. The pass-band wave number of a periodical wave-guide is

Here the phase angle is the only parameter and is real, so that the
eigen-problem can be solved inversely, by finding the frequency for a given
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wave number For a eigenvalue (see equation (5.14.9a)) this

gives In structural vibration the frequency eigenvalue problem is

the requirement is to find the frequency The boundaries between the pass- and
stop-bands are of great concern and are given by solving to find for and

In practical applications, all the eigen-frequencies in a selected frequency

range are required and the W-W algorithm for counting the number of
eigenvalues for a dynamic stiffness matrix is indeed for this purpose.

Substituting into the eigen-equation gives the

eigen-equation for as

where all the sub-matrices are functions of The other boundary between pass-
and stop-bands is obtained by substituting which gives

Note that both of equations (5.14.14) and (5.14.15) are eigenvalue problems of
n × n symmetric matrices, and so the W-W eigenvalue counting algorithm is
applicable. Note also that and are all submatrices of

the dynamic stiffness matrix of the interval

Equations (5.14.14) and (5.14.15) apply only for the boundaries and
of the pass-band, respectively. However for an arbitrary phase angle

the equation yields the eigen-equation for as

where is a given parameter and all the sub-matrices are functions of

Because the parameter is a complex number, the dynamic stiffness

matrix is no longer real and symmetric but is instead Hermitian, as

follows

Therefore equation (5.14.16) is an eigen-problem for a Hermite matrix, which is a
problem for which the W-W algorithm still applies. The equation looked simple,
however, its precise computation and the execution of the W-W algorithm need
further explanation.

The description for the displacement vector (electric field vectors) and

at the two ends a and b of the fundamental period must coincide with each

other, but unless or the values of and are different due to
phase changes. The origin of the fundamental period should be chosen such that

(and also ) has the least dimension possible. In applying W-W algorithm,

usually to find with the boundary conditions given. However, for wave
propagation problems, the boundary condition becomes a given wave number and
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the count of the number of eigenvalues internal to the fundamental period,

lower bound is zero. Hence there are number eigenvalues in the range

when the two ends of the fundamental period are regarded as clamped,

i.e.

§5.14.4, Dynamic stiffness of a fundamental period and eigenvalue count

The eigen-equation of the fundamental interval described above is

based on the external dynamic stiffness matrix of the fundamental interval

of the wave-guide. However, represents only the external behavior so that,

as for the dynamic problem there is internal behavior of the fundamental period and

so the internal eigenvalue count is required. Hence the boundaries

between pass- and stop-bands in the frequency domain are still the
eigen-problems of a symmetric matrix given by equations (5.14.14) and (5.14.15).
Therefore the matrix should be computed precisely, by methods which
depend on the type of wave-guide, etc. Below, a fundamental period of plane
electro-magnetic wave-guide is considered with its frequency given.

Let the fundamental period be composed of several constant cross-section
intervals (segments). Then combining two adjacent intervals 1 and 2 gives a longer
interval c, see Figure.5.4, with the equations for the combination being

where the superscripts denote intervals 1,2 and c. Note that although the two ends
of interval 1 are marked as a and b, it is not necessarily a fundamental interval.
The above equation applies only for the combination of external n×n stiffness
matrices. However, for dynamic stiffness matrix analysis (and hence also for the
present analogous electro-magnetic stiffness matrix analysis), the internal eigenvalue
count should also be combined, and the recurrence equation for this eigenvalue
count is the W-W algorithm

is necessary, where is a given upper bound of a frequency range for which the
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where is a given frequency bound and is the

internal stiffness matrix when combining the two intervals. and

are the internal eigenvalue counts of intervals 1 and 2 respectively, and s{…}

represents the eigenvalue count operator such that s{R} is the number of negative

entries of the diagonal matrix D obtained by the factorization see
[115]. Equation (5.14.20) enables all the eigenvalues in the given range

to be found with certainty by many alternative methods, of which the

simplest is the bisection method.
When the fundamental period has more than two intervals it can be assembled

by applying the above equations recursively to add one interval out a time.
The problem has now been reduced to performing computations for each

constant cross section interval. The interval is a continuum and so has an infinite
number of degrees of freedom in its cross-section. However, in practical
computation these are usually approximated by a finite number of degrees of
freedom, n, via a discretisation procedure, i.e. the semi-analytical approach is used.
This discretisation has two alternative forms. In the first, which is called the
spectral method and is the one adopted here, the field is assumed to be the linear
combination of n independent basis functions, which represent the transverse
cross-section distribution. Thus the n multipliers of these basis functions are the
unknown functions of n which need to be found. A set of n simultaneous
differential equations derived from the variational principle are then solved by a
numerical method, e.g. the precise integration method. The second discretisation
procedure is identical to the first except that at the first step FEM is used for the
cross-section, to give the precise form [102] of the finite strip method.

For ease of presentation, a simple problem is now introduced as an example.
As mentioned, the electro-magnetic wave-guide problem is analogous to the
sub-structural analysis, so that the example is such a wave-guide.

Example 5.10, Consider a plane
electro-magnetic wave-guide shown in
figure 5.5, where z is a longitudinal
coordinate along which the wave
propagates. Suppose that the core film
is a vacuum surrounded by perfect

conductors with

(=the velocity of
light in a vacuum),

and The problem is to find the

eigenvalue for any given wave phase angle for which

Solution: For this problem, the fundamental substructure is composed of two
uniform intervals between which the cross-section changes abruptly. Let the
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fundamental period of the wave-guide be with intervals

and which are of thickness and respectively, and are
represented by m and n basis functions, respectively. Now the abrupt change
of cross-section at z = 0 , results the following conditions there

where is the component of magnetic field vector. The variational method can

be used to process these junction conditions by transforming the interval

to i.e. the thickness of the two external cross-sections changes to

and the number of terms in the expansion changes to m. For brevity the
derivation of this transformation matrix is omitted, but the resulting matrix T at
the stations z = 0 and needed for treating the cross-section change gives

where the vectors and are of orders n and m, respectively, so that T

is n × m . A similar derivation for the right-hand end gives Here

subscripts a and b represent the left- and right-hand ends, and the superscripts (l)

and denote series expansion for thickness or respectively. Therefore

the electro-magnetic interval stiffness matrix which is for the end vectors

and of a wave-guide thickness should be transformed by using the

equations

for the two end electric field (displacement) vectors and with thickness

The matrix is a 2n × 2n matrix composed of four diagonal n × n

matrices, whereas the transformation makes into a fully populated 2m × 2m
matrix. (Note, that for a general cross-section wave-guide the semi-analytical
method discretizing the cross-section results in a which is fully populated)
** to be continued.

After transformation, the stiffness matrix represents the behavior of
interval-2 but relates to the contracted cross-section. However, the fundamental
period interval is composed of both the interval-1 and interval -2. Therefore the
electro-magnetic stiffness matrix is also needed by the interval combination
algorithm (see equations (5.14.19) and (5.14.20)) which is applied to give the
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combined electro-magnetic stiffness matrix  for the fundamental period of

wave-guide and its associated Thus the computation of at given is a
fundamental step in the analysis of a periodical wave-guide and corresponds to the
dynamic stiffness matrix in structural analysis of the fundamental substructure,
which is also computed for given

Because the stiffness matrix is fundamental to FEM, after introducing potential
energy and its stiffness matrix the analysis of electro-magnetic wave-guides can use
the same methodology as in structural mechanics. Thus computation of the
eigenvalue count for a fundamental period of a wave-guide has three principal steps.
The first two are to compute the eigenvalues counts internal to each uniform interval
by using the precise integration method and for the combination of intervals within
the fundamental period. Then the final step gives equation (5.14.23) as follows.
For a pair of given phase angle and given frequency, the eigenvalue count

of the pass-band wave-guide can be computed from the equation

where is the eigenvalue count of the Hermitian matrix given by equation

(5.14.18) and is the value of the eigenvalue count for the fundamental period

yielded by the first two steps.

§5.14.5, Computation of the pass-band eigenvalues

As shown in section 5.14.4, the boundaries of the pass-band are given by
equations (5.14.14) and (5.14.15), for which the phase angles are
respectively. For other values of and a given frequency the
electro-magnetic stiffness matrix of the fundamental period of a

wave-guide can be computed as described in the previous sections. Note that

is a Hermitian matrix, i.e. where superscript denotes

Hermitian transposition. Because the frequency domain is multiplied by
equation (5.14.2) for the energy should be slightly modified, by

replacing the superscript T as H to give

To find all the pass-band eigenvalues of a periodical wave-guide, the
electro-magnetic stiffness matrix of the fundamental period should be used

as the matrix in equations (5.14.14~16). Hence the matrix in

equation (5.14.16) is Hermitian, so that the W-W algorithm still applies. For a
given the eigenvalue count of the Hermitian matrix can be

computed by the triangular factorization

where D is a real diagonal matrix. Therefore all the eigenvalues can be found,
e.g. by the bisection method.
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** Continuing computation of the previous numerical example 5.10 gives the results
in Table 5.2

Periodical electro-magnetic wave-guides have important applications and
determining their characteristics involves an eigen-problem, which can be solved by
using symplectic mathematics and the methodology applied in structural mechanics.
Thus the electro-magnetic stiffness matrix (or impedence) of a fundamental period
of a periodical wave-guide has been introduced and then symplectic mathematics
has been applied as in the analysis of sub-structural chains. The energy band
analysis for the periodical wave-guide is then carried out on the same basis as in
structural analysis. ##

In the above text, the application of duality methodology is shown for various
topics, however, only a beginning exploration has been made. The application of
this methodology can be far extended to other fields, further work is anticipated.
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Chapter 6, Linear optimal control,
theory and computation

Control systems are found throughout in nature and in technology. Automatic
control theory was initiated from applied mechanics. Classical control system
design was mostly developed during the first sixty years of the twentieth century,
and has been wide used in various engineering disciplines. For which, the
mathematical basis is the theory of ODE, the Laplace transformation, the stability
theory, the transfer functions, etc., and is characterized by the use of root locus,
frequency response method, and Nyquist contour etc. for analysis and design. The
classical controller design methodology is iterative, and is effective for single-input,
single-output linear time-invariant system analysis and design. The disadvantage
of classical control theory is often fail to get intuitive insight for high order systems
and for multi-input, multi-output (MIMO) systems, and fail to describe the system
internal behavior.

Under the computer impact, the linear quadratic Gaussian (LQG) optimal
control theory was developed during the fifties and sixties and refined in the
seventies of the twentieth century, which means the transition from classical control
theory to the modern control theory characterized by the state space approach. This
design method has been successfully used in a wide range of applications in
aerospace and many other areas.

The modern control theory is not a simple extension along the way of classical
control theory, but changes the methodology which updates the theoretical basis, that
the fundamental variables changes from single to state variables etc. The state
space description involves the system internal variables, so that it is no longer only
the input-output relation description as that in classical control theory. The state
space description can directly discuss the system performance in finite time domain,
and the controllability and observability of the system mean deeper understanding of
system structure.

All real systems are non-linear, however the mathematical analysis for
non-linear system is usually very difficult. Linear system is a good approximation
to real system and is the fundamental part of control theory.

Control system design requires a mathematical model of the plant, and there are
many forms of the models, including differential equation models, transfer function
models and state space models etc. The state space model is a set of first-order
linear differential equations in matrix/vector form. The state space model is ideal
for computer aided design, since computers typically work well with matrices and
vectors. In addition, many powerful results from linear algebra can be applied
when using state space models. The state space model is particularly convenient
for control system analysis and design, because powerful mathematical method,
computer aided analysis and design software are available. Furthermore, the same
basic equations can be used to describe low- and high-order systems, as well as
single-input single-output (SISO) and multi-input multi-output (MIMO) systems,
etc.

Control theory updated the theoretical basis according to its own requirement,
and at a first glance, the control theory has developed far apart from the applied
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mechanics on theoretical basis. However, it is found that the mathematics of
modern control theory has a one-one correspondence relationship with some kind of
problems in structural mechanics, which establishes the analogy relationship
between structural mechanics and optimal control. The analogy relationship
means that the theories and algorithms developed in both sides can be mutually
transplanted to each other, which is quite beneficial to both sides of optimal control
and applied mechanics.

The methods of precise integration, the algorithm for eigen-solutions of
Hamilton matrix, adjoint symplectic ortho-normality and the precise integration
solutions of the Riccati differential equations etc. described in the previous chapters
can be used in the modern control theory. The interdisciplinary research shortens
the distance between both the disciplines, which is quite beneficial to the teaching
and research in both sides.

§6.1, State space of linear system

A dynamical system is usually described by a set of ordinary differential or
difference equations. System theory or control theory is usually developed based
on a dynamical system. When the set of differential or difference governing
equations is linear, then the system is linear. Although the real system has
non-linear factors, however, the motion around the vicinity of the nominal orbit, i. e.
the perturbation, can be described by the linear system theory. The linear system
theory is convenient for its mathematical treatment, so that the linear system theory
is very important in control theory and engineering.

§6.1.1, Input-output description and state space description

The mathematical description of a control system can be classified as two
fundamental kinds:
1) External description, or input-output description; and
2) State space description; and is sketched in figure 6.1.

The vectors and are the input and

output of the system, respectively, and are considered the external variables of the
system. However, the system dynamics cannot be described completely with
these variables, that the system dynamics is described by the state variables denoted
as or combined as the state vector

which is a function of time t. Part of the state vector is under the measurement all
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the time and the result of measurement is regarded as the output vector. The state
variables completely present the behavior of the system, but some part of the state
(internal variables) is not involved in the output variables.

The traditional control theory treats the system as a ‘black box’, and put the
attention to the variation of output variables y with the changing of input variables

u . Although the system is originally a multiple degrees of freedom one, but for
mathematical convenience the methodology is to eliminate as many variables as
possible, in order to simplify the basic equation to be solved as a single-input
single-output high order ODE. Recall that in engineering mechanics, the traditional
methodology is also of such classical consideration. For a time-invariant linear
system with only one input variable u and one output variable y, the external
mathematical description is a linear ODE with constant coefficients

where the coefficients are all real constants, and Assuming

the initial condition of the input and output variables u,y are all zero, then taking

Laplace transformation to the equation (6.1.2) gives the system frequency domain
description as

where are the Laplace transformation functions of the input and output

u(t),y(t), and

is the transfer function of the system.
The classical control theory emphasizes the analysis of system input versus

output and their transfer function, and the main concern is the system stability.
However, the relation of input versus output is incomplete for system description,
because which cannot describe the whole picture internal to the black box. On the
other hand, the state vector describes also the internal state of system, so that gives
the complete dynamical characteristics of the system. It is an important progress to
describe the system with the state space method.

State space is not a new idea, that in classical dynamics the state variables had
long been proposed. Hamilton dynamics practically laid the system on state
variable description. The state of a dynamical system is defined as a minimum set
of variables which completely characterizes the system behavior

in time domain. Equation (6.1) uses x( t ) to denote the state vector. According

to the mathematical theory of ordinary differential equations see [36], under the
condition of no uncertain external disturbance, give the initial state at

then the dynamic equation uniquely determines the system state evolution x(t).

Simply, if the input is given certainly, then the motion is also determined.
A dynamical system is described by a set of ODEs. However, the coefficients
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of the set of ODEs are not so certain, especially the system is always under external
random disturbances all the time, hence only based on the given initial state at

the time the motion estimation of long time performance under random

disturbances is not enough. Therefore a control system requires monitoring its state
continuously, that the necessity of the measurement vector y output is laid on the

estimation of the current state x(t). The ideal measurement is to get the current

state x(t) completely, but it is very difficult or even impossible. Therefore, the

measured vector y is only q-dimensional, The mathematical model of
state space description is given as the dynamic equation and initial condition

with the measurement output

where f and g are vector functions. The above representation is general but

somewhat vague, because there are random disturbances etc., and the determination
of functions f and g is not so easy. Both the functions f and g can be

non-linear. Generally speaking, real systems are all non-linear, however, the
solution of non-linear system is very difficult mathematically. Fortunately, for
quite a number of practical systems the differential equation can be treated as a
linear system approximately. If only the motion of system nearby the nominal
motion  u*(t) is considered, then the solution can be written as

The functions f and g in equations (6.1.6) and (6.1.7) can be expanded in Taylor

series at the vicinity of  and  with the higher power of and be

neglected (linear approximation)

In the above equation the derivative of a vector function with respect to a vector
variable follows again the rule (1.7.20)

Therefore, the dynamic and measurement equations (6.1.6) and (6.1.7) are
approximately given as

which are linear equations of and Because linear system is easier to be

analyzed mathematically, hence usually the linear approximation of systems is often
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used. The computation of non-linear system is usually solved based on its
approximate linear system solution by iterative method. Usually, the state variables
are preferable to be written as x(t), u(t) and y(t) instead of and so
that the equations are written as

where is the non-homogeneous term. The corresponding

homogeneous equations are

with initial condition a given vector. The state, control-input and

measurement vectors are denoted as

respectively. The matrices A, C and are given with

dimensions n × n , n × m , q × n and q × m , respectively. For time-variant

system these matrices are functions of time t.
For linearized approximate system the matrices A(t), C(t),D(t) are still

dependent on time t. It gives a time variant linear system of differential equations.
Comparatively, the time variant linear system has been easier than non-linear system
mathematically, but the behavior of a time variant system varies from time to time,
and it is not so easy on computations either. Time-invariant (steady state) system,
for which the matrices A, C, D are invariant with time, is much easier on theory
and also on computation. Using steady state system instead of time variant system
approximately, some useful results can still be obtained. Hence the time invariant
system is investigated most often, and it will be discussed carefully below.

§6.1.1.1, Continuous-time and discrete-time systems

For some kind of problems, the state variables are naturally given at
discrete-time, such as many economic problems, the ecology problems etc. The
discrete-time model can also be derived from continuous-time problem. The state
space linear discrete-time description are given by the equations

which give a time-variant system. When the matrices F,B,C,D are independent
on k , the system is time-invariant, where k corresponds to the time coordinate.

Computer simulation is frequently used to evaluate control system performance.
Computer simulation can be used to solve outputs, when the system is of high order
or is subjected to complicated inputs that are not easily amenable to analytic
solutions. In addition, the effects of time-variations, delays, and non-linearities can
be evaluated using simulation. Computer simulation is also typically used to verify
analytic results prior to hardware implementation.

Computer simulation requires that the continuous-time plant and the controller
models be approximated by discrete-time systems, i.e. by finite difference equations.
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Digital controllers also utilize difference equation models when operating. One
method of generating a digital controller is to design a continuous-time controller
and then approximate this controller in discrete-time. The generation of
discrete-time approximation from a continuous-time system is therefore of
fundamental importance in simulation and control system design.

A number of methods are used to form a discrete-time approximation of a
continuous-time system, such as Euler’s method, the zero-order holding
approximation and so on [132]. Let the time step be denoted as The Euler’s
method approximate the time derivative as

and then a difference equation for the state is simply obtained as

The zero-order holding approximation is obtained for time-invariant system.
The state difference equations is obtained by solving the equation (6.1.11’) while
assuming the input is constant over the time step, i.e. and

The state at time of one step further solves

where which can be computed by the precise Integration method.
Based on the above equation, the discrete-time dynamic equation can be easily
computed as

System analysis can also be classified into deterministic system and/or
stochastic system. The deterministic system means, that not only the system
parameters are deterministic but also the input variables (including the control and
disturbances) are also changing deterministically. For a stochastic system, the input
variables (control and disturbances) are considered a stochastic processes, even more
that the system parameters or the structural characteristics may also involve some
random variables. The characteristic of a stochastic system is that there are no
deterministic state responses, that only the statistical parameters such as mean values
and variance matrices can be available. It corresponds to the random vibration
problems or to random structural analysis.

The state space approach is emphasized in the following description, but the
classical approach is also described at some places. The continuous-time and
time-invariant system is of much concern. Based on the analogy between
structural mechanics and optimal control, the theory and algorithms in structural
mechanics are introduced into the optimal control theory so as to get some useful
ideas and progresses.

Example 6.1, A single degree of freedom mass-spring vibration system is shown in
figure 6.2. The force F and the damping dashpot velocity v are inputs, the
displacement x of the mass m is output. The formulation of the state space
equation is required.
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Solution: The forces acting on the mass are: the inertial force the damping
force elastic force of

the spring kx and external
force -F . Hence the
dynamical equation is

The state variables are selected
as therefore
the dimension of the state and
input vectors are n = 2 and

respectively

The state space dynamic and measurement equations are given as

From the state space dynamic equation and the measurement equation finds that

These equations can be modeled with the block diagram of state variables, Figure
6.3. The block diagram of
state variables can ease the
use of an analog computer.
There are only integrators,
additive and multiplier
operators and connection
lines. The output variables
can be picked up from the
block diagram according to
the output equation. The
operator 1/s corresponds to
integration, and parameter s
is the variable of Laplace
transformation. ##

§6.1.2, State space description of single-input single-output system

The differential equation of single-input single-output linear steady
continuous-time system is

Its corresponding state space realization is required such that the input-output
relation is kept unchanged. The selection of state space can be different, for which
the dynamic equations can also be different, therefore there are a number of methods
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of state space realization. The normal form of state space realization is required.
For equation (6.1.2), the transfer function has given in equation (6.1.5).
The observable normal form and the control normal form of state space descriptions
are given below, respectively.

1) Transform to observable normal form
Because in equation (6.1.2) there are differentials of the input u so that the

state variables are selected as

Differentiate the above equation and eliminates the variables, and finally using
equation (6.1.2) gives

Therefore the following equations are obtained

Dynamic equations:

The measurement equation:
Or in matrix/vector form

2) Transform to control normal form
Introducing an intermediate variables rewrite the equation (6.1.3) as

which correspond to the equation of inverse Laplace transform

where the function and has been given in equation (6.1.5).
Introducing the state variables as

then the dynamic equations are
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and the output equation is given as

The corresponding matrices of state space realization are

This form of state space realization is called the control normal form.

§6.1.3, Integration of linear time-invariant systems

Integration of dynamic equation (6.1.11) is certainly of concern, which is a
linear non-homogeneous differential equation. Its homogeneous equation should
be solved first

This is a problem of fundamental importance. The solution of (6.1.24) can be
written as

where the power series expansion of the exponential matrix is the same as
exponential function

which is termed as the state transition matrix.
The behaviors of matrix exponentiation function are given as:

1)

2) further

3) gives the inverse matrix for exponential matrix.
4) Generally speaking, the exponential matrix does not apply the commute rule of
multiplication, i.e.

But when AB = BA
i.e. when the matrices A, B are commute for multiplication, the corresponding
exponential matrices can also commute for multiplication.
5) The differential equation for exponential matrix function is

The exponential matrix is the impulse response of differential equation, when
input is only the control vector u , then the response of state vector is computed by
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In control theory the control input term can be selected arbitrarily. The appropriate
selection of the input vector u can control the performance of state vector x(t).

Let the initial time be the above equation becomes

The computation of exponential matrix is very important, 19 dubious ways are
given in the review paper [29], which means the problem was not solved
satisfactorily at that time. Afterwards, the book [30] investigated again, that further
investigation is needed. Precise integration method gives the algorithm, which
computes the exponential of n × n matrix up to computer precision. The precise
integration method uses the combination of two cruxes, that only one of the cruxes
cannot solve the problem perfectly. The precise integration method for initial value
problem has been given in the introduction. The numerical results are given at the
grids (time stations) of uniform time step

Note that the exponential matrix function can also be computed by the
eigenvector expansion method, which is similar to the modal expansion method in
structural vibration theory. The problem requires to distinguish if Jordan normal
form appears or not for the n × n matrix A . When the Jordan form does not
appear, then the matrix A has n linearly independent eigenvectors

A matrix is composed using all the eigenvectors as columns

Let

then obviously, and

The differential equation and initial condition are all coincided with the exponential
matrix function, so

Therefore the equation (6.1.31) gives the analytical equation for state transition
matrix, where a key step is to find all the eigen-solutions in order to compose the
matrix and

Jordan normal form does can appear for the matrix A . Jordan normal form
is pretty mathematically, but is numerically unstable computationally. When a very
small error appears in the numerical computation, then the duplicate eigenvalue will
split into two very close eigenvalues and the two corresponding eigenvectors
become almost two parallel vectors with very large value, and then the matrix

behaves very much ill-conditioned. The numerical result is then dubious.
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In many cases, the matrix A does not appear the Jordan normal form, and
then the eigen-matrix computing equation (6.1.31) is attractive. However, the
precise integration method does not care if there is possibly the Jordan normal form
appearing, which always gives almost exact numerical result.

After the state transition matrix is computed, the state response computation
problem of equation (6.1.27) follows, and then the output is obtained as

The input-output relation is of great concern for control theory, for which the
input-output impulse response function is used for the m input u(t)

induced q output y(t)

Comparing to equation (6.1.32), the q×m dimensional input-output impulse
response matrix is calculated as

The eigen-equation of the matrix A is given as

Expanding it as a n -th order polynomial equation gives

The Cayley-Hamilton theorem determines that if the matrix A substitutes the
variable in the above polynomial equation, the obtained matrix must be zero.
This is

This equation explains that can be expressed with the linear combination of
and then and all the higher powers of A can also be

expressed as linear combinations of The proof of Cayley-Hamilton
theorem can be found in references [47,48]. When Jordan normal form does not

appear, and the proof is simply given as

The above computations are given in the time domain. The frequency domain
analysis is quite often used in the control theory, especially in input-output
representation of classical control theory.
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§6.1.4, Frequency domain analysis, transfer function

The frequency domain representation of state transition matrix and the transfer
matrix function are of great concern, that the stability analysis is usually based on
these functions. The state transition matrix comes from equation (6.1.24). Taking
Laplace transform

Obviously

which is the frequency domain representation of the state transition matrix.
Obviously, the input-output transfer matrix function in frequency domain is

Taking Laplace transform to the dynamic and measurement equations gives

The vector is unrelated hence taken as zero, then eliminating gives equation
(6.1.36). From equation (6.1.34) taking Laplace transformation gives equation
(6.1.36) too. Obviously, the transfer matrix function is a rational fraction.

§6.1.5, Controllability and observability of a linear system

In designing control systems, it is important to know whether any control law is
effective, optimal or not. Note that the outside world controls the system
performance only through the input vector u . This issue is not because of the
structure of control law but the structure of dynamical system. The definition of
controllability is:

Give an arbitrary state vector at time if and only if it is possible by

means of the selection of input vector u(t) to transfer the system state vector to

at a finite time then the system is called controllable.

Controllability is the property regarded to the couple of matrices in
the dynamic equation (6.1.15).

In designing control system, it is important to monitor the state of system.
Although the state vector can describe the internal variables of system, but only the
measurement vector y can be accessed from the outside world to estimate the state

of system. The observability is defined in terms of the ability to estimate the state.
This issue is also a problem of system structure. The definition of observability is:

A system is said to be observable if and only if its state at any time
can be determined from the knowledge of the measurement and input vectors
y(t) and u(t), respectively, in a finite period of time

Observability is the property regarded to the couple of matrices (A,C) in the
system equations.

The observability is used to investigate, if the system internal variables (state
vector) can be reflected by the measurement y ; and the controllability is used to

investigate, if the state vector can be operated with the input vector u .
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The Cayley-Hamilton theorem for a n×n matrix A can be used to prove
the controllability and observability of a system. Based on this theorem, the power
matrix (and higher powers of A ) can be expressed with a linear combination

of the matrices

§6.1.5.1, Controllability of a steady system

For a time-invariant system, the solution of dynamic equation is

where is the exponential matrix function (6.1.26). According to the
requirement of controllability, the above equation can be expressed as

Expanding the exponential matrix as a power series and using the Cayley-Hamilton
theorem gives

where is a determined function of Substituting into the previous
equation gives

Writing the above equation in matrix form gives

Let the former n×mn matrix be denoted as

According to the condition that is an arbitrary initial state vector, hence,
must be of full rank, i.e.

is the necessary condition of controllability of the system. It is also a sufficient
condition, because of u(t) can be selected arbitrarily, the vectors

can take arbitrary value. Hence if is of full rank, then can have arbitrary

value.
The necessary and sufficient condition of controllability can also be expressed

by the symmetric and positive definite condition of the Gram matrix

In section 6.7, we will come back to this matrix.

§6.1.5.2, Observability of a steady system

With no loss of generality, let in examining the system observability.
Because u is given, the effect of which can be substituted by a correction of y .
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To uniquely determine the arbitrary initial state vector the measurement y(t)

in the time period (0,t) is available. According to equation (6.1.32),

Let u = 0 and using the Cayley-Hamilton theorem gives

where is a q -dimensional unit matrix. The former matrix

is of full rank. The nq×n matrix

is called the observability matrix. If this nq × n matrix is not of full rank, then
there is a subspace of the initial vector that any vector in this subspace will not

influence the measurement y(t), i.e. not measurable, which cannot fulfill the
measurement condition. Hence

is a necessary condition of observability. It is also a sufficient condition. The
proof is neglected.

The necessary and sufficient condition of observability can also use the positive
definiteness condition of the observability Gram matrix

at any time of t > 0 . The derivation of equations (6.1.37b) and (6.1.38b) of Gram
matrices will be given in section 6.7. The controllability and observability
conditions given above are used only for steady (time-invariant) system, but there
are time-variant systems or even non-linear systems, for which the controllability
and observability will be touched also in section 6.7.

§6.1.6, Linear transformation

Suppose the original system is expressed by

Because the selection of state vector x is arbitrary in mathematical modeling, so
that the state vector can be selected as one another vector denoted as which is
obtained from the original state vector x by a non-singular linear transformation
P , that

Substituting the above equation into (6.1.15) and then left multiplying gives
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So that the system equations are transformed as

The bar sign above, such as etc., are just for distinguishing the original
quantities, but not the complex conjugate. Because the difference between matrices

and A is only a similarity transformation, hence

1)

2)

3)

4)

The original and transformed systems have the same eigenvalue, and the
difference between the corresponding eigenvectors is also a transformation of
(6.1.39).
After linear transformation, the state transition matrix also undergoes a

similarity transformation

After linear transformation the system transfer matrix does not change, which
is verified as

Linear transformation does not change the controllability of the original system,
because

and P is of full rank, therefore the rank of  is the same as

Linear transformation does not change the observability of the original system.
Linear transformation is very useful for a series of applications, such as

5)

expansion solution by eigen-solutions, structural factorization to the control normal
form or observable normal form etc.

§6.1.7, Realization of a transfer function in state space

Two kinds of transfer functions are given in previous paragraphs, namely the
single-input single-output transfer function in (6.1.5) and the multi-input
multi-output transfer function (matrix) in (6.1.36). Both of them are given in the
frequency domain.

These transfer functions are derived from the time domain equations to the
frequency domain. On the contrary, for a given rational fractional transfer function

the system matrices A, C, can be found correspondingly. The

system obtained this way is called a realization of the transfer

function in the state space model.
For the case of single-input single-output transfer function, the function should

be reduced to be a real rational fractional function
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where the polynomials B(s) and A(s) have no common factor. In such case,

the state space realization can have a number of expressions
including the control normal form and the observable normal form. These forms
are obtained by the equation (6.1.20) for observable normal form, and by the
equation (6.1.23) for control normal form, with the matrix be given as in
both cases.

For the case of multi-input multi-output, corresponding to a given rational

fractional transfer function the system matrices A, C, can also be
found for the realization in the state space. The realization can be simply written as

Realization of a transfer matrix function has the fundamental
characteristics as follows:

1)

2)

3)

4)

5)

Realization is not unique, that for a given there are a number of
correspondent realizations with different dimensions. Even for the same
dimension, the realization is also not unique.

Among all the realizations of there is a class of minimum dimensional
realizations called the minimal realization. The minimal realization is a
simplest external equivalence of system with the input-output frequency
domain characteristic of

Among all the realizations corresponding to the transfer matrix function
there is no necessary algebraic equivalence relation, but for minimal
realizations there are mutual algebraic equivalent relation.
If the real system is controllable and observable, and if the minimal realization

of the transfer matrix is also controllable and observable, then this

minimal realization reflects the structure of the real system.

If the given transfer function is a strictly real fractional function, then

the realization has the form i.e. If is a real but

not strictly real, then the realization form is and

There is a theorem for minimal realization: Suppose be a strictly real

fractional function, then the necessary and sufficient condition for

being a minimal realization is that be controllable and (A,C) be
observable.  The proof is neglected, see [16~18].

§6.1.8, Duality principle for controllability and observability

For two time-invariant linear systems and the dynamic and

measurement equations are
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respectively, where x and are all n -dimensional state space vectors; u and

are both m -dimensional vectors, and y,v are q -dimensional vectors. It is

to show that these two systems are mutually dual to each other. The state vector
impulse response matrix (transition matrix) of system is

and the state vector impulse response matrix of system is

The controllability of one system corresponds to the observability of its dual
system, and the observability corresponds to the controllability of its dual system.
The verification is that the controllability of is the full rank of the matrix

Therefore where is the observability matrix of the

system On the other hand, the observability matrix of is

Therefore where is the controllability matrix of

system
Simple examples are given to demonstrate the controllability and observability.

Example 6.2, Suppose n = 2, q = 1, m = 1,

analyze the controllability and observability of the system.

Solution: Computing gives because

so the system is uncontrollable. However, computing gives that

because so the system is observable.

If then is computed, it gives

which means that the system is controllable. However, the system is

nearly uncontrollable. ##
As a matter of fact, the cases of uncontrollable or unobservable are occasional.
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If the data changes a small amount for an uncontrollable or unobservable system,
then the system turns back to be controllable and observable. But for such nearly
uncontrollable or unobservable system, the performance is quite ill-conditioned. ##

Example 6.3, Suppose n = 4; q = 1; m = 1; the system matrices are given as

the controllability and observability are required to analyze.

Solution: It is computed that

So, the system is controllable. Then computes

the system is also observable. ##

§6.1.9, Discrete-time control

For a continuous-time control system, because of that the actuator can act only
at the discrete-time instants, or because of that the data sampling analysis needs
discrete-time, facing the problem of transforming from the continuous-time to
discrete-time control system. The transformation should have the assumption:
1)

2)

The sampling period is a constant, i.e. equal sampling period. The time

required for data sampling should be far less than Denote as

The control vector input is kept constant in the time interval That is

when

Certainly, the step size should be selected small, so that the Shannon sampling

theorem is satisfied.
Sampling theorem: Suppose the highest frequency contained in a

continuous-time signal x(t) is Then, if x(t) is sampled

periodically at a rate the signal can be exactly reproduced from the

sample values x(k), using the interpolation rule

see [120],p.12. The lower bound on the sampling frequency, denoted as

is called the Nyquist sample rate or simply Nyquist rate. In applications, it must be
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but not equal. The frequency is generally referred to as the

Nyquist frequency.

§6.2, Theory of stability

Stability is a fundamental characteristic of a system. Stability analysis of
system dynamics is one of the most important parts in the theory of control and
system analysis. The system dynamics has two kinds of stability definitions, i.e.
1)
2)

The system external stability defined with the input-output relation, and
The system internal stability defined by the state dynamics under zero input
condition.

These are described as follows.
1) The external stability: Corresponding to a bounded input u(t) , i.e.

if the produced output y(t) is also bounded, i.e.

then the system is external stable, i.e. Bounded-Input Bounded-Output stable, or
simply BIBO stable, where represents the norm of a vector.

For a linear steady dynamical system with zero initial condition, let G(t)

denote its impulse response matrix function, or expressed in the frequency domain

with the transfer matrix function then the necessary and sufficient condition

of system BIBO stability is

where is the element of G(t) , or in the frequency domain that the real part

of the poles of every element of the transfer matrix function be

negative. That is all the poles located at the left half plane of the complex plane.
2) The internal stability: For a linear steady system

No input means u(t) = 0 . When the initial state is arbitrary, the state response

behaves that

then the system is called internally stable, and also internally asymptotically stable.
As is well known that, the necessary and sufficient conditions of the asymptotical
stability for the differential equation is that the real part of all the
eigenvalues of the matrix A being negative. This is a fundamental theorem for
stability.

If the linear steady system given by (6.2.4) and (6.2.5) is internally stable, then
it is BIBO table.

The BIBO stability cannot ensure internal stability of the system. However, if
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a linear steady system is controllable and observable, then the internal stability and
external stability are equivalent.

§6.2.1, Stability analysis under Lyapunov meaning

Stability of motion usually treats the system with no external input. The case
of a non-linear system can be described by

where x and f denote the n -dimensional state vector and vector function,
respectively. For general non-linear system the stability analysis is very
complicated. For a linear time-dependent system, let the equation be

The superposition method can be applied for linear equations, which brings
convenience for the analysis. For periodical function A(t) , there is the Floquet
method, see chapter 2, which derives the system to be a discrete-time system and is
easier for stability analysis.

For a general system, only simple stability description can be made. Suppose
the equation (6.2.7) has a solution

If an equilibrium point is a solution, then the analysis of stability in the

neighborhood of this equilibrium point is necessary. If the motion (6.2.9) is
periodical, i.e. a limit cycle, then the stability analysis is necessary, that if the state is
slightly depart to this limit cycle at some time instant, can the following motion go
back to the limit cycle?

The perturbation analysis nearby the limit cycle derives to the linear differential
equations with periodical coefficient matrix A(t) , which lead the problem to be
solved by the Floquet method. Checking the eigenvalues of the Floquet matrix
determines the stability of the limit cycle.

For a general non-linear dynamical system, the solution usually enters a chaotic
motion for arbitrary initial condition. Quite often the state vector moves at a nearly
periodic orbit, however, although the motion is governed by a deterministic
differential equation but the solution behaves quasi-random. Much of what is
known about this topic today has been obtained by numerical simulation studies.
This fact makes it difficult to be precise about the exact nature of the trajectory.
Indeed, one cannot even make sure, from a finite-length numerical simulation, that a
solution is not periodic. From a large number of simulations, it is highly plausible
that the trajectory seems almost periodic. However, it comes from simulation
experience but not from mathematical proof. This situation brings tremendous
difficulty to stability analysis for such chaotic motion, because even a nominal
motion cannot be determined clearly, that the analytical solution is usually hopeless,
only numerical solution can be invoked. Also, the chaotic motion is very sensitive
to a very small departure of the initial value, the so-called butterfly effect. The
conclusion is that there is a long way to go for non-linear system chaos analysis.

A simpler problem is the stability analysis at an equilibrium point
Assuming the state is slightly departed to the equilibrium point, it requires to
consider the subsequent motion if it tends to return the equilibrium point
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automatically (asymptotically stable), or at least limited in a small neighborhood of
the equilibrium point (stable but not asymptotically).

Stability in the sense of Lyapunov can be expressed as: Give a small quantity
arbitrarily, there exists a neighbor area such that for any initial

point within the neighbor of the equilibrium point, the induced subsequent
motion satisfies the condition

then the system is stable at the equilibrium point.
The asymptotic stability is much useful for engineering applications, i.e.

This definition requires that the initial point is located nearby the equilibrium

point. Global asymptotic stability is defined as

with no limitation of the initial point These are only general view and

definitions, as how to fulfill these stability conditions is a problem to be investigated.

§6.2.2, Lyapunov method of stability analysis

Let us begin with the stability analysis of an autonomous system. Consider
the dynamic equation

The Lyapunov second method, or the direct method, is used frequently. The direct
method uses an auxiliary function, called as Lyapunov function, denoted as V(x),

which is a scalar function of state with continuous partial derivatives. The
time-derivative of this function along the trajectory is

and is also a continuous function of the state vector x . Further, both V and
are required to be defined in an open domain including the equilibrium point

and satisfying the conditions:

1) for in the domain Without loss of generality, let

and There exist two continuous and non-decreasing scalar

functions and with and such that

If is unbounded, then as

for

2)

3)

If such a Lyapunov scalar function V(x) can be found, then this system is

asymptotically stable. See [121],chap.5.
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proof: Suppose initially the state vector is departed to the equilibrium point

and the subsequent trajectory of motion be denoted as

Because the function is continuous and non-decreasing, so that for any real

value there is such that Based on that

It tends to a non-negative limit as when along any trajectory stay in
Note that a trajectory can never across itself, so that its limiting point is an

equilibrium point. If is other than the equilibrium point then the condition

3, implies is not zero, which means that is not an equilibrium

point, a contradiction. Then must coincide with so that the motion tends

to the point asymptotically. ##

The idea of the Lyapunov function V (x) of the direct method (his second
method) is somewhat close to the consideration of system energy. Usually the
damping effect decreases the system energy. Such consideration is based on the
physical reasoning and is quite helpful. However, generally V (x) is not
necessarily the energy function, such as for problem with indefinite Hamilton
function. There is no general method found today to select such a Lyapunov
function for all problems.

For a linear time invariant system

which is obtained by linear expansion method nearby the equilibrium point

The Lyapunov first method is to solve all eigenvalues of the matrix

A, i.e. the roots of equation det(sI – A) = 0 .    Stability requires that all the roots

locate in the left half plane of s , i.e.

which ensures that as
Using the Lyapunov second method to equation (6.2.15), the Lyapunov function

is to be constructed. For linear steady system the Lyapunov function can be
selected as a quadratic function of x , i.e.

where P is a n×n symmetric positive definite matrix to be determined.
Differentiating gives

where
which is called the algebraic Lyapunov equation, a linear simultaneous equation for
the elements of matrix P .

Arbitrarily select a positive definite symmetric matrix Q , the matrix P is
obtained by solving the algebraic Riccati equation,. For n -dimensional problem,
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there are n × (n + 1)/2 unknown elements of P to be solved. If the solved
matrix P is positive definite, then the Lyapunov function is found, and based on
the theorem the system is stable.

If the condition (6.2.16) is satisfied then

As a matter of fact, the Lyapunov differential equation

is solved by

Directly substituting into the differential equation (6.2.21) verifies the conclusion.
Note that the differential equation can be solved by the precise integration method.
In section 6.4 when the problem of prediction is considered, the Lyapunov
differential equation appears again. The solution requires computing the
integration (6.2.22), where Q can be a function of time The precise
integration method is given there in some detail.

Linear time-invariant system gives the simplest differential equation. For
non-linear differential equation, there is no general method to find the Lyapunov
function, and more investigations can be found in such as [121,122]. Both the
stability of time-variant differential equations of state vector in LQ control and of
Kalman-Bucy filter can be proved by the Lyapunov second method, and will be
given in section 6.7.

As described above, the selection of Lyapunov function V requires further
investigation.

§6.3, Prediction, filtering and smoothing

In science and technology, estimation is always required. Estimation can be
subdivided into two classes, i.e. state estimation and parameter estimation. The
state estimation is for a given system to estimate the state under noise disturbance,
where the state x(t) is a vector of stochastic process. The parameter estimation
means to identify the parameters for the system itself. Parameter estimation is
also often used for curve fitting, which must be distinguished to the system
parameter identification. The least square criterion is used most frequently in
estimations. For optimal control problems, the state estimation is one of the main
concerns to be investigated.

State estimation here is mainly for dynamical system, the static estimation is
only a special case of dynamical system. Suppose the system dynamic and
measurement equations are, respectively,

where x(t),y(t),u(t) are n,q,m -dimensional vectors of state, measurement and

control input, respectively. The vectors v(t) and w(t) are the q, l -dimensional
measurement and dynamic noises, respectively. The given system matrices
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A, have appropriate dimensions. Let the variable t denote the

present time. Estimation means to estimate the state vector x(t) based on the

measured data The continuous-time system usually estimates the state

using Kalman-Bucy filtering. The estimation of discrete-time system is called as
Kalman filtering. Filtering means the estimation of state of the system at the
present time.

The Linear Quadratic Gaussian (LQG) optimal control theory requires to find
the feedback control vector u(t) based on the state vector x(t) , however, the state

vector has not been completely measured directly. Hence, the filtering estimated
vector is used in place of the state vector x(t) . Therefore, Kalman filter is
used as an integral component in the LQG optimal control theory. The Kalman
filter has been utilized is a wide range of applications, not only for LQG control but
also as a tool of signal processing.

Usually, the disturbances w and v are assumed to be zero mean white
noises, independent on each other, of which the statistical parameters are given as

where denotes the Dirac-function and W,V are symmetric and positive
definite covariance matrices of the white noises, respectively.

The initial state is also a stochastic vector, of which the mathematical
expectation and covariance matrices are given as

and also assuming that the noises are independent on the initial state, that

Suppose the measurement vector is and t is the present time.

There are three classes of estimation problems, namely 1) 2) 3)

Based on the dynamic equation, the initial condition and the measurement vector, the
problem is to find the optimal estimation of the state vector x(t) and also the

covariance matrix P(t) of the error

The descriptions for the three classes of measurement are:

1) For the class of the problem is prediction. In the time interval

the estimation is supported by measurement, however, the time t under
investigation is ahead of that in the interval there is no measurement

available. The motion in interval can only be solved by the dynamic

equation only. Firstly, the filter analysis is carried out until after solving

the mean value and the variance matrix The next step is, based
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on the estimation and at as the initial conditions, to do the

measurement free analysis for time interval i.e. the prediction.

The measurement interval reaches the present time, i.e. and the

estimation of is required. It is a popular statement, called as Filtering.
Real time response needs filtering analysis.
For class of the problem is called as Smoothing. Smoothing using

longer time period measured data to estimate the state at time instant t. For
example, bringing the data recorded in situ testing, afterwards analyze in the
laboratory, which has been the off-line computation.

2)

3)

For prediction, the available data is less than the filter, so that the precision of
prediction estimation is lower than filter. For smoothing the available data is more
than filter, hence the precision of smoothing estimation is higher than filter. That is
to say that the variance of prediction is larger than filter and the variance of
smoothing is smaller than filter.

The majority of real systems are non-linear, in this sense it is best to do the
prediction, filtering and smoothing directly for non-linear systems. However, the
general method for the analysis of a non-linear system is very difficult, even
impossible today. In applications, the first step is to expand the solution nearby the
nominal state, so that the perturbation is governed by a set of linear equations.
Quite often, the perturbation method gives a good approximation. Mathematically,
a linear system is far easier than a non-linear one, that a number of methods can be
applied. Hence, the linear system estimation is considered below. Special
attention is put on the algorithms. Generally speaking, the solution of a non-linear
system can be found on the basis of the solution of approximate linear perturbation
by iteration.

The modern control theory closely depends on the filtering analysis. It is seen
from figure 6.4, that the whole control time interval, from the initial time until

the finish time is subdivided by the present time instant t , into past (0,t) and

future two time intervals.

For past time interval, the control vector u had been selected and performed
and has become the history, that it must be treated as a given vector. The analysis
for the past time interval should be based on the knowledge of the system model and
the measured data to determine the state at the present instant. Because of dynamic
and measurement noises of system, the real state at present instant cannot be found
exactly, only the optimal estimation and the variance matrix P(t) can be
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solved. That is to say, the analysis for past time interval is filtering, which will be
described below in some detail. The problem stated in such way is the direct
problem. As the identification of system model itself, i.e. the system parameter
identification, is a further requirement and is classified as the inverse problem. The
related problem is adaptive control.

For future time interval, the required analysis is Linear Quadratic (LQ)
optimal control with the initial condition being the filtered state vector at the

present time instant t , in combination with the variance matrix P(t).

At the present instant t , the feedback control vector u(t) is required.
Certainly this is based on the results of filtering analysis for the past time interval
and control analysis for the future time interval. The feedback control vector u(t)

must be supplied at the real time. Hence the computation of u(t) must be

subdivided into two parts, the off-line computation and the on-line computation.
The computations unrelated to the measured date y can be computed beforehand,
i.e. off-line, and keep the results in the databank, while the computations relate to
the measurements, i.e. on-line, can only be executed at the real time.  Because, the
control vector u(t) demands to be supplied at the real time, i.e. as quickly as
possible, so that the on-line computation should be reduced to the minimum.  The
next three sections are devoted to the three classes of estimation problems.

§6.4, Prediction and its computation

Prediction, a very attractive subject, decision making must be based on the
result of prediction. The present section predicts the state vector for a system
governed by linear equations. Two simple examples are given first.

Example 6.4, A device with mass M is installed on the top of a column, and the
ground is excited because of earthquake motion. The mass vibration equation is
governed by

The excitation force f(t) induced by the ground motion is random and treated as a
stochastic process so that only the statistical parameters are available. Hence the
response x(t) is also a stochastic process to be solved, for which the solution is
also the statistical parameters. This problem is simply random vibration of a
one-dimensional problem. ##

Example 6.5, The financial analysis needs to determine the short-term interest of the
money market. Quite a number of events continuously come from time to time,
such as the jobless rate given by the society, index of price market, the average
personal income, selling rate of estate and retailing index etc. These factors
influence the short-term interest rate fluctuating, and the effects of these events can
be combined together and modeled by a Gaussian white noise. However, the
short-term interest rate r(t) may not vary far depart to the mean value and has
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a trend to go back the mean value Hence the stochastic process r(t) is
considered satisfying the stochastic differential equation

where X(t) is a unit white noise and is its intensity, K represents the

recovering proportional parameter of the interest rate. The parameters and K
can be constants and the stochastic process r(t) is to be solved. This is the

simplest model for interest rate, called the Vasicek model [61]. ##

There are quite a number of prediction examples, for which the differential
equation to be solved involves stochastic process terms. The two examples given
above have only stochastic terms but the system parameters have no random factor,
hence simple. This section discusses the problems with only stochastic input term
and only mean square calculus is required.

For the problems of stochastic control and stochastic system prediction etc. the
mathematical models are always reduced to solve stochastic differential equations.
Let x(t) denotes the solution, because of the stochastic input, so that x(t) is also

a stochastic process. Strictly speaking, a random variable needs the distribution
function, but this requirement is difficult to fulfill. Even to supply a distribution
function for the initial state is not so easy. Therefore in system analysis, the
detail distribution function is not demanded, but requires only the statistical
characteristic parameters of the solution x(t). The central limit theorem in

probability theory determines that the combination of a large number of random
factors tends to be a Gauss distribution and the Gauss distribution determination
needs only the mean value and the variance. For a stochastic process, the mean
value function and the auto-correlation function are needed, and for

the most important is the variance function Therefore

except declared specially, the stochastic process is always regarded as Gauss
distributed, and the solution becomes to find the mean value and auto-correlation
function or variance function.

Although the process is stochastic but the mean value and the mean

square R(t) functions (or variance) are deterministic. Hence it is found below
that the solution of a stochastic differential equation is transformed to solve a set of
ordinary differential equations. Therefore, the combination of analytical and
numerical integration methods can be applied effectively.

§6.4.1, Mathematical model for prediction

Prediction applies to a system without measurement, corresponding to open
loop. Using state space method description, the dynamic equation and output
function can be written as

where x , z and u are the n -, q - and m -dimensional state, output and
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deterministic control input vectors, respectively. And f is a n -dimensional
given function, w is a l -dimensional dynamic noise. The matrices and

are n×l , n×m -dimensioned matrix functions, respectively, and g is a

p -dimensional given vector function.

The output vector z is not measurement vector y , that they should be strictly

distinguished. The measurement vector y can be used to check the state vector,

however, the output vector z is obtained from the state vector x to be used for
other purpose, which is not the measured data and cannot be used for checking.

The formulation of the above equations is non-linear. The general solution for
non-linear stochastic differential equations is very difficult presently, so that usually
a linear set of differential equations is solved.

where A is the n×n plant matrix, is n×m control input matrix, is

n×l disturbance input matrix, C is a q×n output matrix and D is a q×m

control output matrix usually be 0 . For a linear time-invariant (steady) system the
above system matrices are constants.

The above equations are continuous-time mathematical model for linear
systems. For discrete-time problems a linear system equations are expressed as

For a time-invariant system, etc. are independent on k .

Because there is the dynamic noise vector w , hence the state vector x and output
vector z are stochastic processes too. For linear systems, the assumption of, w
being Gaussian distributed, makes that x and z are Gaussian distributed too.
Hence both vector stochastic processes x and z can be expressed by the mean
value functions and their corresponding variance matrices.

Both differential and difference equations require initial conditions, which are
given as

where is the mean value of n -dimensional state vector, and G(t) is the

n×n variance matrix, symmetric and non-negative definite, all deterministic terms.
Writing the equation (6.4.5) in differential form

called as Ornstein-Uhlenbeck process [61,69], which is quite useful in a number of
disciplines, where is a Wiener process. The time differential of a Wiener

process is a white noise, so that it corresponds to the equation (6.4.5) with w being
a white noise there.

§6.4.2, Prediction of one dimensional system

The equation (6.4.5) is a linear stochastic differential equation. The dynamic
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noise w is assumed Gaussian distributed white noise, so that the response is also
Gaussian. Gauss distribution is determined by the mean value and the variance,
solving which gives the solution of linear equations of prediction. Therefore the
stochastic differential equation is transformed to differential equations for the
unknown deterministic functions and G(t).

The simplest case of one-dimensional problem is considered first. The
dynamic equation is

and the prediction of state function x(t),0 < t < T is required, where is the
given equilibrium point with the initial conditions

and w is a white noise with

where is the same function of W in equation (6.3.3).

The basic requirement of prediction is to solve first. According to the

least square principle, the index of disturbance (analogous to the potential energy in
mechanics) should be minimized

under the conditions that the dynamic equation and initial conditions should be
satisfied beforehand, which means that the minimization of J is conditional.
Using the Lagrange multiplier method, introducing the dual function of the

dynamic equation gives

where is the extended index. The variations of the functions w, x and

are independent to each other. Minimization with respect to w first gives

Substituting back into equation (6.4.14) gives

There are two kinds of variables x, in this variational principle, and is also a

variable. These two functions x and are dual to each other, and are all
functions of stochastic process. Carrying out the variational derivation and using
integration by parts gives

From which, the dual equations are derived as

with the initial condition
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The problem is how to solve the dual differential equations. Because x(t) is
a stochastic differential equation with Gaussian distribution, so that it can be
expressed as the sum of a deterministic mean-value function denoted as and a
zero-mean Gaussian stochastic process. The function is also a zero-mean
Gaussian stochastic process. From the initial condition (6.4.18) for x, the form of
solution has been seen. Let

Substituting into (6.4.17), because of hence

The above equation is composed of two kinds of terms, namely the deterministic
term

and the stochastic terms about Eliminating gives

which is also a deterministic equation. Solving the mean value of x from
equation (6.4.20) gives

As the mean value tends to From equation (6.4.21) solves

As the function tends to a constant From equation (6.4.19)
gives

A special case should be noticed, i.e. the case of then it gives

Taking the limit on (6.4.23) gives When

and it gives G(t) = t . Such stochastic process is just a Wiener
process, which represents Brownian motion Gaussian distributed.

The solution obtained for the stochastic differential equation (6.4.10) can be
found from such as books [61,69], where the solution is obtained via the Ito calculus,
a complicated derivation. Here, only the usual means are applied, simple and easy
to understand.

§6.4.3, Prediction of multi-degrees of freedom system

Prediction means that there is no measured data to verify the estimation. The
equations are (6.4.5) and (6.4.6).

The solution method for multi-degrees of freedom system is almost the same as
single-degree of freedom. The state is a stochastic process vector x(t), which
should satisfy the dynamic equation (6.4.5) and the initial condition (6.4.9)
beforehand. Under these conditions, the index of disturbance energy
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is minimized. Introducing the Lagrange multiplier vector for the dynamic
equation constraint gives

where the independently varied functions are x, and w, and the vector u is
only a deterministic input. The variation of disturbance vector w can be
performed first, which gives

Substituting w back into obtains

which has two kinds of independently varied functions x and Taking
derives the dual differential equations

with the initial condition

where x and are Gauss distributed vector functions of stochastic processes,
and are the deterministic initial mean vector and variance matrix,

respectively. The solution x(t) is substituted as

Differentiation gives Then substituting into
(6.3.29) gives

The above equation has the deterministic terms and zero mean stochastic terms
together, so that making distinction derives two equations as

Equation (6.4.33) is a deterministic vector ODE for the mean value function
which can be integrated for a given input vector u. Equation (6.4.34) is also a
linear deterministic ODE for a n×n symmetric matrix function G , which holds
n×(n+1)/2 component functions. Both equations (6.4.33,34) are sets of ODEs,

the existence of solution is definite, but for applications, numerical solutions are
necessary. For which, the precise integration method is described in next section.
Equation (6.4.33) is the usual vector ODE, and the equation (6.4.34) is called as
Lyapunov ODE. Note that from the Ornstein-Ulenbeck process, the set of
equations (6.4.33) and (6.4.34) is also derived.

Here again, the Ito calculus is bypassed for the solution of the stochastic
differential equation. The derivation here is simple and straightforward.
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§6.4.4, Precise time integration

The state space analysis of linear dynamical system requires solving the
equation

where x(t) is a n -dimensional vector to be solved, A is a given n×n matrix,

and r(t) is a given non-homogeneous input vector. The initial condition is

From theory of ODE, the homogeneous equation should be solved first

If the matrix A is time-variant, the solution can also be expressed by the state
transition matrix or unit impulse response matrix, which satisfies

Based on the superposition principle, the solution can be expressed by the Duhamel
integration

The theory is elegant, but the problem is numerical computation now. For a
general time-variant matrix A(t) , the computation of the matrix is not so

easy. When A is time-invariant

the numerical computation of the exponential matrix is as follows. The expansion

is an exponential function. Note that the matrix multiplication is in general
non-commutative, i.e. , so that generally speaking

Only when the matrices are commutative for

multiplication then

It is easy to verify that the unit impulse response matrix has the

characteristics

and when the system is time-invariant, it reduces to

These have been described in section 0.1 already.
Numerical integration needs to have a time step that the uniform step-size

time instants are given as For the homogeneous

equation of linear time invariant system (6.4.37)

and the recursive integrations are which is only
matrix-vector multiplication. The problem reduces to compute the matrix T as
given in equation (6.4.44), and this key step has been solved in section 0.1 by the
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precise integration method.
Matrix exponentiation is widely applied, and is one of the most frequently

computed matrix functions. The paper [29] reviewed 19 dubious algorithms and
later, the book [30] means further investigation is needed. It should be mentioned
that the eigenvector expansion method, in the case of no duplicate eigenvalues, is
still effective and is described below.

The eigen-solution for the matrix A is given as

where Y is the eigenvector composed matrix and is the respective eigenvalues,

and represents a diagonal matrix. [Note A is not necessarily symmetric

matrix, so can possibly have duplicate eigenvalues of the Jordan normal form].
Hence it is derived as

Evidently, the above equation is the analytical solution of exponential matrix,
however, which is established based on all the eigen-solutions of matrix A . The
difficulty comes from the possible Jordan normal form. In such case, the
eigen-solution of matrix A is numerically unstable.

However, the precise integration method gives the numerical solution
approaching computer precision, even in the case of Jordan form appearing, the
numerical result is always stable and has the same precision.

§6.4.4.1, Precise integration of inhomogeneous equations

After the exponential matrix is computed precisely, the time

step integration of dynamic equation (6.4.35) can be executed. The time-in variant
system is discussed first. If there is no input (r = 0), then the integration is only a
series of matrix-vector multiplication and the computation is precise. However,
when there is the input vector r , the expression of r is needed. But it is not
always available precisely within the time-step. Then various approximations are
needed.

The special solution of inhomogeneous equation can be expressed as the
convolution in (6.4.39)

which is exact, but the matrix is computed only at the grid points. Suppose
that the time integration has been reached that

Next step is to find the value at The integration can be transformed initiated

from

where remains the integration of one time step, and the expression of the force
vector r is needed. If the expression of r is not available, but only the values at
the grid points and are available, then the simplest way is to assume that
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within the time step r varies linearly
and when

where are obtained from the two end values of interval

Integration gives

Substituting gives

This is the time step integration formula for the force term being linear within the
time step.

Example 6.6, Solve the two degrees of freedom of elastic vibration

Solution: Introduce the dual vector p = Mv , and compose the state vector

Step size is selected, and the input force is Numerical

results are given as

For this example, the precision reaches more than 12 decimal digits (not listed here).
This example is picked from reference [8] chapter 8, where the numerical results by
various FDM style numerical integration methods are plotted, but all of them are
clearly depart to the correct result. ##

The linear interpolation within the time step for the input vector r is a rough
approximation. For some problems, the input vectors are usually exponential
functions, trigonometric functions polynomials or their products etc. For such
kinds of inputs, the time step integration can also be found analytically, see [31].
Using these solutions, the numerical results based on these equations will have high
precision.
1) The input of trigonometric function
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where and are constant vectors, is the parameter of excitation
frequency. The solution is

and the precise integration solution, the HPD-S(Sinusoidal) scheme, is

where When the load varies in the time step being exactly
sinusoidal, then the equation (6.4.50) gives the exact result. It should be pointed
out, that for a damping free vibration system, when exactly equals one of the
eigen-frequencies the matrix inversion in equation (6.4.49) may not be possible.
However, for a vibration system the damping factor always exists, therefore the
equation (6.4.49) is enough.

2)
A purely sinusoidal input corresponds to a constant modulation.
The polynomial modulated input:

The special solution is

where the parameters are all constants.

3) The modulation with exponential function:

The special solution is found as

where the parameters are constants.
Because, the characteristic of input function is known, the precision of

numerical integration is greatly improved, and with high efficiency.

§6.4.5, Precise integration of the Lyapunov differential equation

The precise integration method given in the previous section is appropriate for
the mean value differential equation (6.4.33). However there is the ODE (6.4.34)
for the variance, i.e. the Lyapunov ODE. Rewriting the equation as

where G(t) is the n×n matrix to be solved, A is a given time-invariant matrix,
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is a n×n symmetric non-negative matrix, and D(t) is a given symmetric
non-negative disturbance matrix.

When the real part of all the eigenvalues of the matrix A are negative, i.e.
when A represents an asymptotically stable system, then as the solution
of Lyapunov ODE The iteration of precise integration can also solve

the matrix which satisfies the equation

called the algebraic Lyapunov equation, where is a constant symmetric
non-negative disturbance matrix. The numerical results obtained by the precise
integration method usually have 10 more significant digits.

Lyapunov ODE is linear so that the superposition principle applies. Because
that G is a symmetric matrix, which has unknown variable

function, the number of initial conditions is too. The homogeneous ODE is to
be solved first

The solution is

where is the unit impulse response matrix. The

verification is as follows, substituting directly the G in equation (6.4.57) into
equation (6.4.55a) gives

That the differential equation is verified, and the initial condition verification is
straightforward as

According to the uniqueness theorem of ODE [36], (6.4.57) really gives the unique
solution of ODE and initial condition (6.4.55a). The matrix has

independent parameters, so that the solution matrix (6.4.57) supplies all the basis
(unit response) solutions of the homogeneous Lyapunov ODE.

Based on the basis solutions of the homogeneous equation, the solution of the
non-homogeneous equation (6.4.55) can be obtained by the Duhamel integration as

where is i -th row, j -th column element of the matrix D, and is the

elements of basis solution of the homogeneous Lyapunov ODE, which is obtained
from equation (6.4.57) with the initial matrix be composed of and the

other elements be 0. Using the Duhamel integration it is proved that G(t) can be

written in the closed form

Although this closed form solution is simply obtained, but numerical result is still
required. Based on the precise integration result of the precise integration
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of Lyapunov ODE can also be proposed, as in the following sections.
The initial value response solution is (6.4.57), of which the precise numerical

solution G(t) can be obtained based on the computed matrix by only

matrix multiplication. The solution of inhomogeneous equation is required now.
The fundamental solution of equation (6.4.55) is for the case of

§6.4.5.1, Precise integration of the algebraic Lyapunov equation

The equation (6.4.56) is a set of linear algebraic equation with number
unknowns. The meaning of the solution of algebraic Lyapunov

equation is the limit of solution of the corresponding Lyapunov differential equation
as Existence of the limit depends on the distribution of eigenvalues

of the matrix A . When all eigenvalues of matrix A are

located in the left half of the plane, i.e. then the limit exists,

because exponentially when Hence the integration term in
equation (6.4.58) converges definitely and the contribution of the initial term tends
to zero.

In computation, the integration below should be carried out first

After this integration is performed, the result of point t is considered the initial
point of the next integration step with the initial condition of
Therefore

The interpretation of the above equation is that the initial point is t with initial
value then integrating forward further a step length of t. Therefore the

integration interval has become (0,t) + (t,2t) = (0,2t) . Note that one crux of

precise integration method is the algorithm, which computes the based

on the computation of  Now, the effect of equation (6.4.60) is, compute the

functions G(2t) and based on the computed matrices and G ( t ) .

Therefore the algorithm for Lyapunov differential equation can be described as,

based on the computed functions , further compute

for m = 1,2,..., etc. see [123,124]. The length of time interval

is doubled each iteration, which is the merit of algorithm. The computation of
has been described in section 6.4.4 in detail, now the algorithm for

Lyapunov ODE should compute the functions and G together.

To use the algorithm an initial time interval solution of (6.4.60) is
needed, where is very small. Initially when t = 0. The Taylor
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series expansion taking up to the fourth order is enough, that

Substituting into the equation and integrating term by term gives

The neglected term has been of the order of

When is very small, the expression (6.4.41’) is very precise; but as
which means Therefore as the addition of

may cause significant ill-conditioning numerical problem and lose precision. To

solve this problem, select a moderately large time size then let

where N = 20 and compute the matrix and Afterward, the

addition is performed, because is no longer very small

and the addition has been no significant error. Therefore the algorithm is as follow:

[Give select and let select the error tolerance ]

[From (6.4.41), (6.4.61) compute initiate matrices of step size ]

for

Do

Where represents the norm of matrix T , such as the maximum of absolute

value of the elements of T, the error tolerance can be selected as say.
When the iteration converges, the matrix G is the solution of the algebraic
Lyapunov equation. Asymptotic convergence reaches when all the eigenvalues of
the matrix A have negative real parts.

Example 6.7, Give the matrices

the solution of Lyapunov differential equation is needed.
Solution: Select the time step size the corresponding matrices are

computed numerically
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Although the matrix A appears duplicated eigen-root of Jordan normal form, the
precision of matrix T still has more than ten decimal digits. The matrix is

the value of transient process at t = 0.5 . Continue the iteration gives

The verification can be, computing and comparing with the
coincidence of numerical digits reach ten more decimal digits. For this example, it
can be verified by hand. ##

Other numerical examples are neglected for saving space. The precise
integration method can also be used to compute the transient process of arbitrary
interval The convergence of iteration for requires the asymptotic

stability of matrix A, but the finite time transient process does not require it,
however should not be very large.

§6.4.5.2, Integration of asymmetric Lyapunov equation

In application, there is further the asymmetric Lyapunov equation, i.e. the
matrices D and G(t) are of dimension n×m, satisfying the linear differential

equation

where A and B are, respectively, n × n and m×m matrices. To solve the
equation (6.4.63) for time-invariant matrices A and B , the two impulse response
matrix function should be solved first

Obviously and For a given time step the

precise integration can be used to compute the matrices and as

described before, then based on inspection, the solution of homogeneous equation is
proposed as

which is directly verified as

According to the same method as for the solution of symmetric Lyapunov
equation (6.4.66), the solution of the non-homogeneous equation (6.4.63) is given as
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hence is the solution of the non-homogeneous equation (6.4.63) with the

initial value

The solution matrix of the algebraic asymmetric Lyapunov equation is

also of concern

where is a given n × m matrix. When all the eigenvalues of matrices A
and B have negative real parts, the convergence of iteration is ensured, where
initially the matrix is selected as

The equation (6.4.68) has given the matrix where the matrix

The same approach, as in solving the symmetric Lyapunov

equation, is applied. To derive the additional theorem for treating the time

t as initial time and using the solution (6.4.67) gives

Deriving similarly as below the equation (6.4.60), the matrices and
are iteratively computed simultaneously, computing these matrices at the time

instants until converge.
The initial time interval is selected extremely small, using Taylor series

expansion

and

where the first truncated term has been of the order of

When is extremely small, the expansion (6.4.71) is very precise, but as
the asymptotic stability of matrices A and B gives and

which means and hence in the computation of

the ill-conditioning problem still exists as The method to

avoid such problem is at an appropriate time to transform from to

when Select and the truncated

first term of equation (6.4.71) is of the order of Comparing to the first

Let

Direct verification gives
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term gives a factor of order Note the

computer real number double precision is decimal digits of so that the

truncation error has been beyond the real number precision on the computer. The
transformation at is also used in the symmetric matrix case, where is
selected.

Algorithm of iterative solution of asymmetric Lyapunov equation is given as

[Give select let Select tolerated error

[From (6.4.71) compute

for (iter = 0; iter < N; iter + +)

Do

} while

Comment: Convergence of the iteration gives the solution of

asymmetric algebraic Lyapunov equation. (6.4.72)

The algebraic Lyapunov equation is linear. The above algorithm can be used
for the transient process of Lyapunov differential equation, which is quite interested.

Occasionally the solution of the homogeneous Riccati differential equation is
required

where A,B,D,P are n×n matrices, the unknown function is P(t) . The

transformation is as follows, denoting then GP = I and

so Substituting into (6.4.73) gives

which is the Lyapunov differential equation and solution method is the same.

Example 6.8, Give the matrices (n = 3,m = 4) as

The solution of algebraic Lyapunov equation is required.
Solution: selecting N = 20, and the precise integration gives
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Using the converged matrix of iteration check the value of

with ten more digits coincidence is reached. ##

§6.4.5.3, Solution with modulated input

The precise integration above is applied to the case of constant inhomogeneous
term of input matrix It corresponds to a constant intensity of white

noise disturbance suddenly applied at t = 0. In practical applications such as in
earthquake engineering, the intensity changes with time. Such problem is of
practical importance.

If the matrix D(t) in equation (6.4.63) is a power function, such as

the precise integration is given as follows. The other cases can be extended
similarly. The transient analysis is considered. Give the uniformly allocated time
instants with duration

To compute the matrices successively (subscript d is neglected).
According to (6.4.67)

where the represents the integration of power 1. Define the matrix

The matrices and at can be computed step by step

successively. Based on the computed matrices and

the matrices are to be computed.

Obviously, and also and the

same for so that the derivation can be

Similarly

The computation for can be
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Similar derivation gives

The above equations are exact, in which the equations (6.4.77b) and (6.4.78b)

can be used to the type time integration, and the equations (6.4.77a) and
(6.4.78a) can be used for recursive time integration with constant step size For

the type integration, an initial time interval is necessary, which can select a

very small time interval with N = 20 . For the extremely small

step size the Taylor series expansion can be used, the approximation of
have been given in equation (6.4.71), and also

where the truncated parts have been of the order of which exceeds the
double precision of real word of the current computer.

Therefore the algorithm for transient process is given as:

[Give the step size and matrices select N = 20;

[Using (6.4.71) compute Use (6.4.79), (6.4.80) for computing

for (iter = 0; iter < N; iter + +){Comment: algorithm.

Comment: equation (6.4.78b).

Comment: (6.4.77b).

tt = 2×tt ; }

Comment: initiation.

for {Comment: time step integration.

Comment: equation (6.4.78a)

Comment: equation (6.4.77a)

Comment: step forward
(6.4.81)}

The stepwise integration is consummated.
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Discussion: the external disturbance (6.4.74) is the simplest one. The method
used for the above derived integration equation (6.4.78) takes the benefit of the

identity For the disturbance of then the identity is

based on which the similar method can be developed

for the precise integration equations. Then it can be said that for any polynomial of
D(t) the precise integration equations can be found.

For the disturbance of exponential function based on the

identity and integration by parts the equation for precise
integration can also be developed.

For the disturbance of sinusoidal functions the integration by parts and the
additional theorem

can be used to derive the precise integration equations for the Lyapunov differential
equation.

For saving space, the detail derivation and numerical example are neglected.
The application of the Lyapunov differential equation solution can be found for the
prediction of random vibration problems, see [124].

§6.4.6, Disturbance of colored noise

In the previous sections for multi-degrees of system, the dynamic noise
expressed by the equation (6.4.25) is assumed a white noise. When the practical
input is somewhat correlated such as for a narrow band noise, the noise should be
considered colored. In applications, the narrow band colored noise is often
modeled as the response of a linear system excited by a white noise. Under this
assumption the system response analysis can use the method of extended state space
method, so that the problem is still reduced to be an analysis of a linear system
excited by a white noise.

The mathematical model of that, the dynamic noise is colored and the
measurement noise is white, is considered. In the prediction problem, there is no
measurement feedback analysis, hence

where w (t) is a m -dimensional colored noise, which is assumed modeled by the

linear system

where r(t) is a given intensity white noise, l -dimensional, and F, H are given

matrices with appropriate dimensions.
A time-invariant system is considered for numerical computations. The two

equations of (6.4.82) and (6.4.83) can be combined as

where
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which is the extended mathematical model,  is the extended state vector and

is the extended plant matrix. The white noise r(t) is independent on the

extended vector In such case, the prediction computation is considered below.

As in the case of colored measurement noise, which relates only to filter
problem, the respective analysis will be considered in the section 6.5.

§6.4.6.1, Some comments for precise integration of the extended system

Precise integration needs to compute the exponential matrix

where is the given integration step size. If the computational expense is

disregarded then the precise integration for a full matrix can also give

satisfactory results, however there is many multiplication of zero. To avoid these
useless operations, the upper block diagonal form of matrix can be applied,

called simply as R -blocked form. The product and sum of two R -blocked
matrices are again R -blocked matrix, that

where the product of diagonal sub-matrices are unrelated to the off-diagonal block.
All of these characteristics can be used in the computations.

For precise integration algorithm, the initialization equation (6.4.48), and the
operations of matrix are all addition and multiplication, hence the resulted

matrix is also R -blocked. Then in the N times of iterations, there is all

addition and multiplication, hence the preservation of R -blocked is kept unchanged,
the matrix is again R -blocked. The definition of an exponential matrix uses

only addition and multiplication, keeps R -blocked naturally

Therefore the algorithm (6.4.71) is updated as

for (iter = 0; iter < N; iter + +)

To find the response of non-homogeneous term, inverse matrix is needed. The
inverse matrix of a R -blocked matrix is still a R -blocked matrix, which is given
by
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Therefore the non-homogeneous term computation in section 6.4.4.2 can be
performed in the R -blocked matrix form.

The R -blocked matrix can be utilized in the precise integration of the

Lyapunov matrix. The computation of in equation (6.4.62) can also

be in blocked form

Especially, when the matrix is R -blocked, then all the block sub-matrices of
the matrix G can be integrated mutually independently and the integration of the
upper-right block is just the asymmetric Lyapunov differential equation.

§6.5, Kalman filtering

In control systems, feedback is extremely important; for monitoring the
performance of a system, the state vector is required. The performance of system is
under disturbances that the system practical situation cannot be determined purely
by prediction, so that measurement is necessary. However, measurement is not
able to measure all the state variables, that the measured data can only be a
q -dimensional subspace vector y out of the n -dimensional state space vector x .

Also these measured data are not exact that they are under measurement
disturbances too. Therefore, based on the measured data y to estimate the

stochastic state vector x is necessary.
In 1960, R.E. Kalman proposed the recurrence algorithm for linear optimal

filter. Kalman filter does not require the computer to store all the data measured
previously, that according to the measured data at the present time step and

the estimated state of the previous time step the present time state

is estimated recurrently. So that the computational expense and memory
requirement are greatly reduced and is easier for real time processing. Also the
Kalman filter can be used to estimate the non-stationary stochastic process. Based
on these merits, the Kalman filter is widely used in control theory, in aerospace
technology and in other fields.

Kalman filter was first proposed for discrete-time system, and the
continuous-time version of Kalman-Bucy filter was quickly developed. In fact, the
same kind of proposition can be used to prediction, filtering and smoothing three
kinds of estimations. Prediction means that the measured data y is known only

before the instant but want to estimate the state at the instant that in the

duration the estimation is prediction. Filter means the measurement is
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available up to the time the state at same time is required to estimate, which
does not object the causality. Smoothing is often used to the problem of that the
data is recorded in situ and brought back to laboratory for processing, which means
that the data available is all the time interval of and the state estimation at

is required, see [125].
The whole set of theory and methodology was proposed and developed under

the computer impact. Hence computation composes an indispensable part in theory
and methodology of system analysis. Although a number of books have been
published, however, the computation methods are still far from enough.

Based on the analogy theory between structural mechanics and optimal control,
combining the methods of analytical solution and precise integration, the theory and
computational methods are systematically reorganized and part of the contents
appears first time in this book.

§6.5.1, Model of linear estimation

Kalman model is based on the state space approach. The theory and
computation are mainly for linear systems, and the external disturbances are
considered as Gaussian distributed stochastic processes. According to theory of
probability, under the Gaussian distributed stochastic disturbances, a linear system
excited state variables are still Gaussian distributed. This conclusion proposes
great convenience for development, that it needs only to find the mean value and the
variance of the state vector, and then the distribution of state vector is obtained.

There are two versions of dynamic equation and measurement, namely the
discrete-time and continuous-time versions of system, although the two versions are
closely interrelated. The discrete-time version is described first.

§6.5.1.1, Model of discrete-time system

The dynamic, measurement and output equations of discrete-time system are
given as

where k = 0,1,2, ... denote the time steps, and are the n -, m -, q -

and p -dimensional state, deterministic control input, measurement, and output

vectors, respectively. The disturbance noises are denoted as the l - and

q -dimensional dynamic and measurement vectors, respectively. Because of the

dynamic and measurement noises and so that and are all

stochastic processes. Matrix is the n×n plant matrix, is the n×m

input matrix, is the n×l matrix, is q×n measurement matrix, and

is p×n output matrix, that all these matrices are deterministic. The initial

conditions are



330 Duality system in applied mechanics and optimal control

i.e. the initial mean value of state and variance matrix are given. The estimation of
present state vector is based on the measured data of vectors

afterward the output vector is also estimated. The estimation of state vector

and therefore the output vector at the present time step k is called as

filtering. For the same instant k , the distinction of pre-verification (before the
verification of ) and post-verification should be made. The pre- and

post-verification of mean states and variances are denoted by and by

respectively. Note that these descriptions are the filtering.

As described in the last section, the prediction is considered that the
measurement time j is lagged behind the present time k . It can be considered

that the state estimation at the time step j is filtering (post verification), which is

regarded as the initial condition (0-th time step) for the later (k – j) time steps of
prediction. The algorithm of prediction had been given in the previous section.
Therefore, the analysis for the former time interval [0, j]  is filtering and smoothing,

and for the later time interval (j,k) is prediction.

The algorithm for smoothing of the estimation time step k uses the measured
data after the time step k , which objects to the causality. The estimation
algorithms for both filtering and smoothing can use similar method in structural
mechanics. The analogy principle will be given as that the mean value vector
corresponds to the displacement vector in structural mechanics and the variance
matrix corresponds to the flexibility matrix in structural mechanics. This
analogy principle has been seen in chapter 3 for least square method.

§6.5.1.2, Model of continuous-time system

The fundamental differential equations for continuous-time system are

The meanings of vectors coincide to that given in discrete-time system.
Because it is the linear system estimation, hence the Gaussian distributed

stochastic noise input induced response is also Gaussian distributed stochastic
process. The initial conditions are the given mean value and variance

Below, the filtering problem is concentrated.

§6.5.2, Kalman filtering analysis for discrete-time linear system

Estimation of the output vector entirely depends on the estimation of state

vector Taking mathematical expectation to equation (6.5.3) gives
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Subtracting with equation (6.5.3) gives and the variance is

for which, finding the estimation and of state have been sufficient.
Hence the emphasis should be put on the equations (6.5.1) and (6.5.2).

The simplest case is that the disturbances and are mutually

independent white noises

Suppose that the filter analysis reaches the time step i.e. the related time steps

are and the measured data are and the filtering vector

is to determine (pre-verification). The available measurement data in the

estimation of are so that the causality is satisfied. The initial
estimation (6.5.8) of x(0) is considered uncorrelated to the later disturbance

vectors
The principle for finding the estimation is still to minimize the energy index of

disturbances. For filtering (estimation), the problem is to find the state vector
subject to the dynamic and measurement equations, so as to minimize the energy of
disturbances (or the error index)

where the subscript is written as t for ease of notation. It is a conditional
minimization problem, that the conditions are dynamic and measurement equations.
This problem is a conditional least square. The formulation reaches the time
station (step) As time flowing forward, each step proposes a least square

problem, so that there are a series of least square problems. After the

pre-verification filtered state vector, is obtained, the vector is measured at the

present time therefore the post-verification of should also be filtered
(estimated), and then follows with the pre-verification filtering at the time station

Note that the measurement equation has no finite difference factor, so that

the disturbance can be eliminated first, that

Introducing the dual vectors (Lagrange multipliers)
corresponding to the constraint of dynamic equation gives the extended index
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where the independently varied vectors are three kinds of variables.
Because the vector appears in equation (6.5.13) with no finite difference factor,

(i.e. only neither nor is in the functional), so that minimizing

with respect to is performed first, which gives

Substituting into equation (6.5,13) to eliminate from gives

which has been a unconditional variational principle with two kinds of
independently varied vectors From the variational principle, it derives

Note, in the solution of equation system (6.5.14-17), only gives the filter

value at station as for other stations the vectors solved are
smoothing values, because the solution depends on the measurements later than the
k station. To concentrate the analysis from to assuming first that the

pre-verification has been found at the station i.e.

The pre-verification filtering at the station is required, which means to
analyze one time step forward. One time step forward involves two successive
sub-steps, i.e. the post-verification at station and then the pre-verification

filtering (prediction) at station The one time step forward needs to solve the

dual finite difference equations (6.5.15a,b), where and is expressed as

that given in equation (6.5.18) before the measurement Substituting (6.5.18)
into (6.5.15a,b) gives

and combined as

where is given in (6.5.25). Eliminating from (6.5.19) gives
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These equations supply a recurrence situation, that assuming at the time step the

pre-verification filter vector and the variance matrix have been found,
which corresponds to the initial condition (6.5.4). Therefore from equation (6.5.25)
the matrix is computed. Then, from the equation (6.5.24) the gain matrix

is computed. Further, from equation (6.5.23) computes the vector The

filter mean value and the variance matrix of give the results of first

sub-step, i.e. the post-verification at the station Continuing, from equation

(6.5.22) computes and then from equation (6.5.26) computes The

computation of one time step forward from to station is consummated,
(which corresponds to one time step prediction). Note that the equations (6.5.18)
and (6.5.21) are the same form, but for different time steps of and
respectively. Therefore these equations are the recursive computation for one time
step forward. Hence, from the initial condition (6.5.8’) of the filter

is deduced; forward further, from deduce  and so on. The
mathematical induction algorithm is realized.

Let the equations (6.5.15a,b) and (6.5.16) be satisfied, only remain as
variable, the index

is obtained. In fact, the above expression can also be derived from

To find the pre-verification filter vector at t +1, the max in the above equation is
applied; however, the computation of needs only a minimization inside the
bracket. The mean value of filter vector reaches at equation (6.5.17), which
can also be verified by the equation (6.5.21). For the sake of simplicity, the front
station is written as k again.

The derivation here for discrete-time Kalman filter equations uses the
variational method, which is quite simple. The equations obtained are the same as
usual, for which the comparison is listed below.

Usual

Here



334 Duality system in applied mechanics and optimal control

For linear system with Gaussian distributed stochastic process the estimation from
the variational principle is naturally unbiased.

In the recurrence equations (6.5.22)~(6.5.26), the variance matrices

and the gain matrix are independent on the measurement y , therefore these
matrices can be computed and stored beforehand (off-line). In real time
applications, the computations are only for the equation (6.5.22) and (6.5.23).

In the whole derivation, the deterministic input appears only as an
additional term in filter dynamic equation (6.5.22) of mean value, but has no other
effect. Hence the input is neglected below.

The comparison between the equations of Kalman filter and the equations in
structural mechanics is interested, which means the analogy relation between the two
fields. Comparing both the variational principles of (6.5.14) and (5.9.9), listed as

The comparison is given as
Structural mechanics
Displacement and internal force
q,p
Right end k of interval [0,k)

and k +1

The matrices F,G,Q

Equivalent external forces

Mixed energy

Dual equations (5.9.10)
Potential energy of

interval [0,k)

Kalman filter
Dual vectors x,

of time interval and

Mixed energy

Dual equations (6.5.15a,b)
Index of time interval

And so on.

Some important ideas must be explained at this point. In the equation set
(6.5.15a,b) and (6.5.16~17), the filter is for the of time station t +1 .  It

corresponds to the boundary condition of For the station t the value

is not zero, because the corresponding estimation is post-verification For

the earlier time stations k < t the value is not a null vector, that the smoothing

state vector (or denoted as is obtained. It should be emphasized
that the equation set (6.5.15~17) gives a number of smoothing solutions with the
estimation time step goes forward. However, only the filtering solution is of
concern here.
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§6.5.2.1, Correlated dynamic and measurement noises

When considering the colored noise, the case of correlated dynamic and
measurement noises and is needed, that the equation (6.5.11) should be
changed as

and the index is given as

Because the energy of noise must be positive, so that the matrix in the above
equation is positive definite and the inverse matrix exists. The block matrix inverse
equation is given as

from which derives the matrix inversion lemma, which is useful later

The minimization of the index (6.5.28) is conditional. Introducing the
Lagrange multiplier to release the constraint gives the extended index

The variation of the above functional is unconditional that the three kinds of
variables x, and w are independent. Minimizing with respect to vector w
gives

where the identity is used in the derivation.

Substituting back into the functional after some matrix algebraic

derivation, gives

There are two kinds of independent variables x, in the functional. Variational
derivation derives the dual equations as



336 Duality system in applied mechanics and optimal control

Obviously, this set of equations has the same structure with equations (6.5.15) and
(6.5.16), that only the additional terms and reflect the effect of correlation.

Solving it, the expression (6.5.21) and (6.5.18) still have the same form.
Substituting into equation (6.5.33) gives

Eliminating and note that the subscript k is just gives

The derivation of these equations explains that for the case of being

correlated, the computation still has the same form, only the equations having more
terms. These equations are useful for the case of that the white noise assumption is
substituted by colored noise.

Filtering treats the mean vector and variance matrix just as the given

initial values. The correction of estimation of and the corresponding variance

based on the measurements later is disregarded, that such correction is
considered in the smoothing analysis.

§6.5.3, Continuous-time Kalman-Bucy filtering analysis

The basic equations of continuous-time Kalman filter can be obtained as a
limiting process of discrete-time Kalman filter by taking the time interval duration

Similar to the derivation of discrete-time case, the variational method is

used also to derive the basic equations of continuous-time filtering, see also [126].
As seen in the discrete-time case, that the effect of deterministic input u is only a
given term in the differential equation for mean state vector

The basic assumption is made for the stochastic disturbances w and v that

where both W(t) and V(t) are symmetric positive definite matrices. The initial
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condition is for x(0), which is a Gaussian distributed random vector, and is

independent on w and v, i.e. and The

initial conditions are given as

or

where is a zero mean Gaussian distributed vector for filtering, that from

it derives note, it is only for filtering.

As time is going on, it becomes a smoothing solution at time t = 0.
Derivation of filter equation should be based on the measured vector y to

estimate x . The principle is that the quadratic functional index of noises J is
minimized

Substituting with equation (6.5.7’) gives

where the varying functions are w and x , but there is the constraint condition of
dynamic equation (6.5.5’), so that it is a conditional minimization problem.
Introducing the Lagrange multiplier vector function derives to the

unconditional variational principle of the extended index

where the independently varying functions are x, and w . The function w is
unrelated to the time derivative, so that the minimization is carried out first

Substituting into equation (6.5.45) eliminates w , which derives the variational
principle with two kinds of independent variables x and as

where the input vector u and the measurement y are given vectors, so no
variations for them. Performing the variational derivation gives the dual
differential equations

The initial conditions have been given in equation (6.5.43a), where is given.

The variance matrix has been explicitly written in the variational principle. It

is important to introduce the time interval, the filtering interval is [0,t), where at
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the initial condition is non-zero, so that the close end of the interval is used,

and the end t progresses continuously. The filtering problem, satisfying the
causality condition, gives the initial state to estimate the state x(t) at the end t .

For the dual differential equations (6.5.47a,b), the initial condition appears as both
the mean state and the variance matrix given, whereas the natural boundary

condition at the end t is derived from the variational principle as
Comparing the dual equations of structural mechanics in chapter 5

the analogy relation between structural mechanics and Kalman-Bucy filter is found
as

Structural mechanics
Displacement, internal force q,p

Space interval

A,B,D

Equivalent external forces

Dual equations (5.2.9a,b)
The action function S of interval

Kalman-Bucy filter
Dual vectors x,

Time interval

Dual equations (6.5.47)
The index of time-interval

and so on.

The solution of the dual equations (6.5.47) can be as follows: A Gaussian
stochastic process can be expressed as the sum of a mean value function and a

zero-mean Gaussian stochastic process, with the variance matrix P(t) to be
determined, i.e.

This form of filter solution is similar to the discrete-time case of equation (6.5.18).
Substituting into the dual equations (6.5.47a,b) the derivation follows as

Eliminating from the two equations gives

In the above equation, there are the deterministic terms with no factor of and the
stochastic terms with the factor The distinction of them gives the two
equations
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where (6.5.50) is called the matrix Riccati differential equation, see also equation
(5.7.32) in section §5.7.6. The symmetric matrix function P(t) to be solved is of

dimension n×n . When the system is controllable and observable P(t) is
positive definite, see section 6.7. The linear differential equation (6.5.49) is for
solving the mean state value, i.e. the filter vector and is called as filter
differential equation, which can also be written as

where the matrix K is called as the gain matrix. The above derivation applies
also to linear time-variant system.

The numerical solution of Riccati differential equation is very important for
applications. Comparing to prediction, whose equation for variance matrix is
Lyapunov differential equation. Filtering holds the measurement, so that the

additional term appears in the equation, which is a quadratic function
of P(t) and then the Riccati differential equation for variance matrix is non-linear.
However, it is derived from the linear dual equations of a linear system. Based on
the analogy between structural mechanics and optimal control, the solution variance
matrix of the Riccati differential equation corresponds to the flexibility matrix at the
end t of Interval [0,t). As was seen in Chapter 5, for time-invariant system the
flexibility matrix can be solved by the precise integration method. The flexibility
matrix can also be found by the analytical method based on all the eigen-solutions of
the dual equations, as is given in section 5.8. For filtering, the analytical method is
similar, and will be considered later. Not only the Riccati differential equation can
be solved analytically, but also the filter equation can find the analytical solution,
which is quite useful and is not known before.

The filter solution considers always the front time station The length
of interval [0,t) is ever increasing with the time t . The corresponding

smoothing solution can be denoted as with which will be described
in section 6.6.

Riccati differential equation can also be applied to infinite horizon problem, i.e.
The solution has a transient stage near by t = 0, afterwards when

The limit matrix satisfies the algebraic Riccati equation

Disregarding the transient stage of process, the gain matrix in the
equation (6.5.49a) is time-invariant. Then in the filter equation (6.5.49a), the
coefficient matrix is also time-invariant, so that the precise integration
method is simply applied in solving the filter equation. With the time step size
is given, the transition matrix

can be computed beforehand, so that the real time computation needs only the
matrix-vector multiplication. The matrix is simply only for infinite horizon
time-invariant system, however for finite horizon time-invariant system, although
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the coefficient matrix (A – KC) is time-variant, the precise integration method still
applies. Certainly, the derivation is not so simple as infinite horizon case, see
section 6.5.7 later.

Note that the algebraic Riccati equation (6.5.52) is quadratic to the unknown
matrix hence the solution is not unique. However, the required is a

symmetric positive definite matrix, a very important condition, under which the
solution is unique. Analytical solution of Riccati differential equation will be given
in later sections based on all eigen-solutions of the corresponding Hamilton matrix,
the matrix corresponding to the class eigen-solutions, see equation

(6.5.117). The solution of eigen-problem of a Hamilton matrix can be found in
section 5.3.

Inspection of equations (6.5.49) and (6.5.50) determines that the matrix P(t)

is unrelated to the measurement y , and that the state mean value depends on

the y linearly. Hence the integration of with given y can apply the

superposition principle, which is very important for precise integration of

§6.5.3.1, Correlated dynamic and measurement noises

For considering the input of colored noise, the analysis of noise correlation
between w and v is needed. The equation (6.5.42c) should be updated as

and the index J should be minimized

which is still a conditional minimization, that the dynamic and measurement
equations must be satisfied beforehand. The energy of noise must be positive
definite, so that is symmetric and positive definite. To compose the quadratic
index, using the blocked inverse matrix equation (6.5.29), and then introducing the
Lagrange multiplier, it gives

which has been an unconditional variational principle with three kinds of variables
x , and w . Minimizing with respect to w first and using the identity

substituting it back into equation (6.5.55) derives

it is derived as
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where the matrix inversion lemma (6.5.30) is used in the derivation. Equation
(6.5.55’) is a variational principle with two kinds of variables x, The dual
equations derived from which are

From the positive definiteness of matrix the matrix is also

positive definite. Because the stochastic process x(t) is Gaussian, so that its
solution form is still of (6.5.48), then the derivation is as follows

Eliminating gives

This differential equation is composed of deterministic and stochastic parts of a
Gaussian process. Hence, differential equations for deterministic mean value

and for variance P(t) matrix of the stochastic terms are derived separately as

where
is the gain matrix, and

with the initial conditions

The above proposes the fundamental differential equations for the case of w and

v being correlated. The matrix represents the correlation term, that
the matrices A and W in Riccati equation are changed as (A – JC) and

respectively. Note that, the above derivation is also valid for
time-variant system.

For time-invariant infinite horizon filter, the initial condition is unrelated. The
Riccati differential equation reduces to be the algebraic Riccati equation, which is

obtained by letting in equation (6.5.60). Making use of the precise
integration method, its solution can be obtained as the limit of solution of Riccati
differential equation as i.e. Infinite horizon problem is

a long-term effect, that the initial value induced transient effect decays. The

respective gain matrix is also time-invariant, and the precise integration
method applies too. Precise integration method gives the stable numerical result
closed to the computer precision, which is important for applications.
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§6.5.3.2, Continuous-time Kalman-Bucy filter under colored noises

Disturbances are from dynamic and measurement noises w(t) and v(t), two
sources respectively. In the analysis above, the assumption for correlation
functions are (6.5.42a~c) and/or (6.5.42’c), the white noise has the factor
However white noise is an approximation, the real noise is always colored.

In the analysis of prediction, section 6.4.6 gives the method for colored noise
w , which is driven by a white noise from another linear system, and an extended
state space method is applied. For the present case, if the colored noise w is
driven by the same method but v is assumed still white, then the extended state
space method in 6.4.6 can also be transplanted here. Hence in this section, only the
case of w(t) being white and the measurement noise v(t) being colored is

considered. The model of colored v(t) is still assumed driven by a white noise

r(t) via another linear system. The system mathematical model is given as

where u = 0 is assumed, which has limited influence to the analysis, and r is a
white noise to drive the measurement noise v , and r is not correlated with w .

The set (6.5.61a~c) are linear differential equations, differentiating equation
(6.5.61b) gives

Eliminating       with (6.5.61c), then eliminating        with (6.5.61a) gives

Using equation (6.5.61b) again, eliminating v gives

Therefore (6.5.62a) becomes a new measurement equation, where the vector is

the corresponding measurement white noise with mean value zero and variance
matrix

where is the intensity matrix of the driving white noise  r(t) . The and

w are correlated white noises and the covariance matrix is

Thus, the equations (6.5.61a) and (6.5.62a) compose the system dynamic
equation and the measurement equation, respectively. However, the measurement
noise and the dynamic noise w are correlated, so that the method given in
previous section 6.5.3.1 can be applied. The same derivation gives the filter and
Riccati differential equations and the gain matrix etc. as
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The above derivation gives the fundamental equations for some cases of filter
problems. Because of the Gaussian distribution, the mean value vector and

the variance matrix P(t) are always derived to solve the corresponding differential

equations. The differential equation for the mean vector is linear, and the
inhomogeneous term is the linear combination of the measurement hence y
looked a driven ‘external force’. The linear property comes from that the system is
originally linear. For the variance matrix P(t), the equations (6.5.50), (6.5.60) and
(6.5.67) etc. are always the Riccati differential equation, which is independent on the
measurement vector y. This explains that it is the system characteristics. If the

strength of white noise is very large, i.e. which implies that the
measurement result being useless. Then the quadratic term in the Riccati
differential tends a null matrix, and then the Riccati differential equation is reduced
to be a Lyapunov equation, so that the problem reduced to be only a prediction, as
anticipated.

Riccati differential equation itself is non-linear, but it is derived from a linear
system. Looking from applied mechanics side, the solution matrix corresponds to
the end flexibility matrix. Finding the precise integration solution matrix of the
Riccati differential equation is a meaningful problem. Certainly, if all the
eigen-solutions of the corresponding Hamilton matrix are solved then the solution
can be solved analytically. The situation is entirely similar to that given in chapter
5, and the solution is determined from the analogy relationship between structural
mechanics and optimal control. Below, the precise integration method is described
first, and then the analytical solution method is given afterwards.

§6.5.4, Interval mixed energy

The fundamental differential equations for Kalman-Bucy filter are derived
above, that the equation (6.5.49) for the mean vector and the equation (6.5.50)
for the variance matrix are required to solve. However, the traditional finite
difference approximation has the problem of error prone even for time invariant
linear differential equation and is not so favorable. Using precise integration
method, the numerical result can reach the full computer precision, so that the
solution of Riccati differential equation (6.5.50) should also use the precise
integration method. Precise integration method needs to introduce the interval
mixed energy, which is also useful in dealing with the computation of smoothing
problems in section 6.6. Note that the interval mixed energy has been heavily used
in Chapter 5.

Time step integration should have a time step size denoted as and then the

grid points are

Precise integration no longer uses the finite difference approximation for this time
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interval Instead, the interval mixed energy for a given time interval is
introduced as follows

where the matrix is simply written as B . Equation (6.5.69) defined mixed

energy V is a function of state vector at time and the dual vector at

time where Measurement y is a given vector function. In

the interval the vectors x and should make the functional V be a

stationary value, i.e.

where the variations and are arbitrarily selected in the time interval, which
gives the dual differential equations

where Therefore

which derives

From the definition of interval mixed energy (6.5.69), it is seen that the mixed
energy is a quadratic function of the arguments and and the

linear terms are induced of the measurement vector y . The general form of a
quadratic function is

where Q,F,G are n×n matrices, These three matrices
determine the quadratic terms, and are n -dimensional vectors, which

determine the linear term. The matrices Q,F,G relate only to the system

matrices A , and and linearly relate to the measurement

vector y and the control vector u . Substituting (6.5.72) into (6.5.71a) derives

the interval dual equations

where Q,F,G and are functions of and such as etc.

The boundary conditions are derived as

Above is mathematical derivation, however, physical interpretation is beneficial.
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Vector is the state (displacement) at the and is the ‘force’

vector at the Vector is y induced state (displacement) at the

under the conditions of and and the vector is y induced

force at under also the boundary conditions of The F is a

transfer matrix, under the conditions of y = 0 and whose columns give

the state vector at the induced from the boundary condition of the state

being given as the columns of at The G is a flexibility matrix

at that is interpreted as the force induced state vector

The Q is a stiffness matrix at that is interpreted as the

displacement induced force vector Physical interpretation is easier for
structural mechanics arguments.

§6.5.4.1, Interval combination

Algebraically, the operation of interval mixed energy is interval combination.
Two contiguous time intervals and marked with 1 and 2

respectively, can be combined together becoming a longer time interval
The corresponding interval matrices Q,F,G can be marked with subscripts 1,2,c
respectively. See figure 6.5

The mixed energy of the combined time interval is composed of
time intervals 1 and 2

which is obtained from elimination of and i.e. Using (6.5.73)

gives

where the simultaneous equations of and can be solved as
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Substituting back into equation (6.5.75), or substituting into the equations for

and gives

The combined interval matrices and vectors r of the mixed energy are

obtained from the composition of intervals 1 and 2. The equation (6.5.77) and
(6.5.78) are the interval combination and elimination equations, see also [127], and
the equations (6.5.76a,b) are called as back substitution of the internal dual vectors,
which is quite useful in solving the smoothing problem.

It is noted that the combined interval matrices are obtained only

from the composition  sub-interval matrices  and but

unrelated to the measurement y .
The interval combination is a kind of operation, which is associative.

Suppose there are three contiguous intervals, as shown in figure 6.6, to be combined
as one interval c . This can be performed with two processes of successive
interval combinations. The first is carrying out the combination of intervals 1 and
2 to obtain the interval a , thereafter the interval a is combined with interval 3
to obtain the interval c . The second process is to execute the interval
combination of intervals 2 and 3 to obtain the interval b , thereafter the
intervals 1 and b are combined to obtain the interval c . The difference
between the two combination processes is the order of combination. Examining

the operations in the interval
combination, there is only
matrix multiplication,
inversion and addition.
According to that the matrix
multiplication satisfying the
associative rule
(AB)C = A(BC) , it is

determined that the interval
combination satisfies the
associative rule too.

Direct verification of the associative rule of interval combination can be found
from [22]. Because of the importance of interval combination, this operation is
denoted with the sign as

which implies that the respective interval matrices and vectors is combined with the
equations (6.5.77) and (6.5.78). Algebraically, the operation is regarded as
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multiplication, and the associative rule of interval combination is the associative rule
of multiplication operation

It should be pointed out, that the interval combination and precise integration
method given below is entirely similar to that given in chapter 5 for structural
mechanics, which is the consequence of the analogy relationship between
structural mechanics and optimal control.

§6.5.4.2, Differential equations for the interval matrices and vectors

The interval mixed energy matrices and interval

vectors should satisfy the corresponding differential equations,

respectively, and are derived as follows. If the state vector is fixed at the

then the state vector at the other is determined too.

Differentiating the equations (6.5.73a,b) with respect to gives

Using the equation (6.5.47) with substituted, gives

Substituting into the above equations gives

However, the vectors in these two equations are not all independent, so

that eliminating by the equation (6.5.73a) gives

These two equations are valid for arbitrary vectors Hence, it results
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Equations (6.5.80a~c) for matrices Q,G,F are homogeneous but unrelated to the
measurement y . These equations apply to time-variant system matrices

A,B,C,V,W too. The initial conditions have been given in equation (6.5.74).
Linear equations (6.5.81)~(6.5.82) for the unknown vectors and are the

measurement y induced responses (two end forces), and the initial conditions are

given also in equation (6.5.74). In the equations, and it appears
linearly.

The derivation given above comes from partial differential with respect to the
Fixing and state vector differentiating the equation (6.5.73)

with respect to     gives

Using the equations (6.5.47b) and (6.5.47a’) at and substituting into the
above equation obtains

However, the vectors are not all independent. Using equation (6.5.73b)

eliminates so that the remaining vectors are independent, which derives

Because of the independence of vectors it derives

For these equations the integration is reverse to the time coordinate with the initial
conditions being
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It is seen that the equation set (6.5.83)~(6.5.85) for Q,G,F is again homogeneous
and the solution matrices are independent on y . The measurement y influences

only the vectors and and the differential equation (6.5.81) for is the

same form to the equation for mean value
The equation (6.5.80) and (6.5.85) are the positive and reverse direction Riccati

differential equations. For time-invariant system, the precise integration of Riccati
differential equations will be given in the next sections.

Introducing interval mixed energy is quite useful for the solution of Riccati
equations. It is seen that (6.5.80) is just the Riccati differential equation, the same
as equation (6.5.50). The difference exists only on the initial condition. Let

then because of G(0) = 0 , i.e. which is in contrast to the

condition of hence the matrix G is different from the matrix P .

Nevertheless, the differential equations are the same, both the matrices G and P
must be interrelated. For linear differential equation, the different initial conditions
can be solved by means of the superposition principle. That is the addition of the
initial value induced solution of the homogeneous equation and the
non-homogeneous solution with null initial condition. But the Riccati differential
equation is non-linear and such simple superposition is invalid.

The combined equation (6.5.77) of two intervals supplies the method
transforming matrix G to solution matrix P . Imagine that there is an
infinitesimal fictitious interval at the end with the mixed energy interval

matrices

be regarded as interval 1, and the interval (0, t) with the mixed energy matrices

Q,G,F be regarded as interval 2, then using the interval combination equation
(6.5.77b) gives

Because G(0) = 0, Q(0) = 0, when it is easily verified

so that the matrix P(t) satisfies the initial condition. The interval

combination equation (6.5.77) does not influence the matrices to
satisfy the differential equation (6.5.80). So the Riccati differential equation is still
satisfied. Therefore the equation (6.5.90) derived solution matrix P(t) is the
solution of differential equation (6.5.50). The physical interpretation is given in the
next section.

Condition (6.5.74) corresponds to that at the (or at there has
not a concentrated fictitious interval as equation (6.5.89), hence the condition (6.5.74)
is called the natural initial condition for the interval matrices.
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§6.5.4.3, Physical interpretation of the solution of Riccati equation

Before description of precise integration for the solution matrix P(t) of

Riccati differential equation, the investigation of the physical meaning of this matrix
and the variational form is beneficial. The importance of matrix P(t) is that it is

the variance matrix of the filter vector of state x(t). From variational

formulation, the role of the matrix is found as follows. After introducing the
Lagrange multiplier for the index J of equation (6.5.44), the variational equation
(6.5.45’) is derived to be the functional of two kinds of independent

variables The value of equals to the original index J , but the

arguments are different. The initial condition (6.5.43a) can also be satisfied by the
variational principle, let (the special case of u = 0 is considered)

Carrying out the variational derivation and using integration by parts gives

Let the dual equations (6.5.47a,b) and initial condition (6.5.43a) be satisfied, then

Note that the solution of the equation (6.5.47a,b) and initial condition (6.5.43a) is the
mean value of state vector, but at the end the vector can be arbitrary,
hence the solution form is

where the mean value vector (filter solution) and the variance matrix P(t)

are solutions of equations (6.5.49) and (6.5.50), respectively, and are deterministic
values. So and then

From this equation the physical interpretation of P is the flexibility matrix. It
can be modeled as a spring system, for which is the equilibrium point and

is the deviation of displacement vector, and is the force

vector. Let the n unit vectors and

be applied to the spring system in turn, then the n response

deviations and are the column vectors of the

matrix P , respectively. Hence, the matrix P(t) is interpreted as the filter

flexibility matrix of the interval [0, t) at the end t .

The method for determining the variance matrix is, finding the flexibility
matrix of the homogeneous system, which gives the variance matrix. In chapter 3
when describing the least square problem, it has been found that the variance matrix
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is a flexibility matrix.

§6.5.5, Precise integration of the Riccati differential equation

For the linear equation (6.4.35) of prediction, the precise integration is given in
section 6.4.4, which can be used under the time-invariant system. Precise
integration method for Riccati differential equation is also given for a time-invariant
system. Equation (6.5.90) has proposed the reduced method that the mixed energy
matrices G(t),F(t),Q(t) corresponding to the null initial condition can be solved

first, and then the solution matrix P(t) can be obtained via equation (6.5.90).

Hence only the precise integration method for matrix G is needed.
When the time step is selected, the whole interval is subdivided as in

equation (6.5.68). The fundamental step has duration for which the mixed

energy matrices need to be computed. Previously these interval

matrices are functions of the two ends however, for time-invariant system,
which depends only on the interval length

but not relates to the initial point hence etc. The

equations (6.5.80)~(6.5.82) and (6.5.83)~(6.5.87) can be combined rewritten as

When the measurement y and control u are the special case of constant vectors,

the equations are

These equations have two versions, which correspond to those derived from the ends
or respectively. Both versions are compatible to each other, which is

ensured from the associative rule of interval combinations.
However, the measurement y is under stochastic process disturbance, so that

it is not constant valued, hence the equation (6.5.95) and (6.5.96) can only be
applied to special case. Special care must be taken at this point.

Equation set (6.5.92)~(6.5.94) are non-linear ODEs, so that doing precise
integration must uses the structure of the problem itself. Comparing the precise

integration of the matrix exponentiation, the first crux is the algorithm, because
the matrix exponential function applies the additional theorem. Presently the

interval combination algorithm can be used instead, from which the algorithm
can be proposed. Let
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where is extremely small. The algorithm needs an initialization interval
and this extremely small interval can be used as the initial one. In case of
matrix exponentiation, the Taylor series expansion can be used. For present case,
there are the set of differential equations (6.5.92~94), from which the matrices

should be generated and should be computed with the relative
error being beyond the computer double precision. Taylor series expansion method
can still be applied presently and keep up to the fourth order terms. Let

where need to be determined. The term should not be
confused with the previous one. Substituting the Taylor expansions (6.5.98~100)
into (6.5.92a)~(6.5.96a), carrying out the multiplication and the coefficients of the
various powers of equals zero, which gives

These coefficient matrices need only be computed one after another, with no
iterative solutions. Note that are all n×n dimensioned and

also

After computed these coefficient matrices and then substituting into (6.5.98~
100), the mixed energy matrices are obtained. Because the
interval length is extremely small, so the numerical result is precise up to the
computer real word precision. This interval of length can be used as the initial

interval of the algorithm. All the equation derivations before (6.5.96) are
exact, except the Taylor expansions (6.5.98~100) truncate beyond The first

term of truncation is which is of ratio to the first term in the expansion.

Because of this multiplier of relative error has been

beyond the double precision of real word, so this step of approximation
reaches the full computer precision.

Having calculated the mixed energy expression of the interval the
equations (6.5.77a~c) can be recurrently executed N times, where Q,G,F are

the matrices of mixed energy representation of equal length interval. When
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the N times loop is finished, the matrices Q,G,F turn to be the mixed energy
matrices of the given length interval, such algorithm is

termed as ‘interval doubling’. However, the interval-doubling algorithm was found
numerically unreliable, see [128] chap.7. To solve this numerical problem, special
attention must be taken in the execution of equation (6.5.77c), that the addition of

must not be executed in equation (6.5.100). This is the second crux of

precise integration. Because, when is extremely small, is also extremely
small, the addition will seriously hurt the numerical precision because of round-off

error. The cause of interval-doubling algorithm (i.e. algorithm) being
considered unreliable comes from such numerical ill-conditioning. The similar
situation appears also in the matrix exponential function. Hence, the equation
(6.5.77) should be updated as

That is, to keep track of always the incremental of the matrix then the

numerical ill-condition problem is solved in the computation. These equations
apply to the combination of two small equal length intervals.

Until now, the equations for the precise integration have been available, so that
the algorithm can be given in meta language as follows:

[Give the matrices A,B,C,W,V, and select step size and ]

[Calculate let N = 20, ]
[According to (6.5.98-101) calculate the matrices ]

for (iter = 0; iter < N; iter + +) {

Comment: precise computation in the interval

[According to (6.5.102a~c) compute ]

[let ]

}
Comment: The matrices are obtained.

Comment: initialization.
for (k = 0; k + +) {Comment: stepwise forward

[According to (6.5.77b), (6.5.77c) compute ];

Comment: is the matrix

} (6.5.103)

The above algorithm is the precise integration solution of Riccati differential
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equation for finite horizon (duration) Certainly, is a relatively small

time-step. Because the initialization of stepwise forward integration of the matrix
P has been given the initial value so that for each stepwise forward, the matrix

has been the solution of Riccati equation (6.5.50).

Kalman-Bucy filtering requires real time computation, however the
computation of matrix P is unrelated to the real time measurement y . Hence

the matrix P can be computed and stored beforehand. The real time computation
is then only for the solution of the linear time-variant differential equation (6.5.49).

The non-homogeneous vector terms and can also be precisely

integrated. However, the measurement vector y does not know beforehand,

hence the effect of y can only be computed at the real time. But some

fundamental computations can still be executed beforehand, that the basis vectors of
the measurement vector y can also be computed and stored with the matrices

Q,G,F and P off-line. The formulation and algorithm will be given in sections
6.5.7-8 for the integration of filter differential equation (6.5.49).

Algorithm (6.5.103) is given for the computation of finite horizon transient
process. Sometimes, control theory needs to consider the infinite horizon filtering.
In such case, the symmetric and positive definite solution matrix of the
algebraic Riccati equation (6.5.52) is needed, which can be obtained by taking the
limit of in algorithm (6.5.103). Because equation (6.5.77b) determines

that can only be continuously increasing so that the positive definiteness is

ensured.
Hence, after computed the matrices of the fundamental time

interval the iterative computation is:

[ are obtained from the former part of (6.5.103)]

[Let ]

while

[According to (6.5.77a), (6.5.77b) and (6.5.77c) compute ]

}
Comment: For controllable and observable system, convergence is

ensured. (6.5.104)

The gain matrix is computed after the ARE solution is obtained

Hence the precise computation for the matrix is very important.

The matrix satisfies the ARE (6.5.52), since no differentiation there, hence
the precision can be verified easily. Computing

and comparing both the matrices element by element, the coincident significant
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digits give the precision. Because is obtained from equation (6.5.104) by
iteration method, but not revised using the ARE, hence this comparison verifies also
the reliability of computed. Below a numerical example is used
to demonstrate.

Example 6.9, A one dimensional dynamic equation

where w is a Gaussian white noise with zero mean and variance The
measurement is

where v is also a Gaussian white noise with zero mean and variance the w,v

and are all independent processes. The variance function of x(t) is required.

Solution: n = 1 -D, with data A = –a, B = 1, C =1, It gives

and hence the equation (6.5.50) becomes

This 1-D Riccati differential equation can be solved analytically. It derives to

The quadratic term of denominator can be factorized, and integration gives

Substituting the initial condition gives

The gain matrix is

Let the data be given as a = 0.8 . Selecting

the numerical solution of Riccati differential equation is listed in table 6.1.

Because of the non-linearity of Riccati differential equation, purely analytical
solution rarely appears for multi-dimensional problem. For comparing the
precision of precise integration result, this problem is also computed by the precise
integration algorithm (6.5.103) and compared with the numerical result obtained
from the analytical solution. In the ten significant digits listed in the table, the two
algorithms give completely the same numerical results.
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Hence, the characteristic of highly precise result of the precise integration method is
verified for this example. ##

More numerical result is unnecessary, because there are examples in structural
mechanics, see chapter 5.

§6.5.6, Analytical solution of Riccati equation based on eigen-solutions

The analytical solution of Riccati differential equation can also be found based
on all the eigen-solutions, and the method has been given in chapter 5. The crux is
repeated here. Go back to the dual equation (6.5.47), the corresponding Hamilton
matrix is

Composing the complete state vector v (because x has been nominated the term
state vector), and the homogeneous dual equation is combined as

From the corresponding eigen-equation solves the eigen-matrix

Composing the matrix and taking matrix inversion for it

is a diagonal matrix. Each column of the matrix gives the two

end-conditions of basis solution of the interval Using the matrix inversion

lemma (6.5.30) gives

where is the length of typical interval From which the interval
mixed energy matrices are derived as
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The symmetry of matrices Q and G , and that F and being mutually
transpose to each other can be proved from the above expressions, and that the
differential equations (6.5.92~94) are all satisfied. Hence the analytical solution of
interval mixed energy matrices based on the eigen-solutions is obtained. The
derivation is given in section 5.8, and the detail is neglected.

Let then

which gives the solution of differential equation (6.5.50). When computing the
above equation, the matrix should also be computed simultaneously

which is useful later in the precise computation of the filter vector

A special case of is considered next, which has the characteristics

Hence

when

therefore

which gives the solution of algebraic Riccati equation, see [129,130].
Analytical solution is certainly the best, but the present case needs to find all

the eigen-solutions of matrix H . The problem is that the Jordan normal form may
appear, for which the eigen-solutions are numerically unstable. Precise integration
method has no such problem that it is perfect also for Jordan normal form to appear.
The eigen-solutlon based analytical method should combine with the precise
integration method to solve the Riccati differential equation and the filter equation
[103].

§6.5.7, Solution of single step filter equation [131]

The above two sections concentrate on the solution of Riccati differential
equation (6.5.50). Another critical problem is the solution of filter differential
equation (6.5.49). It should be emphasized that the filter equation needs real-time
solution, which is a critical requirement and so careful investigation is needed.
Examining the filter equation

where the vectors y,u cannot be determined beforehand but must be measured
and computed at the real time. Examining further finds that the equation (6.5.49)
is linear with respect to the filtered vector Even if A is time invariant, but

the term of P(t) implies that the filter equation is still a time-variant differential

equation. According to the theory of ODE, solving the time variant equation
should first solve the homogeneous equation
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The problem is to solve in (6.5.119). In fact, this solution of time

variant equation has really been computed, which is just the matrix in equation

(6.5.90), i.e.

The verification is as follows. First the initial condition, substituting into equation
(6.5.74) verifies that the initial condition (6.5.119) is satisfied. Next to verify the

differential equation, because the identity where X is an

arbitrary matrix. Using equation (6.5.92) gives

That the differential equation (6.5.119) satisfies too. According to the uniqueness
theorem of ODE [36], the solution found is unique. Therefore, the solution of the
time variant differential equation (6.5.119) is simply found. It should be pointed
out, that the solution of homogeneous equation is independent on the values of
measurement y and control u , hence can be computed off-line beforehand. It is

pointed out again, that the off-line computations should be executed and stored
beforehand, in order to reduce the real time computation to lowest level. This is a
fundamental principle of algorithm design.

Having solved the complete solution of the homogeneous differential equation,
the variant coefficient method is used to find the solution of inhomogeneous
equation and the solution is given in Duhamel integration form

However, this integration should be executed effectively and precisely because it
must be executed at the real-time. The integration can be given in stepwise
progressing form, for which the equation (6.5.121) is derived as that the integration
begins from the arbitrary time station Let the impulse response matrix

function of the linear system

for which the identity

is proved simply that since and therefore

Since is an arbitrary n -dimensional vector, hence (6.5.123) must be valid.

The equation (6.5.121) is to be revised now. Suppose the integration has
reached that the vector is computed as
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It requires to integrate the at the next time station The
derivation is given as

so that

which can be interpreted as that, the integration begins from with the initial

value The integration is one time step, and the situation becomes one step
forward. The numerical integration is better to use the above equation (6.5.124),
and the matrix is needed. The single step mixed energy matrices

has been obtained for step size and also the

matrices and are also obtained off-line. Thus

which is just the matrix in equation (6.5.90) or (6.5.116), and can be termed as
the single step transition matrix of the filter equation. Until here, the derivations
are all exact. But equation (6.5.124) has a fixed end integration, which can be
computed only with some numerical approximation. Further investigation is
needed.

The simplest method is to use the integration rules, such as trapezoidal
approximation etc., but such method has not used enough the knowledge of system
characteristics.

Although for arbitrary vectors the precise integration method
cannot apply, however, if these vectors can be linearly interpolated in the interval

then equation (6.5.124) can still be integrated precisely.  Similarly,

when the matrix H has no Jordan form, the eigen-solution based analytical
method can also be applied. Equation (6.5.120) explains that the homogeneous
equation (6.5.119) can be solved firstly using the matrix G(t) instead of the matrix

P(t), thereafter using the transformation (6.5.120) to obtain the solution of equation

(6.5.119). To verify the filter equation (6.5.49), let and the equations to

be solved first are

which are the equations (6.5.81~82). Thereafter execute the transformation

where can be selected as and then let From (6.5.126b) gives
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therefore the equation (6.5.124) can be given as

Verification is needed that of (6.5.127) does satisfy the differential

equation (6.5.49), which is given as

using the differential equations for and it is verified as

hence

which is just the equation (6.5.49). The initial condition is ensured

from (6.5.127) by the initial conditions in (6.5.126).
Comparing the equations (6.5.124) and (6.5.124’) determines that is the

integration term in (6.5.124). The verification is that, differentiating this term with
respect to knows that it satisfies the differential equation (6.5.49), and the

initial condition when is 0 , which determines that this term is just

Equation (6.5.127) explains that the computation of can be given as first

computing and then using the transformation (6.5.127) to

obtain The computation of is also, first to compute the matrix

with zero initial condition, thereafter to compute by the transformation
(6.5.125).

The problem is, therefore, reduced to find the single step integration of

§6.5.7.1, Analytical single step integration for the filter equation

Consider the equation set of (6.5.80) and (6.5.81), that the equations for

and are of the same class to the equations for F,G,Q . The interval
combination equation (6.5.77) and (6.5.78) explains that the differential equation
(6.5.126a,b) for and can also be solved by the precise integration method.

After the precise integration method for is given in section 6.5.5,
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the analytical solution method is given in section 6.5.6. This fact implies that

and can also be integrated by the analytical method, which is given below.

Analytical integration method uses still the eigen-solution expansion.
Rewriting the dual equation (6.5.47) as

of which the homogeneous equation solution corresponds to the computation of
matrices hence the inhomogeneous equation solution should be
proposed further. The two end zero conditions are written as

Note that, the vectors y and u can only be given at the real time. No exact

analytical expression is available in the interval for arbitrary vectors of y

and u . Only at the grid point and the value of vectors

or at the past time such as or etc. are available. Within the time

interval only interpolation function can be supplied. The interpolation

usually uses simple functions, such as linear, quadratic functions etc. The vectors
y and u are q - and m -dimensional vectors, respectively, their values cannot be
given beforehand, however, they can be composed of q- and m-dimensional
basis vector functions, respectively. These basis vectors can be selected as the
column vectors of and unit matrices. Therefore the inhomogeneous

‘external force’ vectors in the equation (6.5.108’) should be extended as

where y and u are interpolation functions in the interval The

integration of all the (m + q) columns of the matrix f used as the

inhomogeneous force terms in (6.5.108’) can be executed off-line. Then at the
system running time, the real computation needs only to execute matrix
multiplication. Further within the interval the interpolation for u and

y can be

where and are coefficient vectors to be determined according

to the control and measurement data given at the real time. However, the matrix
f is independent on the real time data, so that the f related computation can be
executed off-line beforehand. Expanding the columns of matrix f with the
eigenvectors of matrix  H
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where are (m + q)×n coefficient matrices to be determined. Since is

a symplectic matrix, left multiplying the above equation with gives

Thus can be computed off-line, that are known matrices at the running

time. Substituting the above equations into (6.5.108’) derives the differential
equation for

The solution of can also be expanded with the eigenvectors

Thus the equations for the components of vectors and is the i -th

row of ]

Integration of these equations needs to introduce the following functions

Note that, the functions are not bold and are different to in equation

(6.5.98). Hence

where are row vectors picked from the i -th row of the matrices

respectively. Let and the above

equations have the form
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where and are vectors to be determined. According to the two end
boundary conditions of (6.5.131) derives

From the two equations are solved, then the solution x and of the

inhomogeneous equation (6.5.108’) is obtained.
The two vectors in equation (6.5.127) are asserted that

where the vectors x and are the components of the complete state vector v
in equation (6.5.108’). To prove the assertion, rewriting the equation (6.5.108’) in
dual equation form

where Let

where satisfies the Riccati equation

Substituting (6.5.137c) into equation (6.5.137a,b) gives

Eliminating and since G satisfies the Riccati differential equation, so

This differential equation is the same as (6.5.126a), so is just in

(6.5.126a), and Since (6.5.137c) and the boundary condition so

the assertion (6.5.136a) is proved. The differential equation for has been

separated with
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Taking transpose of the equation (6.5.80c) gives
and using equations (6.5.138b), (6.5.137b,c) gives

Since integration gives

which is just the integration of equation (6.5.126b), the assertion (6.5.136b) is thus
proved. ##

Numerical computation is investigated further.

§6.5.7.2, Analytical equation for single step integration

Based on the assertion (6.5.136a,b), the equation must be given for
computation, and the off-line and on-line computations must be distinguished. The
coefficient matrix of the left-hand side in equation (6.5.135) is the sub-matrices of

of equation (6.5.110), whose inverse matrix is given in equation (6.5.111).

Hence the solutions of and are

where

The matrices L are all n×(m + q) dimensioned, and are independent on the

measurement and control vectors, so that they can be computed off-line beforehand.
The matrices and are given in equation (6.5.113) and can be computed

off-line too.  According to (6.5.134) it derives
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The matrices in the parenthesis of the above equations are all
n×(m + q) -dimensioned, and can be computed off-line for a given step size
According to equation (6.5.136) it gives

Substituting these into equation (6.5.127) gives

Equation (6.5.124) becomes

This equation can be used for real time integration. The matrices and

can be computed off-line, because they are independent on y and

u . The matrices may depend on the station number k . Because of the

distinction of off- and on-line computations, the real time computation is limited
only the equation (6.5.124”) that the expense is greatly reduced. The real time
operations are a n×n matrix multiplying a n vector and a n×(m + q) matrix

multiplying a (m + q) vector for three times, totally
multiplication.

The eigen-solution expansion method has numerical problem when the Jordan
normal form appears. However, the precise integration method does not affected
by the possible Jordan normal form and still gives precise numerical results. The
precise integration method is given in the next section.
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§6.5.7.3, Taylor expansion of precise stepwise filtering

The superposition principle applies to linear system. For time-invariant
system each time step has identical characteristics, which implies that the mixed

energy matrices are unified. The difference only appears on

different measurement y and control input u . The measurement value y is

assumed linear within the interval. According to the superposition principle, if

for both arbitrary constant y and linear measurement the precise
integration of system response have been carried out, then for arbitrary linear
distributed measurement y in the time step the system response can be

obtained by the superposition principle. More clearly, let the left end be

and denote the q -dimensional measurement vector Let its q

column vectors are the basis of constant measurement vectors, that any vector
can be composed of these basis vectors. To model the linear measurement

the q columns of the matrix are used as the basis

vectors. Any measurement in the time interval can be linearly composed of

these q + q basis vectors. The similar basis vectors also apply to the control

vector u .
The precise integration method further subdivides the single step into a

large number of sub-intervals, as

such as N = 20 , sub-intervals

with very short step size Introducing here is to distinguish the variable

For each interval, the measurement y and control input u can be

superimposed with the columns of the matrices

totally 2q measurement vector basis and 2m control input vector basis. These

basis vectors are measurement independent. At the points and the

vectors are denoted as and respectively, then the composition is

Therefore, corresponding to these 2q and 2m basis vectors in equation (6.5.143)

solve the integration and denoted as

where Note that the basis matrices depend only on the

interval length but not relate to the starting point, so that they are written with one
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argument however the basis matrices depend on two end times so

that they must have two arguments. The integration matrices of and

called as inhomogeneous basis matrices of y , are n×q dimensioned

and satisfying the differential equation (i = 0,1)

where the initial conditions for are G(0) = 0, i.e. is the

starting point of integration. Comparing equation (6.5.146) with (6.5.127’), the
differences between G and P , F and   are recognized. These differences

can be compensated later, for which the method is still using the equation (6.5.127).

Similarly, the matrices and called as inhomogeneous

basis matrices of u , are n × m -dimensioned, satisfying the equations (i = 0,1)

These equation are the extension of equations (6.5.81~82).
The Taylor series expansion of is the same as (6.5.98~101)

and the precise integration is also the same. The integration for constant basis of
is examined first below, the Taylor series expansion of the corresponding

matrices are given as

The matrices and the coefficient matrices are all n×q

dimensioned. The differential equations (6.5.146a,b) are

Substituting (6.5.147a,b) and (6.5.98~100) into the above equation and comparing
the powers of gives

where These coefficient matrices can be computed one by one

directly with no iteration, and then substituting into (6.5.147a,b) gives and

Because the relative error of truncated terms in the expansion (6.5.147)
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have been of the order of which has been beyond the error of double

precision real word of the computer today.
The derivation for the constant basis of is similar, the corresponding

Taylor series expansion of and are

The and their coefficients are all n×m matrices, and the

differential equations are, respectively

Substituting the equations (6.5.147c,d) and (6.5.98–100) into the above equations
and comparing the coefficient of powers of derives

Directly computing these coefficient matrices and then substituting back into

(6.5.147c,d) obtains and The relative error has been beyond the

double precision real word on the computer.
The above Taylor expansions apply to the constant part of y and u in the

equations (6.5.145a,b). The linear distributed inhomogeneous terms need to
consider the term equations (6.5.145c,d). The Taylor series expansion for

and are, respectively

The differential equations are, respectively

Substituting with the Taylor expansions and comparing the powers of derives

Directly computing the coefficient matrices from (6.5.150a) and substituting into

(6.5.149a,b) the matrices and are obtained precisely.

There is also the linear term of u to be computed. The Taylor series
expansions are



Kalman filtering 369

The differential equations are, respectively

Substituting the expansions (6.5.149c~d) into the differential equations and
comparing the powers of derives

These coefficient matrices can be directly computed one after another, and then

and are computed from (6.5.149c,d). The relative error has

been beyond the computer precision.
Note that the precise integration computes only to the linear term here, however,

the quadratic term can also be computed if required.

§6.5.7.4, Interval combination within the    interval

The precise integration subdivides the step further into extremely

small intervals with length (the subscript of is taken off here). The

above derivation is only for the step size interval, and N times interval
combination is necessary to recover the original length That kind of

computational methodology for the mixed energy matrices has

been described in some detail below the equation (6.5.97). Here, the precise
integration for and is described.

For inhomogeneous terms (measurement and control) the interval combination
equations are (6.5.78a,b). But these equations are used for one loading case. To
consider the various possible cases for the measurement y as well as for the

control input u, the basis are given in equations (6.5.145a~d), respectively. The
corresponding inhomogeneous basis are integrated to be and Then the

contiguous interval combination should consider the q -basis (for y ) or consider

the m -basis (for u ) simultaneously. Hence the equation (6.5.78a,b) should be
updated as

where the subscripts 1 and 2 represent left and right intervals, respectively, and the
matrix R represents n×q matrix (for y ) or n×m matrix (for u ),

respectively. Based on the equations (6.5.151a,b), in the single interval the

basis matrices combination algorithm for y and for u are executed.
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If within the interval length there are only constant valued y and u , then

only the matrices and are required, and these

matrices can be used to compute and by the

equations (6.5.151a,b), which means the length of combined interval is doubled.
After N  times of iteration, the interval length is recovered to be and the

matrices and are obtained. But there are

further the linearly varying parts of y and u , so further investigations are needed,

as follows.

Based on etc., compute

Based on etc., compute

Within the interval both y and u are assumed linearly varying, the interval

is within so that they are linear too. The interval is

combined contiguously by and The distribution tI in the

interval      where t is the running argument, corresponding to the

combination of tI distribution in the interval     and both the constant

distribution in the interval in addition to the linear distribution

in the interval see figure 6.7. To express with the interval combination
equation:

The combination of the two intervals and gives the linear
distribution of

linear distribution:
the interval combination equations are (6.5.151a,b). Thus, the equations for the
N recursive interval combinations for forming the linear distribution in the interval

have been available. The computation for the matrices

and or simply denoted

are independent on the

real time measurement y and

control input u . Therefore, the
computation of can be
executed and stored into the
database at the same time with

off-line
beforehand, and can be reloaded
from the database at real-time
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performance. The interval combination equations for Q,G,F are (6.5.102a~c),

and the interval combination equations for          are (6.5.151a,b).  Presently it

is the combination of two intervals with equal length so that the equations are

The algorithm for the matrices of the fundamental interval is given as

follows:

Comment: The algorithm to generate the basis matrices

of constant distribution and the basis matrices

of linear distribution, respectively, in the fundamental interval

with the matrices simultaneously.

[Original data: n,m,q,l and matrices

[Select the time step let N = 20]

[According to (6.5.98~101) generate and ]

[According to (6.5.147~150) generate: and

]

for (iter=0; iter<N; iter++) {

[Let

]

[Using (6.5.154a,b) compute ]

[Let ]

[Let ]

[Using (6.5.154a,b) compute ]

[Let ]

Comment: Above for linear distributed y and u (6.5.152~153), then interval

combination. Below algorithm is for constant distributed basis
matrices.

[Using (6.5.154a,b) compute ]

[Let ]

[Using (6.5.154a,b) compute ]
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Comment: The load basis matrices are computed. Below for updating

[Using (6.5.102a~c) compute ]

[Let                     ]

} (6.5.155)

Comment: After the iteration, and

and also are all generated.

These matrices are independent on the starting point The computation is
off-line.

The above precise integration computation can be used when the Jordan normal
form appears. The analytical solution should be used in combination with the
precise integration approach, as that given in [103] for the solution of Riccati
differential equations. Distinguishing off-line with on-line is quite important for
real time control problems.

§6.5.8, Integration of filter equation for the whole interval

The algorithm (6.5.155) given above are the computation of a fundamental
interval. Because of that within the fundamental interval the vectors y

and u are considered linearly distributed. Hence the linear basis computations in
the     interval are performed off-line in order to reduce the real time computation

as little as possible. However, the algorithm is only for the length time step,
this fundamental basis computation is unified for all the time steps. The
computation for whole the time interval has some other parts needed to be

performed off-line, i.e. the transformation of at the time station

According to (6.5.124), the time instant can be regarded as the starting point of

integration.   Each step integrating one    length, with the initial condition

where is the filtered state at the last time step, and is the solution

of Riccati differential equation, and is solved off-line before.
After the single step integration of then treating the

matrix as the initial variance matrix using (6.5.90) to obtain the matrix

which is just the matrix

The basis matrices and computed above

satisfying the differential equations (6.5.146a~d), comparing which with (6.5.127’)

[Let ]
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there are the differences of G,F with P, which should be amended. The

method is again using the transformation (6.5.127), where the is regarded as the

starting point, therefore the equations are revised as from  to that

Here again to explain, that the basis matrices correspond to the constant load,
hence it depends only on the interval length, one argument. The matrices
depend also on the start point, so that two arguments are needed. The subscript p
represents that the matrix P transformation has been performed. The matrix

has been unrelated to filtering but it is useful later for smoothing computation.

Using equation (6.6.15b) gives the equation for

The algorithm (6.5.155) generated basis matrices depend only on but not

relate to however, and depend also on hence they should be

stored for each time step. Therefore at two n×n matrices two

n×q matrices and two n×m matrices

must be stored.    The off-line algorithm is given as:

[Using (6.5.155) compute the matrices

and of the fundamental

interval ]
Comment: execute once
[Let ] Comment: input here

[Let ]

for {

[Compute ]

[ matrix P is stored as of station (k + 1)]

[ Store at the station (k +1) ]

[ Store at the station (k + 1) ]

[ Store at the station (k + 1) ]

[ Store at the station (k + 1)]

[ Store at the station (k + 1)]

}
Comment: The algorithm is unrelated to measurement and control input, hence
off-line. (6.5.158a)
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After the off-line computation is consummated, the real time computation is

[k = 0; i.e. t = 0 is the starting point]
[Input the measurement and control and stored in ]

for { Comment: Time step integration.

[Load in                         from station k ;]

[Read measurement and control ]*

} Comment: similarly for (6.5.158b)

The above real time algorithm has not taken the factor of control system into
account. The line marked * means that it requires revision. Because

requires the value of to calculate. Also the operation of the actuator of

feedback control should also be considered. The simplest way is using constant
value in the interval which corresponds to that the line marked with *

takes the value The line marked with ** means that the

instruction should use the separation principle of LQG,                         where
is the solution of the Riccati differential equation of optimal control in the future
time interval.

The algorithm (6.5.158a,b) is given based on the precise integration method,
but there are the equation (6.5.142) and (6.5.124”) derived from the analytical
method. The comparison between these two approaches gives the corresponding
relationship. Two approaches can be used interchangeably.

First, the equations of precise integration derive only for linear interpolation,
but the analytical approach gives quadratic interpolation in (6.5.128b). Hence, the
comparison should go back to linear, i.e. regard being zero. So that the

step forward equation used in (6.5.158b) is

Comparing this equation with (6.5.124”), then is the matrix in equation

(6.5.119); and the matrices in (6.5.142) correspond to

Hence the result from analytical method is easy to use in computations. Note that
the matrices in equation (6.5.158) of interval are stored at the station

k + l.

is
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§6.5.8.1, Numerical example

The Riccati differential equation is non-linear, only one-dimensional problem
has purely analytical solution. The filtering problem has also the time variant
differential equation to solve, in order to estimate the state vector x under the
measured vector y . The practical measured y is under the random disturbance,

but as the numerical example, the vector y is assumed a constant vector, so as to

carry out the numerical result of the vector  by means of precise integration. Its
numerical result can be compared with the analytical solution of one-dimensional
problem. In the case of multi-dimensional problem, the comparison can be given
for the numerical results obtained for differential step sizes.

Example 6.10, Give dimension n = 1 , and A = –0.8;W = 1.0;V = 1.0;

B = 0.8;C = 5.0;             the solution P(t) of Riccati differential equation, and

are required. Further, assuming y(t) = 0.5 compute the

filter solution

Solution: Select the step size as The analytical solution is available for
one-dimensional problem. Both the numerical results from precise integration
method and from analytical solution completely coincides to each other, and is given
in the table 6.3 below

When selecting different step sizes for precise integration, such as and

etc., the numerical results are still the same, so that the precision of precise

integration method is verified perfectly for one-dimensional problem. ##

A multi-dimensional example is supplied further.
Example 6.11: With dimension n=4 and the data of matrices are given as
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The measured vector y ought to be given at each step, which should be near by the

motion under the dynamic equation. For simplicity, it is assumed always y = 2.0,

and it is pointed out that the deviation of measurement data is quite large.
Solution: For comparison purpose, step sizes of and are selected in

the computation, that the numerical results of different step-sizes can be compared.
The numerical results of the matrix P(t) at time t=0.8, 1.6, 2.4, 3.2 and for

the two step sizes are completely the same as given by

The matrices and are needed stored for each time

steps, and the data is too much, so that only the matrix is given at part of time

stations.

The above are the off-line results. Below are the filter results, but under the
assumed measured data of y = 2.0, which is not a real one and unreasonable, but

just for showing the computation.

When computing for different step-sizes, which give again the same results. ##
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As mentioned, that the measured data y is unreasonable, and can only be used

for comparison of different step-sizes.
After all, the Kalman-Bucy filtering is a fundamental part of control and signal

processing etc, and numerical computation is indispensable. Traditionally, the
computation is classified as the off-line computation of Riccati differential equation,
and the on-line computation of filter equation. The former needs to solve a non-
linear differential equation, and the latter is to solve a time-variant differential
equation. Both problems have difficulties in numerical solution. Based on the time-
invariant behavior of the system, the precise integration method proposed in this
book solves the Riccati differential equation precisely first, and then the precise
integration of the filter equation is also solved based on the linear interpolation
within the time steps of length Especially, the computation is sub-divided into

off-line and on-line, that the real time computation is reduced to its minimum,
which is extremely important.

The high precision of the precise integration method is quite beneficial to
various applications.

§6.6, Optimal smoothing and computations

Three types of estimation, namely Prediction, Filtering, and Smoothing, are
introduced in section 6.3. Prediction and filtering have been described in sections
6.4 and 6.5, respectively, and the computations are given by the precise integration
method or the eigen-solution based analytical approach. For prediction, there is no
measurement to check with, and can only base on the system model to estimate the
state of system in the future. The filtering estimates the state at the present time,
except the knowledge of mathematical model of the system, there is measurement
data until present time to check with, which means that the measurement data used
does not object to causality for filtering. Smoothing state estimation uses all the
measured data before and after the time of estimation, which does not fulfill the
causality condition. Smoothing is the state estimation for past time. The
classification is expressed simply as

Smoothing past; Filtering present; Prediction future.
Smoothing uses all the measured data, so that its estimation for the state at past time
is much reliable. Filtering usually applies to the real time estimation and control.
The prediction has no data to check its estimation, so that its possible deviation is
largest among the three kinds of estimations.

Smoothing itself has three kinds of estimations. The first kind of smoothing is
called as fixed interval smoothing and can be denoted as               the meaning is to

estimate the state at the given time instant with the measured data y of

whole the time interval Because the finish time is a fixed instant, so that

it is called as the fixed time interval smoothing or fixed interval smoothing.  The
second type of smoothing is called as fixed point smoothing and is denoted as

where is a fixed instant but t is continuously progressing, which means

to estimate the state vector x at the fixed time instant using all the measured data
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until present time t .  The third kind of smoothing is called as the fixed delay
smoothing, and is written as where is a reasonable small time

interval and is a fixed number of intervals. Which means that the measurement

data has been progressed to the time instant but the estimated state x is at

the instant The time progresses steadily, and the time difference is taken

always a constant so that it is called as fixed delay smoothing.

The fixed interval smoothing applies to the case that the in-situ recorded data is
brought back to the laboratory, then analyzes the state vector in the whole time
interval.

The fixed point smoothing is useful for identifying the state vector at a key
instant. Such as for satellite launching, the satellite free motion begins at a definite
time, which is critical. Using all the measured data before and after the free motion
to estimate the state at the beginning point of free motion, this is the fixed point
smoothing.

The fixed delay smoothing can be used for communication systems. After long
distance transmission, the dispatched signal reaches the receiver, there are a number
of disturbances along the way of transmission including the environmental
disturbances such as atmospheric noises etc. The received signal has been mixed
with these disturbances.  If the estimation bases only on the measurements until time

then the result is filtering. However, if a small time delay is
acceptable, where t is the current time, then the time delay improves the quality of
estimation.

Smoothing does not consider the causality relation, which is characterized by
that the measured data used for estimation involves before and after the estimation
instant The difference between smoothing and filtering is that the analysis

interval extends beyond the estimated time instant For filter analysis, the

estimated time is at the end of the analyzed interval, but for smoothing the estimated
time is within the analyzed time interval. Therefore, the interval mixed energy
method can also be applied to smoothing computation, which supplies the unified
approach to the three kinds of smoothing and also filtering. The method of interval
mixed energy is quite different to direct numerical integration, and can use the
precise integration method or the eigen-solution based analytical method to develop
a whole set of algorithms.

§6.6.1, Optimal smoothing of continuous-time linear system

The filtering of linear system described in last section pays attention to the state
estimation at the end point of time interval, which is determined from the causality
requirement. However, smoothing does not care about the causality that the
estimated point locates

within the time interval
see figure 6.8.  The causality
condition characterizes the
difference between smoothing
and filtering.
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The case of correlated dynamic noise and measurement noise is considered in
filtering problem in last section, for which there are only more derivations and
complicated equations. The solution methodology is fundamentally the same to the
case of uncorrelated dynamic and measurement noises. Hence, only the case of
uncorrelated dynamic and measurement Gaussian white noises w(t) and v(t) is
considered below for smoothing, i.e. assuming (6.5.42a~c) is valid. The
fundamental equations are

The initial condition is given as

where is a given vector and is a given initial variance matrix, symmetric and

non-negative definite, The vector is initially the

filtering of the vector at time but as time evolves more measurement data

y are available, to estimate the mean value of the vector at based on these

data implies the objection of causality. Therefore, the estimation of becomes

smoothing mean value which is different from  and is reflected on that the

vector is not zero. However, is only a mean vector, smoothing has also its

variance matrix The smoothing variance matrix is smaller than the filtering

variance matrix because there are more measured data for smoothing with
comparison to filtering.

Hence, smoothing estimation bases also on the measurement y to estimate

such that the index J functional is minimized, but the integration bound should be
extended to

Substituting equation (6.6.2) into the index functional gives

The above minimization is under the constraint of dynamic equation (6.6.1).
Introducing the Lagrange multiplier vector        derives the extended functional

The minimization of w is first performed, which derives then
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Substituting the above relation into derives the variational principle with two

kinds of variables

where the measurement y is given vector and does not vary. Expanding the

variational principle derives

The two equations are dual to each other. The initial condition has been given in
equation (6.6.3), which is also the natural boundary condition of the variational
principle (6.6.7). As the boundary condition at the natural boundary

condition derived from (6.6.7) is

The dual unknowns x, are still state and co-state vectors. Vector y is the

measured data, which is deterministic for a sample process, hence no variation. The
vectors v,w in the functional (6.6.4) are considered the Gaussian white noises, and
hence the dual vectors x, in (6.6.7) are also Gaussian distributed stochastic
processes. A Gaussian process can always be expressed as the sum of a smoothing
mean vector plus a zero mean stochastic vector process. However, smoothing
computation uses measurement y in whole time interval to estimate the state

vector of some past time instant, hence the mean value is certainly different to the
filter mean value. For example, is the initial condition of state vector mean value,

in filtering analysis, this vector will not be revised later, but smoothing computation
requires to revise its mean value based on the measured data in the later time interval

Hence, there is the smoothing mean value which makes use of

all the measurement y in to estimate The dual vector x, solved from

the variational principle (6.6.7) of i.e. the solution of the dual equations
(6.6.8a~b) and the respective boundary conditions is the smoothing mean vector.

Smoothing is not limited only on the revision of the mean value of state vector,
but also that the variance matrix of filtering should also be revised. Since there

is more measured data used in the estimation, the result is more reliable and the
variance of smoothing is smaller.

As mentioned above, the vectors x, are stochastic processes. Taking average
value to the equations (6.6.8a,b) derives x, to be deterministic vectors

When which means that the front of

smoothing is just filtering, and also           from (6.6.9).  The filtering is

always at the front and But internal to the interval, the smoothing co-

state is not a null vector, when

In this section, no complex conjugate is used, hence a bar above represents
smoothing value, which makes no confusion.
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§6.6.2, Interval mixed energy and differential equations for smoothing

The filtering vector is at the front t of the interval [0,t) , where time t evolves

steadily. The smoothing considered time instant is an internal point within the

interval that the measurement y has reached but the state vector

at is estimated. Smoothing estimated state vector is within the interval, which is

quite different to filtering for which the frontier state vector is to estimate.

Equation (6.5.69) introduced the interval mixed energy where

is a time interval, and the boundary conditions are given in (6.5.74). The

quadratic form of is given by (6.5.72), where the interval matrices

and vectors satisfy the differential

equations (6.5.80-82) and (6.5.83-87). The differential equation (6.5.80a) coincides
with the Riccati differential equation (6.5.50) but the boundary condition is different
to that in (6.5.50). The differential equations (6.5.81) and (6.5.49) are also similar,
but the initial condition is different and the matrix G in the differential equation is
again different to the matrix P in (6.5.49).

In filtering analysis, the precise integration of mixed energy matrices
of the fundamental interval is first carried out by the precise

integration method. Then the factor of initial condition matrix is considered by
the revision equation (6.5.90). For the filter equation (6.5.49), the same method can
also be applied. When the Hamilton matrix H does not appear Jordan normal form,
these computations can use the eigen-solution based analytical method.

In addition to filtering, the smoothing computation has the interval past

the estimated point for which the interval mixed energy method can still be

applied. In smoothing analysis, the fact that the two ends and of interval can

be arbitrarily selected is quite useful. Now the method of equation (6.5.89~90) is
further investigated. Let the variational principle (6.5.45’) be rewritten as

where is given in (6.5.70) and the last term represents the inhomogeneous

boundary condition at According to the definition of interval mixed energy

(6.5.69), the variational principle can be written as

The last term can be rewritten as

Substituting into the variational principle and note that the maximization can

been involved in the variational operation, so that

where the last two terms represents a virtual ‘interval’, i.e. at the end the mixed

energy is given as
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It corresponds to that the initial condition at the end is treated as a virtual

‘interval’

or given as Based on the associative rule of interval

combination the integration of matrix differential equation (6.5.80) for Q,G,F
can be first performed under the initial condition (6.5.74), then the mixed energy
(6.6.10) is treated as interval 1 and is treated as interval 2, executing the
interval combination algorithm (6.5.77a~c) gives

or written as

Subscript p means that the initial variance matrix being is considered.

To verify the differential equation satisfied by the matrix P(t) , since only the

matrices Q(t),G(t),F(t) depend on time t , they satisfy the differential equation

(6.5.80). Direct differentiating verifies

so that

and the initial condition is verified as

Based on the uniqueness theorem of ODE, the interval combination algorithm
(6.6.11a) computed matrix P(t) is the solution matrix of the filtering Riccati

equation (6.5.50). For

so that the differential equation and initial condition are
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For it gives

All of the above verification explains that the initial condition can be solved by the
transformation (6.6.11) after the interval mixed energy matrices

Q(t),G(t),F(t) with the initial condition (6.5.74) are computed. All these
derivation is very similar to that given in last section, i.e. a unified approach.

This method corresponds to the associative rule of interval combination
operation.

Similarly for vectors and the interval combination equation (6.5.78a,b)

derives

The differential equation for can be derived from (6.5.80~82) as

So

Similarly

The equations derived above explain that the combination of the initial
condition of ‘virtual’ interval and the interval gives the mixed energy matrices
and vectors [equations (6.6.11a~c) and (6.6.15a~b)]

which satisfy the differential equations (6.6.12~16).  These equations are similar to
(6.5.80~82) in turn. The combined interval is and the mixed energy is

From equation gives

The set of equations applies to arbitrary time t in the whole interval As
mentioned above, the filter solution implies that the time t is a free end of the

interval i.e. If an appropriate vector is selected,

then and it gives the smoothing solution, that is the difference of
smoothing to filtering.

Firstly, it is to point out that the filter vector is
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which is verified as follows. The initial condition at t = 0 is obtain based on the
(6.6.16a) and (6.6.13) that                Then differentiating gives

Comparing with equation (6.5.49) determines that is the filtering vector. Hence,
equation (6.6.19) can be rewritten as

where the vector is the revision of smoothing to the filtering  The vector

is not a null vector within the interval, only at the end point
where the smoothing solution reduces to be filtering. The dual differential equation

of the dual vectors can be obtained by combining (6.6.8) and (6.5.49)

At the end point the zero boundary conditions are for the mean value.

Substituting (6.6.21) into (6.6.23) gives the differential equation

For a deterministic measurement vector y , the vector  solved from the integration

of equation (6.6.24) gives the deterministic smoothing co-state mean value.
However, application needs to solve the state vector       directly.  Because of

equation (6.6.21)

where the over-bar represents smoothing mean value. Substituting into equation
(6.6.8a) gives

where is the filtering solution, which is regarded as a known function in

smoothing solution. The factor is the gain matrix of smoothing, where

P(t) is the variance matrix of filtering and is regarded also as a known function.

Note that the precise integration solution of      and P(t) has been described in

detail in section 6.5, so that only the solution of (6.6.25) is given in detail below.
Differential equation (6.6.25) is time variant. The integration for a general time

variant system is a problem. The usual FDM integration is not precise enough.
Using the method of back substitution equation (see section 5.9) of internal vectors
to solve the differential equation has a number of benefits. If the corresponding
Hamilton matrix H does not appear Jordan normal form in eigen-solutions, then the
analytical method can also apply. In the filtering and wave-guide problems, the
analytical method is quite effective in solving these problems.

Differential equation for smoothing variance matrix is given in next section.
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§6.6.3, Mean value and variance of smoothing

The dual differential equation of smoothing is derived in the last section, which
is useful for theoretical development, however, used in numerical integration
directly is inappropriate. Currently, the numerical solution of ODEs generally uses
FDM, which is error prone. Algorithm with interval combination solution is far
better, because such method in combination with the precise integration method
solves the differential equation up to the computer precision.

Interval combination equations have been derived in section 6.5.4.1. Let
and and the interval-1 being selected as then the

matrices and vectors in equation (6.6.17) are The interval-2 is

selected as and the boundary condition is with the matrices and

vectors denoted as According to the back substitution equation
(6.5.76a,b), it derives

then using equation (6.6.20)

where are the vectors of smoothing solution, and is the filter vector.

The vectors are dual to each other, so that they are of same importance,

but application inclines to the state vector The physical meaning of vector
corresponds to the internal force between the intervals-1 and 2 in structural
mechanics. Rewrite the equation (6.6.26’) as

from which and considering the structural mechanics interpretation, a flexibility
matrix is introduced as

which is the variance matrix of smoothing solution of state vector

Before verification, the physical interpretation is clarified first. Matrix P(t) is the

solution of Riccati differential equation of interval with the initial condition

see equation (6.5.50), interpreted in structural mechanics, the flexibility

matrix of the interval at the end t . Matrix  is from the mixed energy

matrix of the interval and as the natural boundary condition (6.5.74) is

satisfied. The physical interpretation of in structural mechanics is the

stiffness matrix of the interval at the left end t , and  is the corresponding

force vector of the interval Therefore, the physical interpretation of the

matrix in structural mechanics is clear, that it is the internal flexibility matrix of

the whole interval at the station t ,  which is interpreted in turn as follows.
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That the parenthesis in equation (6.6.28) gives the stiffness matrix, which is the sum

of the right end stiffness matrix of the interval i.e. the inverse of

flexibility matrix P , and the left end stiffness matrix  of interval Then

is the inverse of a stiffness matrix, a flexibility matrix internal to the whole

interval at t . Note that a flexibility matrix corresponds to the variance

matrix in least square analysis. The quadratic index is just a least square.
The differential equation of is derived as follows. Let

then

Substituted with and

(6.6.12), and the derivation is as follows

substituting the derivation continues as

The differential equation is thus derived as

which is the differential equation of The boundary condition is obtained as that

from (6.6.28), when so that

This explains that the boundary condition of differential equation (6.6.29) is at

where the smoothing variance equals to the filtering variance matrix for

which the algorithm has been given in the last section.
Therefore, the differential equation (6.6.29) and boundary condition (6.6.30) for

the matrix is derived. Based on the uniqueness theorem of ODE, the solution is

unique. Although, the derivation to reach the differential equation is different from
the traditional approach, but the resulted equations are the same. The present
derivation gives the equation (6.6.28) for which can be used for computation.

From (6.6.30), the integration is along the reverse direction from     back to t , and
the end condition gives symmetric positive definite matrix. Looking from the
differential equation (6.6.29) it is seen that must be symmetric at arbitrary time

According to equation (6.6.28) the matrix is necessary, which can be

computed by the precise integration method too. Matrix plays a key role for LQ
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optimal control and is also symmetric and positive definite, so that the computed

by (6.6.28) must be symmetric and positive definite, and holds the inequality

which explains that the smoothing variance matrix is smaller than
filtering, which coincides to the theoretical consideration.

Equation (6.6.28) means that it is unnecessary to integrate the differential
equation (6.6.29) in smoothing computation, but simply to use the filter matrix P
and the matrix then compute by equation (6.6.28). For time invariant system the

matrix can be computed by means of mixed energy matrices
of fundamental interval which is also obtained in computing matrix P . So
equation (6.6.28) proposes a different way for the computation of variance matrix by
means of the precise integration method.

Before continuing description, the new term of innovation should be clarified.
Certainly the state vectors and the output vector z of (6.5.6) generated from
them are of most concern. However, in the index of variational principle (6.5.44) or
the discrete-time version (6.5.12), the disturbance vector v is of concern.  For a
sample of measurement vector y , after the index is minimized and the vectors

(filtering) and (smoothing) are obtained, then the disturbance is found as

termed as “Innovation”. The dynamic and measurement noises are modeled by zero
mean and mutually independent white noises and expressed by the equations
(6.5.42a~c). The innovation vector is the unbiased estimation of v based on

the sampling y . For a given sample y , the innovation vector  is deterministic,

however, if treating the measurement y as assemble, then the innovation assemble

of is also a white noise stochastic process, whose mean value is a null vector and
the variance matrix is V , see (6.5.42b).

For w , there is also filtering estimation, but filter requires hence
The reason is clear that the filter uses no measurement later than the current time,
therefore giving zero mean value. For smoothing, the dual vector is estimated not
null, so that is also estimated correspondingly. For measurement noise, there is
also smoothing vector which is obtained from the smoothing estimation of
Having computed the smoothing and the smoothing estimation of noises
and is not so much demanded.

Using equation (6.6.28) computing smoothing variance matrix is easy,

which is independent on the sample y , but depends on the system model.  But the

vectors and computation depend on the measurement sampling vector y , and

is given implicitly via the vectors in the back substitution equations

(6.6.26’~27’). Vector is filter solution, and the equation for vector is given

in filter analysis equation (6.5.126b), (6.5.136b).
The precise integration algorithm given before is applicable for time-invariant

systems; the time-variant system computation should be further investigated, but the
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computation for time-invariant system is still a fundamental step, and is the main
topic investigated below.

§6.6.3.1, Precise integration for single time step

The three kinds of smoothing, i.e. fixed interval smoothing, fixed point
smoothing and fixed delay smoothing, have been described before. The
corresponding algorithms need to be developed based on the interval mixed energy
matrices and the back substitution equations. The interval mixed energy method is a
unified approach, which can be used according to the different requirements of three
smoothing algorithms.

Based on the above equations, the filtering computation must be performed
before the smoothing computation. Comparing to the filtering algorithm, the
smoothing needs further the algorithm of back substitution equations (6.6.26’) and
(6.6.27’). The filtering can disregard the used data of measurement vector, because
no back substitution is needed; but the smoothing must refer to the used data. Hence
the smoothing computation needs to store more data than filtering.

The smoothing variance matrix can be computed via equation (6.6.28),

which is obviously independent on the measurement y , hence it can be computed

and stored beforehand, which is useful in the back substitution. The matrices P and
are the prerequisite of equation (6.6.28) and are obtained before.

The vectors and depend on the measurement y . How to reduce the

computational expense is an important problem such as for fixed delay smoothing,
and will be discussed later.  Similar situation also appears for the control vector u .

Time integration needs uniform time steps, described as

with step size The situation is the same as filtering. The superposition principle

applies to the linear system analysis, so that for each time step the system mixed

energy matrices are all the same. The sole difference is the

different values of measurement vectors y .  Assuming the measurement value is

linear with respect to the time interval If precise integration has been executed

for constant basis and linearly distributed basis vectors then

according to the superposition principle any linearly distributed measurement can be
obtained from these basis vectors via the superposition principle. For control vector
u the computation is similar.  Situation is the same as in filter computation, see
sections 6.5.7. Following the same method and algorithm (6.5.155) the single step

mixed energy matrices constant basis matrices

and the linear basis matrices

can all be computed. These matrices are

independent on the measurement sample vector y and to the control input u , and

can be used for all the intervals of length. Any linear measurement y and control

u are analyzed in the time step, so that the integration with step length is easy.
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§6.6.4, Three kinds of smoothing algorithms

The interval mixed energy method proposes a unified approach to the fixed
interval, fixed point and fixed delay smoothing.

§6.6.4.1, Fixed interval smoothing

Let the given interval be discretized as

and are given, the computation of smoothing mean value and

the variance matrix are needed, for which the matrices of step
are considered computed as described in previous section.

According to equation (6.6.26~28), the matrices should be first

computed for all the stations thereafter the smoothing variance matrix is

computed and stored. The filtering vector is computed too. Because the
causality is of no concern for smoothing, hence the algorithm equation (6.6.26”) is
used. Remaining the term should be considered, which is induced from the

external force of interval for which the computation can still use the interval
combination equations (6.5.77~78).

Using the associative rule of the interval combination operation the
computation of can be executed along the reverse direction. Suppose the force

vectors have been obtained for the station and they can be

treated as the vectors and in the equation (6.5.78). The force vectors

of the single interval are regarded as and and can be computed by
the equation (6.5.141) analytically, or based on the precise integration (6.5.155)
computed matrices

In using equation (6.5.78), matrices are the computed

and are the interval matrices of

Thus, based on equations (6.5.77~78) the Q,F,G , and of the

interval are obtained, which forms the reverse direction recurrence. Then the

right-hand side terms in the equation (6.6.26’) are all obtained. Detail is neglected.
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§6.6.4.2, Fixed point smoothing

For fixed point smoothing, the interval combination of equations (6.5.77~78)
is still applied. The fixed instant means the interval-1, being fixed, and

the interval-2, where t is steadily increasing. The computation for interval-1,

generates first Q,F,G and of the open interval then the initial

condition at is accounted for by equations (6.6.11) and (6.6.15). The computation

of the inhomogeneous term of each unit interval is solved using (6.6.34). As the

successive computation for the open interval can use interval combination

recursively.
When the length is long enough, the respective matrix tends to be

a null matrix, and the matrices Q,G tend to their limit the smoothing

value and its variance matrix at converge to the limit too, and the iteration is

stopped. Detail is neglected.

§6.6.4.3, Fixed delay smoothing

Fixed delay (time lag) smoothing computation is very close to filtering, because
it often needs real time computation too. The mean value of such smoothing has no
fixed limit value. Computing can still use equations (6.5.77~78), i.e. the interval
combination The present time t steadily progresses, with the smoothing instant

progresses with the same speed to keep the interval-2 length unchanged,

and the interval-1 is whose length continuously increases. Although the

length of interval-2 does not change, but the inhomogeneous term induced

from the measurement and control vectors y ,u changes, because of time

progressing.
The computation for the

interval-1, uses still the

interval combination Each time
step increases a unit interval

then progress. As

interval-2, its mixed energy

matrices Q,F,G keep unchanged
but the inhomogeneous force terms

and changed, because a unit

interval is attached from the right but
a unit interval is detached from the left, respectively, figure 6.9. The equation for
the attachment of a unit interval           from the right has been given in equation

(6.5.78), but the equation for detaching a unit interval from the left is needed. The
order of execution can be first attaching from the right end then detaching from the
left end. Let the matrices be the interval matrices of and

denote the interval mixed energy matrices of unit length
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Let denote the interval matrices and vectors after combination
from the right unit interval. It gives

Next, detaching a unit interval from the left, for which the vectors and

are known, so that the vectors and need to be solved, for which the vector

can be solved first, then solving is easy via equation (6.5.78b). From

equation (6.5.78a) the vector is solved as

The computation for fixed time delay smoothing is not difficult either. The
smoothing variance matrix can be computed by equation (6.6.28). Detail is
neglected.

§6.7, Optimal control

The whole time interval is subdivided into the past time interval

of filtering and the future time interval        of control by the present time t , where

see figure 6.4. The past time interval has been the history, for which the
analysis can only be the state vector recognition, which means using filtering
analysis to obtain mean value      and variance matrix P(t) , or further the system
parameter identification. In section 6.5, the filter theory and computation has been
described in some detail.

The future time interval is controllable. The linear optimal control theory is
based on minimization of a quadratic index functional under the constraint of
dynamic equation, which is a criterion for optimization. Therefore the problem is
described with the linear dynamic equation and also with the quadratic functional
index, so that it is termed as Linear Quadratic (LQ) optimal control problem. The
LQ control analysis is for the future time interval hence no measurement at

all, but there is the output vector z(t) . The performance of state vector in the future
time interval is completely under the governing of dynamic equation but with no
measurement data to check with. The control vector is selected in the analysis

according to the state vector in interval
Although the filter problem in the past time interval and the LQ optimal control

in the future time interval are for two different time intervals. However, the analysis
for the two contiguous time intervals is the composition of the whole control
analysis, that the filter and LQ control are connected at the present time t . For LQ
control the initial condition is
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which means that the filtering mean-value of the state vector is treated as the initial
value of the LQ control, which is the state vector continuity for the connection of
two intervals. Based on LQ control analysis of future time interval, the control
vector is determined based on the initial condition (6.7.1). Especially, the

control vector u(t) at the present time is obtained. This u(t) is considered the

control vector of the whole time interval at the present time. Hence,

determining the LQ control theory and computation for the future time interval
is necessary. This model gives the characteristics of LQG (Linear

Quadratic Gaussian) optimal control theory, with the connection (6.7.1) of the two
intervals, and is termed the separation principle.

§6.7.1, Theory of LQ optimal control for the future time interval

Let the linear dynamic equation be given as

The initial condition has been given in equation (6.7.1) and output is the p -

dimensional vector

where the system matrices can be functions of time that the theory

applies to time-variant system. In computation, however, these matrices are usually
considered as time-invariant, so that the precise integration method or the analytical
method can be applied.

The control vector in dynamic equation can be selected arbitrarily. The

criterion of selection is the minimization of the quadratic functional index J
defined as the least square of

where is a given symmetric and non-negative definite matrix. Substituting the

expression (6.7.3) into J , and note that using appropriate linear transformation, the
output equation can be derived as

Therefore

which is a conditional minimization, the condition is the dynamic equation (6.7.2).
Introducing the Lagrange multiplier function (n -dimensional vector) derives

the variational principle

where is the extended index functional, and the variation has been free from

constraint with three kinds of independent variables x, u . Because there is no
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time derivative relating u in the integrand of functional so that the

minimization with respect to u can be performed first (the Pontriagin minimization
principle), which gives

Substituting back into the expression of gives

Certainly the initial condition (6.7.1) is to be satisfied. There are only two kinds of
variable dual to each other, i.e. x, in the variational functional, which has been
typical variational principle of a Hamilton system. Therefore the problem is
analogous to structural mechanics given in chapter 5. Especially, the dual
equations and boundary conditions derived from the variational principle (6.7.6)
give a two point boundary value problem.

where the filtered vector is considered given. This is a set of non-
homogeneous dual equations, where w is a non-homogeneous term, a zero-mean
white noise. In control theory however, the white noise w is not zero-mean,
which is the contrast between the two theories. Taking mathematical expectation
gives the homogeneous equation as

Before solving the dual equations (6.7.8’a,b), the analogy theory between
structural mechanics and optimal control is presented first. The variational principle
of the homogeneous dual equations (6.7.8’a,b) is

On the other hand, from structural mechanics side, the dual equations, the variational
principle and the Hamilton function are (5.2.10~12). Comparison shows that both
sides are the same problem mathematically. The term of corresponds to that in

the variational principle (5.2.12), (5.2.13) a term of deformation energy at

the is appended, the physical meaning of which is an elastic support at

The correspondence relationship of both sides can be seen as

Structural mechanics
Displacement, internal force q,p

Longitudinal coordinate z

Interval

Mixed energy H(q,p)

A,B,D

LQ optimal control
Dual vectors x,

time coordinate
time interval

Hamilton function
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Elastic support matrix

Compatibility equation (5.2. 10a)
Equilibrium equation (5.2. 10b)
Deformation energy, Action
function
Etc.

End index matrix

Dynamic equation (6.7. 8a’)
Dual equation (6.7.8b’)
Index J , (6.7.4)

The above comparison gives the analogy relationship between structural
mechanics and optimal control, which is useful for both sides.

The solution of the dual equations can use the form of boundary condition in
(6.7.8’b), let

Substituting into (6.7.8’a,b) and eliminating gives

Because is arbitrarily selected vector, so that

It is again a matrix Riccati differential equation for the finite time interval and

the boundary condition is given at where is a symmetric and non-negative

definite matrix, that the integration should be backward for time Because is

symmetric, the right hand side of (6.7.10) is also symmetric, so that is a

symmetric matrix. It can also be proved that if is controllable, and

is observable, then is a positive definite symmetric matrix. See section
6.7.2.2.

When is quite long and tends to infinity, the time invariant system has
the limit

This matrix satisfies the Algebraic Riccati Equation, (ARE)

Such situation is similar to the Riccati equation in Kalman-Bucy filter.
The importance of the solution matrix of Riccati equation is that substituting

equation (6.7.9) into (6.7.5) gives

This equation gives the feedback control vector, and from the equation (6.7.8a’)
derives

It is the differential equation for state mean-value. is called the gain matrix.
Equation (6.7.13) is a linear homogeneous time-variant differential equation,

so that its solution is proportional to the initial value The solution is a

mean-value. If the disturbance is w = 0 in the dynamic equation (6.7.2), then the
solution is only a mean-value. Mean-value is deterministic, hence the calculus is as
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usual, but if the stochastic disturbance is considered, the state vector is also a

stochastic process, then the mean square calculus is necessary. The control input is

where the gain matrix is still deterministic. Substituting into (6.7.2) gives

Therefore the differential equation for the mean-value state vector is its

homogeneous equation. Since is a white noise disturbance, then x(t) is a

stochastic process, of which the mean-value is deterministic. Although the
equation (6.7.13) is a set of time-variant differential equations, but it can be solved
by the precise integration method, see section 6.7.3.2. In case of robust control,

is not a zero-mean white noise, then the selection of becomes a critical
point.

In LQG applications, only the mean-value is used, hence the solutions of
Riccati differential equation (6.7.10) and the state mean value differential equation
(6.7.13), respectively, are the concentration. Before numerical solution, it is
important to consider the stability of the system.

§6.7.2, Stability analysis

According to the LQ optimal control theory, the differential equation (6.7.13)
for mean-value of state vector is derived above. The stability problem for the
differential equation follows. Differential equation (6.7.13) is a time-variant one, so
that the method of finding the eigenvalues to check their real parts all being negative
no longer applies. Using the second method of Lyapunov is a reasonable choice. A
positive definite Lyapunov function is necessary to select and to check that it always
decreases with time.

Stability is the characteristic of a linear system itself. Hence in stability
analysis the external force can be given as zero w = 0 . Then the governing
equations become a homogeneous set (6.7.8’a,b), which comes from (6.7.6) by
letting w = 0 . Numerically,      so that

where the equation (6.7.9) is used and is just the x . The index J is non-
negative, so that the matrix S is certainly symmetric and non-negative definite.

The statement of S(t) being symmetric and non-negative definite is not enough,

it requires to prove that if is controllable and is observable then

S(t) must be a symmetric and positive definite matrix. This statement will be

proved below.
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§6.7.2.1, Gram matrices of controllability and observability

When considering controllability the output is unrelated. Hence the assumption
is made and the homogeneous dual equations are reduced to be [Comparing

(6.4.29)]

The initial condition is where is an arbitrary vector. For a given time

instant t, is solved as

Therefore the state vector is computed as

where

For time-invariant system, depends only on the time

difference, which is just the controllability Gram matrix (6.1.38b). The positive
definiteness of this Gram matrix means that initiating from     to reach an arbitrary

state x(t) can always be realized with the control Because is

assumed positive definite, so that can be solved form the above equation. The
above derivation gives the equation (6.1.37b).

The derivation of observability is also required. Observability is the dual to
controllability. When considering observability, the control vector is unrelated,
hence let then

Here for distinction with controllability analysis, a subscript 2 is put on. First
solves

Then solve

where

For time-invariant system, depends only on time difference,
which is just the observability Gram matrix, see equation (6.1.38b). The positive
definiteness determines that is solved as
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But is not measurable, the measured value can only be From the
equation

solves

which explains that is solved by means of the measured i.e. observable.
The homogeneous equation (6.7.8’) corresponds to the variational principle

where H is given by (6.7.7). The equation set for controllability (6.7.15) and the set
for observability (6.7.17) correspond, respectively, to the Hamilton functions

Verify directly that the controllability and observability Gram matrices (n×n
matrices)

satisfy, respectively, the Lyapunov differential equations [cf. Equation (6.4.65)]

For the verification uses the identity giving

§6.7.2.2, Positive definiteness of the Riccati matrix

After the controllability and observability Gram matrices and are

derived, the positive definiteness of the matrix S(t) in LQ control and the matrix

P(t) in Kalman-Bucy filter can be proved under the condition of controllability
and observability of the system.

The matrix S(t) is examined first. Equation (6.7.14) gives the relation between

the matrix S(t) and the index functional J(t) . The integrand in index J(t) is

composed of two terms u and see equation (6.7.4). If the two terms cannot

identically be zero simultaneously, then S(t) is ensured a decreasing function, and

because is non-negative definite so that S(t) is positive definite. Assuming

i.e. it needs to verify that under this condition the output vector

may not be zero. Because u = 0, so the homogeneous dual equations are
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(6.7.17), which corresponds to the case of observability analysis. Then, according to
equation (6.7.18) it solves

Substituting back into the integration of J(t) gives

where the integration in the above equation gives the observability Gram matrix.
According to the observability condition of the system, it is positive definite. Hence
as x(t) is not identically zero, is always valid, i.e. S(t) is positive definite,

also is a decreasing function of time t . ##
Let be a null matrix, then S(t) is Q(t) , thus the matrix Q(t) is also

positive definite. ##
The Kalman-Bucy filter and LQ optimal control are dual problems to each

other. The positive definiteness of the matrix P(t) is proved below, the conditions

are the controllability of and the observability of For simplicity,

are written as B,C below.

Let us begin with the index function J(t) of equation (6.5.44). For the stability

analysis or for the computation of variance matrix P(t) , it is appropriate to assume

hence For convenience, the noise w can be

normalized to be unit intensity and the index function is given as

Introducing the Lagrange multiplier vector that the extended index has

the same numerical value with the index J(t) , so that

Using the dual equations gives

where the relation is used. Equation (6.7.20’) determines that the

index J(t) is non-negative and non-decreasing function of time t . However, the

further requirement is to prove that J(t) is a positive definite and increasing

function of time t , which determines that P(t) is positive definite.

If         is not zero, then J(t) has been ensured the above behavior. Assume

then the homogeneous dual equations become

From the latter equation solves as
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where is the initial disturbance. Substituting into the integration of equation
(6.7.20’) gives

where is the controllability Gram matrix and is ensured positive definite, and

then P(t) is positive definite. ##

Similarly, as described in section 6.5, G(t) is also a positive definite matrix.
The positive definiteness of the solution matrices of Riccati differential

equations explains the close relationship between the positive definiteness of index
with the controllability and observability. It is clarified as follows. Let us examine
the interval mixed energy and variational principle from structural mechanics side.
For interval there is the integration term U in the extended functional

where W = I, V = I are taken without loss of generality. The integrand is obviously
non-negative. Furthermore, the controllability states that if the state vector makes

then is still positive definite, and the observability states that if

then is positive definite also, so that is a positive
definite functional. The variation              derived dual equations are homogeneous

Solution of the dual equations needs the two point boundary value conditions, which
can be given as

The integration term depends on the states at the two ends, so that it can be

written as which is the action function in analytical dynamics. For

simplicity it can be written as In structural mechanics, is the

deformation energy of the interval            and “controllability and observability”
ensures the positive definiteness of the deformation energy. Therefore, it is
clarified that the controllability and observability can be interpreted as the positive
definiteness of the index for any time interval which

corresponds to the deformation energy in structural mechanics. The controllability
and observability conditions described in section 6.1 apply only to the time-invariant
system. For time-variant system the condition can be extended to the positive
definiteness of the index function for arbitrary time interval.

The definition of mixed energy is [Compare equation (6.5.69)]
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which is a homogeneous quadratic form and its general form is

Variational derivation for (6.7.24a) gives

hence

The quadratic form of can be derived from the mixed energy quadratic
form (6.7.24b)

The corresponding relation is given as [Compare equations (5.7.13), (5.7.26)]

The controllability and observability ensure the positive definiteness of the
potential energy quadratic form Certainly the matrix is positive

definite and so is G . Based on the identity

the matrix Q is also positive definite. This conclusion is valid for arbitrary interval
Except the positive definiteness mentioned above, from the interval

combination algorithm (6.5.77a,b), the matrices Q and G are the increasing
matrices of the interval length A further problem is the upper bound of

matrices Q and G .
The matrix G is considered first. The interval combination algorithm (6.5.77)

is given in the mixed energy representation. Correspondingly, there is the interval
combination algorithm (5.7.5) in potential energy representation, so that it is seen
that the inverse matrix of G is which is decreasing with the increasing of

Hence there is upper bound for the matrix G . For the matrix Q , because of (5.7.5),

the matrix decreases with the increasing of From equation (6.7.28b) it is

seen that Q is always less than hence Q has upper bound too.

The problem of the limit of matrix F as remains to be solved. From

the interval combination algorithm (6.5.77a,b) it is seen, that as tends very large

the matrices G and Q almost reach their limits, and if the matrix F does not tends
zero, then the matrices G and Q will further increase a finite value, a contradiction.
Hence it must be as

From structure mechanics side, the conclusion is that the controllability and
observability requires the positive definiteness of the potential energy, which
excludes the existence of rigid body motion. On the other hand, the positive
definiteness of flexibility matrix excludes the internal force with no deformation, i.e.
rigid body forces.
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§6.7.2.3, Stability analysis based on Lyapunov second method

The stability problem of the differential equation (6.7.13) for the mean value of
state vector of LQ control is analyzed first. The analysis is meaningful also for finite
duration problem. Because the differential equation (6.7.13) is time variant, the
method of checking the real part of all the eigenvalues no longer applies, so that the
Lyapunov’s second method is used for the stability analysis. The key step for the
Lyapunov second method is to find a positive definite Lyapunov function of the state
vector The index function J(t) is readily selected as the Lyapunov function

Its positive definiteness has been proved. Its time derivative is

which is easily seen from the definition of J(t). The positive definiteness of the

observable Gram matrix determines that the derivative decreases continuously until

where and the stability conclusion is drawn from the

Lyapunov theory. ##
The filtering problem derives the differential equation (6.5.49), for which the

stability needs verification too. Because the matrix P(t) appears in the coefficient,
it is time-invariant differential equation again. The stability analysis can also use the
Lyapunov second method. The stability analysis of linear differential equation can
assume the non-homogeneous term equals zero

where P(t) is the solution of equation (6.5.50). The two equations are derived from

the homogeneous dual equations of (6.5.47)

where is the initial mean vector, and is the initial variance. The vector is
the initial deviation, and the stability is induced from the arbitrary initial vector. The
solution of the homogeneous dual equations can use the substitution

transforming to the equations (6.7.29) and (6.5.50). The variational principle of the
dual equations is

Note that numerically Using the equation (6.7.30a) gives

The equation (6.7.30a) corresponds to the compatibility equation in structural
mechanics, so the above integration is potential energy. Integration by parts from
the extended index (6.7.32), and let the equation (6.7.30b) satisfied, using two end
boundary conditions gives the complementary energy as
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The above two formulations of are numerically equal. Adding the two

formulae together gives

where the vectors are all smoothing solution. From equation (6.7.32b) know

that is the upper bounded.

The natural boundary condition of filtering at the present time t is
From the definition of mixed energy gives

This mixed energy corresponds to the interval where the latter equal

sign uses the substitution The variation of should minimize J(t),

which gives the smoothing state estimation

From the above equation

Because when so that as So that the system

is asymptotically stable.
The stability can also be proved by the Lyapunov second method. Note

is a function of the two end displacement vectors, which means

having the upper bound hence the Lyapunov function can be selected as

The system asymptotic stability is proved based on the Lyapunov second theorem.
##

§6.7.3, Precise computation of LQ control

The fundamental behavior has been described in the last section, below is for
the precise computations. From the experience of filter computation and that in
chapter 5, the matrices of mixed energy quadratic form should be computed first.
For LQ control, only is required, where is a reasonable interval

length. Two methods can be used for the computation, namely:
a) Precise integration method

It does not need to solve all the eigen-solutions of the Hamilton matrix, but
some CPU expense is required for matrix computations.
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b) Analytical method bases on eigen-solutions
This method needs to solve all the eigen-solutions of the Hamilton matrix then

according to the equation (6.5.114a~d) in section 6.5.6 the matrices

and are obtained. The Hamilton matrix is asymmetric, Jordan normal form

may possibly appear, and in this case numerical instability emerges for the eigen-
solutions. The same problem appears also in exponential matrix computation.
Hence, when Jordan form does not appear, the analytical method is beneficial;
however, when the eigenvalues nearly appear duplicate roots, precise integration is
necessary. The numerical stable behavior of precise integration method is quite
attractive.

In the problem of system identification, the Hamilton matrix is due to change,
the eigen-solution expansion method is attractive.

After the step size is selected, the precise integration or eigen-solution

method can be used. So the matrices can be regarded computed as
given in chapter 5 or in section 6.5. The subsequent computations are
a) Solve the Riccati differential equation (6.7.10), and
b) Solve the mean state vector from equation (6.7.13).

§6.7.3.1, Precise solution of Riccati differential equation

In section 6.5.4 the interval mixed energy is described in detail. The boundary
condition of differential equation (6.7.10) is given at the end so that the

integration for t is along the reverse direction. The reverse differential equations
(6.5.83~85) of interval matrices with derive

Time-invariant system changes the PDE to be ODE but the integration is still along
reverse direction. Comparing (6.7.10) with (6.7.36a), the differential equation is the
same and but the boundary conditions are different. Hence is not

S(t) , the matrix         corresponds to zero end condition, i.e. corresponds to an

open interval The variational principle (6.7.6’) for homogeneous equations is

which is the mixed energy, and relates to the extended index

It is derived as

Comparing with equation (6.7.14) gives
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where Q,G,F are the mixed energy sub-matrices of interval This equation

explains that the end condition can be disregarded first. Reverse integrating the

interval mixed energy for t first, and then computing according to equation (6.7.38)
gives the solution matrix of Riccati equation.

A simple interpretation of equation (6.7.38) is that it can be regarded as the
result of interval combination. Comparing with equation (6.5.77a), that the matrices
Q,G,F of interval are treated as the interval-1, which is combined with a

fictitious interval-2 with the matrices therefore the matrix S(t) is just the

matrix at the left-hand side. The legitimacy of using this interval combination
algorithm is again based on the association rule of interval combination operation.

The precise solution of Riccati differential equation (6.7.10) is described until
here. Based on the description above, it is easy to do programming on the computer.
This algorithm is similar to the solution of the respective Riccati differential
equation of Kalman-Bucy filtering. Also, when the interval duration of integration
is long enough, the solution of the differential equation tends to be the solution
matrix of the corresponding algebraic Riccati equation.

The importance of the solution S(t) is that the feedback control vector u can

be determined according to equation (6.7.12). This equation requires the state vector,
so that the LQ control theory is based on the whole state feedback. However, the
whole state vector x(t) is not available at the current time t , so that x(t) is

substituted by the filtered vector computed from the past interval. Later in

section 6.7.4 such kind method of measurement feedback, which is called as the
separation principle, is introduced.

§6.7.3.2, Integration of state differential equation

Under LQ control theory, the state vector in the future time interval

should be solved from the differential equation (6,7.13), which is a time variant set
of ODE. A general time variant ODE is very difficult to find its analytical solution
or to solve by precise integration method, so that some approximation must be made
in finding the solution. However, the ODE (6.7.13) is derived from a time invariant
system, hence the precise integration method can still be used to solve the state
vector precisely.

In the above, the interval mixed energy is given in equation (6.7.37), where the
matrix F satisfies the differential equation (6.7.36a). Note that the time variant
term at the right hand side is but not that the different equation is

different. To amend this disagreement, the virtual concentrated interval at the end
time used as the interval-2 is combined with the interval mixed energy of the

interval which is used as the interval-1, it gives
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Now the differential equation satisfied by the matrix is to be determined.

Certainly the interval matrices of F,G,Q satisfy equation (6.7.36), where is

Using the inverse matrix differential derives

Therefore it derives that

Note that this differential equation is the same as (6.7.13), but is a

matrix. To transform to the vector and satisfying the initial condition, let

where is the argument Hence the vector as a function of

satisfies the equation (6.7.13), because the matrix satisfies (6.7.40’), and the

initial condition in (6.7.13) can also be fulfilled.
The equation is quite simple, but directly used in computation may still have

problem, which is because when both t, are large, the matrix and then the

matrix tend to be null matrices. And these matrices tend to be singular as

which causes ill-conditioning problem in numerical computation. To avoid
such problem, the strategy of stepwise progressing can be used. Because the matrix
S has been all computed at the grid time points, it needs to compute the state vector

at which needs the matrices and Regard the time

instant as the current end time and the matrix as the current

Using equation (6.7.39), the two matrices at time instants and are

computed as

Therefore from (6.7.41), the integration of interval                is given as

Hence the state vector precise integration needs also the computation of interval
mixed energy. The computational steps are given as

1)

2)

3)

Compute of single step, and the matrices S(t) at all grid

points.
Compute the matrices according to equation (6.7.42) at all the grid

points.
Integration of state vector ODE, which is only the matrix-vector multiplication
in (6.7.42).
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Therefore the integration of state differential equation is reduced to the interval
matrices computation and matrix-vector multiplication, which gives the precise
results approaching the full computer precision.

§6.7.4, Measurement feedback optimal control

In applications, the state vector is not available precisely, which can be
estimated by various means. Usually the LQG (Linear Quadratic Gaussian) theory is
applied to the measurement feedback control. Simply looking from the LQ control
theory, the control rule (6.7.12) uses the state vector x(t) to feedback, however the
state vector has not been measured precisely. Hence, at the present time instant t,
the state vector estimation of Kalman-Bucy filter is used in place of the state

vector x(t) to compute the feedback control vector u(t), in order to realize the

optimal control based on the measurement data. The computation of control vector
u(t) requires instantaneous response, which needs real time computation and is a
key step in LQG optimal control.

In figure 6.4, the whole time interval is subdivided as the combination

of the past time interval and the future time interval with the current
time instant be denoted as t . The state space control analysis requires solving the
control vector u = –Ky, where y denotes the measurement before the present time

instant t , and K denotes a causal operator, which uses the past measured data y to
compute the current control vector. In future time interval, the LQ control theory is
used so as to minimize the least square index functional. At the present time, the
connection of past and future intervals, the state vector uses the optimal filter state
vector in place of the state vector, which gives the equation

Note, both the computations of LQ control in the future time interval and the
Kalman-Bucy filtering in the past time interval, respectively, are carried out
separately. Their connection is, at the present time using the equation (6.7.12’) to
give the control law, where the substitution of         connects the past interval with
the future interval. Such analysis strategy is termed as the separation principle.

After the LQ control and the Kalman-Bucy filter problems are solved, using the
separation principle combining these two results gives the LQG control theory. The
previous sections have described the Kalman-Bucy filter computations in some
detail, and have also described the LQ control theory. Combining the results of both
the intervals with equation (6.7.12’) gives the computation of LQG control.
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§6.8, Robust control

The LQG (Linear Quadratic Gaussian) methodology of measurement feedback
optimal control is described in some detail, based on combining the Kalman-Bucy
filtering and LQ control state feedback theory using the separation principle. The
LQG theory is very nice and composes the main progresses of control theory in
twenty more years of 196* to 197*. However, the robustness of a control system is
a fundamental requirement.

The control system engineer must be assured that a design functions properly
before committing to implementation. Such assurance can be obtained by analyzing
control system stability and performance with respect to a range of plant models,
which is expected to encompass the actual plant. This type of analysis is termed
robustness analysis.

The analysis of robustness requires that the discrepancy between the
mathematical model of the plant and the actual plant be quantified. Since a perfect
mathematical model of the plant is not available, so that a set of mathematical
models is defined which includes the actual plant dynamics.

This model is specified with a nominal plant and a set of perturbations termed
admissible perturbations. The admissible perturbations are typically bounded,
where the bound is dependent on the uncertainty in the model, [132].

The full state-feedback LQ controllers and the Kalman-Bucy filters, considered
separately have impressive robust properties. But it is shown that this robustness
may be destroyed when combining the LQ control and Kalman-Bucy filter to
become a LQG controller. In general, there is no guarantee on the robustness of the
LQG optimal control, and the robustness of each design should be carefully verified.

The dynamic equation is fundamental for a linear system, where the n × n plant
matrix A is regarded completely given in the analysis. However, the mathematical
modeling is constructed based on a number of assumptions in order to yield a
manageably simple model. Hence a perfect mathematical model of the plant is not
available. In applications, the given plant matrix A should be considered having
some kinds of error A controller that functions adequately for all admissible

perturbations is termed robust. The real plant matrix can then be considered as

where A is a nominal plant matrix from the mathematical model and is the

possible deviation of the matrix, its value is not known and so is considered random.
The matrix is considered with zero-mean value and the deviation is not very

large, i.e. the norm being limited. Robust control is to analyze the system

stability and performance under the uncertainty of plant matrix and/or other

model uncertainties, which is very important for applications. The linear

optimal control theory is developed since 1981, and is still investigated intensively.
See [50,132-137].

There are a number of robust control analyses based on various theories,
however, only the state space based approach, the linear optimal control is
considered below. Similar methodology is used as in the LQG theory, that the finite
time interval of control problem is subdivided into the past interval and
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the future time interval         subdivided by the present time instant t . For the past

time interval the robust filtering analysis is needed, while in the future time

interval the robust state feedback optimal control is to be executed.

Afterwards, the results of the two time intervals require to be combined together at
the present time instant t , so that the feedback control vector u(t) is generated.
Although the problems of the two time intervals are different, but there exists still a
unified variational principle [94], that not only the equations of individual intervals
can be derived but also the connection condition at the present time t can be
generated form the unified variational principle.

A general linear plant description is given by the differential equations
Dynamic:

Output:

Measurement:

The solution of such form of general plant should first simplify the plant by the LFT
(Linear Fractional Transformation), that the existence of the terms and
complicates the calculations and formulas, distracting attention from the central
ideas. The LFTs carry the simplified system fundamental equations being of the
form

Where x denotes the state, y the measurement, z the output, u the control, and

w the input disturbance white noise vectors, with dimensions n,q,p,m,l ,

respectively, where and the conditions

are satisfied, see [50,132~135],

otherwise

The form of plant equations (6.8.2~5)
can be called as the norminal model.
Therefore all the subsequent robust
analysis of linear optimal control

will be based on such norminal
model.

In LQG theory, the input
disturbance vector w is considered
as a given zero-mean white noise and
the variance matrix W is given.
Such model of external disturbance
assumes that the disturbance is
neutral, i.e. it cannot consider that
the white noise w may be selected
to maximize the system deviation.
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However, the robust control needs to consider all possible variations of the plant
matrix so that the most unfavorable variation of must be selected. If takes

the effect of the term into consideration, the dynamic equation will become

where is somewhat arbitrary except with limited norm Let the term

be combined into which is represented by the parenthesis in the above
equation. Figure 6.10(a) gives the system block diagram of equations (6.8.2~5),
which is represented with the block P , and K is a causal operator for computing
the control vector u . In figure 6.10(b), the factor of has been merged into the

disturbance noise w . Because of the merge of this uncertain term, the neutral

characteristic of the random input disturbance w is changed. The external
disturbance w is thought of neutral originally in the LQG control theory. However,
since the term is merged in for robust control, which is only an uncertain but

time-invariant factor, so that the disturbance w is not a zero-mean neutral vector but
should be biased to deteriorate the system performance. The model deviation

should take robust behavior into consideration that the most unfavorable selection to
the system response must be considered. Because of the norm is limited,

which means that the norm of w is also limited.
The disturbance w and the control u have their completely contrast

characteristics. The selection of the control vector u is the right of the system
designer, for whom the selection criterion is to minimize the index of system
performance. On the other hand, the disturbance w is out of control of the designer
that the robust consideration needs to maximize the index of the system, which
means that the system performance should consider any unfavorable possibility.
The selection of w is no longer a zero-mean white noise for robust control, but

a white noise with non-zero mean, a covariance stationary stochastic process, that
the non-zero mean biases to maximize the index. Note that the mean value of a
stochastic process is deterministic. The distinction of the LQG control versus the
robust control is just laid on that w is considered a zero mean white noise for

LQG control, but is considered non-zero mean white noise for control.

In control, such completely contrast characteristics of the control u and the

disturbance w are quite typical in game theory. The present situation corresponds
to the case of zero-sum game between two-players. ‘Zero-sum’ means that the
payoff function J(u,w) to the player-A implies the payoff function –J(u,w) to the

player-B, see [138]. The connection between the game theory and robust control can
be found in [50,136].

The above discussion is only interpretation and reasoning. Mathematical theory
is necessary for deeper understanding and serious description. The analysis will be
given for the future time interval, for the past time interval, and for their
connection at the present time instant t , one after another. The mathematical
analysis for two individual time intervals, the control and filter, and further

connecting the two intervals at the present time instant t , to form the
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measurement feedback control of the complete time interval will all be

given in the following variational formulation

The norm of the disturbance w has been clarified, but for the initial value problem
of filtering there is the contribution from the disturbance of initial condition. The
norm of the system response should also be clarified. Since the system
response depends both on the intervals of control and on filtering, and for these two
intervals the norm will be clarified at the problem description. Obviously, the
system response depends on both the optimal selection of the control vector u for
future time interval, and on the causal operator K of filter for past time interval.
After all, the system response is represented by the output vector z , hence

can also be written as to explain the factor of input-output.

The variational expression (6.8.6) is homogeneous for the disturbance w both
at the denominator and numerator. Such expression corresponds to that in the figure
6.10(b) the external disturbance is zero, which means that the disturbance w is

caused by Hence the critical norm calculated according to equation (6.8.6)

is practically an upper bound. This upper bound means that the system is only

excited by the disturbance w , which is solely due to the possible with no any

other external disturbance As the parameter exceeds this upper bound
the system will not be unstable due to the excitation of disturbance w . In other

words, in case of the system can withstand the external disturbance

which implies that the system is stable. On the contrary, if the parameter does

not exceed this upper bound, then the system will generate non-zero solution even
there is no external excitation which means that the system is unstable. This

upper bound of means the upper bound of unstable. Otherwise, it can be

said that is the lower bound of stability. Finding this bound is a key step of

analysis that, as the system is stable.
Let us begin with the robust control analysis for future time interval.

§6.8.1, Analysis of         state feedback robust control [92]

State feedback means that the measurement equation (6.8.4) is not required in
the analysis. The feedback control can only be used to the future time interval

The system input is w and system output is given by z . The selection of control u
should make the output vector z minimized. The output z is measured by the
norm

where the closed interval end is used at the end which is represented by the latter
term in the above equation and is seen in section 6.7.
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The output z is excited by the disturbance w . The norm of w is

as given in equation (6.8.6). According to the idea of robust control as discussed
above, the excitation w should consider the most unfavorable selection, that the
norm of output must be maximized, so that

which completes the formulation of mathematical model. The parameter is

called as Induced norm of the state feedback system The induced norm is
extended from the norms and of the quadratic integrable functional space.

This sort of norm induced by the 2-norm in space gives the norm in control

theory, which stands for the Hardy-space in functional analysis. Describing in the
frequency domain, the system transfer function G(s) is analytic in the open-right-

half plane, which means that the system is stable, see [50].
The extreme condition of the induced norm in equation (6.8.8) is a variational

problem. Because the dynamic equation and the output equation need to be
satisfied beforehand, hence the variational principle is conditional. The equation
(6.8.8) is rewritten as

The constraint conditions are equation (6.8.2) and (6.8.3) and the initial condition

Substituting (6.8.3) into (6.8.8’) and introducing the Lagrange parameter vector for
the equation (6.8.2) gives

is a functional of extended index, inside which there are four kinds of

independent variables. Performing the maximization with respect to w and
minimization with respect to the control vector u gives

where the dual vectors x and are the two kinds of independent variables and

is the parameter to be determined.
Performing the variational operation of the stationary value for       gives
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The natural boundary condition derived at the end is

The solution of the dual equation (6.8.11a,b) uses the usual method, introducing

then the dual differential equations are derived to the matrix Riccati differential
equation and the state differential equation with boundary conditions

The equation (6.8.14) can compare with (6.7.10), and the equation (6.8.15) can

compare with (6.7.13). The terms with are additional, which is the

characteristic of robust control. The computation of is very important. In

figure 6.10(b) let the term becomes all from the uncertainty of
i.e. the self-disturbance induced from the deviation of the plant matrix A . The
problem becomes the stability analysis under self-excitation. The pre-conditions of

analysis are that is observable and is controllable. When

the problem reduces to be LQ control, which means the factor of disturbance

disappeared, that no model error certainly reduces to the LQ control. On the other

hand, larger means the effect of increased, but cannot indefinitely

increase that as increases to its critical value the Riccati differential

equation (6.8.14) will not exist solution in the interval which means that the

system becomes unstable. So that the computation of       is necessary, and the
precise integration method is quite useful still in this case.

The application of precise integration for the solution of Riccati differential
equation has been given in section 6.5 in detail. However, there is further the

parameter to be selected in robust control. Thus in the case of LQ control,

under the condition of the solution of Riccati needs only once, but in the

case control, the solution of the Riccati differential equation requires to be

carried out for various values of parameter iteratively.
Based on the analogy relationship between structural mechanics and optimal

control, the statement of the induced norm (6.8.8) corresponds to the eigenvalue in
structural mechanics, i.e. the Euler’s structural stability force or the fundamental
frequency of structural vibration [92], is shown first below. Then the behavior of the

critical parameter is made clearer. Based on this understanding, the precise
integration computation is proposed for the optimal identification of the critical

parameter of robust control. Extended W-W algorithm [41] in eigenvalue
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computation in structural mechanics can be invoked in combination with the precise
integration of the matrix Riccati differential equation to give the precise computation

of Note that the Euler stability is for the finite interval that this kind of
stability is no longer the asymptotic stability as usually described in system stability

theory. Note, in structural engineering, the Euler stability critical value is

inappropriate for practical problems, which is a common understanding.

Similarly, the critical parameter can only supply a bound for control
system design. In applications, only the sub-optimal parameter

is used in system design. For sub-optimal parameter, the equations (6.8.14) and
(6.8.15) still need to be solved, and the precise integration method can also be used
for this two differential equations. For the case of Jordan normal form does not
appear, the analytical method is applicable too, otherwise the precise integration
method can be used.

The bound (6.8.16) of parameter is extremely important, and the bound

is just the Rayleigh quotient [92,93], and is the main concern in the text below.

§6.8.1.1, Extended Rayleigh quotient

The variational principle (6.8.10) can be rewritten in the form

where

This problem is not necessarily always solvable. When the initial condition is given

as for an arbitrarily selected parameter it has only the trivial

solution Only when the parameter holds a special value the

variational problem (6.8.17) has non-trivial solution. In such case the variational
equation (6.8.17) can also be written as

This is a Rayleigh quotient. The traditional Rayleigh quotient is for one kind of
variable, but the variational principle (6.8.19) has two kinds of independent variables
x and hence it is an extended Rayleigh quotient [41].

From equation (6.8.18b), the functional is non-negative and it must be

positive at the real solution. Then examining the functional because is

independent on x, hence in the maximization with respect to the vector x can

be performed first, it derives to
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where both the initial condition x(t) = 0 and the natural boundary condition at the

finish time (6.8.12) as well as the differential equation (6.8.11b) are satisfied. The
above equation also verifies the positive definiteness of

Further, if the matrix is positive definite, then from (6.8.11 b) derives

Substituting back into the integral expression of gives

where is also substituted with the condition (6.8.12). Therefore the extended
Rayleigh quotient variational principle (6.8.19) becomes with one kind of variables

This form of variational principle is typically the usual Rayleigh quotient.

However, for a general control system the matrix is q × n dimensional and

cannot ensure positive definiteness, hence the extended Rayleigh quotient functional
(6.8.19) is necessary. The conditions of being controllable and

being observable ensure that the extended Rayleigh quotient is positive definite.
Rayleigh quotient is fundamental to structural stability and vibration, that it

represents the Euler critical load or natural vibration frequency. The important
statement is that the controllability and observability ensure that the analogy
corresponding strain energy is positive definite in structural mechanics. Therefore
the eigenvalue must be positive. Theory of control required parameter is

the smallest eigenvalue, that only the satisfying (6.8.16) is applicable for the

control system. This situation is just the same to the Euler load of structural

stability, that the structure can withstand only the external load P less than
The analogy of both sides is beneficial for understanding.

One problem should be pointed out here for the future time interval, the running
time varies from the initial time t to but the initial time t is also running

the initial time should use

For the eigenvalue the dual differential equations (6.8.11a~b) with

boundary conditions (6.8.12) and exist a nontrivial solution. This is a

typical feature of Rayleigh quotient eigen-solution. For a given parameter if

then for arbitrary initial time t in the interval the solution of

and the lowest minimum eigenvalue appears at Therefore, in computing

from to The eigenvalue is thus a function of the interval length
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Riccati equation (6.8.14) exists, but as then the solution matrix

tends to be singular but its element value tends to infinity at the end. When

then the solution does not exist for the whole interval However,

as the initial instant t is close to the solution of Riccati equation must exist.

Then the idea of conjugate point [50] is mentioned here, as there is a

conjugate time such that solution matrix of the Riccati equation tends

to be singular at the end.

The conjugate point applies only to the fundamental eigenvalue of the Rayleigh
quotient, because it uses the solution of Riccati differential equation. For a Rayleigh
quotient, there are a number of eigen-solutions, which is quite useful for perturbation
analysis or for sub-structural modal synthesis etc. Thus conjugate point analysis is

not enough for finding all the eigen-solutions for a given parameter The

interval mixed energy and eigenvalue count method can be used to solve such
problem.

§6.8.1.2, Interval mixed energy

The interval of the variational principle of control is For the sake of

solving the Riccati differential equation by means of precise integration method, the
interval mixed energy is introduced. For two time instants and for which

the time interval is composed. If the state vector

is given at and the dual vector is given at then the vectors

in the time interval are completely determined. The interval mixed
energy is defined as

with

Obviously, the mixed energy is a quadratic form of and and the

general form is

where and are n×n matrices, and

Two contiguous time intervals can be combined to form a longer time interval,
see figure 6.5. The combination equations have been given in (6.5.77)

These equations can be used recursively. The matrices Q ,G ,F represent only the
characteristics of the interval at the two ends, however the internal characteristic of
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the interval has not been determined. The internal eigenvalue count is to be

supplied now, according to structural mechanics the eigenvalue count is necessary
which can be supplied by means of the W-W algorithm, see chapter 2. However, the
original W-W algorithm was derived for the case of given displacement boundary
condition at the two ends, which corresponds to the variational principle with one
kind of variables. Note that the original form of Rayleigh quotient is also for one
kind of variables.

However, mixed energy is for the variational functional of dual vectors at the
two ends, hence the extended W-W algorithm applies. These problems have been
described in chapter 2. For present case, the vector should be regarded as the

‘displacement’ and the vector is regarded as the ‘internal force’, the dual vectors.
This analogy is the reverse direction of extended W-W algorithm presented in
chapter 2. Reverse direction means that the left end is given the internal force and
the right end of the interval is given the displacement. The problem is proposed as

that for given parameter the inner eigenvalue count of the

interval with the two end vectors being given as and is

denoted as i.e. the number of eigenvalues of The count is

certainly a function of and but for convenience it is not written as

Let denote the eigenvalue count of interval-1 under the condition

similarly for and see figure 6.11. The eigenvalue

count equation for interval combination is given as

where represents that the number of negative entries in the diagonal matrix D ,

which comes from the triangle factorization of the symmetric matrix
M .

Therefore, the interval mixed energy representation for eigenvalue problem
should be extended as that there are three matrices and an eigenvalue

count, all of them are the functions of the two end-time instants and the

parameter The LQ optimal control or Kalman-Bucy filter problems

correspond to the selection of so that the count is definitely zero

and is not mentioned in the mixed energy representation for LQ control or Kalman-
Bucy filter. In control theory, the eigenvalue count is a key parameter, so that it
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must be involved in the mixed energy representation. However, the interval mixed

energy matrices are still written as etc. that the parameter usually does
not express explicitly.

The above derivation applies also to time variant system. In the numerical
computation for time invariant systems, the mixed energy representation

depends only on the interval length so that they can be written as

They satisfy the differential equations below.

where the matrices are written as A,C etc. The dependence of matrices
Q,G,F on the original system matrices can be seen from the above

equations. The initial conditions of these differential equations are

The derivation of these differential equations is almost the same as those in section
6.5. If select the differential equation (6.8.30a) is the same as the Riccati

differential equation (6.8.14), since But the boundary condition
(6.8.31) is different to that given in equation (6.8,14). Similar to the method in
section 6.5, the matrices Q,G,F and the eigenvalue count for the grid points of

the open time interval can be computed first, then compute all the grid points

t in the whole interval by executing

which gives the solution matrix of Riccati differential equation.
But these computed grid points are discrete, solely based on the matrices S of

these discrete points are not enough to make sure that if there has been no any
conjugate point within the whole interval It cannot make sure the number of
eigenvalues of the Rayleigh quotient (6.8.19). To find the number of eigenvalues,
one can compute the quadruple for the open time interval first,

then compute the eigenvalue count of the whole time interval by the equation

If then is a sub-optimal parameter, i.e. within the whole time interval

there has no singular point. Based on this criterion, a searching method, such

as the bisection method, for the parameter is proposed, so as to solve the

eigenvalue to arbitrary assigned precision. Such method is the same to the
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application of the W-W algorithm in the elastic stability or natural vibration
problems in structural mechanics.

§6.8.1.3, Precise integration

control. For a given parameter the solution of the non-linear Riccati

differential equation (6.8.14) is solved first, then to solve the state differential
equation (6.8.15). Numerical integration needs a given time step which should

be a reasonable step size. When is selected, the very small time step size is

selected again (we have seen a number of times) as

For such a small time step using the Taylor series expansion gives very precise
numerical result.

The precise integration method uses the time interval mixed energy
combination in the integration algorithm. First, an interval mixed energy of an
initial interval is necessary. The set (6.8.30) gives the differential equation with
initial condition (6.8.31). Because size is very small, so the power series

expansion is applied and truncated after which gives

These series expansions have satisfied the initial condition (6.8.31). Substituting
into the differential equations (6.8.30) and comparing the coefficients of various

where are all n×n matrices, and

The matrices computed from equations (6.8.35) and (6.8.36)

correspond to because is extremely small. The mixed energy
expression has been obtained for the interval and it can be used as the initial

interval for the combination algorithm.
The equations derived before are all exact, except the Taylor expansion (6.8.35)

truncated after the term, for which the ratio of the error term to the first term is of

The integration of the governing equation of control is similar to that in LQ

powers of derives

The computation of these equations can be executed successively with no iteration,
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the order of Because of the relative error has been

beyond the double precision of real number of So this approximation has
really reached the double precision of computer real word.

Having determined the mixed energy of initial time interval the interval
combination algorithm (6.5.77) and (6.8.28) for two equal length intervals should be
executed N times so as to obtain the mixed energy representation of

the time interval Special attention is needed that in the combination algorithm

(6.8.27), the addition in (6.8.35a) should not be executed. Because is very
small, so is that the addition will be seriously decreasing the computational
precision. To free from such problem the equations

are used instead of the three equations in (6.5.77). Note that the equations
(6.8.37a~c) are used for equal length small intervals.

Up to here, the equations for the precise integration have been available. In LQ
control theory, the solution matrix of Riccati differential equation is always positive
definite. For finite time interval after the execution of equations (6.8.32~33),

the condition means that is a sub-optimal parameter. For infinite time

interval problem, if the appearing of condition means that the parameter

is too large and is not sub-optimal.

If is selected, the problem reduces to be LQ control. For a controllable

and observable system the matrices Q,G must be positive definite, hence

monitoring the count is unnecessary. But when the matrix G may be

indefinite, hence monitoring the count is necessary until the last step of (6.8.33).

Since the matrix G may still be indefinite, for which The

algorithm is given below.

§6.8.1.4, Algorithm

The algorithm for optimal parameter is the bisection iterative solution for

the given parameter The iteration algorithm is proposed as follows. The first

part is precise integration algorithm for the fundamental interval

[Give the dimension n, the matrices and at boundary, the time

interval selecting a parameter

[Computing and selecting step size Let N = 20 and

]
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[According to (6.8.35) and (6.8.36) compute and

for (iter = 0; iter < N; iter + +) {

[Triangular factorize G and is obtained from (6.8.33);]

[According to (6.8.37) computes

[Let and

}
[Let ]

Comment: has been of the interval (6.8.38)

Continued, two cases of infinite time interval and finite time interval are
considered separately. For infinite time interval, the algorithm is

[Select an initial parameter ]

while (the precision of is not enough) {

while {

[ Let ]

[From (6.5.77) compute and from (6.8.28) compute ]

if { is too large; Break;}

}

[Change the revision size of which gives the precision]
} (6.8.39)

For case of finite time interval, let the grid be

Assuming where is a given number such as 4 or 5, then after (6.8.38)

executes

[Select an initial parameter ]

while (the precision of is not enough ) {

[Let ]

[Based on (6.5.77) compute and from (6.8.28) compute ]

}
[Let execute (6.8.32), (6.8.33);]

if [ is sub-optimal, increase ] else [reduce ]

[Change the size of revision of which gives the precision]
} (6.8.40)

if [ is sub-optimal, increase ] else [reduce ]

for (iter = 0; iter + +) {
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Such as using the iteration method of bisection for until enough precision is
reached. That is the upper and lower bound iteration method for the least eigenvalue
of the Rayleigh quotient.

To show the effectiveness of the algorithm, two numerical examples are given
below. The lower bound of the least eigenvalue will be selected as the sub-optimal
parameter. In the algorithm, very close upper and lower bounds are given for the

least eigenvalue up to six significant digits. The eigenvalue is called the

optimal parameter of control, and it is often written as Correspondingly,

the solution matrix of Riccati differential equation has the characteristic of tending
to be singular at the end point with very large value. Such ill-conditioned solution
matrix with its element increased indefinitely is unrealistic to generate the gain
matrix and the control vector. The theory emphasizes the robustness of system,

the control optimality has concentrated only on the eigenvalue and the
computation corresponds to the direct problem in structural mechanics.

From system design consideration, the output related matrices

and the input related matrices etc. all have parameters to be selected, which
correspond to the problems of system synthesis and optimization. This
consideration corresponds to the problem of structural optimization in structural
mechanics.

It should be emphasized that the Euler stability critical value is only a bound,
which cannot be used in practice. When facing the stability problem in structural
engineering, the allowable loading factor must be reduced from the critical value
with a large factor.

Example 6.12: A one-dimensional problem is proposed in order to compare with the
analytical solution.

Let n = 1, A = 0.8; C = 0.8; and the time

interval is given as The optimal parameter and the
corresponding solution of the Riccati differential equation are required.
Solution: Substituting the original data into the Riccati differential equation gives

where X(t) is a scalar function, for which the analytical solution is easy to find.
Using precise integration method in combination with the extended W-W

algorithm and using the bisection method searching the optimal parameter after

20 times iterations gives
Lower bound=19.198742; Upper bound=19.198751;

From which, the lower bound parameter is used as the optimal parameter, which

gives For this the numerical values of the analytical solution

and the precise integration solution of the Riccati differential equation are listed in
the following table 6.3.
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It is found in the table, that the numerical results of analytical and precise integration
solutions are the same. Only the last significant digit, the eight-th, may have
difference of 1, which can be interpreted coming from rounding error. The left end
of the interval, 0.0 is a singular point, only at this point the numerical results of
precise integration and analytical solutions have some difference. However, the
solution matrix should tend to infinity at the singular point, but because the

parameter is selected less than the exact value an extremely small value, so that

the solution becomes a very large value, but this value itself is again imprecise. ##

Example 6.13: Selecting n=4 with the matrices

The solutions of infinite interval and finite interval are required.
Solution:
a) For infinite time interval, using the precise integration method in combination

of the extended W-W algorithm and bisection searching the optimal parameter
gives

Lower bound=2.17081; Upper bound=2.17082

b) For finite time interval and The

bounds of are

Lower bound=60.54692; Upper bound=60. 54697;

The lower bound is used as and the corresponding solution matrix of

Riccati equation will not be listed here to save space. As anticipated, the solution
matrix S(0) at the end point is almost singular with very large numerical value

elements. ##

The lower bound is used as correspondingly the solution matrix as
anticipated, is almost a singular matrix with very large elements.
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control system. As in LQG, the robust control theory is composed of both the

measurement is again under measuring noise. Hence the filtering computation

is one of the central part of the robust control theory. The control is for the

future time interval, and the filtering is for the analysis of past time interval. The
two parts can be solved separately, and such kind of treatment is termed as the
separation theory. The future and past intervals link together at the present time

gives the boundary condition for the past interval state estimation. So the
filtering analysis is necessary.

Filter analysis is necessary for control analysis, but the application of filtering is
not only for control. Hence robust filter itself is also important. The state space
description of filter problem is

which applies to the past time interval [0,t). The vector w is a Gaussian stochastic

The vector u is the control of past interval, and is only a given vector in filter
analysis m -dimensioned. Because of the noise input, the state vector is also a

Gaussian stochastic process n -dimensioned non-stationary vector with the initial
vector x(0) being of mean value and variance matrix is a q -

dimensional measurement vector, and z is a p -dimensional output vector to be

used for estimation. The matrices have appropriate

dimensions and are given matrices. The vectors are uncorrelated to each

other. is controllable and is observable. The linking condition at

the present time can be derived from the variational principle of control as

a natural boundary condition.
The filtering problem requires to find the linear causal operator F so that

the estimation of the output vector

§6.8.2, filtering

The optimal filtering for the state vector is a necessary part of an optimal

filtering and the state feedback control. The two theories are mutually dual
problems. The control theory needs state feedback, which assumes that the whole
state vector is measured precisely so that the state estimation is unnecessary, but it is
almost impossible. Therefore usually the measurement feedback requires the filter
to supply the state estimation, as that in LQG theory. In fact, the performance of a
real system is always under some kind of dynamic random disturbance and the

white noise input, l -dimensioned, but for filter the disturbance w is no longer

a zero-mean vector, which involves both the dynamic and measurement noises with

instant t , and the linking condition gives the feedback-control rule and also
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makes the norm of the error satisfying the following condition

where is a given parameter. Obviously, this condition will be fulfilled for a large

parameter but it must have a lower bound whose reciprocal will be
shown an eigenvalue of a Rayleigh quotient [93].

For infinite horizon the present time t may also tend to infinity, in

problem.
The robust filter needs to consider the possible error of the plant matrix A of

the dynamic equation. The uncertainty of the plant matrix A brings the error term
where the matrix should consider the most unfavorable possibility. The

error term is treated as the disturbance input w of the dynamic equation. The
fundamental consideration of the Kalman-Bucy filter is to select the state vector

so as to minimize the norm of the zero-mean white noise w , i.e.

thereafter to compute the output vector with equation (6.8.3). Because of w
engaged the term in theory, and the fundamental statement of robust filter

must consider the most unfavorable system uncertainty The former statement
of simply minimizing the norm of the white noise w is no longer appropriate. That
the Kalman filter treats the white noise w only as neutral, that the most unfavorable
characteristic of w to the output has not been taken into account. For robust
control, the selection of the disturbance w is not zero-mean and need to maximize

The above equation shows the saddle point characteristic of the critical value
which corresponds again to the situation of two players zero-sum game theory.
Note the estimation itself has included the factor of the selection of operator F .
Note also that the parameter here corresponds to the filter, which having the

same sign but is different to the of state feedback control.
The norm of the unfavorable disturbance is thus expressed as

such case the proposition becomes the     filter for the infinite horizon (interval)

the induced norm of the filtering. Rewriting the equation (6.8.43) as

The left-hand side can be interpreted as to maximize as much output deviation
energy per unit disturbance energy of w . Certainly w satisfies equation (6.8.41),
and is still white noise.

The equation (6.8.44) has considered the unfavorable selection of w . On the
contrary, the selection of the linear and causal operator F in equation (6.8.42) must
minimize the estimation error. Therefore the equation (6.8.44) should further be
rewritten as
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In taking maxi-minimization, the vectors x ,w ,u ,z ,y should satisfy the equations
(6.8.2~4). The equation (6.8.45) expresses two folds of considerations, the first is to

find the lower bound of the allowable (sub-optimal) parameter and the

second is to find the filter output under the given sub-optimal parameter
which needs finding the filtered state and the variance matrix P(t).

The filtered vector and the variance matrix P(t) are given at the present time.

If the vector and the variance matrix for are required, then these
results are the smoothing quantities.

Comparing with the Euler stability critical loading in structural engineering is
meaningful. Firstly, the computation of the critical axial loading factor is
necessary. But this factor cannot be used directly in engineering practice, that

when the loading factor approaches only a small external disturbance will induce
a very large deformation for the structure. Because of which, the second problem is
to determine an appropriate critical loading factor

The above two folds are different problems, but the equations are of the same
sort. The eigenvalue problem corresponds to the axial load with no external force in
structural mechanics. For filter, the governing equation for eigenvalue problem
is homogeneous with no regard to the inhomogeneous measurement value, and the
unknown value is eigenvalue The filtering problem considers the measurement
value which corresponds to the external force in structural analysts with the

parameter given. The selection of the parameter must satisfy the condition

which resembles the Euler critical load in structural engineering, and the

parameter is called as sub-optimal. Note that the equation (6.8.43) is an
inequality, for which the solution is not unique, there are a number of solution of the
vector satisfy the inequality. Rewriting the condition as the mini-maximization
of the index

then the filtered vector obtained is called as the central solution. In fact, the
vector is determined from equation (6.8.42), where y,u are given vectors and F
is a linear operator. The operator F depends only on the system matrices

but not depends on the disturbance w directly. Taking

mean value to the equation (6.8.3) gives

which means that the estimated state vector determines the estimation of vector
The variational principle (6.8.47) is conditional, and the conditions are

equations (6.8.2) and (6.8.4). Introducing the Lagrange multipliers, the n -
dimensional vector and the q -dimensional vector derives the extended
index
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Taking minimization with respect to w first gives

Substituting back into (6.8.49) and using equation (6.8.5) gives

Then taking minimization with respect to gives

where

The variational principle (6.8.50) has two kinds of independent variables
both being n -dimensioned vectors and dual to each other. Performing

the variational derivation gives the dual differential equations

The boundary condition at is

The boundary condition at the other end needs further investigation. If the
connection condition with the future time interval at the present time is

disregarded, then the natural boundary condition of at is

Using this completely free natural boundary condition at the present time the

problems, hence the computation of filter is even more important. Control is
one of the important applications of filtering, and in this case there is the connection
to future time interval at the present time instant No matter what form of
boundary condition is used at there must be a vector denoted as

resulting vector is filter, the filter vector.
The application of filtering is not necessarily limited only to the control
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So the problem becomes to find the equation for this vector The feature of
control problem is the connection to the future time interval, so that the equation

for should be derived according to this connection condition, which will be

given later. Leaving the vector to be determined, the equations (6.8.52~53)

should be satisfied first and the variational index becomes

From what follows, the solution of the free boundary condition (6.8.54) is termed as

the filter solution, whereas the other boundary condition with being not a zero
vector is termed as estimation solution, which looked likes smoothing but it does
not offence the causality so it is not smoothing. Evidently filtering is a special case

of estimation solution.

The filter solution is described first, that except the boundary condition at

the equations for estimation solution are the same as filter solution. Therefore
the majority of solution procedure for the filter solution is also useful for the
estimation solution.

§6.8.2.1, Solution of the dual equations

Comparing the equations (6.8.52a,b) and (6.5.47a,b) knows that both set are
practically the same. Both are first order inhomogeneous differential equations with
two end boundary conditions. Both are filter problems so that the boundary
conditions coincide to each other, with the same solution method. The
inhomogeneous term can be solved after the homogeneous equation is solved.
Similar to that in section 6.5 let

Substituting into equations (6.8.52a,b) gives

Eliminating in the above equations derives the Riccati differential equation

and the mean value differential equation for the filter

The matrix should first be solved from the Riccati differential equation. Then,

substituting the matrix into the filter equation solves the filter vector It

is easily seen that the matrix is independent on the measurement y and the

control input u, i.e. independent on the in-homogenous terms. Comparing to the

Kalman filter the term is appended. Presently the matrix is
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no longer a non-negative definite matrix. However, cannot be too large,

otherwise will be unsolvable. The critical value can be found from the
existence condition of the solution, which will be given in the next section.

The vector in the filter equation should be substituted with equation (6.8.48),
which gives

The precise integration method for this equation is very similar to the solution of
Kalman-Bucy filter equation given in the section 6.5.7, which has been described in
detail. Hence, the problem is reduced to the determination of the critical parameter

for the solvability condition of the Riccati differential equation (6.8.58) and
afterwards, to the precise solution of (6.8.58) with the given sub-optimal parameter

§6.8.2.2, Extended Rayleigh quotient

To solve the Riccati differential equation (6.8.58), the first step is the

determination of The equation (6.8.58) can only be solved when
Note that the equation is derived from the dual equations with no regard to the non-

homogeneous term, hence the critical value can be found under the assumption

u = 0,y = 0, The corresponding variational principle (6.8.50) becomes

From this variational principle derives the homogeneous dual equations of the
equations (6.8.52a,b)

and the initial and end boundary conditions

where are x(0), and the end time is the reason is explained as

its minimum value at so that the end time of the past interval be given as is
appropriate. The variational principle (6.8.60) can be rewritten as

where are independently varied vectors. Obviously is non-negative.

If the selection of satisfies the equation (6.8.62a), then

follows. Because the present time t increases from to and will reach
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The larger sign is ensured from both the controllability and observability conditions.
The variational equation (6.8.63) can be rewritten in the form of the extended
Rayleigh quotient with two kinds of variables

In the variational equations (6.8.63~64), the parameter has been appended with

the subscript since otherwise if the original problem can have only

trivial solution because As a matter of fact, it is

an eigenvalue problem and the behavior of the extended Rayleigh quotient is the
same as the eigenvalue problem of a self-adjoint operator in mathematical physics.

The filter problem needs only the smallest eigenvalue, which is the same as

the control problem.

For convenience of understanding, a special case of full rank matrix is
considered, i.e. positive definite. Hence equation (6.8.62a) can be used to maximize

which derives

hence

where

This form of functional has only one kind of variables x . The one kind of

variables variational principle is popular in structural mechanics, that in the analysis
of structural stability or of structural vibration natural vibration both the Rayleigh
quotients have such form. In structural mechanics, the two kinds of variables mixed
energy variational principle can be derived from the one kind of variable system as
derived in section 5.7. The potential energy expression is the same as the above
expression. The extended W-W algorithm for the eigenvalue count of two kinds of
variables and mixed energy can also be derived from the W-W algorithm of one kind

of variables as described in section 2.2. The eigenvalue computation is

certainly very important, that using the precise integration method in combination

with the mixed variable W-W algorithm, the eigenvalue can be found up to

arbitrarily assigned precision.
Both the critical parameters of future time interval control and of past time

interval filtering are all extended Rayleigh quotient, that they are resemble to

each other. In fact, both problems are dual to each other as was seen in the case of
LQG problem.
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§6.8.2.3, Interval mixed energy

The idea of interval mixed energy has been appeared several times for various

problems, so that it is only briefly described here. Let denote the trial parameter

of the critical parameter Let the interval be denoted as that the instants

satisfy Let the two end boundary conditions of the interval be

given as that the state vector and the co-state vector are given at the two ends

and respectively. Therefore, the dual vectors within the interval

are determined. The mixed energy of the interval is defined as

Obviously, the mixed energy is a homogeneous quadratic form of the vectors and

for which the general expression is

where and are all n×n matrices, and also

Two contiguous intervals can be combined into one longer interval, for which
the elimination and combination equations have been given in equation (6.5.77) and
are not repeated here. The interval combination procedure can be invoked
recursively. However, the matrices Q,G,F express only the characteristic of the
interval at the two ends, with no knowledge to the internal behavior of the interval.

Presently, the eigenvalue is of concern. According to the W-W algorithm for

structural mechanics the eigenvalue count is necessary, see chapter 2. The original
form of the W-W algorithm applies only to the given two end displacement
boundary condition, which corresponds to one kind of variables potential energy
(dynamic stiffness) variational principle in structural mechanics. The basic form of
Rayleigh quotient is also for one kind of variables. According to the analogy
between structural mechanics and optimal control, the original form corresponds to
the boundary condition of given state vectors at the two ends

respectively, which does not fit the requirement of the present problem. Transform
the dynamic stiffness potential energy of the vectors into the mixed energy of

mixed variable vectors and correspondingly the original W-W algorithm

should also be transformed into the extended W-W algorithm [41]. The extended
W-W algorithm supplies the eigenvalue count of the mixed energy representation
and is used as the supplement to the mixed energy matrices Q,G,F . Comparing to
structural mechanics, the vectors correspond to displacement and internal

force vectors, respectively. The eigenvalue count equations of extended W-W
algorithm for interval combination can be transplanted from structural mechanics as
(see section 2.2)
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where is the given trial parameter for eigenvalue, represents the

end conditions Certainly, the count of eigenvalues is also a function

of and but for simplicity it is still written as The

sign s{M} represents the number of negative entries in the diagonal matrix D,

where the symmetric matrix M is triangular factorized as
Therefore, the interval mixed energy representation for eigenvalue problem is

extended as a quadruple composed of three matrices and an

eigenvalue count. All of them are functions of the two end time instants and

the given parameter However, usually the parameter is not written

explicitly, such as still written as etc. The LQ control or Kalman-Bucy

filter theories correspond to the selection so that the eigenvalue count

always equals zero, hence in these cases the eigenvalue count is unnecessary in the
mixed energy representation. However, in theory the eigenvalue is a key
parameter, so that the mixed energy representation must add the eigenvalue count
and becomes of the form

The above derivation applies also to time variant system. When the system is
time invariant, the matrices and count depend only on the interval length

They satisfy the differential equations

These equations give the relation between the system matrices and the interval
matrices Q ,G ,F . The initial conditions are

The derivation of these equations is almost the same as comparing to that in section
6.5. If selecting then the differential equation (6.8.69b) is the same as

the Riccati differential equation in (6.8.58), but the boundary condition (6.8.70) is
different. However, for an arbitrary point after found the matrices

Q,G,F , execute the equation

the solution of (6.8.58) is obtained. But the grid points are discrete, that computing
the matrices only at these discrete points cannot make sure if there has no conjugate

number of eigenvalues, which are less than of the interval with the two
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The criterion means that is a sub-optimal parameter. Based on this

criterion, the searching method can be used for such as using the bisection

method, then the real eigenvalue can be found up to arbitrary precision. The
methodology is the same as using the W-W algorithm in eigenvalue problems in
structural stability analysis or in structural natural vibration.

§6.8.2.4, Precise integration method

Direct integration for the Riccati differential equation faces the non-linear
problem. The usual numerical integration method usually applies finite difference
approximation, which is error prone and has also the problem of numerical
instability. The precise integration method in combination with the W-W algorithm
can solve the Riccati differential equation and its eigenvalue with the numerical
results up to the computer precision.

Numerical integration need a time step size which is a reasonable value not

too large. Follow the given step size a very small time step is selected, see

(6.8.34). Because the interval elimination and combination require an initial interval
with its interval matrices be determined very precisely (up to the computer

precision), that is used as the initial interval. For such a small time

interval the power series expansion has very high precision. The series
expansion can select the same as equation (6.8.35), for which the error has been
beyond the precision of the real number of computer double precision.

The series expansion (6.8.35) has satisfied the initial condition (6.8.70).
Substituting into the equations (6.8.69a~c) and comparing the coefficients of various
powers of successively gives

where are all n×n matrices, and These

equations require only computing successively with no iteration. After computed
the matrices according to the equation (6.8.35) and (6.8.73), the

eigenvalue count is applied since is selected extremely small and then

point within the whole time interval To make sure if the solution of the

Riccati differential equation has any conjugate point, the eigenvalue count must be
computed as
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the quadruple of mixed energy representation of interval is composed. It can be

used as the initial time interval for the algorithm of interval combination.
So far, all the derivations are exact except the series expansion (6.8.35) is

truncated after the term The relative error of the truncation to the first term is

Since the relative error has been beyond the

significant decimal digits of the double precision real number of the computer,
so that practically this series expansion has no net effect to the computer arithmetic.

Based on the mixed energy representation of the initial time interval the
interval combination algorithm should be executed N times to obtain the mixed
energy representation of time interval Special attention must be
taken on that the matrix addition in the combination equation (6.8.35a) should
not be executed. The reason is that is very small when is very small and the
addition will seriously drop the arithmetic precision due to round-off operations.
Using equations (6.8.37a~c) instead of (6.5.77a~c) can avoid such round-off error of
arithmetic precision.

Until here, the equations for precise integration have been completed. Control
theory requires the solution matrix of the Riccati differential equation being always
symmetric and positive definite (or at least non-negative definite). For finite horizon
(time interval), this requires the criterion after the execution of equations

(6.8.71~72), in order to ensure that is a sub-optimal parameter, and in such case

the parameter can be increased. Otherwise if then the parameter is too

large, and should be decreased, then compute again. For the computation of infinite
horizon problem, the appearance of at any stage means that the parameter

is too large and should be decreased.

§6.8.2.5, Algorithm

The algorithm for the optimal parameter (eigenvalue) can be the bisection

searching for the given parameter based on the W-W algorithm. For a given

parameter the computation is the sub-optimal algorithm. The searching of the

eigenvalue can be only the bisection algorithm, which is so popular and is

avoided.
First, the precise integration algorithm for the fundamental interval is given

as
[Given n , and matrices and initial variance matrix ]

[Give the time interval Select a trial parameter ]

[From (6.8.51) compute the matrices and ]

[Select a fundamental time step Let N = 20; and ]

[According to (6.8.35), (6.8.73) computing let ]
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for (iter = 0; iter < N; iter + +) {

[Triangular factorizing the matrices G and compute according

to (6.8.67);]
[According to (6.8.37) compute ]

[Let ]

}
[Let ]

Comment: has been for the interval (6.8.74)

Below, two cases of infinite horizon and finite horizon should be distinguished.
For the case of infinite horizon, the algorithm is
while {

[Let ]

if { is too large; Break;}

} Comment: If is too large, decrease or is sub-optimal, increase

(6.8.75)

For case of finite horizon, the mesh is After the
computation of (6.8.74), execute

for (iter = 1; iter ++) {

Comment: have not changed

[Using (6.5.77) compute and compute based on (6.8.67)]

[Let ]

if Break;

}

else { is too large, the upper bound of reduce } (6.8.76)

For the parameter iterates using such as the bisection method until satisfied.
This is the least eigenvalue iteration of Rayleigh quotient, which gives the lower and
upper bounds.

In the next section, some numerical example will be given for the measurement
feedback optimal control problem, which certainly involves the computation of

filtering. Hence no numerical example is given here.

[Using (6.5.77) compute and compute based on (6.8.67)]

if { is lower bound of sub-optimal and can be increased;

if the precision is enough, stop.}
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§6.8.3, Synthesis variational principle for measurement feedback control [94]

The whole time interval is composed of the past [0, t) and the future

two time intervals, connected at the present time instant t . Synthesizing
means the application of the results of the two intervals and the connection condition
at the present time instant t in the variational principle for the whole time interval.
The connection condition is the continuity condition of the state vector that the
initial condition of the state vector of the future time interval equals the state
estimation vector of the past interval at its end time t. The state estimation

value is not necessary the filter value which gives the difference between

LQG and theory and is determined from the variational principle (6.8.6). It is

emphasized that the filter value is obtained from the boundary condition

but the estimation state value does not use such boundary condition. The

boundary condition is derived from the variational principle as a natural boundary
(connection) condition, based on the state vector continuity condition at the present
time t . According to the proposition of TPBVP, there should be n boundary
conditions for each of both the connected time intervals at the present time t ,
respectively, so that 2n conditions should be given. Considering from the whole
time interval, there must be 2n connection conditions at t . The continuity of the
state vector x(t) proposed n connection conditions, and the other n conditions will
be derived as the natural connection condition of the variational principle (6.8.6).

Internal to the future time interval and to the past time interval, there is no
connection, the only connection of the two intervals is at the present time t . Hence
from equation (6.8.6), the integral of the future time interval derives still of
equation (6.8.8’). Introducing the dual vector as given in section 6.8.1, it is
derived that the index variation of the future time interval is

Substituting the equation (6.8.13) gives

Because of the continuity condition (6.8.9) for the state vector x(t), it gives

Note that the variation of state vector is different from the estimated state vector
of the past time interval.
In the variational principle (6.8.6), the integral of the past time interval gives

still the functional in equation (6.8.47), the derivation of which is independent

on the future time interval except at the present time t . Obviously, the functional
and can arbitrarily multiply individual multipliers to them, respectively,

without any consequence to the derived equations within the two time intervals.
Because the functional and are for different time intervals, any of their linear

combination can still derive the differential equations of the two intervals separately.
Only at the time instant t , the connecting point, the linear combination influences
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the resulted equations derived there. Hence an appropriate linear combination is to
find.

Let us go back to the variational principle (6.8.6) to find the appropriate linear
combination, that the expression of norm of the disturbance w is the same for the
future and for the past intervals. Hence the linear combination of the norm of

and is required to keep the unified form of the norm of disturbance w .

Comparing the w contributions in the functional (6.8.8’) and (6.8.47) determines
that the functional J of the whole time interval should be composed as

That the norm contributed by the disturbance w of the past and future intervals has
the same form as given in (6.8.6). Based on this functional J , the differential
equations derived in the past and future time intervals are the same as given in the
two previous sections, so that only the connection equation at the time instant t is to
be derived further. According to the variational equations (6.8.77) and (6.8.56)
derives

where because is arbitrarily varied, hence

The vectors above are the estimation solutions of the past time interval,

and the equation (6.8.79) is the another boundary condition at for the
estimation in past interval. Because the equation is derived from the functional of
the whole time interval, so it is called as the natural connection condition, the
another n connection conditions. The derivation of this natural connection
condition is based on the continuity of the state vector x . However, the two
intervals have their own individual dual vectors, respectively, and are independent
on each other before connection. Therefore at the two sides of the present time t

of a filter, the difference is obvious. Therefore, the connection condition of

measurement feedback control should be strictly distinguished with the boundary

natural connection condition as the boundary condition at the time t for

measurement feedback control. Because it is different to pure filtering so the term

estimation is used. The LQG theory is the limiting case of theory with

that the connection condition (6.8.79) reduces to (6.8.54) as

Substituting into the equation (6.8.57), it is seen that when the boundary
condition (6.8.54) is used, the state vector gives naturally the filter value. But the

state vector continuity condition determines that vectors are used, which

gives

condition (6.8.54) of filter theory. The past interval analysis should use the

the two vectors of have no continuity condition.
Comparing the condition (6.8.79) with the natural boundary condition (6.8.54)
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The simultaneous equation (6.8.79) and (6.8.80) can be used to solve the unknown
dual vectors and and it obtains

This equation gives the relation between the filter vector and the estimation

vector Hence the filter state vector and the variance matrix P(t) for

the past time interval, and the state feedback optimal control solution matrix

X(t) of the Riccati differential equation should first be computed, thereafter the

measurement feedback state estimation vector can be computed by equation

(6.8.81). Based on the feedback control vector can be computed from

equations (6.8.10”) and (6.8.13)

The feedback control vector should be computed at the real-time, so that fast
computation of the control vector is required. All the computation, which can be
executed off-line, should be carried out beforehand and stored, and be retrieved at
the running time of the control system. The state vector estimation depends on

the real time measurement so that it can only be computed at the real time. The
matrices P(t) and X(t) do not depend on the measurement nor the control

so that they can be computed off-line. In the equation (6.8.81) only the filter

vector requires real-time computation. Therefore the filter computation is

extremely important, for which the precise integration has been described in detail in
section 6.5.

§6.8.3.1, Rayleigh quotient

parameters are different and are denoted as and respectively. According

to the variational equation (6.8.6), the measurement feedback control system has a

unified critical parameter since the equation (6.8.81) explains that the factor

should be non-singular everywhere [134], which is again a

condition to the critical parameter In previous sections the conditions

and have been derived for the state feedback control and

respectively, are certainly two bounds to the critical parameter of the

measurement feedback control system of the whole time interval The

equation (6.8.81) proposes the third bound in addition to the previous two. This
condition can be rewritten as

The critical parameters of the filter and the state feedback control

are described in the sections 6.8.1 and 6.8.2, respectively. These two critical

for the filtering, respectively. The control and filter critical values and
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This equation has the same form of the eigenvalue problem of structural vibration

problem, that the matrix resembles the stiffness matrix of a structure,

and X(t) ~ M resembles the mass matrix of the structure. As the time t is

changing, equation (6.8.83) proposes an infinite number of eigenvalue problems.
The eigenvalue problem can be written in the typical Rayleigh quotient form

where the time t is only a parameter. Hence the measurement feedback critical

parameter can be written as

The conditions and are two bounds of filtering and

state feedback control, respectively, exactly two conditions. The above third

condition is for arbitrary time t. Solvable conditions of the matrices X(t),P(t)
imply that the former two conditions have been satisfied, so that the third condition
is based on the former two conditions. The n×n matrices X(t) and P(t) are both

positive definite and symmetric. The computation of Rayleigh quotient of two
positive definite symmetric matrices is a very popular problem, that a number of
standard algorithms are available. However, this computation must be executed for
all the time grid points, so that the third condition is by no means one condition but
quite a number of conditions.

§6.8.3.2, Variance matrix of the state estimation vector

It has been shown that the matrix P(t) is the variance of the filter vector

however, the estimated vector is used now, whose variance matrix is also of

concern. For which, the analogy relationship to structural mechanics can also be
used. According to the analogy, the variance matrix corresponds to the flexibility
matrix in structural mechanics. Then the estimation state vector can be

generated as follows: let all measurement vector y = 0 with the initial state

also, which corresponds to zero external forces. Then let the unit forces i = 1,…,n

one after another acts at the time t sequentially, where is the i -th column vector

of the unit matrix Under this unit force load, the displacement vector (i.e. the

state vector) solution is obtained as

Note that because y = 0 so that in the equation (6.8.80) for all i = 1,…,n .

Therefore, it solves substituting which into the above equation

gives
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These are the displacement vectors under the unit force vector Using

displacement vectors as the i -th columns composes the variance matrix Z(t)

as

§6.8.3.3, Algorithm

The precise integration computations for the state feedback control and for

filtering are described above. The condition (6.8.84), however, cannot be
checked for all the continuous-time t , but can only be checked at the discrete time
grid points. Usually, regular mesh is used in the computation, the whole time
interval is subdivided into fundamental small length

intervals. For a given parameter the precise integration method can be used to

compute the interval mixed energy matrices and the respective eigenvalue count for
the fundamental interval of length Such computations, certainly, should be

carried out both for      state feedback optimal control and for       filter. Based on

the method of interval elimination and combination, the Riccati matrices and

for of both the state feedback optimal control and the
filtering can be computed for all the grid points. Using the mixed energy extended

W-W algorithm, the trial parameter is ensured to be sub-optimal for both the
control and     filter, respectively.

However, the parameter needs further verification to meet the condition of
(6.8.84), which is the verification for all the grid points.

The computation of the measurement feedback optimal control has also

two stages. The first stage is determination of the critical parameter for

measurement feedback optimal control. Afterwards, for a selected sub-optimal

parameter carry out the precise integration computations. The latter stage
computation is almost the same as the computation for a LQG problem, so that the

detail is omitted. The important part is the determination of critical parameter

for the measurement feedback optimal control. Obviously, and

so that after the parameters of and are computed, the searching

range of the critical parameter is finite. The algorithm can be described as

[Give dimension n ; system matrices A, and end matrices

[Give time interval Selecting a parameter

while is not precise enough) {
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[Compute state feedback control solution, checking if is sub-optimal,

solve X(t);]

if         is not sub-optimal) {reduce        Break;}

[Compute filter solution, checking if is sub-optimal, then solve P(t);]

if        is not sub-optimal) {reduce       Break;}
for {

[Solve the Rayleigh quotient (6.8.84); checking if is less than the

Rayleigh quotient;]

if         is too large) Break;

}
if       is too large) {reduce      Break;}

is sub-optimal; increasing

} Comment: end of loop, is the measurement feedback critical parameter

Two numerical examples are given below, in order to see the relation among

various critical parameters. It must be and But there is no

definite relation between the parameters and

Example 6.14, A one-dimensional example gives the comparison between the
results of precise integration and analytical solution. Suppose

n = 1, A = 0.8;

The time interval is The problem is to find the

measurement feedback control optimal parameter and the Riccati matrices

X(t), P(t) and Z(t).
For one-dimensional problem, the differential equation can be solved

analytically. Substituting the original data into the Riccati differential equations
gives

where X(t) and P(t) are scalar functions and analytical solutions can be found.

The numerical results below are the solutions from both the precise integration and
analytical method. The two different methods give almost completely the same
result, so that only one set of numerical result is listed.

For state feedback control, the critical parameter is

For     filtering, the critical parameter is

However, equation (6.8.86) gives the measurement feedback control critical

parameter For this lower bound critical parameter the three

(6.8.87)
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variance matrices X(t),P(t) and Z(t) are all scalars and are listed in table 6.4.

Because the critical parameter is less than both and so the two

Riccati differential equations have no singular point. However, the measurement
feedback variance matrix Z(t) has a singular point nearby the internal point

It can be seen that Z(0.30) is very large in table 6.4.

Example 6.15, A multi-dimensional problem is illustrated, for which the precise
integration method reaches almost the computer precision. It can also use the
analytical method based on the eigen-solutions. Both methods give the same result.
The original data is

n = 5,

The precise integration method gives the eigenvalues as below.

The state feedback control critical parameter:

The filter critical parameter:

However, (6.8.85) gives the measurement feedback critical parameter

As a matter of fact, for an optimal parameter there must be a time point t in the

domain where the matrix Z(t) is singular. In application, the optimal

X( t) , P( t)  and Z( t)  can also be computed, but not listed for saving space. It should

be pointed, nearby the point t = 2.0 the variance matrix Z(t) is almost singular.

which is far apart from and The variance matrices
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parameter makes the matrix Z(t) tends to be singular somewhere, so that it is

not applicable. The similar situation appears also in the structural engineering of
Euler stability load, which cannot be used in the engineering application either. ##

One point must be emphasized that in determining the optimal parameter

any internal time station can be a marginal point. So that solving only the ARE and
skipped the internal time point is inappropriate, that the solution of the transient of
Riccati differential equation is necessary.

So far the state space based theory of linear optimal control is described in
some detail above. Readers can find that the analogy theory between structural
mechanics and optimal control is quite helpful in understanding.
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Concluding remarks:

The optimal control theory, structural vibration and wave propagation etc. are
described under a unified theoretical framework. They are closely related to that in
analytical dynamics. The reader can find that the methodology used for these
different problems is parallel, the differential equations, variational principles and
others, are of the same form. To these subjects described in this book, if one studied
one subject among them, then it will be easier for him to understand the others. The
control theory is shown developed very close to that in applied mechanics, that
parallel studying both the subjects is not very difficult, since the mathematical theory
is the same. However, the linear control theory is only a fundamental part of the
control theory, there are further problems of parameter identification, adaptive
control, de-centralized control theory etc. Further researches are definitely
necessary.

The problems solved in this book are all finite dimensional however it by no
means to say such methodology can only solve finite dimensional problems. Theory
of elasticity is a typical problem of infinite dimensional problem, by using the
duality system approach described in the book [23], the fundamental equations are
derived to a linear system form, and then the method of separation of variables is
applied. The solution methodology becomes rational, rather than the try and error
style semi-inverse approach. This sort of developments will be given in another
book.

This book describes mainly for linear system, however, the duality
methodology can be used not only for linear system, but also for non-linear system,
see [140].

The methodology described in the present book can not only be used for
teaching but also be used for further research.
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